
[MS-XCA]: Xpress Compression Algorithm

This topic lists the Errata found in [MS-XCA] since it was last published.

Since this topic is updated frequently, we recommend that you subscribe to

these RSS or Atom feeds to receive update notifications.

Errata are subject to the same terms as the Open Specifications
documentation referenced.

RSS

Atom

Errata below are for Protocol Document Version V6.0 – 2020/03/04.

Errata
Published* Description

2020/08/17 In Section 2.2.4 Processing, we corrected the pseudocode to remove extraneous
implementation-specific processing.

Changed from:

 Loop until a decompression terminating condition

 Check for EOF

 Build the decoding table

 CurrentPosition += 256 // start at the end of the Huffman table

 NextBits = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 NextBits <<= 16

 NextBits |= Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 ExtraBits = 16

 BlockEnd = OutputPosition + 65536

 Loop until a block terminating condition

 Loop until a literal processing terminating condition

 If OutputPosition >= BlockEnd then terminate block processing

 Next15Bits = NextBits >> (32 – 15)

 HuffmanSymbol = DecodingTable[Next15Bits]

 HuffmanSymbolBitLength = the bit length of HuffmanSymbol,

from the table in

 the input buffer

 If HuffmanSymbol <= 0

 NextBits <<= HuffmanSymbolBitLength

 ExtraBits -= HuffmanSymbolBitLength

 Do
 HuffmanSymbol = - HuffmanSymbol
 HuffmanSymbol += (NextBits >> 31)
 NextBits *= 2
 ExtraBits = ExtraBits - 1
 HuffmanSymbol = DecodingTable[HuffmanSymbol]
 While HuffmanSymbol <= 0
 Else
 DecodedBitCount = HuffmanSymbol & 15
 NextBits <<= DecodedBitCount
 ExtraBits -= DedcodedBitCount
 HuffmanSymbol >>= 4 // Shift by 4 bits to get the symbol

value

 // (the lower 4 bits are the bit

length of the symbol)

 HuffmanSymbol -= 256

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition)

<< (-ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 If HuffmanSymbol >= 0

http://blogs.msdn.com/b/protocol_content_errata/rss.aspx
http://blogs.msdn.com/b/protocol_content_errata/atom.aspx
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-xca/a8b7cb0a-92a6-4187-a23b-5e14273b96f8

Errata
Published* Description

 If HuffmanSymbol == 0

 If the entire input buffer has been read and

 the expected decompressed size has been written

to the output buffer

 Decompression is complete. Return with

success.

 Terminate literal processing

 Else

 Output the byte value of HuffmanSymbol to the output

stream

 End of literal processing Loop

 MatchLength = HuffmanSymbol mod 16

 MatchOffsetBitLength = HuffmanSymbol / 16

 If MatchLength == 15

 MatchLength = ReadByte(InputBuffer + CurrentPosition)

 CurrentPosition += 1

 If MatchLength == 255

 MatchLength = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 If MatchLength < 15

 The compressed data is invalid. Return error.

 MatchLength = MatchLength - 15

 MatchLength = MatchLength + 15

 MatchLength = MatchLength + 3

 MatchOffset = NextBits >> (32 – MatchOffsetBitLength)

 MatchOffset += (1 << MatchOffsetBitLength)

 NextBits <<= MatchOffsetBitLength

 ExtraBits -= MatchOffsetBitLength

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-

ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 For i = 0 to MatchLength - 1

 Output OutputBuffer[OutputPosition – MatchOffset + i]

 End of block loop

 End of decoding loop

Changed to:

 Loop until a decompression terminating condition

 Build the decoding table

 CurrentPosition = 256 // start at the end of the Huffman

table

 NextBits = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 NextBits <<= 16

 NextBits |= Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 ExtraBitCount = 16

 BlockEnd = OutputPosition + 65536

 Loop until a block terminating condition

 If the OutputPosition >= BlockEnd then terminate block processing

 Next15Bits = NextBits >> (32 – 15)

 HuffmanSymbol = DecodingTable[Next15Bits]

 HuffmanSymbolBitLength = the bit length of HuffmanSymbol, from

the table in

 the input buffer

 NextBits <<= HuffmanSymbolBitLength

 ExtraBitCount -= HuffmanSymbolBitLength

 If ExtraBitCount < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-

ExtraBitCount)

 ExtraBitCount += 16

Errata
Published* Description

 CurrentPosition += 2

 If HuffmanSymbol < 256

 Output the byte value HuffmanSymbol to the output stream.

 Else If HuffmanSymbol == 256 and

 the entire input buffer has been read and

 the expected decompressed size has been written to the

output buffer

 Decompression is complete. Return with success.

 Else

 HuffmanSymbol = HuffmanSymbol - 256

 MatchLength = HuffmanSymbol mod 16

 MatchOffsetBitLength = HuffmanSymbol / 16

 If MatchLength == 15

 MatchLength = ReadByte(InputBuffer + CurrentPosition)

 CurrentPosition += 1

 If MatchLength == 255

 MatchLength = Read16Bits(InputBuffer +

CurrentPosition)

 CurrentPosition += 2

 If MatchLength < 15

 The compressed data is invalid. Return error.

 MatchLength = MatchLength - 15

 MatchLength = MatchLength + 15

 MatchLength = MatchLength + 3

 MatchOffset = NextBits >> (32 – MatchOffsetBitLength)

 MatchOffset += (1 << MatchOffsetBitLength)

 NextBits <<= MatchOffsetBitLength

 ExtraBitCount -= MatchOffsetBitLength

 If ExtraBitCount < 0

 Read the next 2 bytes the same as the preceding

(ExtraBitCount < 0) case

 For i = 0 to MatchLength - 1

 Output OutputBuffer[CurrentOutputPosition – MatchOffset +

i]

 End of block loop

 End of decoding loop

2020/06/08 In Section 2.2.4 Processing, we clarified when and how implementations must check for the
EOF condition during decompression. We modified the pseudocode and added explanatory text.

Changed from:

The compression stream is designed to be read in (mostly) 16-bit chunks, with a 32-bit register
maintaining at least the next 16 bits of input. This strategy allows the code to seamlessly
handle the bytes for long match lengths, which would otherwise be awkward. The following
pseudocode demonstrates this method.

Loop until a decompression terminating condition

Build the decoding table

...

Changed to:

The compression stream is designed to be read in (mostly) 16-bit chunks, with a 32-bit register
maintaining at least the next 16 bits of input. This strategy allows the code to seamlessly
handle the bytes for long match lengths, which would otherwise be awkward. The following
pseudocode demonstrates this method.

Errata
Published* Description

During the beginning of processing each block for decompression, an implementation MUST
check for EOF. An implementation can do this by comparing the block size against the required
space for a Huffman table ” if this condition is met and all output has been written, then
processing stops and success is returned. Alternately, an implementation can explicitly examine
the input buffer using the Huffman table from the previous block.

Loop until a decompression terminating condition

Check for EOF

Build the decoding table

...

2020/04/27 In Section 2.2.4, Processing, we replaced CurrentOutputPosition with OutputPosition for
simplicity and clarity of the pseudocode.

Changed from:

For i = 0 to MatchLength - 1

 Output OutputBuffer[CurrentOutputPosition – MatchOffset + i]

Changed to:

For i = 0 to MatchLength - 1

 Output OutputBuffer[OutputPosition – MatchOffset + i]

2020/04/27 In Section 2.2.4, Processing, we clarified the nesting and termination conditions of the loops in
the pseudocode.

Changed from:

Loop until a block terminating condition

 If OutputPosition >= BlockEnd then terminate block processing

 Loop until a literal processing terminating condition

Changed to:

Loop until a block terminating condition

 Loop until a literal processing terminating condition

 If OutputPosition >= BlockEnd then terminate block processing

2020/04/27 In Section 2.2.4, Processing, we altered the pseudocode to advance the CurrentPosition by 256
rather than assigning a fixed value of 256.

Changed from:

CurrentPosition = 256 // start at the end of the Huffman table

Errata
Published* Description

Changed to:

CurrentPosition += 256 // start at the end of the Huffman table

*Date format: YYYY/MM/DD

	[MS-XCA]: Xpress Compression Algorithm

