
1 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-UNMP]:

User Name Mapping Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 New Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

7/3/2007 2.0 Major Changed to unified format; updated technical content.

8/10/2007 2.0.1 Editorial Changed language and formatting in the technical content.

9/28/2007 3.0 Major Added and deleted sections; revised technical content.

10/23/2007 3.0.1 Editorial Changed language and formatting in the technical content.

1/25/2008 3.0.2 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0.3 Editorial Changed language and formatting in the technical content.

6/20/2008 3.1 Minor Clarified the meaning of the technical content.

7/25/2008 3.1.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.0 Major Updated and revised the technical content.

10/24/2008 5.0 Major Updated and revised the technical content.

12/5/2008 6.0 Major Updated and revised the technical content.

1/16/2009 6.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 6.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 6.0.3 Editorial Changed language and formatting in the technical content.

5/22/2009 6.0.4 Editorial Changed language and formatting in the technical content.

7/2/2009 6.0.5 Editorial Changed language and formatting in the technical content.

8/14/2009 6.0.6 Editorial Changed language and formatting in the technical content.

9/25/2009 6.1 Minor Clarified the meaning of the technical content.

11/6/2009 6.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.1.2 Editorial Changed language and formatting in the technical content.

1/29/2010 6.1.3 Editorial Changed language and formatting in the technical content.

3/12/2010 6.1.4 Editorial Changed language and formatting in the technical content.

4/23/2010 6.1.5 Editorial Changed language and formatting in the technical content.

6/4/2010 6.1.6 Editorial Changed language and formatting in the technical content.

7/16/2010 6.1.6 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 6.1.6 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Date
Revision
History

Revision
Class Comments

10/8/2010 6.1.6 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 6.1.6 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 6.2 Minor Clarified the meaning of the technical content.

2/11/2011 6.2 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 7.0 Major Updated and revised the technical content.

5/6/2011 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 7.1 Minor Clarified the meaning of the technical content.

9/23/2011 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 8.0 Major Updated and revised the technical content.

3/30/2012 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 9.0 Major Updated and revised the technical content.

10/25/2012 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 10.0 Major Updated and revised the technical content.

11/14/2013 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 11.0 Major Significantly changed the technical content.

10/16/2015 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 12.0 Major Significantly changed the technical content.

4 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments ... 11

2 Messages ... 12
2.1 Transport .. 12
2.2 Message Syntax ... 12

2.2.1 User Name Mapping Protocol Message Headers .. 12
2.2.1.1 SUNRPC Request Header.. 12
2.2.1.2 SUNRPC Response Header ... 12

2.2.2 Common User Name Mapping Protocol Data Types.. 12
2.2.2.1 Sizes ... 12
2.2.2.2 MapSvrMBCSNameString ... 13
2.2.2.3 MapSvrUnicodeNameString .. 13
2.2.2.4 MapSvrMBCSWindowsNameString ... 13
2.2.2.5 MapSvrUnicodeWindowsNameString .. 13
2.2.2.6 MapSvrMBCSMapString .. 13
2.2.2.7 MapSvrUnicodeMapString ... 15
2.2.2.8 unix_account .. 15
2.2.2.9 unix_accountW ... 16
2.2.2.10 unix_user_auth... 16
2.2.2.11 unix_user_authW .. 17
2.2.2.12 windows_creds ... 17
2.2.2.13 windows_credsW .. 18
2.2.2.14 windows_account .. 18
2.2.2.15 windows_accountW ... 18
2.2.2.16 unix_auth .. 19
2.2.2.17 unix_authW .. 19
2.2.2.18 unix_creds ... 19
2.2.2.19 unix_credsW .. 20
2.2.2.20 dump_map_req .. 20
2.2.2.21 sequence_number ... 20
2.2.2.22 mapping_record .. 21
2.2.2.23 sid .. 21
2.2.2.24 mapping_recordW ... 22

2.2.3 Non-XDR-Compliant Data Structures ... 22
2.2.3.1 mapping .. 22
2.2.3.2 maps ... 23
2.2.3.3 mappingW ... 23
2.2.3.4 mapsW .. 23

2.2.4 Standard Failure Responses ... 24
2.2.5 User Name Mapping Protocol Messages ... 25

2.2.5.1 MAPPROC_NULL (PROC 0) .. 25
2.2.5.2 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC (PROC 1) 26
2.2.5.3 GETUNIXCREDSFROMNTUSERNAME_PROC (PROC 2) 26
2.2.5.4 AUTHUSINGUNIXCREDS_PROC (PROC 3) ... 26

5 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.5.5 DUMPALLMAPS_PROC (PROC 4) .. 27
2.2.5.6 GETCURRENTVERSIONTOKEN_PROC (PROC 5) ... 27
2.2.5.7 DUMPALLMAPSEX_PROC (PROC 6) .. 28
2.2.5.8 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC (PROC 7) 28
2.2.5.9 GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC 8) 28
2.2.5.10 GETUNIXCREDSFROMNTUSERSID_PROC (PROC 9) 29
2.2.5.11 DUMPALLMAPSW_PROC (PROC 10) ... 29
2.2.5.12 DUMPALLMAPSEXW_PROC (PROC 11) .. 29
2.2.5.13 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC (PROC 12) 30
2.2.5.14 GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC 13) 30
2.2.5.15 AUTHUSINGUNIXCREDSW_PROC (PROC 14) .. 31
2.2.5.16 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC (PROC 15) 31
2.2.5.17 GETUNIXCREDSFROMNTGROUPNAMEW_PROC (PROC 16) 31
2.2.5.18 GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC 17) 32

3 Protocol Details ... 33
3.1 Client Details ... 33

3.1.1 Abstract Data Model .. 33
3.1.2 Timers .. 34
3.1.3 Initialization ... 34
3.1.4 Higher-Layer Triggered Events ... 34
3.1.5 Message Processing Events and Sequencing Rules .. 34

3.1.5.1 Making the Initial Account Mapping Request to the Server.......................... 35
3.1.5.2 Processing the Account Mapping Response from the Server 35
3.1.5.3 Making Further Account Mapping Requests to the Server 35
3.1.5.4 Polling for Cache Consistency ... 35

3.1.6 Timer Events .. 36
3.1.7 Local Events... 36

3.2 Server Details .. 36
3.2.1 Abstract Data Model .. 36
3.2.2 Timers .. 37
3.2.3 Initialization ... 37
3.2.4 Higher-Layer Triggered Events ... 37
3.2.5 Message Processing Events and Sequencing Rules .. 37

3.2.5.1 Processing for All Procedures .. 37
3.2.5.2 Processing of DUMPALLMAPSXXX_PROC Request and

GETCURRENTVERSIONTOKEN_PROC Request ... 37
3.2.5.2.1 Processing the Initial Account Mapping Request from the Client............. 37
3.2.5.2.2 Processing Further Account Mapping Requests from the Client 37
3.2.5.2.3 Processing the Client Account Mapping Cache Refresh 38

3.2.6 Timer Events .. 38
3.2.7 Other Local Events .. 38

4 Protocol Examples ... 39
4.1 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC ... 39
4.2 GETUNIXCREDSFROMNTUSERNAME_PROC .. 40
4.3 AUTHUSINGUNIXCREDS_PROC .. 41
4.4 DUMPALLMAPS_PROC ... 42
4.5 GETCURRENTVERSIONTOKEN_PROC .. 45
4.6 DUMPALLMAPSEX_PROC ... 45
4.7 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC .. 47
4.8 GETUNIXCREDSFROMNTGROUPNAME_PROC.. 48
4.9 GETUNIXCREDSFROMNTUSERSID_PROC ... 49
4.10 DUMPALLMAPSW_PROC .. 50
4.11 DUMPALLMAPSEXW_PROC... 52
4.12 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC .. 53
4.13 GETUNIXCREDSFROMNTUSERNAMEW_PROC ... 54
4.14 AUTHUSINGUNIXCREDSW_PROC ... 55
4.15 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC ... 56

6 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.16 GETUNIXCREDSFROMNTGROUPNAMEW_PROC ... 57
4.17 GETUNIXCREDSFROMNTUSERSIDW_PROC .. 58

5 Security ... 60
5.1 Security Considerations for Implementers ... 60
5.2 Index of Security Parameters .. 60

6 Appendix A: Full SunRPC IDL ... 61

7 Appendix B: Sample Code to Encode and Decode Non-XDR-Compliant Data Types 64
7.1 Header File Content .. 64
7.2 Encode/Decode Routines For Non-XDR Data Types Using XDR Primitives................. 65

8 Appendix C: Product Behavior ... 67

9 Change Tracking .. 69

10 Index ... 70

7 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1 Introduction

The Windows and UNIX operating systems use different mechanisms for user identification,
authentication, and resource access control. Users have separate accounts in the Windows portion and
the UNIX portion of any network. Because Windows and UNIX user identifications and user names are
stored and used differently, there is no association between the two sets, even though the same users
exist on each network.

The User Name Mapping Protocol maps Windows domain user and group account names
(DOMAIN\NAME) to the POSIX user and group identifiers (UIDs and GIDs) utilized in AUTH_UNIX
authentication and vice versa. This enables the association of user names for users who have different
identities in Windows-based and UNIX-based domains. For example, this protocol allows user and
group accounts from multiple Windows domains to access resources on Network File System (NFS)
file servers by using UIDs and GIDs. The User Name Mapping Protocol supports only retrieval of

mappings; it does not include procedures for changing user mappings.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

advanced map: Used to map accounts that have different names on the UNIX and Windows
systems. Advanced maps are also used to map users from different Windows domains, and
they can also explicitly map accounts that would generally be mapped by simple maps. For
more information, see [NFSAUTH].

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.

For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

DUMPALLMAPSXXX_PROC: A reference to the following procedures: DUMPALLMAPS_PROC,
DUMPALLMAPSEX_PROC, DUMPALLMAPSW_PROC, and DUMPALLMAPSEXW_PROC.

group identifier (group ID or GID): A number that identifies a group of users to a UNIX
operating system. The scope of the number is at least machine-wide but can also be coordinated
across a group of machines by means of services, such as the Network Information Service
(NIS).

group map: An association between a Windows group account name, a UNIX group account
name, and a GID.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in

the memory location with the lowest address.

map: An association between a Windows-based network user or group name and a UNIX-based
network user or group name.

multibyte character set (MBCS): An alternative to Unicode for supporting character sets, like
Japanese and Chinese, that cannot be represented in a single byte. Under MBCS, characters are
encoded in either one or two bytes. In two-byte characters, the first byte, or "lead" byte, signals
that both it and the following byte are to be interpreted as one character. The first byte comes

from a range of codes reserved for use as lead bytes. Which ranges of bytes can be lead bytes

https://go.microsoft.com/fwlink/?LinkId=90231
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

8 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

depends on the code page in use. For example, Japanese code page 932 uses the range 0x81
through 0x9F as lead bytes, but Korean code page 949 uses a different range.

Network File System (NFS): A Network File System protocol, as specified in [RFC1094] and
[RFC1813]. This protocol is compatible with NFS version 3 (NFSv3). NFS version 4 (NFSv4)

obviates the need for this protocol by allowing Windows and UNIX domains to interoperate
using Kerberos version 5, which allows them to share the same namespace.

OEMCP: The default OEM code page of the system. The OEM code page is used for conversions of
MS-DOS–based, text-mode applications.

portmapper service: A portmapper service is a SUNRPC service that provides discovery
services; clients of the portmapper service can use it to discover other SUNRPC services
running on the same computer. The information returned by the portmapper service is then

used by the client of the portmapper service to act as a client for the discovered SUNRPC
service. The portmapper service runs on a specific well-known port (Port 111 on TCP/UDP).

POSIX: Portable Operating System Interface, as specified in [IEEE1003.1]. POSIX is a set of

standard operating system interfaces based on UNIX. This term is used interchangeably with
UNIX in the rest of this document, as described in [IEEE1003.1].

primary map: When multiple Windows accounts are mapped to a single UNIX account, one of

these mappings can be designated as a "primary" mapping. For more information, see
[NFSAUTH].

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority,
termed the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a
string representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section

1.1.1.2.

simple map: Maps between accounts with the exact same name in UNIX as in Windows. For
more information, see [NFSAUTH].

SUNRPC: A remote procedure call (RPC) protocol from Sun Microsystems [RFC1057]. SUNRPC
forms the basis of the Network File System (NFS) Protocol. SUNRPC has no relationship to
Remote Procedure Call Protocol Extensions, as specified in [MS-RPCE].

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

UNIX: A multiuser, multitasking operating system developed at Bell Laboratories in the 1970s. In
this document, the term "UNIX" is used to refer to any derivatives of this operating system.

user identifier (user ID or UID): A number that identifies a particular user to a UNIX operating

system. The scope of the number is at least machine-wide and can be coordinated across a
group of machines by means of services such as NIS.

user map: An association between a Windows user account name, a UNIX user account name,
and a UID.

wide characters: Characters represented by a 2-byte value that are encoded using Unicode UTF-
16. Unless otherwise stated, no range restrictions apply.

XDR: The data encoding standard used by SUNRPC for a selection of common data types such as

strings, integers, and arrays of integers, as specified in [RFC4506].

https://go.microsoft.com/fwlink/?LinkId=90267
https://go.microsoft.com/fwlink/?LinkId=90294
https://go.microsoft.com/fwlink/?LinkId=89897
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e
https://go.microsoft.com/fwlink/?LinkId=90265
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90478

9 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE1003.1] The Open Group, "IEEE Std 1003.1, 2004 Edition", 2004,

http://www.unix.org/version3/ieee_std.html

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC1057] Sun Microsystems, Inc., "RPC: Remote Procedure Call Protocol Specification Version 2",
RFC 1057, June 1998, http://www.ietf.org/rfc/rfc1057.txt

[RFC1831] Srinivasan, R., "RPC: Remote Procedure Call Protocol Specification Version 2", RFC 1831,
August 1995, http://www.ietf.org/rfc/rfc1831.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4506] Network Appliance, Inc., "XDR: External Data Representation Standard", STD 67, RFC
4506, May 2006, http://www.ietf.org/rfc/rfc4506.txt

1.2.2 Informative References

[NFSAUTH] Russel, C., "NFS Authentication",

http://www.microsoft.com/technet/interopmigration/unix/sfu/nfsauth.mspx

[NIS] Sun Microsystems, Inc., "System Administration Guide: Naming and Directory Services (DNS,
NIS, and LDAP)", http://docs.sun.com/app/docs/doc/816-4556

[WINNSP] Microsoft Corporation, "Namespace Planning for DNS", January 2005,
http://technet2.microsoft.com/WindowsServer/en/library/8ec96981-6b1a-48ec-bd3e-
d8d43bc814311033.mspx

[WINUGA] Microsoft Corporation, "Creating User and Group Accounts",
http://www.microsoft.com/technet/archive/winntas/deploy/confeat/05wntpca.mspx

1.3 Overview

The User Name Mapping Protocol maps Windows domain identities (user and group account names) to

UNIX user and UNIX group identities (user and group account names and their corresponding UID
and GID) and vice versa. Clients of the User Name Mapping Protocol use SUNRPC-formatted
messages to enumerate and/or translate user and group account information between a UNIX and a
Windows domain. The User Name Mapping Protocol exists to allow a one-to-one mapping of each
Windows group account name to a GID number and a one-to-one mapping of each Windows user
account name to a user identifier (user ID or UID) number.

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89897
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90295
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90478
https://go.microsoft.com/fwlink/?LinkId=90231
https://go.microsoft.com/fwlink/?LinkId=90234
https://go.microsoft.com/fwlink/?LinkId=90567
https://go.microsoft.com/fwlink/?LinkId=90567
https://go.microsoft.com/fwlink/?LinkId=90568

10 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The User Name Mapping Protocol is invoked by a client application when the application needs to
provide a user map or a group map between a UNIX user or group and the corresponding Windows

user or group. This need is application specific and is not specified by the User Name Mapping
Protocol. The UNIX or Windows user, or UNIX or Windows group, that needs to be mapped is supplied

to the User Name Mapping Protocol by the client application, and the mapped user/group is returned
to the client by the User Name Mapping Protocol server. For user mapping and group mapping
enumerations, the client application specifies the enumeration parameters, and the User Name
Mapping Protocol server returns the enumerated user mappings/group mappings to the client.

These mapping enumerations can be cached by the client application and kept up to date by
periodically polling the server to determine if the cached mappings are still valid. The User Name
Mapping Protocol does not provide authentication or authorization of the application-provided

user/group; to the client, it is a read-only account mapping service.

An example of this authentication behavior is a user on a UNIX machine making a file access request
that contains AUTH_UNIX–formatted user credentials to an NFS server implemented on a computer
running Windows. The NFS server acts as a User Name Mapping Protocol client (or "user map") to
request the Windows domain user and group names (from the User Name Mapping Protocol server)

that match the AUTH_UNIX credentials, [RFC1057] section 9.2, supplied by the UNIX user. This action

enables the NFS server to authenticate the file access request.

This document specifies the SUNRPC-formatted messages that provide support for the following
operations:

 Mapping POSIX user and group names and/or UIDs/GIDs to Windows domain and account
names.

 Mapping Windows domain and account names to POSIX user and group names, and UIDs and
GIDs.

 Allowing a User Name Mapping Protocol client to authenticate a POSIX user by providing a user
name and password.

 Enumerating all user mappings and group mappings between POSIX accounts and Windows

accounts known to the User Name Mapping Protocol server.

 Testing to see if any maps previously enumerated by a client have changed from the time of the
last check.

 Mapping a Windows domain security identifier (SID) to a POSIX user/group name and

UID/GID.

This document specifies versions 1 and 2 of the User Name Mapping Protocol. Version 1 is comprised
of a set of nine SUNRPC procedures; version 2 consists of a set of 18 SUNRPC procedures. For a list of
these procedures, see the table in section 2.2.5.

There are several differences between User Name Mapping Protocol version 1 and User Name Mapping
Protocol version 2. Version 2 added procedures 10–17, which are the wide character (Unicode)

counterparts of procedures 1–4 and 6–9. Procedures 1–4 and 6–8 accept multibyte character set
(MBCS) character-encoded strings as input. Version 2 includes the additional procedure 9, which

takes a Windows account SID and returns an MBCS character-encoded UNIX account map that
corresponds to the Windows account represented by that SID. The wide character (Unicode)
counterpart to procedure 9 is procedure 17.

1.4 Relationship to Other Protocols

The User Name Mapping Protocol relies on [RFC1057] and [RFC4506] for communicating with clients
by means of the SUNRPC message version 2 and XDR protocols as specified in those documents. The
User Name Mapping Protocol uses SUNRPC authentication level AUTH_NULL (as specified in

https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90478

11 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[RFC1057]). The User Name Mapping Protocol uses SUNRPC message version 2 implemented on top of
TCP and UDP. The User Name Mapping Protocol message formats are not sensitive to which underlying

transports (TCP or UDP) are being used.<1>

1.5 Prerequisites/Preconditions

It is required that the User Name Mapping Protocol server has been previously configured with all the
appropriate UNIX and Windows domain name and group mapping information, and that it has
registered with the portmapper service (as specified in [RFC1057] Appendix A) on the same

computer as the User Name Mapping Protocol server. Normal TCP/IP services sufficient to provide
TCP-based or UDP-based communications must be available.<2>

1.6 Applicability Statement

The User Name Mapping Protocol is applicable in a heterogeneous network environment where users

have separate accounts in UNIX and Windows infrastructures. This protocol provides a means to
associate user and group accounts in two networks for users or groups that have different identities in

UNIX-based and Windows-based administrative domains.<3>

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Protocol Versions: The User Name Mapping Protocol supports versions 1 and 2. These dialects
are defined in section 2.2.

 Capability Negotiation: Version negotiation of the User Name Mapping Protocol is achieved
using the standard method for protocol negotiation for SUNRPC services as specified in
[RFC1057] section 8. The User Name Mapping Protocol client requests a specific version of the

User Name Mapping Protocol from the portmapper service (as specified in [RFC1057] Appendix
A). The portmapper service replies with the available versions registered by the User Name
Mapping Protocol server. It is recommended that requests made to the User Name Mapping

Protocol server for versions other than those supported with a SUNRPC PROG_MISMATCH
message, as specified in [RFC1057].

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

 Parameter Value Reference

MAPSVC_PROGRAM 351455 [RFC1057] section 7.3

https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90265

12 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2 Messages

2.1 Transport

The User Name Mapping Protocol is a SUNRPC protocol (as specified in [RFC1057]) that runs on

TCP/IP using TCP and/or UDP transports, with a well-known program number of MAPSVC_PROGRAM
(351455). The User Name Mapping Protocol server registers an available TCP/UDP port with the local
portmapper service on startup using the MAPSVC_PROGRAM number for all combinations of TCP,
UDP, and protocol versions that the User Name Mapping Protocol server is capable of or configured to
accept. User Name Mapping Protocol clients query the SUNRPC portmapper server for the TCP/UDP
port number on which the User Name Mapping Protocol is registered and listening for the requested

version and transport combination.

Configuration of the portmapper service and port registration is specified in [RFC1057] Appendix A.
The User Name Mapping Protocol does not define a configuration interface to the portmapper service.

The User Name Mapping Protocol server provides a procedure-oriented interface to the User Name

Mapping Protocol clients. Clients identify the remote procedure by using a combination of a 32-bit
program number, a 32-bit version number, and a 32-bit procedure number (as specified in
[RFC1057]). The service is stateless; every SUNRPC call is self-contained and does not depend on the

previous calls made or previous state of the service.

The User Name Mapping Protocol server accepts all SUNRPC packets with an authentication level of
AUTH_NULL, as specified in [RFC1057] section 9.1. Therefore, no authentication information is
required by the client.

2.2 Message Syntax

The following structures are specified in XDR Data Definition Language syntax (as specified in
[RFC4506] section 6) while procedures are defined in the SUNRPC language, as specified in
[RFC1057] section 11.

2.2.1 User Name Mapping Protocol Message Headers

2.2.1.1 SUNRPC Request Header

The User Name Mapping Protocol uses standard SUNRPC version 2 msg_type CALL headers. Requests

are made with an authentication level of AUTH_NULL. This header format and its fields and values are
specified in [RFC1057] section 8.

2.2.1.2 SUNRPC Response Header

The User Name Mapping Protocol uses standard SUNRPC version 2 msg_type REPLY headers. This
header format and its fields and values are specified in [RFC1057] section 8.

2.2.2 Common User Name Mapping Protocol Data Types

In this section, the XDR Data Description Language (as specified in [RFC4506]) is used to specify the

XDR format parameters and results of each of the SUNRPC service procedures that a User Name
Mapping Protocol server provides.

2.2.2.1 Sizes

 const MAXNAMELEN = 128;
 const MAXNAMELENx2 = 256;

https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90478
https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90478

13 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 const MAXLINELEN = 256;
 const MAXLINELENx2 = 512;
 const MAXGIDS = 32;
 const MAXSIDLEN = 72;

(MAXGIDS is the maximum count of GIDs. This includes both the primary GID and any supplementary
GIDs.)

2.2.2.2 MapSvrMBCSNameString

 typedef opaque MapSvrMBCSNameString<MAXNAMELEN>;

An XDR variable-length opaque data field, as specified in [RFC4506] section 4.10, whose maximum
length is specified in bytes. The length is equal to the number of MBCS bytes encoded in the system
OEM code page (OEMCP), including multibyte characters, as specified by the length field that
precedes the byte stream. The value of the length field MUST NOT exceed the value MAXNAMELEN.

Minimum length is 0.

2.2.2.3 MapSvrUnicodeNameString

 typedef opaque MapSvrUnicodeNameString<MAXNAMELENx2>;

An XDR variable-length opaque data field, as specified in [RFC4506] section 4.10, whose maximum

length is specified in bytes. The maximum length is defined by the length field that precedes the byte
stream. The value of the length field MUST NOT exceed the value MAXNAMELENx2. The maximum
length of the character string is equal to as many 2-byte Unicode (UTF-16) characters as can be
stored in a MapSvrUnicodeNameString, with a maximum length equal to length. Minimum length is 0.

2.2.2.4 MapSvrMBCSWindowsNameString

 typedef opaque MapSvrMBCSWindowsNameString<MAXLINELEN>;

An XDR variable-length opaque data field, as specified in [RFC4506] section 4.10, whose maximum
length is specified in bytes. The length is equal to the number of MBCS bytes encoded in the system

OEMCP, including multibyte characters, as specified by the length field that precedes the byte
stream. The value of the length field MUST NOT exceed the value MAXLINELEN. Minimum length is 0.

2.2.2.5 MapSvrUnicodeWindowsNameString

 typedef opaque MapSvrUnicodeWindowsNameString<MAXLINELENx2>;

An XDR variable-length opaque data field, as specified in [RFC4506] section 4.10, whose maximum
length is specified in bytes. The maximum length is defined by the length field that precedes the byte

stream. The value of the length field MUST NOT exceed the value MAXLINELENx2. The maximum
length of the character string is equal to as many 2-byte Unicode (UTF-16) characters as can be

stored in a MapSvrUnicodeWindowsNameString, with a maximum length equal to length. Minimum
length is 0.

2.2.2.6 MapSvrMBCSMapString

 typedef opaque MapSvrMBCSMapString<MAXLINELEN>;

https://go.microsoft.com/fwlink/?LinkId=90478
https://go.microsoft.com/fwlink/?LinkId=90478
https://go.microsoft.com/fwlink/?LinkId=90478
https://go.microsoft.com/fwlink/?LinkId=90478

14 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

An XDR variable-length opaque data field, as specified in [RFC4506] section 4.10, whose maximum
length is specified in bytes. The length is equal to the number of MBCS bytes encoded in the system

OEMCP, including multibyte characters, as specified by the length field that precedes the byte
stream. The value of the length field MUST NOT exceed the value MAXLINELEN. Minimum length is 0.

This type is used to define a single account map as a colon-delimited string of MBCS characters. This
type is returned as an output from the map enumeration procedure. For more information, see section
2.2.3.2.

The format of MapSvrMBCSMapString is a sequence of colon-delimited fields. It has one of two forms,
depending on the context: user map or group map, as follows.

For user map, MapSvrMBCSMapString has the following format.

 MapType:WindowsAccountName:AuthType:UNIXDomain:UNIXServer:
 UNIXAccountName:UNIXPassword:ID:GIDArray

For group map, MapSvrMBCSMapString has the following format.

 MapType:WindowsAccountName:AuthType:UNIXDomain:UNIXServer:
 UNIXAccountName:GID

MapType: A single MBCS character that indicates the type of map from which the mapping was
derived. It MUST be one of the following characters.

 Value Meaning

'*' The map is a primary map.

'^' The map is an advanced map.

'-' The map is a simple map.

WindowsAccountName: A string of MBCS characters that contains the Windows account name. It
MUST be in DOMAIN\NAME format.

AuthType: A single MBCS character that indicates which entity provided the map. AuthType MUST

be one of the values in the following table. If the value is AUTH_NIS, the source MUST be a NIS
service on the network. If the value is AUTH_FILE, the source SHOULD<4> be from the service-
maintained database local to the User Name Mapping Protocol server.

 Value Meaning

'0'
(AUTH_FILE)

The map was obtained from a service-maintained database local to the User Name
Mapping Protocol server. The form of the database is implementation-specific.

'1'
(AUTH_NIS)

The map was obtained from a NIS service on the network. NIS is specified in [NIS].

UNIXDomain: A string of MBCS characters that contains the string "PCNFS" if the map was obtained
from a service-maintained database, or the NIS server domain to which the account belongs if the

map was obtained from a NIS service. If AuthType is equal to AUTH_NIS, this field MUST contain
the NIS server domain the account is a member of.

UNIXServer: A string of MBCS characters that contains the string "PCNFS" if the map was obtained
from a service-maintained database, or a string that represents the NIS server name to which the
account belongs if the map was obtained from a NIS server.

https://go.microsoft.com/fwlink/?LinkId=90478
https://go.microsoft.com/fwlink/?LinkId=90234

15 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

UNIXAccountName: A string of MBCS characters that represents the UNIX account name.

UNIXPassword: A sequence of bytes that represents the password for a user record as returned by a

call to the crypt() API that uses the user's cleartext password, as specified in [IEEE1003.1]
System Interfaces Volume (XSH). This field is empty when the password is not available or does

not apply. The password record MUST NOT contain any MBCS colon characters.

ID: A string of MBCS characters that contains the ID for the UNIX account.

GID: A string of MBCS characters that contains the GID for the UNIX account.

GIDArray: A string of MBCS characters that contains the primary and supplementary GIDs for the
UNIX account, with each supplementary GID after the primary GID, and separated by additional
colon characters.

2.2.2.7 MapSvrUnicodeMapString

 typedef opaque MapSvrUnicodeMapString<MAXLINELENx2>;

An XDR variable-length opaque data field, as specified in [RFC4506] section 4.10, whose maximum
length is specified in bytes. The maximum length is defined by the length field that precedes the byte
stream. The value of the length field MUST NOT exceed the value MAXLINELENx2. The maximum
length of the character string is equal to as many 2-byte Unicode (UTF-16) characters as can be
stored in a MapSvrUnicodeMapString, with a maximum length equal to length. Minimum length is 0.

This type is used to define a single account map in colon-delimited string format when returned as an

output from the map enumeration procedure. For more information, see section 2.2.3.4.

The format of a MapSvrUnicodeMapString field is a sequence of colon-delimited fields as specified in
section 2.2.2.6, substituting Unicode characters for MBCS characters.

2.2.2.8 unix_account

This type is used to specify a UNIX account name in MBCS format, in addition to an ID used to
search for the corresponding Windows account information when mapping a UNIX account name to a
Windows account name. For more information, see sections 2.2.5.2 and 2.2.5.8.

 struct unix_account {
 long SearchOption;
 long Reserved;
 long ID;
 MapSvrMBCSNameString UnixAccountName;
 };

SearchOption: An XDR-encoded, 32-bit signed integer that defines the user search criteria to use for
the request. SearchOption MUST be one of the following values.

 Value Meaning

0x00000001 If set, UnixAccountName is valid and MUST be used as the search criterion.

0x00000002 If set, ID is valid and MUST be used as the search criterion.

0x00000003 If set, UnixAccountName and ID are both valid and both MUST be used as the search
criteria.

https://go.microsoft.com/fwlink/?LinkId=89897
https://go.microsoft.com/fwlink/?LinkId=90478

16 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Reserved: A 32-bit signed integer that MUST be sent as 0x00000000 and MUST be ignored on
receipt.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX account ID to use as the search
criterion. If SearchOption is not 0x00000002 or 0x00000003, this value MUST be ignored.

UnixAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of the UNIX
account to use as the search criterion. The length of the string MUST NOT exceed 128 bytes.
POSIX user and group account name constraints are specified in [IEEE1003.1]. If SearchOption
is not 0x00000001 or 0x00000003, this value MUST be ignored.

2.2.2.9 unix_accountW

This type is used to specify a UNIX account name in Unicode format, in addition to an ID used to
search for the corresponding Windows account information when mapping a UNIX account name to a
Windows account name. For more information, see sections 2.2.5.13 and 2.2.5.16.

 struct unix_accountW {
 long SearchOption;
 long Reserved;
 long ID;
 MapSvrUnicodeNameString UnixAccountName;
 };

SearchOption: An XDR-encoded, 32-bit signed integer that defines the user search criteria to use for

the request. SearchOption MUST be one of the following values.

 Value Meaning

0x00000001 If set, UnixAccountName is valid and MUST be used as the search criterion.

0x00000002 If set, ID is valid and MUST be used as the search criterion.

0x00000003 If set, UnixAccountName and ID are both valid and both MUST be used as the search
criteria.

Reserved: A 32-bit signed integer that MUST be sent as 0x00000000 and MUST be ignored on
receipt.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX account ID to use as the search
criterion. If SearchOption is not 0x00000002 or 0x00000003, this value MUST be ignored.

UnixAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of the
UNIX account to use as the search criterion. The length of the string MUST NOT exceed 256 bytes.
POSIX user and group account name constraints are specified in [IEEE1003.1]. If SearchOption
is not 0x00000001 or 0x00000003, this value MUST be ignored.

2.2.2.10 unix_user_auth

This type is used to specify a UNIX account name (in MBCS format) and a password to retrieve the
set of UNIX account details that correspond to the account. For more information, see section 2.2.5.4.

 struct unix_user_auth {
 MapSvrMBCSNameString UnixUserAccountName;
 MapSvrMBCSNameString UnixUserAccountPassword;
 };

https://go.microsoft.com/fwlink/?LinkId=89897
https://go.microsoft.com/fwlink/?LinkId=89897

17 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

UnixUserAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of the
UNIX user account to use as the search criterion. The length of this string MUST NOT exceed 128

bytes. POSIX user and group account name constraints are specified in [IEEE1003.1].

UnixUserAccountPassword: An XDR variable-length opaque data field, as defined in [RFC4506]

section 4.10, that contains the password of the UNIX user account to use as the search criterion.
The length of this field MUST NOT exceed 128 bytes. This string MUST be generated by a call to
the POSIX crypt() function, as described in section 3 of the System Interfaces Volume (XSH) of
[IEEE1003.1].

2.2.2.11 unix_user_authW

This type is used to specify a UNIX account name (in Unicode format) and a password to retrieve the
set of UNIX account details that correspond to the account. For more information, see section
2.2.5.15.

 struct unix_user_authW {
 MapSvrUnicodeNameString UnixUserAccountName;
 MapSvrUnicodeNameString UnixUserAccountPassword;
 };

UnixUserAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of
the UNIX user to use as the search criterion. The length of the string MUST NOT exceed 256

bytes. POSIX user and group account name constraints are specified in [IEEE1003.1].

UnixUserAccountPassword: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the
password of the UNIX user account to use as the search criterion. The length of the string MUST
NOT exceed 256 bytes. This string MUST be generated by a call to the POSIX crypt() function, as
described in section 3 of the System Interfaces Volume (XSH) of [IEEE1003.1].

2.2.2.12 windows_creds

This type represents the Windows account name (in MBCS format) when used as an output parameter
from a search for the corresponding UNIX account name (in MBCS format) and/or UNIX ID. For more
information, see sections 2.2.5.2 and 2.2.5.8)

 struct windows_creds {
 long Status;
 long Reserved;
 MapSvrMBCSWindowsNameString WindowsAccountName;
 };

Status: An XDR-encoded, Boolean return value. This MUST be either 0 or 1. A value of 0 indicates
success; a value of 1 indicates failure.

Reserved: A 32-bit signed integer that MUST be 0x00000000 and MUST be ignored on receipt.

WindowsAccountName: A MapSvrMBCSWindowsNameString (section 2.2.2.4) that contains the
name of the mapped Windows user or group account that MUST be in the form "DOMAIN\NAME".
The length of the string MUST NOT exceed 256 bytes. Windows user/group account name
constraints are specified in [WINUGA], and Windows domain naming conventions are specified in
[WINNSP]. If Status does not equal 0x00000000, this value MUST be ignored.

https://go.microsoft.com/fwlink/?LinkId=89897
https://go.microsoft.com/fwlink/?LinkId=90478
https://go.microsoft.com/fwlink/?LinkId=89897
https://go.microsoft.com/fwlink/?LinkId=90568
https://go.microsoft.com/fwlink/?LinkId=90567

18 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.2.13 windows_credsW

This type represents the Windows account name (in Unicode format) when used as an output
parameter from a search for the corresponding UNIX account name (in Unicode format) and/or UNIX

ID. For more information, see sections 2.2.5.13 and 2.2.5.16.

 struct windows_credsW {
 long Status;
 long Reserved;
 MapSvrUnicodeWindowsNameString WindowsAccountName;
 };

Status: An XDR-encoded, Boolean return value. This MUST be either 0 or 1. A value of 0 indicates
success; a value of 1 indicates failure.

Reserved: A 32-bit signed integer that MUST be 0x00000000 and MUST be ignored on receipt.

WindowsAccountName: A MapSvrUnicodeWindowsNameString (section 2.2.2.5) that contains the

name of the mapped Windows user or group account that MUST be in the form "DOMAIN\NAME".
The length of the string MUST NOT exceed 512 bytes. Windows user account and group account
name constraints are specified in [WINUGA], and Windows domain naming conventions are
specified in [WINNSP]. If Status does not equal 0x00000000, this value MUST be ignored.

2.2.2.14 windows_account

This type is used to specify a Windows account name in MBCS format used to search for the
corresponding UNIX account information. For more information, see sections 2.2.5.3 and 2.2.5.9.

 struct windows_account {
 MapSvrMBCSNameString WindowsAccountName;
 };

WindowsAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that MUST contain the name
of the Windows account in the "DOMAIN\NAME" format to use as the search criterion. Windows
user account and group account name constraints are specified in [WINUGA], and Windows
domain naming conventions are specified in [WINNSP]. The length of the string MUST NOT exceed

256 bytes.

2.2.2.15 windows_accountW

This type is used to specify a Windows account name in Unicode format used to search for the

corresponding UNIX account information. For more information, see sections 2.2.5.14 and 2.2.5.17.

 struct windows_accountW {
 MapSvrUnicodeNameString WindowsAccountName;
 };

WindowsAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of
the Windows user account to use as the search criterion. The account name MUST be in the form

"DOMAIN\NAME". Windows user account and group account name constraints are specified in
[WINUGA], and Windows domain naming conventions are specified in [WINNSP]. The length of the
string MUST NOT exceed 512 bytes.

https://go.microsoft.com/fwlink/?LinkId=90568
https://go.microsoft.com/fwlink/?LinkId=90567
https://go.microsoft.com/fwlink/?LinkId=90568
https://go.microsoft.com/fwlink/?LinkId=90567
https://go.microsoft.com/fwlink/?LinkId=90568
https://go.microsoft.com/fwlink/?LinkId=90567

19 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.2.16 unix_auth

This type is used to specify UNIX account details returned as a result of an authentication operation
on the server. For more information, see sections 2.2.5.4 and 2.2.5.15.

 struct unix_auth {
 MapSvrMBCSNameString UnixAccountPassword;
 long ID;
 long GIDArray<MAXGIDS>;
 };

UnixAccountPassword: A MapSvrMBCSNameString (section 2.2.2.2) that contains the password of
the mapped UNIX account. The length of the string MUST NOT exceed 128 bytes.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX user ID for the

UnixAccountPassword that was looked up.

GIDArray: An array of XDR-encoded, 32-bit signed integers that contains the group IDs for the

UnixAccountPassword that was looked up. The maximum size of this array is MAXGIDS.

2.2.2.17 unix_authW

This type is used to specify UNIX account details returned as a result of an authentication operation
on the server. For more information, see sections 2.2.5.4 and 2.2.5.15.

 struct unix_authW {
 MapSvrUnicodeNameString UnixAccountPassword;
 long ID;
 long GIDArray<MAXGIDS>;
 };

UnixAccountPassword: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the password

of the mapped UNIX account. The length of the string MUST NOT exceed 256 bytes.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX user ID for the
UnixAccountPassword that was looked up.

GIDArray: An array of XDR-encoded, 32-bit signed integers that contains the group IDs for the
UnixAccountPassword that was looked up. The maximum size of this array is MAXGIDS.

2.2.2.18 unix_creds

This type is used to specify UNIX account details returned as a result of a lookup operation on the
server. For more information, see sections 2.2.5.3, 2.2.5.9, and 2.2.5.10.

 struct unix_creds {
 MapSvrMBCSNameString UnixAccountName;
 long ID;
 long GIDArray<MAXGIDS>;
 };

UnixAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of the
mapped UNIX account. The length of the string MUST NOT exceed 128 bytes.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX user ID for UnixAccountName.

20 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

GIDArray: An array of XDR-encoded, 32-bit signed integers that contains the group IDs for
UnixAccountName. The maximum size of this array is MAXGIDS.

2.2.2.19 unix_credsW

This type is used to specify UNIX account details returned as a result of a lookup operation on the
server. For more information, see sections 2.2.5.14, 2.2.5.17, and 2.2.5.18.

 struct unix_credsW {
 MapSvrUnicodeNameString UnixAccountName;
 long ID;
 long GIDArray<MAXGIDS>;
 };

UnixAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of the
mapped UNIX account. The length of the string MUST NOT exceed 256 bytes.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX user ID for UnixAccountName.

GIDArray: An array of XDR-encoded, 32-bit signed integers that contains the group IDs for
UnixAccountName. The maximum size of this array is MAXGIDS.

2.2.2.20 dump_map_req

This type is used to specify an input parameter to start or continue a map enumeration request to the
server. For more information, see sections 2.2.5.5, 2.2.5.7, 2.2.5.11, and 2.2.5.12.

 struct dump_map_req {
 long PrincipalType;
 long MapRecordIndex;
 };

PrincipalType: An XDR-encoded, 32-bit signed integer that defines the type of account mapping to
enumerate. PrincipalType MUST be one of the following values.

 Value Meaning

0x00000000 Enumerate user account mappings.

0x00000001 Enumerate group account mappings.

MapRecordIndex: An XDR-encoded, 32-bit signed integer that is an index into the set of mapping
records. This MUST be set to 0 on the first call in an enumeration sequence, and to the sum of all
the records returned by all preceding replies on subsequent calls in the enumeration sequence. For

more information on enumeration sequences, see sections 3.1.5 and 3.2.5.

2.2.2.21 sequence_number

This type is used by the server to define a version for a set of account mappings at a given point in
time. This number is changed by the server whenever any changes are made to the set of account

mappings that it maintains (for more information, see section 2.2.5.6). If either of the member fields
changes, the sequence_number as a whole MUST be considered as changed.

 struct sequence_number {
 long CurrentVersionTokenLowPart;
 long CurrentVersionTokenHighPart;

21 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 };

CurrentVersionTokenLowPart: An XDR-encoded, 32-bit signed integer that MUST be either
0x00000000 or a value returned by the server from a previous call to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. For more information about
CurrentVersionTokenLowPart, see sections 3.1.5 and 3.2.5.

CurrentVersionTokenHighPart: An XDR-encoded, 32-bit signed integer that MUST be either
0x00000000 or a value returned by the server from a previous call to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. For more information about

CurrentVersionTokenHighPart, see sections 3.1.5 and 3.2.5.

2.2.2.22 mapping_record

This type is used to define a single account map when returned as an output from the map
enumeration procedure. For more information, see section 2.2.3.1.

 struct mapping_record {
 MapSvrMBCSNameString WindowsAccountName;
 MapSvrMBCSNameString UnixAccountName;
 long ID;
 };

WindowsAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of the
Windows user or group account in the enumeration. The length of the string MUST NOT exceed

128 bytes. The Windows account name MUST be in the "DOMAIN\NAME" format.

UnixAccountName: A MapSvrMBCSNameString that contains the name of the UNIX user or group
account in the enumeration. The length of the string MUST NOT exceed 128 bytes.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX user ID or group ID for

UnixAccountName as specified by PrincipalType in the request (section 2.2.5.5).

2.2.2.23 sid

This type is used to define a Windows account SID when used as input to look up the UNIX account
mapping details that correspond to the Windows account represented by this SID. For more
information, see sections 2.2.5.10 and 2.2.5.18.

 struct sid {
 char SID<MAXSIDLEN>;
 };

SID: An array of XDR-encoded unsigned bytes that is a stream representation of the Windows
account SID, as specified in [MS-DTYP] section 2.4.2.2. The SubAuthority field of the SID ([MS-
DTYP] section 2.4.2.2) packet is a variable-length array of unsigned 32-bit little-endian integers.

The sid structure is an opaque data type generated by the Windows security subsystem. It is not

converted to any byte-ordered network representation, and SHOULD NOT be interpreted by the
User Name Mapping Protocol client or server directly; instead, it SHOULD be supplied to the
underlying implementation-defined security subsystem. The maximum size of the SID array in the
sid structure is MAXSIDLEN.

Note Because the SID is transmitted as a raw array of bytes, the client and server MUST have
identical native SID representations for user name mapping to succeed. See sections 4.9 and 4.17
for examples.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

22 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.2.24 mapping_recordW

This type is used to define a single account map when returned as output from the map enumeration
procedure. For more information, see section 2.2.3.3.

 struct mapping_recordW {
 MapSvrUnicodeNameString WindowsAccountName;
 MapSvrUnicodeNameString UnixAccountName;
 long ID;
 };

WindowsAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of
the Windows user or group account in the enumeration. The length of the string MUST NOT
exceed 256 bytes. The account name MUST be in the form "DOMAIN\NAME".

UnixAccountName: A MapSvrUnicodeNameString that contains the name of the UNIX user or group
account in the enumeration. The length of the string MUST NOT exceed 256 bytes.

ID: An XDR-encoded, 32-bit signed integer that contains the UNIX user ID or group ID for
UnixAccountName, as specified by PrincipalType in the request (section 2.2.5.11).

2.2.3 Non-XDR-Compliant Data Structures

There are four data structures that cannot be defined using a pure XDR definition. Instead they are
defined in terms of lower-level XDR primitives. The difference is as follows. XDR defines fixed-size
arrays in terms of constants only. On the other hand, the User Name Mapping Protocol has four
structures that use a dynamic value for the array size, and the layout of the fields in the User Name
Mapping Protocol precludes the use of the XDR variable-sized array data type. For each of the four

data types that follow, the structures are described as their standard XDR types, followed by an XDR
vector that uses a dynamic size rather than a constant. This is very similar to the standard XDR
variable-sized array but with a separate size value rather than one built into the array type.

See section 7 for sample code that shows how to encode and decode each of the four data structures.

2.2.3.1 mapping

This type is used to define a set of account maps when returned as output from the map enumeration
procedure. For more information, see section 2.2.5.5.

 struct mapping {
 sequence_number Token;
 long MappingRecordCount;
 long TotalMappingRecordCount;
 mapping_record MapArray[MappingRecordCount];
 };

Token: A sequence_number (section 2.2.2.21) that represents the current version of the data set
maintained by the User Name Mapping Protocol server.

MappingRecordCount: An XDR-encoded, 32-bit signed integer that indicates the number of records
that are returned in MapArray.

TotalMappingRecordCount: A 32-bit signed integer value that indicates the total number of
mapping records of the specified PrincipalType (as specified in section 2.2.5.5) held by the
server that are available to be enumerated.

23 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

MapArray: An array of account mapping records that is returned as a part of the current enumeration
sequence, as specified in section 2.2.2.22.

2.2.3.2 maps

This type is used to define a set of account maps in colon-delimited string format when returned as
output from the map enumeration procedure. For more information, see section 2.2.5.7.

 struct maps {
 sequence_number Token;
 long MappingRecordCount;
 long TotalMappingRecordCount;
 MapSvrMBCSMapString MapArray[MappingRecordCount];
 };

Token: A sequence of numbers that represent the version for the set of account maps returned in the
current enumeration.

MappingRecordCount: An XDR-encoded, 32-bit signed integer that indicates the maximum number
of records to be returned in the MapArray field.

TotalMappingRecordCount: A 32-bit signed integer value that indicates the total number of
mapping records of the specified PrincipalType (as specified in section 2.2.5.7) held by the
server that are available to be enumerated.

MapArray: An array of account mapping records that is returned as a part of the current enumeration

sequence (as specified in section 2.2.2.6).

2.2.3.3 mappingW

This type is used to define a set of account maps when returned as output from the map enumeration
procedure. For more information, see section 2.2.5.11.

 struct mappingW {
 sequence_number Token;
 long MappingRecordCount;
 long TotalMappingRecordCount;
 mapping_recordW MapArray[MappingRecordCount];
 };

Token: A sequence number that represents the version for the set of account mappings that are
returned in the current enumeration.

MappingRecordCount: An XDR-encoded, 32-bit signed integer that indicates the number of records
that are returned in the MapArray field.

TotalMappingRecordCount: A 32-bit signed integer value that indicates the total number of
mapping records of the specified PrincipalType (section 2.2.5.11) held by the server that are

available to be enumerated.

MapArray: An array of account mapping records that is returned as a part of the current enumeration
sequence. For more information, see section 2.2.2.24.

2.2.3.4 mapsW

This type is used to define a set of account maps in colon-delimited string format when returned as an
output from the map enumeration procedure. For more information, see section 2.2.5.12.

24 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 struct mapsW {
 sequence_number Token;
 long MappingRecordCount;
 long TotalMappingRecordCount;
 MapSvrUnicodeMapString MapArray[MappingRecordCount];
 };

Token: A sequence_number (section 2.2.2.21).

MappingRecordCount: An XDR-encoded, 32-bit signed integer that indicates the maximum number
of records in MapArray.

TotalMappingRecordCount: A 32-bit signed integer value that indicates the total number of
mapping records of the specified PrincipalType (section 2.2.5.12) held by the server that are
available to be enumerated.

MapArray: An array of MapSvrUnicodeMapString (section 2.2.2.7).

2.2.4 Standard Failure Responses

SUNRPC defines a set of standard responses to requests that the User Name Mapping Protocol server
is unable to service. The following tables list the set of status codes that can be returned by the User
Name Mapping Protocol server.

If SUNRPC status is MSG_ACCEPTED.

Accept status

SUCCESS

PROG_UNAVAIL

PROG_MISMATCH

PROC_UNAVAIL

GARBAGE_ARGS

SYSTEM_ERR

If SUNRPC status is MSG_DENIED.

Reject status Reason rejected

RPC_MISMATCH

AUTH_ERROR AUTH_BADCRED

These status codes have the following meanings:

 SUCCESS: RPC call executed successfully ([RFC1057]).

 PROG_UNAVAIL: Wrong PROGRAM_NUMBER for the port ([RFC1057]).

 PROG_MISMATCH: Unsupported protocol version number requested ([RFC1057]).

 PROC_UNAVAIL: Nonexistent procedure number requested ([RFC1057]).

 GARBAGE_ARGS: Supplied arguments illegal or otherwise not decodable ([RFC1057]).

https://go.microsoft.com/fwlink/?LinkId=90265

25 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 SYSTEM_ERR: Errors like memory allocation failure ([RFC1831]).

 RPC_MISMATCH: Invalid SUNRPC version number ([RFC1057]).

 AUTH_ERROR: Remote cannot authenticate caller ([RFC1057]).

 AUTH_BADCRED: Bad credentials in RPC call ([RFC1057]).<5>

2.2.5 User Name Mapping Protocol Messages

The User Name Mapping Protocol procedure messages are defined in the SUNRPC request and
response headers, as specified in [RFC1057] section 8. The following table lists the procedure

messages in procedure number order.

Procedure name Procedure number Version

MAPPROC_NULL 0 1, 2

GETWINDOWSCREDSFROMUNIXUSERNAME_PROC 1 1, 2

GETUNIXCREDSFROMNTUSERNAME_PROC 2 1, 2

AUTHUSINGUNIXCREDS_PROC 3 1, 2

DUMPALLMAPS_PROC 4 1, 2

GETCURRENTVERSIONTOKEN_PROC 5 1, 2

DUMPALLMAPSEX_PROC 6 1, 2

GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC 7 1, 2

GETUNIXCREDSFROMNTGROUPNAME_PROC 8 1, 2

GETUNIXCREDSFROMNTUSERSID_PROC 9 2

DUMPALLMAPSW_PROC 10 2

DUMPALLMAPSEXW_PROC 11 2

GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC 12 2

GETUNIXCREDSFROMNTUSERNAMEW_PROC 13 2

AUTHUSINGUNIXCREDSW_PROC 14 2

GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC 15 2

GETUNIXCREDSFROMNTGROUPNAMEW_PROC 16 2

GETUNIXCREDSFROMNTUSERSIDW_PROC 17 2

2.2.5.1 MAPPROC_NULL (PROC 0)

A null procedure that is used for service discovery as specified in [RFC1057] section A.2.

 void
 MAPPROC_NULL(
 void

https://go.microsoft.com/fwlink/?LinkId=90295
https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90265

26 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

This procedure requires no arguments, and a successful reply MUST contain no data other than a
SUNRPC reply status of MSG_ACCEPTED, as specified in [RFC1057].

The typical use of a null procedure is for the clients to discover whether the service is started and
available. This procedure has a procedure number equal to 0.

2.2.5.2 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC (PROC 1)

A request to fetch the mapped Windows user account name for a specified UNIX user name and/or
UNIX user.

 windows_creds
 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC(
 unix_account UnixUser
);

UnixUser: The UNIX user to search for, using the account name and/or UID as the search criteria, as
specified by the value for SearchOption.

Return Value: A windows_creds record that contains the mapped Windows user account details for

the specified UNIX user. Whenever the lookup request for a specified UNIX account succeeds or
fails to find a corresponding Windows account map, the User Name Mapping Protocol server MUST
return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The actual
success or failure of the request MUST be set in the Status member of the returned structure.
Status is a Boolean value, with 0 indicating a successful lookup request and 1 indicating a failed
lookup request.

2.2.5.3 GETUNIXCREDSFROMNTUSERNAME_PROC (PROC 2)

A request to fetch the mapped UNIX user account details for a specified Windows user account name.

 unix_creds
 GETUNIXCREDSFROMNTUSERNAME_PROC(
 windows_account WindowsUserAccountName
);

WindowsUserAccountName: The Windows user to use for the account name as the search criterion.

Return Value: A unix_creds record containing the mapped UNIX user account details for the specified

Windows account name. Whenever the lookup request for a specified Windows account fails to find
a corresponding UNIX account map, the User Name Mapping Protocol server MUST return a
SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero-
length string in the UnixAccountName member of the returned structure.

2.2.5.4 AUTHUSINGUNIXCREDS_PROC (PROC 3)

A request to fetch the UNIX account details for a given UNIX user name and password.

This procedure is typically used by clients that are doing a simple authentication by providing a user
name and password. The password string is the string returned by a call to the crypt() API using the
user's cleartext password, as described in section 3 of the System Interfaces Volume (XSH) of
[IEEE1003.1].

https://go.microsoft.com/fwlink/?LinkId=89897

27 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 unix_auth
 AUTHUSINGUNIXCREDS_PROC(
 unix_user_auth UnixUserAuth
);

UnixUserAuth: UNIX user name and password to use as the search criteria.<6>

Return Value: A unix_auth record that contains the mapped UNIX user account details for the
specified UNIX account. Whenever the lookup request for a specified UNIX account fails to find a

corresponding UNIX account map, the User Name Mapping Protocol server MUST return a
SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero-
length string in the UnixAccountPassword member of the returned structure.

2.2.5.5 DUMPALLMAPS_PROC (PROC 4)

A request to enumerate all account mappings held by the service.

 mapping
 DUMPALLMAPS_PROC(
 dump_map_req EnumCursor
);

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A mapping type that describes an array of zero or more mapping_record types.
Whenever the enumeration request fails to find any records to either begin or continue the
enumeration, the User Name Mapping Protocol server MUST return a SUNRPC status of
MSG_ACCEPTED with an accept status of SUCCESS, and MUST return 0 in the

MappingRecordCount field. It MUST also return a zero-length set of mapping_record types in
the MapArray member of the returned structure. The User Name Mapping Protocol server MUST
also return current values for the server sequence_number in the Token field and the total
mapping record count for the specified enumeration in the TotalMappingRecordCount field of

the returned structure.

2.2.5.6 GETCURRENTVERSIONTOKEN_PROC (PROC 5)

A request for the current account-mapping sequence number for the set of mapping records held by
the server. This procedure is used by clients to check whether any map records changed since the last
enumeration by the client.

 sequence_number
 GETCURRENTVERSIONTOKEN_PROC(
 sequence_number SequenceNumber
);

SequenceNumber: A data structure that contains two 32-bit signed integers. SequenceNumber MUST

contain either 0x00000000 for each member field or a value returned by the server from a
previous call to GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. For more
information, see sections 3.1.5 and 3.2.5.

Return Value: The User Name Mapping Protocol server MUST return a SUNRPC status of
MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a sequence_number
structure with the current sequence number value for the set of mapping records held by the

server.

28 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.5.7 DUMPALLMAPSEX_PROC (PROC 6)

A request to enumerate all account mappings held by the service.

 maps
 DUMPALLMAPSEX_PROC(
 dump_map_req EnumCursor
);

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A maps type record that describes an array of zero or more MapSvrMBCSMapString
types. Whenever the enumeration request fails to find any records to either begin or continue the
enumeration, the User Name Mapping Protocol server MUST return a SUNRPC status of
MSG_ACCEPTED with an accept status of SUCCESS, and MUST return 0 in the
MappingRecordCount field. It MUST also return a zero-length set of MapSvrMBCSMapString
types in the MapArray member of the returned structure.

The User Name Mapping Protocol server MUST also return current values for the server
sequence_number in the Token field and the total mapping record count for the specified
enumeration in the TotalMappingRecordCount field of the returned structure.

2.2.5.8 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC (PROC 7)

A request to fetch the Windows group account information that corresponds to a UNIX group name.

 windows_creds
 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC(
 unix_account UnixGroupAccount
);

UnixGroupAccount: A UNIX group to search for, using the account name and/or GID as the search

criteria, as specified by the value for SearchOption.

Return Value: A windows_creds record that contains the mapped Windows group account details for
the specified UNIX group. Whenever the lookup request for a specified UNIX account succeeds or
fails to find a corresponding Windows account map, the User Name Mapping Protocol server MUST

return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The actual
success or failure of the request MUST be set in the Status member of the returned structure.
Status is a Boolean value, with 0 indicating a successful lookup request and 1 indicating a failed
lookup request.

2.2.5.9 GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC 8)

A request to fetch the UNIX group account information that corresponds to a Windows group name.

 unix_creds
 GETUNIXCREDSFROMNTGROUPNAME_PROC(
 windows_account WindowsGroupAccountName
);

WindowsGroupAccountName: A Windows group to use for the account name as the search criteria.

Return Value: A unix_creds record that contains the mapped UNIX group account details for the
specified Windows account name. Whenever the lookup request for a specified Windows account
fails to find a corresponding UNIX account map, the User Name Mapping Protocol server MUST

29 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also
return a zero-length string in the UnixAccountName member of the returned structure.

2.2.5.10 GETUNIXCREDSFROMNTUSERSID_PROC (PROC 9)

A request for the UNIX account information that corresponds to the Windows account specified by the
SID.

 unix_creds
 GETUNIXCREDSFROMNTUSERSID_PROC(
 sid SID
);

SID: A Windows SID to use as the search criteria.

Return Value: A unix_creds record that contains the mapped UNIX account details for the specified

Windows SID. Whenever the lookup request for a specified Windows SID fails to find a

corresponding UNIX account map, the User Name Mapping Protocol server MUST return a
SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero-
length string in the UnixAccountName member of the returned structure.

2.2.5.11 DUMPALLMAPSW_PROC (PROC 10)

This procedure is the wide character counterpart of DUMPALLMAPS_PROC. The request and response
packets are identical to DUMPALLMAPS_PROC, except that the return value is a mappingW data type
instead of a mapping data type. For example, the MapSvrMBCSNameString data type is replaced with
a MapSvrUnicodeNameString type in the byte stream.

 mappingW
 DUMPALLMAPSW_PROC(
 dump_map_req EnumCursor
);

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A mappingW type that describes an array of zero or more mapping_recordW types.
Whenever the enumeration request fails to find any records to either begin or continue the
enumeration, the User Name Mapping Protocol server MUST return a SUNRPC status of
MSG_ACCEPTED with an accept status of SUCCESS, and MUST return 0 in the
MappingRecordCount field. It MUST also return a zero-length set of mapping_recordW types in
the MapArray member of the returned structure. The User Name Mapping Protocol server MUST

also return current values for the server sequence_number in the Token field, and the total
mapping record count for the specified enumeration in the TotalMappingRecordCount field of
the returned structure.

2.2.5.12 DUMPALLMAPSEXW_PROC (PROC 11)

This procedure is the wide character counterpart of DUMPALLMAPSEX_PROC. The request and
response packets are identical to DUMPALLMAPSEX_PROC, except that the MapSvrMBCSMapString
data type is replaced with a MapSvrUnicodeMapString type in the byte stream.

 mapsW
 DUMPALLMAPSEXW_PROC(
 dump_map_req EnumCursor
);

30 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A mapsW type record that describes an array of zero or more

MapSvrUnicodeMapString types. Whenever the enumeration request fails to find any records to
either begin or continue the enumeration, the User Name Mapping Protocol server MUST return a

SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS, and MUST return 0 in the
MappingRecordCount field. It MUST also return a zero-length set of MapSvrUnicodeMapString
types in the MapArray member of the returned structure. The User Name Mapping Protocol
server MUST also return current values for the server sequence_number in the Token field, and
the total mapping record count for the specified enumeration in the TotalMappingRecordCount
field of the returned structure.

2.2.5.13 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC (PROC 12)

This procedure is the wide character counterpart to
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC. The request and response packets are identical to
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC, except that the MapSvrMBCSNameString data type

is replaced with a MapSvrUnicodeNameString type in the byte stream.

 windows_credsW
 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC(
 unix_accountW UnixUser
);

UnixUser: A UNIX account to search for, using the account name and/or UID as the search criteria, as
specified by the value for SearchOption.

Return Value: A windows_credsW record that contains the mapped Windows user account details for
the specified UNIX user account. Whenever the lookup request for a specified UNIX account
succeeds or fails to find a corresponding Windows account map, the User Name Mapping Protocol

server MUST return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The
actual success or failure of the request MUST be set in the Status member of the returned

structure. Status is a Boolean value, with 0 indicating a successful lookup request and 1
indicating a failed lookup request.

2.2.5.14 GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC 13)

This procedure is the wide character counterpart to GETUNIXCREDSFROMNTUSERNAME_PROC. The
request and response packets are identical to GETUNIXCREDSFROMNTUSERNAME_PROC, except that
the MapSvrMBCSNameString data type is replaced with a MapSvrUnicodeNameString type in the byte
stream.

 unix_credsW
 GETUNIXCREDSFROMNTUSERNAMEW_PROC(
 windows_accountW WindowsUserAccountName
);

WindowsUserAccountName: A Windows account to use for the account name as the search criterion.

Return Value: A unix_credsW record that contains the mapped UNIX user account details for the
specified Windows account name. Whenever the lookup request for a specified Windows account
fails to find a corresponding UNIX account map, the User Name Mapping Protocol server MUST
return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also
return a zero-length string in the UnixAccountName member of the returned structure.

31 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.5.15 AUTHUSINGUNIXCREDSW_PROC (PROC 14)

This procedure is the wide character counterpart to AUTHUSINGUNIXCREDS_PROC. The request and
response packets are identical to AUTHUSINGUNIXCREDS_PROC, except that the

MapSvrMBCSNameString data type is replaced with a MapSvrUnicodeNameString type in the byte
stream.

 unix_authW
 AUTHUSINGUNIXCREDSW_PROC(
 unix_user_authW UnixUserAuth
);

UnixUserAuth: A UNIX user name and password to use as the search criteria.<7>

Return Value: A unix_authW record that contains the mapped UNIX user account details for the
specified UNIX account. Whenever the lookup request for a specified UNIX account fails to find a
corresponding UNIX account map, the User Name Mapping Protocol server MUST return a

SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero-
length string in the UnixAccountPassword member of the returned structure.

2.2.5.16 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC (PROC 15)

This procedure is the wide character counterpart to

GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC. The request and response packets are identical
to GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC, except that the MapSvrMBCSNameString data
type is replaced with a MapSvrUnicodeNameString type in the byte stream.

 windows_credsW
 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC(
 unix_accountW UnixGroupAccount
);

UnixGroupAccount: A UNIX group to search for, using the account name and/or GID as the search
criteria, as specified by the value for SearchOption.

Return Value: A windows_credsW record that contains the mapped Windows group account details

for the specified UNIX group. Whenever the lookup request for a specified UNIX account succeeds
or fails to find a corresponding Windows account map, the User Name Mapping Protocol server
MUST return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The actual
success or failure of the request MUST be set in the Status member of the returned structure.
Status is a Boolean value, with 0 indicating a successful lookup request and 1 indicating a failed
lookup request.

2.2.5.17 GETUNIXCREDSFROMNTGROUPNAMEW_PROC (PROC 16)

This procedure is the wide character counterpart to GETUNIXCREDSFROMNTGROUPNAME_PROC.
The request and response packets are identical to GETUNIXCREDSFROMNTGROUPNAME_PROC, except

that the MapSvrMBCSNameString data type is replaced with a MapSvrUnicodeNameString type in the

byte stream.

 unix_credsW
 GETUNIXCREDSFROMNTGROUPNAMEW_PROC(
 windows_accountW WindowsGroupAccountName
);

WindowsGroupAccountName: A Windows group to use as the account name in the search criteria.

32 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Value: A unix_credsW record that contains the mapped UNIX group account details for the
specified Windows account name. Whenever the lookup request for a specified Windows account

fails to find a corresponding UNIX account map, the User Name Mapping Protocol server MUST
return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also

return a zero-length string in the UnixAccountName member of the returned structure.

2.2.5.18 GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC 17)

This procedure is the wide character counterpart to GETUNIXCREDSFROMNTUSERSID_PROC. The

request and response packets are identical to GETUNIXCREDSFROMNTUSERSID_PROC, except that
the MapSvrMBCSNameString data type is replaced with a MapSvrUnicodeNameString type in the byte
stream.

 unix_credsW
 GETUNIXCREDSFROMNTUSERSIDW_PROC(
 sid SID
);

SID: A Windows SID to use as the search criteria.

Return Value: A unix_credsW record that contains the mapped UNIX account details for the
specified Windows SID. Whenever the lookup request for a specified Windows SID fails to find a
corresponding UNIX account map, the User Name Mapping Protocol server MUST return a

SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero-
length string in the UnixAccountName member of the returned structure.

33 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3 Protocol Details

With the exception of the DUMPALLMAPSXXX_PROC procedures, requests sent by the User Name
Mapping Protocol client generate a single response from the User Name Mapping Protocol server.
There is no predetermined sequencing.

The DUMPALLMAPSXXX_PROC procedures are used to enumerate some or all of the mapping records
held by the User Name Mapping Protocol server. All the DUMPALLMAPSXXX_PROC procedures follow

the same sequencing rules, as defined in the following sections. The sequence can be restricted to a
single request-response pair, or it can extend over many request-response pairs, depending on the
number of maps available on the User Name Mapping Protocol server and the requirements of the
User Name Mapping Protocol client.

Each enumeration sequence is independent of other individual requests or enumeration sequences
between the User Name Mapping Protocol client and server. Therefore, multiple enumerations (from

the same or different clients) for user map and group map can proceed in parallel without any
interference.

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model, as long as their external behavior is consistent with that described in this

document.

Clients of the User Name Mapping Protocol can maintain copies of user mappings (and group
mappings) enumerated from the server. Clients can use the DUMPALLMAPSXXX_PROC procedures
to enumerate all individual maps from the server. The server treats account mappings as an
unordered array of mapping records of total count equal to TotalMappingRecordCount, as explained

in sections 2.2.3.1 and 2.2.3.3. The index of records begins at zero, and MappingRecordCount

indicates the number of map records returned by the server in the current RPC response packet.

Clients can cache CurrentVersionTokenHighPart and CurrentVersionTokenLowPart values
returned by the DUMPALLMAPSXXX_PROC response to implement cache consistency. Cache
consistency is implemented on clients by periodically polling the server's
GETCURRENTVERSIONTOKEN_PROC procedure to know when to refresh their locally cached copies of
mappings.

As an alternative to the enumeration request (DUMPALLMAPSXXX_PROC), the clients can cache the

results of individual account lookup requests and use GETCURRENTVERSIONTOKEN_PROC to know
when to refresh their locally cached copies of mappings.

Clients of the User Name Mapping Protocol are at liberty to implement caching and persistence in any
way they please. The User Name Mapping Protocol server functions as a read-only lookup service of
account mappings.

The following figure shows the data model for a client of the User Name Mapping Protocol.

34 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 1: User Name Mapping Protocol data model: Client

There are three elements in the model: MapCache, MapRecord, and CurrentVersionToken.

MapCache: The MapCache element models the information that the client has collected from the
server by enumerating maps using the DUMPALLMAPSXXX_PROC. The MapCache element contains
a list (or array) of MapRecord elements, each of which describes the mapping between a Windows
and a UNIX account.

MapRecord: The MapRecord element models the information for a single Windows-to-UNIX user

account mapping or group account mapping. It contains the UNIX account name and UID, a GID,
and the supplementary GID details that correspond to a Windows account name and domain.

CurrentVersionToken: This element models the version of the cache as a whole. This element is
guaranteed by the server to be different for different versions of the MapCache. Clients can use
this element to implement cache consistency with respect to the server by periodically polling this
token by using the GETCURRENTVERSIONTOKEN_PROC procedure.

3.1.2 Timers

There are no timers in the User Name Mapping Protocol beyond those used by SUNRPC.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

The User Name Mapping Protocol allows a User Name Mapping Protocol client to retrieve a complete

set of account mappings from the server and to maintain a copy of these mappings in a local cache.

The client uses a combination of the DUMPALLMAPSXXX_PROC and
GETCURRENTVERSIONTOKEN_PROC procedure calls to retrieve the account mappings and to check for
updates to the account mappings in the server, respectively. The DUMPALLMAPSXXX_PROC procedure
that is chosen is determined by the type of information that the User Name Mapping Protocol client
chooses to cache.

All procedures other than DUMPALLMAPSXXX_PROC are self-contained in that they do not require any

other procedures to be sequenced in order to complete successfully. The User Name Mapping Protocol
client does not need to maintain any state to implement sequencing across procedure calls.

35 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

For all procedures, the processing rules for a server-returned response packet are specified in
[RFC1057] section 8. The client MUST interpret server procedure response status of MSG_ACCEPTED

or MSG_DENIED according to those rules.

3.1.5.1 Making the Initial Account Mapping Request to the Server

The sequence begins when a User Name Mapping Protocol client sends a DUMPALLMAPSXXX_PROC
procedure request to the server, with the MapRecordIndex field equal to 0 to indicate the start of a
new enumeration sequence and the PrincipalType field equal to the record type to be returned.

3.1.5.2 Processing the Account Mapping Response from the Server

If the DUMPALLMAPSXXX_PROC response from the server indicates success and the returned value
of MappingRecordCount is less than the returned value of TotalMappingRecordCount, the client
proceeds to section 3.1.5.3; the enumeration of account mappings returned from the server is

incomplete and there are more records to retrieve.

Otherwise, the enumeration returned is complete if the response indicates success. The client MAY
send another DUMPALLMAPSXXX_PROC request to the server if the response indicates failure.

3.1.5.3 Making Further Account Mapping Requests to the Server

The User Name Mapping Protocol client continues to make further DUMPALLMAPSXXX_PROC
requests, each time increasing the value of MapRecordIndex to the total number of map records
returned by the server so far for this enumeration. For example, if the first reply returned 15 records,
and the second reply returned 12 records, the third request in the sequence sets the
MapRecordIndex to 27 (15 + 12). The User Name Mapping Protocol client continues to make
requests until there are no more account mappings to retrieve from the server. This is indicated by a

DUMPALLMAPSXXX_PROC reply that contains zero records (MappingRecordCount is 0), or if the
next DUMPALLMAPSXXX_PROC request would set MapRecordIndex to TotalMappingRecordCount.
TotalMappingRecordCount is returned in the server DUMPALLMAPSXXX_PROC response.

If at any point the values of CurrentVersionTokenHighPart, CurrentVersionTokenLowPart, or
TotalMappingRecordCount returned by the server in the DUMPALLMAPSXXX_PROC response change
from the initial values returned when MapRecordIndex was set to 0 in the DUMPALLMAPSXXX_PROC
request, the current enumeration MUST be abandoned and restarted with a new

DUMPALLMAPSXXX_PROC request (MapRecordIndex equal to 0).

3.1.5.4 Polling for Cache Consistency

The User Name Mapping Protocol client uses GETCURRENTVERSIONTOKEN_PROC to periodically check
the server for cache consistency. Whenever any of the user or group account mappings on the server

change, the tokens returned in the response to GETCURRENTVERSIONTOKEN_PROC are different, at
which point the client MUST discard its cached copy of all the mappings in their entirety and
enumerate the new set of mappings from the server.

If CurrentVersionTokenHighPart and CurrentVersionTokenLowPart in the

GETCURRENTVERSIONTOKEN_PROC reply are the same as those from the previous enumeration,
there have been no changes to any map records, and any cache of map records being maintained by

the User Name Mapping Protocol client is still valid. If either CurrentVersionTokenHighPart or
CurrentVersionTokenLowPart in the GETCURRENTVERSIONTOKEN_PROC reply differs from those
returned by the previous enumeration, the mapping records have been updated, and the User Name
Mapping Protocol client MUST consider the local cached copies of the mapping records as out of date
and MUST repeat the enumeration to get the updated set of mapping records.

https://go.microsoft.com/fwlink/?LinkId=90265

36 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.6 Timer Events

None.

3.1.7 Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model, as long as their external behavior is consistent with that described in this

document.

The User Name Mapping Protocol server maintains a database of account mappings and provides
procedures for enumeration of these account mappings. The server maintains a unique 64-bit
sequence number that is initialized at server startup and changed whenever the database of maps is

updated.

The User Name Mapping Protocol server returns the 64-bit sequence number to the clients to allow
them to implement a polling-based cache consistency scheme that times out locally cached copies of
account mappings on the client.

The following figure shows the data model for the User Name Mapping Protocol server.

Figure 2: User Name Mapping Protocol data model: Server

There are three elements in the model: MapDatabase, MapRecord, and CurrentVersionToken.

MapDatabase: The MapDatabase element models a nonvolatile store of mapping information

between Windows and UNIX accounts. This element contains a set of MapRecord elements and a

CurrentVersionToken element.

MapRecord: The MapRecord element models the information for a single Windows-to-UNIX user
account mapping or group account mapping. It contains the UNIX account name and UID, a GID,
and the supplementary GID details that correspond to a Windows account name and domain.

CurrentVersionToken: This element models the version of the MapDatabase as a whole. This
element MUST be guaranteed by the server to be unique following each update to the
MapDatabase.

37 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Processing for All Procedures

The User Name Mapping Protocol server performs a simple lookup or enumeration service on behalf of
clients. As described in section 3.2.1, the server maintains a set of current mappings that it traverses
to answer queries by clients. For each lookup procedure from the client, the User Name Mapping

Protocol server queries the persistent data store of account mappings and returns details of the
located map, if found.

The SUNRPC response packet generated by the User Name Mapping Protocol server adheres to the
rules indicated in [RFC1057] section 8. Whenever a well-formed SUNRPC request is received, the body
of the response packet MUST have a status of MSG_ACCEPTED to indicate a successful receipt of the
packet.<8>

The server MUST return an error of SUNRPC PROG_MISMATCH whenever the client requests a
program version other than 1 or 2.

In all cases where the server fails to decode the lookup or enumeration procedure request arguments,
it MUST return a response error value of GARBAGE_ARGS.

In all cases where the lookup or enumeration request succeeds, the server MUST return a SUCCESS
status in the reply body and encode the procedure-specific return values according to the XDR rules
defined in [RFC4506].

3.2.5.2 Processing of DUMPALLMAPSXXX_PROC Request and

GETCURRENTVERSIONTOKEN_PROC Request

3.2.5.2.1 Processing the Initial Account Mapping Request from the Client

The User Name Mapping Protocol server replies to the DUMPALLMAPSXXX_PROC request with a
two-part version token (CurrentVersionTokenHighPart and CurrentVersionTokenLowPart), a
count of the number of maps in the reply (MappingRecordCount), the total number of maps
available on the server (TotalMappingRecordCount), and a list of MappingRecordCount mapping
records that begin at the MapRecordIndex index equal to 0. The number of account mapping

records returned by the server to the client is implementation specific.<9><10>

3.2.5.2.2 Processing Further Account Mapping Requests from the Client

The User Name Mapping Protocol server replies to the DUMPALLMAPSXXX_PROC request with the
next set of mapping records, starting with the map record at the MapRecordIndex index requested.
If the MapRecordIndex requested is out of bounds of the TotalMappingRecordCount number of
account mappings stored on the server, MappingRecordCount MUST be returned with a value of 0,

and no records are returned. The number of account mapping records returned by the server to the

https://go.microsoft.com/fwlink/?LinkId=90265
https://go.microsoft.com/fwlink/?LinkId=90478

38 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

client is implementation specific. For example, the server might limit the number of mappings
returned to the amount of data that can fit in a single SUNRPC packet of a chosen maximum

size.<11><12><13>

3.2.5.2.3 Processing the Client Account Mapping Cache Refresh

The User Name Mapping Protocol server replies with CurrentVersionTokenHighPart and
CurrentVersionTokenLowPart in the GETCURRENTVERSIONTOKEN_PROC reply set to an
implementation-specific value. If the account mappings have been changed since a client's previous
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC enumeration request, the values
returned to the client MUST be different from the values returned for the previous request to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. (The method used to track changes

in account mappings is implementation specific.) If the account mappings have not changed, the
values returned to the client MUST be the values returned for the previous request to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC.<14>

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

39 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4 Protocol Examples

Several examples of network traffic for common User Name Mapping Protocol SUNRPC procedures
are outlined in the following sections, giving an indication of normal traffic flow. The example network
traffic is illustrated with the aid of the following sample user and group mapping database at the
server. In this example, a sample User Name Mapping Protocol SUNRPC service has been configured
on the server to map users in the Windows domain "nfs-dom-1" to POSIX user and group

identifiers.

Advanced User Mappings

Windows user POSIX user UID GID

nfs-dom-1\administrator Root 0 0

nfs-dom-1\u1 u1 401 401

nfs-dom-1\u2 u2 402 401

nfs-dom-1\u3 u3 403 402

Advanced Group Mappings

Windows group POSIX group GID

nfs-dom-1\Domain Admins bin 1

nfs-dom-1\g1 g1 401

nfs-dom-1\g2 g3 402

Simple User Mappings

Windows user POSIX user UID GID

nfs-dom-1\spec spec 500 500

nfs-dom-1\u4 u4 404 402

nfs-dom-1\u5 u5 405 401

nfs-dom-1\u6 u6 406 402

Simple Group Mappings

Windows group POSIX group GID

nfs-dom-1\specgroup specgroup 500

nfs-dom-1\g4 g4 404

4.1 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the
Windows account mapping for POSIX user "root". The client asks for a match on the POSIX username
alone in the SearchOption of the procedure.

40 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 33455, Total IP Length = 88
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 68
 - Rpc: Call, Program = mapsvc, Procedure =
 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC
 TransactionID: 1221413202 (0x48CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETWINDOWSCREDSFROMUNIXUSERNAME_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETWINDOWSCREDSFROMUNIXUSERNAME_PROC Call
 - UnixUser:
 SearchOption: UnixAccountName is valid (0x1)
 Reserved: Send as 0x00000000
 ID: 0
 - UnixAccountName: 0x1
 - UNMName: root
 Length: 4
 Data: root

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with
the advanced map for POSIX user "root" to Windows user "nfs-dom-1\administrator", illustrated as
follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 62340, Total IP Length = 88
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 68
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1221413202 (0x48CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETWINDOWSCREDSFROMUNIXUSERNAME_PROC Reply
 - WindowsCreds:
 Status: 0
 Reserved: Send as 0x00000000
 - WindowsAccountName: 0x1
 - UNMWindowsName: nfs-dom-1\administrator
 Length: 23
 Data: nfs-dom-1\administrator
 Padding: Binary Large Object (1 Bytes)

4.2 GETUNIXCREDSFROMNTUSERNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service that requests the
POSIX account mapping for the Windows user "nfs-dom-1\administrator".

 Frame:

41 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 40198, Total IP Length = 96
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 76
 - Rpc: Call, Program = mapsvc, Procedure =
 GETUNIXCREDSFROMNTUSERNAME_PROC
 TransactionID: 1305299282 (0x4DCD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETUNIXCREDSFROMNTUSERNAME_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETUNIXCREDSFROMNTUSERNAME_PROC Call
 - WindowsUserAccountName:
 - WindowsAccountName: 0x1
 - UNMName: nfs-dom-1\administrator
 Length: 23
 Data: nfs-dom-1\administrator
 Padding: Binary Large Object (1 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with
the advanced map for Windows user "nfs-dom-1\administrator" to POSIX user "root" with UID 0 and
GID 0, illustrated as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 20813, Total IP Length = 76
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 56
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1305299282 (0x4DCD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETUNIXCREDSFROMNTUSERNAME_PROC Reply
 - UnixCreds:
 - UnixAccountName: 0x1
 - UNMName: root
 Length: 4
 Data: root
 ID: 0
 GidCount: 2
 - GID:
 GID: 1
 GID: 1

4.3 AUTHUSINGUNIXCREDS_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
account details for the POSIX user "root" with an empty password.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)

42 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 + Ipv4: Next Protocol = UDP, Packet ID = 41135, Total IP Length = 80
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 60
 - Rpc: Call, Program = mapsvc, Procedure = AUTHUSINGUNIXCREDS_PROC
 TransactionID: 1322076498 (0x4ECD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: AUTHUSINGUNIXCREDS_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: AUTHUSINGUNIXCREDS_PROC Call
 - UnixUserAuth:
 - UnixUserAccountName: 0x1
 - UNMName: root
 Length: 4
 Data: root
 - UnixUserAccountPassword: 0x1
 - UNMName:
 Length: 0
 Data:

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with
the mapped POSIX account details for the user "root", illustrated as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 25985, Total IP Length = 76
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 56
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1322076498 (0x4ECD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: AUTHUSINGUNIXCREDS_PROC Reply
 - UnixCreds:
 - UnixUserAccountPassword: 0x1
 - UNMName: x
 Length: 1
 Data: x
 Padding: Binary Large Object (3 Bytes)
 ID: 0
 GidCount: 2
 - GID:
 GID: 1
 GID: 1

4.4 DUMPALLMAPS_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service that requests an
enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

 Frame:

43 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 57181, Total IP Length = 76
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
 - Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPS_PROC
 TransactionID: 1238190418 (0x49CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: DUMPALLMAPS_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: DUMPALLMAPS_PROC Call
 - EnumCursor:
 PrincipalType: Enumerate user account mappings (0)
 MapRecordIndex: 0

The User Name Mapping Protocol service on the server responds with a listing of advanced and simple
user mappings in the database. The response packet includes a sequence number that indicates the
version for the current set of account mappings, a record count that indicates the number of mappings
returned as a part of the current packet payload, the total number of maps in the database of the

requested types, and finally, the individual maps themselves.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 45847, Total IP Length = 308
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 288
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1238190418 (0x49CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: DUMPALLMAPS_PROC Reply
 - Mapping:
 - Token:
 CurrentVersionTokenLowPart: 19924186
 CurrentVersionTokenHighPart: 0
 MappingRecordCount: 8
 TotalMappingRecordCount: 8
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: nfs-dom-1\administrator
 Length: 23
 Data: nfs-dom-1\administrator
 Padding: Binary Large Object (1 Bytes)
 - UnixAccountName: 0x1
 - UNMName: root
 Length: 4
 Data: root
 ID: 0
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: NFS-DOM-1\u1
 Length: 12
 Data: NFS-DOM-1\u1
 - UnixAccountName: 0x1

44 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 - UNMName: u1
 Length: 2
 Data: u1
 Padding: Binary Large Object (2 Bytes)
 ID: 401
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: NFS-DOM-1\u2
 Length: 12
 Data: NFS-DOM-1\u2
 - UnixAccountName: 0x1
 - UNMName: u2
 Length: 2
 Data: u2
 Padding: Binary Large Object (2 Bytes)
 ID: 402
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: NFS-DOM-1\u3
 Length: 12
 Data: NFS-DOM-1\u3
 - UnixAccountName: 0x1
 - UNMName: u3
 Length: 2
 Data: u3
 Padding: Binary Large Object (2 Bytes)
 ID: 403
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: NFS-DOM-1\spec
 Length: 14
 Data: NFS-DOM-1\spec
 Padding: Binary Large Object (2 Bytes)
 - UnixAccountName: 0x1
 - UNMName: spec
 Length: 4
 Data: spec
 ID: 500
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: NFS-DOM-1\u4
 Length: 12
 Data: NFS-DOM-1\u4
 - UnixAccountName: 0x1
 - UNMName: u4
 Length: 2
 Data: u4
 Padding: Binary Large Object (2 Bytes)
 ID: 404
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: NFS-DOM-1\u5
 Length: 12
 Data: NFS-DOM-1\u5
 - UnixAccountName: 0x1
 - UNMName: u5
 Length: 2
 Data: u5
 Padding: Binary Large Object (2 Bytes)
 ID: 405
 - Map:
 - WindowsAccountName: 0x1
 - UNMName: NFS-DOM-1\u6
 Length: 12
 Data: NFS-DOM-1\u6
 - UnixAccountName: 0x1
 - UNMName: u6
 Length: 2
 Data: u6

45 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Padding: Binary Large Object (2 Bytes)
 ID: 406

4.5 GETCURRENTVERSIONTOKEN_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service that requests the
current account mapping sequence number for the set of mapping records held by the server.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 47908, Total IP Length = 76
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
 - Rpc: Call, Program = mapsvc, Procedure = GETCURRENTVERSIONTOKEN_PROC
 TransactionID: 1422739794 (0x54CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETCURRENTVERSIONTOKEN_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETCURRENTVERSIONTOKEN_PROC Call
 - SequenceNumber:
 CurrentVersionTokenLowPart: 11337900
 CurrentVersionTokenHighPart: 0

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with

the current sequence number value for the set of mapping records held by it, illustrated as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 38726, Total IP Length = 60
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 40
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1422739794 (0x54CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETCURRENTVERSIONTOKEN_PROC Reply
 - SequenceNumber:
 CurrentVersionTokenLowPart: 19924186
 CurrentVersionTokenHighPart: 0

4.6 DUMPALLMAPSEX_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting an
enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)

46 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 + Ipv4: Next Protocol = UDP, Packet ID = 48740, Total IP Length = 76
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
 - Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPSEX_PROC
 TransactionID: 1439517010 (0x55CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: DUMPALLMAPSEX_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: DUMPALLMAPSEX_PROC Call
 - EnumCursor:
 PrincipalType: Enumerate user account mappings
 MapRecordIndex: 0

The User Name Mapping Protocol service on the server responds with a listing of advanced and simple

user mappings in the database. The response packet includes a sequence number that indicates the
version for the current set of account mappings, a record count that indicates the number of mappings
returned as a part of the current packet payload, the total number of maps in the database of the
requested types, and finally, the individual maps themselves.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 42795, Total IP Length = 464
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 444
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1439517010 (0x55CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: DUMPALLMAPSEX_PROC Reply
 - Maps: Count = 8
 - Token:
 CurrentVersionTokenLowPart: 19924186
 CurrentVersionTokenHighPart: 0
 MappingRecordCount: 8
 TotalMappingRecordCount: 8
 - Map: 0x1
 - UNMMapString: *:nfs-dom-1\administrator:0:PCNFS:PCNFS:
 root:x:0:1:1
 Length: 52
 Data: *:nfs-dom-1\administrator:0:PCNFS:PCNFS:root:x:0:1:1
 - Map: 0x1
 - UNMMapString: *:NFS-DOM-1\u1:0:PCNFS:PCNFS:u1:x:401:401
 Length: 41
 Data: *:NFS-DOM-1\u1:0:PCNFS:PCNFS:u1:x:401:401
 Padding: Binary Large Object (3 Bytes)
 - Map: 0x1
 - UNMMapString: *:NFS-DOM-1\u2:0:PCNFS:PCNFS:u2:x:402:401
 Length: 41
 Data: *:NFS-DOM-1\u2:0:PCNFS:PCNFS:u2:x:402:401
 Padding: Binary Large Object (3 Bytes)
 - Map: 0x1
 - UNMMapString: *:NFS-DOM-1\u3:0:PCNFS:PCNFS:u3:x:403:402
 Length: 41

47 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Data: *:NFS-DOM-1\u3:0:PCNFS:PCNFS:u3:x:403:402
 Padding: Binary Large Object (3 Bytes)
 - Map: 0x1
 - UNMMapString: -:NFS-DOM-1\spec:0:PCNFS:PCNFS:spec:x:500:500
 Length: 45
 Data: -:NFS-DOM-1\spec:0:PCNFS:PCNFS:spec:x:500:500
 Padding: Binary Large Object (3 Bytes)
 - Map: 0x1
 - UNMMapString: -:NFS-DOM-1\u4:0:PCNFS:PCNFS:u4:x:404:402
 Length: 41
 Data: -:NFS-DOM-1\u4:0:PCNFS:PCNFS:u4:x:404:402
 Padding: Binary Large Object (3 Bytes)
 - Map: 0x1
 - UNMMapString: -:NFS-DOM-1\u5:0:PCNFS:PCNFS:u5:x:405:401
 Length: 41
 Data: -:NFS-DOM-1\u5:0:PCNFS:PCNFS:u5:x:405:401
 Padding: Binary Large Object (3 Bytes)
 - Map: 0x1
 - UNMMapString: -:NFS-DOM-1\u6:0:PCNFS:PCNFS:u6:x:406:402
 Length: 41
 Data: -:NFS-DOM-1\u6:0:PCNFS:PCNFS:u6:x:406:402
 Padding: Binary Large Object (3 Bytes)

4.7 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the
Windows group mapping for POSIX group "bin".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 53170, Total IP Length = 88
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 68
 - Rpc: Call, Program = mapsvc, Procedure =
 GETNTCREDSFROMUNIXGROUPNAME_PROC
 TransactionID: 1473071442 (0x57CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETNTCREDSFROMUNIXGROUPNAME_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETNTCREDSFROMUNIXGROUPNAME_PROC Call
 - UnixGroupAccount:
 SearchOption: UnixAccountName and ID are both valid
 Reserved: Send as 0x00000000
 ID: 1
 - UnixAccountName: 0x1
 - UNMName: bin
 Length: 3
 Data: bin
 Padding: Binary Large Object (1 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with

the group map for POSIX group "bin" to Windows group "nfs-dom-1\Domain Admins", illustrated as
follows.

 Frame:

48 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 49784, Total IP Length = 88
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 68
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1473071442 (0x57CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETNTCREDSFROMUNIXGROUPNAME_PROC Reply
 - WindowsCreds:
 Status: 0
 Reserved: Send as 0x00000000
 - WindowsAccountName: 0x1
 - UNMWindowsName: NFS-DOM-1\Domain Admins
 Length: 23
 Data: NFS-DOM-1\Domain Admins
 Padding: Binary Large Object (1 Bytes)

4.8 GETUNIXCREDSFROMNTGROUPNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
group mapping for the Windows group "nfs-dom-1\g1".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 54821, Total IP Length = 84
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 64
 - Rpc: Call, Program = mapsvc, Procedure =
 GETUNIXCREDSFROMNTGROUPNAME_PROC
 TransactionID: 1489848658 (0x58CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETUNIXCREDSFROMNTGROUPNAME_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETUNIXCREDSFROMNTGROUPNAME_PROC Call
 - WindowsGroupAccountName:
 - WindowsAccountName: 0x1
 - UNMName: nfs-dom-1\g1
 Length: 12
 Data: nfs-dom-1\g1

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with

the group map for Windows group "nfs-dom-1\g1" to the POSIX group "g1", illustrated as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 50256, Total IP Length = 68
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 48
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1489848658 (0x58CD4952)

49 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETUNIXCREDSFROMNTGROUPNAME_PROC Reply
 - UnixCreds:
 - UnixAccountName: 0x1
 - UNMName: g1
 Length: 2
 Data: g1
 Padding: Binary Large Object (2 Bytes)
 ID: 401
 GidCount: 0

4.9 GETUNIXCREDSFROMNTUSERSID_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX

credentials for the Windows user SID "S-1-5-21-3994172400-2625080034-4079281819-500" that
represents Windows user account "nfs-dom-1\administrator".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 51864, Total IP Length = 100
 + Udp: SrcPort = 1013, DstPort = UNM(819), Length = 80
 - Rpc: Call, Program = mapsvc, Procedure =
 GETUNIXCREDSFROMNTUSERSID_PROC
 TransactionID: 1238234037 (0x49CDF3B5)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETUNIXCREDSFROMNTUSERSID_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETUNIXCREDSFROMNTUSERSID_PROC Call
 - Sid:
 Sidlength: 28
 SID: 01 05 00 00 00 00 00 05 15 00 00 00 F0 3B 12 EE
 E2 8A 77 9C 9B E6 24 F3 F4 01 00 00

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with

the POSIX credentials for the mapped UNIX account that corresponds to Windows user "nfs-dom-
1\Administrator" as POSIX user "root", illustrated as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 14698, Total IP Length = 76
 + Udp: SrcPort = UNM(819), DstPort = 1013, Length = 56
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1238234037 (0x49CDF3B5)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:

50 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETUNIXCREDSFROMNTUSERSID_PROC Reply
 - UnixCreds:
 - UnixAccountName: 0x1
 - UNMName: root
 Length: 4
 Data: root
 ID: 0
 GidCount: 2
 - GID:
 GID: 1
 GID: 1

4.10 DUMPALLMAPSW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting an

enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 59252, Total IP Length = 76
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
 - Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPSW_PROC
 TransactionID: 1590511954 (0x5ECD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: DUMPALLMAPSW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: DUMPALLMAPSW_PROC Call
 - EnumCursor:
 PrincipalType: Enumerate user account mappings
 MapRecordIndex: 0

The User Name Mapping Protocol service on the server responds with a listing of advanced and simple
user mappings in the database. The response packet includes a sequence number that indicates the
version for the current set of account mappings, a record count that indicates the number of mappings

returned as a part of the current packet payload, the total number of maps in the database of the
requested types, and finally, the individual maps themselves.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 55477, Total IP Length = 424
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 404
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1590511954 (0x5ECD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)

51 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 AcceptState: Call succeeded
 - Unm: DUMPALLMAPSW_PROC Reply
 - MappingW:
 - Token:
 CurrentVersionTokenLowPart: 19924186
 CurrentVersionTokenHighPart: 0
 MappingRecordCount: 8
 TotalMappingRecordCount: 8
 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: nfs-dom-1\administrator
 Length: 46
 Data: nfs-dom-1\administrator
 Padding: Binary Large Object (2 Bytes)
 - UnixAccountName: 0x1
 - UNMNameW: root
 Length: 8
 Data: root
 ID: 0
 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: NFS-DOM-1\u1
 Length: 24
 Data: NFS-DOM-1\u1
 - UnixAccountName: 0x1
 - UNMNameW: u1
 Length: 4
 Data: u1
 ID: 401
 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: NFS-DOM-1\u2
 Length: 24
 Data: NFS-DOM-1\u2
 - UnixAccountName: 0x1
 - UNMNameW: u2
 Length: 4
 Data: u2
 ID: 402
 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: NFS-DOM-1\u3
 Length: 24
 Data: NFS-DOM-1\u3
 - UnixAccountName: 0x1
 - UNMNameW: u3
 Length: 4
 Data: u3
 ID: 403
 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: NFS-DOM-1\spec
 Length: 28
 Data: NFS-DOM-1\spec
 - UnixAccountName: 0x1
 - UNMNameW: spec
 Length: 8
 Data: spec
 ID: 500
 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: NFS-DOM-1\u4
 Length: 24
 Data: NFS-DOM-1\u4
 - UnixAccountName: 0x1
 - UNMNameW: u4
 Length: 4
 Data: u4
 ID: 404

52 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: NFS-DOM-1\u5
 Length: 24
 Data: NFS-DOM-1\u5
 - UnixAccountName: 0x1
 - UNMNameW: u5
 Length: 4
 Data: u5
 ID: 405
 - Map:
 - WindowsAccountName: 0x1
 - UNMNameW: NFS-DOM-1\u6
 Length: 24
 Data: NFS-DOM-1\u6
 - UnixAccountName: 0x1
 - UNMNameW: u6
 Length: 4
 Data: u6
 ID: 406

4.11 DUMPALLMAPSEXW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting an
enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 60653, Total IP Length = 76
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
 - Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPSEXW_PROC
 TransactionID: 1607289170 (0x5FCD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: DUMPALLMAPSEXW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: DUMPALLMAPSEXW_PROC Call
 - EnumCursor:
 PrincipalType: Enumerate user account mappings
 MapRecordIndex: 0

The User Name Mapping Protocol service on the server responds with a listing of advanced and simple
user mappings in the database. The response packet includes a sequence number that indicates the
version for the current set of account mappings, a record count that indicates the number of mappings
returned as a part of the current packet payload, the total number of maps in the database of the

requested types, and finally, the individual maps themselves.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 56145, Total IP Length = 800
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 780
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1607289170 (0x5FCD4952)
 MessageType: Reply
 - ServiceReply:

53 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: DUMPALLMAPSEXW_PROC Reply
 - MapsW:
 - Token:
 CurrentVersionTokenLowPart: 19924186
 CurrentVersionTokenHighPart: 0
 MappingRecordCount: 8
 TotalMappingRecordCount: 8
 - Map: 0x1
 - UNMMapStringW: *:nfs-dom-1\administrator:0:PCNFS:PCNFS:
 root:x:0:1:1
 Length: 104
 Data: *:nfs-dom-1\administrator:0:PCNFS:PCNFS:root:x:0:1:1
 - Map: 0x1
 - UNMMapStringW: *:NFS-DOM-1\u1:0:PCNFS:PCNFS:u1:x:401:401
 Length: 82
 Data: *:NFS-DOM-1\u1:0:PCNFS:PCNFS:u1:x:401:401
 Padding: Binary Large Object (2 Bytes)
 - Map: 0x1
 - UNMMapStringW: *:NFS-DOM-1\u2:0:PCNFS:PCNFS:u2:x:402:401
 Length: 82
 Data: *:NFS-DOM-1\u2:0:PCNFS:PCNFS:u2:x:402:401
 Padding: Binary Large Object (2 Bytes)
 - Map: 0x1
 - UNMMapStringW: *:NFS-DOM-1\u3:0:PCNFS:PCNFS:u3:x:403:402
 Length: 82
 Data: *:NFS-DOM-1\u3:0:PCNFS:PCNFS:u3:x:403:402
 Padding: Binary Large Object (2 Bytes)
 - Map: 0x1
 - UNMMapStringW: -:NFS-DOM-1\spec:0:PCNFS:PCNFS:spec:x:500:500
 Length: 90
 Data: -:NFS-DOM-1\spec:0:PCNFS:PCNFS:spec:x:500:500
 Padding: Binary Large Object (2 Bytes)
 - Map: 0x1
 - UNMMapStringW: -:NFS-DOM-1\u4:0:PCNFS:PCNFS:u4:x:404:402
 Length: 82
 Data: -:NFS-DOM-1\u4:0:PCNFS:PCNFS:u4:x:404:402
 Padding: Binary Large Object (2 Bytes)
 - Map: 0x1
 - UNMMapStringW: -:NFS-DOM-1\u5:0:PCNFS:PCNFS:u5:x:405:401
 Length: 82
 Data: -:NFS-DOM-1\u5:0:PCNFS:PCNFS:u5:x:405:401
 Padding: Binary Large Object (2 Bytes)
 - Map: 0x1
 - UNMMapStringW: -:NFS-DOM-1\u6:0:PCNFS:PCNFS:u6:x:406:402
 Length: 82
 Data: -:NFS-DOM-1\u6:0:PCNFS:PCNFS:u6:x:406:402
 Padding: Binary Large Object (2 Bytes)

4.12 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the
Windows user mapping for POSIX user "root".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 61716, Total IP Length = 92
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 72
 - Rpc: Call, Program = mapsvc, Procedure =
 GETNTCREDSFROMUNIXUSERNAMEW_PROC
 TransactionID: 1624066386 (0x60CD4952)

54 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETNTCREDSFROMUNIXUSERNAMEW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETNTCREDSFROMUNIXUSERNAMEW_PROC Call
 - UnixUserW:
 SearchOption: UnixAccountName and ID are both valid
 Reserved: Send as 0x00000000
 ID: 0
 - UnixAccountName: 0x1
 - UNMNameW: root
 Length: 8
 Data: root

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with
the user map for POSIX user "root" to Windows user "nfs-dom-1\Administrator", illustrated as
follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 60521, Total IP Length = 112
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 92
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1624066386 (0x60CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETNTCREDSFROMUNIXUSERNAMEW_PROC Reply
 - WindowsCredsW:
 Status: 0
 Reserved: Send as 0x00000000
 - WindowsAccountName: 0x1
 - UNMWindowsNameW: nfs-dom-1\administrator
 Length: 46
 Data: nfs-dom-1\administrator
 Padding: Binary Large Object (2 Bytes)

4.13 GETUNIXCREDSFROMNTUSERNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX

user mapping for the Windows user "nfs-dom-1\Administrator".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 62611, Total IP Length = 120
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 100
 - Rpc: Call, Program = mapsvc, Procedure =
 GETUNIXCREDSFROMNTUSERNAMEW_PROC
 TransactionID: 1640843602 (0x61CD4952)
 MessageType: Call

55 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETUNIXCREDSFROMNTUSERNAMEW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETUNIXCREDSFROMNTUSERNAMEW_PROC Call
 - WindowsUserAccountNameW:
 - WindowsAccountName: 0x1
 - UNMNameW: nfs-dom-1\administrator
 Length: 46
 Data: nfs-dom-1\administrator
 Padding: Binary Large Object (2 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with

the user map for Windows user "nfs-dom-1\Administrator" to the POSIX user "root", illustrated as
follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 63086, Total IP Length = 80
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 60
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1640843602 (0x61CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETUNIXCREDSFROMNTUSERNAMEW_PROC Reply
 - UnixCredsW:
 - UnixAccountName: 0x1
 - UNMNameW: root
 Length: 8
 Data: root
 ID: 0
 GidCount: 2
 - GID:
 GID: 1
 GID: 1

4.14 AUTHUSINGUNIXCREDSW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX

account details for the POSIX user "root" with an empty password.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 64478, Total IP Length = 84
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 64
 - Rpc: Call, Program = mapsvc, Procedure = AUTHUSINGUNIXCREDSW_PROC
 TransactionID: 1724729682 (0x66CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)

56 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: AUTHUSINGUNIXCREDSW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: AUTHUSINGUNIXCREDSW_PROC Call
 - UnixUserAuthW:
 - UnixUserAccountName: 0x1
 - UNMNameW: root
 Length: 8
 Data: root
 - UnixUserAccountPassword: 0x1
 - UNMNameW:
 Length: 0
 Data:

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with
the mapped POSIX account details for the user "root", illustrated as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 5741, Total IP Length = 76
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 56
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1724729682 (0x66CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: AUTHUSINGUNIXCREDSW_PROC Reply
 - UnixCredsW:
 - UnixAccountPassword: 0x1
 - UNMNameW: x
 Length: 2
 Data: x
 Padding: Binary Large Object (2 Bytes)
 ID: 0
 GidCount: 2
 - GID:
 GID: 1
 GID: 1

4.15 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the

Windows group mapping for POSIX group "g1".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 65220, Total IP Length = 88
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 68
 - Rpc: Call, Program = mapsvc, Procedure =
 GETNTCREDSFROMUNIXGROUPNAMEW_PROC
 TransactionID: 1741506898 (0x67CD4952)
 MessageType: Call

57 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETNTCREDSFROMUNIXGROUPNAMEW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETNTCREDSFROMUNIXGROUPNAMEW_PROC Call
 - UnixGroupAccountW:
 SearchOption: UnixAccountName and ID are both valid
 Reserved: Send as 0x00000000
 ID: 401
 - UnixAccountName: 0x1
 - UNMNameW: g1
 Length: 4
 Data: g1

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with

the group map for POSIX group "bin" to Windows group "nfs-dom-1\Domain Admins", illustrated as
follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 8813, Total IP Length = 88
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 68
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1741506898 (0x67CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETNTCREDSFROMUNIXGROUPNAMEW_PROC Reply
 - WindowsCredsW:
 Status: 0
 Reserved: Send as 0x00000000
 - WindowsAccountName: 0x1
 - UNMWindowsNameW: NFS-DOM-1\g1
 Length: 24
 Data: NFS-DOM-1\g1

4.16 GETUNIXCREDSFROMNTGROUPNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
group mapping for the Windows group "nfs-dom-1\Domain Admins".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 2126, Total IP Length = 120
 + Udp: SrcPort = 965, DstPort = UNM(819), Length = 100
 - Rpc: Call, Program = mapsvc, Procedure =
 GETUNIXCREDSFROMNTGROUPNAMEW_PROC
 TransactionID: 1758284114 (0x68CD4952)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)

58 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)
 ProcedureNumber: GETUNIXCREDSFROMNTGROUPNAMEW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Call
 - WindowsGroupAccountNameW:
 - WindowsAccountName: 0x1
 - UNMNameW: nfs-dom-1\Domain Admins
 Length: 46
 Data: nfs-dom-1\Domain Admins
 Padding: Binary Large Object (2 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with
the group map for Windows group "nfs-dom-1\Domain Adminis" to the POSIX group "bin", illustrated

as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 14900, Total IP Length = 72
 + Udp: SrcPort = UNM(819), DstPort = 965, Length = 52
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1758284114 (0x68CD4952)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Reply
 - UnixCredsW:
 - UnixAccountName: 0x1
 - UNMNameW: bin
 Length: 6
 Data: bin
 Padding: Binary Large Object (2 Bytes)
 ID: 1
 GidCount: 0

4.17 GETUNIXCREDSFROMNTUSERSIDW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX

credentials for the Windows user SID "S-1-5-21-3994172400-2625080034-4079281819-500"
representing Windows user account "nfs-dom-1\administrator".

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 50594, Total IP Length = 100
 + Udp: SrcPort = 1013, DstPort = UNM(819), Length = 80
 - Rpc: Call, Program = mapsvc, Procedure =
 GETUNIXCREDSFROMNTUSERSIDW_PROC
 TransactionID: 1221456821 (0x48CDF3B5)
 MessageType: Call
 - ServiceCall:
 RPCVersionNumber: 2 (0x2)
 ProgramNumber: mapsvc, 351455(0x00055CDF)
 ProgramVersion: 2 (0x2)

59 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 ProcedureNumber: GETUNIXCREDSFROMNTUSERSIDW_PROC
 - Credential: No Identity Authentication
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 - Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Call
 - WindowsUserAccountNameW:
 - WindowsAccountName: 0x1
 - UNMNameW:
 Length: 28
 Data: 01 05 00 00 00 00 00 05 15 00 00 00 F0 3B 12 EE
 E2 8A 77 9C 9B E6 24 F3 F4 01 00 00

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet with
the POSIX credentials for the mapped UNIX account corresponding to Windows user "nfs-dom-

1\Administrator" as POSIX user "root", illustrated as follows.

 Frame:
 + Ethernet: Etype = Internet IP (IPv4)
 + Ipv4: Next Protocol = UDP, Packet ID = 13116, Total IP Length = 80
 + Udp: SrcPort = UNM(819), DstPort = 1013, Length = 60
 - Rpc: Reply, Status = Message accepted, Detail = Call succeeded
 TransactionID: 1221456821 (0x48CDF3B5)
 MessageType: Reply
 - ServiceReply:
 ReplyStatus: Message accepted
 - MessageAccepted:
 - Verification:
 Flavor: No Identity Authentication
 AuthDataLength: 0 (0x0)
 AcceptState: Call succeeded
 - Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Reply
 - UnixCredsW:
 - UnixAccountName: 0x1
 - UNMNameW: root
 Length: 8
 Data: root
 ID: 0
 GidCount: 2
 - GID:
 GID: 1
 GID: 1

60 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5 Security

The User Name Mapping Protocol accepts requests with SUNRPC authentication level AUTH_NULL.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

61 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

6 Appendix A: Full SunRPC IDL

This IDL section excludes the following procedures, which need to be coded separately because the
IDL is unable to describe the returned data types. Sample code for the required structure definitions
and encode/decode routines can be found in section 7.

Version 1

 DUMPALLMAPS_PROC (procedure 4)

 DUMPALLMAPSEX_PROC (procedure 6)

Version 2

 DUMPALLMAPS_PROC (procedure 4)

 DUMPALLMAPSEX_PROC (procedure 6)

 DUMPALLMAPSW_PROC (procedure 10)

 DUMPALLMAPSEXW_PROC (procedure 11)

 const MAXNAMELEN = 128;
 const MAXNAMELENx2 = 256;
 const MAXLINELEN = 256;
 const MAXLINELENx2 = 512;
 const MAXGIDS = 32;
 const MAXSIDLEN = 72;

 typedef opaque MapSvrMBCSNameString<MAXNAMELEN>;
 typedef opaque MapSvrUnicodeNameString<MAXNAMELENx2>;
 typedef opaque MapSvrMBCSWindowsNameString<MAXLINELEN>;
 typedef opaque MapSvrUnicodeWindowsNameString<MAXLINELENx2>;
 typedef opaque MapSvrMBCSMapString<MAXLINELEN>;
 typedef opaque MapSvrUnicodeMapString<MAXLINELENx2>;

 struct unix_account {
 long SearchOption;
 long Reserved;
 long ID;
 MapSvrMBCSNameString UnixAccountName;
 };

 struct unix_accountW {
 long SearchOption;
 long Reserved;
 long ID;
 MapSvrUnicodeNameString UnixAccountName;
 };

 struct unix_user_auth {
 MapSvrMBCSNameString UnixUserAccountName;
 MapSvrMBCSNameString UnixUserAccountPassword;
 };

 struct unix_user_authW {
 MapSvrUnicodeNameString UnixUserAccountName;
 MapSvrUnicodeNameString UnixUserAccountPassword;
 };

 struct windows_creds {
 long Status;
 long Reserved;
 MapSvrMBCSWindowsNameString WindowsAccountName;
 };

62 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 struct windows_credsW {
 long Status;
 long Reserved;
 MapSvrUnicodeWindowsNameString WindowsAccountName;
 };

 struct windows_account {
 MapSvrMBCSNameString WindowsAccountName;
 };

 struct windows_accountW {
 MapSvrUnicodeNameString WindowsAccountName;
 };

 struct unix_auth {
 MapSvrMBCSNameString UnixAccountPassword;
 long ID;
 long GIDArray<MAXGIDS>;
 };

 struct unix_authW {
 MapSvrUnicodeNameString UnixAccountPassword;
 long ID;
 long GIDArray<MAXGIDS>;
 };

 struct unix_creds {
 MapSvrMBCSNameString UnixAccountName;
 long ID;
 long GIDArray<MAXGIDS>;
 };

 struct unix_credsW {
 MapSvrUnicodeNameString UnixAccountName;
 long ID;
 long GIDArray<MAXGIDS>;
 };

 struct dump_map_req {
 long PrincipalType;
 long MapRecordIndex;
 };

 struct sequence_number {
 long CurrentVersionTokenLowPart;
 long CurrentVersionTokenHighPart;
 };

 struct mapping_record {
 MapSvrMBCSNameString WindowsAccountName;
 MapSvrMBCSNameString UnixAccountName;
 long ID;
 };

 struct sid {
 char SID<MAXSIDLEN>;
 };

 struct mapping_recordW {
 MapSvrUnicodeNameString WindowsAccountName;
 MapSvrUnicodeNameString UnixAccountName;
 long ID;
 };

 program MAPPROG {
 version MAPVERS_V1 {
 void
 MAPPROC_NULL(void) = 0;

63 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 windows_creds
 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC(unix_account)= 1;

 unix_creds
 GETUNIXCREDSFROMNTUSERNAME_PROC(windows_account) = 2;

 unix_auth
 AUTHUSINGUNIXCREDS_PROC(unix_user_auth) = 3;

 sequence_number
 GETCURRENTVERSIONTOKEN_PROC(sequence_number) = 5;

 windows_creds
 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC(unix_account)= 7;

 unix_creds
 GETUNIXCREDSFROMNTGROUPNAME_PROC(windows_account) = 8;
 } = 1;
 } = 351455;

 program MAPPROG {
 version MAPVERS_V2 {

 void
 MAPPROC_NULL(void) = 0;

 windows_creds
 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC(unix_account)= 1;

 unix_creds
 GETUNIXCREDSFROMNTUSERNAME_PROC(windows_account) = 2;

 unix_auth
 AUTHUSINGUNIXCREDS_PROC(unix_user_auth) = 3;

 sequence_number
 GETCURRENTVERSIONTOKEN_PROC(sequence_number) = 5;

 windows_creds
 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC(unix_account)= 7;

 unix_creds
 GETUNIXCREDSFROMNTGROUPNAME_PROC(windows_account) = 8;

 unix_creds
 GETUNIXCREDSFROMNTUSERSID_PROC(sid) = 9;

 windows_credsW
 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC(unix_accountW)=12;

 unix_credsW
 GETUNIXCREDSFROMNTUSERNAMEW_PROC(windows_accountW)= 13;

 unix_authW
 AUTHUSINGUNIXCREDSW_PROC(unix_user_authW) = 14;

 windows_credsW
 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC(unix_accountW)= 15;

 unix_credsW
 GETUNIXCREDSFROMNTGROUPNAMEW_PROC(windows_accountW) = 16;

 unix_credsW
 GETUNIXCREDSFROMNTUSERSIDW_PROC(sid) = 17;
 } = 2;
 } = 351455;

64 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

65 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

7 Appendix B: Sample Code to Encode and Decode Non-XDR-

Compliant Data Types

Interpret the sample code in the following sections as being written in the C programming language.

7.1 Header File Content

 struct mapping {
 sequence_number Token;
 uint MappingRecordCount;
 uint TotalMappingRecordCount;
 mapping_record *MapArray;
 };
 typedef struct mapping mapping;

 struct maps {
 sequence_number Token;
 uint MappingRecordCount;
 uint TotalMappingRecordCount;
 MapSvrMBCSMapString *MapArray;
 };
 typedef struct maps maps;

 struct mappingW {
 sequence_number Token;
 uint MappingRecordCount;
 uint TotalMappingRecordCount;
 mapping_recordW *MapArray;
 };
 typedef struct mappingW mappingW;

 struct mapsW {
 sequence_number Token;
 uint MappingRecordCount;
 uint TotalMappingRecordCount;
 MapSvrUnicodeMapString *MapArray;
 };
 typedef struct mapsW mapsW;

 #define DUMPALLMAPS_PROC 4
 extern mapping * dumpallmaps_proc_1(dump_map_req *, CLIENT *);
 extern mapping * dumpallmaps_proc_1_svc(dump_map_req *,
 struct svc_req *);

 #define DUMPALLMAPSEX_PROC 6
 extern maps * dumpallmapsex_proc_1(dump_map_req *, CLIENT *);
 extern maps * dumpallmapsex_proc_1_svc(dump_map_req *,
 struct svc_req *);

 #define DUMPALLMAPS_PROC 4
 extern mapping * dumpallmaps_proc_2(dump_map_req *, CLIENT *);
 extern mapping * dumpallmaps_proc_2_svc(dump_map_req *,
 struct svc_req *);

 #define DUMPALLMAPSEX_PROC 6
 extern maps * dumpallmapsex_proc_2(dump_map_req *, CLIENT *);
 extern maps * dumpallmapsex_proc_2_svc(dump_map_req *,
 struct svc_req *);

 #define DUMPALLMAPSW_PROC 10
 extern mappingW * dumpallmapsw_proc_2(dump_map_req *, CLIENT *);
 extern mappingW * dumpallmapsw_proc_2_svc(dump_map_req *,
 struct svc_req *);

66 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 #define DUMPALLMAPSEXW_PROC 11
 extern mapsW * dumpallmapsexw_proc_2(dump_map_req *, CLIENT *);
 extern mapsW * dumpallmapsexw_proc_2_svc(dump_map_req *,
 struct svc_req *);

 extern bool_t xdr_mapping(XDR *, mapping*);
 extern bool_t xdr_maps(XDR *, maps*);
 extern bool_t xdr_mappingW(XDR *, mappingW*);
 extern bool_t xdr_mapsW(XDR *, mapsW*);

7.2 Encode/Decode Routines For Non-XDR Data Types Using XDR Primitives

 bool_t
 xdr_mapping(register XDR *xdrs, mapping *objp)
 {
 if (!xdr_sequence_number(xdrs, &objp->Token))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->MappingRecordCount))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->TotalMappingRecordCount))
 return (FALSE);

 objp->MapArray = (mapping_record *) malloc (
 objp->MappingRecordCount * sizeof (mapping_record));

 if (!objp->MapArray)
 return (FALSE);

 if (!xdr_vector(xdrs,
 (char *)objp->MapArray,
 objp->MappingRecordCount,
 sizeof (mapping_record),
 (xdrproc_t) xdr_mapping_record))
 return (TRUE);
 }

 bool_t
 xdr_maps(register XDR *xdrs, maps *objp)
 {
 if (!xdr_sequence_number(xdrs, &objp->Token))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->MappingRecordCount))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->TotalMappingRecordCount))
 return (FALSE);

 objp->MapArray = (MapSvrMBCSMapString *) malloc (
 objp->MappingRecordCount * sizeof (MapSvrMBCSMapString));

 if (!objp->MapArray)
 return (FALSE);

 if (!xdr_vector(xdrs,
 (char *)objp->MapArray,
 objp->MappingRecordCount,
 sizeof (MapSvrMBCSMapString),
 (xdrproc_t) xdr_MapSvrMBCSMapString))
 return (FALSE);

 return (TRUE);
 }

 bool_t
 xdr_mappingW(register XDR *xdrs, mappingW *objp)

67 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 {
 if (!xdr_sequence_number(xdrs, &objp->Token))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->MappingRecordCount))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->TotalMappingRecordCount))
 return (FALSE);

 objp->MapArray = (mapping_recordW *) malloc (
 objp->MappingRecordCount * sizeof (mapping_recordW));

 if (!objp->MapArray)
 return (FALSE);

 if (!xdr_vector(xdrs,
 (char *)objp->MapArray,
 objp->MappingRecordCount,
 sizeof (mapping_recordW),
 (xdrproc_t) xdr_mapping_recordW))
 return (FALSE);

 return (TRUE);
 }

 bool_t
 xdr_mapsW(register XDR *xdrs, mapsW *objp)
 {
 if (!xdr_sequence_number(xdrs, &objp->Token))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->MappingRecordCount))
 return (FALSE);
 if (!xdr_u_int(xdrs, &objp->TotalMappingRecordCount))
 return (FALSE);

 objp->MapArray = (MapSvrUnicodeMapString *) malloc (
 objp->MappingRecordCount * sizeof (MapSvrUnicodeMapString));

 if (!objp->MapArray)
 return (FALSE);

 if (!xdr_vector(xdrs,
 (char *)objp->MapArray,
 objp->MappingRecordCount,
 sizeof (MapSvrUnicodeMapString),
 (xdrproc_t) xdr_MapSvrUnicodeMapString))
 return (FALSE);

 return (TRUE);
 }

68 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

8 Appendix C: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows Server 2003 R2 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.4: The Windows implementation of the User Name Mapping Protocol server is used by
the "Client for NFS", "Server for NFS", and "Remote Shell Service" components of the "Services for
UNIX" product suite and Windows Server 2003 R2.

<2> Section 1.5: [NFSAUTH] describes how the Windows implementation of the User Name Mapping
Protocol is configured with appropriate Windows and UNIX account mappings.

<3> Section 1.6: Windows Server 2003 R2 is the only version of Windows with an implementation of
the User Name Mapping Protocol server.

<4> Section 2.2.2.6: Due to an error in the Windows Server 2003 R2 implementation of the User
Name Mapping Protocol server, for maps obtained from an NIS service, the value of the AuthType

field can unpredictably be set to '0' (AUTH_FILE) rather than the expected value of '1' (AUTH_NIS).
The other fields in the map are valid.

Note Windows Server 2003 R2 is the only version of Windows with an implementation of the User
Name Mapping Protocol server.

<5> Section 2.2.4: Although the only authentication mechanism defined by the User Name Mapping
Protocol is AUTH_NULL (as specified in [RFC1057] section 9.1), the Windows implementation of the
User Name Mapping Protocol server returns a SUNRPC status of MSG_DENIED with a reject status of

https://go.microsoft.com/fwlink/?LinkId=90231
https://go.microsoft.com/fwlink/?LinkId=90265

69 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

AUTH_ERROR, and an authentication status of AUTH_BADCRED, whenever the client IP address does
not match the list of trusted client addresses as configured by the administrator.

<6> Section 2.2.5.4: The Windows implementation of the User Name Mapping Protocol server uses
only the UNIX user name as search criteria; the password given as input is ignored.

<7> Section 2.2.5.15: The Windows implementation of the User Name Mapping Protocol server uses
only the UNIX user name as search criteria; the password given as input is ignored.

<8> Section 3.2.5.1: The Windows implementation of the User Name Mapping Protocol server returns
a SUNRPC status of MSG_DENIED with a reject status of AUTH_ERROR and a authentication status of
AUTH_BADCRED, whenever the client IP address does not match the list of trusted client addresses,
as configured by the administrator. This Windows-specific behavior is documented in [NFSAUTH].

<9> Section 3.2.5.2.1: The Windows implementation of the User Name Mapping Protocol server

returns a maximum of 200 mapping records in a SUNRPC packet response.

<10> Section 3.2.5.2.1: The Windows implementation of the User Name Mapping Protocol initializes
CurrentVersionTokenHighPart and CurrentVersionTokenLowPart to a locally unique identifier as

returned by the Win32 API AllocateLocallyUniqueId() on startup.

<11> Section 3.2.5.2.2: The Windows implementation of the User Name Mapping Protocol server
limits the number of mapping records returned by both DUMPALLMAPS_PROC and

DUMPALLMAPSW_PROC in a single SUNRPC packet response to a value set by the registry DWORD
value HKLM\System\CurrentControlSet\Services\MapSvc\CurrentVersion\WriteBlock. The
default value for this limit is 200. Any changes to this value require a restart of the Windows
implementation of the User Name Mapping Protocol server in order to become effective.

<12> Section 3.2.5.2.2: The Windows implementation of the User Name Mapping Protocol server
limits the size of a single SUNRPC response that uses the UDP transport to 8,800 bytes. There is no
such limit when using the TCP transport. For the DUMPALLMAPSXXXX_PROC procedures, if the

number of records to be returned in a single SUNRPC UDP response message cannot be contained in a
message of this size, then the Windows implementation of the User Name Mapping Protocol server
replies with a SUNRPC message status of MSG_ACCEPTED, with the ACCEPT status set to

SYSTEM_ERR.

<13> Section 3.2.5.2.2: The Windows implementation of the User Name Mapping Protocol server
ignores the value of MapRecordIndex in the DUMPALLMAPSEX_PROC and DUMPALLMAPSEXW_PROC
request, and the response always contains the maps enumerated from index 0. In the response, the

TotalMappingRecordCount value is set to the sum of the total number of map records held by the
server and the value of MapRecordIndex in the request.

<14> Section 3.2.5.2.3: The Windows implementation of the User Name Mapping Protocol server
changes the 64-bit integer sequence number to a random value every time the account mapping
database is updated. This value is unique only within the lifetime of the current server process—its
uniqueness can only be guaranteed within the span of a single server process. The server returns this

sequence number to the client as CurrentVersionTokenHighPart and
CurrentVersionTokenLowPart in the GETCURRENTVERSIONTOKEN_PROC response and the
DUMPALLMAPSXXX_PROC response.

70 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

9 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

8 Appendix C: Product Behavior Added Windows Server to the applicable products list. Major

mailto:dochelp@microsoft.com

71 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

10 Index

A

Abstract data model
 client 33
 server 36
Applicability 11
AUTHUSINGUNIXCREDS_PROC 41
AUTHUSINGUNIXCREDS_PROC (PROC 3) 26
AUTHUSINGUNIXCREDSW_PROC 55
AUTHUSINGUNIXCREDSW_PROC (PROC 14) 31

C

Capability negotiation 11
Change tracking 69
Client
 abstract data model 33
 higher-layer triggered events 34

 initialization 34
 local events 36
 message processing 34
 sequencing rules 34
 timer events 36
 timers 34
Common User Name Mapping Protocol Data Types 12
Common User Name Mapping Protocol Data Types

message 12

D

Data model - abstract
 client 33
 server 36
dump_map_req 20
DUMPALLMAPS_PROC 42
DUMPALLMAPS_PROC (PROC 4) 27
DUMPALLMAPSEX_PROC 45
DUMPALLMAPSEX_PROC (PROC 6) 28
DUMPALLMAPSEXW_PROC 52
DUMPALLMAPSEXW_PROC (PROC 11) 29
DUMPALLMAPSW_PROC 50
DUMPALLMAPSW_PROC (PROC 10) 29
DUMPALLMAPSXXX_PROC request 37

F

Fields - vendor-extensible 11
Full SunRPC IDL 61

G

GETCURRENTVERSIONTOKEN_PROC 45
GETCURRENTVERSIONTOKEN_PROC (PROC 5) 27
GETCURRENTVERSIONTOKEN_PROC request 37
GETUNIXCREDSFROMNTGROUPNAME_PROC 48
GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC

8) 28
GETUNIXCREDSFROMNTGROUPNAMEW_PROC 57
GETUNIXCREDSFROMNTGROUPNAMEW_PROC (PROC

16) 31
GETUNIXCREDSFROMNTUSERNAME_PROC 40

GETUNIXCREDSFROMNTUSERNAME_PROC (PROC 2)s
26

GETUNIXCREDSFROMNTUSERNAMEW_PROC 54
GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC

13) 30
GETUNIXCREDSFROMNTUSERSID_PROC 49
GETUNIXCREDSFROMNTUSERSID_PROC (PROC 9)

29
GETUNIXCREDSFROMNTUSERSIDW_PROC 58
GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC

17) 32
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC

39
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC

(PROC 1) 26
GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC

47
GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC

(PROC 7) 28
GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PRO

C 56
GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PRO

C (PROC 15) 31
GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC

53
GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC

(PROC 12) 30
Glossary 7

H

Higher-layer triggered events
 client 34
 server 37

I

IDL 61
Implementer - security considerations 60
Index of security parameters 60
Informative references 9
Initialization
 client 34
 server 37
Introduction 7

L

Local events
 client 36
 server 38

M

mapping 22
mapping_record 21
mapping_recordW 22
mappingW 23
MAPPROC_NULL (PROC 0) 25
maps 23
MapSvrMBCSMapString 13

72 / 72

[MS-UNMP] - v20170915
User Name Mapping Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

MapSvrMBCSNameString 13
MapSvrMBCSWindowsNameString 13
MapSvrUnicodeMapString 15
MapSvrUnicodeNameString 13
MapSvrUnicodeWindowsNameString 13
mapsW 23
Message processing
 client 34
 server 37
Messages
 Common User Name Mapping Protocol Data Types

12
 Non-XDR-Compliant Data Structures 22
 Standard Failure Responses 24
 syntax 12
 transport 12
 User Name Mapping Protocol Messages 25

N

Non-XDR-Compliant Data Structures message 22
Normative references 9

O

Other local events
 server 38
Overview (synopsis) 9

P

Parameters - security index 60
Polling for cache consistency 35
Preconditions 11
Prerequisites 11
Processing for all procedures 37
Product behavior 67
Protocol Details
 overview 33

R

References 9
 informative 9
 normative 9

Relationship to other protocols 10
Request from the server - processing account

mapping response 35
Request to the server
 further account mapping 35
 initial account mapping 35

S

Security
 implementer considerations 60
 overview 60
 parameter index 60
sequence_number 20
Sequencing rules
 client 34
 server 37
Server
 abstract data model 36

 higher-layer triggered events 37
 initialization 37
 local events 38
 message processing 37
 other local events 38
 sequencing rules 37
 timer events 38
 timers 37
sid 21
Sizes 12
Standard failure responses 24
Standard Failure Responses message 24
Standards assignments 11
SunRPC IDL 61
SUNRPC Request header 12
SUNRPC Response header 12
Syntax - message 12

T

Timer events
 client 36
 server 38
Timers
 client 34
 server 37
Tracking changes 69
Transport 12
Transport - message 12
Triggered events - higher-layer
 client 34
 server 37

U

unix_account 15
unix_accountW 16
unix_auth 19
unix_authW 19
unix_creds 19
unix_credsW 20
unix_user_auth 16
unix_user_authW 17
User Name Mapping Protocol Messages 25
User Name Mapping Protocol Messages message 25

V

Vendor-extensible fields 11
Versioning 11

W

windows_account 18
windows_accountW 18
windows_creds 17
windows_credsW 18

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 User Name Mapping Protocol Message Headers
	2.2.1.1 SUNRPC Request Header
	2.2.1.2 SUNRPC Response Header

	2.2.2 Common User Name Mapping Protocol Data Types
	2.2.2.1 Sizes
	2.2.2.2 MapSvrMBCSNameString
	2.2.2.3 MapSvrUnicodeNameString
	2.2.2.4 MapSvrMBCSWindowsNameString
	2.2.2.5 MapSvrUnicodeWindowsNameString
	2.2.2.6 MapSvrMBCSMapString
	2.2.2.7 MapSvrUnicodeMapString
	2.2.2.8 unix_account
	2.2.2.9 unix_accountW
	2.2.2.10 unix_user_auth
	2.2.2.11 unix_user_authW
	2.2.2.12 windows_creds
	2.2.2.13 windows_credsW
	2.2.2.14 windows_account
	2.2.2.15 windows_accountW
	2.2.2.16 unix_auth
	2.2.2.17 unix_authW
	2.2.2.18 unix_creds
	2.2.2.19 unix_credsW
	2.2.2.20 dump_map_req
	2.2.2.21 sequence_number
	2.2.2.22 mapping_record
	2.2.2.23 sid
	2.2.2.24 mapping_recordW

	2.2.3 Non-XDR-Compliant Data Structures
	2.2.3.1 mapping
	2.2.3.2 maps
	2.2.3.3 mappingW
	2.2.3.4 mapsW

	2.2.4 Standard Failure Responses
	2.2.5 User Name Mapping Protocol Messages
	2.2.5.1 MAPPROC_NULL (PROC 0)
	2.2.5.2 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC (PROC 1)
	2.2.5.3 GETUNIXCREDSFROMNTUSERNAME_PROC (PROC 2)
	2.2.5.4 AUTHUSINGUNIXCREDS_PROC (PROC 3)
	2.2.5.5 DUMPALLMAPS_PROC (PROC 4)
	2.2.5.6 GETCURRENTVERSIONTOKEN_PROC (PROC 5)
	2.2.5.7 DUMPALLMAPSEX_PROC (PROC 6)
	2.2.5.8 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC (PROC 7)
	2.2.5.9 GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC 8)
	2.2.5.10 GETUNIXCREDSFROMNTUSERSID_PROC (PROC 9)
	2.2.5.11 DUMPALLMAPSW_PROC (PROC 10)
	2.2.5.12 DUMPALLMAPSEXW_PROC (PROC 11)
	2.2.5.13 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC (PROC 12)
	2.2.5.14 GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC 13)
	2.2.5.15 AUTHUSINGUNIXCREDSW_PROC (PROC 14)
	2.2.5.16 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC (PROC 15)
	2.2.5.17 GETUNIXCREDSFROMNTGROUPNAMEW_PROC (PROC 16)
	2.2.5.18 GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC 17)

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Making the Initial Account Mapping Request to the Server
	3.1.5.2 Processing the Account Mapping Response from the Server
	3.1.5.3 Making Further Account Mapping Requests to the Server
	3.1.5.4 Polling for Cache Consistency

	3.1.6 Timer Events
	3.1.7 Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Processing for All Procedures
	3.2.5.2 Processing of DUMPALLMAPSXXX_PROC Request and GETCURRENTVERSIONTOKEN_PROC Request
	3.2.5.2.1 Processing the Initial Account Mapping Request from the Client
	3.2.5.2.2 Processing Further Account Mapping Requests from the Client
	3.2.5.2.3 Processing the Client Account Mapping Cache Refresh

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC
	4.2 GETUNIXCREDSFROMNTUSERNAME_PROC
	4.3 AUTHUSINGUNIXCREDS_PROC
	4.4 DUMPALLMAPS_PROC
	4.5 GETCURRENTVERSIONTOKEN_PROC
	4.6 DUMPALLMAPSEX_PROC
	4.7 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC
	4.8 GETUNIXCREDSFROMNTGROUPNAME_PROC
	4.9 GETUNIXCREDSFROMNTUSERSID_PROC
	4.10 DUMPALLMAPSW_PROC
	4.11 DUMPALLMAPSEXW_PROC
	4.12 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC
	4.13 GETUNIXCREDSFROMNTUSERNAMEW_PROC
	4.14 AUTHUSINGUNIXCREDSW_PROC
	4.15 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC
	4.16 GETUNIXCREDSFROMNTGROUPNAMEW_PROC
	4.17 GETUNIXCREDSFROMNTUSERSIDW_PROC

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full SunRPC IDL
	7 Appendix B: Sample Code to Encode and Decode Non-XDR-Compliant Data Types
	7.1 Header File Content
	7.2 Encode/Decode Routines For Non-XDR Data Types Using XDR Primitives

	8 Appendix C: Product Behavior
	9 Change Tracking
	10 Index

