
1 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-WMF]:

Windows Metafile Format

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.1 Minor Restructured for better usability, technical corrections.

7/20/2007 1.2 Minor Clarified the meaning of the technical content.

8/10/2007 1.3 Minor Clarified the meaning of the technical content.

9/28/2007 1.3.1 Editorial Changed language and formatting in the technical content.

10/23/2007 1.4 Minor Updated artwork.

11/30/2007 1.5 Minor Standardized artwork.

1/25/2008 1.5.1 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0 Major Abstract data model and Windows version-specific behavior added.

5/16/2008 2.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 3.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 3.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 4.0 Major

Sections 1.7 and 2 of this specification are normative. All other
sections and examples in this specification are informative.

Glossary updated; PitchAndFamily object added.

12/5/2008 4.1 Minor Clarified the meaning of the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 5.1 Minor Clarified the meaning of the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 7.0 Major Updated and revised the technical content.

7/2/2009 7.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 7.0.2 Editorial Changed language and formatting in the technical content.

9/25/2009 7.1 Minor Clarified the meaning of the technical content.

11/6/2009 8.0 Major Updated and revised the technical content.

12/18/2009 8.1 Minor Clarified the meaning of the technical content.

1/29/2010 8.1.1 Editorial Changed language and formatting in the technical content.

3/12/2010 8.2 Minor Clarified the meaning of the technical content.

4/23/2010 8.2.1 Editorial Changed language and formatting in the technical content.

6/4/2010 8.3 Minor Clarified the meaning of the technical content.

3 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Date
Revision
History

Revision
Class Comments

7/16/2010 8.4 Minor Clarified the meaning of the technical content.

8/27/2010 8.5 Minor Clarified the meaning of the technical content.

10/8/2010 8.5 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 8.5 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 8.5 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.5 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 8.5 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 8.5 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 9.0 Major Updated and revised the technical content.

9/23/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 10.0 Major Updated and revised the technical content.

3/30/2012 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 11.0 Major Updated and revised the technical content.

11/14/2013 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 11.1 Minor Clarified the meaning of the technical content.

6/30/2015 12.0 Major Significantly changed the technical content.

10/16/2015 13.0 Major Significantly changed the technical content.

7/14/2016 13.1 Minor Clarified the meaning of the technical content.

6/1/2017 13.1 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 14.0 Major Significantly changed the technical content.

4 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Table of Contents

1 Introduction .. 9
1.1 Glossary ... 9
1.2 References .. 14

1.2.1 Normative References ... 14
1.2.2 Informative References ... 15

1.3 Overview .. 15
1.3.1 Metafile Structure ... 15
1.3.2 Graphics Objects .. 17
1.3.3 Byte Ordering .. 17

1.4 Relationship to Protocols and Other Structures .. 17
1.5 Applicability Statement ... 18
1.6 Versioning and Localization ... 18
1.7 Vendor-Extensible Fields ... 18

2 Structures ... 19
2.1 WMF Constants .. 19

2.1.1 WMF Enumerations ... 19
2.1.1.1 RecordType Enumeration ... 19
2.1.1.2 BinaryRasterOperation Enumeration .. 24
2.1.1.3 BitCount Enumeration .. 27
2.1.1.4 BrushStyle Enumeration .. 28
2.1.1.5 CharacterSet Enumeration ... 29
2.1.1.6 ColorUsage Enumeration .. 30
2.1.1.7 Compression Enumeration.. 30
2.1.1.8 FamilyFont Enumeration .. 31
2.1.1.9 FloodFill Enumeration .. 32
2.1.1.10 FontQuality Enumeration.. 32
2.1.1.11 GamutMappingIntent Enumeration .. 33
2.1.1.12 HatchStyle Enumeration .. 34
2.1.1.13 Layout Enumeration .. 34
2.1.1.14 LogicalColorSpace Enumeration .. 35
2.1.1.15 LogicalColorSpaceV5 Enumeration ... 35
2.1.1.16 MapMode Enumeration .. 35
2.1.1.17 MetafileEscapes Enumeration ... 36
2.1.1.18 MetafileType Enumeration .. 39
2.1.1.19 MetafileVersion Enumeration .. 40
2.1.1.20 MixMode Enumeration ... 40
2.1.1.21 OutPrecision Enumeration .. 40
2.1.1.22 PaletteEntryFlag Enumeration ... 41
2.1.1.23 PenStyle Enumeration ... 42
2.1.1.24 PitchFont Enumeration ... 43
2.1.1.25 PolyFillMode Enumeration .. 43
2.1.1.26 PostScriptCap Enumeration .. 43
2.1.1.27 PostScriptClipping Enumeration .. 44
2.1.1.28 PostScriptFeatureSetting Enumeration ... 44
2.1.1.29 PostScriptJoin Enumeration .. 45
2.1.1.30 StretchMode Enumeration .. 45
2.1.1.31 TernaryRasterOperation Enumeration .. 46

2.1.2 WMF Flags ... 75
2.1.2.1 ClipPrecision Flags ... 75
2.1.2.2 ExtTextOutOptions Flags .. 75
2.1.2.3 TextAlignmentMode Flags .. 76
2.1.2.4 VerticalTextAlignmentMode Flags .. 77

2.2 WMF Objects ... 77
2.2.1 Graphics Objects .. 78

5 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.1.1 Brush Object .. 78
2.2.1.2 Font Object .. 79
2.2.1.3 Palette Object ... 81
2.2.1.4 Pen Object ... 82
2.2.1.5 Region Object ... 82

2.2.2 Structure Objects ... 83
2.2.2.1 Bitmap16 Object ... 83
2.2.2.2 BitmapCoreHeader Object .. 84
2.2.2.3 BitmapInfoHeader Object ... 84
2.2.2.4 BitmapV4Header Object ... 86
2.2.2.5 BitmapV5Header Object ... 87
2.2.2.6 CIEXYZ Object .. 88
2.2.2.7 CIEXYZTriple Object .. 89
2.2.2.8 ColorRef Object .. 89
2.2.2.9 DeviceIndependentBitmap Object ... 89
2.2.2.10 LogBrush Object ... 91
2.2.2.11 LogColorSpace Object .. 92
2.2.2.12 LogColorSpaceW Object ... 93
2.2.2.13 PaletteEntry Object ... 94
2.2.2.14 PitchAndFamily Object ... 95
2.2.2.15 PointL Object .. 95
2.2.2.16 PointS Object ... 95
2.2.2.17 PolyPolygon Object .. 96
2.2.2.18 Rect Object .. 96
2.2.2.19 RectL Object ... 96
2.2.2.20 RGBQuad Object ... 97
2.2.2.21 Scan Object ... 97
2.2.2.22 SizeL Object ... 98

2.3 WMF Records ... 98
2.3.1 Bitmap Record Types .. 99

2.3.1.1 META_BITBLT Record ... 100
2.3.1.1.1 With Bitmap ... 101
2.3.1.1.2 Without Bitmap .. 101

2.3.1.2 META_DIBBITBLT Record .. 102
2.3.1.2.1 With Bitmap ... 103
2.3.1.2.2 Without Bitmap .. 103

2.3.1.3 META_DIBSTRETCHBLT Record .. 104
2.3.1.3.1 With Bitmap ... 105
2.3.1.3.2 Without Bitmap .. 106

2.3.1.4 META_SETDIBTODEV Record ... 107
2.3.1.5 META_STRETCHBLT Record ... 108

2.3.1.5.1 With Bitmap ... 109
2.3.1.5.2 Without Bitmap .. 109

2.3.1.6 META_STRETCHDIB Record ... 110
2.3.2 Control Record Types ... 112

2.3.2.1 META_EOF Record .. 112
2.3.2.2 META_HEADER Record .. 112
2.3.2.3 META_PLACEABLE Record ... 113

2.3.3 Drawing Record Types .. 114
2.3.3.1 META_ARC Record ... 115
2.3.3.2 META_CHORD Record ... 116
2.3.3.3 META_ELLIPSE Record .. 117
2.3.3.4 META_EXTFLOODFILL Record .. 118
2.3.3.5 META_EXTTEXTOUT Record ... 118
2.3.3.6 META_FILLREGION Record .. 119
2.3.3.7 META_FLOODFILL Record .. 120
2.3.3.8 META_FRAMEREGION Record .. 120
2.3.3.9 META_INVERTREGION Record ... 121

6 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.3.10 META_LINETO Record ... 122
2.3.3.11 META_PAINTREGION Record ... 122
2.3.3.12 META_PATBLT Record ... 123
2.3.3.13 META_PIE Record ... 123
2.3.3.14 META_POLYLINE Record .. 124
2.3.3.15 META_POLYGON Record .. 125
2.3.3.16 META_POLYPOLYGON Record ... 125
2.3.3.17 META_RECTANGLE Record .. 126
2.3.3.18 META_ROUNDRECT Record ... 127
2.3.3.19 META_SETPIXEL Record .. 127
2.3.3.20 META_TEXTOUT Record .. 128

2.3.4 Object Record Types .. 129
2.3.4.1 META_CREATEBRUSHINDIRECT Record .. 130
2.3.4.2 META_CREATEFONTINDIRECT Record ... 130
2.3.4.3 META_CREATEPALETTE Record .. 131
2.3.4.4 META_CREATEPATTERNBRUSH Record .. 131
2.3.4.5 META_CREATEPENINDIRECT Record ... 133
2.3.4.6 META_CREATEREGION Record ... 133
2.3.4.7 META_DELETEOBJECT Record .. 133
2.3.4.8 META_DIBCREATEPATTERNBRUSH Record .. 134
2.3.4.9 META_SELECTCLIPREGION Record ... 135
2.3.4.10 META_SELECTOBJECT Record .. 135
2.3.4.11 META_SELECTPALETTE Record ... 136

2.3.5 State Record Types .. 136
2.3.5.1 META_ANIMATEPALETTE Record .. 138
2.3.5.2 META_EXCLUDECLIPRECT Record .. 139
2.3.5.3 META_INTERSECTCLIPRECT Record .. 139
2.3.5.4 META_MOVETO Record ... 140
2.3.5.5 META_OFFSETCLIPRGN Record .. 140
2.3.5.6 META_OFFSETVIEWPORTORG Record ... 141
2.3.5.7 META_OFFSETWINDOWORG Record ... 141
2.3.5.8 META_REALIZEPALETTE Record ... 142
2.3.5.9 META_RESIZEPALETTE Record ... 142
2.3.5.10 META_RESTOREDC Record .. 143
2.3.5.11 META_SAVEDC Record .. 143
2.3.5.12 META_SCALEVIEWPORTEXT Record .. 144
2.3.5.13 META_SCALEWINDOWEXT Record .. 144
2.3.5.14 META_SETBKCOLOR Record .. 145
2.3.5.15 META_SETBKMODE Record .. 145
2.3.5.16 META_SETLAYOUT Record ... 146
2.3.5.17 META_SETMAPMODE Record ... 146
2.3.5.18 META_SETMAPPERFLAGS Record ... 147
2.3.5.19 META_SETPALENTRIES Record .. 147
2.3.5.20 META_SETPOLYFILLMODE Record .. 148
2.3.5.21 META_SETRELABS Record ... 148
2.3.5.22 META_SETROP2 Record .. 149
2.3.5.23 META_SETSTRETCHBLTMODE Record ... 149
2.3.5.24 META_SETTEXTALIGN Record .. 150
2.3.5.25 META_SETTEXTCHAREXTRA Record .. 150
2.3.5.26 META_SETTEXTCOLOR Record ... 151
2.3.5.27 META_SETTEXTJUSTIFICATION Record ... 151
2.3.5.28 META_SETVIEWPORTEXT Record ... 152
2.3.5.29 META_SETVIEWPORTORG Record .. 152
2.3.5.30 META_SETWINDOWEXT Record ... 153
2.3.5.31 META_SETWINDOWORG Record... 153

2.3.6 Escape Record Types ... 154
2.3.6.1 META_ESCAPE Record .. 156
2.3.6.2 ABORTDOC Record ... 156

7 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.6.3 BEGIN_PATH Record .. 157
2.3.6.4 CHECK_JPEGFORMAT Record ... 157
2.3.6.5 CHECK_PNGFORMAT Record .. 158
2.3.6.6 CLIP_TO_PATH Record .. 159
2.3.6.7 CLOSE_CHANNEL Record .. 159
2.3.6.8 DOWNLOAD_FACE Record ... 160
2.3.6.9 DOWNLOAD_HEADER Record .. 160
2.3.6.10 DRAW_PATTERNRECT Record .. 161
2.3.6.11 ENCAPSULATED_POSTSCRIPT Record ... 162
2.3.6.12 END_PATH Record .. 163
2.3.6.13 ENDDOC Record .. 163
2.3.6.14 EPS_PRINTING Record .. 164
2.3.6.15 EXTTEXTOUT Record .. 164
2.3.6.16 GET_COLORTABLE Record ... 165
2.3.6.17 GET_DEVICEUNITS Record .. 166
2.3.6.18 GET_EXTENDED_TEXTMETRICS Record .. 166
2.3.6.19 GET_FACENAME Record .. 167
2.3.6.20 GET_PAIRKERNTABLE Record .. 167
2.3.6.21 GET_PHYSPAGESIZE Record .. 168
2.3.6.22 GET_PRINTINGOFFSET Record ... 168
2.3.6.23 GET_PS_FEATURESETTING Record ... 169
2.3.6.24 GET_SCALINGFACTOR Record ... 169
2.3.6.25 META_ESCAPE_ENHANCED_METAFILE Record ... 170
2.3.6.26 METAFILE_DRIVER Record .. 171
2.3.6.27 NEWFRAME Record ... 172
2.3.6.28 NEXTBAND Record ... 172
2.3.6.29 PASSTHROUGH Record ... 173
2.3.6.30 POSTSCRIPT_DATA Record ... 173
2.3.6.31 POSTSCRIPT_IDENTIFY Record .. 174
2.3.6.32 POSTSCRIPT_IGNORE Record .. 174
2.3.6.33 POSTSCRIPT_INJECTION Record .. 175
2.3.6.34 POSTSCRIPT_PASSTHROUGH Record .. 175
2.3.6.35 OPEN_CHANNEL Record .. 176
2.3.6.36 QUERY_DIBSUPPORT Record ... 176
2.3.6.37 QUERY_ESCSUPPORT Record ... 177
2.3.6.38 SET_COLORTABLE Record ... 177
2.3.6.39 SET_COPYCOUNT Record .. 178
2.3.6.40 SET_LINECAP Record ... 179
2.3.6.41 SET_LINEJOIN Record .. 179
2.3.6.42 SET_MITERLIMIT Record ... 180
2.3.6.43 SPCLPASSTHROUGH2 Record .. 180
2.3.6.44 STARTDOC Record ... 181

3 Structure Examples ... 182
3.1 Metafile Design ... 182

3.1.1 Device Independence ... 182
3.1.2 Byte Ordering Example ... 182
3.1.3 Mapping Modes ... 183
3.1.4 Managing Objects .. 184

3.1.4.1 WMF Object Table .. 184
3.1.4.2 Object Scaling ... 184

3.1.5 Playback Device Context ... 185
3.1.6 Run-Length Encoding (RLE) Compression ... 188

3.1.6.1 Bitmaps with 4 Bits per Pixel ... 188
3.1.6.2 Bitmaps with 8 Bits per Pixel ... 189

3.2 WMF Metafile Example ... 190
3.2.1 META_HEADER Example ... 191
3.2.2 META_CREATEPENINDIRECT Example .. 192

8 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2.3 META_SELECTOBJECT Example 1 .. 193
3.2.4 META_CREATEBRUSHINDIRECT Example .. 193
3.2.5 META_SELECTOBJECT Example 2 .. 194
3.2.6 META_RECTANGLE Example .. 195
3.2.7 META_TEXTOUT Example .. 195
3.2.8 META_EOF Example ... 196

4 Security Considerations ... 197

5 Appendix A: Product Behavior ... 198

6 Change Tracking .. 204

7 Index ... 205

9 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1 Introduction

This is a specification of the Windows metafile format (WMF) structure, which can store an image
in portable form. The stored image can be rendered by parsing and processing the metafile.

A WMF metafile is a series of variable-length records, called WMF records, that contain graphics
drawing commands, object definitions and properties. The metafile begins with a header record, which
includes the metafile version, its size, and the number of objects it defines. A WMF metafile is "played

back" when its records are converted to a format understood by a specific graphics device.

1.1 Glossary

This document uses the following terms:

American National Standards Institute (ANSI) character set: A character set defined by a
code page approved by the American National Standards Institute (ANSI). The term "ANSI" as
used to signify Windows code pages is a historical reference and a misnomer that persists in the

Windows community. The source of this misnomer stems from the fact that the Windows code
page 1252 was originally based on an ANSI draft, which became International Organization for
Standardization (ISO) Standard 8859-1 [ISO/IEC-8859-1]. In Windows, the ANSI character set
can be any of the following code pages: 1252, 1250, 1251, 1253, 1254, 1255, 1256, 1257,

1258, 874, 932, 936, 949, or 950. For example, "ANSI application" is usually a reference to a
non-Unicode or code-page-based application. Therefore, "ANSI character set" is often misused
to refer to one of the character sets defined by a Windows code page that can be used as an
active system code page; for example, character sets defined by code page 1252 or character
sets defined by code page 950. Windows is now based on Unicode, so the use of ANSI
character sets is strongly discouraged unless they are used to interoperate with legacy
applications or legacy data.

anti-aliasing: The smoothing of the jagged appearance of font characters and lines, which is an
artifact of the limited resolution on an output device. The pixels that surround the edges of the
character glyph or line are changed to varying shades of color in order to blend the sharp edge

into the background.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,

communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

aspect ratio: The ratio that is computed by dividing the width of a pixel on a given output device
by its height.

banding: A printing technique in which an application prints an image by dividing it into a number
of bands and sending each band to the printer separately.

baseline: The imaginary line to which the bottom of the lowercase "x" character in a font
typeface is aligned.

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the
memory location with the lowest address.

bitmap: A collection of structures that contain a representation of a graphical image, a logical
palette, dimensions and other information.

bottom-up bitmap: A bitmap with an origin at the bottom-left corner.

chromaticity: The quality of a color as determined by the magnitudes and relative intensities of its
red green blue (RGB) components in the color space.

https://go.microsoft.com/fwlink/?LinkId=90689

10 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

CIEXYZ: A widely used device-independent color standard developed by the Commission
Internationale de l'Éclairage (CIE). The CIEXYZ standard is based on color-matching

experiments on human observers. No actual device is expected to produce colors in this color
space. It is used as a means of converting colors from one color space to another. The

primary colors in this color space are the abstract colors X, Y, and Z.

ClearType: A font technology developed by Microsoft that can display fractions of pixels of
character glyphs and which improves the readability of text on liquid crystal displays (LCDs) and
flat-panel monitors.

clipboard: A program provided by the operating system that enables local data transfer between
applications by using the cut, copy, and paste operations.

clipboard format: An unsigned integer that uniquely identifies the format of a data packet that is

stored in a binary large object (BLOB) and can be shared between processes through the
operating system clipboard or other means.

CMYK: A color space used for commercial printing and most color computer printers. In theory,

cyan, magenta, and yellow (CMY) can print all colors, but inks are not pure and black comes out
muddy. The black (K) ink is required for quality black-and-white printing.

color profile: A file that contains information about how to convert colors in the color space and

the color gamut of a specific device into a device-independent color space. A device-specific
color profile is called a "device profile". For more information on using color and device profiles,
see [MSDN-UDP].

color space: A system that describes color numerically by mapping color components to a
multidimensional coordinate system. The number of dimensions is typically two, three, or four.
For example, if colors are expressed as a combination of the three components red, green, and
blue, a three-dimensional space can describe all possible colors. Grayscale colors can be mapped

to a two-dimensional color space. If transparency is considered a component, four dimensions
are appropriate. Also referred to as color model.

color table: An array of data that maps pixel values into a color space.

Commission Internationale de l'Eclairage (CIE): An international Commission on Illumination
in Vienna, Austria (www.cie.co.at) that sets standards for all aspects of lighting and illumination,
including colorimetry, photometry, and the measurement of visible and invisible radiation.

device context: A collection of properties and objects that defines a dynamic environment for

processes on a device. For graphics output, properties include brush style, line style, text layout,
foreground and background colors, and mapping mode; and objects include a brush, pen, font,
palette, region, and transform matrix. Multiple device contexts can exist simultaneously, but a
single device context specifies the environment for graphics output at a particular point in time.

device-independent bitmap (DIB): A container for bitmapped graphics, which specifies
characteristics of the bitmap such that it can be created using one application and loaded and

displayed in another application, while retaining an identical appearance.

dithering: A form of digital halftoning.

encapsulated PostScript (EPS): A file of PostScript raw data that describes the appearance of
a single page. Although EPS data can describe text, graphics, and images; the primary purpose
of an EPS file is to be encapsulated within another PostScript page definition.

enhanced metafile format (EMF): A file format that supports the device-independent definitions
of images.

https://go.microsoft.com/fwlink/?LinkId=90151

11 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

font association: The automatic pairing of a font that contains ideographs with a font that does
not contain ideographs. Font association is used to maintain font attributes across changes in

locale and allows the user to enter ideographic characters regardless of which font is selected.

font embedding: The process of attaching a font to a document so that the font can be used

wherever the document is used, regardless of whether the font is installed on the system.

font mapper: An operating system component that maps specified font attributes to available,
installed fonts on the system.

gamma: A value that describes the way brightness is distributed across the intensity spectrum by
a graphics device. Depending on the device, the gamma can have a significant effect on the way
colors are perceived. Technically, gamma is an expression of the relationship between input
voltage and resulting output intensity. A perfect linear device would have a gamma of 1.0; a

monitor or printer typically has a gamma in the range of 1.8 to 2.6, which affects midrange
tones. Gamma values are used to implement gamma correction. Typically, separate gamma
values are used for each component of a color space.

Graphics Device Interface (GDI): An API, supported on 16-bit and 32-bit versions of the
operating system, that supports graphics operations and image manipulation on logical graphics
objects.

International Color Consortium (ICC): A group established in 1993 by eight industry vendors
for the purpose of creating, promoting, and encouraging the standardization and evolution of an
open, vendor-neutral, cross-platform color management system architecture and components.
The outcome of this cooperation was the development of the ICC profile specification. Version 4
of the specification is now widely used and has recently been approved as International
Standard ISO 15076.

isotropic: Refers to the properties of an image, such as the scaling of logical units to device units,

which are the same regardless of the direction (x-axis versus y-axis) that is measured. Contrast
with anisotropic.

Joint Photographic Experts Group (JPEG): A raster graphics file format for displaying high-

resolution color graphics. JPEG graphics apply a user-specified compression scheme that can
significantly reduce the file sizes of photo-realistic color graphics. A higher level of compression
results in lower quality, whereas a lower level of compression results in higher quality. JPEG-
format files have a .jpg or .jpeg file name extension.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

logical object: A graphics object that is defined with device-independent parameters, without
assuming device specifics, such as color format or resolution.

logical palette: A palette that defines colors as device-independent values. Unlike the system
palette, which has predefined, device-specific color definitions, a logical palette contains color

values that can be defined entirely by an application. A logical palette entry is mapped to the
system palette entry in order for the custom colors to appear when the application is run.

mapping mode: The way in which logical (device-independent) coordinates are mapped to device
space (device-specific) coordinates. It also specifies the orientation of the axes and size of the
units used for drawing operations.

metafile: A sequence of record structures that store an image in an application-independent
format. Metafile records contain drawing commands, object definitions, and configuration

settings. When a metafile is processed, the stored image can be rendered on a display, output
to a printer or plotter, stored in memory, or saved to a file or stream.

12 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

METAFILEPICT: A structure that defines the metafile picture format. METAFILEPICT is used for
exchanging metafile data through the clipboard. See [MSDN-METAFILEPICT] and [MSDN-

CLIPFORM] for further information.

n-up printing: The act of arranging multiple logical pages on a physical sheet of paper.

OpenType: A Unicode-based font technology that is an extension to TrueType and Type 1 font
technologies. OpenType allows PostScript and TrueType glyph definitions to reside in a
common container format.

outline font: A font that is defined with mathematical equations, which makes it possible for a
printer or other output device to generate the characters at any size. In addition to being
arbitrarily scalable, the appearance of an outline font improves in proportion to the resolution of
an output device. TrueType and PostScript are examples of outline font technology.

packed bitmap: A device-independent bitmap (DIB) in which the bit array immediately follows
a BitmapInfoHeader object.

page space: A logical coordinate system used for graphics operations. It is determined by the

mapping mode. Page space is defined with device-independent units, such as pixels.

palette: An array of values, each element of which contains the definition of a color. The color
elements in a palette are often indexed so that clients can refer to the colors, each of which can

occupy 24 bits or more, by a number that requires less storage space.

path: A graphics object that is a container for a series of line and curve segments, and regions in
an image.

pitch: A property of a font that describes the horizontal density of characters in a font; that is, the
number of characters that can fit in a given unit of space. When all the characters in a font have
the same width, the font is called "fixed-pitch"; if characters can have various widths, the font is
"variable-pitch". Times New Roman is a variable-pitch font; it is easy to see that the characters

in the font have different widths. For example, the width of a lowercase "i" is visibly less than
the width of an uppercase "W".

playback device context: The device context that defines the current graphics state during
playback of the metafile. Although the data in a metafile can be device-independent, playback
is always associated with an output device with specific properties, such as resolution, color
support, and so on.

Portable Network Graphics (PNG): A bitmap graphics file format that uses lossless data

compression and supports variable transparency of images (alpha channels) and control of
image brightness on different computers (gamma correction). PNG-format files have a .png file
name extension.

PostScript: A page description language developed by Adobe Systems that is primarily used for
printing documents on laser printers. It is the standard for desktop publishing.

Predecessor Change List (PCL): A set of change numbers that specify the latest versions of a

messaging object in all replicas that were integrated into the current version. It is used for
conflict detection.

print job: The rendered page description language (PDL) output data sent to a print device for a
particular application or user request.

Printer Control Language (PCL): A page description language (PDL) developed by Hewlett
Packard for its laser and ink-jet printers.

https://go.microsoft.com/fwlink/?LinkId=156856
https://go.microsoft.com/fwlink/?LinkId=89971
https://go.microsoft.com/fwlink/?LinkId=89971

13 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

printer driver: The interface component between the operating system and the printer device. It
is responsible for processing the application data into a page description language (PDL) that

can be interpreted by the printer device.

raster operation: The process of combining the bits in a source bitmap with the bits in a

destination bitmap and in a specified pattern, to achieve a particular graphical output.

rasterized font: A font produced with rasterization. Such fonts are not scalable; they define glyph
bitmaps at specific sizes. Because of this, the appearance of rasterized fonts does not improve
in proportion to the resolution of an output device. When magnified, the visual quality of a
rasterized font decreases significantly compared to a vector font.

raw mode: Refers to a spool file format that requires no further processing; it is ready to be
received by the printer for which the data was formatted.

red green blue (RGB): An additive color model in which red, green, and blue are combined in
various ways to reproduce other colors.

red-green-blue (RGB): A color model that describes color information in terms of the red (R),

green (G), and blue (B) intensities in a color.

region: A graphics object that is nonrectilinear in shape and is defined by an array of scanlines.

Reverse Polish Notation (RPN): A mathematical notation wherein each operator follows all of its

operands. Also known as postfix notation.

run-length encoding (RLE) compression: A form of data compression in which repeated values
are represented by a count and a single instance of the value. RLE compression can significantly
reduce disk and memory space requirements.

scanline: A row of pixels in a rasterized image or bitmap. Multiple scanlines can be used to
define the boundaries and to fill any polygon or shape.

sRGB: A standard, predefined color space that is portable across all devices and allows accurate

color matching with little overhead. sRGB was developed by Hewlett-Packard and Microsoft and

is specified in [IEC-RGB]. It is available to users of Windows. Windows NT 3.1 operating system,
Windows NT 3.5 operating system, Windows NT 3.51 operating system, Windows 95 operating
system, and Windows NT 4.0 operating system: sRGB color management technology is not
available.

stock object: A predefined graphics object. Stock objects are standard, commonly used objects,
such as a black brush and pen. The set of predefined stock objects is specified in [MS-EMF]

section 2.1.31. Stock objects are neither created nor deleted.

system palette: The palette that is actually in use to reproduce colors on a device such as a
computer screen. A system palette has predefined, device-specific colors that are used by
default, so that individual applications do not have to set them up.

top-down bitmap: A bitmap with an origin at the upper-left corner.

tri-stimulus: The generation of color using three color components.

TrueType: A scalable font technology that renders fonts for both the printer and the screen. Each
TrueType font contains its own algorithms for converting printer outlines into screen bitmaps,
which means both the outline and bitmap information is rasterized from the same font data.
The lower-level language embedded within the TrueType font allows great flexibility in its
design. Both TrueType and Type 1 font technologies are part of the OpenType format.

twip: A unit of measurement that is used in typesetting and desktop publishing. It equals one-
twentieth of a printer's point, or 1/1440 of an inch.

https://go.microsoft.com/fwlink/?LinkId=89893

14 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Type 1 font: A public, standard type format originally developed for use with PostScript printers.
Type 1 fonts contain two components—the outline font, used for printing; and the bitmap font

set, used for screen display.

typeface: The primary design of a set of printed characters such as Courier, Helvetica, and Times

Roman. The terms typeface and font are sometimes used interchangeably. A font is the
particular implementation and variation of the typeface such as normal, bold, or italics. The
distinguishing characteristic of a typeface is often the presence or absence of serifs.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

UTF-16LE (Unicode Transformation Format, 16-bits, little-endian): The encoding scheme
specified in [UNICODE5.0.0/2007] section 2.6 for encoding Unicode characters as a sequence of
16-bit codes, each encoded as two 8-bit bytes with the least-significant byte first.

vector font: A font that is defined with geometrical primitives such as points, lines, curves, and
polygons, which are all based on mathematical equations instead of collections of discrete pixel
settings. Vector fonts can be rendered in high quality at arbitrary sizes. Outline fonts are

vector fonts. Contrast with rasterized fonts.

white point: A set of tri-stimulus values that define the color "white" in graphics image
rendering. Depending on the application, different definitions of white might be needed to
produce acceptable results. For example, consider a photograph taken indoors using
incandescent lights, which are relatively orange compared to daylight: Defining "white" as
daylight will give unacceptable results when attempting to color-correct such a photograph.

Windows metafile format (WMF): A file format used by Windows that supports the definition of

images, including a format for clip art in word-processing documents.

XML Paper Specification (XPS): An XML-based document format. XML Paper Specification
(XPS) specifies the set of conventions for the use of XML and other widely available

technologies to describe the content and appearance of paginated documents. For more
information, see [MSFT-XMLPAPER].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ISO/IEC-8859-1] International Organization for Standardization, "Information Technology -- 8-Bit
Single-Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859-1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90214
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=90689

15 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[JFIF] Hamilton, E., "JPEG File Interchange Format, Version 1.02", September 1992,
http://www.w3.org/Graphics/JPEG/jfif.txt

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2083] Boutell, T., et al., "PNG (Portable Network Graphics) Specification Version 1.0", RFC 2083,
March 1997, http://www.ietf.org/rfc/rfc2083.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[W3C-PNG] World Wide Web Consortium, "Portable Network Graphics (PNG) Specification, Second

Edition", November 2003, http://www.w3.org/TR/PNG

1.2.2 Informative References

[MS-EMF] Microsoft Corporation, "Enhanced Metafile Format".

[MSDN-CLIPFORM] Microsoft Corporation, "Clipboard Formats", http://msdn.microsoft.com/en-
us/library/ms649013.aspx

1.3 Overview

1.3.1 Metafile Structure

WMF specifies structures for defining a graphical image. A WMF metafile contains drawing
commands, property definitions, and graphics objects in a series of WMF records. In effect, a WMF

metafile is a digital recording of an image, and the recording can be played back to reproduce that
image. Because WMF metafiles are application-independent, they can be shared among applications
and used for image storage.

Original WMF metafiles were device-specific; that is, the graphical images they contained would only

be rendered correctly if played back on the output device for which they were recorded. To overcome
this limitation, "placeable" WMF metafiles were developed, which contain an extension to the standard
header with information about the placement and scaling of the image.

The following figure illustrates the high-level structures of the original and placeable forms of WMF
metafile.

https://go.microsoft.com/fwlink/?LinkId=89925
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90313
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90562
%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca
https://go.microsoft.com/fwlink/?LinkId=89971
https://go.microsoft.com/fwlink/?LinkId=89971

16 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 1: Structures of original and placeable Windows metafiles

The META_HEADER record (section 2.3.2.2) contains information that defines the characteristics of the
metafile, including:

 The type of the metafile

 The version of the metafile

 The size of the metafile

 The number of objects defined in the metafile

 The size of the largest single record in the metafile

The META_PLACEABLE record (section 2.3.2.3) contains extended information concerning the image,
including:

 A bounding rectangle

 Logical unit size, for scaling

 A checksum, for validation

WMF records have a generic format, which is specified in section 2.3. Every WMF record contains the
following information:

17 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 The record size

 The record function

 Parameters, if any, for the record function

All WMF metafiles are terminated by a WMF end-of-file record.

1.3.2 Graphics Objects

Graphics objects include the brushes, fonts, palettes, pens, and regions, which are used in the
drawing and painting operations specified in the records of a WMF metafile. They can be defined in

metafile records prior to the records that specify their use; that is, they are designed to have a
lifetime outside the processing of a particular record and to be reusable during the course of playing
back the metafile. The structure of WMF graphics objects is specified in section 2.2.1.

Throughout this specification, it is assumed that these reusable graphics objects are available when
needed for the processing of particular metafile records. This implies that they are stored or managed

in some fashion; the store of available objects is referred to in the text as the WMF Object Table,
which is described in section 3.1.4.1. The exact characteristics of the object store are determined by

the particular implementations that parse and write the metafiles.

Records that specify drawing and painting operations can occur in a WMF metafile prior to the
definition of any graphics objects. Thus, it is assumed that an initial state exists that specifies default
graphics properties of the playback device context, including default graphics objects. Information
concerning the playback device context is provided in section 3.1.5.

1.3.3 Byte Ordering

Data in WMF metafile records is stored in little-endian format.

Some computer architectures number bytes in a binary word from left to right, which is referred to as
big-endian. The byte numbering used for bitfields in this specification is big-endian. Other

architectures number the bytes in a binary word from right to left, which is referred to as little-endian.

The byte numbering used for enumerations, objects, and records in this specification is little-endian.

Using big-endian and little-endian methods, the number 0x12345678 would be stored as shown in the
following.

 Byte order Byte 0 Byte 1 Byte 2 Byte 3

Big-endian 0x12 0x34 0x56 0x78

Little-endian 0x78 0x56 0x34 0x12

1.4 Relationship to Protocols and Other Structures

WMF is not dependent on any protocols or other structures. WMF defines a design and layout based
on 16-bit operating systems.<1>

On 32-bit systems and for print spooling, it has been replaced by EMF, described in [MS-EMF].

%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca

18 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1.5 Applicability Statement

Structures that are compliant with WMF are portable, application-independent containers for images.
The graphics supported in WMF metafiles are applicable to document content representation,

including printing and plotting.

1.6 Versioning and Localization

This specification covers versioning issues in the following areas:

Structure Versions: There is only one version of the WMF structure.

Localization: This structure defines no locale-specific processes or data.

1.7 Vendor-Extensible Fields

The WMF defines a mechanism for the encapsulation of arbitrary, vendor-defined data. See section

2.3.6.1 for details.

19 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2 Structures

This section specifies the structures used to define the WMF, including:

 Enumerations of WMF graphics properties, styles and flags.

 Definitions of WMF graphics and structure objects.

 Specifications of WMF metafile records, by type.

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 WMF Constants

2.1.1 WMF Enumerations

 This section contains enumerations of constant values that are referenced in this specification.

2.1.1.1 RecordType Enumeration

The RecordType Enumeration defines the types of records that can be used in WMF metafiles.

 typedef enum
 {
 META_EOF = 0x0000,
 META_REALIZEPALETTE = 0x0035,
 META_SETPALENTRIES = 0x0037,
 META_SETBKMODE = 0x0102,
 META_SETMAPMODE = 0x0103,
 META_SETROP2 = 0x0104,
 META_SETRELABS = 0x0105,
 META_SETPOLYFILLMODE = 0x0106,
 META_SETSTRETCHBLTMODE = 0x0107,
 META_SETTEXTCHAREXTRA = 0x0108,
 META_RESTOREDC = 0x0127,
 META_RESIZEPALETTE = 0x0139,
 META_DIBCREATEPATTERNBRUSH = 0x0142,
 META_SETLAYOUT = 0x0149,
 META_SETBKCOLOR = 0x0201,
 META_SETTEXTCOLOR = 0x0209,
 META_OFFSETVIEWPORTORG = 0x0211,
 META_LINETO = 0x0213,
 META_MOVETO = 0x0214,
 META_OFFSETCLIPRGN = 0x0220,
 META_FILLREGION = 0x0228,
 META_SETMAPPERFLAGS = 0x0231,
 META_SELECTPALETTE = 0x0234,
 META_POLYGON = 0x0324,
 META_POLYLINE = 0x0325,
 META_SETTEXTJUSTIFICATION = 0x020A,
 META_SETWINDOWORG = 0x020B,
 META_SETWINDOWEXT = 0x020C,
 META_SETVIEWPORTORG = 0x020D,
 META_SETVIEWPORTEXT = 0x020E,
 META_OFFSETWINDOWORG = 0x020F,
 META_SCALEWINDOWEXT = 0x0410,
 META_SCALEVIEWPORTEXT = 0x0412,
 META_EXCLUDECLIPRECT = 0x0415,
 META_INTERSECTCLIPRECT = 0x0416,
 META_ELLIPSE = 0x0418,
 META_FLOODFILL = 0x0419,
 META_FRAMEREGION = 0x0429,
 META_ANIMATEPALETTE = 0x0436,

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

20 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 META_TEXTOUT = 0x0521,
 META_POLYPOLYGON = 0x0538,
 META_EXTFLOODFILL = 0x0548,
 META_RECTANGLE = 0x041B,
 META_SETPIXEL = 0x041F,
 META_ROUNDRECT = 0x061C,
 META_PATBLT = 0x061D,
 META_SAVEDC = 0x001E,
 META_PIE = 0x081A,
 META_STRETCHBLT = 0x0B23,
 META_ESCAPE = 0x0626,
 META_INVERTREGION = 0x012A,
 META_PAINTREGION = 0x012B,
 META_SELECTCLIPREGION = 0x012C,
 META_SELECTOBJECT = 0x012D,
 META_SETTEXTALIGN = 0x012E,
 META_ARC = 0x0817,
 META_CHORD = 0x0830,
 META_BITBLT = 0x0922,
 META_EXTTEXTOUT = 0x0a32,
 META_SETDIBTODEV = 0x0d33,
 META_DIBBITBLT = 0x0940,
 META_DIBSTRETCHBLT = 0x0b41,
 META_STRETCHDIB = 0x0f43,
 META_DELETEOBJECT = 0x01f0,
 META_CREATEPALETTE = 0x00f7,
 META_CREATEPATTERNBRUSH = 0x01F9,
 META_CREATEPENINDIRECT = 0x02FA,
 META_CREATEFONTINDIRECT = 0x02FB,
 META_CREATEBRUSHINDIRECT = 0x02FC,
 META_CREATEREGION = 0x06FF
 } RecordType;

META_EOF: This record specifies the end of the file, the last record in the metafile.

META_REALIZEPALETTE: This record maps entries from the logical palette that is defined in the
playback device context to the system palette.

META_SETPALENTRIES: This record defines red green blue (RGB) color values in a range of
entries in the logical palette that is defined in the playback device context.

META_SETBKMODE: This record defines the background raster operation mix mode in the

playback device context. The background mix mode is the mode for combining pens, text, hatched
brushes, and interiors of filled objects with background colors on the output surface.

META_SETMAPMODE: This record defines the mapping mode in the playback device context. The
mapping mode defines the unit of measure used to transform page-space coordinates into
coordinates of the output device, and also defines the orientation of the device's x and y axes.

META_SETROP2: This record defines the foreground raster operation mix mode in the playback
device context. The foreground mix mode is the mode for combining pens and interiors of filled

objects with foreground colors on the output surface.

META_SETRELABS: This record is undefined and MUST be ignored.

META_SETPOLYFILLMODE: This record defines polygon fill mode in the playback device context for
graphics operations that fill polygons.

META_SETSTRETCHBLTMODE: This record defines the bitmap stretching mode in the playback
device context.

21 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

META_SETTEXTCHAREXTRA: This record defines inter-character spacing for text justification in the
playback device context. Spacing is added to the white space between each character, including

break characters, when a line of justified text is output.

META_RESTOREDC: This record restores the playback device context from a previously saved

device context.

META_RESIZEPALETTE: This record redefines the size of the logical palette that is defined in the
playback device context.

META_DIBCREATEPATTERNBRUSH: This record defines a brush with a pattern specified by a
device-independent bitmap (DIB).

META_SETLAYOUT: This record defines the layout orientation in the playback device context.<2>

META_SETBKCOLOR: This record sets the background color in the playback device context to a

specified color, or to the nearest physical color if the device cannot represent the specified color.

META_SETTEXTCOLOR: This record defines the text color in the playback device context.

META_OFFSETVIEWPORTORG: This record moves the viewport origin in the playback device
context by using specified horizontal and vertical offsets.

META_LINETO: This record draws a line from the output position that is defined in the playback
device context up to, but not including, a specified point.

META_MOVETO: This record sets the output position in the playback device context to a specified
point.

META_OFFSETCLIPRGN: This record moves the clipping region that is defined in the playback
device context by specified offsets.

META_FILLREGION: This record fills a region by using a specified brush.

META_SETMAPPERFLAGS: This record defines the algorithm that the font mapper uses when it

maps logical fonts to physical fonts.

META_SELECTPALETTE: This record specifies the logical palette in the playback device context.

META_POLYGON: This record paints a polygon consisting of two or more vertices connected by
straight lines. The polygon is outlined by using the pen and filled by using the brush and polygon
fill mode; these are defined in the playback device context.

META_POLYLINE: This record draws a series of line segments by connecting the points in a
specified array.

META_SETTEXTJUSTIFICATION: This record defines the amount of space to add to break

characters in a string of justified text.

META_SETWINDOWORG: This record defines the output window origin in the playback device
context.

META_SETWINDOWEXT: This record defines the horizontal and vertical extents of the output
window in the playback device context.

META_SETVIEWPORTORG: This record defines the viewport origin in the playback device context.

META_SETVIEWPORTEXT: This record defines the horizontal and vertical extents of the viewport in
the playback device context.

22 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

META_OFFSETWINDOWORG: This record moves the output window origin in the playback device
context by using specified horizontal and vertical offsets.

META_SCALEWINDOWEXT: This record scales the horizontal and vertical extents of the output
window that is defined in the playback device context by using the ratios formed by specified

multiplicands and divisors.

META_SCALEVIEWPORTEXT: This record scales the horizontal and vertical extents of the viewport
that is defined in the playback device context by using the ratios formed by specified multiplicands
and divisors.

META_EXCLUDECLIPRECT: This record sets the clipping region that is defined in the playback
device context to the existing clipping region minus a specified rectangle.

META_INTERSECTCLIPRECT: This record sets the clipping region that is defined in the playback

device context to the intersection of the existing clipping region and a specified rectangle.

META_ELLIPSE: This record defines an ellipse. The center of the ellipse is the center of a specified
bounding rectangle. The ellipse is outlined by using the pen and is filled by using the brush; these

are defined in the playback device context.

META_FLOODFILL: This record fills an area of the display surface with the brush that is defined in
the playback device context.

META_FRAMEREGION: This record defines a border around a specified region by using a specified
brush.

META_ANIMATEPALETTE: This record redefines entries in the logical palette that is defined in the
playback device context.

META_TEXTOUT: This record outputs a character string at a specified location using the font,
background color, and text color; these are defined in the playback device context.

META_POLYPOLYGON: This record paints a series of closed polygons. Each polygon is outlined by

using the pen and filled by using the brush and polygon fill mode; these are defined in the

playback device context. The polygons drawn in this operation can overlap.

META_EXTFLOODFILL: This record fills an area with the brush that is defined in the playback device
context.

META_RECTANGLE: This record paints a rectangle. The rectangle is outlined by using the pen and
filled by using the brush; these are defined in the playback device context.

META_SETPIXEL: This record sets the pixel at specified coordinates to a specified color.

META_ROUNDRECT: This record draws a rectangle with rounded corners. The rectangle is outlined
by using the current pen and filled by using the current brush.

META_PATBLT: This record paints the specified rectangle by using the brush that is currently
selected into the playback device context. The brush color and the surface color or colors are
combined using the specified raster operation.

META_SAVEDC: This record saves the playback device context for later retrieval.

META_PIE: This record draws a pie-shaped wedge bounded by the intersection of an ellipse and two
radials. The pie is outlined by using the pen and filled by using the brush; these are defined in the
playback device context.

META_STRETCHBLT: This record specifies the transfer of a block of pixels according to a raster
operation, with possible expansion or contraction.

23 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

META_ESCAPE: This record makes it possible to access capabilities of a particular printing device
that are not directly available through other WMF records.

META_INVERTREGION: This record inverts the colors in a specified region.

META_PAINTREGION: This record paints a specified region by using the brush that is defined in the

playback device context.

META_SELECTCLIPREGION: This record specifies the clipping region in the playback device
context.

META_SELECTOBJECT: This record specifies a graphics object in the playback device context. The
new object replaces the previous object of the same type, if one is defined.

META_SETTEXTALIGN: This record defines the text-alignment values in the playback device
context.

META_ARC: This record draws an elliptical arc.

META_CHORD: This record draws a chord, which is a region bounded by the intersection of an
ellipse and a line segment. The chord is outlined by using the pen and filled by using the brush;
these are defined in the playback device context.

META_BITBLT: This record specifies the transfer of a block of pixels according to a raster operation.

META_EXTTEXTOUT: This record outputs a character string by using the font, background color,

and text color; these are defined in the playback device context. Optionally, dimensions can be
provided for clipping, opaquing, or both.

META_SETDIBTODEV: This record sets a block of pixels using device-independent color data.

META_DIBBITBLT: This record specifies the transfer of a block of pixels in device-independent
format according to a raster operation.

META_DIBSTRETCHBLT: This record specifies the transfer of a block of pixels in device-independent

format according to a raster operation, with possible expansion or contraction.

META_STRETCHDIB: This record specifies the transfer of color data from a block of pixels in device-
independent format according to a raster operation, with possible expansion or contraction.

META_DELETEOBJECT: This record deletes a graphics object, which can be a pen, brush, font,
region, or palette.

META_CREATEPALETTE: This record defines a logical palette.

META_CREATEPATTERNBRUSH: This record defines a brush with a pattern specified by a DIB.

META_CREATEPENINDIRECT: This record defines a pen with specified style, width, and color.

META_CREATEFONTINDIRECT: This record defines a font with specified characteristics.

META_CREATEBRUSHINDIRECT: This record defines a brush with specified style, color, and

pattern.

META_CREATEREGION: This record defines a region.

The high-order byte of the WMF record type values SHOULD be ignored for all record types except the
following.<3>

 META_BITBLT

 META_DIBBITBLT

24 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 META_DIBSTRETCHBLT

 META_POLYGON

 META_POLYLINE

 META_SETPALENTRIES

 META_STRETCHBLT

The meanings of the high-order bytes of these record type fields are specified in the respective
sections that define them.

A record type is not defined for the WMF Header record, because only one can be present as the first
record in the metafile.

2.1.1.2 BinaryRasterOperation Enumeration

The BinaryRasterOperation Enumeration section lists the binary raster-operation codes. Raster-
operation codes define how metafile processing combines the bits from the selected pen with the bits
in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the

selected pen and the destination bitmap are combined. Following are the two operands used in these
operations.

 Operand Meaning

P Selected pen

D Destination bitmap

Following are the Boolean operators used in these operations.

 Operator Meaning

a Bitwise AND

n Bitwise NOT (inverse)

o Bitwise OR

x Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the following
operation replaces the values of the pixels in the destination bitmap with a combination of the pixel
values of the pen and the selected brush: DPo.

Each raster-operation code is a 32-bit integer whose high-order word is a Boolean operation index and
whose low-order word is the operation code. The 16-bit operation index is a zero-extended, 8-bit

value that represents all possible outcomes resulting from the Boolean operation on two parameters
(in this case, the pen and destination values). For example, the operation indexes for the DPo and
DPan operations are shown in the following list.

 P D DPo DPan

0 0 0 1

0 1 1 1

25 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 P D DPo DPan

1 0 1 1

1 1 1 0

The following enumeration lists the drawing modes and the Boolean operations that they represent.

 typedef enum
 {
 R2_BLACK = 0x0001,
 R2_NOTMERGEPEN = 0x0002,
 R2_MASKNOTPEN = 0x0003,
 R2_NOTCOPYPEN = 0x0004,
 R2_MASKPENNOT = 0x0005,
 R2_NOT = 0x0006,
 R2_XORPEN = 0x0007,
 R2_NOTMASKPEN = 0x0008,
 R2_MASKPEN = 0x0009,
 R2_NOTXORPEN = 0x000A,
 R2_NOP = 0x000B,
 R2_MERGENOTPEN = 0x000C,
 R2_COPYPEN = 0x000D,
 R2_MERGEPENNOT = 0x000E,
 R2_MERGEPEN = 0x000F,
 R2_WHITE = 0x0010
 } BinaryRasterOperation;

R2_BLACK: 0, Pixel is always 0.

R2_NOTMERGEPEN: DPon, Pixel is the inverse of the R2_MERGEPEN color.

R2_MASKNOTPEN: DPna, Pixel is a combination of the screen color and the inverse of the pen color.

R2_NOTCOPYPEN: Pn, Pixel is the inverse of the pen color.

R2_MASKPENNOT: PDna, Pixel is a combination of the colors common to both the pen and the
inverse of the screen.

R2_NOT: Dn, Pixel is the inverse of the screen color.

R2_XORPEN: DPx, Pixel is a combination of the colors in the pen or in the screen, but not in both.

R2_NOTMASKPEN: DPan, Pixel is the inverse of the R2_MASKPEN color.

R2_MASKPEN: DPa, Pixel is a combination of the colors common to both the pen and the screen.

R2_NOTXORPEN: DPxn, Pixel is the inverse of the R2_XORPEN color.

R2_NOP: D, Pixel remains unchanged.

R2_MERGENOTPEN: DPno, Pixel is a combination of the colors common to both the screen and the

inverse of the pen.

R2_COPYPEN: P, Pixel is the pen color.

R2_MERGEPENNOT: PDno, Pixel is a combination of the pen color and the inverse of the screen
color.

R2_MERGEPEN: DPo, Pixel is a combination of the pen color and the screen color.

R2_WHITE: 1, Pixel is always 1

26 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

For a monochrome device, WMF format maps the value 0 to black and the value 1 to white. If an
application attempts to draw with a black pen on a white destination by using the available binary

raster operations, the following results occur.

 Raster operation Result

R2_BLACK Visible black line

R2_COPYPEN Visible black line

R2_MASKNOTPEN No visible line

R2_MASKPEN Visible black line

R2_MASKPENNOT Visible black line

R2_MERGENOTPEN No visible line

R2_MERGEPEN Visible black line

R2_MERGEPENNOT Visible black line

R2_NOP No visible line

R2_NOT Visible black line

R2_NOTCOPYPEN No visible line

R2_NOTMASKPEN No visible line

R2_NOTMERGEPEN Visible black line

R2_NOTXORPEN Visible black line

R2_WHITE No visible line

R2_XORPEN No visible line

For a color device, WMF format uses RGB values to represent the colors of the pen and the
destination. An RGB color value is a long integer that contains a red, a green, and a blue color field,
each specifying the intensity of the given color. Intensities range from 0 through 255. The values are
packed in the three low-order bytes of the long integer. The color of a pen is always a solid color, but
the color of the destination can be a mixture of any two or three colors. If an application attempts to
draw with a white pen on a blue destination by using the available binary raster operations, the

following results occur.

 Raster operation Result

R2_BLACK Visible black line

R2_COPYPEN Visible white line

R2_MASKNOTPEN Visible black line

R2_MASKPEN Invisible blue line

R2_MASKPENNOT Visible red/green line

R2_MERGENOTPEN Invisible blue line

R2_MERGEPEN Visible white line

R2_MERGEPENNOT Visible white line

27 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Raster operation Result

R2_NOP Invisible blue line

R2_NOT Visible red/green line

R2_NOTCOPYPEN Visible black line

R2_NOTMASKPEN Visible red/green line

R2_NOTMERGEPEN Visible black line

R2_NOTXORPEN Invisible blue line

R2_WHITE Visible white line

R2_XORPEN Visible red/green line

2.1.1.3 BitCount Enumeration

The BitCount Enumeration specifies the number of bits that define each pixel and the maximum
number of colors in a device-independent bitmap (DIB).

A DIB is specified by a DeviceIndependentBitmap Object (section 2.2.2.9), and its header is a

BitmapInfoHeader Object (section 2.2.2.3).

 typedef enum
 {
 BI_BITCOUNT_0 = 0x0000,
 BI_BITCOUNT_1 = 0x0001,
 BI_BITCOUNT_2 = 0x0004,
 BI_BITCOUNT_3 = 0x0008,
 BI_BITCOUNT_4 = 0x0010,
 BI_BITCOUNT_5 = 0x0018,
 BI_BITCOUNT_6 = 0x0020
 } BitCount;

BI_BITCOUNT_0: The number of bits per pixel is undefined.

The image SHOULD be in either JPEG or PNG format.<4> Neither of these formats includes a
color table, so this value specifies that no color table is present in the Colors field of the DIB
Object. See [JFIF] and [RFC2083] for more information concerning JPEG and PNG compression

formats.

BI_BITCOUNT_1: The image is specified with two colors.

Each pixel in the bitmap in the BitmapBuffer field of the DIB Object is represented by a single
bit. If the bit is clear, the pixel is displayed with the color of the first entry in the color table in the
Colors field; if the bit is set, the pixel has the color of the second entry in the table.

BI_BITCOUNT_2: The image is specified with a maximum of 16 colors.

Each pixel in the bitmap in the BitmapBuffer field of the DIB Object is represented by a 4-bit

index into the color table in the Colors field, and each byte contains 2 pixels.

BI_BITCOUNT_3: The image is specified with a maximum of 256 colors.

Each pixel in the bitmap in the BitmapBuffer field of the DIB Object is represented by an 8-bit
index into the color table in the Colors field, and each byte contains 1 pixel.

https://go.microsoft.com/fwlink/?LinkId=89925
https://go.microsoft.com/fwlink/?LinkId=90313

28 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

BI_BITCOUNT_4: The image is specified with a maximum of 2^16 colors.

Each pixel in the bitmap in the BitmapBuffer field of the DIB Object is represented by a 16-bit

value.

If the Compression field of the BitmapInfoHeader Object is BI_RGB, the Colors field of the DIB

Object is NULL. Each WORD in the bitmap represents a single pixel. The relative intensities of red,
green, and blue are represented with 5 bits for each color component. The value for blue is in the
least significant 5 bits, followed by 5 bits each for green and red. The most significant bit is not
used.

If the Compression field is set to BI_BITFIELDS, the color table in the Colors field contains three
DWORD color masks that specify the red, green, and blue components, respectively, of each pixel.
Each WORD in the bitmap represents a single pixel. The color table is used for optimizing colors on

palette-based devices, and contains the number of entries specified by the ColorUsed field of the
BitmapInfoHeader Object.

When the Compression field is set to BI_BITFIELDS, bits set in each DWORD mask MUST be

contiguous and SHOULD NOT overlap the bits of another mask.

BI_RGB and BI_BITFIELDS are defined in Compression Enumeration, section 2.1.1.7.

BI_BITCOUNT_5: The bitmap in the BitmapBuffer field of the DIB Object has a maximum of 2^24

colors, and the Colors field is NULL. Each 3-byte triplet in the bitmap represents the relative
intensities of blue, green, and red, respectively, for a pixel.

BI_BITCOUNT_6: The bitmap in the BitmapBuffer field of the DIB Object has a maximum of 2^24
colors.

If the Compression field of the BitmapInfoHeader Object is set to BI_RGB, the Colors field of the
DIB Object is set to NULL. Each DWORD in the bitmap in the BitmapBuffer field represents the
relative intensities of blue, green, and red, respectively, for a pixel. The high byte in each DWORD

is not used.

If the Compression field is set to BI_BITFIELDS, the color table in the Colors field contains three

DWORD color masks that specify the red, green, and blue components, respectively, of each pixel.
Each DWORD in the bitmap represents a single pixel. The color table is used for optimizing colors
used on palette-based devices and contains the number of entries specified by the ColorUsed
field of the BitmapInfoHeader Object.

When the Compression field is set to BI_BITFIELDS, bits set in each DWORD mask MUST be

contiguous and MUST NOT overlap the bits of another mask. All the bits in the pixel do not need to
be used.

BI_RGB and BI_BITFIELDS are specified in Compression Enumeration, section 2.1.1.7.

2.1.1.4 BrushStyle Enumeration

The BrushStyle Enumeration specifies the different possible brush types that can be used in graphics
operations. For more information, see the specification of the Brush Object (section 2.2.1.1).

 typedef enum
 {
 BS_SOLID = 0x0000,
 BS_NULL = 0x0001,
 BS_HATCHED = 0x0002,
 BS_PATTERN = 0x0003,
 BS_INDEXED = 0x0004,
 BS_DIBPATTERN = 0x0005,
 BS_DIBPATTERNPT = 0x0006,
 BS_PATTERN8X8 = 0x0007,

29 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 BS_DIBPATTERN8X8 = 0x0008,
 BS_MONOPATTERN = 0x0009
 } BrushStyle;

BS_SOLID: A brush that paints a single, constant color, either solid or dithered.

BS_NULL: A brush that does nothing. Using a BS_NULL brush in a graphics operation MUST have the
same effect as using no brush at all.<5>

BS_HATCHED: A brush that paints a predefined simple pattern, or "hatch", onto a solid background.

BS_PATTERN: A brush that paints a pattern defined by a bitmap, which can be a Bitmap16 Object
or a DeviceIndependentBitmap (DIB) Object.

BS_INDEXED: Not supported.

BS_DIBPATTERN: A pattern brush specified by a DIB.

BS_DIBPATTERNPT: A pattern brush specified by a DIB.

BS_PATTERN8X8: Not supported.

BS_DIBPATTERN8X8: Not supported.

BS_MONOPATTERN: Not supported.

2.1.1.5 CharacterSet Enumeration

The CharacterSet Enumeration defines the possible sets of character glyphs that are defined in fonts
for graphics output.

 typedef enum
 {
 ANSI_CHARSET = 0x00000000,
 DEFAULT_CHARSET = 0x00000001,
 SYMBOL_CHARSET = 0x00000002,
 MAC_CHARSET = 0x0000004D,
 SHIFTJIS_CHARSET = 0x00000080,
 HANGUL_CHARSET = 0x00000081,
 JOHAB_CHARSET = 0x00000082,
 GB2312_CHARSET = 0x00000086,
 CHINESEBIG5_CHARSET = 0x00000088,
 GREEK_CHARSET = 0x000000A1,
 TURKISH_CHARSET = 0x000000A2,
 VIETNAMESE_CHARSET = 0x000000A3,
 HEBREW_CHARSET = 0x000000B1,
 ARABIC_CHARSET = 0x000000B2,
 BALTIC_CHARSET = 0x000000BA,
 RUSSIAN_CHARSET = 0x000000CC,
 THAI_CHARSET = 0x000000DE,
 EASTEUROPE_CHARSET = 0x000000EE,
 OEM_CHARSET = 0x000000FF
 } CharacterSet;

ANSI_CHARSET: Specifies the English character set.

DEFAULT_CHARSET: Specifies a character set based on the current system locale; for example,
when the system locale is United States English, the default character set is ANSI_CHARSET.

SYMBOL_CHARSET: Specifies a character set of symbols.

30 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

MAC_CHARSET: Specifies the Apple Macintosh character set.<6>

SHIFTJIS_CHARSET: Specifies the Japanese character set.

HANGUL_CHARSET: Also spelled "Hangeul". Specifies the Hangul Korean character set.

JOHAB_CHARSET: Also spelled "Johap". Specifies the Johab Korean character set.

GB2312_CHARSET: Specifies the "simplified" Chinese character set for People's Republic of China.

CHINESEBIG5_CHARSET: Specifies the "traditional" Chinese character set, used mostly in Taiwan
and in the Hong Kong and Macao Special Administrative Regions.

GREEK_CHARSET: Specifies the Greek character set.

TURKISH_CHARSET: Specifies the Turkish character set.

VIETNAMESE_CHARSET: Specifies the Vietnamese character set.

HEBREW_CHARSET: Specifies the Hebrew character set

ARABIC_CHARSET: Specifies the Arabic character set

BALTIC_CHARSET: Specifies the Baltic (Northeastern European) character set

RUSSIAN_CHARSET: Specifies the Russian Cyrillic character set.

THAI_CHARSET: Specifies the Thai character set.

EASTEUROPE_CHARSET: Specifies a Eastern European character set.

OEM_CHARSET: Specifies a mapping to one of the OEM code pages, according to the current system

locale setting.

2.1.1.6 ColorUsage Enumeration

The ColorUsage Enumeration specifies whether a color table exists in a device-independent
bitmap (DIB) and how to interpret its values.

 typedef enum
 {
 DIB_RGB_COLORS = 0x0000,
 DIB_PAL_COLORS = 0x0001,
 DIB_PAL_INDICES = 0x0002
 } ColorUsage;

DIB_RGB_COLORS: The color table contains RGB values specified by RGBQuad
Objects (section 2.2.2.20).

DIB_PAL_COLORS: The color table contains 16-bit indices into the current logical palette in the
playback device context.

DIB_PAL_INDICES: No color table exists. The pixels in the DIB are indices into the current logical
palette in the playback device context.

A DIB is specified by a DeviceIndependentBitmap Object (section 2.2.2.9).

2.1.1.7 Compression Enumeration

The Compression Enumeration specifies the type of compression for a bitmap image.

31 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef enum
 {
 BI_RGB = 0x0000,
 BI_RLE8 = 0x0001,
 BI_RLE4 = 0x0002,
 BI_BITFIELDS = 0x0003,
 BI_JPEG = 0x0004,
 BI_PNG = 0x0005,
 BI_CMYK = 0x000B,
 BI_CMYKRLE8 = 0x000C,
 BI_CMYKRLE4 = 0x000D
 } Compression;

BI_RGB: The bitmap is in uncompressed red green blue (RGB) format that is not compressed and
does not use color masks.

BI_RLE8: An RGB format that uses run-length encoding (RLE) compression for bitmaps with 8
bits per pixel. The compression uses a 2-byte format consisting of a count byte followed by a byte
containing a color index.

BI_RLE4: An RGB format that uses RLE compression for bitmaps with 4 bits per pixel. The
compression uses a 2-byte format consisting of a count byte followed by two word-length color
indexes.

BI_BITFIELDS: The bitmap is not compressed and the color table consists of three DWORD color

masks that specify the red, green, and blue components, respectively, of each pixel. This is valid
when used with 16 and 32-bits per pixel bitmaps.

BI_JPEG: The image is a JPEG image, as specified in [JFIF]. This value SHOULD only be used in
certain bitmap operations, such as JPEG pass-through. The application MUST query for the pass-
through support, since not all devices support JPEG pass-through. Using non-RGB bitmaps MAY
limit the portability of the metafile to other devices. For instance, display device contexts
generally do not support this pass-through.

BI_PNG: The image is a PNG image, as specified in [RFC2083]. This value SHOULD only be used

certain bitmap operations, such as JPEG/PNG pass-through. The application MUST query for the
pass-through support, because not all devices support JPEG/PNG pass-through. Using non-RGB
bitmaps MAY limit the portability of the metafile to other devices. For instance, display device
contexts generally do not support this pass-through.

BI_CMYK: The image is an uncompressed CMYK format.

BI_CMYKRLE8: A CMYK format that uses RLE compression for bitmaps with 8 bits per pixel. The
compression uses a 2-byte format consisting of a count byte followed by a byte containing a color
index.

BI_CMYKRLE4: A CMYK format that uses RLE compression for bitmaps with 4 bits per pixel. The
compression uses a 2-byte format consisting of a count byte followed by two word-length color
indexes.

Note A bottom-up bitmap can be compressed, but a top-down bitmap cannot.

See section 3.1.6 for more information on RLE compression.

2.1.1.8 FamilyFont Enumeration

The FamilyFont enumeration specifies the font family. Font families describe the look of a font in a

general way. They are intended for specifying fonts when the exact typeface desired is not available.

https://go.microsoft.com/fwlink/?LinkId=89925
https://go.microsoft.com/fwlink/?LinkId=90313

32 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef enum
 {
 FF_DONTCARE = 0x00,
 FF_ROMAN = 0x01,
 FF_SWISS = 0x02,
 FF_MODERN = 0x03,
 FF_SCRIPT = 0x04,
 FF_DECORATIVE = 0x05
 } FamilyFont;

FF_DONTCARE: The default font is specified, which is implementation-dependent.

FF_ROMAN: Fonts with variable stroke widths, which are proportional to the actual widths of the
glyphs, and which have serifs. "MS Serif" is an example.

FF_SWISS: Fonts with variable stroke widths, which are proportional to the actual widths of the
glyphs, and which do not have serifs. "MS Sans Serif" is an example.

FF_MODERN: Fonts with constant stroke width, with or without serifs. Fixed-width fonts are usually

modern. "Pica", "Elite", and "Courier New" are examples.

FF_SCRIPT: Fonts designed to look like handwriting. "Script" and "Cursive" are examples.

FF_DECORATIVE: Novelty fonts. "Old English" is an example.

In a Font object (section 2.2.1.2), when a FamilyFont enumeration value is packed into a byte with a
PitchFont enumeration (section 2.1.1.24) value, the result is a PitchAndFamily
object (section 2.2.2.14).

2.1.1.9 FloodFill Enumeration

The FloodFill Enumeration specifies the type of fill operation to be performed.

 typedef enum
 {
 FLOODFILLBORDER = 0x0000,
 FLOODFILLSURFACE = 0x0001
 } FloodFill;

FLOODFILLBORDER: The fill area is bounded by the color specified by the Color member. This style
is identical to the filling performed by the META_FLOODFILL record.

FLOODFILLSURFACE: The fill area is bounded by the color that is specified by the Color member.
Filling continues outward in all directions as long as the color is encountered. This style is useful
for filling areas with multicolored boundaries.

2.1.1.10 FontQuality Enumeration

The FontQuality Enumeration specifies how closely the attributes of the logical font match those of the

physical font when rendering text.

 typedef enum
 {
 DEFAULT_QUALITY = 0x00,
 DRAFT_QUALITY = 0x01,
 PROOF_QUALITY = 0x02,
 NONANTIALIASED_QUALITY = 0x03,
 ANTIALIASED_QUALITY = 0x04,
 CLEARTYPE_QUALITY = 0x05

33 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 } FontQuality;

DEFAULT_QUALITY: Specifies that the character quality of the font does not matter, so
DRAFT_QUALITY can be used.

DRAFT_QUALITY: Specifies that the character quality of the font is less important than the
matching of logical attribuetes. For rasterized fonts, scaling SHOULD be enabled, which means
that more font sizes are available.

PROOF_QUALITY: Specifies that the character quality of the font is more important than the
matching of logical attributes. For rasterized fonts, scaling SHOULD be disabled, and the font

closest in size SHOULD be chosen.

NONANTIALIASED_QUALITY: Specifies that anti-aliasing SHOULD NOT be used when rendering
text.<7>

ANTIALIASED_QUALITY: Specifies that anti-aliasing SHOULD be used when rendering text, if the

font supports it.<8>

CLEARTYPE_QUALITY: Specifies that ClearType anti-aliasing SHOULD be used when rendering
text, if the font supports it.<9>

Fonts that do not support ClearType anti-aliasing include type 1 fonts, PostScript fonts,
OpenType fonts without TrueType outlines, rasterized fonts, vector fonts, and device fonts.

2.1.1.11 GamutMappingIntent Enumeration

The GamutMappingIntent Enumeration specifies the relationship between logical and physical
colors.<10>

 typedef enum
 {
 LCS_GM_ABS_COLORIMETRIC = 0x00000008,
 LCS_GM_BUSINESS = 0x00000001,
 LCS_GM_GRAPHICS = 0x00000002,
 LCS_GM_IMAGES = 0x00000004
 } GamutMappingIntent;

LCS_GM_ABS_COLORIMETRIC: Specifies that the white point SHOULD be maintained. Typically

used when logical colors MUST be matched to their nearest physical color in the destination color
gamut.

Intent: Match

ICC name: Absolute Colorimetric

LCS_GM_BUSINESS: Specifies that saturation SHOULD be maintained. Typically used for business
charts and other situations in which dithering is not required.

Intent: Graphic

ICC name: Saturation

LCS_GM_GRAPHICS: Specifies that a colorimetric match SHOULD be maintained. Typically used for
graphic designs and named colors.

Intent: Proof

34 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ICC name: Relative Colorimetric

LCS_GM_IMAGES: Specifies that contrast SHOULD be maintained. Typically used for photographs

and natural images.

Intent: Picture

ICC name: Perceptual

2.1.1.12 HatchStyle Enumeration

The HatchStyle Enumeration specifies the hatch pattern.

 typedef enum
 {
 HS_HORIZONTAL = 0x0000,
 HS_VERTICAL = 0x0001,
 HS_FDIAGONAL = 0x0002,
 HS_BDIAGONAL = 0x0003,
 HS_CROSS = 0x0004,
 HS_DIAGCROSS = 0x0005
 } HatchStyle;

HS_HORIZONTAL: A horizontal hatch.

HS_VERTICAL: A vertical hatch.

HS_FDIAGONAL: A 45-degree downward, left-to-right hatch.

HS_BDIAGONAL: A 45-degree upward, left-to-right hatch.

HS_CROSS: A horizontal and vertical cross-hatch.

HS_DIAGCROSS: A 45-degree crosshatch.

2.1.1.13 Layout Enumeration

The Layout Enumeration defines options for controlling the direction in which text and graphics are
drawn.<11>

 typedef enum
 {
 LAYOUT_LTR = 0x0000,
 LAYOUT_RTL = 0x0001,
 LAYOUT_BITMAPORIENTATIONPRESERVED = 0x0008
 } Layout;

LAYOUT_LTR: Sets the default horizontal layout to be left-to-right.

LAYOUT_RTL: Sets the default horizontal layout to be right-to-left. Switching to this layout SHOULD
cause the mapping mode in the playback device context to become MM_ISOTROPIC (section

2.1.1.16).

LAYOUT_BITMAPORIENTATIONPRESERVED: Disables mirroring of bitmaps that are drawn by
META_BITBLT and META_STRETCHBLT operations, when the layout is right-to-left.

35 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.1.1.14 LogicalColorSpace Enumeration

The LogicalColorSpace Enumeration specifies the type of color space.<12>

 typedef enum
 {
 LCS_CALIBRATED_RGB = 0x00000000,
 LCS_sRGB = 0x73524742,
 LCS_WINDOWS_COLOR_SPACE = 0x57696E20
 } LogicalColorSpace;

LCS_CALIBRATED_RGB: Color values are calibrated red green blue (RGB) values.

LCS_sRGB: The value is an encoding of the ASCII characters "sRGB", and it indicates that the color
values are sRGB values.

LCS_WINDOWS_COLOR_SPACE: The value is an encoding of the ASCII characters "Win ",
including the trailing space, and it indicates that the color values are Windows default color space

values.

2.1.1.15 LogicalColorSpaceV5 Enumeration

The LogicalColorSpaceV5 Enumeration is used to specify where to find color profile information for a
DeviceIndependentBitmap (DIB) Object (section 2.2.2.9) that has a header of type BitmapV5Header
Object (section 2.2.2.5).<13>

 typedef enum
 {
 LCS_PROFILE_LINKED = 0x4C494E4B,
 LCS_PROFILE_EMBEDDED = 0x4D424544
 } LogicalColorSpaceV5;

LCS_PROFILE_LINKED: The value consists of the string "LINK" from the Windows character set
(code page 1252). It indicates that the color profile MUST be linked with the DIB Object.

LCS_PROFILE_EMBEDDED: The value consists of the string "MBED" from the Windows character

set (code page 1252). It indicates that the color profile MUST be embedded in the DIB Object.

2.1.1.16 MapMode Enumeration

The MapMode Enumeration defines how logical units are mapped to physical units; that is, assuming
that the origins in both the logical and physical coordinate systems are at the same point on the

drawing surface, what is the physical coordinate (x',y') that corresponds to logical coordinate (x,y).

For example, suppose the mapping mode is MM_TEXT. Given the following definition of that
mapping mode, and an origin (0,0) at the top left corner of the drawing surface, logical coordinate
(4,5) would map to physical coordinate (4,5) in pixels.

Now suppose the mapping mode is MM_LOENGLISH, with the same origin as the previous example.
Given the following definition of that mapping mode, logical coordinate (4,-5) would map to physical

coordinate (0.04,0.05) in inches.

 typedef enum
 {
 MM_TEXT = 0x0001,
 MM_LOMETRIC = 0x0002,
 MM_HIMETRIC = 0x0003,
 MM_LOENGLISH = 0x0004,

36 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 MM_HIENGLISH = 0x0005,
 MM_TWIPS = 0x0006,
 MM_ISOTROPIC = 0x0007,
 MM_ANISOTROPIC = 0x0008
 } MapMode;

MM_TEXT: Each logical unit is mapped to one device pixel. Positive x is to the right; positive y is
down.

MM_LOMETRIC: Each logical unit is mapped to 0.1 millimeter. Positive x is to the right; positive y is
up.

MM_HIMETRIC: Each logical unit is mapped to 0.01 millimeter. Positive x is to the right; positive y
is up.

MM_LOENGLISH: Each logical unit is mapped to 0.01 inch. Positive x is to the right; positive y is up.

MM_HIENGLISH: Each logical unit is mapped to 0.001 inch. Positive x is to the right; positive y is

up.

MM_TWIPS: Each logical unit is mapped to one twentieth (1/20) of a point. In printing, a point is
1/72 of an inch; therefore, 1/20 of a point is 1/1440 of an inch. This unit is also known as a
"twip".

Positive x is to the right; positive y is up.

MM_ISOTROPIC: Logical units are mapped to arbitrary device units with equally scaled axes; that
is, one unit along the x-axis is equal to one unit along the y-axis. The META_SETWINDOWEXT and
META_SETVIEWPORTEXT records specify the units and the orientation of the axes.

The processing application SHOULD make adjustments as necessary to ensure the x and y units
remain the same size. For example, when the window extent is set, the viewport SHOULD be
adjusted to keep the units isotropic.

MM_ANISOTROPIC: Logical units are mapped to arbitrary units with arbitrarily scaled axes.

2.1.1.17 MetafileEscapes Enumeration

The MetafileEscapes Enumeration specifies printer driver functionality that might not be directly
accessible through WMF records defined in the RecordType Enumeration (section 2.1.1.1).

These values are used by Escape Record Types (section 2.3.6).

 typedef enum
 {
 NEWFRAME = 0x0001,
 ABORTDOC = 0x0002,
 NEXTBAND = 0x0003,
 SETCOLORTABLE = 0x0004,
 GETCOLORTABLE = 0x0005,
 FLUSHOUT = 0x0006,
 DRAFTMODE = 0x0007,
 QUERYESCSUPPORT = 0x0008,
 SETABORTPROC = 0x0009,
 STARTDOC = 0x000A,
 ENDDOC = 0x000B,
 GETPHYSPAGESIZE = 0x000C,
 GETPRINTINGOFFSET = 0x000D,
 GETSCALINGFACTOR = 0x000E,
 META_ESCAPE_ENHANCED_METAFILE = 0x000F,
 SETPENWIDTH = 0x0010,

37 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 SETCOPYCOUNT = 0x0011,
 SETPAPERSOURCE = 0x0012,
 PASSTHROUGH = 0x0013,
 GETTECHNOLOGY = 0x0014,
 SETLINECAP = 0x0015,
 SETLINEJOIN = 0x0016,
 SETMITERLIMIT = 0x0017,
 BANDINFO = 0x0018,
 DRAWPATTERNRECT = 0x0019,
 GETVECTORPENSIZE = 0x001A,
 GETVECTORBRUSHSIZE = 0x001B,
 ENABLEDUPLEX = 0x001C,
 GETSETPAPERBINS = 0x001D,
 GETSETPRINTORIENT = 0x001E,
 ENUMPAPERBINS = 0x001F,
 SETDIBSCALING = 0x0020,
 EPSPRINTING = 0x0021,
 ENUMPAPERMETRICS = 0x0022,
 GETSETPAPERMETRICS = 0x0023,
 POSTSCRIPT_DATA = 0x0025,
 POSTSCRIPT_IGNORE = 0x0026,
 GETDEVICEUNITS = 0x002A,
 GETEXTENDEDTEXTMETRICS = 0x0100,
 GETPAIRKERNTABLE = 0x0102,
 EXTTEXTOUT = 0x0200,
 GETFACENAME = 0x0201,
 DOWNLOADFACE = 0x0202,
 METAFILE_DRIVER = 0x0801,
 QUERYDIBSUPPORT = 0x0C01,
 BEGIN_PATH = 0x1000,
 CLIP_TO_PATH = 0x1001,
 END_PATH = 0x1002,
 OPEN_CHANNEL = 0x100E,
 DOWNLOADHEADER = 0x100F,
 CLOSE_CHANNEL = 0x1010,
 POSTSCRIPT_PASSTHROUGH = 0x1013,
 ENCAPSULATED_POSTSCRIPT = 0x1014,
 POSTSCRIPT_IDENTIFY = 0x1015,
 POSTSCRIPT_INJECTION = 0x1016,
 CHECKJPEGFORMAT = 0x1017,
 CHECKPNGFORMAT = 0x1018,
 GET_PS_FEATURESETTING = 0x1019,
 MXDC_ESCAPE = 0x101A,
 SPCLPASSTHROUGH2 = 0x11D8
 } MetafileEscapes;

NEWFRAME: Notifies the printer driver that the application has finished writing to a page.

ABORTDOC: Stops processing the current document.

NEXTBAND: Notifies the printer driver that the application has finished writing to a band.

SETCOLORTABLE: Sets color table values.

GETCOLORTABLE: Gets color table values.

FLUSHOUT: Causes all pending output to be flushed to the output device.

DRAFTMODE: Indicates that the printer driver SHOULD print text only, and no graphics.

QUERYESCSUPPORT: Queries a printer driver to determine whether a specific escape function is

supported on the output device it drives.

SETABORTPROC: Sets the application-defined function that allows a print job to be canceled during
printing.

38 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

STARTDOC: Notifies the printer driver that a new print job is starting.

ENDDOC: Notifies the printer driver that the current print job is ending.

GETPHYSPAGESIZE: Retrieves the physical page size currently selected on an output device.

GETPRINTINGOFFSET: Retrieves the offset from the upper-left corner of the physical page where

the actual printing or drawing begins.

GETSCALINGFACTOR: Retrieves the scaling factors for the x-axis and the y-axis of a printer.

META_ESCAPE_ENHANCED_METAFILE: Used to embed an enhanced metafile format (EMF)
metafile within a WMF metafile.

SETPENWIDTH: Sets the width of a pen in pixels.

SETCOPYCOUNT: Sets the number of copies.

SETPAPERSOURCE: Sets the source, such as a particular paper tray or bin on a printer, for output

forms.

PASSTHROUGH: This record passes through arbitrary data.

GETTECHNOLOGY: Gets information concerning graphics technology that is supported on a device.

SETLINECAP: Specifies the line-drawing mode to use in output to a device.

SETLINEJOIN: Specifies the line-joining mode to use in output to a device.

SETMITERLIMIT: Sets the limit for the length of miter joins to use in output to a device.

BANDINFO: Retrieves or specifies settings concerning banding on a device, such as the number of
bands.

DRAWPATTERNRECT: Draws a rectangle with a defined pattern.

GETVECTORPENSIZE: Retrieves the physical pen size currently defined on a device.

GETVECTORBRUSHSIZE: Retrieves the physical brush size currently defined on a device.

ENABLEDUPLEX: Enables or disables double-sided (duplex) printing on a device.

GETSETPAPERBINS: Retrieves or specifies the source of output forms on a device.

GETSETPRINTORIENT: Retrieves or specifies the paper orientation on a device.

ENUMPAPERBINS: Retrieves information concerning the sources of different forms on an output
device.

SETDIBSCALING: Specifies the scaling of device-independent bitmaps (DIBs).

EPSPRINTING: Indicates the start and end of an encapsulated PostScript (EPS) section.

ENUMPAPERMETRICS: Queries a printer driver for paper dimensions and other forms data.

GETSETPAPERMETRICS: Retrieves or specifies paper dimensions and other forms data on an output

device.

POSTSCRIPT_DATA: Sends arbitrary PostScript data to an output device.

POSTSCRIPT_IGNORE: Notifies an output device to ignore PostScript data.

GETDEVICEUNITS: Gets the device units currently configured on an output device.

39 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

GETEXTENDEDTEXTMETRICS: Gets extended text metrics currently configured on an output
device.

GETPAIRKERNTABLE: Gets the font kern table currently defined on an output device.

EXTTEXTOUT: Draws text using the currently selected font, background color, and text color.

GETFACENAME: Gets the font face name currently configured on a device.

DOWNLOADFACE: Sets the font face name on a device.

METAFILE_DRIVER: Queries a printer driver about the support for metafiles on an output device.

QUERYDIBSUPPORT: Queries the printer driver about its support for DIBs on an output device.

BEGIN_PATH: Opens a path.

CLIP_TO_PATH: Defines a clip region that is bounded by a path. The input MUST be a 16-bit
quantity that defines the action to take.

END_PATH: Ends a path.

OPEN_CHANNEL: The same as STARTDOC specified with a NULL document and output filename,
data in raw mode, and a type of zero.

DOWNLOADHEADER: Instructs the printer driver to download sets of PostScript procedures.

CLOSE_CHANNEL: The same as ENDDOC. See OPEN_CHANNEL.

POSTSCRIPT_PASSTHROUGH: Sends arbitrary data directly to a printer driver, which is expected

to process this data only when in PostScript mode. See POSTSCRIPT_IDENTIFY.<14>

ENCAPSULATED_POSTSCRIPT: Sends arbitrary data directly to the printer driver.

POSTSCRIPT_IDENTIFY: Sets the printer driver to either PostScript or GDI mode.<15>

POSTSCRIPT_INJECTION: Inserts a block of raw data into a PostScript stream. The input MUST be
a 32-bit quantity specifying the number of bytes to inject, a 16-bit quantity specifying the
injection point, and a 16-bit quantity specifying the page number, followed by the bytes to
inject.<16>

CHECKJPEGFORMAT: Checks whether the printer supports a JPEG image.<17>

CHECKPNGFORMAT: Checks whether the printer supports a PNG image.<18>

GET_PS_FEATURESETTING: Gets information on a specified feature setting for a PostScript printer
driver.<19>

MXDC_ESCAPE: Enables applications to write documents to a file or to a printer in XML Paper
Specification (XPS) format.<20>

SPCLPASSTHROUGH2: Enables applications to include private procedures and other arbitrary data

in documents.<21>

2.1.1.18 MetafileType Enumeration

The MetafileType Enumeration specifies where the metafile is stored.

 typedef enum
 {
 MEMORYMETAFILE = 0x0001,

40 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DISKMETAFILE = 0x0002
 } MetafileType;

MEMORYMETAFILE: Metafile is stored in memory.

DISKMETAFILE: Metafile is stored on disk.

2.1.1.19 MetafileVersion Enumeration

The MetafileVersion Enumeration defines values that specify support for device-independent
bitmaps (DIBs) in metafiles.

 typedef enum
 {
 METAVERSION100 = 0x0100,
 METAVERSION300 = 0x0300
 } MetafileVersion;

METAVERSION100: DIBs are not supported.

METAVERSION300: DIBs are supported.

2.1.1.20 MixMode Enumeration

The MixMode Enumeration specifies the background mix mode for text, hatched brushes, and other
nonsolid pen styles.

 typedef enum
 {
 TRANSPARENT = 0x0001,
 OPAQUE = 0x0002
 } MixMode;

TRANSPARENT: The background remains untouched.

OPAQUE: The background is filled with the background color that is currently defined in the
playback device context before the text, hatched brush, or pen is drawn.

2.1.1.21 OutPrecision Enumeration

The OutPrecision enumeration defines values for output precision, which is the requirement for the
font mapper to match specific font parameters, including height, width, character orientation,
escapement, pitch, and font type.

 typedef enum
 {
 OUT_DEFAULT_PRECIS = 0x00000000,
 OUT_STRING_PRECIS = 0x00000001,
 OUT_STROKE_PRECIS = 0x00000003,
 OUT_TT_PRECIS = 0x00000004,
 OUT_DEVICE_PRECIS = 0x00000005,
 OUT_RASTER_PRECIS = 0x00000006,
 OUT_TT_ONLY_PRECIS = 0x00000007,
 OUT_OUTLINE_PRECIS = 0x00000008,
 OUT_SCREEN_OUTLINE_PRECIS = 0x00000009,
 OUT_PS_ONLY_PRECIS = 0x0000000A

41 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 } OutPrecision;

OUT_DEFAULT_PRECIS: A value that specifies default behavior.

OUT_STRING_PRECIS: A value that is returned when rasterized fonts are enumerated.

OUT_STROKE_PRECIS: A value that is returned when TrueType and other outline fonts, and
vector fonts are enumerated.

OUT_TT_PRECIS: A value that specifies the choice of a TrueType font when the system contains
multiple fonts with the same name.

OUT_DEVICE_PRECIS: A value that specifies the choice of a device font when the system contains

multiple fonts with the same name.

OUT_RASTER_PRECIS: A value that specifies the choice of a rasterized font when the system
contains multiple fonts with the same name.

OUT_TT_ONLY_PRECIS: A value that specifies the requirement for only TrueType fonts. If there are
no TrueType fonts installed in the system, default behavior is specified.

OUT_OUTLINE_PRECIS: A value that specifies the requirement for TrueType and other outline
fonts.

OUT_SCREEN_OUTLINE_PRECIS: A value that specifies a preference for TrueType and other
outline fonts.

OUT_PS_ONLY_PRECIS: A value that specifies a requirement for only PostScript fonts. If there
are no PostScript fonts installed in the system, default behavior is specified.

2.1.1.22 PaletteEntryFlag Enumeration

The PaletteEntryFlag Enumeration specifies how the palette entry is used.

 typedef enum
 {
 PC_RESERVED = 0x01,
 PC_EXPLICIT = 0x02,
 PC_NOCOLLAPSE = 0x04
 } PaletteEntryFlag;

PC_RESERVED: Specifies that the logical palette entry be used for palette animation. This value
prevents other windows from matching colors to the palette entry because the color frequently
changes. If an unused system-palette entry is available, the color is placed in that entry.

Otherwise, the color is not available for animation.

PC_EXPLICIT: Specifies that the low-order word of the logical palette entry designates a hardware
palette index. This value allows the application to show the contents of the display device palette.

PC_NOCOLLAPSE: Specifies that the color be placed in an unused entry in the system palette
instead of being matched to an existing color in the system palette. If there are no unused entries
in the system palette, the color is matched normally. Once this color is in the system palette,
colors in other logical palettes can be matched to this color.

42 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.1.1.23 PenStyle Enumeration

The 16-bit PenStyle Enumeration is used to specify different types of pens that can be used in
graphics operations.

Various styles can be combined by using a logical OR statement, one from each subsection of Style,
EndCap, Join, and Type (Cosmetic).

 typedef enum
 {
 PS_COSMETIC = 0x0000,
 PS_ENDCAP_ROUND = 0x0000,
 PS_JOIN_ROUND = 0x0000,
 PS_SOLID = 0x0000,
 PS_DASH = 0x0001,
 PS_DOT = 0x0002,
 PS_DASHDOT = 0x0003,
 PS_DASHDOTDOT = 0x0004,
 PS_NULL = 0x0005,
 PS_INSIDEFRAME = 0x0006,
 PS_USERSTYLE = 0x0007,
 PS_ALTERNATE = 0x0008,
 PS_ENDCAP_SQUARE = 0x0100,
 PS_ENDCAP_FLAT = 0x0200,
 PS_JOIN_BEVEL = 0x1000,
 PS_JOIN_MITER = 0x2000
 } PenStyle;

PS_COSMETIC: The pen is cosmetic.

PS_ENDCAP_ROUND: Line end caps are round.

PS_JOIN_ROUND: Line joins are round.

PS_SOLID: The pen is solid.

PS_DASH: The pen is dashed.

PS_DOT: The pen is dotted.

PS_DASHDOT: The pen has alternating dashes and dots.

PS_DASHDOTDOT: The pen has dashes and double dots.

PS_NULL: The pen is invisible.

PS_INSIDEFRAME: The pen is solid. When this pen is used in any drawing record that takes a
bounding rectangle, the dimensions of the figure are shrunk so that it fits entirely in the bounding
rectangle, taking into account the width of the pen.

PS_USERSTYLE: The pen uses a styling array supplied by the user.

PS_ALTERNATE: The pen sets every other pixel (this style is applicable only for cosmetic pens).

PS_ENDCAP_SQUARE: Line end caps are square.

PS_ENDCAP_FLAT: Line end caps are flat.

PS_JOIN_BEVEL: Line joins are beveled.

PS_JOIN_MITER: Line joins are mitered when they are within the current limit set by the
SETMITERLIMIT META_ESCAPE record. A join is beveled when it would exceed the limit.

43 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.1.1.24 PitchFont Enumeration

The PitchFont enumeration defines values that are used for specifying characteristics of a font. The
values are used to indicate whether the characters in a font have a fixed or variable width, or pitch.

 typedef enum
 {
 DEFAULT_PITCH = 0,
 FIXED_PITCH = 1,
 VARIABLE_PITCH = 2
 } PitchFont;

DEFAULT_PITCH: The default pitch, which is implementation-dependent.

FIXED_PITCH: A fixed pitch, which means that all the characters in the font occupy the same width
when output in a string.

VARIABLE_PITCH: A variable pitch, which means that the characters in the font occupy widths that

are proportional to the actual widths of the glyphs when output in a string. For example, the "i"
and space characters usually have much smaller widths than a "W" or "O" character.

In a Font object (section 2.2.1.2), when a FamilyFont enumeration (section 2.1.1.8) value is packed
into a byte with a PitchFont enumeration value, the result is a PitchAndFamily
object (section 2.2.2.14).

2.1.1.25 PolyFillMode Enumeration

The PolyFillMode Enumeration specifies the method used for filling a polygon.

 typedef enum
 {
 ALTERNATE = 0x0001,
 WINDING = 0x0002
 } PolyFillMode;

ALTERNATE: Selects alternate mode (fills the area between odd-numbered and even-numbered

polygon sides on each scan line).

WINDING: Selects winding mode (fills any region with a nonzero winding value).

2.1.1.26 PostScriptCap Enumeration

The PostScriptCap Enumeration defines line-ending types for use with a PostScript printer driver.

 typedef enum
 {
 PostScriptNotSet = -2,
 PostScriptFlatCap = 0,
 PostScriptRoundCap = 1,
 PostScriptSquareCap = 2
 } PostScriptCap;

PostScriptNotSet: Specifies that the line-ending style has not been set and that a default style can
be used.<22>

PostScriptFlatCap: Specifies that the line ends at the last point. The end is squared off.

44 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PostScriptRoundCap: Specifies a circular cap. The center of the circle is the last point in the line.
The diameter of the circle is the same as the line width; that is, the thickness of the line.

PostScriptSquareCap: Specifies a square cap. The center of the square is the last point in the line.
The height and width of the square are the same as the line width; that is, the thickness of the

line.

2.1.1.27 PostScriptClipping Enumeration

The PostScriptClipping Enumeration defines functions that can be applied to the clipping path used for

PostScript output.

 typedef enum
 {
 CLIP_SAVE = 0x0000,
 CLIP_RESTORE = 0x0001,
 CLIP_INCLUSIVE = 0x0002
 } PostScriptClipping;

CLIP_SAVE: Saves the current PostScript clipping path.

CLIP_RESTORE: Restores the PostScript clipping path to the last clipping path that was saved by a
previous CLIP_SAVE function applied by a CLIP_TO_PATH record (section 2.3.6.6).

CLIP_INCLUSIVE: Intersects the current PostScript clipping path with the current clipping path and
saves the result as the new PostScript clipping path.

2.1.1.28 PostScriptFeatureSetting Enumeration

The PostScriptFeatureSetting Enumeration defines values that are used to retrieve information about
specific features in a PostScript printer driver.<23>

 typedef enum
 {
 FEATURESETTING_NUP = 0x00000000,
 FEATURESETTING_OUTPUT = 0x00000001,
 FEATURESETTING_PSLEVEL = 0x00000002,
 FEATURESETTING_CUSTPAPER = 0x00000003,
 FEATURESETTING_MIRROR = 0x00000004,
 FEATURESETTING_NEGATIVE = 0x00000005,
 FEATURESETTING_PROTOCOL = 0x00000006,
 FEATURESETTING_PRIVATE_BEGIN = 0x00001000,
 FEATURESETTING_PRIVATE_END = 0x00001FFF
 } PostScriptFeatureSetting;

FEATURESETTING_NUP: Specifies the n-up printing (page layout) setting.

FEATURESETTING_OUTPUT: Specifies PostScript driver output options.

FEATURESETTING_PSLEVEL: Specifies the language level.

FEATURESETTING_CUSTPAPER: Specifies custom paper parameters.

FEATURESETTING_MIRROR: Specifies the mirrored output setting.

FEATURESETTING_NEGATIVE: Specifies the negative output setting.

FEATURESETTING_PROTOCOL: Specifies the output protocol setting.

45 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FEATURESETTING_PRIVATE_BEGIN: Specifies the start of a range of values that a driver can use
for retrieving data concerning proprietary features.<24>

FEATURESETTING_PRIVATE_END: Specifies the end of a range of values that a driver can use for
retrieving data concerning proprietary features.<25>

2.1.1.29 PostScriptJoin Enumeration

The PostScriptJoin Enumeration defines line-joining capabilities for use with a PostScript printer
driver.

 typedef enum
 {
 PostScriptNotSet = -2,
 PostScriptMiterJoin = 0,
 PostScriptRoundJoin = 1,
 PostScriptBevelJoin = 2
 } PostScriptJoin;

PostScriptNotSet: Specifies that the line-joining style has not been set and that a default style can
be used.<26>

PostScriptMiterJoin: Specifies a mitered join, which produces a sharp or clipped corner.

PostScriptRoundJoin: Specifies a circular join, which produces a smooth, circular arc between the
lines.

PostScriptBevelJoin: Specifies a beveled join, which produces a diagonal corner.

2.1.1.30 StretchMode Enumeration

The StretchMode Enumeration specifies the bitmap stretching mode, which defines how the system
combines rows or columns of a bitmap with existing pixels.

 typedef enum
 {
 BLACKONWHITE = 0x0001,
 WHITEONBLACK = 0x0002,
 COLORONCOLOR = 0x0003,
 HALFTONE = 0x0004
 } StretchMode;

BLACKONWHITE: Performs a Boolean AND operation by using the color values for the eliminated
and existing pixels. If the bitmap is a monochrome bitmap, this mode preserves black pixels at the
expense of white pixels.<27>

WHITEONBLACK: Performs a Boolean OR operation by using the color values for the eliminated and
existing pixels. If the bitmap is a monochrome bitmap, this mode preserves white pixels at the

expense of black pixels.<28>

COLORONCOLOR: Deletes the pixels. This mode deletes all eliminated lines of pixels without trying
to preserve their information.<29>

HALFTONE: Maps pixels from the source rectangle into blocks of pixels in the destination rectangle.
The average color over the destination block of pixels approximates the color of the source
pixels.<30>

46 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

After setting the HALFTONE stretching mode, the brush origin MUST be set to avoid misalignment
artifacts.

2.1.1.31 TernaryRasterOperation Enumeration

The TernaryRasterOperation Enumeration specifies ternary raster operation codes, which define how
to combine the bits in a source bitmap with the bits in a destination bitmap.

 typedef enum
 {
 BLACKNESS = 0x00,
 DPSOON = 0x01,
 DPSONA = 0x02,
 PSON = 0x03,
 SDPONA = 0x04,
 DPON = 0x05,
 PDSXNON = 0x06,
 PDSAON = 0x07,
 SDPNAA = 0x08,
 PDSXON = 0x09,
 DPNA = 0x0A,
 PSDNAON = 0x0B,
 SPNA = 0x0C,
 PDSNAON = 0x0D,
 PDSONON = 0x0E,
 PN = 0x0F,
 PDSONA = 0x10,
 NOTSRCERASE = 0x11,
 SDPXNON = 0x12,
 SDPAON = 0x13,
 DPSXNON = 0x14,
 DPSAON = 0x15,
 PSDPSANAXX = 0x16,
 SSPXDSXAXN = 0x17,
 SPXPDXA = 0x18,
 SDPSANAXN = 0x19,
 PDSPAOX = 0x1A,
 SDPSXAXN = 0x1B,
 PSDPAOX = 0x1C,
 DSPDXAXN = 0x1D,
 PDSOX = 0x1E,
 PDSOAN = 0x1F,
 DPSNAA = 0x20,
 SDPXON = 0x21,
 DSNA = 0x22,
 SPDNAON = 0x23,
 SPXDSXA = 0x24,
 PDSPANAXN = 0x25,
 SDPSAOX = 0x26,
 SDPSXNOX = 0x27,
 DPSXA = 0x28,
 PSDPSAOXXN = 0x29,
 DPSANA = 0x2A,
 SSPXPDXAXN = 0x2B,
 SPDSOAX = 0x2C,
 PSDNOX = 0x2D,
 PSDPXOX = 0x2E,
 PSDNOAN = 0x2F,
 PSNA = 0x30,
 SDPNAON = 0x31,
 SDPSOOX = 0x32,
 NOTSRCCOPY = 0x33,
 SPDSAOX = 0x34,
 SPDSXNOX = 0x35,
 SDPOX = 0x36,
 SDPOAN = 0x37,
 PSDPOAX = 0x38,

47 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 SPDNOX = 0x39,
 SPDSXOX = 0x3A,
 SPDNOAN = 0x3B,
 PSX = 0x3C,
 SPDSONOX = 0x3D,
 SPDSNAOX = 0x3E,
 PSAN = 0x3F,
 PSDNAA = 0x40,
 DPSXON = 0x41,
 SDXPDXA = 0x42,
 SPDSANAXN = 0x43,
 SRCERASE = 0x44,
 DPSNAON = 0x45,
 DSPDAOX = 0x46,
 PSDPXAXN = 0x47,
 SDPXA = 0x48,
 PDSPDAOXXN = 0x49,
 DPSDOAX = 0x4A,
 PDSNOX = 0x4B,
 SDPANA = 0x4C,
 SSPXDSXOXN = 0x4D,
 PDSPXOX = 0x4E,
 PDSNOAN = 0x4F,
 PDNA = 0x50,
 DSPNAON = 0x51,
 DPSDAOX = 0x52,
 SPDSXAXN = 0x53,
 DPSONON = 0x54,
 DSTINVERT = 0x55,
 DPSOX = 0x56,
 DPSOAN = 0x57,
 PDSPOAX = 0x58,
 DPSNOX = 0x59,
 PATINVERT = 0x5A,
 DPSDONOX = 0x5B,
 DPSDXOX = 0x5C,
 DPSNOAN = 0x5D,
 DPSDNAOX = 0x5E,
 DPAN = 0x5F,
 PDSXA = 0x60,
 DSPDSAOXXN = 0x61,
 DSPDOAX = 0x62,
 SDPNOX = 0x63,
 SDPSOAX = 0x64,
 DSPNOX = 0x65,
 SRCINVERT = 0x66,
 SDPSONOX = 0x67,
 DSPDSONOXXN = 0x68,
 PDSXXN = 0x69,
 DPSAX = 0x6A,
 PSDPSOAXXN = 0x6B,
 SDPAX = 0x6C,
 PDSPDOAXXN = 0x6D,
 SDPSNOAX = 0x6E,
 PDXNAN = 0x6F,
 PDSANA = 0x70,
 SSDXPDXAXN = 0x71,
 SDPSXOX = 0x72,
 SDPNOAN = 0x73,
 DSPDXOX = 0x74,
 DSPNOAN = 0x75,
 SDPSNAOX = 0x76,
 DSAN = 0x77,
 PDSAX = 0x78,
 DSPDSOAXXN = 0x79,
 DPSDNOAX = 0x7A,
 SDPXNAN = 0x7B,
 SPDSNOAX = 0x7C,
 DPSXNAN = 0x7D,

48 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 SPXDSXO = 0x7E,
 DPSAAN = 0x7F,
 DPSAA = 0x80,
 SPXDSXON = 0x81,
 DPSXNA = 0x82,
 SPDSNOAXN = 0x83,
 SDPXNA = 0x84,
 PDSPNOAXN = 0x85,
 DSPDSOAXX = 0x86,
 PDSAXN = 0x87,
 SRCAND = 0x88,
 SDPSNAOXN = 0x89,
 DSPNOA = 0x8A,
 DSPDXOXN = 0x8B,
 SDPNOA = 0x8C,
 SDPSXOXN = 0x8D,
 SSDXPDXAX = 0x8E,
 PDSANAN = 0x8F,
 PDSXNA = 0x90,
 SDPSNOAXN = 0x91,
 DPSDPOAXX = 0x92,
 SPDAXN = 0x93,
 PSDPSOAXX = 0x94,
 DPSAXN = 0x95,
 DPSXX = 0x96,
 PSDPSONOXX = 0x97,
 SDPSONOXN = 0x98,
 DSXN = 0x99,
 DPSNAX = 0x9A,
 SDPSOAXN = 0x9B,
 SPDNAX = 0x9C,
 DSPDOAXN = 0x9D,
 DSPDSAOXX = 0x9E,
 PDSXAN = 0x9F,
 DPA = 0xA0,
 PDSPNAOXN = 0xA1,
 DPSNOA = 0xA2,
 DPSDXOXN = 0xA3,
 PDSPONOXN = 0xA4,
 PDXN = 0xA5,
 DSPNAX = 0xA6,
 PDSPOAXN = 0xA7,
 DPSOA = 0xA8,
 DPSOXN = 0xA9,
 D = 0xAA,
 DPSONO = 0xAB,
 SPDSXAX = 0xAC,
 DPSDAOXN = 0xAD,
 DSPNAO = 0xAE,
 DPNO = 0xAF,
 PDSNOA = 0xB0,
 PDSPXOXN = 0xB1,
 SSPXDSXOX = 0xB2,
 SDPANAN = 0xB3,
 PSDNAX = 0xB4,
 DPSDOAXN = 0xB5,
 DPSDPAOXX = 0xB6,
 SDPXAN = 0xB7,
 PSDPXAX = 0xB8,
 DSPDAOXN = 0xB9,
 DPSNAO = 0xBA,
 MERGEPAINT = 0xBB,
 SPDSANAX = 0xBC,
 SDXPDXAN = 0xBD,
 DPSXO = 0xBE,
 DPSANO = 0xBF,
 MERGECOPY = 0xC0,
 SPDSNAOXN = 0xC1,
 SPDSONOXN = 0xC2,

49 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 PSXN = 0xC3,
 SPDNOA = 0xC4,
 SPDSXOXN = 0xC5,
 SDPNAX = 0xC6,
 PSDPOAXN = 0xC7,
 SDPOA = 0xC8,
 SPDOXN = 0xC9,
 DPSDXAX = 0xCA,
 SPDSAOXN = 0xCB,
 SRCCOPY = 0xCC,
 SDPONO = 0xCD,
 SDPNAO = 0xCE,
 SPNO = 0xCF,
 PSDNOA = 0xD0,
 PSDPXOXN = 0xD1,
 PDSNAX = 0xD2,
 SPDSOAXN = 0xD3,
 SSPXPDXAX = 0xD4,
 DPSANAN = 0xD5,
 PSDPSAOXX = 0xD6,
 DPSXAN = 0xD7,
 PDSPXAX = 0xD8,
 SDPSAOXN = 0xD9,
 DPSDANAX = 0xDA,
 SPXDSXAN = 0xDB,
 SPDNAO = 0xDC,
 SDNO = 0xDD,
 SDPXO = 0xDE,
 SDPANO = 0xDF,
 PDSOA = 0xE0,
 PDSOXN = 0xE1,
 DSPDXAX = 0xE2,
 PSDPAOXN = 0xE3,
 SDPSXAX = 0xE4,
 PDSPAOXN = 0xE5,
 SDPSANAX = 0xE6,
 SPXPDXAN = 0xE7,
 SSPXDSXAX = 0xE8,
 DSPDSANAXXN = 0xE9,
 DPSAO = 0xEA,
 DPSXNO = 0xEB,
 SDPAO = 0xEC,
 SDPXNO = 0xED,
 SRCPAINT = 0xEE,
 SDPNOO = 0xEF,
 PATCOPY = 0xF0,
 PDSONO = 0xF1,
 PDSNAO = 0xF2,
 PSNO = 0xF3,
 PSDNAO = 0xF4,
 PDNO = 0xF5,
 PDSXO = 0xF6,
 PDSANO = 0xF7,
 PDSAO = 0xF8,
 PDSXNO = 0xF9,
 DPO = 0xFA,
 PATPAINT = 0xFB,
 PSO = 0xFC,
 PSDNOO = 0xFD,
 DPSOO = 0xFE,
 WHITENESS = 0xFF
 } TernaryRasterOperation;

BLACKNESS:

Reverse Polish = 00000042

50 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = 0

DPSOON:

Reverse Polish = 00010289

Common = DPSoon

DPSONA:

Reverse Polish = 00020C89

Common = DPSona

PSON:

Reverse Polish = 000300AA

Common = PSon

SDPONA:

Reverse Polish = 00040C88

Common = SDPona

DPON:

Reverse Polish = 000500A9

Common = DPon

PDSXNON:

Reverse Polish = 00060865

Common = PDSxnon

PDSAON:

Reverse Polish = 000702C5

Common = PDSaon

SDPNAA:

Reverse Polish = 00080F08

Common = SDPnaa

PDSXON:

Reverse Polish = 00090245

Common = PDSxon

DPNA:

Reverse Polish = 000A0329

Common = DPna

PSDNAON:

51 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 000B0B2A

Common = PSDnaon

SPNA:

Reverse Polish = 000C0324

Common = SPna

PDSNAON:

Reverse Polish = 000D0B25

Common = PDSnaon

PDSONON:

Reverse Polish = 000E08A5

Common = PDSonon

PN:

Reverse Polish = 000F0001

Common = Pn

PDSONA:

Reverse Polish = 00100C85

Common = PDSona

NOTSRCERASE:

Reverse Polish = 001100A6

Common = DSon

SDPXNON:

Reverse Polish = 00120868

Common = SDPxnon

SDPAON:

Reverse Polish = 001302C8

Common = SDPaon

DPSXNON:

Reverse Polish = 00140869

Common = DPSxnon

DPSAON:

Reverse Polish = 001502C9

Common = DPSaon

52 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PSDPSANAXX:

Reverse Polish = 00165CCA

Common = PSDPSanaxx

SSPXDSXAXN:

Reverse Polish = 00171D54

Common = SSPxDSxaxn

SPXPDXA:

Reverse Polish = 00180D59

Common = SPxPDxa

SDPSANAXN:

Reverse Polish = 00191CC8

Common = SDPSanaxn

PDSPAOX:

Reverse Polish = 001A06C5

Common = PDSPaox

SDPSXAXN:

Reverse Polish = 001B0768

Common = SDPSxaxn

PSDPAOX:

Reverse Polish = 001C06CA

Common = PSDPaox

DSPDXAXN:

Reverse Polish = 001D0766

Common = DSPDxaxn

PDSOX:

Reverse Polish = 001E01A5

Common = PDSox

PDSOAN:

Reverse Polish = 001F0385

Common = PDSoan

DPSNAA:

Reverse Polish = 00200F09

53 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = DPSnaa

SDPXON:

Reverse Polish = 00210248

Common = SDPxon

DSNA:

Reverse Polish = 00220326

Common = DSna

SPDNAON:

Reverse Polish = 00230B24

Common = SPDnaon

SPXDSXA:

Reverse Polish = 00240D55

Common = SPxDSxa

PDSPANAXN:

Reverse Polish = 00251CC5

Common = PDSPanaxn

SDPSAOX:

Reverse Polish = 002606C8

Common = SDPSaox

SDPSXNOX:

Reverse Polish = 00271868

Common = SDPSxnox

DPSXA:

Reverse Polish = 00280369

Common = DPSxa

PSDPSAOXXN:

Reverse Polish = 002916CA

Common = PSDPSaoxxn

DPSANA:

Reverse Polish = 002A0CC9

Common = DPSana

SSPXPDXAXN:

54 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 002B1D58

Common = SSPxPDxaxn

SPDSOAX:

Reverse Polish = 002C0784

Common = SPDSoax

PSDNOX:

Reverse Polish = 002D060A

Common = PSDnox

PSDPXOX:

Reverse Polish = 002E064A

Common = PSDPxox

PSDNOAN:

Reverse Polish = 002F0E2A

Common = PSDnoan

PSNA:

Reverse Polish = 0030032A

Common = PSna

SDPNAON:

Reverse Polish = 00310B28

Common = SDPnaon

SDPSOOX:

Reverse Polish = 00320688

Common = SDPSoox

NOTSRCCOPY:

Reverse Polish = 00330008

Common = Sn

SPDSAOX:

Reverse Polish = 003406C4

Common = SPDSaox

SPDSXNOX:

Reverse Polish = 00351864

Common = SPDSxnox

55 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SDPOX:

Reverse Polish = 003601A8

Common = SDPox

SDPOAN:

Reverse Polish = 00370388

Common = SDPoan

PSDPOAX:

Reverse Polish = 0038078A

Common = PSDPoax

SPDNOX:

Reverse Polish = 0390604

Common = SPDnox

SPDSXOX:

Reverse Polish = 003A0644

Common = SPDSxox

SPDNOAN:

Reverse Polish = 003B0E24

Common = SPDnoan

PSX:

Reverse Polish = 003C004A

Common = PSx

SPDSONOX:

Reverse Polish = 003D18A4

Common = SPDSonox

SPDSNAOX:

Reverse Polish = 003E1B24

Common = SPDSnaox

PSAN:

Reverse Polish = 003F00EA

Common = PSan

PSDNAA:

Reverse Polish = 00400F0A

56 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = PSDnaa

DPSXON:

Reverse Polish = 00410249

Common = DPSxon

SDXPDXA:

Reverse Polish = 00420D5D

Common = SDxPDxa

SPDSANAXN:

Reverse Polish = 00431CC4

Common = SPDSanaxn

SRCERASE:

Reverse Polish = 00440328

Common = SDna

DPSNAON:

Reverse Polish = 00450B29

Common = DPSnaon

DSPDAOX:

Reverse Polish = 004606C6

Common = DSPDaox

PSDPXAXN:

Reverse Polish = 0047076A

Common = PSDPxaxn

SDPXA:

Reverse Polish = 00480368

Common = SDPxa

PDSPDAOXXN:

Reverse Polish = 004916C5

Common = PDSPDaoxxn

DPSDOAX:

Reverse Polish = 004A0789

Common = DPSDoax

PDSNOX:

57 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 004B0605

Common = PDSnox

SDPANA:

Reverse Polish = 004C0CC8

Common = SDPana

SSPXDSXOXN:

Reverse Polish = 004D1954

Common = SSPxDSxoxn

PDSPXOX:

Reverse Polish = 004E0645

Common = PDSPxox

PDSNOAN:

Reverse Polish = 004F0E25

Common = PDSnoan

PDNA:

Reverse Polish = 00500325

Common = PDna

DSPNAON:

Reverse Polish = 00510B26

Common = DSPnaon

DPSDAOX:

Reverse Polish = 005206C9

Common = DPSDaox

SPDSXAXN:

Reverse Polish = 00530764

Common = SPDSxaxn

DPSONON:

Reverse Polish = 005408A9

Common = DPSonon

DSTINVERT:

Reverse Polish = 00550009

Common = Dn

58 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DPSOX:

Reverse Polish = 005601A9

Common = DPSox

DPSOAN:

Reverse Polish = 000570389

Common = DPSoan

PDSPOAX:

Reverse Polish = 00580785

Common = PDSPoax

DPSNOX:

Reverse Polish = 00590609

Common = DPSnox

PATINVERT:

Reverse Polish = 005A0049

Common = DPx

DPSDONOX:

Reverse Polish = 005B18A9

Common = DPSDonox

DPSDXOX:

Reverse Polish = 005C0649

Common = DPSDxox

DPSNOAN:

Reverse Polish = 005D0E29

Common = DPSnoan

DPSDNAOX:

Reverse Polish = 005E1B29

Common = DPSDnaox

DPAN:

Reverse Polish = 005F00E9

Common = DPan

PDSXA:

Reverse Polish = 00600365

59 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = PDSxa

DSPDSAOXXN:

Reverse Polish = 006116C6

Common = DSPDSaoxxn

DSPDOAX:

Reverse Polish = 00620786

Common = DSPDoax

SDPNOX:

Reverse Polish = 00630608

Common = SDPnox

SDPSOAX:

Reverse Polish = 00640788

Common = SDPSoax

DSPNOX:

Reverse Polish = 00650606

Common = DSPnox

SRCINVERT:

Reverse Polish = 00660046

Common = DSx

SDPSONOX:

Reverse Polish = 006718A8

Common = SDPSonox

DSPDSONOXXN:

Reverse Polish = 006858A6

Common = DSPDSonoxxn

PDSXXN:

Reverse Polish = 00690145

Common = PDSxxn

DPSAX:

Reverse Polish = 006A01E9

Common = DPSax

PSDPSOAXXN:

60 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 006B178A

Common = PSDPSoaxxn

SDPAX:

Reverse Polish = 006C01E8

Common = SDPax

PDSPDOAXXN:

Reverse Polish = 006D1785

Common = PDSPDoaxxn

SDPSNOAX:

Reverse Polish = 006E1E28

Common = SDPSnoax

PDXNAN:

Reverse Polish = 006F0C65

Common = PDXnan

PDSANA:

Reverse Polish = 00700CC5

Common = PDSana

SSDXPDXAXN:

Reverse Polish = 00711D5C

Common = SSDxPDxaxn

SDPSXOX:

Reverse Polish = 00720648

Common = SDPSxox

SDPNOAN:

Reverse Polish = 00730E28

Common = SDPnoan

DSPDXOX:

Reverse Polish = 00740646

Common = DSPDxox

DSPNOAN:

Reverse Polish = 00750E26

Common = DSPnoan

61 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SDPSNAOX:

Reverse Polish = 00761B28

Common = SDPSnaox

DSAN:

Reverse Polish = 007700E6

Common = DSan

PDSAX:

Reverse Polish = 007801E5

Common = PDSax

DSPDSOAXXN:

Reverse Polish = 00791786

Common = DSPDSoaxxn

DPSDNOAX:

Reverse Polish = 007A1E29

Common = DPSDnoax

SDPXNAN:

Reverse Polish = 007B0C68

Common = SDPxnan

SPDSNOAX:

Reverse Polish = 007C1E24

Common = SPDSnoax

DPSXNAN:

Reverse Polish = 007D0C69

Common = DPSxnan

SPXDSXO:

Reverse Polish = 007E0955

Common = SPxDSxo

DPSAAN:

Reverse Polish = 007F03C9

Common = DPSaan

DPSAA:

Reverse Polish = 008003E9

62 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = DPSaa

SPXDSXON:

Reverse Polish = 00810975

Common = SPxDSxon

DPSXNA:

Reverse Polish = 00820C49

Common = DPSxna

SPDSNOAXN:

Reverse Polish = 00831E04

Common = SPDSnoaxn

SDPXNA:

Reverse Polish = 00840C48

Common = SDPxna

PDSPNOAXN:

Reverse Polish = 00851E05

Common = PDSPnoaxn

DSPDSOAXX:

Reverse Polish = 008617A6

Common = DSPDSoaxx

PDSAXN:

Reverse Polish = 008701C5

Common = PDSaxn

SRCAND:

Reverse Polish = 008800C6

Common = DSa

SDPSNAOXN:

Reverse Polish = 00891B08

Common = SDPSnaoxn

DSPNOA:

Reverse Polish = 008A0E06

Common = DSPnoa

DSPDXOXN:

63 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 008B0666

Common = DSPDxoxn

SDPNOA:

Reverse Polish = 008C0E08

Common = SDPnoa

SDPSXOXN:

Reverse Polish = 008D0668

Common = SDPSxoxn

SSDXPDXAX:

Reverse Polish = 008E1D7C

Common = SSDxPDxax

PDSANAN:

Reverse Polish = 008F0CE5

Common = PDSanan

PDSXNA:

Reverse Polish = 00900C45

Common = PDSxna

SDPSNOAXN:

Reverse Polish = 00911E08

Common = SDPSnoaxn

DPSDPOAXX:

Reverse Polish = 009217A9

Common = DPSDPoaxx

SPDAXN:

Reverse Polish = 009301C4

Common = SPDaxn

PSDPSOAXX:

Reverse Polish = 009417AA

Common = PSDPSoaxx

DPSAXN:

Reverse Polish = 009501C9

Common = DPSaxn

64 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DPSXX:

Reverse Polish = 00960169

Common = DPSxx

PSDPSONOXX:

Reverse Polish = 0097588A

Common = PSDPSonoxx

SDPSONOXN:

Reverse Polish = 00981888

Common = SDPSonoxn

DSXN:

Reverse Polish = 00990066

Common = DSxn

DPSNAX:

Reverse Polish = 009A0709

Common = DPSnax

SDPSOAXN:

Reverse Polish = 009B07A8

Common = SDPSoaxn

SPDNAX:

Reverse Polish = 009C0704

Common = SPDnax

DSPDOAXN:

Reverse Polish = 009D07A6

Common = DSPDoaxn

DSPDSAOXX:

Reverse Polish = 009E16E6

Common = DSPDSaoxx

PDSXAN:

Reverse Polish = 009F0345

Common = PDSxan

DPA:

Reverse Polish = 00A000C9

65 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = DPa

PDSPNAOXN:

Reverse Polish = 00A11B05

Common = PDSPnaoxn

DPSNOA:

Reverse Polish = 00A20E09

Common = DPSnoa

DPSDXOXN:

Reverse Polish = 00A30669

Common = DPSDxoxn

PDSPONOXN:

Reverse Polish = 00A41885

Common = PDSPonoxn

PDXN:

Reverse Polish = 00A50065

Common = PDxn

DSPNAX:

Reverse Polish = 00A60706

Common = DSPnax

PDSPOAXN:

Reverse Polish = 00A707A5

Common = PDSPoaxn

DPSOA:

Reverse Polish = 00A803A9

Common = DPSoa

DPSOXN:

Reverse Polish = 00A90189

Common = DPSoxn

D:

Reverse Polish = 00AA0029

Common = D

DPSONO:

66 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 00AB0889

Common = DPSono

SPDSXAX:

Reverse Polish = 00AC0744

Common = SPDSxax

DPSDAOXN:

Reverse Polish = 00AD06E9

Common = DPSDaoxn

DSPNAO:

Reverse Polish = 00AE0B06

Common = DSPnao

DPNO:

Reverse Polish = 00AF0229

Common = DPno

PDSNOA:

Reverse Polish = 00B00E05

Common = PDSnoa

PDSPXOXN:

Reverse Polish = 00B10665

Common = PDSPxoxn

SSPXDSXOX:

Reverse Polish = 00B21974

Common = SSPxDSxox

SDPANAN:

Reverse Polish = 00B30CE8

Common = SDPanan

PSDNAX:

Reverse Polish = 00B4070A

Common = PSDnax

DPSDOAXN:

Reverse Polish = 00B507A9

Common = DPSDoaxn

67 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DPSDPAOXX:

Reverse Polish = 00B616E9

Common = DPSDPaoxx

SDPXAN:

Reverse Polish = 00B70348

Common = SDPxan

PSDPXAX:

Reverse Polish = 00B8074A

Common = PSDPxax

DSPDAOXN:

Reverse Polish = 00B906E6

Common = DSPDaoxn

DPSNAO:

Reverse Polish = 00BA0B09

Common = DPSnao

MERGEPAINT:

Reverse Polish = 00BB0226

Common = DSno

SPDSANAX:

Reverse Polish = 00BC1CE4

Common = SPDSanax

SDXPDXAN:

Reverse Polish = 00BD0D7D

Common = SDxPDxan

DPSXO:

Reverse Polish = 00BE0269

Common = DPSxo

DPSANO:

Reverse Polish = 00BF08C9

Common = DPSano

MERGECOPY:

Reverse Polish = 00C000CA

68 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = PSa

SPDSNAOXN:

Reverse Polish = 00C11B04

Common = SPDSnaoxn

SPDSONOXN:

Reverse Polish = 00C21884

Common = SPDSonoxn

PSXN:

Reverse Polish = 00C3006A

Common = PSxn

SPDNOA:

Reverse Polish = 00C40E04

Common = SPDnoa

SPDSXOXN:

Reverse Polish = 00C50664

Common = SPDSxoxn

SDPNAX:

Reverse Polish = 00C60708

Common = SDPnax

PSDPOAXN:

Reverse Polish = 00C707AA

Common = PSDPoaxn

SDPOA:

Reverse Polish = 00C803A8

Common = SDPoa

SPDOXN:

Reverse Polish = 00C90184

Common = SPDoxn

DPSDXAX:

Reverse Polish = 00CA0749

Common = DPSDxax

SPDSAOXN:

69 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 00CB06E4

Common = SPDSaoxn

SRCCOPY:

Reverse Polish = 00CC0020

Common = S

SDPONO:

Reverse Polish = 00CD0888

Common = SDPono

SDPNAO:

Reverse Polish = 00CE0B08

Common = SDPnao

SPNO:

Reverse Polish = 00CF0224

Common = SPno

PSDNOA:

Reverse Polish =00D00E0A

Common = PSDnoa

PSDPXOXN:

Reverse Polish = 00D1066A

Common = PSDPxoxn

PDSNAX:

Reverse Polish = 00D20705

Common = PDSnax

SPDSOAXN:

Reverse Polish = 00D307A4

Common = SPDSoaxn

SSPXPDXAX:

Reverse Polish = 00D41D78

Common = SSPxPDxax

DPSANAN:

Reverse Polish = 00D50CE9

Common = DPSanan

70 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PSDPSAOXX:

Reverse Polish = 00D616EA

Common = PSDPSaoxx

DPSXAN:

Reverse Polish = 00D70349

Common = DPSxan

PDSPXAX:

Reverse Polish = 00D80745

Common = PDSPxax

SDPSAOXN:

Reverse Polish = 00D906E8

Common = SDPSaoxn

DPSDANAX:

Reverse Polish = 00DA1CE9

Common = DPSDanax

SPXDSXAN:

Reverse Polish = 00DB0D75

Common = SPxDSxan

SPDNAO:

Reverse Polish = 00DC0B04

Common = SPDnao

SDNO:

Reverse Polish = 00DD0228

Common = SDno

SDPXO:

Reverse Polish = 00DE0268

Common = SDPxo

SDPANO:

Reverse Polish = 00DF08C8

Common = SDPano

PDSOA:

Reverse Polish = 00E003A5

71 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Common = PDSoa

PDSOXN:

Reverse Polish = 00E10185

Common = PDSoxn

DSPDXAX:

Reverse Polish = 00E20746

Common = DSPDxax

PSDPAOXN:

Reverse Polish = 00E306EA

Common = PSDPaoxn

SDPSXAX:

Reverse Polish = 00E40748

Common = SDPSxax

PDSPAOXN:

Reverse Polish = 00E506E5

Common = PDSPaoxn

SDPSANAX:

Reverse Polish = 00E61CE8

Common = SDPSanax

SPXPDXAN:

Reverse Polish = 00E70D79

Common = SPxPDxan

SSPXDSXAX:

Reverse Polish = 00E81D74

Common = SSPxDSxax

DSPDSANAXXN:

Reverse Polish = 00E95CE6

Common = DSPDSanaxxn

DPSAO:

Reverse Polish = 00EA02E9

Common = DPSao

DPSXNO:

72 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reverse Polish = 00EB0849

Common = DPSxno

SDPAO:

Reverse Polish = 00EC02E8

Common = SDPao

SDPXNO:

Reverse Polish = 00ED0848

Common = SDPxno

SRCPAINT:

Reverse Polish = 00EE0086

Common = DSo

SDPNOO:

Reverse Polish = 00EF0A08

Common = SDPnoo

PATCOPY:

Reverse Polish = 00F00021

Common = P

PDSONO:

Reverse Polish = 00F10885

Common = PDSono

PDSNAO:

Reverse Polish = 00F20B05

Common = PDSnao

PSNO:

Reverse Polish = 00F3022A

Common = PSno

PSDNAO:

Reverse Polish = 00F40B0A

Common = PSDnao

PDNO:

Reverse Polish = 00F50225

Common = PDno

73 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PDSXO:

Reverse Polish = 00F60265

Common = PDSxo

PDSANO:

Reverse Polish = 00F708C5

Common = PDSano

PDSAO:

Reverse Polish = 00F802E5

Common = PDSao

PDSXNO:

Reverse Polish = 00F90845

Common = PDSxno

DPO:

Reverse Polish = 00FA0089

Common = DPo

PATPAINT:

Reverse Polish = 00FB0A09

Common = DPSnoo

PSO:

Reverse Polish = 00FC008A

Common = PSo

PSDNOO:

Reverse Polish = 00FD0A0A

Common = PSDnoo

DPSOO:

Reverse Polish = 00FE02A9

Common = DPSoo

WHITENESS:

Reverse Polish = 00FF0062

Common = 1

Each ternary raster operation code represents a Boolean operation in which the values of the pixels in

the source, the selected brush, and the destination are combined. Following are the three operands
used in these operations.

74 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Operand Meaning

D Destination bitmap

P Selected brush (also called pattern)

S Source bitmap

Following are the Boolean operators used in these operations.

 Operator Meaning

a Bitwise AND

n Bitwise NOT (inverse)

o Bitwise OR

x Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the following
operation replaces the values of the pixels in the destination bitmap with a combination of the pixel
values of the source and brush: PSo. For another example, the following operation combines the
values of the pixels in the source and brush with the pixel values of the destination bitmap: DPSoo.

Each raster operation code is a 32-bit integer whose high-order word is a Boolean operation index and
whose low-order word is the operation code. The 16-bit operation index is a zero-extended, 8-bit

value that represents the result of the Boolean operation on predefined brush, source, and destination
values. For example, the operation indexes for the PSo and DPSoo operations are shown in the
following list.

 P S D PSo DPSoo

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

The operation indexes are determined by reading the binary values in a column of the table from the

bottom up. For example, in the PSo column, the binary value is 11111100, which is equivalent to 00FC

(hexadecimal is implicit for these values), which is the operation index for PSo.

Using this method, DPSoo can be seen to have the operation index 00FE. Operation indexes define the
locations of corresponding raster operation codes in the preceding enumeration. The PSo operation is
in line 252 (0x00FC) of the enumeration; DPSoo is in line 254 (0x00FE).

The most commonly used raster operations have been given explicit enumeration names, which
SHOULD be used; examples are PATCOPY and WHITENESS.

75 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

When the source and destination bitmaps are monochrome, a bit value of 0 represents a black pixel
and a bit value of 1 represents a white pixel. When the source and the destination bitmaps are color,

those colors are represented with red green blue (RGB) values.

2.1.2 WMF Flags

 This section contains constant flag values that are referenced in this specification.

2.1.2.1 ClipPrecision Flags

ClipPrecision Flags specify clipping precision, which defines how to clip characters that are partially
outside a clipping region. These flags can be combined to specify multiple options.

Constant/value Description

CLIP_DEFAULT_PRECIS

0x00000000

Specifies that default clipping MUST be used.

CLIP_CHARACTER_PRECIS

0x00000001

This value SHOULD NOT be used.

CLIP_STROKE_PRECIS

0x00000002

This value MAY be returned when enumerating rasterized, TrueType and vector

fonts.<31>

CLIP_LH_ANGLES

0x00000010

This value is used to control font rotation, as follows:

 If set, the rotation for all fonts SHOULD be determined by the orientation of the
coordinate system; that is, whether the orientation is left-handed or right-
handed.

 If clear, device fonts SHOULD rotate counterclockwise, but the rotation of other
fonts SHOULD be determined by the orientation of the coordinate system.

CLIP_TT_ALWAYS

0x00000020

This value SHOULD NOT<32> be used.

CLIP_DFA_DISABLE

0x00000040

This value specifies that font association SHOULD<33> be turned off.

CLIP_EMBEDDED

0x00000080

This value specifies that font embedding MUST be used to render document
content; embedded fonts are read-only.

2.1.2.2 ExtTextOutOptions Flags

ExtTextOutOptions Flags specify various characteristics of the output of text. These flags can be
combined to specify multiple options.

Constant/value Description

ETO_OPAQUE

0x0002

Indicates that the background color that is defined in the playback device context
SHOULD be used to fill the rectangle.

ETO_CLIPPED

0x0004

Indicates that the text SHOULD be clipped to the rectangle.

76 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Constant/value Description

ETO_GLYPH_INDEX

0x0010

Indicates that the string to be output SHOULD NOT require further processing with
respect to the placement of the characters, and an array of character placement values
SHOULD be provided. This character placement process is useful for fonts in which
diacritical characters affect character spacing.<34>

ETO_RTLREADING

0x0080

Indicates that the text MUST be laid out in right-to-left reading order, instead of the
default left-to-right order. This SHOULD be applied only when the font that is defined in
the playback device context is either Hebrew or Arabic.<35>

ETO_NUMERICSLOCAL

0x0400

Indicates that to display numbers, digits appropriate to the locale SHOULD be
used.<36>

ETO_NUMERICSLATIN

0x0800

Indicates that to display numbers, European digits SHOULD be used.<37>

ETO_PDY

0x2000

Indicates that both horizontal and vertical character displacement values SHOULD be
provided.<38>

2.1.2.3 TextAlignmentMode Flags

TextAlignmentMode Flags specify the relationship between a reference point and a bounding rectangle,
for text alignment. These flags can be combined to specify multiple options, with the restriction that

only one flag can be chosen that alters the drawing position in the playback device context.

Horizontal text alignment is performed when the font has a horizontal default baseline.

Constant/value Description

TA_NOUPDATECP

0x0000

The drawing position in the playback device context MUST NOT be updated after each text
output call. The reference point MUST be passed to the text output function.

TA_LEFT

0x0000

The reference point MUST be on the left edge of the bounding rectangle.

TA_TOP

0x0000

The reference point MUST be on the top edge of the bounding rectangle.

TA_UPDATECP

0x0001

The drawing position in the playback device context MUST be updated after each text output
call. It MUST be used as the reference point.

TA_RIGHT

0x0002

The reference point MUST be on the right edge of the bounding rectangle.

TA_CENTER

0x0006

The reference point MUST be aligned horizontally with the center of the bounding rectangle.

TA_BOTTOM

0x0008

The reference point MUST be on the bottom edge of the bounding rectangle.

TA_BASELINE

0x0018

The reference point MUST be on the baseline of the text.

TA_RTLREADING

0x0100

The text MUST be laid out in right-to-left reading order, instead of the default left-to-right
order. This SHOULD be applied only when the font that is defined in the playback device
context is either Hebrew or Arabic.<39>

77 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

TextAlignmentMode flags specify three different components of text alignment:

 The horizontal position of the reference point is determined by TA_RIGHT and TA_CENTER; if

those bits are clear, the alignment MUST be TA_LEFT.

 The vertical position of the reference point is determined by TA_BOTTOM and TA_BASELINE; if

those bits are clear, the alignment MUST be TA_TOP.

 Whether to update the output position in the playback device context after text output is
determined by TA_UPDATECP; if that bit is clear, the position MUST NOT be updated.

This is the reason for defining three different zero values in the enumeration; they represent the
default states of the three components of text alignment.

2.1.2.4 VerticalTextAlignmentMode Flags

VerticalTextAlignmentMode Flags specify the relationship between a reference point and a bounding
rectangle, for text alignment. These flags can be combined to specify multiple options, with the

restriction that only one flag can be chosen that alters the drawing position in the playback device
context.

Vertical text alignment is performed when the font has a vertical default baseline, such as Kanji.

Constant/value Description

VTA_TOP

0x0000

The reference point MUST be on the top edge of the bounding rectangle.

VTA_RIGHT

0x0000

The reference point MUST be on the right edge of the bounding rectangle.

VTA_BOTTOM

0x0002

The reference point MUST be on the bottom edge of the bounding rectangle.

VTA_CENTER

0x0006

The reference point MUST be aligned vertically with the center of the bounding rectangle.

VTA_LEFT

0x0008

The reference point MUST be on the left edge of the bounding rectangle.

VTA_BASELINE

0x0018

The reference point MUST be on the baseline of the text.

When the font that is defined in the playback device context has a vertical default baseline, as with

Kanji, VerticalTextAlignmentMode flags MUST be used instead of TextAlignmentMode flags (section
2.1.2.3) where there exists an equivalent.

Both horizontal and vertical flags are named relative to their respective baselines. Thus, VTA_LEFT is
the same as TA_BOTTOM, because the bottom edge of the bounding rectangle in normal text

orientation becomes the left edge of the bounding rectangle with orientation relative to the vertical
baseline.

2.2 WMF Objects

This section specifies WMF objects, which are grouped into the following categories:

78 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Section Description

Graphics object
types

2.2.1 Specify parameters for graphics output. They are part of the playback
device context and can persistent over the span of multiple records
during the playback of a WMF metafile.

Structure object
types

2.2.2 Specify data structures that are embedded in WMF objects and records.
Structure objects, unlike graphics objects, are not explicitly created or
deleted; they are components of more complex structures.

2.2.1 Graphics Objects

The WMF Graphics Objects specify parameters for graphics output. They are explicitly created and
deleted by records of the Object Record Types (section 2.3.4) during the playback of an WMF
metafile. A particular graphics object becomes part of the playback device context (section 3.1.5)

when it is selected by an appropriate object record, and it is reused in subsequent graphics operations

until a different object is selected.

The following types of Graphics Objects are defined:

Name Section Description

Brush 2.2.1.1 Specifies a graphics brush for the filling of figures.

Font 2.2.1.2 Specifies properties that determine the appearance of text, including typeface,
size, and style.

Palette 2.2.1.3 Specifies colors as device-independent values, which can be defined entirely by an
application.

Pen 2.2.1.4 Specifies a graphics pen for the drawing of lines.

Region 2.2.1.5 Specifies line and curve segments that define a shape.

An implementation is responsible for keeping track of graphics objects during playback of the metafile.
An abstract model for managing WMF graphics objects is described in WMF Object

Table (section 3.1.4.1).

2.2.1.1 Brush Object

The Brush Object defines the style, color, and pattern of a brush. Brush Objects are created by the

META_CREATEBRUSHINDIRECT, META_CREATEPATTERNBRUSH and
META_DIBCREATEPATTERNBRUSH records.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BrushStyle ColorRef

... BrushHatch (variable)

...

79 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

BrushStyle (2 bytes): A 16-bit unsigned integer that defines the brush style. The value MUST be an
enumeration from the BrushStyle Enumeration table. For the meanings of the different values, see

the following table.

ColorRef (4 bytes): A 32-bit field that specifies how to interpret color values in the object defined in

the BrushHatch field. Its interpretation depends on the value of BrushStyle, as explained in the
following table.

BrushHatch (variable): A variable-size field that contains the brush hatch or pattern data. The
content depends on the value of BrushStyle, as explained below.

The BrushStyle field determines how the ColorRef and BrushHatch fields SHOULD be interpreted,
as specified in the following table.

The following table shows the relationship between the BrushStyle, ColorRef, and BrushHatch

fields in a Brush Object.

 BrushStyle ColorRef BrushHatch

BS_SOLID SHOULD be a ColorRef Object, specified in section
2.2.2.8.

Not used, and SHOULD be ignored.

BS_NULL SHOULD be ignored. Not used, and SHOULD be ignored.

BS_PATTERN SHOULD be ignored. SHOULD be a Bitmap16 Object,
specified in section 2.2.2.1, which
defines the brush pattern.

BS_DIBPATTERNPT SHOULD be a 32-bit ColorUsage Enumeration
value, specified in section 2.1.1.6; the low-order
word specifies the meaning of color values in the
DIB.

SHOULD be a DIB Object, specified
in section 2.2.2.9, which defines the
brush pattern.

BS_HATCHED SHOULD be a ColorRef Object, specified in section
2.2.2.8.

SHOULD be a 16-bit value from the
HatchStyle Enumeration table,
specified in section 2.1.1.12, which
defines the brush pattern.

2.2.1.2 Font Object

The Font object specifies the attributes of a logical font.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Height Width

Escapement Orientation

Weight Italic Underline

StrikeOut CharSet OutPrecision ClipPrecision

Quality PitchAndFamily Facename (variable)

...

80 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Height (2 bytes): A 16-bit signed integer that specifies the height, in logical units, of the font's
character cell. The character height is computed as the character cell height minus the internal

leading. The font mapper SHOULD interpret the height as follows.

Value Meaning

value < 0x0000 The font mapper SHOULD transform this value into device units and match its
absolute value against the character height of available fonts.

0x0000 A default height value MUST be used when creating a physical font.

0x0000 < value The font mapper SHOULD transform this value into device units and match it
against the cell height of available fonts.

For all height comparisons, the font mapper SHOULD find the largest physical font that does not
exceed the requested size.<40>

Width (2 bytes): A 16-bit signed integer that defines the average width, in logical units, of

characters in the font. If Width is 0x0000, the aspect ratio of the device SHOULD be matched
against the digitization aspect ratio of the available fonts to find the closest match, determined by
the absolute value of the difference.

Escapement (2 bytes): A 16-bit signed integer that defines the angle, in tenths of degrees, between
the escapement vector and the x-axis of the device. The escapement vector is parallel to the base
line of a row of text.

Orientation (2 bytes): A 16-bit signed integer that defines the angle, in tenths of degrees, between

each character's base line and the x-axis of the device.

Weight (2 bytes): A 16-bit signed integer that defines the weight of the font in the range 0 through
1000. For example, 400 is normal and 700 is bold. If this value is 0x0000, a default weight
SHOULD be used.

Italic (1 byte): A 8-bit Boolean value that specifies the italic attribute of the font.

Value Meaning

FALSE

0x00

This is not an italic font.

TRUE

0x01

This is an italic font.

Underline (1 byte): An 8-bit Boolean value that specifies the underline attribute of the font.

Value Meaning

FALSE

0x00

This is not an underline font.

TRUE

0x01

This is an underline font.

StrikeOut (1 byte): An 8-bit Boolean value that specifies the strikeout attribute of the font.

Value Meaning

FALSE This is not a strikeout font.

81 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0x00

TRUE

0x01

This is a strikeout font.

CharSet (1 byte): An 8-bit unsigned integer that defines the character set. It SHOULD be set to a
value in the CharacterSet Enumeration (section 2.1.1.5).

The DEFAULT_CHARSET value MAY be used to allow the name and size of a font to fully describe
the logical font. If the specified font name does not exist, a font in another character set MAY be
substituted. The DEFAULT_CHARSET value is set to a value based on the current system locale.
For example, when the system locale is United States, it is set to ANSI_CHARSET.

If a typeface name in the FaceName field is specified, the CharSet value MUST match the
character set of that typeface.

OutPrecision (1 byte): An 8-bit unsigned integer that defines the output precision. The output

precision defines how closely the output matches the requested font height, width, character
orientation, escapement, pitch, and font type. It MUST be one of the values from the OutPrecision
Enumeration (section 2.1.1.21).

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, OUT_TT_PRECIS, and
OUT_PS_ONLY_PRECIS values to control how the font mapper selects a font when the operating
system contains more than one font with a specified name. For example, if an operating system

contains a font named "Symbol" in raster and TrueType forms, specifying OUT_TT_PRECIS forces
the font mapper to select the TrueType version. Specifying OUT_TT_ONLY_PRECIS forces the font
mapper to select a TrueType font, even if it substitutes a TrueType font of another name.

ClipPrecision (1 byte): An 8-bit unsigned integer that defines the clipping precision. The clipping
precision defines how to clip characters that are partially outside the clipping region. It MUST be a
combination of one or more of the bit settings in the ClipPrecision Flags (section 2.1.2.1).

Quality (1 byte): An 8-bit unsigned integer that defines the output quality. The output quality

defines how carefully to attempt to match the logical font attributes to those of an actual physical
font. It MUST be one of the values in the FontQuality Enumeration (section 2.1.1.10).

PitchAndFamily (1 byte): A PitchAndFamily object (section 2.2.2.14) that defines the pitch and the
family of the font. Font families specify the look of fonts in a general way and are intended for
specifying fonts when the exact typeface wanted is not available.

Facename (variable): A null-terminated string of 8-bit Latin-1 [ISO/IEC-8859-1] ANSI characters
that specifies the typeface name of the font. The length of this string MUST NOT exceed 32 8-bit

characters, including the terminating null.

2.2.1.3 Palette Object

The Palette Object specifies the colors in a logical palette.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Start NumberOfEntries

aPaletteEntries (variable)

https://go.microsoft.com/fwlink/?LinkId=90689

82 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

Start (2 bytes): A 16-bit unsigned integer that defines the offset into the Palette Object when used
with the META_SETPALENTRIES and META_ANIMATEPALETTE record types. When used with
META_CREATEPALETTE, it MUST be 0x0300.

NumberOfEntries (2 bytes): A 16-bit unsigned integer that defines the number of objects in
aPaletteEntries.

aPaletteEntries (variable): An array of NumberOfEntries 32-bit PaletteEntry Objects.

2.2.1.4 Pen Object

The Pen Object specifies the style, width, and color of a pen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PenStyle Width

... ColorRef

...

PenStyle (2 bytes): A 16-bit unsigned integer that specifies the pen style. The value MUST be
defined from the PenStyle Enumeration table.

Width (4 bytes): A 32-bit PointS Object that specifies a point for the object dimensions. The x-
coordinate is the pen width. The y-coordinate is ignored.

ColorRef (4 bytes): A 32-bit ColorRef Object that specifies the pen color value.

2.2.1.5 Region Object

The Region Object defines a potentially non-rectilinear shape defined by an array of scanlines.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

nextInChain ObjectType

ObjectCount

RegionSize ScanCount

maxScan BoundingRectangle

...

... aScans (variable)

...

83 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

nextInChain (2 bytes): A value that MUST be ignored.<41>

ObjectType (2 bytes): A 16-bit signed integer that specifies the region identifier. It MUST be

0x0006.

ObjectCount (4 bytes): A value that MUST be ignored.<42>

RegionSize (2 bytes): A 16-bit signed integer that defines the size of the region in bytes plus the
size of aScans in bytes.

ScanCount (2 bytes): A 16-bit signed integer that defines the number of scanlines composing the
region.

maxScan (2 bytes): A 16-bit signed integer that defines the maximum number of points in any one
scan in this region.

BoundingRectangle (8 bytes): A Rect object (section 2.2.2.18) that defines the bounding rectangle.

aScans (variable): An array of Scan objects (section 2.2.2.21) that define the scanlines in the

region.

2.2.2 Structure Objects

The WMF Structure Objects specify data structures that are embedded in WMF objects and records.
Structure objects, unlike graphics objects, are not explicitly created or deleted; they are components
of more complex structures.

2.2.2.1 Bitmap16 Object

The Bitmap16 Object specifies information about the dimensions and color format of a bitmap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Width

Height WidthBytes

Planes BitsPixel Bits (variable)

...

Type (2 bytes): A 16-bit signed integer that defines the bitmap type.

Width (2 bytes): A 16-bit signed integer that defines the width of the bitmap in pixels.

Height (2 bytes): A 16-bit signed integer that defines the height of the bitmap in scan lines.

WidthBytes (2 bytes): A 16-bit signed integer that defines the number of bytes per scan line.

Planes (1 byte): An 8-bit unsigned integer that defines the number of color planes in the bitmap.
The value of this field MUST be 0x01.

BitsPixel (1 byte): An 8-bit unsigned integer that defines the number of adjacent color bits on each
plane.

Bits (variable): A variable length array of bytes that defines the bitmap pixel data. The length of this
field in bytes can be computed as follows.

84 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 (((Width * BitsPixel + 15) >> 4) << 1) * Height

2.2.2.2 BitmapCoreHeader Object

The BitmapCoreHeader Object contains information about the dimensions and color format of a
device-independent bitmap (DIB).<43>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderSize

Width Height

Planes BitCount

HeaderSize (4 bytes): A 32-bit unsigned integer that defines the size of this object, in bytes.

Width (2 bytes): A 16-bit unsigned integer that defines the width of the DIB, in pixels.

Height (2 bytes): A 16-bit unsigned integer that defines the height of the DIB, in pixels.

Planes (2 bytes): A 16-bit unsigned integer that defines the number of planes for the target device.
This value MUST be 0x0001.

BitCount (2 bytes): A 16-bit unsigned integer that defines the format of each pixel, and the
maximum number of colors in the DIB. This value MUST be in the BitCount Enumeration (section

2.1.1.3).

A DIB is specified by a DeviceIndependentBitmap Object (section 2.2.2.9).

2.2.2.3 BitmapInfoHeader Object

The BitmapInfoHeader Object contains information about the dimensions and color format of a
device-independent bitmap (DIB).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderSize

Width

Height

Planes BitCount

Compression

ImageSize

XPelsPerMeter

85 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

YPelsPerMeter

ColorUsed

ColorImportant

HeaderSize (4 bytes): A 32-bit unsigned integer that defines the size of this object, in bytes.

Width (4 bytes): A 32-bit signed integer that defines the width of the DIB, in pixels. This value MUST
be positive.

This field SHOULD specify the width of the decompressed image file, if the Compression value
specifies JPEG or PNG format.<44>

Height (4 bytes): A 32-bit signed integer that defines the height of the DIB, in pixels. This value
MUST NOT be zero.

Value Meaning

0x00000000 < value If this value is positive, the DIB is a bottom-up bitmap, and its origin is the
lower-left corner.

This field SHOULD specify the height of the decompressed image file, if the
Compression value specifies JPEG or PNG format.

value < 0x00000000 If this value is negative, the DIB is a top-down bitmap, and its origin is the
upper-left corner. Top-down bitmaps do not support compression.

Planes (2 bytes): A 16-bit unsigned integer that defines the number of planes for the target device.
This value MUST be 0x0001.

BitCount (2 bytes): A 16-bit unsigned integer that defines the number of bits that define each pixel
and the maximum number of colors in the DIB. This value MUST be in the BitCount Enumeration

(section 2.1.1.3).

Compression (4 bytes): A 32-bit unsigned integer that defines the compression mode of the DIB.
This value MUST be in the Compression Enumeration (section 2.1.1.7).

This value MUST NOT specify a compressed format if the DIB is a top-down bitmap, as indicated
by the Height value.

ImageSize (4 bytes): A 32-bit unsigned integer that defines the size, in bytes, of the image.

If the Compression value is BI_RGB, this value SHOULD be zero and MUST be ignored.<45>

If the Compression value is BI_JPEG or BI_PNG, this value MUST specify the size of the JPEG or
PNG image buffer, respectively.

XPelsPerMeter (4 bytes): A 32-bit signed integer that defines the horizontal resolution, in pixels-

per-meter, of the target device for the DIB.

YPelsPerMeter (4 bytes): A 32-bit signed integer that defines the vertical resolution, in pixels-per-
meter, of the target device for the DIB.

ColorUsed (4 bytes): A 32-bit unsigned integer that specifies the number of indexes in the color
table used by the DIB, as follows:

 If this value is zero, the DIB uses the maximum number of colors that correspond to the

BitCount value.

86 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 If this value is nonzero and the BitCount value is less than 16, this value specifies the
number of colors used by the DIB.

 If this value is nonzero and the BitCount value is 16 or greater, this value specifies the size of
the color table used to optimize performance of the system palette.

Note If this value is nonzero and greater than the maximum possible size of the color table based
on the BitCount value, the maximum color table size SHOULD be assumed.

ColorImportant (4 bytes): A 32-bit unsigned integer that defines the number of color indexes that
are required for displaying the DIB. If this value is zero, all color indexes are required.

A DIB is specified by a DeviceIndependentBitmap Object (section 2.2.2.9).

When the array of pixels in the DIB immediately follows the BitmapInfoHeader, the DIB is a
packed bitmap. In a packed bitmap, the ColorUsed value MUST be either 0x00000000 or the

actual size of the color table.

2.2.2.4 BitmapV4Header Object

The BitmapV4Header Object contains information about the dimensions and color format of a device-

independent bitmap (DIB). It is an extension of the BitmapInfoHeader object (section
2.2.2.3).<46>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BitmapInfoHeader (40 bytes)

...

...

...

RedMask

GreenMask

BlueMask

AlphaMask

ColorSpaceType

Endpoints (36 bytes)

...

...

...

GammaRed

87 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

GammaGreen

GammaBlue

BitmapInfoHeader (40 bytes): A BitmapInfoHeader object, which defines properties of the DIB.

RedMask (4 bytes): A 32-bit unsigned integer that defines the color mask that specifies the red
component of each pixel. If the Compression value in the BitmapInfoHeader object is not

BI_BITFIELDS, this value MUST be ignored.

GreenMask (4 bytes): A 32-bit unsigned integer that defines the color mask that specifies the green
component of each pixel. If the Compression value in the BitmapInfoHeader object is not
BI_BITFIELDS, this value MUST be ignored.

BlueMask (4 bytes): A 32-bit unsigned integer that defines the color mask that specifies the blue
component of each pixel. If the Compression value in the BitmapInfoHeader object is not

BI_BITFIELDS, this value MUST be ignored.

AlphaMask (4 bytes): A 32-bit unsigned integer that defines the color mask that specifies the alpha
component of each pixel.

ColorSpaceType (4 bytes): A 32-bit unsigned integer that defines the color space of the Device
Independent Bitmap object (section 2.2.2.9). If this value is LCS_CALIBRATED_RGB from the
LogicalColorSpace enumeration (section 2.1.1.14), the color values in the DIB are calibrated RGB
values, and the endpoints and gamma values in this structure SHOULD be used to translate the

color values before they are passed to the device.

See the LogColorSpace objects (sections 2.2.2.11 and 2.2.2.12) for details concerning a logical
color space.

Endpoints (36 bytes): A CIEXYZTriple object (section 2.2.2.7) that defines the CIE chromaticity x,
y, and z coordinates of the three colors that correspond to the red, green, and blue endpoints for
the logical color space associated with the DIB. If the ColorSpaceType field does not specify

LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaRed (4 bytes): A 32-bit fixed point value that defines the toned response curve for red. If
the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaGreen (4 bytes): A 32-bit fixed point value that defines the toned response curve for green.
If the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaBlue (4 bytes): A 32-bit fixed point value that defines the toned response curve for blue. If
the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

The gamma value format is an unsigned "8.8" fixed-point integer that is then left-shifted by 8 bits.
"8.8" means "8 integer bits followed by 8 fraction bits": nnnnnnnnffffffff. Taking the shift into
account, the required format of the 32-bit DWORD is: 00000000nnnnnnnnffffffff00000000.

2.2.2.5 BitmapV5Header Object

The BitmapV5Header Object contains information about the dimensions and color format of a device-
independent bitmap (DIB). It is an extension of the BitmapV4Header object (section 2.2.2.4).<47>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BitmapV4Header (108 bytes)

88 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

Intent

ProfileData

ProfileSize

Reserved

BitmapV4Header (108 bytes): A BitmapV4Header object, which defines properties of the DIB.

When it is part of a BitmapV5Header, the ColorSpaceType field of a BitmapV4Header can be a logical
color space value in the LogicalColorSpaceV5 enumeration (section 2.1.1.15).

Intent (4 bytes): A 32-bit unsigned integer that defines the rendering intent for the DIB. This MUST
be defined in the LogicalColorSpace enumeration (section 2.1.1.14).

ProfileData (4 bytes): A 32-bit unsigned integer that defines the offset, in bytes, from the beginning
of this structure to the start of the color profile data.

If the color profile is embedded in the DIB, ProfileData is the offset to the actual color profile; if
the color profile is linked, ProfileData is the offset to the null-terminated file name of the color

profile. This MUST NOT be a Unicode string, but MUST be composed exclusively of characters from
the Windows character set (code page 1252).

If the ColorSpaceType field in the BitmapV4Header does not specify LCS_PROFILE_LINKED or

LCS_PROFILE_EMBEDDED, the color profile data SHOULD be ignored.

ProfileSize (4 bytes): A 32-bit unsigned integer that defines the size, in bytes, of embedded color
profile data.

Reserved (4 bytes): A 32-bit unsigned integer that is undefined and SHOULD be ignored.

2.2.2.6 CIEXYZ Object

The CIEXYZ Object defines information about the CIEXYZ chromaticity object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ciexyzX

ciexyzY

ciexyzZ

ciexyzX (4 bytes): A 32-bit 2.30 fixed point type that defines the x chromaticity value.

ciexyzY (4 bytes): A 32-bit 2.30 fixed point type that defines the y chromaticity value.

89 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ciexyzZ (4 bytes): A 32-bit 2.30 fixed point type that defines the z chromaticity value.

2.2.2.7 CIEXYZTriple Object

The CIEXYZTriple Object defines information about the CIEXYZTriple color object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ciexyzRed

...

...

ciexyzGreen

...

...

ciexyzBlue

...

...

ciexyzRed (12 bytes): A 96-bit CIEXYZ Object that defines the red chromaticity values.

ciexyzGreen (12 bytes): A 96-bit CIEXYZ Object that defines the green chromaticity values.

ciexyzBlue (12 bytes): A 96-bit CIEXYZ Object that defines the blue chromaticity values.

2.2.2.8 ColorRef Object

The ColorRef Object defines the RGB color.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Red Green Blue Reserved

Red (1 byte): An 8-bit unsigned integer that defines the relative intensity of red.

Green (1 byte): An 8-bit unsigned integer that defines the relative intensity of green.

Blue (1 byte): An 8-bit unsigned integer that defines the relative intensity of blue.

Reserved (1 byte): An 8-bit unsigned integer that MUST be 0x00.

2.2.2.9 DeviceIndependentBitmap Object

The DeviceIndependentBitmap Object defines an image in device-independent bitmap (DIB)
format.

90 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DIBHeaderInfo (variable)

...

Colors (variable)

...

BitmapBuffer (variable)

...

DIBHeaderInfo (variable): Either a BitmapCoreHeader Object (section 2.2.2.2) or a
BitmapInfoHeader Object (section 2.2.2.3) that specifies information about the image.

The first 32 bits of this field is the HeaderSize value. If it is 0x0000000C, then this is a

BitmapCoreHeader; otherwise, this is a BitmapInfoHeader.

Colors (variable): An optional array of either RGBQuad Objects (section 2.2.2.20) or 16-bit unsigned
integers that define a color table.

The size and contents of this field SHOULD be determined from the metafile record or object that
contains this DeviceIndependentBitmap and from information in the DIBHeaderInfo field. See
ColorUsage Enumeration (section 2.1.1.6) and BitCount Enumeration (section 2.1.1.3) for

additional details.

BitmapBuffer (variable): A buffer containing the image, which is not required to be contiguous with
the DIB header, unless this is a packed bitmap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

UndefinedSpace (variable)

...

aData (variable)

...

UndefinedSpace (variable): An optional field that MUST be ignored. If this DIB is a packed
bitmap, this field MUST NOT be present.

aData (variable): An array of bytes that define the image.

The size and format of this data is determined by information in the DIBHeaderInfo field. If
it is a BitmapCoreHeader, the size in bytes MUST be calculated as follows:

 (((Width * Planes * BitCount + 31) & ~31) / 8) * abs(Height)

91 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This formula SHOULD also be used to calculate the size of aData when DIBHeaderInfo is a
BitmapInfoHeader Object, using values from that object, but only if its Compression value is

BI_RGB, BI_BITFIELDS, or BI_CMYK.

Otherwise, the size of aData MUST be the BitmapInfoHeader Object value ImageSize.

2.2.2.10 LogBrush Object

The LogBrush Object defines the style, color, and pattern of a brush. This object is used only in the
META_CREATEBRUSHINDIRECT Record (section 2.3.4.1) to create a Brush Object (section 2.2.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BrushStyle ColorRef

... BrushHatch

BrushStyle (2 bytes): A 16-bit unsigned integer that defines the brush style. This MUST be a value
from the BrushStyle Enumeration (section 2.1.1.4). For the meanings of different values, see the
following table. The BS_NULL style specifies a brush that has no effect.<48>

ColorRef (4 bytes): A 32-bit ColorRef Object (section 2.2.2.8) that specifies a color. Its
interpretation depends on the value of BrushStyle, as explained in the following.

BrushHatch (2 bytes): A 16-bit field that specifies the brush hatch type. Its interpretation depends

on the value of BrushStyle, as explained in the following.

The following table shows the relationship between values in the BrushStyle, ColorRef and
BrushHatch fields in a LogBrush Object. Only supported brush styles are listed.

BrushStyle ColorRef BrushHatch

BS_SOLID SHOULD be a ColorRef Object,
which determines the color of
the brush.

Not used, and SHOULD be ignored.

BS_NULL Not used, and SHOULD be
ignored.

Not used, and SHOULD be ignored.

BS_PATTERN Not used, and SHOULD be
ignored.

Not used. A solid-color black Brush Object SHOULD
be created by default.<49>

BS_DIBPATTERN Not used, and SHOULD be
ignored.

Not used. A solid-color black Brush Object SHOULD
be created by default.

BS_DIBPATTERNPT Not used, and SHOULD be
ignored.

Not used. A default object, such as a solid-color
black Brush Object, MAY be created.

BS_HATCHED SHOULD be a ColorRef Object,
which determines the
foreground color of the hatch
pattern.

A value from the HatchStyle
Enumeration (section 2.1.1.12) that specifies the
orientation of lines used to create the hatch.

92 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.2.11 LogColorSpace Object

The LogColorSpace object specifies a logical color space for the playback device context, which
can be the name of a color profile in ASCII characters.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Signature

Version

Size

ColorSpaceType

Intent

Endpoints (36 bytes)

...

...

...

GammaRed

GammaGreen

GammaBlue

Filename (variable)

...

Signature (4 bytes): A 32-bit unsigned integer that specifies the signature of color space objects; it
MUST be set to the value 0x50534F43, which is the ASCII encoding of the string "PSOC".

Version (4 bytes): A 32-bit unsigned integer that defines a version number; it MUST be
0x00000400.

Size (4 bytes): A 32-bit unsigned integer that defines the size of this object, in bytes.

ColorSpaceType (4 bytes): A 32-bit signed integer that specifies the color space type. It MUST be

defined in the LogicalColorSpace enumeration (section 2.1.1.14). If this value is LCS_sRGB or
LCS_WINDOWS_COLOR_SPACE, the sRGB color space MUST be used.

Intent (4 bytes): A 32-bit signed integer that defines the gamut mapping intent. It MUST be defined
in the GamutMappingIntent enumeration (section 2.1.1.11).

Endpoints (36 bytes): A CIEXYZTriple object (section 2.2.2.7) that defines the CIE chromaticity x,
y, and z coordinates of the three colors that correspond to the RGB endpoints for the logical color

93 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

space associated with the bitmap. If the ColorSpaceType field does not specify
LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaRed (4 bytes): A 32-bit fixed point value that defines the toned response curve for red. If
the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaGreen (4 bytes): A 32-bit fixed point value that defines the toned response curve for green.
If the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaBlue (4 bytes): A 32-bit fixed point value that defines the toned response curve for blue. If
the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

Filename (variable): An optional, ASCII charactger string that specifies the name of a file that
contains a color profile. If a file name is specified, and the ColorSpaceType field is set to
LCS_CALIBRATED_RGB, the other fields of this structure SHOULD be ignored.

The Endpoints, GammaRed, GammaGreen, and GammaBlue fields are used to specify a logical
color space. The Endpoints field is a CIEXYZTriple object that contains the x, y, and z values of the
RGB endpoint of the color space.

The relation between tri-stimulus values X,Y,Z and chromaticity values x,y,z is expressed as follows.

 x = X/(X+Y+Z)
 y = Y/(X+Y+Z)
 z = Z/(X+Y+Z)

The GammaRed, GammaGreen, and GammaBlue fields contain values in "8.8 fixed point" format,
which is a technique for representing non-integer numbers. Each value consists of a zero-extended 8-

bit magnitude followed by an 8-bit fraction, with the combined 16 bits left-shifted by 8 bits. Thus, in
32-bits, the real value N.F is 00000000nnnnnnnnffffffff00000000, where "nnnnnnnn" and "ffffffff" are
binary representations of N and F, respectively. For example, for the real number 10.5, nnnnnnnn
would be 00001010 (binary 10) and ffffffff would be 00000101 (binary 5), and the complete 32-bit
binary value would be 00000000000010100000010100000000, which is the hexadecimal value

0x0A50.

2.2.2.12 LogColorSpaceW Object

The LogColorSpaceW object specifies a logical color space, which can be defined by a color profile
file with a name consisting of Unicode 16-bit characters.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Signature

Version

Size

ColorSpaceType

Intent

Endpoints (36 bytes)

94 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

GammaRed

GammaGreen

GammaBlue

Filename (variable)

...

Signature (4 bytes): A 32-bit unsigned integer that specifies the signature of color space objects.
This MUST be set to the value 0x50534F43, which is the ASCII encoding of the string "PSOC".

Version (4 bytes): A 32-bit unsigned integer that defines a version number; it MUST be

0x00000400.

Size (4 bytes): A 32-bit unsigned integer that defines the size of this object, in bytes.

ColorSpaceType (4 bytes): A 32-bit signed integer that specifies the color space type. It MUST be
defined in the LogicalColorSpace enumeration (section 2.1.1.14). If this value is LCS_sRGB or
LCS_WINDOWS_COLOR_SPACE, the sRGB color space MUST be used.

Intent (4 bytes): A 32-bit signed integer that defines the gamut mapping intent. It MUST be defined

in the GamutMappingIntent enumeration (section 2.1.1.11).

Endpoints (36 bytes): A CIEXYZTriple object (section 2.2.2.7) that defines the CIE chromaticity x,
y, and z coordinates of the three colors that correspond to the RGB endpoints for the logical color
space associated with the bitmap. If the ColorSpaceType field does not specify
LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaRed (4 bytes): A 32-bit fixed point value that defines the toned response curve for red. If
the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaGreen (4 bytes): A 32-bit fixed point value that defines the toned response curve for green.
If the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

GammaBlue (4 bytes): A 32-bit fixed point value that defines the toned response curve for blue. If
the ColorSpaceType field does not specify LCS_CALIBRATED_RGB, this field MUST be ignored.

Filename (variable): An optional, null-terminated Unicode UTF16-LE character string, which
specifies the name of a file that contains a color profile. If a file name is specified, and the

ColorSpaceType field is set to LCS_CALIBRATED_RGB, the other fields of this structure SHOULD

be ignored.

See the LogColorSpace object (section 2.2.2.11) for additional details concerning the interpretation of
field values of this object.

2.2.2.13 PaletteEntry Object

The PaletteEntry Object defines the color and usage of an entry in a palette.

95 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Values Blue Green Red

Values (1 byte): An 8-bit unsigned integer that defines how the palette entry is to be used. The
Values field MUST be 0x00 or one of the values in the PaletteEntryFlag Enumeration table.

Blue (1 byte): An 8-bit unsigned integer that defines the blue intensity value for the palette entry.

Green (1 byte): An 8-bit unsigned integer that defines the green intensity value for the palette entry.

Red (1 byte): An 8-bit unsigned integer that defines the red intensity value for the palette entry.

2.2.2.14 PitchAndFamily Object

The PitchAndFamily object specifies the pitch and family properties of a Font object (section 2.2.1.2).

Pitch refers to the width of the characters, and family refers to the general appearance of a font.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Family 0 0 Pitch

Family (4 bits): A property of a font that describes its general appearance. This MUST be a value in
the FamilyFont enumeration (section 2.1.1.8).

Pitch (2 bits): A property of a font that describes the pitch, of the characters. This MUST be a value
in the PitchFont enumeration (section 2.1.1.24).

2.2.2.15 PointL Object

The PointL Object defines the coordinates of a point.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

x

y

x (4 bytes): A 32-bit signed integer that defines the horizontal (x) coordinate of the point.

y (4 bytes): A 32-bit signed integer that defines the vertical (y) coordinate of the point.

2.2.2.16 PointS Object

The PointS Object defines the x- and y-coordinates of a point.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

x y

x (2 bytes): A 16-bit signed integer that defines the horizontal (x) coordinate of the point.

96 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

y (2 bytes): A 16-bit signed integer that defines the vertical (y) coordinate of the point.

2.2.2.17 PolyPolygon Object

The PolyPolygon Object defines a series of closed polygons.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumberOfPolygons aPointsPerPolygon (variable)

...

aPoints (variable)

...

NumberOfPolygons (2 bytes): A 16-bit unsigned integer that defines the number of polygons in the
object.

aPointsPerPolygon (variable): A NumberOfPolygons array of 16-bit unsigned integers that define

the number of points for each polygon in the object.

aPoints (variable): An array of 16-bit unsigned integers that define the coordinates of the polygons.

2.2.2.18 Rect Object

The Rect Object defines a rectangle.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Left Top

Right Bottom

Left (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical coordinates, of the
upper-left corner of the rectangle

Top (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical coordinates, of the
upper-left corner of the rectangle.

Right (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical coordinates, of the

lower-right corner of the rectangle.

Bottom (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical coordinates, of the

lower-right corner of the rectangle.

2.2.2.19 RectL Object

The RectL Object defines a rectangle.

97 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Left

Top

Right

Bottom

Left (4 bytes): A 32-bit signed integer that defines the x coordinate, in logical coordinates, of the
upper-left corner of the rectangle.

Top (4 bytes): A 32-bit signed integer that defines the y coordinate, in logical coordinates, of the

upper-left corner of the rectangle.

Right (4 bytes): A 32-bit signed integer that defines the x coordinate, in logical coordinates, of the
lower-right corner of the rectangle.

Bottom (4 bytes): A 32-bit signed integer that defines y coordinate, in logical coordinates, of the
lower-right corner of the rectangle.

A rectangle defined with a RectL Object is filled up to— but not including—the right column and

bottom row of pixels.

2.2.2.20 RGBQuad Object

The RGBQuad Object defines the pixel color values in an uncompressed DIB.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Blue Green Red Reserved

Blue (1 byte): An 8-bit unsigned integer that defines the relative intensity of blue.

Green (1 byte): An 8-bit unsigned integer that defines the relative intensity of green.

Red (1 byte): An 8-bit unsigned integer that defines the relative intensity of red.

Reserved (1 byte): An 8-bit unsigned integer that MUST be 0x00.

2.2.2.21 Scan Object

The Scan Object specifies a collection of scanlines.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count Top

Bottom ScanLines (variable)

...

98 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

... Count2

Count (2 bytes): A 16-bit unsigned integer that specifies the number of horizontal (x-axis)
coordinates in the ScanLines array. This value MUST be a multiple of 2, since left and right
endpoints are required to specify each scanline.

Top (2 bytes): A 16-bit unsigned integer that defines the vertical (y-axis) coordinate, in logical units,
of the top scanline.

Bottom (2 bytes): A 16-bit unsigned integer that defines the vertical (y-axis) coordinate, in logical
units, of the bottom scanline.

ScanLines (variable): An array of scanlines, each specified by left and right horizontal (x-axis)
coordinates of its endpoints.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Left Right

Left (2 bytes): A 16-bit unsigned integer that defines the horizontal (x-axis) coordinate, in logical
units, of the left endpoint of the scanline.

Right (2 bytes): A 16-bit unsigned integer that defines the horizontal (x-axis) coordinate, in
logical units, of the right endpoint of the scanline.

Count2 (2 bytes): A 16-bit unsigned integer that MUST be the same as the value of the Count field;
it is present to allow upward travel in the structure.

2.2.2.22 SizeL Object

The SizeL Object defines the x- and y-extents of a rectangle.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cx

cy

cx (4 bytes): A 32-bit unsigned integer that defines the x-coordinate of the point.

cy (4 bytes): A 32-bit unsigned integer that defines the y-coordinate of the point.

2.3 WMF Records

This section specifies the WMF Records, which can be grouped into the following general categories.

Name Section Description

Bitmap record types 2.3.1 Manage and output bitmaps.

Control record types 2.3.2 Define the start and end of a WMF metafile.

Drawing record types 2.3.3 Perform graphics drawing orders.

99 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Section Description

Object record types 2.3.4 Create and manage graphics objects.

State record types 2.3.5 Specify and manage the graphics configuration.

Escape record types 2.3.6 Specify extensions to functionality that are not directly available through
other records defined in the WMF RecordType
Enumeration (section 2.1.1.1).

During the playback of a WMF metafile, a playback device context exists that can be described as a
processing state in which every graphics object and property is defined. In the descriptions of WMF
records that follow in this section, an element of the playback device context can be referred to as a
"currently selected" graphics object or property. If a graphics object or property that is used in the
output operation specified by a record has not been explicitly selected, a default value MUST be used.
See Playback Device Context (section 3.1.5) for more information.

When a WMF metafile is processed, the order in which graphics output is performed MUST be the

same as the order of drawing records in the metafile. Thus, a given drawing command is always
rendered on top of the renderings of preceding commands.

The following packet definition specifies the generic structure of all WMF records except Control
records.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction rdParam (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of 16-bit WORDs in the

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines the type of this record. The low-
order byte MUST match the low-order byte of one of the values in the RecordType Enumeration.

rdParam (variable): An optional place holder that is provided for record-specific fields.

2.3.1 Bitmap Record Types

This section defines the Bitmap Record Types, which specify records that manage and output
bitmaps.

The following are the Bitmap Record Types.

Name Section Description

META_BITBLT 2.3.1.1 Specifies the transfer of a block of pixels according to a raster
operation.

META_DIBBITBLT 2.3.1.2 Specifies the transfer of a block of pixels in device-independent format
according to a raster operation.

META_DIBSTRETCHBLT 2.3.1.3 Specifies the transfer of a block of pixels in device-independent format
according to a raster operation, with possible expansion or contraction.

100 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Section Description

META_SETDIBTODEV 2.3.1.4 Sets a block of pixels in the playback device context using device-
independent color data.

META_STRETCHBLT 2.3.1.5 Specifies the transfer of a block of pixels according to a raster
operation, with possible expansion or contraction.

META_STRETCHDIB 2.3.1.6 Specifies the transfer of color data from a block of pixels in device-
independent format according to a raster operation, with possible
expansion or contraction.

2.3.1.1 META_BITBLT Record

The META_BITBLT record specifies the transfer of a block of pixels according to a raster

operation.The destination of the transfer is the current output region in the playback device

context.

There are two forms of META_BITBLT, one which specifies a bitmap as the source, and the other
which uses the playback device context as the source. The fields that are the same in the two forms of
META_BITBLT are defined below. The subsections that follow specify the packet structures of the two
forms of META_BITBLT.

RecordSize: A 32-bit unsigned integer that defines the number of 16-bit WORDs in the record.

RecordFunction: A 16-bit unsigned integer that defines this WMF record type. The low-order byte
MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_BITBLT.

RasterOperation: A 32-bit unsigned integer that defines how the source pixels, the current brush in
the playback device context, and the destination pixels are to be combined to form the new
image. This code MUST be one of the values in the Ternary Raster Operation

enumeration (section 2.1.1.31).

YSrc: A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left corner of
the source rectangle.

XSrc: A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left corner of
the source rectangle.

Height: A 16-bit signed integer that defines the height, in logical units, of the source and destination
rectangles.

Width: A 16-bit signed integer that defines the width, in logical units, of the source and destination
rectangles.

YDest: A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left corner
of the destination rectangle.

XDest: A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left corner
of the destination rectangle.

The RecordSize and RecordFunction fields SHOULD be used to differentiate between the two forms

of META_BITBLT. If the following Boolean expression is TRUE, a source bitmap is not specified in the
record.

 RecordSize == ((RecordFunction >> 8) + 3)

101 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

See section 2.3.1 for the specification of additional bitmap records.

2.3.1.1.1 With Bitmap

This section specifies the structure of the META_BITBLT record when it contains an embedded

bitmap.

Fields not specified in this section are specified in the preceding META_BITBLT section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... YSrc

XSrc Height

Width YDest

XDest Target (variable)

...

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_BITBLT. The high-order byte MUST contain a value equal to the number of 16-bit WORDs
in the record minus the number of WORDs in the RecordSize and Target fields. That is:

 RecordSize - (2 + (sizeof(Target)/2))

Target (variable): A variable-sized Bitmap16 Object (section 2.2.2.1) that defines source image
content. This object MUST be specified, even if the raster operation does not require a source.

2.3.1.1.2 Without Bitmap

This section specifies the structure of the META_BITBLT record when it does not contain an embedded
source bitmap. The source for this operation is the current region in the playback device context.

Fields not specified in this section are specified in the preceding META_BITBLT section above.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... YSrc

102 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

XSrc Reserved

Height Width

YDest XDest

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_BITBLT. The high-order byte MUST contain a value equal to the number of 16-bit WORDs

in the record minus the number of WORDs in the RecordSize and RecordFunction fields. That
is:

 RecordSize - 3

Reserved (2 bytes): This field MUST be ignored.

If the raster operation specified in this record requires a source, the processing of this record fails.

2.3.1.2 META_DIBBITBLT Record

The META_DIBBITBLT record specifies the transfer of a block of pixels in device-independent format

according to a raster operation.

The destination of the transfer is the current output region in the playback device context.

There are two forms of META_DIBBITBLT, one which specifies a device-independent bitmap (DIB)
as the source, and the other which uses the playback device context as the source. Definitions follow
for the fields that are the same in the two forms of META_DIBBITBLT. The subsections that follow
specify the packet structures of the two forms of META_DIBBITBLT.

RecordSize: A 32-bit unsigned integer that defines the number of 16-bit WORDs in the record.

RecordFunction: A 16-bit unsigned integer that defines this WMF record type. The low-order byte
MUST match the low-order byte of the RecordType Enumeration (section 2.1.1.1) value
META_DIBBITBLT.

RasterOperation: A 32-bit unsigned integer that defines how the source pixels, the current brush in
the playback device context, and the destination pixels are to be combined to form the new image.
This code MUST be one of the values in the Ternary Raster Operation Enumeration (section 2.1.1.31).

YSrc: A 16-bit signed integer that defines the y-coordinate, in logical units, of the source rectangle.

XSrc: A 16-bit signed integer that defines the x-coordinate, in logical units, of the source rectangle.

Height: A 16-bit signed integer that defines the height, in logical units, of the source and destination

rectangles.

Width: A 16-bit signed integer that defines the width, in logical units, of the source and destination
rectangles.

YDest: A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left corner

of the destination rectangle.

XDest: A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left corner
of the destination rectangle.

103 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The RecordSize and RecordFunction fields SHOULD be used to differentiate between the two forms
of META_DIBBITBLT. If the following Boolean expression is TRUE, a source DIB is not specified in the

record.

 RecordSize == ((RecordFunction >> 8) + 3)

See section 2.3.1 for the specification of additional bitmap records.

2.3.1.2.1 With Bitmap

This section specifies the structure of the META_DIBBITBLT record when it contains an embedded

device-independent bitmap (DIB).

Fields not specified in this section are specified in the preceding META_DIBBITBLT section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... YSrc

XSrc Height

Width YDest

XDest Target (variable)

...

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_DIBBITBLT. The high-order byte MUST contain a value equal to the number of 16-bit
WORDs in the record minus the number of WORDs in the RecordSize and Target fields. That is:

 RecordSize - (2 + (sizeof(Target)/2))

Target (variable): A variable-sized DeviceIndependentBitmap Object (section 2.2.2.9) that defines
image content. This object MUST be specified, even if the raster operation does not require a
source.

2.3.1.2.2 Without Bitmap

This section specifies the structure of the META_DIBBITBLT record when it does not contain an
embedded source device-independent bitmap (DIB). The source for this operation is the current
region in the playback device context.

Fields not specified in this section are specified in the preceding META_DIBBITBLT section.

104 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... YSrc

XSrc Reserved

Height Width

YDest XDest

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_DIBBITBLT. The high-order byte MUST contain a value equal to the number of 16-bit

WORDs in the record minus the number of WORDs in the RecordSize and RecordFunction
fields. That is:

 RecordSize - 3

Reserved (2 bytes): This field MUST be ignored.

If the raster operation specified in this record requires a source, the processing of this record fails.

2.3.1.3 META_DIBSTRETCHBLT Record

The META_DIBSTRETCHBLT record specifies the transfer of a block of pixels in device-independent

format according to a raster operation, with possible expansion or contraction.

The destination of the transfer is the current output region in the playback device context.

There are two forms of META_DIBSTRETCHBLT, one which specifies a device-independent bitmap
(DIB) as the source, and the other which uses the playback device context as the source. Definitions
follow for the fields that are the same in the two forms of META_DIBSTRETCHBLT. The subsections
that follow specify the packet structures of the two forms of META_DIBSTRETCHBLT.

The expansion or contraction is performed according to the stretching mode currently set in the

playback device context, which MUST be a value from the StretchMode
Enumeration (section 2.1.1.30).

RecordSize: A 32-bit unsigned integer that defines the number of 16-bit WORDs in the record.

RecordFunction: A 16-bit unsigned integer that defines this WMF record type. The low-order byte
MUST match the low-order byte of the RecordType Enumeration (section 2.1.1.1) value
META_DIBSTRETCHBLT.

RasterOperation: A 32-bit unsigned integer that defines how the source pixels, the current brush in

the playback device context, and the destination pixels are to be combined to form the new
image. This code MUST be one of the values in the Ternary Raster Operation
Enumeration (section 2.1.1.31).

105 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SrcHeight: A 16-bit signed integer that defines the height, in logical units, of the source rectangle.

SrcWidth: A 16-bit signed integer that defines the width, in logical units, of the source rectangle.

YSrc: A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left corner of
the source rectangle.

XSrc: A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left corner of
the source rectangle.

DestHeight: A 16-bit signed integer that defines the height, in logical units, of the destination
rectangle.

DestWidth: A 16-bit signed integer that defines the width, in logical units, of the destination
rectangle.

YDest: A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left corner

of the destination rectangle.

XDest: A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left corner
of the destination rectangle.

The RecordSize and RecordFunction fields SHOULD be used to differentiate between the two forms
of META_DIBSTRETCHBLT. If the following Boolean expression is TRUE, a source DIB is not specified
in the record.

 RecordSize == ((RecordFunction >> 8) + 3)

See section 2.3.1 for the specification of additional bitmap records.

2.3.1.3.1 With Bitmap

This section specifies the structure of the META_DIBSTRETCHBLT record when it contains an

embedded device-independent bitmap (DIB).

Fields not specified in this section are specified in the preceding META_DIBSTRETCHBLT section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... SrcHeight

SrcWidth YSrc

XSrc DestHeight

DestWidth YDest

XDest Target (variable)

...

106 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value

META_DIBSTRETCHBLT. The high-order byte MUST contain a value equal to the number of 16-
bit WORDs in the record minus the number of WORDs in the RecordSize and Target fields. That

is:

 RecordSize - (2 + (sizeof(Target)/2))

Target (variable): A variable-sized DeviceIndependentBitmap Object (section 2.2.2.9) that defines
image content. This object MUST be specified, even if the raster operation does not require a

source.

2.3.1.3.2 Without Bitmap

This section specifies the structure of the META_DIBSTRETCHBLT record when it does not contain an

embedded source device-independent bitmap (DIB). The source for this operation is the current
region in the playback device context.

Fields not specified in this section are specified in the preceding META_DIBSTRETCHBLT section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... SrcHeight

SrcWidth YSrc

XSrc Reserved

DestHeight DestWidth

YDest XDest

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_DIBSTRETCHBLT. The high-order byte MUST contain a value equal to the number of 16-
bit WORDs in the record minus the number of WORDs in the RecordSize and RecordFunction
fields. That is:

 RecordSize - 3

Reserved (2 bytes): This field MUST be ignored.

If the raster operation specified in this record requires a source, the processing of this record fails.

107 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.1.4 META_SETDIBTODEV Record

The META_SETDIBTODEV record sets a block of pixels in the playback device context using device-
independent color data.

The source of the color data is a DIB.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction ColorUsage

ScanCount StartScan

yDib xDib

Height Width

yDest xDest

DIB (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_SETDIBTODEV.

ColorUsage (2 bytes): A 16-bit unsigned integer that defines whether the Colors field of the DIB

contains explicit RGB values or indexes into a palette. This MUST be one of the values in the
ColorUsage Enumeration (section 2.1.1.6).

ScanCount (2 bytes): A 16-bit unsigned integer that defines the number of scan lines in the source.

StartScan (2 bytes): A 16-bit unsigned integer that defines the starting scan line in the source.

yDib (2 bytes): A 16-bit unsigned integer that defines the y-coordinate, in logical units, of the source
rectangle.

xDib (2 bytes): A 16-bit unsigned integer that defines the x-coordinate, in logical units, of the source
rectangle.

Height (2 bytes): A 16-bit unsigned integer that defines the height, in logical units, of the source

and destination rectangles.

Width (2 bytes): A 16-bit unsigned integer that defines the width, in logical units, of the source and
destination rectangles.

yDest (2 bytes): A 16-bit unsigned integer that defines the y-coordinate, in logical units, of the

upper-left corner of the destination rectangle.

xDest (2 bytes): A 16-bit unsigned integer that defines the x-coordinate, in logical units, of the
upper-left corner of the destination rectangle.

108 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DIB (variable): A variable-sized DeviceIndependentBitmap Object (section 2.2.2.9) that is the
source of the color data.

The source image in the DIB is specified in one of the following formats:

 An array of pixels with a structure specified by the ColorUsage field and information in the

DeviceIndependentBitmap header.

 A JPEG image [JFIF].<50>

 A PNG image [W3C-PNG].<51>

See section 2.3.1 for the specification of additional bitmap records.

2.3.1.5 META_STRETCHBLT Record

The META_STRETCHBLT record specifies the transfer of a block of pixels according to a raster
operation, with possible expansion or contraction.

The destination of the transfer is the current output region in the playback device context.

There are two forms of META_STRETCHBLT, one which specifies a bitmap as the source, and the
other which uses the playback device context as the source. Definitions follow for the fields that are

the same in the two forms of META_STRETCHBLT are defined below. The subsections that follow
specify the packet structures of the two forms of META_STRETCHBLT.

The expansion or contraction is performed according to the stretching mode currently set in the
playback device context, which MUST be a value from the StretchMode
Enumeration (section 2.1.1.30).

RecordSize: A 32-bit unsigned integer that defines the number of 16-bit WORDs in the record.

RecordFunction: A 16-bit unsigned integer that defines this WMF record type. The low-order byte

MUST match the low-order byte of the RecordType Enumeration (section 2.1.1.1) value

META_STRETCHBLT.

RasterOperation: A 32-bit unsigned integer that defines how the source pixels, the current brush in
the playback device context, and the destination pixels are to be combined to form the new
image. This code MUST be one of the values in the Ternary Raster Operation
Enumeration (section 2.1.1.31).

SrcHeight: A 16-bit signed integer that defines the height, in logical units, of the source rectangle.

SrcWidth: A 16-bit signed integer that defines the width, in logical units, of the source rectangle.

YSrc: A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left corner of
the source rectangle.

XSrc: A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left corner of
the source rectangle.

DestHeight: A 16-bit signed integer that defines the height, in logical units, of the destination

rectangle.

DestWidth: A 16-bit signed integer that defines the width, in logical units, of the destination
rectangle.

YDest: A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left corner
of the destination rectangle.

https://go.microsoft.com/fwlink/?LinkId=89925
https://go.microsoft.com/fwlink/?LinkId=90562

109 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

XDest: A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left corner
of the destination rectangle.

The RecordSize and RecordFunction fields SHOULD be used to differentiate between the two forms
of META_STRETCHBLT. If the following Boolean expression is TRUE, a source bitmap is not specified in

the record.

 RecordSize == ((RecordFunction >> 8) + 3)

See section 2.3.1 for the specification of additional bitmap records.

2.3.1.5.1 With Bitmap

This section specifies the structure of the META_STRETCHBLT record when it contains an embedded
bitmap.

Fields not specified in this section are specified in the preceding META_STRETCHBLT section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... SrcHeight

SrcWidth YSrc

XSrc DestHeight

DestWidth YDest

XDest Target (variable)

...

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value

META_STRETCHBLT. The high-order byte MUST contain a value equal to the number of 16-bit
WORDs in the record minus the number of WORDs in the RecordSize and Target fields. That is:

 RecordSize - (2 + (sizeof(Target)/2))

Target (variable): A variable-sized Bitmap16 Object (section 2.2.2.1) that defines source image

content. This object MUST be specified, even if the raster operation does not require a source.

2.3.1.5.2 Without Bitmap

110 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This section specifies the structure of the META_STRETCHBLT record when it does not contain an
embedded source bitmap. The source for this operation is the current region in the playback device

context.

Fields not specified in this section are specified in the preceding META_STRETCHBLT section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... SrcHeight

SrcWidth YSrc

XSrc Reserved

DestHeight DestWidth

YDest XDest

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The low-
order byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_STRETCHBLT. The high-order byte MUST contain a value equal to the number of 16-bit
WORDs in the record minus the number of WORDs in the RecordSize and RecordFunction
fields. That is:

 RecordSize - 3

Reserved (2 bytes): This field MUST be ignored.

If the raster operation specified in this record requires a source, the processing of this record fails.

2.3.1.6 META_STRETCHDIB Record

The META_STRETCHDIB record specifies the transfer of color data from a block of pixels in device-
independent format according to a raster operation, with possible expansion or contraction.

The source of the color data is a DIB, and the destination of the transfer is the current output region
in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... ColorUsage

111 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SrcHeight SrcWidth

YSrc XSrc

DestHeight DestWidth

yDst xDst

DIB (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_STRETCHDIB.

RasterOperation (4 bytes): A 32-bit unsigned integer that defines how the source pixels, the
current brush in the playback device context, and the destination pixels are to be combined to
form the new image. This code MUST be one of the values in the Ternary Raster Operation
Enumeration (section 2.1.1.31).

ColorUsage (2 bytes): A 16-bit unsigned integer that defines whether the Colors field of the DIB

contains explicit RGB values or indexes into a palette. This value MUST be in the ColorUsage
Enumeration (section 2.1.1.6).

SrcHeight (2 bytes): A 16-bit signed integer that defines the height, in logical units, of the source
rectangle.

SrcWidth (2 bytes): A 16-bit signed integer that defines the width, in logical units, of the source

rectangle.

YSrc (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the source

rectangle.

XSrc (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the source
rectangle.

DestHeight (2 bytes): A 16-bit signed integer that defines the height, in logical units, of the
destination rectangle.

DestWidth (2 bytes): A 16-bit signed integer that defines the width, in logical units, of the
destination rectangle.

yDst (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-
left corner of the destination rectangle.

xDst (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-
left corner of the destination rectangle.

DIB (variable): A variable-sized DeviceIndependentBitmap Object (section 2.2.2.9) that is the
source of the color data.

The source image in the DIB is specified in one of the following formats:

 An array of pixels with a structure specified by the ColorUsage field and information in the
DeviceIndependentBitmap header.

112 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 A JPEG image [JFIF].<52>

 A PNG image [W3C-PNG].<53>

If the image format is JPEG or PNG, the ColorUsage field in this record MUST be set to
DIB_RGB_COLORS, and the RasterOperation field MUST be set to SRCCOPY.

See section 2.3.1 for the specification of additional bitmap records.

2.3.2 Control Record Types

This section defines the Control Record Types, which specify records that begin and end a WMF

metafile.

The following are the Control Record Types.

Name Section Description

META_EOF 2.3.2.1 Specifies the end of a WMF metafile.

META_HEADER 2.3.2.2 Specifies the start of a WMF metafile.

META_PLACEABLE 2.3.2.3 Specifies the start of a placeable WMF metafile.

2.3.2.1 META_EOF Record

The META_EOF record indicates the end of the WMF metafile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of 16-bit WORDs in the

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines the type of this record. For
META_EOF, this value MUST be 0x0000, as specified in the RecordType Enumeration table.

See section 2.3.2 for the specification of similar records.

2.3.2.2 META_HEADER Record

The META_HEADER record is the first record in a standard (nonplaceable) WMF metafile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type HeaderSize

Version SizeLow

https://go.microsoft.com/fwlink/?LinkId=89925
https://go.microsoft.com/fwlink/?LinkId=90562

113 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SizeHigh NumberOfObjects

MaxRecord

NumberOfMembers

Type (2 bytes): A 16-bit unsigned integer that defines the type of metafile. It MUST be a value in the
MetafileType enumeration (section 2.1.1.18).

HeaderSize (2 bytes): A 16-bit unsigned integer that defines the number of 16-bit words in the

header.

Version (2 bytes): A 16-bit unsigned integer that defines the metafile version. It MUST be a value in
the MetafileVersion enumeration (section 2.1.1.19).<54>

SizeLow (2 bytes): A 16-bit unsigned integer that defines the low-order word of the number of 16-

bit words in the entire metafile.

SizeHigh (2 bytes): A 16-bit unsigned integer that defines the high-order word of the number of 16-

bit words in the entire metafile.

NumberOfObjects (2 bytes): A 16-bit unsigned integer that specifies the number of graphics
objects that are defined in the entire metafile. These objects include brushes, pens, and the other
objects specified in section 2.2.1.

MaxRecord (4 bytes): A 32-bit unsigned integer that specifies the size of the largest record used in
the metafile (in 16-bit elements).

NumberOfMembers (2 bytes): A 16-bit unsigned integer that is not used. It SHOULD be 0x0000.

See section 2.3.2 for the specification of similar records.

2.3.2.3 META_PLACEABLE Record

The META_PLACEABLE record is the first record in a placeable WMF metafile, which is an extension
to the WMF metafile format.<55> The information in this extension allows the specification of the

placement and size of the target image, which makes it adaptable to different output devices.

The META_PLACEABLE record MUST be the first record of the metafile, located immediately before the
META_HEADER record (section 2.3.2.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Key

HWmf BoundingBox

...

... Inch

Reserved

Checksum

114 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Key (4 bytes): Identification value that indicates the presence of a placeable metafile header. This
value MUST be 0x9AC6CDD7.

HWmf (2 bytes): The resource handle to the metafile, when the metafile is in memory. When the
metafile is on disk, this field MUST contain 0x0000. This attribute of the metafile is specified in the

Type field of the META_HEADER record.

BoundingBox (8 bytes): The rectangle in the playback context (or simply the destination rectangle),
measured in logical units, for displaying the metafile. The size of a logical unit is specified by the
Inch field.

Inch (2 bytes): The number of logical units per inch used to represent the image. This value can be
used to scale an image.

By convention, an image is considered to be recorded at 1440 logical units (twips) per inch. Thus,

a value of 720 specifies that the image SHOULD be rendered at twice its normal size, and a value
of 2880 specifies that the image SHOULD be rendered at half its normal size.

Reserved (4 bytes): A field that is not used and MUST be set to 0x00000000.

Checksum (2 bytes): A checksum for the previous 10 16-bit values in the header. This value can be
used to determine whether the metafile has become corrupted.

See section 2.3.2 for the specification of similar records.

2.3.3 Drawing Record Types

This section defines the Drawing Record Types, which specify records that perform graphics output.
These records use graphics objects and properties specified in the Playback Device
Context (section 3.1.5).

The following are the Drawing Record Types.

Name Section Description

META_ARC 2.3.3.1 Draws an elliptical arc.

META_CHORD 2.3.3.2 Draws a chord.

META_ELLIPSE 2.3.3.3 Draws an ellipse.

META_EXTFLOODFILL 2.3.3.4 Fills an area with the brush that is defined in the playback device
context.

META_EXTTEXTOUT 2.3.3.5 Outputs a character string with optional opaquing and clipping.

META_FILLREGION 2.3.3.6 Fills a region using a specified brush.

META_FLOODFILL 2.3.3.7 Fills an area of the output surface with the brush that is defined in the
playback device context.

META_FRAMEREGION 2.3.3.8 Draws a border around a specified region using a specified brush.

META_INVERTREGION 2.3.3.9 Draws a region in which the colors are inverted.

META_LINETO 2.3.3.10 Draws a line from the drawing position that is defined in the playback
device context up to, but not including, a specified position.

META_PAINTREGION 2.3.3.11 Paints the specified region using the brush that is defined in the playback
device context.

META_PATBLT 2.3.3.12 Paints a specified rectangle by using the brush that is defined in the

115 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Section Description

playback device context.

META_PIE 2.3.3.13 Draws a pie-shaped wedge bounded by the intersection of an ellipse and
two radial lines.

META_POLYLINE 2.3.3.14 Draws a series of line segments by connecting the points in the specified
array.

META_POLYGON 2.3.3.15 Paints a polygon consisting of two or more vertices connected by straight
lines.

META_POLYPOLYGON 2.3.3.16 Paints a series of closed polygons.

META_RECTANGLE 2.3.3.17 Paints a rectangle.

META_ROUNDRECT 2.3.3.18 Paints a rectangle with rounded corners.

META_SETPIXEL 2.3.3.19 Sets the pixel at specified coordinates to a specified color.

META_TEXTOUT 2.3.3.20 Outputs a character string.

2.3.3.1 META_ARC Record

The META_ARC record draws an elliptical arc.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction YEndArc

XEndArc YStartArc

XStartArc BottomRect

RightRect TopRect

LeftRect

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value META_ARC.

YEndArc (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the

ending point of the radial line defining the ending point of the arc.

XEndArc (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
ending point of the radial line defining the ending point of the arc.

YStartArc (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
ending point of the radial line defining the starting point of the arc.

116 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

XStartArc (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
ending point of the radial line defining the starting point of the arc.

BottomRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the bounding rectangle.

RightRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
lower-right corner of the bounding rectangle.

TopRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
upper-left corner of the bounding rectangle.

LeftRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
upper-left corner of the bounding rectangle.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.2 META_CHORD Record

The META_CHORD record draws a chord, which is defined by a region bounded by the intersection of
an ellipse with a line segment. The chord is outlined using the pen and filled using the brush that are

defined in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction YRadial2

XRadial2 YRadial1

XRadial1 BottomRect

RightRect TopRect

LeftRect

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_CHORD.

YRadial2 (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical coordinates, of
the endpoint of the second radial.

XRadial2 (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical coordinates, of
the endpoint of the second radial.

YRadial1 (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical coordinates, of
the endpoint of the first radial.

XRadial1 (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical coordinates, of
the endpoint of the first radial.

117 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

BottomRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the bounding rectangle.

RightRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
lower-right corner of the bounding rectangle.

TopRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
upper-left corner of the bounding rectangle.

LeftRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
upper-left corner of the bounding rectangle.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.3 META_ELLIPSE Record

The META_ELLIPSE record draws an ellipse. The center of the ellipse is the center of the specified
bounding rectangle. The ellipse is outlined by using the pen and is filled by using the brush; these are

defined in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction BottomRect

RightRect TopRect

LeftRect

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_ELLIPSE.

BottomRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the bounding rectangle.

RightRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
lower-right corner of the bounding rectangle.

TopRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
upper-left corner of the bounding rectangle.

LeftRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the

upper-left corner of the bounding rectangle.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.4 META_EXTFLOODFILL Record

The META_EXTFLOODFILL record fills an area with the brush that is defined in the playback device
context.

118 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Mode

ColorRef

Y X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_EXTFLOODFILL.

Mode (2 bytes): A 16-bit unsigned integer that defines the fill operation to be performed. This
member MUST be one of the values in the FloodFill Enumeration table.

ColorRef (4 bytes): A 32-bit ColorRef Object that defines the color value.

Y (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the point to be

set.

X (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the point to be
set.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.5 META_EXTTEXTOUT Record

The META_EXTTEXTOUT record outputs text by using the font, background color, and text color that
are defined in the playback device context. Optionally, dimensions can be provided for clipping,
opaquing, or both.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Y

X StringLength

fwOpts Rectangle (optional)

...

... String (variable)

...

119 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Dx (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_EXTTEXTOUT.

Y (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, where the text
string is to be located.

X (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, where the text
string is to be located.

StringLength (2 bytes): A 16-bit signed integer that defines the length of the string.

fwOpts (2 bytes): A 16-bit unsigned integer that defines the use of the application-defined
rectangle. This member can be a combination of one or more values in the ExtTextOutOptions
Flags (section 2.1.2.2).

Rectangle (8 bytes): An optional 8-byte Rect Object (section 2.2.2.18) that defines the dimensions,
in logical coordinates, of a rectangle that is used for clipping, opaquing, or both.

String (variable): A variable-length string that specifies the text to be drawn. The string does not

need to be null-terminated, because StringLength specifies the length of the string. If the length
is odd, an extra byte is placed after it so that the following member (optional Dx) is aligned on a
16-bit boundary.

Dx (variable): An optional array of 16-bit signed integers that indicate the distance between origins
of adjacent character cells. For example, Dx[i] logical units separate the origins of character cell i

and character cell i + 1. If this field is present, there MUST be the same number of values as there
are characters in the string.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.6 META_FILLREGION Record

The META_FILLREGION record fills a region using a specified brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Region

Brush

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_FILLREGION.

120 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Region (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the
region to be filled.

Brush (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the brush
to use for filling the region.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.
See section 3.1.4.1 for more information.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.7 META_FLOODFILL Record

The META_FLOODFILL record fills an area of the output surface with the brush that is defined in the
playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction ColorRef

... YStart

XStart

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_FLOODFILL.

ColorRef (4 bytes): A 32-bit ColorRef Object that defines the color value.

YStart (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the point
where filling is to start.

XStart (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the point
where filling is to start.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.8 META_FRAMEREGION Record

The META_FRAMEREGION record draws a border around a specified region using a specified brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Region

Brush Height

121 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Width

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value
META_FRAMEREGION.

Region (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the
region to be framed.

Brush (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the Brush
to use for filling the region.

Height (2 bytes): A 16-bit signed integer that defines the height, in logical units, of the region
frame.

Width (2 bytes): A 16-bit signed integer that defines the width, in logical units, of the region frame.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.
See section 3.1.4.1 for more information.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.9 META_INVERTREGION Record

The META_INVERTREGION record draws a region in which the colors are inverted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Region

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_INVERTREGION.

Region (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the
region to be inverted.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.

See section 3.1.4.1 for more information.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.10 META_LINETO Record

The META_LINETO record draws a line from the drawing position that is defined in the playback

device context up to, but not including, the specified point.

122 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Y

X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_LINETO.

Y (2 bytes): A 16-bit signed integer that defines the vertical component of the drawing destination

position, in logical units.

X (2 bytes): A 16-bit signed integer that defines the horizontal component of the drawing destination
position, in logical units.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.11 META_PAINTREGION Record

The META_PAINTREGION record paints the specified region by using the brush that is defined in the
playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Region

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_PAINTREGION.

Region (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the

region to be inverted.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.

See section 3.1.4.1 for more information.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.12 META_PATBLT Record

The META_PATBLT record paints a specified rectangle using the brush that is defined in the playback
device context. The brush color and the surface color or colors are combined using the specified
raster operation.

123 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction RasterOperation

... Height

Width YLeft

XLeft

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_PATBLT.

RasterOperation (4 bytes): A 32-bit unsigned integer that defines the raster operation code. This
code MUST be one of the values in the Ternary Raster Operation enumeration table.

Height (2 bytes): A 16-bit signed integer that defines the height, in logical units, of the rectangle.

Width (2 bytes): A 16-bit signed integer that defines the width, in logical units, of the rectangle.

YLeft (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-
left corner of the rectangle to be filled.

XLeft (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-
left corner of the rectangle to be filled.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.13 META_PIE Record

The META_PIE record draws a pie-shaped wedge bounded by the intersection of an ellipse and two
radials. The pie is outlined by using the pen and filled by using the brush that are defined in the
playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction YRadial2

XRadial2 YRadial1

XRadial1 BottomRect

RightRect TopRect

124 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

LeftRect

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_PIE.

YRadial2 (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical coordinates, of
the endpoint of the second radial.

XRadial2 (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical coordinates, of
the endpoint of the second radial.

YRadial1 (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical coordinates, of
the endpoint of the first radial.

XRadial1 (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical coordinates, of
the endpoint of the first radial.

BottomRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the bounding rectangle.

RightRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the

lower-right corner of the bounding rectangle.

TopRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
upper-left corner of the bounding rectangle.

LeftRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
upper-left corner of the bounding rectangle.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.14 META_POLYLINE Record

The META_POLYLINE record draws a series of line segments by connecting the points in the specified
array.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction NumberOfPoints

aPoints (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value META_POLYLINE.

125 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

NumberOfPoints (2 bytes): A 16-bit signed integer that defines the number of points in the array.

aPoints (variable): A NumberOfPoints array of 32-bit PointS Objects, in logical units.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.15 META_POLYGON Record

The META_POLYGON record paints a polygon consisting of two or more vertices connected by straight
lines. The polygon is outlined by using the pen and filled by using the brush and polygon fill mode that
are defined in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction NumberofPoints

aPoints (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_POLYGON.

NumberofPoints (2 bytes): A 16-bit signed integer that defines the number of points in the array.

aPoints (variable): A NumberOfPoints array of 32-bit PointS Objects (section 2.2.2.16), in logical
units.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.16 META_POLYPOLYGON Record

The META_POLYPOLYGON record paints a series of closed polygons. Each polygon is outlined by using
the pen and filled by using the brush and polygon fill mode; these are defined in the playback device
context. The polygons drawn by this function can overlap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction PolyPolygon (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

126 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_POLYPOLYGON.

PolyPolygon (variable): A variable-sized PolyPolygon Object (section 2.2.2.17) that defines the

point information.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.17 META_RECTANGLE Record

The META_RECTANGLE record paints a rectangle. The rectangle is outlined by using the pen and filled
by using the brush that are defined in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction BottomRect

RightRect TopRect

LeftRect

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_RECTANGLE.

BottomRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the rectangle.

RightRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
lower-right corner of the rectangle.

TopRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
upper-left corner of the rectangle.

LeftRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
upper-left corner of the rectangle.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.18 META_ROUNDRECT Record

The META_ROUNDRECT record paints a rectangle with rounded corners. The rectangle is outlined
using the pen and filled using the brush, as defined in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

127 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction Height

Width BottomRect

RightRect TopRect

LeftRect

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_ROUNDRECT.

Height (2 bytes): A 16-bit signed integer that defines the height, in logical coordinates, of the ellipse

used to draw the rounded corners.

Width (2 bytes): A 16-bit signed integer that defines the width, in logical coordinates, of the ellipse
used to draw the rounded corners.

BottomRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the rectangle.

RightRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the
lower-right corner of the rectangle.

TopRect (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
upper-left corner of the rectangle.

LeftRect (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the

upper-left corner of the rectangle.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.19 META_SETPIXEL Record

The META_SETPIXEL record sets the pixel at the specified coordinates to the specified color.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction ColorRef

... Y

X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

128 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_SETPIXEL.

ColorRef (4 bytes): A ColorRef Object (section 2.2.2.8) that defines the color value.

Y (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the point to be
set.

X (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the point to be
set.

See section 2.3.3 for the specification of other Drawing records.

2.3.3.20 META_TEXTOUT Record

The META_TEXTOUT record outputs a character string at the specified location by using the font,
background color, and text color that are defined in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction StringLength

String (variable)

...

YStart XStart

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_TEXTOUT.

StringLength (2 bytes): A 16-bit signed integer that defines the length of the string, in bytes,
pointed to by String.

String (variable): The size of this field MUST be a multiple of two. If StringLength is an odd number,

then this field MUST be of a size greater than or equal to StringLength + 1. A variable-length
string that specifies the text to be drawn. The string does not need to be null-terminated, because
StringLength specifies the length of the string. The string is written at the location specified by
the XStart and YStart fields.

YStart (2 bytes): A 16-bit signed integer that defines the vertical (y-axis) coordinate, in logical units,
of the point where drawing is to start.

XStart (2 bytes): A 16-bit signed integer that defines the horizontal (x-axis) coordinate, in logical
units, of the point where drawing is to start.

See section 2.3.3 for the specification of other Drawing records.

129 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.4 Object Record Types

This section defines the Object Record Types, which create and manage the graphics objects specified
in the Playback Device Context (section 3.1.5).

The following are the Object Record Types.

Name Section Description

META_CREATEBRUSHINDIRECT 2.3.4.1 Creates a Brush Object (section 2.2.1.1) from a LogBrush
Object (section 2.2.2.10).

META_CREATEFONTINDIRECT 2.3.4.2 Creates a Font Object (section 2.2.1.2).

META_CREATEPALETTE 2.3.4.3 Creates a Palette Object (section 2.2.1.3).

META_CREATEPATTERNBRUSH 2.3.4.4 Creates a Brush Object with a pattern specified by a bitmap.

META_CREATEPENINDIRECT 2.3.4.5 Creates a Pen Object (section 2.2.1.4).

META_CREATEREGION 2.3.4.6 Creates a Region Object (section 2.2.1.5).

META_DELETEOBJECT 2.3.4.7 Deletes an existing object.

META_DIBCREATEPATTERNBRUSH 2.3.4.8 Creates a Brush Object with a pattern specified by a DIB.

META_SELECTCLIPREGION 2.3.4.9 Specifies the clipping region in the playback device context
with a specified Region Object.

META_SELECTOBJECT 2.3.4.10 Specifies a graphics object in the playback device context.

META_SELECTPALETTE 2.3.4.11 Specifies the palette in the playback device context with a
specified Palette Object.

Whenever a graphics object is created by one of the preceding metafile records, the following actions
are implied:

 The object MUST always be assigned the lowest-numbered available index in the WMF Object
Table (section 3.1.4.1).

 Subsequent WMF records MUST refer to the object by its assigned WMF Object Table index.

 The object MUST NOT be used in drawing operations until a META_SELECTOBJECT record is
received that specifies the object's index.

 The object MUST remain available for selection until a META_DELETEOBJECT (section 2.3.4.7)
record is received that specifies the object's index.

For further information concerning object indexes and the WMF Object Table, see Managing
Objects (section 3.1.4).

2.3.4.1 META_CREATEBRUSHINDIRECT Record

The META_CREATEBRUSHINDIRECT record creates a Brush Object (section 2.2.1.1) from a LogBrush

Object (section 2.2.2.10).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

130 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction LogBrush

...

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_CREATEBRUSHINDIRECT.

LogBrush (8 bytes): LogBrush Object data that defines the brush to create. The BrushStyle field
specified in the LogBrush Object SHOULD be BS_SOLID, BS_NULL, or BS_HATCHED; otherwise, a
default Brush Object MAY be created. See the following table for details.

The following table shows the types of Brush Objects created by the META_CREATEBRUSHINDIRECT

record, according to the BrushStyle Enumeration (section 2.1.1.4) value in the LogBrush Object
specified by the LogBrush field.

BrushStyle Brush Object created

BS_SOLID A solid-color Brush Object.

BS_NULL An empty Brush Object.

BS_PATTERN A default object, such as a solid-color black Brush Object, SHOULD be created.<56>

BS_DIBPATTERNPT Same as preceding BS_PATTERN.

BS_HATCHED A hatched Brush Object.

See section 2.3.4 for the specification of other object records.

2.3.4.2 META_CREATEFONTINDIRECT Record

The META_CREATEFONTINDIRECT record creates a Font Object (section 2.2.1.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Font (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration value
META_CREATEFONTINDIRECT.

Font (variable): Font Object data that defines the font to create.

131 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

See section 2.3.4 for the specification of other object records.

2.3.4.3 META_CREATEPALETTE Record

The META_CREATEPALETTE record creates a Palette Object (section 2.2.1.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Palette (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration value META_CREATEPALETTE.

Palette (variable): Palette Object data that defines the palette to create. The Start field in the
Palette Object MUST be set to 0x0300.

See section 2.3.4 for the specification of other object records.

2.3.4.4 META_CREATEPATTERNBRUSH Record

The META_CREATEPATTERNBRUSH record creates a brush object with a pattern specified by a
bitmap.<57>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Bitmap16 (14 bytes)

...

...

...

Reserved (18 bytes)

...

...

...

Pattern (variable)

132 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_CREATEPATTERNBRUSH.

Bitmap16 (14 bytes): A partial Bitmap16 object (section 2.2.2.1), which defines parameters for the
bitmap that specifies the pattern for the brush. Fields not described below are specified in section
2.2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Width

Height WidthBytes

Planes BitsPixel Bits

...

Bits (4 bytes): This field MUST be ignored.

Reserved (18 bytes): This field MUST be ignored.

Pattern (variable): A variable-length array of bytes that defines the bitmap pixel data that
composes the brush pattern. The length of this field, in bytes, can be computed from bitmap
parameters as follows.

 (((Width * BitsPixel + 15) >> 4) << 1) * Height

The Width, BitsPixel, and Height values are specified in the Bitmap16 field of this record.

The BrushStyle enumeration (section 2.1.1.4) value for the brush object created by this record MUST
be BS_PATTERN.

See section 2.3.4 for the specification of other WMF object records.

2.3.4.5 META_CREATEPENINDIRECT Record

The META_CREATEPENINDIRECT record creates a Pen Object (section 2.2.1.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Pen

...

133 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration value
META_CREATEPENINDIRECT.

Pen (10 bytes): Pen Object data that defines the pen to create.

See section 2.3.4 for the specification of other object records.

2.3.4.6 META_CREATEREGION Record

The META_CREATEREGION record creates a Region Object (section 2.2.1.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Region (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration value META_CREATEREGION.

Region (variable): Region Object data that defines the region to create.

See section 2.3.4 for the specification of other object records.

2.3.4.7 META_DELETEOBJECT Record

The META_DELETEOBJECT record deletes an object, including Bitmap16, Brush,
DeviceIndependentBitmap, Font, Palette, Pen, and Region. After the object is deleted, its index in the
WMF Object Table is no longer valid but is available to be reused.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction ObjectIndex

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_DELETEOBJECT.

134 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ObjectIndex (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get
the object to be deleted.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.
See section 3.1.4.1 for more information.

See section 2.3.4 for the specification of other Object records.

2.3.4.8 META_DIBCREATEPATTERNBRUSH Record

The META_DIBCREATEPATTERNBRUSH record creates a Brush Object (section 2.2.1.1) with a pattern

specified by a DeviceIndependentBitmap (DIB) Object (section 2.2.2.9).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Style

ColorUsage Target (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_DIBCREATEPATTERNBRUSH.

Style (2 bytes): A 16-bit unsigned integer that defines the brush style. The legal values for this field

are defined as follows: if the value is not BS_PATTERN, BS_DIBPATTERNPT MUST be assumed.
These values are specified in the BrushStyle Enumeration (section 2.1.1.4).

ColorUsage (2 bytes): A 16-bit unsigned integer that defines whether the Colors field of a DIB
Object contains explicit RGB values, or indexes into a palette.

If the Style field specifies BS_PATTERN, a ColorUsage value of DIB_RGB_COLORS MUST be used
regardless of the contents of this field.

If the Style field specified anything but BS_PATTERN, this field MUST be one of the values in the
ColorUsage Enumeration (section 2.1.1.6).

Target (variable): Variable-bit DIB Object data that defines the pattern to use in the brush.

The following table shows the types of Brush Objects created by the
META_DIBCREATEPATTERNBRUSH record, according to BrushStyle Enumeration values.

BrushStyle ColorUsage Brush Object created

BS_SOLID Same as the following
BS_DIBPATTERNPT.

Same as the following BS_DIBPATTERNPT.

BS_NULL Same as the following
BS_DIBPATTERNPT.

Same as the following BS_DIBPATTERNPT.

BS_PATTERN A ColorUsage Enumeration value, which A BS_PATTERN Brush Object that SHOULD

135 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

BrushStyle ColorUsage Brush Object created

SHOULD define how to interpret the
logical color values in the brush pattern.

contain a pattern defined by a Bitmap16
Object.

BS_DIBPATTERNPT A ColorUsage Enumeration value, which
SHOULD define how to interpret the
logical color values in the brush pattern.

A BS_DIBPATTERNPT Brush Object that
SHOULD contain a pattern defined by a
DIB Object.

BS_HATCHED Same as the preceding
BS_DIBPATTERNPT.

Same as preceding BS_DIBPATTERNPT.

See section 2.3.4 for the specification of other object records.

2.3.4.9 META_SELECTCLIPREGION Record

The META_SELECTCLIPREGION record specifies a Region Object (section 2.2.1.5) to be the current

clipping region.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Region

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value
META_SELECTCLIPREGION.

Region (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the
region to be inverted.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.
See section 3.1.4.1 for more information.

See section 2.3.4 for the specification of other Object records.

2.3.4.10 META_SELECTOBJECT Record

The META_SELECTOBJECT record specifies a graphics object for the playback device context. The
new object replaces the previous object of the same type, unless if the previous object is a palette
object. If the previous object is a palette object, then the META_SELECTPALETTE record MUST be used
instead of the META_SELECTOBJECT record, because the META_SELECTOBJECT record does not

support replacing the palette object type.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction ObjectIndex

136 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_SELECTOBJECT.

ObjectIndex (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get
the object to be selected.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.
See section 3.1.4.1 for more information.

See section 2.3.4 for the specification of other Object records.

2.3.4.11 META_SELECTPALETTE Record

The META_SELECTPALETTE record defines the current logical palette with a specified Palette Object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Palette

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SELECTPALETTE.

Palette (2 bytes): A 16-bit unsigned integer used to index into the WMF Object Table to get the

Palette Object to be selected.

The WMF Object Table refers to an indexed table of WMF Objects that are defined in the metafile.
See section 3.1.4.1 for more information.

See section 2.3.4 for the specification of other Object records.

2.3.5 State Record Types

This section defines the State record types, which define and manage the graphics properties specified

in the Playback Device Context (section 3.1.5).

The following are the State record types.

Name Section Description

META_ANIMATEPALETTE 2.3.5.1 Redefines entries in the logical palette that is defined in the
playback device context with a specified Palette
Object (section 2.2.1.3).

META_EXCLUDECLIPRECT 2.3.5.2 Sets the clipping region that is defined in the playback device
context to the existing clipping region minus a specified rectangle.

META_INTERSECTCLIPRECT 2.3.5.3 Sets the clipping region that is defined in the playback device
context to the intersection of the existing clipping region and a

137 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Section Description

specified rectangle.

META_MOVETO 2.3.5.4 Sets the output position in the playback device context to a
specified point.

META_OFFSETCLIPRGN 2.3.5.5 Moves the clipping region that is defined in the playback device
context by specified offsets.

META_OFFSETVIEWPORTORG 2.3.5.6 Moves the viewport origin in the playback device context by
specified horizontal and vertical offsets.

META_OFFSETWINDOWORG 2.3.5.7 Moves the output window origin in the playback device context by
specified horizontal and vertical offsets.

META_REALIZEPALETTE 2.3.5.8 Maps entries from the logical palette that is defined in the
playback device context to the system palette.

META_RESIZEPALETTE 2.3.5.9 Redefines the size of the logical palette that is defined in the
playback device context.

META_RESTOREDC 2.3.5.10 Restores the playback device context from a previously saved
device context.

META_SAVEDC 2.3.5.11 Saves the playback device context for later retrieval.

META_SCALEVIEWPORTEXT 2.3.5.12 Scales the horizontal and vertical extents of the viewport that is
defined in the playback device context using the ratios formed by
specified multiplicands and divisors.

META_SCALEWINDOWEXT 2.3.5.13 Scales the horizontal and vertical extents of the output window
that is defined in the playback device context using the ratios
formed by specified multiplicands and divisors.

META_SETBKCOLOR 2.3.5.14 Sets the background color in the playback device context to a
specified color.

META_SETBKMODE 2.3.5.15 Sets the background mix mode in the playback device context.

META_SETLAYOUT 2.3.5.16 Defines the layout orientation in the playback device context.

META_SETMAPMODE 2.3.5.17 Defines the mapping mode in the playback device context.

META_SETMAPPERFLAGS 2.3.5.18 Defines the algorithm that the font mapper uses when it maps
logical fonts to physical fonts.

META_SETPALENTRIES 2.3.5.19 Defines RGB color values in a range of entries in the logical palette
that is defined in the playback device context.

META_SETPOLYFILLMODE 2.3.5.20 Defines polygon fill mode in the playback device context for
graphics operations that fill polygons.

META_SETRELABS 2.3.5.21 Undefined and MUST be ignored.

META_SETROP2 2.3.5.22 Defines the foreground raster operation mixing mode in the
playback device context.

META_SETSTRETCHBLTMODE 2.3.5.23 Defines the bitmap stretching mode in the playback device
context.

META_SETTEXTALIGN 2.3.5.24 Defines text-alignment values in the playback device context.

META_SETTEXTCHAREXTRA 2.3.5.25 Defines inter-character spacing for text justification in the
playback device context.

138 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Section Description

META_SETTEXTCOLOR 2.3.5.26 Defines the text foreground color in the playback device context.

META_SETTEXTJUSTIFICATION 2.3.5.27 Defines the amount of space to add to break characters in a string
of justified text.

META_SETVIEWPORTEXT 2.3.5.28 Defines the horizontal and vertical extents of the viewport in the
playback device context.

META_SETVIEWPORTORG 2.3.5.29 Defines the viewport origin in the playback device context.

META_SETWINDOWEXT 2.3.5.30 Defines the horizontal and vertical extents of the output window in
the playback device context.

META_SETWINDOWORG 2.3.5.31 Defines the output window origin in the playback device context.

2.3.5.1 META_ANIMATEPALETTE Record

The META_ANIMATEPALETTE record redefines entries in the logical palette that is defined in the

playback device context with the specified Palette object (section 2.2.1.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Palette (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value

META_ANIMATEPALETTE.

Palette (variable): A variable-sized Palette object that specifies a logical palette.

The logical palette that is specified by the Palette object in this record is the source of the palette
changes, and the logical palette that is currently selected into the playback device context is the
destination. Entries in the destination palette with the PC_RESERVED
PaletteEntryFlag (section 2.1.1.22) set SHOULD be modified by this record, and entries with that flag
clear SHOULD NOT be modified. If none of the entries in the destination palette have the

PC_RESERVED flag set, then this record SHOULD have no effect.

See section 2.3.5 for the specification of other State record types.

2.3.5.2 META_EXCLUDECLIPRECT Record

The META_EXCLUDECLIPRECT record sets the clipping region in the playback device context to the
existing clipping region minus the specified rectangle.

139 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Bottom

Right Top

Left

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value

META_EXCLUDECLIPRECT.

Bottom (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the rectangle.

Right (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the lower-
right corner of the rectangle.

Top (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left
corner of the rectangle.

Left (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left
corner of the rectangle.

See section 2.3.5 for the specification of other State record types.

2.3.5.3 META_INTERSECTCLIPRECT Record

The META_INTERSECTCLIPRECT record sets the clipping region in the playback device context to
the intersection of the existing clipping region and the specified rectangle.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Bottom

Right Top

Left

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_INTERSECTCLIPRECT.

140 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Bottom (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the
lower-right corner of the rectangle.

Right (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the lower-
right corner of the rectangle.

Top (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units, of the upper-left
corner of the rectangle.

Left (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units, of the upper-left
corner of the rectangle.

See section 2.3.5 for the specification of other State record types.

2.3.5.4 META_MOVETO Record

The META_MOVETO record sets the output position in the playback device context to a specified
point.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Y

X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value META_MOVETO.

Y (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units.

X (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units.

See section 2.3.5 for the specification of other State record types.

2.3.5.5 META_OFFSETCLIPRGN Record

The META_OFFSETCLIPRGN record moves the clipping region in the playback device context by
the specified offsets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction YOffset

XOffset

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

141 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value

META_OFFSETCLIPRGN.

YOffset (2 bytes): A 16-bit signed integer that defines the number of logical units to move up or

down.

XOffset (2 bytes): A 16-bit signed integer that defines the number of logical units to move left or
right.

See section 2.3.5 for the specification of other State record types.

2.3.5.6 META_OFFSETVIEWPORTORG Record

The META_OFFSETVIEWPORTORG record moves the viewport origin in the playback device context
by specified horizontal and vertical offsets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction YOffset

XOffset

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_OFFSETVIEWPORTORG.

YOffset (2 bytes): A 16-bit signed integer that defines the vertical offset, in device units.

XOffset (2 bytes): A 16-bit signed integer that defines the horizontal offset, in device units.

See section 2.3.5 for the specification of other State record types.

2.3.5.7 META_OFFSETWINDOWORG Record

The META_OFFSETWINDOWORG record moves the output window origin in the playback device
context by specified horizontal and vertical offsets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction YOffset

XOffset

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

142 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value

META_OFFSETWINDOWORG.

YOffset (2 bytes): A 16-bit signed integer that defines the vertical offset, in device units.

XOffset (2 bytes): A 16-bit signed integer that defines the horizontal offset, in device units.

See section 2.3.5 for the specification of other State record types.

2.3.5.8 META_REALIZEPALETTE Record

The META_REALIZEPALETTE record maps entries from the logical palette that is defined in the
playback device context to the system palette.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value

META_REALIZEPALETTE.

See section 2.3.5 for the specification of other State record types.

2.3.5.9 META_RESIZEPALETTE Record

The META_RESIZEPALETTE record redefines the size of the logical palette that is defined in the

playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction NumberOfEntries

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value

META_RESIZEPALETTE.

NumberOfEntries (2 bytes): A 16-bit unsigned integer that defines the number of entries in the
logical palette.

See section 2.3.5 for the specification of other State record types.

143 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.5.10 META_RESTOREDC Record

The META_RESTOREDC record restores the playback device context from a previously saved
device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction nSavedDC

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value META_RESTOREDC.

nSavedDC (2 bytes): A 16-bit signed integer that defines the saved state to be restored. If this
member is positive, nSavedDC represents a specific instance of the state to be restored. If this

member is negative, nSavedDC represents an instance relative to the current state.

See section 3.1.5 for a description of the state defined by the playback device context.

See section 2.3.5 for the specification of other State record types.

2.3.5.11 META_SAVEDC Record

The META_SAVEDC record saves the playback device context for later retrieval.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value META_SAVEDC.

See section 3.1.5 for a description of the state defined by the playback device context.

See section State Record Types (section 2.3.5) for the specification of other State record types.

2.3.5.12 META_SCALEVIEWPORTEXT Record

The META_SCALEVIEWPORTEXT record scales the horizontal and vertical extents of the viewport that
is defined in the playback device context by using the ratios formed by the specified multiplicands
and divisors.

144 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction yDenom

yNum xDenom

xNum

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value

META_SCALEVIEWPORTEXT.

yDenom (2 bytes): A 16-bit signed integer that defines the amount by which to divide the result of
multiplying the current y-extent by the value of the yNum member.

yNum (2 bytes): A 16-bit signed integer that defines the amount by which to multiply the current y-
extent.

xDenom (2 bytes): A 16-bit signed integer that defines the amount by which to divide the result of
multiplying the current x-extent by the value of the xNum member.

xNum (2 bytes): A 16-bit signed integer that defines the amount by which to multiply the current x-
extent.

See section 2.3.5 for the specification of other State record types.

2.3.5.13 META_SCALEWINDOWEXT Record

The META_SCALEWINDOWEXT record scales the horizontal and vertical extents of the output window
that is defined in the playback device context by using the ratios formed by specified multiplicands
and divisors.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction yDenom

yNum xDenom

xNum

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SCALEWINDOWEXT.

145 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

yDenom (2 bytes): A 16-bit signed integer that defines the amount by which to divide the result of
multiplying the current y-extent by the value of the yNum member.

yNum (2 bytes): A 16-bit signed integer that defines the amount by which to multiply the current y-
extent.

xDenom (2 bytes): A 16-bit signed integer that defines the amount by which to divide the result of
multiplying the current x-extent by the value of the xNum member.

xNum (2 bytes): A 16-bit signed integer that defines the amount by which to multiply the current x-
extent.

See section 2.3.5 for the specification of other State record types.

2.3.5.14 META_SETBKCOLOR Record

The META_SETBKCOLOR record sets the background color in the playback device context to a
specified color, or to the nearest physical color if the device cannot represent the specified color.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction ColorRef

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value META_SETBKCOLOR.

ColorRef (4 bytes): A 32-bit ColorRef Object that defines the color value.

See section 2.3.5 for the specification of other State record types.

2.3.5.15 META_SETBKMODE Record

The META_SETBKMODE record defines the background raster operation mix mode in the playback
device context. The background mix mode is the mode for combining pens, text, hatched brushes,
and interiors of filled objects with background colors on the output surface.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction BkMode

Reserved (optional)

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

146 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_SETBKMODE.

BkMode (2 bytes): A 16-bit unsigned integer that defines background mix mode. This MUST be one

of the values in the MixMode Enumeration (section 2.1.1.20).

Reserved (2 bytes): An optional 16-bit field that MUST be ignored.<58>

See section 2.3.5 for the specification of other State record types.

2.3.5.16 META_SETLAYOUT Record

The META_SETLAYOUT record defines the layout orientation in the playback device context.<59>
The layout orientation determines the direction in which text and graphics are drawn

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Layout

Reserved

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_SETLAYOUT.

Layout (2 bytes): A 16-bit unsigned integer that defines the layout of text and graphics. This MUST
be one of the values in the Layout Enumeration (section 2.1.1.13).

Reserved (2 bytes): A 16-bit field that MUST be ignored.

See section 2.3.5 for the specification of other State record types.

2.3.5.17 META_SETMAPMODE Record

The META_SETMAPMODE record defines the mapping mode in the playback device context. The
mapping mode defines the unit of measure used to transform page-space units into device-space
units, and also defines the orientation of the device's x and y axes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction MapMode

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

147 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value META_SETMAPMODE.

MapMode (2 bytes): A 16-bit unsigned integer that defines the mapping mode. This MUST be one of
the values enumerated in the MapMode Enumeration table.

See section 2.3.5 for the specification of other State record types.

2.3.5.18 META_SETMAPPERFLAGS Record

The META_SETMAPPERFLAGS record defines the algorithm that the font mapper uses when it maps

logical fonts to physical fonts.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction MapperValues

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SETMAPPERFLAGS.

MapperValues (4 bytes): A 32-bit unsigned integer that defines whether the font mapper attempts
to match a font aspect ratio to the current device aspect ratio. If bit zero is set, the mapper
selects only matching fonts.

See section 2.3.5 for the specification of other State record types.

2.3.5.19 META_SETPALENTRIES Record

The META_SETPALENTRIES record defines RGB color values in a range of entries in the logical
palette that is defined in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Palette (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SETPALENTRIES.

148 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Palette (variable): A Palette object (section 2.2.1.3), which defines the palette information.

The META_SETPALENTRIES record modifies the logical palette that is currently selected in the

playback device context. A META_SELECTPALETTE record (section 2.3.4.11) MUST have been used to
specify that logical palette in the form of a Palette object (section 2.2.1.3) prior to the occurrence of

the META_SETPALENTRIES record in the metafile. A Palette object is one of the graphics objects that
is maintained in the playback device context during playback of the metafile. See Graphics
Objects (section 1.3.2) for more information.

See section 2.3.5 for the specification of other State record types.

2.3.5.20 META_SETPOLYFILLMODE Record

The META_SETPOLYFILLMODE record sets polygon fill mode in the playback device context for
graphics operations that fill polygons.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction PolyFillMode

Reserved (optional)

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_SETPOLYFILLMODE.

PolyFillMode (2 bytes): A 16-bit unsigned integer that defines polygon fill mode. This MUST be one
of the values in the PolyFillMode Enumeration (section 2.1.1.25).

Reserved (2 bytes): An optional 16-bit field that MUST be ignored.<60>

See section 2.3.5 for the specification of other State record types.

2.3.5.21 META_SETRELABS Record

The META_SETRELABS record is reserved and not supported.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value META_SETRELABS.

149 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

See section 2.3.5 for the specification of other State record types.

2.3.5.22 META_SETROP2 Record

The META_SETROP2 record defines the foreground raster operation mix mode in the playback
device context. The foreground mix mode is the mode for combining pens and interiors of filled
objects with foreground colors on the output surface.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction DrawMode

Reserved (optional)

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_SETROP2.

DrawMode (2 bytes): A 16-bit unsigned integer that defines the foreground binary raster operation
mixing mode. This MUST be one of the values in the Binary Raster Operation Enumeration (section
2.1.1.2).

Reserved (2 bytes): An optional 16-bit field that MUST be ignored.<61>

See section 2.3.5 for the specification of other State record types.

2.3.5.23 META_SETSTRETCHBLTMODE Record

The META_SETSTRETCHBLTMODE record defines the bitmap stretching mode in the playback device

context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction StretchMode

Reserved (optional)

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value

META_SETSTRETCHBLTMODE.

StretchMode (2 bytes): A 16-bit unsigned integer that defines bitmap stretching mode. This MUST
be one of the values in the StretchMode Enumeration (section 2.1.1.30).

150 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reserved (2 bytes): An optional 16-bit field that MUST be ignored.<62>

See section 2.3.5 for the specification of other State record types.

2.3.5.24 META_SETTEXTALIGN Record

The META_SETTEXTALIGN record defines text-alignment values in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction TextAlignmentMode

Reserved (optional)

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration (section 2.1.1.1) value
META_SETTEXTALIGN.

TextAlignmentMode (2 bytes): A 16-bit unsigned integer that defines text alignment. This value
MUST be a combination of one or more TextAlignmentMode Flags (section 2.1.2.3) for text with a
horizontal baseline, and VerticalTextAlignmentMode Flags (section 2.1.2.4) for text with a vertical
baseline.

Reserved (2 bytes): An optional 16-bit field that MUST be ignored.<63>

See section 2.3.5 for the specification of other State record types.

2.3.5.25 META_SETTEXTCHAREXTRA Record

The META_SETTEXTCHAREXTRA record defines inter-character spacing for text justification in the

playback device context. Spacing is added to the white space between each character, including
break characters, when a line of justified text is output.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction CharExtra

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower

byte MUST match the lower byte of the RecordType Enumeration table value
META_SETTEXTCHAREXTRA.

CharExtra (2 bytes): A 16-bit unsigned integer that defines the amount of extra space, in logical
units, to be added to each character. If the current mapping mode is not MM_TEXT, this value is

151 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

transformed and rounded to the nearest pixel. For details about setting the mapping mode, see
META_SETMAPMODE (section 2.3.5.17).

See section 2.3.5 for the specification of other state record types.

2.3.5.26 META_SETTEXTCOLOR Record

The META_SETTEXTCOLOR record defines the text foreground color in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction ColorRef

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SETTEXTCOLOR.

ColorRef (4 bytes): A 32-bit ColorRef Object that defines the color value.

See section 2.3.5 for the specification of other State record types.

2.3.5.27 META_SETTEXTJUSTIFICATION Record

The META_SETTEXTJUSTIFICATION record defines the amount of space to add to break characters in

a string of justified text.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction BreakCount

BreakExtra

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration value
META_SETTEXTJUSTIFICATION.

BreakCount (2 bytes): A 16-bit unsigned integer that specifies the number of space characters in
the line.

BreakExtra (2 bytes): A 16-bit unsigned integer that specifies the total extra space, in logical units,
to be added to the line of text. If the current mapping mode is not MM_TEXT, the value identified

152 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

by the BreakExtra member is transformed and rounded to the nearest pixel. For details about
setting the mapping mode, see META_SETMAPMODE (section 2.3.5.17).

See section 2.3.5 for the specification of other State record types.

2.3.5.28 META_SETVIEWPORTEXT Record

The META_SETVIEWPORTEXT record sets the horizontal and vertical extents of the viewport in the
playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Y

X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SETVIEWPORTEXT.

Y (2 bytes): A 16-bit signed integer that defines the vertical extent of the viewport in device units.

X (2 bytes): A 16-bit signed integer that defines the horizontal extent of the viewport in device units.

See section 2.3.5 for the specification of other State record types.

2.3.5.29 META_SETVIEWPORTORG Record

The META_SETVIEWPORTORG record defines the viewport origin in the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Y

X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SETVIEWPORTORG.

Y (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units.

X (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units.

153 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

See section 2.3.5 for the specification of other State record types.

2.3.5.30 META_SETWINDOWEXT Record

The META_SETWINDOWEXT record defines the horizontal and vertical extents of the output window in
the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Y

X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SETWINDOWEXT.

Y (2 bytes): A 16-bit signed integer that defines the vertical extent of the window in logical units.

X (2 bytes): A 16-bit signed integer that defines the horizontal extent of the window in logical units.

See section 2.3.5 for the specification of other State record types.

2.3.5.31 META_SETWINDOWORG Record

The META_SETWINDOWORG record defines the output window origin in the playback device

context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction Y

X

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this WMF record type. The lower
byte MUST match the lower byte of the RecordType Enumeration table value
META_SETWINDOWORG.

Y (2 bytes): A 16-bit signed integer that defines the y-coordinate, in logical units.

X (2 bytes): A 16-bit signed integer that defines the x-coordinate, in logical units.

See section 2.3.5 for the specification of other State record types.

154 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.6 Escape Record Types

This section defines the Escape Record Types, which specify extensions to metafile functionality. The
generic format of all escape records is specified by the META_ESCAPE (section 2.3.6.1) record.

The following are the escape record types.

Name Section Description

ABORTDOC 2.3.6.2 Stops processing the current document.

BEGIN_PATH 2.3.6.3 Opens a path.

CHECK_JPEGFORMAT 2.3.6.4 Determines whether it can handle the given JPEG image.

CHECK_PNGFORMAT 2.3.6.5 Determines whether it can handle the given PNG image.

CLIP_TO_PATH 2.3.6.6 Applies a function to the current PostScript clipping path.

CLOSE_CHANNEL 2.3.6.7 Same as ENDDOC.

DOWNLOAD_FACE 2.3.6.8 Sets the font face name on the output device.

DOWNLOAD_HEADER 2.3.6.9 Downloads sets of PostScript procedures.

DRAW_PATTERNRECT 2.3.6.10 Draws a rectangle with a defined pattern.

ENCAPSULATED_POSTSCRIPT 2.3.6.11 Sends arbitrary encapsulated PostScript (EPS) data
directly to the printer driver.

END_PATH 2.3.6.12 Ends a path.

ENDDOC 2.3.6.13 Notifies the printer driver that a new print job is ending.

EPS_PRINTING 2.3.6.14 Indicates the start and end of EPS printing.

EXTTEXTOUT 2.3.6.15 Draws text using the currently selected font, background
color, and text color.

GET_COLORTABLE 2.3.6.16 Gets color table values from the printer driver.

GET_DEVICEUNITS 2.3.6.17 Gets the device units currently configured on the output
device.

GET_EXTENDED_TEXTMETRICS 2.3.6.18 Gets the extended text metrics that are currently configured
on the printer driver.

GET_FACENAME 2.3.6.19 Gets the font face name currently configured on the output
device.

GET_PAIRKERNTABLE 2.3.6.20 Gets the font kern table currently defined on the output
device.

GET_PHYSPAGESIZE 2.3.6.21 Retrieves the physical page size currently selected on the
output device.

GET_PRINTINGOFFSET 2.3.6.22 Retrieves the offset from the upper-left corner of the
physical page where the actual printing or drawing begins.

GET_PS_FEATURESETTING 2.3.6.23 Queries the printer driver for information about PostScript
features supported on the output device.

GET_SCALINGFACTOR 2.3.6.24 Retrieves the scaling factors for the x-axis and the y-axis of
a printer.

155 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Section Description

META_ESCAPE_ENHANCED_METAFILE 2.3.6.25 Used to embed an EMF metafile within a WMF metafile.

METAFILE_DRIVER 2.3.6.26 Queries the printer driver about its support for metafiles on
the output device.

NEWFRAME 2.3.6.27 Notifies the printer driver that the application has finished
writing to a page.

NEXTBAND 2.3.6.28 Notifies the printer driver that the application has finished
writing to a band.

PASSTHROUGH 2.3.6.29 Passes through arbitrary data to the printer driver.

POSTSCRIPT_DATA 2.3.6.30 Sends arbitrary PostScript data to the output device.

POSTSCRIPT_IDENTIFY 2.3.6.31 Sets the printer driver to either PostScript-centric or GDI-
centric mode.

POSTSCRIPT_IGNORE 2.3.6.32 Notifies the output device to ignore PostScript data.

POSTSCRIPT_INJECTION 2.3.6.33 Inserts a block of raw data into a PostScript stream.

POSTSCRIPT_PASSTHROUGH 2.3.6.34 Sends arbitrary data directly to a printer driver, which is
expected to process this data only when in PostScript mode.

OPEN_CHANNEL 2.3.6.35 Acts the same as STARTDOC, with a NULL document and
output filename, and data in raw mode.

QUERY_DIBSUPPORT 2.3.6.36 Queries the printer driver about its support for DIBs on the
output device.

QUERY_ESCSUPPORT 2.3.6.37 Queries the printer driver to determine whether a specific
WMF escape function is supported on the output device.

SET_COLORTABLE 2.3.6.38 Sets color table values.

SET_COPYCOUNT 2.3.6.39 Sets the number of copies.

SET_LINECAP 2.3.6.40 Specifies the line-ending mode to use in drawing to the
output device.

SET_LINEJOIN 2.3.6.41 Specifies the line-joining mode to use in drawing to the

output device.

SET_MITERLIMIT 2.3.6.42 Sets the limit for the length of miter joins to use in drawing
to the output device.

SPCLPASSTHROUGH2 2.3.6.43 Enables documents to include private procedures and other
arbitrary data in documents.

STARTDOC 2.3.6.44 Notifies the printer driver that a new print job is starting.

2.3.6.1 META_ESCAPE Record

The META_ESCAPE record specifies extensions to WMF functionality that are not directly available
through other records defined in the RecordType enumeration (section 2.1.1.1). The MetafileEscapes
enumeration (section 2.1.1.17) lists these extensions.

156 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount EscapeData (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be from the MetafileEscapes enumeration.

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the EscapeData
field.

EscapeData (variable): An array of bytes of size ByteCount.

Every META_ESCAPE record MUST include a MetafileEscapes function specifier, followed by arbitrary

data. The data SHOULD NOT contain position-specific data that assumes the location of a particular
record within the metafile, because one metafile might be embedded within another.

See section 2.3.6 for the specification of other escape record types.

2.3.6.2 ABORTDOC Record

The ABORTDOC record stops processing the current document and erases everything drawn since the
last STARTDOC record was processed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0002 (ABORTDOC) from MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

157 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.6.3 BEGIN_PATH Record

The BEGIN_PATH record opens a path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte

MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x1000 (BEGIN_PATH) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.4 CHECK_JPEGFORMAT Record

The CHECK_JPEGFORMAT record specifies whether the printer driver supports JPEG image output.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount JPEGBuffer (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x1017 (CHECK_JPEGFORMAT) from the MetafileEscapes enumeration (section

2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the JPEGBuffer
field.

JPEGBuffer (variable): A buffer of JPEG image data.

158 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

See section 2.3.6 for the specification of other escape record types.

2.3.6.5 CHECK_PNGFORMAT Record

The CHECK_PNGFORMAT record queries the driver to see if it can handle the given PNG image and
parses the PNG image to determine whether the driver can support it.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount PNGBuffer (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte

MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x1018 (CHECK_PNGFORMAT) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the PNGBuffer
field.

PNGBuffer (variable): A buffer of PNG image data.

See section 2.3.6 for the specification of other escape record types.

2.3.6.6 CLIP_TO_PATH Record

The CLIP_TO_PATH record applies a function to the current PostScript clipping path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount ClipFunction

Reserved1

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in this record.
This value MUST be 0x0000000E.

159 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines the record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x1001 (CLIP_TO_PATH) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the record data
that follows. This value MUST be 0x0004.

ClipFunction (2 bytes): A 16-bit unsigned integer that defines the function to apply to the PostScript
clipping path. This value MUST be a PostScriptClipping enumeration (section 2.1.1.27) value.

Name Value

CLIP_SAVE 0x0000

CLIP_RESTORE 0x0001

CLIP_INCLUSIVE 0x0002

Reserved1 (2 bytes): This value SHOULD be zero and SHOULD be ignored by the client.<64>

See section 2.3.6 for the specification of other escape record types.

2.3.6.7 CLOSE_CHANNEL Record

The CLOSE_CHANNEL record notifies the printer driver that the current print job is ending. This is
the same function as the ENDDOC record. A CLOSE_CHANNEL record MUST be preceded by an
OPEN_CHANNEL record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The low-order
byte MUST match the low-order byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x1010 (CLOSE_CHANNEL) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.8 DOWNLOAD_FACE Record

The DOWNLOAD_FACE record sends the font face.

160 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The low-order

byte MUST match the low-order byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0202 (DOWNLOAD_FACE) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.9 DOWNLOAD_HEADER Record

The DOWNLOAD_HEADER record instructs the driver to download all sets of PostScript procedures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be set to 0x100F (DOWNLOAD_HEADER) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.10 DRAW_PATTERNRECT Record

The DRAW_PATTERNRECT record draws a rectangle with a defined pattern.

161 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Position

...

... Size

...

... Style

Pattern

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0019 (DRAW_PATTERNRECT) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the record data
that follows. This MUST be 0x0014.

Position (8 bytes): A PointL object (section 2.2.2.15) that defines the position of the rectangle.

Size (8 bytes): A PointL object that defines the dimensions of the rectangle.

Style (2 bytes): A 16-bit unsigned integer that defines the style.

Pattern (2 bytes): A 16-bit unsigned integer that defines the pattern.

See section 2.3.6 for the specification of other escape record types.

2.3.6.11 ENCAPSULATED_POSTSCRIPT Record

The ENCAPSULATED_POSTSCRIPT record sends arbitrary PostScript data directly to a printer
driver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Size

162 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

... Version

... Points (24 bytes)

...

...

... Data (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The low-order

byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x1014 (ENCAPSULATED_POSTSCRIPT) from the MetafileEscapes enumeration
(section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the record data

that follows. This value SHOULD be greater than or equal to the value of the Size field.<65>

Size (4 bytes): A 32-bit unsigned integer that specifies the total size, in bytes, of the Size, Version,
Points, and Data fields.

Version (4 bytes): A 32-bit unsigned integer that defines the PostScript language level.

Points (24 bytes): An array of three PointL objects (section 2.2.2.15) that define the output
parallelogram in 28.4 FIX device coordinates.

Data (variable): The PostScript data.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.12 END_PATH Record

The END_PATH record specifies the end of a path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

163 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x1002 (END_PATH) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.13 ENDDOC Record

The ENDDOC record notifies the printer driver that the current print job is ending.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x000B (ENDDOC) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.14 EPS_PRINTING Record

The EPS_PRINTING record indicates the start or end of Encapsulated PostScript (EPS) printing.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount SetEpsPrinting

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

164 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0021 (EPS_PRINTING) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the
SetEpsPrinting field. This MUST be 0x0002.

SetEpsPrinting (2 bytes): A 16-bit unsigned integer that indicates the start or end of EPS printing.
If the value is nonzero, the start of EPS printing is indicated; otherwise, the end is indicated.

Value Meaning

Start

0x0000 < value

The start of EPS printing.

End

0x0000

The end of EPS printing.

See section 2.3.6 for the specification of other escape record types.

2.3.6.15 EXTTEXTOUT Record

The EXTTEXTOUT record draws text using the currently selected font, background color, and text
color.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0200 (EXTTEXTOUT) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.16 GET_COLORTABLE Record

The GET_COLORTABLE record gets color table values from the printer driver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

165 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ByteCount Start

ColorTableBuffer (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in this record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines the record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0005 (GET_COLORTABLE) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the record data

that follows.

Start (2 bytes): A 16-bit unsigned integer that defines the offset from the beginning of the record to

the start of the color table data in the ColorTable field.

ColorTableBuffer (variable): A buffer containing the color table that is obtained from the printer
driver, which is not required to be contiguous with the static part of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

UndefinedSpace (variable)

...

ColorTable (variable)

...

UndefinedSpace (variable): An optional field that MUST be ignored.

ColorTable (variable): An array of bytes that define the color table. The location of this field
within the record is specified by the Start field.

See section 2.3.6 for the specification of other escape record types.

2.3.6.17 GET_DEVICEUNITS Record

The GET_DEVICEUNITS record gets the current device units.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

166 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x002A (GET_DEVICEUNITS) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.18 GET_EXTENDED_TEXTMETRICS Record

The GET_EXTENDED_TEXTMETRICS record gets the extended text metrics that are currently
configured on the printer driver and applies them to the playback device context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines the record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0100 (GET_EXTENDED_TEXTMETRICS) from the MetafileEscapes enumeration
(section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other escape record types.

2.3.6.19 GET_FACENAME Record

The GET_FACENAME record gets the font face name.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

167 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0201 (GET_FACENAME) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.20 GET_PAIRKERNTABLE Record

The GET_PAIRKERNTABLE record gets the font kern table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte

MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x0102 (GET_PAIRKERNTABLE) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.21 GET_PHYSPAGESIZE Record

The GET_PHYSPAGESIZE record retrieves the physical page size and copies it to a specified location.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

168 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x000C (GET_PHYSPAGESIZE) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.22 GET_PRINTINGOFFSET Record

The GET_PRINTINGOFFSET record retrieves the offset from the upper-left corner of the physical page
where the actual printing or drawing begins.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x000D (GET_PRINTINGOFFSET) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.23 GET_PS_FEATURESETTING Record

The GET_PS_FEATURESETTING record is used to query the driver concerning PostScript features.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Feature

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

169 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x1019 (GET_PS_FEATURESETTING) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Feature
field. This MUST be 0x0004.

Feature (4 bytes): A 32-bit signed integer that identifies the feature setting being queried. Possible
values are defined in the PostScriptFeatureSetting enumeration (section 2.1.1.28).

See section 2.3.6 for the specification of other escape record types.

2.3.6.24 GET_SCALINGFACTOR Record

The GET_SCALINGFACTOR record retrieves the scaling factors for the x-axis and the y-axis of a
printer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x000E (GET_SCALINGFACTOR) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.25 META_ESCAPE_ENHANCED_METAFILE Record

The META_ESCAPE_ENHANCED_METAFILE record is used to embed an EMF metafile within a WMF
metafile. The EMF metafile is broken up into sections, each represented by one
META_ESCAPE_ENHANCED_METAFILE record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

170 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ByteCount CommentIdentifier

... CommentType

... Version

... Checksum

Flags

CommentRecordCount

CurrentRecordSize

RemainingBytes

EnhancedMetafileDataSize

EnhancedMetafileData (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x000F (META_ESCAPE_ENHANCED_METAFILE) from the MetafileEscapes
enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the record data
that follows. This value MUST be 34 plus the value of the EnhancedMetafileDataSize field.

CommentIdentifier (4 bytes): A 32-bit unsigned integer that defines this record as a WMF
Comment record. This value MUST be 0x43464D57.

CommentType (4 bytes): A 32-bit unsigned integer that identifies the type of comment in this
record. This value MUST be 0x00000001.

Version (4 bytes): A 32-bit unsigned integer that specifies EMF metafile interoperability. This
SHOULD be 0x00010000.<66>

Checksum (2 bytes): A 16-bit unsigned integer used to validate the correctness of the embedded

EMF stream. This value MUST be the one's-complement of the result of applying an XOR operation
to all WORDs in the EMF stream.

Flags (4 bytes): This 32-bit unsigned integer is unused and MUST be set to zero.

CommentRecordCount (4 bytes): A 32-bit unsigned integer that specifies the total number of
consecutive META_ESCAPE_ENHANCED_METAFILE records that contain the embedded EMF
metafile.

171 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

CurrentRecordSize (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
EnhancedMetafileData field. This value MUST be less than or equal to 8,192.

RemainingBytes (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the EMF
stream that remain to be processed after this record. Those additional EMF bytes MUST follow in

the EnhancedMetafileData fields of subsequent META_ESCAPE_ENHANDED_METAFILE
escape records.

EnhancedMetafileDataSize (4 bytes): A 32-bit unsigned integer that specifies the total size of the
EMF stream embedded in this sequence of META_ESCAPE_ENHANCED_METAFILE records.

EnhancedMetafileData (variable): A segment of an EMF file. The bytes in consecutive
META_ESCAPE_ENHANCED_METAFILE records MUST be concatenated to represent the entire
embedded EMF file.

See section 2.3.6 for the specification of other escape record types.

2.3.6.26 METAFILE_DRIVER Record

The METAFILE_DRIVER record queries the printer driver about its support for metafiles on the

output device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in this record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines the record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x0801 (METAFILE_DRIVER) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other escape record types.

2.3.6.27 NEWFRAME Record

The NEWFRAME record informs the printer that the application has finished writing to a page.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

172 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte

MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0001 (NEWFRAME) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.28 NEXTBAND Record

The NEXTBAND record informs the printer that the application has finished writing to a band.

Band information is no longer used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF

record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0003 (NEXTBAND) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.29 PASSTHROUGH Record

The PASSTHROUGH record passes through arbitrary data to the printer driver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Data (variable)

173 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0013 (PASSTHROUGH) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): An array of bytes of size ByteCount.

See section 2.3.6 for the specification of other escape record types.

2.3.6.30 POSTSCRIPT_DATA Record

The POSTSCRIPT_DATA record sends arbitrary PostScript data to the printer driver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Data (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0025 (POSTSCRIPT_DATA) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): An array of bytes of size ByteCount.

See section 2.3.6 for the specification of other escape record types.

2.3.6.31 POSTSCRIPT_IDENTIFY Record

The POSTSCRIPT_IDENTIFY record sets the printer driver to either PostScript-centric or GDI-
centric mode.

174 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Data (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x1005 (POSTSCRIPT_IDENTIFY) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): An array of bytes of size ByteCount.

Note This record MUST be processed before the STARTDOC record.

See section Escape Record Types (section 2.3.6) for the specification of other escape record types.

2.3.6.32 POSTSCRIPT_IGNORE Record

The POSTSCRIPT_IGNORE record informs the device to ignore the PostScript data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte

MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0026 (POSTSCRIPT_IGNORE) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

175 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.3.6.33 POSTSCRIPT_INJECTION Record

The POSTSCRIPT_INJECTION record inserts a block of raw data into a PostScript stream. The input
MUST be a 32-bit quantity specifying the number of bytes to inject, a 16-bit quantity specifying the

injection point, and a 16-bit quantity specifying the page number, followed by the bytes to inject.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Data (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x1006 (POSTSCRIPT_INJECTION) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): An array of bytes of size ByteCount.

Note This record MUST be processed before a STARTDOC record (section 2.3.6.44).

See section Escape Record Types (section 2.3.6) for the specification of other escape record types.

2.3.6.34 POSTSCRIPT_PASSTHROUGH Record

The POSTSCRIPT_PASSTHROUGH record sends arbitrary data directly to the driver. The driver is
expected to only process this data when in PostScript mode. For more information, see the
POSTSCRIPT_IDENTIFY (section 2.3.6.31) Escape record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Data (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

176 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value

MUST be 0x1013 (POSTSCRIPT_PASSTHROUGH) from the MetafileEscapes enumeration
(section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): An array of bytes of size ByteCount.

See section 2.3.6 for the specification of other escape record types.

2.3.6.35 OPEN_CHANNEL Record

The OPEN_CHANNEL notifies the printer driver that a new print job is starting. This is the same
function as a STARTDOC record specified with a NULL document and output file name, data in raw

mode, and a type of zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x100E (OPEN_CHANNEL) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.36 QUERY_DIBSUPPORT Record

The QUERY_DIBSUPPORT record queries the driver about its support for DIBs.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount

177 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the WMF
record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType Enumeration table value META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0C01 (QUERY_DIBSUPPORT) from the MetafileEscapes Enumeration table.

ByteCount (2 bytes): A 16-bit unsigned integer that MUST be 0x0000.

See section 2.3.6 for the specification of other Escape record types.

2.3.6.37 QUERY_ESCSUPPORT Record

The QUERY_ESCSUPPORT record queries the printer driver to determine whether a specific WMF
escape function is supported on the output device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Query

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte

MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0008 (QUERY_ESCSUPPORT) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Query field.
This MUST be 0x0002.

Query (2 bytes): A 16-bit unsigned integer that MUST be a value from the MetafileEscapes. This
record specifies a query of whether this escape is supported.

See section 2.3.6 for the specification of other escape record types.

2.3.6.38 SET_COLORTABLE Record

The SET_COLORTABLE record sets the color table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

178 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ByteCount ColorTable (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0004 (SET_COLORTABLE) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the ColorTable
field.

ColorTable (variable): A ByteCount length byte array containing the color table.

See section 2.3.6 for the specification of other escape record types.

2.3.6.39 SET_COPYCOUNT Record

The SET_COPYCOUNT record sets the number of copies.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount CopyCount

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0011 (SET_COPYCOUNT) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the CopyCount

field. This MUST be 0x0002.

CopyCount (2 bytes): A 16-bit unsigned integer that specifies the number of copies to print.

See section 2.3.6 for the specification of other escape record types.

2.3.6.40 SET_LINECAP Record

The SET_LINECAP record specifies the type of line-ending to use in subsequent graphics operations.

179 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Cap

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The low-order
byte MUST match the low-order byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0015 (SET_LINECAP) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Cap field.
This MUST be 0x0004.

Cap (4 bytes): A 32-bit signed integer that defines the type of line cap. Possible values are specified

in the PostScriptCap Enumeration table.

See section 2.3.6 for the specification of other escape record types.

2.3.6.41 SET_LINEJOIN Record

The SET_LINEJOIN record specifies the type of line-joining to use in subsequent graphics operations.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Join

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte

MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0016 (SET_LINEJOIN) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the Join field.
This MUST be 0x0004.

180 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Join (4 bytes): A 32-bit signed integer that specifies the type of line join. Possible values are
specified in PostScriptJoin Enumeration table.

See section 2.3.6 for the specification of other escape record types.

2.3.6.42 SET_MITERLIMIT Record

The SET_MITERLIMIT record sets the limit for the length of miter joins to use in subsequent graphics
operations.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount MiterLimit

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value
META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x0017 (SET_MITERLIMIT) from the MetafileEscapes enumeration (section 2.1.1.17)

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the MiterLimit

field. This MUST be 0x0004.

MiterLimit (4 bytes): A 32-bit signed integer that specifies the miter limit.

See section 2.3.6 for the specification of other escape record types.

2.3.6.43 SPCLPASSTHROUGH2 Record

The SPCLPASSTHROUGH2 record enables documents to include private procedures and other
resources to send to the printer driver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount Reserved

... Size

RawData (variable)

181 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x11D8 (SPCLPASSTHROUGH2) from the MetafileEscapes enumeration (section
2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the record data
that follows.

Reserved (4 bytes): A 32-bit unsigned integer that is not used and MUST be ignored.

Size (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the RawData field.

RawData (variable): The Size-length byte array of unprocessed private data to send to the printer
driver.

See section 2.3.6 for the specification of other escape record types.

2.3.6.44 STARTDOC Record

The STARTDOC record informs the printer driver that a new print job is starting.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize

RecordFunction EscapeFunction

ByteCount DocName (variable)

...

RecordSize (4 bytes): A 32-bit unsigned integer that defines the number of WORDs in the record.

RecordFunction (2 bytes): A 16-bit unsigned integer that defines this record type. The lower byte
MUST match the lower byte of the RecordType enumeration (section 2.1.1.1) value

META_ESCAPE.

EscapeFunction (2 bytes): A 16-bit unsigned integer that defines the escape function. The value
MUST be 0x000A (STARTDOC) from the MetafileEscapes enumeration (section 2.1.1.17).

ByteCount (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the DocName
field. This size MUST be less than 260.

DocName (variable): A string of ByteCount 8-bit characters that contains the name of the

document.

See section 2.3.6 for the specification of other escape record types.

182 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3 Structure Examples

3.1 Metafile Design

3.1.1 Device Independence

WMF metafiles are useful for transferring images between applications. Most applications support the
clipboard format associated with metafiles, called METAFILEPICT (for more information, see
[MSDN-CLIPFORM]). When treated as a single graphics primitive, a metafile is easy to paste into an

application without that application needing to know the specific content of the image. An application
can store a metafile in global memory or to disk.

The mapping mode of a metafile can be altered during playback. Thus, the image can be scaled
arbitrarily, with every component scaling separately, which minimizes the loss of information for the
image as a whole, which is not characteristic of bitmaps.

To ensure that metafiles can be transported between different computers and applications, any
application that creates a metafile needs to ensure that the metafile is device independent and sizable.

The following guidelines help ensure that every metafile can be accepted and manipulated by other
applications:

 Set the mapping mode as one of the first records. Some applications only accept metafiles that
are in MM_ANISOTROPIC mode.

 Set the META_SETWINDOWORG and META_SETWINDOWEXT records. Do not use the
META_SETVIEWPORTEXT or META_SETVIEWPORTORG record if the user will be able to resize or
change the dimensions of the object.

 Do not use any of the region records, because they are device dependent.

 Use META_STRETCHBLT or META_STRETCHDIB instead of META_BITBLT.

 Terminate the metafile with a META_EOF (0x0000) record.

3.1.2 Byte Ordering Example

The following code snippet illustrates how the use of the big-endian and little-endian methods can
affect the compatibility of applications.

 #include <unistd.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 int main()
 {
 int buf;
 int in;
 int nread;
 in = open("file.in", O_RDONLY);
 nread = read(in, (int *) &buf, sizeof(buf));
 printf("First Integer in file.in = %x\n", buf);
 exit(0);
 }

In the preceding code, if the first integer word stored in the file.in file on a big-endian computer was
the hexadecimal number 0x12345678, the resulting output on that computer would be as follows.

https://go.microsoft.com/fwlink/?LinkId=89971

183 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 % ./test

 First Integer in file.in = 12345678
 %

If the file.in file were read by the same program running on a little-endian computer, the resulting
output would be as follows.

 % ./test

 First Integer in file.in = 78563412
 %

Because of the difference in output, metafile record processing can be implemented so that it can

read integers from a file based on the endian method that the output computer uses.

Because metafiles were developed and written with little-endian computers, computers that are big-

endian based will have to perform this necessary compensation.

3.1.3 Mapping Modes

When an application pastes a WMF metafile from a clipboard, the application can determine the size
of metafile output. For this to work cleanly between applications, be aware of the following:

 The metafile is responsible for specifying the window part of the mapping mode.

 The player of the metafile is responsible for the viewport part of the mapping mode.

To perform a simple playback of the metafile, an application can perform the following initialization
before processing records.

1. Set the mapping mode to the mode specified in the METAFILEPICT structure (for more

information, see [MSDN-CLIPFORM]).

2. Convert the horizontal and vertical extents of the viewport to logical units, if necessary (see the
following).

3. Perform scaling computations, if required (see below).

4. Set the viewport origin according to the desired placement of the metafile.

If the mapping mode in a metafile is MM_ANISOTROPIC or MM_ISOTROPIC, coordinate conversion

might be required, as mentioned earlier. If the horizontal and vertical extents of the image are given
in MM_HIMETRIC coordinates, they are converted to pixel values. Before playback, the application
sets the viewport origin to the desired location, sets the mapping mode to the specified mode, and
computes the viewport extents. If no extents are specified in the METAFILEPICT structure, the
application performing the playback can arbitrarily choose a size.

Thus, scaling a metafile that uses the MM_ANISOTROPIC or MM_ISOTROPIC mapping modes can

be performed by changing the viewport extents to the appropriate dimensions before playback. The
viewport defines the size of the metafile image.

To scale metafiles that use any other mapping mode, first convert the metafile to use
MM_ANISOTROPIC mapping mode. The metafile itself does not need to change, but the mapping
mode setup does need to be correct before beginning the playback.

https://go.microsoft.com/fwlink/?LinkId=89971

184 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4 Managing Objects

3.1.4.1 WMF Object Table

The WMF Object Table is a conceptual element of WMF graphics objects management. Graphics
Objects (section 2.2.1) include Brushes, Fonts, Palettes, Pens, and Regions; they can be defined,
used, reused, and deleted by records in a WMF metafile. This section describes a hypothetical WMF
Object Table to keep track of graphics objects during the processing of a WMF metafile.

The WMF Object Table is simply an array of indexes assigned to graphics object structures defined

during the processing of a WMF metafile. The maximum number of indexes needed in a WMF Object
Table for a given metafile can be computed from the total number of objects defined in the metafile,
which is specified by the NumberOfObjects field in the WMF META_HEADER record (section 2.3.2.2).
An implementation of the WMF Object Table will store and manage that number of objects.

Whenever a graphics object is created by one of the Object Record Types listed in section 2.3.4, the
following actions are implied:

 Every object is assigned the lowest available index—that is, the smallest numerical value—in the
WMF Object Table. This binding happens at object creation, not when the object is used.
Moreover, each object table index uniquely refers to an object. Indexes in the WMF Object Table
always start at 0.

 Subsequent WMF records refer to an object by its assigned WMF Object Table index. However,
there is no requirement that every object defined in the metafile will be used.

 An object is not used in drawing operations until a META_SELECTOBJECT record (section 2.3.4.10)

is received that specifies its WMF Object Table index. This record activates the object and makes it
current in the Playback Device Context (section 3.1.5).

 Later in the processing of the metafile, another META_SELECTOBJECT record might be
encountered that selects a different object of the same object type into the playback device
context. When that happens, the previously defined object is not deleted, and its index is not
returned to the pool of available indexes.

 When a META_DELETEOBJECT record (section 2.3.4.7) is received that specifies this object's

particular index, the object's resources are released, the binding to its WMF Object Table index is
ended, and the index value is returned to the pool of available indexes. The index will be reused, if
needed, by a subsequent object created by another Object Record Type record.

Thus, graphics object creation, use, and deletion depend on the correct order of records during
playback to achieve the expected results.

Note This specification does not mandate that implementations adhere to the implementation of the

WMF Object Table presented in this section, as long as the implementation of external behavior is
compatible with the behavior described in this specification.

3.1.4.2 Object Scaling

A metafile that is created by an application and then passed to another application is likely to be

scaled. Scaling can alter the desired image in a way that was not anticipated by the originating
application, which does not scale the image. Every logical measure defined in a logical object is
scaled before the object is realized into physical form.

For a logical object such as pens, the width is transformed from logical to physical as an x-scalar
value. If the metafile is scaled in y but not in x, the pen width is unchanged. If the metafile is scaled in
x but not in y, the pen width does scale. Thus, using a pen of width 1 in a metafile results in a pen
that is wider (thick and slow) when the metafile is scaled. If a nominal width pen (width of 1 at all

185 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

times) is wanted, use 0 as the width because it is not affected by mapping modes. A 0-width pen is
drawn as having a width of 1.

Font sizing is more complicated. The two values that scale in a logical font are the height and the
width. Most applications use a width of 0 to define a font, which results in a physical font with a width

that was designed for the given height. As the metafile is stretched in x, the font remains the same
size. As the metafile is stretched in y, however, the physical font grows bigger and probably wider. In
and of itself, this is not bad, but problems arise when the metafile makes assumptions about the width
of the font by placing the characters of a text string individually, using META_EXTTEXTOUT with a
width array, or using a META_TEXTOUT for each character. In either case, the x-placement of each
character scales with the metafile, but the font's width does not necessarily scale accordingly, which
causes characters to overlap or be widely spaced.

The simplest way to overcome this problem is not to place the characters individually but to use
META_TEXTOUT (or META_EXTTEXTOUT with no width array) to output the whole string. The text
string remains intact, but its size can change in relation to the rest of the image when x and y are not
scaled identically. Another possibility is to define the font with a nonzero width so that it scales in x as
well as in y. However, doing so is problematic, because its bitmapped fonts might not scale

independently in x and y. Scaling a font's width is also possible; unfortunately, any time a font's width

is scaled, the look of the typeface changes in ways not necessarily intended by the designers, and a
typographically "incorrect" typeface results.

3.1.5 Playback Device Context

The playback device context is an abstract data structure that defines the state of graphics at any

point in time during playback of a WMF metafile. The graphics state includes:

 A complete set of Graphics Objects (section 2.2.1), including a brush, font, palette, pen, and
region, which are created and managed by WMF Object Record Types (section 2.3.4).

 A set of selected Structure Objects (section 2.2.2), which define parameters of the output surface.
These elements of the playback device context are not explicitly created by any record, but they
can be modified.

 A vector of graphics properties, which are numerical values that specify modes and parameters for
graphics operations.

Although the state defined by the playback device context can be modified by WMF records, there is
no guarantee that every graphics object and property will be explicitly initialized by records in a given
metafile before any output takes place. Thus, whenever a metafile is played back, it is necessary to
define initial conditions consisting of a set of default values for the playback device context. These
initial conditions are dependent on multiple factors, including the operating system and the device that

is the destination for output.<67>

The following table lists the graphics objects that are defined in the playback device context.

Graphics
object Created by record(s) Used by record(s) Notes

Brush

graphics
object
(section
2.2.1.1)

META_CREATEBRUSHINDIRECT record

(section 2.3.4.1)

META_CREATEPATTERNBRUSH record
(section 2.3.4.4)

META_DIBCREATEPATTERNBRUSHrecord
(section 2.3.4.8)

Bitmap Record

Types (section 2.3.1),
when the raster
operation involves a
brush.

Drawing Record
Types (section 2.3.3) that
perform area filling.

This object is not used

until it is specified in a
META_SELECTOBJECT
record section 2.3.4.10).

The default is a solid color
brush stock object.

Font META_CREATEFONTINDIRECT record META_EXTTEXTOUT This object is not used

186 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Graphics
object Created by record(s) Used by record(s) Notes

graphics
object
(section
2.2.1.2)

(section 2.3.4.2) record (section 2.3.3.5)

META_TEXTOUT record
(section 2.3.3.20)

until it is specified in a
META_SELECTOBJECT
record (section 2.3.4.10).

The default is a stock
object.

Palette
graphics
object
(section
2.2.1.3)

META_ANIMATEPALETTE record (section
2.3.5.1)

META_CREATEPALETTE record (section
2.3.4.3)

META_RESIZEPALETTE record (section
2.3.5.9)

META_SETPALENTRIES record (section
2.3.5.19)

META_REALIZEPALETTE
record (section 2.3.5.8)

This object is not used
until it is specified in a
META_SELECTPALETTE
record (section 2.3.4.11).

The default is a stock
object.

Pen
graphics
object
(section
2.2.1.4)

META_CREATEPENINDIRECT record
(section 2.3.4.5)

Drawing Record
Types (section 2.3.3) that
perform line drawing.

This object is not used
until it is specified in a
META_SELECTOBJECT
record (section 2.3.4.10).

The default is a stock
object.

Region
graphics
object
(section
2.2.1.5)

META_CREATEREGION record (section
2.3.4.6)

META_EXCLUDECLIPRECT record
(section 2.3.5.2)

META_INTERSECTCLIPRECT record
(section 2.3.5.3)

META_OFFSETCLIPRGN record (section
2.3.5.5)

Bitmap Record
Types (section 2.3.1)

Drawing Record
Types (section 2.3.3) that
allow clipping.

This object is not used
until it is specified in a
META_SELECTCLIPREGION
record (section 2.3.4.9).

The default is the entire
drawing surface.

The following table lists the structure objects that are defined in the playback device context.

Structure
object Description Data type Modified by record(s)

Background
text color

The color used as
background for text.

ColorRef object (section
2.2.2.8)

META_SETBKCOLOR record (section
2.3.5.14)

Drawing
position

The (x,y) coordinates of
the current drawing
position in the output
window

PointS object (section
2.2.2.16)

META_MOVETO record (section
2.3.5.4)

Foreground
text color

The color used for text. ColorRef object (section
2.2.2.8)

META_SETTEXTCOLOR record (section
2.3.5.26)

Output
surface

An array of pixels in a
device-independent format
that correspond to the
logical units of the output

surface.

DeviceIndependentBitmap
object (section 2.2.2.9)

Bitmap Record Types (section 2.3.1)

Viewport
extent

The horizontal and veritical
dimensions of the visible
part of the output window

PointS object (section
2.2.2.16)

META_SCALEVIEWPORTEXT record
(section 2.3.5.12)

META_SETVIEWPORTEXT record
(section 2.3.5.28)

187 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Structure
object Description Data type Modified by record(s)

Viewport
origin

The (x,y) coordinates of
the left, top corner of the
visible part of the output
window.

PointS object (section
2.2.2.16)

META_OFFSETVIEWPORTORG record
(section 2.3.5.6)

META_SETVIEWPORTORG record
(section 2.3.5.29)

Window
extent

The horizontal and vertical
dimensions of the output
window on the output
surface.

PointS object (section
2.2.2.16)

META_SCALEWINDOWEXT record
(section 2.3.5.13)

META_SETWINDOWEXT record
(section 2.3.5.30)

Window
origin

The (x,y) coordinates of
the left, top corner of the

output window on the
output surface.

PointS object (section
2.2.2.16)

META_OFFSETWINDOWORG (section
2.3.5.7)

META_SETWINDOWORG record
(section 2.3.5.31)

The following table lists the graphics properties that are defined in the playback device context.

Property Description Modified by record(s)

Background
mix mode

The mode for combining pens, text, hatched
brushes, and interiors of filled objects with
background colors on the output surface.

META_SETBKMODE record (section
2.3.5.15)

Break extra
space

The total extra space to be added to a line of
text for justification.

META_SETTEXTJUSTIFICATION record
(section 2.3.5.27)

Font matching
mode

A Boolean value that specifies whether the font
mapper attempts to match a font aspect ratio
to the current device aspect ratio.

META_SETMAPPERFLAGS Record record
(section 2.3.5.18)

Foreground
mix mode

The mode for combining pens and interiors of
filled objects with foreground colors on the
output surface.

META_SETROP2 record (section 2.3.5.22)

Layout mode The direction in which text and graphics are
drawn.

META_SETLAYOUT record (section
2.3.5.16)

Mapping mode How logical units are mapped to physical units. META_SETMAPMODE record (section
2.3.5.17)

Polygon fill
mode

The method used for filling a polygon. META_SETPOLYFILLMODE record (section
2.3.5.20)

Stretchblt
mode

How the system combines rows or columns of
pixels when shrinking a bitmap.

META_SETSTRETCHBLTMODE record
(section 2.3.5.23)

Text alignment
mode

The relationship between a reference point and
a bounding rectangle, for text alignment.

META_SETTEXTALIGN record (section
2.3.5.24)

Text extra
space

The amount of extra space to add to each
character when writing a line of text.

META_SETTEXTCHAREXTRA record
(section 2.3.5.25)

Note This specification does not mandate that implementations adhere to the implementation of the
playback device context presented in this section, as long as the implementation of external behavior

is compatible with the behavior described in this specification.

188 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.6 Run-Length Encoding (RLE) Compression

 In general, run-length encoding (RLE) compression makes it possible to specify an arbitrary
number of identical values without a proportional increase in storage requirements. The compressed

format usually defines a run count and a value, and expansion amounts to replicating that value a
number of times equal to the run count.

Metafile records can contain bitmaps that are compressed with an enhanced RLE compression
algorithm. Compression of bitmaps that are defined with 4 and 8 bits per pixel are described in the
sections which follow.

3.1.6.1 Bitmaps with 4 Bits per Pixel

When the Compression field of a BitmapInfoHeader Object (section 2.2.2.3) is BI_RLE4, an RLE
compression algorithm is used to compress a 4-bit bitmap. This format specifies encoded and
absolute modes, and either mode can occur anywhere in a given bitmap.

Encoded mode involves two bytes. If the first byte of a pair is greater than zero, it specifies the

number of consecutive pixels to be drawn using the two color indexes that are contained in the high-
order and low-order bits of the second byte.

The first pixel is drawn using the color specified by the high-order 4 bits, the second is drawn using
the color in the low-order 4 bits, the third is drawn using the color in the high-order 4 bits, and so on,
until all the pixels specified by the first byte have been drawn.

If the first byte of a pair is zero and the second byte is 0x02 or less, the second byte is an escape
value that can denote the end of a line, the end of the bitmap, or a relative pixel position, as follows.

Second byte value Meaning

0x00 End of line

0x01 End of bitmap

0x02 Delta

When a delta is specified, the 2 bytes following the escape value contain unsigned values indicating
the horizontal and vertical offsets of the next pixel relative to the current position.

In absolute mode, the first byte is zero, and the second byte is a value in the range 0x03 through

0xFF. The second byte contains the number of 4-bit color indexes that follow. Subsequent bytes
contain color indexes in their high- and low-order 4 bits, one color index for each pixel. In absolute
mode, each run is aligned on a word boundary.

The following example shows the hexadecimal contents of a 4-bit compressed bitmap:

 03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
 04 78 00 00 09 1E 00 01

This bitmap is interpreted as follows:

 03 04: Encoded mode, specifying 3 pixels with the values 0x0, 0x4, and 0x0.

 05 06: Encoded mode, specifying 5 pixels with the values 0x0, 0x6, 0x0, 0x6, and 0x0.

 00 06 45 56 67 00: Absolute mode, specifying 6 pixels with the values 0x4, 0x5, 0x5, 0x6, 0x6,
and 0x7, padded to a word boundary.

189 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 04 78: Encoded mode, specifying 4 pixels with the values 0x7, 0x8, 0x7, and 0x8.

 00 02 05 01: Encoded mode, specifying a new relative position 5 pixels to the right and one line

down.

 04 78: Encoded mode, specifying 4 pixels with the values 0x7, 0x8, 0x7, and 0x8.

 00 00: Encoded mode, specifying the end of a line.

 09 1E: Encoded mode, specifying 9 pixels with the values 0x1, 0xE, 0x1, 0xE, 0x1, 0xE, 0x1, 0xE,
and 0x1.

 00 01: Encoded mode, specifying the end of the bitmap.

Now, suppose the bitmap has a width of 32 pixels and a height of 4 lines, and pixel values that are not
specified are 0x00 by default. The resulting expended bitmap would be as follows.

 04 00 60 60 45 56 67 78 78 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 07 87 80 00 00
 1E 1E 1E 1E 10 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3.1.6.2 Bitmaps with 8 Bits per Pixel

When the Compression field of a BitmapInfoHeader Object (section 2.2.2.3) is BI_RLE8, an RLE
compression algorithm is used to compress an 8-bit bitmap. This format specifies encoded and
absolute modes, and either mode can occur anywhere in a given bitmap.

Encoded mode involves two bytes. If the first byte of a pair is greater than zero, it specifies the
number of consecutive pixels to be drawn using the color index that is contained in the second byte.

If the first byte of a pair is zero and the second byte is 0x02 or less, the second byte is an escape

value that can denote the end of a line, the end of the bitmap, or a relative pixel position, as follows.

Second byte value Meaning

0x00 End of line

0x01 End of bitmap

0x02 Delta

When a delta is specified, the 2 bytes following the escape value contain unsigned values indicating
the horizontal and vertical offsets of the next pixel relative to the current position.

In absolute mode, the first byte is zero, and the second byte is a value in the range 0x03 through
0xFF. The second byte represents the number of bytes that follow, each of which contains the color
index of a single pixel. In absolute mode, each run is aligned on a word boundary.

The following example shows the hexadecimal contents of an 8-bit compressed bitmap.

 03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01
 02 78 00 00 09 1E 00 01

This bitmap is interpreted as follows:

 03 04: Encoded mode, specifying 3 pixels with the value 0x04.

190 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 05 06: Encoded mode, specifying 5 pixels with the value 0x06.

 00 03 45 56 67 00: Absolute mode, specifying 3 pixels with the values 0x45, 0x56, and 0x67,

padded to a word boundary.

 02 78: Encoded mode, specifying 2 pixels with the value 0x78.

 00 02 05 01: Encoded mode, specifying a new relative position 5 pixels to the right and 1 line
down.

 02 78: Encoded mode, specifying 2 pixels with the value 0x78.

 00 00: Encoded mode, specifying the end of a line.

 09 1E: Encoded mode, specifying 9 pixels with the value 1E.

 00 01: Encoded mode, specifying the end of the bitmap.

Now, suppose the bitmap has a width of 32 pixels and a height of 4 lines, and pixel values that are not

specified are 0x00 by default. The resulting expended bitmap would be as follows.

 04 04 04 06 06 06 06 06 45 56 67 78 78 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 78 78 00 00 00 00 00 00 00 00 00 00 00
00

 1E 1E 1E 1E 1E 1E 1E 1E 1E 00
00

 00
00

3.2 WMF Metafile Example

This section provides an example of a metafile which, when processed, renders the following image.

Figure 2: WMF metafile example

The contents of this metafile example are shown in the following in hexadecimal bytes. The far-left

column is the byte count; the far-right characters are the interpretation of the bytes in the Latin-1
ANSI Character Set, as specified in [ISO/IEC-8859-1]. The sections that follow describe the packets
that convey this series of bytes.

 00000000: 01 00 09 00 00 03 36 00 00 00 02 00 0C 00 00 00 …...6.........
 00000010: 00 00 08 00 00 00 FA 02 04 00 00 00 00 00 00 00ú.........
 00000020: FF 00 04 00 00 00 2D 01 00 00 07 00 00 00 FC 02 ÿ.....-.......ü.
 00000030: 02 00 00 FF 00 FF 04 00 04 00 00 00 2C 01 01 00 ...ÿ.ÿ......,...
 00000040: 07 00 00 00 1B 04 46 00 96 00 00 00 00 00 0C 00F.–.......

https://go.microsoft.com/fwlink/?LinkId=90689

191 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 00000050: 00 00 21 05 0C 00 48 65 6C 6C 6F 20 50 65 6F 70 ..!...Hello Peop
 00000060: 6C 65 0A 00 0A 00 03 00 00 00 00 00 le..........

Note When a WMF metafile is processed, the order in which graphics are rendered corresponds to
the order of records in the metafile. This can create challenges for devices that have layers. For
example, Printer Command Language (PCL) defines a graphics layer and a text layer. The text
layer in PCL is always drawn on top of the graphics layer. Thus, when converting from metafile format
to PCL, the converter, to generate the correct output, either detects text/graphic overlaps and sends
the text down as graphics, or always sends the text as graphics.

The sections that follow provide definitions of the WMF header and records that correspond to this

metafile. The WMF Object Table (section 3.1.4.1) refers to an indexed table of WMF Object that are
defined in the metafile.

3.2.1 META_HEADER Example

This section provides an example of a META_HEADER (section 2.3.2.2) record, which is always the
first record in the metafile.

 00000000: 01 00 09 00 00 03 36 00 00 00 02 00 0C 00 00 00
 00000010: 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type (0x0001) HeaderSize (0x0009)

Version (0x0300) Size (0x00000036)

... NumberOfObjects (0x0002)

MaxRecord (0x0000000C)

NumberOfMembers (0x0000)

Type (2 bytes): 0x0001 specifies the type of metafile from the MetafileType
Enumeration (section 2.1.1.18) to be a metafile stored in memory.

HeaderSize (2 bytes): 0x0009 specifies the number of WORDs in this record, which is equivalent to
18 (0x0012) bytes.

Version (2 bytes): 0x0300 specifies the metafile version from the MetafileVersion
Enumeration (section 2.1.1.19) to be a WMF metafile that supports DIBs.

Size (4 bytes): 0x00000036 specifies the number of WORDs in the entire metafile, which is
equivalent to 108 (0x0000006C) bytes.

NumberOfObjects (2 bytes): 0x0002 specifies the number of graphics objects that are defined in
the metafile.

MaxRecord (4 bytes): 0x0000000C specifies the size in WORDs of the largest record in the metafile,
which is equivalent to 24 (0x00000018) bytes.

NumberOfMembers (2 bytes): 0x0000 is not used.

192 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Note Based on the value of the NumberOfObjects field, a WMF Object Table (section 3.1.4.1) can
be created that is large enough for 2 objects.

3.2.2 META_CREATEPENINDIRECT Example

This section provides an example of a META_CREATEPENDIRECT record.

 00000010: 08 00 00 00 FA 02 04 00 00 00 00 00 00 00
 00000020: FF 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize (0x00000008)

RecordFunction (0x02FA) Pen Object

...

...

RecordSize (4 bytes): 0x00000008 specifies the number of WORDs in this record, which is
equivalent to 16 (0x00000010) bytes.

RecordFunction (2 bytes): 0x02FA specifies a META_CREATEPENINDIRECT record from the
RecordType Enumeration (section 2.1.1.1).

Pen Object (10 bytes): A Pen Object that defines the pen to create.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PenStyle (0x0004) PointS Object

... ColorRef Object

...

PenStyle (2 bytes): 0x0004 specifies the PS_DASHDOTDOT style from the PenStyle
Enumeration (section 2.1.1.23).

PointS Object (4 bytes): A PointS Object that specifies the width of the pen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

x (0x0000) y (0x0000)

x (2 bytes): 0x0000 specifies the width of the pen to be the default, which is 1 pixel.

y (2 bytes): 0x0000 is not used.

ColorRef Object (4 bytes): A ColorRef Object that specifies a green pen color.

193 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved (0x00) Blue (0x00) Green (0xFF) Red (0x00)

Reserved (1 byte): 0x00 is not used.

Blue (1 byte): 0x00 specifies no blue.

Green (1 byte): 0xFF specifies full intensity of green.

Red (1 byte): 0x00 specifies no red.

Note The Pen Object created by processing this record is assigned index 0 in the WMF Object
Table (section 3.1.4.1).

3.2.3 META_SELECTOBJECT Example 1

This section provides an example of a META_SELECTOBJECT record.

 00000020: 04 00 00 00 2D 01 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize (0x00000004)

RecordFunction (0x012D) ObjectIndex (0x0000)

RecordSize (4 bytes): 0x00000004 specifies the number of WORDs in this record, which is

equivalent to 8 (0x00000008) bytes.

RecordFunction (2 bytes): 0x012D specifies the type of this record from the RecordType
Enumeration (section 2.1.1.1) to be META_SELECTOBJECT.

ObjectIndex (2 bytes): 0x0000 specifies the index in the WMF Object Table (section 3.1.4.1) of the
object being selected, which is the Pen Object created in the previous record.

3.2.4 META_CREATEBRUSHINDIRECT Example

This section provides an example of a META_CREATEBRUSHINDIRECT record.

 00000020: 07 00 00 00 FC 02
 00000030: 02 00 00 FF 00 FF 04 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize (0x00000007)

RecordFunction (0x02FC) LogBrush Object (0x0000)

...

194 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

RecordSize (4 bytes): 0x00000007 specifies the number of WORDs in this record, which is
equivalent to 14 (0x0000000E) bytes.

RecordFunction (2 bytes): 0x02FC specifies a META_CREATEBRUSHINDIRECT record from the

RecordType Enumeration (section 2.1.1.1).

LogBrush Object (8 bytes): A LogBrush Object that defines the brush to create.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BrushStyle (0x0002) ColorRef Object

... BrushHatch (0x0004)

BrushStyle (2 bytes): 0x0002 specifies the BS_HATCHED style from the BrushStyle
Enumeration (section 2.1.1.4).

ColorRef Object (4 bytes): A ColorRef Object that specifies a magenta brush color.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved (0x00) Blue (0xFF) Green (0x00) Red (0xFF)

Reserved (1 byte): 0x00 is not used.

Blue (1 byte): 0xFF specifies full intensity blue.

Green (1 byte): 0x00 specifies no green.

Red (1 byte): 0xFF specifies full intensity red.

BrushHatch (2 bytes): 0x0004 specifies the hatch style from the HatchStyle
Enumeration (section 2.1.1.12), a horizontal and vertical cross-hatch.

Note The Brush Object created by processing this record is assigned index 1 in the WMF Object
Table (section 3.1.4.1).

3.2.5 META_SELECTOBJECT Example 2

This section provides an example of a META_SELECTOBJECT record.

 00000030: 04 00 00 00 2D 01 01 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize (0x00000004)

RecordFunction (0x012D) ObjectIndex (0x0001)

195 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecordSize (4 bytes): 0x00000004 specifies the number of WORDs in this record, which is
equivalent to 8 (0x00000008) bytes.

RecordFunction (2 bytes): 0x012D specifies the type of this record from the RecordType
Enumeration (section 2.1.1.1) to be META_SELECTOBJECT.

ObjectIndex (2 bytes): 0x0001 specifies the index in the WMF Object Table (section 3.1.4.1) of the
object being selected, which is the Brush Object created in the previous record.

3.2.6 META_RECTANGLE Example

This section provides an example of a META_RECTANGLE record.

 00000040: 07 00 00 00 1B 04 46 00 96 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize (0x00000007)

RecordFunction (0x041B) BottomRect (0x0046)

RightRect (0x0096) TopRect (0x0000)

LeftRect (0x0000)

RecordSize (4 bytes): 0x0000007 specifies the number of WORDs in this record, which is equivalent
to 14 (0x0000000E) bytes.

RecordFunction (2 bytes): 0x041B defines the type of this record from the RecordType

Enumeration (section 2.1.1.1) to be META_RECTANGLE.

BottomRect (2 bytes): 0x0046 defines the y-coordinate, in logical units, of the lower-right corner of
the rectangle.

RightRect (2 bytes): 0x0096 defines the x-coordinate, in logical units, of the lower-right corner of
the rectangle.

TopRect (2 bytes): 0x0000 defines the y-coordinate, in logical units, of the upper-left corner of the
rectangle.

LeftRect (2 bytes): 0x0000 defines the x-coordinate, in logical units, of the upper-left corner of the
rectangle.

3.2.7 META_TEXTOUT Example

This section provides an example of a META_TEXTOUT record.

 0000004E: 0C 00
 00000050: 00 00 21 05 0C 00 48 65 6C 6C 6F 20 50 65 6F 70
 00000060: 6C 65 0A 00 0A 00

196 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize (0x0000000C)

RecordFunction (0x0521) StringLength (0x000C)

String "Hello People" (12 bytes)

...

...

YStart (0x000A) XStart (0x000A)

RecordSize (4 bytes): 0x0000000C specifies the number of WORDs in this record, which is
equivalent to 24 (0x00000018) bytes.

RecordFunction (2 bytes): 0x0521 specifies the META_TEXTOUT record from the RecordType

Enumeration (section 2.1.1.1).

StringLength (2 bytes): 0x000C specifies the length of the string in bytes.

String (12 bytes): "Hello People" specifies the text to be drawn.

YStart (2 bytes): 0x000A specifies the vertical (y-axis) coordinate, in logical units, of the point
where drawing is to start.

XStart (2 bytes): 0x000A specifies the horizontal (x-axis) coordinate, in logical units, of the point

where drawing is to start.

3.2.8 META_EOF Example

This section provides an example of a META_EOF record, which is always the last record in the
metafile.

 00000060: 03 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordSize (0x00000003)

RecordFunction (0x0000

RecordSize (4 bytes): 0x00000003 specifies the number of WORDs in this record, which is
equivalent to 6 (0x00000006) bytes.

RecordFunction (2 bytes): 0x0000 specifies the type of this record from the RecordType
Enumeration (section 2.1.1.1) to be META_EOF.

197 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4 Security Considerations

This file format enables third parties to send payloads (such as PostScript) to pass through as
executable code.

198 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows NT 3.1 operating system

 Windows NT 3.5 operating system

 Windows NT 3.51 operating system

 Windows 95 operating system

 Windows NT 4.0 operating system

 Windows 98 operating system

 Windows Millennium Edition operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior

also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.4: Windows NT 3.1, Windows NT 3.51, Windows NT Server 4.0 operating system, and
Windows 95: WMF is used primarily with the Win16 and Win32s APIs.

199 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<2> Section 2.1.1.1: Windows NT 3.1, Windows NT 3.51, Windows 95, Windows NT 4.0, Windows 98,
and Windows Millennium Edition: This record type is not supported.

<3> Section 2.1.1.1: For most WMF record types, the high-order byte of the RecordFunction field
signifies the minimum number of 16-bit parameters, ideally specified in the WMF record; however, the

value is not reliable for that purpose.

<4> Section 2.1.1.3: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and Windows
NT 4.0: Neither JPEG nor PNG format is supported.

<5> Section 2.1.1.4: In Windows implementations, BS_HOLLOW was added as a duplicate symbolic
name for BS_NULL, because BS_NULL was too easily mistaken for a NULL pointer.

BS_HOLLOW is used by an application when GDI requires a non-NULL brush parameter but the
application requires that no brush be used.

<6> Section 2.1.1.5: Windows NT 3.1 and Windows NT 3.51: This value is not supported.

<7> Section 2.1.1.10: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: Anti-aliasing is not

supported.

<8> Section 2.1.1.10: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: Anti-aliasing is not
supported.

<9> Section 2.1.1.10: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows

NT 4.0, Windows 98, Windows Millennium Edition, and Windows 2000: ClearType is not supported.

<10> Section 2.1.1.11: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This functionality is
not supported.

<11> Section 2.1.1.13: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<12> Section 2.1.1.14: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This functionality is
not supported.

<13> Section 2.1.1.15: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and
Windows NT 4.0: This functionality is not supported.

<14> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<15> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<16> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows

NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<17> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<18> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<19> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows

NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<20> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, Windows Millennium Edition, Windows 2000, Windows XP, and Windows Server
2003: This functionality is not supported.

200 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<21> Section 2.1.1.17: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, and Windows Millennium Edition: This functionality is not supported.

<22> Section 2.1.1.26: In Windows implementations, the PostScript printer driver uses a default
line join style of PostScriptFlatCap.

<23> Section 2.1.1.28: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
98, and Windows Millennium Edition: This functionality is not supported.

<24> Section 2.1.1.28: Windows NT 4.0 and Windows 2000: This functionality is not supported.

<25> Section 2.1.1.28: Windows NT 4.0 and Windows 2000: This functionality is not supported.

<26> Section 2.1.1.29: In Windows implementations, the PostScript printer driver uses a default line
join style of PostScriptMiterJoin.

<27> Section 2.1.1.30: Windows 95 and Windows 98: The symbolic name "STRETCH_ANDSCANS" is

synonymous with this value.

<28> Section 2.1.1.30: Windows 95 and Windows 98: The symbolic name "STRETCH_ORSCANS" is
synonymous with this value.

<29> Section 2.1.1.30: Windows 95 and Windows 98: The symbolic name "STRETCH_DELETESCANS"
is synonymous with this value.

<30> Section 2.1.1.30: Windows 95 and Windows 98: The symbolic name "STRETCH_HALFTONE" is

synonymous with this value.

<31> Section 2.1.2.1: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows NT 4.0,
Windows 2000, and Windows XP: This value is always returned when enumerating fonts.

<32> Section 2.1.2.1: This value is supported in the following Windows versions:

 Windows NT 3.1

 Windows NT 3.5

 Windows NT 3.51

 Windows 95

 Windows NT 4.0

 Windows 98

 Windows Millennium Edition

 Windows 2000

 Windows XP

 Windows Server 2003

<33> Section 2.1.2.1: This value is supported in the following Windows versions:

 Windows NT 3.1

 Windows NT 3.5

 Windows NT 3.51

 Windows NT 4.0

201 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Font association is turned off in Windows 2000, Windows XP, and Windows Server 2003.

<34> Section 2.1.2.2: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This function is not

supported.

<35> Section 2.1.2.2: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This function is not

supported.

<36> Section 2.1.2.2: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This function is not
supported.

<37> Section 2.1.2.2: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This function is not
supported.

<38> Section 2.1.2.2: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, Windows
NT 4.0, Windows 98, and Windows Millennium Edition: This function is not supported.

<39> Section 2.1.2.3: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This function is not
supported.

<40> Section 2.2.1.2: All Windows versions: Mapping the logical font size to the available physical
fonts occurs the first time the logical font needs to be used in a drawing operation.

For the MM_TEXT mapping mode, the following formula can be used to compute the height of a font
with a specified point size.

 Height = -MulDiv(PointSize, GetDeviceCaps(hDC, LOGPIXELSY), 72);

<41> Section 2.2.1.5: Windows sets this field to 0x0000.

<42> Section 2.2.1.5: Windows sets this field to an arbitrary value.

<43> Section 2.2.2.2: Although Windows processes BitmapCoreHeader objects in DIBs, it does not

write them to WMF metafiles

<44> Section 2.2.2.3: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and
Windows NT 4.0: Neither JPEG nor PNG format is supported.

<45> Section 2.2.2.3: Windows implementations might write a nonzero value to this field, but it is
ignored when the metafile is parsed.

<46> Section 2.2.2.4: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51: This structure is not
supported.

<47> Section 2.2.2.5: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and
Windows NT 4.0: This structure is not supported.

<48> Section 2.2.2.10: In Windows implementations, BS_HOLLOW was added as a duplicate
symbolic name for BS_NULL, because BS_NULL was too easily mistaken for a NULL pointer.

BS_HOLLOW is used by an application when GDI requires a non-NULL brush parameter but the
application requires that no brush be used.

<49> Section 2.2.2.10: In the following Windows versions, a solid-color black brush is not created by

default when a BrushStyle value of BS_PATTERN or BS_DIBPATTERNPT is present:

 Windows NT 3.1

 Windows NT 3.5

202 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Windows NT 3.51

 Windows 95

 Windows NT 4.0

 Windows 98

 Windows Millennium Edition

 Windows 2000

 Windows XP

 Windows Server 2003

The default brush creation behavior on these versions of Windows is undefined.

<50> Section 2.3.1.4: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and

Windows NT 4.0: This format is not supported.

<51> Section 2.3.1.4: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and
Windows NT 4.0: This format is not supported.

<52> Section 2.3.1.6: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and
Windows NT 4.0: This format is not supported.

<53> Section 2.3.1.6: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows 95, and
Windows NT 4.0: This format is not supported.

<54> Section 2.3.2.2: Metafiles created by Windows contain the value METAVERSION300.

<55> Section 2.3.2.3: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows 95: This
feature is not supported.

<56> Section 2.3.4.1: In the following Windows versions, a solid-color black brush is not created by

default when a BrushStyle value of BS_PATTERN or BS_DIBPATTERNPT is present:

 Windows NT 3.1

 Windows NT 3.5

 Windows NT 3.51

 Windows 95

 Windows NT 4.0

 Windows 98

 Windows Millennium Edition

 Windows 2000

 Windows XP

 Windows Server 2003

The default brush creation behavior on these versions of Windows is undefined.

<57> Section 2.3.4.4: The META_CREATEPATTERNBRUSH record type is deprecated. No version of
Windows emits this record. Playback implementation of this record in Windows is intended solely for
compatibility purposes so that Windows metafiles containing this record can be rendered.

203 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<58> Section 2.3.5.15: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51 implementations do
not write this field to WMF metafiles.

<59> Section 2.3.5.16: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows NT 4.0
implementations do not support this record type.

<60> Section 2.3.5.20: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51 implementations do
not write this field to WMF metafiles.

<61> Section 2.3.5.22: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51 implementations do
not write this field to WMF metafiles.

<62> Section 2.3.5.23: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51 implementations do
not write this field to WMF metafiles.

<63> Section 2.3.5.24: Windows NT 3.1, Windows NT 3.5, and Windows NT 3.51 implementations do

not write this field to WMF metafiles.

<64> Section 2.3.6.6: Windows 95, Windows 98, and Windows Millennium Edition implementations

set this field to the fill mode value (section 2.1.1.25).

<65> Section 2.3.6.11: Any bytes that exceed the ByteCount field are ignored by the client.

<66> Section 2.3.6.25: Windows does not check this value.

<67> Section 3.1.5: Windows applications use the Graphics Device Interface (GDI) to obtain a device

context for performing output to a device. When the device context is created, the default values for
graphics objects and properties are set up by the system and the driver for the device.

204 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

5 Appendix A: Product Behavior 8089 : Added Windows Server to applicability list. Major

mailto:dochelp@microsoft.com

205 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

7 Index

A

ABORTDOC packet 156
ABORTDOC Record 156
Applicability 18

B

BEGIN_PATH packet 157
BEGIN_PATH Record 157
BinaryRasterOperation enumeration 24
BitCount enumeration 27
Bitmap Record Types 99
Bitmap16 Object 83
Bitmap16 packet 83
BitmapCoreHeader Object 84
BitmapCoreHeader packet 84
BitmapInfoHeader Object 84

BitmapInfoHeader packet 84
BitmapV4Header Object 86
BitmapV4Header packet 86
BitmapV5Header Object 87
BitmapV5Header packet 87
Brush Object 78
Brush packet 78
BrushStyle enumeration 28
Byte ordering 17

C

Change tracking 204
CharacterSet enumeration 29
CHECK_JPEGFORMAT packet 157
CHECK_JPEGFORMAT Record 157
CHECK_PNGFORMAT packet 158
CHECK_PNGFORMAT Record 158
CIEXYZ Object 88
CIEXYZ packet 88
CIEXYZTriple Object 89
CIEXYZTriple packet 89
CLIP_CHARACTER_PRECIS 75
CLIP_DEFAULT_PRECIS 75
CLIP_DFA_DISABLE 75
CLIP_EMBEDDED 75
CLIP_LH_ANGLES 75
CLIP_STROKE_PRECIS 75
CLIP_TO_PATH packet 159
CLIP_TO_PATH Record 159
CLIP_TT_ALWAYS 75
CLOSE_CHANNEL packet 159
CLOSE_CHANNEL Record 159
ColorRef Object 89
ColorRef packet 89
ColorUsage enumeration 30
Common data types and fields 19
Compression enumeration 30
Control Record Types 112

D

Data types and fields - common 19

Details
 common data types and fields 19
DeviceIndependentBitmap Object 89
DeviceIndependentBitmap packet 89
DOWNLOAD_FACE packet 160
DOWNLOAD_FACE Record 160
DOWNLOAD_HEADER packet 160
DOWNLOAD_HEADER Record 160
DRAW_PATTERNRECT packet 161
DRAW_PATTERNRECT Record 161
Drawing Record Types 114

E

ENCAPSULATED_POSTSCRIPT packet 162
ENCAPSULATED_POSTSCRIPT Record 162
END_PATH packet 163
END_PATH Record 163
ENDDOC packet 163
ENDDOC Record 163
Enumerations 19
EPS_PRINTING packet 164
EPS_PRINTING Record 164

Escape Record Types 154
ETO_CLIPPED 75
ETO_GLYPH_INDEX 75
ETO_NUMERICSLATIN 75
ETO_NUMERICSLOCAL 75
ETO_OPAQUE 75
ETO_PDY 75
ETO_RTLREADING 75
Examples
 metafile design example 182
 metafile example 190
 WMF Metafile Example 190
EXTTEXTOUT packet 164
EXTTEXTOUT Record 164

F

FamilyFont enumeration 31
Fields - vendor-extensible 18
Fixed-length record objects 78
FloodFill enumeration 32
Font Object 79
Font packet 79
FontQuality enumeration 32

G

GamutMappingIntent enumeration 33
GET_COLORTABLE packet 165
GET_COLORTABLE Record 165
GET_DEVICEUNITS packet 166
GET_DEVICEUNITS Record 166
GET_EXTENDED_TEXTMETRICS packet 166
GET_EXTENDED_TEXTMETRICS Record 166

GET_FACENAME packet 167
GET_FACENAME Record 167
GET_PAIRKERNTABLE packet 167
GET_PAIRKERNTABLE Record 167

206 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

GET_PHYSPAGESIZE packet 168
GET_PHYSPAGESIZE Record 168
GET_PRINTINGOFFSET packet 168
GET_PRINTINGOFFSET Record 168
GET_PS_FEATURESETTING packet 169
GET_PS_FEATURESETTING Record 169
GET_SCALINGFACTOR packet 169
GET_SCALINGFACTOR Record 169
Glossary 9
Graphics objects 17

H

HatchStyle enumeration 34

I

Implementer - security considerations 197
Informative references 15
Introduction 9

L

Layout enumeration 34
Localization 18
LogBrush Object 91
LogBrush packet 91
LogColorSpace Object 92
LogColorSpace packet 92
LogColorSpaceW Object 93
LogColorSpaceW packet 93
LogicalColorSpace enumeration 35
LogicalColorSpaceV5 enumeration 35

M

Managing objects
 object scaling 184
 object table 184
MapMode enumeration 35
META_ANIMATEPALETTE packet 138
META_ANIMATEPALETTE Record 138
META_ARC packet 115
META_ARC Record 115
META_BITBLT packet 101

META_BITBLT Record 100
META_BITBLT_Bitmap packet 101
META_CHORD packet 116
META_CHORD Record 116
META_CREATEBRUSHINDIRECT packet 130
META_CREATEBRUSHINDIRECT Record 130
META_CREATEFONTINDIRECT packet 130
META_CREATEFONTINDIRECT Record 130
META_CREATEPALETTE packet 131
META_CREATEPALETTE Record 131
META_CREATEPATTERNBRUSH packet 131
META_CREATEPATTERNBRUSH Record 131
META_CREATEPENINDIRECT packet 133
META_CREATEPENINDIRECT Record 133
META_CREATEREGION packet 133
META_CREATEREGION Record 133
META_DELETEOBJECT packet 133
META_DELETEOBJECT Record 133
META_DIBBITBLT packet 103
META_DIBBITBLT Record 102

META_DIBBITBLT_Bitmap packet 103
META_DIBCREATEPATTERNBRUSH packet 134
META_DIBCREATEPATTERNBRUSH Record 134
META_DIBSTRETCHBLT packet 106
META_DIBSTRETCHBLT Record 104
META_DIBSTRETCHBLT_Bitmap packet 105
META_ELLIPSE packet 117
META_ELLIPSE Record 117
META_EOF Record 112
META_EOF_Record packet 112
META_ESCAPE packet 156
META_ESCAPE Record 156
META_ESCAPE_ENHANCED_METAFILE packet 170
META_ESCAPE_ENHANCED_METAFILE Record 170
META_EXCLUDECLIPRECT packet 139
META_EXCLUDECLIPRECT Record 139
META_EXTFLOODFILL packet 118
META_EXTFLOODFILL Record 118
META_EXTTEXTOUT packet 118
META_EXTTEXTOUT Record 118
META_FILLREGION packet 119
META_FILLREGION Record 119
META_FLOODFILL packet 120

META_FLOODFILL Record 120
META_FRAMEREGION packet 120
META_FRAMEREGION Record 120
META_HEADER packet 112
META_HEADER Record 112
META_INTERSECTCLIPRECT packet 139
META_INTERSECTCLIPRECT Record 139
META_INVERTREGION packet 121
META_INVERTREGION Record 121
META_LINETO packet 122
META_LINETO Record 122
META_MOVETO packet 140
META_MOVETO Record 140
META_OFFSETCLIPRGN packet 140
META_OFFSETCLIPRGN Record 140
META_OFFSETVIEWPORTORG packet 141
META_OFFSETVIEWPORTORG Record 141
META_OFFSETWINDOWORG packet 141
META_OFFSETWINDOWORG Record 141
META_PAINTREGION packet 122
META_PAINTREGION Record 122
META_PATBLT packet 123
META_PATBLT Record 123
META_PIE packet 123
META_PIE Record 123
META_PLACEABLE packet 113
META_PLACEABLE Record 113
META_POLYGON packet 125
META_POLYGON Record 125
META_POLYLINE packet 124
META_POLYLINE Record 124
META_POLYPOLYGON packet 125
META_POLYPOLYGON Record 125
META_REALIZEPALETTE packet 142
META_REALIZEPALETTE Record 142
META_RECTANGLE packet 126
META_RECTANGLE Record 126
META_RESIZEPALETTE packet 142
META_RESIZEPALETTE Record 142
META_RESTOREDC packet 143
META_RESTOREDC Record 143
META_ROUNDRECT packet 127

207 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

META_ROUNDRECT Record 127
META_SAVEDC packet 143
META_SAVEDC Record 143
META_SCALEVIEWPORTEXT packet 144
META_SCALEVIEWPORTEXT Record 144
META_SCALEWINDOWEXT packet 144
META_SCALEWINDOWEXT Record 144
META_SELECTCLIPREGION packet 135
META_SELECTCLIPREGION Record 135
META_SELECTOBJECT packet 135
META_SELECTOBJECT Record 135
META_SELECTPALETTE packet 136
META_SELECTPALETTE Record 136
META_SETBKCOLOR packet 145
META_SETBKCOLOR Record 145
META_SETBKMODE packet 145
META_SETBKMODE Record 145
META_SETDIBTODEV packet 107
META_SETDIBTODEV Record 107
META_SETLAYOUT packet 146
META_SETLAYOUT Record 146
META_SETMAPMODE packet 146
META_SETMAPMODE Record 146

META_SETMAPPERFLAGS packet 147
META_SETMAPPERFLAGS Record 147
META_SETPALENTRIES packet 147
META_SETPALENTRIES Record 147
META_SETPIXEL packet 127
META_SETPIXEL Record 127
META_SETPOLYFILLMODE packet 148
META_SETPOLYFILLMODE Record 148
META_SETRELABS packet 148
META_SETRELABS Record 148
META_SETROP2 packet 149
META_SETROP2 Record 149
META_SETSTRETCHBLTMODE packet 149
META_SETSTRETCHBLTMODE Record 149
META_SETTEXTALIGN packet 150
META_SETTEXTALIGN Record 150
META_SETTEXTCHAREXTRA packet 150
META_SETTEXTCHAREXTRA Record 150
META_SETTEXTCOLOR packet 151
META_SETTEXTCOLOR Record 151
META_SETTEXTJUSTIFICATION packet 151
META_SETTEXTJUSTIFICATION Record 151
META_SETVIEWPORTEXT packet 152
META_SETVIEWPORTEXT Record 152
META_SETVIEWPORTORG packet 152
META_SETVIEWPORTORG Record 152
META_SETWINDOWEXT packet 153
META_SETWINDOWEXT Record 153
META_SETWINDOWORG packet 153
META_SETWINDOWORG Record 153
META_STRETCHBLT packet 109
META_STRETCHBLT Record 108
META_STRETCHBLT_Bitmap packet 109
META_STRETCHDIB packet 110
META_STRETCHDIB Record 110
META_TEXTOUT packet 128
META_TEXTOUT Record 128
Metafile design example 182
Metafile example
 header 191
 META_CREATEBRUSHINDIRECT 193
 META_CREATEPENINDIRECT 192

 META_EOF Example 196
 META_RECTANGLE 195
 META_SELECTOBJECT (section 3.2.3 193, section

3.2.5 194)
 META_TEXTOUT 195
 overview 190
Metafile structure 15
METAFILE_DRIVER packet 171
METAFILE_DRIVER Record 171
MetafileEscapes enumeration 36
MetafileType enumeration 39
MetafileVersion enumeration 40
MixMode enumeration 40

N

NEWFRAME packet 172

NEWFRAME Record 172
NEXTBAND packet 172
NEXTBAND Record 172
Normative references 14

O

Object Record Types 129
Objects 77
OPEN_CHANNEL packet 176
OPEN_CHANNEL Record 176
OutPrecision enumeration 40
Overview (synopsis) 15

P

Palette Object 81
Palette packet 81
PaletteEntry Object 94
PaletteEntry_Object packet 94
PaletteEntryFlag enumeration 41
PASSTHROUGH packet 173
PASSTHROUGH Record 173
Pen Object 82
Pen packet 82
PenStyle enumeration 42
PitchAndFamily Object 95
PitchAndFamily packet 95
PitchFont enumeration 43
PointL Object 95
PointL packet 95
PointS Object 95
PointS packet 95
PolyFillMode enumeration 43

PolyPolygon Object 96
PolyPolygon packet 96
POSTSCRIPT_DATA packet 173
POSTSCRIPT_DATA Record 173
POSTSCRIPT_IDENTIFY packet 174
POSTSCRIPT_IDENTIFY Record 174
POSTSCRIPT_IGNORE packet 174
POSTSCRIPT_IGNORE Record 174
POSTSCRIPT_INJECTION packet 175
POSTSCRIPT_INJECTION Record 175
POSTSCRIPT_PASSTHROUGH packet 175
POSTSCRIPT_PASSTHROUGH Record 175
PostScriptCap enumeration 43
PostScriptClipping enumeration 44

208 / 208

[MS-WMF] - v20170915
Windows Metafile Format
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PostScriptFeatureSetting enumeration 44
PostScriptJoin enumeration 45
Product behavior 198

Q

QUERY_DIBSUPPORT packet 176
QUERY_DIBSUPPORT Record 176
QUERY_ESCSUPPORT packet 177
QUERY_ESCSUPPORT Record 177

R

Record objects - fixed-length 78
Record objects - variable-length 83
Records 98
 enumerations 19
 fixed-length record objects 78
 types (section 2.3.1.1 100, section 2.3.1.2 102,

section 2.3.1.3 104, section 2.3.1.5 108)
 variable-length record objects 83
RecordType enumeration 19
Rect Object 96
Rect packet 96
RectL Object 96
RectL packet 96
References 14
 informative 15
 normative 14
Region Object 82
Region packet 82
Relationship to protocols and other structures 17
RGBQuad Object 97
RGBQuad packet 97

S

Scan Object 97
Scan packet 97
Security 197
Security - implementer considerations 197
SET_COLORTABLE packet 177
SET_COLORTABLE Record 177
SET_COPYCOUNT packet 178
SET_COPYCOUNT Record 178
SET_LINECAP packet 179
SET_LINECAP Record 179
SET_LINEJOIN packet 179
SET_LINEJOIN Record 179
SET_MITERLIMIT packet 180
SET_MITERLIMIT Record 180

SizeL Object 98
SizeL packet 98
SPCLPASSTHROUGH2 packet 180
SPCLPASSTHROUGH2 Record 180
STARTDOC packet 181
STARTDOC Record 181
State record types 136
StretchMode enumeration 45
Structures
 examples 182
 overview 19

T

TA_BASELINE 76
TA_BOTTOM 76
TA_CENTER 76
TA_LEFT 76
TA_NOUPDATECP 76
TA_RIGHT 76
TA_RTLREADING 76
TA_TOP 76
TA_UPDATECP 76
TernaryRasterOperation enumeration 46
Tracking changes 204

V

Variable-length record objects 83
Vendor-extensible fields 18
Versioning 18

VTA_BASELINE 77
VTA_BOTTOM 77
VTA_CENTER 77
VTA_LEFT 77
VTA_RIGHT 77
VTA_TOP 77

W

WMF Metafile Example example 190
WMF_Records packet 98

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Metafile Structure
	1.3.2 Graphics Objects
	1.3.3 Byte Ordering

	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 WMF Constants
	2.1.1 WMF Enumerations
	2.1.1.1 RecordType Enumeration
	2.1.1.2 BinaryRasterOperation Enumeration
	2.1.1.3 BitCount Enumeration
	2.1.1.4 BrushStyle Enumeration
	2.1.1.5 CharacterSet Enumeration
	2.1.1.6 ColorUsage Enumeration
	2.1.1.7 Compression Enumeration
	2.1.1.8 FamilyFont Enumeration
	2.1.1.9 FloodFill Enumeration
	2.1.1.10 FontQuality Enumeration
	2.1.1.11 GamutMappingIntent Enumeration
	2.1.1.12 HatchStyle Enumeration
	2.1.1.13 Layout Enumeration
	2.1.1.14 LogicalColorSpace Enumeration
	2.1.1.15 LogicalColorSpaceV5 Enumeration
	2.1.1.16 MapMode Enumeration
	2.1.1.17 MetafileEscapes Enumeration
	2.1.1.18 MetafileType Enumeration
	2.1.1.19 MetafileVersion Enumeration
	2.1.1.20 MixMode Enumeration
	2.1.1.21 OutPrecision Enumeration
	2.1.1.22 PaletteEntryFlag Enumeration
	2.1.1.23 PenStyle Enumeration
	2.1.1.24 PitchFont Enumeration
	2.1.1.25 PolyFillMode Enumeration
	2.1.1.26 PostScriptCap Enumeration
	2.1.1.27 PostScriptClipping Enumeration
	2.1.1.28 PostScriptFeatureSetting Enumeration
	2.1.1.29 PostScriptJoin Enumeration
	2.1.1.30 StretchMode Enumeration
	2.1.1.31 TernaryRasterOperation Enumeration

	2.1.2 WMF Flags
	2.1.2.1 ClipPrecision Flags
	2.1.2.2 ExtTextOutOptions Flags
	2.1.2.3 TextAlignmentMode Flags
	2.1.2.4 VerticalTextAlignmentMode Flags

	2.2 WMF Objects
	2.2.1 Graphics Objects
	2.2.1.1 Brush Object
	2.2.1.2 Font Object
	2.2.1.3 Palette Object
	2.2.1.4 Pen Object
	2.2.1.5 Region Object

	2.2.2 Structure Objects
	2.2.2.1 Bitmap16 Object
	2.2.2.2 BitmapCoreHeader Object
	2.2.2.3 BitmapInfoHeader Object
	2.2.2.4 BitmapV4Header Object
	2.2.2.5 BitmapV5Header Object
	2.2.2.6 CIEXYZ Object
	2.2.2.7 CIEXYZTriple Object
	2.2.2.8 ColorRef Object
	2.2.2.9 DeviceIndependentBitmap Object
	2.2.2.10 LogBrush Object
	2.2.2.11 LogColorSpace Object
	2.2.2.12 LogColorSpaceW Object
	2.2.2.13 PaletteEntry Object
	2.2.2.14 PitchAndFamily Object
	2.2.2.15 PointL Object
	2.2.2.16 PointS Object
	2.2.2.17 PolyPolygon Object
	2.2.2.18 Rect Object
	2.2.2.19 RectL Object
	2.2.2.20 RGBQuad Object
	2.2.2.21 Scan Object
	2.2.2.22 SizeL Object

	2.3 WMF Records
	2.3.1 Bitmap Record Types
	2.3.1.1 META_BITBLT Record
	2.3.1.1.1 With Bitmap
	2.3.1.1.2 Without Bitmap

	2.3.1.2 META_DIBBITBLT Record
	2.3.1.2.1 With Bitmap
	2.3.1.2.2 Without Bitmap

	2.3.1.3 META_DIBSTRETCHBLT Record
	2.3.1.3.1 With Bitmap
	2.3.1.3.2 Without Bitmap

	2.3.1.4 META_SETDIBTODEV Record
	2.3.1.5 META_STRETCHBLT Record
	2.3.1.5.1 With Bitmap
	2.3.1.5.2 Without Bitmap

	2.3.1.6 META_STRETCHDIB Record

	2.3.2 Control Record Types
	2.3.2.1 META_EOF Record
	2.3.2.2 META_HEADER Record
	2.3.2.3 META_PLACEABLE Record

	2.3.3 Drawing Record Types
	2.3.3.1 META_ARC Record
	2.3.3.2 META_CHORD Record
	2.3.3.3 META_ELLIPSE Record
	2.3.3.4 META_EXTFLOODFILL Record
	2.3.3.5 META_EXTTEXTOUT Record
	2.3.3.6 META_FILLREGION Record
	2.3.3.7 META_FLOODFILL Record
	2.3.3.8 META_FRAMEREGION Record
	2.3.3.9 META_INVERTREGION Record
	2.3.3.10 META_LINETO Record
	2.3.3.11 META_PAINTREGION Record
	2.3.3.12 META_PATBLT Record
	2.3.3.13 META_PIE Record
	2.3.3.14 META_POLYLINE Record
	2.3.3.15 META_POLYGON Record
	2.3.3.16 META_POLYPOLYGON Record
	2.3.3.17 META_RECTANGLE Record
	2.3.3.18 META_ROUNDRECT Record
	2.3.3.19 META_SETPIXEL Record
	2.3.3.20 META_TEXTOUT Record

	2.3.4 Object Record Types
	2.3.4.1 META_CREATEBRUSHINDIRECT Record
	2.3.4.2 META_CREATEFONTINDIRECT Record
	2.3.4.3 META_CREATEPALETTE Record
	2.3.4.4 META_CREATEPATTERNBRUSH Record
	2.3.4.5 META_CREATEPENINDIRECT Record
	2.3.4.6 META_CREATEREGION Record
	2.3.4.7 META_DELETEOBJECT Record
	2.3.4.8 META_DIBCREATEPATTERNBRUSH Record
	2.3.4.9 META_SELECTCLIPREGION Record
	2.3.4.10 META_SELECTOBJECT Record
	2.3.4.11 META_SELECTPALETTE Record

	2.3.5 State Record Types
	2.3.5.1 META_ANIMATEPALETTE Record
	2.3.5.2 META_EXCLUDECLIPRECT Record
	2.3.5.3 META_INTERSECTCLIPRECT Record
	2.3.5.4 META_MOVETO Record
	2.3.5.5 META_OFFSETCLIPRGN Record
	2.3.5.6 META_OFFSETVIEWPORTORG Record
	2.3.5.7 META_OFFSETWINDOWORG Record
	2.3.5.8 META_REALIZEPALETTE Record
	2.3.5.9 META_RESIZEPALETTE Record
	2.3.5.10 META_RESTOREDC Record
	2.3.5.11 META_SAVEDC Record
	2.3.5.12 META_SCALEVIEWPORTEXT Record
	2.3.5.13 META_SCALEWINDOWEXT Record
	2.3.5.14 META_SETBKCOLOR Record
	2.3.5.15 META_SETBKMODE Record
	2.3.5.16 META_SETLAYOUT Record
	2.3.5.17 META_SETMAPMODE Record
	2.3.5.18 META_SETMAPPERFLAGS Record
	2.3.5.19 META_SETPALENTRIES Record
	2.3.5.20 META_SETPOLYFILLMODE Record
	2.3.5.21 META_SETRELABS Record
	2.3.5.22 META_SETROP2 Record
	2.3.5.23 META_SETSTRETCHBLTMODE Record
	2.3.5.24 META_SETTEXTALIGN Record
	2.3.5.25 META_SETTEXTCHAREXTRA Record
	2.3.5.26 META_SETTEXTCOLOR Record
	2.3.5.27 META_SETTEXTJUSTIFICATION Record
	2.3.5.28 META_SETVIEWPORTEXT Record
	2.3.5.29 META_SETVIEWPORTORG Record
	2.3.5.30 META_SETWINDOWEXT Record
	2.3.5.31 META_SETWINDOWORG Record

	2.3.6 Escape Record Types
	2.3.6.1 META_ESCAPE Record
	2.3.6.2 ABORTDOC Record
	2.3.6.3 BEGIN_PATH Record
	2.3.6.4 CHECK_JPEGFORMAT Record
	2.3.6.5 CHECK_PNGFORMAT Record
	2.3.6.6 CLIP_TO_PATH Record
	2.3.6.7 CLOSE_CHANNEL Record
	2.3.6.8 DOWNLOAD_FACE Record
	2.3.6.9 DOWNLOAD_HEADER Record
	2.3.6.10 DRAW_PATTERNRECT Record
	2.3.6.11 ENCAPSULATED_POSTSCRIPT Record
	2.3.6.12 END_PATH Record
	2.3.6.13 ENDDOC Record
	2.3.6.14 EPS_PRINTING Record
	2.3.6.15 EXTTEXTOUT Record
	2.3.6.16 GET_COLORTABLE Record
	2.3.6.17 GET_DEVICEUNITS Record
	2.3.6.18 GET_EXTENDED_TEXTMETRICS Record
	2.3.6.19 GET_FACENAME Record
	2.3.6.20 GET_PAIRKERNTABLE Record
	2.3.6.21 GET_PHYSPAGESIZE Record
	2.3.6.22 GET_PRINTINGOFFSET Record
	2.3.6.23 GET_PS_FEATURESETTING Record
	2.3.6.24 GET_SCALINGFACTOR Record
	2.3.6.25 META_ESCAPE_ENHANCED_METAFILE Record
	2.3.6.26 METAFILE_DRIVER Record
	2.3.6.27 NEWFRAME Record
	2.3.6.28 NEXTBAND Record
	2.3.6.29 PASSTHROUGH Record
	2.3.6.30 POSTSCRIPT_DATA Record
	2.3.6.31 POSTSCRIPT_IDENTIFY Record
	2.3.6.32 POSTSCRIPT_IGNORE Record
	2.3.6.33 POSTSCRIPT_INJECTION Record
	2.3.6.34 POSTSCRIPT_PASSTHROUGH Record
	2.3.6.35 OPEN_CHANNEL Record
	2.3.6.36 QUERY_DIBSUPPORT Record
	2.3.6.37 QUERY_ESCSUPPORT Record
	2.3.6.38 SET_COLORTABLE Record
	2.3.6.39 SET_COPYCOUNT Record
	2.3.6.40 SET_LINECAP Record
	2.3.6.41 SET_LINEJOIN Record
	2.3.6.42 SET_MITERLIMIT Record
	2.3.6.43 SPCLPASSTHROUGH2 Record
	2.3.6.44 STARTDOC Record

	3 Structure Examples
	3.1 Metafile Design
	3.1.1 Device Independence
	3.1.2 Byte Ordering Example
	3.1.3 Mapping Modes
	3.1.4 Managing Objects
	3.1.4.1 WMF Object Table
	3.1.4.2 Object Scaling

	3.1.5 Playback Device Context
	3.1.6 Run-Length Encoding (RLE) Compression
	3.1.6.1 Bitmaps with 4 Bits per Pixel
	3.1.6.2 Bitmaps with 8 Bits per Pixel

	3.2 WMF Metafile Example
	3.2.1 META_HEADER Example
	3.2.2 META_CREATEPENINDIRECT Example
	3.2.3 META_SELECTOBJECT Example 1
	3.2.4 META_CREATEBRUSHINDIRECT Example
	3.2.5 META_SELECTOBJECT Example 2
	3.2.6 META_RECTANGLE Example
	3.2.7 META_TEXTOUT Example
	3.2.8 META_EOF Example

	4 Security Considerations
	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

