
1 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-XCA]:

Xpress Compression Algorithm

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

12/16/2011 1.0 New Released new document.

3/30/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 2.0 Major Significantly changed the technical content.

1/31/2013 2.0 None
No changes to the meaning, language, or formatting of the

technical content.

8/8/2013 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 2.1 Minor Clarified the meaning of the technical content.

2/13/2014 2.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 2.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 3.0 Major Significantly changed the technical content.

10/16/2015 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 6

1.3 Overview .. 6
1.4 Relationship to Protocols and Other Algorithms .. 6
1.5 Applicability Statement ... 6
1.6 Standards Assignments ... 6

2 Algorithm Details... 7
2.1 LZ77+Huffman Compression Algorithm Details .. 7

2.1.1 Abstract Data Model .. 7
2.1.2 Initialization ... 7
2.1.3 Processing Rules ... 7
2.1.4 Phases .. 7

2.1.4.1 LZ77 Phase .. 7
2.1.4.2 Huffman Code Construction Phase ... 10
2.1.4.3 Final Encoding Phase ... 11

2.2 LZ77+Huffman Decompression Algorithm Details ... 13
2.2.1 Abstract Data Model .. 13
2.2.2 Initialization ... 13
2.2.3 Processing Rules ... 13
2.2.4 Processing ... 14

2.3 Plain LZ77 Compression Algorithm Details ... 15
2.3.1 Abstract Data Model .. 15
2.3.2 Initialization ... 15
2.3.3 Processing Rules ... 15
2.3.4 Processing ... 15

2.4 Plain LZ77 Decompression Algorithm Details ... 16
2.4.1 Abstract Data Model .. 16
2.4.2 Initialization ... 16
2.4.3 Processing Rules ... 17
2.4.4 Processing ... 17

2.5 LZNT1 Algorithm Details ... 18
2.5.1 Abstract Data Model .. 18

2.5.1.1 Buffer Format ... 18
2.5.1.2 Buffers and Chunks ... 19
2.5.1.3 Flag Groups .. 20
2.5.1.4 Data Elements .. 20

2.5.2 Initialization ... 21
2.5.3 Processing Rules ... 21
2.5.4 Processing ... 21

3 Algorithm Examples .. 22
3.1 LZ77 .. 22
3.2 LZ77+Huffman .. 22
3.3 LZNT1 .. 23

4 Security ... 25
4.1 Security Considerations for Implementers ... 25
4.2 Index of Security Parameters .. 25

5 Appendix A: Product Behavior ... 26

6 Change Tracking .. 27

4 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Index ... 28

5 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The Xpress Compression Algorithm has three variants, all designed for speed.

The fastest variant, Plain LZ77, implements the LZ77 algorithm ([UASDC]).

A slower variant, LZ77+Huffman, adds a Huffman encoding pass on the LZ77 data.

A third variant, LZNT1, implements LZ77 without the Huffman encoding pass of the second variant,
but with an encoding process less complex than Plain LZ77.

Sections 1.6 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

Huffman alphabet: A set of symbols used in Huffman encoding.

Huffman code: See "prefix code".

Huffman codes: A set of variable-length bit sequences for an alphabet of symbols. In order to
provide compression, more frequent symbols are assigned shorter bit sequences. The bottom-
up Huffman construction process is optimal in the sense that the total length of the data is
minimized, given the number of times each symbol occurs.

Huffman symbol: See "prefix code".

LZ77: A general-purpose compression technique introduced by Lempel and Ziv in 1977. Byte
sequences that are the same as previous sequences are replaced by a (length, distance) pair
that unambiguously references the earlier sequence.

prefix code: A type of code system, typically variable-length, having the prefix property, in that

no valid code word in the system is a prefix of any other valid code word in the set.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE-MRC] Huffman, D.A., "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the IRE, vol. 40, pp. 1098-1101, September 1952,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4051119&tag=1

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

https://go.microsoft.com/fwlink/?LinkId=90549
https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=227659
https://go.microsoft.com/fwlink/?LinkId=90317

6 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May 1977,
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf

1.2.2 Informative References

None.

1.3 Overview

This algorithm efficiently compresses data that contain repeated byte sequences. It is not designed to
compress image, audio, or video data. Between the trade-offs of compressed size and CPU cost, it
heavily emphasizes low CPU cost.

1.4 Relationship to Protocols and Other Algorithms

This algorithm does not depend on any other algorithms or protocols. It is a compression method
designed to have minimal CPU overhead for compression and decompression. A protocol that depends

on this algorithm would typically need to transfer significant amounts of data that cannot be easily
precompressed by another algorithm having a better compression ratio.

1.5 Applicability Statement

This algorithm is appropriate for any protocol that transfers large amounts of easily compressible
textlike data, such as HTML, source code, or log files. Protocols use this algorithm to reduce the
number of bits transferred.

1.6 Standards Assignments

None.

https://go.microsoft.com/fwlink/?LinkId=90549

7 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Algorithm Details

2.1 LZ77+Huffman Compression Algorithm Details

The overall compression algorithm for the Huffman [IEEE-MRC] variant can be divided into three

stages, which are performed in this order:

1. Perform LZ77 ([UASDC]) compression to generate an intermediate compressed buffer.

2. Construct canonical Huffman codes.

3. Process the intermediate LZ77 data, and re-encode it in a Huffman-based bit stream.

The algorithm cannot start Huffman encoding until it has computed the Huffman codes, and it
cannot compute the Huffman codes until it knows the frequency of each symbol in the Huffman

alphabet. To compute these frequencies, the algorithm first performs the LZ77 phase. For efficiency,
the algorithm SHOULD store the LZ77 output so that the final phase does not have to recompute it.

The final compression format consists of two parts:

 The first 256 bytes indicate the bit length of each of the 512 Huffman symbols (see prefix
code).

 The remainder of the data is a sequence of Huffman symbols, along with match lengths and
distances.

The Huffman alphabet consists of 512 symbols, each with a numeric value in the range 0-511. The
symbols 0-255 represent literal values that correspond to raw byte values as opposed to matches. The
symbols 256-511 represent matches or references indicating that the next several bytes are the
same as some bytes that previously occurred in the data. Each match consists of two encoded
integers: a length and a distance. When the decoding method encounters a match symbol, the original
data is reconstructed by copying <length> bytes from the position in its previously decompressed
data of <[decompression cursor] – [match distance]>.

2.1.1 Abstract Data Model

 None.

2.1.2 Initialization

 None.

2.1.3 Processing Rules

 None.

2.1.4 Phases

2.1.4.1 LZ77 Phase

This phase processes each byte of the input data and produces two outputs: the intermediate LZ77
([UASDC]) encoding of flags, literals, and matches; and the frequency of each symbol in the
Huffman alphabet.

The following flowchart shows how the LZ77 phase works.

8 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: LZ77 phase

The hash table is an array of pointers to previous positions in the input buffer. It is used to find
matches, as follows:

 HashValue = HashThreeBytes(InputBuffer[CurrentPosition],
 InputBuffer[CurrentPosition+1],
 InputBuffer[CurrentPosition+2]);
 PotentialMatch = HashTable[HashValue];
 HashTable[HashValue] = CurrentPosition;

9 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The HashThreeBytes function SHOULD be quick to compute and provide a small number of
collisions.

If the additional CPU cost is justified, the algorithm SHOULD be extended to search for longer matches
than those provided by the basic hash table. This can be achieved with more hash tables, trees, or

a chained hash table. Finding longer matches generally results in smaller compressed data but
requires more time for the compression method to execute.

The intermediate compression format that is produced in this phase SHOULD be designed for quick
encoding and decoding, and it SHOULD be small enough to guarantee its fit in a temporary buffer that
is only slightly larger than the input buffer. The algorithm will be more efficient if it is not necessary to
check whether the temporary buffer has sufficient space.

The intermediate compression format SHOULD use bitmasks grouped in 32-bit values to represent the

literal or match flags. Also, literal values SHOULD be stored as simple bytes in the intermediate
stream. Matches SHOULD be encoded in sizes that are guaranteed to be less than or equal to their
lengths.

For example, a 3-byte match could use 1 byte for its length and 2 bytes for its distance. Much longer
matches SHOULD be encoded with a 2-byte distance and a special length value (such as 0xFF)
indicating that the full length is encoded in the next 2 or 4 bytes.

During the LZ77 phase, the algorithm SHOULD count the frequencies of the Huffman symbols it will
later encode. The Huffman symbol for each literal or match is computed in the following way.

 For literals, the Huffman symbol index is the value of the literal (ranging from 0 to 255, inclusive).

 For matches, the Huffman symbol is computed from the length and distance by using the
following code, in which GetHighBit(Distance) is defined as the bit index of the highest set bit in
the binary representation of the distance.

 If (Length – 3) < 15
 HuffmanSymbol = 256 + (Length – 3) + (16 * GetHighBit(Distance))
 Else
 HuffmanSymbol = 256 + 15 + (16 * GetHighBit(Distance))

Note that this definition assumes that Distance is greater than 0, and this is a valid assumption in this
context.

The following table provides examples of GetHighBit calculations.

Distance Binary representation GetHighBit(Distance)

1 …0001 0

2 …0010 1

5 …0101 2

7 …0111 2

The GetHighBit function SHOULD be efficiently computed with a precomputed 256-byte table.

 If Distance < 256
 DistanceHighBit = PrecomputedHighBitTable[Distance]
 Else (assuming Distance < (1 << 16))
 DistanceHighBit = 8 + PrecomputedHighBitTable[Distance >> 8]

10 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.1.4.2 Huffman Code Construction Phase

This phase computes canonical Huffman codes from the symbol counts generated by the LZ77
([UASDC]) phase. For each of the 512 symbols in the Huffman alphabet, this phase computes the

bit sequence that is used to encode the symbol. These codes are reconstructed by the decompression
algorithm from the bit length of each symbol. The codes are canonical because they depend only on
the bit length of the symbol, not the precise symbol count. This encoding saves space because bit
lengths require fewer bits to store (4 bits per symbol) than exact counts (16 bits per symbol).

An additional requirement of this phase comes from the way the bit lengths are stored in the
compressed data: each bit length is stored in 4 bits, so no bit length can be longer than 15 (a length
of zero means that the symbol does not occur).

The following flowchart illustrates the length-limited canonical Huffman code construction method.

https://go.microsoft.com/fwlink/?LinkId=90549

11 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: Length-limited canonical Huffman code construction method.

2.1.4.3 Final Encoding Phase

In the final encoding phase, the algorithm processes the intermediate encoding of literals and matches

generated by the LZ77 ([UASDC]) phase. It re-encodes each literal and match using the canonical
Huffman codes, but first it encodes the Huffman symbol bit lengths.

Each symbol bit length is encoded with 4 bits. Bit lengths for even-valued symbols are stored in the
lower 4 bits of the bytes, whereas bit lengths for odd-valued symbols are stored in the higher 4 bits.

https://go.microsoft.com/fwlink/?LinkId=90549

12 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For example, if the bit lengths of symbols 0, 1, 2, and 3 were 5, 6, 7, and 8, respectively, the first 2
bytes of the output buffer would be 0x65 0x87. The Huffman [IEEE-MRC] construction process

guarantees that each bit length fits in 4 bits. Symbols that are never used, and therefore have no
Huffman code, have the special value of zero.

Because there are 512 Huffman symbols, and the format stores two lengths per byte, this part of the

output data will always be exactly 256 bytes.

Following the 256-byte table, the format encodes the sequence of literals and matches. Literals are
distinguished from matches by the value of the Huffman symbol: symbol values less than 256 are
literals, whereas symbols greater than 255 are matches. Most matches require more bits to fully
encode the distance and the length.

As explained in section 2.1.4.1, the match symbol value encodes the length of the match (up to 17)
and the bit index of the highest set bit in the distance. If this bit index is, for example, 3, the

decompression function can determine that the distance is at least 1000 (1000 binary, or 8 decimal)
and at most 1111 (1111 binary, or 15 decimal). It can also compute that 3 more bits of information
are required to determine the exact distance. Therefore, the encoder encodes the lower 3 bits of the

distance directly in the output bit stream (which is also used to encode the variable-length Huffman
codes). In general, the encoder explicitly encodes the lower <GetHighBit(Distance)> bits

immediately following the match's Huffman symbol.

The encoder is required to process match lengths longer than 17. If the length is less than 18, the
decoder can determine it directly from the match symbol by taking the lower 4 bits and adding 3. A

lower-four-bits value of 15 is a special case that means the length is at least 18, and the full length is
encoded with more bits. Unlike the extra-distance bits, the extra-length bits are not encoded
seamlessly in the Huffman bit stream. Longer lengths are encoded with an extra byte in the output,
and if that is not enough, an additional 2 bytes. The location of these extra bytes is such that, if the
decompression function reads the Huffman bit stream in 2-byte chunks, these extra bytes are the
next bytes that the decompression function will read.

Some implementations of the decompression algorithm expect an extra symbol to mark the end of the

data. For example, certain implementations fail during decompression if the Huffman symbol 256 is
not found after the actual data. For this reason, the encoding algorithm appends this symbol and

increments the count of symbol 256 before the Huffman codes are constructed.

Note that match distances cannot be larger than 65,535, and match lengths cannot be longer than
65,538. The LZ77 phase is implemented to ensure that match lengths and distances do not exceed
these values.

The following pseudocode demonstrates the encoding method.

 Write the 256-byte table of symbol bit lengths
 While there are more literals or matches to encode
 If the next thing is a literal
 WriteBits(SymbolLength[LiteralValue], SymbolCode[LiteralValue])
 Else // the next thing is a match
 Extract the length and distance of the match
 MatchSymbolValue = 256 + min(Length - 3, 15) + (16 * GetHighBit(Distance))
 WriteBits(SymbolLength[MatchSymbolValue], SymbolCode[MatchSymbolValue])
 If (Length – 3) >= 15
 WriteByte(min(Length – 3 – 15, 255))
 If (Length – 3 – 15) >= 255
 WriteTwoBytes(Length – 3)
 WriteBits(GetHighBit(Distance), Distance – (1 << GetHighBit(Distance)))
 WriteBits(SymbolLength[256], SymbolCode[256])
 FlushBits()

The WriteBits, WriteByte, WriteTwoBytes, and FlushBits functions implicitly use five variables,

which are initialized as follows:

https://go.microsoft.com/fwlink/?LinkId=227659

13 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FreeBits = 16
 NextWord = 0
 OutputPosition1 = OutputBufferPointer + 256
 OutputPosition2 = OutputBufferPointer + 258
 OutputPosition = OutputBufferPointer + 260

The following pseudocode shows the implementation of the functions. Note that a complete
implementation must also include bounds checks to ensure that nothing is written beyond the output
buffer.

 WriteBits (NumberOfBitsToWrite, BitsToWrite)
 If FreeBits >= NumberOfBitsToWrite
 FreeBits = FreeBits – NumberOfBitsToWrite
 NextWord = (NextWord << NumberOfBitsToWrite) + BitsToWrite
 Else
 NextWord = (NextWord << FreeBits)
 NextWord = NextWord + (BitsToWrite >> (NumberOfBitsToWrite – FreeBits))
 FreeBits = FreeBits – NumberOfBitsToWrite
 Write (NextWord & 0xFF) to OutputPosition1
 Write (NextWord >> 8) to OutputPosition1 + 1
 OutputPosition1 = OutputPosition2
 OutputPosition2 = OutputPosition
 Advance OutputPosition by 2 bytes
 FreeBits = FreeBits + 16
 NextWord = BitsToWrite
 End
 WriteByte (ByteToWrite)
 Write ByteToWrite to OutputPosition
 Advance OutputPosition by 1 byte
 End
 WriteTwoBytes (BytesToWrite)
 Write (BytesToWrite & 0xFF) to OutputPosition
 Write (BytesToWrite >> 8) to OutputPosition + 1
 Advance OutputPosition by 2 bytes
 End
 FlushBits ()
 NextWord <<= FreeBits
 Write (NextWord & 0xFF) to OutputPosition1
 Write (NextWord >> 8) to OutputPosition1 + 1
 Write a 16-bit value of zero to OutputPosition2
 The final compressed size is the value of OutputPosition
 End

2.2 LZ77+Huffman Decompression Algorithm Details

2.2.1 Abstract Data Model

None.

2.2.2 Initialization

None.

2.2.3 Processing Rules

None.

14 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.4 Processing

The decompression algorithm uses the 256-byte Huffman table to reconstruct the canonical Huffman
[IEEE-MRC] representations of each symbol. Next, the Huffman stream of LZ77 ([UASDC]) literals

and matches is decoded to reproduce the original data.

The following method can be used to construct a decoding table. The decoding table will have 2^15
entries because 15 is the maximum bit length permitted by the Xpress Compression Algorithm for a
Huffman code. If a symbol has a bit length of X, it has 2^(15 – X) entries in the table that point to
its value. The order of symbols in the table is sorted by bit length (from low to high), and then by
symbol value (from low to high). These requirements represent the agreement of canonicalness with
the compression end of the algorithm. The following pseudocode shows the table construction

method:

 CurrentTableEntry = 0
 For BitLength = 1 to 15
 For Symbol = 0 to 511
 If the encoded bit length of Symbol equals BitLength
 EntryCount = (1 << (15 – BitLength))
 Repeat EntryCount times
 If CurrentTableEntry >= 2^15
 The compressed data is not valid. Return with error.
 DecodingTable[CurrentTableEntry] = Symbol
 CurrentTableEntry = CurrentTableEntry + 1
 If CurrentTableEntry does not equal 2^15
 The compressed data is not valid. Return with error.

A valid implementation MUST use a method that provides results equivalent to those of the preceding
table-based method to construct a data structure for decoding canonical Huffman codes. An
implementation MAY use this simple table-based method, but SHOULD use a faster method.

The compression stream is designed to be read in (mostly) 16-bit chunks, with a 32-bit register

maintaining at least the next 16 bits of input. This strategy allows the code to seamlessly handle the
bytes for long match lengths, which would otherwise be awkward. The following pseudocode

demonstrates this method.

 Build the decoding table
 CurrentPosition = 256 // start at the end of the Huffman table
 NextBits = Read16Bits(InputBuffer + CurrentPosition)
 CurrentPosition += 2
 NextBits <<= 16
 NextBits |= Read16Bits(InputBuffer + CurrentPosition)
 CurrentPosition += 2
 ExtraBits = 16
 Loop until a terminating condition
 Next15Bits = NextBits >> (32 – 15)
 HuffmanSymbol = DecodingTable[Next15Bits]
 HuffmanSymbolBitLength = the bit length of HuffmanSymbol, from the table in
 the input buffer
 NextBits <<= HuffmanSymbolBitLength
 ExtraBits -= HuffmanSymbolBitLength
 If ExtraBits < 0
 NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-ExtraBits)
 ExtraBits += 16
 CurrentPosition += 2
 If HuffmanSymbol < 256
 Output the byte value HuffmanSymbol to the output stream.
 Else If HuffmanSymbol == 256 and
 the entire input buffer has been read and
 the expected decompressed size has been written to the output buffer
 Decompression is complete. Return with success.
 Else
 HuffmanSymbol = HuffmanSymbol - 256

https://go.microsoft.com/fwlink/?LinkId=227659
https://go.microsoft.com/fwlink/?LinkId=90549

15 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 MatchLength = HuffmanSymbol mod 16
 MatchOffsetBitLength = HuffmanSymbol / 16
 If MatchLength == 15
 MatchLength = ReadByte(InputBuffer + CurrentPosition)
 CurrentPosition += 1
 If MatchLength == 255
 MatchLength = Read16Bits(InputBuffer + CurrentPosition)
 CurrentPosition += 2
 If MatchLength < 15
 The compressed data is invalid. Return error.
 MatchLength = MatchLength - 15
 MatchLength = MatchLength + 15
 MatchLength = MatchLength + 3
 MatchOffset = NextBits >> (32 – MatchOffsetBitLength)
 MatchOffset += (1 << MatchOffsetBitLength)
 NextBits <<= MatchOffsetBitLength
 ExtraBits -= MatchOffsetBitLength
 If ExtraBits < 0
 Read the next 2 bytes the same as the preceding (ExtraBits < 0) case
 For i = 0 to MatchLength - 1
 Output OutputBuffer[CurrentOutputPosition – MatchOffset + i]

An implementation MUST also generate an error indicating that the compressed data is not valid in the
event of an improper memory access outside the buffer.

Note that the match-copying loop copies 1 byte at a time and cannot use the standard library
functions memcpy or memove. A sequence of bytes such as aaaaaa can be encoded like this:

[literal: "a"][match: offset=1, length=5]. In other words, the match length can be greater

than the match offset, and this necessitates the 1-byte-at-a-time copying strategy.

2.3 Plain LZ77 Compression Algorithm Details

2.3.1 Abstract Data Model

None.

2.3.2 Initialization

None.

2.3.3 Processing Rules

None.

2.3.4 Processing

The fastest variant of the Xpress Compression Algorithm avoids the cost of the Huffman[IEEE-MRC]
pass by encoding the LZ77 [UASDC] literals and matches in a simple way. The encoding process is

similar to the method described in section 2.1.4.1, with the key difference that the largest match
offset it can encode is 8192 instead of the 65535 limit of the Huffman format. The literal or match
flags are encoded in 32-bit chunks. Literals are encoded with a simple byte value. Matches are

encoded with a 16-bit value, where the high 13 bits represent the offset and the low 3 bits represent
the length. Long lengths are encoded with an additional 4 bits, then 8 bits, and then 16 bits. The
following pseudocode provides an outline of the encoding method.

 Flags = 0 // this is a 32-bit integer value
 FlagCount = 0
 FlagOutputPosition = 0

https://go.microsoft.com/fwlink/?LinkId=227659
https://go.microsoft.com/fwlink/?LinkId=90549

16 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 OutputPosition = 4
 InputPosition = 0
 LastLengthHalfByte = 0
 While InputPosition has not reached the end of the input buffer
 Try to find a match with a length of at least 3 (see section 2.1.4.1)
 The match must be within the last 8,192 bytes (MatchOffset <= 2^13)
 If no match was found or InputPosition + 2 is beyond the input buffer
 Copy 1 byte from InputPosition to OutputPosition. Advance both.
 Flags <<= 1
 FlagCount = FlagCount + 1
 If FlagCount == 32
 Write the 32-bit value Flags to FlagOutputPosition
 FlagCount = 0
 FlagOutputPosition = OutputPosition
 OutputPosition += 4
 Else // a valid match was found
 Let MatchLength and MatchOffset describe the match
 MatchLength = MatchLength – 3
 MatchOffset = MatchOffset – 1
 MatchOffset <<= 3
 MatchOffset |= min(MatchLength, 7)
 Write the 16-bit value MatchOffset to OutputPosition
 OutputPosition += 2
 If MatchLength >= 7
 MatchLength -= 7
 If LastLengthHalfByte == 0
 LastLengthHalfByte = OutputPosition
 Write the byte value min(MatchLength, 15) to OutputPosition
 OutputPosition += 1
 Else
 OutputBuffer[LastLengthHalfByte] |= min(15, MatchLength) << 4
 LastLengthHalfByte = 0
 If MatchLength >= 15
 MatchLength -= 15
 Write the byte value min(MatchLength, 255) to OutputPosition
 OutputPosition += 1
 If MatchLength >= 255
 MatchLength += 15 + 7
 Write the 2-byte value MatchLength to OutputPosition
 OutputPosition += 2
 Flags = (Flags << 1) | 1
 FlagCount = FlagCount + 1
 If FlagCount == 32
 Write the 32-bit value Flags to FlagOutputPosition
 FlagCount = 0
 FlagOutputPosition = OutputPosition
 OutputPosition += 4
 Advance InputPosition to the first byte that was not in the match
 Endwhile
 Flags <<= (32 – FlagCount)
 Flags |= (1 << (32 – FlagCount)) - 1
 Write the 32-bit value Flags to FlagOutputPosition
 The final compressed size is the value of OutputPosition

2.4 Plain LZ77 Decompression Algorithm Details

2.4.1 Abstract Data Model

None.

2.4.2 Initialization

None.

17 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.4.3 Processing Rules

None.

2.4.4 Processing

This section provides the decompression method corresponding to the compression method that is
described in section 2.3. The basic structure is to decode each flag, which indicates whether the next
item is a literal or a match. Literals are copied directly from the input buffer to the output buffer.
Matches are decoded into a (length, offset) pair that is used to copy data from earlier in the

output buffer. If the code that follows reads or writes outside the provided buffers at any time, an

implementation MUST return an error indicating that the compressed buffer is invalid. Note that the
match-copying loop copies 1 byte at a time and cannot use the standard library functions memcpy or
memmove. A sequence of bytes such as aaaaaa can be encoded as follows:

 [literal: "a"][match: offset=1, length=5]

The match length can be greater than the match offset, and this necessitates the 1-byte-at-a-time
copying strategy shown in the following pseudocode.

 BufferedFlags = 0
 BufferedFlagCount = 0
 InputPosition = 0
 OutputPosition = 0
 LastLengthHalfByte = 0
 Loop until break instruction or error
 If BufferedFlagCount == 0
 BufferedFlags = read 4 bytes at InputPosition
 InputPosition += 4
 BufferedFlagCount = 32
 BufferedFlagCount = BufferedFlagCount – 1
 If (BufferedFlags & (1 << BufferedFlagCount)) == 0
 Copy 1 byte from InputPosition to OutputPosition. Advance both.
 Else
 If InputPosition == InputBufferSize
 Decompression is complete. Return with success.
 MatchBytes = read 2 bytes from InputPosition
 InputPosition += 2
 MatchLength = MatchBytes mod 8
 MatchOffset = (MatchBytes / 8) + 1
 If MatchLength == 7
 If LastLengthHalfByte == 0
 MatchLength = read 1 byte from InputPosition
 MatchLength = MatchLength mod 16
 LastLengthHalfByte = InputPosition
 InputPosition += 1
 Else
 MatchLength = read 1 byte from LastLengthHalfByte position
 MatchLength = MatchLength / 16
 LastLengthHalfByte = 0
 If MatchLength == 15
 MatchLength = read 1 byte from InputPosition
 InputPosition += 1
 If MatchLength == 255
 MatchLength = read 2 bytes from InputPosition
 InputPosition += 2
 If MatchLength < 15 + 7
 Return error.
 MatchLength -= (15 + 7)
 MatchLength += 15
 MatchLength += 7
 MatchLength += 3
 For i = 0 to MatchLength – 1

18 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Copy 1 byte from OutputBuffer[OutputPosition – MatchOffset]
 OutputPosition += 1

2.5 LZNT1 Algorithm Details

The LZNT1 algorithm employs a grammar common to LZ77 variants, making use of LZ77 [UASDC]
literals and matches and using the characteristic processing. The LZNT1 algorithm is comparable to
the Plain LZ77 variant, which implements the features of LZ77 through a specialized buffer format as

specified in section 2.3 and section 2.4. Key differences between the "plain" and LZNT1 variants
include the following:

 LZNT1 uses a less complex process to encode lengths.

 LZNT1 varies the number of bits used to encode length and distance, whereas the sizes of the
Plain LZ77-encoded fields are fixed.

 LZNT1 groups flags in bytes; Plain LZ77 groups them in 4-byte DWORDs.

 The LZNT1 buffer is structured as a series of chunks that can be independently decompressed.

2.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this algorithm. The described organization is provided to facilitate the

explanation of how the algorithm behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The following elements are specific to this algorithm.

Chunks: Segments of data that are compressed, uncompressed, or that denote the end of the buffer.

Chunk header: The header for a compressed or uncompressed chunk of data.

Flag bytes: A bit flag whose bits, read from low order to high order, specify the formats of the data

elements that follow. For example, bit 0 corresponds to the first data element, bit 1 to the second,
and so on. If the bit corresponding to a data element is set, the element is a 2-byte compressed
word; otherwise, it is a 1-byte literal value.

Flag group: A flag byte followed by zero or more data elements, each of which is a single literal byte
or a 2-byte compressed word.

2.5.1.1 Buffer Format

The LZNT1 algorithm relies on the use of a specific buffer format in its implementation of LZ77. The
compression algorithm produces a buffer format of the following grammatical structure:

 <Buffer> ::= <Chunk> <Buffer> | <Chunk>
 <Chunk> ::= <Compressed_chunk> |
 <Uncompressed_chunk> |
 End_of_buffer

 <Uncompressed_chunk> ::= Chunk_header Uncompressed_data
 <Compressed_chunk> ::= Chunk_header <Flag_group>
 <Flag_group> ::= <Flag_data> <Flag_group> | <Flag_data>

 <Flag_data> ::=
 Flag_byte <Data> <Data> <Data> <Data> <Data> <Data> <Data> <Data>

https://go.microsoft.com/fwlink/?LinkId=90549

19 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 | Flag_byte <Data> <Data> <Data> <Data> <Data> <Data> <Data>
 | Flag_byte <Data> <Data> <Data> <Data> <Data> <Data>
 | Flag_byte <Data> <Data> <Data> <Data> <Data>
 | Flag_byte <Data> <Data> <Data> <Data>
 | Flag_byte <Data> <Data> <Data>
 | Flag_byte <Data> <Data>
 | Flag_byte <Data>
 <Data> ::= Literal | Compressed_word

A compressed data buffer consists of one or more chunks. A chunk is either compressed,
uncompressed, or it denotes the end of the buffer. If the chunk is uncompressed, it contains a chunk
header followed by uncompressed data; if it is compressed, it contains a chunk header followed by a

series of one or more pieces of flagged data. Finally, a piece of flagged data consists of a flag byte
that is followed by no more than 8 individual data elements.

The following sections describe the structure of each of these grammatical elements, including
constraints on their usage that are not expressed in the raw grammar.

2.5.1.2 Buffers and Chunks

A compressed buffer consists of a series of one or more compressed output chunks. Each chunk
begins with a 16-bit header.

If both bytes of the header are 0, the header is an End_of_buffer terminal that denotes the end of the
compressed data stream.

Otherwise, the header MUST be formatted as follows:

 Bit 15 indicates whether the chunk contains compressed data.

 Bits [14:12] contain a signature indicating the format of the subsequent data.

 Bits [11:0] contain the size of the compressed chunk, minus three bytes.

Bit 15 indicates whether the chunk contains compressed data. If this bit is zero, the chunk header is
followed by uncompressed literal data. If this bit is set, the next byte of the chunk is the beginning of
a Flag_group nonterminal that describes some compressed data.

Bits 14 down to 12 contain a signature value. This value MUST always be 3 (unless the header

denotes the end of the compressed buffer).

Bits 11 down to 0 contain the size of the compressed chunk minus three bytes. This size otherwise
includes the size of any metadata in the chunk, including the chunk header. If the chunk is
uncompressed, the total amount of uncompressed data therein can be computed by adding 1 to this
value (adding 3 bytes to get the total chunk size, then subtracting 2 bytes to account for the chunk
header).

The End_of_buffer character is not required to terminate the compressed buffer. The character is
used, however, if space allows. For example, given 20 kilobytes (KB) of uncompressed data and a 10
KB buffer to contain the compressed data, if the size of the compressed data (including metadata) is

exactly 10 KB, the capacity of the buffer has been met. In such a case, the End_of_buffer terminal is
not written.

Because the presence of this terminal is not guaranteed, the size of the compressed data MUST be
known before data in this format is decompressed.

If an End_of_buffer terminal is added, the size of the final compressed data is considered not to
include the size of the End_of_buffer terminal.

20 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.5.1.3 Flag Groups

If a chunk is compressed, its chunk header is immediately followed by the first byte of a Flag_group
nonterminal.

A flag group consists of a flag byte followed by zero or more data elements. Each data element is
either a single literal byte or a two-byte compressed word. The individual bits of a flag byte, taken
from low-order bits to high-order bits, specify the formats of the subsequent data elements (such that
bit 0 corresponds to the first data element, bit 1 to the second, and so on). If the bit corresponding to
a data element is set, the element is a two-byte compressed word; otherwise, it is a one-byte literal.

2.5.1.4 Data Elements

A data element MUST either be an uncompressed literal or a compressed word. An uncompressed
literal is a byte of data that was not compressed and can therefore be treated as part of the
uncompressed data stream. A compressed word is a two-byte value that contains a length and a
displacement and whose format varies depending on the portion of the data that is being processed.

Each compressed word consists of a D-bit displacement in the high-order bits and an L-bit length in
the low-order bits, subject to the constraints that 4 <= D <= 12, 4 <= L <= 12, and D + L = 16. The
displacement in a compressed word is the difference between the current location in the
uncompressed data (either the current read point when compressing or the current write point when
decompressing) and the location of the uncompressed data corresponding to the compressed word,
minus one byte. The length is the amount of uncompressed data that can be found at the appropriate
displacement, minus three bytes. While using the compressed buffers, the stored displacement must

be incremented by 1 and the stored length must be incremented by 3, to get the actual displacement
and length.

For example, the input data for a given compression consists of the following stream:

 F F G A A G F E D D E F F E E | F F G A A G F E D D E F E D D

In this case, the data prior to the vertical bar has already been compressed. The next 12 characters of
the input stream match the first 12 characters of the data that was already compressed. Moreover,
the distance from the current input pointer to the start of this matching string is 15 characters. This
can be described by the <displacement, length> pair of <15, 12>.

Decompression of this data produces the first portion of the input stream:

 F F G A A G F E D D E F F E E |

The next data element is a <15, 12> displacement-length pair. The start of the uncompressed data is

15 characters behind the last character in the already uncompressed data, and the length of the data
to read is 12 characters. Decompression results in the following buffer.

 F F G A A G F E D D E F F E E F F G A A G F E D D E F |

This matches the original data stream.

 F F G A A G F E D D E F F E E F F G A A G F E D D E F E D D

The sizes of the displacement and length fields of a compressed word vary with the amount of
uncompressed data in the current chunk that has already been processed. The format of a given
compressed word is determined as follows:

21 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Let U be the amount of uncompressed data that has already been processed in the current chunk
(either the amount that has been read when compressing data or the amount that has been written

when decompressing data).

Note that U depends on the offset from the start of a chunk and not the offset from the beginning of

the uncompressed data.

Then let M be the largest value in [4…12] such that 2M-1 < U, or 4 if there is no such value.

A compressed word then has the format D = M and L = 16 – M, with the displacement occupying D
high-order bits and the length occupying L low-order bits.

2.5.2 Initialization

 None.

2.5.3 Processing Rules

 Input streams are compressed in units of 4096 bytes. The process of creating a chunk is complete if
at least 4096 bytes of data or the remainder of the input buffer is compressed. If the data remains in
the input buffer, the processing of a new chunk is started.

Lempel-Ziv compression does not require that the entirety of the data to which a compressed word
refers actually be in the uncompressed buffer when the word is processed. In other words, it is not
required that (U – displacement + length < U). Therefore, when processing a compressed word, data
MUST be copied from the start of the uncompressed target region to the end—that is, the byte at (U –

displacement) MUST be copied first, then (U – displacement + 1), and so on, because the compressed
word might refer to data that will be written during decompression.

Some of the bits in a flag byte might not be used. To process compressed buffers, the size of the
compressed chunk that is stored in the chunk header MUST be used to determine the position of the
last valid byte in the chunk. The size value MUST ignore flag bits that correspond to bytes outside the
chunk.

2.5.4 Processing

 For a discussion of LZ77 processing similar to that of the LZNT1 variant, see sections 2.3 and 2.4 on
Plain LZ77 compression and decompression.

22 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Algorithm Examples

3.1 LZ77

With the Plain LZ77 variant of the algorithm, the uncompressed ASCII string

abcdefghijklmnopqrstuvwxyz is compressed as follows, in hexadecimal.

 3f 00 00 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79 7a

The first 4 bytes encode the first 32 literal or match flags (in this case, 26 zero bits, representing the
26 literals to follow, then 6 one bits, because any extra flag bits are ones). The next 26 bytes are the
ASCII representation of the input string.

The uncompressed input is the 300-byte ASCII string:

 abc
abc

abc

abcabcabcabcabcabcabc

In this case, using Plain LZ77, those 300 bytes are encoded as follows:

 ff ff ff 1f 61 62 63 17 00 0f ff 26 01

This is the encoding of abc[match: distance = 3, length = 297].

3.2 LZ77+Huffman

The uncompressed ASCII string abcdefghijklmnopqrstuvwxyz is compressed as a sequence of

literals, as follows, in hexadecimal.

 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 50 55 55 55 55 55 55 55 55 55 55 45 44 04

00

00

00 00 00 00 04 00

00

00

00

00 00 00 00 00 00 00 00 d8 52 3e d7 94 11 5b e9 19 5f f9 d6 7c df 8d 04 00 00 00 00

The first 256 bytes represent the Huffman code lengths. In this case, most of these values are zero
because those symbols are not used. The few nonzero values represent the code lengths (5 bits or 4
bits in this case) of the literal symbols corresponding to the ASCII characters of the lowercase

alphabet, as well as the end-of-file (EOF) symbol (symbols index 256). The last few bytes in the buffer
are the Huffman encoding of the string abcdefghijklmnopqrstuvwxyz[EOF].

The uncompressed data is the following 300-byte ASCII string:

 abc
abc

abc

abcabcabcabcabcabcabc

23 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The LZ77+Huffman algorithm encodes it as follows:

 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 30 23 00 00 00 00 00 00 00 00 00 00 00 00

00

00

00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00

00

00

00

00 00 00 00 00 00 00 00 a8 dc 00 00 ff 26 01

The first 256 bytes are the Huffman code lengths. The nonzero symbols are the literals 'a', 'b', and 'c';

the EOF symbol; and one match symbol. The last few bytes encode abc[match: distance=3,

length=297][EOF]. This example illustrates how long match lengths are encoded. In the last bytes of

the compressed data, note the calculation 0x126 = 294 = 297 – 3. Because it is the minimum match

length, 3 is subtracted from each match length before it is encoded.

3.3 LZNT1

The following shows an example of LZ77 compression in which the compressed word references data
that is not wholly contained in the uncompressed buffer at the time when the word is processed. In
this scenario, the compressed word is processed by copying data from the start of the uncompressed
target region to the end.

The following ANSI string, including the terminal NUL, is 142 bytes in length.

 F# F# G A A G F# E D D E F# F# E E F# F# G A A G F# E D D E F# E D D E E F# D E F# G F# D E
F# G F# E D E A F# F# G A A G F# E D D E F# E D D

The algorithm, using the standard compression engine, produces the following hexadecimal output

with a length of 59 bytes.

 0x00000000: 38 b0 88 46 23 20 00 20
 0x00000008: 47 20 41 00 10 a2 47 01
 0x00000010: a0 45 20 44 00 08 45 01
 0x00000018: 50 79 00 c0 45 20 05 24
 0x00000020: 13 88 05 b4 02 4a 44 ef
 0x00000028: 03 58 02 8c 09 16 01 48
 0x00000030: 45 00 be 00 9e 00 04 01
 0x00000038: 18 90 00

The compressed data is contained in a single chunk. The chunk header, interpreted as a 16-bit value,
is 0xB038. Bit 15 is 1, so the chunk is compressed; bits 14 through 12 are the correct signature value
(3); and bits 11 through 0 are decimal 56, so the chunk is 59 bytes in size.

The next byte, 0x88, is a flag byte. Bits 0, 1, and 2 of this byte are clear, so the next 3 bytes are not

compressed. They are 0x46 ('F'), 0x23 ('#'), and 0x20 (a space). The output stream now contains
"F# ".

Bit 3 of the flag byte is set, however, so the next two bytes are part of a compressed word; in this
case, that word is 0x2000. Here, the offset from the start of the uncompressed data, U, is 3 bytes;
there is no value M such that M >= 4 and 2M-1 < U, so the compressed word has 4 bits of
displacement and 12 bits of length. The stored displacement is 2 (0010) and the stored length is 0

(0000 0000 0000); the actual displacement is 3 (2 + 1 = 3) and the length is 3 (0 + 3 = 3). The next

24 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 characters of uncompressed data are "F# ", which results in an uncompressed string of length 6:
"F# F# ".

Bits 4 through 6 of the flag byte are clear, so the next three bytes are literals: 0x47 ('G'), 0x20 (a
space), and 0x41 ('A'). The string is now "F# F# G A". Bit 7 is set, so the next two bytes are a

compressed word, 0x1000. The offset from the start of the chunk is 9 bytes, so the compressed word
once again has 4 bits of displacement and 12 bits of length. The stored displacement is 1 (0001) and
the stored length is 0 (0000 0000 0000); thus, the final displacement is 2 (1 + 1 = 2) and the final
length is 3 (0 + 3 = 3).

This is a case in which the current uncompressed length (9 bytes) minus the displacement plus the
length (10 bytes) actually exceeds the amount of uncompressed data, so character-by-character
copying from the beginning of the displaced region is important. The first character is a space, so the

string is "F# F# G A "; the next character is an A, resulting in "F# F# G A A"; and the next is the
space that was just written, resulting in "F# F# G A A ".

The rest of the decompression proceeds similarly.

The final flag byte is located at offset 0x37. This is the 56th byte of compressed data; only three bytes
remain. The flag byte is 0x01, so the next two bytes are a single compressed word. The final byte is a
literal value, 0x00. The remainder of the flag byte is ignored because no data remains in the buffer.

25 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Security

4.1 Security Considerations for Implementers

Implementers of the decompression method need to ensure that their code fails correctly on invalid

input instead of overwriting memory locations outside the caller's output buffer. Implementers need to
assume that the input buffer could be corrupted or might be maliciously constructed to cause the
decompression function to read or write outside the buffers it is provided. A particularly subtle case
involves guarding against integer/pointer overflow bugs when the input buffer contains long match
lengths.

4.2 Index of Security Parameters

None.

26 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Server 2003 R2 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

27 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

28 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Index

A

Abstract data model
 LZ77+Huffman compression algorithm 7
 LZNT1 18
 plain LZ77 compression algorithm 15
 plain LZ77 decompression algorithm 16
Applicability 6

C

Change tracking 27

D

Data model - abstract
 LZ77+Huffman compression algorithm 7
 LZ77+Huffman decompression algorithm 13
 plain LZ77 compression algorithm 15
 plain LZ77 decompression algorithm 16

E

Examples
 LZ77 22
 LZ77+Huffman 22
 LZNT1 23

G

Glossary 5

I

Implementer - security considerations 25
Index of security parameters 25
Informative references 6
Initialization
 LZ77+Huffman compression algorithm 7
 LZ77+Huffman decompression algorithm 13

 LZNT1 21
 plain LZ77 compression algorithm 15
 plain LZ77 decompression algorithm 16
Introduction 5

L

LZ77 example 22
LZ77+Huffman Compression
 overview 7
LZ77+Huffman compression algorithm
 abstract data model 7
 initialization 7
 overview 7
 phases
 final encoding 11
 Huffman code construction 10
 LZ77 7
 processing rules 7
LZ77+Huffman decompression algorithm
 abstract data model 13
 initialization 13

 processing 14
 processing rules 13
LZ77+Huffman example 22
LZNT1 algorithm abstract data model 18
LZNT1 algorithm buffer format 18
LZNT1 algorithm details 18
LZNT1 algorithm initialization 21
LZNT1 algorithm processing 21
LZNT1 algorithm processing rules 21
LZNT1 example 23

N

Normative references 5

O

Overview (synopsis) 6

P

Parameters - security index 25
Phases - LZ77+Huffman compression algorithm
 final encoding 11
 Huffman code construction 10
 LZ77 7
Plain LZ77 compression algorithm
 abstract data model 15
 initialization 15
 processing 15
 processing rules 15
Plain LZ77 decompression algorithm
 abstract data model 16
 initialization 16
 processing 17
 processing rules 17
Processing
 LZ77+Huffman decompression algorithm 14
 LZNT1 21
 plain LZ77 compression algorithm 15
 plain LZ77 decompression algorithm 17
Processing rules
 LZ77+Huffman compression algorithm 7
 LZ77+Huffman decompression algorithm 13
 LZNT1 21
 plain LZ77 compression algorithm 15
 plain LZ77 decompression algorithm 17
Product behavior 26

R

References
 informative 6
 normative 5
Relationship to protocols and other algorithms 6

S

Security
 implementer considerations 25
 parameter index 25
Standards assignments 6

29 / 29

[MS-XCA] - v20170601
Xpress Compression Algorithm
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

T

Tracking changes 27

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Algorithms
	1.5 Applicability Statement
	1.6 Standards Assignments

	2 Algorithm Details
	2.1 LZ77+Huffman Compression Algorithm Details
	2.1.1 Abstract Data Model
	2.1.2 Initialization
	2.1.3 Processing Rules
	2.1.4 Phases
	2.1.4.1 LZ77 Phase
	2.1.4.2 Huffman Code Construction Phase
	2.1.4.3 Final Encoding Phase

	2.2 LZ77+Huffman Decompression Algorithm Details
	2.2.1 Abstract Data Model
	2.2.2 Initialization
	2.2.3 Processing Rules
	2.2.4 Processing

	2.3 Plain LZ77 Compression Algorithm Details
	2.3.1 Abstract Data Model
	2.3.2 Initialization
	2.3.3 Processing Rules
	2.3.4 Processing

	2.4 Plain LZ77 Decompression Algorithm Details
	2.4.1 Abstract Data Model
	2.4.2 Initialization
	2.4.3 Processing Rules
	2.4.4 Processing

	2.5 LZNT1 Algorithm Details
	2.5.1 Abstract Data Model
	2.5.1.1 Buffer Format
	2.5.1.2 Buffers and Chunks
	2.5.1.3 Flag Groups
	2.5.1.4 Data Elements

	2.5.2 Initialization
	2.5.3 Processing Rules
	2.5.4 Processing

	3 Algorithm Examples
	3.1 LZ77
	3.2 LZ77+Huffman
	3.3 LZNT1

	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

