
[MS-XCA]: Xpress Compression Algorithm

This topic lists the Errata found in [MS-XCA] since it was last published.

Since this topic is updated frequently, we recommend that you subscribe to

these RSS or Atom feeds to receive update notifications.

Errata are subject to the same terms as the Open Specifications
documentation referenced.

RSS

Atom

Errata below are for Protocol Document Version V5.0 – 2018/09/12.

Errata
Published* Description

2020/02/17 In Section 2.3.4, Processing, we updated the pseudocode for the encoding method for match
lengths greater than 65535.

Changed from:

 If MatchLength >= 7

 MatchLength -= 7

 If LastLengthHalfByte == 0

 LastLengthHalfByte = OutputPosition

 Write the byte value min(MatchLength, 15) to OutputPosition

 OutputPosition += 1

 Else

 OutputBuffer[LastLengthHalfByte] |= min(15, MatchLength) << 4

 LastLengthHalfByte = 0

 If MatchLength >= 15

 MatchLength -= 15

 Write the byte value min(MatchLength, 255) to OutputPosition

 OutputPosition += 1

 If MatchLength >= 255

 MatchLength += 15 + 7

 Write the 2-byte value MatchLength to OutputPosition

 OutputPosition += 2

Changed to:

 If MatchLength < 7

 // This is the simple case. The length fits in 3 bits.

http://blogs.msdn.com/b/protocol_content_errata/rss.aspx
http://blogs.msdn.com/b/protocol_content_errata/atom.aspx
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-xca/a8b7cb0a-92a6-4187-a23b-5e14273b96f8

Errata
Published* Description

 MatchOffset += MatchLength

 Write MatchOffset the 2-byte value to OutputPosition

 OutputPosition += 2

 Else

 // The length does not fit 3 bits. Record a special value to

 // indicate a longer length.

 MatchOffset |= 7

 Write MatchOffset the 2-byte value to OutputPosition

 OutputPosition += 2

 MatchLength -= 7

 // Try to encode the length in the next 4 bits. If we previously

 // encoded a 4-bit length, we'll use the high 4 bits from that byte.

 If LastLengthHalfByte == 0

 LastLengthHalfByte = OutputPosition

 If MatchLength < 15

 Write single byte value of MatchLength to OutputPosition

 OutputPosition += 1

 Else

 Write single byte value of 15 to OutputPosition

 OutputPosition++

 goto EncodeExtraLen

 Else

 If MatchLength < 15

 OutputBuffer[LastLengthHalfByte] |= MatchLength << 4

 LastLengthHalfByte = 0

 Else

 OutputBuffer[LastLengthHalfByte] |= 15 << 4

 LastLengthHalfByte = 0

 EncodeExtraLen:

 // We've already used 3 bits + 4 bits to encode the length

 // Next use the next byte.

 MatchLength -= 15

 If MatchLength < 255

 Write single byte value of MatchLength to OutputPosition

Errata
Published* Description

 OutputPosition += 1

 Else

 // Use two more bytes for the length

 Write single byte value of 255 to OutputPosition

 OutputPosition += 1

 MatchLength += 7 + 15

 If MatchLength < (1 << 16)

 Write two-byte value MatchLength to OutputPosition

 OutputPosition += 2

 Else

 Write two-byte value of 0 to OutputPosition

 OutputPosition += 2

 Write four-byte value of MatchLength to OutputPosition

 OutputPosition += 4

2020/02/17 In Section 2.3.4 Processing, we added clarifying information about the maximum MatchLength.

Changed from:

The fastest variant of the Xpress Compression Algorithm avoids the cost of the Huffman[IEEE-
MRC] pass by encoding the LZ77 [UASDC] literals and matches in a simple way. The encoding
process is similar to the method described in section 2.1.4.1, with the key difference that the
largest match offset it can encode is 8192 instead of the 65535 limit of the Huffman format.
The literal or match flags are encoded in 32-bit chunks. Literals are encoded with a simple byte
value. Matches are encoded with a 16-bit value, where the high 13 bits represent the offset and
the low 3 bits represent the length. Long lengths are encoded with an additional 4 bits, then 8
bits, and then 16 bits. The following pseudocode provides an outline of the encoding method.

Changed to:

The fastest variant of the Xpress Compression Algorithm avoids the cost of the Huffman[IEEE-
MRC] pass by encoding the LZ77 [UASDC] literals and matches in a simple way. The encoding
process is similar to the method described in section 2.1.4.1, with the key difference that the
largest match offset it can encode is 8192 instead of the 65535 limit of the Huffman format.
The literal or match flags are encoded in 32-bit chunks. Literals are encoded with a simple byte
value. Matches are encoded with a 16-bit value, where the high 13 bits represent the offset and
the low 3 bits represent the length. Long lengths are encoded with an additional 4 bits, then 8
bits, and then 16 bits. The MatchLength is represented by a ULONG, a 32-bit unsigned integer
(see [MS-DTYP] section 2.2.51); therefore, the maximum value is 4,294,967,295. The following
pseudocode provides an outline of the encoding method.

2020/02/17 In Section 2.2.4 Processing, we corrected the pseudocode by replacing DecodedValue with
HuffmanSymbol and added a clarifying comment to the pseudocode to explain why the
HuffmanSymbol needs to be right-shifted by 4 bits.

Errata
Published* Description

Changed from:

 …
 Loop until a decompression terminating condition

 Build the decoding table

 CurrentPosition = 256 // start at the end of the Huffman table

 NextBits = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 NextBits <<= 16

 NextBits |= Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 ExtraBits = 16

 BlockEnd = OutputPosition + 65536

 Loop until a block terminating condition

 If OutputPosition >= BlockEnd then terminate block processing

 Loop until a literal processing terminating condition

 Next15Bits = NextBits >> (32 – 15)

 HuffmanSymbol = DecodingTable[Next15Bits]

 HuffmanSymbolBitLength = the bit length of HuffmanSymbol, from
the table in

 the input buffer

 If HuffmanSymbol <= 0

 NextBits <<= HuffmanSymbolBitLength

 ExtraBits -= HuffmanSymbolBitLength

 Do

 HuffmanSymbol = - HuffmanSymbol

 HuffmanSymbol += (NextBits >> 31)

 NextBits *= 2

 ExtraBits = ExtraBits - 1

 HuffmanSymbol = DecodingTable[HuffmanSymbol]

 While DecodedValue <= 0

 Else

 DecodedBitCount = DecodedValue & 15

 NextBits <<= DecodedBitCount

 ExtraBits -= DedcodedBitCount

Errata
Published* Description

 HuffmanSymbol >>= 4

 HuffmanSymbol -= 256

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-
ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 If HuffmanSymbol >= 0

 If HuffmanSymbol == 0

 If the entire input buffer has been read and

 the expected decompressed size has been written to the
output buffer

 Decompression is complete. Return with success.

 Terminate literal processing

 Else

 Output the byte value of HuffmanSymbol to the output stream

 End of literal processing Loop

 MatchLength = HuffmanSymbol mod 16

 MatchOffsetBitLength = HuffmanSymbol / 16

 If MatchLength == 15

 MatchLength = ReadByte(InputBuffer + CurrentPosition)

 CurrentPosition += 1

 If MatchLength == 255

 MatchLength = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 If MatchLength < 15

 The compressed data is invalid. Return error.

 MatchLength = MatchLength - 15

 MatchLength = MatchLength + 15

 MatchLength = MatchLength + 3

 MatchOffset = NextBits >> (32 – MatchOffsetBitLength)

 MatchOffset += (1 << MatchOffsetBitLength)

 NextBits <<= MatchOffsetBitLength

 ExtraBits -= MatchOffsetBitLength

 If ExtraBits < 0

Errata
Published* Description

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-
ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 For i = 0 to MatchLength - 1

 Output OutputBuffer[CurrentOutputPosition – MatchOffset + i]

 End of block loop

 End of decoding loop

Changed to:

 …
 Loop until a decompression terminating condition

 Build the decoding table

 CurrentPosition = 256 // start at the end of the Huffman table

 NextBits = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 NextBits <<= 16

 NextBits |= Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 ExtraBits = 16

 BlockEnd = OutputPosition + 65536

 Loop until a block terminating condition

 If OutputPosition >= BlockEnd then terminate block processing

 Loop until a literal processing terminating condition

 Next15Bits = NextBits >> (32 – 15)

 HuffmanSymbol = DecodingTable[Next15Bits]

 HuffmanSymbolBitLength = the bit length of HuffmanSymbol, from
the table in

 the input buffer

 If HuffmanSymbol <= 0

 NextBits <<= HuffmanSymbolBitLength

 ExtraBits -= HuffmanSymbolBitLength

 Do

 HuffmanSymbol = - HuffmanSymbol

Errata
Published* Description

 HuffmanSymbol += (NextBits >> 31)

 NextBits *= 2

 ExtraBits = ExtraBits - 1

 HuffmanSymbol = DecodingTable[HuffmanSymbol]

 While HuffmanSymbol <= 0

 Else

 DecodedBitCount = HuffmanSymbol & 15

 NextBits <<= DecodedBitCount

 ExtraBits -= DedcodedBitCount

 HuffmanSymbol >>= 4 // Shift by 4 bits to get the symbol value

 // (the lower 4 bits are the bit length of
the symbol)

 HuffmanSymbol -= 256

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-
ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 If HuffmanSymbol >= 0

 If HuffmanSymbol == 0

 If the entire input buffer has been read and

 the expected decompressed size has been written to the
output buffer

 Decompression is complete. Return with success.

 Terminate literal processing

 Else

 Output the byte value of HuffmanSymbol to the output stream

 End of literal processing Loop

 MatchLength = HuffmanSymbol mod 16

 MatchOffsetBitLength = HuffmanSymbol / 16

 If MatchLength == 15

 MatchLength = ReadByte(InputBuffer + CurrentPosition)

 CurrentPosition += 1

 If MatchLength == 255

 MatchLength = Read16Bits(InputBuffer + CurrentPosition)

Errata
Published* Description

 CurrentPosition += 2

 If MatchLength < 15

 The compressed data is invalid. Return error.

 MatchLength = MatchLength - 15

 MatchLength = MatchLength + 15

 MatchLength = MatchLength + 3

 MatchOffset = NextBits >> (32 – MatchOffsetBitLength)

 MatchOffset += (1 << MatchOffsetBitLength)

 NextBits <<= MatchOffsetBitLength

 ExtraBits -= MatchOffsetBitLength

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-
ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 For i = 0 to MatchLength - 1

 Output OutputBuffer[CurrentOutputPosition – MatchOffset + i]

 End of block loop

 End of decoding loop

2019/12/09 In Section 2.1, LZ77+Huffman Compression Algorithm Details, described how data is processed
for the Huffman variant.

Changed from:

The overall compression algorithm for the Huffman [IEEE-MRC] variant can be divided into
three stages, which are performed in this order:

...

Changed to:

The overall compression algorithm for the Huffman [IEEE-MRC] variant can handle an arbitrary
amount of data. Data is processed in 64k blocks, and the encoded results are stored in-order.
After the final block, the end-of-file (EOF) symbol is encoded. Each 64k block is run through
three stages, which are performed in this order:

...

In Section 2.2.4, Processing, described the decompression process and clarified how the
compression stream handles the bytes for long match lengths in the pseudocode.

Changed from:

Errata
Published* Description

The decompression algorithm uses the 256-byte Huffman table to reconstruct the canonical
Huffman [IEEE-MRC] representations of each symbol. Next, the Huffman stream of LZ77
([UASDC]) literals and matches is decoded to reproduce the original data.

The following method can be used to construct a decoding table. The decoding table will have
2^15 entries because 15 is the maximum bit length permitted by the Xpress Compression
Algorithm for a Huffman code. If a symbol has a bit length of X, it has 2^(15 – X) entries in the
table that point to its value. The order of symbols in the table is sorted by bit length (from low
to high), and then by symbol value (from low to high). These requirements represent the
agreement of canonicalness with the compression end of the algorithm. The following
pseudocode shows the table construction method:

...

The compression stream is designed to be read in (mostly) 16-bit chunks, with a 32-bit register
maintaining at least the next 16 bits of input. This strategy allows the code to seamlessly
handle the bytes for long match lengths, which would otherwise be awkward. The following
pseudocode demonstrates this method.

Build the decoding table

CurrentPosition = 256 // start at the end of the Huffman table

NextBits = Read16Bits(InputBuffer + CurrentPosition)

CurrentPosition += 2

NextBits <<= 16

NextBits |= Read16Bits(InputBuffer + CurrentPosition)

CurrentPosition += 2

ExtraBits = 16

Loop until a terminating condition

 Next15Bits = NextBits >> (32 – 15)

 HuffmanSymbol = DecodingTable[Next15Bits]

 HuffmanSymbolBitLength = the bit length of HuffmanSymbol, from the table in

 the input buffer

 NextBits <<= HuffmanSymbolBitLength

 ExtraBits -= HuffmanSymbolBitLength

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 If HuffmanSymbol < 256

 Output the byte value HuffmanSymbol to the output stream.

 Else If HuffmanSymbol == 256 and

 the entire input buffer has been read and

 the expected decompressed size has been written to the output buffer

 Decompression is complete. Return with success.

 Else

 HuffmanSymbol = HuffmanSymbol - 256

 MatchLength = HuffmanSymbol mod 16

 MatchOffsetBitLength = HuffmanSymbol / 16

 If MatchLength == 15

 MatchLength = ReadByte(InputBuffer + CurrentPosition)

 CurrentPosition += 1

 If MatchLength == 255

Errata
Published* Description

 MatchLength = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 If MatchLength < 15

 The compressed data is invalid. Return error.

 MatchLength = MatchLength - 15

 MatchLength = MatchLength + 15

 MatchLength = MatchLength + 3

 MatchOffset = NextBits >> (32 – MatchOffsetBitLength)

 MatchOffset += (1 << MatchOffsetBitLength)

 NextBits <<= MatchOffsetBitLength

 ExtraBits -= MatchOffsetBitLength

 If ExtraBits < 0

 Read the next 2 bytes the same as the preceding (ExtraBits < 0) case

 For i = 0 to MatchLength - 1

 Output OutputBuffer[CurrentOutputPosition – MatchOffset + i]

...

Changed to:

The decompression processes a series of blocks to form the decompressed output. Each block is
processed in-order, and its decoded content written to the output stream is in-order. When
processing a block, we check for terminating conditions for both block and overall decoding.

The decompression algorithm uses the 256-byte Huffman table to reconstruct the canonical
Huffman [IEEE-MRC] representations of each symbol. Next, the Huffman stream of LZ77
([UASDC]) literals and matches is decoded to reproduce the original data.

The following method can be used to construct a decoding table. The decoding table will have
2^15 entries because 15 is the maximum bit length permitted by the Xpress Compression
Algorithm for a Huffman code. If a symbol has a bit length of X, it has 2^(15 – X) entries in the
table that point to its value. The order of symbols in the table is sorted by bit length (from low
to high), and then by symbol value (from low to high). These requirements represent the
agreement of canonicalness with the compression end of the algorithm. The following
pseudocode shows the table construction method:

...

The compression stream is designed to be read in (mostly) 16-bit chunks, with a 32-bit register
maintaining at least the next 16 bits of input. This strategy allows the code to seamlessly
handle the bytes for long match lengths, which would otherwise be awkward. The following
pseudocode demonstrates this method.

Loop until a decompression terminating condition

 Build the decoding table

 CurrentPosition = 256 // start at the end of the Huffman table

 NextBits = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 NextBits <<= 16

 NextBits |= Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 ExtraBits = 16

 BlockEnd = OutputPosition + 65536

 Loop until a block terminating condition

Errata
Published* Description

 If OutputPosition >= BlockEnd then terminate block processing

 Loop until a literal processing terminating condition

 Next15Bits = NextBits >> (32 – 15)

 HuffmanSymbol = DecodingTable[Next15Bits]

 HuffmanSymbolBitLength = the bit length of HuffmanSymbol, from the table in

 the input buffer

 If HuffmanSymbol <= 0

 NextBits <<= HuffmanSymbolBitLength

 ExtraBits -= HuffmanSymbolBitLength

 Do

 HuffmanSymbol = - HuffmanSymbol

 HuffmanSymbol += (NextBits >> 31)

 NextBits *= 2

 ExtraBits = ExtraBits - 1

 HuffmanSymbol = DecodingTable[HuffmanSymbol]

 While DecodedValue <= 0

 Else

 DecodedBitCount = DecodedValue & 15

 NextBits <<= DecodedBitCount

 ExtraBits -= DedcodedBitCount

 HuffmanSymbol >>= 4

 HuffmanSymbol -= 256

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 If HuffmanSymbol >= 0

 If HuffmanSymbol == 0

 If the entire input buffer has been read and

 the expected decompressed size has been written to the output buffer

 Decompression is complete. Return with success.

 Terminate literal processing

 Else

 Output the byte value of HuffmanSymbol to the output stream

 End of literal processing Loop

 MatchLength = HuffmanSymbol mod 16

 MatchOffsetBitLength = HuffmanSymbol / 16

 If MatchLength == 15

 MatchLength = ReadByte(InputBuffer + CurrentPosition)

 CurrentPosition += 1

 If MatchLength == 255

 MatchLength = Read16Bits(InputBuffer + CurrentPosition)

 CurrentPosition += 2

 If MatchLength < 15

 The compressed data is invalid. Return error.

 MatchLength = MatchLength - 15

Errata
Published* Description

 MatchLength = MatchLength + 15

 MatchLength = MatchLength + 3

 MatchOffset = NextBits >> (32 – MatchOffsetBitLength)

 MatchOffset += (1 << MatchOffsetBitLength)

 NextBits <<= MatchOffsetBitLength

 ExtraBits -= MatchOffsetBitLength

 If ExtraBits < 0

 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-ExtraBits)

 ExtraBits += 16

 CurrentPosition += 2

 For i = 0 to MatchLength - 1

 Output OutputBuffer[CurrentOutputPosition – MatchOffset + i]

 End of block loop

End of decoding loop

...

2019/09/02 In Section 2.4.4, Processing, pseudocode supporting longer matches has been updated

Changed from:

...

The match length can be greater than the match offset, and this necessitates the 1-byte-at-a-
time copying strategy shown in the following pseudocode.

 BufferedFlags = 0
 BufferedFlagCount = 0
 InputPosition = 0
 OutputPosition = 0
 LastLengthHalfByte = 0
 Loop until break instruction or error
 If BufferedFlagCount == 0
 BufferedFlags = read 4 bytes at InputPosition
 InputPosition += 4
 BufferedFlagCount = 32
 BufferedFlagCount = BufferedFlagCount – 1
 If (BufferedFlags & (1 << BufferedFlagCount)) == 0
 Copy 1 byte from InputPosition to OutputPosition. Advance both.
 Else
 If InputPosition == InputBufferSize
 Decompression is complete. Return with success.
 MatchBytes = read 2 bytes from InputPosition
 InputPosition += 2
 MatchLength = MatchBytes mod 8
 MatchOffset = (MatchBytes / 8) + 1
 If MatchLength == 7
 If LastLengthHalfByte == 0
 MatchLength = read 1 byte from InputPosition
 MatchLength = MatchLength mod 16
 LastLengthHalfByte = InputPosition
 InputPosition += 1
 Else
 MatchLength = read 1 byte from LastLengthHalfByte position
 MatchLength = MatchLength / 16
 LastLengthHalfByte = 0
 If MatchLength == 15
 MatchLength = read 1 byte from InputPosition
 InputPosition += 1
 If MatchLength == 255

Errata
Published* Description

 MatchLength = read 2 bytes from InputPosition
 InputPosition += 2
 If MatchLength < 15 + 7
 Return error.
 MatchLength -= (15 + 7)
 MatchLength += 15
 MatchLength += 7
 MatchLength += 3
 For i = 0 to MatchLength – 1
 Copy 1 byte from OutputBuffer[OutputPosition – MatchOffset]
 OutputPosition += 1

Changed to:

...

The match length can be greater than the match offset, and this necessitates the 1-byte-at-a-
time copying strategy shown in the following pseudocode.

 BufferedFlags = 0
 BufferedFlagCount = 0
 InputPosition = 0
 OutputPosition = 0
 LastLengthHalfByte = 0
 Loop until break instruction or error
 If BufferedFlagCount == 0
 BufferedFlags = read 4 bytes at InputPosition
 InputPosition += 4
 BufferedFlagCount = 32
 BufferedFlagCount = BufferedFlagCount – 1
 If (BufferedFlags & (1 << BufferedFlagCount)) == 0
 Copy 1 byte from InputPosition to OutputPosition. Advance both.
 Else
 If InputPosition == InputBufferSize
 Decompression is complete. Return with success.
 MatchBytes = read 2 bytes from InputPosition
 InputPosition += 2
 MatchLength = MatchBytes mod 8
 MatchOffset = (MatchBytes / 8) + 1
 If MatchLength == 7
 If LastLengthHalfByte == 0
 MatchLength = read 1 byte from InputPosition
 MatchLength = MatchLength mod 16
 LastLengthHalfByte = InputPosition
 InputPosition += 1
 Else
 MatchLength = read 1 byte from LastLengthHalfByte position
 MatchLength = MatchLength / 16
 LastLengthHalfByte = 0
 If MatchLength == 15
 MatchLength = read 1 byte from InputPosition
 InputPosition += 1
 If MatchLength == 255
 MatchLength = read 2 bytes from InputPosition
 InputPosition += 2
 If MatchLength == 0
 MatchLength = read 4 bytes from InputPosition
 InputPosition += 4 bytes
 If MatchLength < 15 + 7
 Return error.
 MatchLength -= (15 + 7)
 MatchLength += 15
 MatchLength += 7
 MatchLength += 3

Errata
Published* Description

 For i = 0 to MatchLength – 1
 Copy 1 byte from OutputBuffer[OutputPosition – MatchOffset]
 OutputPosition += 1

2019/07/08 In Section 2.1.4.2, Huffman Code Construction Phase, clarified that the sorting algorithm used
in the Huffman Code construction phase is stable.

Changed from:

...

The following flowchart illustrates the length-limited canonical Huffman code construction
method.

...

Changed to:

...

The following flowchart illustrates the length-limited canonical Huffman code construction
method. Note that the sorting algorithm used in the Huffman Code construction phase is stable.

...

2019/07/08 In Section 2.1.4.3 Final Encoding Phase, clarified that some implementations of the
decompression algorithm expect a terminating Huffman symbol and that it is recommended the
encoding algorithm append this symbol.

Changed from:

Some implementations of the decompression algorithm expect an extra symbol to mark the end
of the data. For example, certain implementations fail during decompression if the Huffman
symbol 256 is not found after the actual data. For this reason, the encoding algorithm appends
this symbol and increments the count of symbol 256 before the Huffman codes are constructed.

Changed to:

Implementations of the decompression algorithm may expect an extra symbol to mark the end
of the data. For example, certain implementations fail during decompression if the Huffman
symbol 256 is not found after the actual data. For this reason, the encoding algorithm SHOULD
append this symbol and increment the count of symbol 256 before the Huffman codes are
constructed.

*Date format: YYYY/MM/DD

	[MS-XCA]: Xpress Compression Algorithm

