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1 Introduction 

The Xpress Compression Algorithm has three variants, all designed for speed.  

The fastest variant, Plain LZ77, implements the LZ77 algorithm ([UASDC]).  

A slower variant, LZ77+Huffman, adds a Huffman encoding pass on the LZ77 data.  

A third variant, LZNT1, implements LZ77 without the Huffman encoding pass of the second variant, 
but with an encoding process less complex than Plain LZ77. 

Sections 1.6 and 2 of this specification are normative. All other sections and examples in this 
specification are informative.  

1.1 Glossary 

This document uses the following terms: 

Huffman alphabet: A set of symbols used in Huffman encoding. 

Huffman code: See "prefix code". 

Huffman codes: A set of variable-length bit sequences for an alphabet of symbols.  In order to 
provide compression, more frequent symbols are assigned shorter bit sequences.  The bottom-
up Huffman construction process is optimal in the sense that the total length of the data is 
minimized, given the number of times each symbol occurs. 

Huffman symbol: See "prefix code". 

LZ77: A general-purpose compression technique introduced by Lempel and Ziv in 1977.  Byte 
sequences that are the same as previous sequences are replaced by a (length, distance) pair 
that unambiguously references the earlier sequence. 

prefix code: A type of code system, typically variable-length, having the prefix property, in that 

no valid code word in the system is a prefix of any other valid code word in the set. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined 

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT. 

1.2 References 

Links to a document in the Microsoft Open Specifications library point to the correct section in the 

most recently published version of the referenced document. However, because individual documents 
in the library are not updated at the same time, the section numbers in the documents may not 
match. You can confirm the correct section numbering by checking the Errata.   

1.2.1 Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If you 
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will 
assist you in finding the relevant information.  

[IEEE-MRC] Huffman, D.A., "A Method for the Construction of Minimum-Redundancy Codes", 
Proceedings of the IRE, vol. 40, pp. 1098-1101, September 1952, 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4051119&tag=1 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt 

https://go.microsoft.com/fwlink/?LinkId=90549
https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=227659
https://go.microsoft.com/fwlink/?LinkId=90317
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[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May 1977, 
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf 

1.2.2 Informative References 

None. 

1.3 Overview 

This algorithm efficiently compresses data that contain repeated byte sequences. It is not designed to 
compress image, audio, or video data. Between the trade-offs of compressed size and CPU cost, it 
heavily emphasizes low CPU cost. 

1.4 Relationship to Protocols and Other Algorithms 

This algorithm does not depend on any other algorithms or protocols. It is a compression method 
designed to have minimal CPU overhead for compression and decompression. A protocol that depends 

on this algorithm would typically need to transfer significant amounts of data that cannot be easily 
precompressed by another algorithm having a better compression ratio. 

1.5 Applicability Statement 

This algorithm is appropriate for any protocol that transfers large amounts of easily compressible 
textlike data, such as HTML, source code, or log files. Protocols use this algorithm to reduce the 
number of bits transferred. 

1.6 Standards Assignments 

None. 

https://go.microsoft.com/fwlink/?LinkId=90549
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2 Algorithm Details 

2.1 LZ77+Huffman Compression Algorithm Details 

The overall compression algorithm for the Huffman [IEEE-MRC] variant can be divided into three 

stages, which are performed in this order: 

1. Perform LZ77 ([UASDC]) compression to generate an intermediate compressed buffer. 

2. Construct canonical Huffman codes. 

3. Process the intermediate LZ77 data, and re-encode it in a Huffman-based bit stream. 

The algorithm cannot start Huffman encoding until it has computed the Huffman codes, and it 
cannot compute the Huffman codes until it knows the frequency of each symbol in the Huffman 

alphabet. To compute these frequencies, the algorithm first performs the LZ77 phase. For efficiency, 
the algorithm SHOULD store the LZ77 output so that the final phase does not have to recompute it. 

The final compression format consists of two parts: 

 The first 256 bytes indicate the bit length of each of the 512 Huffman symbols (see prefix 
code). 

 The remainder of the data is a sequence of Huffman symbols, along with match lengths and 
distances. 

The Huffman alphabet consists of 512 symbols, each with a numeric value in the range 0-511. The 
symbols 0-255 represent literal values that correspond to raw byte values as opposed to matches. The 
symbols 256-511 represent matches or references indicating that the next several bytes are the 
same as some bytes that previously occurred in the data. Each match consists of two encoded 
integers: a length and a distance. When the decoding method encounters a match symbol, the original 
data is reconstructed by copying <length> bytes from the position in its previously decompressed 
data of <[decompression cursor] – [match distance]>.  

2.1.1 Abstract Data Model 

  None. 

2.1.2 Initialization 

 None. 

2.1.3 Processing Rules 

 None. 

2.1.4 Phases 

2.1.4.1 LZ77 Phase 

This phase processes each byte of the input data and produces two outputs: the intermediate LZ77 
([UASDC]) encoding of flags, literals, and matches; and the frequency of each symbol in the 
Huffman alphabet. 

The following flowchart shows how the LZ77 phase works. 
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Figure 1: LZ77 phase 

The hash table is an array of pointers to previous positions in the input buffer. It is used to find 
matches, as follows: 

 HashValue = HashThreeBytes(InputBuffer[CurrentPosition], 
                            InputBuffer[CurrentPosition+1], 
                            InputBuffer[CurrentPosition+2]); 
 PotentialMatch = HashTable[HashValue]; 
 HashTable[HashValue] = CurrentPosition; 
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The HashThreeBytes function SHOULD be quick to compute and provide a small number of 
collisions. 

If the additional CPU cost is justified, the algorithm SHOULD be extended to search for longer matches 
than those provided by the basic hash table. This can be achieved with more hash tables, trees, or 

a chained hash table. Finding longer matches generally results in smaller compressed data but 
requires more time for the compression method to execute. 

The intermediate compression format that is produced in this phase SHOULD be designed for quick 
encoding and decoding, and it SHOULD be small enough to guarantee its fit in a temporary buffer that 
is only slightly larger than the input buffer. The algorithm will be more efficient if it is not necessary to 
check whether the temporary buffer has sufficient space. 

The intermediate compression format SHOULD use bitmasks grouped in 32-bit values to represent the 

literal or match flags. Also, literal values SHOULD be stored as simple bytes in the intermediate 
stream. Matches SHOULD be encoded in sizes that are guaranteed to be less than or equal to their 
lengths. 

For example, a 3-byte match could use 1 byte for its length and 2 bytes for its distance. Much longer 
matches SHOULD be encoded with a 2-byte distance and a special length value (such as 0xFF) 
indicating that the full length is encoded in the next 2 or 4 bytes. 

During the LZ77 phase, the algorithm SHOULD count the frequencies of the Huffman symbols it will 
later encode. The Huffman symbol for each literal or match is computed in the following way. 

 For literals, the Huffman symbol index is the value of the literal (ranging from 0 to 255, inclusive). 

 For matches, the Huffman symbol is computed from the length and distance by using the 
following code, in which GetHighBit(Distance) is defined as the bit index of the highest set bit in 
the binary representation of the distance. 

 If (Length – 3) < 15 
     HuffmanSymbol = 256 + (Length – 3) + (16 * GetHighBit(Distance)) 
 Else 
     HuffmanSymbol = 256 + 15 + (16 * GetHighBit(Distance)) 

Note that this definition assumes that Distance is greater than 0, and this is a valid assumption in this 
context. 

The following table provides examples of GetHighBit calculations. 

Distance Binary representation GetHighBit(Distance) 

1 …0001 0 

2 …0010 1 

5 …0101 2 

7 …0111 2 

The GetHighBit function SHOULD be efficiently computed with a precomputed 256-byte table. 

 If Distance < 256 
    DistanceHighBit = PrecomputedHighBitTable[Distance] 
 Else (assuming Distance < (1 << 16)) 
    DistanceHighBit = 8 + PrecomputedHighBitTable[Distance >> 8] 
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2.1.4.2 Huffman Code Construction Phase 

This phase computes canonical Huffman codes from the symbol counts generated by the LZ77 
([UASDC]) phase. For each of the 512 symbols in the Huffman alphabet, this phase computes the 

bit sequence that is used to encode the symbol. These codes are reconstructed by the decompression 
algorithm from the bit length of each symbol. The codes are canonical because they depend only on 
the bit length of the symbol, not the precise symbol count. This encoding saves space because bit 
lengths require fewer bits to store (4 bits per symbol) than exact counts (16 bits per symbol). 

An additional requirement of this phase comes from the way the bit lengths are stored in the 
compressed data: each bit length is stored in 4 bits, so no bit length can be longer than 15 (a length 
of zero means that the symbol does not occur). 

The following flowchart illustrates the length-limited canonical Huffman code construction method. 

https://go.microsoft.com/fwlink/?LinkId=90549
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Figure 2: Length-limited canonical Huffman code construction method. 

2.1.4.3 Final Encoding Phase 

In the final encoding phase, the algorithm processes the intermediate encoding of literals and matches 

generated by the LZ77 ([UASDC]) phase. It re-encodes each literal and match using the canonical 
Huffman codes, but first it encodes the Huffman symbol bit lengths. 

Each symbol bit length is encoded with 4 bits. Bit lengths for even-valued symbols are stored in the 
lower 4 bits of the bytes, whereas bit lengths for odd-valued symbols are stored in the higher 4 bits. 

https://go.microsoft.com/fwlink/?LinkId=90549
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For example, if the bit lengths of symbols 0, 1, 2, and 3 were 5, 6, 7, and 8, respectively, the first 2 
bytes of the output buffer would be 0x65 0x87. The Huffman [IEEE-MRC] construction process 

guarantees that each bit length fits in 4 bits. Symbols that are never used, and therefore have no 
Huffman code, have the special value of zero. 

Because there are 512 Huffman symbols, and the format stores two lengths per byte, this part of the 

output data will always be exactly 256 bytes. 

Following the 256-byte table, the format encodes the sequence of literals and matches. Literals are 
distinguished from matches by the value of the Huffman symbol: symbol values less than 256 are 
literals, whereas symbols greater than 255 are matches. Most matches require more bits to fully 
encode the distance and the length. 

As explained in section 2.1.4.1, the match symbol value encodes the length of the match (up to 17) 
and the bit index of the highest set bit in the distance. If this bit index is, for example, 3, the 

decompression function can determine that the distance is at least 1000 (1000 binary, or 8 decimal) 
and at most 1111 (1111 binary, or 15 decimal). It can also compute that 3 more bits of information 
are required to determine the exact distance. Therefore, the encoder encodes the lower 3 bits of the 

distance directly in the output bit stream (which is also used to encode the variable-length Huffman 
codes). In general, the encoder explicitly encodes the lower <GetHighBit(Distance)> bits 

immediately following the match's Huffman symbol. 

The encoder is required to process match lengths longer than 17. If the length is less than 18, the 
decoder can determine it directly from the match symbol by taking the lower 4 bits and adding 3. A 

lower-four-bits value of 15 is a special case that means the length is at least 18, and the full length is 
encoded with more bits. Unlike the extra-distance bits, the extra-length bits are not encoded 
seamlessly in the Huffman bit stream. Longer lengths are encoded with an extra byte in the output, 
and if that is not enough, an additional 2 bytes. The location of these extra bytes is such that, if the 
decompression function reads the Huffman bit stream in 2-byte chunks, these extra bytes are the 
next bytes that the decompression function will read. 

Some implementations of the decompression algorithm expect an extra symbol to mark the end of the 

data. For example, certain implementations fail during decompression if the Huffman symbol 256 is 
not found after the actual data. For this reason, the encoding algorithm appends this symbol and 

increments the count of symbol 256 before the Huffman codes are constructed. 

Note that match distances cannot be larger than 65,535, and match lengths cannot be longer than 
65,538. The LZ77 phase is implemented to ensure that match lengths and distances do not exceed 
these values. 

The following pseudocode demonstrates the encoding method. 

 Write the 256-byte table of symbol bit lengths 
 While there are more literals or matches to encode 
       If the next thing is a literal 
         WriteBits(SymbolLength[LiteralValue], SymbolCode[LiteralValue]) 
     Else      // the next thing is a match 
         Extract the length and distance of the match 
         MatchSymbolValue = 256 + min(Length - 3, 15) + (16 * GetHighBit(Distance)) 
         WriteBits(SymbolLength[MatchSymbolValue], SymbolCode[MatchSymbolValue]) 
         If (Length – 3) >= 15 
             WriteByte(min(Length – 3 – 15, 255)) 
             If (Length – 3 – 15) >= 255 
                 WriteTwoBytes(Length – 3) 
         WriteBits(GetHighBit(Distance), Distance – (1 << GetHighBit(Distance))) 
 WriteBits(SymbolLength[256], SymbolCode[256]) 
 FlushBits() 

The WriteBits, WriteByte, WriteTwoBytes, and FlushBits functions implicitly use five variables, 

which are initialized as follows: 

https://go.microsoft.com/fwlink/?LinkId=227659
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 FreeBits = 16 
 NextWord = 0 
 OutputPosition1 = OutputBufferPointer + 256 
 OutputPosition2 = OutputBufferPointer + 258  
 OutputPosition  = OutputBufferPointer + 260 

The following pseudocode shows the implementation of the functions. Note that a complete 
implementation must also include bounds checks to ensure that nothing is written beyond the output 
buffer. 

 WriteBits (NumberOfBitsToWrite, BitsToWrite) 
     If FreeBits >= NumberOfBitsToWrite 
         FreeBits = FreeBits – NumberOfBitsToWrite 
         NextWord = (NextWord << NumberOfBitsToWrite) + BitsToWrite 
     Else 
         NextWord = (NextWord << FreeBits) 
         NextWord = NextWord + (BitsToWrite >> (NumberOfBitsToWrite – FreeBits)) 
         FreeBits = FreeBits – NumberOfBitsToWrite 
         Write (NextWord & 0xFF) to OutputPosition1 
         Write (NextWord >> 8) to OutputPosition1 + 1 
         OutputPosition1 = OutputPosition2 
         OutputPosition2 = OutputPosition 
         Advance OutputPosition by 2 bytes 
         FreeBits = FreeBits + 16 
         NextWord = BitsToWrite 
 End 
 WriteByte (ByteToWrite) 
     Write ByteToWrite to OutputPosition 
     Advance OutputPosition by 1 byte 
 End 
 WriteTwoBytes (BytesToWrite) 
     Write (BytesToWrite & 0xFF) to OutputPosition 
     Write (BytesToWrite >> 8) to OutputPosition + 1 
     Advance OutputPosition by 2 bytes 
 End 
 FlushBits () 
     NextWord <<= FreeBits 
     Write (NextWord & 0xFF) to OutputPosition1 
     Write (NextWord >> 8) to OutputPosition1 + 1 
        Write a 16-bit value of zero to OutputPosition2 
     The final compressed size is the value of OutputPosition 
 End 

2.2 LZ77+Huffman Decompression Algorithm Details 

2.2.1 Abstract Data Model 

None. 

2.2.2 Initialization 

None. 

2.2.3 Processing Rules 

None. 
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2.2.4 Processing 

The decompression algorithm uses the 256-byte Huffman table to reconstruct the canonical Huffman 
[IEEE-MRC] representations of each symbol. Next, the Huffman stream of LZ77 ([UASDC]) literals 

and matches is decoded to reproduce the original data. 

The following method can be used to construct a decoding table. The decoding table will have 2^15 
entries because 15 is the maximum bit length permitted by the Xpress Compression Algorithm for a 
Huffman code. If a symbol has a bit length of X, it has 2^(15 – X) entries in the table that point to 
its value. The order of symbols in the table is sorted by bit length (from low to high), and then by 
symbol value (from low to high). These requirements represent the agreement of canonicalness with 
the compression end of the algorithm. The following pseudocode shows the table construction 

method: 

 CurrentTableEntry = 0 
 For BitLength = 1 to 15 
     For Symbol = 0 to 511 
         If the encoded bit length of Symbol equals BitLength 
             EntryCount = (1 << (15 – BitLength)) 
             Repeat EntryCount times 
                 If CurrentTableEntry >= 2^15 
                     The compressed data is not valid. Return with error. 
                 DecodingTable[CurrentTableEntry] = Symbol 
                 CurrentTableEntry = CurrentTableEntry + 1 
 If CurrentTableEntry does not equal 2^15 
     The compressed data is not valid. Return with error. 

A valid implementation MUST use a method that provides results equivalent to those of the preceding 
table-based method to construct a data structure for decoding canonical Huffman codes. An 
implementation MAY use this simple table-based method, but SHOULD use a faster method. 

The compression stream is designed to be read in (mostly) 16-bit chunks, with a 32-bit register 

maintaining at least the next 16 bits of input. This strategy allows the code to seamlessly handle the 
bytes for long match lengths, which would otherwise be awkward. The following pseudocode 

demonstrates this method. 

 Build the decoding table 
 CurrentPosition = 256    // start at the end of the Huffman table 
 NextBits = Read16Bits(InputBuffer + CurrentPosition) 
 CurrentPosition += 2 
 NextBits <<= 16 
 NextBits |= Read16Bits(InputBuffer + CurrentPosition) 
 CurrentPosition += 2 
 ExtraBits = 16 
 Loop until a terminating condition 
     Next15Bits = NextBits >> (32 – 15) 
     HuffmanSymbol = DecodingTable[Next15Bits] 
     HuffmanSymbolBitLength = the bit length of HuffmanSymbol, from the table in 
                              the input buffer 
     NextBits <<= HuffmanSymbolBitLength 
     ExtraBits -= HuffmanSymbolBitLength 
     If ExtraBits < 0 
         NextBits |= Read16Bits(InputBuffer + CurrentPosition) << (-ExtraBits) 
         ExtraBits += 16 
         CurrentPosition += 2 
     If HuffmanSymbol < 256 
         Output the byte value HuffmanSymbol to the output stream. 
     Else If HuffmanSymbol == 256 and 
             the entire input buffer has been read and 
             the expected decompressed size has been written to the output buffer 
         Decompression is complete.  Return with success. 
     Else 
         HuffmanSymbol = HuffmanSymbol - 256 

https://go.microsoft.com/fwlink/?LinkId=227659
https://go.microsoft.com/fwlink/?LinkId=90549
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         MatchLength = HuffmanSymbol mod 16 
         MatchOffsetBitLength = HuffmanSymbol / 16 
         If MatchLength == 15 
             MatchLength = ReadByte(InputBuffer + CurrentPosition) 
             CurrentPosition += 1 
             If MatchLength == 255 
                 MatchLength = Read16Bits(InputBuffer + CurrentPosition) 
                 CurrentPosition += 2 
                 If MatchLength < 15 
                     The compressed data is invalid. Return error. 
                 MatchLength = MatchLength - 15 
             MatchLength = MatchLength + 15 
         MatchLength = MatchLength + 3 
         MatchOffset = NextBits >> (32 – MatchOffsetBitLength) 
         MatchOffset += (1 << MatchOffsetBitLength) 
         NextBits <<= MatchOffsetBitLength 
         ExtraBits -= MatchOffsetBitLength 
         If ExtraBits < 0 
             Read the next 2 bytes the same as the preceding (ExtraBits < 0) case 
         For i = 0 to MatchLength - 1 
             Output OutputBuffer[CurrentOutputPosition – MatchOffset + i] 

An implementation MUST also generate an error indicating that the compressed data is not valid in the 
event of an improper memory access outside the buffer. 

Note that the match-copying loop copies 1 byte at a time and cannot use the standard library 
functions memcpy or memove. A sequence of bytes such as aaaaaa can be encoded like this: 

[literal: "a"][match: offset=1, length=5]. In other words, the match length can be greater 

than the match offset, and this necessitates the 1-byte-at-a-time copying strategy. 

2.3 Plain LZ77 Compression Algorithm Details 

2.3.1 Abstract Data Model 

None. 

2.3.2 Initialization 

None. 

2.3.3 Processing Rules 

None. 

2.3.4 Processing 

The fastest variant of the Xpress Compression Algorithm avoids the cost of the Huffman[IEEE-MRC] 
pass by encoding the LZ77 [UASDC] literals and matches in a simple way. The encoding process is 

similar to the method described in section 2.1.4.1, with the key difference that the largest match 
offset it can encode is 8192 instead of the 65535 limit of the Huffman format. The literal or match 
flags are encoded in 32-bit chunks. Literals are encoded with a simple byte value. Matches are 

encoded with a 16-bit value, where the high 13 bits represent the offset and the low 3 bits represent 
the length. Long lengths are encoded with an additional 4 bits, then 8 bits, and then 16 bits. The 
following pseudocode provides an outline of the encoding method. 

 Flags = 0      // this is a 32-bit integer value 
 FlagCount = 0 
 FlagOutputPosition = 0 

https://go.microsoft.com/fwlink/?LinkId=227659
https://go.microsoft.com/fwlink/?LinkId=90549
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 OutputPosition = 4 
 InputPosition = 0 
 LastLengthHalfByte = 0 
 While InputPosition has not reached the end of the input buffer 
     Try to find a match with a length of at least 3 (see section 2.1.4.1) 
     The match must be within the last 8,192 bytes (MatchOffset <= 2^13) 
     If no match was found or InputPosition + 2 is beyond the input buffer 
         Copy 1 byte from InputPosition to OutputPosition.  Advance both. 
         Flags <<= 1 
         FlagCount = FlagCount + 1 
         If FlagCount == 32 
             Write the 32-bit value Flags to FlagOutputPosition 
             FlagCount = 0 
             FlagOutputPosition = OutputPosition 
             OutputPosition += 4 
     Else    // a valid match was found 
         Let MatchLength and MatchOffset describe the match 
         MatchLength = MatchLength – 3 
         MatchOffset = MatchOffset – 1 
         MatchOffset <<= 3 
         MatchOffset |= min(MatchLength, 7) 
         Write the 16-bit value MatchOffset to OutputPosition 
         OutputPosition += 2 
         If MatchLength >= 7 
             MatchLength -= 7 
             If LastLengthHalfByte == 0 
                 LastLengthHalfByte = OutputPosition 
                 Write the byte value min(MatchLength, 15) to OutputPosition 
                 OutputPosition += 1 
             Else 
                 OutputBuffer[LastLengthHalfByte] |= min(15, MatchLength) << 4 
                 LastLengthHalfByte = 0 
             If MatchLength >= 15 
                 MatchLength -= 15 
                 Write the byte value min(MatchLength, 255) to OutputPosition 
                 OutputPosition += 1 
                 If MatchLength >= 255 
                     MatchLength += 15 + 7 
                     Write the 2-byte value MatchLength to OutputPosition 
                     OutputPosition += 2 
         Flags = (Flags << 1) | 1 
         FlagCount = FlagCount + 1 
         If FlagCount == 32 
             Write the 32-bit value Flags to FlagOutputPosition 
             FlagCount = 0 
             FlagOutputPosition = OutputPosition 
             OutputPosition += 4 
         Advance InputPosition to the first byte that was not in the match 
 Endwhile 
 Flags <<= (32 – FlagCount) 
 Flags |= (1 << (32 – FlagCount)) - 1 
 Write the 32-bit value Flags to FlagOutputPosition 
 The final compressed size is the value of OutputPosition 

2.4 Plain LZ77 Decompression Algorithm Details 

2.4.1 Abstract Data Model 

None. 

2.4.2 Initialization 

None. 
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2.4.3 Processing Rules 

None. 

2.4.4 Processing 

This section provides the decompression method corresponding to the compression method that is 
described in section 2.3. The basic structure is to decode each flag, which indicates whether the next 
item is a literal or a match. Literals are copied directly from the input buffer to the output buffer. 
Matches are decoded into a (length, offset) pair that is used to copy data from earlier in the 

output buffer. If the code that follows reads or writes outside the provided buffers at any time, an 

implementation MUST return an error indicating that the compressed buffer is invalid. Note that the 
match-copying loop copies 1 byte at a time and cannot use the standard library functions memcpy or 
memmove. A sequence of bytes such as aaaaaa can be encoded as follows: 

 [literal: "a"][match: offset=1, length=5] 

The match length can be greater than the match offset, and this necessitates the 1-byte-at-a-time 
copying strategy shown in the following pseudocode. 

 BufferedFlags = 0 
 BufferedFlagCount = 0 
 InputPosition = 0 
 OutputPosition = 0 
 LastLengthHalfByte = 0 
 Loop until break instruction or error 
     If BufferedFlagCount == 0 
         BufferedFlags = read 4 bytes at InputPosition 
         InputPosition += 4 
         BufferedFlagCount = 32 
     BufferedFlagCount = BufferedFlagCount – 1 
     If (BufferedFlags & (1 << BufferedFlagCount)) == 0 
         Copy 1 byte from InputPosition to OutputPosition.  Advance both. 
     Else 
         If InputPosition == InputBufferSize 
             Decompression is complete.  Return with success. 
         MatchBytes = read 2 bytes from InputPosition 
         InputPosition += 2 
         MatchLength = MatchBytes mod 8 
         MatchOffset = (MatchBytes / 8) + 1 
         If MatchLength == 7 
             If LastLengthHalfByte == 0 
                 MatchLength = read 1 byte from InputPosition 
                 MatchLength = MatchLength mod 16 
                 LastLengthHalfByte = InputPosition 
                 InputPosition += 1 
             Else 
                 MatchLength = read 1 byte from LastLengthHalfByte position 
                 MatchLength = MatchLength / 16 
                 LastLengthHalfByte = 0 
             If MatchLength == 15 
                 MatchLength = read 1 byte from InputPosition 
                 InputPosition += 1 
                 If MatchLength == 255 
                     MatchLength = read 2 bytes from InputPosition 
                     InputPosition += 2 
                     If MatchLength < 15 + 7 
                        Return error. 
                     MatchLength -= (15 + 7) 
                 MatchLength += 15 
             MatchLength += 7 
         MatchLength += 3 
         For i = 0 to MatchLength – 1 
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             Copy 1 byte from OutputBuffer[OutputPosition – MatchOffset] 
             OutputPosition += 1 
  

2.5 LZNT1 Algorithm Details 

The LZNT1 algorithm employs a grammar common to LZ77 variants, making use of LZ77 [UASDC] 
literals and matches and using the characteristic processing. The LZNT1 algorithm is comparable to 
the Plain LZ77 variant, which implements the features of LZ77 through a specialized buffer format as 

specified in section 2.3 and section 2.4. Key differences between the "plain" and LZNT1 variants 
include the following: 

 LZNT1 uses a less complex process to encode lengths. 

 LZNT1 varies the number of bits used to encode length and distance, whereas the sizes of the 
Plain LZ77-encoded fields are fixed. 

 LZNT1 groups flags in bytes; Plain LZ77 groups them in 4-byte DWORDs. 

 The LZNT1 buffer is structured as a series of chunks that can be independently decompressed. 

2.5.1 Abstract Data Model 

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this algorithm. The described organization is provided to facilitate the 

explanation of how the algorithm behaves. This document does not mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document. 

The following elements are specific to this algorithm. 

Chunks: Segments of data that are compressed, uncompressed, or that denote the end of the buffer. 

Chunk header: The header for a compressed or uncompressed chunk of data. 

Flag bytes: A bit flag whose bits, read from low order to high order, specify the formats of the data 

elements that follow. For example, bit 0 corresponds to the first data element, bit 1 to the second, 
and so on. If the bit corresponding to a data element is set, the element is a 2-byte compressed 
word; otherwise, it is a 1-byte literal value. 

Flag group: A flag byte followed by zero or more data elements, each of which is a single literal byte 
or a 2-byte compressed word. 

2.5.1.1 Buffer Format 

The LZNT1 algorithm relies on the use of a specific buffer format in its implementation of LZ77. The 
compression algorithm produces a buffer format of the following grammatical structure: 

 <Buffer> ::= <Chunk> <Buffer> | <Chunk> 
 <Chunk> ::= <Compressed_chunk> |  
             <Uncompressed_chunk> | 
             End_of_buffer 
  
 <Uncompressed_chunk> ::= Chunk_header Uncompressed_data 
 <Compressed_chunk> ::= Chunk_header <Flag_group> 
 <Flag_group> ::= <Flag_data> <Flag_group> | <Flag_data> 
  
 <Flag_data> ::= 
     Flag_byte <Data> <Data> <Data> <Data> <Data> <Data> <Data> <Data> 

https://go.microsoft.com/fwlink/?LinkId=90549
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   | Flag_byte <Data> <Data> <Data> <Data> <Data> <Data> <Data> 
   | Flag_byte <Data> <Data> <Data> <Data> <Data> <Data> 
   | Flag_byte <Data> <Data> <Data> <Data> <Data> 
   | Flag_byte <Data> <Data> <Data> <Data> 
   | Flag_byte <Data> <Data> <Data>  
   | Flag_byte <Data> <Data> 
   | Flag_byte <Data>  
 <Data> ::= Literal | Compressed_word 

A compressed data buffer consists of one or more chunks. A chunk is either compressed, 
uncompressed, or it denotes the end of the buffer. If the chunk is uncompressed, it contains a chunk 
header followed by uncompressed data; if it is compressed, it contains a chunk header followed by a 

series of one or more pieces of flagged data. Finally, a piece of flagged data consists of a flag byte 
that is followed by no more than 8 individual data elements.  

The following sections describe the structure of each of these grammatical elements, including 
constraints on their usage that are not expressed in the raw grammar. 

2.5.1.2 Buffers and Chunks 

A compressed buffer consists of a series of one or more compressed output chunks. Each chunk 
begins with a 16-bit header. 

If both bytes of the header are 0, the header is an End_of_buffer terminal that denotes the end of the 
compressed data stream. 

Otherwise, the header MUST be formatted as follows: 

 Bit 15 indicates whether the chunk contains compressed data. 

 Bits [14:12] contain a signature indicating the format of the subsequent data. 

 Bits [11:0] contain the size of the compressed chunk, minus three bytes. 

Bit 15 indicates whether the chunk contains compressed data. If this bit is zero, the chunk header is 
followed by uncompressed literal data. If this bit is set, the next byte of the chunk is the beginning of 
a Flag_group nonterminal that describes some compressed data. 

Bits 14 down to 12 contain a signature value. This value MUST always be 3 (unless the header 

denotes the end of the compressed buffer). 

Bits 11 down to 0 contain the size of the compressed chunk minus three bytes. This size otherwise 
includes the size of any metadata in the chunk, including the chunk header. If the chunk is 
uncompressed, the total amount of uncompressed data therein can be computed by adding 1 to this 
value (adding 3 bytes to get the total chunk size, then subtracting 2 bytes to account for the chunk 
header). 

The End_of_buffer character is not required to terminate the compressed buffer. The character is 
used, however, if space allows. For example, given 20 kilobytes (KB) of uncompressed data and a 10 
KB buffer to contain the compressed data, if the size of the compressed data (including metadata) is 

exactly 10 KB, the capacity of the buffer has been met. In such a case, the End_of_buffer terminal is 
not written.  

Because the presence of this terminal is not guaranteed, the size of the compressed data MUST be 
known before data in this format is decompressed.  

If an End_of_buffer terminal is added, the size of the final compressed data is considered not to 
include the size of the End_of_buffer terminal. 
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2.5.1.3 Flag Groups 

If a chunk is compressed, its chunk header is immediately followed by the first byte of a Flag_group 
nonterminal. 

A flag group consists of a flag byte followed by zero or more data elements. Each data element is 
either a single literal byte or a two-byte compressed word. The individual bits of a flag byte, taken 
from low-order bits to high-order bits, specify the formats of the subsequent data elements (such that 
bit 0 corresponds to the first data element, bit 1 to the second, and so on). If the bit corresponding to 
a data element is set, the element is a two-byte compressed word; otherwise, it is a one-byte literal. 

2.5.1.4 Data Elements 

A data element MUST either be an uncompressed literal or a compressed word. An uncompressed 
literal is a byte of data that was not compressed and can therefore be treated as part of the 
uncompressed data stream. A compressed word is a two-byte value that contains a length and a 
displacement and whose format varies depending on the portion of the data that is being processed. 

Each compressed word consists of a D-bit displacement in the high-order bits and an L-bit length in 
the low-order bits, subject to the constraints that 4 <= D <= 12, 4 <= L <= 12, and D + L = 16. The 
displacement in a compressed word is the difference between the current location in the 
uncompressed data (either the current read point when compressing or the current write point when 
decompressing) and the location of the uncompressed data corresponding to the compressed word, 
minus one byte. The length is the amount of uncompressed data that can be found at the appropriate 
displacement, minus three bytes. While using the compressed buffers, the stored displacement must 

be incremented by 1 and the stored length must be incremented by 3, to get the actual displacement 
and length. 

For example, the input data for a given compression consists of the following stream: 

 F F G A A G F E D D E F F E E | F F G A A G F E D D E F E D D 

In this case, the data prior to the vertical bar has already been compressed. The next 12 characters of 
the input stream match the first 12 characters of the data that was already compressed. Moreover, 
the distance from the current input pointer to the start of this matching string is 15 characters. This 
can be described by the <displacement, length> pair of <15, 12>. 

Decompression of this data produces the first portion of the input stream: 

 F F G A A G F E D D E F F E E | 

The next data element is a <15, 12> displacement-length pair. The start of the uncompressed data is 

15 characters behind the last character in the already uncompressed data, and the length of the data 
to read is 12 characters. Decompression results in the following buffer. 

 F F G A A G F E D D E F F E E F F G A A G F E D D E F | 

This matches the original data stream. 

 F F G A A G F E D D E F F E E F F G A A G F E D D E F E D D 

The sizes of the displacement and length fields of a compressed word vary with the amount of 
uncompressed data in the current chunk that has already been processed. The format of a given 
compressed word is determined as follows:  
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Let U be the amount of uncompressed data that has already been processed in the current chunk 
(either the amount that has been read when compressing data or the amount that has been written 

when decompressing data).  

Note that U depends on the offset from the start of a chunk and not the offset from the beginning of 

the uncompressed data.  

Then let M be the largest value in [4…12] such that 2M-1 < U, or 4 if there is no such value.  

A compressed word then has the format D = M and L = 16 – M, with the displacement occupying D 
high-order bits and the length occupying L low-order bits. 

2.5.2 Initialization 

 None. 

2.5.3 Processing Rules 

 Input streams are compressed in units of 4096 bytes. The process of creating a chunk is complete if 
at least 4096 bytes of data or the remainder of the input buffer is compressed. If the data remains in 
the input buffer, the processing of a new chunk is started. 

Lempel-Ziv compression does not require that the entirety of the data to which a compressed word 
refers actually be in the uncompressed buffer when the word is processed. In other words, it is not 
required that (U – displacement + length < U). Therefore, when processing a compressed word, data 
MUST be copied from the start of the uncompressed target region to the end—that is, the byte at (U – 

displacement) MUST be copied first, then (U – displacement + 1), and so on, because the compressed 
word might refer to data that will be written during decompression.  

Some of the bits in a flag byte might not be used. To process compressed buffers, the size of the 
compressed chunk that is stored in the chunk header MUST be used to determine the position of the 
last valid byte in the chunk. The size value MUST ignore flag bits that correspond to bytes outside the 
chunk. 

2.5.4 Processing 

 For a discussion of LZ77 processing similar to that of the LZNT1 variant, see sections 2.3 and 2.4 on 
Plain LZ77 compression and decompression. 
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3 Algorithm Examples 

3.1 LZ77 

With the  Plain LZ77 variant of the algorithm, the uncompressed ASCII string 

abcdefghijklmnopqrstuvwxyz is compressed as follows, in hexadecimal. 

 3f 00 00 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79 7a 

The first 4 bytes encode the first 32 literal or match flags (in this case, 26 zero bits, representing the 
26 literals to follow, then 6 one bits, because any extra flag bits are ones). The next 26 bytes are the 
ASCII representation of the input string. 

The uncompressed input is the 300-byte ASCII string: 

 abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc
abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc

abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc

abcabcabcabcabcabcabc  

In this case, using Plain LZ77, those 300 bytes are encoded as follows: 

 ff ff ff 1f 61 62 63 17 00 0f ff 26 01 

This is the encoding of abc[match: distance = 3, length = 297]. 

3.2 LZ77+Huffman 

The uncompressed ASCII string abcdefghijklmnopqrstuvwxyz is compressed as a sequence of 

literals, as follows, in hexadecimal. 

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 50 55 55 55 55 55 55 55 55 55 55 45 44 04 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 d8 52 3e d7 94 11 5b e9 19 5f f9 d6 7c df 8d 04 00 00 00 00 

The first 256 bytes represent the Huffman code lengths. In this case, most of these values are zero 
because those symbols are not used. The few nonzero values represent the code lengths (5 bits or 4 
bits in this case) of the literal symbols corresponding to the ASCII characters of the lowercase 

alphabet, as well as the end-of-file (EOF) symbol (symbols index 256). The last few bytes in the buffer 
are the Huffman encoding of the string abcdefghijklmnopqrstuvwxyz[EOF]. 

The uncompressed data is the following 300-byte ASCII string:  

 abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc
abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc

abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc

abcabcabcabcabcabcabc  
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The LZ77+Huffman algorithm encodes it as follows: 

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 30 23 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 a8 dc 00 00 ff 26 01  

  

The first 256 bytes are the Huffman code lengths. The nonzero symbols are the literals 'a', 'b', and 'c'; 

the EOF symbol; and one match symbol. The last few bytes encode abc[match: distance=3, 

length=297][EOF]. This example illustrates how long match lengths are encoded. In the last bytes of 

the compressed data, note the calculation 0x126 = 294 = 297 – 3. Because it is the minimum match 

length, 3 is subtracted from each match length before it is encoded. 

3.3 LZNT1 

The following shows an example of LZ77 compression in which the compressed word references data 
that is not wholly contained in the uncompressed buffer at the time when the word is processed. In 
this scenario, the compressed word is processed by copying data from the start of the uncompressed 
target region to the end. 

The following ANSI string, including the terminal NUL, is 142 bytes in length. 

 F# F# G A A G F# E D D E F# F# E E F# F# G A A G F# E D D E F# E D D E E F# D E F# G F# D E 
F# G F# E D E A F# F# G A A G F# E D D E F# E D D 

The algorithm, using the standard compression engine, produces the following hexadecimal output 

with a length of 59 bytes. 

 0x00000000: 38 b0 88 46 23 20 00 20 
 0x00000008: 47 20 41 00 10 a2 47 01 
 0x00000010: a0 45 20 44 00 08 45 01 
 0x00000018: 50 79 00 c0 45 20 05 24 
 0x00000020: 13 88 05 b4 02 4a 44 ef 
 0x00000028: 03 58 02 8c 09 16 01 48 
 0x00000030: 45 00 be 00 9e 00 04 01 
 0x00000038: 18 90 00 

The compressed data is contained in a single chunk. The chunk header, interpreted as a 16-bit value, 
is 0xB038. Bit 15 is 1, so the chunk is compressed; bits 14 through 12 are the correct signature value 
(3); and bits 11 through 0 are decimal 56, so the chunk is 59 bytes in size. 

The next byte, 0x88, is a flag byte. Bits 0, 1, and 2 of this byte are clear, so the next 3 bytes are not 

compressed. They are 0x46 ('F'), 0x23 ('#'), and 0x20 (a space). The output stream now contains 
"F# ". 

Bit 3 of the flag byte is set, however, so the next two bytes are part of a compressed word; in this 
case, that word is 0x2000. Here, the offset from the start of the uncompressed data, U, is 3 bytes; 
there is no value M such that M >= 4 and 2M-1 < U, so the compressed word has 4 bits of 
displacement and 12 bits of length. The stored displacement is 2 (0010) and the stored length is 0 

(0000 0000 0000); the actual displacement is 3 (2 + 1 = 3) and the length is 3 (0 + 3 = 3). The next 
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3 characters of uncompressed data are "F# ", which results in an uncompressed string of length 6: 
"F# F# ". 

Bits 4 through 6 of the flag byte are clear, so the next three bytes are literals: 0x47 ('G'), 0x20 (a 
space), and 0x41 ('A'). The string is now "F# F# G A". Bit 7 is set, so the next two bytes are a 

compressed word, 0x1000. The offset from the start of the chunk is 9 bytes, so the compressed word 
once again has 4 bits of displacement and 12 bits of length. The stored displacement is 1 (0001) and 
the stored length is 0 (0000 0000 0000); thus, the final displacement is 2 (1 + 1 = 2) and the final 
length is 3 (0 + 3 = 3).  

This is a case in which the current uncompressed length (9 bytes) minus the displacement plus the 
length (10 bytes) actually exceeds the amount of uncompressed data, so character-by-character 
copying from the beginning of the displaced region is important. The first character is a space, so the 

string is "F# F# G A "; the next character is an A, resulting in "F# F# G A A"; and the next is the 
space that was just written, resulting in "F# F# G A A ". 

The rest of the decompression proceeds similarly.  

The final flag byte is located at offset 0x37. This is the 56th byte of compressed data; only three bytes 
remain. The flag byte is 0x01, so the next two bytes are a single compressed word. The final byte is a 
literal value, 0x00. The remainder of the flag byte is ignored because no data remains in the buffer. 
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4 Security 

4.1 Security Considerations for Implementers 

Implementers of the decompression method need to ensure that their code fails correctly on invalid 

input instead of overwriting memory locations outside the caller's output buffer. Implementers need to 
assume that the input buffer could be corrupted or might be maliciously constructed to cause the 
decompression function to read or write outside the buffers it is provided. A particularly subtle case 
involves guarding against integer/pointer overflow bugs when the input buffer contains long match 
lengths. 

4.2 Index of Security Parameters 

None. 
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5 Appendix A: Product Behavior 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs. 

 Windows 2000 operating system 

 Windows XP operating system 

 Windows Server 2003 operating system 

 Windows Server 2003 R2 operating system 

 Windows Vista operating system 

 Windows Server 2008 operating system 

 Windows 7 operating system 

 Windows Server 2008 R2 operating system 

 Windows 8 operating system 

 Windows Server 2012 operating system 

 Windows 10 operating system 

 Windows Server 2016 operating system 

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears 
with the product version, behavior changed in that service pack or QFE. The new behavior also applies 
to subsequent service packs of the product unless otherwise specified. If a product edition appears 
with the product version, behavior is different in that product edition. 

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed 

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the 
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the 
product does not follow the prescription. 



27 / 29 

[MS-XCA] - v20170601 
Xpress Compression Algorithm 
Copyright © 2017 Microsoft Corporation 
Release: June 1, 2017 

6 Change Tracking 

No table of changes is available. The document is either new or has had no changes since its last 
release. 
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