
1 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-WMIO]:

Windows Management Instrumentation Encoding Version
1.0 Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
 Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 Major Updated and revised the technical content.

4/3/2007 1.1 Minor Clarified the meaning of the technical content.

5/11/2007 1.2 Minor Addressed EU feedback

6/1/2007 1.3 Minor Clarified the meaning of the technical content.

7/3/2007 1.3.1 Editorial Changed language and formatting in the technical content.

8/10/2007 1.3.2 Editorial Changed language and formatting in the technical content.

9/28/2007 1.4 Minor Clarified the meaning of the technical content.

10/23/2007 2.0 Major
Converted the document to unified format, and made
clarification of ABNF item.

1/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0.2 Editorial Changed language and formatting in the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 3.1 Minor Clarified the meaning of the technical content.

8/29/2008 3.1.1 Editorial Changed language and formatting in the technical content.

10/24/2008 3.2 Minor Clarified the meaning of the technical content.

12/5/2008 3.3 Minor Clarified the meaning of the technical content.

1/16/2009 3.3.1 Editorial Changed language and formatting in the technical content.

2/27/2009 3.3.2 Editorial Changed language and formatting in the technical content.

4/10/2009 3.3.3 Editorial Changed language and formatting in the technical content.

5/22/2009 4.0 Major Updated and revised the technical content.

7/2/2009 5.0 Major Updated and revised the technical content.

8/14/2009 6.0 Major Updated and revised the technical content.

9/25/2009 7.0 Major Updated and revised the technical content.

11/6/2009 7.1 Minor Clarified the meaning of the technical content.

12/18/2009 8.0 Major Updated and revised the technical content.

1/29/2010 8.0.1 Editorial Changed language and formatting in the technical content.

3/12/2010 9.0 Major Updated and revised the technical content.

4/23/2010 9.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 9.0.2 Editorial Changed language and formatting in the technical content.

7/16/2010 9.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

8/27/2010 9.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 9.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 9.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 10.0 Major Updated and revised the technical content.

3/25/2011 10.0 None
No changes to the meaning, language, or formatting of the

technical content.

5/6/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 10.1 Minor Clarified the meaning of the technical content.

9/23/2011 11.0 Major Updated and revised the technical content.

12/16/2011 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 11.1 Minor Clarified the meaning of the technical content.

7/12/2012 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 12.0 Major Updated and revised the technical content.

11/14/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 13.0 Major Significantly changed the technical content.

10/16/2015 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 14.0 Major Significantly changed the technical content.

4 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

9/12/2018 15.0 Major Significantly changed the technical content.

4/7/2021 16.0 Major Significantly changed the technical content.

6/25/2021 17.0 Major Significantly changed the technical content.

4/23/2024 18.0 Major Significantly changed the technical content.

5 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.4 Relationship to Protocols and Other Structures .. 10
1.5 Applicability Statement ... 10
1.6 Versioning and Localization ... 11
1.7 Vendor-Extensible Fields ... 11

2 Structures ... 12
2.1 Introduction .. 12
2.2 Annotated Object Block Encoding ... 12

2.2.1 EncodingUnit .. 12
2.2.2 EncodingUnitObjectBlock ... 13
2.2.3 EncodingUnitInstanceNoClass ... 13
2.2.4 ObjectEncodingLength ... 14
2.2.5 ObjectBlock ... 14
2.2.6 ObjectFlags .. 14
2.2.7 Decoration ... 14
2.2.8 DecServerName ... 15
2.2.9 DecNamespaceName ... 15
2.2.10 Encoding ... 15
2.2.11 ClassType .. 15
2.2.12 ParentClass .. 16
2.2.13 CurrentClass .. 16
2.2.14 ClassAndMethodsPart .. 16
2.2.15 ClassPart ... 16
2.2.16 ClassHeader ... 17
2.2.17 DerivationList ... 17
2.2.18 ClassNameEncoding .. 17
2.2.19 ClassNameRef .. 18
2.2.20 ClassQualifierSet .. 18
2.2.21 PropertyLookupTable... 18
2.2.22 PropertyCount .. 18
2.2.23 PropertyLookup .. 18
2.2.24 PropertyNameRef ... 19
2.2.25 PropertyInfoRef .. 19
2.2.26 NdTable ... 19
2.2.27 NullAndDefaultFlag ... 20
2.2.28 NdTableValueTableLength .. 20
2.2.29 ValueTable ... 20
2.2.30 PropertyInfo... 21
2.2.31 PropertyType ... 21
2.2.32 Inherited ... 21
2.2.33 DeclarationOrder .. 22
2.2.34 ValueTableOffset .. 22
2.2.35 ClassOfOrigin ... 22
2.2.36 PropertyQualifierSet .. 22
2.2.37 ClassHeap .. 22
2.2.38 MethodsPart ... 22
2.2.39 MethodCount ... 23
2.2.40 MethodCountPadding .. 23
2.2.41 MethodDescription .. 23

6 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.42 MethodName .. 23
2.2.43 MethodFlags .. 23
2.2.44 MethodPadding ... 23
2.2.45 MethodOrigin ... 24
2.2.46 MethodQualifiers... 24
2.2.47 HeapQualifierSetRef .. 24
2.2.48 InputSignature ... 24
2.2.49 OutputSignature ... 25
2.2.50 MethodSignature .. 25
2.2.51 HeapMethodSignatureBlockRef ... 25
2.2.52 MethodHeap ... 25
2.2.53 InstanceType ... 25
2.2.54 InstanceFlags ... 26
2.2.55 InstanceClassName ... 26
2.2.56 InstanceData ... 26
2.2.57 InstanceQualifierSet .. 26
2.2.58 InstanceHeap ... 26
2.2.59 QualifierSet .. 26
2.2.60 Qualifier .. 27
2.2.61 QualifierName .. 27
2.2.62 QualifierFlavor .. 27
2.2.63 QualifierType.. 28
2.2.64 QualifierValue... 28
2.2.65 InstancePropQualifierSet ... 28
2.2.66 Heap ... 29
2.2.67 HeapItem .. 29
2.2.68 HeapStringRef .. 30
2.2.69 HeapRef .. 30
2.2.70 MethodSignatureBlock ... 30
2.2.71 EncodedValue .. 30
2.2.72 NumericValue ... 31
2.2.73 EncodingLength .. 32
2.2.74 NoValue .. 32
2.2.75 BOOL .. 32
2.2.76 ReservedOctet .. 32
2.2.77 Signature .. 32
2.2.78 Encoded-String... 32
2.2.79 Encoded-Array ... 33
2.2.80 DictionaryReference .. 33
2.2.81 BIT ... 34
2.2.82 CimType .. 34

2.3 Special Data Type Encodings ... 36
2.3.1 CIM DateTime Type .. 36
2.3.2 CIM Reference Types .. 36
2.3.3 CIM Methods .. 36
2.3.4 Heap Encoding ... 38

3 Structure Examples ... 39
3.1 Instance Encoding .. 52
3.2 Class Encoding with Methods ... 56

4 Security Considerations ... 65

5 Appendix A: Product Behavior ... 66

6 Appendix B: ABNF Encoding Definition .. 67

7 Change Tracking .. 71

8 Index ... 72

7 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The Windows Management Instrumentation Encoding Version 1.0 Protocol specifies a binary data
encoding format that is used by the Windows Management Instrumentation Remote Protocol,
specified in [MS-WMI] for network communication.

The carrier protocol for this encoding is the Distributed Component Object Model (DCOM) Remote
Protocol, as specified in [MS-DCOM], which is used in combination with Windows Management

Instrumentation (WMI) interfaces, as specified in [MS-WMI]. This specification does not specify the
Windows Management Instrumentation Remote Protocol operations; it instead specifies the data
encoding that is used by the protocol.

WMI uses the Common Information Model (CIM), which is published and maintained by the
Distributed Management Task Force (DMTF) (see [DMTF]). The Common Information Model (CIM)
Infrastructure Specification (as specified in [DMTF-DSP0004]) defines the object model itself. This

specification depends entirely on the metamodel and terminology specified in the DMTF specification
set. The reader is referred to the CIM Infrastructure Specification for a description of the CIM

metamodel. The CIM objects that are transferred by the Windows Management Instrumentation
Remote Protocol are CIM objects encoded by using the technique specified in this specification.

The DMTF CIM specifications only specify a text-based encoding that is called Managed Object
Format (MOF). However, MOF is inefficient for network use. The format specified in this document is
an efficient binary format for describing CIM objects within network packets.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF),

commonly used by Internet specifications. ABNF notation balances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more
information, see [RFC5234].

CIM class: A CIM object that represents a CIM class definition as a CIM object. It is the

template representing a manageable entity with a set of properties and methods.

CIM instance: An instantiation of a CIM class representing a manageable entity.

CIM object: Refers to a CIM class or a CIM instance.

Common Information Model (CIM): The Distributed Management Task Force (DMTF) model that
describes how to represent real-world computer and network objects. CIM uses an object-
oriented paradigm, where managed objects are modeled using the concepts of classes and
instances. See [DMTF-DSP0004].

Common Information Model (CIM) class: A collection of Common Information Model (CIM)
instances that support the same type, that is, the same CIM properties and CIM methods, as
specified in [DMTF-DSP0004].

Common Information Model (CIM) instance: Provides values for the CIM properties associated
with the CIM instance's defining CIM class. A CIM instance does not carry values for any
other CIM properties or CIM methods that are not defined in (or inherited by) its defining CIM
class. For more information, see [DMTF-DSP0004].

%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=233129
https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=89848

9 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Common Information Model (CIM) object: An object that represents a Common Information
Model (CIM) object. This can be either a CIM class or a CIM instance of a CIM class.

Common Information Model (CIM) property: Assigns values used to characterize instances of
a CIM class. A CIM property can be thought of as a pair of Get and Set functions that, when

applied to an object, return state and set state, respectively. For more information, see [DMTF-
DSP0004].

Common Information Model (CIM) qualifier: Used to characterize named elements, as
specified in [DMTF-DSP0004]. For example, there are CIM qualifiers that define the
characteristics of a CIM property or the key of a CIM class.

Distributed Component Object Model (DCOM): The Microsoft Component Object Model (COM)
specification that defines how components communicate over networks, as specified in [MS-

DCOM].

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of
domain names to various types of data, such as IP addresses. DNS enables the location of

computers and services by user-friendly names, and it also enables the discovery of other
information stored in the database.

encoding: The binary layout that is used to represent a Common Information Model (CIM)

object, whether a CIM class or CIM instance definition. The encoding is what is actually
transferred by the protocol.

Managed Object Format (MOF): A textual encoding for Common Information Model (CIM)
objects, this representation is not used within protocol operations defined in [MS-WMI]. MOF is
defined in [DMTF-DSP0004] section 3. The MOF text encoding is only used for illustrative
purposes. The binary encoding can be translated to and from the MOF format.

superclasses and subclasses: Types of Common Information Model (CIM) classes. A

subclass is derived from a superclass. The subclasses inherit all features of its superclass but
can add new features or redefine existing ones. A superclass is the CIM class from which a CIM
class inherits.

Windows Management Instrumentation (WMI): The Microsoft implementation of Common
Information Model (CIM), as specified in [DMTF-DSP0004]. WMI allows an administrator to
manage local and remote machines and models computer and network objects using an
extension of the CIM standard.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[DMTF-DSP0004] Distributed Management Task Force, "Common Information Model (CIM)
Infrastructure Specification", DSP0004, version 2.3 final, October 2005,

http://www.dmtf.org/standards/published_documents/DSP0004V2.3_final.pdf

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89848

10 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-WMI] Microsoft Corporation, "Windows Management Instrumentation Remote Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, https://www.rfc-editor.org/info/rfc4234

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

1.2.2 Informative References

[DMTF] DMTF, "Distributed Management Task Force (DMTF)", http://dmtf.org

1.3 Overview

The carrier protocol, as specified in [MS-WMI], is the actual protocol for transferring CIM objects

specified in this specification. This specification defines a binary format that is used within the custom
marshaling of the Windows Management Instrumentation Remote Protocol (as specified in [MS-WMI])
when CIM objects are being transferred in a protocol operation.

The WMI Remote Protocol is a management protocol for querying status and controlling the settings of
real-world managed entities. These entities are modeled by using CIM objects, as specified in [DMTF-
DSP0004].

For example, a logical drive might be modeled as a CIM object in which the class of the CIM object is

Disk and the various characteristics of the Disk (such as its VolumeLabel, DriveLetter, and the active

FileSystem type) are properties in the CIM class. CIM class definitions are thus similar to class
definitions in other object-oriented database systems and programming systems.

In the WMI Remote Protocol, each managed entity is assigned a CIM class, and instances of that
entity become CIM instances. Continuing with the previous example, the Disk class can contain three
instances: one for drive C, one for drive D, and one for drive E.

To query the status of the real-world CIM objects, the WMI Remote Protocol is used to retrieve these

instances by using operations such as GetObject or ExecQuery. If updates are required, the WMI
Remote Protocol is used to send the updated CIM instance over the wire with the new values. To
perform an update, the WMI Remote Protocol writes the complete updated instance, even if only one
value is changed. Thus, the WMI Remote Protocol requires an encoding technique of some kind to
move CIM objects across the wire when both reading and writing values.

As specified in [DMTF-DSP0004] section 3, CIM classes and instances are defined and illustrated by

using the MOF syntax. This is a text-only format for use by tools and in documentation and is not

designed for use in a network protocol.

It is not possible to predefine binary layouts for the various types of CIM objects that can be
transferred because the system is fully dynamic. New types of classes can be installed and transmitted
over the WMI Remote Protocol by vendors and end users, and the full set of CIM object types is not
known by the implementation.

This specification defines a binary encoding format as a representation format for CIM objects. When a

client application needs to read a CIM class or instance, a GetObject (as specified in [MS-WMI])
operation is performed, and the CIM object is encoded in the definition in this specification. Similarly,

https://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=90550
https://go.microsoft.com/fwlink/?LinkId=233129
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848

11 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

if the CIM instance requires updating, the PutInstance operation (as specified in [MS-WMI]) is used,
and the updated CIM instance is encoded by using the format in this specification.

The WMI Remote Protocol can read and write both CIM classes and instances of those classes. This
specification details how the CIM classes and their instances are encoded for use in the WMI Remote

Protocol.

When retrieving CIM objects, the binary encoding that is transmitted over the WMI Remote Protocol
has to be decoded. The binary packet is parsed by using Augmented Backus-Naur Form (ABNF)
rules in a top-down, recursive descent manner, starting with the root-level grammar rule specified in
section 2.2.1. The first octets are examined as the input tokens to the parser, the ABNF rules are
examined, and the various branches are taken, consuming the octets until the entire packet is
decoded. This is equivalent to LL(1) recursive-descent parsing. For more information, see [AHO-

ULLMAN] and numerous compiler textbooks.

For example, ABNF shows that the first nonterminal token is an octet sequence 0x12345678 (the
Signature rule). If the first octets match this, the next rule is the ObjectEncodingLength rule, which
specifies that the next four octets specify the encoding length of the entire packet. After these octets

are consumed, the next octets are examined according to matching rules, using the established
convention, as specified in [RFC4234].

When encoding CIM objects for transmission, the ABNF grammar is traversed top-down, and the ABNF
grammar rules starting in section 2.2.1 are used to emit the correct octets based on the CIM object
that needs to be encoded. Decoding uses the same grammar traversal rules except the existing octet
sequence is matched against the grammar token by token.

For example, the rules specify that Signature has to be the first block; so the encoder emits the octet
sequence 0x12345678 to match the required rule. Next, the EncodingLength is required. The encoder
cannot detect how many octets are required to complete the encoding; so some type of placeholder is

established, and the emitter continues, encoding the CIM object using the rules until the CIM object is
completely examined and encoded. Next, the encoder has to determine whether the CIM object being
encoded is a CIM class or a CIM instance. Then the encoder emits the correct octet value using the
ObjectFlags rule. Before this octet is emitted, the encoder has to determine whether the encoded CIM

object will contain the server name of origin (the DecServerName rule) and the CIM namespace name
(DecNamespaceName). After it is known whether these values will form part of the encoding, the
ObjectFlags octet bit values can be set, and the octet can be emitted to the encoding buffer. The rules

are traversed for encoding exactly as for decoding, except that the encoder emits the octets instead of
recognizing existing octets.

Implementers that use the ABNF grammar (as specified in [RFC4234]) are recommended to be
thoroughly familiar with recursive-descent parsing, concepts of terminal and nonterminal productions,
LL(1) grammar theory, and code emission techniques with syntax-directed translators. The techniques
for the encoding and decoding are thus equivalent to the techniques used by high-level language

compilers.

1.4 Relationship to Protocols and Other Structures

Because this specification only specifies an encoding, there are no specific relationships to other

protocols other than what is specified in [MS-WMI].

1.5 Applicability Statement

The encoding in this specification is used wherever CIM classes and CIM objects are transferred on
the wire, as specified in [MS-WMI].

https://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814

12 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1.6 Versioning and Localization

Only one version of the encoding currently exists. There are no provisions for multiple encodings or
alternate versions.

1.7 Vendor-Extensible Fields

The encoding format is not extensible.

13 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Structures

Because this specification specifies an encoding that is used by the Windows Management
Instrumentation Remote Protocol (as specified in [MS-WMI]), no messages or network-level
operations are defined.

Annotated object block encoding for the Windows Management Instrumentation Encoding Version 1.0
Protocol is specified in the following sections.

2.1 Introduction

The following sections specify annotated object block encoding for the Windows Management
Instrumentation Encoding Version 1.0 Protocol.

2.2 Annotated Object Block Encoding

CIM instance and CIM class definitions, as specified in [DMTF-DSP0004] section 2.1, are encoded
by using a binary data format. Qualifiers for instance and instance properties are Microsoft extensions
to the CIM data model. Like qualifiers applied to a class, qualifiers applied to an instance are specific

to the instance, and the qualifier need not be specified in the class from which the instance is derived.
If the class defines the qualifier, then the instance can redefine the qualifier only if the class allows
overriding the qualifier. To capture the semantics of CIM classes and CIM instances, the layout of
the block reflects the CIM object structure and is correspondingly complex but completely canonical
according to ABNF, as specified in section 6.

Because CIM classes and CIM instances have user-name properties and values, the data block can
vary significantly, depending on the item that is being encoded. The traversal of the block is precisely

equivalent to top-down parsing, using the well-known LL(1) parsing algorithm, and can be
implemented in a recursive-descent parser. For more information, see [AHO-ULLMAN] section 4.4.

The representation of the grammar of the packet layout is presented in ABNF notation, as specified in

[RFC4234]. Terminal tokens are in uppercase characters, such as UINT32, and have a binary
encoding rule, as specified in section 2.3. All other productions of grammar are defined within ABNF.
All the integer, unsigned integer, and floating point numbers that are encountered in the following

encoding structures MUST be stored in little-endian format, unless explicitly stated otherwise.

In the definitions in this section, the use of the term offset always refers to an unsigned integer value
that represents the distance, in octets, from some base point. An offset of zero indicates a reference
to the first octet in the block, and an offset of seven indicates a reference to the eighth octet of the
block.

2.2.1 EncodingUnit

The EncodingUnit object block is the root node block of the encoding that is used for encoding classes
or instances if the object is encoded as specified in [MS-WMI] section 2.2.4.1. This block is contained
within transmission encoding, as specified in [MS-DCOM] and [MS-WMI] respectively.

 EncodingUnit = Signature ObjectEncodingLength ObjectBlock

The Signature field (as specified in section 2.2.77) acts as a verification signature for the
EncodingUnit that is used to encode the CIM object that follows, according to the algorithm that is
specified in this specification. Any other value MUST constitute an error.

ObjectEncodingLength (section 2.2.4) represents the size of the ObjectBlock (section 2.2.5) that
contains the encoded CIM class or CIM instance.

%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

14 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2 EncodingUnitObjectBlock

EncodingUnitObjectBlock is the root node of the encoding that is used for encoding classes or
instances if the object is encoded as specified in [MS-WMI] section 2.2.14.2 and section 2.2.14.3.

During transmission, this block is contained within the ObjectArray structure, as specified in [MS-WMI]
section 2.2.14.

 EncodingUnitObjectBlock = ObjectBlock

ObjectBlock contains the binary encoding of the CIM object. The length of ObjectBlock MUST match

the length specified in dwSizeOfData of WBEMOBJECT_CLASS (as specified in [MS-WMI] section
2.2.14.2) if EncodingUnitObjectBlock is contained within WBEMOBJECT_CLASS; or the length specified
in dwSizeOfData of WBEMOBJECT_INSTANCE (as specified in [MS-WMI] section 2.2.14.3) if
EncodingUnitObjectBlock is contained within WBEMOBJECT_INSTANCE.

2.2.3 EncodingUnitInstanceNoClass

The EncodingUnitInstanceNoClass is the root node of the encoding that is used for encoding instances
if the CIM instance is encoded as specified in [MS-WMI] section 2.2.14.4. During transmission, this
block is contained within the ObjectArray structure, as specified in [MS-WMI] section 2.2.14.

 EncodingUnitInstanceNoClass = ObjectFlags [Decoration]
 EncodingLength InstanceFlags InstanceClassName NdTable
 InstanceData InstanceQualifierSet InstanceHeap

ObjectFlags (section 2.2.6) indicates whether the Decoration (section 2.2.7) block is present as
specified in section 2.2.6. When used in EncodingUnitInstanceNoClass, the bit flag CIM class (0x01)
MUST NOT be set in ObjectFlags. Other bit flags of ObjectFlags MUST follow the constraints specified
in section 2.2.6.

The Decoration block contains the server and CIM namespace from which the object originates.

The EncodingLength field specifies the length, in octets, of itself and all the following fields.

InstanceFlags (section 2.2.54) is reserved and MUST be zero.

The CIM class name to which the CIM instance belongs is referenced by InstanceClassName.

The values for the properties of an instance are stored in NdTable and InstanceData. The length of
NdTable can be calculated as specified in section 2.2.26. Because default values from CIM class
definitions can be used in a CIM instance, as specified in [DMTF-DSP0004], the NdTable bits are set to
indicate whether NULL or a default value is in use for each property.

Any qualifier for the instance or for the properties of instance is stored in InstanceQualifierSet.

The values for any Heap-referenced items anywhere in the EncodingUnitInstanceNoClass encoding
block MUST be contained in the InstanceHeap.

Note: EncodingUnitInstanceNoClass contains all the fields of InstanceType except CurrentClass. To
minimize the amount of data transmitted, the ClassType is sent the first time using
WBEMOBJECT_INSTANCE, as specified in [MS-WMI] section 2.2.14.3. When instances of the same
class need to be transmitted again, they are sent using WBEMOBJECT_INSTANCE_NOCLASS, as

specified in [MS-WMI] section 2.2.14.4, which does not have CurrentClass. To encode or decode
EncodingUnitInstanceNoClass, the CurrentClass associated with the
WBEMOBJECT_INSTANCE_NOCLASS MUST be found as specified in [MS-WMI] section 2.2.14.4. This
CurrentClass MUST be inserted into the data after Decoration, and all the data starting with the
CurrentClass MUST be encoded or decoded exactly as InstanceType.

%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
https://go.microsoft.com/fwlink/?LinkId=89848

15 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4 ObjectEncodingLength

ObjectEncodingLength is a 32-bit unsigned integer that specifies the length of the
ObjectBlock (section 2.2.5).

 ObjectEncodingLength = UINT32

2.2.5 ObjectBlock

ObjectBlock is where the actual binary encoding of the CIM object begins.

 ObjectBlock = ObjectFlags [Decoration] Encoding

ObjectFlags (section 2.2.6) indicates whether the Decoration (section 2.2.7) block is present and

whether the CIM object is a CIM class definition or a CIM instance. The Encoding (section 2.2.10)

block contains either a CIM class or CIM instance definition, depending on the value of ObjectFlags.

2.2.6 ObjectFlags

The ObjectFlags block is used to classify the currently encoded object.

 ObjectFlags = OCTET

The octet MUST be a combination of one or more of the following values.

Value Meaning

0x01 The object is a CIM class. This flag is mutually exclusive with 0x02. If this flag is set, the
Encoding (section 2.2.10) block contains ClassType.

0x02 The object is a CIM instance. This flag is mutually exclusive with 0x01. If this flag is set, the
Encoding (section 2.2.10) block contains InstanceType.

0x04 If this flag is set, the object has a Decoration block.

0x10 If this flag is set, the object is a prototype of the result object for the query, as specified in [MS-
WMI] (section 2.2.4.1). This flag MUST be used only in combination with the 0x01 flag. This flag MUST
NOT be used when returning IWbemClassObject, which is not represented as a Prototype Result Object.

0x40 If this flag is set, one or more key properties of the class are not present in the Prototype Result Object.
This flag MUST be used only in combination with the 0x01 and 0x10 flags.

ObjectFlags MUST have either the 0x01 or the 0x02 bit set. They are mutually exclusive; both MUST

NOT be set simultaneously.

2.2.7 Decoration

The Decoration block is used to optionally decorate the CIM object with information that indicates the
server and CIM namespace from which the CIM object originates. This block MUST be present if the

ObjectFlags (section 2.2.6) octet has 0x04 bit flag set; otherwise, it MUST be omitted.

%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814

16 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Decoration = DecServerName DecNamespaceName

In the encoded sequence, the strings DecServerName (section 2.2.8) and
DecNamespaceName (section 2.2.9) MUST be placed inline. If either string has no value, an empty
Encoded-String MUST be present. The two Encoded-String values MUST NOT be omitted, even if
empty.

2.2.8 DecServerName

DecServerName is an Encoded-String that represents the server name from which the CIM object
originates. The format of the string is purely documentary and can be in any format, such as a
NetBIOS name, a Domain Name System (DNS) name, an IP address, or any other name that is
expected to be useful in determining the origin of the packet.

 DecServerName = Encoded-String

2.2.9 DecNamespaceName

DecNamespaceName is an Encoded-String that represents the CIM namespace name from which the

CIM object originates.

 DecNamespaceName = Encoded-String

2.2.10 Encoding

Because the encoding carries a CIM class or a CIM instance, the Encoding block is merely a switch
to select the correct block.

 Encoding = InstanceType / ClassType

The InstanceType (section 2.2.53) block encodes the CIM instance, and the ClassType (section 2.2.11)
block encodes the CIM class object.

2.2.11 ClassType

The ClassType block is used to define a CIM class. It consists of two sequential CIM class definitions.
The first block consists of the definition of the superclass to the current CIM class. The second block
is the actual CIM class definition that is being encoded in the current EncodingUnit.

 ClassType = ParentClass CurrentClass

That is, if the CIM class hierarchy is

 class MyBase { }
 class MyDerived : MyBase { }

then the ParentClass block contains the definition of MyBase, and the CurrentClass block contains the
definition of MyDerived.

17 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

A class might not have a superclass, as specified in [DMTF-DSP0004] Appendix A. The ParentClass
block MUST be present even if the class that is coded in CurrentClass has no superclass. In this case,

the ParentClass block MUST be filled with the class name as NULL, zero class names in the derivation
list, zero class qualifiers, zero properties, and zero HeapItems in ClassHeap.

2.2.12 ParentClass

ParentClass is the CIM class that is the immediate parent of the current CIM class, according to the
inheritance mechanism specified in [DMTF-DSP0004].

 ParentClass = ClassAndMethodsPart

ClassAndMethodsPart (section 2.2.14) specifies the properties and method signatures for the class.

2.2.13 CurrentClass

CurrentClass is the encoding of the CIM class that the EncodingUnit represents. The ClassType block
requires the encoding to contain both the encoding of the ParentClass for the class and the CIM class
itself, which is specified by this rule.

 CurrentClass = ClassAndMethodsPart

The InstanceType block MUST also contain a CurrentClass block as part of its own definition because
CurrentClass is reachable through several subrules in this grammar.

2.2.14 ClassAndMethodsPart

The ClassAndMethodsPart block divides the CIM class definition into two sections:

 ClassPart (section 2.2.15) contains the data declarations (properties).

 MethodsPart (section 2.2.38) contains the method table.

The semantic meaning of the properties and methods in a class is specified in [DMTF-DSP0004].

 ClassAndMethodsPart = ClassPart [MethodsPart]

MethodsPart (section 2.2.38) MUST always be present if the ObjectFlags (section 2.2.6) value
indicates that the outermost object being encoded is a ClassType (section 2.2.11) object. MethodsPart
MUST NOT be present if the ObjectFlags indicates that the outermost object being encoded is an
InstanceType (section 2.2.53).

2.2.15 ClassPart

The ClassPart block contains the actual core of a CIM class definition, as specified in [DMTF-
DSP0004]. Each field MUST be located serially after the other.

 ClassPart = ClassHeader DerivationList ClassQualifierSet
 PropertyLookupTable [NdTable ValueTable] ClassHeap

https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848

18 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The ClassHeader (section 2.2.16) contains information about the overall ClassPart block length and
the length of various internal blocks. The DerivationList (section 2.2.17) is an encoded array that

MUST contain the set of CIM class names that form the list of superclasses for the current CIM class.

The ClassQualifierSet (section 2.2.20) is the set of CIM qualifiers for the class.

The PropertyLookupTable (section 2.2.21) is a sorted dispatch table for looking up CIM property
values and type information. The NdTable (section 2.2.26) indicates whether a particular CIM property
has a default value that is locally defined in the current CIM class or whether the default is defined in a
superclass. The ValueTable (section 2.2.29) contains values inline for simple numeric properties, or
references to the values in the ClassHeap (section 2.2.37) for all other specified values in the
HeapItem rule, such as arrays or strings.

NdTable and ValueTable are optional. Their inclusion is controlled by the number of properties in the

PropertyLookupTable. If the PropertyLookupTable contains zero properties, NdTable and ValueTable
MUST be omitted.

2.2.16 ClassHeader

ClassHeader contains various details on the CIM class block.

 ClassHeader = EncodingLength ReservedOctet ClassNameRef NdTableValueTableLength

The EncodingLength (section 2.2.73) field applies to the ClassPart as a whole, not just the
ClassHeader. The ReservedOctet (section 2.2.76) octet is not used and MUST be zero. The
ClassNameRef (section 2.2.19) contains a reference to the string that is the name of the current CIM
class. The NdTableValueTableLength (section 2.2.28) is sum of the lengths, in octets, of the encoded
"ClassPart::NdTable" and "ClassPart::ValueTable" blocks.

2.2.17 DerivationList

DerivationList is an encoded array that indicates the list of superclasses that form the inheritance
chain of the current class. The array contains only the names of the superclasses. The order of classes
is significant. The immediate superclass of the current class is followed first by each successive parent

class and terminates in the top-most class.

 DerivationList = EncodingLength *ClassNameEncoding

EncodingLength (section 2.2.73) includes itself in the total. Therefore, an empty array still contains at
least one UINT32 value of 0x4 hexadecimal, which is the length of the EncodingLength item.

ClassNameEncoding (section 2.2.18) contains the names of the superclasses.

2.2.18 ClassNameEncoding

Each ClassNameEncoding is an Encoded-String that is suffixed by a 32-bit value that indicates the
length, in character count, of the Encoded-String. This length includes the value of the leading octet

flag and NULL terminator—not just the visible character count.

 ClassNameEncoding = Encoded-String EncodingLength

19 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.19 ClassNameRef

ClassNameRef is a reference to the current CIM class name. It is a HeapStringRef (section 2.2.68) in
the ClassHeap (section 2.2.37).

 ClassNameRef = HeapStringRef

2.2.20 ClassQualifierSet

ClassQualifierSet is the CIM qualifier set for the current class.

 ClassQualifierSet = QualifierSet

As applied to classes, the ClassQualifierSet is a set of qualifiers, as specified in [DMTF-DSP0004], that

applies to the CIM class definition as a whole.

 [Qualifier1, Qualifier2, ...QualifierN]
 class Sample
 {

 }

This usage in CIM is distinct from qualifiers that apply to various internal declarations, such as
properties and methods.

2.2.21 PropertyLookupTable

PropertyLookupTable is a simple dispatching table for finding properties. The
PropertyCount (section 2.2.22) indicates how many properties follow in the

PropertyLookup (section 2.2.23) sequence.

 PropertyLookupTable = PropertyCount *PropertyLookup

The PropertyLookup sequence MUST be sorted according to the lexical ordering that is established by
the character set, as specified in [UNICODE]. This sort order is required because implementations
expect to perform binary search operations on the table and these searches require lexical ordering.

2.2.22 PropertyCount

PropertyCount is the total number of properties in the class. If zero, the optional
NdTable (section 2.2.26) and ValueTable (section 2.2.29) blocks (as specified in section 2.2.15) MUST

be absent.

 PropertyCount = UINT32

2.2.23 PropertyLookup

The PropertyLookup structure represents a data block that allows a lookup of a specific named CIM
property in a CIM class. The PropertyNameRef (section 2.2.24) item is a reference to the string
name of the Encoded-String on the ClassHeap that represents the name of the property. The
PropertyInfoRef (section 2.2.25) item is a heap reference to a PropertyInfo item that contains more
information about the CIM property, such as its CIM type and any associated qualifiers.

https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=90550

20 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 PropertyLookup = PropertyNameRef PropertyInfoRef

These items are simple references into the ClassHeap, and each item is only 32 bits in length.

2.2.24 PropertyNameRef

PropertyNameRef MUST be a heap reference to the Encoded-String for the CIM property name.

 PropertyNameRef = HeapStringRef

2.2.25 PropertyInfoRef

PropertyInfoRef MUST be a heap reference to the PropertyInfo (section 2.2.30) item for the property.

 PropertyInfoRef = HeapRef

2.2.26 NdTable

NdTable is an encoded table that represents the behavior of the default value of properties in a CIM
class.

Values in the table are ordered similar to the order shown in the PropertyLookupTable.

Classes can establish default values for properties, as specified in [DMTF-DSP0004]. In some cases,
the default value for a CIM property can be defined in a superclass, for example, by using the MOF

syntax for CIM.

 class Base
 {
 ...
 sint32 ValueX = 123;
 }
 class Derived : Base
 {
 sint32 ValueY = 456;
 }

In this example, both ValueX and ValueY have defaults; however, they are established in different

classes. Because the derived class contains all the information from the base class, the effective class
declaration is similar to the following.

 class Derived : Base
 {
 sint32 ValueX = 123;
 sint32 ValueY = 456;
 }

However, for many operations that process CIM objects outside network protocol operations, it is
important to distinguish if the default value is inherited or if it is locally defined in the current class.
Therefore, this information must be maintained in the encoding.

Only 2 bits are required to indicate this information for each property; therefore, the bit fields are

packed into octets.

https://go.microsoft.com/fwlink/?LinkId=89848

21 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NdTable = *NullAndDefaultFlag

The total number of bits is the number of properties * 2 rounded up to the nearest whole octet count.
Specifically, the number of required octets is specified by the following formula.

 octetCount = (PropertyCount - 1) / 4 + 1 // a formula, not ABNF

When encoding or decoding NdTable under ClassPart, the PropertyCount specified in
PropertyLookupTable in the ClassPart MUST be used for calculating length. When encoding or decoding
NdTable under InstanceType, the PropertyCount specified in
InstanceType.CurrentClass.ClassPart.PropertyLookupTable MUST be used.

Because of rounding, there might be unused bits in the octet. These bits can have any value.

2.2.27 NullAndDefaultFlag

NullAndDefaultFlag denotes how the default property value is set and whether that value is NULL.

 NullAndDefaultFlag = 2BIT

If bit 0 is set, the default value is NULL. If bit 1 is set, the default value is inherited from some parent
CIM class in the inheritance hierarchy. Combinations of bit 0 and bit 1 result in the default property
value behavior in the following table.

BIT 0 state BIT 1 state Implication

SET SET The default property value is NULL, and it is inherited from a parent class.

SET NOT SET The default property value is NULL, and it is set by the current class.

NOT SET SET The default property value is NOT NULL, and it is inherited from a parent class.

NOT SET NOT SET The default property value is NOT NULL, and it is set by the current class.

For a specified property, if the preceding table shows either of the bit values as SET, the value of that
property is predetermined as NULL or is propagated from the parent. In these cases, the value in the

ValueTable for that property is ignored.

2.2.28 NdTableValueTableLength

NdTableValueTableLength is sum of the lengths, in octets, of the NdTable and ValueTable.

 NdTableValueTableLength = UINT32

Unlike EncodingLength rules, NdTableValueTableLength does not include its own length.

2.2.29 ValueTable

The ValueTable encodes the literal values of the properties or references to their values in the heap.
However, for a specific property, the value here is relevant only if the corresponding NDTable bits for
that property are both not set, that is, 0. Otherwise, the value in ValueTable for the property is
ignored.

22 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ValueTable = *EncodedValue

Depending on the type of the CIM property, each EncodedValue (section 2.2.71) has variable length.
The sequence of EncodedValues is packed at the octet level with no alignment or padding.

To find the value for a property, navigate from the PropertyLookupTable (section 2.2.21) to its
PropertyLookup (section 2.2.23), and from there get the PropertyInfoRef (section 2.2.25), which gives
the PropertyInfo (section 2.2.30). From PropertyInfo, get the ValueTableOffset (section 2.2.34). Use
this offset in the ValueTable (section 2.2.29) to discover the value.

If the value is numerical, the value MUST be directly located within this table. If the value is a string

or an array type, the value table MUST contain a reference, HeapRef (section 2.2.69), into the
Heap (section 2.2.66) to find the actual value.

ValueTable length can be calculated by NdTableValueTableLength minus the length of NdTable, as
specified in section 2.2.26.

When encoding or decoding ValueTable under ClassPart, the NdTableValueTableLength specified in
ClassHeader of the ClassPart MUST be used for calculating length. When encoding or decoding
ValueTable under InstanceData of InstanceType, the NdTableValueTableLength specified in

InstanceType.CurrentClass.ClassPart.ClassHeader MUST be used.

2.2.30 PropertyInfo

The PropertyInfo element exists in the heap and is referenced through a PropertyLookup block. It

contains information about a property other than its value, such as its data type declaration order, the
class in which it was defined in an inheritance hierarchy, and offsets to the value table and qualifier
set for the property.

 PropertyInfo = PropertyType DeclarationOrder

 ValueTableOffset ClassOfOrigin PropertyQualifierSet

2.2.31 PropertyType

PropertyType encodes the data type of the property.

 PropertyType = CimType | Inherited
 ; Bitwise OR between CimType and Inherited gives the
 corresponding PropertyType

CimType MUST have the form that is specified in section 2.2.82.

2.2.32 Inherited

Inherited indicates the origin of the property.

 Inherited = %0x4000 / %0x0000

If the current property was originally defined in a parent class, Inherited is 0x4000; however, if the
property was defined in the current class, Inherited is 0x0000.

23 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.33 DeclarationOrder

The DeclarationOrder element shows the actual order of the CIM property as it appears in the order
within the CIM declaration of the MOF for the class, as specified in [DMTF-DSP0004].

 DeclarationOrder = UINT16

2.2.34 ValueTableOffset

ValueTableOffset MUST be the offset in the ValueTable (section 2.2.29) that contains the value for the
property. Depending on the type of the property, the ValueTable entry is interpreted differently. The
type for the CIM property and other information are located in the PropertyType (section 2.2.31)
entry, which is a sibling of this ValueTableOffset in the larger PropertyInfo (section 2.2.30) encoding.

 ValueTableOffset = UINT32

2.2.35 ClassOfOrigin

ClassOfOrigin defines from which CIM class in the DerivationList the CIM property comes, where 0

indicates the first CIM class in the DerivationList, and so on. If the CIM property is local to the current
class, the ClassOfOrigin is equal to the number of items in the DerivationList.

 ClassOfOrigin = UINT32

2.2.36 PropertyQualifierSet

PropertyQualifierSet is a set of qualifiers that apply to the preceding property. There is no count of
qualifiers. Qualifiers in the QualifierSet are decoded and recognized until the

"QualifierSet::EncodingLength" is exhausted.

 PropertyQualifierSet = QualifierSet

2.2.37 ClassHeap

ClassHeap is structured like any other heap except that the items that are contained in it only apply to
the CIM class definition.

 ClassHeap = Heap

Because instances also contain class definitions as part of their encoding, it is important to ensure

that the heap references are not intermixed between the class and instance parts.

All heap references that occur in the ClassPart (section 2.2.15) block MUST be limited to references in
the ClassHeap.

2.2.38 MethodsPart

The MethodsPart block is the second half of the ClassType encoding rule and defines the methods for
the class.

 MethodsPart = EncodingLength MethodCount

https://go.microsoft.com/fwlink/?LinkId=89848

24 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 MethodCountPadding *MethodDescription MethodHeap

A class encoding that has no methods MUST still contain the indicated fields. MethodCount MUST be
zero, and there MUST be a zero-length MethodHeap that is encoded according to their respective
rules.

2.2.39 MethodCount

MethodCount is the number of methods in the class.

 MethodCount = UINT16

2.2.40 MethodCountPadding

MethodCountPadding is a two-octet sequence that is not used and SHOULD<1> be set to zero. The
recipient MUST ignore this field.

 MethodCountPadding = 2OCTET

2.2.41 MethodDescription

MethodDescription specifies one method.

 MethodDescription = MethodName MethodFlags MethodPadding
 MethodOrigin MethodQualifiers InputSignature OutputSignature

2.2.42 MethodName

MethodName MUST be a simple HeapStringRef to the MethodHeap (section 2.2.52) for the method
name.

 MethodName = HeapStringRef

2.2.43 MethodFlags

The MethodFlags block defines the flags for the method.

 MethodFlags = OCTET

The WBEM_FLAVOR_ORIGIN_PROPAGATED flag (0x20) MUST be set if the method is inherited from
the parent class. The method origin is calculated for the current ClassAndMethodsPart (as defined in
2.2.14) that is being encoded and is not related to the ClassType being encoded.

The other bits MUST be set to 0.

2.2.44 MethodPadding

MethodPadding is reserved and SHOULD be zero.

25 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 MethodPadding = 3OCTET

Because the fields are not used, some implementations can place random values in these octets;
therefore, values other than zero MUST be ignored.

2.2.45 MethodOrigin

MethodOrigin is a zero-origin array index to a CIM class name in the DerivationList that shows which

CIM class owns the method.

 MethodOrigin = UINT32

A value of zero refers to the first element in the DerivationList. A value of 1 refers to the second
element in the DerivationList, and so on. If the method is local to the current class, the MethodOrigin

is equal to the number of items in the DerivationList.

2.2.46 MethodQualifiers

MethodQualifiers is a set of qualifiers that are applicable to the method.

 MethodQualifiers = HeapQualifierSetRef

MethodQualifiers MUST be a HeapQualifierSetRef (section 2.2.47) in the MethodHeap (section 2.2.52).
The QualifierSet (section 2.2.59) referred to by the HeapQualifierSetRef is the CIM qualifiers set that
is applicable to the method. For example, in the following CIM class, the execute CIM qualifier and
performance CIM qualifier are method-level qualifiers; however, in and out are parameter-level

qualifiers.

 class MyClass2 : MyClass
 {
 [execute, performance={"fast", "sideffects"}]
 uint32 Restart([in] string ServiceName, [out] int Status);
 }

2.2.47 HeapQualifierSetRef

HeapQualifierSetRef MUST be a HeapRef (section 2.2.69) to a single QualifierSet (section 2.2.59) in

the current heap.

 HeapQualifierSetRef = HeapRef

2.2.48 InputSignature

InputSignature specifies the input signature for the method.

 InputSignature = MethodSignature

26 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.49 OutputSignature

OutputSignature specifies the output signature for the method.

 OutputSignature = MethodSignature

2.2.50 MethodSignature

The InputSignature and OutputSignature fields MUST be a HeapRef to the
MethodSignatureBlock (section 2.2.70) in the MethodHeap (section 2.2.52). This is because the input
and output signatures for a method are encoded as a ClassPart, where each CIM property represents
a parameter in the method.

 MethodSignature = HeapMethodSignatureBlockRef

To encode a MethodSignature as a CIM class object, the encoding rules, as specified in section
2.3.3, MUST be used. These rules do not affect the structure of the encoding; instead, they establish
conventions for content, such as the name of the class and how to indicate in and out parameter flow
by using qualifiers.

2.2.51 HeapMethodSignatureBlockRef

HeapMethodSignatureBlockRef MUST be a HeapRef to the MethodSignatureBlock (section 2.2.70) in
the current Heap (section 2.2.66).

 HeapMethodSignatureBlockRef = HeapRef

2.2.52 MethodHeap

MethodHeap contains information about all the methods, for example, their names, parameters, and
types.

 MethodHeap = Heap

All HeapItem entries in the Heap MUST be referenced by a valid HeapRef in the MethodsPart
encoding block.

2.2.53 InstanceType

The InstanceType block is used to encode a CIM instance of a CIM class.

 InstanceType = CurrentClass EncodingLength InstanceFlags
 InstanceClassName NdTable InstanceData
 InstanceQualifierSet InstanceHeap

As indicated in the encoding rule, a CIM instance is prefixed by the CIM class definition to which it
belongs.

The EncodingLength field specifies the length, in octets, of itself and all the following fields. This field
is equivalent to the length of the InstanceType block, excluding the CurrentClass block.

InstanceFlags is a reserved octet and MUST be zero.

27 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The CIM class name to which the CIM instance belongs is referenced by InstanceClassName.

The actual instance-level data is in NdTable and InstanceData; any instance-level qualifiers are in
InstanceQualifierSet. Because default values from CIM class definitions might be used in a CIM
instance, as specified in [DMTF-DSP0004], the NdTable bits are set to indicate whether NULL or a

default value is in use for each property.

The values for any referenced items anywhere in the InstanceType encoding block MUST be contained
in the InstanceHeap.

2.2.54 InstanceFlags

InstanceFlags is reserved and MUST be zero.

 InstanceFlags = OCTET

2.2.55 InstanceClassName

InstanceClassName is a string reference to a class name in the InstanceHeap.

 InstanceClassName = HeapStringRef

2.2.56 InstanceData

InstanceData values are stored in a ValueTable similar to how classes are stored in a ValueTable. The
only difference is that InstanceData values in a ValueTable MUST contain references to the

InstanceHeap whenever a HeapRef occurs.

 InstanceData = ValueTable

2.2.57 InstanceQualifierSet

InstanceQualifierSet is the CIM qualifier set that SHOULD apply to the entire instance, as opposed to
qualifiers within individual properties.

 InstanceQualifierSet = QualifierSet InstancePropQualifierSet

2.2.58 InstanceHeap

InstanceHeap is the value heap for the current instance.

 InstanceHeap = Heap

2.2.59 QualifierSet

QualifierSet represents a set of qualifiers. Qualifiers are applied to a CIM class; to a CIM instance;
to properties within a CIM class; or to instances, methods, and individual parameters within methods,
as specified in [DMTF-DSP0004].

 QualifierSet = EncodingLength *Qualifier

https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848

28 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The length of the QualifierSet is indicated by the EncodingLength.

This is followed by a series of CIM qualifier values of variable length. Each CIM qualifier value begins
where the previous one ends. There are no delimiters between qualifiers; nor is there any indexing
mechanism to access a specific qualifier.

Because each CIM qualifier block is a known length, the end of the QualifierSet is reached where the
value (EncodingLength – 4) is equal to the length of the set of CIM qualifier blocks that follow it.

2.2.60 Qualifier

Qualifier defines a single qualifier.

 Qualifier = QualifierName QualifierFlavor
 QualifierType QualifierValue

The CIM qualifier consists of the name, flavor, and data type of the qualifier, and the actual value, as
specified in [DMTF-DSP0004] section 4.5.4.

2.2.61 QualifierName

QualifierName is a CIM qualifier name and MUST be a HeapRef to an Encoded-String in the current
heap.

 QualifierName = HeapStringRef

Class qualifiers MUST be located in the ClassHeap; CIM instance qualifiers MUST be located in the
InstanceHeap; and method qualifiers MUST be located in the MethodHeap.

2.2.62 QualifierFlavor

QualifierFlavor indicates the origin and propagation rules for the qualifier.

 QualifierFlavor = OCTET

The following bit encodings MUST apply. Services SHOULD ignore any other bit values.<2>

Qualifier flavor

Corresponding
DMTF Qualifier
name Meaning

Bit
values

WBEM_FLAVOR_FLAG_PROPAGATE_TO_INSTANCE WMI specific
flavor

If set, the qualifier is
propagated to
instances.

If not set, the qualifier
is not propagated to
instances.

0x01

WBEM_FLAVOR_FLAG_PROPAGATE_TO_DERIVED_CLASS ToSubclass The qualifier is
propagated to derived
classes.

0x02

WBEM_FLAVOR_NOT_OVERRIDABLE EnableOverride The qualifier value
cannot be overridden

0x10

https://go.microsoft.com/fwlink/?LinkId=89848

29 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Qualifier flavor

Corresponding
DMTF Qualifier
name Meaning

Bit
values

in a derived class or an
instance.

WBEM_FLAVOR_ORIGIN_PROPAGATED WMI specific
flavor

If the qualifier is
specified for the
property of a class,
this flavor means that
the property was
inherited from the
parent class.

If the qualifier is
specified for the
property of a class's
instance, this flavor
means that the
property is inherited
from the parent class,
but has not been
modified at the
instance level.

0x20

WBEM_FLAVOR_ORIGIN_SYSTEM WMI specific
flavor

This indicates that the
property is a WMI
standard property.

0x40

WBEM_FLAVOR_AMENDED Translatable The qualifier is
localized.

0x80

The meanings and combinations of usage for the standard CIM qualifier flavors are as specified in

[DMTF-DSP0004].

2.2.63 QualifierType

QualifierType is a CIM qualifier and MUST be any valid CimType (section 2.2.82).

 QualifierType = CimType

2.2.64 QualifierValue

QualifierValue is the value of a CIM qualifier and MUST be a valid EncodedValue based on the
QualifierType.

 QualifierValue = EncodedValue

2.2.65 InstancePropQualifierSet

InstancePropQualifierSet is a CIM qualifier set for instances that have properties with instance-level
qualifiers. Because this rarely occurs, there is a flag octet that signals whether there are CIM qualifier
sets for the properties. Typically there are none, and the flag value MUST be set to 1.

 InstancePropQualifierSet = InstPropQualSetFlag *QualifierSet

 InstPropQualSetFlag = %x1 / %x2

https://go.microsoft.com/fwlink/?LinkId=89848

30 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the InstPropQualSetFlag is set to 2, the QualifierSet sequence MUST be populated. There MUST be
one QualifierSet for each CIM property in the class, and the properties are in the same order that

occurs in the PropertyLookupTable.

If the flag value is set to 2, all the CIM qualifier sets for all the properties MUST be present, even if

they are empty. For example, the following CIM instance has a CIM qualifier on the CIM property
Data1 (the test qualifier).

 instance of MyClass
 {
 Array = {1, 2, 3};
 [test] Data1 = "StringField";
 Id = 123;
 };

The binary encoding of this CIM instance contains CIM qualifier sets for each of its properties

regardless whether there are any qualifiers for that property (there is at least an EncodingLength for
that qualifier set).

For examples, see section 3.1.

2.2.66 Heap

A Heap consists of a length and a linear series of HeapItem entries. A Heap is loosely defined and
consists of the HeapItem blocks in any order. However, there are three separate Heaps that MUST be
maintained distinctly: ClassHeap (only applies to CIM class data), InstanceHeap (only applies to CIM
instance data), and MethodHeap (only appears within ClassType blocks and only contains information
relating to the methods for a CIM class). These Heaps MUST be separate, and they only apply within

their respective encoding blocks. That is, ClassHeap only occurs within ClassType, InstanceHeap only
occurs within InstanceType, and MethodHeap only occurs within MethodsPart. This is because
ClassHeap (references) to HeapItem entries are encoded as simple integer offsets from the beginning

of the relevant Heap, so the actual target Heap is implied by the block in which the HeapRef occurs.

 Heap = HeapLength *HeapItem
 HeapLength = UINT32 ; 31 bits with MS bit set

HeapLength is a 32-bit value with the most significant bit always set (using little-endian binary
encoding for the 32-bit value), so that the length is actually only 31 bits.

The items appear in any order and do not need to be packed. Heaps MAY contain unused octets

between HeapItems. As long as any HeapRef type is properly adjusted to point to items within the
Heap, such gaps are acceptable and are permitted to accommodate garbage collection mechanisms in
the encoders and decoders.

Any HeapRef value MUST be the offset (in total octets) of the corresponding HeapItem, and any
HeapItem MUST have exactly one HeapRef in some other data structure that points to it.

HeapItem entries MUST NOT be shared. That is, there MUST NOT exist two HeapRef values that point
to the same HeapItem.

2.2.67 HeapItem

HeapItem is one of the following data block types. Every HeapItem MUST have a corresponding
HeapRef (section 2.2.69).

 HeapItem = PropertyInfo / Encoded-String /

31 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Encoded-Array / QualifierSet / ObjectBlock / MethodSignatureBlock

The HeapRef that points to a specified HeapItem is not inferable from the HeapItem itself. Although all
HeapRefs point to HeapItems, there is no way to navigate from the HeapItem back to the HeapRef
that points to it. HeapRefs can only be located by following the various encoding rules in
EncodingUnit (section 2.2.1).

2.2.68 HeapStringRef

HeapStringRef MUST be a reference to an Encoded-String on the current Heap.

 HeapStringRef = HeapRef

2.2.69 HeapRef

HeapRef is a reference to any HeapItem and is expressed in 31 bits. If the HeapItem (section 2.2.67)
referred to is a string, and the most significant bit of the 32-bit HeapStringRef (section 2.2.68) value
is set, the reference is actually to an implied dictionary-based string entry and does not point to a
literal Encoded-String within the Heap.

 HeapRef = UINT32 / DictionaryReference

If the value of HeapRef is 0xFFFFFFFF, then HeapItem is not present and MUST be considered NULL. If
the most significant bit of the 32-bit value is clear, the reference is an offset to a HeapItem in the
Heap.

2.2.70 MethodSignatureBlock

MethodSignatureBlock is a block used to encode a set of in parameters or out parameters for a
method definition in a CIM class. MethodSignatureBlock is simply an ObjectBlock using the method
encoding format rules, as specified in section 2.3.3. MethodSignatureBlock contains

ObjectEncodingLength followed by ObjectBlock. ObjectEncodingLength describes the size in octets of
ObjectBlock. ObjectBlock encodes the CIM class describing either the input parameters or the output
parameters of a method as described in section 2.3.3.

 MethodSignatureBlock = EncodingLength [ObjectBlock]

2.2.71 EncodedValue

EncodedValue is an encoded value that is used everywhere to represent numerical and string values.

If the value is of type CIM-TYPE-SINT8, CIM-TYPE-UINT8, CIM-TYPE-SINT16, CIM-TYPE-UINT16, CIM-

TYPE-SINT32, CIM-TYPE-UINT32, CIM-TYPE-SINT64, CIM-TYPE-UINT64, CIM-TYPE-REAL32 or CIM-
TYPE-REAL64 as defined in CimType (section 2.2.82), the EncodedValue is inline as defined in
NumericValue (section 2.2.72).

If the value is of type CIM-TYPE-CHAR16, the EncodedValue is a 16-bit value stored as a CIM-TYPE-
SINT16.

If the value is of type CIM-TYPE-BOOLEAN, the encoded value is inline as defined in
BOOL (section 2.2.75).

32 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the value is of type CIM-TYPE-STRING, CIM-TYPE-DATETIME, or CIM-TYPE-REFERENCE, the
EncodedValue is a HeapRef (section 2.2.69) to that Encoded-String. The value of types CIM-TYPE-

DATETIME and CIM-TYPE-REFERENCE are encoded as strings, as specified in 2.3.1 and 2.3.2
respectively.

If the value type is CimArrayType, the EncodedValue is a HeapRef to the Encoded-Array.

If the value type is CIM-TYPE-OBJECT, the EncodedValue is a HeapRef to the object encoded as an
ObjectEncodingLength (section 2.2.4) followed by an ObjectBlock (section 2.2.5).

While encoding a class, if a property defined for the class does not have a default value in the class,
the OCTETs reserved for the property in the ValueTable MUST be filled with NoValue (section 2.2.74).
The number of OCTETs reserved for a property without a default value MUST be equal to the size
required for the property type as defined above.

 EncodedValue = NumericValue / HeapRef / BOOL / NoValue

2.2.72 NumericValue

NumericValue is any numerical value, whether integer or real, that is valid within the CIM type
system.

 NumericValue = BYTE / SINT16 / UINT16 / SINT32 /
 UINT32 / SINT64 / UINT64 / REAL32 / REAL64

For each of these types, the binary encoding rules are specified in the following table.

The CIM model defines standard numerical data types, as specified in [DMTF-DSP0004] section 2.2.

 CIM type as specified in [DMTF-
DSP0004]

 ABNF
representation Binary representation

uint8 OCTET, BYTE An 8-bit unsigned integer.

sint8 OCTET, BYTE An 8-bit signed integer.

uint16 UINT16 A 16-bit unsigned integer.

sint16 SINT16 A 16-bit signed integer.

uint32 UINT32 A 32-bit unsigned integer.

sint32 SINT32 A 32-bit signed integer.

real32 REAL32 A 4-byte floating-point format, as specified in
[IEEE754].

real64 REAL64 An 8-byte floating-point format, as specified in
[IEEE754].

sint64 SINT64 A 64-bit signed integer.

uint64 UINT64 A 64-bit unsigned integer.

 The binary representations MUST be used to encode the specified CIM data types.

 All signed and unsigned integer types that consist of more than one octet MUST be encoded as
little-endian.

https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89903

33 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The CIM Boolean type has its own encoding that is specified in the BOOL (section 2.2.75) encoding
rule.

 Floating point values, as specified in [IEEE754], MUST be encoded as little-endian.

2.2.73 EncodingLength

EncodingLength is a simple 32-bit unsigned value that establishes the encoding length in octets of
one of the other defined units in this specification. This value MUST include its own length as part of
any length it is describing. Because of this, the minimum encoding length is 0x4, which is the size of

the EncodingLength UINT32.

 EncodingLength = UINT32

2.2.74 NoValue

NoValue is used when a default value does not occur in a CIM class definition for a specific CIM
property, and a slot in the ValueTable must be filled for that property. In this, all the OCTETs
reserved for the property MUST be set to %xFF, and the value is ignored.

2.2.75 BOOL

BOOL is used to represent logical TRUE or logical FALSE and consists of a 16-bit value.

 BOOL = 2OCTET

The encoding for logical FALSE is all bits set to zero (0x0), and the encoding for logical TRUE is all
bits set to 1 or 0xFFFF.

2.2.76 ReservedOctet

ReservedOctet is a reserved OCTET that MUST be set to 0 and is used in several places in the

encoding.

 ReservedOctet = OCTET

2.2.77 Signature

Signature is the leading signature on the entire EncodingUnit block and MUST consist of a literal 32-bit
value.

 Signature = UINT32 ;0x12345678 little-endian

This is used to verify that the CIM object that is being processed conforms to this specification.

2.2.78 Encoded-String

Encoded-String is a special data type that is the only means of representing strings.

 Encoded-String = Encoded-String-Flag *Character Null
 Encoded-String-Flag = OCTET

34 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Character = AnsiCharacter / UnicodeCharacter
 Null = Character
 AnsiCharacter = OCTET
 UnicodeCharacter = 2OCTET

The Encoded-String string data type is encoded using an encoding flag that consists of one octet
followed by a sequence of character items using one of two formats followed by a null terminator.

The Encoded-String-Flag is set to 0x01 if the sequence of characters that follows consists of UTF-16

characters (as specified in [UNICODE]) followed by a UTF-16 null terminator.

For optimization reasons, the implementation MUST compress the UTF-16 encoding. If all the
characters in the string have values (as specified in [UNICODE]) that are from 0 to 255, the string
MUST be compressed. The compression is done by representing each character as a single OCTET with
its Unicode value. That is, for each Unicode character, only the lower-order byte is included in the
output. A terminating null character MUST be represented by a single OCTET. When the string is
compressed, Encoded-String-Flag is set to 0x00. This is distinct from UTF-8, which might contain

multiple-byte encodings for single characters.

When the string contains characters (as specified in [UNICODE]) outside this range, this optimization
MUST NOT be used. For example, the character K (which is UTF+004B) follows.

0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

The upper 8 bits are all zero bits. If all the characters for a string have this quality, the string MUST be
reduced to its 8-bit equivalent on a character-by-character basis.

This compression technique applies to characters in U+0000 through U+00FF and MUST be
accompanied by the appropriate Encoded-String-Flag value at the beginning of the encoding.

For any specified CIM object encoding as a whole, the individual strings might or might not use the
optimization, depending precisely on which characters are present in the string.

2.2.79 Encoded-Array

Encoded-Array is used to encode an array in the Heap.

 Encoded-Array = ArrayCount *EncodedValue
 ArrayCount = UINT32

Encoded-Array consists of a UINT32 value that specifies how many EncodedValue entries follow. Every
element of an array MUST be of the same CimBaseType.

ArrayCount MUST be present, but there can be zero EncodedValue entries if ArrayCount is zero.

2.2.80 DictionaryReference

DictionaryReference is used to encode extremely common strings to prevent them from taking up
space in the Heap. Whenever a reference to an Encoded-String occurs, if the string matches any of
the values listed, the most significant bit MUST be set, and the rest of the offset is replaced by the
ordinal position of the string in the following dictionary.

 DictionaryReference = %d0 / %d1 / %d2 / %d3 /
 %d4 / %d5 / %d6 / %d7 / %d8 / %d9 / %d10

https://go.microsoft.com/fwlink/?LinkId=90550

35 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ; %d0 Encoded/Decoded as quote character
 ; %d1 Encoded/Decoded as "key"
 ; %d2 Encoded/Decoded as ""
 ; %d3 Encoded/Decoded as "read"
 ; %d4 Encoded/Decoded as "write"
 ; %d5 Encoded/Decoded as "volatile"
 ; %d6 Encoded/Decoded as "provider"
 ; %d7 Encoded/Decoded as "dynamic"
 ; %d8 Encoded/Decoded as "cimwin32"
 ; %d9 Encoded/Decoded as "DWORD"
 ; %d10 Encoded/Decoded as "CIMTYPE"

For example, if the string dynamic is required, a 32-bit binary value of 0x80000007 is used instead of
a normal HeapRef.

This technique only applies if the type of the item being pointed to is a string.

2.2.81 BIT

BIT is a simple bit field that consists of 1 bit, either set or clear.

 BIT = %x0 / %x1 ; one bit, either clear or set

It is only used by the NdTable rule.

2.2.82 CimType

CimType is a 32-bit value of which only the lower 16 bits are used. It indicates the type of the value
according to the CIM type system.

For any CimType given below, the corresponding values are encoded as specified in

EncodedValue (section 2.2.71).

 CimType = CimBaseType / CimArrayType

 CimBaseType = CIM-TYPE-SINT8 / CIM-TYPE-UINT8 /
 CIM-TYPE-SINT16 / CIM-TYPE-UINT16 /
 CIM-TYPE-SINT32 / CIM-TYPE-UINT32 /
 CIM-TYPE-SINT64 / CIM-TYPE-UINT64 / CIM-TYPE-REAL32 /
 CIM-TYPE-REAL64 / CIM-TYPE-BOOLEAN /
 CIM-TYPE-STRING / CIM-TYPE-DATETIME /
 CIM-TYPE-REFERENCE / CIM-TYPE-CHAR16 /
 CIM-TYPE-OBJECT

 CimArrayType = CIM-ARRAY-SINT8 / CIM-ARRAY-UINT8 /
 CIM-ARRAY-SINT16 / CIM-ARRAY-UINT16 /
 CIM-ARRAY-SINT32 / CIM-ARRAY-UINT32 /
 CIM-ARRAY-SINT64 / CIM-ARRAY-UINT64 /
 CIM-ARRAY-REAL32 / CIM-ARRAY-REAL64 /
 CIM-ARRAY-BOOLEAN / CIM-ARRAY-STRING /
 CIM-ARRAY-DATETIME / CIM-ARRAY-REFERENCE /
 CIM-ARRAY-CHAR16 / CIM-ARRAY-OBJECT

 CimArrayFlag = %x20 %x00 ; 0x2000 bit flag

The CimType is a 16-bit encoding unit that always contains a CimBaseType and an optional
CimArrayFlag. If the type is actually an array type, the CimBaseType MUST be combined by using the

36 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

bitwise OR operation with the CimArrayFlag value (0x2000) that results in the most significant octet
containing 0x20 and the lower octet containing the value of the CimBaseType.

For example, to encode an array of CIM-TYPE-STRING, the CimType binary encoding would be
0x2008, in which the upper octet indicates that an array is being encoded, and the lower octet

indicates that the array is of type CIM-TYPE-STRING.

The values for the individual types are constants specified in the following table. These values are
mutually exclusive to each other.

 CIM-TYPE-SINT8 = %d16
 CIM-TYPE-UINT8 = %d17
 CIM-TYPE-SINT16 =%d2
 CIM-TYPE-UINT16 =%d18
 CIM-TYPE-SINT32 = %d3
 CIM-TYPE-UINT32 = %d19
 CIM-TYPE-SINT64 = %d20
 CIM-TYPE-UINT64 = %d21
 CIM-TYPE-REAL32 = %d4
 CIM-TYPE-REAL64 = %d5
 CIM-TYPE-BOOLEAN = %d11
 CIM-TYPE-STRING = %d8
 CIM-TYPE-DATETIME = %d101
 CIM-TYPE-REFERENCE = %d102
 CIM-TYPE-CHAR16 = %d103
 CIM-TYPE-OBJECT = %d13

Each base type can be combined with the array bit (0x2000), which results in an array of that base
type. CimArrayType values are as follows.

 CIM-ARRAY-SINT8 = %d8208
 CIM-ARRAY-UINT8 = %d8209
 CIM-ARRAY-SINT16 =%d8194
 CIM-ARRAY-UINT16 =%d8210
 CIM-ARRAY-SINT32 = %d8195
 CIM-ARRAY-UINT32 = %d8201
 CIM-ARRAY-SINT64 = %d8202
 CIM-ARRAY-UINT64 = %d8203
 CIM-ARRAY-REAL32 = %d8196
 CIM-ARRAY-REAL64 = %d8197
 CIM-ARRAY-BOOLEAN = %d8203
 CIM-ARRAY-STRING = %d8200
 CIM-ARRAY-DATETIME = %d8293
 CIM-ARRAY-REFERENCE = %d8294
 CIM-ARRAY-CHAR16 = %d8295
 CIM-ARRAY-OBJECT = %d8205

CimArrayType can be defined in yet another way, as the following example shows.

 CimArrayType = CimBaseType | CimArrayFlag
 ; Bitwise OR between a CimBaseType and CimArrayFlag gives
 corresponding CimArrayType

37 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.3 Special Data Type Encodings

The various CIM data types have special binary encodings that are implied by the ABNF rules that are
specified in sections 2.2.72 and 2.2.79. However, three special cases require further techniques: the

CIM DateTime type, CIM reference types, and the encoding of method signatures for CIM methods.
These encodings affect only the format of the values and do not introduce new binary-level encoding
rules.

2.3.1 CIM DateTime Type

The CIM DateTime type is a string that has the specific format that is specified in [DMTF-DSP0004]
section 2.2.1.

Because DateTime types are strings, a provision is included in the encoding to ensure that they can
be distinguished semantically.

Any datetime value type:

 MUST be encoded as an Encoded-String, as specified in ABNF.

 MUST contain a CIM qualifier whose name is CIMTYPE, whose type is string, and whose value is
datetime.

If the CIM qualifier is omitted, the system MUST treat the DateTime type as a standard string.

2.3.2 CIM Reference Types

A CIM reference type is a string that contains the CIM object path to another CIM object, as specified
in [DMTF-DSP0004] section 5.3.2. The CIM reference type is essentially a pointer type that allows
CIM objects to reference one another.

Because references are encoded as strings, a provision is included in the encoding to ensure that
they can be distinguished semantically.

Any reference type:

 MUST be encoded as an Encoded-String, as specified in ABNF, and MUST conform to the CIM

object reference syntax, as specified in [DMTF-DSP0004] section 5.3.2.

 MUST contain a CIM qualifier whose name is CIMTYPE, whose type is string, and whose value is
"ref:<cimClass>" where "<cimClass>" MUST be the name of the CIM class that is being
referenced. If the reference is untyped, "<cimClass>" MUST be set to the string value of
"ref:object".

The CIMTYPE CIM qualifier MUST be specified.

2.3.3 CIM Methods

The method signature (that is, the return type) input parameters and output parameters are encoded
by using embedded CIM object encodings. Methods are as specified in [DMTF-DSP0004] section 4.9
and are specified syntactically in the methodDeclaration rule, as specified in [DMTF-DSP0004]

Appendix A.

The method signature consists of two embedded CIM objects of a CIM class called __PARAMETERS.
Within the embedded objects, the parameters appear as properties. The parameter name as it
appears in the method is the CIM property name, and the type of the parameter is the CIM property
type.

This is illustrated in the following example.

https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848
https://go.microsoft.com/fwlink/?LinkId=89848

38 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 class MyClass2 : MyClass
 {
 [execute, performance={"fast", "sideffects"}]
 uint32 Restart([in] string ServiceName, [out] int32 Status);
 }

In the preceding CIM class example, there is a method called Restart. The parameters are encoded in
the same way as other CIM class definitions. Each method definition contains two CIM class
definitions: one for the input parameters and one for the output parameters. These classes always
have the same name, __PARAMETERS, but reflect the parameters of the current method that is being
encoded; so there is no immutable definition for the class. In this example, the two CIM class
definitions appear as follows.

 [abstract]
 class __PARAMETERS
 {
 [in, ID(0)] string ServiceName;
 }
 [abstract]

 class __PARAMETERS
 {
 [out, ID(1)] sint32 Status
 uint32 ReturnValue;
 }

Remarks

 Both CIM class definitions MUST be marked with an abstract qualifier. The first CIM class definition
is used to package any in parameters to the method, and the second is used to package any out
parameters.

 There is one definition to contain all input parameters (regardless of where they appear in the

method signature) and one definition that encodes all output parameters and the return value.

 The order of declaration in these classes is the order in which the parameters appear. Because the
parameters appear in an explicit order in the Managed Object Format (MOF) signature but are
split between two separate CIM class definitions in the encoding, an ID attribute is added for
each parameter. The ID attribute represents the ordinal position of that parameter in the original
signature.

 The return value, which has no name in the CIM method declaration, does have an explicit name

in the output CIM class definition and is always ReturnValue. Because of this reserved name, a
method cannot explicitly contain ReturnValue as a named parameter.

 The __PARAMETERS CIM class is not a true CIM class because the format changes for each
method and the format is not separately usable as a real CIM class definition. It is just a valid

method to reuse the encoding mechanism for classes. Because classes require names,
__PARAMETERS is nothing more than that name.

Therefore, a method encoding contains two apparent CIM class definitions (in the InputSignature and

OutputSignature rules in ABNF) that encode the parameters for the method.

Any qualifiers on the individual parameters become qualifiers on the properties of those names within
the __PARAMETERS CIM class definition.

39 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.3.4 Heap Encoding

HeapItems in the Heap typically occur in any order as long as the Heap references to them (that is,
any rules that reduce to HeapRef) are correct. For example, PropertyInfo blocks occur in an order that

is different from the lexical order of the properties, and Encoded-String occurs at any location. When
updates are being implemented, this implementation of the Heap is intended to allow for best-fit
algorithms.

 Strings that fit into the original Encoded-String, even if they are shorter than the original strings,
SHOULD be written into the old location. However, it is not an error if each new string update is
written into a new location in the Heap.

Because the Heap is loosely organized, garbage space is inevitably created and the Heap becomes

fragmented. There are sequences of octets within the Heap that have no corresponding references to
them by any HeapRef, and there might be large sequences of NULL octets near the end of the Heap.
This situation is permitted to enable garbage collection algorithms and easy reuse of large blocks
without having to perform heap compaction and HeapRef updates for all heap items after each
operation. Encoders with such garbage collectors MAY transmit encoded objects without previously

performing garbage collection. Decoder implementations MUST be prepared to deal with the presence

of Heaps that have not been garbage collected.

The Heap process is important in decoding because code that processes the Heap and HeapItems
MUST NOT fault if it encounters blocks that have no reference to them or encounters garbage octets at
the end of the Heap.

The client MUST NOT alter a CIM class definition, including its Heap, after instances for it have been
created and are in use. A client MAY only alter a ClassHeap or a MethodHeap when creating or
updating a CIM class definition for which no instances currently exist. This is because copied images of

the ClassPart are made for CIM instances as part of their encoding. CIM objects that have this
image altered MUST be rejected by the server.

40 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Structure Examples

This section illustrates a simple example of the binary encoding for a simple CIM class definition and
its instances. The MOF textual representation is used, as specified in [DMTF-DSP0004].

 Class base

 {
 [key]
 sint32 Id;

 };
 [Description("MyClass Example")]
 class MyClass : Base
 {
 [read, write]
 string Data1;

 string Data2 = "defaultValue";

 uint32 Array[];
 };

This example has a simple CIM class hierarchy of two classes: a base CIM class and a derived CIM
class called MyClass. The values in square brackets are metadata items called qualifiers. The individual
fields are called properties and are identical to member variables, properties, or fields of object-

oriented programming languages such as C++, C#, and Java.

The binary encoding is presented for both classes: first base, and then MyClass. Because each CIM
class contains the encoding of itself and its base class, this encoding illustrates all the concepts that
are involved in encoding classes.

The raw hexadecimal encoding of base is as follows.

 1) 78 56 34 12 D0 00 00 00
 2) 05 00 44 50 52 41 56 41 54 2D 44 45
 3) 56 00 00 52 4F 4F 54 00 1D 00 00 00 00 FF FF FF
 4) FF 00 00 00 00 04 00 00 00 04 00 00 00 00 00 00
 5) 00 00 00 00 80
 6) 0C 00 00 00 00 00 00 00 00 00 00 80
 7) 66 00 00 00 00 00 00 00 00 05 00 00 00 04 00
 8) 00 00 04 00 00 00 01 00 00 00 06 00 00 00 0A 00
 9) 00 00 05 FF FF FF FF 3C 00 00 80 00 42 61 73 65
 10) 00 00 49 64 00 03 00 00 00 00 00 00 00 00 00 00
 11) 00 00 00 1C 00 00 00 0A 00 00 80 03 08 00 00 00
 12) 34 00 00 00 01 00 00 80 13 0B 00 00 00 FF FF 00
 13) 73 69 6E 74 33 32 00 0C 00 00 00 00 00 34 00 00
 14) 00 00 80 00 80 13 0B 00 00 00 FF FF 00 73 69 6E
 15) 74 33 32 00

For the ObjectEncodingLength, see the note in section 2.2.1. The preceding sample
ObjectEncodingLength value is 0xD0, which is larger than the actual required number of octets.

The following table decodes base using ABNF.

https://go.microsoft.com/fwlink/?LinkId=89848

41 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

 EncodingUnit.

 78 56 34
12

Standard CIM object Signature (line 1).

 D0 00 00
00

EncodingUnit::ObjectEncodingLength UINT32 length of entire CIM class encoding
(0xD0, 208 decimal octets).

 ObjectBlock.

 05 Decoration (line 2, shaded octet).

Binary = 00000101.

Bit 0 set. This is a CIM class definition (not a CIM instance).

Bit 2 set. This CIM object is decorated with a server and CIM namespace name.

 00 44 50
52 41 56
41

54 2D 44
45 56 00

The DecServerName (Encoded-String) on lines 2–3 that is the server name decoration
that indicates from which machine on the network this CIM object originated.

The first octet indicates that this string is encoded in ANSI 8-bit characters, not 16-bit
UNICODE, and the value is DPRAVAT-DEV followed by an 8-bit NULL terminator, the
last octet.

 00 52 4F
4F 54 00

The DecNamespaceName (Encoded-String) that indicates from which CIM namespace
the CIM object originates.

The first octet indicates that this string is encoded in ANSI 8-bit characters, not 16-bit
UNICODE, and the value is ROOT, followed by an 8-bit NULL terminator, the last octet.

 Encoding.

 1D 00 00
00

ParentClass::ClassAndMethodsPart::ClassPart::ClassHeader::EncodingLength.

This is the length, in octets, of the encoding unit, or 0x1D octets.

 00 ReservedOctet (shaded octet line 3). This is required to be zero.

 FF FF FF FF ClassNameRef.

This value indicates that there is no parent CIM class name because base is the basest
class.

 00 00 00
00

NdTableValueTableLength (italics line 4).

This is zero, indicating that there is no NdTable or ValueTable for the parent class
because there is no parent CIM class to base.

 04 00 00
00

DerivationList.

This indicates the length of the list of superclasses to this class. Because the list
consists only of the EncodingLength UINT32, it is four octets.

The ClassNameEncoding list is empty.

 04 00 00
00

ClassQualifierSet::QualifierSet::EncodingLength.

There is no CIM qualifier set for the base CIM class of base because it has no base;
so this CIM qualifier set is empty and consists of the length only of the
EncodingLength UINT32, which is four octets.

 00 00 00
00

PropertyLookupTable::PropertyCount (shaded octets, end of line four, beginning of line
five).

There are zero properties in the base CIM class, which does not exist because base is
the basest class.

 NdTable and ValueTable are empty and contain no octets because there are no

42 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

properties.

 00 00 00
80

ClassHeap::Heap::HeapLength.

Heaps are always prefixed by their length in 31 bits with the most significant bit set.
This indicates a zero-length Heap.

 0C 00 00
00

MethodsPart::EncodingLength.

There are 12 octets in the encoding of the method table.

 00 00 MethodsPart::MethodCount.

A 16-bit value that indicates how many methods are in the class, or zero.

 00 00 MethodsPart::MethodCountPadding.

This is padding and can be zero or any random value.

 00 00 00
80

MethodsPart::MethodHeap.

The heap length of the method heap, or zero. The most significant bit is always set on
HeapLength values, and only 31 bits are significant.

This is located on the shaded portion of line 6.

 At this point, the nonexistent ParentClass ends, and CurrentClass begins, which is
where base is specified.

 66 00 00
00

ClassHeader::EncodingLength, indicating that this encoding for base is 0x66 octets in
length (102 decimal).

Beginning of line 7.

 00 ReservedOctet.

 00 00 00
00

ClassHeader::ClassNameRef.

The offset into the heap of the CIM class name base. The CIM class name is the first
item in the heap, or an Encoded-String with the value of base.

 05 00 00

00

ClassHeader::NdTableValueTableLength.

The NdTable and ValueTable is five octets in length.

 04 00 00
00

DerivationList::EncodingLength.

There is no list of superclasses because base is the basest class. The encoding length
is only four octets, which is the length of the EncodingLength.

 04 00 00
00

ClassQualifierSet::QualifierSet::EncodingLength.

There are no class-level qualifiers on this class; so the encoding length for the set of
qualifiers is just the length of the EncodingLength field, or four octets.

 01 00 00
00

PropertyLookupTable::PropertyCount.

There is one CIM property in this CIM class (italic line 8).

 PropertyLookupTable::PropertyLookup.

 06 00 00
00

PropertyNameRef.

The location in the heap of the Encoded-String of the CIM property name, or offset 6
into the heap.

 0A 00 00
00

PropertyInfoRef.

The location in the heap of the PropertyInfo.

 05 NdTable.

43 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

This has the binary value 00000101.

Because there is only one property, only the two least significant bits are valid, and
the other bits can be any value.

In this case, the bit value 01 indicates that the property has a default value of NULL;
however, the default is not inherited from a superclass.

 FF FF FF FF EncodedValue::NoValue. No value is defined for the CIM property by default in the
CIM class definition.

 3C 00 00
80

ClassHeap::Heap::HeapLength.

Heap
Offset

0

00 42 61
73 65 00

Encoded-String base.

The first octet indicates ANSI encoding, and the last octet is the null terminator.

Heap
Offset

6

00 49 64
00

Encoded-String ID, the name of the property.

 03 00 00
00

PropertyInfo::PropertyType.

CIM-TYPE-SINT32 == 3.

 00 00 PropertyInfo::DeclarationOrder.

 00 00 00
00

PropertyInfo::ValueTableOffset.

The offset in the ValueTable of the default value, or zero.

 00 00 00
00

PropertyInfo::ClassOfOrigin.

A value of zero indicates the current class.

 1C 00 00
00

PropertyQualifierSet::QualifierSet::EncodingLength.

There are 1C octets of encoding for the QualifierSet for this property.

 0A 00 00
80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant
bit is set (0x80).

The dictionary reference is cimtype.

 03 Qualifier::QualifierFlavor.

Bits 00000011.

Bit 0 indicates that the CIM qualifier is a SYSTEM CIM qualifier (key).

Bit 1 indicates that the CIM qualifier is recommended to be propagated to derived
classes.

 08 00 00
00

Qualifier::QualifierType.

This indicates CIM-TYPE-STRING, which is the data type of the CIM qualifier.

 34 00 00
00

Qualifier::QualifierValue.

This is an EncodedValue, depending on the type in the previous field. Because the CIM
qualifier type is CIM-TYPE-STRING, this value is the HeapRef to an Encoded-String.

 Another CIM qualifier follows for the CIM property because all the octets in
PropertyQualifierSet::QualifierSet::EncodingLength have not yet been completely
used.

44 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

 01 00 00
80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant
bit is set (0x80).

The dictionary reference is key.

 13 QualifierFlavor.

 0B 00 00
00

QualifierType.

CIM-TYPE-BOOLEAN.

 FF FF EncodedValue for the CIM qualifier that is BOOL.

The value in this case is logical TRUE (all bits set).

Offset
0x34

00 73 69
6E 74 33
32

00

An Encoded-String with a value of sint32. This is the value of the first CIM qualifier in
this table.

 At this point, the Heap for the CIM class has encoded because all of its
EncodingLength has been used.

The MethodsPart for the CIM class now begins.

 0C 00 00
00

MethodsPart::EncodingLength, or 12 octets.

 00 00 MethodsPart::MethodCount, or zero methods.

 34 00 MethodsPart::MethodCountPadding.

Any two octets with random values.

 00 00 00
80

MethodsPart::MethodHeap::Heap::HeapLength.

This is a zero-length heap, indicating no methods. The most significant bit is always
set for HeapLength values.

 Remaining
Octets

The remaining octets are not significant. Also see EncodingUnit (section 2.2.1).

The raw hexadecimal encoding of MyClass is as follows.

 78 56 34 12 2E 02 00 00 05 00 44 50
 52 41 56 41 54 2D 44 45 56 00 00 52 4F 4F 54 00
 66 00 00 00 00 00 00 00 00 05 00 00 00 04 00 00
 00 04 00 00 00 01 00 00 00 06 00 00 00 0A 00 00
 00 05 FF FF FF FF 3C 00 00 80 00 42 61 73 65 00
 00 49 64 00 03 00 00 00 00 00 00 00 00 00 00 00
 00 00 1C 00 00 00 0A 00 00 80 03 08 00 00 00 34
 00 00 00 01 00 00 80 13 0B 00 00 00 FF FF 00 73
 69 6E 74 33 32 00 0C 00 00 00 00 00 34 00 00 00
 00 80 76 01 00 00 00 00 00 00 00 11 00 00 00 0E
 00 00 00 00 42 61 73 65 00 06 00 00 00 11 00 00
 00 09 00 00 00 00 08 00 00 00 16 00 00 00 04 00
 00 00 27 00 00 00 2E 00 00 00 55 00 00 00 5C 00
 00 00 99 00 00 00 A0 00 00 00 C7 00 00 00 CB 00
 00 00 47 FF FF FF FF FF FF FF FF FD 00 00 00 FF
 FF FF FF 11 01 00 80 00 4D 79 43 6C 61 73 73 00
 00 44 65 73 63 72 69 70 74 69 6F 6E 00 00 4D 79
 43 6C 61 73 73 20 45 78 61 6D 70 6C 65 00 00 41
 72 72 61 79 00 13 20 00 00 03 00 0C 00 00 00 01

45 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 00 00 00 11 00 00 00 0A 00 00 80 03 08 00 00 00
 4D 00 00 00 00 75 69 6E 74 33 32 00 00 44 61 74
 61 31 00 08 00 00 00 01 00 04 00 00 00 01 00 00
 00 27 00 00 00 0A 00 00 80 03 08 00 00 00 91 00
 00 00 03 00 00 80 00 0B 00 00 00 FF FF 04 00 00
 80 00 0B 00 00 00 FF FF 00 73 74 72 69 6E 67 00
 00 44 61 74 61 32 00 08 00 00 00 02 00 08 00 00
 00 01 00 00 00 11 00 00 00 0A 00 00 80 03 08 00
 00 00 BF 00 00 00 00 73 74 72 69 6E 67 00 00 49
 64 00 03 40 00 00 00 00 00 00 00 00 00 00 00 00
 1C 00 00 00 0A 00 00 80 23 08 00 00 00 F5 00 00
 00 01 00 00 80 33 0B 00 00 00 FF FF 00 73 69 6E
 74 33 32 00 00 64 65 66 61 75 6C 74 56 61 6C 75
 65 00 00 00 00 00 00 00 0C 00 00 00 00 00 00 73
 00 00 00 80 32 00 00 64 65 66 61 75 6C 74 56 61
 6C 75 65 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 80 00 00 00 00

In the following table, this encoding is decoded by using ABNF. Note that the ParentClass part of this

encoding is the same as the CurrentClass part of the base CIM class encoding.

Relevant
offset

 Octet
values Comments

 EncodingUnit.

 78 56
34 12

Signature.

 23 02
00 00

EncodingUnit::ObjectEncodingLength UINT32 length of entire CIM class encoding (0x223
octets).

 ObjectBlock.

 05 Decoration.

Bit 0 set == this is a CIM class definition.

Bit 2 set == this CIM object is decorated with a server and CIM namespace name.

 Decoration.

 00 44
50 52
41 56
41

54 2D
44 56
00

DecServerName. This is an Encoded-String that contains the name of the server that
transmitted the CIM object DPRAVAT-DEV.

 00 52
4F 4F
54 00

DecNamespaceName. This is an Encoded-String that contains the CIM namespace. The
CIM object was created from ROOT.

 Encoding for the derived CIM class. Base is appended at this location.

This is the ClassType::ParentClass block.

 66 00
00 00

ParentClass::ClassAndMethodsPart::ClassPart::ClassHeader::EncodingLength.

UINT32 length of ClassPart for the base class, 0x66 octets.

A separate binary chunk for MyClass follows, appended to this CIM class definition.

 00 ReservedOctet.

46 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

 00 00
00 00

ClassNameRef. Offset to CIM class name in the ClassHeap.

 05 00
00 00

 NdTableValueTableLength. Length of NdTable and ValueTable for properties (five octets).

 04 00
00 00

DerivationList length, including the length of this UINT32.

Because this is four octets and all four are used completely with this value, there is no
derivation list.

 04 00
00 00

ClassQualifierSet::QualifierSet::EncodingLength, including the length of this UINT32.

 Because all four octets are used completely with this value, there is no QualifierSet.

 01 00
00 00

PropertyLookupTable::PropertyCount.

 This is the CIM property count, not the length, in octets.

 06 00
00 00

PropertyLookup::PropertyNameRef.

 The name of the CIM property [0] in the form of an Encoded-String.

The 0x0006 offset is from the beginning of the ClassHeap, not from the beginning of this
packet.

 0A 00
00 00

PropertyLookup::PropertyInfoRef.

The offset for PropertyInfo for Property[0], including any qualifiers. This is the offset from
the beginning of the ClassHeap, not the beginning of this packet.

 NdTable.

 05 This has the binary value 00000101.

Because there is only one property, only the two least significant bits are valid, and the
other bits can be any value.

In this case, the bit value 01 indicates that the property has a default value of NULL, but
the default is not inherited from a superclass.

 ValueTable.

 FF FF FF
FF

ValueTable::EncodedValue.

There is only one CIM property, and this reserved value indicates that there is no default
value.

 3C 00
00 80

ClassHeap::Heap::HeapLength.

The length of heap is 0x3C octets. The most significant bit is set to 1 for all encodings.

0x0 00 42
61 73
65 00

Encoded-String base, which is the name of the class.

0x6 00 49
64 00

Encoded-String Property[0] name, which is Id.

0x10 03 00
00 00

PropertyInfo::PropertyType.

CIM-TYPE-SINT32 == 3.

0x14 00 00 PropertyInfo::DeclarationOrder. This is the 0th property.

0x16 00 00
00 00

PropertyInfo::ValueTableOffset.

47 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

0x1A 00 00
00 00

PropertyInfo::ClassOfOrigin.

CIM class of origin in DerivationList, or the 0th CIM class (this class).

 1C 00
00 00

PropertyQualifierSet::QualifierSet::EncodingLength (0x1C octets in length, including
itself).

 0A 00
00 80

Qualifier::QualifierName.

CimType dictionary entry encoding, signaled by the most significant bit and the 0xA
dictionary entry. This indicates that the current CIM qualifier is the CIMTYPE qualifier,
which is required to be attached to every property.

 03 QualifierSet::Qualifier::QualifierFlavor.

Here the octet is 03. This means that the bit 0 and bit 1 in the octet are set.

Bit 0 set == Propagate to instances.

Bit 1 set == Propagate to derived classes.

 08 00
00 00

Qualifier::QualifierType.

CimType of CIM qualifier value 0x8 == CIM-TYPE-STRING.

 34 00
00 00

Qualifier::QualifierValue.

A HeapRef to the string of the CIM qualifier value sint32.

 01 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

The dictionary reference is key.

 13 QualifierFlavor.

 0B 00
00 00

QualifierType.

CIM-TYPE-BOOLEAN.

 FF FF An EncodedValue for the CIM qualifier, which is BOOL.

The value in this case is logical TRUE (all bits set).

0x34 00 73
69 6E
74 33
32

00

Encoded-String sint32.

 0C 00
00 00

The length of MethodsPart, including itself.

 00 00 MethodCount (zero methods).

 34 00 Two octets of MethodPadding; any values are valid.

 00 00
00 80

MethodHeap::Heap::HeapLength.

This is the length of Heap. Zero, with the most significant bit set, as for all heaps.

 Encoding for the derived CIM class MyClass is appended at this location.

This is the ClassType::CurrentClass block.

 76 01
00 00

ClassHeader::EncodingLength.

Length (0x176 octets).

48 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

 00 Reserved. Must be zero.

 00 00
00 00

The ClassNameRef to CIM class name. This is relative to the upcoming heap for this
class, not the previous heap for base.

 11 00
00 00

NdTableValueTableLength.

 0E 00
00 00

The DerivationList length, in octets, including itself.

 00 42
61 73
65 00

The Encoded-String base, which is the superclass to this class.

 06 00
00 00

The EncodingLength of the previous string, or six octets (includes both the leading flag
and trailing NULL).

 11 00
00 00

The ClassQualifierSet::QualifierSet::EncodingLength length, in octets, including itself.

 09 00
00 00

QualifierName, Heap offset to Encoded-String.

 00 QualifierFlavor. 0 == Local.

 08 00
00 00

QualifierType. 0x8 == CIM-TYPE-STRING.

 16 00
00 00

QualifierValue. A HeapRef to the Encoded-String that is the value of the qualifier.

 04 00
00 00

PropertyLookupTable::PropertyCount.

 There are four properties in this class.

The properties are sorted in this table, regardless of the order in which they appear in
the current CIM class and any of its superclasses. This enables a binary search to be
performed while locating properties by name.

 27 00
00 00

PropertyInfo::PropertyNameRef.

 Offset in Heap to the CIM property name. Points to the Encoded-String array.

 2E 00
00 00

PropertyInfo::PropertyInfoRef. Offset in Heap of the PropertyInfo table and any
associated qualifiers for the property.

 55 00
00 00

PropertyInfo::PropertyNameRef. Offset in Heap to the CIM property name. Points to the
Encoded-String Data1.

 5C 00
00 00

PropertyInfo::PropertyInfoRef. Offset in Heap of the PropertyInfo for Data1 and any
associated qualifiers.

 99 00
00 00

PropertyInfo::PropertyNameRef. Offset in Heap of the CIM property name. Points to
Data2.

 A0 00
00 00

PropertyInfo::PropertyInfoRef. Offset in Heap of PropertyInfo for Data2 and any
associated qualifiers.

 C7 00
00 00

PropertyInfo::PropertyNameRef. Offset in Heap of the CIM property name. Points to Id.
All properties that are inherited from base classes are repeated in the

PropertyLookupTable for each derived class.

49 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

 CB 00
00 00

PropertyInfo::PropertyInfoRef. Offset in Heap of PropertyInfo for Id and any associated
CIM qualifier sets.

 47 NdTable.

01 00 01 11b.

Property 0 == 11b NULL, inherits DEFAULT.

Property 1 == 01 NULL, no inherited default.

Property 2 == 00 Not NULL, no inheritance.

Property 3 == 01 Null, no inherited default.

The indexes do not refer to the ordinal position in PropertyLookup; instead, they refer to
the propertyIndex field for the CIM property in the PropertyInfo table for that property.

 ValueTable.

0x0 FF FF FF
FF

No default value.

0x4 FF FF FF
FF

No default value.

0x8 FD 00
00 00

HeapRef to default value.

0xC FF FF FF
FF

No default value.

 ClassHeap::Heap::HeapLength.

The length is 0x111 octets, and the most significant bit is always set.

0x0 00 4D
79 43
6C 61
73

73 00

Encoded-String MyClass.

0x9 00 44
65 73
63 72
69

70 74
69 6F
6E 00

Encoded-String Description.

0x16 00 4D
79 43
6C 61
73

73 20
45 78
61 6D
70

6C 65
00

Encoded-String MyClass Example.

0x27 00 41
72 72
61 79

Encoded-String Array.

50 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

00

0x2E PropertyInfo for Array property.

 13 20
00 00

PropertyType CIM-TYPE-UINT32 and CimArrayFlag.

 03 00 DeclarationOrder (starting with 0). Array was the third CIM property after Id, Data1, and
Data2. This is the value used in NdTable.

 0C 00
00 00

ValueTableOffset Offset into ValueTable for default CIM property value. In this case, the
offset points to 0xFFFFFFFF, which means there is no default value.

 01 00

00 00

ClassOfOrigin.

Class 1 in DerivationList array.

 11 00
00 00

PropertyQualifierSet::QualifierSet::EncodingLength, including itself.

 0A 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

The dictionary reference is cimtype.

 03 QualifierFlavor.

 08 00
00 00

QualifierType, which is CIM-TYPE-STRING.

 4D 00
00 00

QualifierValue. Because the type is string, the value is a HeapRef.

0x4D 00 75
69 6E
74 33
32

00

Encoded-String uint32.

0x55 00 44
61 74
61 31
00

Encoded-String Data1.

0x5C PropertyInfo.

 08 00
00 00

PropertyInfo::PropertyType, CIM-TYPE-STRING == 0x8.

 01 00 PropertyInfo::DeclarationOrder, zero-origin. Original order was {Id, Data1, Data2,
Array}; so this is Property[1].

 04 00
00 00

PropertyInfo::ValueTableOffset. In this case, at that offset is the value 0xFFFFFFFF,
which means there is no default.

 01 00
00 00

PropertyInfo::ClassOfOrigin.

1 == Current class.

0x6A PropertyQualifierSet for Data1.

51 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

 27 00
00 00

EncodingLength of CIM qualifier set in octets, including itself.

 0A 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

The dictionary reference is cimtype.

 03 QualifierFlavor.

 08 00
00 00

QualifierType or CIM-TYPE-STRING.

 91 00
00 00

QualifierValue::EncodedValue, offset to value in current Heap.

 Another CIM qualifier for the current PropertyInfo encoding.

 03 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

The dictionary reference is read.

 00 QualifierFlavor.

 0B 00
00 00

QualifierType is CIM-TYPE-BOOLEAN.

 FF FF QualifierValue::EncodedValue. This is the encoding for logical TRUE when type is CIM-
TYPE-BOOLEAN. 0x0000 is FALSE.

 04 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

The dictionary reference is write.

 00 QualifierFlavor. No propagate.

 0B 00
00 00

QualifierType is CIM-TYPE-BOOLEAN.

 FF FF QualifierValue::EncodedValue. This is the encoding for logical TRUE when type is CIM-
TYPE-BOOLEAN.

0x0000 is FALSE.

0x91 00 73
74 72
69 6E
67

00

Encoded-String string.

0x99 00 44
61 74
61 32
00

Encoded-String Data2.

 PropertyInfo.

52 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

0xA0 08 00
00 00

PropertyInfo::PropertyType Type is CIM-TYPE-STRING.

 02 00 PropertyInfo::DeclarationOrder is 2 out of {0, 1, 2, 3}.

 08 00
00 00

PropertyInfo::ValueTableOffset for default value. This points to a HeapRef of 0xFD, which
in turn points to DefaultValue.

 01 00
00 00

PropertyInfo::ClassOfOrigin points to class[1] in the derivation chain.

 PropertyQualifierSet.

 11 00

00 00

QualifierSet::EncodingLength. CIM qualifier set is 0x11 octets in length, including itself.

 0A 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

The dictionary reference is cimtype.

 03 Qualifier::QualifierFlavor, propagate to subclass and instance.

 08 00
00 00

QualifierType is CIM-TYPE-STRING.

 BF 00
00 00

QualifierValue::EncodedValue HeapRef to value.

0xBF 00 73
74 72
69 6E
67

00

Encoded-String of string.

0xC7 00 49
64 00

Encoded-String of Id.

 PropertyInfo.

0xCB 03 40
00 00

PropertyInfo::PropertyType.

CIM-TYPE-SINT32 + INHERITED.

 00 00 PropertyInfo::DeclarationOrder, CIM property number 0.

 00 00
00 00

PropertyInfo::ValueTableOffset default value in ValueTable.

 00 00
00 00

PropertyInfo::ClassOfOrigin.

CIM class 0 in DerivationList.

 PropertyInfo::PropertyQualifierSet.

 1C 00
00 00

QualifierSet::EncodingLength in octets, including itself.

 0A 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

53 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Relevant
offset

 Octet
values Comments

The dictionary reference is cimtype.

 23 Qualifier::QualifierFlavor, inherited and toclass+toinstance.

 08 00
00 00

Qualifier::QualifierType is CIM-TYPE-STRING.

 F5 00
00 00

Qualifier::QualifierValue::Encoded-Value, a HeapRef to value.

 01 00
00 80

Qualifier::QualifierName.

This is a DictionaryReference instead of a plain HeapRef because the most significant bit
is set (0x80).

The dictionary reference is key.

 33 Qualifier::QualifierFlavor = Not overridable/propagated/toclass/toinstance.

 0B 00
00 00

Qualifier::QualifierType is CIM-TYPE-BOOLEAN.

 FF FF Qualifier::QualifierValue::EncodedValue Default value.

0xF5 00 73
69 6E
74 33
32

00

Encoded-String sint32.

0xFD 00 64
65 66
61 75
6C

74 56
61 6C
75 65
00

Encoded-String defaultValue.

0x10B 00 00
00 00
00 00

MethodsPart.

 0C 00
00 00

MethodsPart::EncodingLength, including itself.

 00 00 MethodsPart::MethodCount (no methods in this case).

 00 73 MethodsPart:: Padding. Two octets of padding; can be any value.

 00 00
00 80

MethodsPart::MethodHeap::HeapLength zero length method heap.

 END OF OBJECT

3.1 Instance Encoding

Using the CIM class example from section 3 as a basis, the following CIM instance encoding is

presented.

54 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 instance of MyClass
 {
 Id = 123;
 Data1 = "StringField";
 Array = { 1, 2, 3 };
 };

The raw hexadecimal encoding of this CIM instance follows.

 78 56 34 12 D3 01 00 00 06 00 44 50
 52 41 56 41 54 2D 44 45 56 00 00 52 4F 4F 54 00
 76 01 00 00 00 00 00 00 00 11 00 00 00 0E 00 00
 00 00 42 61 73 65 00 06 00 00 00 11 00 00 00 09
 00 00 00 00 08 00 00 00 16 00 00 00 04 00 00 00
 27 00 00 00 2E 00 00 00 55 00 00 00 5C 00 00 00
 99 00 00 00 A0 00 00 00 C7 00 00 00 CB 00 00 00
 47 FF FF FF FF FF FF FF FF FD 00 00 00 FF FF FF
 FF 11 01 00 80 00 4D 79 43 6C 61 73 73 00 00 44
 65 73 63 72 69 70 74 69 6F 6E 00 00 4D 79 43 6C
 61 73 73 20 45 78 61 6D 70 6C 65 00 00 41 72 72
 61 79 00 13 20 00 00 03 00 0C 00 00 00 01 00 00
 00 11 00 00 00 0A 00 00 80 03 08 00 00 00 4D 00
 00 00 00 75 69 6E 74 33 32 00 00 44 61 74 61 31
 00 08 00 00 00 01 00 04 00 00 00 01 00 00 00 27
 00 00 00 0A 00 00 80 03 08 00 00 00 91 00 00 00
 03 00 00 80 00 0B 00 00 00 FF FF 04 00 00 80 00
 0B 00 00 00 FF FF 00 73 74 72 69 6E 67 00 00 44
 61 74 61 32 00 08 00 00 00 02 00 08 00 00 00 01
 00 00 00 11 00 00 00 0A 00 00 80 03 08 00 00 00
 BF 00 00 00 00 73 74 72 69 6E 67 00 00 49 64 00
 03 40 00 00 00 00 00 00 00 00 00 00 00 00 1C 00
 00 00 0A 00 00 80 23 08 00 00 00 F5 00 00 00 01
 00 00 80 33 0B 00 00 00 FF FF 00 73 69 6E 74 33
 32 00 00 64 65 66 61 75 6C 74 56 61 6C 75 65 00
 00 00 00 00 00 00 49 00 00 00 00 00 00 00 00 20
 7B 00 00 00 19 00 00 00 00 00 00 00 09 00 00 00
 04 00 00 00 01 26 00 00 80 00 4D 79 43 6C 61 73
 73 00 03 00 00 00 01 00 00 00 02 00 00 00
 03 00 00 00 00 53 74 72 69 6E 67 46 69
 65 6C 64 00

The following table breaks apart this encoding using ABNF. Note that the shaded part is the ClassPart
encoding of the CIM instance and is identical to the preceding table for MyClass. Encoded instances
always contain the CIM class definition encoding as the first part of the block. This allows a CIM
instance to be decoded in its entirety without retrieving from, or cross-referencing to, a CIM class

definition.

The part of the encoding that differs from the MyClass encoding (and is specific to the CIM instance) is
not shaded and is covered in the following table.

 Relevant offset
 Octet
values Comments

 EncodingUnit.

 78 56 34 12 Standard CIM object Signature.

 D3 01 00 00 UINT32 length of the entire CIM class encoding (0x1D3 octets).

 ObjectBlock.

55 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant offset
 Octet
values Comments

 06 ObjectBlock::decoration.

Bit 1 set. this is a CIM instance definition.

Bit 2 set. this CIM object is decorated with a server and CIM namespace
name.

 Decoration.

 00 44 50 52
41 56 41

54 2D 44 56
00

The Encoded-String that contains the name of the server that transmitted
the CIM object DPRAVAT-DEV.

 00 52 4F 4F
54 00

The Encoded-String that contains the CIM namespace. The CIM object was
created from ROOT.

 All shaded
octets

InstanceType::CurrentClass.

This is a direct copy of the CIM class encoding for MyClass in the
CurrentClass block.

 49 00 00 00 InstanceType::EncodingLength.

0x49 octets (73 decimal).

 00 00 00 00 InstanceType::InstanceClassName.

Points to the CIM class name in heap.

 00 InstanceType::Flags.

 20 InstanceType::NdTabl.

00100000.

Indicates the third CIM property has its default value.

 7B 00 00 00 InstanceType::InstanceData::ValueTable.

The value for CIM property 0.

 19 00 00 00 InstanceType::InstanceData::ValueTable.

The value for Data1.

 00 00 00 00 InstanceType::InstanceData::ValueTable.

Data 2 still has the default value.

 09 00 00 00 InstanceType::InstanceData::ValueTable.

The location of array for Array.

 04 00 00 00 InstanceType::InstanceQualifierSet::EncodingLength.

This indicates that there is no CIM qualifier set data because the
EncodingLength only includes its own size.

 See notes
following this table

01 InstPropQualSetFlag.

There are no property-level qualifiers.

 26 00 00 80 InstanceHeap::HeapLength

The Heap is 0x26 octets in length, and the most significant bit is set, for all
HeapLength values.

Heap offset

0

00 4D 79 43
6C 61 73

Encoded-String MyClass.

56 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant offset
 Octet
values Comments

73 00

Heap offset

9

03 00 00 00 Encoded-Array::ArrayCount.

There are three elements in the array.

 01 00 00 00 UINT32 [0].

 02 00 00 00 UINT32 [1].

 03 00 00 00 UINT32 [2].

HeapOffset

0x19

00 53 73 72
69 6E 67

46 69 65 6C
64 00

The Encoded-String of the value StringField.

***In the left column of the previous table, a special case can occur with instances that have
qualifiers (see the InstancePropQualifierSet rule), as follows.

 instance of MyClass
 {
 Array = {1, 2, 3};
 [test] Data1 = "StringField";
 Id = 123;
 };

The encoding for the preceding CIM instance is required to take into account that a property-level CIM
qualifier appears within the instance. When any CIM qualifier appears on any CIM property at the CIM

instance level, there is required to be an array of QualifierSet elements, one for each CIM property in

the CIM class to which the CIM instance belongs, even if one or more of the CIM properties is not
used.

The binary encoding for the preceding CIM instance, detailed in the following table, differs from the
previous example, which starts in the preceding table at the row above the row that contains the three
asterisks (***) in the left column.

Octet
values Comments

*** 02 InstPropQualSetFlag.

If the octet value is 02, one QualifierSet per property is encoded at this location prior to the
InstanceHeap.

 04 00 00
00

QualifierSet: No qualifiers for CIM property 0 because the EncodingLength is four octets,
which is the length of the EncodingLength value itself.

 0F 00 00
00

QualifierSet CIM property 1 (Data1): There are 15 octets for this QualifierSet.

 26 00 00
00

QualifierName: The Heap reference to the CIM qualifier name test.

 0B 00 00
00

QualifierType: CIM-TYPE-BOOL.

 FF FF Logical TRUE.

57 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Octet
values Comments

 04 00 00
00

QualifierSet, none for CIM property 2 (Data2).

 04 00 00
00

QualifierSet, none for CIM property 3 (Id).

 2C 00 00
80

InstanceHeap::HeapLength.

The Heap is longer in order to accommodate the name of the CIM qualifier test.

 ... The remainder of the Heap.

3.2 Class Encoding with Methods

Classes that contain methods have an extra encoding block called MethodsPart in the ABNF
encoding. The MethodsPart only applies to CIM objects that are encoded as CIM class definitions
and not part of a CIM instance encoding—even though instances do contain parts of the CIM class
encoding that is related to CIM property definitions.

The example CIM class contains one method, Restart, which has input parameters, output parameters,

and a uint32 return value. The CIM class is derived from MyClass, as specified in section 3.1.

 class MyClass2 : MyClass
 {
 [execute, performance{"fast", "sideffects"}]
 uint32 Restart([in] string ServiceName, [out] sint32 Status);
 };

The raw hexadecimal encoding of the preceding CIM class definition is shown as follows. The shaded
block is the encoding of the parent CIM class MyClass, which is the same as is shown in the Encoded

Examples topic.

 78 56 34 12 BE 08 00 00
 05 00 44 50 52 41 56 41 54 2D 44 45 56 00
 00 52 4F 4F 54 00
 76 01 00 00 00 00 00 00 00 11 00 00 00 0E 00 00
 00 00 42 61 73 65 00 06 00 00 00 11 00 00 00 09
 00 00 00 00 08 00 00 00 16 00 00 00 04 00 00 00
 27 00 00 00 2E 00 00 00 55 00 00 00 5C 00 00 00
 99 00 00 00 A0 00 00 00 C7 00 00 00 CB 00 00 00
 47 FF FF FF FF FF FF FF FF FD 00 00 00 FF FF FF
 FF 11 01 00 80 00 4D 79 43 6C 61 73 73 00 00 44
 65 73 63 72 69 70 74 69 6F 6E 00 00 4D 79 43 6C
 61 73 73 20 45 78 61 6D 70 6C 65 00 00 41 72 72
 61 79 00 13 20 00 00 03 00 0C 00 00 00 01 00 00
 00 11 00 00 00 0A 00 00 80 03 08 00 00 00 4D 00
 00 00 00 75 69 6E 74 33 32 00 00 44 61 74 61 31
 00 08 00 00 00 01 00 04 00 00 00 01 00 00 00 27
 00 00 00 0A 00 00 80 03 08 00 00 00 91 00 00 00
 03 00 00 80 00 0B 00 00 00 FF FF 04 00 00 80 00
 0B 00 00 00 FF FF 00 73 74 72 69 6E 67 00 00 44
 61 74 61 32 00 08 00 00 00 02 00 08 00 00 00 01
 00 00 00 11 00 00 00 0A 00 00 80 03 08 00 00 00
 BF 00 00 00 00 73 74 72 69 6E 67 00 00 49 64 00
 03 40 00 00 00 00 00 00 00 00 00 00 00 00 1C 00
 00 00 0A 00 00 80 23 08 00 00 00 F5 00 00 00 01
 00 00 80 33 0B 00 00 00 FF FF 00 73 69 6E 74 33

58 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 32 00 00 64 65 66 61 75 6C 74 56 61 6C 75 65 00
 00 00 00 00 00 00 0C 00 00 00 00 00 00 73 00 00
 00 80
 80 01 00 00 00 00 00 00 00 11 00 00 00 1b 00 00
 00 00 4d 79 43 6c 61 73 73 00 09 00 00 00 00 42
 61 73 65 00 06 00 00 00 04 00 00 00 04 00 00 00
 0a 00 00 00 11 00 00 00 38 00 00 00 3f 00 00 00
 66 00 00 00 6d 00 00 00 94 00 00 00 98 00 00 00
 ef ff ff ff ff ff ff ff ff ca 00 00 00 ff ff ff
 ff 1b 01 00 80 00 4d 79 43 6c 61 73 73 32 00 00
 41 72 72 61 79 00 13 60 00 00 03 00 0c 00 00 00
 01 00 00 00 11 00 00 00 0a 00 00 80 23 08 00 00
 00 30 00 00 00 00 75 69 6e 74 33 32 00 00 44 61
 74 61 31 00 08 40 00 00 01 00 04 00 00 00 01 00
 00 00 11 00 00 00 0a 00 00 80 23 08 00 00 00 5e
 00 00 00 00 73 74 72 69 6e 67 00 00 44 61 74 61
 32 00 08 40 00 00 02 00 08 00 00 00 01 00 00 00
 11 00 00 00 0a 00 00 80 23 08 00 00 00 8c 00 00
 00 00 73 74 72 69 6e 67 00 00 49 64 00 03 40 00
 00 00 00 00 00 00 00 00 00 00 00 1c 00 00 00 0a
 00 00 80 23 08 00 00 00 c2 00 00 00 01 00 00 80
 33 0b 00 00 00 ff ff 00 73 69 6e 74 33 32 00 00
 64 65 66 61 75 6c 74 56 61 6c 75 65 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 6b 05 00 00 01 00 00 00
 00 00 00 00 00 00 00 00
 02 00 00 00 f7 04 00 00
 09 00 00 00 09 02 00 00
 47 05 00 80 00 52 65 73 74 61 72 74 00
 fc 01 00 00
 05 00 44 50 2d 4d 00 00 52 4f 4f 54 5c 64 65
 66 61 75 6c 74 00 1d 00 00 00 00
 ff ff ff ff
 00 00 00 00 04 00 00 00 04 00 00 00
 00 00 00 00 00 00 00 80 0c 00 00 00 00 00 00 00
 00 00 00 80
 b2 01 00 0000 00 00 00 00
 05 00 00 00 04 00 00 00
 0F 00 00 000e 00 00 0000
 0b 00 00 00
 ff ff 01 00 00 00
 2a 00 00 00 90 00 00 00 19 ff ff ff ff
 cf 00 00 80
 00 5f 5f 50 41 52 41 4d 45 54 45 52 53 00
 00 61 62 73 74 72 61 63 74 00
 08 00 00 00 00 00 00 00 00 00 00 00 00 00
 04 00 00 00 00 53 65 72 76 69 63 65 4e 61 6d 65 00
 00 73 74 72 69 6e 67 00
 08 00 00 00 00 00 00 00 00 00 00 00 00 00
 11 00 00 00 0a 00 00 80 03
 08 00 00 00 37 00 00 00
 00 69 6e 00 08 00 00 00 00 00 00 00 00 00
 00 00 00 00 1c 00 00 00 0a 00 00 80 03 08 00 00
 00 37 00 00 00 5e 00 00 00 00 0b 00 00 00
 ff ff 00 49 44 00 08 00 00 00 00 00
 00 00 00 00 00 00 00 00 29 00 00 00
 0a 00 00 80 03 08 00 00 00 c7 00 00 00
 5e 00 00 00 00 0b 00 00 00 ff ff
 8c 00 00 00 11 03 00 00 00 00 00 00 00
 00 73 74 72 69 6e 67 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

59 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0c 00 00 00 00 00 5f 5f 00 00 00 80
 ea 02 00 00
 05 00 44 50 2d 4d 00
 00 52 4f 4f 54 5c 64 65 66 61 75 6c 74 00 1d
 00 00 00 00 ff ff ff ff 00 00 00 00
 04 00 00 00 04 00 00 00 00 00 00 00 00
 00 00 80 0c 00 00 00 00 00 00 00 00 00 00 80 a0
 02 00 00 00 00 00 00 00 09 00 00 00 04 00 00 00
 0f 00 00 00 0e 00 00 00 00 0b 00 00 00 ff ff 02
 00 00 00 e1 00 00 00 22 01 00 00 2a 00 00 00 8c
 00 00 00 15 ff ff ff ff ff ff ff ff 4c 01 00 80
 00 5f 5f 50 41 52 41 4d 45 54 45 52 53 00 00 61
 62 73 74 72 61 63 74 00 0d 00 00 00 00 00 00 00
 00 00 00 00 00 00 04 00 00 00 00 53 74 61 74 75
 73 00 00 6f 62 6a 65 63 74 00 0d 00 00 00 00 00
 00 00 00 00 00 00 00 00 11 00 00 00 0a 00 00 80
 03 08 00 00 00 32 00 00 00 00 6f 75 74 00 0d 00
 00 00 00 00 00 00 00 00 00 00 00 00 1c 00 00 00
 0a 00 00 80 03 08 00 00 00 32 00 00 00 59 00 00
 00 00 0b 00 00 00 ff ff 00 49 44 00 0d 00 00 00
 00 00 00 00 00 00 00 00 00 00 29 00 00 00 0a 00
 00 80 03 08 00 00 00 c3 00 00 00 59 00 00 00 00
 0b 00 00 00 ff ff 88 00 00 00 11 03 00 00 00 01
 00 00 00 00 6f 62 6a 65 63 74 3a 69 6e 74 00 13
 00 00 00 01 00 04 00 00 00 00 00 00 00 04 00 00
 00 00 52 65 74 75 72 6e 56 61 6c 75 65 00 00 75
 69 6e 74 33 32 00 13 00 00 00 01 00 04 00 00 00
 00 00 00 00 11 00 00 00 0a 00 00 80 03 08 00 00
 00 15 01 00 00 00 75 69 6e 74 33 32 00 00 6f 75
 74 00 13 00 00 00 01 00 04 00 00 00 00 00 00 00
 1c 00 00 00 0a 00 00 80 03 08 00 00 00 15 01 00
 00 1d 01 00 00 00 0b 00 00 00 ff ff 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0c 00 00 00 00 00 5f 5f 00 00 00 80
 1c 00 00 00 13 05 00 00 00 0b 00 00 00 ff ff
 1c 05 00 00 00 08 20 00 00 29 05 00 00
 00 65 78 65 63 75 74 65 00
 00 70 65 72 66 6f 72 6d 61 6e 63 65 00
 02 00 00 00 35 05 00 00 3b 05 00 00
 00 66 61 73 74 00 00 73 69 64 65 66 66 65 63 74 73 00
 20 00 00 29 05 00 00 00 65 78 65 63 75 74 65 00 00
 70 65 72 66 6f 72 6d 61 6e 63 65 00 02 00 00 00 35
 05 00 00 3b 05 00 00 00 66 61 73 74 00 00 73 69 64
 65 66 66 65 63 74 73 00 00 00 00 00

60 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant
offset

 Octet
values Comments

 EncodingUnit.

 78 56 34 12 Standard CIM object signature.

 D3 01 00
00

UINT32 length of the entire CIM class encoding (0x1D3 octets).

 ObjectBlock.

 Shaded
Bold Portion

76 01 00
00...

...73 00 00
00 80

MyClass encoding.

 80 01 00 00 EncodingLength of MyClass2, or 0x180 octets.

 00 Reserved.

 00 00 00 00 The offset of the CIM class name in the CIM class Heap.

 11 00 00 00 NdTableValueTableLength.

 1B 00 00 00 The DerivationList length, in octets.

 00 4D 79
43 6C 61 73

73 00

The Encoded-String MyClass, which is the superclass of the current class.

 09 00 00 00 The length, in octets, of the previous Encoded-String.

 00 42 61 73
65 00

The Encoded-String base, which is the superclass of MyClass.

 06 00 00 00 The length, in octets, of the previous Encoded-String.

 04 00 00 00 ClassQualifierSet::QualifierSet::EncodingLength, including itself. There are no
qualifiers; so the octet count is four, which is just enough to encode its own
length.

 04 00 00 00 PropertyLookupTable::PropertyCount.

 0A 00 00 00 PropertyNameRef, CIM property 1.

 11 00 00 00 PropertyInfoRef.

 38 00 00 00 PropertyNameRef, CIM property 2.

 3F 00 00 00 PropertyInfoRef.

 66 00 00 00 PropertyNameRef, CIM property 3.

 6d 00 00 00 PropertyInfoRef.

 94 00 00 00 PropertyNameRef, CIM property 4.

 98 00 00 00 PropertyInfoRef, CIM property 4.

 EF NdTable.

61 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant
offset

 Octet
values Comments

 FF FF FF FF Value Table, CIM property 1.

 FF FF FF FF Value Table, CIM property 2.

 CA 00 00
00

Value Table, CIM property 3.

 FF FF FF FF Value Table, CIM property 4.

 1B 01 00 80 ClassHeap::Heap::HeapLength (0x11B octets, 283 decimal).

 283 octets
in shaded
italics

00 4d 79...

...00 00 00

ClassHeap.

This is essentially the same encoding that is used for MyClass because MyClass2
only adds a method and no properties.

 6b 05 00 00 MethodsPart::EncodingLength.

(0x56B octets).

 01 00 00 00 MethodCount (only one method).

 00 00 00 00 MethodDescription::MethodName.

Reference to Encoded-String in MethodHeap; this points to Restart.

 00 MethodFlags (reserved octet; is required to be 0).

 00 00 00 MethodPadding.

 02 00 00 00 MethodOrigin (Class[2] in DerivationList) or MyClass2.

 F7 04 00 00 MethodQualifiers (HeapRef to QualifierSet).

 09 00 00 00 InputSignature (HeapRef to MethodSignature) for input parameters.

 09 02 00 00 OutputSignature (HeapRef to MethodSignature) for output parameters and return
value.

 47 05 00 80 MethodHeap::HeapLength, 0x547 octets, with the most significant bit set.

0000 00 52 65 73

74 61 72

74 00

Encoded-String Restart.

0009 FC 01 00 00 MethodSignatureBlock::EncodingLength.

The ObjectBlock is an embedded ClassPart that represents CIM class
__PARAMETERS for the InputSignature.

This block is shown indented in the previous raw hexadecimal encoding.

 05 ObjectFlags (Class + Decoration).

 00 44 50 2d
4d 00

DecServerName: The Encoded-String of DP-M.

 00 52 4F 4F
54 5C 64

65 66 61 75
6C 74 00

DecNamespaceName: Encoded-String ROOT\default.

62 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant
offset

 Octet
values Comments

 The CIM class encoding for __PARAMETERS begins here. There are ParentClass
and CurrentClass parts, in succession. The ParentClass is almost empty.

 1d 00 00 00 ClassHeader::EncodingLength.

(ParentClass part of ClassType.)

 00 ReservedOctet.

 ff ff ff ff ClassNameRef. This is a simulation of a Heap reference. It indicates no CIM class
name because the parent CIM class of __PARAMETERS is currently being encoded
and does not exist.

 00 00 00 00 NdTableValueTableLength.

 04 00 00 00 DerivationList length in octets, including itself (no Derivation).

 04 00 00 00 ClassQualifierSet::QualifierSet::EncodingLength, including itself. (No CIM
qualifier set.)

 00 00 00 00 PropertyCount.

 00 00 00 80 HeapLength (zero, most significant bit set).

 0C 00 00 00 MethodsPart::EncodingLength.

 00 00 MethodsPart::MethodCount.

 00 00 MethodsPart::MethodCountPadding.

 00 00 00 80 MethodsPart::MethodHeap, zero-length heap.

 b2 01 00 00 ClassPart::EncodingLength (0x1b2, 434 decimal octets).

This is the CurrentClass part of the ClassType.

 00 ReservedOctet.

 00 00 00 00 ClassNameRef (points to __PARAMETERS).

 05 00 00 00 NdTableValueTableLength.

 04 00 00 00 DerivationList (only itself, so no derivation).

 0F 00 00 00 ClassQualifierSet::QualifierSet::EncodingLength.

 0E 00 00 00 The QualifierName (reference) points to abstract, a requirement for all classes of

type __PARAMETERS.

 00 QualifierFlavor.

 0B 00 00 00 QualifierType (CIM-TYPE-BOOLEAN).

 FF FF TRUE.

 01 00 00 00 PropertyLookupTable::PropertyCount (one in parameter acting as a property).

 2a 00 00 00 PropertyNameRef (points to ServiceName).

 90 00 00 00 PropertyInfoRef.

 19 NdTable.

63 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant
offset

 Octet
values Comments

 FF FF FF FF ValueTable, no default value for the parameter ServiceName.

Heap Offsets
in this column

CF 00 00 80 ClassHeap::Heap::HeapLength (0xCF or 207 decimal octets).

00 00 5f 5f 50
41 52 41

4d 45 54 45
52 53 00

Encoded-String __PARAMETERS.

0E 00 61 62 73
74 72 61

63 74 00

Encoded-String abstract.

18 08 00 00 00

00 00

00 00 00 00

00 00 00 00

04 00 00 00

Unused. This is part of Heap fragmentation and can be removed if the Heap
offsets for all subsequent HeapItems are adjusted.

2A 00 53 65 72
76 69 63

65 4e 61 6d
65 00

Encoded-String ServiceName.

37 00 73 74 72
69 6e 67

00

Encoded-String string.

3F 08 00 00 00

00 00

00 00 00 00

00 00 00 00

11 00 00 00

PropertyInfo:

 PropertyType = CIM-TYPE-STRING.

 DeclarationOrder (0).

 ValueTableOffset (0).

 PropertyQualifierSet length 0x11 octets.

51 0a 00 00 80 QualifierName.

DictionaryReference CIMTYPE.

55 03 QualifierFlavor.

 08 00 00 00 QualifierType (CIM-TYPE-STRING).

5A 37 00 00 00 QualifierValue (HeapRef to offset 0x37, or string).

5E 00 69 6E 00 Encoded-String in QualifierName (referenced later in the heap).

62 08 00 00 00

00 00

00 00 00 00

00 00 00 00

1C 00 00 00

0a 00 00 80

03

08 00 00 00

37 00 00 00

Unreferenced Heap fragment lost from previous editing or updates.

64 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant
offset

 Octet
values Comments

5e 00 00 00

00

0b 00 00 00

ff ff

8C 00 49 44 00 Encoded-String ID.

90 08 00 00 00

00 00

00 00 00 00

00 00 00 00

29 00 00 00

PropertyInfo:

 PropertyType = CIM-TYPE-STRING.

 DeclarationOrder (0).

 ValueTableOffset (0).

 PropertyQualifierSet length 0x29 octets.

 0a 00 00 80 QualifierName (DictionaryReference to CIMTYPE).

 03 QualifierFlavor.

 08 00 00 00

C7 00 00 00

QualifierType (CIM-TYPE-STRING).

10F 5E 00 00 00 QualifierValue (Offset 0xC7).

 00 QualifierName (Offset 5E points to in).

 00 Flavor.

 0B 00 00 00 QualifierType (CIM-TYPE-BOOL).

 FF FF Logical TRUE.

 8C 00 00 00 QualifierName (points to ID, an attribute added to all properties that are acting as
parameters in a method).

 11 QualifierFlavor.

11F 03 00 00 00 QualifierType (CIM-TYPE-SINT32).

 00 00 00 00 QualifierValue (zero, meaning this is the 0th parameter in the signature).

127 00 73 74 72
69 6e 67

00

Encoded-String string.

 00..00 Unreferenced heap fragment lost from previous editing or updates.

Heap Space: 174 octets of zero octets.

 0c 00 00 00

00 00 5f 5f

00 00 00 80

MethodsPart with total EncodingLength 0xC octets.

MethodCount is zero, two octets of MethodCountPadding with random values.

The MethodHeap is zero length with the most significant bit set.

 ea 02 00 00
...

...5f 5f 00
00 00 80

MethodSignatureBlock:

:EncodingLength.

(0x2EA, 746 octets).

This is the Encoding block for __PARAMETERS for the output parameters and
return value.

It is decoded in the same way as the Encoding block __PARAMETERS for the input
parameters (octet FC 01 00 00 above).

65 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Relevant
offset

 Octet
values Comments

 1C 00 00 00 QualifierSet::EncodingLength.

 13 05 00 00 QualifierName.

 00 QualifierFlavor.

 0B 00 00 00 QualifierType (CIM-TYPE-BOOL).

 FF FF QualifierValue (TRUE).

 1C 05 00 00 Qualifier::Name.

 00 Flavor.

 08 20 00 00 Type (CIM-TYPE-STRING and CimArrayFlag), an array of strings.

 29 05 00 00 Location of string array in Heap.

 00 65 78 65
63 75 74

65 00

Encoded-String execute.

 00 70 65 72
66 6f 72

6d 61 6e 63
65 00

Encoded-String performance.

 02 00 00 00 Encoded-Array (two items).

 35 05 00 00 The location of the first string in the array (fast).

 3B 05 00 00 The location of the second string in the array (side effects).

 00 66 61 73
74 00

Encoded-String fast.

 00 73 69 64
65 66 66

65 63 74 73
00

Encoded-String side effects.

 20 00 00 29
05...

...74 73 00
00 00 00 00

The remaining octets are in italics.

The remainder of the packet consists of no information and fills out the entire
encoding length.

These octets can be removed if the encoding length at the beginning of the
encoding is adjusted.

66 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Security Considerations

Because this specification only specifies an encoding, there are no security-specific considerations.
There are no fields within the encoding associated with security.

67 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows 2000 operating system

 Windows XP 64-Bit Edition operating system

 Windows XP operating system

 Windows Vista operating system

 Windows Server 2003 operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.2.40: Windows sends random data in this field.

<2> Section 2.2.62: Windows ignores other bit values.

68 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix B: ABNF Encoding Definition

 ;
 ;--- Main block
 ;
 EncodingUnit = Signature ObjectEncodingLength ObjectBlock
 ObjectEncodingLength = UINT32
 ObjectBlock = ObjectFlags [Decoration] Encoding
 ObjectFlags = OCTET
 ; Bit 0 = Class, Bit 1 = Instance,
 ; Bit 2 = DecorationBlock is present
 Decoration = DecServerName DecNamespaceName
 DecServerName = Encoded-String
 DecNamespaceName = Encoded-String
 Encoding = InstanceType / ClassType
 ;
 ;------ CIM class Encoding ----
 ;
 ClassType = ParentClass CurrentClass
 ParentClass = ClassAndMethodsPart
 CurrentClass = ClassAndMethodsPart
 ClassAndMethodsPart = ClassPart [MethodsPart]
 ; [MethodsPart] is always present if ObjectFlags indicates
 ; the CIM object is a CIM class definition, and always absent
 ; if the current CIM object is a CIM instance definition
 ClassPart = ClassHeader DerivationList ClassQualifierSet
 PropertyLookupTable [NdTable ValueTable] ClassHeap
 ClassHeader = EncodingLength ReservedOctet
 ClassNameRef NdTableValueTableLength
 DerivationList = EncodingLength *ClassNameEncoding
 ClassNameEncoding = Encoded-String EncodingLength
 ClassNameRef = HeapStringRef
 ClassQualifierSet = QualifierSet
 ; --------------------
 PropertyLookupTable = PropertyCount *PropertyLookup
 ; PropertyLookup entries are sorted by
 ; CIM Property name so that binary
 ; searches are possible.
 PropertyCount = UINT32
 PropertyLookup = PropertyNameRef PropertyInfoRef
 PropertyNameRef = HeapStringRef
 PropertyInfoRef = HeapRef
 ;-------------------
 NdTable = *NullAndDefaultFlag
 NullAndDefaultFlag = 2BIT
 ;nullness = bit 0, inheritedDefault = bit1
 NdTableValueTableLength = UINT32
 ValueTable = *EncodedValue
 PropertyInfo = PropertyType DeclarationOrder
 ValueTableOffset ClassOfOrigin PropertyQualifierSet
 PropertyType = CimType
 DeclarationOrder = UINT16
 ValueTableOffset = UINT32
 ClassOfOrigin = UINT32
 ; Which CIM class in the DerivationList this
 ; CIM Property comes from %x0 == the current class.
 PropertyQualifierSet = QualifierSet
 ClassHeap = Heap
 ;--- Method Encoding ---
 MethodsPart = EncodingLength MethodCount
 MethodCountPadding *MethodDescription MethodHeap
 MethodCount = UINT16
 MethodCountPadding = 2OCTET
 MethodHeap = Heap
 MethodDescription = MethodName MethodFlags MethodPadding
 MethodOrigin MethodQualifiers InputSignature OutputSignature
 MethodName = HeapStringRef
 MethodFlags = OCTET

69 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 MethodPadding = 3OCTET
 MethodOrigin = UINT32 ; CIM class in DerivationList
 MethodQualifiers = HeapQualifierSetRef
 InputSignature = MethodSignature
 OutputSignature = MethodSignature
 MethodSignature = HeapMethodSignatureBlockRef
 ; --- CIM instance encoding
 InstanceType = CurrentClass EncodingLength InstanceFlags
 InstanceClassName NdTable InstanceData InstanceQualifierSet
 InstanceHeap
 InstanceFlags = OCTET
 InstanceClassName = HeapStringRef
 InstanceData = ValueTable
 InstanceQualifierSet = QualifierSet InstancePropQualifierSet
 InstanceHeap = Heap
 ;--- CIM Qualifier Sets ---
 QualifierSet = EncodingLength *Qualifier
 Qualifier = QualifierName QualifierFlavor
 QualifierType QualifierValue
 QualifierName = HeapStringRef
 QualifierFlavor = OCTET
 QualifierType = CimType
 QualifierValue = EncodedValue
 InstancePropQualifierSet = InstPropQualSetFlag *QualifierSet
 InstPropQualSetFlag = %x1 / %x2
 ; One OCTET. If 1, there is no list of Qualifiers in
 ; InstanceQualifierSet. If 2, there is a list of Qualifiers.
 ; The number of qualifiers is equivalent to the number of
 ; properties in the CIM class definition for the instance.
 ; The CIM Qualifier sets are in the lexical order for the
 ; properties, as in the PropertyLookupTable.
 ;--- Heap ---
 Heap = HeapLength *HeapItem
 HeapStringRef = HeapRef
 HeapQualifierSetRef = HeapRef
 ClassPartRef = HeapRef
 HeapMethodSignatureBlockRef = HeapRef
 HeapRef = UINT32 / DictionaryReference
 ; The DictionaryReference choice is taken if the
 ; reference value has the MS bit set. Therefore
 ; only 31 bits are used for an offset into the heap
 ; when the DictionaryReference is not being used.

 HeapItem = PropertyInfo / Encoded-String / Encoded-Array /
 QualifierSet / ObjectBlock / MethodSignatureBlock
 MethodSignatureBlock = EncodingLength [ObjectBlock]
 EncodedValue = NumericValue / HeapRef / BOOL / NoValue
 ; Note that values are inline if they are
 ; NumericValue, BOOL, or NoValue
 ; If the CimType of the encoded value is CIM-TYPE-STRING
 ; or an array of any kind,
 ; then HeapRef points to the value in the heap.
 ;--- Simple types ----
 HeapLength = UINT32
 ;*MS bit is always set, so length is expressed in lower 31 bits
 EncodingLength = UINT32
 Encoded-String = Encoded-String-Flag *Character Null;
 Encoded-String-Flag = OCTET
 Character = AnsiCharacter / UnicodeCharacter
 Null = Character
 AnsiCharacter = OCTET
 UnicodeCharacter = 2OCTET
 Encoded-Array = ArrayCount *EncodedValue
 ArrayCount = UINT32
 ; The DictionaryReference is used where HeapRef may appear and the
 ; EncodedValue type is Encoded-String
 ; These appear as 32 bit offsets into the Heap with the
 ; MS bit set to 1 and the lower
 ; 31 bits set to one of the integer values below

70 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DictionaryReference = %d0 / %d1 / %d2 / %d3 / %d4 / %d5 /
 %d6 / %d7 / %d8 / %d9 / %d10
 ; %d0 Encoded/Decoded as quote character
 ; %d1 Encoded/Decoded as "key"
 ; %d2 Encoded/Decoded as ""
 ; %d3 Encoded/Decoded as "read"
 ; %d4 Encoded/Decoded as "write"
 ; %d5 Encoded/Decoded as "volatile"
 ; %d6 Encoded/Decoded as "provider"
 ; %d7 Encoded/Decoded as "dynamic"
 ; %d8 Encoded/Decoded as "cimwin32"
 ; %d9 Encoded/Decoded as "DWORD"
 ; %d10 Encoded/Decoded as "CIMTYPE"
 ReservedOctet = OCTET ;*doc
 Signature = UINT32 ;0x12345678 little-endian ;*doc
 NumericValue = BYTE / SINT16 / UINT16 / SINT32 / UINT32 /
 SINT64 / UINT64 / REAL32 / REAL64 ;*doc
 BYTE = OCTET
 UINT32 = 4OCTET
 SINT32 = 4OCTET
 UINT64 = 8OCTET
 SINT64 = 8OCTET
 REAL32 = 4OCTET ; IEEE short floating-point format
 REAL64 = 8OCTET ; IEEE format
 UINT16 = 2OCTET
 SINT16 = 2OCTET
 BOOL = 2OCTET ;*
 OCTET = %x0-FF ;*
 BIT = %x0 / %x1 ;*doc
 CimType = CimBaseType / CimArrayType
 ; 32 bit encoding, upper 16 bits not used.
 CimArrayFlag = %x20 %x00 ; 0x2000 bit flag
 CimBaseType = CIM-TYPE-SINT8 / CIM-TYPE-UINT8 /
 CIM-TYPE-SINT16 / CIM-TYPE-UINT16 /
 CIM-TYPE-SINT32 / CIM-TYPE-UINT32 /
 CIM-TYPE-SINT64 / CIM-TYPE-UINT64 /
 CIM-TYPE-REAL32 / CIM-TYPE-REAL64 /
 CIM-TYPE-BOOLEAN / CIM-TYPE-STRING /
 CIM-TYPE-DATETIME / CIM-TYPE-REFERENCE /
 CIM-TYPE-CHAR16 / CIM-TYPE-OBJECT

 CimArrayType = CIM-ARRAY-SINT8 / CIM-ARRAY-UINT8 /
 CIM-ARRAY-SINT16 / CIM-ARRAY-UINT16 /
 CIM-ARRAY-SINT32 / CIM-ARRAY-UINT32 /
 CIM-ARRAY-SINT64 / CIM-ARRAY-UINT64 /
 CIM-ARRAY-REAL32 / CIM-ARRAY-REAL64 /
 CIM-ARRAY-BOOLEAN / CIM-ARRAY-STRING /
 CIM-ARRAY-DATETIME / CIM-ARRAY-REFERENCE /
 CIM-ARRAY-CHAR16 / CIM-ARRAY-OBJECT

 CIM-TYPE-SINT8 = %d16
 CIM-TYPE-UINT8 = %d17
 CIM-TYPE-SINT16 =%d2
 CIM-TYPE-UINT16 =%d18
 CIM-TYPE-SINT32 = %d3
 CIM-TYPE-UINT32 = %d19
 CIM-TYPE-SINT64 = %d20
 CIM-TYPE-UINT64 = %d21
 CIM-TYPE-REAL32 = %d4
 CIM-TYPE-REAL64 = %d5
 CIM-TYPE-BOOLEAN = %d11
 CIM-TYPE-STRING = %d8
 CIM-TYPE-DATETIME = %d101
 CIM-TYPE-REFERENCE = %d102
 CIM-TYPE-CHAR16 = %d103
 CIM-TYPE-OBJECT = %d13

 CIM-ARRAY-SINT8 = %d8208
 CIM-ARRAY-UINT8 = %d8209

71 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 CIM-ARRAY-SINT16 =%d8194
 CIM-ARRAY-UINT16 =%d8210
 CIM-ARRAY-SINT32 = %d8195
 CIM-ARRAY-UINT32 = %d8201
 CIM-ARRAY-SINT64 = %d8202
 CIM-ARRAY-UINT64 = %d8203
 CIM-ARRAY-REAL32 = %d8196
 CIM-ARRAY-REAL64 = %d8197
 CIM-ARRAY-BOOLEAN = %d8203
 CIM-ARRAY-STRING = %d8200
 CIM-ARRAY-DATETIME = %d8293
 CIM-ARRAY-REFERENCE = %d8294
 CIM-ARRAY-CHAR16 = %d8295
 CIM-ARRAY-OBJECT = %d8205

72 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

5 Appendix A: Product
Behavior

Added Windows Server 2025 to the list of applicable
products.

Major

mailto:dochelp@microsoft.com

73 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Index

A

ABNF encoding definition 67
Annotated object block encoding 12
Applicability 10

B

BIT 34
BOOL 32

C

Change tracking 71
CIM DateTime type 36
CIM methods 36
CIM Reference types 36
CimType 34
Class Encoding with Methods example 56
ClassAndMethodsPart 16
ClassHeader 17
ClassHeap 22
ClassNameEncoding 17
ClassNameRef 18
ClassOfOrigin 22
ClassPart 16
ClassQualifierSet 18
ClassType 15
Common data types and fields 12
CurrentClass 16

D

Data types and fields - common 12
DeclarationOrder 22
DecNamespaceName 15
Decoration 14
DecServerName 15
DerivationList 17
Details
 annotated object block encoding 12
 common data types and fields 12
 special data type encodings 36
DictionaryReference 33

E

Encoded-Array 33
Encoded-String 32
EncodedValue 30
Encoding 15
 annotated object block 12
 special data type 36
EncodingLength 32
EncodingUnit 12
Examples 39
 Class Encoding with Methods 56
 class encoding with methods example 56
 Instance Encoding 52
 instance encoding example 52
 overview 39

F

Fields - vendor-extensible 11

G

Glossary 7

H

Heap 29

Heap encoding 38
HeapItem 29
HeapMethodSignatureBlockRef 25
HeapQualifierSetRef 24
HeapRef 30
HeapStringRef 30

I

Implementer - security considerations 65
Informative references 9
InputSignature 24
Instance Encoding example 52
InstanceClassName 26
InstanceData 26
InstanceFlags 26
InstanceHeap 26
InstancePropQualifierSet 28
InstanceQualifierSet 26
InstanceType 25
Introduction 7

L

Localization 11

M

MethodCount 23
MethodCountPadding 23
MethodDescription 23
MethodFlags 23
MethodHeap 25
MethodName 23
MethodOrigin 24
MethodPadding 23
MethodQualifiers 24
MethodSignature 25
MethodSignatureBlock 30
MethodsPart 22

N

NdTable 19
Normative references 8
NoValue 32
NullAndDefaultFlag 20
NumericValue 31

74 / 74

[MS-WMIO] - v20240423
Windows Management Instrumentation Encoding Version 1.0 Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

O

ObjectBlock 14
ObjectEncodingLength 14
ObjectFlags 14
OutputSignature 25
Overview (synopsis) 9

P

ParentClass 16
Product behavior 66

PropertyCount 18
PropertyInfo 21
PropertyInfoRef 19
PropertyLookup 18
PropertyLookupTable 18
PropertyNameRef 19
PropertyQualifierSet 22
PropertyType 21

Q

Qualifier 27
QualifierFlavor 27
QualifierName 27
QualifierSet 26
QualifierType 28
QualifierValue 28

R

References 8
 informative 9
 normative 8
Relationship to protocols and other structures 10
ReservedOctet 32

S

Security 65
Security - implementer considerations 65
Signature 32
Special data type encodings 36
Structures
 annotated object block encoding 12
 introduction 12
 overview 12
 special data type encodings 36

T

Tracking changes 71

V

ValueTable 20
ValueTableLength 20
ValueTableOffset 22
Vendor-extensible fields 11
Versioning 11

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Introduction
	2.2 Annotated Object Block Encoding
	2.2.1 EncodingUnit
	2.2.2 EncodingUnitObjectBlock
	2.2.3 EncodingUnitInstanceNoClass
	2.2.4 ObjectEncodingLength
	2.2.5 ObjectBlock
	2.2.6 ObjectFlags
	2.2.7 Decoration
	2.2.8 DecServerName
	2.2.9 DecNamespaceName
	2.2.10 Encoding
	2.2.11 ClassType
	2.2.12 ParentClass
	2.2.13 CurrentClass
	2.2.14 ClassAndMethodsPart
	2.2.15 ClassPart
	2.2.16 ClassHeader
	2.2.17 DerivationList
	2.2.18 ClassNameEncoding
	2.2.19 ClassNameRef
	2.2.20 ClassQualifierSet
	2.2.21 PropertyLookupTable
	2.2.22 PropertyCount
	2.2.23 PropertyLookup
	2.2.24 PropertyNameRef
	2.2.25 PropertyInfoRef
	2.2.26 NdTable
	2.2.27 NullAndDefaultFlag
	2.2.28 NdTableValueTableLength
	2.2.29 ValueTable
	2.2.30 PropertyInfo
	2.2.31 PropertyType
	2.2.32 Inherited
	2.2.33 DeclarationOrder
	2.2.34 ValueTableOffset
	2.2.35 ClassOfOrigin
	2.2.36 PropertyQualifierSet
	2.2.37 ClassHeap
	2.2.38 MethodsPart
	2.2.39 MethodCount
	2.2.40 MethodCountPadding
	2.2.41 MethodDescription
	2.2.42 MethodName
	2.2.43 MethodFlags
	2.2.44 MethodPadding
	2.2.45 MethodOrigin
	2.2.46 MethodQualifiers
	2.2.47 HeapQualifierSetRef
	2.2.48 InputSignature
	2.2.49 OutputSignature
	2.2.50 MethodSignature
	2.2.51 HeapMethodSignatureBlockRef
	2.2.52 MethodHeap
	2.2.53 InstanceType
	2.2.54 InstanceFlags
	2.2.55 InstanceClassName
	2.2.56 InstanceData
	2.2.57 InstanceQualifierSet
	2.2.58 InstanceHeap
	2.2.59 QualifierSet
	2.2.60 Qualifier
	2.2.61 QualifierName
	2.2.62 QualifierFlavor
	2.2.63 QualifierType
	2.2.64 QualifierValue
	2.2.65 InstancePropQualifierSet
	2.2.66 Heap
	2.2.67 HeapItem
	2.2.68 HeapStringRef
	2.2.69 HeapRef
	2.2.70 MethodSignatureBlock
	2.2.71 EncodedValue
	2.2.72 NumericValue
	2.2.73 EncodingLength
	2.2.74 NoValue
	2.2.75 BOOL
	2.2.76 ReservedOctet
	2.2.77 Signature
	2.2.78 Encoded-String
	2.2.79 Encoded-Array
	2.2.80 DictionaryReference
	2.2.81 BIT
	2.2.82 CimType

	2.3 Special Data Type Encodings
	2.3.1 CIM DateTime Type
	2.3.2 CIM Reference Types
	2.3.3 CIM Methods
	2.3.4 Heap Encoding

	3 Structure Examples
	3.1 Instance Encoding
	3.2 Class Encoding with Methods

	4 Security Considerations
	5 Appendix A: Product Behavior
	6 Appendix B: ABNF Encoding Definition
	7 Change Tracking
	8 Index

