
1 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS-TSGU]:

Terminal Services Gateway Server Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content.

7/20/2007 1.1 Minor Clarified the meaning of the technical content.

8/10/2007 2.0 Major Updated and revised the technical content.

9/28/2007 3.0 Major Updated and revised the technical content.

10/23/2007 4.0 Major Updated and revised the technical content.

11/30/2007 4.0.1 Editorial Changed language and formatting in the technical content.

1/25/2008 5.0 Major Updated and revised the technical content.

3/14/2008 6.0 Major Updated and revised the technical content.

5/16/2008 6.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 6.0.2 Editorial Changed language and formatting in the technical content.

7/25/2008 6.0.3 Editorial Changed language and formatting in the technical content.

8/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 8.0 Major Updated and revised the technical content.

12/5/2008 9.0 Major Updated and revised the technical content.

1/16/2009 10.0 Major Updated and revised the technical content.

2/27/2009 11.0 Major Updated and revised the technical content.

4/10/2009 12.0 Major Updated and revised the technical content.

5/22/2009 13.0 Major Updated and revised the technical content.

7/2/2009 14.0 Major Updated and revised the technical content.

8/14/2009 15.0 Major Updated and revised the technical content.

9/25/2009 16.0 Major Updated and revised the technical content.

11/6/2009 17.0 Major Updated and revised the technical content.

12/18/2009 18.0 Major Updated and revised the technical content.

1/29/2010 19.0 Major Updated and revised the technical content.

3/12/2010 20.0 Major Updated and revised the technical content.

4/23/2010 21.0 Major Updated and revised the technical content.

6/4/2010 22.0 Major Updated and revised the technical content.

7/16/2010 23.0 Major Updated and revised the technical content.

3 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Date
Revision
History

Revision
Class Comments

8/27/2010 24.0 Major Updated and revised the technical content.

10/8/2010 25.0 Major Updated and revised the technical content.

11/19/2010 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 26.0 Major Updated and revised the technical content.

3/25/2011 27.0 Major Updated and revised the technical content.

5/6/2011 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 28.0 Major Updated and revised the technical content.

9/23/2011 28.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 29.0 Major Updated and revised the technical content.

3/30/2012 30.0 Major Updated and revised the technical content.

7/12/2012 30.1 Minor Clarified the meaning of the technical content.

10/25/2012 30.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 30.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 31.0 Major Updated and revised the technical content.

11/14/2013 32.0 Major Updated and revised the technical content.

2/13/2014 33.0 Major Updated and revised the technical content.

5/15/2014 34.0 Major Updated and revised the technical content.

6/30/2015 35.0 Major Significantly changed the technical content.

10/16/2015 35.0 None
No changes to the meaning, language, or formatting of the

technical content.

7/14/2016 36.0 Major Significantly changed the technical content.

6/1/2017 37.0 Major Significantly changed the technical content.

9/15/2017 38.0 Major Significantly changed the technical content.

9/12/2018 39.0 Major Significantly changed the technical content.

4 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 Introduction .. 10
1.1 Glossary ... 10
1.2 References .. 14

1.2.1 Normative References ... 14
1.2.2 Informative References ... 15

1.3 Overview .. 16
1.3.1 RPC Over HTTP Transport .. 16

1.3.1.1 RDGSP Protocol Phases Using RPC Over HTTP Transport 17
1.3.1.1.1 Connection Setup Phase ... 17
1.3.1.1.2 Data Transfer Phase .. 18
1.3.1.1.3 Shutdown Phase .. 19

1.3.2 HTTP Transport .. 21
1.3.2.1 RDGHTTP Protocol Phases Using HTTP Transport 21

1.3.2.1.1 Connection Setup and Authentication Phase .. 21
1.3.2.1.2 Tunnel and Channel Creation Phase ... 21
1.3.2.1.3 Data and Server Message Exchange Phase ... 22
1.3.2.1.4 Connection Close Phase .. 23

1.3.3 UDP Transport .. 24
1.3.3.1 RDGUDP Protocol Phases Using UDP Transport ... 24

1.3.3.1.1 DTLS Handshake Phase .. 24
1.3.3.1.2 Connection Setup Phase ... 25
1.3.3.1.3 Data Transfer Phase .. 26
1.3.3.1.4 Shutdown Phase .. 26

1.4 Relationship to Other Protocols .. 27
1.5 Prerequisites/Preconditions ... 27

1.5.1 Common Prerequisites/Preconditions ... 27
1.5.2 Prerequisites/Preconditions for RPC Transport .. 27
1.5.3 Prerequisites/Preconditions for HTTP Transport ... 27
1.5.4 Prerequisites/Preconditions for UDP Transport .. 28

1.6 Applicability Statement ... 28
1.7 Versioning and Capability Negotiation ... 28

1.7.1 RPC Over HTTP Transport .. 28
1.7.2 HTTP Transport .. 28
1.7.3 UDP Transport .. 29

1.8 Vendor-Extensible Fields ... 29
1.9 Standards Assignments ... 29

1.9.1 RPC Over HTTP Transport .. 29
1.9.2 HTTP Transport .. 29
1.9.3 UDP Transport .. 30

2 Messages ... 31
2.1 Transport .. 31

2.1.1 RPC Over HTTP Transport .. 31
2.1.2 HTTP Transport .. 31
2.1.3 UDP Transport .. 31

2.2 Data Types .. 31
2.2.1 Common Data Types ... 31

2.2.1.1 RESOURCENAME ... 32
2.2.2 RPC Over HTTP Transport Data Types ... 32

2.2.2.1 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE .. 32
2.2.2.2 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE .. 32
2.2.2.3 PTUNNEL_CONTEXT_HANDLE_SERIALIZE .. 33
2.2.2.4 PCHANNEL_CONTEXT_HANDLE_SERIALIZE .. 33

2.2.3 HTTP Transport Data Types .. 33
2.2.3.1 Custom HTTP Methods ... 33

5 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.3.1.1 RDG_IN_DATA .. 33
2.2.3.1.2 RDG_OUT_DATA ... 33

2.2.3.2 Custom HTTP Headers ... 34
2.2.3.2.1 RDG-Connection-Id .. 34
2.2.3.2.2 RDG-Correlation-Id .. 34
2.2.3.2.3 RDG-User-Id ... 34

2.2.3.3 Custom URL Query Parameters ... 34
2.2.3.3.1 ConId .. 35
2.2.3.3.2 CorId ... 35
2.2.3.3.3 UsrId ... 35
2.2.3.3.4 AuthS .. 35
2.2.3.3.5 ClGen .. 35
2.2.3.3.6 ClBld .. 35
2.2.3.3.7 ClmTk .. 35

2.2.4 UDP Transport Data Types ... 35
2.2.5 Constants .. 36

2.2.5.1 Common Constants ... 36
2.2.5.2 RPC Transport Constants ... 36

2.2.5.2.1 MAX_RESOURCE_NAMES .. 36
2.2.5.2.2 TSG_PACKET_TYPE_HEADER .. 36
2.2.5.2.3 TSG_PACKET_TYPE_VERSIONCAPS .. 36
2.2.5.2.4 TSG_PACKET_TYPE_QUARCONFIGREQUEST 36
2.2.5.2.5 TSG_PACKET_TYPE_QUARREQUEST ... 36
2.2.5.2.6 TSG_PACKET_TYPE_RESPONSE ... 37
2.2.5.2.7 TSG_PACKET_TYPE_QUARENC_RESPONSE ... 37
2.2.5.2.8 TSG_CAPABILITY_TYPE_NAP... 37
2.2.5.2.9 TSG_PACKET_TYPE_CAPS_RESPONSE .. 37
2.2.5.2.10 TSG_PACKET_TYPE_MSGREQUEST_PACKET .. 37
2.2.5.2.11 TSG_PACKET_TYPE_MESSAGE_PACKET .. 38
2.2.5.2.12 TSG_PACKET_TYPE_AUTH .. 38
2.2.5.2.13 TSG_PACKET_TYPE_REAUTH .. 38
2.2.5.2.14 TSG_ASYNC_MESSAGE_CONSENT_MESSAGE 38
2.2.5.2.15 TSG_ASYNC_MESSAGE_SERVICE_MESSAGE 38
2.2.5.2.16 TSG_ASYNC_MESSAGE_REAUTH ... 38
2.2.5.2.17 TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST 39
2.2.5.2.18 TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST 39
2.2.5.2.19 TSG_NAP_CAPABILITY_QUAR_SOH ... 39
2.2.5.2.20 TSG_NAP_CAPABILITY_IDLE_TIMEOUT .. 39
2.2.5.2.21 TSG_MESSAGING_CAP_CONSENT_SIGN .. 39
2.2.5.2.22 TSG_MESSAGING_CAP_SERVICE_MSG .. 40
2.2.5.2.23 TSG_MESSAGING_CAP_REAUTH ... 40

2.2.5.3 HTTP Transport Constants .. 40
2.2.5.3.1 HTTP_CHANNEL_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration 40
2.2.5.3.2 HTTP_EXTENDED_AUTH Enumeration .. 41
2.2.5.3.3 HTTP_PACKET_TYPE Enumeration ... 41
2.2.5.3.4 HTTP_TUNNEL_AUTH_FIELDS_PRESENT_FLAGS Enumeration 42
2.2.5.3.5 HTTP_TUNNEL_AUTH_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration42
2.2.5.3.6 HTTP_TUNNEL_PACKET_FIELDS_PRESENT_FLAGS Enumeration 42
2.2.5.3.7 HTTP_TUNNEL_REDIR_FLAGS Enumeration .. 43
2.2.5.3.8 HTTP_TUNNEL_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration 43
2.2.5.3.9 HTTP_CAPABILITY_TYPE Enumeration .. 44
2.2.5.3.10 Custom HTTP Authentication Scheme Names 44

2.2.5.4 UDP Transport Constants ... 44
2.2.5.4.1 UdpPktType Enumeration ... 44

2.2.6 Return Codes ... 45
2.2.6.1 Common Return Codes .. 45
2.2.6.2 RPC Transport Return Codes... 48
2.2.6.3 HTTP Transport Return Codes ... 48

6 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.6.4 UDP Transport Return Codes .. 48
2.2.7 Structures and Unions ... 48
2.2.8 Common Structures and Unions ... 48
2.2.9 RPC over HTTP Transport Structures and Unions ... 48

2.2.9.1 TSENDPOINTINFO ... 48
2.2.9.2 TSG_PACKET .. 49

2.2.9.2.1 TSG_PACKET_TYPE_UNION .. 49
2.2.9.2.1.1 TSG_PACKET_HEADER ... 50
2.2.9.2.1.2 TSG_PACKET_VERSIONCAPS ... 51

2.2.9.2.1.2.1 TSG_PACKET_CAPABILITIES .. 51
2.2.9.2.1.2.1.1 TSG_CAPABILITIES_UNION ... 52
2.2.9.2.1.2.1.2 TSG_CAPABILITY_NAP... 52

2.2.9.2.1.3 TSG_PACKET_QUARCONFIGREQUEST... 53
2.2.9.2.1.4 TSG_PACKET_QUARREQUEST .. 53
2.2.9.2.1.5 TSG_PACKET_RESPONSE .. 53

2.2.9.2.1.5.1 responseData Format .. 54
2.2.9.2.1.5.2 TSG_REDIRECTION_FLAGS .. 55

2.2.9.2.1.6 TSG_PACKET_QUARENC_RESPONSE .. 56
2.2.9.2.1.7 TSG_PACKET_CAPS_RESPONSE ... 57
2.2.9.2.1.8 TSG_PACKET_MSG_REQUEST .. 57
2.2.9.2.1.9 TSG_PACKET_MSG_RESPONSE .. 58

2.2.9.2.1.9.1 TSG_PACKET_TYPE_MESSAGE_UNION 58
2.2.9.2.1.9.1.1 TSG_PACKET_STRING_MESSAGE 59
2.2.9.2.1.9.1.2 TSG_PACKET_REAUTH_MESSAGE 59

2.2.9.2.1.10 TSG_PACKET_AUTH ... 59
2.2.9.2.1.11 TSG_PACKET_REAUTH .. 60

2.2.9.2.1.11.1 TSG_INITIAL_PACKET_TYPE_UNION 60
2.2.9.3 Generic Send Data Message Packet ... 61
2.2.9.4 Generic Receive Pipe Message Packet .. 62

2.2.9.4.1 RDG Client to RDG Server Packet Format ... 62
2.2.9.4.2 RDG Server to RDG Client Packet Format for Intermediate Responses 63
2.2.9.4.3 RDG Server to RDG Client Packet Format for Final Response 63

2.2.10 HTTP Transport Structures and Unions .. 63
2.2.10.1 HTTP_byte_BLOB Structure .. 63
2.2.10.2 HTTP_CHANNEL_PACKET Structure ... 63
2.2.10.3 HTTP_CHANNEL_PACKET_VARIABLE Structure ... 64
2.2.10.4 HTTP_CHANNEL_RESPONSE Structure ... 64
2.2.10.5 HTTP_CHANNEL_RESPONSE_OPTIONAL Structure 65
2.2.10.6 HTTP_DATA_PACKET Structure ... 65
2.2.10.7 HTTP_EXTENDED_AUTH_PACKET Structure .. 66
2.2.10.8 HTTP_KEEPALIVE_PACKET Structure ... 66
2.2.10.9 HTTP_PACKET_HEADER Structure ... 67
2.2.10.10 HTTP_HANDSHAKE_REQUEST_PACKET Structure 67
2.2.10.11 HTTP_HANDSHAKE_RESPONSE_PACKET Structure 67
2.2.10.12 HTTP_REAUTH_MESSAGE Structure .. 68
2.2.10.13 HTTP_SERVICE_MESSAGE Structure ... 68
2.2.10.14 HTTP_TUNNEL_AUTH_PACKET Structure .. 69
2.2.10.15 HTTP_TUNNEL_AUTH_PACKET_OPTIONAL Structure 69
2.2.10.16 HTTP_TUNNEL_AUTH_RESPONSE Structure .. 70
2.2.10.17 HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL Structure 70
2.2.10.18 HTTP_TUNNEL_PACKET Structure ... 71
2.2.10.19 HTTP_TUNNEL_PACKET_OPTIONAL Structure ... 71
2.2.10.20 HTTP_TUNNEL_RESPONSE Structure ... 72
2.2.10.21 HTTP_TUNNEL_RESPONSE_OPTIONAL Structure 72
2.2.10.22 HTTP_UNICODE_STRING Structure ... 73
2.2.10.23 HTTP_CLOSE_PACKET Structure ... 73

2.2.11 UDP Transport Structures and Unions .. 74
2.2.11.1 AASYNDATA Structure ... 74

7 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.11.2 AASYNDATARESP Structure .. 75
2.2.11.3 CONNECT_PKT Structure ... 75
2.2.11.4 CONNECT_PKT_RESP Structure .. 76
2.2.11.5 DATA_PKT Structure.. 76
2.2.11.6 DISC_PKT Structure .. 76
2.2.11.7 UDP_PACKET_HEADER Structure .. 77
2.2.11.8 AUTHN_COOKIE_DATA Structure .. 77
2.2.11.9 UDP_CORRELATION_INFO Structure ... 78
2.2.11.10 CONNECT_PKT_FRAGMENT Structure .. 78

3 Protocol Details ... 80
3.1 Common Server Protocol Details .. 80

3.1.1 Abstract Data Model .. 80
3.1.2 Timers .. 82

3.1.2.1 Session Timeout Timer .. 82
3.1.2.2 Reauthentication Timer .. 82

3.1.3 Local Events... 83
3.2 RPC Transport - Server Protocol Details .. 84

3.2.1 TsProxyRpcInterface Server Details... 84
3.2.2 Abstract Data Model .. 84
3.2.3 RPC over HTTP Transport - RDG Server States ... 84
3.2.4 Timers .. 86

3.2.4.1 Connection Timer .. 86
3.2.5 Initialization ... 86
3.2.6 Message Processing Events and Sequencing Rules .. 87

3.2.6.1 Connection Setup Phase .. 88
3.2.6.1.1 TsProxyCreateTunnel (Opnum 1) ... 88
3.2.6.1.2 TsProxyAuthorizeTunnel (Opnum 2) ... 91
3.2.6.1.3 TsProxyMakeTunnelCall (Opnum 3).. 94
3.2.6.1.4 TsProxyCreateChannel (Opnum 4) ... 98

3.2.6.2 Data Transfer Phase ... 100
3.2.6.2.1 TsProxySendToServer (Opnum 9) ... 100
3.2.6.2.2 TsProxySetupReceivePipe (Opnum 8) .. 101

3.2.6.3 Shutdown Phase .. 107
3.2.6.3.1 TsProxyCloseChannel (Opnum 6) .. 107
3.2.6.3.2 TsProxyMakeTunnelCall (Opnum 3)... 108
3.2.6.3.3 TsProxyCloseTunnel (Opnum 7) ... 108
3.2.6.3.4 Server Initiated Shutdown ... 109

3.2.7 Timer Events ... 110
3.2.7.1 Session Timeout Timer ... 110
3.2.7.2 Reauthentication Timer ... 111
3.2.7.3 Connection Timer ... 111
3.2.7.4 Data Arrival From the Target Server ... 112

3.3 HTTP Transport - Server Protocol Details .. 112
3.3.1 HTTP Transport – RDG Server States ... 112
3.3.2 Abstract Data Model ... 114
3.3.3 Timers ... 114

3.3.3.1 Keep-alive Timer .. 114
3.3.4 Initialization .. 114
3.3.5 Message Processing Events and Sequencing Rules ... 115

3.3.5.1 Connection Setup and Authentication ... 115
3.3.5.2 Tunnel and Channel Creation ... 117
3.3.5.3 NTLM Extended Authentication .. 119

3.3.5.3.1 During HTTP and WebSocket Transport Setup 119
3.3.5.3.2 During Version and Capability Negotiation ... 120
3.3.5.3.3 During the Extended Authentication Phase ... 120

3.3.5.4 Data and Server Message Exchange ... 121
3.3.5.5 Connection Close ... 121

8 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.3.6 Timer Events ... 122
3.3.6.1 Session Timeout Timer ... 122
3.3.6.2 Reauthentication Timer ... 122
3.3.6.3 Connection Timer ... 123
3.3.6.4 Keep-alive Timer .. 123

3.3.7 Other Local Events ... 123
3.3.8 Data Arrival from Target Server ... 123

3.4 UDP Transport - Server Protocol Details ... 123
3.4.1 UDP Transport – RDG Server States ... 123
3.4.2 Initialization .. 124
3.4.3 Message Processing Events and Sequencing Rules ... 124

3.4.3.1 DTLS Handshake Phase .. 124
3.4.3.2 Connection Setup Phase ... 125
3.4.3.3 Data Transfer Phase ... 126
3.4.3.4 Shut Down Phase ... 126

3.5 Common Client Protocol Details .. 126
3.5.1 Abstract Data Model ... 126
3.5.2 Timer Events ... 127

3.5.2.1 Idle Timeout Timer ... 127
3.5.3 Other Local Events ... 127

3.6 RPC Transport - Client Protocol Details ... 128
3.6.1 Abstract Data Model ... 128
3.6.2 Timers ... 128

3.6.2.1 Idle Timeout Timer ... 128
3.6.2.1.1 Idle Time Processing ... 128

3.6.3 Initialization .. 128
3.6.4 Message Processing Events and Sequencing Rules ... 129
3.6.5 Data Representation forTsProxySetupReceivePipe and TsProxySendToServer 132

3.6.5.1 TsProxySendToServer Request .. 132
3.6.5.2 TsProxySendToServer Response .. 133
3.6.5.3 TsProxySetupReceivePipe Request ... 133
3.6.5.4 TsProxySetupReceivePipe Response ... 134
3.6.5.5 TsProxySetupReceivePipe Final Response .. 134

3.7 HTTP Transport - Client Protocol Details ... 134
3.7.1 Abstract Data Model ... 135
3.7.2 Timers ... 135
3.7.3 Initialization .. 135
3.7.4 Higher-Layer Triggered Events .. 135
3.7.5 Message Processing Events and Sequencing Rules ... 136

3.7.5.1 Connection Setup and Authentication ... 136
3.7.5.2 Tunnel and Channel Creation ... 136
3.7.5.3 Data and Server Message Exchange ... 137
3.7.5.4 Connection Close ... 138

3.8 UDP Transport - Client Protocol Details .. 138
3.8.1 Initialization .. 138
3.8.2 Message Processing Events and Sequencing Rules ... 138
3.8.3 Establishing a Connection ... 139

4 Protocol Examples ... 141
4.1 RPC Transport Protocol Examples .. 141

4.1.1 Normal Scenario .. 141
4.1.2 Pluggable Authentication Scenario with Consent Message Returned 148
4.1.3 Reauthentication ... 151

4.2 HTTP Transport Protocol Examples .. 153
4.2.1 Normal Scenario .. 153

4.3 UDP Transport Protocol Examples .. 155
4.3.1 Normal Scenario .. 155

5 Security ... 157

9 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5.1 Security Considerations for Implementers .. 157
5.2 Index of Security Parameters ... 157

6 Appendix A: Full IDL .. 158

7 Appendix B: Product Behavior ... 163

8 Change Tracking .. 170

9 Index ... 171

10 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 Introduction

The Remote Desktop Gateway Server Protocol (RDGSP Protocol)<1> is used primarily for tunneling
client to server traffic across firewalls when the Remote Desktop Gateway (RDG)<2> server is
deployed in the neutral zone of a network. The primary consumer of the Terminal Services Gateway
Server Protocol is the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting [MS-
RDPBCGR].

The RDGSP Protocol uses either Hypertext Transfer Protocol (HTTP) or remote procedure call
(RPC) over HTTP as the transport for establishing the main channel. The protocol uses User
Datagram Protocol (UDP) as the transport for establishing the side channel which is established
only when the main channel uses HTTP.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

administrative message: A message sent by the RDG administrator to all users connected
through RDG. Typical messages would include those sent regarding maintenance downtimes.

The term administrative message and Service Message is used interchangeably in this
document.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.
The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the

issuing certification authority (CA) and can be issued for a user, a computer, or a service. The
most widely accepted format for certificates is defined by the ITU-T X.509 version 3
international standards. For more information about attributes and extensions, see [RFC3280]
and [X509] sections 7 and 8.

channel: A successful connection between the RDG client and target server via the RDG server.
For more information about the connection, see [MS-TSGU] section 1.3.1.1.2.

chunked transfer: A type of transfer-encoding method introduced in Hypertext Transfer

Protocol (HTTP) version 1.1 where each write operation to the connection is precounted, and

the final zero-length chunk is written at the end of the response signifying the end of the
transaction.

client: A computer on which the remote procedure call (RPC) client is executing.

Consent Signing Message: An End User License Agreement (EULA) which the user must accept
in order to connect successfully through RDG.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90590
%5bMS-TSGU%5d.pdf#Section_0007d661a86d4e8f89f77f77f8824188

11 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

cryptographic service provider: An independent software module that performs authentication,
encoding, and encryption services that Windows-based applications access through the

CryptoAPI.

Datagram Transport Layer Security (DTLS): A protocol based on the Transport Layer Security

(TLS) Protocol that provides secure communication for UDP applications. For more details about
DTLS see [RFC4347].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more

information, see [C706].

extended authentication: Methods of authentication used by the RDGHTTP Protocol in addition to
the methods provided by the transport layer (see transport authentication). Examples include
smart card authentication and pluggable authentication.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

handle: Any token that can be used to identify and access an object such as a device, file, or a
window.

handshake: An initial negotiation between a peer and an authenticator that establishes the

parameters of their transactions.

handshake request: A message sent by the RDG client to the RDG server requesting information
about the server's version and negotiated capabilities. In the request message, the RDG client

sends information about its version and negotiated capabilities.

handshake response: A message sent by the RDG server in response to the handshake request
received from the RDG client. In the response message, the RDG server sends information
about its version and negotiated capabilities.

HRESULT: An integer value that indicates the result or status of an operation. A particular
HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF]
section 2.1 and specific protocol documents for further details.

HTTP 1.1 connection: An HTTP connection created by using HTTP version 1.1.

Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative,
hypermedia information systems (text, graphic images, sound, video, and other multimedia

files) on the World Wide Web.

Hypertext Transfer Protocol Secure (HTTPS): An extension of HTTP that securely encrypts and

decrypts web page requests. In some older protocols, "Hypertext Transfer Protocol over Secure
Sockets Layer" is still used (Secure Sockets Layer has been deprecated). For more information,
see [SSL3] and [RFC5246].

IN channel: The HTTP connection responsible for transmitting data from an RDG client to an RDG
server. (The connection is protected by Secure Sockets Layer (SSL).) The IN channel is

created after the OUT channel and has no significance apart from the OUT channel.

https://go.microsoft.com/fwlink/?LinkId=227111
https://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90534
https://go.microsoft.com/fwlink/?LinkId=129803

12 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

Internet Protocol version 4 (IPv4): An Internet protocol that has 32-bit source and destination

addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128-bit IP address size, expanded
routing capabilities, and support for authentication and privacy.

main channel: The channel that uses reliable transport, such as HTTP or RPC over HTTP. This
channel is used to carry all of the RDP data that is not sent over the side channel.

maximum transmission unit (MTU): The size, in bytes, of the largest packet that a given layer

of a communications protocol can pass onward.

Network Access Protection (NAP): A feature of an operating system that provides a platform
for system health-validated access to private networks. NAP provides a way of detecting the

health state of a network client that is attempting to connect to or communicate on a network,
and limiting the access of the network client until the health policy requirements have been met.
NAP is implemented through quarantines and health checks, as specified in [TNC-IF-

TNCCSPBSoH].

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response
mechanism for authentication in which clients are able to verify their identities without sending a

password to the server. It consists of three messages, commonly referred to as Type 1
(negotiation), Type 2 (challenge) and Type 3 (authentication). For more information, see [MS-
NLMP].

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

OUT channel: The HTTP connection responsible for transmitting data from an RDG server to an

RDG client. (The connection is protected by Secure Sockets Layer (SSL).) The OUT channel is
created after the IN channel and has no significance apart from the IN channel.

out pipe: See pipe.

pipe: A supported IDL data type for streaming data, as specified in [C706] section 4.2.14. The
term out pipe refers to the pipe created between the RDG client and the RDG server for
transferring data from the target server to the client via the RDG server. The term out pipe is

used because the data flows out from the RDG server to the RDG client.

pluggable authentication: An option for overriding the default RPC authentication schemes by

using cookie-based authentication. To use this option, the RDG loads an installed plugin to
perform the authentication based on a cookie passed by the client. The cookie is retrieved when
the user browses a given site and enters their credentials.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that may contain control information, address information, or data. For more

information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

https://go.microsoft.com/fwlink/?LinkId=240054
https://go.microsoft.com/fwlink/?LinkId=240054
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4

13 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

reauthentication: A process for validating the user authorization of the user credentials after the
connection is established. Reauthentication provides the ability to verify the validity of user

credentials and user authorization periodically, and disconnect the connection if the user
credentials become invalid. In the process of reauthentication, the RDG server expects the

client to follow the same sequence of connection setup phase steps, as specified in section
1.3.1.1.1, to enable the credentials of the user to be rechecked, or reauthenticated. If the
same sequence of steps is not followed, or an error occurs during the process, the existing
connection is disconnected.

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the

connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set

of request-and-response message exchanges between computers (the RPC exchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

Remote Procedure Call over HTTP (RPC over HTTP): The Remote Procedure Call over HTTP
Protocol specified in [MS-RPCH].

RPC authentication: RPC supports several authentication methods as defined in [MS-RPCE]
sections 1.7 and 2.2.1.1.7. Of these, the RDG server supports NTLM and Secure channel
(Schannel) authentication methods.

Secure channel (Schannel): An authentication method which can be used with RPC

authentication by using RPC_C_AUTHN_GSS_SCHANNEL security provider as defined in [MS-
RPCE] section 2.2.1.1.7.

Secure Sockets Layer (SSL): A security protocol that supports confidentiality and integrity of
messages in client and server applications that communicate over open networks. SSL supports

server and, optionally, client authentication using X.509 certificates [X509] and [RFC5280]. SSL
is superseded by Transport Layer Security (TLS). TLS version 1.0 is based on SSL version 3.0
[SSL3].

server: A computer on which the remote procedure call (RPC) server is executing.

service message: See administrative message.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

side channel: The channel that uses non-reliable transport, such as UDP, to tunnel audio and
video RDP data.

smart card authentication: An authentication method implemented using a smart card.

statement of health (SoH): A collection of data generated by a system health entity, as specified

in [TNC-IF-TNCCSPBSoH], which defines the health state of a machine. The data is interpreted
by a Health Policy Server, which determines whether the machine is healthy or unhealthy
according to the policies defined by an administrator.

statement of health response (SoHR): A collection of data that represents the evaluation of the
statement of health (SoH) according to network policies, as specified in [TNC-IF-

TNCCSPBSoH].

%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212
https://go.microsoft.com/fwlink/?LinkId=131034
https://go.microsoft.com/fwlink/?LinkId=89868

14 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

target server: The resource that the client connects to via RDG server. The target server name is
the machine name of such a resource. For more information about the Target server name ADM

element, see sections 3.1.1 and 3.5.1.

terminal server: A computer on which terminal services is running.

Triple Data Encryption Standard: A block cipher that is formed from the Data Encryption
Standard (DES) cipher by using it three times.

tunnel: (1) The encapsulation of one network protocol within another.

(2) Establishes a context in which all further method calls or data transfer can be performed
between the RDG client and the RDG server. A tunnel is unique to a given combination of a RDG
server and RDG client instance. All operations on the tunnel are stateful.

UDP authentication cookie: An 8-bit (byte) binary large object (BLOB) sent by the RDG

server to the RDG client on the main channel. The RDG client uses the same byte BLOB to
authenticate to the RDG server on the side channel.

UDPCookieAuthentication: An authentication method that is used by the RDG clients to
authenticate to the RDG server by using a UDP authentication cookie.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in

the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]

must be used for generating the UUID.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

well-known endpoint: A preassigned, network-specific, stable address for a particular

client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com

15 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEUDP] Microsoft Corporation, "Remote Desktop Protocol: UDP Transport Extension".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-RPCH] Microsoft Corporation, "Remote Procedure Call over HTTP Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4347] Rescorla, E., and Modadugu, N., "Datagram Transport Layer Security", RFC 4347, April
2006, http://www.ietf.org/rfc/rfc4347.txt

[RFC6455] Fette, I., and Melnikov, A., "The WebSocket Protocol", RFC 6455, December 2011,

http://www.ietf.org/rfc/rfc6455.txt

[TNC-IF-TNCCSPBSoH] TCG, "TNC IF-TNCCS: Protocol Bindings for SoH", version 1.0, May 2007,
https://trustedcomputinggroup.org/tnc-if-tnccs-protocol-bindings-soh/

[URL] van Kesteren, A., "URL: Living Standard", June 2017, https://url.spec.whatwg.org/

1.2.2 Informative References

[MS-RDSOD] Microsoft Corporation, "Remote Desktop Services Protocols Overview".

[MS-RNAP] Microsoft Corporation, "Vendor-Specific RADIUS Attributes for Network Access Protection
(NAP) Data Structure".

[MSDN-ENVLOPED-DATA] Microsoft Corporation, "Encoding Enveloped Data",
http://msdn.microsoft.com/en-us/library/windows/desktop/aa382008(v=vs.85).aspx

[MSDN-MMSCH] Microsoft Corporation, "Mixed Mode Serialization of Context Handles",
http://msdn.microsoft.com/en-us/library/aa367098(VS.85).aspx

[MSDN-NAPAPI] Microsoft Corporation, "NAP Interfaces", http://msdn.microsoft.com/en-
us/library/aa369705(v=VS.85).aspx

[MSDN-RPCMESSAGE] Microsoft Corporation, "RPC_MESSAGE", http://msdn.microsoft.com/en-

us/library/aa378631.aspx

[RFC7230] Fielding, R., and Reschke, J., Eds., "Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing", RFC 7230, June 2014, http://www.rfc-editor.org/rfc/rfc7230.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980, http://www.rfc-
editor.org/rfc/rfc768.txt

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=227111
https://go.microsoft.com/fwlink/?LinkId=252388
https://go.microsoft.com/fwlink/?LinkId=240054
https://go.microsoft.com/fwlink/?linkid=853950
%5bMS-RDSOD%5d.pdf#Section_072543f94bd44dc6ab979a04bf9d2c6a
%5bMS-RNAP%5d.pdf#Section_e391716b22f74bf7bb39202a18598000
%5bMS-RNAP%5d.pdf#Section_e391716b22f74bf7bb39202a18598000
https://go.microsoft.com/fwlink/?LinkID=324591
https://go.microsoft.com/fwlink/?LinkId=151562
https://go.microsoft.com/fwlink/?LinkId=199018
https://go.microsoft.com/fwlink/?LinkId=199018
https://go.microsoft.com/fwlink/?LinkId=92766
https://go.microsoft.com/fwlink/?LinkId=92766
https://go.microsoft.com/fwlink/?LinkId=402094
https://go.microsoft.com/fwlink/?LinkId=90490
https://go.microsoft.com/fwlink/?LinkId=90490

16 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.3 Overview

The RDGSP Protocol is designed for remote connections from RDG clients originating on the Internet
to target servers behind a firewall.<3> The protocol establishes a connection, called a tunnel (2),

from an RDG client to an RDG server in the neutral zone. The RDG client uses the tunnel to establish
a channel between the RDG client and the target server with the RDG server acting as a proxy. Data
transfer between the RDG client and the target server occurs by using the channel. The tunnel and
channel maintain active connections.

The RDG client establishes one main channel to the target server. The RDG client can establish zero
or more side channels depending on the requirements of the Remote Desktop Protocol: UDP
Transport Extension Protocol [MS-RDPEUDP].

The RDGSP Protocol uses one of the following transports for establishing the main channel:

 Remote Procedure Call over HTTP Protocol (RPC over HTTP)

 HTTP

The RDGSP Protocol uses the UDP transport for establishing the side channel.

In this specification, information that is common to all three transport types (RPC over HTTP, HTTP,
and UDP) is provided at the beginning of each main section and details for each transport type are

defined in transport-specific subsections that follow the main section. The subsections are
distinguished as follows:

 Details specific to the RDGHTTP Protocol are documented in subsections that include the phrase
"HTTP Transport" in the title.

 Details specific to the RDGUDP Protocol are documented in subsections that include the phrase
"UDP Transport" in the title.

1.3.1 RPC Over HTTP Transport

Communication from the RDG server to the RDG client is performed by using an RPC out pipe.
Communication from the RDG client to the RDG server is performed by using RPC calls.

The RDG client first calls the TsProxyCreateTunnel, TsProxyAuthorizeTunnel, and
TsProxyCreateChannel methods in sequential order, as shown in the figure named Message sequence

between RDG client and RDG server during connection setup phase, in section 1.3.1.1.1. The RDG
client makes each subsequent call in the order specified, only after a response for the previously
issued call is received.

After the TsProxyCreateTunnel call successfully completes, the RDG client calls the
TsProxySetupReceivePipe and TsProxySendToServer methods. However, because the
TsProxySetupReceivePipe call can have multiple responses from the RDG server, the responses can be

interspersed with the calls to TsProxySendToServer.

To end the connection, the RDG client calls the TsProxyCloseChannel and TsProxyCloseTunnel
methods in sequential order, as shown in the figure named Message sequence between RDG client and

RDG server during shutdown phase, in section 1.3.1.1.3. If the RDG client calls TsProxyCloseTunnel
before TsProxyCloseChannel, the RDG server closes the channel and then closes the tunnel. If
TsProxyCloseChannel is called after TsProxyCloseTunnel, the RDG client receives an RPC exception.
For details about the possible errors returned, see the description of the Return Codes (section 2.2.6).

%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

17 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.3.1.1 RDGSP Protocol Phases Using RPC Over HTTP Transport

The RDGSP Protocol uses RPC over HTTP as the transport by operating in three phases: connection
setup, data transfer, and shutdown. The following sections provide an overview of these phases. For

specific details about each phase, see section 3.

1.3.1.1.1 Connection Setup Phase

During the connection setup phase, a connection between the RDG client and RDG server is first
established, and then the RDG server establishes a connection to the target server. This phase
consists of the following four operations:

 Tunnel creation: Involves negotiating the protocol versioning and capabilities, returning the server

certificate, and returning a context representation for the tunnel (2) to the RDG client. The RDG
client presents the context representation to the RDG server in subsequent operations on the
tunnel (2). Tunnel (2) creation is accomplished by using the
TsProxyCreateTunnel (section 3.2.6.1.1) method which is always the first call in the protocol
sequence. A tunnel (2) shutdown, as specified in section 3.2.6.1.3, is possible without proceeding

further in the RDG protocol sequence.

 Tunnel authorization: Involves processing authorization rules for the RDG client connection,
performing health checks, conducting quarantines, enforcing user authentication, performing
health remediation as needed, and modifying terminal server device redirection settings. Tunnel
authorization is accomplished by calling to the TsProxyAuthorizeTunnel (section 3.2.6.1.2) method
which is the second call in the protocol sequence. A tunnel shutdown, as described in section
3.2.6.3, is possible after tunnel authorization without proceeding further in the RDG protocol
sequence.

 Request for messages: After the tunnel is authorized, if the client and the server are both capable
of sending and receiving administrative messages, the RDG client can call
TsProxyMakeTunnelCall (section 3.2.6.1.3), with the RDG transport constant
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST (section 2.2.5.2.17) as the parameter. When the
server has a message to send to the client, the server completes the pending call to
TsProxyMakeTunnelCall and the client then makes another call to TsProxyMakeTunnelCall.

 Channel creation: This operation requires that a connection be made to the target server and can

also include verification of access rights to determine whether a connection is allowed. The
creation of a channel involves creating a server context representation for the channel and
returning the context representation to the RDG client. The RDG client can then present the
context representation in subsequent operations on the channel. This is accomplished by using the
TsProxyCreateChannel method call which is the third call in the protocol sequence. A channel
shutdown, as specified in section 3.2.6.3, is possible without proceeding further in the RDG

protocol sequence. A tunnel shutdown is only possible after all channels inside the tunnels are
shut down. When the channels are not closed by the RDG client prior to requesting tunnel
shutdown, they are closed automatically by the RDG server.

18 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 1: Message sequence between the RDG client and RDG server during connection
setup phase

1.3.1.1.2 Data Transfer Phase

The data transfer phase allows for data transfer between the RDG client and the target server via
the RDG server. In this phase, the RDG server acts as a proxy between the RDG client and the target
server, as shown in the following diagram.

Figure 2: Connection between the RDG client and the target server via RDG server proxy

The RDG client establishes a connection to the RDG server which in turn establishes a separate

connection to the target server. The resulting logical connection between the RDG client and the
target server via the RDG server is called a channel. A channel can only be established within the
context of a tunnel (2). The channel is specific to the RDG client and tunnel instance. Multiple
channels can exist within a tunnel.

 Data transfer from the target server to the RDG client via the RDG server using an out pipe: The
RDGSP Protocol uses RPC out pipes to stream data from the RDG server to the RDG client. Data

from the target server is sent by the RDG server to the RDG client via the out pipe and all of the
data is streamed via this pipe. The RPC out pipe is created by using the
TsProxySetupReceivePipe (section 3.2.6.2.2) method, which is the fourth call in the protocol

19 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

sequence. This method can be called only once per channel; however, data is sent from the RDG
server to the RDG client multiple times.

 Data transfer from the RDG client to the target server via the RDG server by using an RPC call:
The RDG client uses an RPC method call to send the data that is intended for delivery to the target

server by the RDG server. The method call transfers data from the RDG client to the RDG server
which then sends the data to the target server. The return value of the method call indicates
whether the data transfer was successful. This data transfer operation is accomplished by using
the TsProxySendToServer (section 3.2.6.2.1) method, which is the fifth call in the protocol
sequence. This method can be called multiple times within a channel.

Figure 3: Message sequence between RDG client and RDG server during data transfer phase

1.3.1.1.3 Shutdown Phase

This shutdown phase is used to terminate the channel and tunnel (2). The phase consists of three
operations:

20 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Channel shutdown: Channel shutdown can be performed only after a channel has been
successfully created. A channel shutdown closes the RPC out pipe created in the data transfer

phase and prevents any further use of the channel. The closing of a channel can be initiated either
by the RDG client or the RDG server. To initiate channel shutdown, the client uses the

TsProxyCloseChannel (section 3.2.6.3.1) method. The RDG server initiates channel shutdown by
sending an RPC response protocol data unit (PDU) with the PFC_LAST_FRAG bit set in the
pfc_flags field as the final response PDU of the TsProxySetupReceivePipe (section 3.2.6.2.2)
method. For more information about an RPC response PDU, the pfc_flags field, and the
PFC_LAST_FRAG bit, see [C706] sections 12.6.2 and 12.6.4.10.

 Cancel pending messages: If the RDG client has pending administrative message requests on
the RDG server, the RDG client cancels these requests by calling the

TsProxyMakeTunnel (section 3.2.6.3.2) call with
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST (section 2.2.5.2.17) as a parameter.

 Tunnel shutdown: Tunnel (2) shutdown can be performed only after a tunnel has been
successfully created and after all channels (if any) inside the tunnel are shut down successfully. A
tunnel shutdown closes the connection between the RDG client and RDG server and is the last call

in the protocol sequence. The closing of a tunnel is accomplished by using the

TsProxyCloseTunnel (section 3.2.6.3.3) method.

Figure 4: Message sequence between the RDG client and RDG server during shutdown
phase

https://go.microsoft.com/fwlink/?LinkId=89824

21 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.3.2 HTTP Transport

The RDGHTTP Protocol uses the HTTP transport by creating two HTTP 1.1 connections for use as
communication channels to and from the RDG server. Each channel is protected by SSL (HTTPS).<4>

1.3.2.1 RDGHTTP Protocol Phases Using HTTP Transport

The RDGHTTP Protocol uses HTTP transport by operating in four phases: connection setup and
authentication, tunnel and channel creation, data and server message transfer, and connection close.
The following sections provide an overview of these phases. For specific details about each phase, see

section 3.

1.3.2.1.1 Connection Setup and Authentication Phase

The connection setup and authentication phase only involves the exchange of HTTP header
information and consists of three operations:

 Create OUT channel: An HTTP 1.1 connection is established. If the RDG server and client both

support the WebSocket protocol ([RFC6455]), then this connection is used for duplex
communication between the RDG client and server; otherwise, this connection is used only for
outbound communication from the RDG server.<5> WebSocket support is negotiated using the
Opening Handshake as specified in [RFC6455] section 1.3.

 Create IN channel: A second HTTP 1.1 connection is established for inbound communication to
the RDG server if the RDG server and client don't support the WebSocket protocol. In this case,
the OUT channel is used only for outbound communication.

 Authenticate user.

Figure 5: Message sequence between RDG client and RDG server during connection setup

and authentication phase

1.3.2.1.2 Tunnel and Channel Creation Phase

In the tunnel (2) and channel creation phase, the RDG client and RDG server exchange protocol
messages as HTTP request and response entity bodies. The exchange of messages is in a strict

predefined order. At the end of this phase, the RDG client and RDG server are ready to start
exchanging data. The phase consists of four operations:

https://go.microsoft.com/fwlink/?LinkId=252388

22 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Exchange version and capability negotiation information.

 Create tunnel.

 Authorize tunnel.

 Create channel.

Figure 6: Message sequence between RDG client and RDG server during tunnel and channel
creation phase

When the client and server have negotiated extended authentication, there is an additional
required "Extended authentication" phase that occurs after the "Exchange version and capability
negotiation information" phase.

RDG clients are permitted to close and create channels on an existing tunnel. However, only one
channel can be associated with a tunnel at any given time. Due to server-side race conditions, channel
creation can fail on a tunnel that was previously associated with a channel. In the case of such a

failure, the RDG client closes the connection and reconnects to the RDG server using the steps
outlined in sections 1.3.2.1.1 and 1.3.2.1.2.

1.3.2.1.3 Data and Server Message Exchange Phase

23 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

In the data and server message exchange phase, the RDG client and RDG server send data using the
IN channel and OUT channels as necessary, and keep-alive messages flow between the RDG server

and RDG client. The RDG server sends periodic service messages or reauthentication requests as
required.

Figure 7: Message sequence between the RDG client and RDG server during the data and
server message exchange phase

1.3.2.1.4 Connection Close Phase

In the connection close phase, the RDG client, the RDG server, or both parties can close the
connection. In the following figure, the RDG client is the initiator of the connection close request. This
phase involves two operations:

 Close channel.

 Close tunnel.

Figure 8: Message sequence between RDG client and RDG server during connection close
phase

24 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.3.3 UDP Transport

The RDGUDP Protocol is designed for tunneling graphics and the audio and video data for remote
connections from RDG clients originating on the Internet to target servers behind a firewall.<6>

The protocol creates a tunnel (2) object on the RDG client and then uses the tunnel to establish a
channel between the RDG client and the target server with the RDG server acting as a proxy. Data
transfer between the RDG client and the target server occurs by using the channel. The tunnel and
channel maintain active connections.

Communication from the RDG client to the RDG server and from the RDG server to the RDG client is
accomplished using UDP. The RDG client performs the DTLS handshake with the RDG server to
establish a secure channel. To ensure that the RDG server is reachable from the RDG client, the first

packet during the DTLS handshake is sent in a reliable manner from the RDG client to the RDG server.
After the DTLS handshake is complete, the RDG client sends a CONNECT_PKT
Structure (section 2.2.11.3) packet to the RDG server in a reliable manner until it receives a
CONNECT_PKT_RESP Structure (section 2.2.11.4) packet in response. After the connect response is
received with a success result code, the UDP channel is ready to transfer Remote Desktop Protocol

(RDP) packets.

Before creating the UDP channel (side channel), the RDG client establishes a main channel to the
target server through the RDG server.

1.3.3.1 RDGUDP Protocol Phases Using UDP Transport

The RDGUDP Protocol uses the UDP transport by operating in four phases: DTLS handshake,

connection setup, data transfer, and shutdown. The following sections provide an overview of these
phases. For specific details about each phase, see section 3.

1.3.3.1.1 DTLS Handshake Phase

The DTLS handshake phase involves the establishment of a secure connection between the RDG
client and the RDG server. After all the data packets have been transmitted during the handshake,

the RDG client and RDG server transition into the connection setup phase (section 1.3.3.1.2).

Implementation details about the DTLS handshake and retransmission of packets during the
handshake are specified in [RFC4347] section 3.2.

The DTLS handshake phase consists of two operations:

 The RDG client sends the first packet in a reliable manner: the first packet is retransmitted for a
pre-determined number of times until the packet is received from the RDG server. If the first
packet is not received from the RDG server after the pre-determined number of attempts, the

result of the connection establishment to the UDP channel is marked as a failure.

 The remainder of the DTLS handshake is performed in a non-reliable manner: any packet lost on
the network is considered to be lost and no attempt is made to retransmit the lost packet. In this
case, the RDG client and the RDG server are required to handle packets lost during the handshake
and retransmit as necessary.

https://go.microsoft.com/fwlink/?LinkId=227111

25 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 9: Message sequence between RDG client and RDG server during DTLS handshake
phase

An optional UDP_CORRELATION_INFO structure (section 2.2.11.9) can be appended to the ClientHello
request and included in the initial client-to-RDG packet. This structure contains a correlation identifier
GUID, containing the same GUID value as described in the custom HTTP header RDG-Correlation-Id

(section 2.2.3.2.2.) This structure extends the initial RFC4347 packet's size, but is not included in the
DTLS verify_data calculations.

1.3.3.1.2 Connection Setup Phase

The connection setup phase consists of three operations:

 The RDG client sends the CONNECT_PKT Structure (section 2.2.11.3) packet to the RDG server for
a predetermined number of times until the client receives the CONNECT_PKT_RESP

Structure (section 2.2.11.4) packet from the RDG server.

 The RDG server authenticates the RDG client using the cookie sent in the CONNECT_PKT Structure
packet. If the cookie validation is successful, the RDG client establishes the UDP connection to the
target server using the IP address specified in the cookie.

 The RDG server stores the result of the connection establishment in the CONNECT_PKT_RESP

Structure packet and sends the packet back to the RDG client.

26 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 10: Message sequence between RDG client and RDG server during connection setup
phase

1.3.3.1.3 Data Transfer Phase

The data transfer phase enables the transmission of data packets between the RDG client and the
target server by using the RDG server as a proxy. In contrast to the use of RPC over HTTP as the
transport, when using UDP, the tunnel (2) is a logical entity and the channel is the end-to-end
connection between the RDG client and the target server. In addition, a tunnel can consist of only one
channel.

Figure 11: Message sequence between RDG client and RDG server during data transfer

phase

1.3.3.1.4 Shutdown Phase

The shutdown phase is used to terminate the UDP channel and end the connection between the RDG
client and the RDG server. To tear down the channel and terminate the connection, either the RDG
client or the RDG server sends the DISC_PKT Structure (section 2.2.11.6) packet to the other party.

27 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 12: Message sequence between the RDG client and RDG server during shutdown
phase

1.4 Relationship to Other Protocols

This protocol is dependent upon the Remote Procedure Call over HTTP Protocol [MS-RPCH] for the use
of RPC as a transport.

This protocol is dependent upon the Hypertext Transfer Protocol -- HTTP/1.1 [RFC7230] for the use of
HTTP as a transport.

This protocol is dependent upon the User Datagram Protocol [RFC768] for the use of UDP as a

transport.

No other protocol depends on the RDGSP Protocol.

The RDP client and target server can use the RDGSP Protocol as its transport for traversing
corporate firewalls. RDP data is passed through this transport. As a result, RDP does not track the TSG
protocol. RDP is specified in [MS-RDPBCGR].

1.5 Prerequisites/Preconditions

1.5.1 Common Prerequisites/Preconditions

The RDG client is required to obtain the name of the RDG server that supports the RDG service
before the RDGSP Protocol is invoked.

The RDG client is required to obtain the name of the target server for making a channel connection.

A certificate is required to be deployed on the RDG server. The root authority of the certificate has to
be trusted on the client as required by HTTPS and DTLS.

1.5.2 Prerequisites/Preconditions for RPC Transport

The RDGSP Protocol is an RPC over HTTP Protocol type interface, and therefore has the prerequisites

specified in [C706] part 2, 3, and 4, [MS-RPCE] sections 2 and 3, and [MS-RPCH] section 2.1.

1.5.3 Prerequisites/Preconditions for HTTP Transport

The RDGHTTP Protocol requires RDG clients to support HTTP version 1.1. When an RDG client
supports only HTTP version 1.0, some features available in HTTP version 1.1 cannot be used. For
example, when the chunked transfer encoding feature in HTTP version 1.1 cannot be used, the
content-length field in the HTTP 1.0 header is used instead.

%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212
https://go.microsoft.com/fwlink/?LinkId=402094
https://go.microsoft.com/fwlink/?LinkId=90490
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212

28 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.5.4 Prerequisites/Preconditions for UDP Transport

The RDGUDP Protocol requires the RDG client to establish a main channel to the target server
through the RDG server.

The RDG client is required to obtain the UDP authentication cookie on the main channel.

1.6 Applicability Statement

This protocol is applicable when a client on the Internet or local private network requires a connection
to a target server that is behind a firewall.

1.7 Versioning and Capability Negotiation

The supported transports for this protocol are as follows:

 RPC over HTTP ([MS-RPCH]) is used as the main transport.

 HTTP transport is used for the main channel.

 UDP transport is used for the side channel.

1.7.1 RPC Over HTTP Transport

 Protocol Version: The RDGSP Protocol RPC interface has a single version number of 1.3. The

RDGSP Protocol can be extended without altering the version number by adding RPC methods to
the interface with opnums lying numerically beyond those defined in this specification. An RDG
client determines whether such methods are supported by attempting to invoke the method. If
the method is not supported, the RDG server returns an RPC_S_PROCNUM_OUT_OF_RANGE
error. RPC versioning and capacity negotiation are specified in [C706] section 4.2.4.2 and [MS-
RPCE] section 1.7. The Network Data Representation (NDR) version required for this transport

is 0x50002.

 Security and Authentication Methods: The RDGSP Protocol supports all authentication methods as
specified in [MS-RPCE] section 1.7. The NTLM and Schannel authentication methods have
pluggable security provider modules, as specified in [MS-RPCE] section 2.2.1.1.7. RPC
authentication APIs are specified in [C706] section 2.7. In addition to RPC authentication, the
RDGSP Protocol supports cookie-based pluggable authentication.

The RDGSP Protocol does not make direct calls using NTLM, Secure channel (Schannel), and

Basic authentication, but instead uses RPC over HTTP as specified in [MS-RPCE] section 2.1.1.8.
The NTLM sequence for RPC is provided in section 4.2.

 Capability Negotiation: This protocol does not enforce any explicit version negotiation, but there is
support for version negotiation. An explicit capabilities check is performed by the RDG client to
ensure that its capabilities are supported and matched by the RDG server. The RDG client and
RDG server announce their version and capabilities by using the TsProxyCreateTunnel method call.
For specifications on the current version and capabilities announced by the RDG client and RDG

server, see section 2.2.7.

1.7.2 HTTP Transport

Protocol Version: The RDGHTTP protocol exchanges protocol version information in the initial packet

exchanges. If the version exchanged is not supported by the receiver, the connection is dropped. If
the RDG server receives a version number lower than what it supports, it can respond with that same
version number. This can happen when the RDG server is operating in a lower version mode. When
the RDG server does not support the RDG client's version, the RDG server can drop the connection

%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

29 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

with an error message. If the RDG server receives a higher version number than it supports, it
responds with an error and drops the connection. The RDG client employs the same logic for

responding to a different version number.

 Security and Authentication Methods: The RDGHTTP Protocol supports Negotiate, NTLM, Digest,

and Basic authentication methods supported by HTTP. If extended authentication is used, this
is performed after the HTTP connection creation. The RDG server certificate is used for
authentication and SSL protection.

 Capability Negotiation: An explicit capabilities check is performed by the RDG client to ensure that
its capabilities are supported and matched by the RDG server. The RDG client and RDG server
announce their capabilities in the initial packet exchange. For specifications on the capabilities
announced by the RDG client and RDG server, see section 2.2.7.

1.7.3 UDP Transport

 Supported Transports: Use of the UDP transport by the RDGUDP Protocol works only with the
main channel after it has been established by the RDGHTTP Protocol using HTTP transport.

 Protocol Version: 1.0.

 Security and Authentication Methods: The RDGUDP Protocol supports the UDP authentication
cookie and smart card authentication methods.

 Capability Negotiation: None.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT datatypes as specified in [MS-ERREF] section 2.1. Vendors can choose
their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a customer
code.

1.9 Standards Assignments

1.9.1 RPC Over HTTP Transport

The following table contains the RPC interface universal unique identifier (UUID), protocol

sequence, and endpoint ports used by this protocol.

Parameter Value Reference

RPC interface UUID 44e265dd-7daf-42cd-8560-3cdb6e7a2729 [C706] section 2.1.1

ProtocolSequence ncacn_http Section 1.5

endpoint 80, 443, and 3388 Section 2.1

1.9.2 HTTP Transport

The RDG server binds on the following HTTP/HTTPS binding URLs and listens on the following default
endpoint ports.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

30 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Parameter Value Reference

HTTP Binding URL http://+:<Port number>/remoteDesktopGateway/Port number is
configurable.

Section
2.1.2

HTTPS Binding
URL

https://+:<Port number>/remoteDesktopGateway/Port number is
configurable.

Section
2.1.2

endpoint 80 and 443, as configured in HTTPS Binding URL, or HTTP Binding URL Section
2.1.2

1.9.3 UDP Transport

The following is the endpoint port used to listen for incoming UDP packets.

Parameter Value Reference

endpoint 3391 Section 2.1.3

31 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

The following sections specify how the Remote Desktop Gateway Server Protocol messages are
transported and common data types.

2.1 Transport

2.1.1 RPC Over HTTP Transport

The RDGSP Protocol uses the Remote Procedure Call over HTTP Protocol [MS-RPCH] as transport.

This protocol uses the following static endpoints as well as well-known endpoints. These endpoints
are ports as defined in [MS-RPCH] section 1.5 on the RDG server. The only protocol sequence used
for the transport is "ncacn_http".

 Port 80: This endpoint is used by [MS-RPCH] as the underlying transport, when [MS-RPCH] runs

over plain HTTP.

 Port 443: This endpoint is used by [MS-RPCH] as the underlying transport, when [MS-RPCH] runs
over HTTPS.

 Port 3388: This endpoint is used by the RDG server to listen for incoming RPC method calls. The
authenticated RPC interface allows RPC to negotiate the use of authentication and the
authentication level on behalf of the RDG client and target server.

Port 3388 endpoint and at least one of Port 80 and Port 443 endpoints MUST be supported.

 The RDGSP Protocol MUST use the UUID, as specified in section 1.9. The RPC version number is 1.3.

2.1.2 HTTP Transport

The HTTP transport based RDG protocol is transported by an HTTPS connection. By default the RDG

server listens on the URL HTTPS Binding URL with port 443. However, the port number can be
configured to a different value, see section 3.1.1 for details.

When the RDG server connects with a reverse proxy, the connection from the RDG client is

terminated and another connection to the RDG server is created, over which data is relayed. The
connection between the reverse proxy and the RDG server can then be over HTTP without SSL, for
which the RDG server also binds on the HTTP binding URL.

2.1.3 UDP Transport

This protocol uses UDP transport.

This protocol uses the following endpoints.

 Port 3391: This endpoint is used by the RDG server to listen for incoming UDP packets.

2.2 Data Types

2.2.1 Common Data Types

The following sections describe the data types that are used by all the transports of RDG.

%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212

32 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1.1 RESOURCENAME

This type is declared as follows:

 typedef [string] wchar_t* RESOURCENAME;

The target server name to which the RDG server connects. This refers to the ADM element Target
server name (sections 3.1.1 and 3.5.1). The name MUST NOT be NULL and SHOULD be a valid
server name. A valid target server name is one which DNS can resolve properly. Also, a valid target
server is one which is up and running, and can accept a terminal server connection.

A RESOURCENAME can be an IP address, FQDN, or NetBIOS name. DNS cannot resolve all NetBIOS
names—for example, there are differences in the allowed characters, differences in length, and
differences in composition rules. Therefore, RESOURCENAME can be a NetBIOS name if the NetBIOS
name uses characters and length restrictions allowed by DNS which enables DNS to resolve the name.

2.2.2 RPC Over HTTP Transport Data Types

In addition to the RPC base types and definitions as specified in [C706] section 3.1, [MS-RPCE]
section 2.2 and [MS-DTYP], additional data types are defined in the following sections.

In addition to the RPC base types and definitions described, the additional data types are defined in
the MIDL specification for this RPC interface.

2.2.2.1 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE

An RPC context handle representing the tunnel (2) for the given connection. For details about the
modes of the context handles, see [MSDN-MMSCH]. For the NOSERIALIZE context handle, there can
be more than one pending RPC call on the RDG server. However, on the wire, it is identical to
PTUNNEL_CONTEXT_HANDLE_SERIALIZE.

This type is declared as follows:

 typedef [context_handle] void* PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context
handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] sections

3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.2.2 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE

An RPC context handle representing the channel for the given connection. For details on modes of
the context handles, see [MSDN-MMSCH]. For the NOSERIALIZE context handle, there can be more

than one pending RPC call on the RDG server. However, on the wire, it is identical to
PCHANNEL_CONTEXT_HANDLE_SERIALIZE.

This type is declared as follows:

 typedef [context_handle] void* PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context
handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] section
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=151562
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=151562
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

33 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.3 PTUNNEL_CONTEXT_HANDLE_SERIALIZE

An RPC context handle representing the tunnel (2) for the given connection. For details about the
modes of the context handles, see [MSDN-MMSCH]. For this context handle, there can be no more

than one pending RPC call on the RDG server. On the wire it is identical to
PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE.

This type is declared as follows:

 typedef [context_handle] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE PTUNNEL_CONTEXT_HANDLE_SERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context
handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] section
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.2.4 PCHANNEL_CONTEXT_HANDLE_SERIALIZE

An RPC context handle representing the channel for the given connection. For details on the modes
of the context handles, see [MSDN-MMSCH]. For this context handle, there can be no more than one
pending RPC call on the RDG server. On the wire it is identical to
PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE.

This type is declared as follows:

 typedef [context_handle]
PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE PCHANNEL_CONTEXT_HANDLE_SERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context

handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] section
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.3 HTTP Transport Data Types

2.2.3.1 Custom HTTP Methods

This protocol defines the following custom HTTP methods.

Method Description

RDG_IN_DATA (section 2.2.3.1.1) Request to create an IN channel.

RDG_OUT_DATA (section 2.2.3.1.2) Request to create an OUT channel.

2.2.3.1.1 RDG_IN_DATA

This method is used to create an IN channel by the RDG server. The custom header RDG-
Connection-Id (section 2.2.3.2.1) is set to a unique identifier, a GUID that is generated by the RDG
client and is used to correlate IN channel and OUT channel. The client disallows caching.

2.2.3.1.2 RDG_OUT_DATA

https://go.microsoft.com/fwlink/?LinkId=151562
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=151562
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

34 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This method is used to create an OUT channel by the RDG server. The custom header RDG-
Connection-Id (section 2.2.3.2.1) is set to a unique identifier, a GUID which is used in creating the IN

channel request. The client disallows caching.

2.2.3.2 Custom HTTP Headers

The messages exchanged in this protocol use the following HTTP headers in addition to the existing
set of standard HTTP headers.

Header Description

RDG-Connection-
Id (section 2.2.3.2.1)

A GUID generated by the RDG client, which is used by the
RDG_IN_DATA (section 2.2.3.1.1) and RDG_OUT_DATA (section 2.2.3.1.2) methods
to correlate between the IN channel and the OUT channel.

RDG-Correlation-
Id (section 2.2.3.2.2)

Optional GUID used to specify a correlation identifier for the connection.

RDG-User-
Id (section 2.2.3.2.3)

Optional user name associated with the connection.

2.2.3.2.1 RDG-Connection-Id

A GUID generated by the RDG client, which is used by RDG_IN_DATA (section 2.2.3.1.1) and

RDG_OUT_DATA (section 2.2.3.1.2) methods to correlate the IN channel and the OUT channel.

2.2.3.2.2 RDG-Correlation-Id

An optional header containing a GUID, generated by the RDG client, which specifies the correlation
identifier for the connection, which can appear in some of the RDG or terminal server's event logs.
This value, if provided, MUST be the same as provided in the RDP_NEG_CORRELATION_INFO structure

([MS-RDPBCGR] section 2.2.1.1.2) or RDPUDP_CORRELATION_ID_PAYLOAD structure ([MS-

RDPEUDP] section 2.2.2.8).

The RDG-Correlation-Id header value is an ASCII representation of a GUID, including curly braces.

2.2.3.2.3 RDG-User-Id

An optional header containing the name of the user requesting use of the RDG. This value, if provided,
is used only for event logging purposes, as an aid to identify the specific user related to an event.

The RDG-User-Id header value is the user’s name in Unicode, encoded using BASE64.

2.2.3.3 Custom URL Query Parameters

The protocol supports several URL query parameters in HTTP and WebSocket protocol requests from
the client. The parameters provide an alternative to the custom HTTP headers defined in section

2.2.3.2, and their values are included in a query string as a part of the RDG server URL. The query
string MUST be set to a serialization of the parameter name/value pairs, using the "application/x-
www-form-urlencoded" encoding specified in [URL].

The server MUST accept these parameters as an alternative to the custom HTTP headers when
processing a WebSocket Upgrade request ([RFC6455] section 4).

The following URL query parameters are defined:

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
https://go.microsoft.com/fwlink/?linkid=853950
https://go.microsoft.com/fwlink/?LinkId=252388

35 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name Description

ConId (section 2.2.3.3.1) A client-generated connection identifier.

CorId (section 2.2.3.3.2) A client-generated correlation identifier.

UsrId (section 2.2.3.3.3) The name of the user connecting to the RDG.

AuthS (section 2.2.3.3.4) The custom authentication scheme.

ClGen (section 2.2.3.3.5) The client generation string.

ClBld (section 2.2.3.3.6) The client build string.

ClmTk (section 2.2.3.3.7) Reserved for future use.

2.2.3.3.1 ConId

A GUID generated by the RDG client, equivalent to the RDG-Connection-Id (section 2.2.3.2.1)

header.

2.2.3.3.2 CorId

An optional client-generated GUID, equivalent to the RDG-Correlation-Id (section 2.2.3.2.2) header.

2.2.3.3.3 UsrId

An optional value containing the name of the user requesting use of the RDG, equivalent to the RDG-

User-Id (section 2.2.3.2.3) header.

2.2.3.3.4 AuthS

An optional value containing the name of a custom authentication scheme. This field is used in a
similar way to the HTTP Authorization header when specifying an extended authentication scheme.

2.2.3.3.5 ClGen

An optional string identifying the type and "generation" of the client program.

2.2.3.3.6 ClBld

An optional string identifying the specific build of the client program.

2.2.3.3.7 ClmTk

This field is reserved for future use.

2.2.4 UDP Transport Data Types

None.

36 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.5 Constants

2.2.5.1 Common Constants

None.

2.2.5.2 RPC Transport Constants

2.2.5.2.1 MAX_RESOURCE_NAMES

Constant/value Description

MAX_RESOURCE_NAMES

50

The maximum range allowed by the RDG server for the numResourceNames data
type in the TSENDPOINTINFO structure.

2.2.5.2.2 TSG_PACKET_TYPE_HEADER

Constant/value Description

TSG_PACKET_TYPE_HEADER

0x00004844

This constant is used by the packetId field of the TSG_PACKET structure. The
RDG client and RDG server SHOULD not use this type, as specified in sections
2.2.9.2 and 2.2.9.2.1.1.

2.2.5.2.3 TSG_PACKET_TYPE_VERSIONCAPS

Constant/value Description

TSG_PACKET_TYPE_VERSIONCAPS

0x00005643

This constant is used by the packetId field of the TSG_PACKET structure.
When this constant is present, the packetVersionCaps field of the
TSGPacket union field in the TSG_PACKET structure MUST be a pointer to
a TSG_PACKET_VERSIONCAPS structure.

2.2.5.2.4 TSG_PACKET_TYPE_QUARCONFIGREQUEST

Constant/value Description

TSG_PACKET_TYPE_QUARCONFIGREQUEST

0x00005143

This constant is used by the packetId field of the TSG_PACKET
structure. When this constant is present, the
packetQuarConfigRequest field of the TSGPacket union field in
the TSG_PACKET structure MUST be a pointer to a
TSG_PACKET_QUARCONFIGREQUEST structure.

2.2.5.2.5 TSG_PACKET_TYPE_QUARREQUEST

Constant/value Description

TSG_PACKET_TYPE_QUARREQUEST

0x00005152

This constant is used by the packetId field of the TSG_PACKET structure.
When this constant is present, the packetQuarRequest field of the
TSGPacket union field in the TSG_PACKET structure MUST be a pointer to
a TSG_PACKET_QUARREQUEST structure. It is also used by the RDG server
in the flags filed of the TSG_PACKET_RESPONSE structure in response to

37 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Constant/value Description

the TsProxyAuthorizeTunnel call.

2.2.5.2.6 TSG_PACKET_TYPE_RESPONSE

Constant/value Description

TSG_PACKET_TYPE_RESPONSE

0x00005052

This constant is used by the packetId field, of the TSG_PACKET structure.
When this constant is present, the packetResponse field of the TSGPacket
union field, in the TSG_PACKET structure, MUST be a pointer to a
TSG_PACKET_RESPONSE structure.

2.2.5.2.7 TSG_PACKET_TYPE_QUARENC_RESPONSE

Constant/value Description

TSG_PACKET_TYPE_QUARENC_RESPONSE

0x00004552

This constant is used by the packetId field of the TSG_PACKET
structure. When this type is present, the packetQuarEncResponse
field of the TSGPacket union field in the TSG_PACKET structure
MUST be a pointer to a TSG_PACKET_QUARENC_RESPONSE
structure.

2.2.5.2.8 TSG_CAPABILITY_TYPE_NAP

Constant/value Description

TSG_CAPABILITY_TYPE_NAP

0x00000001

This constant is used by the TSGCapNap field of TSG_CAPABILITIES_UNION. It
indicates whether Network Access Protection (NAP) capabilities are supported
by the RDG client and RDG server.

2.2.5.2.9 TSG_PACKET_TYPE_CAPS_RESPONSE

Constant/value Description

TSG_PACKET_TYPE_CAPS_RESPONSE

0x00004350

This constant is used by the packetId field of the TSG_PACKET
structure. When this type is present, the packetCapsResponse field of
the TSGPacket union field in the TSG_PACKET structure MUST be a
pointer to a TSG_PACKET_CAPS_RESPONSE structure.

2.2.5.2.10 TSG_PACKET_TYPE_MSGREQUEST_PACKET

Constant/value Description

TSG_PACKET_TYPE_MSGREQUEST_PACKET

0x00004752

This constant is used by the packetId field of the TSG_PACKET
structure. When this type is present, the packetMsgRequest field
of the TSGPacket union field in the TSG_PACKET structure MUST
be a pointer to a TSG_PACKET_MSG_REQUEST structure.

38 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.5.2.11 TSG_PACKET_TYPE_MESSAGE_PACKET

Constant/value Description

TSG_PACKET_TYPE_MESSAGE_PACKET

0x00004750

This constant is used by the packetId field of the TSG_PACKET
structure. When this type is present, the packetMsgResponse field of
the TSGPacket union field in the TSG_PACKET structure MUST be a
pointer to a TSG_PACKET_MSG_RESPONSE structure.

2.2.5.2.12 TSG_PACKET_TYPE_AUTH

Constant/value Description

TSG_PACKET_TYPE_AUTH

0x00004054

This constant is used by the packetId field of the TSG_PACKET structure. When this
type is present, the packetAuth field of the TSGPacket union field in the
TSG_PACKET structure MUST be a pointer to a TSG_PACKET_AUTH structure.

2.2.5.2.13 TSG_PACKET_TYPE_REAUTH

Constant/value Description

TSG_PACKET_TYPE_REAUTH

0x00005250

This constant is used by the packetId field of the TSG_PACKET structure. When
this type is present, the packetReauth field of the TSGPacket union field in the
TSG_PACKET structure MUST be a pointer to a TSG_PACKET_REAUTH structure.

2.2.5.2.14 TSG_ASYNC_MESSAGE_CONSENT_MESSAGE

Constant/value Description

TSG_ASYNC_MESSAGE_CONSENT_MESSAGE

0x00000001

This constant is used by the msgType field of the
TSG_PACKET_MSG_RESPONSE structure. This value indicates
that the consentMessage field of the
TSG_PACKET_TYPE_MESSAGE_UNION contains the Consent
Message.

2.2.5.2.15 TSG_ASYNC_MESSAGE_SERVICE_MESSAGE

Constant/value Description

TSG_ASYNC_MESSAGE_SERVICE_MESSAGE

0x00000002

This constant is used by the msgType field of the
TSG_PACKET_MSG_RESPONSE structure. This value indicates that
the serviceMessage field of the
TSG_PACKET_TYPE_MESSAGE_UNION contains the Service
Message.

2.2.5.2.16 TSG_ASYNC_MESSAGE_REAUTH

Constant/value Description

TSG_ASYNC_MESSAGE_REAUTH This constant is used by the msgType field of the
TSG_PACKET_MSG_RESPONSE structure. This value indicates that the

39 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Constant/value Description

0x00000003 reauthMessage field of the TSG_PACKET_TYPE_MESSAGE_UNION contains
the Reauthentication request to the client.

2.2.5.2.17 TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST

Constant/value Description

TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST

0x00000001

This constant is used by the procId parameter of the
TsProxyMakeTunnelCall method. This value indicates that the client
can receive Service Messages and the RDG server SHOULD send
the same when available.

2.2.5.2.18 TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST

Constant/value Description

TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST

0x00000002

This constant is used by the procId parameter of the
TsProxyMakeTunnelCall method. This value indicates that the
client has requested to cancel the pending service message
request on the RDG server.

2.2.5.2.19 TSG_NAP_CAPABILITY_QUAR_SOH

Constant/value Description

TSG_NAP_CAPABILITY_QUAR_SOH

0x00000001

This constant is used to represent the NAP quarantine statement of
health (SoH) capability. If the RDG client supports this capability, it
means that the RDG client is capable of sending a quarantine statement of
health response (SoHR) to the RDG server as specified in section
2.2.9.2.1.5.1. If the RDG server supports this capability, it means that the
RDG server is capable of receiving and processing a quarantine statement
of health response from the RDG client as specified in section
2.2.9.2.1.5.1.<7>

2.2.5.2.20 TSG_NAP_CAPABILITY_IDLE_TIMEOUT

Constant/value Description

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

0x00000002

This constant is used to represent the Idle timeout capability. If the
RDG client supports this capability, it means that the RDG client is
capable of receiving and processing an idle timeout value as specified in
section 2.2.9.2.1.5.1. If the RDG server supports this capability, it
means that the RDG server is capable of sending an idle timeout value
to the client as specified in section 2.2.9.2.1.5.1.

2.2.5.2.21 TSG_MESSAGING_CAP_CONSENT_SIGN

40 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Constant/value Description

TSG_MESSAGING_CAP_CONSENT_SIGN

0x00000004

This constant is used to represent the consent message capability. If
the RDG client supports this capability, it means that the RDG client is
capable of receiving and processing a consent message as specified in
section 2.2.9.2.1.9.1. If the RDG server supports this capability, it
means that the RDG server is capable of sending a consent message
to the RDG client as specified in section 2.2.9.2.1.9.1.

2.2.5.2.22 TSG_MESSAGING_CAP_SERVICE_MSG

Constant/value Description

TSG_MESSAGING_CAP_SERVICE_MSG

0x00000008

This constant is used to represent the service message capability. If the
RDG client supports this capability, it means that the RDG client is
capable of receiving and processing a service message as specified in
section 2.2.9.2.1.9.1. If the RDG server supports this capability, it
means that the RDG server is capable of sending a service message to
the RDG client as specified in section 2.2.9.2.1.9.1.

2.2.5.2.23 TSG_MESSAGING_CAP_REAUTH

Constant/value Description

TSG_MESSAGING_CAP_REAUTH

0x00000010

This constant is used to represent the reauthentication capability. If the RDG
client supports this capability, it means that the RDG client is capable of
performing reauthentication according to the same methods as initial
authentication, as specified in section 2.1. If the RDG server supports this

capability, it means that the RDG server is capable of sending a
reauthentication request to the RDG client, as specified in section
2.2.9.2.1.9.1

2.2.5.3 HTTP Transport Constants

2.2.5.3.1 HTTP_CHANNEL_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration

Constant/value Description

HTTP_CHANNEL_RESPONSE_FIELD_CHANNELID

0x1

This constant is used to represent that the
HTTP_CHANNEL_RESPONSE_OPTIONAL (section 2.2.10.5)
structure contains the channelId field, as specified in
section 3.5.1.

HTTP_CHANNEL_RESPONSE_FIELD_AUTHNCOOKIE

0x2

This constant is used to represent that the
HTTP_CHANNEL_RESPONSE_OPTIONAL structure contains
the authnCookie field that describes the UDP
authentication cookie

HTTP_CHANNEL_RESPONSE_FIELD_UDPPORT

0x4

This constant is used to represent that the
HTTP_CHANNEL_RESPONSE_OPTIONAL structure contains

the udpPort field.

41 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.5.3.2 HTTP_EXTENDED_AUTH Enumeration

Constant/value Description

HTTP_EXTENDED_AUTH_NONE

0x00

This constant represents that an extended authentication is not used.

HTTP_EXTENDED_AUTH_SC

0x01

This constant represents that an RDG client requested a smart card
authentication.

HTTP_EXTENDED_AUTH_PAA

0x02

This constant represents that an RDG client requested a pluggable
authentication.

HTTP_EXTENDED_AUTH_SSPI_NTLM

0x04

This constant represents that an RDG client requested NTLM
authentication through the extended authentication protocol sequence.

2.2.5.3.3 HTTP_PACKET_TYPE Enumeration

Constant/value Description

PKT_TYPE_HANDSHAKE_REQUEST

0x1

This constant represents that the packet type is handshake request.

PKT_TYPE_HANDSHAKE_RESPONSE

0x2

This constant represents that the packet type is handshake
response.

PKT_TYPE_EXTENDED_AUTH_MSG

0x3

This constant represents that the packet type is an extended
authentication message.

PKT_TYPE_TUNNEL_CREATE

0x4

This constant represents that the packet type is a tunnel (2) create
request.

PKT_TYPE_TUNNEL_RESPONSE

0x5

This constant represents that the packet type is a tunnel (2) create
response.

PKT_TYPE_TUNNEL_AUTH

0x6

This constant represents that the packet type is a tunnel (2)
authorization request.

PKT_TYPE_TUNNEL_AUTH_RESPONSE

0x7

This constant represents that the packet type is a tunnel (2)
authorization response.

PKT_TYPE_CHANNEL_CREATE

0x8

This constant represents that the packet type is a channel create
request.

PKT_TYPE_CHANNEL_RESPONSE

0x9

This constant represents that the packet type is a channel create
response.

PKT_TYPE_DATA

0xA

This constant represents that the packet type is RDP data.

42 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Constant/value Description

PKT_TYPE_SERVICE_MESSAGE

0xB

This constant represents that the packet type is a service message.

PKT_TYPE_REAUTH_MESSAGE

0xC

This constant represents that the packet type is reauthentication
message.

PKT_TYPE_KEEPALIVE

0xD

This constant represents that the packet type is keep-alive packet.

PKT_TYPE_CLOSE_CHANNEL

0x10

This constant represents that the packet type is close channel request.

PKT_TYPE_CLOSE_CHANNEL_RESPONSE

0x11

This constant represents that the packet type is close channel
response.

2.2.5.3.4 HTTP_TUNNEL_AUTH_FIELDS_PRESENT_FLAGS Enumeration

Constant/value Description

HTTP_TUNNEL_AUTH_FIELD_SOH

0x1

This constant represents that the HTTP_TUNNEL_AUTH_PACKET_OPTIONAL
structure contains the statementOfHealth field.

2.2.5.3.5 HTTP_TUNNEL_AUTH_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration

Constant/value Description

HTTP_TUNNEL_AUTH_RESPONSE_FIELD_REDIR_FLAGS

0x1

This constant represents that
HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL
contains the redirFlags field.

HTTP_TUNNEL_AUTH_RESPONSE_FIELD_IDLE_TIMEOUT

0x2

This constant represents that
HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL

contains the idleTimeout field.

HTTP_TUNNEL_AUTH_RESPONSE_FIELD_SOH_RESPONSE

0x4

This constant represents that
HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL
contains the SoHResponse field.

2.2.5.3.6 HTTP_TUNNEL_PACKET_FIELDS_PRESENT_FLAGS Enumeration

Constant/value Description

HTTP_TUNNEL_PACKET_FIELD_PAA_COOKIE

0x1

This constant represents that HTTP_TUNNEL_PACKET_OPTIONAL
contains the PAACookie field.

43 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Constant/value Description

HTTP_TUNNEL_PACKET_FIELD_REAUTH

0x2

This constant represents that HTTP_TUNNEL_PACKET_OPTIONAL
contains the reauthTunnelContext field.

2.2.5.3.7 HTTP_TUNNEL_REDIR_FLAGS Enumeration

Constant/value Description

HTTP_TUNNEL_REDIR_ENABLE_ALL

0x80000000

This constant represents that device redirection is enabled for all
devices

HTTP_TUNNEL_REDIR_DISABLE_ALL

0x40000000

This constant represents that device redirection is disabled for all
devices

HTTP_TUNNEL_REDIR_DISABLE_DRIVE

0x1

This constant represents that drive redirection is disabled.

HTTP_TUNNEL_REDIR_DISABLE_PRINTER

0x2

This constant represents that printer redirection is disabled.

HTTP_TUNNEL_REDIR_DISABLE_PORT

0x4

This constant represents that port redirection is disabled.

HTTP_TUNNEL_REDIR_DISABLE_CLIPBOARD

0x8

This constant represents that clibboard redirection is disabled.

HTTP_TUNNEL_REDIR_DISABLE_PNP

0x10

This constant represents that PnP redirection is disabled.

2.2.5.3.8 HTTP_TUNNEL_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration

Constant/value Description

HTTP_TUNNEL_RESPONSE_FIELD_TUNNEL_ID

0x1

This constant represents that
HTTP_TUNNEL_RESPONSE_OPTIONAL (section 2.2.10.21)
contains the tunnelId field.

HTTP_TUNNEL_RESPONSE_FIELD_CAPS

0x2

This constant represents that
HTTP_TUNNEL_RESPONSE_OPTIONAL contains the
capsFlags field.

HTTP_TUNNEL_RESPONSE_FIELD_SOH_REQ

0x4

This constant represents that
HTTP_TUNNEL_RESPONSE_OPTIONAL contains the nonce
and the serverCert fields.

HTTP_TUNNEL_RESPONSE_FIELD_CONSENT_MSG

0x10

This constant represents that
HTTP_TUNNEL_RESPONSE_OPTIONAL contains the
consentMsg field.

44 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.5.3.9 HTTP_CAPABILITY_TYPE Enumeration

Constant/value Description

HTTP_CAPABILITY_TYPE_QUAR_SOH

0x1

This constant represents whether the RDG client or the RDG
server is NAP capable.

HTTP_CAPABILITY_IDLE_TIMEOUT

0x2

This constant represents whether the RDG client or the RDG
server supports idle timeout.

HTTP_CAPABILITY_MESSAGING_CONSENT_SIGN

0x4

This constant represents whether the RDG client or the RDG
server supports consent messaging.

HTTP_CAPABILITY_MESSAGING_SERVICE_MSG

0x8

This constant represents whether the RDG client or the RDG
server supports service messaging.

HTTP_CAPABILITY_REAUTH

0x10

This constant represents whether the RDG client or the RDG
server supports reauthentication.

HTTP_CAPABILITY_UDP_TRANSPORT

0x20

This constant represents whether the RDG client or the RDG
server supports UDP transport.

2.2.5.3.10 Custom HTTP Authentication Scheme Names

The following scheme names are used to identify custom authentication schemes. They are used in the
HTTP WWW-Authenticate and Authorization headers.

Constant/value Description

HTTP_TRANS_CUSTOM_AUTH_SMARTCARD

"SMARTCARD"

This scheme name is used to specify smartcard authentication.

HTTP_TRANS_CUSTOM_AUTH_PAA

"PAA"

This scheme name is used to specify pluggable authentication.

HTTP_TRANS_CUSTOM_AUTH_CONNID

"CONNID"

This value is reserved for future use.

HTTP_TRANS_CUSTOM_AUTH_SSPI_NTLM

"SSPI_NTLM"

This scheme name is used to specify NTLM extended
authentication.

2.2.5.4 UDP Transport Constants

2.2.5.4.1 UdpPktType Enumeration

Constant/value Description

PKT_TYPE_CONNECT_REQ/1

This constant is used to represent the CONNECT packet type sent by
the client during the Connection Setup Phase (section 1.3.1.1.1).

45 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Constant/value Description

PKT_TYPE_CONNECT_RESP/2

This constant represents CONNECT_RESPONSE packet type sent by
the RDG server during the Connection Setup Phase.

PKT_TYPE_PAYLOAD/3

This constant represents the DATA packet type sent either by the
RDG client or RDG server during the Data Transfer
Phase (section 1.3.1.1.2).

PKT_TYPE_DISCONNECT/4

This constant represents the DISCONNECT packet type sent either
by the RDG client or RDG server during the Shutdown
Phase (section 1.3.1.1.3).

PKT_TYPE_CONNECT_REQ_FRAGMENT/5 This constant represents the fragment of CONNECT_REQUEST
packet type sent by the client. The RDG client MUST use the
PKT_TYPE_CONNECT_REQ_FRAGMENT packet type to send
connection request to the RDP server. It MUST do so by splitting a
CONNECT_PKT request into one or more fragments of type
CONNECT_PKT_FRAGMENT (section 2.2.11.10).<8>

2.2.6 Return Codes

The following HRESULT return values are specified by this protocol. The protocol MUST be ended
when any of the below return codes, except ERROR_SUCCESS, are received. The phrase "ending the
protocol" refers to closing the channel and tunnel (2), if a channel has been created; or closing the
tunnel (2), if a channel has not been created, but the tunnel (2) has been created.

2.2.6.1 Common Return Codes

Return value/code Description

0x800759D8

E_PROXY_INTERNALERROR

Used as a generic catch-all when an unexpected error
happens.

0x800759DA

E_PROXY_RAP_ACCESSDENIED

Returned when an attempt to resolve or access a
target server is blocked by RDG server policies.

0x800759DB

E_PROXY_NAP_ACCESSDENIED

Returned when the RDG server denies the RDG
client access due to policy.

0x800759DF

E_PROXY_ALREADYDISCONNECTED

Returned when an operation is called on a
disconnected tunnel (2) or channel.

0x800759ED

E_PROXY_QUARANTINE_ACCESSDENIED

The RDG server rejects the connection due to
quarantine policy.

0x800759EE

E_PROXY_NOCERTAVAILABLE

The RDG server cannot find a certificate to register
for SCHANNEL Authentication Service (AS).

0x800759F7

E_PROXY_COOKIE_BADPACKET

An invalid cookie packet was sent by the client.

0x800759F8

E_PROXY_COOKIE_AUTHENTICATION_ACCESS_DENIED

Returned when the RDG server is in pluggable
authentication mode and the given user does not
have access to connect via RDG server.

46 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x800759F9

E_PROXY_UNSUPPORTED_AUTHENTICATION_METHOD

Returned to the RDG client when the RDG server is in
native authentication mode and the RDG client is in
pluggable authentication mode and vice versa.

0x800759E9

E_PROXY_CAPABILITYMISMATCH

Returned when the RDG server supports the
TSG_MESSAGING_CAP_CONSENT_SIGN capability
and is configured to allow only a RDG client that
supports the TSG_MESSAGING_CAP_CONSENT_SIGN
capability, but the RDG client doesn't support the
capability.

0x00000000

ERROR_SUCCESS

Returned when the requested operation succeeds.

0x00000000

ERROR_SUCCESS

Returned when the requested operation succeeds.

0x00000005

ERROR_ACCESS_DENIED

Returned by the RDG server when the requested
operation is not allowed.

0x000059DD

HRESULT_CODE(E_PROXY_TS_CONNECTFAILED)

Returned by RDG server when the RDG server fails to
connect to the target server.

0x000059E6

HRESULT_CODE(E_PROXY_MAXCONNECTIONSREACHED)

The RDG server has reached the maximum
connections allowed.

0X000059D8

HRESULT_CODE(E_PROXY_INTERNALERROR)

Returned when an unexpected error occurs.

0x000004CA

ERROR_GRACEFUL_DISCONNECT

Returned by the RDG server when the connection is
disconnected by the RDG client.

0x000059E8

HRESULT_CODE(E_PROXY_NOTSUPPORTED)

Returned when the RDG server receives an
unsupported packet.

0x8009030C

SEC_E_LOGON_DENIED

Returned when client authentication fails during

NTLM extended authentication.

In addition to the preceding HRESULTs, which are defined by the [MS-TSGU] protocol, the following
DWORDs are returned by only RPC and HTTP transports. These error codes are returned by
TsProxySetupReceivePipe for RPC transport, for HTTP transport these are returned in the response
packet sent by the RDG server as per the protocol.

Return value/code Description

0x000059F6

HRESULT_CODE(E_PROXY_SESSIONTIMEOUT)

Returned if a session timeout occurs and
"disconnect on session timeout" is configured at the
RDG server and the ADM element Negotiated
Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0X000059FA

HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FAILED)

Returned when a reauthentication attempt by the
client has failed because the user credentials are no
longer valid and the ADM element Negotiated
Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000059FB Returned when a reauthentication attempt by the
client has failed because the user is not authorized

47 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILED) to connect through the RDG server anymore and
the ADM element Negotiated Capabilities
contains TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000059FC

HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILED)

Returned when a reauthentication attempt by the
client has failed because the user is not authorized
to connect to the given end resource anymore and
the ADM element Negotiated Capabilities
contains TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000059FD

HRESULT_CODE(E_PROXY_SDR_NOT_SUPPORTED_BY_TS)

The RDG server is capable of exchanging policies
with some target servers.<9> If the RDG server is
configured to allow connections to only target

servers that are capable of policy exchange and the
target server is not capable of exchanging policies
with the RDG server.

0x00005A00

HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILED)

Returned when a reauthentication attempt by the
RDG client has failed because the health of the
user's computer is no longer compliant with the
RDG server configuration and the ADM element
Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000004D4

HRESULT_CODE(E_PROXY_CONNECTIONABORTED)

Returned when the following happens:

1. The RDG server administrator forcefully
disconnects the connection.

2. Or when the ADM element Negotiated
Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT and any

one of the following happens:

1. Session timeout occurs and disconnect on
session timeout is configured at the RDG
server.

2. Reauthentication attempt by the client has
failed because the user credentials are no
longer valid.

3. Reauthentication attempt by the client has
failed because the user is not authorized to
connect through the RDG server anymore.

4. Reauthentication attempt by the client has
failed because the user is not authorized to
connect to the given end resource
anymore.

5. Reauthentication attempt by the RDG
client has failed because the health of the
user's computer is no longer compliant
with the RDG server configuration.

0x000000A0

ERROR_BAD_ARGUMENTS

Returned when the target server unexpectedly
closes the connection between the RDG server and
the target server.

48 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.6.2 RPC Transport Return Codes

Return value/code Description

0x8007071A

HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED)

Returned when a pending call is canceled by the RDG
client or the call is canceled because a shutdown sequence
is initiated.

In addition to the preceding HRESULTs, which are defined by the [MS-TSGU] protocol, the following
DWORDs are returned in an rpc_fault packet when an exception is raised on the RDG server.

Return value/code Description

0x000004E3

ERROR_ONLY_IF_CONNECTED

Returned by the RDG server when an attempt is made by the client to send
data to the target server on connection state other than Pipe Created state.

0x00000057

ERROR_INVALID_PARAMETER

Returned by the RDG server when the RDG client sends a non-NULL value in a
data member of the TSG_PACKET_QUARREQUEST structure but it is not
prefixed with Nonce.

0x000003E3

ERROR_OPERATION_ABORTED

Returned when the RDG server does not receive a TsProxySetupReceivePipe
method call before the Connection Timer (section 3.2.4.1) expires.

2.2.6.3 HTTP Transport Return Codes

There are no return codes that are specific only to the HTTP transport.

2.2.6.4 UDP Transport Return Codes

There are no return codes that are specific only to the UDP transport.

2.2.7 Structures and Unions

2.2.8 Common Structures and Unions

None.

2.2.9 RPC over HTTP Transport Structures and Unions

2.2.9.1 TSENDPOINTINFO

The TSENDPOINTINFO structure contains information about the target server to which the RDG

server attempts to connect.

 typedef struct _tsendpointinfo {
 [size_is(numResourceNames)] RESOURCENAME* resourceName;
 [range(0, MAX_RESOURCE_NAMES)] unsigned long numResourceNames;
 [unique, size_is(numAlternateResourceNames)]
 RESOURCENAME* alternateResourceNames;
 [range(0, 3)] unsigned short numAlternateResourceNames;
 unsigned long Port;
 } TSENDPOINTINFO,

49 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 *PTSENDPOINTINFO;

resourceName: An array of RESOURCENAME strings, as specified in section 2.2.1.1. The range is
from 0 to numResourceNames. This array, in conjunction with alternateResourceNames
parameter array, comprises the alias names of the target server to which the RDG server can
connect. As specified in the Protocol Overview (section 1.3), the RDG server acts as a proxy to
target server. The RDP client and target server MUST use [MS-RDPBCGR] to communicate.

numResourceNames: The number of RESOURCENAME datatypes in the resourceName array.
The value MUST be in the range of 1 to 50, inclusive.

alternateResourceNames: An array of RESOURCENAME strings to be used as alternative names
for the target server. The range is from 0 to numAlternateResourceNames.<10>

numAlternateResourceNames: The number of allowed alternateResourceNames. The value
MUST be in the range of 0 to 3, inclusive.

Port: Specifies the protocol ID and TCP port number for the target server endpoint to which the
RDG server connects. The protocol ID is in the low order 16 bits of this field and port number is in
the high order 16 bits. The value of the protocol ID must be set to 3.

2.2.9.2 TSG_PACKET

The TSG_PACKET structure specifies the type of structure to be used by the RDG client and RDG
server.

 typedef struct _TSG_PACKET {
 unsigned long packetId;
 [switch_is(packetId)] TSG_PACKET_TYPE_UNION TSGPacket;
 } TSG_PACKET,
 *PTSG_PACKET;

packetId: This value specifies the type of structure pointer contained in the TSGPacket field. Valid
values are specified in sections 2.2.5.2.2, 2.2.5.2.3, 2.2.5.2.4, 2.2.5.2.5, 2.2.5.2.6, 2.2.5.2.7,
2.2.5.2.9, 2.2.5.2.10, 2.2.5.2.11, 2.2.5.2.12, and 2.2.5.2.13.

TSGPacket: A union field containing the actual structure pointer corresponding to the value
contained in the packetId field. Valid structures for this field are specified in sections 2.2.9.2.1.1,
2.2.9.2.1.2, 2.2.9.2.1.3, 2.2.9.2.1.4, 2.2.9.2.1.5, 2.2.9.2.1.6, 2.2.9.2.1.7, 2.2.9.2.1.8,
2.2.9.2.1.9, 2.2.9.2.1.10, and 2.2.9.2.1.11.

2.2.9.2.1 TSG_PACKET_TYPE_UNION

The TSG_PACKET_TYPE_UNION union specifies an RPC switch_type union of structures as follows.

 typedef
 [switch_type(unsigned long)]
 union {
 [case(TSG_PACKET_TYPE_HEADER)]
 PTSG_PACKET_HEADER packetHeader;
 [case(TSG_PACKET_TYPE_VERSIONCAPS)]
 PTSG_PACKET_VERSIONCAPS packetVersionCaps;
 [case(TSG_PACKET_TYPE_QUARCONFIGREQUEST)]
 PTSG_PACKET_QUARCONFIGREQUEST packetQuarConfigRequest;
 [case(TSG_PACKET_TYPE_QUARREQUEST)]
 PTSG_PACKET_QUARREQUEST packetQuarRequest;
 [case(TSG_PACKET_TYPE_RESPONSE)]
 PTSG_PACKET_RESPONSE packetResponse;

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

50 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [case(TSG_PACKET_TYPE_QUARENC_RESPONSE)]
 PTSG_PACKET_QUARENC_RESPONSE packetQuarEncResponse;
 [case(TSG_PACKET_TYPE_CAPS_RESPONSE)]
 PTSG_PACKET_CAPS_RESPONSE packetCapsResponse;
 [case(TSG_PACKET_TYPE_MSGREQUEST_PACKET)]
 PTSG_PACKET_MSG_REQUEST packetMsgRequest;
 [case(TSG_PACKET_TYPE_MESSAGE_PACKET)]
 PTSG_PACKET_MSG_RESPONSE packetMsgResponse;
 [case(TSG_PACKET_TYPE_AUTH)]
 PTSG_PACKET_AUTH packetAuth;
 [case(TSG_PACKET_TYPE_REAUTH)]
 PTSG_PACKET_REAUTH packetReauth;
 } TSG_PACKET_TYPE_UNION,
 *PTSG_PACKET_TYPE_UNION;

packetHeader: A PTSG_PACKET_HEADER as specified in section 2.2.9.2.1.1.

packetVersionCaps: A PTSG_PACKET_VERSIONCAPS as specified in section 2.2.9.2.1.2.

packetQuarConfigRequest: A PTSG_PACKET_QUARCONFIGREQUEST as specified in section
2.2.9.2.1.3.

packetQuarRequest: A PTSG_PACKET_QUARREQUEST as specified in section 2.2.9.2.1.4.

packetResponse: A PTSG_PACKET_RESPONSE as specified in section 2.2.9.2.1.5.

packetQuarEncResponse: A PTSG_PACKET_QUARENC_RESPONSE as specified in section
2.2.9.2.1.6.

packetCapsResponse: A PTSG_PACKET_CAPS_RESPONSE as specified in section 2.2.9.2.1.7.

packetMsgRequest: A PTSG_PACKET_MSG_REQUEST as specified in section 2.2.9.2.1.8.

packetMsgResponse: A PTSG_PACKET_MSG_RESPONSE as specified in section 2.2.9.2.1.9.

packetAuth: A PTSG_PACKET_AUTH as specified in section 2.2.9.2.1.10.

packetReauth: A PTSG_PACKET_REAUTH as specified in section 2.2.9.2.1.11.

2.2.9.2.1.1 TSG_PACKET_HEADER

The TSG_PACKET_HEADER structure contains information about the ComponentID and PacketID
fields of the TSG_PACKET structure. The value of PacketID in TSG_PACKET MUST be set to
TSG_PACKET_TYPE_HEADER.

 typedef struct _TSG_PACKET_HEADER {
 unsigned short ComponentId;
 unsigned short PacketId;
 } TSG_PACKET_HEADER,
 *PTSG_PACKET_HEADER;

ComponentId: Represents the component sending the packet. This MUST be the following value:

Value Meaning

0x5452 TS Gateway Transport

PacketId: Unused.

51 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This structure cannot be used by itself as part of any method call. It can be used only in the context of
other structures.

2.2.9.2.1.2 TSG_PACKET_VERSIONCAPS

The TSG_PACKET_VERSIONCAPS structure is used for version and capabilities negotiation. The value
of the packetId field in TSG_PACKET MUST be set to TSG_PACKET_TYPE_VERSIONCAPS.

This structure MUST be embedded in the TSG_PACKET_QUARENC_RESPONSE.

 typedef struct _TSG_PACKET_VERSIONCAPS {
 TSG_PACKET_HEADER tsgHeader;
 [size_is(numCapabilities)] PTSG_PACKET_CAPABILITIES TSGCaps;
 [range(0, 32)] unsigned long numCapabilities;
 unsigned short majorVersion;
 unsigned short minorVersion;
 unsigned short quarantineCapabilities;
 } TSG_PACKET_VERSIONCAPS,
 *PTSG_PACKET_VERSIONCAPS;

tsgHeader: Specified in 2.2.9.2.1.1.

TSGCaps: An array of TSG_PACKET_CAPABILITIES structures. The number of elements in the array
is indicated by the numCapabilities field.

numCapabilities: The number of array elements for the TSGCaps field. This value MUST be in the
range of 0 and 32. If the TSGCaps field is ignored, then this field MUST also be ignored.

majorVersion: Indicates the major version of the RDG client or RDG server, depending on the

sender. This MUST be the following value:

Value Meaning

0x0001 Current major version of the Terminal Services Gateway Server Protocol.

minorVersion: Indicates the minor version of the RDG client or RDG server, depending on the
sender. This MUST be the following value.

Value Meaning

0x0001 Current minor version of the Terminal Services Gateway Server Protocol.

quarantineCapabilities: Indicates quarantine capabilities of the RDG client and RDG server,
depending on the sender. This MAY be the following value:<11>

Value Meaning

0x0001 Quarantine is supported and required by the RDG server.

2.2.9.2.1.2.1 TSG_PACKET_CAPABILITIES

The TSG_PACKET_CAPABILITIES structure contains information about the capabilities of the RDG

client and RDG server.

This structure MUST be embedded in the TSG_PACKET_VERSIONCAPS structure.

52 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _TSG_PACKET_CAPABILITIES {
 unsigned long capabilityType;
 [switch_is(capabilityType)] TSG_CAPABILITIES_UNION TSGPacket;
 } TSG_PACKET_CAPABILITIES,
 *PTSG_PACKET_CAPABILITIES;

capabilityType: Indicates the type of NAP capability supported by the RDG client or the RDG server.
This member MUST be the following value:

Value Meaning

0x00000001 The RDG server supports NAP capability type (TSG_CAPABILITY_TYPE_NAP).<12>

TSGPacket: Specifies the union containing the actual structure corresponding to the value defined in
the capabilityType field. Valid structures are specified in sections 2.2.9.2.1.2.1.1 and
2.2.9.2.1.2.1.2.

2.2.9.2.1.2.1.1 TSG_CAPABILITIES_UNION

The TSG_CAPABILITIES_UNION union specifies an RPC switch_type union of structures as follows.

 typedef
 [switch_type(unsigned long)]
 union {
 [case(TSG_CAPABILITY_TYPE_NAP)]
 TSG_CAPABILITY_NAP TSGCapNap;
 } TSG_CAPABILITIES_UNION,
 *PTSG_CAPABILITIES_UNION;

TSGCapNap: A TSG_CAPABILITY_NAP structure.

2.2.9.2.1.2.1.2 TSG_CAPABILITY_NAP

The TSG_CAPABILITY_NAP structure contains information about the NAP capabilities of the RDG
client and RDG server.

This structure MUST be embedded in the TSG_PACKET_CAPABILITIES structure.

 typedef struct _TSG_CAPABILITY_NAP {
 unsigned long capabilities;
 } TSG_CAPABILITY_NAP,
 *PTSG_CAPABILITY_NAP;

capabilities: Indicates the NAP capabilities supported by the RDG client and RDG server. This bit
field MUST be 0 or one or more of the following values.

Value

TSG_NAP_CAPABILITY_QUAR_SOH

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

TSG_MESSAGING_CAP_CONSENT_SIGN

TSG_MESSAGING_CAP_SERVICE_MSG

TSG_MESSAGING_CAP_REAUTH

53 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.9.2.1.3 TSG_PACKET_QUARCONFIGREQUEST

The TSG_PACKET_QUARCONFIGREQUEST structure contains information about quarantine

configuration. RDG server and RDG client MAY support this structure.<13> If the RDG server or RDG
client do not support the TSG_PACKET_QUARCONFIGREQUEST structure, then the error code
HRESULT_CODE(E_PROXY_NOTSUPPORTED) is returned.

 typedef struct _TSG_PACKET_QUARCONFIGREQUEST {
 unsigned long flags;
 } TSG_PACKET_QUARCONFIGREQUEST,
 *PTSG_PACKET_QUARCONFIGREQUEST;

flags: Contains information about quarantine configuration.

2.2.9.2.1.4 TSG_PACKET_QUARREQUEST

The TSG_PACKET_QUARREQUEST structure<14> contains information about the RDG client's
statement of health (SoH) and the name of the RDG client machine. The value of the packetId
field in TSG_PACKET MUST be set to TSG_PACKET_TYPE_QUARREQUEST.

 typedef struct _TSG_PACKET_QUARREQUEST {
 unsigned long flags;
 [string, size_is(nameLength)] wchar_t* machineName;
 [range(0, 512 + 1)] unsigned long nameLength;
 [unique, size_is(dataLen)] byte* data;
 [range(0, 8000)] unsigned long dataLen;
 } TSG_PACKET_QUARREQUEST,
 *PTSG_PACKET_QUARREQUEST;

flags: This field can be any value when sending and ignored on receipt.

machineName: A string representing the name of the RDG Client Machine name (section
3.5.1).<15> This field can be ignored. The length of the name, including the terminating null

character, MUST be equal to the size specified by the nameLength field.

nameLength: An unsigned long specifying the number of characters in machineName, including
the terminating null character. The specified value MUST be in the range from 0 to 513 characters.

data: An array of bytes that specifies the statement of health prepended with nonce, which is
obtained in TSG_PACKET_QUARENC_RESPONSE (section 2.2.9.2.1.6) from the RDG server in
response to TsProxyCreateTunnel.<16> This field can be ignored. The length of this data is

specified by the dataLen field.

dataLen: The length, in bytes, of the data field. This value MUST be in the range between 0 and
8000, both inclusive.

2.2.9.2.1.5 TSG_PACKET_RESPONSE

The TSG_PACKET_RESPONSE structure contains the response of the RDG server to the RDG client
for the TsProxyAuthorizeTunnel method call. The value of the packetId field in TSG_PACKET MUST be

set to TSG_PACKET_TYPE_RESPONSE.

 typedef struct _TSG_PACKET_RESPONSE {
 unsigned long flags;
 unsigned long reserved;
 [size_is(responseDataLen)] byte* responseData;

54 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [range(0, 24000)] unsigned long responseDataLen;
 TSG_REDIRECTION_FLAGS redirectionFlags;
 } TSG_PACKET_RESPONSE,
 *PTSG_PACKET_RESPONSE;

flags: The RDG server MUST set this value to TSG_PACKET_TYPE_QUARREQUEST to indicate that
this structure is in response to the TsProxyAuthorizeTunnel method call. The RDG client MAY
ignore this field.

reserved: This field is unused and can be any value when sending and ignored on receipt.

responseData: Byte data representing the response from the RDG server for the
TsProxyAuthorizeTunnel method call. If the Negotiated Capabilities ADM element contains
TSG_NAP_CAPABILITY_QUAR_SOH and TSG_NAP_CAPABILITY_IDLE_TIMEOUT and the value of
the dataLen member specified in the TSG_PACKET_QUARREQUEST structure (section 2.2.9.2.1.4)
is greater than zero, then responseData MUST contain both the statement of health response
(SoHR) and the idle timeout value. If Negotiated Capabilities contains only

TSG_NAP_CAPABILITY_QUAR_SOH and the value of the dataLen member specified in the
TSG_PACKET_QUARREQUEST structure (section 2.2.9.2.1.4) is greater than zero, then
responseData MUST contain only the statement of health response. If Negotiated Capabilities
contains only TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then responseData MUST contain only the
idle timeout value. The length of the data MUST be equal to that specified by responseDataLen.
If Negotiated Capabilities does not contain both TSG_NAP_CAPABILITY_QUAR_SOH and
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then responseData is ignored and responseDataLen is

set to zero.<17>

responseDataLen: Length, in bytes, of the data specified by the responseData field.

redirectionFlags: A TSG_REDIRECTION_FLAGS structure.<18>

2.2.9.2.1.5.1 responseData Format

The RDG server uses the responseData to send various data to the RDG client after tunnel (2)

authorization. The responseData is shown below.

Note Both the Idle timeout value and Statement of health response fields are optional, meaning
either one of them or both can be absent. Also note that, in case of Idle timeout value absence,
Statement of health response begins from the first DWORD itself. If both of them are absent, the
responseData is ignored and responseDataLen is set to zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Idle timeout value (optional)

Statement of health response (variable)

...

Idle timeout value (4 bytes): If the ADM element Negotiated Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the first 4 bytes of the responseData field is the
Idle timeout value in units of minutes.

Statement of health response (variable): If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_QUAR_SOH and the Statement of health is passed in the
TsProxyAuthorizeTunnel call as specified in 2.2.9.2.1.4, then the remaining number of bytes of the
responseData field is the Statement of health response.

55 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.9.2.1.5.2 TSG_REDIRECTION_FLAGS

The TSG_REDIRECTION_FLAGS structure specifies the device redirection settings that MUST be
enforced by the RDG client. For details about device redirection, see [MS-RDSOD] section 2.1.1.2.

This structure MUST be embedded in the TSG_PACKET_RESPONSE structure.

Note Both enableAllRedirections and disableAllRedirections MUST NOT be TRUE.

 typedef struct _TSG_REDIRECTION_FLAGS {
 BOOL enableAllRedirections;
 BOOL disableAllRedirections;
 BOOL driveRedirectionDisabled;
 BOOL printerRedirectionDisabled;
 BOOL portRedirectionDisabled;
 BOOL reserved;
 BOOL clipboardRedirectionDisabled;
 BOOL pnpRedirectionDisabled;
 } TSG_REDIRECTION_FLAGS,
 *PTSG_REDIRECTION_FLAGS;

enableAllRedirections: A Boolean value indicating whether the RDG server specifies any control
over the device redirection on the RDG client.

Value Meaning

FALSE

0x00000000

Device redirection is not enabled for all devices. Other fields of this structure specify which
device redirection is enabled or disabled.

TRUE

0x00000001

Device redirection is enabled for all devices. All other fields of this structure MUST be
ignored.

disableAllRedirections: A Boolean value indicating whether the RDG server specifies any control
over disabling all device redirection on the RDG client.

Value Meaning

FALSE

0x00000000

Device redirection is not disabled for all devices. Other fields of this structure specify which
device redirection is enabled or disabled.

TRUE

0x00000001

Device redirection is disabled for all devices. All other fields of this structure MUST be
ignored.

driveRedirectionDisabled: A Boolean value indicating whether the RDG server specifies any control
over disabling drive redirection on the RDG client.

Value Meaning

FALSE

0x00000000

The RDG client is allowed to choose its own redirection settings for enabling or disabling
drive redirection.

TRUE

0x00000001

Drive redirection is disabled.

printerRedirectionDisabled: A Boolean value indicating whether the RDG server specifies any
control over disabling printer redirection on the RDG client.

%5bMS-RDSOD%5d.pdf#Section_072543f94bd44dc6ab979a04bf9d2c6a

56 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

FALSE

0x00000000

The RDG client is allowed to choose its own redirection settings for enabling or disabling
printer redirection.

TRUE

0x00000001

Printer redirection is disabled.

portRedirectionDisabled: A Boolean value indicating whether the RDG server specifies any control
over disabling port redirection on the RDG client.

Value Meaning

FALSE

0x00000000

The RDG client is allowed to choose its own redirection settings for enabling or disabling port
redirection. Port redirection applies to both serial (COM) and parallel ports (LPT).

TRUE

0x00000001

Port redirection is disabled.

reserved: Unused. MUST be 0.

clipboardRedirectionDisabled: A Boolean value indicating whether the RDG server specifies any
control over disabling clipboard redirection on the RDG client.

Value Meaning

FALSE

0x00000000

The RDG client is allowed to choose its own redirection settings for enabling or disabling
clipboard redirection.

TRUE

0x00000001

Clipboard redirection is disabled.

pnpRedirectionDisabled: A Boolean value indicating whether the RDG server specifies any control
over disabling Plug and Play redirection on the RDG client.

Value Meaning

FALSE

0x00000000

The RDG client is allowed to choose its own redirection settings for enabling or disabling PnP

redirection.

TRUE

0x00000001

PnP redirection is disabled.

2.2.9.2.1.6 TSG_PACKET_QUARENC_RESPONSE

The TSG_PACKET_QUARENC_RESPONSE structure contains the response of the RDG server for the
TsProxyCreateTunnel method call. The value of the packetId field in TSG_PACKET MUST be set to
TSG_PACKET_TYPE_QUARENC_RESPONSE.

 typedef struct _TSG_PACKET_QUARENC_RESPONSE {
 unsigned long flags;
 [range(0, 24000)] unsigned long certChainLen;
 [string, size_is(certChainLen)]
 wchar_t* certChainData;
 GUID nonce;

57 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 PTSG_PACKET_VERSIONCAPS versionCaps;
 } TSG_PACKET_QUARENC_RESPONSE,
 *PTSG_PACKET_QUARENC_RESPONSE;

flags: Unused. MUST be 0.

certChainLen: An unsigned long specifying the number of characters in certChainData, including
the terminating null character. If the quarantineCapabilities field of the
TSG_PACKET_VERSIONCAPS structure is set to 1, this MUST be a nonzero value. This field MUST
be ignored if certChainData is ignored. The value MUST be in the range of 0 and 24000; both
inclusive.

certChainData: The certificate, along with the chain, that the RDG server used for the SCHANNEL

authentication service as part of registering the RPC interfaces and initialization. It MUST be a
string representation of the certificate chain if certChainLen is nonzero.<19> This field can be
ignored.

nonce: A GUID to uniquely identify this connection to prevent replay attacks by the RDG client. This
can be used for auditing purposes. A GUID is a unique ID using opaque sequence of bytes as
specified in [MS-DTYP] section 2.3.4.2.

versionCaps: A pointer to a TSG_PACKET_VERSIONCAPS structure, as specified in section
2.2.9.2.1.2.

2.2.9.2.1.7 TSG_PACKET_CAPS_RESPONSE

The TSG_PACKET_CAPS_RESPONSE structure contains the response of the RDG server, which
supports Consent Signing capability, to the RDG client for the TsProxyCreateTunnel method call. This
structure contains TSG_PACKET_QUARENC_RESPONSE followed by the consent signing string. The

value of the packetId field in TSG_PACKET MUST be set to TSG_PACKET_TYPE_CAPS_RESPONSE.

 typedef struct _TSG_PACKET_CAPS_RESPONSE {
 TSG_PACKET_QUARENC_RESPONSE pktQuarEncResponse;
 TSG_PACKET_MSG_RESPONSE pktConsentMessage;
 } TSG_PACKET_CAPS_RESPONSE,
 *PTSG_PACKET_CAPS_RESPONSE;

pktQuarEncResponse: A TSG_PACKET_QUARENC_RESPONSE structure as specified in section
2.2.9.2.1.6.

pktConsentMessage: A TSG_PACKET_MSG_RESPONSE structure as specified in section 2.2.9.2.1.9.

2.2.9.2.1.8 TSG_PACKET_MSG_REQUEST

The TSG_PACKET_MSG_REQUEST structure contains the request from the client to the RDG server to
send across an administrative message whenever there is any. The value of the packetId field in
TSG_PACKET MUST be set to TSG_PACKET_TYPE_MSGREQUEST_PACKET.

 typedef struct _TSG_PACKET_MSG_REQUEST {
 unsigned long maxMessagesPerBatch;
 } TSG_PACKET_MSG_REQUEST,
 *PTSG_PACKET_MSG_REQUEST;

maxMessagesPerBatch: An unsigned long that specifies how many messages can be sent by the
server at one time.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

58 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.9.2.1.9 TSG_PACKET_MSG_RESPONSE

The TSG_PACKET_MSG_RESPONSE structure contains the response of the RDG server to the client
when a message needs to be sent to the client. The value of the packetId field in TSG_PACKET MUST

be set to TSG_PACKET_TYPE_MESSAGE_PACKET.

 typedef struct _TSG_PACKET_MSG_RESPONSE {
 unsigned long msgID;
 unsigned long msgType;
 long isMsgPresent;
 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;
 } TSG_PACKET_MSG_RESPONSE,
 *PTSG_PACKET_MSG_RESPONSE;

msgID: This field is unused.<20> This field can be ignored.

msgType: An unsigned long specifying what type of message is being sent by the server. This MUST
be one of the following values.

Value Meaning

TSG_ASYNC_MESSAGE_CONSENT_MESSAGE

0x00000001

The server is sending a Consent Signing Message.

TSG_ASYNC_MESSAGE_SERVICE_MESSAGE

0x00000002

The server is sending an Administrative Message.

TSG_ASYNC_MESSAGE_REAUTH

0x00000003

The server expects the client to Reauthenticate.

isMsgPresent: A Boolean that indicates whether the messagePacket parameter is present or not. If

the value is TRUE, then messagePacket contains valid data and can be processed. If the value is
FALSE, messagePacket parameter MUST be ignored.

messagePacket: A TSG_PACKET_TYPE_MESSAGE_UNION union, as specified in section
2.2.9.2.1.9.1.

2.2.9.2.1.9.1 TSG_PACKET_TYPE_MESSAGE_UNION

The TSG_PACKET_TYPE_MESSAGE_UNION union contains the actual message that is sent by the TS
Gateway server to the client. The exact type of message depends on msgType field as specified in
section 2.2.9.2.1.9.

 typedef
 [switch_type(unsigned long)]
 union {
 [case(TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE consentMessage;
 [case(TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE serviceMessage;
 [case(TSG_ASYNC_MESSAGE_REAUTH)]
 PTSG_PACKET_REAUTH_MESSAGE reauthMessage;
 } TSG_PACKET_TYPE_MESSAGE_UNION,
 *PTSG_PACKET_TYPE_MESSAGE_UNION ;

consentMessage: A pointer to a TSG_PACKET_STRING_MESSAGE structure, as defined in section
2.2.9.2.1.9.1.1. This field is used if msgType field specified in section 2.2.9.2.1.9 is set to
TSG_ASYNC_MESSAGE_CONSENT_MESSAGE.

59 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

serviceMessage: A pointer to a TSG_PACKET_STRING_MESSAGE structure, as defined in section
2.2.9.2.1.9.1.1. This field is used if msgType field specified in section 2.2.9.2.1.9 is set to

TSG_ASYNC_MESSAGE_SERVICE_MESSAGE.

reauthMessage: A pointer to a TSG_PACKET_REAUTH_MESSAGE structure, as defined in section

2.2.9.2.1.9.1.2. This field is used if msgType field specified in section 2.2.9.2.1.9 is set to
TSG_ASYNC_MESSAGE_REAUTH.

2.2.9.2.1.9.1.1 TSG_PACKET_STRING_MESSAGE

The TSG_PACKET_STRING_MESSAGE structure contains either the Consent Signing Message or the
Administrative Message that is being sent from the RDG server to the client.

 typedef struct _TSG_PACKET_STRING_MESSAGE {
 long isDisplayMandatory;
 long isConsentMandatory;
 [range(0,65536)] unsigned long msgBytes;
 [size_is(msgBytes)] wchar_t* msgBuffer;
 } TSG_PACKET_STRING_MESSAGE,
 *PTSG_PACKET_STRING_MESSAGE;

isDisplayMandatory: A Boolean that specifies whether the client needs to display this message.

isConsentMandatory: A Boolean that specifies whether the user needs to give its consent before the
connection can proceed.

msgBytes: An unsigned long specifying the number of characters in msgBuffer, including the
terminating null character. The size of the message SHOULD<21> be determined by the
serverCert field in the HTTP_TUNNEL_RESPONSE_OPTIONAL structure (section 2.2.10.21). The
consent message is embedded in the HTTP_TUNNEL_RESPONSE as part of the
HTTP_TUNNEL_RESPONSE_OPTIONAL structure. When the
HTTP_TUNNEL_RESPONSE_FIELD_CONSENT_MSG flag is set in the
HTTP_TUNNEL_RESPONSE_FIELDS_PRESENT_FLAGS (section 2.2.5.3.8), the

HTTP_TUNNEL_RESPONSE_OPTIONAL data structure contains a consent message in the
HTTP_UNICODE_STRING format (section 2.2.10.22).

msgBuffer: An array of wchar_t specifying the string. The size of the buffer is as indicated by
msgBytes.

2.2.9.2.1.9.1.2 TSG_PACKET_REAUTH_MESSAGE

The TSG_PACKET_REAUTH_MESSAGE structure is sent by the RDG server to the client when the

server requires the user credential to be reauthenticated.

 typedef struct _TSG_PACKET_REAUTH_MESSAGE {
 unsigned __int64 tunnelContext;
 } TSG_PACKET_REAUTH_MESSAGE,
 *PTSG_PACKET_REAUTH_MESSAGE;

tunnelContext: A unsigned __int64 that is sent by the server to client. When the client initiates the
reauthentication sequence, it MUST include this context. This is used by the server to validate
successful reauthentication by the client.

2.2.9.2.1.10 TSG_PACKET_AUTH

The TSG_PACKET_AUTH structure is sent by the client to the TS Gateway server when Pluggable
Authentication is used. This packet includes TSG_PACKET_VERSIONCAPS, which is used for capability
negotiation, and cookie, which is used for user authentication. This MUST be the first packet from the

60 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

client to the server if the server has Pluggable Authentication turned on. The value of the packetId
field in TSG_PACKET MUST be set to TSG_PACKET_TYPE_AUTH.

 typedef struct _TSG_PACKET_AUTH {
 TSG_PACKET_VERSIONCAPS TSGVersionCaps;
 [range(0,65536)] unsigned long cookieLen;
 [size_is(cookieLen)] byte* cookie;
 } TSG_PACKET_AUTH,
 *PTSG_PACKET_AUTH;

TSGVersionCaps: A TSG_PACKET_VERSIONCAPS structure as specified in section 2.2.9.2.1.2.

cookieLen: An unsigned long that specifies the size in bytes for the field cookie.

cookie: A byte pointer that points to the cookie data. The cookie is used for authentication.

2.2.9.2.1.11 TSG_PACKET_REAUTH

The TSG_PACKET_REAUTH structure is sent by the client to the TS Gateway server when the client is
reauthenticating the connection. The value of the packetId field in TSG_PACKET MUST be set to
TSG_PACKET_TYPE_REAUTH.

 typedef struct _TSG_PACKET_REAUTH {
 unsigned __int64 tunnelContext;
 unsigned long packetId;
 [switch_is(packetId)] TSG_INITIAL_PACKET_TYPE_UNION TSGInitialPacket;
 } TSG_PACKET_REAUTH,
 *PTSG_PACKET_REAUTH;

tunnelContext: An unsigned __int64 that identifies which tunnel is being reauthenticated.

packetId: An unsigned long that specifies what type of packet is present inside TSGInitialPacket.

Value Meaning

TSG_PACKET_TYPE_VERSIONCAPS

0x00005643

This packet is sent when Pluggable Authentication is off.

TSG_PACKET_TYPE_AUTH

 0x00004054

This packet is sent when Pluggable Authentication is on. This packet
includes TSG_PACKET_VERSIONCAPS as well as the cookie that is
required for authentication.

TSGInitialPacket: A TSG_INITIAL_PACKET_TYPE_UNION union as specified in section
2.2.9.2.1.11.1.

2.2.9.2.1.11.1 TSG_INITIAL_PACKET_TYPE_UNION

The TSG_INITIAL_PACKET_TYPE_UNION union is sent by the client to the TS Gateway server when
the client is reauthenticating the connection. Depending on packetId as specified in section

2.2.9.2.1.11, either TSG_PACKET_VERSIONCAPS or TSG_PACKET_AUTH is included.

 typedef
 [switch_type(unsigned long)]
 union {
 [case(TSG_PACKET_TYPE_VERSIONCAPS)]
 PTSG_PACKET_VERSIONCAPS packetVersionCaps;
 [case(TSG_PACKET_TYPE_AUTH)]
 PTSG_PACKET_AUTH packetAuth;
 } TSG_INITIAL_PACKET_TYPE_UNION,

61 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 *PTSG_INITIAL_PACKET_TYPE_UNION;

packetVersionCaps: A pointer to a TSG_PACKET_VERSIONCAPS structure as specified in section
2.2.9.2.1.2.

packetAuth: A pointer to a TSG_PACKET_AUTH structure as specified in section 2.2.9.2.1.10.

2.2.9.3 Generic Send Data Message Packet

This packet contains data sent by the RDG client to the RDG server which is then sent to the target
server. The data is sent by the RDG client for the TsProxySendToServer method call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR (20 bytes)

...

...

totalDataBytes

numBuffers

buffer1Length

buffer2Length (optional)

buffer3Length (optional)

buffer1 (variable)

...

buffer2 (variable)

...

buffer3 (variable)

...

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR (20 bytes): This MUST be the network
representation of the PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE data type returned by the
RDG server by using the TsProxyCreateChannel method call. Network representation of a context
handle is described in [C706] Appendix N.

totalDataBytes (4 bytes): An unsigned long that specifies the total number of bytes to be sent to
the target server. This MUST be in network order representation. It MUST be the sum of
buffer1Length, buffer2Length, and buffer3Length and the size of the data, in bytes, for
buffer1Length, buffer2Length, and buffer3Length. It MUST NOT be zero.

https://go.microsoft.com/fwlink/?LinkId=89824

62 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

numBuffers (4 bytes): An unsigned long that specifies the total number of data buffers that follow
this field. This MUST be in a network-order representation.

buffer1Length (4 bytes): An unsigned long specifying the length of the first buffer. This MUST be
in a network-order representation and be nonzero.

buffer2Length (4 bytes): An unsigned long specifying the length of the second buffer. This MUST
be in a network-order representation. This is optional and can be 0.

buffer3Length (4 bytes): An unsigned long specifying the length of the third buffer. This MUST be
in a network-order representation. This is optional and can be 0.

buffer1 (variable): The buffer1 is an array of bytes. Its length is specified by buffer1Length. This
MUST be non-NULL and contain the same number of bytes specified by buffer1Length. The
contents of buffer1 are opaque to the Remote Desktop Gateway Server Protocol.

buffer2 (variable): The buffer2 is an array of bytes. Its length is specified by buffer2Length. This
MUST be non-NULL if buffer2Length is nonzero and contain the same number of bytes specified by
buffer2Length. If buffer2Length is 0, this SHOULD be NULL. If buffer2Length is zero and

buffer2 is non-NULL, then buffer2 MUST be ignored. The contents of buffer2 are opaque to the
Remote Desktop Gateway Server Protocol.

buffer3 (variable): The buffer3 is an array of bytes. Its length is specified by buffer3Length. This

MUST be non-NULL if buffer3Length is nonzero and contain the same number of bytes specified by
buffer3Length. If buffer3Length is 0, this SHOULD be NULL. If buffer3Length is zero and
buffer3 is non-NULL, then buffer3 MUST be ignored. The contents of buffer3 are opaque to the
Remote Desktop Gateway Server Protocol.

2.2.9.4 Generic Receive Pipe Message Packet

The Generic Receive Pipe Message packet has dual purposes. The packet is used by both the RDG
client for setting up the receive pipe and the RDG server to send the data that is received from the
target server to the RDG client.

The RDG client sends this packet in the TsProxySetupReceivePipe (section 3.2.6.2.2) method to set up
the receive pipe between the RDG server and the RDG client.

The packet has three different formats in various phases as explained in the following sections.

2.2.9.4.1 RDG Client to RDG Server Packet Format

The RDG client sends the packet to the RDG server in the format below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR (20 bytes)

...

...

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR (20 bytes): This MUST be the network
representation of the PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.2.2) data type

returned by the RDG server obtained by using the TsProxyCreateChannel (section 3.2.6.1.4)
method call. Network representation of a context handle is described in [C706] Appendix N.

https://go.microsoft.com/fwlink/?LinkId=89824

63 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.9.4.2 RDG Server to RDG Client Packet Format for Intermediate Responses

The RDG server to RDG client Packet Format for Intermediate Responses is the intermediate
responses from the RDG server to the RDG client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

...

Data (variable): This is data that the RDG server received from the target server and forwards to
the RDG client. The size of this data is in the RPC headers' alloc_hint field specified in [C706].
Only the RDG server uses the Data field. This field MUST NOT be sent by the RDG client.

2.2.9.4.3 RDG Server to RDG Client Packet Format for Final Response

This is the final response from the RDG server to the RDG client. To indicate connection disconnect,

RDG server MUST set the PFC_LAST_FRAG bit in pfc_flags of the header of the RPC response PDU as
described in TsProxySetupReceivePipe (section 3.2.6.2.2). For a description of RPC response PDU,
pfc_flags, PFC_LAST_FRAG, and stub data, refer to sections 12.6.2 and 12.6.4.10 in [C706]. PDU
body contains the return value as shown in the following packet diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReturnValue

ReturnValue (4 bytes): Return value of the TsProxySetupReceivePipe (section 3.2.6.2.2) method

call.

2.2.10 HTTP Transport Structures and Unions

2.2.10.1 HTTP_byte_BLOB Structure

This structure is used for storing and exchanging binary data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbLen blob (variable)

...

cbLen (2 bytes): An unsigned short representing the size of the data in the blob field.

blob (variable): An array of bytes, which contains the binary data of the length of cbLen.

2.2.10.2 HTTP_CHANNEL_PACKET Structure

This packet is used for channel creation.

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

64 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

numResources numAltResources port

protocol

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set
to PKT_TYPE_CHANNEL_CREATE.

numResources (1 byte): A single byte size field that represents the number of resource names

(server names) describing the target. This value MUST be in the range 1 -- 50.

numAltResources (1 byte): A single byte size field that represents the number of alternative
resource names. This value MUST be in the range 0 - 3.

port (2 bytes): An unsigned short that represents the port for communication with the target
server.

protocol (2 bytes): An unsigned short that represents the protocol number used for connection with

the target server. The value MUST be set to 3.

2.2.10.3 HTTP_CHANNEL_PACKET_VARIABLE Structure

This packet is used for channel creation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pResource (variable)

...

pAltResources (variable)

...

pResource (variable): An array of HTTP_UNICODE_STRING Structure (section 2.2.10.22). The
number of elements in the array is represented in the numResources field of the corresponding
HTTP_CHANNEL_PACKET structure.

pAltResources (variable): An array of HTTP_UNICODE_STRING Structure (section 2.2.10.22). The

number of elements in the array is represented in the numAltResources field of the
corresponding HTTP_CHANNEL_PACKET structure.

2.2.10.4 HTTP_CHANNEL_RESPONSE Structure

This packet is sent by the RDG server in response to a channel creation request.

65 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

errorCode

fieldsPresent reserved

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to
PKT_TYPE_CHANNEL_RESPONSE.

errorCode (4 bytes): An unsigned integer representing the error generated from the RDG server in

the process of creating a channel, in an HRESULT format.

fieldsPresent (2 bytes): An unsigned short representing the flags values defined in the
HTTP_CHANNEL_RESPONSE_FIELDS_PRESENT_FLAGS (section 2.2.5.3.1) enumeration.

reserved (2 bytes): Reserved for future use.

2.2.10.5 HTTP_CHANNEL_RESPONSE_OPTIONAL Structure

This packet is optionally sent by the RDG server in response to a channel creation request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

channelId

udpPort authnCookie (variable)

...

channelId (4 bytes): An unsigned integer representing the channelId field of the corresponding
HTTP_CHANNEL_RESPONSE (section 2.2.10.4) structure.

udpPort (2 bytes): An unsigned short representing the port number of the RDGUDP listener.

authnCookie (variable): An HTTP_byte_BLOB (section 2.2.10.1) structure. It contains the cookie to
be used for the RDGUDP connection authentication in the UDPAuthCookie ADM element format.

2.2.10.6 HTTP_DATA_PACKET Structure

This packet is used for sending or receiving RDP data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

66 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

cbDataLen data (variable)

...

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set
to PKT_TYPE_DATA.

cbDataLen (2 bytes): An unsigned short representing the length of data in the data field.

data (variable): An array of bytes representing data.

2.2.10.7 HTTP_EXTENDED_AUTH_PACKET Structure

This packet is used for extended tunnel (2) authorization messages from the RDG server to the RDG

client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

errorCode

cbBlobLen authBlob (variable)

...

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to

PKT_TYPE_EXTENDED_AUTH_MSG.

errorCode (4 bytes): An unsigned integer representing the error generated by the RDG server
during authorization.

cbBlobLen (2 bytes): An unsigned short representing the length of the authBlob field.

authBlob (variable): An array of bytes which contains authorization data.

2.2.10.8 HTTP_KEEPALIVE_PACKET Structure

This packet is sent by the RDG client and RDG server to ensure that the HTTP connection is not lost if

there is no RDP data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to
PKT_TYPE_KEEPALIVE.

67 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.10.9 HTTP_PACKET_HEADER Structure

This structure describes an HTTP packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

packetType reserved

packetLength

packetType (2 bytes): An unsigned short representing the type of the packet from
HTTP_PACKET_TYPE Enumeration (section 2.2.5.3.3).

reserved (2 bytes): Reserved for future use.

packetLength (4 bytes): An unsigned integer representing the length of the packet.

2.2.10.10 HTTP_HANDSHAKE_REQUEST_PACKET Structure

This packet is sent from the RDG client to the RDG server to negotiate the appropriate protocol
version to use.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

verMajor verMinor clientVersion

ExtendedAuth

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set
to PKT_TYPE_HANDSHAKE_REQUEST.

verMajor (1 byte): A single byte representing the major version of the RDGHTTP protocol.

verMinor (1 byte): A single byte representing the minor version of the RDGHTTP protocol.

clientVersion (2 bytes): An unsigned short representing the version of RDG client operating system.
This field is not used and MUST be set to zero.

ExtendedAuth (2 bytes): An unsigned short representing the extended authentication requested
by the RDG client, in an HTTP_EXTENDED_AUTH Enumeration (section 2.2.5.3.2) format.

2.2.10.11 HTTP_HANDSHAKE_RESPONSE_PACKET Structure

This packet is sent from the RDG server to provide details of its protocol version and the supported
authentication schemes.

68 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

errorCode

verMajor verMinor serverVersion

ExtendedAuth

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to
PKT_TYPE_HANDSHAKE_RESPONSE.

errorCode (4 bytes): An unsigned integer representing errors encountered during the handshake

between the RDG client and RDG server, in an HRESULT format.

verMajor (1 byte): A single byte representing the major version of the RDGHTTP protocol.

verMinor (1 byte): A single byte representing the minor version of the RDGHTTP protocol.

serverVersion (2 bytes): An unsigned short representing the version of RDG server operating
system. This field is not used and MUST be set to zero.

ExtendedAuth (2 bytes): An unsigned short representing the extended authentication requested

by the RDG client, in an HTTP_EXTENDED_AUTH Enumeration (section 2.2.5.3.2) format.

2.2.10.12 HTTP_REAUTH_MESSAGE Structure

This structure describes a reauthentication message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

reauthTunnelContext

...

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to

PKT_TYPE_REAUTH_MESSAGE.

reauthTunnelContext (8 bytes): An unsigned long representing which tunnel (2) is being
reauthenticated.

2.2.10.13 HTTP_SERVICE_MESSAGE Structure

This structure describes a service message.

69 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

cbMessageLen message (variable)

...

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to
PKT_TYPE_SERVICE_MESSAGE.

cbMessageLen (2 bytes): An unsigned short representing the length of message.

message (variable): An array of bytes which specifies the message string. The size of the message
string is as indicated by cbMessageLen field.

2.2.10.14 HTTP_TUNNEL_AUTH_PACKET Structure

This packet is used by the client to request tunnel (2) authorization.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

fieldsPresent cbClientName

clientName (variable)

...

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set
to PKT_TYPE_TUNNEL_AUTH.

fieldsPresent (2 bytes): An unsigned short representing the fields present in
HTTP_TUNNEL_AUTH_PACKET_OPTIONAL (section 2.2.10.15). Its values are defined in the
HTTP_TUNNEL_AUTH_FIELDS_PRESENT_FLAGS Enumeration (section 2.2.5.3.4).

cbClientName (2 bytes): An unsigned short representing the length of the clientName field.

clientName (variable): An array of bytes representing the name of the client machine.

2.2.10.15 HTTP_TUNNEL_AUTH_PACKET_OPTIONAL Structure

This packet is used for sending optional information for tunnel (2) authorization.

70 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

clientName (variable)

...

statementOfHealth (variable)

...

clientName (variable): An HTTP_UNICODE_STRING (section 2.2.10.22) structure representing the
name of the RDG client machine.

statementOfHealth (variable): An HTTP_byte_BLOB (section 2.2.10.1) structure representing the

statement of health (SoH) of the RDG client machine.

2.2.10.16 HTTP_TUNNEL_AUTH_RESPONSE Structure

This packet is used by the RDG server to send the tunnel (2) authorization response back to the RDG

client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

errorCode

fieldsPresent reserved

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to
PKT_TYPE_TUNNEL_AUTH_RESPONSE.

errorCode (4 bytes): An unsigned integer representing error codes encountered during the tunnel
(2) authorization process by the RDG server, in an HRESULT format.

fieldsPresent (2 bytes): An unsigned short representing flags that specify the optional fields that

are present in the HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL structure (section 2.2.10.17). It's
defined in the HTTP_TUNNEL_AUTH_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration (section
2.2.5.3.5) format.

reserved (2 bytes): Reserved for future use.

2.2.10.17 HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL Structure

This packet is returned by the RDG server in response to the tunnel (2) authorization request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

redirFlags

71 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

idleTimeout

SoHResponse (variable)

...

redirFlags (4 bytes): An unsigned integer representing device redirection flags defined in
HTTP_TUNNEL_REDIR_FLAGS Enumeration (section 2.2.5.3.7).

idleTimeout (4 bytes): An unsigned integer representing the Idle timeout value ADM element in

units of minutes.

SoHResponse (variable): An HTTP_byte_BLOB (section 2.2.10.1) structure representing the
statement of health (SoH) of the RDG client machine.

2.2.10.18 HTTP_TUNNEL_PACKET Structure

This packet is used by the RDG client to send an RDG tunnel (2) creation request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

capsFlags

fieldsPresent reserved

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set to
PKT_TYPE_TUNNEL_CREATE.

capsFlags (4 bytes): An unsigned integer representing the capabilities supported by the RDG client.
Its specified in the HTTP_CAPABILITY_TYPE Enumeration format.

fieldsPresent (2 bytes): An unsigned short representing the flags that specify what optional fields
are present in the HTTP_TUNNEL_PACKET_OPTIONAL Structure (section 2.2.10.19). It’s defined in
en HTTP_TUNNEL_PACKET_FIELDS_PRESENT_FLAGS Enumeration (section 2.2.5.3.6).

reserved (2 bytes): Reserved for future use.

2.2.10.19 HTTP_TUNNEL_PACKET_OPTIONAL Structure

This packet is optionally used in a RDG tunnel (2) creation request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

reauthTunnelContext

...

72 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PAACookie (variable)

...

reauthTunnelContext (8 bytes): An unsigned long representing the tunnel (2) that is being
reauthenticated.

PAACookie (variable): An HTTP_byte_BLOB (section 2.2.10.1) structure representing the cookie for

pluggable authentication.

2.2.10.20 HTTP_TUNNEL_RESPONSE Structure

The RDG server uses this structure to send a tunnel (2) creation response to the RDG client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

serverVersion statusCode

... fieldsPresent

reserved

hdr (8 bytes): An HTTP_PACKET_HEADER (section 2.2.10.9) structure. Its packetType field is set
to PKT_TYPE_TUNNEL_RESPONSE.

serverVersion (2 bytes): An unsigned integer representing the version of the RDGHTTP Protocol.

statusCode (4 bytes): An unsigned integer representing errors that are detected by the RDG server
in the process of creating a tunnel (2).

fieldsPresent (2 bytes): An unsigned short representing the flags that specify the optional fields

that are present in the HTTP_TUNNEL_RESPONSE_OPTIONAL Structure (section 2.2.10.21)
defined in an HTTP_TUNNEL_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration (section
2.2.5.3.8).

reserved (2 bytes): Reserved for future use.

2.2.10.21 HTTP_TUNNEL_RESPONSE_OPTIONAL Structure

This structure is optionally sent by the RDG server in response to a tunnel (2) creation request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tunnelId

capsFlags

73 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

nonce (20 bytes)

...

...

serverCert (variable)

...

consentMsg (variable)

...

tunnelId (4 bytes): An unsigned integer representing the Tunnel Id ADM element of the

corresponding tunnel.

capsFlags (4 bytes): An unsigned integer representing the capabilities negotiated by the RDG

server. It's specified in the form of an HTTP_CAPABILITY_TYPE Enumeration.

nonce (20 bytes): A GUID defined in 2.2.2.1. It represents the nonce for the statement of health
(SoH).

serverCert (variable):

An HTTP_UNICODE_STRING (section 2.2.10.22) that is used for SoH encryption.

consentMsg (variable):

An HTTP_UNICODE_STRING (section 2.2.10.22). It contains the consent message set by the admin on
the RDG server, that is delivered to the RDG client prior to allowing the connection.

2.2.10.22 HTTP_UNICODE_STRING Structure

This structure describes a Unicode string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbLen str (variable)

...

cbLen (2 bytes): An unsigned short representing the length of the str field.

str (variable): String of length cbLen.

2.2.10.23 HTTP_CLOSE_PACKET Structure

This packet is used to end a session.

74 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

...

statusCode

hdr (8 bytes): An HTTP_PACKET_HEADER structure (section 2.2.10.9). Its packetType field is set
to PKT_TYPE_CLOSE_CHANNEL or PKT_TYPE_CLOSE_CHANNEL_RESPONSE. Section 3.7.5.4
describes the connection close sequence and how to set the packetType field in the

HTTP_PACKET_HEADER.

statusCode (4 bytes): An unsigned integer representing errors that are detected by the RDG server
in the process of creating a channel, in an HRESULT format. The expected return codes are
described in section 2.2.6.

2.2.11 UDP Transport Structures and Unions

2.2.11.1 AASYNDATA Structure

The AASYNDATA structure contains the RDGUDP channel properties sent between the RDG client and

RDG server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

uUpStreamMtu uDownStreamMtu

fLossy

snSendISN

uUpStreamMtu (2 bytes): An unsigned short representing the size for the maximum transmission
unit (MTU) between the RDG client and RDG server path. This MUST be determined by the RDG
client.

uDownStreamMtu (2 bytes): An unsigned short representing the size for the MTU between the RDG

server and RDG client path. This MUST be determined by the RDG client.

fLossy (4 bytes): A Boolean flag which indicates whether the UDP channel is reliable or not. This
MUST be determined by the consumer of the RDG protocol ([MS-RDPEUDP]). The RDG client
forwards the flag to the RDG server, which in turn sends the flag to a target server during the
Connection Setup Phase (section 1.3.1.1.1).

snSendISN (4 bytes): An integer representing the initial sequence number used by the forward
error correction (FEC) receive window between the RDG client and the target server. This MUST be

determined by the consumer of the RDG protocol ([MS-RDPEUDP]). The RDG client forwards the
flag to the RDG server, which in turn sends the flag to the target server during the Connection
Setup Phase.

%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

75 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.11.2 AASYNDATARESP Structure

The AASYNDATARESP structure contains the RDGUDP channel properties sent by the RDG server to
the RDG client during the Connection Setup Phase (section 1.3.1.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

uUpStreamMtu uDownStreamMtu

snRecvISN

uUpStreamMtu (2 bytes): An unsigned short representing the resultant path for the MTU between
the RDG client, the RDG server and the target server. The path is detected by the RDG server
after establishing a connection with the target server.

uDownStreamMtu (2 bytes): An unsigned short representing the resultant path for the MTU

between the target server, the RDG server and the RDG client. The path is detected by the RDG
server after establishing a connection with the target server.

snRecvISN (4 bytes): An integer representing the initial sequence number used by the forward error
correction (FEC) receive window between the target server and the RDG client. The integer value
is sent by the target server to the RDG server during the Connection Setup Phase.

2.2.11.3 CONNECT_PKT Structure

The CONNECT_PKT structure carries the UDP channel authentication information as specified in the
AASYNDATA structure (section 2.2.11.1), from the RDG client to the RDG server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

usPortNumber cbAuthnCookieLen

SynData

...

...

authnCookie (variable)

...

hdr (4 bytes): A UDP_PACKET_HEADER Structure (section 2.2.11.7).

usPortNumber (2 bytes): An unsigned short representing the port number on which the target
server listens.

cbAuthnCookieLen (2 bytes): An DWORD representing the RDGUDP authentication cookie length.

SynData (12 bytes): An AASYNDATA structure as specified in 2.2.11.1.

76 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

authnCookie (variable): An array of bytes representing the authentication cookie.

2.2.11.4 CONNECT_PKT_RESP Structure

The CONNECT_PKT_RESP structure is sent from the RDG server as a response to UDP channel
authentication.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

SynResponse

...

result

...

hdr (4 bytes): A UDP_PACKET_HEADER Structure (section 2.2.11.7).

SynResponse (8 bytes): An AASYNDATARESP Structure (section 2.2.11.2).

result (8 bytes): A LONG specifying whether the connection was established successfully.

2.2.11.5 DATA_PKT Structure

This structure contains RDP UDP data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

data (variable)

...

hdr (4 bytes): A UDP_PACKET_HEADER Structure (section 2.2.11.7).

data (variable): An array of BYTE containing the RDP UDP data.

2.2.11.6 DISC_PKT Structure

This structure contains an error code or reason for a UDP disconnect.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hdr

discReason

77 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

hdr (4 bytes): A UDP_PACKET_HEADER Structure (section 2.2.11.7).

discReason (8 bytes): A LONG specifying the error code or reason for the disconnect.

2.2.11.7 UDP_PACKET_HEADER Structure

This structure describes a UDP packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pktID pktLen

pktID (2 bytes): The packet type information, which can be one of the enumerations specified in

2.2.5.4.1.

pktLen (2 bytes): Specifies the packet length excluding the length of UDP_PACKET_HEADER.

2.2.11.8 AUTHN_COOKIE_DATA Structure

The AUTHN_COOKIE_DATA structure is used to authenticate a UDP connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

szUserName (1042 bytes)

szPrimaryUDPAuthScheme (42 bytes)

ftExpiryTime (8 bytes)

szServerIP (114 bytes)

szServerName (520 bytes)

uTSPortNumber (4 bytes)

szUserName (1042 bytes): Name of the user for which the side channel is required to be created
in Unicode characters.

szPrimaryUDPAuthScheme (42 bytes): The name of the primary authentication method to be

used for authenticating a side channel in Unicode characters. By default, all the side channels are

authenticated with the UDPCookieAuthentication method. The RDG client and RDG server can
also implement other strong authentication methods. For a side channel to be established, an RDG
client SHOULD pass both the UDPCookieAuthentication method and the method mentioned in
szPrimaryUDPAuthScheme.

ftExpiryTime (8 bytes): The time (FILETIME) at which the cookie expires. For information on the
FILETIME structure, see [MS-DTYP] section 2.3.3.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

78 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

szServerIP (114 bytes): The IP address of the target server in Unicode characters.

szServerName (520 bytes): The name of the target server in Unicode characters.

uTSPortNumber (4 bytes): The port number where RDG is listening for incoming UDP connections.

2.2.11.9 UDP_CORRELATION_INFO Structure

This structure SHOULD be appended to the initial DTLS "ClientHello" packet. It is independent of the
DTLS request, and not included in any DTLS field size or calculations.

Multi-byte values in this structure are transmitted in little-endian byte order.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

uReserved

uSignature1 uCorrelationId (16 bytes)

...

...

... uSignature2

uCbStruct

uReserved (4 bytes): MUST be 0x0000.

uSignature1 (2 bytes): An unsigned short with value 0x1DAA.

uCorrelationId (16 bytes): A GUID, generated by the RDG client, which specifies the correlation
identifier for the connection, which can appear in some of the RDG or terminal server's event
logs. This value MUST be the same as provided in the RDP_NEG_CORRELATION_INFO structure
([MS-RDPBCGR] section 2.2.1.1.2), RDPUDP_CORRELATION_ID_PAYLOAD structure ([MS-

RDPEUDP] section 2.2.2.8), and RDG-Correlation-Id header (section 2.2.3.2.2.)

uSignature2 (2 bytes): An unsigned short with value 0xAA1D.

uCbStruct (2 bytes): An unsigned short with value 26 decimal (size of this structure in bytes.)

2.2.11.10 CONNECT_PKT_FRAGMENT Structure

The RDG client MUST use the PKT_TYPE_CONNECT_REQ_FRAGMENT packet type to send connection
requests to the RDP server. It MUST do so by splitting a CONNECT_PKT request into one or more
fragments of type CONNECT_PKT_FRAGMENT.<22>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

UDP_PACKET_HEADER (4 bytes)

usFragmentID (2 bytes) usNoOfFragments (2 bytes)

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

79 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

cbFragmentLength (2 bytes) Fragment(variable)

…

Multi-byte values in this structure are transmitted in little-endian byte order.

 typedef struct _CONNECT_PKT_FRAGMENT
 {
 UDP_PACKET_HEADER hdr;
 USHORT usFragmentID;
 USHORT usNoOfFragments;
 USHORT cbFragmentLength;
 BYTE fragment[0];
 } CONNECT_PKT_FRAGMENT, *PCONNECT_PKT_FRAGMENT;

hdr (4 bytes): A UDP_PACKET_HEADER structure (section 2.2.11.7).

usFragmentID (2 bytes): Identifies the fragment number. The first fragment starts with 0.

usNoOfFragments (2 bytes): Total number of fragments.

cbFragmentLength (2 bytes): Length of this fragment.

fragment (variable): An array of bytes representing a portion of the CONNECT_PKT request.

80 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

The following sections specify details of the Remote Desktop Gateway Server Protocol, including
abstract data models, interface method syntax, and message processing rules.

3.1 Common Server Protocol Details

The following sections specify details of the RDG Server Protocol that are common for all transports.

3.1.1 Abstract Data Model

Target server names: An array of alias names for a target server. A target server alias name is a
string of Unicode characters. The server name applies to the machine to which the RDG server
connects.<23>

 For RPC over HTTP transport, this is initialized by the RDG server when the RDG client calls

TsProxyCreateChannel. This data is passed by the RDG client in the structure TSENDPOINTINFO.

 For HTTP transport, this is initialized when the RDG server receives an HTTP_CHANNEL_REQUEST
from the RDG client.

 For UDP transport, this is initialized when the RDG server receives a CONNECT_PKT from the RDG
client.

An array of resourceName and alternateResourceNames of TSENDPOINTINFO structure makes target
server alias names. The RDG server attempts to connect to the target server by each target server
alias name until it succeeds or until the array is traversed completely.

Tunnel id: An unsigned long representing the tunnel (2) identifier for tracking purposes on the RDG
server. The Tunnel id, which is then generated on the server, is stored by the RDG server and

RDG client, and can later be used for subsequent tunnel-related operations.<24>

 For RPC over HTTP transport, this is generated after a client call to TsProxyCreateTunnel. The

Tunnel id is created by the TsProxyCreateTunnel method and points to a BLOB that stores
the ADM elements Tunnel Context handle, Channel id, Nonce, and Number of
Connections.

 For HTTP transport, this is generated after the RDG server receives HTTP_TUNNEL_REQUEST.

 For UDP transport, this is generated after the RDG server receives CONNECT_PKT and the
tunnel id is not communicated to RDG client.

Channel id: An unsigned long representing the channel identifier for tracking purposes on the RDG
server. The Channel id, which is then generated on the server, is stored by the RDG server and
RDG client and can later be used for subsequent channel-related calls.<25>

 For RPC over HTTP, this is generated after a client call to TsProxyCreateChannel. The Channel
id points to a BLOB that is created by the TsProxyCreateChannel method and that stores the

target server name and Channel Context handle ADM element.

 For HTTP transport, this is generated after the RDG server receives
HTTP_CHANNEL_REQUEST.

 For UDP transport, this is generated after RDG receives CONNECT_PKT and the Channel id is
not communicated to RDG client.

81 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

TimeoutAction: A Boolean value that specifies how the RDG server processes the session timeout. If
the value is FALSE, the RDG server terminates the connection. If the value is TRUE, the RDG

server initiates the process for the client to reauthenticate. The default value is FALSE.

Nonce: A unique GUID created by the RDG server to identify the current connection. This is used to

prevent statement of health (SoH) replay attacks.

Number of Connections: An unsigned long representing the number of active connections the RDG
server is processing.

 For RPC transport, this is incremented on every successful call to TsProxyCreateTunnel and
decremented on a TsProxyCloseTunnel call.

 For HTTP transport, this is incremented just before sending HTTP_TUNNEL_RESPONSE to the
RDG client.

 For UDP transport, this is incremented just before sending CONNECT_PKT_RESP to the RDG
client.

Reauthentication Connection: A Boolean value representing whether the current connection is a
normal connection or a reauthentication connection.

Reauthentication Tunnel Context: A ULONGLONG value representing a unique connection
identifier. For normal connections, this value represents the unique connection identifier of the

same connection. For a reauthentication connection, this value represents the unique connection
identifier of a connection that has initiated the reauthentication request.

Reauthentication Status: An enumeration value representing the reauthentication status of the
connection that has initiated the reauthentication.

Note Only normal connections can initiate reauthentication. Reauthentication connections cannot
initiate reauthentication.

Possible values are defined in the table below.

Enumeration Value Description

None No progress made on the reauthentication.

AuthenticationCompleted User authentication is done.

UserAuthorizationCompleted User authorization is done, and if the RDG server is
configured for quarantine, the RDG client is quarantine
compliant.

UserAuthorizationCompletedButQurantineFailed User authorization is done, and the RDG server is
configured for quarantine but the RDG client is not
quarantine compliant.

ResourceAuthorizationCompleted Resource authorization is done. If Reauthentication
Status reaches this state, it means that reauthentication
is completed.

This ADM element is valid only for normal connection, that is, when Reauthentication
Connection is FALSE.

Negotiated Capabilities: A ULONG bitmask value representing the negotiated capabilities between
the RDG client and the RDG server. It contains zero or more of the following NAP Capability

values.

For RPC transport, the values are:

82 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

NAP Capability Value

TSG_NAP_CAPABILITY_QUAR_SOH

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

TSG_MESSAGING_CAP_CONSENT_SIGN

TSG_MESSAGING_CAP_SERVICE_MSG

TSG_MESSAGING_CAP_REAUTH

For HTTP transport its values are:

NAP Capability Value

TSG_NAP_CAPABILITY_QUAR_SOH

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

TSG_MESSAGING_CAP_CONSENT_SIGN

TSG_MESSAGING_CAP_SERVICE_MSG

TSG_MESSAGING_CAP_REAUTH

dWResponse: A 32-bit integer for the RDG user and client trust having the following values:

Value Meaning

AA_UNTRUSTED

0x00000000

Both the user and the client are untrusted.

AA_TRUSTEDUSER_UNTRUSTEDCLIENT

0x00000001

The user is trusted. The client is untrusted.

AA_TRUSTEDUSER_TRUSTEDCLIENT

0x00000002

Both the user and the client are trusted.

3.1.2 Timers

3.1.2.1 Session Timeout Timer

After a main channel is successfully created, if the session timeout is configured on the RDG
server,<26> the RDG server MUST start this timer with the configured session-timeout value. If the
ADM element Negotiated Capabilities contains TSG_NAP_CAPABILITY_IDLE_TIMEOUT, the session
timeout timer is used on expiration to either disconnect with the error E_PROXY_SESSIONTIMEOUT or

request that the client initiate reauthentication, depending on the value of the ADM element
TimeoutAction. The default value of the timer is zero, which means no session timeout. The timeout
value MUST be between 0 and 4294967295 minutes.

3.1.2.2 Reauthentication Timer

The default value of the timer is 1 minute.<27> The time value MUST be between 1 and 3, both
inclusive, in minutes. The RDG server MUST start this timer after it sends the reauthentication
message to the RDG client. This timer is not applicable for UDP transport.

83 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.3 Local Events

This section describes an abstract interface on the server between the NAP Policy Server (NPS) and
the TSGU server.<28> This interface is not used between the TSGU client and the TSGU server. This

section is not applicable for UDP transport.

TSGServerProcessSoH

When the RDG server receives the statement of health (SoH) from the RDG client, the SoH and
other parameters are sent to the NPS using this abstract interface.<29> This abstract interface can
then use a RADIUS client library to implement the RADIUS protocol between the TSGU server and
NPS.

 Inputs: None.

 Outputs:

 NasServerType: Set to a null-terminated string "TSGU".

 UserName: The user name as a null-terminated string.

 ClientMachineName: The client machine name as a null-terminated string.

 AuthType: A 32 bit unsigned integer specifying the type of authorization used. Possible values
are: Password (0x00000002), Smart Card (0x00000003) or Cookie (0x00000008).

 SoHData: The statement of health data.

 NumSoHBytes: A 32-bit integer specifying the number of bytes for the SoHData.

 UserToken: An array of unsigned 32-bit integers specifying user groups.

 NumUserGroups: A 32-bit integer specifying the number of bytes for the UserToken.

SoHRAsyncCallback

When the NPS finishes processing the SoH, it sends the statement of health response (SoHR) to
the TSG server, as described in [TNC-IF-TNCCSPBSoH], using this abstract interface. This abstract

interface can be a callback from a RADIUS client library on the TSGU server.

 Inputs:

 dwSoHRSize: A 32-bit unsigned integer specifying the number of bytes returned in the
ppSoHR parameter.

 ppSoHR: A pointer to buffers returning the SoHR.

 pDeviceRedirection: A pointer to a structure that specifies the client device redirection
settings.

 idleTimeout: A 32-bit unsigned integer specifying the idle timeout passed onto the client.

 sessionTimeout: A 32-bit unsigned integer specifying the server session timeout.

 timeoutAction: A Boolean value which specifies the action to be taken on server session
timeout.

 dwResponse: A 32-bit unsigned integer specifying the type of response.

 Outputs: None.

 Constraints:

https://go.microsoft.com/fwlink/?LinkId=240054

84 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 The RDG server MUST not allow the connection if the value of the dwResponse indicates that
both the RDG user and the client are not trusted.

3.2 RPC Transport - Server Protocol Details

3.2.1 TsProxyRpcInterface Server Details

The following sections contain the details of the TsProxyRpcInterface on the server.

3.2.2 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Tunnel Context handle: An RPC context handle for the RDG client to RDG server connection
represented by an array of 20 bytes on the RDG server.

Channel Context handle: An RPC context handle for the connection from the RDG client to the
target server via a RDG server represented by an array of 20 bytes on the RDG server.

3.2.3 RPC over HTTP Transport - RDG Server States

Connection State: An enumeration of different connection states. This is updated as per the state
transition rules mentioned in section 3.2.6. The following diagram represents the connection state

transition.

The RDG server MUST use this ADM element to verify that the call sequence is not violated. In each
state the allowed calls and the state transitions therefore are described in this section. Section 3.2.6
describes the returns values and errors for each method call.

Each connection goes through a set of states as described in this section.

85 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 13: State transition diagram

Start: By default, the protocol starts in a disconnected state.

Connected: A successful TsProxyCreateTunnel call brings the connection to the Connected state.

Once a connection is in a Connected state, a TsProxyCloseTunnel call can be made to bring the
connection to the Disconnected state.

Authorized: A successful TsProxyAuthorizeTunnel call brings the connection to the Authorized state.
A TsProxyAuthorizeTunnel call can only be made when the connection is in a Connected state. If a
TsProxyAuthorizeTunnel call is made in any other state, then the result is undefined. The
TsProxyMakeTunnelCall call is allowed in this state. This call does not change the state.
TsProxyCloseTunnel can also be made in this state, which moves the connection to the Disconnected

state.

Channel Created: A successful TsProxyCreateChannel call brings the connection to the Channel

Created state. A TsProxyCreateChannel call is valid only when the tunnel is authorized. If a
TsProxyCreateChannel call is made before the tunnel (2) is authorized, ERROR_ACCESS_DENIED will
be returned. TsProxyCloseChannel can also be made in this state, which moves the connection to the
Tunnel Close Pending state. The TsProxySetupReceivePipe call is valid only in this state. If this call is
made before the RDG client calls TsProxyCreateChannel, ERROR_ACCESS_DENIED will be returned. If

it is made after the call to TsProxyCloseChannel, E_PROXY_ALREADYDISCONNECTED will be returned.

The TsProxyMakeTunnelCall call is allowed in this state. This call does not change the state.

86 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

When TsProxyCloseTunnel is called in this state before a call to TsProxyCloseChannel, the RDG server
closes the channel and completes the TsProxyCloseTunnel call. After completing this call, the RDG

server moves to the End state.

Pipe Created: When a call to TsProxySetupReceivePipe reaches the RDG server, the connection goes

to the Pipe Created state. The TsProxySendToServer call is valid only in this state. If this call is made
before the RDG client calls TsProxySetupReceivePipe, ERROR_ACCESS_DENIED will be returned. If it
is made after the call to TsProxyCloseTunnel, E_PROXY_ALREADYDISCONNECTED will be returned.

The TsProxyMakeTunnelCall call is allowed in this state. This call does not change the state.

When TsProxyCloseTunnel is called in this state before a call to TsProxyCloseChannel, the RDG server
closes the channel and completes the TsProxyCloseTunnel call. After completing this call, the RDG
server moves to the End state.

Channel Close Pending: From Pipe Created state, either a final response to
TsProxySetupReceivePipe call or a failure in TsProxySendToServer call brings the connection to the
Channel Close Pending state. TsProxyCloseChannel, TsProxyMakeTunnelCall, and TsProxyCloseTunnel

calls are the only valid calls in this state.

When TsProxyCloseTunnel is called in this state before a call to TsProxyCloseChannel, the RDG server
closes the channel and completes the TsProxyCloseTunnel call. After completing this call, the RDG

server moves to the End state.

Tunnel Close Pending: Either a failure TsProxyAuthorizeTunnel call from Connected state or a
successful TsProxyCloseChannel call from Channel Close Pending state brings the connection to Tunnel
Close Pending state. If a previous TsProxyMakeTunnelCall has not completed, then another call to
TsProxyMakeTunnelCall MUST be made as specified in section 3.2.6.3.2. The TsProxyCloseTunnel call
SHOULD be made by the RDG client to end the protocol.

End: The RDG server MUST transition to this state when the TsProxyCloseTunnel method is called. At

this stage, the connection between the RDG client and the RDG server is disconnected.

3.2.4 Timers

3.2.4.1 Connection Timer

The RDG server MAY use this timer to recover early instead of waiting for long periods for a
successful connection to the target server.<30>

The default value of the timer is 30 seconds.<31> The timer value MUST be between 30 seconds and
3 minutes, both inclusive, in units of minutes. This timer MUST be started after the call to

TsProxyCreateChannel is received by the RDG server.

If a call to TsProxySetupReceivePipe is received by the RDG server before the timer expires, the timer
MUST be stopped.

If the call to the TsProxySetupReceivePipe is received by the RDG server after the timer has expired,
the server MUST disconnect with the ERROR_BAD_ARGUMENTS return value, as specified in section

2.2.6.

3.2.5 Initialization

The protocol uses the transport and endpoints as described in section 2.1.

The initialization steps for the RDG server are as follows: The RDG server MUST register for Internet
Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6) local host addresses 127.0.0.1

and ::1 as the network address when operating in a non-load balanced environment. The RDG server

87 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

MUST register for RPC_C_AUTHN_GSS_NEGOTIATE and SHOULD register for
RPC_C_AUTHN_GSS_SCHANNEL as authentication services, as specified in [MS-RPCE] section

2.2.1.1.7. The RDG client MUST use a minimum authentication level of
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY (see [MS-RPCE] section 2.2.1.1.8) and MUST use one of the

following authentication services: RPC_C_AUTHN_GSS_NEGOTIATE or
RPC_C_AUTHN_GSS_SCHANNEL, or RPC_C_AUTHN_WINNT.<32>

All timers are connection-specific timers, and MUST not be started on initialization.

3.2.6 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data consistency check at target level 7.0
for all methods unless otherwise specified, as specified in [MS-RPCE] section 3.

The RDG server SHOULD<33> enforce appropriate security measures to be sure that the caller has
the required permissions to execute the following routines.

The methods MAY throw an exception, and the client MUST handle these exceptions gracefully. The

methods implemented by the RDG server MUST be sequential in order as specified in section 1.3.1.1.

The method details are specified as follows.

Methods in RPC Opnum Order

Method Description

Opnum0NotUsedOnWire Reserved for local use.

Opnum: 0

TsProxyCreateTunnel Sets up the context in which all further communication between the RDG client and
the RDG server occurs.

Opnum: 1

TsProxyAuthorizeTunnel Authorizes the tunnel based on rules defined by the RDG server.

Opnum: 2

TsProxyMakeTunnelCall Used to request for administrative messages from the RDG server when the same are
available. This method is only called when both the client and the RDG server are
capable of handling administrative messages. The request is queued up on the RDG
server. The same method is also called during shutdown sequence to cancel any
pending administrative message request.<34>

Opnum: 3

TsProxyCreateChannel Creates a channel between the RDG client and the target server via the RDG server
that the RDG client desires to connect.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

TsProxyCloseChannel Closes the channel between the RDG client and the target server.

Opnum: 6

TsProxyCloseTunnel Closes the tunnel between the RDG client and the RDG server.

Opnum: 7

TsProxySetupReceivePipe Used for data transfer from the RDG server to the RDG client.

Opnum: 8

TsProxySendToServer Used for data transfer from the RDG client to the RDG server.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

88 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum: 9

Note In the preceding table, the term "Reserved for local use" means that the client MUST NOT send
the opnum, and the RDG server behavior is undefined<35> because it does not affect interoperability.

3.2.6.1 Connection Setup Phase

3.2.6.1.1 TsProxyCreateTunnel (Opnum 1)

The TsProxyCreateTunnel method sets up the tunnel (2) in which all further communication between
the RDG client and the RDG server occurs. This is also used to exchange versioning and capability
information between the RDG client and RDG server. It is used to exchange the RDG server

certificate which has already been used to register for an authentication service. After this method
call has successfully been completed, a tunnel (2) shutdown can be performed. This is accomplished
by using the TsProxyCloseTunnel method call.

Prerequisites: The connection state MUST be in Start state.

Sequential Processing Rules:

1. If any unexpected error occurs in the below process, the RDG server MUST return
E_PROXY_INTERNALERROR.

2. The RDG server MUST verify that a server authentication certificate is registered with SCHANNEL
authentication service. Otherwise it MUST return E_PROXY_NOCERTAVAILABLE.

3. If the RDG server is configured for pluggable authentication:

1. The RDG server MUST verify that the packetId member of the TSGPacket parameter is either
TSG_PACKET_TYPE_AUTH or TSG_PACKET_TYPE_REAUTH. Otherwise, it MUST return the
E_PROXY_UNSUPPORTED_AUTHENTICATION_METHOD error code.

2. If the packetId member of TSGPacket parameter is TSG_PACKET_TYPE_AUTH, then the RDG

server MUST verify that TSGPacket->TSGPacket.packetAuth is not NULL and TSGPacket-
>TSGPacket.packetAuth->cookie is not NULL and TSGPacket->TSGPacket.packetAuth-
>cookieLen is not zero. Otherwise, it MUST return E_PROXY_COOKIE_BADPACKET. If the
packetId member of the TSGPacket parameter is TSG_PACKET_TYPE_REAUTH, then the RDG
server MUST verify that TSGPacket->TSGPacket.packetReauth->TSGInitialPacket.packetAuth
is not NULL and TSGPacket->TSGPacket.packetReauth->TSGInitialPacket.packetAuth->cookie

is not NULL and TSGPacket->TSGPacket.packetReauth->TSGInitialPacket.packetAuth-
>cookieLen is not zero. Otherwise, it MUST return E_PROXY_COOKIE_BADPACKET.

3. The RDG server MUST authenticate the user using the cookie. If authentication fails, it MUST
return E_PROXY_COOKIE_AUTHENTICATION_ACCESS_DENIED error code.

4. If the RDG server is configured for RPC authentication:

1. The RDG server MUST verify that the packetId member of the TSGPacket parameter type is

either TSG_PACKET_TYPE_VERSIONCAPS or TSG_PACKET_TYPE_REAUTH. Otherwise, it MUST

return the E_PROXY_INTERNALERROR error code.

5. The RDG server MUST create a GUID and initialize the ADM element Nonce with it.

6. The RDG server MUST create a unique identifier and initialize the ADM element Tunnel Id with it.

7. If the packetId member of the TSGPacket parameter type is not TSG_PACKET_TYPE_REAUTH:

1. The RDG server MUST initialize the ADM element Reauthentication Connection to FALSE.

89 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2. The RDG server MUST initialize the ADM element Reauthentication Status to NONE.

3. The RDG server MUST initialize the ADM element Reauthentication Tunnel Context with a

unique ULONGLONG identifier. This identifier MUST be used by the reauthentication
connection to find this connection and set its Reauthentication Status ADM element.

8. If the packetId member of the TSGPacket parameter is TSG_PACKET_TYPE_REAUTH:

1. The RDG server MUST initialize the ADM element Reauthentication Connection to TRUE.

2. The RDG server MUST not use the ADM element Reauthentication Status for this
connection.

3. The RDG server MUST initialize the ADM element Reauthentication Tunnel Context with
TSGPacket->TSGPacket.packetReauth->tunnelContext.

4. The RDG server MUST find the original connection that has initiated the reauthentication using

Reauthentication Tunnel Context, and its ADM element Reauthentication Status MUST
be set to AuthenticationCompleted.

9. The RDG server MUST create a tunnel (2) context handle and MUST initialize the ADM element
Tunnel Context Handle with it.

10. The RDG server MUST initialize the ADM element Negotiated Capabilities with the common
capabilities between the RDG client and the RDG server.

11. If the RDG server supports the TSG_MESSAGING_CAP_CONSENT_SIGN capability and is
configured to allow only a RDG client that supports the TSG_MESSAGING_CAP_CONSENT_SIGN
capability, but the RDG client doesn't support the capability, then the RDG server MUST return the
E_PROXY_CAPABILITYMISMATCH error.

12. If the ADM element Negotiated Capabilities contains the
TSG_MESSAGING_CAP_CONSENT_SIGN value, the packetId member of the TSGPacketResponse
out parameter MUST be TSG_PACKET_TYPE_CAPS_RESPONSE. Otherwise, the packetId member

of TSGPacketResponse MUST be TSG_PACKET_TYPE_QUARENC_RESPONSE.

13. The RDG server SHOULD<36> set the certChainData field of
TSG_PACKET_QUARENC_RESPONSE structure in TSGPacketResponse only when quarantine is
configured at the RDG server and the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_QUAR_SOH.

14. The RDG server MUST return ERROR_SUCCESS.

 HRESULT TsProxyCreateTunnel(
 [in, ref] PTSG_PACKET TSGPacket,
 [out, ref] PTSG_PACKET* TSGPacketResponse,
 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext,
 [out] unsigned long* tunnelId
);

TSGPacket: Pointer to the TSG_PACKET structure. If this call is made for a reauthentication, then the
packetId field MUST be set to TSG_PACKET_TYPE_REAUTH and the packetReauth field of the
TSGPacket union field MUST be a pointer to the TSG_PACKET_REAUTH structure. Otherwise, if this
call is made for a new connection and the RDG server is configured for RPC authentication, then
the value of the packetId field MUST be set to TSG_PACKET_TYPE_VERSIONCAPS and the
packetVersionCaps field of the TSGPacket union field MUST be a pointer to the

TSG_PACKET_VERSIONCAPS structure. Otherwise, if this call is made for a new connection and
the RDG server is configured for pluggable authentication <37>, then the value of the packetId
field MUST be set to TSG_PACKET_TYPE_AUTH and the packetAuth field of the TSGPacket union

90 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

field MUST be a pointer to the TSG_PACKET_AUTH structure. If TSG_PACKET_AUTH is not
populated correctly, the error E_PROXY_COOKIE_BADPACKET is returned.<38>

TSGPacketResponse: Pointer to the TSG_PACKET structure. If
TSG_MESSAGING_CAP_CONSENT_SIGN capability is negotiated, the packetId member of the

TSGPacketResponse out parameter MUST be TSG_PACKET_TYPE_CAPS_RESPONSE and the
packetCapsResponse field of the TSGPacket union field MUST be a pointer to the
TSG_PACKET_CAPS_RESPONSE (section 2.2.9.2.1.7). Otherwise, the packetId member of
TSGPacketResponse MUST be TSG_PACKET_TYPE_QUARENC_RESPONSE, and the
packetQuarEncResponse field of the TSGPacket union field MUST be a pointer to the
TSG_PACKET_QUARENC_RESPONSE structure. The ADM element Nonce MUST be initialized to a
unique GUID and assigned to the nonce field of the TSG_PACKET_QUARENC_RESPONSE structure

either in TSGPacketResponse->TSGPacket.packetQuarEncResponse or TSGPacketResponse-
>TSGPacket.packetCapsResponse->pktQuarEncResponse.

tunnelContext: An RPC context handle that represents context-specific information for the tunnel
(2). The RDG server MUST provide a non-NULL value. The RDG client MUST save and use this
context handle on all subsequent methods calls on the tunnel (2). The methods are

TsProxyAuthorizeTunnel, TsProxyCreateChannel, and TsProxyCloseTunnel.

tunnelId: An unsigned long identifier representing the tunnel (2). The RDG server MUST save this
value in the ADM element Tunnel id and SHOULD provide this value to the RDG client. The RDG
client SHOULD save the tunnel id for future use on the RDG client itself. This tunnel id is not
required on any future method calls to the RDG server; the tunnelContext is used instead.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be one
of the codes listed in the rest of this table. The client MAY interpret failures in any way it deems
appropriate. See section 2.2.6 for details on these errors.

Return value
State
transition Description

ERROR_SUCCESS (0x00000000) The
connection
MUST
transition
to the
connected
state.

Returned when a call to
the
TsProxyCreateTunnel
method succeeds.

E_PROXY_INTERNALERROR (0x800759D8) The
connection
MUST
transition
to end
state.

Returned when the
server encounters an
unexpected error. The
RDG client MUST end
the protocol when this
error is received.

E_PROXY_COOKIE_BADPACKET (0x800759F7) The
connection
MUST
transition
to end
state.

Returned if the
packetAuth field of
the TSGPacket
parameter is NULL.

E_PROXY_NOCERTAVAILABLE (0x800759EE) The
connection
MUST
transition
to end
state.

Returned when the
RDG server cannot find
a certificate to register
for SCHANNEL
Authentication Service
(AS). The RDG client
MUST end the protocol
when this error is

91 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

received.

E_PROXY_UNSUPPORTED_AUTHENTICATION_METHOD(0x800759F9) The
connection
MUST
transition
to end
state.

Returned to the RDG
client when the RDG
server is configured for
pluggable
authentication and the
value of the packetId
member of the
TSGPacket parameter is
not equal to
TSG_PACKET_TYPE_AU
TH or
TSG_PACKET_TYPE_RE
AUTH. The RDG server
MUST disconnect the
connection.

E_PROXY_COOKIE_AUTHENTICATION_ACCESS_DENIED
(0x800759F8)

The
connection
MUST
transition
to end
state.

Returned when the
given user does not
have access to connect
via RDG server. The
RDG server MUST be in
pluggable
authentication mode for
this error to be
returned.

E_PROXY_CAPABILITYMISMATCH (0x800759E9) The
connection
MUST
transition
to end
state.

Returned when the
RDG server supports
the
TSG_MESSAGING_CAP
_CONSENT_SIGN
capability and is
configured to allow only
a RDG client that
supports the
TSG_MESSAGING_CAP
_CONSENT_SIGN
capability, but the RDG
client doesn't support
the capability.

3.2.6.1.2 TsProxyAuthorizeTunnel (Opnum 2)

The TsProxyAuthorizeTunnel method is used to authorize the tunnel (2) based on rules defined by
the RDG server. The RDG server SHOULD perform security authorization for the RDG client. The RDG
server SHOULD<39> also use this method to require health checks from the RDG client, which

SHOULD result in the RDG client performing health remediation.<40> After this method call has
successfully been completed, a tunnel (2) shutdown can be performed. If there are existing channels
within the tunnel, the RDG server MUST close all the channels before the tunnel shutdown. The tunnel
(2) shutdown is accomplished by using the TsProxyCloseTunnel method call.

If this method call completes successfully, the ADM element Number of Connections MUST be
incremented by 1.

Prerequisites: The connection MUST be in Connected state. If this call is made in any other state, the
result is undefined.

92 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Sequential Processing Rules:

1. The RDG server MUST verify that the packetId field of the TSGPacket parameter is

TSG_PACKET_TYPE_QUARREQUEST. Otherwise, it MUST return
HRESULT_CODE(E_PROXY_NOTSUPPORTED).

2. If the TSGPacket->TSGPacket.packetQuarRequest->dataLen is not zero and TSGPacket-
>TSGPacket.packetQuarRequest->data is not NULL, then the following.<41>

 The RDG server MUST decode the SoH specified in TSGPacket-
>TSGPacket.packetQuarRequest->data with the RDG server certificate, which is encoded with
one of PKCS #7 or X.509 encoding types, whichever is supported by the RDG server
certificate. The RDG server MUST decrypt the SoH, which is encrypted using the Triple Data
Encryption Standard algorithm.

 If decoding of the SoH fails, the RDG server MUST return the error code returned by the
cryptographic service provider.

 If decoding of the SoH succeeds, the RDG server MUST also verify that the decoded message

is prefixed with the Nonce. Otherwise, it MUST return ERROR_INVALID_PARAMETER.

 The remaining bytes in the decoded message are the RDG client computer's statement of
health response (SoHR).

3. The RDG server MUST verify that the ADM element Number of Connections has not already
reached the maximum number of connections configured by the RDG service. Otherwise, it MUST
return the E_PROXY_MAXCONNECTIONSREACHED error code.

4. The RDG server MUST do the user authorization as per policies configured at the RDG server. If
the user is not authorized, it MUST return E_PROXY_NAP_ACCESS_DENIED.

5. If quarantine is configured at the RDG server:<42>

1. The RDG client computer's SoH SHOULD be passed to a Network Policy Server (NPS) using a

RADIUS request. The statement of health is carried by the MS-Quarantine- SoH RADIUS

attribute as specified in [MS-RNAP] section 2.2.1.19.

2. After the NPS processes the statement of health request, a statement of health response is
returned in a RADIUS response. The SoHR is encoded in the MS-Quarantine-SoH RADIUS
attribute as specified in [MS-RNAP] section 2.2.1.19.

3. The RDG server MUST sign the SoHR using SHA-1 hash and encode it with the RDG server
certificate using PKCS #7 or X.509 encoding types, whichever is supported by the RDG server

certificate and append the signed and encoded SoHR to TSGPacketResponse-
>TSGPacket.packetResponse->responseData, where TSGPacketResponse is an output
parameter to TsProxyAuthorizeTunnel.

4. If the RDG client computer's health is not compliant to quarantine settings:

1. If the ADM element Reauthentication Connection is TRUE:

1. The RDG server MUST find the original connection that has initiated the

reauthentication using Reauthentication Tunnel Context and MUST set its ADM
element Reauthentication Status to
UserAuthorizationCompletedButQuarantineFailed.

2. The RDG server MUST return the E_PROXY_QUARANTINE_ACCESSDENIED error code.

6. If the ADM element Reauthentication Connection is TRUE:

%5bMS-RNAP%5d.pdf#Section_e391716b22f74bf7bb39202a18598000

93 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1. The RDG server MUST find the original connection which has initiated the reauthentication
using Reauthentication Tunnel Context and MUST set its ADM element Reauthentication

Status to UserAuthorizationCompleted.

7. The RDG server MUST set the packetId member of the TSGPacketResponse out parameter to

TSG_PACKET_TYPE_RESPONSE.

8. The RDG server MUST increment the ADM element Number of Connections by 1.

9. The RDG server MUST return ERROR_SUCCESS.

 HRESULT TsProxyAuthorizeTunnel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,
 [in, ref] PTSG_PACKET TSGPacket,
 [out, ref] PTSG_PACKET* TSGPacketResponse
);

tunnelContext: The RDG client MUST provide the RDG server with the same context handle it

received from the TsProxyCreateTunnel method call. The RDG server SHOULD throw an exception
if the RPC validation and verification fails.

TSGPacket: Pointer to the TSG_PACKET structure. The value of the packetId field MUST be set to
TSG_PACKET_TYPE_QUARREQUEST. If this is set to any other value, the error
E_PROXY_NOT_SUPPORTED is returned. The packetQuarRequest field of the TSGPacket union

field MUST be a pointer to the TSG_PACKET_QUARREQUEST structure.

TSGPacketResponse: Pointer to the TSG_PACKET structure. The value of the packetId field MUST
be TSG_PACKET_TYPE_RESPONSE. The packetResponse field of the TSGPacket union field MUST
be a pointer to the TSG_PACKET_RESPONSE structure.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be one
of the codes listed. The client MAY interpret failures in any way it deems appropriate. See 2.2.6 for
details on these errors.

Return value
State
transition Description

ERROR_SUCCESS (0x00000000) The
connection
MUST
transition
to the
authorized
state.

Returned when a call to the
TsProxyAuthorizeTunnel method
succeeds.

E_PROXY_NAP_ACCESSDENIED (0x800759DB) The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when the RDG server
denies the RDG client access due
to policy. The RDG client MUST
end the protocol when this error is
received.

HRESULT_CODE(E_PROXY_NOTSUPPORTED)
(0x000059E8)

The
connection
MUST
transition
to Tunnel
Close
Pending

Returned if the packetId field of
the TSGPacket parameter is not
TSG_PACKET_TYPE_QUARREQUES
T. The RDG client MUST end the
protocol when this error is
received.

94 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

state.

E_PROXY_QUARANTINE_ACCESSDENIED (0x800759ED) The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when the RDG server
rejects the connection due to
quarantine policy. The RDG client
MUST end the protocol when this
error is received.

ERROR_ACCESS_DENIED (0x00000005) The

connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when this call is made

either in a state other than the
Connected state or the
tunnelContext parameter is NULL.
The RDG client MUST end the
protocol when this error is
received.

HRESULT_CODE(E_PROXY_MAXCONNECTIONSREACHED)
(0x59E6)

The
connection
MUST
transition
to end
state.

Returned when the ADM element
Number of Connections is equal
to the maximum number of
connections when the call is
made.<43> The RDG client MUST
end the protocol when this error is
received.

ERROR_INVALID_PARAMETER (0x00000057) The

connection
MUST not
transition
its state.

Returned when the Negotiated

Capabilities ADM element
contains
TSG_NAP_CAPABILITY_QUAR_SO
H and TSGPacket-
>TSGPacket.packetQuarRequest-
>dataLen is not zero and
TSGPacket-
>TSGPacket.packetQuarRequest-
>data is not NULL and TSGPacket-
>TSGPacket.packetQuarRequest-
>data is not prefixed with Nonce.

3.2.6.1.3 TsProxyMakeTunnelCall (Opnum 3)

The TsProxyMakeTunnelCall method is designed to be used as a general purpose API. If both the client

and the server support the administrative message, the client MAY request the same from the RDG
server. If the RDG server has any administrative messages, it SHOULD complete the pending call at
this point in time. After a call to TsProxyMakeTunnelCall returns, the RDG client SHOULD queue up
another request at this point in time. During the shutdown sequence, the client MUST make this call, if

a request is pending on the RDG server, to cancel the administrative message request.

Prerequisites: The connection MUST be in Authorized state or Channel Created state or Pipe Created
state or Channel Close Pending state or Tunnel Close Pending state. If this call is made in any other

state, the error ERROR_ACCESS_DENIED is returned.

Sequential Processing Rules:

95 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1. The RDG server MUST verify that the procId parameter is either
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST or TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST.

Otherwise, it MUST return ERROR_ACCESS_DENIED.

2. The RDG server MUST verify that the tunnel (2) has been authorized. Otherwise, it MUST return

ERROR_ACCESS_DENIED.

3. The RDG server MUST verify that the ADM element Reauthentication Connection is FALSE.
Otherwise, it MUST return ERROR_ACCESS_DENIED. TsProxyMakeTunnelCall is not valid on
reauthentication tunnels.

4. If procId is TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST:

1. If a TsProxyMakeTunnelCall has already been made and not yet returned, the RDG server
MUST return ERROR_ACCESS_DENIED.

2. If there is already a pending administrative message or reauthentication message to the
RDG client, the RDG server MUST fill TSGPacketResponse and return ERROR_SUCCESS.

3. If there is no pending administrative message or a reauthentication message, the RDG server
MUST wait until one of the following events occurs:

 Reauthentication starts because the session timeout timer expires.

 The RDG server administrator sets the administrative message.

 The RDG client cancels the call.

 The connection shutdown sequence is initiated.

If any of the preceding events occurs, then the following steps MUST be performed:

1. If reauthentication is started because of session timeout timer expiration, then the RDG
server MUST return the TsProxyMakeTunnelCall as explained in section 3.2.7.1.

2. Or else, if the RDG administrator has set the administrative message, then the RDG server
MUST do the following:

1. The RDG server MUST set the packetId member of the TSGPacketResponse out
parameter of TsProxyMakeTunnelCall to TSG_PACKET_TYPE_MESSAGE_PACKET.

2. The RDG server MUST set TSGPacketResponse->packetMsgResponse->msgType to
TSG_ASYNC_MESSAGE_SERVICE_MESSAGE.

3. The RDG server MUST initialize TSGPacketResponse->packetMsgResponse-
>messagePacket.serviceMessage->isDisplayMandatory to TRUE.

4. The RDG server MUST initialize TSGPacketResponse->packetMsgResponse-

>messagePacket.serviceMessage->isConsentMandatory to FALSE.

5. The RDG server MUST initialize TSGPacketResponse->packetMsgResponse-
>messagePacket.serviceMessage->msgBuffer with the administrative message.

6. The RDG server MUST initialize TSGPacketResponse->packetMsgResponse-
>messagePacket.serviceMessage->msgBytes with the number of characters in
TSGPacketResponse->packetMsgResponse->messagePacket.serviceMessage-

>msgBuffer.

7. The RDG server MUST complete the TsProxyMakeTunnelCall with error code
ERROR_SUCCESS.

96 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. Or else, if the RDG client cancels the call by calling another TsProxyMakeTunnelCall with
procId TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST, then the RDG server MUST return

HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED).

4. Or else, if the connection shutdown sequence is initiated, then the RDG server MUST

return HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED).

5. If procId is TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST:

1. If there is no unreturned TsProxyMakeTunnelCall call which is called with the procId value
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST, the RDG server MUST return
ERROR_ACCESS_DENIED.

2. Otherwise, the RDG server MUST notify the waiting TsProxyMakeTunnelCall call, which is
called with the procId value TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST, that the RDG client

is canceling the call.

3. The RDG server MUST return ERROR_SUCCESS.

 HRESULT TsProxyMakeTunnelCall(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,
 [in] unsigned long procId,
 [in, ref] PTSG_PACKET TSGPacket,
 [out, ref] PTSG_PACKET* TSGPacketResponse
);

tunnelContext: The RDG client MUST provide the RDG server with the same context handle it
received from the TsProxyCreateTunnel method call. The RDG server SHOULD throw an exception
if the RPC validation and verification fail.

procId: This field identifies the work that is performed by the API. This field can have the following
values.

Value Meaning

TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST

0x00000001

Used to request an administrative message when the same
is available on the server.

TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST

0x00000002

Used to cancel a pending administrative message request.

TSGPacket: Pointer to the TSG_PACKET structure. The value of the packetId field MUST be set to
TSG_PACKET_TYPE_MSGREQUEST_PACKET. The packetMsgRequest field of the TSGPacket
union field MUST be a pointer to the TSG_PACKET_MSG_REQUEST structure.

TSGPacketResponse: Pointer to the TSG_PACKET structure. If procId is
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST or if the return value is
HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED), *TSGPacketResponse MUST be set to NULL.
Otherwise, the value of the packetId field MUST be TSG_PACKET_TYPE_MESSAGE_PACKET. The

packetMsgResponse field of the TSGPacket union field MUST be a pointer to the
TSG_PACKET_MSG_RESPONSE structure.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be one

of the codes listed. The client MAY interpret failures in any way it deems appropriate. See section
2.2.6 for details on these errors. The connection MUST NOT transition its state after completing
the TsProxyMakeTunnelCall.

97 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

ERROR_SUCCESS (0x00000000) The
connection
MUST NOT
transition
its state.

Returned when a call to
the
TsProxyMakeTunnelCall
method succeeds.

ERROR_ACCESS_DENIED (0x00000005) The
connection
MUST NOT
transition
its state.

Returned in the following
cases.

 When the call is made
in any state other
than Authorized,
Channel Created, Pipe
Created, Channel
Close Pending, or
Tunnel Close Pending.

 If procId is neither
TSG_TUNNEL_CALL_A
SYNC_MSG_REQUEST
nor
TSG_TUNNEL_CANCE
L_ASYNC_MSG_REQU
EST.

 If procId is
TSG_TUNNEL_CALL_A
SYNC_MSG_REQUEST
and there is already a

call to
TsProxyMakeTunnelCa
ll made earlier with
procId
TSG_TUNNEL_CALL_A
SYNC_MSG_REQUEST
and it is not yet
returned.

 If procId is
TSG_TUNNEL_CANCE
L_ASYNC_MSG_REQU
EST and there is no
call to
TsProxyMakeTunnelCa
ll made earlier with
procId
TSG_TUNNEL_CALL_A
SYNC_MSG_REQUEST
that is not yet
returned.

 If the tunnelContext
parameter is NULL.

 If the tunnel is not
authorized.

 If the
Reauthentication
Connection ADM
element is TRUE.

98 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

The RDG client MUST end
the protocol when this
error is received.

HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED)(0x8007071A) The
connection
MUST not
transition
its state.

Returned when the call is
canceled by the RDG
client or the call is
canceled because a
shutdown sequence is
initiated.

3.2.6.1.4 TsProxyCreateChannel (Opnum 4)

The TsProxyCreateChannel method is used to create a channel between the RDG client and the RDG
server.<44> The RDG server SHOULD connect to the target server during this call to start
communication between the RDG client and target server. If connection to the target server cannot be
done, the RDG server MUST return HRESULT_CODE(E_PROXY_TS_CONNECTFAILED) as noted in the
Return Values section.<45> The RDG server MUST return a representation of the channel to the RDG

client. After this method call has successfully been completed, a channel shutdown can be performed
by using the TsProxyCloseChannel method. Please refer to section 3.1.1 for a state transition diagram.

Prerequisites: The tunnel MUST be authorized; otherwise, the error ERROR_ACCESS_DENIED is
returned.

Sequential Processing Rules:

1. If some unexpected error occurs during the following process, the RDG server MUST return

E_PROXY_INTERNALERROR.

2. The RDG server MUST verify that the tunnel has been authorized. Otherwise, it MUST return
ERROR_ACCESS_DENIED.

3. The RDG server MUST verify that the tsEndPointInfo parameter is not NULL and tsEndPointInfo-
>numResources is not zero. Otherwise, it MUST return ERROR_ACCESS_DENIED.

4. The RDG server MUST initialize the ADM element Target server names with combined array of
the resourceName and alternateResourceNames members of the tsEndPointInfo parameter.

5. The RDG server MUST do the resource authorization as per policies configured at the RDG server.
If the resource is not authorized, then it MUST return E_PROXY_RAP_ACCESSDENIED.<46>

6. If Reauthentication Connection is TRUE:

1. The RDG server MUST find the original connection that has initiated the reauthentication
using Reauthentication Tunnel Context and MUST set its ADM element Reauthentication

Status to ResourceAuthorizationCompleted.

2. Return ERROR_SUCCESS.

7. The RDG server SHOULD try to connect to the target server by each name in the target server
names array until it succeeds or until the array is traversed completely. If connection fails for all
target server names, it MUST return HRESULT_CODE(E_PROXY_TS_CONNECTFAILED) in rpc_fault
packet.

99 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

8. The RDG server MUST create the channelId and channelContext RPC content handles and MUST
initialize the corresponding ADM elements.

9. The RDG server MUST also start the Session Timeout Timer (section 3.1.2.1), if the session
timeout is configured at the RDG server.

10. If the RDG server is implementing the Connection Timer, the RDG server MUST start the
Connection Timer.

11. The RDG server MUST return ERROR_SUCCESS.

 HRESULT TsProxyCreateChannel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,
 [in, ref] PTSENDPOINTINFO tsEndPointInfo,
 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext,
 [out] unsigned long* channelId
);

tunnelContext: The RDG client MUST provide the RDG server with the same context handle it
received from the TsProxyCreateTunnel method call. The RDG server SHOULD throw an exception
if the RPC validation and verification fails.

tsEndPointInfo: Pointer to the TSENDPOINTINFO structure. The RDG client MUST provide a non-
NULL pointer to the RDG server for this structure. The RDG server initializes the ADM element
Target server names with an array of resourceName and alternateResourceNames members
of TSENDPOINTINFO structure. The RDG server SHOULD try to connect to the target server by
each name in the array until it succeeds or until the array is traversed completely. If connection
fails for all target server names, HRESULT_CODE(E_PROXY_TS_CONNECTFAILED) (0x000059DD)

is returned.<47> The rules for determining a valid server name are specified in section 2.2.1.1.

channelContext: A RPC context handle that represents context-specific information for the channel.
The RDG server MUST provide a non-NULL value. The RDG client MUST save and use this context
handle on all subsequent method calls on the channel. Specifically, these methods are
TsProxySendToServer, TsProxySetupReceivePipe, and TsProxyCloseChannel.

channelId: An unsigned long identifying the channel. The RDG server MUST provide this value to the
RDG client. The RDG client MUST save the returned channel ID for future use in the ADM element

Channel id (section 3.5.1). This channel ID is not required on any future method calls.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be one
of the codes listed. The client MAY interpret failures in any way it deems appropriate. See section
2.2.6 for details on these errors.

Return value
State
transition Description

ERROR_SUCCESS (0x00000000) The
connection
MUST
transition to
Channel
Created state.

Returned when a call to the
TsProxyCreateChannel method
succeeds.

ERROR_ACCESS_DENIED (0x00000005) The
connection
MUST NOT
transition its
state.

Returned either if tunnelContext
parameter is NULL, if this method is
called on a tunnel which is not
authorized, if the tsEndPointInfo
parameter is NULL, or if the
numResourceNames member of the
tsEndPointInfo parameter is zero.

100 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

E_PROXY_RAP_ACCESSDENIED (0x800759DA) The
connection
MUST NOT
transition its
state.

Returned when an attempt to resolve
or access a target server is blocked by
RDG server policies.

E_PROXY_INTERNALERROR (0x800759D8) The
connection
MUST NOT
transition its
state.

Returned when the server encounters
an unexpected error while creating
the channel.

HRESULT_CODE(E_PROXY_TS_CONNECTFAILED)
(0x000059DD)

The
connection
MUST NOT
transition its
state.

This error is returned in rpc_fault
packet when the RDG server fails to
connect to any of the target server
names, as specified in the members
of tsEndPointInfo.

The error ERROR_ACCESS_DENIED is returned when this call is made on a tunnel which is not
authorized.

3.2.6.2 Data Transfer Phase

3.2.6.2.1 TsProxySendToServer (Opnum 9)

The method is used for data transfer from the RDG client to the target server, via the RDG server.
The RDG server SHOULD send the buffer data received in this method to the target server. The RPC
runtime MUST NOT perform a strict NDR data consistency check for this method. The Remote Desktop

Gateway Server Protocol bypasses NDR for this method. The wire data MUST follow the regular RPC
specifications as specified in [C706] section 2.1, and [MS-RPCE] minus all NDR headers, trailers, and
NDR-specific payload. The RDG server MUST have created the channel to the target server before

completing this method call. This method MAY be called multiple times by the RDG client, but only
after the previous method call finishes. The RDG server MUST handle multiple sequential invocations
of this method call. This method bypasses NDR. For this reason, unlike other RPC methods that return
an HRESULT, this method returns a DWORD. This is directly passed to the callee from underlying RPC

calls.<48> When this call fails, the RDG server MUST send the final response to
TsProxySetupReceivePipe call.

Prerequisites: The connection MUST be in Pipe Created state. If this call is made in any other state,
ERROR_ONLY_IF_CONNECTED or E_PROXY_TS_CONNECTFAILED is returned.

Sequential Processing Rules:

1. If some unexpected error occurs in the following process, the RDG server MUST return
HRESULT_CODE(E_PROXY_INTERNALERROR).

2. The RDG server MUST extract the channel context handle from the pRpcMessage parameter. Refer

to Generic Send Data Message Packet for the pRpcMessage format.

3. The RDG server MUST verify that the channel context handle is not NULL. Otherwise, it MUST
return ERROR_ACCESS_DENIED.

4. The RDG server MUST verify that the connection is in Pipe Created state. Otherwise, it MUST
return ERROR_ONLY_IF_CONNECTED or E_PROXY_TS_CONNECTFAILED.

5. The RDG server MUST extract the RDG client data from the pRpcMessage parameter. For the
pRpcMessage format, refer to Generic Send Data Message Packet (section 2.2.9.3).

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

101 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1. The RDG server MUST verify that the totalDataBytes field in pRpcMessage is not zero.
Otherwise, it MUST return ERROR_ACCESS_DENIED.

2. The RDG server MUST verify that the numBuffers filed in pRpcMessage is in the range of 1
and 3, both inclusive. Otherwise, it MUST return ERROR_ACCESS_DENIED.

3. The RDG server MUST verify that buffer1Length + buffer2Length, (if numBuffers >= 2),
+ buffer3Length, (if numBuffers == 3), + size of buffer1Length + size of
buffer2Length, (if numBuffers >= 2), + size of buffer3Length, (if numBuffers == 3),
does not exceed totalDataBytes. Otherwise, it MUST return ERROR_ACCESS_DENIED.

4. The RDG server MUST verify that the buffer1Length field in pRpcMessage is not zero.
Otherwise, it MUST return HRESULT_CODE(E_PROXY_INTERNALERROR).

6. The RDG server MUST send the data extracted in the preceding step to the target server.

7. The RDG server MUST return ERROR_SUCCESS.

 DWORD TsProxySendToServer(
 [in, max_is(32767)] byte pRpcMessage[]
);

pRpcMessage: The protocol data between RDG client and RDG server MUST be decoded as specified

in section 2.2.9.3. RPC stub information is specified in [MS-RPCE] sections 1.1 and 1.5.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be one
of the codes listed. The client MAY interpret failures in any way it deems appropriate. See section
2.2.6 for details on these errors.

Return value State transition Description

ERROR_SUCCESS (0x00000000) The connection
MUST remain in
PipeCreated state.

Returned when a call to the
TsProxySendToServer method
succeeds.

ERROR_ONLY_IF_CONNECTED (0x000004E3) The connection
MUST transition
to Channel Close
Pending state.

Returned by the RDG server when an
attempt is made by the client to send
data to the target server on
connection state other than Pipe
Created state.

The RDG client MUST end the
protocol when this error is returned.

ERROR_ACCESS_DENIED (0x00000005) The connection
MUST transition
to Channel Close
Pending state.

Returned if the channel context
handle passed in the pRpcMessage
parameter is NULL. The RDG client
MUST end the protocol when this
error is received.

HRESULT_CODE(E_PROXY_INTERNALERROR)
(0x000059D8)

The connection
MUST transition
to Channel Close
Pending state.

Returned when an unexpected error
occurs in TsProxySendToServer. The
RDG client MUST end the protocol
when this error is received.

3.2.6.2.2 TsProxySetupReceivePipe (Opnum 8)

102 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The TsProxySetupReceivePipe method is used for data transfer from the RDG server to the RDG
client. The RDG server MUST create an RPC out pipe upon receiving this method call from the RDG

client. This call bypasses the NDR and hence, the RPC runtime MUST NOT perform a strict NDR data
consistency check for this method. Refer to section 3.6.5 for details on NDR-bypassing. Section

3.6.5.4 and section 3.6.5.5 give details on wire representation of data for responses to
TsProxySetupReceivePipe. The out pipe MUST be created by the RDG server in the same manner as
NDR creates it for a call.<49> The RDG server MUST use this out pipe and Stub Data field in RPC
response PDUs to send all data from the target server to the RDG client on the channel. The RDG
client MUST use this out pipe to pull data from the target server on the channel. On connection
disconnect, the RDG server MUST send the following on the pipe: A DWORD return code in an RPC
response PDU and set the PFC_LAST_FRAG bit in the pfc_flags field of the RPC response PDU. The

pipe close is indicated when the PFC_LAST_FRAG bit is set in the pfc_flags field of the RPC response
PDU. When the RDG client sees that the PFC_LAST_FRAG bit is set in the pfc_flags field of the RPC
response PDU, it MUST interpret the 4 bytes Stub Data as the return code of
TsProxySetupReceivePipe. For a description of RPC response PDU, pfc_flags, PFC_LAST_FRAG, and
Stub Data, refer to sections 12.6.2 and 12.6.4.10 in [C706]. The RDG client and RDG server MUST
negotiate a separate out pipe for each channel. Out pipes MUST NOT be used or shared across

channels.<50>

As long as the channel is not closed, the RPC and Transport layer guarantee that any data that is sent
by the RDG server reaches the RDG client. RPC and Transport layer also ensure that the data is
delivered to the RDG client in the order it was sent by the RDG server.

After the call reaches the RDG server, the connection MUST transition to Pipe Created state after
setting up the out pipe.

Prerequisites: The connection MUST be in Channel Created state. If this is called in any other state,

then the behavior is undefined.

Sequential Processing Rules:

1. If some unexpected error occurs in the following process, the RDG server MUST return
HRESULT_CODE(E_PROXY_INTERNALERROR).

2. If the RDG server is implementing the Connection Timer, then if TsProxySetupReceivePipe is called
after the Connection Timer has expired, the RDG server MUST return
ERROR_OPERATION_ABORTED; otherwise, the Connection Timer MUST be stopped.

3. The RDG server MUST extract the channel context handle from pRpcMessage parameter. For the
pRpcMessage format, refer to RDG Client to RDG Server Packet Format (section 2.2.9.4.1).

4. The RDG server MUST verify that the channel context handle is not NULL. Otherwise, it MUST
return ERROR_ACCESS_DENIED.

5. If the RDG server is configured such that the connections are allowed only to a resource that
allows policy exchanges between the RDG server and the target server, and the target server does

not support the same, then the RDG server MUST return
HRESULT_CODE(E_PROXY_SDR_NOT_SUPPORTED_BY_TS).

6. If connection to the target server is not set up in TsProxyCreateChannel call, then the RDG server

MUST try to connect to the target server by each name in the Target server names array until it
succeeds or until the array is traversed completely. If connection fails for all target server names,
it MUST return HRESULT_CODE(E_PROXY_TS_CONNECTFAILED).<51>

7. The RDG server MUST set up an out pipe to send data received from the target server to the RDG

client.

8. The connection MUST transition to Pipe Created state.

https://go.microsoft.com/fwlink/?LinkId=89824

103 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

9. The RDG server MUST start receiving data from the target server and stream the same to the RDG
client. This process MUST be continued until one of the following events occurs.

1. If the Session Timeout Timer expires and the TimeoutAction ADM element is set to
"disconnect on session timeout" RDG server:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the session
by sending the final response of the TsProxySetupReceivePipe method with the
HRESULT_CODE(E_PROXY_SESSIONTIMEOUT) error code.

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the session
by sending the final response of the TsProxySetupReceivePipe method with the

HRESULT_CODE(E_PROXY_CONNECTIONABORTED) error code.

2. If the session timeout timer expires and the TimeoutAction ADM element is set to
"reauthentication on session timeout", the RDG server initiates a reauthentication with the

client and starts the reauthentication timer, as explained in section 3.2.7.1. After the
reauthentication timer expires, the RDG server MUST check the value of Reauthentication
Status ADM element.

 If the ADM element Reauthentication Status is set to NONE:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FAILED).

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to AuthenticationCompleted:

1. If the ADM element Negotiated Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILED).

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to
UserAuthorizationCompletedButQurantineFailed:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILED).

2. If the ADM element Negotiated Capabilities does not contain

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the

connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to UserAuthorizationCompleted:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILED).

104 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the

connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to ResourceAuthorizationCompleted,

the RDG server MUST start the Session Timeout Timer and MUST reset the ADM element
Reauthentication Status to NONE.

3. If the target server unexpectedly closes the connection between the RDG server and the
target server, the RDG server MUST return ERROR_BAD_ARGUMENTS.

4. If the RDG server administrator forcefully disconnects the connection, the RDG server MUST
return HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

5. If the connection gets disconnected either by the RDG client or the RDG server, or by an

unknown error, the RDG server MUST send the corresponding error code to the RDG client in
the final response, as specified in RDG Server to RDG Client Packet Format for Final
Response (section 2.2.9.4.3).

 DWORD TsProxySetupReceivePipe(
 [in, max_is(32767)] byte pRpcMessage[]
);

pRpcMessage: The protocol data between RDG client and RDG server MUST be decoded as specified
in section 2.2.9.4. RPC stub information is specified in [MS-RPCE] sections 1.1 and 1.5.

Return Values: The method MUST return ERROR_GRACEFUL_DISCONNECT on success, that is, if the
RDG client gracefully disconnects the connection by calling TsProxyCloseChannel. Other failures
MUST be one of the codes listed. The client MAY interpret failures in any way it deems appropriate.
See section 2.2.6 for details on these errors.

The error DWORD value is always sent, when the receive pipe closes down. The receive pipe will
always close down when a disconnect takes place.

Return value
State
transition Description

ERROR_ACCESS_DENIED (0x00000005) The

connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned either if this method is

called before
TsProxyCreateChannel or if the
Channel Context Handle ADM
element is NULL. The RDG client
MUST end the protocol when this
error is received.

HRESULT_CODE(E_PROXY_INTERNALERROR)
(0x000059D8)

The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when an unexpected
error occurs in
TsProxySetupReceivePipe. The
RDG client MUST end the
protocol when this error is
received.

HRESULT_CODE(E_PROXY_TS_CONNECTFAILED)
(0x000059DD)

The
connection
MUST
transition
to Tunnel
Close

Returned when the RDG server
fails to connect to target server.
It is returned in an rpc_fault
packet.<52> The RDG client
MUST end the protocol when this

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

105 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

Pending
state.

error is received.

HRESULT_CODE(E_PROXY_SESSIONTIMEOUT)
(0x000059F6)

The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned by RDG server if a
session timeout occurs and
"disconnect on session timeout"
is configured at the RDG server
and the ADM element
Negotiated Capabilities
contains
TSG_NAP_CAPABILITY_IDLE_TIM
EOUT. The RDG client MUST end
the protocol when this error is
received.

HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FAILED)
(0x000059FA)

The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when a
reauthentication attempt by the
client has failed because the user
credentials are no longer valid
and the ADM element
Negotiated Capabilities
contains
TSG_NAP_CAPABILITY_IDLE_TIM
EOUT. The RDG client MUST end
the protocol when this error is
received.

HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILED)
(0x000059FB)

The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when a
reauthentication attempt by the
client has failed because the user
is not authorized to connect
through the RDG server anymore
and the ADM element
Negotiated Capabilities
contains
TSG_NAP_CAPABILITY_IDLE_TIM
EOUT. The RDG client MUST end
the protocol when this error is
received.

HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILED)
(0x000059FC)

The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when a
reauthentication attempt by the
client has failed because the user
is not authorized to connect to
the given end resource anymore
and the ADM element
Negotiated Capabilities
contains
TSG_NAP_CAPABILITY_IDLE_TIM
EOUT. The RDG client MUST end
the protocol when this error is
received.

HRESULT_CODE(E_PROXY_CONNECTIONABORTED)
(0x000004D4)

The
connection
MUST
transition
to Tunnel
Close
Pending

state.

Returned when the following
happens:

1. The RDG server
administrator forcefully
disconnects the connection.

2. Or when the ADM element
Negotiated Capabilities

106 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

doesn't contain
TSG_NAP_CAPABILITY_IDLE
_TIMEOUT and any one of
the following happens:

1. Session timeout occurs
and disconnect on
session timeout is
configured at the RDG
server.

2. Reauthentication
attempt by the client
has failed because the
user credentials are no
longer valid.

3. Reauthentication
attempt by the client
has failed because the
user is not authorized to
connect through the
RDG server anymore.

4. Reauthentication
attempt by the client
has failed because the
user is not authorized to
connect to the given end
resource anymore.

5. Reauthentication
attempt by the RDG
client has failed because
the health of the user's
computer is no longer
compliant with the RDG
server configuration.

The RDG client MUST end the
protocol when this error is
received.

HRESULT_CODE(E_PROXY_SDR_NOT_SUPPORTED_BY_TS)
(0x000059FD)

The
connection
MUST
transition
to Tunnel
Close
Pending
state.

The RDG server is capable of
exchanging policies with some
target servers. The RDG server
MAY be configured to allow
connections to only target
servers that are capable of policy
exchange. If such a setting is
configured and the target server
is not capable of exchanging
policies with the RDG server, this
error will be returned. The RDG
client MUST end the protocol
when this error is received.

ERROR_GRACEFUL_DISCONNECT (0x000004CA) The
connection
MUST
transition

Returned when the connection is
disconnected gracefully by the
RDG client calling
TsProxyCloseChannel.

107 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value
State
transition Description

to Tunnel
Close
Pending
state.

HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILED)
(0x00005A00)

The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when a
reauthentication attempt by the
RDG client has failed because the
user's computer's health is no
longer compliant with the RDG
server configuration and the ADM
element Negotiated
Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIM
EOUT. The RDG client MUST end
the protocol when this error is
received.

ERROR_OPERATION_ABORTED(0x000003E3) The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when the call to
TsProxySetupReceivePipe is
received after the Connection
Timer has expired.

ERROR_BAD_ARGUMENTS(0x000000A0) The
connection
MUST
transition
to Tunnel
Close
Pending
state.

Returned when the target server
unexpectedly closes the
connection between the RDG
server and the target server.

3.2.6.3 Shutdown Phase

Shutdown phase is used to terminate the channel and tunnel (2). Channel closure can either be
initiated by the RDG client or the RDG server. The RDG client SHOULD initiate it by closing the

channel using method TsProxyCloseChannel. The RDG server initiates it by setting the
PFC_LAST_FRAG bit in the pfc_flags field in the final response for the TsProxySetupReceivePipe
method. If the client has any pending administrative message requests on the RDG server, the client
cancels the same by making a TsProxyMakeTunnelCall call with
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST as a parameter. The closing of tunnel is accomplished
by using the TsProxyCloseTunnel method.

3.2.6.3.1 TsProxyCloseChannel (Opnum 6)

The TsProxyCloseChannel method is used to terminate the channel from the RDG client to the RDG
server. This SHOULD be called only if the RDG client has not received the RPC response PDU with the
PFC_LAST_FRAG bit set in the pfc_flags field. All communication between the RDG client and the
target server MUST stop after the RDG server executes this method. The RDG client MUST NOT use
this context handle in any subsequent operations after calling this method. This will terminate the

channel between the RDG client and the target server. If the RDG server has not already sent the RPC
response PDU with the PFC_LAST_FRAG bit set in the pfc_flags field, which happens if the RDG

108 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

server initiated the disconnect, the RDG client will also receive a return code for
TsProxySetupReceivePipe in an RPC response PDU with the PFC_LAST_FRAG bit set in the pfc_flags.

For a description of RPC response PDU, pfc_flags, and PFC_LAST_FRAG, refer to [C706] sections
12.6.2 and 12.6.14.10.

The RDG server completes the TsProxyCloseChannel only after sending all of the data it received
before this call was made. The RDG client receives the call complete notification only after it receives
all of the data that was sent by the RDG server before completing TsProxyCloseChannel. Please refer
to section 3.2.6.2.2 for details on how the data is ensured to reach the destination.

Prerequisites: The connection MUST be in Channel Created state or Pipe Created state or Channel
Close Pending state.

Sequential Processing Rules:

1. The RDG server MUST check whether the channel context handle is NULL or not a valid context
handle. If so, the TSGU server MUST return ERROR_ACCESS_DENIED.

2. The RDG server MUST disconnect the connection to the target server.

3. The RDG server MUST send all data received from the target server to the RDG client and MUST
end TsProxySetupReceivePipe with ERROR_GRACEFUL_DISCONNECT.

4. The RDG server MUST return ERROR_SUCCESS.

 HRESULT TsProxyCloseChannel(
 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context
);

context: The RDG client MUST provide the RDG server with the same context handle it received from
the TsProxyCreateChannel method call.

Return Values:

Return value State transition Description

ERROR_SUCCESS
(0x00000000)

The connection MUST
transition to Tunnel Close
Pending state.

Returned when the call to the
TsProxyCloseChannel method succeeds.

ERROR_ACCESS_DENIED
(0x00000005)

The connection MUST NOT
transition its state.

Returned when the provided context
parameter is NULL or not a valid channel
context handle.

3.2.6.3.2 TsProxyMakeTunnelCall (Opnum 3)

The TsProxyMakeTunnelCall method MUST be called with the
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST parameter before the TsProxyCloseTunnel method is

called if the previous TsProxyMakeTunnelCall has not returned. The TsProxyMakeTunnelCall method
has been defined in section 3.2.6.1.3.

The TsProxyCloseTunnel method call uses a serialized context handle. If a previous call to the
TsProxyMakeTunnelCall has not returned, then the RDG client cannot call TsProxyCloseTunnel,
because of the serialized nature of the context handle.

3.2.6.3.3 TsProxyCloseTunnel (Opnum 7)

https://go.microsoft.com/fwlink/?LinkId=89824

109 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The TsProxyCloseTunnel method is used to terminate the tunnel (1) between the RDG client and the
RDG server. All communication between the RDG client and RDG server MUST stop after the RDG

server executes this method. The RDG client MUST NOT use this tunnel context handle in any
subsequent operations after this method call. This MUST be the final tear down phase of the RDG

client to RDG server tunnel. If the ADM element Reauthentication Connection is FALSE, then the
ADM element Number of Connections MUST be decremented by 1 in this call. If there is an existing
channel within the tunnel, it SHOULD first be closed using TsProxyCloseChannel. If the RDG client
calls the TsProxyCloseTunnel method before calling the TsProxyCloseChannel method, the RDG server
MUST close the channel and then close the tunnel.

Prerequisites: The connection MUST be in any of the following states: Connected state, Authorized
state, Channel Created state, Pipe Created state, Channel Close Pending state, or Tunnel Close

Pending state.

Sequential Processing Rules:

1. The RDG server MUST check whether the tunnel context handle is NULL or not a valid context
handle. If so, it MUST return ERROR_ACCESS_DENIED.

2. If there are any channels in the tunnel then the RDG server MUST disconnect them. If
TsProxyCloseChannel has not already been called then the RDG server MUST close the RPC out

pipe and return ERROR_GRACEFUL_DISCONNECT for the TsProxySetupReceivePipe.

3. The RDG server MUST disconnect the tunnel.

4. If the ADM element Reauthentication Connection is FALSE:

1. The RDG server MUST decrement the ADM element Number of Connections by 1.

5. The connection MUST transition to the End state.

6. The RDG server MUST return ERROR_SUCCESS.

 HRESULT TsProxyCloseTunnel(
 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context
);

context: The RDG client MUST provide the RDG server with the same context handle it received from
the TsProxyCreateTunnel method call.

Return Values: The method MUST return 0 on success. This function SHOULD NOT fail from a RDG
protocol perspective. If TsProxyCloseTunnel is called while any of the channels are not closed,

then the RDG server MUST close all the channels and then close the tunnel.

Return value State transition Description

ERROR_SUCCESS
(0x00000000)

The connection MUST
transition to the end
state.

Returned when a call to the
TsProxyCloseTunnel method succeeds.

ERROR_ACCESS_DENIED
(0x00000005)

The connection MUST
NOT transition its state.

Returned when the provided context
parameter is NULL or not a valid tunnel
context handle.

3.2.6.3.4 Server Initiated Shutdown

110 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The server initiates shutdown by sending the final response packet to TsProxySetupReceivePipe call
with the PFC_LAST_FRAG bit set in the pfc_flags field. The server closes the channel after sending

this response. The client SHOULD not call TsProxyCloseChannel after receiving this final response.
The client SHOULD call the TsProxyCloseChannel method if the client initiates the shutdown, but not if

the server initiates shutdown.

Prerequisites: The connection MUST be in Pipe Created state.

Sequential Processing Rules:

1. The RDG server MUST send the final response packet to TsProxySetupReceivePipe call with the
PFC_LAST_FRAG bit set in the pfc_flags field.

2. The RDG server MUST close the channel.

3. The connection MUST be transitioned to Tunnel Close Pending state.

3.2.7 Timer Events

3.2.7.1 Session Timeout Timer

1. If the Session Timeout Timer expires and "disconnect on session timeout" is configured at the RDG
server, then review the following.

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the session by
sending the final response of the TsProxySetupReceivePipe method with the

HRESULT_CODE(E_PROXY_SESSIONTIMEOUT) error code.

2. If the ADM element Negotiated Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the session by
sending the final response of the TsProxySetupReceivePipe method with the
HRESULT_CODE(E_PROXY CONNECTIONABORTED) error code.

2. Otherwise, if this timer expires and "reauthentication on session timeout" is configured at the RDG

server, the RDG server MUST initiate the reauthentication connection as follows:

1. The RDG server MUST set the ADM element Reauthentication Status to None.

2. The RDG server MUST start the Reauthentication Timer.

3. If there is no waiting TsProxyMakeTunnelCall call, do nothing.

4. If there is a waiting TsProxyMakeTunnelCall call:

1. The RDG server MUST set the packetId member of the TSGPacketResponse out
parameter of TsProxyMakeTunnelCall to TSG_PACKET_TYPE_MESSAGE_PACKET.

2. The RDG server MUST set TSGPacketResponse->packetMsgResponse->msgType to
TSG_ASYNC_MESSAGE_REAUTH.

3. The RDG server MUST initialize TSGPacketResponse->packetMsgResponse-
>messagePacket.reauthMessage->tunnelContext by the ADM element Reauthentication
Tunnel Context.

4. The RDG server MUST complete the waiting TsProxyMakeTunnelCall with error code
ERROR_SUCCESS.

111 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.7.2 Reauthentication Timer

If the Reauthentication Timer expires, the RDG server MUST check the ADM element
Reauthentication Status value.

 If the ADM element Reauthentication Status is set to NONE:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection
with HRESULT_CODE (E_PROXY_REAUTH_AUTHN_FAILED).

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection
with HRESULT_CODE (E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to AuthenticationCompleted:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection

with HRESULT_CODE (E_PROXY_REAUTH_CAP_FAILED).

2. If the ADM element Negotiated Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection

with HRESULT_CODE (E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to
UserAuthorizationCompletedButQurantineFailed:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection
with HRESULT_CODE (E_PROXY_REAUTH_NAP_FAILED).

2. If the ADM element Negotiated Capabilities doesn't contain

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection
with HRESULT_CODE (E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to UserAuthorizationCompleted:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection
with HRESULT_CODE (E_PROXY_REAUTH_RAP_FAILED).

2. If the ADM element Negotiated Capabilities doesn't contain

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the RDG server MUST disconnect the connection
with HRESULT_CODE (E_PROXY_CONNECTIONABORTED).

 If the ADM element Reauthentication Status is set to ResourceAuthorizationCompleted, the
RDG server MUST start the Session Timeout Timer and MUST reset the ADM element
Reauthentication Status to NONE.

3.2.7.3 Connection Timer

If the Connection Timer expires and the call to the TsProxySetupReceivePipe method is received by
the RDG server after the timer has expired, the server MUST disconnect with the
ERROR_OPERATION_ABORTED return value, as specified in section 2.2.6.

112 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.7.4 Data Arrival From the Target Server

This event occurs when the target server data arrives at the RDG server that is destined for the
RDG client. When this event occurs, the RDG server MUST stream the data to the RDG client, in

response to the TsProxySetupReceivePipe, in the same order that it arrived.

3.3 HTTP Transport - Server Protocol Details

3.3.1 HTTP Transport – RDG Server States

The RDG server has two state machines: one to manage the connection with the RDG client and one
to manage channels. The connection state machine has one instance for every RDG client, whereas
the channel state machine MAY have multiple instances for the same RDG client, one for each channel.
The connection state machine creates a channel state machine when a new channel is being

requested.

The RDG server hosts connections from many RDG clients. Each connection to the RDG server has

many states in its communication with the RDG client. The valid state transitions on the RDG server
are depicted in the following figure, which shows the tunnel state machine RDG server.

113 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 14: RDG HTTP server tunnel state machine

The following figure shows the channel state machine RDG server. The channel exists inside the tunnel

only when the tunnel is in TUNNEL_STATE_AUTHORIZED state.

114 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 15: RDG HTTP server channel state machine

3.3.2 Abstract Data Model

udpPort: The UDP port number to which the RDG server listens to create the side channel.

3.3.3 Timers

3.3.3.1 Keep-alive Timer

Keep alive timer: This timer is used on both the RDG client and RDG server to send

HTTP_KEEPALIVE_PACKET between the client and the server. This ensures that the HTTP connection is
not lost if there is no RDP data. The default time period for this timer is 15 minutes, but it can be
configured independently on both RDG client and RDG server.<53>

3.3.4 Initialization

The RDG server initializes the HTTP connection and creates an HTTP server session with version 2.0.
The HTTP server session is updated with the authentication scheme Negotiate, NTLM, Digest and
Basic. Mutual authentication is mandated on the session. NTLM credential caching is disabled. The
RDG server binds to the HTTPS Binding URL parameter. In this case, <Port number> is the port
number used, which can be changed. If the RDG server is deployed behind a reverse proxy, the
connection between the reverse proxy and the RDG server can be over HTTP, in which case, the RDG
server binds to the HTTP Binding URL parameter.

115 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

After the RDG client and the RDG server have successfully created an IN channel and an OUT channel,
the Keep-alive Timer (section 3.3.6.4) is started.

3.3.5 Message Processing Events and Sequencing Rules

As mentioned in the Overview (section 1.3), the protocol operation can be viewed as four distinct
phases: connection setup, tunnel and channel creation, data exchange, and connection close. The
high-level operation of the protocol is depicted in the following flow diagrams.

Figure 16: Out channel setup

3.3.5.1 Connection Setup and Authentication

This phase establishes the two HTTP connections called IN channel and OUT channel and authenticates
the user. This phase involves HTTP header exchanges only.

1. The RDG client first establishes a secure HTTP connection to the RDG server using SSL on the
name and port number supplied by the higher layer. This step also includes server authentication
using the RDG server's certificate.

Note If the higher layer provides password credentials, the credentials are sent along with the
request. The RDG client uses Negotiate as the preselected authentication scheme.

116 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The RDG client sends a request with the RDG_OUT_DATA (section 2.2.3.1.2) custom command
and the custom header RDG-Connection-Id (section 2.2.3.2.1) set to a unique identifier. A GUID

generated by the RDG client is used for this purpose. The RDG client disallows caching and uses
"*/*" as the accept type.

Optional headers with an RDG_OUT_DATA request SHOULD include RDG-Connection-Id (section
2.2.3.2.1) and RDG-User-Id (section 2.2.3.2.3).

2. The RDG server interprets this request as a request to create the OUT channel. It sends back an
HTTP 401 status code (authentication required) with the supported authentication schemes in the
WWW-Authenticate header. This should include any Custom HTTP Authentication Scheme
Names (section 2.2.5.3.10) for custom authentication schemes that the RDG server supports.

3. The RDG client selects an authentication method and starts the authentication exchange by setting

the Authorization header. Messages are exchanged until the client is authenticated.

4. The server sends back the final status code 200 OK, and also a random entity body of limited size
(100 bytes). This enables a reverse proxy to start allowing data from the RDG server to the RDG

client. The RDG server does not specify an entity length in its response. It uses HTTP 1.0
semantics to send the entity body and closes the connection after the last byte is sent.

The RDG client resends the request on the same connection. The RDG server recognizes this

second request as an authenticated connection request, as described in the following diagram.

117 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 17: IN channel tunnel and channel setup

5. The RDG client sends a request for creating an IN channel with the custom command
RDG_IN_DATA (section 2.2.3.1.1), and the RDG-Connection-Id header set to the same GUID sent
on the RDG_OUT_DATA request. This allows the RDG server to correlate the two requests as
belonging to the same connection. Steps 1 through 4 in the process are repeated but with the
RDG_IN_DATA command, as shown in steps 5 through 8 in the previous diagram (IN channel and

tunnel channel creation). The content length is not used to tell to the RDG server that this not the

data but the authentication request.

Optional headers with an RDG_IN_DATA request SHOULD include RDG-Correlation-
Id (section 2.2.3.2.2) and RDG-User-Id (section 2.2.3.2.3).

3.3.5.2 Tunnel and Channel Creation

From this phase forward, all packets exchange is done in the HTTP entity body.

118 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1. Packets from the RDG client to the RDG server are sent as the request entity body of the IN
channel. These packets are sent as self-delimiting chunks. Packets from the RDG server to the

RDG client are sent as the response entity body of the OUT channel. The packet formats are
defined in section 2.2.10.

The first set of messages exchanged is the version negotiation packet
HTTP_HANDSHAKE_REQUEST_PACKET (section 2.2.10.10) (shown in steps 8 and 9 in the figure in
section 3.3.5.1). The version field in this packet indicates the highest protocol version supported
by the RDG client. If the RDG server does not support the specified version, the connection is
dropped. If the RDG server receives a version number lower than what it supports, it MAY respond
back with that same version number. That is, the RDG server is now operating in a lower version
mode. It MAY drop the connection with an error message if it does not support the RDG client's

version. If the RDG server receives a higher version number than it supports, it responds with an
error message packet. The same applies to the RDG client logic.

2. The RDG client sends an HTTP_TUNNEL_PACKET and receives a corresponding
HTTP_TUNNEL_RESPONSE (shown in steps 10 and 11 in the figure in section 3.3.5.1). If the
response contains an error, the client closes the connection and sends the error to the higher

layer. At the end of this step, the RDG client has passed CAP (Connection Authorization Policies)

checks.

3. The RDG client MUST send the HTTP_TUNNEL_AUTH_PACKET, appending
HTTP_TUNNEL_AUTH_PACKET_OPTIONAL, to the RDG server (shown in step 11 in the figure in
section 3.3.5.1). The client MUST set clientName as the name of the RDG client, cbClientName
as the length of the RDG client name, fieldsPresent as HTTP_TUNNEL_AUTH_FIELD_SOH (if
Negotiated Capabilities contains HTTP_CAPABILITY_TYPE_QUAR_SOH), and statementOfHealth
and clientName of the HTTP_TUNNEL_AUTH_PACKET_OPTIONAL structure to authorize the

tunnel.

The RDG client MUST receive the HTTP_TUNNEL_AUTH_RESPONSE and
HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL structures (shown in step 12 in the figure in section
3.3.5.1). If the errorCode in HTTP_TUNNEL_AUTH_RESPONSE is S_OK or
E_PROXY_QUARANTINE_ACCESSDENIED, continue the following steps. Otherwise, the RDG client
MUST close the connection.

4. The RDG client sends an HTTP_CHANNEL_PACKET with the target server details and receives a

corresponding response (shown in steps 12 and 13 in the figure in section 3.3.5.1). If the
response contains an error, the RDG client MAY close the connection. At the end of this step, the
RDG client has passed RAP (Resource Authorization Policies) checks and is successfully connected
to the target server.

119 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 18: Data flow and connection close

3.3.5.3 NTLM Extended Authentication

A variation of the RDG protocol connection sequence is used when the client and server agree to use
the NTLM extended authentication mode. This mode allows for NTLM authentication to be

performed at the RDG protocol layer, rather than at the HTTP protocol layer. This requires several
changes to the protocol sequence.<54>

3.3.5.3.1 During HTTP and WebSocket Transport Setup

If the RDG server supports NTLM extended authentication, it MUST include

HTTP_TRANS_CUSTOM_AUTH_SSPI_NTLM as one of the supported authentication schemes in the
WWW-Authenticate header of any HTTP status 401 responses it sends to a client.

120 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If a client is configured to use NTLM extended authentication for a connection, it MUST do one of the
following when performing a WebSocket Upgrade, RDG_OUT_DATA, or RDG_IN_DATA request:

 Set the request's Authorization header to equal HTTP_TRANS_CUSTOM_AUTH_SSPI_NTLM.

 Set the AuthS (section 2.2.3.3.4) URL query parameter to equal

HTTP_TRANS_CUSTOM_AUTH_SSPI_NTLM.

If the RDG server supports NTLM extended authentication and it receives an HTTP or WebSocket
request with this specified as the authentication scheme, it MUST finish establishing the transport
connection with no further authentication exchange.

3.3.5.3.2 During Version and Capability Negotiation

If a client has negotiated the NTLM extended authentication mode during transport setup, it MUST

set the ExtendedAuth field of the HTTP_HANDSHAKE_REQUEST_PACKET (section 2.2.10.10) to
HTTP_EXTENDED_AUTH_SSPI_NTLM.

If the RDG server supports the NTLM extended authentication mode, it MUST include
HTTP_EXTENDED_AUTH_SSPI_NTLM in the ExtendedAuth field of the
HTTP_HANDSHAKE_RESPONSE_PACKET (section 2.2.10.11) that it sends to the client.

If a client has negotiated the NTLM extended authentication mode during transport setup, and it

receives an HTTP_HANDSHAKE_RESPONSE_PACKET that does not include
HTTP_EXTENDED_AUTH_SSPI_NTLM in the ExtendedAuth field, it MUST close the connection.

3.3.5.3.3 During the Extended Authentication Phase

If client and server have negotiated to use NTLM extended authentication for a given connection,
the Version and Capability negotiation phase is followed by a required Extended Authentication phase,
which MUST be completed before Tunnel Creation can commence.

In the Extended Authentication phase, the client and the RDG server exchange a series of
HTTP_EXTENDED_AUTH_PACKET messages (section 2.2.10.7). If either the client or the RDG server

receives a message where the errorCode field is not equal to ERROR_SUCCESS, it MUST close the
connection. In the absence of a specific error, both client and RDG server MUST set the errorCode
field to ERROR_SUCCESS for outgoing HTTP_EXTENDED_AUTH_PACKET messages. In the case of an
error, the errorCode field MUST be set to an appropriate error code. For this extended authentication
mode, the authBlob field of the HTTP_EXTENDED_AUTH_PACKET messages contains NTLM protocol

messages, as specified in [MS-NLMP].

The client sends the first HTTP_EXTENDED_AUTH_PACKET message. The contents MUST correspond to
the first message of the NTLM protocol handshake. After sending the first message, the client waits for
incoming HTTP_EXTENDED_AUTH_PACKET messages. When an HTTP_EXTENDED_AUTH_PACKET
message is received, the client processes it as follows:

1. If the errorCode contains anything other than ERROR_SUCCESS, the client MUST close the

connection and skip further processing of the message. If the errorCode equals
SEC_E_LOGON_DENIED, the client should process this as a logon failure.

2. If the NTLM handshake is not complete and the authBlob field is not empty, the client MUST
process the contents of authBlob as an NTLM protocol message. If NTLM protocol processing
requires a response from the client, the client MUST send that response to the RDG server in a
new HTTP_EXTENDED_AUTH_PACKET message. The NTLM response message MUST be embedded
in the authBlob field. The errorCode field MUST be set to ERROR_SUCCESS.

3. If the NTLM handshake is complete and the errorCode field is set to ERROR_SUCCESS, the client
MUST exit the Extended Authentication phase and enter the Tunnel and Channel Creation phase.

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4

121 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The RDG server begins the Extended Authentication phase by waiting for incoming
HTTP_EXTENDED_AUTH_PACKET messages. When an HTTP_EXTENDED_AUTH_PACKET message is

received, the RDG server MUST process it as follows:

1. If the errorCode contains anything other than ERROR_SUCCESS, the server MUST close the

connection and skip further processing of the message.

2. If the NTLM handshake is not complete and the authBlob is not empty, the RDG server MUST
process the contents of the authBlob as an NTLM protocol message. The RDG server MUST NOT
require NTLM messages to use channel binding.

1. If NTLM protocol processing requires a response from the server, the server MUST send that
response to the client in a new HTTP_EXTENDED_AUTH_PACKET message. The NTLM response
message MUST be embedded in the authBlob field. The errorCode field MUST be set to

ERROR_SUCCESS.

2. If NTLM protocol processing does not require a response from the server and if NTLM
authentication is successful, the server MUST send a new HTTP_EXTENDED_AUTH_PACKET

message to the client. The authBlob field of this message MUST be empty and the errorCode
field MUST contain ERROR_SUCCESS. The RDG server MUST then exit the Extended
Authentication and enter the Tunnel and Channel Creation phase.

3. If NTLM protocol processing does not require a response from the server and if NTLM
authentication failed, the server MUST send a new HTTP_EXTENDED_AUTH_PACKET message
to the client. The authBlob field of this message must be empty, and the errorCode field
must contain SEC_E_LOGON_DENIED. The RDG server MUST then close the connection.

3.3.5.4 Data and Server Message Exchange

At this point, the data exchange phase begins. Either server or client can send data. Most of the data
consists of RDP packets sent in either direction. Some packets are control packets from the RDG
server to the RDG client. These include keep-alive messages, service messages, and reauthentication
messages.

3.3.5.5 Connection Close

Either client or server can close the connection at any time. Typically, the RDG client closes the
connection based on user input. The RDG server MAY also close the connection on an administrator-
initiated disconnect. An error condition on the RDG server or RDG client also causes the connection to
be closed. Closing a connection involves two phases: closing the channel and closing the tunnel.

 A channel close indicates that no more RDP data will flow on that connection unless a new channel
is created. The tunnel is still active and can handle other protocol messages such as keep-alive
packets, service messages, and so on.

 A tunnel close indicates an HTTP disconnection. A tunnel close is initiated only after all channels
have been closed. Tunnel and channel close are initiated by either client or server. If both sides
simultaneously try to send close messages, the tie is broken in the following priority order:

 A tunnel close takes precedence over a channel close.

 A close message from the client takes precedence over a close message from the server.

122 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.3.6 Timer Events

3.3.6.1 Session Timeout Timer

If the Session Timeout Timer expires, and "disconnect on session timeout" is configured on the RDG
server, then review the following:

 If the ADM element Negotiated Capabilities contains HTTP_CAPABILITY_IDLE_TIMEOUT, then
the RDG server disconnects the session by sending an
HRESULT_CODE(E_PROXY_SESSIONTIMEOUT) error code in a HTTP_CLOSE_PACKET with type

PKT_TYPE_CLOSE_CHANNEL to the RDG client.

 If the ADM element Negotiated Capabilities does not contain
HTTP_CAPABILITY_IDLE_TIMEOUT, then the RDG server disconnects the session by sending an
HRESULT_CODE(E_PROXY_CONNECTIONABORTED) error code in PKT_TYPE_CLOSE_CHANNEL to
the RDG client.

Otherwise, if this timer expires and "reauthentication on session timeout" is configured at the RDG

server, the RDG server MUST initiate the reauthentication connection as follows:

 The RDG server sets the ADM element Reauthentication Status to None.

 The RDG server starts the Reauthentication Timer.

 RDG server sends PKT_TYPE_REAUTH_MESSAGE to the RDG client with reauthTunnelContext
set to the current tunnelId.

3.3.6.2 Reauthentication Timer

If the reauthentication timer expires, the RDG server checks the ADM element Reauthentication
Status value.

 If the ADM element Reauthentication Status is set to NONE:

 If the ADM element Negotiated Capabilities contains HTTP_CAPABILITY_IDLE_TIMEOUT,
then the RDG server disconnects the connection by sending

HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FAILED) error code in
PKT_TYPE_CLOSE_CHANNEL to the RDG client.

 If the ADM element Negotiated Capabilities does not contain
HTTP_CAPABILITY_IDLE_TIMEOUT, then the RDG server disconnects the session by sending
HRESULT_CODE(E_PROXY_CONNECTIONABORTED) error code in PKT_TYPE_CLOSE_CHANNEL
to the RDG client.

 If the ADM element Reauthentication Status is set to AuthenticationCompleted:

 If the ADM element Negotiated Capabilities contains HTTP_CAPABILITY_IDLE_TIMEOUT,
then the RDG server disconnects the session by sending
HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILED) error code in PKT_TYPE_CLOSE_CHANNEL

to the RDG client.

 If the ADM element Negotiated Capabilities does not contain
HTTP_CAPABILITY_IDLE_TIMEOUT, then the RDG server disconnects the session by sending

HRESULT_CODE(E_PROXY_CONNECTIONABORTED) error code in PKT_TYPE_CLOSE_CHANNEL
to the RDG client.

 If the ADM element Reauthentication Status is set to
UserAuthorizationCompletedButQurantineFailed:

123 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 If the ADM element Negotiated Capabilities contains HTTP_CAPABILITY_IDLE_TIMEOUT,
then the RDG server disconnects the session by sending

HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILED) error code in PKT_TYPE_CLOSE_CHANNEL
to the RDG client.

 If the ADM element Negotiated Capabilities does not contain
HTTP_CAPABILITY_IDLE_TIMEOUT, then the RDG server disconnects the session by sending
HRESULT_CODE(E_PROXY_CONNECTIONABORTED) error code in PKT_TYPE_CLOSE_CHANNEL
to the RDG client.

 If the ADM element Reauthentication Status is set to UserAuthorizationCompleted:

 If the ADM element Negotiated Capabilities contains HTTP_CAPABILITY_IDLE_TIMEOUT,
then the RDG server disconnects the session by sending

HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILED) error code in PKT_TYPE_CLOSE_CHANNEL
to the RDG client.

 If the ADM element Negotiated Capabilities does not contain

HTTP_CAPABILITY_IDLE_TIMEOUT, then the RDG server disconnects the session by sending
HRESULT_CODE(E_PROXY_CONNECTIONABORTED) error code in PKT_TYPE_CLOSE_CHANNEL
to the RDG client.

 If the ADM element Reauthentication Status is set to ResourceAuthorizationCompleted, the
RDG server MUST start the Session Timeout Timer and reset the ADM element Reauthentication
Status to NONE.

3.3.6.3 Connection Timer

If the Connection Timer expires, the RDG server disconnects the session by sending an
ERROR_OPERATION_ABORTED error code in the PKT_TYPE_CLOSE_CHANNEL to the RDG client.

3.3.6.4 Keep-alive Timer

This timer is used by both the RDG client and the RDG server. When this timer expires, both the client
and the server send an HTTP_KEEPALIVE_PACKET (section 2.2.10.8) to each other.

3.3.7 Other Local Events

None.

3.3.8 Data Arrival from Target Server

This event occurs when the target server data destined for the RDG client arrives at the RDG server.
When this event occurs, the RDG server streams the data to the RDG client in the form of an
HTTP_DATA_PACKET, in the order in which it arrived.

3.4 UDP Transport - Server Protocol Details

3.4.1 UDP Transport – RDG Server States

The following figure describes the states in the UDP transport to the RDG server connection.

124 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 19: UDP to RDG server states

3.4.2 Initialization

The protocol uses the transport and endpoints described in section 2.1.

The RDGUDP server listens on the specified IP addresses for UDP packets.

3.4.3 Message Processing Events and Sequencing Rules

3.4.3.1 DTLS Handshake Phase

To start this phase, the connection state MUST be in the Initial state. If an error occurs in the
following process, the RD Gateway UDP server ends the connection.

Sequential processing rules:

1. The RDGUDP server creates a DTLS object and sets the state to Initial.

2. After receiving the first message on the UDP connection, the RDG server moves the state to

Securing.

3. The RDGUDP server completes the DTLS handshake as specified in [RFC4347].

4. After completing the DTLS handshake, the RDGUDP server moves the state to Secured and moves
to the Connection Setup (section 3.4.3.2) phase.

https://go.microsoft.com/fwlink/?LinkId=227111

125 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.4.3.2 Connection Setup Phase

Figure 20: The RDGUDP client server connection

If a DTLS error or non-DTLS error occurs in the following process, the RDGUDP server ends the
connection.

1. The RDGUDP server decrypts the incoming message as follows:

 If the DTLS decrypt message fails with an error that indicates that the DTLS handshake is not
complete, the RDGUDP server returns to the DTLS handshake phase again.

 If decrypt message fails with an ignorable error, the RDGUDP server ignores the message and
waits for another incoming message. For information on ignorable DTLS errors, see

[RFC4347].

 If the decrypt succeeds, the RDGUDP server MUST end the connection if it is not
CONNECT_PKT (section 2.2.11.3) and skip the remaining processing rules.

2. The RDGUDP server verifies the signature on CONNECT_PKT.authnCookie and decodes it. For
information on how to verify the signature, see section 3.6.4

3. The RDGUDP server maps the decoded message to the AUTHN_COOKIE_DATA data structure.

4. The RDGUDP server compares AUTHN_COOKIE_DATA.ftExpiryTime with the current time.

1. If AUTHN_COOKIE_DATA.ftExpiryTime is greater than current time, the RDGUDP server
establishes a connection with the target server as described in [MS-RDPEUDP]. Otherwise, if
AUTHN_COOKIE_DATA.ftExpiryTime is less than the current time, the RDGUDP server skips
steps b and c and sets the result in CONNECT_PKT_RESP to E_ACCESS_DENIED.

2. While connecting to the target server, the RDGUDP server does not resolve the
AUTHN_COOKIE_DATA.szServerName again to find the IP address. Instead it SHOULD use the
AUTHN_COOKIE_DATA.szServerIP in AUTHN_COOKIE_DATA.

3. If the connection to the target server is successful, the RDGUDP server sets
CONNECT_PKT_RESP.Result to S_OK.

4. If the connection to the target server fails, the RDGUDP server sets CONNECT_PKT_RESP.
Result to E_PROXY_TS_CONNECT_FAILED.

https://go.microsoft.com/fwlink/?LinkId=227111
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

126 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5. The RDGUDP server sends the CONNECT_PKT_RESP to the RDGUDP client.

6. If the Result is S_OK, move the connection state to Connected; otherwise, move it to the

Shutdown phase (section 3.4.3.4).

3.4.3.3 Data Transfer Phase

If an error occurs in the following process, the RD Gateway UDP server ends the connection.

1. The RDGUDP server decrypts the message using DTLS and forwards the message to the target
server

1. If the decrypted message is a DATA_PKT, then the RDGUDP server forwards the
DATA_PKT.data to the target server.

2. Otherwise, if the decrypted message contains DISC_PKT, then proceed to Shutdown
phase (section 3.4.3.4).

2. The RDGUDP server copies the message received from target server to DATA_PKT.data, encrypts
the DATA_PKT, and sends it to the RDGUDP client.

3.4.3.4 Shut Down Phase

1. To end the connection, the RDGUDP server sets the disconnect reason code value in
DISC_PKT.discReason.

2. The RDGUDP server encrypts the DISC_PKT and sends the encrypted message to the RDGUDP
client.

3. The RDGUDP server ends the connection.

3.5 Common Client Protocol Details

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

Target server name: A string of Unicode characters. The server name applies to the machine that
the RDG server connects to.<55>

Client Machine name: A string of Unicode characters that cannot exceed 513 bytes,<56> including
the terminating null character. The Client Machine name refers to the machine that runs the RDG
client. It is possible for the Client Machine name to be the same as the server name (in value) if
the client and the server run on the same physical machine.<57>

Tunnel id: An unsigned long representing the tunnel identifier for tracking purposes on the RDG
server. It MAY be used by the RDG client to help the RDG server administrator troubleshoot
connection issues.

Channel id: An unsigned long representing the channel identifier for tracking purposes on the RDG
server. It MAY be used by the RDG client to help the RDG server administrator troubleshoot
connection issues.

127 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

CertChainData: A string of variable data returned by the RDG server representing the certificate
chain used by the RDG server for the HTTPS communication between RDG client and RDG server.

The RDG client MAY use this data to verify the identity of the RDG server before sending sensitive
data, such as the health information of the RDG client machine.

Nonce: A unique GUID returned by the RDG server to identify the current connection. The RDG client
sends this GUID to the RDG server if it sends the statement of health (SoH), as specified in
section 2.2.9.2.1.4.

Idle Timeout Value: An unsigned long value that specifies connection idle time in minutes before the
connection is torn down.

DeviceRedirection: A TSG_REDIRECTION_FLAGS (section 2.2.9.2.1.5.2) structure that specifies the
device redirection settings that MUST be enforced by the client.

UDPAuthCookie: A signed and encoded byte BLOB containing an
AUTHENTICATION_COOKIE_DATA structure.

Negotiated Capabilities: A ULONG bitmask value representing the negotiated capabilities between

the RDG client and the RDG server. It contains zero or more of the following values:

NAP Capability Value

TSG_NAP_CAPABILITY_QUAR_SOH (section 2.2.5.2.19)

TSG_NAP_CAPABILITY_IDLE_TIMEOUT (section 2.2.5.2.20)

TSG_MESSAGING_CAP_CONSENT_SIGN (section 2.2.5.2.21)

TSG_MESSAGING_CAP_SERVICE_MSG (section 2.2.5.2.22)

TSG_MESSAGING_CAP_REAUTH (section 2.2.5.2.23)

3.5.2 Timer Events

None.

3.5.2.1 Idle Timeout Timer

If the Idle Timeout Timer expires, the RDG client SHOULD end the protocol.

3.5.3 Other Local Events

Whenever there is a change in the RDG client computer's health, the NAP client informs the RDG
client by calling the following abstract interface implemented by the RDG client:

NotifySoHChange

 Inputs: None

 Outputs: None

 Constraints:

 The RDG client MUST get its SoH again by calling NAP EC API.<58>

128 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.6 RPC Transport - Client Protocol Details

The following sections contain the details of the TsProxyRpcInterface (section 3.2.1) on the client.

3.6.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

binding handle: An RPC binding handle created by the RDG client to bind to the RDG server. For
more details about binding handles, see [C706] section 2.1.

tunnel context handle: An RPC context handle for the RDG client to RDG server represented by an
array of 20 bytes on the RDG server. This context handle is used to identify a specific connection
from the RDG client to the RDG server.

channel context handle: An RPC context handle for the connection from the RDG client to the target
server via the RDG server represented by an array of 20 bytes on the RDG server. The context
handle is used to identify a specific connection to the target server from the RDG client via the
RDG server.

3.6.2 Timers

3.6.2.1 Idle Timeout Timer

If idle timeout capability is negotiated between the RDG client and the RDG server, then the RDG

server MUST send the idle timeout value to the RDG client in the TSG_PACKET_RESPONSE structure in
response to the TsProxyAuthorizeTunnel call. If idle timeout is not configured at the RDG server, it
MUST send zero.

3.6.2.1.1 Idle Time Processing

If the idle timeout value is zero, no idle timeout is configured at the RDG server, and therefore, no
idle time processing is required by the RDG client.

If the idle timeout value is nonzero, the RDG client SHOULD start this timer and SHOULD reset the
timer whenever the TSG client sends some payload data in the
TsProxySendToServer (section 3.2.6.2.1) method to the RDG server. The TSG client SHOULD end the
protocol when the timer expires as the connection has been idle for the specified Idle Timeout Value.

Other than that described in this section, no protocol timers are required beyond those used internally
by RPC to implement resiliency to network outages, as specified in [MS-RPCE] section 3.

3.6.3 Initialization

The RDG client creates an RPC binding handle to the RDG server’s RPC endpoint. The RDG client
MUST create a binding handle, a binding handle is specified in [C706] section 2.1, and make the first
method invocation to receive the tunnel context handle, as specified in section 3.2.6.1. Subsequent
method invocations MUST use either the tunnel context handle or the channel context handle, as

each method requires. The RDG client MUST create an authenticated RPC binding handle with a
minimum of RPC_C_AUTHN_LEVEL_PKT_INTEGRITY and other parameters as specified in section 2.1.
This requires establishing the binding to the well-known endpoint as specified in section 2.1.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824

129 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If an authenticated binding handle is established, the RDG client MUST match the version and
capabilities of the RDG server; if no match can be made, the RDG client SHOULD stop further

progress on the protocol connection.

3.6.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data consistency check at target level 7.0
for all methods unless otherwise specified, as specified in [MS-RPCE] section 1.3.

All the methods implemented by the RDG server SHOULD enforce appropriate security measures to

make sure that the RDG client has the required permissions to execute the routines. All methods
MUST be RPC calls. However, these methods MUST be called in a sequence specified in section 1.3.

The methods MAY throw an exception and the RDG client MUST handle these exceptions
appropriately. The methods called by the RDG client MUST be sequential in order, as specified in
section 1.3.1.1. The method details are specified in section 3.2.6.

A RDG client's invocation of each method is typically the result of local application activity. The local

application at the RDG client specifies values for all input parameters. No other higher-layer triggered

events are processed.

The RDG client SHOULD process errors returned from the RDG server and notify the application
invoker of the error received in the higher layer.

Sequential processing rules for connection process:

1. The RDG client MUST call TsProxyCreateTunnel to create a tunnel to the gateway.

2. If the call fails, the RDG client MUST end the protocol and MUST NOT perform the following steps.

3. The RDG client MUST initialize the following ADM elements using TsProxyCreateTunnel out

parameters:

1. The RDG client MUST initialize the ADM element Tunnel id with the tunnelId out parameter.

2. The RDG client MUST initialize the ADM element Tunnel Context Handle with the
tunnelContext out parameter. This Tunnel Context Handle is used for subsequent tunnel-
related calls.

3. If TSGPacketResponse->packetId is TSG_PACKET_TYPE_CAPS_RESPONSE, where

TSGPacketResponse is an out parameter,

1. The RDG client MUST initialize the ADM element Nonce with TSGPacketResponse-
>TSGPacket.packetCapsResponse->pktQuarEncResponse.nonce.

2. The RDG client MUST initialize the ADM element Negotiated Capabilities with
TSGPacketResponse->TSGPacket.packetCapsResponse-
>pktQuarEncResponse.versionCaps->TSGCaps[0].TSGPacket.TSGCapNap.capabilities.

4. If TSGPacketResponse->packetId is TSG_PACKET_TYPE_QUARENC_RESPONSE, where

TSGPacketResponse is an out parameter,

1. The RDG client MUST initialize the ADM element Nonce with TSGPacketResponse-
>TSGPacket.packetQuarEncResponse->nonce.

2. The RDG client MUST initialize the ADM element Negotiated Capabilities with
TSGPacketResponse->TSGPacket.packetQuarEncResponse->versionCaps-
>TSGCaps[0].TSGPacket.TSGCapNap.capabilities.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

130 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4. The RDG client MUST get its statement of health (SoH) by calling NAP EC API.<59> Details of
the SoH format are specified in [TNC-IF-TNCCSPBSoH]. If the SoH is received successfully, then

the RDG client MUST create an enveloped data message for the server that encrypts the SoH
using the Triple Data Encryption Standard algorithm and encode it using one of PKCS #7 or

X.509 encoding types, whichever is supported by the RDG server certificate context available in
the ADM element CertChainData. Details about creating an enveloped data message are
provided in [MSDN-ENVLOPED-DATA].

5. The RDG client MUST copy the ADM element Nonce to TSGPacket.packetQuarRequest->data and
append the encrypted SoH message into TSGPacket.packetQuarRequest->data. The RDG client
MUST set the TSGPacket.packetQuarRequest->dataLen to the sum of the number of bytes in the
encrypted SoH message and number of bytes in the ADM element Nonce, where TSGpacket is an

input parameter of TsProxyAuthorizeTunnel. The format of the packetQuarRequest field is
specified in section 2.2.9.2.1.4.

6. The RDG client MUST call TsProxyAuthorizeTunnel to authorize the tunnel.

7. If the call succeeds or fails with error E_PROXY_QUARANTINE_ACCESSDENIED, follow the steps

later in this section. Else, the RDG client MUST end the protocol and MUST NOT follow the steps
later in this section.

8. If the ADM element Negotiated Capabilities contains TSG_NAP_CAPABILITY_IDLE_TIMEOUT,
then the ADM element Idle Timeout Value SHOULD be initialized with first 4 bytes of
TSGPacketResponse->TSGPacket.packetResponse->responseData and the Statement of health
response variable MUST be initialized with the remaining bytes of responseData, where
TSGPacketResponse is an out parameter of TsProxyAuthorizeTunnel. The format of the
responseData member is specified in section 2.2.9.2.1.5.1.

9. If the ADM element Negotiated Capabilities doesn't contain

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the ADM element Idle Timeout Value SHOULD be
initialized to zero and the Statement of health response variable MUST be initialized with all the
bytes of TSGPacketResponse->TSGPacket.packetResponse->responseData.

10. Verify the signature of the Statement of health response variable using SHA-1 hash and

decode it using the RDG server certificate context available in the ADM element CertChainData
using one of PKCS #7 or X.509 encoding types, whichever is supported by the RDG Server
certificate. The SoHR is processed by calling the NAP EC API

INapEnforcementClientConnection::GetSoHResponse.

11. If the call TsProxyAuthorizeTunnel fails with error E_PROXY_QUARANTINE_ACCESSDENIED, the
RDG client MUST end the protocol and MUST NOT follow the steps later in this section.

12. If the ADM element Idle Timeout Value is nonzero, the RDG client SHOULD start the idle time
processing as specified in section 3.6.2.1.1 and SHOULD end the protocol when the connection
has been idle for the specified Idle Timeout Value.

13. If the ADM element Negotiated Capabilities contains TSG_MESSAGING_CAP_SERVICE_MSG, a
TsProxyMakeTunnelCall call MAY be made by the client, with
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST as the parameter, to receive messages from the RDG
server.

14. The RDG client MUST call TsProxyCreateChannel to create a channel to the target server name
as specified by the ADM element Target Server Name (section 3.5.1).

15. If the call fails, the RDG client MUST end the protocol and MUST not follow the below steps.

16. The RDG client MUST initialize the following ADM elements using TsProxyCreateChannel out
parameters.

https://go.microsoft.com/fwlink/?LinkId=240054
https://go.microsoft.com/fwlink/?LinkID=324591

131 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1. The RDG client MUST initialize the ADM element Channel id with the channelId out
parameter.

2. The RDG client MUST initialize the ADM element Channel Context Handle with the
channelContext out parameter. This Channel Context Handle is used for subsequent

channel-related calls.

Sequential processing rules for data transfer:

1. The RDG client MUST call TsProxySetupReceivePipe to receive data from the target server, via the
RDG server.

2. The RDG client MUST call TsProxySendToServer to send data to the target server via the RDG
server, and if the Idle Timeout Timer is started, the RDG client SHOULD reset the Idle Timeout
Timer.

3. If TsProxyMakeTunnelCall is returned, the RDG client MUST process the message and MAY call
TsProxyMakeTunnelCall again with TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST as the parameter.

4. The RDG client MUST end the protocol after it receives the final response to
TsProxySetupReceivePipe. The final response format is specified in section 2.2.9.4.3.

Sequential processing rules for ending the protocol:

1. If a channel was successfully created in the connection process, the RDG client MUST call

TsProxyCloseChannel to close the channel.

2. If the RDG client called TsProxyMakeTunnelCall during the connection process and the call has not
yet returned, the RDG client MUST call TsProxyMakeTunnelCall with the
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST parameter to cancel the previous pending call.

3. If the tunnel was successfully created during the connection process, the RDG client MUST call
TsProxyCloseTunnel to close the tunnel.

Sequential processing rules when the RDG client receives a reauthentication message from the RDG

server:

1. The RDG client MUST start a new connection by calling TsProxyCreateTunnel. The packetId
member of the TSGPacket MUST be set to TSG_PACKET_TYPE_REAUTH. Also, TSGPacket-
>packetReauth.tunnelContext MUST be initialized by the TSGPacketResponse-
>packetMsgResponse->messagePacket.reauthMessage->tunnelContext, which is received in the
TsProxyMakeTunnelCall response.

2. If TsProxyCreateTunnel fails, go to step 6.

3. On successful completion of TsProxyCreateTunnel, the RDG client MUST call
TsProxyAuthorizeTunnel.

4. If TsProxyAuthorizeTunnel fails, go to step 6.

5. On successful completion of TsProxyAuthorizeTunnel, the RDG client MUST call

TsProxyCreateChannel.

6. End of processing reauthentication message.

Other than the above, no other special message processing is required on the RDG client beyond the
processing required in the underlying RPC protocol, as specified in [MS-RPCE].

132 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.6.5 Data Representation forTsProxySetupReceivePipe and TsProxySendToServer

NDR64 specifies a method to package the data before sending it on the wire. For improved
performance, TsProxySetupReceivePipe and TsProxySendToServer deviate from the [C706]

specification of the Network Data Representation. This section documents how these two calls bypass
NDR64 and how the data is represented on the wire. For more information about NDR64, see [MS-
RPCE] section 2.2.5.

In the case of TsProxySetupReceivePipe and TsProxySendToServer, the Stub Data is not encoded
using NDR64, instead it is sent over the wire as it is. Verification Trailer ([MS-RPCE] section 2.2.2.13)
is also not passed with the Stub Data.

TsProxySetupReceivePipe and TsProxySendToServer modify the RPC Stub Data. The following

elements are not modified:

 Ethernet

 IPv4

 IPv6

 TCP

 HTTP

 RPC

 RPC Stub Data

 RPC

3.6.5.1 TsProxySendToServer Request

The wire representation of the stub data in the case of a TsProxySendToServer request is defined as
follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Context Handle (20 bytes)

...

...

Total Bytes

Number of Buffers

Buffer1 Length

Buffer2 Length (optional)

Buffer3 Length (optional)

Buffer1 (variable)

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

133 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

Buffer2 (variable)

...

Buffer3 (variable)

...

Context Handle (20 bytes): This field MUST be set to the context handle returned by a call to the
TsProxyCreateChannel call. This context handle MUST be aligned to the 4-byte boundary.

Total Bytes (4 bytes): This field MUST be set to sum total of sizes of all the buffers and 4 bytes for

each buffer. This is represented in the network byte order.

Number of Buffers (4 bytes): This field MUST be set to the total number of buffers. This MUST not
exceed 0x00000003. This is represented in the network byte order.

Buffer1 Length (4 bytes): This field MUST be set to the length of the first buffer. This is represented
in the network byte order

Buffer2 Length (4 bytes): This field MUST be set to the length of the first buffer. This is represented

in the network byte order. If the Number of Buffers is set to 0x00000002 or 0x00000003, then
this field is sent.

Buffer3 Length (4 bytes): This field MUST be set to the length of the first buffer. This is represented
in the network byte order. If the Number of Buffers is set to 0x00000003, then this field is sent.

Buffer1 (variable): This field MUST contain the data corresponding to first buffer.

Buffer2 (variable): This field MUST contain the data corresponding to second buffer.

Buffer3 (variable): This field MUST contain the data corresponding to the third buffer.

3.6.5.2 TsProxySendToServer Response

The following is the response sent to the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReturnValue

ReturnValue (4 bytes): Must be set to the return value of the TsProxySendToServer call.

3.6.5.3 TsProxySetupReceivePipe Request

The wire representation of the stub data in the case of a TsProxySetupReceivePipe request is as
follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Context Handle (20 bytes)

134 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

...

Context Handle (20 bytes): Must be set to the context handle returned by a call to the
TsProxyCreateChannel call. This context handle MUST be aligned to the 4-byte boundary.

3.6.5.4 TsProxySetupReceivePipe Response

There can be multiple responses to the TsProxySetupReceivePipe call. Except for the last response,
specified in section 3.6.5.5, the following is the representation of the Stub Data for all other
responses.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

...

Data (variable): Must be set to the data to be sent to the RDG client. The size of this data is in the
RPC header alloc_hint field specified in [C706].

3.6.5.5 TsProxySetupReceivePipe Final Response

The following represents the Stub data for the TsProxySetupReceivePipe call. For the final response
PDU, the PFC_LAST_FRAG bit MUST be set in the pfc_flags field of the RPC response PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReturnValue

ReturnValue (4 bytes): Must be set to the return value of the call.

3.7 HTTP Transport - Client Protocol Details

The following sections contain the details of the RDG client HTTP protocol interface on the client.

The set of valid state transitions on the RDG client is depicted in the following diagram.

The RDG client has two state machines: one to manage tunnels and one to manage channels. The
tunnel state machine has one instance, whereas the channel state machine MAY have multiple
instances, one for each channel. The tunnel state machine creates a channel state machine when a

new channel is being requested,

The following figure shows the tunnel state machine at the RDG client and the channel state machine
at the RDG client. A channel exists inside the tunnel only when the tunnel is in the
TUNNEL_STATE_AUTHORIZED state.

https://go.microsoft.com/fwlink/?LinkId=89824

135 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 21: RDG HTTP client channel state machine

3.7.1 Abstract Data Model

UDPAuthCookie: A signed and encoded byte BLOB containing an
AUTHENTICATION_COOKIE_DATA structure.

udpPort: The UDP port number to which the RDG server listens in order to create the side channel.

3.7.2 Timers

None.

3.7.3 Initialization

The RDG client SHOULD create its tunnel and channel objects and set the state to Initial. The RDG

client MUST match the version and capabilities of the RDG server. If no match can be made, the RDG

client SHOULD stop further progress on the protocol connection.

3.7.4 Higher-Layer Triggered Events

When a create tunnel is requested by the higher layer, it can also issue a Cancel Tunnel Creation

request before the tunnel is created. Once the tunnel is created, the higher layer can also issue a
Close Tunnel request, which initiates the Connection Close phase (section 3.3.5.5).

136 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The higher layer initiates the channel creation once the tunnel has been authorized. After issuing a
Channel Creation request, it can issue a Cancel Channel Creation request before the channel is

created. After the channel is created, the higher layer can issue a Close Channel request.

3.7.5 Message Processing Events and Sequencing Rules

The RDG client uses the following sequencing rules and message processing in its various phases. The
RDG client SHOULD process errors returned from the RDG server and notify the application invoker of
the error received in the higher layer. The RDG client protocol operates in the following phases:

 Connection Setup and Authentication (section 3.7.5.1)

 Tunnel and Channel Creation (section 3.7.5.2)

 Data and Server Message Exchange (section 3.7.5.3)

 Connection Close (section 3.7.5.4)

3.7.5.1 Connection Setup and Authentication

In this phase, the client creates two channels with the RDG server: an IN channel and an OUT
channel. The client MUST create the OUT channel before the IN channel.

Sequential processing rules for creating OUT and IN channels are described in section 3.3.5.1.

3.7.5.2 Tunnel and Channel Creation

After the connection setup and handshake of version and capability exchange described in 3.3.5.1,
tunnels and channels are created. The sequential processing rules for tunnel and channel creation are
as follows:

1. The state of the tunnel MUST be TUNNEL_STATE_AUTHENTICATING or
TUNNEL_STATE_RECEIVING_HANDSHAKE_RESPONSE. The RDG client MUST send

HTTP_TUNNEL_PACKET (section 2.2.10.18) to the RDG server using the IN channel. packetType
is set to PKT_TYPE_TUNNEL_CREATE, capsFlags is set according to the RDG client's capabilities.
If PAA is not used, set fieldsPresent to zero. Otherwise, set fieldsPresent to 2 and fill the
HTTP_TUNNEL_PACKET_OPTIONAL structure (section 2.2.10.19) accordingly. Append it to the end
of HTTP_TUNNEL_PACKET. reauthTunnelContext MUST be set to zero.

2. If step 1 fails, the RDG client MUST end the protocol.

3. The RDG client MUST receive HTTP_TUNNEL_RESPONSE (section 2.2.10.20) and

HTTP_TUNNEL_RESPONSE_OPTIONAL (section 2.2.10.21) in the OUT channel. The packetType
MUST be set to PKT_TYPE_TUNNEL_RESPONSE. If statusCode is not zero, the RDG client MUST
NOT continue to the next step.

4. The RDG client MUST initialize the following ADM elements using the fields from response
structures received in step 3.

 The RDG client MUST initialize the ADM element Tunnel id with the tunnelId of the
HTTP_TUNNEL_RESPONSE_OPTIONAL if it is present.

 The RDG client MUST initialize the ADM element Nonce with nonce of the
HTTP_TUNNEL_RESPONSE_OPTIONAL structure if it is present.

 The RDG client MUST initialize the ADM element Negotiated Capabilities with capsFlags of
the HTTP_TUNNEL_RESPONSE_OPTIONAL structure if it is present

137 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 The RDG client MUST initialize the ADM element CertChainData with serverCert of the
HTTP_TUNNEL_RESPONSE_OPTIONAL structure if it is present

5. The RDG client MUST get its SoH by calling NAP EC API. If the SoH is received successfully,
encrypt the SoH with the RDG server certificate context available in the ADM element

CertChainData. The RDG client MUST pass the consentMsg to the higher layer if it is present in
HTTP_TUNNEL_RESPONSE_OPTIONAL structure.

6. The RDG client MUST send the HTTP_TUNNEL_AUTH_PACKET (section 2.2.10.14) appending
HTTP_TUNNEL_AUTH_PACKET_OPTIONAL (section 2.2.10.15) to the RDG server after setting
clientName as the name of the RDG client, cbClientName as the length of the RDG client name,
fieldsPresent set as HTTP_TUNNEL_AUTH_FIELD_SOH if Negotiated Capabilities contains
HTTP_CAPABILITY_TYPE_QUAR_SOH, and accordingly setting statementOfHealth and

clientName of the HTTP_TUNNEL_AUTH_PACKET_OPTIONAL structure to authorize the tunnel.

7. The RDG client MUST receive the HTTP_TUNNEL_AUTH_RESPONSE (section 2.2.10.16) and
HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL (section 2.2.10.17) structures. If the errorCode in
HTTP_TUNNEL_AUTH_RESPONSE is S_OK or E_PROXY_QUARANTINE_ACCESSDENIED, continue

the following steps. Otherwise, the RDG client MUST end the protocol.

8. If the ADM element Negotiated Capabilities contains HTTP_CAPABILITY_IDLE_TIMEOUT, then

the ADM element Idle Timeout Value SHOULD be initialized with idleTimeout in the
HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL structure; otherwise, it MUST be initialized with zero.

9. If the ADM element Negotiated Capabilities contains HTTP_CAPABILITY_TYPE_QUAR_SOH, then
the ADM element Statement of health response SHOULD be initialized with the SoHResponse
of HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL structure; otherwise, it MUST be initialized with
NULL.

10. If Statement of health response is non-NULL, then decrypt the Statement of health

response variable and pass it to Process SoHR Task.

11. If the errorCode in HTTP_TUNNEL_AUTH_RESPONSE is E_PROXY_QUARANTINE_ACCESSDENIED,
the RDG client MUST end the protocol.

12. The RDG client MUST send HTTP_CHANNEL_PACKET (section 2.2.10.2) and append the
HTTP_CHANNEL_PACKET_VARIABLE (section 2.2.10.3) structure to create the channel.

13. The RDG client MUST receive HTTP_CHANNEL_RESPONSE (section 2.2.10.4) and
HTTP_CHANNEL_RESPONSE_OPTIONAL (section 2.2.10.5). If the errorCode is not S_OK, the

RDG client MUST end the protocol.

14. The RDG client MUST initialize the ADM elements Channel id, udpPort and UDPAuthCookie
with the channelId, udpPort and authnCookie parameters of the
HTTP_CHANNEL_RESPONSE_OPTIONAL structure.

3.7.5.3 Data and Server Message Exchange

The sequential processing rules for data transfer are as follows:

1. The state of the tunnel (2) MUST be TUNNEL_STATE_AUTHORIZED, and the state of channel
MUST be CHANNEL_STATE_CREATED.

2. To send RDP data to the target server, the RDG client MUST add it to
HTTP_DATA_PACKET (section 2.2.10.6) and send it through the IN channel.

3. To receive RDP data from the target server, the RDG client receives
HTTP_DATA_PACKET (section 2.2.10.6) from the OUT channel.

138 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4. If the received packet type is PKT_TYPE_REAUTH_MESSAGE, then the RDG client MUST consider it
as an HTTP_REAUTH_MESSAGE (section 2.2.10.12) and pass it on to the higher layer accordingly.

3.7.5.4 Connection Close

The sequential processing rules for closing a connection initiated by the client are as follows:

1. The channel MUST be in the CHANNEL_STATE_CREATED state. The RDG client sends an
HTTP_CLOSE_PACKET to the RDG server with packetType set to PKT_TYPE_CLOSE_CHANNEL.
The client MUST NOT send any more data on the channel after this.

2. The RDG client waits for an HTTP_CLOSE_PACKET from the RDG server with packetType set to
PKT_TYPE_CLOSE_CHANNEL_RESPONSE and discards any other channel data it receives.
Nonchannel data such as service messages are received and processed as usual.

3. After receiving HTTP_CLOSE_PACKET from the RDG server with packetType as
PKT_TYPE_CLOSE_CHANNEL_RESPONSE, the RDG client closes the channel.

The sequential processing rules for closing a connection initiated by the server are as follows:

1. The channel MUST be in CHANNEL_STATE_CREATED state. The RDG client receives a

HTTP_CLOSE_PACKET from the RDG server with packetType set to PKT_TYPE_CLOSE_CHANNEL.
The client MUST NOT send or receive any more data on the channel after this.

2. The RDG client sends an HTTP_CLOSE_PACKET to RDG server with packetType set to
PKT_TYPE_CLOSE_CHANNEL_RESPONSE, and closes the channel.

The sequential processing rules for closing a tunnel initiated by the client are as follows:

1. The tunnel state MUST be less than TUNNEL_STATE_CANCEL_TUNNEL_CREATE_OR_AUTH and
greater than TUNNEL_STATE_CONNECT_IN_PROGRESS. The RDG client closes all channels inside

the tunnel.

2. The RDG client closes the HTTP connection for OUT and IN channels.

The sequential processing rules for closing a tunnel initiated by the server are as follows:

1. The tunnel (2) state MUST be less than TUNNEL_STATE_CANCEL_TUNNEL_CREATE_OR_AUTH
and greater than TUNNEL_STATE_CONNECT_IN_PROGRESS. The RDG client receives a disconnect
notification from HTTP.

2. The RDG client closes all the channels inside the tunnel without sending an HTTP_CLOSE_PACKET
packet to the RDG server or waiting for HTTP_CLOSE_PACKET.

3.8 UDP Transport - Client Protocol Details

3.8.1 Initialization

The RD Gateway UDP client initializes DTLS.

3.8.2 Message Processing Events and Sequencing Rules

1. The RDGUDP client MUST perform a DTLS handshake with the RDGUDP server as specified in
[RFC4347]. This exchange is as defined in [RFC4347], except that the client SHOULD append a
UDP_CORRELATION_INFO structure to the ClientHello packets.

2. The RDG client MUST set the CONNECT_PKT.authnCookie with the ADM element
UDPAuthCookie value.

https://go.microsoft.com/fwlink/?LinkId=227111

139 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. The RDG client MUST encrypt and send the CONNECT_PKT to the RDGUDP server in a reliable
way until it receives a UDP packet. If the RDGUDP client does not receive the UDP message after

a predetermined number of retries, it ends the connection.

4. The RDG client MUST decrypt the message received from the RDGUDP server by using DTLS. If

DTLS returns an error that is not ignorable, it ends the connection. For information on ignorable
errors, see [RFC4347].

5. If DTLS decryption fails with an ignorable error, the RDG client MUST repeat step 2 through step
4.

6. If DTLS decryption succeeds, the RDGUDP client MUST map the decrypted message to
CONNECT_PKT_RESP. If CONNECT_PKT_RESP.Result fails, the RDG client MUST end the
connection.

7. The RDG client MUST ask DTLS to generate fragments of a size less than the minimum of
CONNECT_PKT_RESP.uUPStreamMTU and CONNECT_PKT_RESP.uDownStreamMTU.

8. Whenever the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Protocol has

data to be sent, the RDG client MUST copy the RDP data payload to DATA_PKT.data and encrypt
the DATA_PKT with DTLS.

9. The RDG client MUST send the encrypted message to the RDGUDP server.

10. The RDG client MUST decrypt the incoming messages with DTLS and map the decrypted message
to DATA_PKT structure.

11. If the decrypted packet contains a DATA_PKT structure, the RDG client MUST hand over the
DATA_PKT.data to the Remote Desktop Protocol UDP Transport Extension specified in [MS-
RDPEUDP] for processing. Otherwise, if the decrypted message contains DISC_PKT, then the
RDG client MUST end the connection.

3.8.3 Establishing a Connection

The client MUST transmit one or more CONNECT_PKT_FRAGMENT structures, as specified in section
2.2.11.10, to the server to establish the connection.

The following is a list of constants and variables that hold the state temporarily:

 connectReqBufferLen is the length of the connect request buffer connectPktBuff.

 reqLen is the actual length of the request in connectPktBuff.

 authCookieLen is the length of the Authentication Cookie, which was previously generated by the
RDP server and provided to the client, that the client returns to the RDP server.

 MAX_DTLS_HDR_TRLR is the maximum length of the DTLS header and trailer bits. It is 96 bytes.

 Size of UDP_PACKET_HEADER is 4 bytes.

 LAYER_2_OVERHEAD is 100 bytes, which is MAX_DTLS_HDR_TRLR_SIZE + UDP header size.

 MAX_CONNECT_REQ_FRAGMENT_SIZE is the maximum size of each connect request fragment. It
MUST be set to 1000 bytes.

Before transmitting a CONNECT_PKT_FRAMEMENT, the client MUST do the following:

1. Set connectReqBufferLen to sizeof(CONNECT_PKT) + authCookieLen +
MAX_DTLS_HDR_TRLR.

%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

140 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2. Allocate a buffer for connectPktBuff of size connectReqBufferLen for the CONNECT_PKT
structure and set values for each of its fields.

3. Set reqLen to the connect request buffer's hdr.pktLen + size of UDP_PACKET_HEADER.

4. Set MaxUdpPacketSize = (uUpStreamMtu from the connect request's SyncData) -

LAYER_2_OVERHEAD

5. Set fragmentCount = reqLen / MAX_CONNECT_REQ_FRAGMENT_SIZE

6. If the remainder after the division of reqLen by MAX_CONNECT_REQ_FRAGMENT_SIZE is not
zero, increase the fragment count by 1 to completely account for all of the bytes of the request.

7. Split the CONNECT_PKT buffer into fragmentCount fragments, meaning multiple buffers of type
CONNECT_PKT_FRAGMENT.

Each fragment's CONNECT_PKT_FRAGMENT fields MUST be set as follows:

1. Set UdpPktType to PKT_TYPE_CONNECT_REQ_FRAGMENT.

2. Set usNoOfFragments to fragmentCount, meaning the total number of fragments calculated.

3. Set usFragmentID to the Current Fragment number.

4. Set cbFragmentLength to MAX_CONNECT_REQ_FRAGMENT_SIZE or to the actual number of
bytes remaining in the connect request buffer.

5. Set pktLen to (sizeof(CONNECT_PKT_FRAGMENT) - sizeof(UDP_PACKET_HEADER)) +

cbFragmentLength of the Current Fragment.

6. Set the current fragment's length, fragmentLen, to cbFragmentLength of Current Fragment +
sizeof(UDP_PACKET_HEADER).

7. If the very first fragment's fragmentLen < MaxUdpPacketSize, set fragmentLen to
MaxUdpPacketSize.

Finally, DTLS encrypts the fragments and sends them to the RDP server.

141 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

4.1 RPC Transport Protocol Examples

4.1.1 Normal Scenario

1. The RDG client obtains the name of an RDG server by using an out-of-band mechanism. The
RDG client establishes a binding handle (a binding handle is specified in [C706] section 2.1) to the
RDG server at the well-known endpoint of 443 and 3388.

2. The RDG server performs the authentication steps specified in section 2.1.

3. The RDG client then calls the TsProxyCreateTunnel method to create and obtain the tunnel (2)
context handle. As part of this call, the client sends current version capabilities to the server.

4. The RDG server receives the TsProxyCreateTunnel method. The RDG server authenticates the RDG

client and uses policies to determine if the RDG client is allowed access to create a tunnel (2). The
RDG server then creates a context handle to represent the tunnel (2) and returns this to the RDG
client. The server response includes the common capabilities of both the client and the server.

5. The RDG client makes the TsProxyAuthorizeTunnel method call using the tunnel (2) context
handle, optionally passing its health statement.

6. The RDG server receives TsProxyAuthorizeTunnel method call and verifies the tunnel (2) context
handle. The RDG server also performs RPC's verification and uses NAP policies to determine if
the client is healthy. Assuming the RDG client is healthy, the RDG server returns success.

7. If both the client and the server are capable of handling administrative messages, the client can
request administrative messages using the TsProxyMakeTunnelCall method. This call is queued up

on the server and is completed only when the messages are available.

8. The RDG client makes the TsProxyCreateChannel method call using the tunnel (2) context handle.

The RDG client passes the target server information to the RDG server and obtains the channel
context handle from the RDG server.

9. The RDG server receives the TsProxyCreateChannel method and determines, based on the NAP
policy, if the RDG client is allowed to connect to the target server. If the connection is allowed, the

RDG server creates a context handle to represent the channel and returns this to the RDG client.

10. The RDG client makes the TsProxySetupReceivePipe method call.

11. The RDG server receives the TsProxySetupReceivePipe method and creates an RPC out pipe. The
RDG server can now send data on the pipe.

12. The RDG client and RDG server start sending and receiving data from this point.

13. The RDG client makes the TsProxyCloseChannel method call to close the channel.

14. The RDG server receives the TsProxyCloseChannel method and correctly closes the channel.

15. The RDG client then makes the TsProxyCloseTunnel method call to end the connection.

16. The RDG server receives the TsProxyCloseTunnel method and destroys the client connection.

For example, the client calls the TsProxyCreateTunnel method on a server named
"fourthcoffee.example.com".

Example for the TsProxyCreateTunnel method:

https://go.microsoft.com/fwlink/?LinkId=89824

142 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HRESULT = {to be filled in by server}
 TsProxyCreateTunnel(
 [in, ref] PTSG_PACKET TSGPacket;
 [out, ref] PTSG_PACKET* TSGPacketResponse =
 {to be filled in by server};
 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =
 {to be filled in by server,
 and saved as m_tunnelcontext by client};
 [out] unsigned long* tunnelid =
 {to be filled in by server and saved as m_tunnelid by client};
);

Where TSG_PACKET is set as follows.

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_VERSIONCAPS;
 TSG_PACKET_TYPE_UNION TSGPacket {= packetVersionCaps};
 } TSG_PACKET;

Where TSG_PACKET_VERSIONCAPS is filled in as follows.

 typedef struct _TSG_PACKET_VERSIONCAPS
 {
 TSG_PACKET_HEADER TSGHeader
 {
 ComponentId = 0x5452;
 PacketId = {unused};
 }
 PTSG_PACKET_CAPABILITIES TSGCaps
 {
 capabilityType = 1;
 TSGPacket.tsgCapNap = {1};
 }
 unsigned long numCapabilities = 1;
 unsigned short majorVersion = 1;
 unsigned short minorVersion = 1;
 unsigned short quarantineCapabilities = 0;
 } TSG_PACKET_VERSIONCAPS;

The RDG server receives this method and returns the following.

 HRESULT = S_OK
 TsProxyCreateTunnel(
 [in, ref] PTSG_PACKET TSGPacket = {unchanged};
 [out, ref] PTSG_PACKET* TSGPacketResponse = =
 {filled in as shown below};
 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =
 pContextHandleObject;
 [out] unsigned long* tunnelId = 1;
);

Where TSG_PACKET_RESPONSE is set as follows.

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_QUARENC_RESPONSE;
 TSG_PACKET_TYPE_UNION TSGPacket {= packetQuarEncResponse};

143 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 } TSG_PACKET;

Where the TSG_PACKET_QUARENC_RESPONSE is set as follows.

 typedef struct _TSG_PACKET_QUARENC_RESPONSE
 {
 unsigned long flags = 0;
 unsigned long certChainLen = {number of characters in certChainData};
 wchar_t* certChainData = {certificate chain data};
 GUID nonce = CreateGuid();
 PTSG_PACKET_VERSIONCAPS versionCaps
 {
 TSG_PACKET_HEADER TSGHeader
 {
 ComponentId = 0x5452;
 PacketId = TSG_PACKET_TYPE_VERSIONCAPS;
 }
 PTSG_PACKET_CAPABILITIES TSGCaps
 {
 capabilityType = 1;
 TSGPacket.tsgCapNap = {1};
 }
 unsigned long numCapabilities = 1;
 unsigned short majorVersion = 1;
 unsigned short minorVersion = 1;
 unsigned short quarantineCapabilities = 0;
 }
 } TSG_PACKET_QUARENC_RESPONSE;

Example for TsProxyAuthorizeTunnel method.

 HRESULT = {to be filled in by server}
 TsProxyAuthorizeTunnel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext =
 m_tunnelcontext;
 [in, ref] PTSG_PACKET TSGPacket;
 [out, ref] PTSG_PACKET* TSGPacketResponse =
 { to be filled in by server};
);

Where TSG_PACKET is set as follows.

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_QUARREQUEST;
 TSG_PACKET_TYPE_UNION TSGPacket
 {=PTSG_PACKET_QUARREQUEST packetQuarRequest};
 } TSG_PACKET;

Where the TSG_PACKET_QUARREQUEST is set as follows.

 typedef struct _TSG_PACKET_QUARREQUEST
 {
 unsigned long flags = 0;
 wchar_t* machineName = "mymachine";
 unsigned long nameLength = 10;

144 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 byte *data = {statement of health prefixed with Nonce, which is received in response to
TsProxyCreateTunnel};

 unsigned long dataLen = {Number of bytes in the data field};
 } TSG_PACKET_QUARREQUEST;

The RDG server receives this method and returns the following.

 HRESULT = S_OK
 TsProxyAuthorizeTunnel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;
 [in, ref] PTSG_PACKET TSGPacket = unchanged;
 [out, ref] PTSG_PACKET* TSGPacketResponse= filled in as below;
);

Where the TSG_PACKET_RESPONSE is set as follows.

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_RESPONSE;
 TSG_PACKET_TYPE_UNION TSGPacket
 {=PTSG_PACKET_RESPONSE packetResponse};
 } TSG_PACKET;

Where the packetResponse is set as follows.

 typedef struct _TSG_PACKET_RESPONSE
 {
 unsigned long flags = TSG_PACKET_TYPE_QUARREQUEST;
 unsigned long reserved = 0;
 byte *responseData = NULL;
 unsigned long responseDataLen = 0;
 TSG_REDIRECTION_FLAGS redirectionFlags = {0,0,0,0,0,0,0,0};
 } TSG_PACKET_RESPONSE;

 Example for the TsProxyMakeTunnelCall method.

 HRESULT = {to be filled in by server}
 TsProxyMakeTunnelCall(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = m_tunnelcontext;
 [in] unsigned long procId,
 [in, ref] PTSG_PACKET TSGPacket,
 [out, ref] PTSG_PACKET* TSGPacketResponse = { to be filled in by server }
);

 Where the procId and TSGPacket are set as follows.

 procId = TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST = 0x1
 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_MSGREQUEST_PACKET;
 TSG_PACKET_TYPE_UNION TSGPacket
 {=PTSG_PACKET_MSG_REQUEST packetMsgRequest};
 } TSG_PACKET;

145 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Where the TSG_PACKET_MSG_REQUEST is set as follows.

 typedef struct _TSG_PACKET_MSG_REQUEST
 {
 unsigned long maxMessagesPerBatch = 1;
 } TSG_PACKET_MSG_REQUEST;

 The RDG server receives this method and returns:

 HRESULT = S_OK
 TsProxyMakeTunnelCall(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;
 [in] unsigned long procId = unchanged,
 [in, ref] PTSG_PACKET TSGPacket = unchanged,
 [out, ref] PTSG_PACKET* TSGPacketResponse = { filled in as below }
);

 Where the TSG_PACKET_RESPONSE is set as follows.

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_MESSAGE_PACKET;
 TSG_PACKET_TYPE_UNION TSGPacket
 {=PTSG_PACKET_MSG_RESPONSE packetMsgResponse};
 } TSG_PACKET;

 Where the packetMsgResponse is set as follows.

 typedef struct _TSG_PACKET_MSG_RESPONSE
 {
 unsigned long msgID = 1;
 unsigned long msgType = TSG_ASYNC_MESSAGE_SERVICE_MESSAGE = 2;
 long isMsgPresent = 1;
 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;
 } TSG_PACKET_MSG_RESPONSE;

 Where the messagePacket is set as follows.

 typedef [switch_type(unsigned long)] union
 {
 [case (TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE consentMessage;
 [case (TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE serviceMessage;
 [case (TSG_ASYNC_MESSAGE_REAUTH)]
 PTSG_PACKET_REAUTH_MESSAGE reauthMessage;
 } TSG_PACKET_TYPE_MESSAGE_UNION;

 Where the servicemessage is set as follows.

 typedef struct _TSG_PACKET_STRING_MESSAGE
 {
 long isDisplayMandatory = 1;

146 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 long isConsentMandatory = 1;
 [range(0, 65536)] unsigned long msgBytes = 4;
 [size_is(msgBytes)] wchar_t* msgBuffer = "Test";
 } TSG_PACKET_STRING_MESSAGE;

Example for the TsProxyCreateChannel method.

 HRESULT = {to be filled in by server}
 TsProxyCreateChannel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext =
 m_tunnelcontext;
 [in, ref] PTSENDPOINTINFO tsEndPointInfo;
 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext =
 { to be filled in by server};
 [out] unsigned long* channelId = { to be filled in by server};
);

Where the tsEndPointInfo is set as follows.

 typedef struct _tsendpointinfo
 {
 RESOURCENAME *resourceNames = "myTsMachine";
 unsigned long numResourceNames = 1;
 RESOURCENAME *alternateResourceNames = NULL;
 unsigned short numAlternateResourceNames = 0;
 unsigned long Port = 222101507;
 }TSENDPOINTINFO;

The RDG server receives this method and returns:

 HRESULT = S_OK
 TsProxyCreateChannel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;
 [in, ref] PTSENDPOINTINFO tsEndPointInfo = unchanged;
 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext =
 pServerChannelContextHandle;
 [out] unsigned long* channelId = 1;
);

Example for the TsProxySendToServer method.

 DWORD = {to be filled in by server}
 TsProxySendToServer(
 [in] TSG_SEND_MESSAGE_TSGSendMessage;
);

Where the Generic Send Data Message Packet is as follows.

 m_channelContextHandle = {00 00 00 00 36 41 18
 41 dd 2d 84 43 83 63 82 cc b6 ea f3 f9 };

 typedef struct _TSG_SEND_MESSAGE
 {

147 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE m_channelContextHandle; //as above
 DWORD totalDataLength = 0x00000008; //buffer1Length+sizeof(buffer1Length)
 DWORD numBuffers = 0x00000001; //number of buffers that follow is 1
 DWORD buffer1Length=0x04; //length of data that follows is 4 bytes
 PBYTE buffer1 = {04,00,00,03}; //data of 4 bytes
 } TSG_SEND_MESSAGE;

The RDG server receives this method, verifies m_channelContextHandle, and sends the
buffer1Length of buffer1 to the target server and returns the following.

 DWORD = ERROR_SUCCESS
 TsProxySendToServer (
 [in] TSG_SEND_MESSAGE_TSGSendMessage = unchanged;
);

Example for the TsProxySetupReceivePipe method.

 DWORD = {to be filled in by server}
 TsProxySetupReceivePipe (
 [in, max_is(32767)] byte pRpcMessage[]
);

Where an example value of pRpcMessage is as follows.

 {
 00 00 00 00 EC EC 2E 7D DB E2 E3 4A AE 61 A3 51 DC 53 55 61
 }

The RDG server receives this method, sets up the out pipe, streams all necessary data to the RDG
client in RPC response PDUs without setting the PFC_LAST_FRAG bit in the pfc_flags field, and when
the RDG client calls TsProxyCloseChannel or calls TsProxyCloseTunnel without calling
TsProxyCloseChannel, it returns the following return code in an RPC response PDU with

PFC_LAST_FRAG bit set in the pfc_flags field.

 DWORD = ERROR_GRACEFUL_DISCONNECT
 TsProxySetupReceivePipe (
 [in, max_is(32767)] byte pRpcMessage[] = unchanged
);

Example for the TsProxyCloseChannel method.

 HRESULT = {to be filled in by server}
 TsProxyCloseChannel (
 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context =
 m_channelContext;
);

The RDG server receives this method and returns:

 HRESULT = S_OK

148 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 TsProxyCloseChannel(
 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context = NULL;
);

Example for the TsProxyCloseTunnel method.

 HRESULT = {to be filled in by server}
 TsProxyCloseTunnel (
 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context =
 m_tunnelContext;
);

The RDG server receives this method and returns:

 HRESULT = S_OK
 TsProxyCloseTunnel(
 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context = NULL;
);

4.1.2 Pluggable Authentication Scenario with Consent Message Returned

 The RDG client obtains the name of a RDG server by using an out-of-band mechanism. The RDG
client also obtains the cookie required for authenticating the user on the server by an out-of-band
mechanism. The RDG client establishes a binding handle (a binding handle is specified in [C706]
section 2.1) to the RDG server at the well-known endpoint of 443 and 3388. The RDG client then
calls the TsProxyCreateTunnel method to create and obtain the tunnel context handle. Note that at
this point in time, the connection is unauthenticated. The RDG server then authenticates the user

using the cookie that is passed in. As part of this call, the client sends current version capabilities

to the server.

 The rest of the call flow is identical to what is specified in section 4.1.1.

 For example, the client calls the TsProxyCreateTunnel method on a server named
"fourthcoffee.example.com". The cookie content "Test" is used for authenticating the user. The
Consent Message "Accept" is returned.

 Example for the TsProxyCreateTunnel method:

 HRESULT = {to be filled in by server}
 TsProxyCreateTunnel(
 [in, ref] PTSG_PACKET TSGPacket;
 [out, ref] PTSG_PACKET* TSGPacketResponse =
 {to be filled in by server};
 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =
 {to be filled in by server,
 and saved as m_tunnelcontext by client};
 [out] unsigned long* tunnelid =
 {to be filled in by server and saved as m_tunnelid by client};
);

 Where TSG_PACKET is set as follows.

 typedef struct _TSG_PACKET

https://go.microsoft.com/fwlink/?LinkId=89824

149 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 {
 unsigned long packetId = TSG_PACKET_TYPE_AUTH;
 TSG_PACKET_TYPE_UNION TSGPacket {= packetAuth};
 } TSG_PACKET;

 Where TSG_PACKET_AUTH is filled in as follows.

 typedef struct _TSG_PACKET_AUTH
 {
 TSG_PACKET_VERSIONCAPS TSGVersionCaps;
 [range(0, 65536)]unsigned long cookieLen = 4;
 [size_is(cookieLen)]byte* cookie = "Test";
 } TSG_PACKET_AUTH;

Where TSG_PACKET_VERSIONCAPS is filled in as follows.

 typedef struct _TSG_PACKET_VERSIONCAPS
 {
 TSG_PACKET_HEADER TSGHeader
 {
 ComponentId = 0x5452;
 PacketId = TSG_PACKET_TYPE_VERSIONCAPS;
 }
 PTSG_PACKET_CAPABILITIES TSGCapTSGCaps
 {
 capabilityType = 1;
 TSGPacket.TSGCapNap = {1};
 }
 unsigned long numCapabilities = 1;
 unsigned short majorVersion = 1;
 unsigned short minorVersion = 1;
 unsigned short quarantineCapabilities = 0;
 } TSG_PACKET_VERSIONCAPS;

The RDG server receives this method and returns the following.

 HRESULT = S_OK
 TsProxyCreateTunnel(
 [in, ref] PTSG_PACKET TSGPacket = {unchanged};
 [out, ref] PTSG_PACKET* TSGPacketResponse = =
 {filled in as shown below};
 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =
 pContextHandleObject;
 [out] unsigned long* tunnelId = 1;
);

Where TSG_PACKET_RESPONSE is set as follows.

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_CAPS_RESPONSE;
 TSG_PACKET_TYPE_UNION TSGPacket {= packetCapsResponse};
 } TSG_PACKET;

150 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Where the TSG_PACKET_CAPS_RESPONSE is set as follows.

 typedef struct _TSG_PACKET_CAPS_RESPONSE
 {
 TSG_PACKET_QUARENC_RESPONSE pktQuarEncResponse;
 TSG_PACKET_MSG_RESPONSE pktConsentMessage;
 } TSG_PACKET_CAPS_RESPONSE;

Where the TSG_PACKET_QUARENC_RESPONSE is set as follows.

 typedef struct _TSG_PACKET_QUARENC_RESPONSE
 {
 unsigned long flags = 0;
 unsigned long certChainLen = 0;
 wchar_t* certChainData = "";
 GUID nonce = CreateGuid();
 PTSG_PACKET_VERSIONCAPS versionCaps
 {
 TSG_PACKET_HEADER TSGHeader
 {
 ComponentId = 0x5452;
 PacketId = TSG_PACKET_TYPE_VERSIONCAPS;
 }
 PTSG_PACKET_CAPABILITIES TSGCapTSGCaps
 {
 capabilityType = 1;
 TSGPacket.TSGCapNap = {1};
 }
 unsigned long numCapabilities = 1;
 unsigned short majorVersion = 1;
 unsigned short minorVersion = 1;
 unsigned short quarantineCapabilities = 0;
 }
 } TSG_PACKET_QUARENC_RESPONSE;

Where the TSG_PACKET_MSG_RESPONSE is set as follows.

 typedef struct _TSG_PACKET_MSG_RESPONSE
 {
 unsigned long msgID = 1;
 unsigned long msgType = TSG_ASYNC_MESSAGE_CONSENT_MESSAGE = 1;
 long isMsgPresent = 1;
 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;
 } TSG_PACKET_MSG_RESPONSE;

Where the msgPacket is set as follows.

 typedef [switch_type(unsigned long)] union
 {
 [case (TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE consentMessage;
 [case (TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE serviceMessage;
 [case (TSG_ASYNC_MESSAGE_REAUTH)]
 PTSG_PACKET_REAUTH_MESSAGE reauthMessage;
 } TSG_PACKET_TYPE_MESSAGE_UNION;

151 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Where the consentMessage is set as follows.

 typedef struct _TSG_PACKET_STRING_MESSAGE
 {
 long isDisplayMandatory = 1;
 long isConsentMandatory = 1;
 [range(0, 65536)] unsigned long msgBytes = 7;
 [size_is(msgBytes)] wchar_t* msgBuffer = "Accept";
 } TSG_PACKET_STRING_MESSAGE;

4.1.3 Reauthentication

 Reauthentication is possible only if both the client and the server have the capability to handle the
same. This capability is found out during the capability exchange during tunnel creation. This
capability is based on capability to support Service Messages. As noted in section 4.1.1, a
message request is queued up on the server using the TsProxyMakeTunnelCall method. The

following sequence of calls takes place when the server expects the client to reauthenticate.

 The server completes the pending call. In the message type, it specifies that reauthentication is
required. It also passes in the specific tunnel context so that when the client actually
reauthenticates, the server can find out which client is doing the same.

 The client follows the steps 1, 2, 3, 4, 6, and 7 as specified in section 4.1.1. Only the initial packet
is different, because it contains the tunnel context information that was passed back by the
server.

The RDG server completes the pending TsProxyMakeTunnel calls as follows:

 HRESULT = S_OK
 TsProxyMakeTunnelCall(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;
 [in] unsigned long procId = unchanged,
 [in, ref] PTSG_PACKET TSGPacket = unchanged,
 [out, ref] PTSG_PACKET* TSGPacketResponse = { filled in as below }
);

Where the TSG_PACKET_RESPONSE is set as follows:

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_MESSAGE_PACKET;
 TSG_PACKET_TYPE_UNION TSGPacket
 {=PTSG_PACKET_MSG_RESPONSE packetMsgResponse};
 } TSG_PACKET;

Where the packetMsgResponse is set as follows:

 typedef struct _TSG_PACKET_MSG_RESPONSE
 {
 unsigned long msgID = 1;
 unsigned long msgType = TSG_ASYNC_MESSAGE_REAUTH = 3;
 long isMsgPresent = 1;
 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;
 } TSG_PACKET_MSG_RESPONSE;

152 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Where the messagePacket is set as follows:

 typedef [switch_type(unsigned long)] union
 {
 [case (TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE consentMessage;
 [case (TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE serviceMessage;
 [case (TSG_ASYNC_MESSAGE_REAUTH)]
 PTSG_PACKET_REAUTH_MESSAGE reauthMessage;
 } TSG_PACKET_TYPE_MESSAGE_UNION;

Where the reauthPacket is set as follows:

 typedef struct _TSG_PACKET_REAUTH_MESSAGE
 {
 __int64 tunnelContext = 0x00123456;
 } TSG_PACKET_REAUTH_MESSAGE, *PTSG_PACKET_REAUTH_MESSAGE;

The client responds with the following call:

 HRESULT = {to be filled in by server}
 TsProxyCreateTunnel(
 [in, ref] PTSG_PACKET TSGPacket;
 [out, ref] PTSG_PACKET* TSGPacketResponse =
 {to be filled in by server};
 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =
 {to be filled in by server,
 and saved as m_tunnelcontext by client};
 [out] unsigned long* tunnelid =
 {to be filled in by server and saved as m_tunnelid by client};
);

Where TSG_PACKET is set as follows:

 typedef struct _TSG_PACKET
 {
 unsigned long packetId = TSG_PACKET_TYPE_REAUTH;
 TSG_PACKET_TYPE_UNION TSGPacket {= packetReauth};
 } TSG_PACKET;

Where packetReauth is set as follows:

 typedef struct _TSG_PACKET_REAUTH
 {
 __int64 tunnelContext = 0x00123456;
 unsigned long packetId = 0x5250;
 [switch_is(packetId)] TSG_INITIAL_PACKET_TYPE_UNION TSGInitialPacket;
 } TSG_PACKET_REAUTH, *PTSG_PACKET_REAUTH;

Where TSGInitialPacket is set as follows:

 typedef [switch_type(unsigned long)] union

153 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 {
 [case (TSG_PACKET_TYPE_VERSIONCAPS)]
 PTSG_PACKET_VERSIONCAPS packetVersionCaps;
 [case (TSG_PACKET_TYPE_AUTH)]
 PTSG_PACKET_AUTH packetAuth;
 } TSG_INITIAL_PACKET_TYPE_UNION;

Where TSG_PACKET_VERSIONCAPS is set as follows:

 packetVersionCaps has been specified as defined in section 4.1.1.

 packetAuth has been specified as defined in section 4.1.2.

4.2 HTTP Transport Protocol Examples

4.2.1 Normal Scenario

Initialization: The RDG client obtains the name of an RDG server by using an out-of-band mechanism.
The RDG client creates an HTTP session as follows:

 A proxy name is not specified.

 Asynchronous response is requested.

 The status continue setting is set to FALSE.

 The redirect policy is set to never redirect.

 The resolve timeout is set to 2 minutes.

 The connect timeout is set to 1 minute.

 The send timeout is set to 30 seconds.

 The receive response timeout is set to 90 seconds.

 The receive timeout is set to 30 seconds.

1. The RDG client creates the OUT channel by sending a request with the
RDG_OUT_DATA (section 2.2.3.1.2) custom command and the custom header RDG-Connection-
Id (section 2.2.3.2.1) set to a unique identifier. A GUID generated by the RDG client is used for
this purpose; (such as

{0x958F92D8,0xDA20,0x467a,{0xBB,0xE3,0x65,0xE7,0xE9,0xB4,0xED,0xCF}}). The RDG client
disallows caching and uses accept type as */*. The target resource used is
"/remoteDesktopGateway/". The HTTP version is 1.1 as described in section 3.3.5.1.

2. The RDG server interprets this request as a request to create an OUT channel. It returns an HTTP
401 status code (authentication required) with the supported authentication schemes in the
WWW-Authenticate header as described in section 3.3.5.1.

3. The RDG client selects an authentication method and starts the authentication exchange by setting

the Authorization header. Messages are exchanged back and forth until the client is authenticated,
as described in section 3.3.5.1.

4. The server sends back the final status code 200 OK, and a random entity body of limited size (100
bytes). This enables a reverse proxy to start allowing data from the RDG server to the RDG client.
The RDG server does not specify an entity length in its response, as described in section 3.3.5.1.

154 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5. The RDG client resends the request on the same connection. The RDG server recognizes this
second request as an authenticated connection request.

6. The RDG client creates an IN channel by sending a request with the
RDG_IN_DATA (section 2.2.3.1.1) custom command and the custom header RDG-Connection-Id

set to the same unique identifier and GUID used for creating the OUT channel. In the example, it
is {0x958F92D8,0xDA20,0x467a,{0xBB,0xE3,0x65,0xE7,0xE9,0xB4,0xED,0xCF}}. The RDG client
disallows caching and uses accept type as */*. The target resource used is
"/remoteDesktopGateway/". The HTTP version is 1.1, as described in section 3.3.5.1.

7. The RDG server interprets this as a request to create an IN channel. It sends back an HTTP 401
status code (authentication required) with the supported authentication schemes in the WWW-
Authenticate header as described in section 3.3.5.1.

8. The RDG client selects an authentication method and starts the authentication exchange by setting
the Authorization header. Messages are exchanged back and forth until the client is authenticated,
as described in section 3.3.5.1.

9. The server sends back the final status code 200 OK, and a random entity body of limited size (100
bytes). This enables a reverse proxy to start allowing data from RDG server to RDG client. The
RDG server does not specify an entity length in its response, as described in section 3.3.5.1.

10. The RDG client resends the request on the same connection. The RDG server recognizes this
second request as an authenticated connection request. From this point on, data communication
between the RDG client and RDG server is done by using the HTTP entity body.

11. After OUT and IN channels have been created, the RDG client sends the
HTTP_HANDSHAKE_REQUEST_PACKET (section 2.2.10.10) in the HTTP entity body.

 pHandShakePacket->hdr.packetType = PKT_TYPE_HANDSHAKE_REQUEST; pHandShakePacket-
>verMajor = 1; pHandShakePacket->verMinor = 0; pHandShakePacket->ExtendedAuth = 0;

12. The RDG server responds back with an

HTTP_HANDSHAKE_RESPONSE_PACKET (section 2.2.10.11) in the HTTP entity body, giving details

of its version and the supported authentication schemes.

 pHandShakePacket->hdr.packetType = PKT_TYPE_HANDSHAKE_RESPONSE; pHandShakePacket-
>verMajor = 1; pHandShakePacket->verMinor = 0; pHandShakePacket->ExtendedAuth =

HTTP_EXTENDED_AUTH_PAA | HTTP_EXTENDED_AUTH_SC;

13. The RDG client sends HTTP_TUNNEL_PACKET (section 2.2.10.18) to request tunnel creation.

 pTunnelPacket->hdr.packetType = PKT_TYPE_TUNNEL_CREATE; pTunnelPacket->capsFlags =
0x3F; pTunnelPacket->fieldsPresent = 0

14. The RDG server responds with HTTP_TUNNEL_RESPONSE (section 2.2.10.20) and
HTTP_TUNNEL_RESPONSE_OPTIONAL (section 2.2.10.21).

 HTTP_TUNNEL_RESPONSE *pResponsePacket = (HTTP_TUNNEL_RESPONSE*)pPacket;
HTTP_TUNNEL_RESPONSE_OPTIONAL *pResponsePacketOpt =

(HTTP_TUNNEL_RESPONSE_OPTIONAL)(pPacket + sizeof(HTTP_TUNNEL_RESPONSE)); pResponsePacket-

>hdr.packetType = PKT_TYPE_TUNNEL_RESPONSE; pResponsePacket->statusCode = 0;

pResponsePacket->fieldsPresent = HTTP_TUNNEL_RESPONSE_FIELD_TUNNEL_ID |

HTTP_TUNNEL_RESPONSE_FIELD_CAPS; pResponsePacketOpt->tunnelId = 6; pResponsePacketOpt -

>capsFlags = 0x3F

155 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

15. The RDG client sends HTTP_TUNNEL_AUTH_PACKET (section 2.2.10.14) and
HTTP_TUNNEL_AUTH_PACKET_OPTIONAL (section 2.2.10.15) to the RDG server to request tunnel

authorization.

 pAuthPacket->hdr.packetType = PKT_TYPE_TUNNEL_AUTH; pAuthPacket->cbClientName = 22;
pAuthPacket->cbClientName = "RDG-Client1";

16. The RDG server responds with HTTP_TUNNEL_AUTH_RESPONSE and

HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL to the RDG client.

 pAuthResponse->hdr.packetType = PKT_TYPE_TUNNEL_AUTH_RESPONSE; pAuthResponse-
>errorCode = hrIn; pAuthResponse->fieldsPresent =

HTTP_TUNNEL_AUTH_RESPONSE_FIELD_REDIR_FLAGS |

HTTP_TUNNEL_AUTH_RESPONSE_FIELD_IDLE_TIMEOUT; pAuthResponseOpt->redirFlags = 0;

pAuthResponseOpt -> idleTimeout = 0;

17. The RDG client sends HTTP_CHANNEL_PACKET (section 2.2.10.2) to request channel creation.

 pChannelPkt->hdr.packetType = PKT_TYPE_CHANNEL_CREATE; pChannelPkt->numResources = 1;
pChannelPkt->numAltResources = 0; pChannelPkt->port = 3389; pChannelPkt->protocol = 3;

18. The RDG server responds with HTTP_CHANNEL_RESPONSE (section 2.2.10.4) and
HTTP_CHANNEL_RESPONSE_OPTIONAL (section 2.2.10.5).

 pChannelResp->hdr.packetType = PKT_TYPE_CHANNEL_RESPONSE; pChannelResp->errorCode = 0;
pChannelResp->fieldsPresent = HTTP_CHANNEL_RESPONSE_FIELD_CHANNELID|

HTTP_CHANNEL_RESPONSE_FIELD_UDPPORT| HTTP_CHANNEL_RESPONSE_FIELD_AUTHNCOOKIE;

pChannelRespOpt->channelId = 1; pChannelRespOpt->udpPort = 3391; pChannelRespOpt-

>authnCookie.cbLen = 1433; pChannelRespOpt->authnCookie.blob = <encrypted blob>

4.3 UDP Transport Protocol Examples

4.3.1 Normal Scenario

1. Initialization: The RDG client obtains the name of a RDG server by using an out-of-band
mechanism. It initializes the DTLS.

2. DTLS on the RDG client generates the first DTLS packet and the RDG client sends the packet to
the RDG server by using UDP.

3. The RDG server initializes the DTLS for the new UDP connection and feeds the first packet
received to the DTLS.

4. The RDG client and the RDG server exchange DTLS handshake packets until the handshake is
complete.

5. The RDG client initializes the CONNECT_PKT (section 2.2.11.3) and encrypts the connect packet
with DTLS. It sends the encrypted packet to the RDG server.

 CONNECT_PKT.usPortNumber = 3389 CONNECT_PKT.cbAuthnCookieLen = pMainChannel-
>GetUDPAuthnCookieLen();CONNECT_PKT.authnCookie = pMainChannel-

>GetUDPAuthnCookie();CONNECT_PKT.SynData.fLossy = 1CONNECT_PKT.SynData.uUpStreamMTU =

1500;CONNECT_PKT.SynData.uDownStreamMTU = 1500;CONNECT_PKT.SynData.snSendISN = -1

156 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6. The RDG server decrypts the packet received with DTLS. The RDG server decodes the message
and verifies the signature on the decoded message. The RDG server maps the decoded message

to the AUTHENTICATION_COOKIE_DATA structure.

7. The RDG server connects to the target server specified in the ADM element

AUTHENTICATION_COOKIE_DATA.szServerName.

8. The RDG server prepares the CONNECT_PKT_RESP (section 2.2.11.4) and encrypts the packet
with DTLS. It sends the encrypted packet to the RDG client.

 CONNECT_PKT_RESP.result = S_OKCONNECT_PKT_RESP.SynResponse.uUpStreamMTU =
1386CONNECT_PKT_RESP.SynResponse.uDownStreamMTU = 1386CONNECT_PKT_RESP.snRecvISN = -1

9. The RDG client and RDG server are ready for data transfer.

157 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

The following sections specify security considerations for implementers of the Remote Desktop
Gateway Server Protocol and an index of security parameters.

5.1 Security Considerations for Implementers

For RPC over HTTP transport, it is recommended that authenticated RPC be used by this protocol, as
specified in [C706] section 13.

The RDG server audits all tunnel (2) and channel connections to the target server. The RDG
server determines which RDG clients are allowed to connect and which authentication service they
use.

During the tunnel creation for main channel, the RDG server sends a nonce represented by a GUID
to uniquely identify the connection to prevent SoH replay attacks. The RDG client MUST send this
GUID if it sends the SoH, as specified in section 2.2.9.2.1.4.

5.2 Index of Security Parameters

 Security parameter Section

Authentication service settings 2.1

https://go.microsoft.com/fwlink/?LinkId=89824

158 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 Appendix A: Full IDL

This section is not applicable for HTTP and UDP transports.

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" is the IDL as specified
in [MS-DTYP] Appendix A.

 import "ms-dtyp.idl";

 [
 uuid(44e265dd-7daf-42cd-8560-3cdb6e7a2729),
 version(1.3),
 pointer_default(unique)
]

 interface TsProxyRpcInterface
 {
 typedef [context_handle] void*
 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE;

 typedef [context_handle] void*
 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE;

 typedef [context_handle]
 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE
 PTUNNEL_CONTEXT_HANDLE_SERIALIZE;

 typedef [context_handle]
 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE
 PCHANNEL_CONTEXT_HANDLE_SERIALIZE;

 typedef [string] wchar_t* RESOURCENAME;

 #define MAX_RESOURCE_NAMES 50

 typedef struct _tsendpointinfo {
 [size_is(numResourceNames)] RESOURCENAME* resourceName;
 [range(0, MAX_RESOURCE_NAMES)]
 unsigned long numResourceNames;
 [unique, size_is(numAlternateResourceNames)]
 RESOURCENAME* alternateResourceNames;
 [range(0, 3)]
 unsigned short numAlternateResourceNames;
 unsigned long Port;
 } TSENDPOINTINFO,
 *PTSENDPOINTINFO;

 #define TSG_PACKET_TYPE_HEADER 0x00004844
 #define TSG_PACKET_TYPE_VERSIONCAPS 0x00005643
 #define TSG_PACKET_TYPE_QUARCONFIGREQUEST 0x00005143
 #define TSG_PACKET_TYPE_QUARREQUEST 0x00005152
 #define TSG_PACKET_TYPE_RESPONSE 0x00005052
 #define TSG_PACKET_TYPE_QUARENC_RESPONSE 0x00004552
 #define TSG_CAPABILITY_TYPE_NAP 0x00000001
 #define TSG_PACKET_TYPE_CAPS_RESPONSE 0x00004350
 #define TSG_PACKET_TYPE_MSGREQUEST_PACKET 0x00004752
 #define TSG_PACKET_TYPE_MESSAGE_PACKET 0x00004750
 #define TSG_PACKET_TYPE_AUTH 0x00004054
 #define TSG_PACKET_TYPE_REAUTH 0x00005250
 #define TSG_ASYNC_MESSAGE_CONSENT_MESSAGE 0x00000001
 #define TSG_ASYNC_MESSAGE_SERVICE_MESSAGE 0x00000002
 #define TSG_ASYNC_MESSAGE_REAUTH 0x00000003
 #define TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST 0x00000001
 #define TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST 0x00000002
 #define TSG_NAP_CAPABILITY_QUAR_SOH 0x00000001
 #define TSG_NAP_CAPABILITY_IDLE_TIMEOUT 0x00000002
 #define TSG_MESSAGING_CAP_CONSENT_SIGN 0x00000004

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

159 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 #define TSG_MESSAGING_CAP_SERVICE_MSG 0x00000008
 #define TSG_MESSAGING_CAP_REAUTH 0x00000010

 typedef struct _TSG_PACKET_HEADER {
 unsigned short ComponentId;
 unsigned short PacketId;
 } TSG_PACKET_HEADER,
 *PTSG_PACKET_HEADER;

 typedef struct _TSG_CAPABILITY_NAP{
 unsigned long capabilities;
 } TSG_CAPABILITY_NAP,
 *PTSG_CAPABILITY_NAP;

 typedef [switch_type(unsigned long)] union {
 [case (TSG_CAPABILITY_TYPE_NAP)]
 TSG_CAPABILITY_NAP TSGCapNap;
 } TSG_CAPABILITIES_UNION,
 *PTSG_CAPABILITIES_UNION;

 typedef struct _TSG_PACKET_CAPABILITIES {
 unsigned long capabilityType;
 [switch_is(capabilityType)]
 TSG_CAPABILITIES_UNION TSGPacket;
 } TSG_PACKET_CAPABILITIES,
 *PTSG_PACKET_CAPABILITIES;

 typedef struct _TSG_PACKET_VERSIONCAPS {
 TSG_PACKET_HEADER tsgHeader;
 [size_is(numCapabilities)]
 PTSG_PACKET_CAPABILITIES TSGCaps;
 [range(0, 32)] unsigned long numCapabilities;
 unsigned short majorVersion;
 unsigned short minorVersion;
 unsigned short quarantineCapabilities;
 } TSG_PACKET_VERSIONCAPS,
 *PTSG_PACKET_VERSIONCAPS;

 typedef struct _TSG_PACKET_QUARCONFIGREQUEST {
 unsigned long flags;
 } TSG_PACKET_QUARCONFIGREQUEST,
 *PTSG_PACKET_QUARCONFIGREQUEST;

 typedef struct _TSG_PACKET_QUARREQUEST {
 unsigned long flags;
 [string, size_is(nameLength)] wchar_t* machineName;
 [range(0, 512 + 1)] unsigned long nameLength;
 [unique, size_is(dataLen)] byte* data;
 [range(0, 8000)] unsigned long dataLen;
 } TSG_PACKET_QUARREQUEST,
 *PTSG_PACKET_QUARREQUEST;

 typedef struct _TSG_REDIRECTION_FLAGS {
 BOOL enableAllRedirections;
 BOOL disableAllRedirections;
 BOOL driveRedirectionDisabled;
 BOOL printerRedirectionDisabled;
 BOOL portRedirectionDisabled;
 BOOL reserved;
 BOOL clipboardRedirectionDisabled;
 BOOL pnpRedirectionDisabled;
 } TSG_REDIRECTION_FLAGS,
 *PTSG_REDIRECTION_FLAGS;

 typedef struct _TSG_PACKET_RESPONSE {
 unsigned long flags;
 unsigned long reserved;

160 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [size_is(responseDataLen)] byte* responseData;
 [range(0, 24000)] unsigned long responseDataLen;
 TSG_REDIRECTION_FLAGS redirectionFlags;
 } TSG_PACKET_RESPONSE,
 *PTSG_PACKET_RESPONSE;

 typedef struct _TSG_PACKET_QUARENC_RESPONSE {
 unsigned long flags;
 [range(0, 24000)] unsigned long certChainLen;
 [string, size_is(certChainLen)] wchar_t* certChainData;
 GUID nonce;
 PTSG_PACKET_VERSIONCAPS versionCaps;
 } TSG_PACKET_QUARENC_RESPONSE,
 *PTSG_PACKET_QUARENC_RESPONSE;

 typedef struct _TSG_PACKET_MSG_REQUEST {
 unsigned long maxMessagesPerBatch;
 } TSG_PACKET_MSG_REQUEST, *PTSG_PACKET_MSG_REQUEST;

 typedef struct _TSG_PACKET_STRING_MESSAGE {
 long isDisplayMandatory;
 long isConsentMandatory;
 [range(0,65536)] unsigned long msgBytes;
 [size_is(msgBytes)] wchar_t* msgBuffer;
 } TSG_PACKET_STRING_MESSAGE,
 *PTSG_PACKET_STRING_MESSAGE;

 typedef struct _TSG_PACKET_REAUTH_MESSAGE {
 unsigned __int64 tunnelContext;
 } TSG_PACKET_REAUTH_MESSAGE, *PTSG_PACKET_REAUTH_MESSAGE;

 typedef
 [switch_type(unsigned long)]
 union {
 [case(TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE consentMessage;
 [case(TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]
 PTSG_PACKET_STRING_MESSAGE serviceMessage;
 [case(TSG_ASYNC_MESSAGE_REAUTH)]
 PTSG_PACKET_REAUTH_MESSAGE reauthMessage;
 } TSG_PACKET_TYPE_MESSAGE_UNION,
 *PTSG_PACKET_TYPE_MESSAGE_UNION ;

 typedef struct _TSG_PACKET_MSG_RESPONSE {
 unsigned long msgID;
 unsigned long msgType;
 long isMsgPresent;
 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;
 } TSG_PACKET_MSG_RESPONSE,
 *PTSG_PACKET_MSG_RESPONSE;

 typedef struct _TSG_PACKET_CAPS_RESPONSE {
 TSG_PACKET_QUARENC_RESPONSE pktQuarEncResponse;
 TSG_PACKET_MSG_RESPONSE pktConsentMessage;
 } TSG_PACKET_CAPS_RESPONSE, *PTSG_PACKET_CAPS_RESPONSE;

 typedef struct _TSG_PACKET_AUTH {
 TSG_PACKET_VERSIONCAPS TSGVersionCaps;
 [range(0, 65536)] unsigned long cookieLen;
 [size_is(cookieLen)] byte* cookie;
 } TSG_PACKET_AUTH, *PTSG_PACKET_AUTH;

 typedef
 [switch_type(unsigned long)]
 union {
 [case(TSG_PACKET_TYPE_VERSIONCAPS)]
 PTSG_PACKET_VERSIONCAPS packetVersionCaps;
 [case(TSG_PACKET_TYPE_AUTH)]

161 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 PTSG_PACKET_AUTH packetAuth;
 } TSG_INITIAL_PACKET_TYPE_UNION,
 *PTSG_INITIAL_PACKET_TYPE_UNION;

 typedef struct _TSG_PACKET_REAUTH {
 unsigned __int64 tunnelContext;
 unsigned long packetId;
 [switch_is(packetId)] TSG_INITIAL_PACKET_TYPE_UNION TSGInitialPacket;
 } TSG_PACKET_REAUTH,
 *PTSG_PACKET_REAUTH;

 typedef [switch_type(unsigned long)] union {
 [case (TSG_PACKET_TYPE_HEADER)]
 PTSG_PACKET_HEADER packetHeader;
 [case (TSG_PACKET_TYPE_VERSIONCAPS)]
 PTSG_PACKET_VERSIONCAPS packetVersionCaps;
 [case (TSG_PACKET_TYPE_QUARCONFIGREQUEST)]
 PTSG_PACKET_QUARCONFIGREQUEST packetQuarConfigRequest;
 [case (TSG_PACKET_TYPE_QUARREQUEST)]
 PTSG_PACKET_QUARREQUEST packetQuarRequest;
 [case (TSG_PACKET_TYPE_RESPONSE)]
 PTSG_PACKET_RESPONSE packetResponse;
 [case (TSG_PACKET_TYPE_QUARENC_RESPONSE)]
 PTSG_PACKET_QUARENC_RESPONSE packetQuarEncResponse;
 [case (TSG_PACKET_TYPE_CAPS_RESPONSE)]
 PTSG_PACKET_CAPS_RESPONSE packetCapsResponse;
 [case (TSG_PACKET_TYPE_MSGREQUEST_PACKET)]
 PTSG_PACKET_MSG_REQUEST packetMsgRequest;
 [case (TSG_PACKET_TYPE_MESSAGE_PACKET)]
 PTSG_PACKET_MSG_RESPONSE packetMsgResponse;
 [case (TSG_PACKET_TYPE_AUTH)]
 PTSG_PACKET_AUTH packetAuth;
 [case (TSG_PACKET_TYPE_REAUTH)]
 PTSG_PACKET_REAUTH packetReauth;
 } TSG_PACKET_TYPE_UNION,
 *PTSG_PACKET_TYPE_UNION;

 typedef struct _TSG_PACKET {
 unsigned long packetId;
 [switch_is(packetId)] TSG_PACKET_TYPE_UNION TSGPacket;
 } TSG_PACKET,
 *PTSG_PACKET;

 void Opnum0NotUsedOnWire(void);

 HRESULT
 TsProxyCreateTunnel(
 [in, ref] PTSG_PACKET TSGPacket,
 [out, ref] PTSG_PACKET* TSGPacketResponse,
 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext,
 [out] unsigned long* tunnelId
);

 HRESULT
 TsProxyAuthorizeTunnel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,
 [in, ref] PTSG_PACKET TSGPacket,
 [out, ref] PTSG_PACKET* TSGPacketResponse
);

 HRESULT
 TsProxyMakeTunnelCall(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,
 [in] unsigned long procId,
 [in, ref] PTSG_PACKET TSGPacket,
 [out, ref] PTSG_PACKET* TSGPacketResponse
);

162 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HRESULT
 TsProxyCreateChannel(
 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,
 [in, ref] PTSENDPOINTINFO tsEndPointInfo ,
 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext,
 [out] unsigned long* channelId
);

 void Opnum5NotUsedOnWire(void);

 HRESULT
 TsProxyCloseChannel(
 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context
);

 HRESULT
 TsProxyCloseTunnel(
 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context
);

 //see section 2.2.3.3 for decoding instructions
 DWORD
 TsProxySetupReceivePipe(
 [in, max_is(32767)] byte pRpcMessage[]
);

 //see section 2.2.3.4 for decoding instructions
 DWORD
 TsProxySendToServer(
 [in, max_is(32767)] byte pRpcMessage[]
);

 };

163 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows XP operating system Service Pack 3 (SP3)

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server 2019 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1: This protocol was called the Terminal Services Gateway Server Protocol in the
following operating systems: Windows XP operating system, Windows Server 2003 operating system
with Service Pack 1 (SP1), Windows Vista, Windows Server 2008 and Windows 7.

<2> Section 1: This gateway was called the Terminal Services Gateway Server Protocol in the
following operating systems: Windows XP, Windows Server 2003 with SP1, Windows Vista, Windows
Server 2008 and Windows 7.

<3> Section 1.3: The Windows RDP client uses the RDGSP Protocol as a transport mechanism to
establish a connection to a target server behind a firewall. The connection frequently originates from
a client located on the Internet. The RDGSP Protocol can also be used to connect to an isolated target

server from clients located on a different private network. An RDGSP Protocol server serves as the

termination point for the tunnel (2) and relays RDP client data to and from the target server by using
the channel.

<4> Section 1.3.2: Support for the HTTP transport is available as follows:

TSGU client

 Windows 7 with RDP 8.0/8.1 Client Update

 Windows Server 2008 R2 operating system with RDP 8.0/8.1 Client Update

164 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Windows 8

 Windows Server 2012

 Windows 8.1

 Windows Server 2012 R2

 Windows 10

 Windows Server 2016

 Windows Server 2019

TSGU server

 Windows Server 2012

 Windows Server 2012 R2

 Windows Server 2016

 Windows Server 2019

<5> Section 1.3.2.1.1: The WebSocket protocol ([RFC6455]) is used in the connection setup phase of
the HTTP transport in the following releases: Windows 10, Windows Server 2016, and Windows Server
2019.

<6> Section 1.3.3: Support for UDP transport is not available in Windows XP operating system
Service Pack 2 (SP2), Windows Server 2003 with SP1, Windows Vista, Windows Server 2008, Windows

7, and Windows Server 2008 R2.

<7> Section 2.2.5.2.19: Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and
Windows Server 2008 do not support Consent Message, Service Message, Idle Timeout, and
Reauthentication.

<8> Section 2.2.5.4.1: In Windows implementations, the maximum size of each
CONNECT_PKT_FRAGMENT fragment is 1000 bytes.

<9> Section 2.2.6.1: Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and Windows

Server 2008 are not capable of exchanging policies with the RDG server.

<10> Section 2.2.9.1: Windows Server 2003 with SP1, Windows XP SP2, and Windows Vista send a
list of IP addresses in the resourceName field and NetBIOS or FQDN names in
alternateResourceNames when it is redirected by the TS session directory.

<11> Section 2.2.9.2.1.2: Windows XP SP2, Windows Vista, Windows Server 2003 with SP1, Windows
Server 2008 operating system, and Windows Server 2008 R2 send quarantineCapabilities type 1—
indicating that each understands network access protection capability. Based on quarantine policies

set on Windows Server 2008, it will require quarantine information be sent from client to server.

<12> Section 2.2.9.2.1.2.1: Windows XP SP2, Windows Vista, Windows Server 2003 with SP1, and

Windows Server 2008 send the capability type 0x00000001 indicating that each understands NAP
capability. Based on quarantine policies set on Windows Server 2008, it will require quarantine
information to be sent from client to server.

<13> Section 2.2.9.2.1.3: The TSG_PACKET_QUARCONFIGREQUEST structure is not used by any

version of Windows. If this structure is used, an error code of
HRESULT_CODE(E_PROXY_NOTSUPPORTED) is returned.

https://go.microsoft.com/fwlink/?LinkId=252388

165 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<14> Section 2.2.9.2.1.4: If Windows Server 2008 requires that quarantine information be sent, the
client's health is queried using quarantine agent and is sent to the Windows Server 2008 in an

encrypted manner. If this data is not present and quarantine is required by Windows Server 2008, the
server rejects the TsProxyAuthorizeTunnel call with an E_PROXY_QUARANTINE_ACCESSDENIED

(0x800759ED) response.

<15> Section 2.2.9.2.1.4: Windows Server 2008 uses machineName value to determine the machine
domain membership based on the network access policies set by the administrator on the server.

<16> Section 2.2.9.2.1.4: Windows XP SP2, Windows Server 2003 with SP1, and Windows Vista
obtain the statement of health from the NAP agent and encrypt it using the certificate sent by the
server during the TsProxyCreateTunnel method. Windows Server 2008 decrypts the statement of
health from the client using the private key corresponding to the same certificate it sent to the client

during the tunnel (2) creation. If the packet contains health data, Windows Server 2008 performs all
access checks, including quarantine, and network policies in this call to allow operations on the tunnel
(2).

<17> Section 2.2.9.2.1.5: In Windows Server 2008, responseData is ignored and

responseDataLen is set to zero.

Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 can send the

statement of health response (SoHR) and idle timeout values, depending on its policies. The
statement of health response is signed and encoded using the RDG server's private key. The RDG
client sends the statement of health response to the NAP agent, which verifies and decodes the data
using the server public key that was passed during a call to TsProxyCreateTunnel. If the RDG server
can support idle timeout as specified in section 2.2.9.2.1.2.1.2, then the idle timeout is prepended to
the statement of health response.

Idle timeout is configured on the RDG server and is enforced on the RDG client. Only Windows Server

2008 R2 RDG server supports idle timeout.

<18> Section 2.2.9.2.1.5: Windows Server 2008 sends the redirectionFlags value based on network
policies configured for Windows terminal server. Regarding the details of redirectionFlag values
please refer to section 2.2.1.27 of [MS-RNAP].

<19> Section 2.2.9.2.1.6: Windows Server 2008 sends the base64-encoded version of the certificate
chain if quarantine is required. This certificate is the same as that registered for the
RPC_C_AUTHN_GSS_SCHANNEL authentication service.

<20> Section 2.2.9.2.1.9: Windows implementation of RDG server always sets this field to 1 and
Windows implementation of RDG client never uses this field.

<21> Section 2.2.9.2.1.9.1.1: The maximum number of characters in the constant message depends
on the serverCert field size in the HTTP_TUNNEL_REPONSE_OPTIONAL structure. (The serverCert is
used for SoH encryption.) The following table is a guideline for determining the maximum number of
characters in the msgBytes field:

Windows 8.1,
Windows Server
2012 R2

Windows Server 2008, Windows
Server 2008 R2, Windows Server
2012, Windows Server 2016,
Windows Server 2019

MAX of HTTP_TUNNEL_RESPONSE size 22528 65536

%5bMS-RNAP%5d.pdf#Section_e391716b22f74bf7bb39202a18598000

166 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Windows 8.1,
Windows Server
2012 R2

Windows Server 2008, Windows
Server 2008 R2, Windows Server
2012, Windows Server 2016,
Windows Server 2019

Required HTTP_TUNNEL_RESPONSE 18 18

Optional HTTP_TUNNEL_RESPONSE_OPTIONAL
header

24 24

Allow server cert size

The size of the certificate depends on the key size

~1500 ~1500

Max consent message (in bytes) 20986 63994

Max consent message (in character size, including
spaces, carriage return and the ending 0 string)

~10493 ~31997

<22> Section 2.2.11.10: In Windows implementations, the maximum size of each
CONNECT_PKT_FRAGMENT fragment is 1000 bytes.

<23> Section 3.1.1: On machines running Windows, this is the machine name that is returned by the
gethostname function.

<24> Section 3.1.1: Windows Server 2003 with SP1, Windows Server 2008, Windows Server 2008
R2, Windows 8, Windows 8.1, and Windows 10 use Tunnel id to map to a Tunnel Context handle,

Channel id capabilities information, and user information.

<25> Section 3.1.1: Windows Server 2003 with SP1, Windows Server 2008, Windows Server 2008
R2, Windows 8, Windows 8.1, and Windows 10 use the Channel id for an auditing purpose at server
side and to show the connection details to the administrator.

<26> Section 3.1.2.1: The session timeout timer is not implemented in Windows XP SP2, Windows
Server 2003 with SP1, Windows Vista, Windows Server 2008, Windows 7, Windows 8, and Windows
Server 2012.

<27> Section 3.1.2.2: The reauthentication timer is not implemented in Windows XP SP2, Windows
Server 2003 with SP1, Windows Vista, Windows Server 2008, Windows 7, Windows 8, and Windows
Server 2012.

<28> Section 3.1.3: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
and Windows Server 2012 R2 communicate with NAP Policy Servers.

<29> Section 3.1.3: Windows Server 2016 and Windows Server 2019 ignore the client statement of
health.

<30> Section 3.2.4.1: Windows Server 2008 implements this timer, but Windows Server 2008 R2
does not implement this timer. In Windows Server 2008, if a call to TsProxySetupReceivePipe is not
made within 30 seconds of a call to TsProxyCreateChannel, the Windows Server 2008 RDG server will
disconnect the connection. The disconnection will occur in order to implement TsProxyCreateChannel.
Note that the protocol, however, does not mandate the timer.

167 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<31> Section 3.2.4.1: The timer value is not mandated by the protocol. Different implementations
can choose to use this timer if required. The timer value can be set to a value appropriate to the

implementation.

<32> Section 3.2.5: Windows Server 2008 uses the identity of the caller to perform method-specific

access checks. The RDG service allows only authenticated users to call any method. Windows Server
2008 imposes a minimum impersonation level of RPC_C_IMPL_LEVEL_IDENTIFY ([MS-RPCE] section
2.2.1.1.9) on all method calls. If RDG is operating in a load-balanced environment, Windows Server
2008 registers for the hostname, not the IPv4/IPv6 addresses. Windows Server 2008 registers for
RPC_C_AUTHN_GSS_SCHANNEL authentication service using the same certificate that is set for HTTPS
communications on the machine.

<33> Section 3.2.6: Windows Server 2008 implementation uses RPC protocol to retrieve the identity

of the caller as specified in [MS-RPCE] section 3.2.3.4.2. The server uses the underlying Windows
security subsystem to determine the permissions for the caller. If the caller does not have the
required permissions to execute a specific method, the method call fails with
ERROR_ACCESS_DENIED. This error code is returned to the caller in an rpc_fault packet.

<34> Section 3.2.6: This method is not available in Windows XP SP2, Windows Server 2003 with SP1,
Windows Vista, and Windows Server 2008.

<35> Section 3.2.6: Opnums that are not used apply to Windows XP SP2, Windows Vista, Windows
Server 2003 with SP1, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8,
Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016,
and Windows Server 2019.

Opnum 3 is not used by Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and
Windows Server 2008.

Opnum Description

0 Reserved for local use.

5 Reserved for local use.

<36> Section 3.2.6.1.1: Windows Server 2016 and Windows Server 2019 do not set the
certChainData field of TSG_PACKET_QUARENC_RESPONSE structure in TSGPacketResponse.

<37> Section 3.2.6.1.1: Pluggable authentication is not available in Windows XP SP2, Windows
Server 2003 with SP1, Windows Vista, and Windows Server 2008. Windows does not implement any
authentication plug-ins, but ISVs can create their plug-ins and use them for authentication.

<38> Section 3.2.6.1.1: In Windows Server 2008, the results are undefined when the TSGPacket is
set to anything other than the TSG_PACKET_VERSIONCAPS structure. However, in Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, and Windows
Server 2019, if the TSGPacket is set to anything other than the TSG_PACKET_VERSIONCAPS
structure in case of RPC authentication or TSG_PACKET_AUTH structure in case of pluggable
authentication, the error <E_PROXY_INTERNALERROR> is returned.

<39> Section 3.2.6.1.2: Windows Server 2016 and Windows Server 2019 do not use the

TsProxyAuthorizeTunnel method to require health checks from the RDG client.

<40> Section 3.2.6.1.2: Windows implementation of the protocol does user authorization based on
user group membership, client computer group membership (optional), user authentication method
(password or smartcard), and client computer health status (optional). These authorization conditions
are specified using connection authorization policies (CAPs). When the CAPs set by the administrator
require RDG client computer health status checks, the RDG server will require that RDG clients send

health information and remediate themselves if health check is not met.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

168 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<41> Section 3.2.6.1.2: Not performed by Windows Server 2016 and Windows Server 2019, and
TSGPacket->TSGPacket.packetQuarRequest->dataLen and TSGPacket-

>TSGPacket.packetQuarRequest->data are ignored.

<42> Section 3.2.6.1.2: Not performed by Windows Server 2016 and Windows Server 2019.

<43> Section 3.2.6.1.2: The Windows Server 2008 R2 Standard operating system implementation
limits the number of connections to 250.

The Windows Server 2008 R2 Foundation operating system implementation limits the number of
connections to 50.

All other Windows implementations allow an unlimited number of connections.

<44> Section 3.2.6.1.4: Windows Server 2008 rejects this call and all channel-related calls if the
TsProxyAuthorizeTunnel method call does not succeed. Windows Server 2008 performs access checks

to determine if a connection to the target server is allowed by policies in this call.

<45> Section 3.2.6.1.4: Windows Server 2008 does not attempt to connect to the target server

during the TsProxyCreateChannel call. The actual connection to the target server happens during the
call to TsProxySetupReceivePipe.

<46> Section 3.2.6.1.4: Windows Server 2008 returns
HRESULT_CODE(E_PROXY_RAP_ACCESSDENIED), such as 0x000059DA, if resource authorization

fails.

<47> Section 3.2.6.1.4: In Windows Server 2008, even if the RESOURCENAME strings in the
resourceName member are not valid, ERROR_SUCCESS is returned. In Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, and Windows Server 2019, if
the RESOURCENAME is not valid, HRESULT_CODE(E_PROXY_TS_CONNECTFAILED) (0x000059DD) is
returned.

<48> Section 3.2.6.2.1: Windows Server 2008, Windows Server 2003 with SP1, Windows XP SP2, and

Windows Vista do not use the NDR for this call. Windows Server 2008 rejects this call if any
discrepancies in the data are noted, such as the data lengths not matching those reported by the

server stub.

<49> Section 3.2.6.2.2: To bypass NDR, the Windows implementation of Terminal Services Gateway
Server Protocol hooks into the RPC layer directly and reads from the Buffer field of the
_RPC_MESSAGE struct defined in [MSDN-RPCMESSAGE].

<50> Section 3.2.6.2.2: Windows Server 2008, Windows Server 2003 with SP1, Windows XP SP2, and

Windows Vista do not use the NDR for this call. Windows Server 2003 with SP1, Windows XP SP2,
Windows Vista, and Windows Server 2008 disable RPC buffering for this call. The Windows Server
2008 rejects this call if any discrepancies in the data are noted, such as the data lengths not matching
those reported by the server stub. Windows Server 2008 makes a socket connection to the target
server as part of this call.

<51> Section 3.2.6.2.2: Only Windows Server 2008 attempts to connect to the target server during

the TsProxySetupReceivePipe call because it doesn't attempt to connect to the target server during
TsProxyCreateChannel call.

<52> Section 3.2.6.2.2: This error is returned only by the Windows Server 2008 RDG server, because
only this version attempts connecting to the target server in the TsProxySetupReceivePipe call.

<53> Section 3.3.3.1: In the following TSGU clients the default timer value on the client is 8 minutes.

 Windows 7 with RDP 8.0/8.1 Client Update

 Windows Server 2008 R2 with RDP 8.0/8.1 Client Update

https://go.microsoft.com/fwlink/?LinkId=92766

169 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Windows 8

 Windows Server 2012

 Windows 8.1

 Windows Server 2012 R2

 Windows 10

 Windows Server 2016

 Windows Server 2019

In newer versions of TSGU client, beginning with RDP 8.1, with the updates in the following KBs
installed, the default time period is 1 minute.

 Windows 8.1/Windows Server 2012 R2: KB 2921855

 RDP 8.1 for Windows 7/Windows Server 2008 R2: KB 2923545

 Windows 10, Windows Server 2016, and Windows Server 2019

This timer is not supported in the following versions of Windows:

 Windows XP SP2

 Windows Server 2003 with SP1

 Windows Vista

 Windows Server 2008

<54> Section 3.3.5.3: The implementation of RDG server for Microsoft Windows supports the NTLM
extended authentication mode only on Windows Server 2016 Update 7C and Windows Server 2019.

<55> Section 3.5.1: On machines running Windows, this is the machine name that is returned by the
gethostname function.

<56> Section 3.5.1: Note that the size of the buffer is 513 bytes, even though the contents are 16-bit
Unicode characters. This reflects the actual Windows implementation.

<57> Section 3.5.1: On machines running Windows, the Client Machine name refers to the computer

name only as returned by the gethostname function.

<58> Section 3.5.3: Windows uses the INapEnforcementClientConnection::GetSoHRequest
method to obtain the SoH, which is retrieved in the out parameter as specified in [MSDN-NAPAPI].

<59> Section 3.6.4: Windows uses the INapEnforcementClientConnection::GetSoHRequest
method to obtain the SoH, which is retrieved in the out parameter as specified in [MSDN-NAPAPI].

https://go.microsoft.com/fwlink/?LinkId=199018

170 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.2.11.8 AUTHN_COOKIE_DATA
Structure

8316 : Added packet diagram and updated field
descriptions.

Major

2.2.11.10
CONNECT_PKT_FRAGMENT
Structure

8316 : Added packet diagram. Major

7 Appendix B: Product Behavior
Removed Windows Server operating system from the list
of applicable products and product behavior notes and
added Windows Server 2019.

Major

mailto:dochelp@microsoft.com

171 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

9 Index

A

AASYNDATA packet 74
AASYNDATARESP packet 75
Abstract data model
 client 126
 server 80
 TSG server states 84
Applicability 28
AUTHN_COOKIE_DATA structure 77

C

Capability negotiation 28
Change tracking 170
Client
 abstract data model 126
 initialization 128

 local events 127
 message processing 129
 overview 126
 sequencing rules 129
 timer events - idle timeout 127
 timers - idle timeout 128
Common data types 31
CONNECT_PKT packet 75
CONNECT_PKT_RESP packet 76
Connection setup phase 17

D

Data model - abstract
 client 126
 server 80
 TSG server states 84
Data representation
 TsProxySendToServer 132
 TsProxySetupReceivePipe 132
Data transfer phase 18
Data types
 common 31
 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE 32
 PCHANNEL_CONTEXT_HANDLE_SERIALIZE 33
 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE 32
 PTUNNEL_CONTEXT_HANDLE_SERIALIZE 33
 RESOURCENAME 32
DATA_PKT packet 76
DISC_PKT packet 76

E

Examples
 normal scenario 141
 pluggable authentication scenario with consent

message returned 148
 reauthentication 151

F

Fields - vendor-extensible 29
Full IDL 158

G

Generic receive pipe message packet 62
Generic_Send_Data_Message_Packet packet 61
Glossary 10

H

HTTP_byte_BLOB packet 63
HTTP_CAPABILITY_IDLE_TIMEOUT 44
HTTP_CAPABILITY_MESSAGING_CONSENT_SIGN 44
HTTP_CAPABILITY_MESSAGING_SERVICE_MSG 44
HTTP_CAPABILITY_REAUTH 44
HTTP_CAPABILITY_TYPE_QUAR_SOH 44
HTTP_CAPABILITY_UDP_TRANSPORT 44
HTTP_CHANNEL_PACKET packet 63
HTTP_CHANNEL_PACKET_VARIABLE Structure

packet 64
HTTP_CHANNEL_RESPONSE packet 64
HTTP_CHANNEL_RESPONSE_FIELD_AUTHNCOOKIE

40
HTTP_CHANNEL_RESPONSE_FIELD_CHANNELID 40
HTTP_CHANNEL_RESPONSE_FIELD_UDPPORT 40
HTTP_CHANNEL_RESPONSE_OPTIONAL packet 65
HTTP_CLOSE_PACKET Structure packet 73
HTTP_DATA_PACKET packet 65
HTTP_EXTENDED_AUTH_NONE 41
HTTP_EXTENDED_AUTH_PAA 41
HTTP_EXTENDED_AUTH_PACKET packet 66
HTTP_EXTENDED_AUTH_SC 41
HTTP_HANDSHAKE_REQUEST_PACKET packet 67
HTTP_HANDSHAKE_RESPONSE_PACKET packet 67
HTTP_KEEPALIVE_PACKET packet 66
HTTP_PACKET_HEADER packet 67
HTTP_REAUTH_MESSAGE packet 68
HTTP_SERVICE_MESSAGE packet 68
HTTP_TUNNEL_AUTH_FIELD_SOH 42
HTTP_TUNNEL_AUTH_PACKET packet 69
HTTP_TUNNEL_AUTH_PACKET_OPTIONAL packet 69
HTTP_TUNNEL_AUTH_RESPONSE packet 70
HTTP_TUNNEL_AUTH_RESPONSE_FIELD_IDLE_TIME

OUT 42
HTTP_TUNNEL_AUTH_RESPONSE_FIELD_REDIR_FLA

GS 42
HTTP_TUNNEL_AUTH_RESPONSE_FIELD_SOH_RESP

ONSE 42
HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL packet

70
HTTP_TUNNEL_PACKET packet (section 2.2.10.18

71, section 2.2.10.19 71)
HTTP_TUNNEL_PACKET_FIELD_PAA_COOKIE 42
HTTP_TUNNEL_PACKET_FIELD_REAUTH 42
HTTP_TUNNEL_REDIR_DISABLE_ALL 43
HTTP_TUNNEL_REDIR_DISABLE_CLIPBOARD 43
HTTP_TUNNEL_REDIR_DISABLE_DRIVE 43
HTTP_TUNNEL_REDIR_DISABLE_PNP 43
HTTP_TUNNEL_REDIR_DISABLE_PORT 43
HTTP_TUNNEL_REDIR_DISABLE_PRINTER 43
HTTP_TUNNEL_REDIR_ENABLE_ALL 43
HTTP_TUNNEL_RESPONSE packet 72

172 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

HTTP_TUNNEL_RESPONSE_FIELD_CAPS 43
HTTP_TUNNEL_RESPONSE_FIELD_CONSENT_MSG

43
HTTP_TUNNEL_RESPONSE_FIELD_SOH_REQ 43
HTTP_TUNNEL_RESPONSE_FIELD_TUNNEL_ID 43
HTTP_TUNNEL_RESPONSE_OPTIONAL packet 72
HTTP_UNICODE_STRING packet 73

I

IDL 158
Implementer - security considerations 157
Index of security parameters 157
Informative references 15
Initialization
 client 128
 server 86

Introduction 10

L

Local events
 client 127
 server 83
 data arrival from target server 112

M

MAX_RESOURCE_NAMES 36
Message processing
 client 129
 server
 overview 87
 shutdown phase 107
Messages
 data types 31
 overview 31
 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE data

type 32
 PCHANNEL_CONTEXT_HANDLE_SERIALIZE data

type 33
 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE data

type 32
 PTUNNEL_CONTEXT_HANDLE_SERIALIZE data

type 33
 RESOURCENAME data type 32
 return codes 45
 transport 31

N

Normal scenario example 141
Normative references 14

O

Overview
 connection setup phase 17
 data transfer phase 18
 RPC call phases - overview 17
 shutdown phase 19
 synopsis 16
Overview (synopsis) 16

P

Parameters - security index 157
PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE data

type 32
PCHANNEL_CONTEXT_HANDLE_SERIALIZE data type

33
PKT_TYPE_CHANNEL_CREATE 41
PKT_TYPE_CHANNEL_RESPONSE 41
PKT_TYPE_CLOSE_CHANNEL 41
PKT_TYPE_CLOSE_CHANNEL_RESPONSE 41
PKT_TYPE_CONNECT_REQ/1 44
PKT_TYPE_CONNECT_RESP/2 44
PKT_TYPE_DATA 41
PKT_TYPE_DISCONNECT/4 44
PKT_TYPE_EXTENDED_AUTH_MSG 41
PKT_TYPE_HANDSHAKE_REQUEST 41

PKT_TYPE_HANDSHAKE_RESPONSE 41
PKT_TYPE_KEEPALIVE 41
PKT_TYPE_PAYLOAD/3 44
PKT_TYPE_REAUTH_MESSAGE 41
PKT_TYPE_SERVICE_MESSAGE 41
PKT_TYPE_TUNNEL_AUTH 41
PKT_TYPE_TUNNEL_AUTH_RESPONSE 41
PKT_TYPE_TUNNEL_CREATE 41
PKT_TYPE_TUNNEL_RESPONSE 41
Pluggable authentication scenario with consent

message returned example 148
Preconditions 27
Prerequisites 27
Product behavior 163
Protocol Details
 overview 80
PTSENDPOINTINFO 48
PTSG_CAPABILITY_NAP 52
PTSG_PACKET 49
PTSG_PACKET_AUTH 59
PTSG_PACKET_CAPABILITIES 51
PTSG_PACKET_CAPS_RESPONSE 57
PTSG_PACKET_HEADER 50
PTSG_PACKET_MSG_REQUEST 57
PTSG_PACKET_MSG_RESPONSE 58
PTSG_PACKET_QUARCONFIGREQUEST 53
PTSG_PACKET_QUARENC_RESPONSE 56
PTSG_PACKET_QUARREQUEST 53
PTSG_PACKET_REAUTH 60
PTSG_PACKET_REAUTH_MESSAGE 59
PTSG_PACKET_RESPONSE 53
PTSG_PACKET_STRING_MESSAGE 59
PTSG_PACKET_VERSIONCAPS 51
PTSG_REDIRECTION_FLAGS 55
PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE data

type 32
PTUNNEL_CONTEXT_HANDLE_SERIALIZE data type

33

R

RDG Client to RDG Server packet packet 62
RDG Server to RDG Client Packet Format for Final

Response packet 63
RDG Server to RDG Client Packet Format for

Intermediate Responses packet 63
Reauthentication example 151
References 14

173 / 173

[MS-TSGU] - v20180912
Terminal Services Gateway Server Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 informative 15
 normative 14
Relationship to other protocols 27
RESOURCENAME data type 32
responseData Format packet 54
Return codes 45
RPC call phases - overview 17

S

Security
 implementer considerations 157
 overview 157
 parameter index 157
Sequencing rules
 client 129
 server

 overview 87
 shutdown phase 107
Server
 abstract data model 80
 TSG server states 84
 initialization 86
 local events 83
 data arrival from target server 112
 message processing
 overview 87
 shutdown phase 107
 overview 84
 sequencing rules
 overview 87
 shutdown phase 107
 timer events
 connection 111
 reauthentication 111
 session timeout 110
 timers
 connection 86
 reauthentication 82
Shutdown phase 19
Standards assignments 29

T

Timer events
 client - idle timeout 127
 server
 connection 111
 reauthentication 111
 session timeout 110
Timers
 client - idle timeout 128
 server
 connection 86
 reauthentication 82
Tracking changes 170
Transport 31

TSENDPOINTINFO structure 48
TSG_ASYNC_MESSAGE_CONSENT_MESSAGE 38
TSG_ASYNC_MESSAGE_REAUTH 38
TSG_ASYNC_MESSAGE_SERVICE_MESSAGE 38
TSG_CAPABILITY_NAP structure 52
TSG_CAPABILITY_TYPE_NAP 37
TSG_MESSAGING_CAP_CONSENT_SIGN 39
TSG_MESSAGING_CAP_REAUTH 40

TSG_MESSAGING_CAP_SERVICE_MSG 40
TSG_NAP_CAPABILITY_IDLE_TIMEOUT 39
TSG_NAP_CAPABILITY_QUAR_SOH 39
TSG_PACKET structure 49
TSG_PACKET_AUTH structure 59
TSG_PACKET_CAPABILITIES structure 51
TSG_PACKET_CAPS_RESPONSE structure 57
TSG_PACKET_HEADER structure 50
TSG_PACKET_MSG_REQUEST structure 57
TSG_PACKET_MSG_RESPONSE structure 58
TSG_PACKET_QUARCONFIGREQUEST structure 53
TSG_PACKET_QUARENC_RESPONSE structure 56
TSG_PACKET_QUARREQUEST structure 53
TSG_PACKET_REAUTH structure 60
TSG_PACKET_REAUTH_MESSAGE structure 59
TSG_PACKET_RESPONSE structure 53
TSG_PACKET_STRING_MESSAGE structure 59
TSG_PACKET_TYPE_AUTH 38
TSG_PACKET_TYPE_CAPS_RESPONSE 37
TSG_PACKET_TYPE_HEADER 36
TSG_PACKET_TYPE_MESSAGE_PACKET 38
TSG_PACKET_TYPE_MSGREQUEST_PACKET 37
TSG_PACKET_TYPE_QUARCONFIGREQUEST 36

TSG_PACKET_TYPE_QUARENC_RESPONSE 37
TSG_PACKET_TYPE_QUARREQUEST 36
TSG_PACKET_TYPE_REAUTH 38
TSG_PACKET_TYPE_RESPONSE 37
TSG_PACKET_TYPE_VERSIONCAPS 36
TSG_PACKET_VERSIONCAPS structure 51
TSG_REDIRECTION_FLAGS structure 55
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST 39
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST 39
TsProxyAuthorizeTunnel method 91
TsProxyCloseChannel method 107
TsProxyCloseTunnel method 108
TsProxyCreateChannel method 98
TsProxyCreateTunnel method 88
TsProxyMakeTunnelCall method 94
TsProxySendToServer data representation 132
TsProxySendToServer method 100
TsProxySendToServer_request packet 132
TsProxySendToServer_response packet 133
TsProxySetupReceivePipe data representation 132
TsProxySetupReceivePipe method 101
TsProxySetupReceivePipe_final_response packet 134
TsProxySetupReceivePipe_request packet 133
TsProxySetupReceivePipe_response packet 134

U

UDP_CORRELATION_INFO packet 78
UDP_PACKET_HEADER packet 77

V

Vendor-extensible fields 29
Versioning 28

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 RPC Over HTTP Transport
	1.3.1.1 RDGSP Protocol Phases Using RPC Over HTTP Transport
	1.3.1.1.1 Connection Setup Phase
	1.3.1.1.2 Data Transfer Phase
	1.3.1.1.3 Shutdown Phase

	1.3.2 HTTP Transport
	1.3.2.1 RDGHTTP Protocol Phases Using HTTP Transport
	1.3.2.1.1 Connection Setup and Authentication Phase
	1.3.2.1.2 Tunnel and Channel Creation Phase
	1.3.2.1.3 Data and Server Message Exchange Phase
	1.3.2.1.4 Connection Close Phase

	1.3.3 UDP Transport
	1.3.3.1 RDGUDP Protocol Phases Using UDP Transport
	1.3.3.1.1 DTLS Handshake Phase
	1.3.3.1.2 Connection Setup Phase
	1.3.3.1.3 Data Transfer Phase
	1.3.3.1.4 Shutdown Phase

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.5.1 Common Prerequisites/Preconditions
	1.5.2 Prerequisites/Preconditions for RPC Transport
	1.5.3 Prerequisites/Preconditions for HTTP Transport
	1.5.4 Prerequisites/Preconditions for UDP Transport

	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.7.1 RPC Over HTTP Transport
	1.7.2 HTTP Transport
	1.7.3 UDP Transport

	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments
	1.9.1 RPC Over HTTP Transport
	1.9.2 HTTP Transport
	1.9.3 UDP Transport

	2 Messages
	2.1 Transport
	2.1.1 RPC Over HTTP Transport
	2.1.2 HTTP Transport
	2.1.3 UDP Transport

	2.2 Data Types
	2.2.1 Common Data Types
	2.2.1.1 RESOURCENAME

	2.2.2 RPC Over HTTP Transport Data Types
	2.2.2.1 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE
	2.2.2.2 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE
	2.2.2.3 PTUNNEL_CONTEXT_HANDLE_SERIALIZE
	2.2.2.4 PCHANNEL_CONTEXT_HANDLE_SERIALIZE

	2.2.3 HTTP Transport Data Types
	2.2.3.1 Custom HTTP Methods
	2.2.3.1.1 RDG_IN_DATA
	2.2.3.1.2 RDG_OUT_DATA

	2.2.3.2 Custom HTTP Headers
	2.2.3.2.1 RDG-Connection-Id
	2.2.3.2.2 RDG-Correlation-Id
	2.2.3.2.3 RDG-User-Id

	2.2.3.3 Custom URL Query Parameters
	2.2.3.3.1 ConId
	2.2.3.3.2 CorId
	2.2.3.3.3 UsrId
	2.2.3.3.4 AuthS
	2.2.3.3.5 ClGen
	2.2.3.3.6 ClBld
	2.2.3.3.7 ClmTk

	2.2.4 UDP Transport Data Types
	2.2.5 Constants
	2.2.5.1 Common Constants
	2.2.5.2 RPC Transport Constants
	2.2.5.2.1 MAX_RESOURCE_NAMES
	2.2.5.2.2 TSG_PACKET_TYPE_HEADER
	2.2.5.2.3 TSG_PACKET_TYPE_VERSIONCAPS
	2.2.5.2.4 TSG_PACKET_TYPE_QUARCONFIGREQUEST
	2.2.5.2.5 TSG_PACKET_TYPE_QUARREQUEST
	2.2.5.2.6 TSG_PACKET_TYPE_RESPONSE
	2.2.5.2.7 TSG_PACKET_TYPE_QUARENC_RESPONSE
	2.2.5.2.8 TSG_CAPABILITY_TYPE_NAP
	2.2.5.2.9 TSG_PACKET_TYPE_CAPS_RESPONSE
	2.2.5.2.10 TSG_PACKET_TYPE_MSGREQUEST_PACKET
	2.2.5.2.11 TSG_PACKET_TYPE_MESSAGE_PACKET
	2.2.5.2.12 TSG_PACKET_TYPE_AUTH
	2.2.5.2.13 TSG_PACKET_TYPE_REAUTH
	2.2.5.2.14 TSG_ASYNC_MESSAGE_CONSENT_MESSAGE
	2.2.5.2.15 TSG_ASYNC_MESSAGE_SERVICE_MESSAGE
	2.2.5.2.16 TSG_ASYNC_MESSAGE_REAUTH
	2.2.5.2.17 TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST
	2.2.5.2.18 TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST
	2.2.5.2.19 TSG_NAP_CAPABILITY_QUAR_SOH
	2.2.5.2.20 TSG_NAP_CAPABILITY_IDLE_TIMEOUT
	2.2.5.2.21 TSG_MESSAGING_CAP_CONSENT_SIGN
	2.2.5.2.22 TSG_MESSAGING_CAP_SERVICE_MSG
	2.2.5.2.23 TSG_MESSAGING_CAP_REAUTH

	2.2.5.3 HTTP Transport Constants
	2.2.5.3.1 HTTP_CHANNEL_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration
	2.2.5.3.2 HTTP_EXTENDED_AUTH Enumeration
	2.2.5.3.3 HTTP_PACKET_TYPE Enumeration
	2.2.5.3.4 HTTP_TUNNEL_AUTH_FIELDS_PRESENT_FLAGS Enumeration
	2.2.5.3.5 HTTP_TUNNEL_AUTH_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration
	2.2.5.3.6 HTTP_TUNNEL_PACKET_FIELDS_PRESENT_FLAGS Enumeration
	2.2.5.3.7 HTTP_TUNNEL_REDIR_FLAGS Enumeration
	2.2.5.3.8 HTTP_TUNNEL_RESPONSE_FIELDS_PRESENT_FLAGS Enumeration
	2.2.5.3.9 HTTP_CAPABILITY_TYPE Enumeration
	2.2.5.3.10 Custom HTTP Authentication Scheme Names

	2.2.5.4 UDP Transport Constants
	2.2.5.4.1 UdpPktType Enumeration

	2.2.6 Return Codes
	2.2.6.1 Common Return Codes
	2.2.6.2 RPC Transport Return Codes
	2.2.6.3 HTTP Transport Return Codes
	2.2.6.4 UDP Transport Return Codes

	2.2.7 Structures and Unions
	2.2.8 Common Structures and Unions
	2.2.9 RPC over HTTP Transport Structures and Unions
	2.2.9.1 TSENDPOINTINFO
	2.2.9.2 TSG_PACKET
	2.2.9.2.1 TSG_PACKET_TYPE_UNION
	2.2.9.2.1.1 TSG_PACKET_HEADER
	2.2.9.2.1.2 TSG_PACKET_VERSIONCAPS
	2.2.9.2.1.2.1 TSG_PACKET_CAPABILITIES
	2.2.9.2.1.2.1.1 TSG_CAPABILITIES_UNION
	2.2.9.2.1.2.1.2 TSG_CAPABILITY_NAP

	2.2.9.2.1.3 TSG_PACKET_QUARCONFIGREQUEST
	2.2.9.2.1.4 TSG_PACKET_QUARREQUEST
	2.2.9.2.1.5 TSG_PACKET_RESPONSE
	2.2.9.2.1.5.1 responseData Format
	2.2.9.2.1.5.2 TSG_REDIRECTION_FLAGS

	2.2.9.2.1.6 TSG_PACKET_QUARENC_RESPONSE
	2.2.9.2.1.7 TSG_PACKET_CAPS_RESPONSE
	2.2.9.2.1.8 TSG_PACKET_MSG_REQUEST
	2.2.9.2.1.9 TSG_PACKET_MSG_RESPONSE
	2.2.9.2.1.9.1 TSG_PACKET_TYPE_MESSAGE_UNION
	2.2.9.2.1.9.1.1 TSG_PACKET_STRING_MESSAGE
	2.2.9.2.1.9.1.2 TSG_PACKET_REAUTH_MESSAGE

	2.2.9.2.1.10 TSG_PACKET_AUTH
	2.2.9.2.1.11 TSG_PACKET_REAUTH
	2.2.9.2.1.11.1 TSG_INITIAL_PACKET_TYPE_UNION

	2.2.9.3 Generic Send Data Message Packet
	2.2.9.4 Generic Receive Pipe Message Packet
	2.2.9.4.1 RDG Client to RDG Server Packet Format
	2.2.9.4.2 RDG Server to RDG Client Packet Format for Intermediate Responses
	2.2.9.4.3 RDG Server to RDG Client Packet Format for Final Response

	2.2.10 HTTP Transport Structures and Unions
	2.2.10.1 HTTP_byte_BLOB Structure
	2.2.10.2 HTTP_CHANNEL_PACKET Structure
	2.2.10.3 HTTP_CHANNEL_PACKET_VARIABLE Structure
	2.2.10.4 HTTP_CHANNEL_RESPONSE Structure
	2.2.10.5 HTTP_CHANNEL_RESPONSE_OPTIONAL Structure
	2.2.10.6 HTTP_DATA_PACKET Structure
	2.2.10.7 HTTP_EXTENDED_AUTH_PACKET Structure
	2.2.10.8 HTTP_KEEPALIVE_PACKET Structure
	2.2.10.9 HTTP_PACKET_HEADER Structure
	2.2.10.10 HTTP_HANDSHAKE_REQUEST_PACKET Structure
	2.2.10.11 HTTP_HANDSHAKE_RESPONSE_PACKET Structure
	2.2.10.12 HTTP_REAUTH_MESSAGE Structure
	2.2.10.13 HTTP_SERVICE_MESSAGE Structure
	2.2.10.14 HTTP_TUNNEL_AUTH_PACKET Structure
	2.2.10.15 HTTP_TUNNEL_AUTH_PACKET_OPTIONAL Structure
	2.2.10.16 HTTP_TUNNEL_AUTH_RESPONSE Structure
	2.2.10.17 HTTP_TUNNEL_AUTH_RESPONSE_OPTIONAL Structure
	2.2.10.18 HTTP_TUNNEL_PACKET Structure
	2.2.10.19 HTTP_TUNNEL_PACKET_OPTIONAL Structure
	2.2.10.20 HTTP_TUNNEL_RESPONSE Structure
	2.2.10.21 HTTP_TUNNEL_RESPONSE_OPTIONAL Structure
	2.2.10.22 HTTP_UNICODE_STRING Structure
	2.2.10.23 HTTP_CLOSE_PACKET Structure

	2.2.11 UDP Transport Structures and Unions
	2.2.11.1 AASYNDATA Structure
	2.2.11.2 AASYNDATARESP Structure
	2.2.11.3 CONNECT_PKT Structure
	2.2.11.4 CONNECT_PKT_RESP Structure
	2.2.11.5 DATA_PKT Structure
	2.2.11.6 DISC_PKT Structure
	2.2.11.7 UDP_PACKET_HEADER Structure
	2.2.11.8 AUTHN_COOKIE_DATA Structure
	2.2.11.9 UDP_CORRELATION_INFO Structure
	2.2.11.10 CONNECT_PKT_FRAGMENT Structure

	3 Protocol Details
	3.1 Common Server Protocol Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.2.1 Session Timeout Timer
	3.1.2.2 Reauthentication Timer

	3.1.3 Local Events

	3.2 RPC Transport - Server Protocol Details
	3.2.1 TsProxyRpcInterface Server Details
	3.2.2 Abstract Data Model
	3.2.3 RPC over HTTP Transport - RDG Server States
	3.2.4 Timers
	3.2.4.1 Connection Timer

	3.2.5 Initialization
	3.2.6 Message Processing Events and Sequencing Rules
	3.2.6.1 Connection Setup Phase
	3.2.6.1.1 TsProxyCreateTunnel (Opnum 1)
	3.2.6.1.2 TsProxyAuthorizeTunnel (Opnum 2)
	3.2.6.1.3 TsProxyMakeTunnelCall (Opnum 3)
	3.2.6.1.4 TsProxyCreateChannel (Opnum 4)

	3.2.6.2 Data Transfer Phase
	3.2.6.2.1 TsProxySendToServer (Opnum 9)
	3.2.6.2.2 TsProxySetupReceivePipe (Opnum 8)

	3.2.6.3 Shutdown Phase
	3.2.6.3.1 TsProxyCloseChannel (Opnum 6)
	3.2.6.3.2 TsProxyMakeTunnelCall (Opnum 3)
	3.2.6.3.3 TsProxyCloseTunnel (Opnum 7)
	3.2.6.3.4 Server Initiated Shutdown

	3.2.7 Timer Events
	3.2.7.1 Session Timeout Timer
	3.2.7.2 Reauthentication Timer
	3.2.7.3 Connection Timer
	3.2.7.4 Data Arrival From the Target Server

	3.3 HTTP Transport - Server Protocol Details
	3.3.1 HTTP Transport – RDG Server States
	3.3.2 Abstract Data Model
	3.3.3 Timers
	3.3.3.1 Keep-alive Timer

	3.3.4 Initialization
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Connection Setup and Authentication
	3.3.5.2 Tunnel and Channel Creation
	3.3.5.3 NTLM Extended Authentication
	3.3.5.3.1 During HTTP and WebSocket Transport Setup
	3.3.5.3.2 During Version and Capability Negotiation
	3.3.5.3.3 During the Extended Authentication Phase

	3.3.5.4 Data and Server Message Exchange
	3.3.5.5 Connection Close

	3.3.6 Timer Events
	3.3.6.1 Session Timeout Timer
	3.3.6.2 Reauthentication Timer
	3.3.6.3 Connection Timer
	3.3.6.4 Keep-alive Timer

	3.3.7 Other Local Events
	3.3.8 Data Arrival from Target Server

	3.4 UDP Transport - Server Protocol Details
	3.4.1 UDP Transport – RDG Server States
	3.4.2 Initialization
	3.4.3 Message Processing Events and Sequencing Rules
	3.4.3.1 DTLS Handshake Phase
	3.4.3.2 Connection Setup Phase
	3.4.3.3 Data Transfer Phase
	3.4.3.4 Shut Down Phase

	3.5 Common Client Protocol Details
	3.5.1 Abstract Data Model
	3.5.2 Timer Events
	3.5.2.1 Idle Timeout Timer

	3.5.3 Other Local Events

	3.6 RPC Transport - Client Protocol Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.2.1 Idle Timeout Timer
	3.6.2.1.1 Idle Time Processing

	3.6.3 Initialization
	3.6.4 Message Processing Events and Sequencing Rules
	3.6.5 Data Representation forTsProxySetupReceivePipe and TsProxySendToServer
	3.6.5.1 TsProxySendToServer Request
	3.6.5.2 TsProxySendToServer Response
	3.6.5.3 TsProxySetupReceivePipe Request
	3.6.5.4 TsProxySetupReceivePipe Response
	3.6.5.5 TsProxySetupReceivePipe Final Response

	3.7 HTTP Transport - Client Protocol Details
	3.7.1 Abstract Data Model
	3.7.2 Timers
	3.7.3 Initialization
	3.7.4 Higher-Layer Triggered Events
	3.7.5 Message Processing Events and Sequencing Rules
	3.7.5.1 Connection Setup and Authentication
	3.7.5.2 Tunnel and Channel Creation
	3.7.5.3 Data and Server Message Exchange
	3.7.5.4 Connection Close

	3.8 UDP Transport - Client Protocol Details
	3.8.1 Initialization
	3.8.2 Message Processing Events and Sequencing Rules
	3.8.3 Establishing a Connection

	4 Protocol Examples
	4.1 RPC Transport Protocol Examples
	4.1.1 Normal Scenario
	4.1.2 Pluggable Authentication Scenario with Consent Message Returned
	4.1.3 Reauthentication

	4.2 HTTP Transport Protocol Examples
	4.2.1 Normal Scenario

	4.3 UDP Transport Protocol Examples
	4.3.1 Normal Scenario

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

