
1 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-TRP]:

Telephony Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

5/11/2007 0.1 New Version 0.1 release

8/10/2007 1.0 Major Updated and revised the technical content.

9/28/2007 1.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 1.0.2 Editorial Changed language and formatting in the technical content.

11/30/2007 2.0 Major Added four new sections.

1/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 4.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 5.0 Major Updated and revised the technical content.

10/24/2008 6.0 Major Updated and revised the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 10.0 Major Updated and revised the technical content.

5/22/2009 11.0 Major Updated and revised the technical content.

7/2/2009 11.1 Minor Clarified the meaning of the technical content.

8/14/2009 11.1.1 Editorial Changed language and formatting in the technical content.

9/25/2009 11.2 Minor Clarified the meaning of the technical content.

11/6/2009 12.0 Major Updated and revised the technical content.

12/18/2009 12.1 Minor Clarified the meaning of the technical content.

1/29/2010 12.2 Minor Clarified the meaning of the technical content.

3/12/2010 12.3 Minor Clarified the meaning of the technical content.

4/23/2010 12.3.1 Editorial Changed language and formatting in the technical content.

6/4/2010 12.4 Minor Clarified the meaning of the technical content.

7/16/2010 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

11/19/2010 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 12.4 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 12.5 Minor Clarified the meaning of the technical content.

9/23/2011 12.5 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 13.0 Major Updated and revised the technical content.

3/30/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 15.0 Major Significantly changed the technical content.

10/16/2015 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 16.0 Major Significantly changed the technical content.

9/12/2018 17.0 Major Significantly changed the technical content.

4/7/2021 18.0 Major Significantly changed the technical content.

4 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

6/25/2021 19.0 Major Significantly changed the technical content.

4/23/2024 20.0 Major Significantly changed the technical content.

5 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 13
1.1 Glossary ... 13
1.2 References .. 15

1.2.1 Normative References ... 15
1.2.2 Informative References ... 15

1.3 Overview .. 16
1.4 Relationship to Other Protocols .. 20
1.5 Prerequisites/Preconditions ... 20
1.6 Applicability Statement ... 20
1.7 Versioning and Capability Negotiation ... 20
1.8 Vendor-Extensible Fields ... 21
1.9 Standards Assignments ... 21

2 Messages ... 23
2.1 Transport .. 23
2.2 Common Data Types .. 23

2.2.1 Data Types .. 23
2.2.1.1 HCALL ... 23
2.2.1.2 HLINE .. 23
2.2.1.3 HLINEAPP .. 24
2.2.1.4 HPHONE .. 24
2.2.1.5 HPHONEAPP ... 24
2.2.1.6 PCONTEXT_HANDLE_TYPE ... 24
2.2.1.7 PCONTEXT_HANDLE_TYPE2 .. 24
2.2.1.8 STRINGFORMAT_Constants .. 25
2.2.1.9 TUISPIDLL_OBJECT_Constants ... 25
2.2.1.10 HAGENTSESSION .. 25
2.2.1.11 HAGENT ... 25

2.2.2 HANDLE TABLE ... 26
2.2.3 Device Constants .. 27

2.2.3.1 Line Device Constants ... 27
2.2.3.1.1 LINEADDRCAPFLAGS_Constants .. 27
2.2.3.1.2 LINEADDRESSMODE_Constants .. 29
2.2.3.1.3 LINEADDRESSSHARING_Constants .. 30
2.2.3.1.4 LINEADDRESSSTATE_Constants .. 30
2.2.3.1.5 LINEADDRESSTYPE_Constants .. 31
2.2.3.1.6 LINEADDRFEATURE_Constants .. 32
2.2.3.1.7 LINEAGENTFEATURE_Constants .. 33
2.2.3.1.8 LINEAGENTSESSIONSTATE_Constants ... 34
2.2.3.1.9 LINEAGENTSESSIONSTATUS_Constants ... 34
2.2.3.1.10 LINEAGENTSTATE_Constants .. 34
2.2.3.1.11 LINEAGENTSTATEEX_Constants .. 35
2.2.3.1.12 LINEAGENTSTATUS_Constants .. 36
2.2.3.1.13 LINEAGENTSTATUSEX_Constants .. 37
2.2.3.1.14 LINEANSWERMODE_Constants .. 37
2.2.3.1.15 LINEBEARERMODE_Constants ... 37
2.2.3.1.16 LINEBUSYMODE_Constants ... 38
2.2.3.1.17 LINECALLCOMPLCOND_Constants .. 39
2.2.3.1.18 LINECALLCOMPLMODE_Constants ... 39
2.2.3.1.19 LINECALLFEATURE_Constants ... 39
2.2.3.1.20 LINECALLFEATURE2_Constants ... 42
2.2.3.1.21 LINECALLHUBTRACKING_Constants ... 43
2.2.3.1.22 LINECALLINFOSTATE_Constants .. 43
2.2.3.1.23 LINECALLORIGIN_Constants ... 45
2.2.3.1.24 LINECALLPARAMFLAGS_Constants ... 46

6 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.3.1.25 LINECALLPARTYID_Constants ... 47
2.2.3.1.26 LINECALLPRIVILEGE_Constants... 48
2.2.3.1.27 LINECALLREASON_Constants .. 48
2.2.3.1.28 LINECALLSELECT_Constants ... 49
2.2.3.1.29 LINECALLSTATE_Constants ... 50
2.2.3.1.30 LINECALLTREATMENT_Constants ... 51
2.2.3.1.31 LINECONNECTEDMODE_Constants... 52
2.2.3.1.32 LINEDEVCAPFLAGS_Constants .. 53
2.2.3.1.33 LINEDEVSTATE_Constants .. 55
2.2.3.1.34 LINEDEVSTATUSFLAGS_Constants .. 57
2.2.3.1.35 LINEDIALTONEMODE_Constants .. 57
2.2.3.1.36 LINEDIGITMODE_Constants .. 58
2.2.3.1.37 LINEDISCONNECTMODE_Constants ... 58
2.2.3.1.38 LINEERR_Constants ... 60
2.2.3.1.39 LINEFEATURE_Constants .. 66
2.2.3.1.40 LINEFORWARDMODE_Constants .. 67
2.2.3.1.41 LINEGATHERTERM_Constants ... 69
2.2.3.1.42 LINEGENERATETERM_Constants .. 69
2.2.3.1.43 LINEMEDIACONTROL_Constants .. 69
2.2.3.1.44 LINEMEDIAMODE_Constants ... 70
2.2.3.1.45 LINEOFFERINGMODE_Constants .. 72
2.2.3.1.46 LINEOPENOPTION_Constants .. 72
2.2.3.1.47 LINEPARKMODE_Constants ... 73
2.2.3.1.48 LINEPROXYREQUEST_Constants .. 73
2.2.3.1.49 LINEPROXYSTATUS_Constants .. 74
2.2.3.1.50 LINEQUEUESTATUS_Constants .. 75
2.2.3.1.51 LINEREMOVEFROMCONF_Constants ... 75
2.2.3.1.52 LINEROAMMODE_Constants .. 75
2.2.3.1.53 LINESPECIALINFO_Constants .. 76
2.2.3.1.54 LINETERMDEV_Constants ... 76
2.2.3.1.55 LINETERMMODE_Constants .. 77
2.2.3.1.56 LINETERMSHARING_Constants .. 77
2.2.3.1.57 LINETONEMODE_Constants .. 78
2.2.3.1.58 LINETRANSFERMODE_Constants ... 78

2.2.3.2 Phone Device Constants ... 78
2.2.3.2.1 PHONEBUTTONFUNCTION_Constants ... 78
2.2.3.2.2 PHONEBUTTONMODE_Constants ... 81
2.2.3.2.3 PHONEBUTTONSTATE_Constants ... 82
2.2.3.2.4 PHONEERR_Constants .. 82
2.2.3.2.5 PHONEFEATURE_Constants ... 85
2.2.3.2.6 PHONEHOOKSWITCHDEV_Constants .. 87
2.2.3.2.7 PHONEHOOKSWITCHMODE_Constants ... 87
2.2.3.2.8 PHONEINITIALIZEEXOPTION_Constants ... 87
2.2.3.2.9 PHONELAMPMODE_Constants ... 88
2.2.3.2.10 PHONEPRIVILEGE_Constants .. 88
2.2.3.2.11 PHONESTATE_Constants .. 89
2.2.3.2.12 PHONESTATUSFLAGS_Constants ... 90

2.2.4 Communication Packets Between Client and Server .. 91
2.2.4.1 Request Packets ... 91

2.2.4.1.1 Create Session for Line Device .. 91
2.2.4.1.1.1 Initialize ... 91
2.2.4.1.1.2 NegotiateAPIVersion ... 93
2.2.4.1.1.3 GetDevCaps .. 96
2.2.4.1.1.4 GetAddressCaps .. 98
2.2.4.1.1.5 Open ... 100

2.2.4.1.2 Terminate Session for Line Device .. 102
2.2.4.1.2.1 Close ... 102
2.2.4.1.2.2 ShutDown .. 104

7 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.3 Line Device Requests .. 105
2.2.4.1.3.1 Accept ... 106
2.2.4.1.3.2 AddToConference .. 108
2.2.4.1.3.3 AgentSpecific ... 110
2.2.4.1.3.4 Answer .. 113
2.2.4.1.3.5 BlindTransfer .. 115
2.2.4.1.3.6 DeallocateCall... 118
2.2.4.1.3.7 CompleteCall .. 119
2.2.4.1.3.8 CompleteTransfer ... 122
2.2.4.1.3.9 ConditionalMediaDetection ... 124
2.2.4.1.3.10 CreateAgent ... 126
2.2.4.1.3.11 CreateAgentSession .. 128
2.2.4.1.3.12 DevSpecific .. 131
2.2.4.1.3.13 DevSpecificFeature ... 133
2.2.4.1.3.14 Dial ... 135
2.2.4.1.3.15 Drop ... 138
2.2.4.1.3.16 Forward ... 140
2.2.4.1.3.17 GatherDigits ... 142
2.2.4.1.3.18 GenerateDigits ... 145
2.2.4.1.3.19 GenerateTone ... 147
2.2.4.1.3.20 GetAddressID ... 150
2.2.4.1.3.21 GetAddressStatus ... 152
2.2.4.1.3.22 GetAgentActivityList .. 154
2.2.4.1.3.23 GetAgentCaps .. 156
2.2.4.1.3.24 GetAgentGroupList .. 159
2.2.4.1.3.25 GetAgentInfo .. 161
2.2.4.1.3.26 GetAgentSessionInfo ... 163
2.2.4.1.3.27 GetAgentSessionList .. 165
2.2.4.1.3.28 GetAgentStatus .. 167
2.2.4.1.3.29 GetCallHubTracking ... 169
2.2.4.1.3.30 GetCallIDs ... 171
2.2.4.1.3.31 GetCallInfo ... 173
2.2.4.1.3.32 GetCallStatus ... 175
2.2.4.1.3.33 GetDevConfig ... 177
2.2.4.1.3.34 GetGroupList .. 179
2.2.4.1.3.35 GetID .. 181
2.2.4.1.3.36 GetLineDevStatus ... 184
2.2.4.1.3.37 GetNewCalls ... 186
2.2.4.1.3.38 GetNumAddressIDs ... 188
2.2.4.1.3.39 GetProxyStatus .. 190
2.2.4.1.3.40 GetQueueInfo ... 192
2.2.4.1.3.41 GetQueueList ... 194
2.2.4.1.3.42 Hold .. 196
2.2.4.1.3.43 MakeCall .. 198
2.2.4.1.3.44 MonitorDigits .. 201
2.2.4.1.3.45 MonitorMedia.. 203
2.2.4.1.3.46 MonitorTones ... 205
2.2.4.1.3.47 NegotiateExtVersion .. 207
2.2.4.1.3.48 Park .. 209
2.2.4.1.3.49 PickUp ... 211
2.2.4.1.3.50 PrepareAddToConference ... 214
2.2.4.1.3.51 Redirect ... 216
2.2.4.1.3.52 ReleaseUserUserInfo ... 218
2.2.4.1.3.53 RemoveFromConference .. 220
2.2.4.1.3.54 SecureCall ... 222
2.2.4.1.3.55 SelectExtVersion ... 224
2.2.4.1.3.56 SendUserUserInfo ... 226
2.2.4.1.3.57 SetAgentActivity ... 229

8 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.3.58 SetAgentGroup ... 231
2.2.4.1.3.59 SetAgentMeasurementPeriod .. 233
2.2.4.1.3.60 SetAgentSessionState ... 235
2.2.4.1.3.61 SetAgentState .. 237
2.2.4.1.3.62 SetAgentStateEx ... 240
2.2.4.1.3.63 SetAppSpecific ... 242
2.2.4.1.3.64 SetCallData .. 244
2.2.4.1.3.65 SetCallHubTracking ... 246
2.2.4.1.3.66 SetCallParams .. 248
2.2.4.1.3.67 SetCallQualityOfService ... 251

2.2.4.1.3.67.1 FLOWSPEC ... 253
2.2.4.1.3.68 SetCallTreatment .. 255
2.2.4.1.3.69 SetDefaultMediaDetection .. 257
2.2.4.1.3.70 SetDevConfig ... 259
2.2.4.1.3.71 SetLineDevStatus ... 262
2.2.4.1.3.72 SetMediaControl ... 263
2.2.4.1.3.73 SetMediaMode .. 266
2.2.4.1.3.74 SetQueueMeasurementPeriod ... 268
2.2.4.1.3.75 SetStatusMessages ... 270
2.2.4.1.3.76 SetTerminal ... 272
2.2.4.1.3.77 SetUpConference .. 274
2.2.4.1.3.78 SetUpTransfer .. 277
2.2.4.1.3.79 SwapHold .. 280
2.2.4.1.3.80 UnCompleteCall .. 282
2.2.4.1.3.81 UnHold .. 285
2.2.4.1.3.82 UnPark .. 287

2.2.4.1.4 Create Session for Phone Device .. 289
2.2.4.1.4.1 Initialize .. 289
2.2.4.1.4.2 NegotiateAPIVersion .. 291
2.2.4.1.4.3 GetDevCaps ... 294
2.2.4.1.4.4 Open ... 296

2.2.4.1.5 Terminate Session for Phone Device ... 298
2.2.4.1.5.1 Close ... 299
2.2.4.1.5.2 ShutDown .. 300

2.2.4.1.6 Phone Device Requests ... 302
2.2.4.1.6.1 DevSpecific .. 302
2.2.4.1.6.2 GetButtonInfo .. 305
2.2.4.1.6.3 GetData ... 307
2.2.4.1.6.4 GetDisplay ... 309
2.2.4.1.6.5 GetGain ... 311
2.2.4.1.6.6 GetHookSwitch ... 313
2.2.4.1.6.7 GetID .. 315
2.2.4.1.6.8 GetLamp .. 318
2.2.4.1.6.9 GetRing ... 320
2.2.4.1.6.10 GetStatus .. 322
2.2.4.1.6.11 GetVolume ... 324
2.2.4.1.6.12 NegotiateExtVersion .. 326
2.2.4.1.6.13 SelectExtVersion ... 328
2.2.4.1.6.14 SetButtonInfo ... 330
2.2.4.1.6.15 SetData ... 332
2.2.4.1.6.16 SetDisplay ... 334
2.2.4.1.6.17 SetGain ... 336
2.2.4.1.6.18 SetHookSwitch ... 338
2.2.4.1.6.19 SetLamp .. 340
2.2.4.1.6.20 SetRing ... 342
2.2.4.1.6.21 SetStatusMessages ... 345
2.2.4.1.6.22 SetVolume ... 347

2.2.4.1.7 MMC Requests ... 349

9 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.7.1 GetAvailableProviders .. 349
2.2.4.1.7.2 GetDeviceFlags ... 350
2.2.4.1.7.3 GetLineInfo .. 352
2.2.4.1.7.4 GetPhoneInfo ... 354
2.2.4.1.7.5 GetProviderList ... 355
2.2.4.1.7.6 GetServerConfig ... 358
2.2.4.1.7.7 SetLineInfo .. 359
2.2.4.1.7.8 SetPhoneInfo ... 361
2.2.4.1.7.9 GetUIDllName .. 363
2.2.4.1.7.10 TUISPIDLLCallback .. 365
2.2.4.1.7.11 FreeDialogInstance ... 366
2.2.4.1.7.12 SetServerConfig ... 368

2.2.4.1.8 Generic Requests ... 370
2.2.4.1.8.1 GetAsyncEvents .. 370
2.2.4.1.8.2 NegotiateAPIVersionForAllDevices ... 372
2.2.4.1.8.3 RSPSetEventFilterMasks... 373

2.2.4.2 Response Packets .. 377
2.2.4.2.1 Completion Packets .. 377

2.2.4.2.1.1 LINE_ADDRESSSTATE ... 377
2.2.4.2.1.2 LINE_AGENTSESSIONSTATUS .. 378
2.2.4.2.1.3 LINE_AGENTSPECIFIC ... 379
2.2.4.2.1.4 LINE_AGENTSTATUS ... 380
2.2.4.2.1.5 LINE_AGENTSTATUSEX ... 381
2.2.4.2.1.6 LINE_APPNEWCALL ... 383
2.2.4.2.1.7 LINE_CALLINFO .. 384
2.2.4.2.1.8 LINE_CALLSTATE .. 385
2.2.4.2.1.9 LINE_CLOSE ... 387
2.2.4.2.1.10 LINE_CREATE ... 388
2.2.4.2.1.11 LINE_CREATEDIALOGINSTANCE ... 389
2.2.4.2.1.12 LINE_DEVSPECIFIC ... 390
2.2.4.2.1.13 LINE_DEVSPECIFICFEATURE .. 391
2.2.4.2.1.14 LINE_GATHERDIGITS .. 392
2.2.4.2.1.15 LINE_GENERATE ... 394
2.2.4.2.1.16 LINE_GROUPSTATUS ... 395
2.2.4.2.1.17 LINE_LINEDEVSTATE ... 396
2.2.4.2.1.18 LINE_MONITORDIGITS .. 397
2.2.4.2.1.19 LINE_MONITORMEDIA ... 398
2.2.4.2.1.20 LINE_MONITORTONE... 399
2.2.4.2.1.21 LINE_PROXYREQUEST ... 400
2.2.4.2.1.22 LINE_PROXYSTATUS ... 402
2.2.4.2.1.23 LINE_QUEUESTATUS ... 403
2.2.4.2.1.24 LINE_REMOVE .. 404
2.2.4.2.1.25 LINE_REPLY ... 405
2.2.4.2.1.26 PHONE_BUTTON ... 406
2.2.4.2.1.27 PHONE_CLOSE ... 407
2.2.4.2.1.28 PHONE_CREATE .. 408
2.2.4.2.1.29 PHONE_DEVSPECIFIC .. 409
2.2.4.2.1.30 PHONE_REMOVE ... 410
2.2.4.2.1.31 PHONE_REPLY .. 411
2.2.4.2.1.32 PHONE_STATE .. 413

2.2.4.2.2 Special Case Line Device Completion Packets 414
2.2.4.2.2.1 AgentSpecific ... 414
2.2.4.2.2.2 CompleteCall .. 415
2.2.4.2.2.3 CompleteTransfer ... 416
2.2.4.2.2.4 CreateAgent ... 418
2.2.4.2.2.5 CreateAgentSession .. 419
2.2.4.2.2.6 DevSpecific .. 420
2.2.4.2.2.7 DevSpecificFeature ... 421

10 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.2.2.8 Forward ... 422
2.2.4.2.2.9 GetAgentActivityList .. 424
2.2.4.2.2.10 GetAgentCaps .. 425
2.2.4.2.2.11 GetAgentGroupList .. 426
2.2.4.2.2.12 GetAgentInfo .. 427
2.2.4.2.2.13 GetAgentSessionInfo ... 429
2.2.4.2.2.14 GetAgentSessionList .. 430
2.2.4.2.2.15 GetAgentStatus .. 431
2.2.4.2.2.16 GetGroupList .. 432
2.2.4.2.2.17 GetQueueInfo ... 433
2.2.4.2.2.18 GetQueueList ... 435
2.2.4.2.2.19 MakeCall .. 436
2.2.4.2.2.20 Park .. 437
2.2.4.2.2.21 PickUp ... 438
2.2.4.2.2.22 PrepareAddToConference ... 440
2.2.4.2.2.23 SetUpConference .. 441
2.2.4.2.2.24 SetUpTransfer .. 443
2.2.4.2.2.25 UnPark .. 444

2.2.4.2.3 Special Case Phone Device Completion Packets 445
2.2.4.2.3.1 DevSpecific .. 445

2.2.5 Data Templates ... 447
2.2.5.1 ASYNCEVENTMSG .. 447
2.2.5.2 TAPI32_MSG ... 448

2.2.6 Data Structures ... 449
2.2.6.1 AVAILABLEPROVIDERENTRY .. 449
2.2.6.2 AVAILABLEPROVIDERLIST ... 450
2.2.6.3 DEVICEINFO .. 451
2.2.6.4 DEVICEINFOLIST ... 452
2.2.6.5 TAPISERVERCONFIG ... 453
2.2.6.6 LINEADDRESSCAPS .. 454
2.2.6.7 LINEADDRESSSTATUS .. 462
2.2.6.8 LINEAGENTSTATUS .. 464
2.2.6.9 LINEAGENTACTIVITYENTRY ... 465
2.2.6.10 LINEAGENTACTIVITYLIST .. 466
2.2.6.11 LINEAGENTGROUPLIST ... 466
2.2.6.12 LINEAGENTGROUPENTRY .. 467
2.2.6.13 LINEAGENTCAPS .. 468
2.2.6.14 LINEAGENTSESSIONENTRY ... 470
2.2.6.15 LINEAGENTSESSIONLIST .. 471
2.2.6.16 LINEAGENTSESSIONINFO ... 471
2.2.6.17 LINECALLSTATUS ... 473
2.2.6.18 LINECALLHUBTRACKINGINFO .. 475
2.2.6.19 LINECALLINFO ... 475
2.2.6.20 LINECALLPARAMS .. 484
2.2.6.21 LINECALLLIST ... 490
2.2.6.22 LINECALLTREATMENTENTRY .. 491
2.2.6.23 LINEDEVCAPS.. 491
2.2.6.24 LINEDEVSTATUS .. 499
2.2.6.25 LINEAPPINFO .. 501
2.2.6.26 LINEDIALPARAMS .. 503
2.2.6.27 LINEGENERATETONE .. 503
2.2.6.28 LINEPROXYREQUEST .. 504
2.2.6.29 LINEQUEUEINFO .. 511
2.2.6.30 LINEFORWARD .. 513
2.2.6.31 LINEFORWARDLIST .. 514
2.2.6.32 LINEPROVIDERLIST .. 514
2.2.6.33 LINEPROVIDERENTRY ... 515
2.2.6.34 LINEPROXYREQUESTLIST .. 516

11 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.35 LINEQUEUELIST ... 516
2.2.6.36 LINEQUEUEENTRY .. 517
2.2.6.37 LINEMONITORTONE ... 518
2.2.6.38 LINEMEDIACONTROLDIGIT.. 518
2.2.6.39 LINEMEDIACONTROLMEDIA ... 519
2.2.6.40 LINEMEDIACONTROLTONE .. 520
2.2.6.41 PHONEBUTTONINFO ... 520
2.2.6.42 PHONECAPS .. 522
2.2.6.43 PHONEEXTENSIONID .. 528
2.2.6.44 LINEMEDIACONTROLCALLSTATE .. 529
2.2.6.45 LINEEXTENSIONID ... 529
2.2.6.46 VARSTRING ... 530
2.2.6.47 LINEAGENTINFO .. 531
2.2.6.48 PHONESTATUS .. 532
2.2.6.49 LINETERMCAPS .. 535

2.3 Directory Service Schema Elements .. 535

3 Protocol Details ... 537
3.1 Tapsrv Server Details .. 537

3.1.1 Abstract Data Model ... 537
3.1.2 Timers ... 538
3.1.3 Initialization .. 538
3.1.4 Message Processing Events and Sequencing Rules ... 538

3.1.4.1 ClientAttach (Opnum 0) .. 539
3.1.4.2 ClientRequest (Opnum 1) .. 540
3.1.4.3 ClientDetach (Opnum 2) ... 565

3.1.5 Timer Events ... 565
3.1.6 Other Local Events ... 566

3.2 Tapsrv Client Details .. 566
3.2.1 Abstract Data Model ... 566
3.2.2 Timers ... 566
3.2.3 Initialization .. 566
3.2.4 Message Processing Events and Sequencing Rules ... 566
3.2.5 Timer Events ... 566
3.2.6 Other Local Events ... 566

3.3 Remotesp Server Details .. 567
3.3.1 Abstract Data Model ... 567
3.3.2 Timers ... 567
3.3.3 Initialization .. 567
3.3.4 Message Processing Events and Sequencing Rules ... 567

3.3.4.1 RemoteSPAttach (Opnum 0) .. 568
3.3.4.2 RemoteSPEventProc (Opnum 1) ... 568
3.3.4.3 RemoteSPDetach (Opnum 2) ... 570

3.3.5 Timer Events ... 570
3.3.6 Other Local Events ... 570

3.4 Remotesp Client Details ... 570
3.4.1 Abstract Data Model ... 570
3.4.2 Timers ... 570
3.4.3 Initialization .. 571
3.4.4 Message Processing Events and Sequencing Rules ... 571
3.4.5 Timer Events ... 571
3.4.6 Other Local Events ... 571

4 Protocol Examples ... 572
4.1 Packet Exchanges to Establish the Session ... 572
4.2 Packet Exchanges to Terminate the Session ... 573
4.3 Packet Exchanges to Make an Outgoing Call ... 574
4.4 Packet Exchanges to Answer an Incoming Call .. 575
4.5 Packet Exchanges to Transfer a Connected call ... 576

12 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.6 Packet Exchanges to Forward Incoming Calls or Modify the Existing Forward State .. 577
4.7 Packet Exchange for Establishing a Management Session 578
4.8 Packet Exchanges to Terminate the Management Session 579
4.9 Packet Exchange for Getting the Server Configuration ... 579
4.10 Packet Exchange for Setting the Server Configuration .. 580
4.11 Packet Exchanges for ACD proxy requests and responses 580
4.12 Packet Exchanges to Create an Agent Session for an ACD Group 581

5 Security ... 583
5.1 Security Considerations for Implementers .. 583
5.2 Index of Security Parameters ... 583

6 Appendix A: Full IDL .. 584
6.1 Appendix A.1: Remotesp.IDL .. 584
6.2 Appendix A.2: Tapsrv.IDL .. 584

7 Appendix B: Product Behavior ... 586

8 Change Tracking .. 589

9 Index ... 590

13 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The Microsoft Telephony Application Programming Interface (TAPI) enables implementation of
communications applications ranging from voice mail to call centers with multiple agents and switches.
The Microsoft Telephony programming model abstracts communications control from device control,
freeing end-user applications and device manufacturers from the need to conform to the others'
requirements. Using this model, an end-user or server application does not require detailed

information about device control and the device does not need to be tailored to the application.
Applications and devices can undergo innovation and change independently. Possible TAPI applications
can include:

 Basic voice calls on the public switched telephone network (PSTN).

 Call center applications for tracking multiple agents.

 Private branch exchange (PBX) control.

 Interactive voice response (IVR) computing systems.

 Voice mail.

 Detailed phone device control.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Active Directory Service Interfaces (ADSI): A directory service model and a set of Component
Object Model (COM) interfaces. ADSI enables Windows applications and Active Directory Domain
Services (AD DS) clients to gain access to several network directory services, including AD DS.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-

encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more

information, see [C706] section 13.1.2.1 and [MS-RPCE].

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

client: A computer on which the remote procedure call (RPC) client is executing.

double-byte character set (DBCS): A character set that can use more than one byte to
represent a single character. A DBCS includes some characters that consist of 1 byte and some
characters that consist of 2 bytes. Languages such as Chinese, Japanese, and Korean use DBCS.

dual-tone multi-frequency (DTMF): In telephony systems, a signaling system in which each
digit is associated with two specific frequencies. This system typically is associated with touch-
tone keypads for telephones.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

14 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC

Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

H.323: H.323 is the International Telecommunication Union - Telecommunication (ITU-T) protocol

used for multimedia communications over packet-switched networks based on the Internet
Protocol (IP). The main usage of H.323 is for VoIP, Audio, and Video conferencing. For more
information see [H323].

Interface Definition Language (IDL): The International Standards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Microsoft Management Console (MMC): Provides a framework that consists of a graphical user
interface (GUI) and a programming platform in which snap-ins (collections of administrative
tools) can be created, opened, and saved. MMC is a multiple-document interface (MDI)
application.

multicast: The delivery of data from one source to multiple destinations over a network. Copies of
the data are made only when it needs to be transmitted on different branches containing the
destinations. A minimal spanning tree-based communication where the source sits at the root of

the tree, the destinations are on the other nodes, and packets travel down replicated only when
necessary.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime

environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

opnum: An operation number or numeric identifier that is used to identify a specific remote

procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

public switched telephone network (PSTN): Public switched telephone network is the voice-
oriented public switched telephone network. It is circuit-switched, as opposed to the packet-
switched networks.

registered proxy function handler: A server application can register and handle client functions

related to Monitoring and control of Automatic Call Distribution (ACD) agent status on stations.
The registration is specified using an option in Open (section 2.2.4.1.1.5). Such a server
application is called proxy function handler. TAPI conveys the client requests related to

monitoring and control of ACD agent status on stations to the proxy function handler.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set

of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=93033

15 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

server: A computer on which the remote procedure call (RPC) server is executing.

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC2205] Braden, R., Zhang, L., Berson, S., et al., "Resource ReSerVation Protocol (RSVP)", RFC
2205, September 1997, https://www.rfc-editor.org/info/rfc2205

1.2.2 Informative References

[MSDN-MSTelephonyOvw] Microsoft Corporation, "Microsoft Telephony Overview",
http://msdn.microsoft.com/en-us/library/ms733433.aspx

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=120109
https://go.microsoft.com/fwlink/?LinkId=98248

16 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MSDN-TAPI-SP] Microsoft Corporation, "TAPI Service Providers", http://msdn.microsoft.com/en-
us/library/ms725513(VS.85).aspx

[MSDN-TAPI2.2] Microsoft Corporation, "Telephony Application Programming Interface Version 2.2",
http://msdn.microsoft.com/en-us/library/ms737220(VS.85).aspx

[MSDN-TAPI3.1] Microsoft Corporation, "Telephony Application Programming Interface Version 3.1",
http://msdn.microsoft.com/en-us/library/ms734215(VS.85).aspx

1.3 Overview

The Telephony Remote Protocol enables a client to control telephony devices on the server through
TAPI, and manage or administer them. The server software can be modeled as:

 TAPI service, which is independent of device specifics and depends on device-specific software for

actual device control.

 Telephony service provider (TSP), which is device-specific software (including the device driver
software). For more information, see [MSDN-TAPI-SP].

The TAPI service and the TSP can communicate with each other according to a well-defined interface,
the Telephony Service Provider Interface (TSPI).

An Automatic Call Distribution (ACD) server is a combination of hardware and software that classifies,

queues, and distributes incoming calls to agents or outgoing calls to lines.

The Server ACD application is a TAPI proxy application, which runs on the same server as the TSP.
With a traditional ACD switch, the proxy application would interface to the switch's internal ACD and
expose its operation. A software-based or "virtual" ACD proxy application would be fully responsible
for the tracking of calls, queues, groups, and agents and would use the standard TAPI interfaces to
control the switching hardware. Agent client applications will typically run on the individual agent's
workstations and make use of the TAPI Remote Service Provider to communicate with the TAPISRV on

the server machine, and hence the proxy application.

The Agent object represents an agent that is capable of handling calls. This agent is usually a person
but can be an interactive voice response (IVR) or some other combination of software and hardware.
Agents are vital to a call center; they are responsible for receiving and processing incoming calls and
at times, for making outgoing calls to customers or prospects.

An Agent Handler represents software or hardware that is capable of passing calls to a group of
agents. Typically, this is a proprietary switch that connects outside lines to telephones at agent

stations.

An Agent Session represents an agent who has logged on and is qualified to handle calls for a
particular ACD Group. An agent session is a dynamically created object that relates an agent to an
ACD group for which the group will provide service, and also to the address where they will receive
calls (turret, station, phone, and so on). Applications can use the agent session object to track agent
activity in a particular ACD group.

An ACD group represents a class of calls that requires a particular type of handling. An ACD group
services one or more queues. As incoming calls are classified, they are passed to queues that are
associated with the relevant ACD group. A call coming off the queue is passed to an agent who has
created an agent session object, indicating the agent is able to handle calls from that ACD group.

The Queue object represents a point in the ACD system where calls are temporarily held pending
action. Access to a queue object allows an application to read a variety of standard statistics that
relate to queue usage; however, access does not give an application the ability to control calls on the

queue. Only applications that have access to the associated addresses and lines are able to control the
calls on the queue.

https://go.microsoft.com/fwlink/?LinkId=120037
https://go.microsoft.com/fwlink/?LinkId=120037
https://go.microsoft.com/fwlink/?LinkId=119989
https://go.microsoft.com/fwlink/?LinkId=119990
https://go.microsoft.com/fwlink/?LinkId=120037

17 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Monitoring and control of ACD agent status on stations is supported through these functions:
GetAgentCaps, GetAgentStatus, GetAgentGroupList, GetAgentActivityList, SetAgentGroup,

SetAgentState, and SetAgentActivity.

Architecturally, ACD functionality is implemented in a server-based application. The client functions

mentioned above, rather than mapping to the telephony service provider, are conveyed to a server
application that has registered (using an option of Open) as a handler for such functions.

A line device represents a physical device such as a modem, voice board, fax board, or an Integrated
Services Digital Network (ISDN) card that is connected to a network. Line devices support
communications capabilities by allowing applications to send information to, or receive information
from, a network. A line device contains a set of one or more homogeneous channels that can be used
to establish calls. In Plain Old Telephone Service (POTS), exactly one channel exists on a line, and the

channel is used exclusively for voice. Other technologies, such as ISDN, can support more than one
channel on a single line.

An address represents a location on a network. The address itself is a string that identifies a location
on a network. In the case of a telephone network, the address is a telephone number. Each channel

can have its own address, which means a line could have as many addresses as it has channels. The
exact relationship between channels and addresses depends on the underlying TSP implementation.

A client can obtain the number of addresses that are present on a line by using the GetDevCaps
packet, which also provides information that is specific to the line device and common to all addresses
on that line. Different addresses have different features, capabilities, and states. The client can access
this information by sending the GetAddressCaps packet to the server.

A phone device represents characteristics of the phone device hardware rather than the connection to
the network itself. Thus, operations such as increasing or decreasing the volume of audio that is sent
or received, changing the ring mode, and so on are carried out by using phone device operations.

Many TAPI operations take a device ID or address ID parameter. The device ID can range from 0 to
one less than the total number of devices that are reported by the corresponding Initialize packet. The
address ID can range from 0 to one less than the number of addresses on that line device. The
number of addresses on a line is obtained by sending the GetDevCaps packet for that line device.

This protocol consists of two interfaces: the tapsrv interface and the remotesp interface.

The tapsrv interface allows the client to send RPC packets to the server, causing TAPI operations to
be executed on the server. The RPC packets in this specification are named for the specific TAPI

operation that will be executed and are specified in section 2.2.

TAPI operations can complete either synchronously or asynchronously.

 Synchronous completion occurs when the requested TAPI operation is completely executed before
the RPC function call returns to the client. This includes the case when the operation was not
executed and an error is synchronously returned to the client.

In Synchronous calls the client sends a TAPI32_MSG packet through the ClientRequest method

with appropriate parameters in the packet. Depending on the request, the server fills the required
values and sends back to client.

For example, the client sends the GetDevCaps packet through the ClientRequest method to get
the telephony capabilities of a specified line device. The GetDevCaps packet follows the structure
of a TAPI32_MSG. The server fills the Req_Func field and VarData field of TAPI32_MSG with the
result of the encapsulated telephony request and LINEDEVCAPS.

18 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 1: Synchronous Completion

 Asynchronous completion is when the RPC function call returns to the client while the request is
still being executed (for example, the RPC function call returns while the client is dialing a number

on a telephony device). A request ID is returned from the server when the asynchronous function
call returns to the client. When the TAPI operation completes later, the server informs the client of
completion along with the success or error status by using the same request ID to identify the

operation being completed.

In Asynchronous calls, the client sends a TAPI32_MSG packet through the ClientRequest method
with the appropriate parameters in the packet. The server sends the request ID in the response to
the ClientRequest method. On completion of the request the server sends back an
ASYNCEVENTMSG through the RemoteSPEventProc method with same request ID. The server also
calls the RemoteSPEventProc method with an ASYNCEVENTMSG to indicate any spontaneous event
that is related to the TAPI operations on the server.

For example, when the server offers an incoming call the client sends the Answer packet through
the ClientRequest method to server for answering the call. The Answer packet follows the
structure of the TAPI32_MSG. The server returns a positive number as the request ID for success.

On completion of the requested operation the server calls the RemoteSPEventProc method with a
LINE_REPLY packet which matches the request identifier previously returned for the Answer
packet. LINE_REPLY follows the ASYNCEVENTMSG.

19 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 2: Asynchronous Completion

Section 2.2.4 specifies the packets that are sent as part of requests from client to server,
asynchronous event packets from server to client indicating the completion of the requested
operation or spontaneous event relating to TAPI operations on the server.

The remotesp interface, through the RemoteSPEventProc method, allows the server to notify the client
of events that affect TAPI operations on the server. In RPC terminology, the server is acting as an
"RPC client" on the remotesp interface because the server makes the RPC function call, and the client

is acting as an "RPC server" on the remotesp interface. Unless otherwise mentioned, the term "server"

is used to indicate a server in the TAPI sense in this specification. A server provides telephony devices
that the client can use.

The events that are notified on the remotesp interface can be the completion of an asynchronous TAPI
operation that is initiated earlier by the client or a spontaneous event that is related to TAPI
operations on the server (for example, an incoming call on a telephony device).

The client can specify that the server use a mailslot mechanism instead of the remotesp interface for

the server to notify the client of events. See the ClientAttach method for details. In this specification,
a client that specifies a mailslot mechanism is called a connection-less client and a client that uses the
remotesp interface is called a connection-oriented client.<1>

Connection-less clients use the Pull Model for getting events. In the pull model, the server informs the
client that events are available for retrieval by writing a DWORD value to the client's mailslot, and the
client retrieves events via the ClientRequest method.

Connection-oriented clients use the Push Model for getting events. In the push model, the server

connects to the client on the remotesp interface by using the RemoteSPAttach method and calls the
RemoteSPEventProc method on the client so that the client can process telephony events and
completion notifications from the server.

Clients that connect to the server for administration of the telephony devices cannot be interested in
events that occur on the telephony devices. These clients are called MMC clients in this specification
and need not provide a mailslot mechanism or remotesp interface for the server to notify the client.

For more information about possible packet sequences to complete TAPI operations, see section 4.

20 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For more information, see [MSDN-MSTelephonyOvw].

1.4 Relationship to Other Protocols

The Telephony Remote Protocol requires the RPC protocol for communication from client to server
and for communication from server to a connection-oriented client. It also depends on mailslot-
mechanism support for communications from server to connection-less clients.

There are no protocols that depend on the Telephony Remote Protocol.

1.5 Prerequisites/Preconditions

RPC and/or mailslot communication are working between the client and server for this protocol to
function. Additionally, the client and server are configured to enable their roles as defined by this
protocol.

Client configuration:

 The client is configured with the name of the server to connect to.

 The client is configured to act as either a connection-oriented client or a connection-less
client.<2>

The client can detect Telephony Remote Protocol servers that are published in the domain by
searching Active Directory for serviceConnectionPoint objects with B1A37774-E3F7-488E-
ADBFD4DB8A4AB2E5 as a keyword.

Server configuration: The server is configured by enabling the Telephony Remote Protocol server role.

The server can publish itself by creating a serviceConnectionPoint object in Active Directory with
B1A37774-E3F7-488E-ADBFD4DB8A4AB2E5 as a keyword.

1.6 Applicability Statement

Mechanisms external to this protocol are used when a client makes or receives a phone call in order
to transmit or receive voice or data information on a telephony device that is connected to the server.
To receive or transmit information (for example, voice or data) over such a phone call, mechanisms
external to this protocol are used.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas.

Supported Transports:

 The Telephony Remote Protocol uses RPC over named pipes only on the tapsrv interface.

 The server uses a mailslot mechanism with connection-less clients.

 The server uses the RPC protocol and endpoint that is specified by connection-oriented clients.

Security and Authentication Methods: The Telephony Remote Protocol depends on the RPC protocol for

security and authentication. The client supports RPC_C_AUTHN_GSS_NEGOTIATE for the
authentication service on both the tapsrv and remotesp interfaces. The server can reject RPC
communications on the tapsrv interface if the authentication level is not set to
RPC_C_AUTHN_LEVEL_PKT_PRIVACY by the client. In this case, the protocol cannot be used by the
client to control telephony devices on the server. The client can reject RPC communications on the
remotesp interface if the authentication level is not set to RPC_C_AUTHN_LEVEL_PKT_PRIVACY by the

https://go.microsoft.com/fwlink/?LinkId=98248

21 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

server. In this case, the protocol cannot be used by a connection-oriented client to control telephony
devices on the server.

Localization: The Telephony Remote Protocol does not contain locale-specific information.

Protocol Versions: The Telephony Remote Protocol has only one interface version. However, the

underlying TAPI operations supported by the protocol can correspond to any of the multiple versions
of TAPI. This difference is handled in the protocol by allowing additional values for the constants that
are passed in the RPC packets between the client and server. The use of these methods is specified in
section 3.1. The constants specified in section 2 include details on the TAPI versions for which they are
valid. The client and server determine the TAPI version as described in the following sections:

 Initialize RPC packets for line device requests.

 Initialize RPC packets for phone device requests.

 NegotiateAPIVersion RPC packets for line devices.

 NegotiateAPIVersion RPC packets for phone devices.

The client queries the line device capabilities by sending the line GetDevCaps packet.

The client determines the address capabilities by sending the GetAddressCaps packet to the server.

The client determines the phone device capabilities by sending the phone GetDevCaps packet.

TAPI versions are specified in terms of DWORDs, where the higher word represents the major version

and the lower word represents the minor version, shown as follows:<3>

 0x00010004 = TAPI version 1.4

 0x00020000 = TAPI version 2.0

 0x00020001 = TAPI version 2.1

 0x00020002 = TAPI version 2.2

For more information, see [MSDN-TAPI2.2].

 0x00030000 = TAPI version 3.0

 0x00030001 = TAPI version 3.1

For more information, see [MSDN-TAPI3.1].

1.8 Vendor-Extensible Fields

None

1.9 Standards Assignments

 The Telephony Remote Protocol uses the following parameter assignments:

 Parameter Value Reference

RPC UUID for tapsrv 2F5F6520-CA46-1067-B319-00DD010662DA [C706]
section A.2.5

RPC UUID for remotesp 2F5F6521-CA47-1068-B319-00DD010662DB [C706]
section A.2.5

https://go.microsoft.com/fwlink/?LinkId=119989
https://go.microsoft.com/fwlink/?LinkId=119990
https://go.microsoft.com/fwlink/?LinkId=89824

22 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Parameter Value Reference

Pipe Name for tapsrv interface \\<SERVER_NAME>\pipe\tapsrv Section 2.1

Mailslot endpoint for server to
indicate that client sends
GetAsyncEvents packet to fetch
event data

Specified by the client as part of ClientAttach interface call
– for example, \\<CLIENT_NAME>\.\mailslot\tapi\tp1234

Section
3.1.4.1

RPC protocol and endpoint for
remotesp interface

Specified by the client as part of ClientAttach parameters –
for example, ncacn_ip_tcp protocol with endpoint 251

Section
3.1.4.1

23 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

The following sections specify how Telephony Remote Protocol packets are transported and common
data types.

2.1 Transport

This protocol uses RPC over named pipes, as specified in [MS-RPCE], for the tapsrv interface.

This protocol uses RPC dynamic endpoints as specified in [C706] part 4.

The tapsrv interface uses an RPC well-known endpoint. This is a named pipe that MUST have the
value of the server machine name followed by \pipe\tapsrv.

The remotesp interface uses the RPC protocol sequence and endpoint as specified by the client

when the ClientAttach method is used.

The server MUST use the remotesp interface or mailslot mechanism as specified by the client when
the ClientAttach method is used.

This protocol MUST use the UUIDs as specified in section 1.9.

This protocol uses RPC_C_AUTHN_WINNT or RPC_C_AUTHN_GSS_NEGOTIATE for authentication.<4>
Depending on the operating system version and configuration, either the client or the server can
reject RPC calls that do not match the authentication level of RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the NDR20 and NDR64
transfer syntaxes and provide a negotiation mechanism for determining which transfer syntax will be
used, as specified in [MS-RPCE] section 3.

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data types
are defined in the following sections.

2.2.1 Data Types

The following sections specify the data types that are referenced in this specification.

2.2.1.1 HCALL

The HCALL data type stores a handle to the call that is used to refer to the call between the client
and server.

This type is declared as follows:

 typedef DWORD HCALL;

2.2.1.2 HLINE

The HLINE data type stores a handle to the line that is used to refer to the line device between the
client and server.

This type is declared as follows:

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824

24 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef DWORD HLINE;

2.2.1.3 HLINEAPP

The HLINEAPP data type stores a handle to the line application. The server uses this handle to
identify the instance of the client that is using the line device abstraction.

This type is declared as follows:

 typedef DWORD HLINEAPP;

2.2.1.4 HPHONE

The HPHONE data type stores a handle to the line that is used to refer to the line device between the

client and server.

This type is declared as follows:

 typedef DWORD HPHONE;

2.2.1.5 HPHONEAPP

The HPHONEAPP data type stores a handle to the line application. The server uses this handle to
identify the instance of the client that is using the line device abstraction.

This type is declared as follows:

 typedef DWORD HPHONEAPP;

2.2.1.6 PCONTEXT_HANDLE_TYPE

The PCONTEXT_HANDLE_TYPE data type stores a context handle that is used by methods in the
tapsrv interface. The context handle is a structure that is created by the server to represent a client
context. The client and server MUST pass it to RPC as a void pointer to the context handle data
structure.

This type is declared as follows:

 typedef [context_handle] void* PCONTEXT_HANDLE_TYPE;

2.2.1.7 PCONTEXT_HANDLE_TYPE2

The PCONTEXT_HANDLE_TYPE2 data type stores a context handle that is used by methods in the
remotesp interface.

This type is declared as follows:

 typedef [context_handle] void* PCONTEXT_HANDLE_TYPE2;

25 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.1.8 STRINGFORMAT_Constants

The STRINGFORMAT_Constants describe different string formats.

Constant/value Description

STRINGFORMAT_ASCII

0x00000001

Specifies the standard ASCII character format using one byte per character.

STRINGFORMAT_DBCS

0x00000002

Specifies the standard DBCS character format using one or two bytes per character.

STRINGFORMAT_UNICODE

0x00000003

Specifies the standard Unicode character format using two bytes per character.

STRINGFORMAT_BINARY

0x00000004

Specifies the string as an array of unsigned characters; could be used for numeric
values.

2.2.1.9 TUISPIDLL_OBJECT_Constants

The TUISPIDLL_OBJECT_Constants describe different types of objects used while installing,
configuring, and removing TSPs.

Constant/value Description

TUISPIDLL_OBJECT_LINEID

0x1

The concerned object is a line device identifier (dwDeviceID).

TUISPIDLL_OBJECT_PHONEID

0x2

The concerned object is a phone device identifier (dwDeviceID).

TUISPIDLL_OBJECT_PROVIDERID

0x3

The concerned object is a permanent provider identifier.

TUISPIDLL_OBJECT_DIALOGINSTANCE

0x4

The concerned object refers to an opaque dialog instance handle.

2.2.1.10 HAGENTSESSION

The HAGENTSESSION data type stores a handle to the agent session.

This type is declared as follows:

 typedef DWORD HAGENTSESSION;

2.2.1.11 HAGENT

The HAGENT data type stores a handle to the agent.

This type is declared as follows:

26 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef DWORD HAGENT;

2.2.2 HANDLE TABLE

The following table lists the handle types that are used in the Telephony Remote Protocol and specifies
how they are obtained and how they are released. All asynchronous events and completion packet
packets have one or more handle parameters that are relevant to the corresponding event. The table

lists only those packets with handle parameters that are new; that is, the handle was not provided to
the client earlier.

The server is responsible for maintaining data structures internally that enable it to obtain the
corresponding handle when an event or completion occurs and send the handle to the client.

 Obtained by

Handle type Name of packet Field in packet Released by

HLINEAPP Initialize hLineApp ShutDown

HLINE Open hLine Close/LINE_CLOSE

HPHONEAPP Initialize hPhoneApp ShutDown

HPHONE Open hPhone Close/PHONE_CLOSE

HCALL LINE_APPNEWCALL

Note This packet is sent only if the client has
negotiated a TAPI version of 2.0, 2.1, 2.2, 3.0, and 3.1.

Param2 DeallocateCall

HCALL LINE_CALLSTATE

Note Clients that have negotiated a TAPI version earlier
than 2.0, need to examine if this packet is an "old" call
(same handle as an already obtained valid call handle)
or a new call (different from all existing valid call
handles). For clients that negotiated a TAPI version of
2.0, 2.1, 2.2, 3.0, and 3.1, this will always be an "old"
call because the handle would have already been sent
through LINE_APPNEWCALL.

hCall DeallocateCall

HCALL CompleteTransfer hConfCall DeallocateCall

HCALL Forward hConsultCall DeallocateCall

HCALL MakeCall hCall DeallocateCall

HCALL PickUp hCall DeallocateCall

HCALL PrepareAddToConference hConsultCall DeallocateCall

HCALL SetUpConference hConfCall DeallocateCall

HCALL SetUpConference hConsultCall DeallocateCall

HCALL SetUpTransfer hConsultCall DeallocateCall

HCALL UnPark hCall DeallocateCall

HCALL GetNewCalls pCallList of
type
LINECALLLIST

DeallocateCall

27 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.3 Device Constants

2.2.3.1 Line Device Constants

2.2.3.1.1 LINEADDRCAPFLAGS_Constants

The LINEADDRCAPFLAGS_Constants are bit-flag constants that are used in the dwAddrCapFlags
member of the LINEADDRESSCAPS packet to describe various Boolean address capabilities.

Constant/value Description

LINEADDRCAPFLAGS_FWDNUMRINGS

0x00000001

Specifies whether the number of rings for a "no answer" call is
specified when forwarding calls to a "no answer." If TRUE, the valid
range must be provided in the dwMinFwdNumRings and
dwMaxFwdNumRings members of the LINEADDRESSCAPS packet.

LINEADDRCAPFLAGS_PICKUPGROUPID

0x00000002

Specifies whether a group identifier is required for call pickup.

LINEADDRCAPFLAGS_SECURE

0x00000004

Specifies whether calls on this address can be made secure at call-
setup time.

LINEADDRCAPFLAGS_BLOCKIDDEFAULT

0x00000008

Specifies whether, by default, the network sends or blocks caller ID
information when making a call on this address. If TRUE, identifier
information must be blocked by default; if FALSE, identifier
information must be transmitted by default.

LINEADDRCAPFLAGS_BLOCKIDOVERRIDE

0x00000010

Specifies whether the default setting for the sending or blocking of
caller ID information can be overridden per call. If TRUE, override
must be possible; if FALSE, override must not be possible.

LINEADDRCAPFLAGS_DIALED

0x00000020

Specifies whether a destination address can be dialed on this address
for making a call. TRUE if a destination address is to be dialed;
FALSE if the destination address is fixed.

LINEADDRCAPFLAGS_ORIGOFFHOOK

0x00000040

Specifies whether the originating party's phone can automatically be
taken off the hook when making calls.

LINEADDRCAPFLAGS_DESTOFFHOOK

0x00000080

Specifies whether the called party's phone can automatically be
forced off the hook when making calls.

LINEADDRCAPFLAGS_FWDCONSULT

0x00000100

Specifies whether call forwarding involves the establishment of a
consultation call.

LINEADDRCAPFLAGS_SETUPCONFNULL

0x00000200

Specifies whether setting up a conference call starts with an initial
call (FALSE) or with no initial call (TRUE).

LINEADDRCAPFLAGS_AUTORECONNECT

0x00000400

Specifies whether dropping a consultation call automatically
reconnects to the call on consultation hold. TRUE if reconnection
happens automatically; otherwise, FALSE.

LINEADDRCAPFLAGS_COMPLETIONID

0x00000800

Specifies whether the completion identifiers that are returned by the
CompleteCall packet are useful and unique. Must be TRUE if valid;
otherwise, FALSE.

LINEADDRCAPFLAGS_TRANSFERHELD

0x00001000

Specifies whether a handheld call can be transferred.

28 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEADDRCAPFLAGS_TRANSFERMAKE

0x00002000

Specifies whether an entirely new call can be established for use as a
consultation call on transfer.

LINEADDRCAPFLAGS_CONFERENCEHELD

0x00004000

Specifies whether a handheld call can be included in a conference
call.

LINEADDRCAPFLAGS_CONFERENCEMAKE

0x00008000

Specifies whether an entirely new call can be established for use as a
consultation call (to add) on conference.

LINEADDRCAPFLAGS_PARTIALDIAL

0x00010000

Specifies whether partial dialing is available.

LINEADDRCAPFLAGS_FWDSTATUSVALID

0x00020000

Specifies whether the forwarding status in the LINEADDRESSSTATUS
packet for this address is valid or is, at most, a best estimate in the
absence of accurate confirmation by the switch or network.

LINEADDRCAPFLAGS_FWDINTEXTADDR

0x00040000

Specifies whether internal and external calls can be forwarded to
different forwarding addresses. This flag is meaningful only if
forwarding of internal and external calls can be controlled separately.
This flag is TRUE if internal and external calls can be forwarded to
different destination addresses; otherwise, it must be FALSE.

LINEADDRCAPFLAGS_FWDBUSYNAADDR

0x00080000

Specifies whether call forwarding for "busy" and for "no answer" can
use different forwarding addresses. This flag is meaningful only if
forwarding for "busy" and for "no answer" can be controlled
separately. This flag is TRUE if forwarding for "busy" and for "no
answer" can use different destination addresses; otherwise, it must
be FALSE.

LINEADDRCAPFLAGS_ACCEPTTOALERT

0x00100000

TRUE if an offering call is or has to be accepted using the Accept
packet to start alerting the users at both ends of the call; otherwise,
it must be FALSE. This flag is typically used only with ISDN.

LINEADDRCAPFLAGS_CONFDROP

0x00200000

TRUE if the Drop packet on a conference call parent also has the side
effect of dropping (that is, disconnecting) the other parties who are
involved in the conference call; FALSE if dropping a conference call
still allows the other parties to talk among themselves.

LINEADDRCAPFLAGS_PICKUPCALLWAIT

0x00400000

TRUE if the PickUp packet can be used to pick up a call that is
detected by the user as a call-waiting call; otherwise, it must be
FALSE.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEADDRCAPFLAGS_PREDICTIVEDIALER

0x00800000

This address has enhanced call progress monitoring capabilities that
can be applied to outgoing calls to determine call states such as
ringback, busy, specialinfo, and connected; or the media type of the
device that is answering the call. It can also have the ability to
automatically transfer outgoing calls to another address when a call
reaches any of a predefined set of states.

LINEADDRCAPFLAGS_QUEUE

0x01000000

This address must not be associated with a particular station or
physical device but must be a holding place where calls wait for
further processing. The calls placed in the queue can receive a
particular treatment. They can also be automatically transferred
when a particular resource becomes available (for example, if the
queue is an ACD queue and calls are waiting for an available agent).

29 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEADDRCAPFLAGS_ROUTEPOINT

0x02000000

This address must not be associated with a particular station or
physical device but must be a holding place where calls wait for
routing (for example, the call can be routed based on the called
address and can redirect the call to another address). The call can
also be automatically transferred if a routing time out expires (the
switch usually assumes a default routing).

LINEADDRCAPFLAGS_HOLDMAKESNEW

0x04000000

When a call on this address is placed on hold (using the Hold packet
or external action), a new call must be automatically created (most
likely in LINECALLSTATE_DIALTONE).

LINEADDRCAPFLAGS_NOINTERNALCALLS

0x08000000

The address must be associated with a direct calling office (CO) line
(trunk) and must not be used to make internal calls on a private

branch exchange (PBX). The application can use this indication to
assist the user in selecting the correct call appearance to use for
making a call. When this bit is off, it does not necessarily indicate
that the address can be used to make internal calls, because the
service provider might not be aware of the line type.

LINEADDRCAPFLAGS_NOEXTERNALCALLS

0x10000000

The address is associated with an internal line on a PBX that is
restricted in such a way that it cannot be used to place calls to an
address outside the switch (for example, it is an intercom). The
application can use this indication to assist the user in selecting the
correct call appearance to use for making a call. When this bit is off,
it does not necessarily indicate that the address can be used to make
external calls because the service provider might not be aware of the
line type.

LINEADDRCAPFLAGS_SETCALLINGID

0x20000000

The application can choose to set the CallingPartyID member in
LINECALLPARAMS when calling MakeCall and other functions that

accept a LINECALLPARAMS packet. If the content of the identifier is
acceptable and a path is available, the service provider passes the
identifier along to the called party to indicate the identity of the
calling party.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEADDRCAPFLAGS_ACDGROUP

0x40000000

The address must support ACD groups in connection with call center
operations.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value Description

LINEADDRCAPFLAGS_NOPSTNADDRESSTRANSLATION

0x80000000

This address does not support public switched telephone
network address translation.

2.2.3.1.2 LINEADDRESSMODE_Constants

The LINEADDRESSMODE_Constants are bit-flag constants that describe various ways to identify an

address on a line device.

30 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEADDRESSMODE_ADDRESSID

0x00000001

The address must be specified with a small integer in the range 0 to
dwNumAddresses minus one, where dwNumAddresses is the value in the
device capabilities of the line.

LINEADDRESSMODE_DIALABLEADDR

0x00000002

The address must be specified through its phone number.

This constant MUST be used to select an address line on which to originate a call. The usual model is
to select the address by means of its address identifier. Address identifiers are the mechanism used to

identify addresses throughout TAPI. However, in some environments, when making a call, it is often
more practical to identify an originating address of a call by phone number rather than by address
identifier.

One example is in the possible modeling of large numbers of stations (third party) on the switch by
means of one line device with many addresses. The line represents the set of all stations, and each

station is mapped to an address with its own primary phone number and address identifier.

2.2.3.1.3 LINEADDRESSSHARING_Constants

The LINEADDRESSSHARING_Constants are bit-flag constants that describe various ways that an
address can be shared between lines.

Constant/value Description

LINEADDRESSSHARING_PRIVATE

0x00000001

The address must be private to the user's line; it must not be
assigned to any other station.

LINEADDRESSSHARING_BRIDGEDEXCL

0x00000002

The address must be bridged to one or more other stations. The
first line to activate a call on the line will have exclusive access to
the address and calls that might exist on it. Other lines must not be
able to use the bridged address while it is in use.

LINEADDRESSSHARING_BRIDGEDNEW

0x00000004

The address must be bridged with one or more other stations. The
first line to activate a call on the line must have exclusive access to

only the corresponding call. Other applications that use the address
must result in new and separate call appearances.

LINEADDRESSSHARING_BRIDGEDSHARED

0x00000008

The address is bridged with one or more other lines. All bridged
parties can share in calls on the address, which then functions as a
conference.

LINEADDRESSSHARING_MONITORED

0x00000010

An address whose idle or busy status must be made available to this
line.

The way in which an address MUST be shared across lines can affect the behavior of that address.
LINE_CALLSTATE and LINE_ADDRESSSTATE packets are sent to the application in response to
activities by the bridging stations. It MUST be through these packets that an application can track the

status of the address.

2.2.3.1.4 LINEADDRESSSTATE_Constants

The LINEADDRESSSTATE_Constants are bit-flag constants that describe various address status items.

Constant/value Description

LINEADDRESSSTATE_OTHER

0x00000001

Address-status items other than those that are listed below have changed.
The application must check the current address status to determine which

31 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

items have changed.

LINEADDRESSSTATE_DEVSPECIFIC

0x00000002

The device-specific item of the address status has changed.

LINEADDRESSSTATE_INUSEZERO

0x00000004

The address has changed to idle (it is not in use by any stations).

LINEADDRESSSTATE_INUSEONE

0x00000008

The address has changed from idle or being in use by many bridged
stations to being in use by just one station.

LINEADDRESSSTATE_INUSEMANY

0x00000010

The monitored or bridged address has changed from being in use by one
station to being in use by more than one station.

LINEADDRESSSTATE_NUMCALLS

0x00000020

The number of calls on the address has changed. This change is the result
of events such as a new incoming call, an outgoing call on the address, or a

call changing its hold status. This flag covers changes in any of the
member's dwNumActiveCalls, dwNumOnHoldCalls, and
dwNumOnHoldPendingCalls in the LINEADDRESSSTATUS packet. The
application checks all three of these members when it receives a
LINE_ADDRESSSTATE (numCalls) packet.

LINEADDRESSSTATE_FORWARD

0x00000040

The forwarding status of the address has changed, including possibly the
number of rings for determining a no-answer condition. The application is
to check the address status to determine details about the current
forwarding status of the address.

LINEADDRESSSTATE_TERMINALS

0x00000080

The terminal settings for the address must have changed.

The following constant is present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEADDRESSSTATE_CAPSCHANGE

0x00000100

Indicates that, because of configuration changes made by the user or other
circumstances, one or more of the members in the LINEADDRESSCAPS
packet for the address have changed. The client is to use the
GetAddressCaps packet to read the updated packet. If a service provider

sends a LINE_ADDRESSSTATE packet that contains this value to TAPI, TAPI
will pass it to applications that have negotiated TAPI versions 1.4, 2.0, 2.1,
2.2, 3.0, and 3.1. Applications that negotiate a previous version will
receive LINE_LINEDEVSTATE packets that specify LINEDEVSTATE_REINIT,
which requires them to shut down and reinitialize their connection to TAPI
to obtain the updated information.

An application is notified about changes to these status items in the LINE_ADDRESSSTATE packet. The
device capabilities of the address indicate which address state changes can be reported for this
address.

2.2.3.1.5 LINEADDRESSTYPE_Constants

The LINEADDRESSTYPE_Constants are bit-flag constants that identify address format, such as a
standard phone number or an email address. Only applications that negotiate TAPI version 3.0 or 3.1
can use address types.

Constant/value Description

LINEADDRESSTYPE_PHONENUMBER The address type must be a standard phone number.

32 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000001

LINEADDRESSTYPE_SDP

0x00000002

The address type must be Session Description Protocol (SDP) conference.

LINEADDRESSTYPE_EMAILNAME

0x00000004

The address type must be an email name.

LINEADDRESSTYPE_DOMAINNAME

0x00000008

The address type must be a domain name.

LINEADDRESSTYPE_IPADDRESS

0x00000010

The address type must be an IP address.

2.2.3.1.6 LINEADDRFEATURE_Constants

The LINEADDRFEATURE_Constants are bit-flag constants that list the operations that can be invoked
on an address.

Note If none of the new, modified PickUp bits are set in the dwAddressFeatures member in the
LINEADDRESSSTATUS packet but the LINEADDRFEATURE_PICKUP bit is set, any of the pickup modes
can work; the service provider has simply not specified which modes.

Constant/value Description

LINEADDRFEATURE_FORWARD

0x00000001

The address can be forwarded.

LINEADDRFEATURE_MAKECALL

0x00000002

An outgoing call can be placed in the address.

LINEADDRFEATURE_PICKUP

0x00000004

A call can be picked up at the address.

LINEADDRFEATURE_SETMEDIACONTROL

0x00000008

Media control can be set on this address.

LINEADDRFEATURE_SETTERMINAL

0x00000010

The terminal modes for this address can be set.

LINEADDRFEATURE_SETUPCONF

0x00000020

A conference call with a NULL initial call can be set up at this address.

LINEADDRFEATURE_UNCOMPLETECALL

0x00000040

Call completion requests can be canceled at this address.

LINEADDRFEATURE_UNPARK

0x00000080

Calls can be unparked using this address.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEADDRFEATURE_PICKUPHELD The PickUp packet (with a null destination address) can be used to pick

33 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000100 up a call that is held on the address. This ability must normally be used
only in a bridged-exclusive arrangement.

LINEADDRFEATURE_PICKUPGROUP

0x00000200

The PickUp packet can be used to pick up a call in the group.

LINEADDRFEATURE_PICKUPDIRECT

0x00000400

The PickUp packet can be used to pick up a call on a specific address.

LINEADDRFEATURE_PICKUPWAITING

0x00000800

The PickUp packet (with a null destination address) can be used to pick
up a call-waiting call. It does not necessarily indicate that a waiting call is
actually present because it is often impossible for a telephony device to
automatically detect such a call. It must, however, indicate that the hook-
flash function (a button on a telephone that simulates a quick off-
hook/on-hook/off-hook cycle) will be invoked to attempt to switch to such
a call.

LINEADDRFEATURE_FORWARDFWD

0x00001000

The Forward packet can be used to forward calls on the address to other
numbers. LINEADDRFEATURE_FORWARD must also be set.

Note If any of the "FORWARD" bits are set in the dwAddressFeatures
member in LINEADDRESSSTATUS but the LINEADDRFEATURE_FORWARD
bit is set, any of the forward modes can work; the service provider has
simply not specified which ones.

LINEADDRFEATURE_FORWARDDND

0x00002000

The Forward packet (with an empty destination address) can be used to
turn on the Do Not Disturb feature on the address.
LINEADDRFEATURE_FORWARD must also be set.

This constant MUST be used both in LINEADDRESSCAPS (returned by the GetAddressCaps packet) and
in LINEADDRESSSTATUS (returned by the GetAddressStatus packet). LINEADDRESSCAPS reports the
availability of the address features by the service provider (mainly the switch) for a specified address.
The LINEADDRESSSTATUS packet reports, for a specified address, which address features can actually

be invoked while the address is in the current state.

2.2.3.1.7 LINEAGENTFEATURE_Constants

The LINEAGENTFEATURE_Constants are bit-flag constants that list features that are available for an
agent on an address.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTFEATURE_SETAGENTGROUP

0x00000001

The SetAgentGroup packet can be invoked on this address.

LINEAGENTFEATURE_SETAGENTSTATE

0x00000002

The SetAgentState packet can be invoked on this address.

LINEAGENTFEATURE_SETAGENTACTIVITY

0x00000004

The SetAgentActivity packet can be invoked on this address.

LINEAGENTFEATURE_AGENTSPECIFIC

0x00000008

The AgentSpecific packet can be invoked on this address.

LINEAGENTFEATURE_GETAGENTACTIVITYLIST

0x00000010

The GetAgentActivityList packet can be invoked on this address.

34 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEAGENTFEATURE_GETAGENTGROUP

0x00000020

The GetAgentGroupList packet can be invoked on this address.

2.2.3.1.8 LINEAGENTSESSIONSTATE_Constants

The LINEAGENTSESSIONSTATE_Constants are bit-flag constants that specify various agent session
states.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTSESSIONSTATE_NOTREADY

0x00000001

The agent must be logged in but occupied with a task other than
serving a call (such as on a break). No additional calls are routed to
the agent.

LINEAGENTSESSIONSTATE_READY

0x00000002

The agent must be ready to accept calls.

LINEAGENTSESSIONSTATE_BUSYONCALL

0x00000004

The agent must be busy handling a call.

LINEAGENTSESSIONSTATE_BUSYWRAPUP

0x00000008

The agent must be busy handling the wrap-up of a call.

LINEAGENTSESSIONSTATE_ENDED

0x00000010

The agent session must have ended.

LINEAGENTSESSIONSTATE_RELEASED

0x00000020

The agent session must have been released.

2.2.3.1.9 LINEAGENTSESSIONSTATUS_Constants

The LINEAGENTSESSIONSTATUS_Constants are bit-flag constants that specify various agent session
states.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTSESSIONSTATUS_NEWSESSION

0x00000001

A new agent session must have been created.

LINEAGENTSESSIONSTATUS_STATE

0x00000002

The status of the current agent session.

LINEAGENTSESSIONSTATUS_UPDATEINFO

0x00000004

An update of the current agent session statistics.

2.2.3.1.10 LINEAGENTSTATE_Constants

35 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The LINEAGENTSTATE_Constants are bit-flag constants that describe the state of an agent on an
address.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTSTATE_LOGGEDOFF

0x00000001

No agent must be logged onto the address.

LINEAGENTSTATE_NOTREADY

0x00000002

The agent must be logged in but occupied with a task other than
serving a call (such as on a break). No additional calls are routed to
the agent.

LINEAGENTSTATE_READY

0x00000004

The agent is ready to accept calls.

LINEAGENTSTATE_BUSYACD

0x00000008

The agent must be busy handling a call that is routed from an ACD
queue.

LINEAGENTSTATE_BUSYINCOMING

0x00000010

The agent must be busy handling an incoming call that was not
transferred to the agent from an ACD queue to which the agent is
logged in.

LINEAGENTSTATE_BUSYOUTBOUND

0x00000020

The agent must be busy handling an outgoing call, such as one routed
from a predictive dialing queue.

LINEAGENTSTATE_BUSYOTHER

0x00000040

The agent must be busy handling another type of call, such as an
outgoing personal call that must not be transferred to the agent by a
predictive dialer. This value can also be used when the agent is known
to be busy on a call but the type of call is unknown.

LINEAGENTSTATE_WORKINGAFTERCALL

0x00000080

The agent must have completed the preceding call but must still be
occupied with work that is related to that call. The agent is not to
receive additional calls.

LINEAGENTSTATE_UNKNOWN

0x00000100

The agent state must be currently unknown but can become known
later. This state can be a transitional state when a line or address is
first opened.

LINEAGENTSTATE_UNAVAIL

0x00000200

The agent state must be unknown and must never become known. In
LINEAGENTSTATUS, this condition can also be represented by the
dwState member being set to 0.

2.2.3.1.11 LINEAGENTSTATEEX_Constants

The LINEAGENTSTATEEX_Constants are bit-flag constants that describe the state of an agent on an
address.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTSTATEEX_NOTREADY

0x00000001

The agent must be logged in but occupied with a task other than serving
a call (such as on a break). No additional calls are routed to the agent.

LINEAGENTSTATEEX_READY

0x00000002

The agent must be ready to accept calls.

36 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEAGENTSTATEEX_BUSYACD

0x00000004

The agent must be busy handling a call that is routed from an ACD
queue.

LINEAGENTSTATEEX_BUSYINCOMING

0x00000008

The agent must be busy handling an incoming call that was not
transferred to the agent from an ACD queue to which the agent is logged
in.

LINEAGENTSTATEEX_BUSYOUTGOING

0x00000010

The agent must be busy handling an outgoing call, such as one that is
routed from a predictive dialing queue.

LINEAGENTSTATEEX_UNKNOWN

0x00000020

The agent state must be currently unknown but can become known
later. This can be a transitional state when a line or address is first
opened.

LINEAGENTSTATEEX_RELEASED

0x00000040

The agent must have been released, probably because the agent has
logged off.

2.2.3.1.12 LINEAGENTSTATUS_Constants

The LINEAGENTSTATUS_Constants are bit-flag constants that list the update status of the members of
the LINEAGENTSTATUS packet for an agent.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTSTATUS_GROUP

0x00000001

The LINEAGENTSTATUS must have been updated.

LINEAGENTSTATUS_STATE

0x00000002

The dwState member in LINEAGENTSTATUS must have been updated.

LINEAGENTSTATUS_NEXTSTATE

0x00000004

The dwNextState member in LINEAGENTSTATUS must have been
updated.

LINEAGENTSTATUS_ACTIVITY

0x00000008

The dwActivityID, dwActivitySize, or dwActivityOffset member in
LINEAGENTSTATUS must have been updated.

LINEAGENTSTATUS_ACTIVITYLIST

0x00000010

The LINEAGENTACTIVITYLIST packet must have been updated. The
application can send the GetAgentActivityList packet to get the updated
list.

LINEAGENTSTATUS_GROUPLIST

0x00000020

The LINEAGENTGROUPLIST packet must have been updated. The
application can send the GetAgentGroupList packet to get the updated
list.

LINEAGENTSTATUS_CAPSCHANGE

0x00000040

The capabilities in LINEAGENTCAPS must have been updated. The
application can send the GetAgentCaps packet to get the updated list.

LINEAGENTSTATUS_VALIDSTATES

0x00000080

The dwValidStates member in LINEAGENTSTATUS must have been
updated.

LINEAGENTSTATUS_VALIDNEXTSTATES

0x00000100

The dwValidNextStates member in LINEAGENTSTATUS must have been
updated.

37 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.3.1.13 LINEAGENTSTATUSEX_Constants

The LINEAGENTSTATUSEX_Constants are bit-flag constants that describe the status of an agent.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTSTATUSEX_NEWAGENT

0x00000001

An agent must have been added.

LINEAGENTSTATUSEX_STATE

0x00000002

The state of the current agent.

LINEAGENTSTATUSEX_UPDATEINFO

0x00000004

The agent status must have been updated.

2.2.3.1.14 LINEANSWERMODE_Constants

The LINEANSWERMODE_Constants are bit-flag constants that describe how an existing active call on a
line device is affected by answering another offering call on the same line.

Constant/value Description

LINEANSWERMODE_NONE

0x00000001

Answering another call on the same line must have no effect on the existing active
call on the line.

LINEANSWERMODE_DROP

0x00000002

The currently active call must automatically be dropped.

LINEANSWERMODE_HOLD

0x00000004

The currently active call must automatically be placed on hold.

No extensibility. All 32 bits are reserved.

If a call comes in (is offered) at the time another call is already active, the new call MUST be
connected by invoking the Answer packet. The effect this has on the existing active call depends on
the device capabilities of the line. The first call can be unaffected, it can be dropped automatically, or
it can be placed on hold automatically.

2.2.3.1.15 LINEBEARERMODE_Constants

The LINEBEARERMODE_Constants are bit-flag constants that describe the different bearer modes of a
call. When a call is made, it can request a specific bearer mode. These modes are used to select a
certain quality of service for the requested connection from the underlying telephone network. Bearer
modes that are available on a particular line are a device capability of the line.

Constant/value Description

LINEBEARERMODE_VOICE

0x00000001

A regular 3.1-kilohertz (kHz) analog voice-grade bearer service. Bit
integrity must not be assured. Voice-grade bearer service can support
fax and modem media types.

LINEBEARERMODE_SPEECH

0x00000002

The LINEBEARERMODE_SPEECH corresponds to G.711 speech
transmission on the call. The network can use processing techniques
such as analog transmission, echo cancellation, and

38 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

compression/decompression. Bit integrity must not be assured.
Speech must not be intended to support fax and modem media types.

LINEBEARERMODE_MULTIUSE

0x00000004

The multiuse mode that is defined by ISDN for the call.

LINEBEARERMODE_DATA

0x00000008

This flag allows for the unrestricted data transfer on the call. The data
rate must be specified separately.

LINEBEARERMODE_ALTSPEECHDATA

0x00000010

This flag allows for the alternate transfer of speech or unrestricted
data on the same ISDN call.

LINEBEARERMODE_NONCALLSIGNALING

0x00000020

This capability corresponds to a non-call-associated signaling
connection from the application to the service provider or switch
(treated as a media stream by TAPI).

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEBEARERMODE_PASSTHROUGH

0x00000040

When a call is active in LINEBEARERMODE_PASSTHROUGH mode, the
service provider gives direct access to the attached hardware for control by
the application. This mode must be used primarily by applications that want
temporary direct control over asynchronous modems, accessed through the
communications functions, for the purpose of configuring or using special
features that are not otherwise supported by the service provider.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEBEARERMODE_RESTRICTEDDATA

0x00000080

Bearer service for digital data in which only the low-order 7 bits of each
octet can contain user data (for example, for switched 56-kbps service).

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are
reserved.

Note that bearer mode and media type are different notions. The bearer mode of a call MUST be an
indication of the quality of the telephone connection as provided primarily by the network. The media
type of a call MUST be an indication of the type of information stream that is exchanged over that call.
Group 3 fax or data modem are media types that use a call with a 3.1-kHz voice bearer mode.

2.2.3.1.16 LINEBUSYMODE_Constants

The LINEBUSYMODE_Constants are bit-flag constants that describe different busy signals that the
switch or network can generate. These busy signals typically indicate that a different resource MUST
be used to make a call, or that the current resource is busy.

Constant/value Description

LINEBUSYMODE_STATION

0x00000001

The busy signal indicates that the station of the called party is busy. This condition
is usually signaled with the standard busy tone.

LINEBUSYMODE_TRUNK

0x00000002

The busy signal indicates that a trunk or circuit is busy. This condition is usually
signaled with a fast busy tone.

39 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEBUSYMODE_UNKNOWN

0x00000004

The specific mode of the busy signal is currently unknown but can become known
later.

LINEBUSYMODE_UNAVAIL

0x00000008

The specific mode of the busy signal is unavailable and will not become known.

TAPI makes no assumption about the specific signaling mechanism (inband tones, out-of-band
packets, etc.) used to send busy signals.

2.2.3.1.17 LINECALLCOMPLCOND_Constants

The LINECALLCOMPLCOND_Constants are bit-flag constants that describe the conditions under which
a call can be completed.

Constant/value Description

LINECALLCOMPLCOND_BUSY

0x00000001

Completion of the call can be completed under "busy" conditions.

LINECALLCOMPLCOND_NOANSWER

0x00000002

Completion of the call under "ringback," "no answer" conditions.

2.2.3.1.18 LINECALLCOMPLMODE_Constants

The LINECALLCOMPLMODE_Constants are bit-flag constants that describe different ways in which a
call can be completed.

Constant/value Description

LINECALLCOMPLMODE_CAMPON

0x00000001

Queues the call until it can be completed.

LINECALLCOMPLMODE_CALLBACK

0x00000002

Requests the called station to return the call when it returns to idle.

LINECALLCOMPLMODE_INTRUDE

0x00000004

Adds the application to the existing call at the called station (barge in).

LINECALLCOMPLMODE_MESSAGE

0x00000008

Leaves a short, predefined packet for the called station (Leave Word
Calling). The packet to be sent is specified separately.

2.2.3.1.19 LINECALLFEATURE_Constants

The LINECALLFEATURE_Constants are bit-flag constants that indicate operations that can be invoked
for a particular address or call.

Constant/value Description

LINECALLFEATURE_ACCEPT

0x00000001

Accept the call (use the Accept packet).

40 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINECALLFEATURE_ADDTOCONF

0x00000002

Add the call to the current conference (use the AddToConference
packet).

LINECALLFEATURE_ANSWER

0x00000004

Answer the call (use the Answer packet).

LINECALLFEATURE_BLINDTRANSFER

0x00000008

Perform a blind transfer on the call (use the BlindTransfer packet).

LINECALLFEATURE_COMPLETECALL

0x00000010

Complete the call (use the CompleteCall packet).

LINECALLFEATURE_COMPLETETRANSF

0x00000020

Complete the call transfer (use the CompleteTransfer packet).

LINECALLFEATURE_DIAL

0x00000040

Dial the destination number for the call (use the Dial packet).

LINECALLFEATURE_DROP

0x00000080

Drop the call (use the Drop packet).

LINECALLFEATURE_GATHERDIGITS

0x00000100

Gather digits from the call (use the GatherDigits packet).

LINECALLFEATURE_GENERATEDIGITS

0x00000200

Generate digits on the call (use the GenerateDigits packet).

LINECALLFEATURE_GENERATETONE

0x00000400

Generate tones on the call (use the GenerateTone packet).

LINECALLFEATURE_HOLD

0x00000800

Put the call on hold (use the Hold packet).

LINECALLFEATURE_MONITORDIGITS

0x00001000

Monitor digits on the call (use the MonitorDigits packet).

LINECALLFEATURE_MONITORMEDIA

0x00002000

Monitor the media of the call (use the MonitorMedia packet).

LINECALLFEATURE_MONITORTONES

0x00004000

Monitor tones on the call (use the MonitorTones packet).

LINECALLFEATURE_PARK

0x00008000

Park the call (use the Park packet).

LINECALLFEATURE_PREPAREADDCONF

0x00010000

Prepare the call for addition to a conference (use the
PrepareAddToConference packet).

LINECALLFEATURE_REDIRECT

0x00020000

Redirect the call to another destination (use the Redirect packet).

LINECALLFEATURE_REMOVEFROMCONF

0x00040000

Remove the call from the conference (use the RemoveFromConference
packet).

LINECALLFEATURE_SECURECALL

0x00080000

Secure the call (use the SecureCall packet).

41 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINECALLFEATURE_SENDUSERUSER

0x00100000

Send user-user information (use the SendUserUserInfo packet).

LINECALLFEATURE_SETCALLPARAMS

0x00200000

Set call parameters (use the SetCallParams packet).

LINECALLFEATURE_SETMEDIACONTROL

0x00400000

Set media controls (see the SetMediaControl packet).

LINECALLFEATURE_SETTERMINAL

0x00800000

Set the terminal to be used with the call (use SetTerminal packet).

LINECALLFEATURE_SETUPCONF

0x01000000

Set up a conference (use the SetUpConference packet).

LINECALLFEATURE_SETUPTRANSFER

0x02000000

Set up a transfer (use the SetUpTransfer packet).

LINECALLFEATURE_SWAPHOLD

0x04000000

Perform a swap hold operation (use the SwapHold packet).

LINECALLFEATURE_UNHOLD

0x08000000

Take the call off hold (use the Unhold packet).

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLFEATURE_RELEASEUSERUSERINFO

0x10000000

Release current user-user information (use the
ReleaseUserUserInfo packet).

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLFEATURE_SETTREATMENT

0x20000000

Set call treatment (use the SetCallTreatment packet).

LINECALLFEATURE_SETQOS

0x40000000

Set Quality of Service (QoS) levels for the call (use the
SetCallQualityOfService packet).

LINECALLFEATURE_SETCALLDATA

0x80000000

Set the call data packet (use the SetCallData packet).

These constants MUST be used both in LINEADDRESSCAPS (returned by the GetAddressCaps packet)

and in LINECALLSTATUS (returned by the GetCallStatus packet). The LINEADDRESSCAPS packet
reports the availability of the call features on the specified address. An application would use this
information when it initializes to determine what it can do when calls exist. For the specified call,
LINECALLSTATUS reports which call features can be invoked while the call is in the current call state.
The latter takes call privileges into account. An application would make this determination dynamically
after the call state changes.

The LINECALLFEATURE_RELEASEUSERUSERINFO value is new to TAPI 1.4. There are no backward

compatibility considerations. A service provider can elect to return this value in relevant members (in

42 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LINEADDRESSCAPS and LINECALLSTATUS) even when older TAPI versions have been negotiated on
the line device.

2.2.3.1.20 LINECALLFEATURE2_Constants

The LINECALLFEATURE2_Constants are bit-flag constants that list the supplemental features that are
available for conferencing, transferring, and parking calls.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLFEATURE2_NOHOLDCONFERENCE

0x00000001

If this bit is on, a No Hold Conference can be created by using the
LINECALLPARAMFLAGS_NOHOLDCONFERENCE option with the
SetUpConference packet. The LINECALLFEATURE_SETUPCONF bit
will also be on in the dwCallFeatures member.

LINECALLFEATURE2_ONESTEPTRANSFER

0x00000002

If this bit is on, One Step Transfer can be created by using the
LINECALLPARAMFLAGS_ONESTEPTRANSFER option with the
SetUpTransfer packet. The LINECALLFEATURE_SETUPTRANSFER bit
will also be on in the dwCallFeatures member.

LINECALLFEATURE2_COMPLCAMPON

0x00000004

If this bit is on, the Camp On feature can be invoked by using the
LINECOMPLMODE_CAMPON option with the CompleteCall packet.

The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLCALLBACK

0x00000008

If this bit is on, the Callback feature can be invoked by using the
LINECOMPLMODE_CALLBACK option with the CompleteCall packet.
The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLINTRUDE

0x00000010

If this bit is on, the Intrude feature can be invoked by using the
LINECOMPLMODE_INTRUDE option with the CompleteCall packet.
The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLMESSAGE

0x00000020

If this bit is on, the Leave Packet feature can be invoked by using
the LINECOMPLMODE_MESSAGE option with the CompleteCall
packet. The LINECALLFEATURE_COMPLETECALL bit will also be on
in the dwCallFeatures member.

LINECALLFEATURE2_TRANSFERNORM

0x00000040

If this bit is on, the CompleteTransfer packet can be used to resolve
the transfer as a normal transfer. The
LINECALLFEATURE_COMPLETETRANSF bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_TRANSFERCONF

0x00000080

If this bit is on, the CompleteTransfer packet can be used to resolve
the transfer as a three-way conference. The
LINECALLFEATURE_COMPLETETRANSF bit must also be on in the
dwCallFeatures member.

LINECALLFEATURE2_PARKDIRECT

0x00000100

If this bit is on, the Directed Park feature can be invoked by using
the LINEPARKMODE_DIRECTED option with the Park packet. The
LINECALLFEATURE_PARK bit must also be on in the dwCallFeatures
member.

LINECALLFEATURE2_PARKNONDIRECT

0x00000200

If this bit is on, the Non-Directed Park feature can be invoked by
using the LINEPARKMODE_NONDIRECTED option with the Park
packet. The LINECALLFEATURE_PARK bit must also be on in the
dwCallFeatures member.

43 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Note If none of the "COMPL" bits is specified in the dwCallFeatures2 member in LINECALLSTATUS but
LINECALLFEATURE_COMPLETECALL is specified, it is possible that any of them will work, but the

service provider has not specified which.

Note If neither TRANSFERNORM nor TRANSFERCONF is specified in the dwCallFeatures2 member in

LINECALLSTATUS but LINECALLFEATURE_COMPLETETRANSF is specified, it is possible that either will
work, but the service provider has not specified which.

Note If neither PARKDIRECT nor PARKNONDIRECT is specified in the dwCallFeatures2 member in
LINECALLSTATUS but LINECALLFEATURE_PARK is specified, it is possible that either will work, but the
service provider has not specified which.

2.2.3.1.21 LINECALLHUBTRACKING_Constants

The LINECALLHUBTRACKING_Constants are bit-flag constants that describe the type of call-hub
tracking that is provided.

The following constants are present in TAPI versions 3.0 and 3.1:

Constant/value Description

LINECALLHUBTRACKING_NONE

0x00000000

No call-hub tracking must be provided.

LINECALLHUBTRACKING_PROVIDERLEVEL

0x00000001

Call hubs are tracked at the service provider level. Call-by-call
changes must be reported.

LINECALLHUBTRACKING_ALLCALLS

0x00000002

Call-hub tracking is provided at the call level.

No extensibility. All 32 bits are reserved.

When changes occur in this packet, a LINE_CALLINFO packet is sent to the application. The

parameters to this packet are a handle to the call and an indication of the information item that has
changed. The LINECALLHUBTRACKINGINFO packet indicates which tracking type MUST be provided.

2.2.3.1.22 LINECALLINFOSTATE_Constants

The LINECALLINFOSTATE_Constants are bit-flag constants that describe various call information items
about which an application will be notified in the LINE_CALLINFO packet.

Constant/value Description

LINECALLINFOSTATE_OTHER

0x00000001

Call information items other than those listed later in this topic have
changed. The application checks the current call information to
determine which items have changed.

LINECALLINFOSTATE_DEVSPECIFIC

0x00000002

The device-specific field of the call-information record.

LINECALLINFOSTATE_BEARERMODE

0x00000004

The bearer-mode field of the call-information record.

LINECALLINFOSTATE_RATE

0x00000008

The rate field of the call-information record.

LINECALLINFOSTATE_MEDIAMODE

0x00000010

The media type field of the call-information record.

44 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINECALLINFOSTATE_APPSPECIFIC

0x00000020

The application-specific field of the call-information record.

LINECALLINFOSTATE_CALLID

0x00000040

The call-ID field of the call-information record.

LINECALLINFOSTATE_RELATEDCALLID

0x00000080

The related call-ID field of the call-information record.

LINECALLINFOSTATE_ORIGIN

0x00000100

The origin field of the call-information record.

LINECALLINFOSTATE_REASON

0x00000200

The reason field of the call-information record.

LINECALLINFOSTATE_COMPLETIONID

0x00000400

The completion-identifier field of the call-information record.

LINECALLINFOSTATE_NUMOWNERINCR

0x00000800

The number of owner fields in the call-information record has been
increased.

LINECALLINFOSTATE_NUMOWNERDECR

0x00001000

The number of owner fields in the call-information record has been
decreased.

LINECALLINFOSTATE_NUMMONITORS

0x00002000

The number of monitors field in the call-information record has been
changed.

LINECALLINFOSTATE_TRUNK

0x00004000

The trunk field of the call-information record.

LINECALLINFOSTATE_CALLERID

0x00008000

One of the callerID-related fields of the call-information record.

LINECALLINFOSTATE_CALLEDID

0x00010000

One of the calledID-related fields of the call-information record.

LINECALLINFOSTATE_CONNECTEDID

0x00020000

One of the connectedID-related fields of the call-information record.

LINECALLINFOSTATE_REDIRECTIONID

0x00040000

The address identifier of the location to which a call has been
redirected.

LINECALLINFOSTATE_REDIRECTINGID

0x00080000

The address identifier of the location that redirected a call.

LINECALLINFOSTATE_DISPLAY

0x00100000

The display field of the call-information record.

LINECALLINFOSTATE_USERUSERINFO

0x00200000

The user-user information of the call-information record.

LINECALLINFOSTATE_HIGHLEVELCOMP

0x00400000

The high-level compatibility field of the call-information record.

LINECALLINFOSTATE_LOWLEVELCOMP

0x00800000

The low-level compatibility field of the call-information record.

45 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINECALLINFOSTATE_CHARGINGINFO

0x01000000

The charging information of the call-information record.

LINECALLINFOSTATE_TERMINAL

0x02000000

The terminal mode information of the call-information record.

LINECALLINFOSTATE_DIALPARAMS

0x04000000

The dial parameters of the call-information record.

LINECALLINFOSTATE_MONITORMODES

0x08000000

One or more of the digit, tone, or media monitoring fields in the call-
information record.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINECALLINFOSTATE_TREATMENT

0x10000000

The CallTreatment member in LINECALLINFO has been updated. This can
occur in response to a SetCallTreatment packet, a call state change, a call
"vector" or other script that controls the call, or upon completion of playback
of a recorded packet (ordinarily, indicating a change to "silence" or "music").

LINECALLINFOSTATE_QOS

0x20000000

One or more of the QoS members in LINECALLINFO must have been
updated.

LINECALLINFOSTATE_CALLDATA

0x40000000

The CallData member in LINE_CALLINFO must have been updated.

No extensibility. All 32 bits are reserved.

When changes occur in a LINECALLINFO packet, a LINE_CALLINFO packet MUST be sent to the
application. The parameters to this packet are a handle to the call and an indication of the information

item that has changed. The LINEADDRESSCAPS packet also indicates which of these call information
elements MUST be valid for every call on the address.

2.2.3.1.23 LINECALLORIGIN_Constants

The LINECALLORIGIN_Constants are bit-flag constants that describe the origin of a call.

Constant/value Description

LINECALLORIGIN_OUTBOUND

0x0000001

The call originated from this station as an outgoing call.

LINECALLORIGIN_INTERNAL

0x00000002

The call originated as an incoming call at a station internal to the same
switching environment.

LINECALLORIGIN_EXTERNAL

0x00000004

The call originated as an incoming call on an external line.

LINECALLORIGIN_UNKNOWN

0x00000010

The call origin must be currently unknown but can become known later.

LINECALLORIGIN_UNAVAIL

0x00000020

The call origin must be not available and will never become known for this call.

LINECALLORIGIN_CONFERENCE The call handle must be for a conference call; that is, it is the connection of the

46 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000040 application to the conference bridge in the switch.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLORIGIN_INBOUND

0x00000080

The call originated as an incoming call, but the service provider is unable to
determine whether it came from another station on the same switch or from an
external line. The service provider can substitute LINECALLORIGIN_UNAVAIL.

No extensibility. All 32 bits are reserved.

The origin of a call MUST be stored in the dwOrigin member of the call's LINECALLINFO structure.

2.2.3.1.24 LINECALLPARAMFLAGS_Constants

The LINECALLPARAMFLAGS_Constants bit-flag constants describe various status flags about a call.

Constant/value Description

LINECALLPARAMFLAGS_SECURE

0x00000001

The call is to be set up as secure.

LINECALLPARAMFLAGS_IDLE

0x00000002

The call is to be originated on an idle call appearance and not join a call
in progress. When using the MakeCall packet, if the
LINECALLPARAMFLAGS_IDLE value is not set and there is an existing
call on the line, the function breaks into the existing call if necessary to
make the new call. If there is no existing call, the function makes the
new call as specified.

LINECALLPARAMFLAGS_BLOCKID

0x00000004

The identity of the originator is to be concealed (block caller ID).

LINECALLPARAMFLAGS_ORIGOFFHOOK

0x00000008

The phone of the originator is to be automatically taken off the hook.

LINECALLPARAMFLAGS_DESTOFFHOOK

0x00000010

The phone of the called party is to be automatically taken off the hook.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLPARAMFLAGS_NOHOLDCONFERENCE

0x00000020

This bit must be used only in conjunction with SetUpConference
and PrepareAddToConference packet. The address to be
conferenced with the current call must be specified in the
TargetAddress member in LINECALLPARAMS. The consultation
call does not physically draw the dial tone from the switch but
will progress through various call establishment states (for
example, dialing or proceeding). When the consultation call
reaches the connected state, the conference is automatically
established: the original call, which had remained in the
connected state, enters the conferenced state; the consultation
call enters the conferenced state; the hConfCall enters the
connected state. If the consultation call fails (enters the
disconnected state followed by idle), the hConfCall also enters
the idle state, and the original call (which might have been an
existing conference, in the case of the PrepareAddToConference

47 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

packet) remains in the connected state. The original party (or
parties) never perceive the call as having gone on hold. This
feature is often used to add a supervisor to an ACD agent call
when necessary to monitor interactions with an irate caller.

LINECALLPARAMFLAGS_PREDICTIVEDIAL

0x00000040

This bit must be used only when placing a call on an address
with predictive dialing capability
(LINEADDRCAPFLAGS_PREDICTIVEDIALER is on in the
dwAddrCapFlags member in LINEADDRESSCAPS). The bit must
be on to enable the enhanced call progress and/or media device
monitoring capabilities of the device. If this bit is not on, the call
will be placed without enhanced call progress or media type
monitoring, and no automatic transfer will be initiated based on
the call state.

LINECALLPARAMFLAGS_ONESTEPTRANSFER

0x00000080

This bit must be used only in conjunction with the SetUpTransfer
packet. It combines the operation of the SetUpTransfer packet
followed by the Dial packet on the consultation call into a single
step. The address to be dialed must be specified in the
TargetAddress member in LINECALLPARAMS. The original call
must be placed in the onHoldPendingTransfer state, just as if the
SetUpTransfer packet were called normally, and the consultation
call must be established normally. The application must still call
the CompleteTransfer packet to effect the transfer. This feature
is often used when invoking a transfer from a server over a
third-party call control link because such links frequently do not
support the normal two-step process.

2.2.3.1.25 LINECALLPARTYID_Constants

The LINECALLPARTYID_Constants are bit-flag constants that describe the nature of the information

that is available about the parties that are involved in a call.

Constant/value Description

LINECALLPARTYID_BLOCKED

0x00000001

The party identifier information must not be available because it has been
blocked by the remote party.

LINECALLPARTYID_OUTOFAREA

0x00000002

The caller ID information for the call must not be available because it is not
propagated all the way by the network.

LINECALLPARTYID_NAME

0x00000004

The party identifier information consists of the name of the party (for example,
from a directory kept inside the switch).

LINECALLPARTYID_ADDRESS

0x00000008

The party identifier information consists of the address of the party, in either
canonical address format or dialable address format.

LINECALLPARTYID_PARTIAL

0x00000010

The party identifier information must be valid but it is limited to partial
information only.

LINECALLPARTYID_UNKNOWN

0x00000020

The party identifier information must be currently unknown but can become
known later.

LINECALLPARTYID_UNAVAIL

0x00000040

The party identifier information must not be available and must not become
available later. Information can be unavailable for unspecified reasons. For
example, the information was not delivered by the network, it was ignored by
the service provider, and so forth.

48 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

No extensibility. All 32 bits are reserved.

For each of the possible parties involved in a call, the LINECALLPARTYID_Constants describe how the
party identifier information is formatted. This information is supplied in the LINECALLINFO data
structure.

2.2.3.1.26 LINECALLPRIVILEGE_Constants

The LINECALLPRIVILEGE_Constants are bit-flag constants that describe the kinds of access rights or
privileges that an application with a call handle can have to the corresponding call.

Constant/value Description

LINECALLPRIVILEGE_NONE

0x00000001

The application has no privileges for the call. The application's handle is void
and must not be used.

LINECALLPRIVILEGE_MONITOR

0x00000002

The application has monitor privileges for the call. These privileges allow the
application to monitor state changes and query information and status about
the call.

LINECALLPRIVILEGE_OWNER

0x00000004

The application has owner privileges for the call. These privileges allow the
application to manipulate the call in ways that affect the state of the call.

No extensibility. All 32 bits are reserved.

When a call handle is first provided to an application or whenever call privileges of that application are
modified, the LINE_CALLSTATE packet is sent to the application. When an application hands off a call,
and if the receiving application does not already have a handle with owner privileges, this packet
informs the application about its new privileges to the call.

2.2.3.1.27 LINECALLREASON_Constants

The LINECALLREASON_Constants are bit-flag constants that describe the reason for a call.

Constant/value Description

LINECALLREASON_DIRECT

0x00000001

The call must be a direct incoming or outgoing call.

LINECALLREASON_FWDBUSY

0x00000002

This call must be forwarded from another extension that was busy at the
time of the call.

LINECALLREASON_FWDNOANSWER

0x00000004

The call must be forwarded from another extension that did not answer
the call after some number of rings.

LINECALLREASON_FWDUNCOND

0x00000008

The call must be forwarded unconditionally from another number.

LINECALLREASON_PICKUP

0x00000010

The call must be picked up from another extension.

LINECALLREASON_UNPARK

0x00000020

The call must be retrieved as a parked call.

LINECALLREASON_REDIRECT

0x00000040

The call must be redirected to this station.

LINECALLREASON_CALLCOMPLETION The call must be the result of a call completion request.

49 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000080

LINECALLREASON_TRANSFER

0x00000100

The call must have been transferred from another number.

LINECALLREASON_REMINDER

0x00000200

The call must be a reminder (or "recall") that the user has a call parked
or on hold for (potentially) a long time.

LINECALLREASON_UNKNOWN

0x00000400

The reason for the call must be currently unknown but can become
known later.

LINECALLREASON_UNAVAIL

0x00000800

The reason for the call must be unavailable and will not become known
later.

LINECALLREASON_INTRUDE

0x00001000

The call intruded onto the line either by a call completion action that was
invoked by another station or by operator action. Depending on switch

implementation, the call can appear either in the connected state or
conferenced with an existing active call on the line.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLREASON_PARKED

0x00002000

The call must be parked on the address. Usually, it appears initially in the onHold
state.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLREASON_CAMPEDON

0x00004000

The call must be camped on the address. Usually, it appears initially in the
onHold state and can be switched to using the SwapHold packet. If an
active call becomes idle, the camped-on call can change to the offering
state and the device starts ringing.

LINECALLREASON_ROUTEREQUEST

0x00008000

The call appears on the address because the switch needs routing
instructions from the application. The application examines the CalledID
member in LINECALLINFO and use the Redirect packet to provide a new
dialable address for the call. If the call is to be blocked instead, the
application can send the Drop packet. If the application fails to take action
within a switch-defined time-out period, a default action will be taken. The
service provider is to substitute LINECALLREASON_UNAVAIL.

No extensibility. All 32 bits are reserved.

The LINECALLREASON_Constants MUST be used in the dwReason member of the LINECALLINFO data
structure.

2.2.3.1.28 LINECALLSELECT_Constants

The LINECALLSELECT_Constants are bit-flag constants that describe which calls MUST be selected.

Constant/value Description

LINECALLSELECT_LINE

0x00000001

Selects calls on the specified line device.

50 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINECALLSELECT_ADDRESS

0x00000002

Selects a call on the specified address.

LINECALLSELECT_CALL

0x00000004

Selects related calls to the specified call. For example, the parties in a conference
call.

The following constants are present in TAPI versions 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINECALLSELECT_DEVICEID

0x00000008

Selects calls on the specified device identifier. Applications are to consider using
the LINECALLSELECT_LINE constant instead of this one.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value Description

LINECALLSELECT_CALLID

0x00000010

Selects related calls to the specified call identifier.

2.2.3.1.29 LINECALLSTATE_Constants

The LINECALLSTATE_Constants are bit-flag constants that describe the call states that a call can be in.

Constant/value Description

LINECALLSTATE_IDLE

0x00000001

The call exists but has not been connected. No activity exists on the
call, which means that no call is currently active.

LINECALLSTATE_OFFERING

0x00000002

The call is being offered to the station, signaling the arrival of a new
call. The offering state is not the same as causing a phone or
computer to ring. In some environments, a call in the offering state
does not ring the user until the switch instructs the line to ring. An
example of this use might be where an incoming call appears on
several station sets but only the primary address rings. The
instruction to ring does not affect any call states.

LINECALLSTATE_ACCEPTED

0x00000004

The call was in the offering state and has been accepted. This
indicates to other (monitoring) applications that the current owner
application has claimed responsibility for answering the call. In ISDN,
the accepted state is entered when the called-party equipment sends

a packet to the switch indicating that it is willing to present the call
to the called person. This has the side effect of alerting (ringing) the
users at both ends of the call. An incoming call can always be
immediately answered without first being separately accepted.

LINECALLSTATE_DIALTONE

0x00000008

The call is receiving a dial tone from the switch, which means that
the switch is ready to receive a dialed number. See
LINEDIALTONEMODE_Constants for identifiers of special dial tones,
such as the stutter tone of normal voice mail.

LINECALLSTATE_DIALING

0x00000010

The originator must be dialing digits on the call. The dialed digits are
collected by the switch. Note that the GenerateDigits packet will not
place the line into the dialing state.

51 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINECALLSTATE_RINGBACK

0x00000020

The station to be called has been reached, and the destination switch
is generating a ring tone back to the originator. A ringback means
that the destination address is being alerted to the call.

LINECALLSTATE_BUSY

0x00000040

The call must be receiving a busy tone. A busy tone indicates that
the call cannot be completed because either a circuit (trunk) or the
station of the remote party is in use. For more information, see
LINEBUSYMODE_Constants.

LINECALLSTATE_SPECIALINFO

0x00000080

The call must be receiving a special information signal, which
precedes a prerecorded announcement that indicates why a call
cannot be completed. For more information, see
LINESPECIALINFO_Constants.

LINECALLSTATE_CONNECTED

0x00000100

The call has been established and the connection must be made.
Information must be able to flow over the call between the
originating address and the destination address.

LINECALLSTATE_PROCEEDING

0x00000200

Dialing has completed, and the call must be proceeding through the
switch or telephone network. This action occurs after dialing is
complete and before the call reaches the dialed party, as indicated
by ringback tone, busy tone, or answer.

LINECALLSTATE_ONHOLD

0x00000400

The call must be on hold by the switch. This action frees the physical
line, which allows another call to use the line.

LINECALLSTATE_CONFERENCED

0x00000800

The call must be a member of a conference call and is logically in the
connected state.

LINECALLSTATE_ONHOLDPENDCONF

0x00001000

The call must be currently on hold while it is being added to a
conference.

LINECALLSTATE_ONHOLDPENDTRANSFER

0x00002000

The call must be currently on hold awaiting transfer to another
number.

LINECALLSTATE_DISCONNECTED

0x00004000

The remote party must have been disconnected from the call.

LINECALLSTATE_UNKNOWN

0x00008000

The call exists, but its state must be currently unknown. This state
can be the result of poor call progress detection by the service
provider. A call state packet with the call state set to unknown can
also be generated to inform TAPI about a new call at a time when the
actual call state of the call is not exactly known.

The high-order 8 bits can define a device-specific substate of any of the predefined states, provided
that one of the LINECALLSTATE bits defined above MUST also be set. The low-order 24 bits are
reserved for predefined states.

The LINECALLSTATE_Constants are used as parameters by the LINE_CALLSTATE packet that is sent to

the application. The packet carries the new call state to which the call transitioned. These constants
can also be used as members in the LINECALLSTATUS packet that is returned by the GetCallStatus
packet.

2.2.3.1.30 LINECALLTREATMENT_Constants

The LINECALLTREATMENT_Constants list treatments for calls that MUST be unanswered or on hold.
Except for basic parameter validation, call treatment MUST be a straight pass-through by TAPI to the

service provider.

52 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINECALLTREATMENT_SILENCE

0x00000001

When the call is not actively connected to a device (offering or onHold), the
party must hear silence.

LINECALLTREATMENT_RINGBACK

0x00000002

When the call is not actively connected to a device (offering or onHold), the
party must hear a ringback tone.

LINECALLTREATMENT_BUSY

0x00000003

When the call is not actively connected to a device (offering or onHold), the
party must hear a busy signal.

LINECALLTREATMENT_MUSIC

0x00000004

When the call is not actively connected to a device (offering or onHold), the
party must hear music.

The value 0x00000000 MUST be reserved to indicate that the service provider does not support call

treatments. Values in the range 0x00000005 through 0x000000FF are reserved for future definition.
Values in the range 0x00000100 through 0xFFFFFFFF are reserved for assignment by service providers

and can include identification of specific musical selections or recorded announcements.

2.2.3.1.31 LINECONNECTEDMODE_Constants

The LINECONNECTEDMODE_Constants are bit-flag constants that describe different substates of a
connected call. A mode is available as a call status to the application after the call state transitions are
connected and within the LINE_CALLSTATE packet indicating the call is in

LINECALLSTATE_CONNECTED. These values are used when the call is on an address that is shared
(bridged) with other stations, primarily electronic key systems.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINECONNECTEDMODE_ACTIVE

0x00000001

Indicates that the call must be connected at the current station (the current
station is a participant in the call). If the call state mode is 0, the application
assumes that the value is "active" (which would be the situation on a non-
bridged address). The mode can switch between ACTIVE and INACTIVE
during a call if the user joins and leaves the call through manual action. In
such a bridged situation, a Drop or Hold packet operation cannot actually
drop the call or place it on hold because the status of other stations on the
call can govern (for example, attempting to hold a call when other stations
are participating is not possible); instead, the call is changed to INACTIVE
mode if it remains CONNECTED at other stations.

LINECONNECTEDMODE_INACTIVE

0x00000002

Indicates that the call must be active at one or more other stations, but the
current station is not a participant in the call. If the call state mode is 0, the
application assumes that the value is active (which would be the situation on
a non-bridged address). A call in the INACTIVE state can be joined by using
the Answer packet. Many operations that are valid calls in the CONNECTED
state are impossible in the INACTIVE mode, such as monitoring for tones
and digits, because the station is not actually participating in the call;
monitoring is usually suspended (although not canceled) while the call is in
the INACTIVE mode.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINECONNECTEDMODE_ACTIVEHELD Indicates that the station must be an active participant in the call, but
that the remote party has placed the call on hold (the other party

53 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000004 considers the call to be in the onHold state). Typically, such information
is available only when both endpoints of the call fall within the same
switching domain.

LINECONNECTEDMODE_INACTIVEHELD

0x00000008

Indicates that the station must not be an active participant in the call
and that the remote party has placed the call on hold.

LINECONNECTEDMODE_CONFIRMED

0x00000010

Indicates that the service provider received affirmative notification that
the call has entered the connected state (for example, through answer
supervision or similar mechanisms).

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use those LINECONNECTEDMODE_Constants values that are not
supported on the negotiated version. Applications that are not cognizant of
LINECONNECTEDMODE_Constants will most likely assume that a call that is in
LINECALLSTATE_CONNECTED is in LINECONNECTEDMODE_ACTIVE.

The LINECONNECTEDMODE_ACTIVE and LINECONNECTEDMODE_INACTIVE values MUST be used

when the call is on an address that is shared with other stations (bridged; for more information, see
LINEADDRESSSHARING_Constants), primarily electronic key systems. If the connected call state
mode is "active," the call MUST be connected at the current station (the current station is a participant
in the call). If the call state mode is "inactive", the call MUST be active at one or more other stations,
but the current station MUST NOT be a participant in the call.

If the call state mode is 0, the application SHOULD assume that the value is "active" (which would be
the situation on a non-bridged address). The mode can switch between ACTIVE and INACTIVE during

a call if the user joins and leaves the call through manual action. In such a bridged situation, a Drop or
Hold packet operation can actually drop the call or place it on hold because the status of other stations
on the call can govern (for example, attempting to hold a call when other stations are participating is
not possible); instead, the call can be changed to INACTIVE mode if it remains CONNECTED at other
stations.

Many operations that MUST be valid in calls in the connected state are impossible in the INACTIVE

mode, such as monitoring for tones and digits, because the station MUST NOT be actually participating
in the call. Monitoring is usually suspended (although not canceled) while the call is in the INACTIVE
mode.

2.2.3.1.32 LINEDEVCAPFLAGS_Constants

The LINEDEVCAPFLAGS_Constants are bit-flag constants that are a collection of Booleans that
describe various line device capabilities.

Constant/value Description

LINEDEVCAPFLAGS_CROSSADDRCONF

0x00000001

Specifies whether calls on different addresses on this line can be
conferenced.

LINEDEVCAPFLAGS_HIGHLEVCOMP

0x00000002

Specifies whether high-level compatibility information elements must be
supported on this line.

LINEDEVCAPFLAGS_LOWLEVCOMP

0x00000004

Specifies whether low-level compatibility information elements must be
supported on this line.

LINEDEVCAPFLAGS_MEDIACONTROL

0x00000008

Specifies whether media-control operations must be available for calls at
this line.

LINEDEVCAPFLAGS_MULTIPLEADDR Specifies whether the MakeCall or Dial packet is able to deal with

54 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000010 multiple addresses at once (as for inverse multiplexing).

LINEDEVCAPFLAGS_CLOSEDROP

0x00000020

Specifies what happens when an open line must be closed while the
application has active calls on the line. If TRUE, the service provider
drops (clears) all active calls on the line when the last application that
opened the line closes it with the Close packet. If FALSE, the service
provider does not drop active calls in such cases. Instead, the calls
remain active and under control of external devices. A service provider
typically sets this bit to FALSE if there is some other device that can
keep the call alive, for example, if an analog line has the computer and
phone both set to connect directly to them in a party-line configuration.
The off-the-hook phone will automatically keep the call active even after
the computer turns off.

LINEDEVCAPFLAGS_DIALBILLING

0x00000040

This flag indicates whether the "$", "@", or "W" dialable string modifier
must be supported for a particular line device. It must be TRUE if the
modifier is supported; otherwise, FALSE. The "?" (prompts user to
continue dialing) must not be supported by a line device. This flag
allows an application to determine which modifiers would result in the
generation of a LINEERR. The application has the choice of pre-scanning
dialable strings for unsupported characters or passing the "raw" string
from the TranslateAddress packet directly to the provider as part of a
function, such as the MakeCall packet or the Dial packet, and letting the
function generate an error to tell the application which unsupported
modifier occurs first in the string.

LINEDEVCAPFLAGS_DIALQUIET

0x00000080

This flag indicates whether the "$", "@", or "W" dialable string modifier
must be supported for a particular line device. It must be TRUE if the
modifier is supported; otherwise, FALSE. The "?" (which prompts the
user to continue dialing) must not be supported by a line device. This
flag indicates which modifiers would result in the generation of a
LINEERR error. Dialable strings can be pre-scanned for unsupported
characters or passing the "raw" string from the TranslateAddress packet
directly to the provider as part of a function, such as the MakeCall
packet or the Dial packet, and let the function generate an error to tell
the application which unsupported modifier occurs first in the string.

LINEDEVCAPFLAGS_DIALDIALTONE

0x00000100

This flag indicates whether the "$", "@", or "W" dialable string modifier
must be supported for a particular line device. It must be TRUE if the
modifier is supported; otherwise, FALSE. The "?" (which prompts the
user to continue dialing) must not be supported by a line device. This
flag allows an application to determine which modifiers would result in
the generation of a LINEERR error. The application has the choice of
pre-scanning dialable strings for unsupported characters or passing the
"raw" string from the TranslateAddress packet directly to the provider
as part of a function, such as the MakeCall packet or the Dial packet,
and letting the function generate an error to tell the application which
unsupported modifier occurs first in the string.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value Description

LINEDEVCAPFLAGS_CALLHUB

0x00000400

Indicates whether call hubs must be supported on this line.

LINEDEVCAPFLAGS_CALLHUBTRACKING

0x00000800

Indicates whether call-hub tracking must be supported on this line.

LINEDEVCAPFLAGS_PRIVATEOBJECTS

0x00001000

Indicates whether provider-specific interfaces must have been
implemented.

55 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEDEVCAPFLAGS_LOCAL

0x00002000

This flag indicates that the device can be used only locally and the
device will not be exposed through the Telephony Remote Protocol.

2.2.3.1.33 LINEDEVSTATE_Constants

The LINEDEVSTATE_Constants are bit-flag constants that describe various line status events.

Constant/value Description

LINEDEVSTATE_OTHER

0x00000001

Device-status items other than those listed below must have changed. The
application checks the current device status to determine which items have
changed.

LINEDEVSTATE_RINGING

0x00000002

The switch tells the line to alert the user.

TAPI: Service providers notify applications on each ring cycle by
repeatedly sending LINE_LINEDEVSTATE packets that contain this
constant. For example, in the United States, service providers send a
packet with this constant every six seconds.

TSPI: On a POTS device, the service provider can send the packet
whenever the central office sends ring voltage. On digital devices such as
ISDN, the service provider might need to synthesize the repetition of the
packet if the switch generates only one ring request. Each repetition of the
packet shows the ring count increasing, so that the toll-save functions work
correctly.

LINEDEVSTATE_CONNECTED

0x00000004

The line was previously disconnected and is now connected to TAPI.

LINEDEVSTATE_DISCONNECTED

0x00000008

This line was previously connected and is now disconnected from TAPI.

LINEDEVSTATE_MSGWAITON

0x00000010

The packet-waiting indicator is turned on.

LINEDEVSTATE_MSGWAITOFF

0x00000020

The packet-waiting indicator is turned off.

LINEDEVSTATE_INSERVICE

0x00000040

The line must be connected to TAPI. This condition happens when TAPI is
first activated or when the line wire is physically plugged in and is in
service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE

0x00000080

The line must be out-of-service at the switch or physically disconnected.
TAPI is not to be used to operate on the line device.

LINEDEVSTATE_MAINTENANCE

0x00000100

Maintenance must be performed on the line at the switch. TAPI is not to be
used to operate on the line device.

LINEDEVSTATE_OPEN

0x00000200

The line must have been opened by another application.

LINEDEVSTATE_CLOSE

0x00000400

The line must have been closed by another application.

LINEDEVSTATE_NUMCALLS

0x00000800

The number of calls on the line device must have changed.

56 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEDEVSTATE_NUMCOMPLETIONS

0x00001000

The number of outstanding call completions on the line device must have
changed.

LINEDEVSTATE_TERMINALS

0x00002000

The terminal settings must have changed. This change in settings can
happen, for example, if multiple line devices share terminals among them
(for example, two lines sharing a phone terminal).

LINEDEVSTATE_ROAMMODE

0x00004000

The roam mode of the line device must have changed.

LINEDEVSTATE_BATTERY

0x00008000

The battery level must have changed significantly (cellular).

LINEDEVSTATE_SIGNAL

0x00010000

The signal level must have changed significantly (cellular).

LINEDEVSTATE_DEVSPECIFIC

0x00020000

The device-specific information about the line must have changed.

LINEDEVSTATE_REINIT

0x00040000

Items must have changed in the configuration of line devices. To become
aware of these changes (such as the appearance of new line devices), the
application reinitializes its use of TAPI.

LINEDEVSTATE_LOCK

0x00080000

The locked status of the line device changes. For more information, see
LINEDEVSTATUSFLAGS_LOCKED in LINEDEVSTATUSFLAGS_Constants.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEDEVSTATE_CAPSCHANGE

0x00100000

Indicates that, because of configuration changes made by the user or other
circumstances, one or more of the members in the LINEDEVCAPS packet for
the address must have changed. The application uses GetDevCaps packet to
read the updated packet. If a service provider sends a LINE_LINEDEVSTATE
packet containing this value to TAPI, TAPI must pass it along. If a previous
TAPI version has been negotiated, the endpoint must receive
LINE_LINEDEVSTATE packets specifying LINEDEVSTATE_REINIT, requiring a
shut down and re-initialization of the connection to TAPI to obtain the updated

information.

LINEDEVSTATE_CONFIGCHANGE

0x00200000

Indicates that configuration changes must have been made to one or more of
the media devices that are associated with the line device. The GetDevConfig
packet can be used to read the updated information. If a service provider
sends a LINE_LINEDEVSTATE packet that contains this value to TAPI, TAPI
must pass it along.

LINEDEVSTATE_COMPLCANCEL

0x00800000

Indicates that the call completion that is identified by the completion identifier
that is contained in the dwParam2 parameter of the LINE_LINEDEVSTATE
packet must have been externally canceled and is no longer considered valid.
(If that value were to be passed in a subsequent call to the UncompleteCall
packet, the function would fail with LINEERR_INVALCOMPLETIONID). If a
service provider sends a LINE_LINEDEVSTATE packet that contains this value
to TAPI, TAPI must pass it along.

LINEDEVSTATE_REMOVED

0x01000000

Indicates that the device must have been removed from the computer by the
service provider (most likely through user action, through a control panel, or
similar utility). A LINE_LINEDEVSTATE packet with this value will typically be
immediately followed by a LINE_CLOSE packet on the device. Subsequent
attempts to access the device prior to TAPI being reinitialized must result in a
LINEERR_NODEVICE error being returned to the application. If a service

57 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

provider sends a LINE_LINEDEVSTATE packet that contains this value to TAPI,
TAPI must pass it along.

2.2.3.1.34 LINEDEVSTATUSFLAGS_Constants

The LINEDEVSTATUSFLAGS_Constants are bit-flag constants that describe a collection of Boolean line
device status items.

Constant/value Description

LINEDEVSTATUSFLAGS_CONNECTED

0x00000001

Specifies whether the line must be connected to TAPI. If TRUE, the line
must be connected and TAPI must be able to operate on the line device. If
FALSE, the line must be disconnected and the application must be unable
to control the line device through TAPI.

LINEDEVSTATUSFLAGS_MSGWAIT

0x00000002

Indicates whether the line must have a packet waiting. If TRUE, a packet
must be waiting; if FALSE, no packet must be waiting.

LINEDEVSTATUSFLAGS_INSERVICE

0x00000004

Indicates whether the line must be in service. If TRUE, the line must be in
service; if FALSE, the line must be out of service.

LINEDEVSTATUSFLAGS_LOCKED

0x00000008

Indicates whether the line is locked or unlocked. This bit is most often
used with line devices that are associated with cellular phones. Many
cellular phones have a security mechanism that requires the entry of a
password to enable the phone to place calls. This bit can be used to
indicate to applications that the phone must be locked and cannot be used

to place calls until the password is entered on the user interface of the
phone so that the application can present an appropriate alert to the user.

LINEDEVSTATUSFLAGS_Constants are used within the dwDevStatusFlags member of the

LINEDEVSTATUS packet.

2.2.3.1.35 LINEDIALTONEMODE_Constants

The LINEDIALTONEMODE_Constants are bit-flag constants that describe different types of dial tones.

A special dial tone typically carries a special meaning (as with packet waiting).

Constant/value Description

LINEDIALTONEMODE_NORMAL

0x00000001

This must be a normal dial tone, which typically must be a continuous tone.

LINEDIALTONEMODE_SPECIAL

0x00000002

This must be a special dial tone indicating that a certain condition (known by
the switch or network) must be currently in effect. Special dial tones typically
use an interrupted tone. As with a normal dial tone, this tone indicates that
the switch must be ready to receive the number to be dialed.

LINEDIALTONEMODE_INTERNAL

0x00000004

This must be an internal dial tone, as within a PBX.

LINEDIALTONEMODE_EXTERNAL

0x00000008

This must be an external (public network) dial tone.

LINEDIALTONEMODE_UNKNOWN

0x00000010

The dial tone mode must not be currently known but can become known later.

58 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEDIALTONEMODE_UNAVAIL

0x00000020

The dial tone mode must be unavailable and must not become known.

The LINEDIALTONEMODE_Constants MUST be used within the LINECALLSTATUS packet for a call in
the dial tone state.

2.2.3.1.36 LINEDIGITMODE_Constants

The LINEDIGITMODE_Constants are bit-flag constants that describe different types of inband digit

generation.

Constant/value Description

LINEDIGITMODE_PULSE

0x00000001

Uses rotary pulse sequences to signal digits. Valid digits are 0 through 9.

LINEDIGITMODE_DTMF

0x00000002

Uses DTMF tones to signal digits. Valid digits are 0 through 9, *, #, A, B, C, and D.

LINEDIGITMODE_DTMFEND

0x00000004

Uses DTMF tones to signal digits and detect the down edges. Valid digits are 0
through 9, *, #, A, B, C, and D.

A digit mode can be specified when generating or detecting digits. Note that pulse digits MUST be

generated by making and breaking the local loop circuit. These pulses MUST be absorbed by the
switch. The remote end merely observes this as a series of inband audio clicks. Detecting digits sent
as pulses MUST also be able to detect sequences of 1 to 10 audible clicks.

2.2.3.1.37 LINEDISCONNECTMODE_Constants

The LINEDISCONNECTMODE_Constants are bit-flag constants that describe different reasons for a

remote disconnect request. A disconnect mode MUST be available as call status after the call state

transitions to a disconnected state.

Constant/value Description

LINEDISCONNECTMODE_NORMAL

0x00000001

This must be a normal disconnect request by the remote party. The
call must be terminated normally.

LINEDISCONNECTMODE_UNKNOWN

0x00000002

The reason for the disconnect request must be unknown but can
become known later.

LINEDISCONNECTMODE_REJECT

0x00000004

The remote user must have rejected the call.

LINEDISCONNECTMODE_PICKUP

0x00000008

The call must be picked up from elsewhere.

LINEDISCONNECTMODE_FORWARDED

0x00000010

The call must be forwarded by the switch.

LINEDISCONNECTMODE_BUSY

0x00000020

The station of the remote user must be busy.

LINEDISCONNECTMODE_NOANSWER

0x00000040

The station of the remote user must answer.

59 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEDISCONNECTMODE_BADADDRESS

0x00000080

The destination address must be invalid.

LINEDISCONNECTMODE_UNREACHABLE

0x00000100

The remote user must be reached.

LINEDISCONNECTMODE_CONGESTION

0x00000200

The network must be congested.

LINEDISCONNECTMODE_INCOMPATIBLE

0x00000400

The station equipment of the remote user must be incompatible with
the type of call that is requested.

LINEDISCONNECTMODE_UNAVAIL

0x00000800

The reason for the disconnect must be unavailable and will not
become known later.

The following constants must be present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEDISCONNECTMODE_NODIALTONE

0x00001000

A dial tone was not detected within a service provider–defined time-out,
at a point during dialing when one was expected (such as at a "W" in
the dialable string). This can also occur without a service provider–
defined time-out period or without a value that is specified in the
dwWaitForDialTone member of the LINEDIALPARAMS structure.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEDISCONNECTMODE_NUMBERCHANGED

0x00002000

The call could not be connected because the destination number
must have been changed; however, automatic redirection to the
new number must not be provided.

LINEDISCONNECTMODE_OUTOFORDER

0x00004000

The call must not be connected or was disconnected because the
destination device must be out of order (hardware failure).

LINEDISCONNECTMODE_TEMPFAILURE

0x00008000

The call must not be connected or must be disconnected because
of a temporary failure in the network; the call can be attempted
again later and must be expected to eventually complete.

LINEDISCONNECTMODE_TEMPFAILURE must be appropriate as a
delayed response. For example, a modem that is receiving a busy
signal (or its equivalent) too many times in a particular time
period, concludes that the number is not called again until a
defined time has elapsed and issues a "delayed" response.

LINEDISCONNECTMODE_QOSUNAVAIL

0x00010000

The call must not be connected or must be disconnected because
the minimum quality of service could not be obtained or sustained.
This differs from LINEDISCONNECTMODE_INCOMPATIBLE in that
the lack of resources can be a temporary condition at the
destination.

LINEDISCONNECTMODE_BLOCKED

0x00020000

The call must not be connected because calls from the origination
address are not being accepted at the destination address. This
differs from LINEDISCONNECTMODE_REJECT in that blocking is
implemented in the network (a passive reject) while a rejection
must be implemented in the destination equipment (an active
reject). The blocking can be due to a specific exclusion of the
origination address or because the destination accepts calls from

60 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

only a selected set of origination addresses (a closed user group).

LINEDISCONNECTMODE_BLOCKED must be appropriate as a
blacklisted response. For example, a modem must have received
an answer, gone more than six seconds without detecting
ringback, failed to connect a defined number of times, determined
that the phone number must not be valid to call, and issued a
"blacklisted" response.

LINEDISCONNECTMODE_DONOTDISTURB

0x00040000

The call must not be connected because the destination has
invoked the Do Not Disturb feature.

LINEDISCONNECTMODE_CANCELLED

0x00080000

The call was canceled.

A remote disconnect request for a particular call results in the call state transitioning to the
disconnected state, and a LINE_CALLSTATE packet MUST be sent to the application. The

LINEDISCONNECTMODE_Constants information provides details about the remote disconnect request.
It MUST be available in the LINECALLSTATUS packet of the call when the call is in the disconnected
state. While a call is in this state, the application MUST still be allowed to query the information and

status of the call. For example, user-user information that is received as part of the remote disconnect
MUST be available then. A disconnected call can be cleared by dropping the call.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use this LINEDISCONNECTMODE_Constants value if it is not
supported on the negotiated version (LINEDISCONNECTMODE_NORMAL or _UNKNOWN could be used
instead).

2.2.3.1.38 LINEERR_Constants

The LINEERR_Constants list error codes that TAPI can return when invoking operations on lines,
addresses, or calls. For more information about how to determine which of these error codes a

particular function can return, see the individual function descriptions.

Constant/value Description

LINEERR_ALLOCATED

0x80000001

The line cannot be opened because of a persistent condition, such as a
serial port that is opened exclusively by another process.

LINEERR_BADDEVICEID

0x80000002

The specified device identifier or line device identifier, such as in a
dwDeviceID parameter, is invalid or out of range.

LINEERR_BEARERMODEUNAVAIL

0x80000003

The bearer mode member in LINECALLPARAMS is invalid, the bearer

mode that is specified in LINECALLPARAMS is not available, or the call
bearer mode cannot be changed to the specified bearer mode.

LINEERR_CALLUNAVAIL

0x80000005

All call appearances on the specified address are currently in use.

LINEERR_COMPLETIONOVERRUN

0x80000006

The maximum number of outstanding call completions has been
exceeded.

LINEERR_CONFERENCEFULL

0x80000007

The maximum number of parties for a conference has been reached, or
the requested number of parties cannot be satisfied.

LINEERR_DIALBILLING

0x80000008

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

61 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEERR_DIALDIALTONE

0x80000009

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

LINEERR_DIALPROMPT

0x8000000A

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

LINEERR_DIALQUIET

0x8000000B

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

LINEERR_INCOMPATIBLEAPIVERSION

0x8000000C

The application requested a TAPI version or version range that is either
incompatible with, or cannot be supported by, the TAPI implementation
and the corresponding service provider.

LINEERR_INCOMPATIBLEEXTVERSION

0x8000000D

The application requested an extension version range that is either
invalid or cannot be supported by the corresponding service provider.

LINEERR_INIFILECORRUPT

0x8000000E

The Telephon.ini file cannot be read or understood properly by TAPI
because of internal inconsistencies or formatting problems. For example,
the [Locations], [Cards], or [Countries] section of the Telephon.ini file
can be corrupted or inconsistent.

LINEERR_INUSE

0x8000000F

The line device is in use and cannot currently be configured to allow a
party to be added, a call to be answered, a call to be placed, or a call to
be transferred.

LINEERR_INVALADDRESS

0x80000010

A specified address must be either invalid or not allowed. If invalid, the
address contains invalid characters or digits, or the destination address
contains dialing control characters (W, @, $, or?) that are not supported
by the service provider. If not allowed, the specified address is either
not assigned to the specified line or is not valid for address redirection.

LINEERR_INVALADDRESSID

0x80000011

The specified address identifier is either invalid or out of range.

LINEERR_INVALADDRESSMODE

0x80000012

The specified address mode must be invalid.

LINEERR_INVALADDRESSSTATE

0x80000013

The specified address state contains one or more bits that are not
LINEADDRESSSTATE_Constants.

LINEERR_INVALAPPHANDLE

0x80000014

The application handle (such as specified by a hLineApp parameter) or
the application registration handle is invalid.

LINEERR_INVALAPPNAME

0x80000015

The specified application name must be invalid. If an application name is
specified by the application, it is assumed that the string does not
contain any non-displayable characters and is zero-terminated.

LINEERR_INVALBEARERMODE

0x80000016

The specified bearer mode must be invalid.

LINEERR_INVALCALLCOMPLMODE

0x80000017

The specified completion must be invalid.

LINEERR_INVALCALLHANDLE

0x80000018

The specified call handle must be not valid. For example, the handle is
not NULL but does not belong to the particular line. In some cases, the
specified call device handle is invalid.

LINEERR_INVALCALLPARAMS

0x80000019

The specified call parameters must be invalid.

62 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEERR_INVALCALLPRIVILEGE

0x8000001A

The specified call privilege parameter must be invalid.

LINEERR_INVALCALLSELECT

0x8000001B

The specified select parameter must be invalid.

LINEERR_INVALCALLSTATE

0x8000001C

The current state of a call must not be in a valid state for the requested
operation.

LINEERR_INVALCALLSTATELIST

0x8000001D

The specified call state list must be invalid.

LINEERR_INVALCARD

0x8000001E

The permanent card identifier that is specified in dwCard could not be
found in any entry in the [Cards] section in the registry.

LINEERR_INVALCOMPLETIONID

0x8000001F

The completion identifier must be invalid.

LINEERR_INVALCONFCALLHANDLE

0x80000020

The specified call handle for the conference call must be invalid or is not
a handle for a conference call.

LINEERR_INVALCONSULTCALLHANDLE

0x80000021

The specified consultation call handle must be invalid.

LINEERR_INVALCOUNTRYCODE

0x80000022

The specified country code must be invalid.

LINEERR_INVALDEVICECLASS

0x80000023

The line device has no associated device for the indicated device class,
or the specified line must not support the indicated device class.

LINEERR_INVALDEVICEHANDLE

0x80000024

The line device handle must be invalid.

LINEERR_INVALDIALPARAMS

0x80000025

The dialing parameters must be invalid.

LINEERR_INVALDIGITLIST

0x80000026

The specified digit list must be invalid.

LINEERR_INVALDIGITMODE

0x80000027

The specified digit mode must be invalid.

LINEERR_INVALDIGITS

0x80000028

The specified termination digits must be invalid.

LINEERR_INVALEXTVERSION

0x80000029

The service provider extension version number must be invalid.

LINEERR_INVALGROUPID

0x8000002A

The specified group identifier must be invalid.

LINEERR_INVALLINEHANDLE

0x8000002B

The specified call, device, line device, or line handle must be invalid.

LINEERR_INVALLINESTATE

0x8000002C

The device configuration cannot be changed in the current line state.
The line can be in use by another application, or a dwLineStates
parameter contains one or more bits that are not

63 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEDEVSTATE_Constants. The LINEERR_INVALLINESTATE value can
also indicate that the device is disconnected or out of service. These
states are indicated by setting the bits that correspond to the
LINEDEVSTATUSFLAGS_CONNECTED and
LINEDEVSTATUSFLAGS_INSERVICE values to 0 in the dwDevStatusFlags
member of the LINEDEVSTATUS packet that is returned by the
GetLineDevStatus packet.

LINEERR_INVALLOCATION

0x8000002D

The permanent location identifier that is specified in dwLocation could
not be found in any entry in the [Locations] section in the registry.

LINEERR_INVALMEDIALIST

0x8000002E

The specified media list must be invalid.

LINEERR_INVALMEDIAMODE

0x8000002F

The list of media types (modes) to be monitored contains invalid
information, the specified media type parameter must be invalid, or the
service provider does not support the specified media type. The media
types that are supported on the line are listed in the dwMediaModes
member in the LINEDEVCAPS packet.

LINEERR_INVALMESSAGEID

0x80000030

The number that is specified in dwMessageID must be outside the range
that is specified by the dwNumCompletionMessages member in the
LINEADDRESSCAPS packet.

LINEERR_INVALPARAM

0x80000032

A parameter or packet that a parameter points to contains invalid
information; a country code is invalid; a window handle is invalid; or the
specified forward list parameter contains invalid information.

LINEERR_INVALPARKID

0x80000033

The park identifier must be invalid.

LINEERR_INVALPARKMODE

0x80000034

The specified park mode must be invalid.

LINEERR_INVALPOINTER

0x80000035

One or more of the specified pointer parameters (such as lpCallList,
lpdwAPIVersion, lpExtensionID, lpdwExtVersion, lphIcon, lpLineDevCaps,
and lpToneList) are invalid, or a required pointer to an output parameter
is NULL.

LINEERR_INVALPRIVSELECT

0x80000036

An invalid flag or combination of flags was set for the dwPrivileges
parameter.

LINEERR_INVALRATE

0x80000037

The specified rate must be invalid.

LINEERR_INVALREQUESTMODE

0x80000038

The LINEREQUESTMODE indicator is invalid.

LINEERR_INVALTERMINALID

0x80000039

The specified terminal identifier must be invalid.

LINEERR_INVALTERMINALMODE

0x8000003A

The specified terminal modes parameter must be invalid.

LINEERR_INVALTIMEOUT

0x8000003B

Time-outs are not supported or a value falls outside the valid range that
is specified in LINEDEVCAPS.

LINEERR_INVALTONE

0x8000003C

The specified custom tone does not represent a valid tone or is made up
of too many frequencies; or the specified tone packet does not describe
a valid tone.

64 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEERR_INVALTONELIST

0x8000003D

The specified tone list is invalid.

LINEERR_INVALTONEMODE

0x8000003E

The specified tone mode parameter must be invalid.

LINEERR_INVALTRANSFERMODE

0x8000003F

The specified transfer mode parameter must be invalid.

LINEERR_LINEMAPPERFAILED

0x80000040

LINEMAPPER was the value that was passed in the dwDeviceID
parameter; however, no lines were found that match the requirements
that are specified in the lpCallParams parameter.

LINEERR_NOCONFERENCE

0x80000041

The specified call must not be a conference call handle or a participant
call.

LINEERR_NODEVICE

0x80000042

The specified device identifier, which was previously valid, is no longer
accepted because the associated device has been removed from the
computer since TAPI was last initialized. Alternately, the line device has
no associated device for the particular device class.

LINEERR_NODRIVER

0x80000043

The telephone service provider for the specified device found that one of
its components is missing or corrupt in a way that was not detected at
initialization time. The user is advised to use the Telephony Control
Panel to correct the problem.

LINEERR_NOMEM

0x80000044

Insufficient memory to perform the operation, or unable to lock
memory.

LINEERR_NOREQUEST

0x80000045

No request is currently pending for the indicated mode, or the
application is no longer the highest-priority application for the specified
request mode.

LINEERR_NOTOWNER

0x80000046

The application does not have owner privileges to the specified call.

LINEERR_NOTREGISTERED

0x80000047

The application is not registered as a request recipient for the indicated
request mode.

LINEERR_OPERATIONFAILED

0x80000048

The operation failed for an unspecified or unknown reason.

LINEERR_OPERATIONUNAVAIL

0x80000049

The operation is not available, such as for the particular device or
specified line.

LINEERR_RATEUNAVAIL

0x8000004A

The service provider currently does not have enough bandwidth
available for the specified rate.

LINEERR_RESOURCEUNAVAIL

0x8000004B

Insufficient resources to complete the operation. For example, a line
cannot be opened because a dynamic resource is over committed.

LINEERR_REQUESTOVERRUN

0x8000004C

More requests are pending than the device can handle.

LINEERR_STRUCTURETOOSMALL

0x8000004D

The dwTotalSize member of a packet does not specify enough memory
to contain the fixed portion of the specified packet.

LINEERR_TARGETNOTFOUND A target for the call handoff was not found. This condition can occur if
the same line did not open with the LINECALLPRIVILEGE_OWNER bit in

65 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x8000004E the dwPrivileges parameter of the Open packet. Or in the case of media-
mode handoff, the same line was not opened with the
LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of the
Open packet and with the media type specified in the dwMediaMode
parameter having been specified in the dwMediaModes parameter of the
Open packet.

LINEERR_TARGETSELF

0x8000004F

The application invoking this operation must be the target of the indirect
handoff. That is, TAPI has determined that the calling application is also
the highest-priority application for the specified media type.

LINEERR_UNINITIALIZED

0x80000050

The operation was invoked before any application sends the Initialize
packet.

LINEERR_USERUSERINFOTOOBIG

0x80000051

The string that contains user-user information exceeds the maximum
number of bytes that is specified in the dwUUIAcceptSize,
dwUUIAnswerSize, dwUUIDropSize, dwUUIMakeCallSize, or
dwUUISendUserUserInfoSize member of LINEDEVCAPS; or the string
that contains user-user information is too long.

LINEERR_REINIT

0x80000052

If TAPI re-initialization has been requested (for example, because of
adding or removing a telephony service provider), the Initialize packet
and the Open packet requests are rejected by using this error until the
last application shuts down its usage of the TAPI by using the Shutdown
packet; at which time, the new configuration becomes effective, and
applications are again permitted to send the Initialize packet.

LINEERR_ADDRESSBLOCKED

0x80000053

The address is blocked.

LINEERR_BILLINGREJECTED

0x80000054

The billing mode of the call was rejected.

LINEERR_INVALFEATURE

0x80000055

The application invoked a feature that is not available on this line.

LINEERR_NOMULTIPLEINSTANCE

0x80000056

A telephony service provider that does not support multiple instances is
listed more than once in the [Providers] section in the registry. The
application advises the user to use the Telephony Control Panel to
remove the duplicate driver.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEERR_INVALAGENTID

0x80000057

An invalid agent identifier was used.

LINEERR_INVALAGENTGROUP

0x80000058

The application referenced an agent group that is not valid.

LINEERR_INVALPASSWORD

0x80000059

The application used an invalid password.

LINEERR_INVALAGENTSTATE

0x8000005A

The application referenced an agent state that is not valid.

LINEERR_INVALAGENTACTIVITY

0x8000005B

The specified agent activity is not valid.

66 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEERR_DIALVOICEDETECT

0x8000005C

Use of the dial modifier (:) is not supported.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEERR_USERCANCELLED

0x8000005D

The user canceled the call.

LINEERR_INVALAGENTSESSIONSTATE

0x8000005F

The agent session state is invalid.

LINEERR_DISCONNECTED

0X80000060

The call has been disconnected.

LINEERR_SERVICE_not_RUNNING

0X80000061

The service must not be running.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value Description

LINEERR_INVALADDRESSTYPE

0x8000005E

The application referenced an address type that must not be valid.

If an unknown error is returned, such as an error that is defined by a device-specific extension, it
SHOULD be treated as a LINEERR_OPERATIONFAILED (for an unspecified reason).

2.2.3.1.39 LINEFEATURE_Constants

The LINEFEATURE_Constants are bit-flag constants that list the operations that can be invoked on a
line.

Constant/value Description

LINEFEATURE_DEVSPECIFIC

0x00000001

Device-specific operations can be used on the line.

LINEFEATURE_DEVSPECIFICFEAT

0x00000002

Device-specific features can be used on the line.

LINEFEATURE_FORWARD

0x00000004

Forwarding of all addresses can be used on the line.

LINEFEATURE_MAKECALL

0x00000008

An outgoing call can be placed on this line using an unspecified address.

LINEFEATURE_SETMEDIACONTROL

0x00000010

Media control can be set on this line.

LINEFEATURE_SETTERMINAL

0x00000020

Terminal modes for this line can be set.

Note If neither of the new modified "FORWARD" bits is set in the
dwLineFeatures member in LINEDEVSTATUS, but the
LINEFEATURE_FORWARD bit is set, any of the forward modes can work; the

67 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

service provider has simply not specified which ones.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEFEATURE_SETDEVSTATUS

0x00000040

The SetLineDevStatus packet can be invoked on the line device.

LINEFEATURE_FORWARDFWD

0x00000080

The Forward packet can be used to forward calls on all addresses on the line to
other numbers. LINEFEATURE_FORWARD will also be set.

LINEFEATURE_FORWARDDND

0x00000100

The Forward packet (with an empty destination address) can be used to turn on
the Do Not Disturb feature on all addresses on the line.
LINEFEATURE_FORWARD will also be set.

The LINEFEATURE_Constants are used in LINEDEVSTATUS (returned by the GetLineDevStatus
packet). LINEDEVSTATUS reports, for a particular line, which line features can actually be invoked
while the line is in the current state. An application would make this determination dynamically after
line state changes, which are typically caused by address or call-related activities on the line.

2.2.3.1.40 LINEFORWARDMODE_Constants

The LINEFORWARDMODE_Constants are bit-flag constants that describe the conditions under which
calls to an address can be forwarded.

Constant/value Description

LINEFORWARDMODE_UNCOND

0x00000001

Forward all calls unconditionally, regardless of their origin. Use this

value when unconditional forwarding for internal and external calls
cannot be controlled separately. Unconditional forwarding overrides
forwarding on "busy" or "no answer" conditions.

LINEFORWARDMODE_UNCONDINTERNAL

0x00000002

Forward all internal calls unconditionally. Use this value when
unconditional forwarding for internal and external calls can be
controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

0x00000004

Forward all external calls unconditionally. Use this value when
unconditional forwarding for internal and external calls can be
controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

0x00000008

Forward all calls unconditionally if they originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_BUSY

0x00000010

Forward all calls on "busy", regardless of their origin. Use this value
when forwarding for internal and external calls on "busy" cannot be
controlled separately.

LINEFORWARDMODE_BUSYINTERNAL

0x00000020

Forward all internal calls on "busy". Use this value when forwarding
for internal and external calls on "busy" can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL

0x00000040

Forward all external calls on "busy". Use this value when forwarding
for internal and external calls on "busy" can be controlled separately.

LINEFORWARDMODE_BUSYSPECIFIC

0x00000080

Forward on "busy" all calls that originated at a specified address
(selective call forwarding).

LINEFORWARDMODE_NOANSW Forward all calls on "no answer", regardless of their origin. Use this

68 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000100 value when call forwarding for internal and external calls on "no
answer" cannot be controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL

0x00000200

Forward all internal calls on "no answer". Use this value when
forwarding for internal and external calls on "no answer" can be
controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

0x00000400

Forward all external calls on "no answer". Use this value when
forwarding for internal and external calls on "no answer" can be
controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

0x00000800

Forward on "no answer" all calls that originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_BUSYNA

0x00001000

Forward all calls on "busy" or "no answer", regardless of their origin.
Use this value when forwarding for internal and external calls on
"busy" and on "no answer" cannot be controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

0x00002000

Forward all internal calls on "busy" or "no answer". Use this value
when call forwarding on "busy" and on "no answer" cannot be
controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

0x00004000

Forward all external calls on "busy" and "no answer". Use this value
when call forwarding on "busy" and on "no answer" cannot be
controlled separately for external calls.

LINEFORWARDMODE_BUSYNASPECIFIC

0x00008000

Forward on "busy" and "no answer" all calls that originated at a
specified address (selective call forwarding).

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEFORWARDMODE_UNKNOWN

0x00010000

Calls are forwarded, but the conditions under which forwarding will occur are
not now known. It is possible that the conditions can become known at a
future time.

LINEFORWARDMODE_UNAVAIL

0x00020000

Calls are forwarded, but the conditions under which forwarding will occur are
not known and will never be known by the service provider.

The bit flags that are defined by LINEFORWARDMODE_Constants are not orthogonal. Unconditional
forwarding ignores any specific condition, such as "busy" or "no answer". If unconditional forwarding is
not in effect, forwarding on "busy" and on "no answer" can be controlled separately or not separately.

If controlled separately, the LINEFORWARDMODE_BUSY and LINEFORWARDMODE_NOANSW flags can
be used separately. If not controlled separately, the flag LINEFORWARDMODE_BUSYNA MUST be
used. Similarly, if forwarding of internal and external calls can be controlled separately, the
LINEFORWARDMODE_INTERNAL and LINEFORWARDMODE_EXTERNAL flags can be used separately;
otherwise, the combination is used.

Address capabilities indicate which forwarding modes are available for each address that is assigned to
a line. An application can use the Forward packet to set forwarding conditions at the switch.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use these LINEFORWARDMODE_Constants values if the negotiated
version does not support them.

2.2.3.1.41 LINEGATHERTERM_Constants

69 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The LINEGATHERTERM_Constants are bit-flag constants that describe the conditions under which
buffered digit gathering is terminated.

Constant/value Description

LINEGATHERTERM_BUFFERFULL

0x00000001

The requested number of digits has been gathered. The buffer is full.

LINEGATHERTERM_TERMDIGIT

0x00000002

One of the termination digits matched a received digit. The matched
termination digit is the last digit in the buffer.

LINEGATHERTERM_FIRSTTIMEOUT

0x00000004

The first digit time-out expired. The buffer contains no digits.

LINEGATHERTERM_INTERTIMEOUT

0x00000008

The interdigit time-out expired. The buffer contains at least one digit.

LINEGATHERTERM_CANCEL

0x00000010

The request was canceled by this application, by another application, or
because the call was terminated.

2.2.3.1.42 LINEGENERATETERM_Constants

The LINEGENERATETERM_Constants are bit-flag constants that describe the conditions under which
digit or tone generation is terminated.

Constant/value Description

LINEGENERATETERM_DONE

0x00000001

The requested number of digits or requested tones must have been generated
for the requested duration.

LINEGENERATETERM_CANCEL

0x00000002

The digit or tone generation request was canceled by this application, by another
application, or because the call was terminated. This value can also be returned
when digit or tone generation cannot be completed due to internal failure of the
service provider.

2.2.3.1.43 LINEMEDIACONTROL_Constants

The LINEMEDIACONTROL_Constants are bit-flag constants that describe a set of generic operations on
media streams. The interpretations are determined by the media stream. The line device MUST have
the media-control capability for any media-control operation to be effective.

Constant/value Description

LINEMEDIACONTROL_NONE

0x00000001

No change is to be made to the media stream.

LINEMEDIACONTROL_START

0x00000002

Start the media stream.

LINEMEDIACONTROL_RESET

0x00000004

Reset the media stream. Equivalent to an end-of-input stream. All
buffers are released.

LINEMEDIACONTROL_PAUSE

0x00000008

Temporarily pause the media stream.

The speed of the media stream must be returned to normal.

70 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEMEDIACONTROL_RESUME

0x00000010

Resume a paused media stream.

LINEMEDIACONTROL_RATEUP

0x00000020

The speed of the media stream must be increased by some stream-
defined quantity.

LINEMEDIACONTROL_RATEDOWN

0x00000040

The speed of the media stream must be decreased by some stream-
defined quantity.

LINEMEDIACONTROL_RATENORMAL

0x00000080

The speed of the media stream must be returned to normal.

LINEMEDIACONTROL_VOLUMEUP

0x00000100

The amplitude of the media stream must be increased by some stream-
defined quantity.

LINEMEDIACONTROL_VOLUMEDOWN

0x00000200

The amplitude of the media stream must be decreased by some

stream-defined quantity.

LINEMEDIACONTROL_VOLUMENORMAL

0x00000400

The amplitude of the media stream must be returned to normal.

Media control is provided to improve performance of actions on media streams in response to
telephony-related events.

Media-control actions can be associated with the detection of digits, the detection of tones, the

transition into a call state, and the detection of a media type. Consult the device capabilities of a line
to determine whether media control is available on the line.

2.2.3.1.44 LINEMEDIAMODE_Constants

The LINEMEDIAMODE_Constants are bit-flag constants that describe media types (or modes) of a

communications session or call.

Constant/value Description

LINEMEDIAMODE_UNKNOWN

0x00000002

A media stream exists but its mode is not currently known and can
become known later. This condition would correspond to a call with an
unclassified media type. In typical analog telephony environments, the
media type of an incoming call can be unknown until after the call has
been answered and the media stream has been filtered to make a
determination.

If the unknown media-mode flag is set, other media flags can also be
set. This flag is used to signify that the media is unknown but that it is
likely to be one of the other selected media types.

LINEMEDIAMODE_INTERACTIVEVOICE

0x00000004

Voice energy was detected on the call, and the call is handled as an
interactive voice call with humans on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE

0x00000008

Voice energy was detected on the call, and the voice is locally handled
by an automated application, such as with an answering machine
application. When a service provider cannot distinguish between
interactive and automated voice on an incoming call, it will report the
call as interactive voice.

LINEMEDIAMODE_DATAMODEM

0x00000010

A data modem session on the call. Current modem protocols require the
called station to initiate the handshake. For an incoming data modem
call, the application can typically make no positive detection. How the

service provider makes this determination is its choice. For example, a

71 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

period of silence just after answering an incoming call can be used as a
heuristic to decide that this call might be a data modem call.

LINEMEDIAMODE_G3FAX

0x00000020

A group 3 fax is being sent or received over the call.

LINEMEDIAMODE_TDD

0x00000040

A Telephony Devices for the Deaf (TDD) session on the call.

LINEMEDIAMODE_G4FAX

0x00000080

A group 4 fax is being sent or received over the call.

LINEMEDIAMODE_DIGITALDATA

0x00000100

A digital data stream of unspecified format.

LINEMEDIAMODE_TELETEX

0x00000200

A teletex session on the call. Teletex is one of the telematic services.

LINEMEDIAMODE_VIDEOTEX

0x00000400

A videotex session on the call. Videotex is one the telematic services.

LINEMEDIAMODE_TELEX

0x00000800

A telex session on the call. Telex is one of the telematic services.

LINEMEDIAMODE_MIXED

0x00001000

A mixed session on the call. Mixed is one of the ISDN telematic services.

LINEMEDIAMODE_ADSI

0x00002000

An ADSI session on the call. ADSI enhances voice calls with
alphanumeric information that is downloaded to the phone and with the
use of soft buttons on the phone.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEMEDIAMODE_VOICEVIEW

0x00004000

The media type of the call must be VoiceView.

The following constants are present in TAPI versions 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEMEDIAMODE_VIDEO

0x00008000

The media type of the call must be video.

Note that bearer mode and media type are different notions. The bearer mode of a call is an indication

of the quality of the telephone connection, as provided primarily by the network. The media type of a
call is an indication of the type of information stream that is exchanged over that call. Group 3 fax or
data modem are media types that use a call with a 3.1-kHz voice bearer mode.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use this LINEMEDIAMODE_Constants value if it is not supported on
the negotiated version.

2.2.3.1.45 LINEOFFERINGMODE_Constants

72 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The LINEOFFERINGMODE_Constants are bit-flag constants that describe different substates of an
offering call. A mode is available as call status after the call state transitions to offering, and within the

LINE_CALLSTATE packet, indicating that the call is in LINECALLSTATE_OFFERING, as specified in
section 2.2.3.1.29. These values are used when the call is on an address that is shared (bridged) with

other stations, primarily electronic key systems.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEOFFERINGMODE_ACTIVE

0x00000001

Indicates that the call is alerting at the current station (will be accompanied by
LINEDEVSTATE_RINGING packets), and if any application is set to
automatically answer, it can do so. If the call state mode is zero, the
application assumes that the value is active (which would be the situation on a
non-bridged address).

LINEOFFERINGMODE_INACTIVE

0x00000002

Indicates that the call is being offered at more than one station; however, the
current station is not alerting (for example, it can be an attendant station
where the offering status is advisory, such as blinking a light). It is preferable
that software at the station that is set for automatic answering not answer the
call because answering is to be the prerogative of the primary (alerting)
station; however, the Answer packet can be used to connect the call.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and not to use these LINEOFFERINGMODE_Constants values if they are not

supported on the negotiated version.

The LINEOFFERINGMODE_ACTIVE and LINEOFFERINGMODE_INACTIVE values are used when the call
is on an address that is shared with other stations, primarily electronic key systems. (For more
information about bridged addressing, see LINEADDRESSSHARING_Constants.) If the offering call
state mode is "active", the call is alerting at the current station (it will be accompanied by
LINEDEVSTATE_RINGING packets), and if any application is set up to automatically answer, it can do

so. If the call state mode is "inactive", the call is being offered at more than one station; however, the
current station is not alerting (for example, it can be an attendant station where the offering status is

advisory, such as blinking a light).

Software at the station that is set for automatic answering SHOULD preferably not answer the call
because this SHOULD be the prerogative of the primary (alerting) station; however, the Answer
packet can be used to connect the call. If the call state mode is 0, the application SHOULD assume
that the value is active (which would be the situation on a non-bridged address).

2.2.3.1.46 LINEOPENOPTION_Constants

The LINEOPENOPTION_Constants list the available options for opening a line.

Constant/value Description

LINEOPENOPTION_SINGLEADDRESS

0x80000000

The application must be informed of new calls that are created on the line
device only if those calls appear on the address that is specified in the
dwAddressID member in the LINECALLPARAMS packet that is pointed to
by the lpCallParams parameter.

LINEOPENOPTION_PROXY

0x40000000

The application is willing to handle requests from other applications that
have the line open.

2.2.3.1.47 LINEPARKMODE_Constants

The LINEPARKMODE_Constants are bit-flag constants that describe different ways of parking calls.

73 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEPARKMODE_DIRECTED

0x00000001

Specifies directed call park. The address where the call is to be parked must be
supplied to the switch.

LINEPARKMODE_NONDIRECTED

0x00000002

Specifies a non-directed call park. The address where the call is parked is
selected by a switch and provided by the switch to the application.

The LINEPARKMODE_Constants are used when parking a call. To find out which park mode is
available, consult the address device capabilities of a line.

2.2.3.1.48 LINEPROXYREQUEST_Constants

The LINEPROXYREQUEST_Constants are used in two contexts. First, to indicate which functions the
application is willing to handle. The constants can be used in an array of DWORD values in the
LINECALLPARAMS structure that is passed in with the Open packet when the
LINEOPENOPTION_PROXY option is specified. Second, to indicate the type of request that is to be

processed and the format of the data in the packet. The constants are used in the

LINE_PROXYREQUEST that is passed to the handler application by a LINE_PROXYREQUEST packet.

Constant/value Description

LINEPROXYREQUEST_SETAGENTGROUP

0x00000001

Associated with the SetAgentGroup packet.

LINEPROXYREQUEST_SETAGENTSTATE

0x00000002

Associated with the SetAgentState packet.

LINEPROXYREQUEST_SETAGENTACTIVITY

0x00000003

Associated with the SetAgentActivity packet.

LINEPROXYREQUEST_GETAGENTCAPS

0x00000004

Associated with the GetAgentCaps packet.

LINEPROXYREQUEST_GETAGENTSTATUS

0x00000005

Associated with the GetAgentStatus packet.

LINEPROXYREQUEST_AGENTSPECIFIC

0x00000006

Associated with the AgentSpecific packet.

LINEPROXYREQUEST_GETAGENTACTIVITYLIST

0x00000007

Associated with the GetAgentActivityList packet.

LINEPROXYREQUEST_GETAGENTGROUPLIST

0x00000008

Associated with the GetAgentGroupList packet.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1:

Constant/value Description

LINEPROXYREQUEST_CREATEAGENT

0x00000009

Associated with the CreateAgent packet.

LINEPROXYREQUEST_SETAGENTMEASUREMENTPERIOD

0x0000000A

Associated with the SetAgentMeasurementPeriod
packet.

LINEPROXYREQUEST_GETAGENTINFO Associated with the GetAgentInfo packet.

74 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x0000000B

LINEPROXYREQUEST_CREATEAGENTSESSION

0x0000000C

Associated with the CreateAgentSession packet.

LINEPROXYREQUEST_GETAGENTSESSIONLIST

0x0000000D

Associated with the GetAgentSessionList packet.

LINEPROXYREQUEST_SETAGENTSESSIONSTATE

0x0000000E

Associated with the SetAgentSessionState packet.

LINEPROXYREQUEST_GETAGENTSESSIONINFO

0x0000000F

Associated with the GetAgentSessionInfo packet.

LINEPROXYREQUEST_GETQUEUELIST

0x00000010

Associated with the GetQueueList packet.

LINEPROXYREQUEST_SETQUEUEMEASUREMENTPERIOD

0x00000011

Associated with the SetQueueMeasurementPeriod
packet.

LINEPROXYREQUEST_GETQUEUEINFO

0x00000012

Associated with the GetQueueInfo packet.

LINEPROXYREQUEST_GETGROUPLIST

0x00000013

Associated with the GetGroupList packet.

LINEPROXYREQUEST_SETAGENTSTATEEX

0x00000014

Associated with the SetAgentStateEx packet.

2.2.3.1.49 LINEPROXYSTATUS_Constants

The LINEPROXYSTATUS_Constants are bit-flag constants that indicate the status of the proxy on a line
that is currently open.

See LINEPROXYREQUEST_Constants for a list and description of all possible proxy request values.

Constant/value Description

LINEPROXYSTATUS_OPEN

0x00000001

A new proxy connection has been opened.

LINEPROXYSTATUS_CLOSE

0x00000002

A proxy connection has closed.

LINEPROXYSTATUS_ALLOPENFORACD

0x00000004

The line now has proxies that are open for all the proxy request types
that are required for ACD operations by TAPI versions 3.0 and 3.1.

2.2.3.1.50 LINEQUEUESTATUS_Constants

The LINEQUEUESTATUS_Constants are bit-flag constants that indicate the change in status of an ACD
queue on an agent handler.

75 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINEQUEUESTATUS_UPDATEINFO

0x00000001

Update of information about the ACD queue on an agent handler.

LINEQUEUESTATUS_NEWQUEUE

0x00000002

A queue has been added to those that are available.

LINEQUEUESTATUS_QUEUEREMOVED

0x00000004

The queue has been removed from those that are available.

2.2.3.1.51 LINEREMOVEFROMCONF_Constants

The LINEREMOVEFROMCONF_Constants are scalar constants that describe how parties that participate
in a conference call can be removed from a conference call.

Constant/value Description

LINEREMOVEFROMCONF_NONE

0x00000001

Parties cannot be removed from the conference call.

LINEREMOVEFROMCONF_LAST

0x00000002

Only the most recently added party can be removed from the conference call.

LINEREMOVEFROMCONF_ANY

0x00000003

Any participating party can be removed from the conference call.

2.2.3.1.52 LINEROAMMODE_Constants

The LINEROAMMODE_Constants are bit-flag constants that describe the roaming status of a line

device.

Constant/value Description

LINEROAMMODE_UNKNOWN

0x00000001

The roam mode is currently unknown but can become known later.

LINEROAMMODE_UNAVAIL

0x00000002

The roam mode is unavailable and will not be known.

LINEROAMMODE_HOME

0x00000004

The line is connected to the home network node.

LINEROAMMODE_ROAMA

0x00000008

The line is connected to the Roam-A carrier and calls are charged accordingly.

LINEROAMMODE_ROAMB

0x00000010

The line is connected to the Roam-B carrier and calls are charged accordingly.

2.2.3.1.53 LINESPECIALINFO_Constants

76 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The LINESPECIALINFO_Constants are bit-flag constants that describes special information signals that
the network can use to report various reporting and network observation operations. They are

specially coded tone sequences that are transmitted at the beginning of network advisory recorded
announcements.

Constant/value Description

LINESPECIALINFO_NOCIRCUIT

0x00000001

This special information tone precedes a "no circuit" or emergency
announcement (trunk blockage category).

LINESPECIALINFO_CUSTIRREG

0x00000002

This special information tone precedes a vacant number; Application
Information Service (AIS); Centrex number change and nonworking station;
access code not dialed or dialed in error; or manual intercept operator packet
(customer irregularity category). LINESPECIALINFO_CUSTIRREG is also
reported when the billing information is rejected and when the dialed address is
blocked at the switch.

LINESPECIALINFO_REORDER

0x00000004

This special information tone precedes a reorder announcement (equipment
irregularity category). LINESPECIALINFO_REORDER is also reported when the
telephone is kept off the hook for too long.

LINESPECIALINFO_UNKNOWN

0x00000008

Specifics about the special information tone are currently unknown but can
become known later.

LINESPECIALINFO_UNAVAIL

0x00000010

Specifics about the special information tone are unavailable and will not become
known.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are
reserved.

Special information tones are defined for advisory packets and are not typically used for billing or

supervisory purpose.

2.2.3.1.54 LINETERMDEV_Constants

The LINETERMDEV_Constants are bit-flag constants that describe different types of terminal devices.

Constant/value Description

LINETERMDEV_PHONE

0x00000001

The terminal must be a phone set.

LINETERMDEV_HEADSET

0x00000002

The terminal must be a headset.

LINETERMDEV_SPEAKER

0x00000004

The terminal must be an external speaker and microphone.

These constants are used to characterize the terminal device of a line and to help an application to

determine the nature of a terminal device.

2.2.3.1.55 LINETERMMODE_Constants

The LINETERMMODE_Constants are bit-flag constants that describe different types of events on a

phone line that can be routed to a terminal device.

77 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINETERMMODE_BUTTONS

0x00000001

These are button-press events that are sent from the terminal to the line.

LINETERMMODE_LAMPS

0x00000002

These are lamp events that are sent from the line to the terminal.

LINETERMMODE_DISPLAY

0x00000004

This is display information that is sent from the line to the terminal.

LINETERMMODE_RINGER

0x00000008

This is ringer-control information that is sent from the switch to the
terminal.

LINETERMMODE_HOOKSWITCH

0x00000010

These are hookswitch events that are sent from the terminal to the line.

LINETERMMODE_MEDIATOLINE

0x00000020

This is the unidirectional media stream from the terminal to the line that is

associated with a call on the line. Use this value when the routing of both
unidirectional channels of a call's media stream can be controlled
independently.

LINETERMMODE_MEDIAFROMLINE

0x00000040

This is the unidirectional media stream from the line to the terminal that is
associated with a call on the line. Use this value when the routing of both
unidirectional channels of a call's media stream can be controlled
independently.

LINETERMMODE_MEDIABIDIRECT

0x00000080

This is the bidirectional media stream that is associated with a call on the
line and the terminal. Use this value when the routing of both unidirectional
channels of a call's media stream cannot be controlled independently.

These constants describe the classes of control and information streams that can be routed directly
between a line device and a terminal device (such as a phone set).

2.2.3.1.56 LINETERMSHARING_Constants

The LINETERMSHARING_Constants are bit-flag constants that describe different ways in which a
terminal can be shared between line devices, addresses, or calls.

Constant/value Description

LINETERMSHARING_PRIVATE

0x00000001

The terminal device is private to a single line device.

LINETERMSHARING_SHAREDEXCL

0x00000002

The terminal device can be used by multiple lines. The last line device to do
a SetTerminal packet to the terminal for a particular terminal mode will
have exclusive connection to the terminal for that mode.

LINETERMSHARING_SHAREDCONF

0x00000004

The terminal device can be used by multiple lines. The SetTerminal packet
requests of the various terminals end up being merged or conferenced at
the terminal.

These constants describe the classes of control and information streams that can be routed directly
between a line device and a terminal device (such as a phone set).

2.2.3.1.57 LINETONEMODE_Constants

The LINETONEMODE_Constants are bit-flag constants that describe different selections that are used
when generating line tones.

78 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

LINETONEMODE_CUSTOM

0x00000001

The tone is a custom tone that is defined by its component frequencies, of type
LINEGENERATETONE.

LINETONEMODE_RINGBACK

0x00000002

The tone is a ringback tone. The exact definition is service-provider defined.

LINETONEMODE_BUSY

0x00000004

The tone is a busy tone. The exact definition is service-provider defined.

LINETONEMODE_BEEP

0x00000008

The tone is a beep, such as the beep that is used to announce the beginning of a
recording. The exact definition is service-provider defined.

LINETONEMODE_BILLING

0x00000010

The tone is a billing information tone, such as a credit card prompt tone. The exact
definition is service-provider defined.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are

reserved.

These constants are used to define tones to be generated inband over a call to the remote party. Note
that tone detection of non-custom tones does not use these constants.

2.2.3.1.58 LINETRANSFERMODE_Constants

The LINETRANSFERMODE_Constants describe different ways of resolving call transfer requests.

Constant/value Description

LINETRANSFERMODE_TRANSFER

0x00000001

The transfer must be resolved by transferring the initial call to the
consultation call. Both calls will become idle to the application.

LINETRANSFERMODE_CONFERENCE

0x00000002

The transfer must be resolved by establishing a three-way conference
between the application, the party connected to the initial call, and the
party connected to the consultation call. A conference call is created when
this option is selected.

2.2.3.2 Phone Device Constants

The constants in the following sections specify bitmasks for phone device requests.

2.2.3.2.1 PHONEBUTTONFUNCTION_Constants

The PHONEBUTTONFUNCTION_Constants are scalar constants that describe the functions that are
commonly assigned to buttons on telephone sets.

Constant/value Description

PHONEBUTTONFUNCTION_UNKNOWN

0x00000000

A "dummy" function assignment that indicates that the exact
function of the button is unknown or has not been assigned.

PHONEBUTTONFUNCTION_CONFERENCE

0x00000001

Initiates a conference call or adds a call to a conference call.

PHONEBUTTONFUNCTION_TRANSFER Initiates a call transfer or completes the transfer of a call.

79 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000002

PHONEBUTTONFUNCTION_DROP

0x00000003

Drops the active call.

PHONEBUTTONFUNCTION_HOLD

0x00000004

Places the active call on hold.

PHONEBUTTONFUNCTION_RECALL

0x00000005

Unholds a call.

PHONEBUTTONFUNCTION_DISCONNECT

0x00000006

Disconnects a call, such as after initiating a transfer.

PHONEBUTTONFUNCTION_CONNECT

0x00000007

Reconnects a call that is on consultation hold.

PHONEBUTTONFUNCTION_MSGWAITON

0x00000008

Turns on a packet-waiting lamp.

PHONEBUTTONFUNCTION_MSGWAITOFF

0x00000009

Turns off a packet-waiting lamp.

PHONEBUTTONFUNCTION_SELECTRING

0x0000000A

Allows the user to select the ring pattern of the phone.

PHONEBUTTONFUNCTION_ABBREVDIAL

0x0000000B

Indicates the number to be dialed by using a short, abbreviated
number that consists of one digit or a few digits.

PHONEBUTTONFUNCTION_FORWARD

0x0000000C

Initiates or changes call forwarding to this phone.

PHONEBUTTONFUNCTION_PICKUP

0x0000000D

Picks up a call ringing on another phone.

PHONEBUTTONFUNCTION_RINGAGAIN

0x0000000E

Initiates a request to be notified if a call cannot be completed
normally because of a busy signal or no answer.

PHONEBUTTONFUNCTION_PARK

0x0000000F

Parks the active call on another phone, placing it on hold there.

PHONEBUTTONFUNCTION_REJECT

0x00000010

Rejects an incoming call before the call is answered.

PHONEBUTTONFUNCTION_REDIRECT

0x00000011

Redirects an incoming call to another extension before the call is
answered.

PHONEBUTTONFUNCTION_MUTE

0x00000012

Mutes the microphone device on a phone.

PHONEBUTTONFUNCTION_VOLUMEUP

0x00000013

Increases the volume of audio through the handset speaker or
speaker phone of the phone.

PHONEBUTTONFUNCTION_VOLUMEDOWN

0x00000014

Decreases the volume of audio through the handset speaker or
speaker phone of the phone.

PHONEBUTTONFUNCTION_SPEAKERON Turns on the external speaker of the phone.

80 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00000015

PHONEBUTTONFUNCTION_SPEAKEROFF

0x00000016

Turns off the external speaker of the phone.

PHONEBUTTONFUNCTION_FLASH

0x00000017

Generates the equivalent of an on-the-hook/off-the-hook sequence.
A flash typically indicates that any digits that are typed next are to
be understood as commands to the switch. On many switches,
places an active call on consultation hold.

PHONEBUTTONFUNCTION_DATAON

0x00000018

Indicates that the next call is a data call.

PHONEBUTTONFUNCTION_DATAOFF

0x00000019

Indicates that the next call is not a data call.

PHONEBUTTONFUNCTION_DONOTDISTURB

0x0000001A

Places the phone in "do not disturb" mode; incoming calls receive a
busy signal or are forwarded to an operator or voice mail system.

PHONEBUTTONFUNCTION_INTERCOM

0x0000001B

Connects to the intercom to broadcast a page.

PHONEBUTTONFUNCTION_BRIDGEDAPP

0x0000001C

Selects a particular appearance of a bridged address.

PHONEBUTTONFUNCTION_BUSY

0x0000001D

Makes the phone appear busy to incoming calls.

PHONEBUTTONFUNCTION_CALLAPP

0x0000001E

Selects a particular call appearance.

PHONEBUTTONFUNCTION_DATETIME

0x0000001F

Causes the phone to display the current date and time; this
information is sent by the switch.

PHONEBUTTONFUNCTION_DIRECTORY

0x00000020

Calls up directory service from the switch.

PHONEBUTTONFUNCTION_COVER

0x00000021

Forwards all calls that are destined for this phone to another phone
that is used for coverage.

PHONEBUTTONFUNCTION_CALLID

0x00000022

Requests the display of caller ID on the phone display.

PHONEBUTTONFUNCTION_LASTNUM

0x00000023

Redials the last number that was dialed.

PHONEBUTTONFUNCTION_NIGHTSRV

0x00000024

Places the phone in the mode it is configured for during night
hours.

PHONEBUTTONFUNCTION_SENDCALLS

0x00000025

Sends all calls to another phone that is used for coverage (same as
PHONEBUTTONFUNCTION_COVER).

PHONEBUTTONFUNCTION_MSGINDICATOR

0x00000026

Controls the packet-indicator lamp.

PHONEBUTTONFUNCTION_REPDIAL

0x00000027

Provides repertory dialing of the number to be dialed as a
shorthand following the pressing of this button.

81 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

PHONEBUTTONFUNCTION_SETREPDIAL

0x00000028

Programs the shorthand-to-phone number mappings that are
accessible by means of repertory dialing (the REPDIAL button).

PHONEBUTTONFUNCTION_SYSTEMSPEED

0x00000029

Provides the number to be dialed as a shorthand following the
pressing of this button. The mappings for telephony system speed
dialing are configured inside the switch.

PHONEBUTTONFUNCTION_STATIONSPEED

0x0000002A

Provides the number to be dialed as a shorthand following the
pressing of this button. The mappings for station speed dialing are
specific to this station (phone).

PHONEBUTTONFUNCTION_CAMPON

0x0000002B

Camps-on an extension that returns a busy indication. When the
remote station returns to idle, the phone is rung with a distinctive
pattern. Picking up the local phone reinitiates the call.

PHONEBUTTONFUNCTION_SAVEREPEAT

0x0000002C

When pressed while a call or call attempt is active, remembers that
call's number or command. When pressed while no call is active
(such as during dial tone), it repeats the most saved command.

PHONEBUTTONFUNCTION_QUEUECALL

0x0000002D

Queues a call to an outside number after it encounters a trunk-
busy indication. When a trunk becomes available later, the phone
rings with a distinctive pattern. Picking up the local phone
reinitiates the call.

PHONEBUTTONFUNCTION_NONE

0x0000002E

A "dummy" function assignment that indicates that the button does
not have a function.

The following constants are present in TAPI version 3.1.

Constant/value Description

PHONEBUTTONFUNCTION_SEND

0x0000002F

Sends a request for a communications session.

Values in the range 0x80000000 to 0xFFFFFFFF can be assigned for device-specific extensions. Values
in the range 0x00000000 to 0x7FFFFFFF are reserved.

The PHONEBUTTONFUNCTION_Constants have values that are commonly found on current telephone
sets. TAPI does not define the semantics of the button functions; it only provides access to the
corresponding function. The behavior that is associated with each of the preceding function values is
generic and can vary based on the telephony environment.

2.2.3.2.2 PHONEBUTTONMODE_Constants

The PHONEBUTTONMODE_Constants are bit-flag constants that describe the button classes.

Constant/value Description

PHONEBUTTONMODE_DUMMY

0x00000001

This value is used to describe a button/lamp position that has no corresponding
button but has only a lamp.

PHONEBUTTONMODE_CALL

0x00000002

The button must be assigned to a call appearance.

PHONEBUTTONMODE_FEATURE

0x00000004

The button must be assigned to requesting features from the switch, such as
hold, conference, and transfer.

82 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

PHONEBUTTONMODE_KEYPAD

0x00000008

The button must be one of the twelve keypad buttons, that is, "0" through "9",
"*", or "#".

PHONEBUTTONMODE_LOCAL

0x00000010

The button must be a local function button, such as mute or volume control.

PHONEBUTTONMODE_DISPLAY

0x00000020

The button must be a "soft" button that is associated with the phone display. A
phone set can have zero or more display buttons.

This enumeration type is used in the PHONECAPS data packet to describe the meaning that is
associated with the buttons of the phone.

2.2.3.2.3 PHONEBUTTONSTATE_Constants

The PHONEBUTTONSTATE_Constants are bit-flag constants that describe the button positions.

Constant/value Description

PHONEBUTTONSTATE_UP

0x00000001

The button is in the "up" state.

PHONEBUTTONSTATE_DOWN

0x00000002

The button is in the "down" state (pressed down).

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

PHONEBUTTONSTATE_UNKNOWN

0x00000004

Indicates that the up or down state of the button is not known at this time,
but can become known at a future time.

PHONEBUTTONSTATE_UNAVAIL

0x00000008

Indicates that the up or down state of the button is not known to the service
provider, and will not become known at a future time.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the phone and not to use those PHONEBUTTONSTATE_Constants values that the
negotiated version does not support.

2.2.3.2.4 PHONEERR_Constants

The PHONEERR_Constants list the error codes that the implementation can return when invoking
operations on phone devices. Consult the individual function descriptions to determine which of these
error codes each function can return.

Constant/value Description

PHONEERR_ALLOCATED

0x90000001

The specified resource is already allocated.

PHONEERR_BADDEVICEID

0x90000002

The specified device identifier is invalid or is out of range.

PHONEERR_INCOMPATIBLEAPIVERSION

0x90000003

The application requested a TAPI version or version range that cannot
be supported by the TAPI implementation or the corresponding service
provider.

83 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

PHONEERR_INCOMPATIBLEEXTVERSION

0x90000004

The application requested an extension version or version range that
cannot be supported by the service provider.

PHONEERR_INIFILECORRUPT

0x90000005

Because of internal inconsistencies or formatting problems in the
Telephon.ini file, the file cannot be read and understood correctly by
TAPI.

PHONEERR_INUSE

0x90000006

The device is currently in use. The device cannot be configured.

PHONEERR_INVALAPPHANDLE

0x90000007

The application has a specified usage handle or registration handle
that is invalid.

PHONEERR_INVALAPPNAME

0x90000008

The specified application name is invalid. If an application name is
specified by the application, it is assumed that the string does not
contain any non-displayable characters and is NULL-terminated.

PHONEERR_INVALBUTTONLAMPID

0x90000009

The specified button/lamp identifier is out of range or is invalid.

PHONEERR_INVALBUTTONMODE

0x9000000A

The button mode parameter is invalid.

PHONEERR_INVALBUTTONSTATE

0x9000000B

The button states parameter is invalid.

PHONEERR_INVALDATAID

0x9000000C

The specified data identifier is invalid.

PHONEERR_INVALDEVICECLASS

0x9000000D

The specified phone does not support the indicated device class.

PHONEERR_INVALEXTVERSION

0x9000000E

The service provider extension version number is invalid.

PHONEERR_INVALHOOKSWITCHDEV

0x9000000F

The hookswitch device parameter is invalid.

PHONEERR_INVALHOOKSWITCHMODE

0x90000010

The hookswitch mode parameter is invalid.

PHONEERR_INVALLAMPMODE

0x90000011

The specified lamp mode parameter is invalid.

PHONEERR_INVALPARAM

0x90000012

A parameter, such as a row or column value or a window handle, is
invalid or out of range.

PHONEERR_INVALPHONEHANDLE

0x90000013

The specified device handle is invalid.

PHONEERR_INVALPHONESTATE

0x90000014

The phone device is not in a valid state for the requested operation.

PHONEERR_INVALPOINTER

0x90000015

One or more of the specified pointer parameters are invalid.

PHONEERR_INVALPRIVILEGE The dwPrivilege parameter is invalid.

84 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x90000016

PHONEERR_INVALRINGMODE

0x90000017

The ring mode parameter is invalid.

PHONEERR_NODEVICE

0x90000018

The specified device identifier, which was previously valid, is no longer
accepted because the associated device has been removed from the
computer since TAPI was last initialized or is corrupt in a way that was
not detected at initialization.

PHONEERR_NODRIVER

0x90000019

The telephone service provider for the specified device found that one
of its components is missing or corrupt in a way that was not detected
at initialization time. The user is advised to use the Telephony Control
Panel to correct the problem.

PHONEERR_NOMEM

0x9000001A

Insufficient memory to complete the requested operation, or unable to
allocate or lock memory.

PHONEERR_notOWNER

0x9000001B

The application does not have owner privileges to the specified phone
device.

PHONEERR_OPERATIONFAILED

0x9000001C

The operation failed for an unspecified reason.

PHONEERR_OPERATIONUNAVAIL

0x9000001D

The operation is not available.

PHONEERR_RESOURCEUNAVAIL

0x9000001F

The operation cannot be completed because resources are
overcommitted.

PHONEERR_REQUESTOVERRUN

0x90000020

The maximum number of outstanding phone requests has been
exceeded.

PHONEERR_STRUCTURETOOSMALL

0x90000021

The specified phone caps structure is too small.

PHONEERR_UNINITIALIZED

0x90000022

The operation was invoked before any application sends the Initialize
packet.

PHONEERR_REINIT

0x90000023

If TAPI re-initialization has been requested, for example as a result of
adding or removing a telephony service provider, Initialize or Open
requests are rejected by using this error until the last application shuts
down its usage of TAPI (using Shutdown). Then the new configuration
becomes effective and applications are again permitted to send the
Initialize packet.

PHONEERR_DISCONNECTED

0x90000024

The call was disconnected.

PHONEERR_SERVICE_not_RUNNING

0x90000025

The service is not running.

The values 0xC0000000 through 0xFFFFFFFF are available for device-specific extensions; the values
0x80000000 through 0xBFFFFFFF are reserved; and 0x00000000 through 0x7FFFFFFF are used as

request identifiers.

If an application gets an error return that it does not specifically handle (such as an error that is
defined by a device-specific extension), it SHOULD treat the error as a PHONEERR_OPERATIONFAILED
(for an unspecified reason).

85 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.3.2.5 PHONEFEATURE_Constants

The PHONEFEATURE_Constants list the operations that can be invoked on a phone using TAPI. Each of
the PHONEFEATURE_ values (except PHONEFEATURE_GENERICPHONE) corresponds to a TAPI function

that has an identical or similar name.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

PHONEFEATURE_GETBUTTONINFO

0x00000001

The GetButtonInfo packet.

PHONEFEATURE_GETDATA

0x00000002

The GetData packet.

PHONEFEATURE_GETDISPLAY

0x00000004

The GetDisplay packet.

PHONEFEATURE_GETGAINHANDSET

0x00000008

The GetGain packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_GETGAINSPEAKER

0x00000010

The GetGain packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_GETGAINHEADSET

0x00000020

The GetGain packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_GETHOOKSWITCHHANDSET

0x00000040

The GetHookSwitch packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_GETHOOKSWITCHSPEAKER

0x00000080

The GetHookSwitch packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_GETHOOKSWITCHHEADSET

0x00000100

The GetHookSwitch packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_GETLAMP

0x00000200

The GetLamp packet.

PHONEFEATURE_GETRING

0x00000400

The GetRing packet.

PHONEFEATURE_GETVOLUMEHANDSET

0x00000800

The GetVolume packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_GETVOLUMESPEAKER

0x00001000

The GetVolume packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_GETVOLUMEHEADSET

0x00002000

The GetVolume packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_SETBUTTONINFO

0x00004000

The SetButtonInfo packet.

PHONEFEATURE_SETDATA

0x00008000

The SetData packet.

PHONEFEATURE_SETDISPLAY The SetDisplay packet.

86 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00010000

PHONEFEATURE_SETGAINHANDSET

0x00020000

The SetGain packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_SETGAINSPEAKER

0x00040000

The SetGain packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_SETGAINHEADSET

0x00080000

The SetGain packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_SETHOOKSWITCHHANDSET

0x00100000

The SetHookSwitch packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_SETHOOKSWITCHSPEAKER

0x00200000

The SetHookSwitch packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_SETHOOKSWITCHHEADSET

0x00400000

The SetHookSwitch packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_SETLAMP

0x00800000

The SetLamp packet.

PHONEFEATURE_SETRING

0x01000000

The SetRing packet.

PHONEFEATURE_SETVOLUMEHANDSET

0x02000000

The SetVolume packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_SETVOLUMESPEAKER

0x04000000

The SetVolume packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_SETVOLUMEHEADSET

0x08000000

The SetVolume packet PHONEHOOKSWITCHDEV_HEADSET.

The following constants are present in TAPI versions 3.1 and later.

Constant/value Description

PHONEFEATURE_GENERICPHONE

0x10000000

must be used only with applications that use TAPI 3.1.

2.2.3.2.6 PHONEHOOKSWITCHDEV_Constants

The PHONEHOOKSWITCHDEV_Constants are bit-flag constants that describe various audio I/O

devices, each with its own hookswitch that is controllable from the computer.

Constant/value Description

PHONEHOOKSWITCHDEV_HANDSET

0x00000001

A standard earpiece and mouthpiece phone.

PHONEHOOKSWITCHDEV_SPEAKER

0x00000002

A built-in loudspeaker and microphone. This can also be an externally
connected adjunct speaker to the telephone set.

87 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

PHONEHOOKSWITCHDEV_HEADSET

0x00000004

A headset that is connected to the phone set.

These constants are used in the PHONECAPS packet to indicate the hookswitch device capabilities of a
phone device. The PHONESTATUS packet reports the state of the phone's hookswitch devices. The
packets SetHookSwitch and GetHookSwitch MUST use it as a parameter to select the I/O device of the
phone.

2.2.3.2.7 PHONEHOOKSWITCHMODE_Constants

The PHONEHOOKSWITCHMODE_Constants are bit-flag constants that describe the microphone and
speaker components of a hookswitch device.

Constant/value Description

PHONEHOOKSWITCHMODE_ONHOOK

0x00000001

The device's microphone and speaker are both on the hook.

PHONEHOOKSWITCHMODE_MIC

0x00000002

The device's microphone is active; the speaker is mute.

PHONEHOOKSWITCHMODE_SPEAKER

0x00000004

The device's speaker is active; the microphone is mute.

PHONEHOOKSWITCHMODE_MICSPEAKER

0x00000008

The device's microphone and speaker are both active.

PHONEHOOKSWITCHMODE_UNKNOWN

0x00000010

The device's hookswitch mode is currently unknown.

These constants are used to provide an individual level of control over the microphone and speaker

components of a phone device.

2.2.3.2.8 PHONEINITIALIZEEXOPTION_Constants

The PHONEINITIALIZEEXOPTION_Constants specify which event notification mechanism to use when
initializing a session.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

PHONEINITIALIZEEXOPTION_USEHIDDENWINDOW

0x00000001

The application wants to use the Hidden Window event
notification mechanism.

PHONEINITIALIZEEXOPTION_USEEVENT

0x00000002

The application wants to use the Event Handle event

notification mechanism.

PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT

0x00000003

The application wants to use the Completion Port event
notification mechanism.

2.2.3.2.9 PHONELAMPMODE_Constants

88 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The PHONELAMPMODE_Constants are bit-flag constants that describe various ways in which the lamp
of the phone can be lit.

Constant/value Description

PHONELAMPMODE_DUMMY

0x00000001

This value must be used to describe a button/lamp position that has no
corresponding lamp.

PHONELAMPMODE_OFF

0x00000002

The lamp is off.

PHONELAMPMODE_STEADY

0x00000004

The lamp is continuously lit.

PHONELAMPMODE_WINK

0x00000008

The normal rate of on and off.

PHONELAMPMODE_FLASH

0x00000010

The slow rate of on and off.

PHONELAMPMODE_FLUTTER

0x00000020

The fast rate of on and off.

PHONELAMPMODE_BROKENFLUTTER

0x00000040

The superposition of flash and flutter.

PHONELAMPMODE_UNKNOWN

0x00000080

The lamp mode is currently unknown.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are
reserved.

Although the exact on and off cadences can differ for phones that are from different vendors, the

mapping of actual lamp lighting patterns for most phones onto the previously listed values SHOULD be
straightforward.

2.2.3.2.10 PHONEPRIVILEGE_Constants

The PHONEPRIVILEGE_Constants are bit-flag constants that describe the various ways in which a
phone device can be opened.

Constant/value Description

PHONEPRIVILEGE_MONITOR

0x00000001

An application that opens a phone device when the monitor privilege is informed
about events and state changes occurring on the phone. The application cannot
invoke any operations on the phone device that would change its state; so only
status operations can be invoked. Multiple applications can monitor a phone
device at any time.

PHONEPRIVILEGE_OWNER

0x00000002

An application that opens a phone device when the owner privilege is allowed to
change the state of the lamps, ringer, display, hookswitch, and data blocks of the
phone. Opening a phone device in owner mode also provides monitoring of the
phone device. Only one application is allowed to be the owner of a phone device at
any time.

2.2.3.2.11 PHONESTATE_Constants

89 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The PHONESTATE_Constants are bit-flag constants that describe various status items for a phone
device.

Constant/value Description

PHONESTATE_OTHER

0x00000001

The phone-status items, other than those listed below, have changed.
The application checks the current phone status to determine which
items have changed.

PHONESTATE_CONNECTED

0x00000002

The connection between the phone device and TAPI was just made. This
happens when TAPI is first invoked or when the wire that connects the
phone to the computer is plugged in with TAPI active.

PHONESTATE_DISCONNECTED

0x00000004

The connection between the phone device and TAPI was just broken.
This happens when the wire that connects the phone set to the PC is
unplugged while TAPI is active.

PHONESTATE_OWNER

0x00000008

The number of owners for the phone device.

PHONESTATE_MONITORS

0x00000010

The number of monitors for the phone device.

PHONESTATE_DISPLAY

0x00000020

The display of the phone has changed.

PHONESTATE_LAMP

0x00000040

A lamp of the phone has changed.

PHONESTATE_RINGMODE

0x00000080

The ring mode of the phone has changed.

PHONESTATE_RINGVOLUME

0x00000100

The ring volume of the phone has changed.

PHONESTATE_HANDSETHOOKSWITCH

0x00000200

The handset hookswitch state has changed.

PHONESTATE_HANDSETVOLUME

0x00000400

The speaker volume setting of the handset has changed.

PHONESTATE_HANDSETGAIN

0x00000800

The microphone gain setting of the handset has changed.

PHONESTATE_SPEAKERHOOKSWITCH

0x00001000

The hookswitch state of the speaker phone has changed.

PHONESTATE_SPEAKERVOLUME

0x00002000

The speaker volume setting of the speaker phone has changed.

PHONESTATE_SPEAKERGAIN

0x00004000

The microphone gain setting state of the speaker phone has changed.

PHONESTATE_HEADSETHOOKSWITCH

0x00008000

The hookswitch state of the headset has changed.

PHONESTATE_HEADSETVOLUME

0x00010000

The speaker volume setting of the headset has changed.

PHONESTATE_HEADSETGAIN The microphone gain setting of the headset has changed.

90 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

0x00020000

PHONESTATE_SUSPEND

0x00040000

The application's use of the phone is temporarily suspended.

PHONESTATE_RESUME

0x00080000

The application's use of the phone device is resumed after having been
suspended for some time.

PHONESTATE_DEVSPECIFIC

0x00100000

The device-specific information of the phone has changed.

PHONESTATE_REINIT

0x00200000

Items have changed in the configuration of phone devices. To become
aware of these changes (as for the appearance of new phone devices),
the application reinitializes its use of TAPI.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

PHONESTATE_CAPSCHANGE

0x00400000

Indicates that, because of configuration changes made by the user or other
circumstances, one or more of the members in the PHONECAPS packet have
changed. The application uses GetDevCaps to read the updated packet. If a
service provider sends a PHONE_STATE packet that contains this value to TAPI,
TAPI will pass it on to applications that have negotiated TAPI version 1.4, 2.0, 2.1,
2.2, 3.0, or 3.1; applications negotiating a previous TAPI version will receive
PHONE_STATE packets specifying PHONESTATE_REINIT, requiring them to shut
down and reinitialize their connection to TAPI to obtain the updated information.

PHONESTATE_REMOVED

0x00800000

Indicates that the device is being removed from the computer by the service
provider (most likely through user action or through a control panel or similar
tool). A PHONE_STATE packet with this value is usually immediately followed by a
PHONE_CLOSE packet on the device. Subsequent attempts to access the device
prior to TAPI being reinitialized results in PHONEERR_NODEVICE being returned to
the application. If a service provider sends a PHONE_STATE packet that contains
this value to TAPI, TAPI will pass it on to applications that have negotiated TAPI
version 1.4, 2.0, 2.1, 2.2, 3.0, or 3.1. Applications that negotiate a previous TAPI
version do not receive any notification.

2.2.3.2.12 PHONESTATUSFLAGS_Constants

The PHONESTATUSFLAGS_Constants are bit-flag constants that describe a variety of phone device
status information.

Constant/value Description

PHONESTATUSFLAGS_CONNECTED

0x00000001

Specifies whether the phone is currently connected to TAPI. TRUE if
connected, otherwise FALSE.

PHONESTATUSFLAGS_SUSPENDED

0x00000002

Specifies whether manipulation of the phone device by TAPI is suspended.
TRUE if suspended, otherwise FALSE. An application's use of a phone device
can be temporarily suspended when the switch wants to manipulate the
phone in a way that cannot tolerate interference from the application.

91 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4 Communication Packets Between Client and Server

2.2.4.1 Request Packets

The pBuffer parameter in the method ClientRequest is used to submit requests to the server. Each
packet follows the structure of TAPI32_MSG packet. The packet field Req_Func represents the
identifier of the function that is invoked on the remote server.

2.2.4.1.1 Create Session for Line Device

The following sections describe the packets that clients use while they create the session for line
device usage.

2.2.4.1.1.1 Initialize

The Initialize packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet initializes application use of TAPI for subsequent use of the line abstraction. It

registers the specified notification mechanism of the application and returns the number of line

devices that are available to the application. A line device is any device that provides an
implementation for the line-prefixed functions in TAPI.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

hInstance

InitContext

dwFriendlyNameOffset

dwNumDevs

dwModuleNameOffset

dwAPIVersion

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

92 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the
remote server. This value MUST be set to 47.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of zero indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Zero indicates success. A negative error number indicates that an error occurred. The following

table shows the return values for this function.

Value Meaning

LINEERR_INVALAPPNAME

0x80000015

An invalid application name.

LINEERR_OPERATIONFAILED

0x80000048

The operation failed.

LINEERR_INIFILECORRUPT

0x8000000E

The INI file is corrupted.

LINEERR_INVALPOINTER

0x80000035

An invalid pointer.

LINEERR_REINIT

0x80000052

The application attempted to initialize TAPI twice.

LINEERR_NOMEM

0x80000044

No memory available.

LINEERR_INVALPARAM

0x80000032

An invalid parameter.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. Upon successful completion of the request, this field contains the
client's usage handle for TAPI line requests.

hInstance (4 bytes): An unsigned 32-bit integer. This field is an instance handle of the client
application. The application can pass NULL for this parameter, in which case, TAPI uses the
module handle of the root executable of the process (for purposes of identifying call handoff

targets and media mode priorities).

InitContext (4 bytes): An unsigned 32-bit integer. This field is an opaque value that the server uses
for ASYNCEVENTMSG.InitContext for all line packets that are intended for this client within the
scope of the hLineApp.

93 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwFriendlyNameOffset (4 bytes): An unsigned 32-bit integer. This field is the offset, in bytes, from
the beginning of the variable data area to a NULL-terminated Unicode string that contains the

display name of the client. For remote clients, this MUST be the remote computer name.

dwNumDevs (4 bytes): An unsigned 32-bit integer. Upon successful completion of the request, this

field MUST contain the number of line devices that are available to the client.

dwModuleNameOffset (4 bytes): An unsigned 32-bit integer. This field is the offset, in bytes, from
the beginning of the variable data area to a null-terminated Unicode string that contains the
display name of the client. For remote clients, this MUST be the remote computer name.

dwAPIVersion (4 bytes): An unsigned 32-bit integer. This field is the highest TAPI version that is
supported by the client.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the null-terminated Unicode strings that are indicated by the
dwFriendlyNameOffset and dwModuleNameOffset fields.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.1.2 NegotiateAPIVersion

The NegotiateAPIVersion packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet allows an application to negotiate a TAPI version to use.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

dwDeviceID

dwVersion

dwVersionCurrent

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

94 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwNegotiatedVersion

ExtensionID

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (16 bytes)

...

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the
remote server. This value MUST be set to 52.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INCOMPATIBLEAPIVERSION 0x8000000C

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_NODRIVER 0x80000043

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the client application's registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

95 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDeviceID (4 bytes): An unsigned 32-bit integer. Identifies the line device for which the interface
version negotiation is to be performed. A valid value of dwDeviceID is in the range 0 to

dwNumDevs – 1. The client obtains dwNumDevs by sending a Initialize packet to the remote
server.

dwVersion (4 bytes): An unsigned 32-bit integer. The earliest TAPI version with which the
application is compliant.

dwVersionCurrent (4 bytes): An unsigned 32-bit integer. The latest TAPI version with which the
application is compliant.

dwNegotiatedVersion (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF).
Upon successful completion of the request, this field will contain the TAPI version number that was
negotiated.

ExtensionID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon
successful completion of the request, this field MUST contain the offset, in bytes, in the VarData
field of a LINEEXTENSIONID packet that indicates the identifier of the provider-specific extensions.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the packet that is indicated in
the ExtensionID field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (16 bytes): Present on successful completion of the request. Contains a LINEEXTENSIONID
packet.

The contents of this field are DWORD aligned.

2.2.4.1.1.3 GetDevCaps

The GetDevCaps packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet queries a specified line device to determine its telephony capabilities. The
returned information is valid for all addresses on the line device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

96 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDeviceID

dwTSPIVersion

dwExtVersion

lpLineDevCaps

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the
remote server. This value MUST be set to 34.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INCOMPATIBLEAPIVERSION 0x8000000C

LINEERR_INCOMPATIBLEEXTVERSION 0x8000000D

LINEERR_NODRIVER 0x80000043

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

97 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the client application's registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The line device to be queried. A valid value of

dwDeviceID is in the range 0 to dwNumDevs – 1. The client obtains dwNumDevs by sending a
Initialize packet to the remote server.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The negotiated TSPI version number. This
value has already been negotiated for this device through the NegotiateAPIVersion packet.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The negotiated extension version number. This

value has already been negotiated for this device through the NegotiateExtVersion packet. This

parameter is not validated by TAPI when this function is called.

lpLineDevCaps (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINEDEVCAPS data
packet that is filled with line device capabilities information upon successful completion of the
request.

On successful completion, this field contains the offset, in bytes, of the data packet in the
VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): MUST be present on successful completion of the request. MUST contain a
LINEDEVCAPS data structure.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.1.4 GetAddressCaps

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

98 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The GetAddressCaps packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet queries the specified address on the specified line device to

determine its telephony capabilities.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

dwDeviceID

dwAddressID

dwTSPIVersion

dwExtVersion

lpAddressCaps

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the

remote server. This value MUST be set to 21.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero, if the function succeeds; or an error number, if an error occurs.

99 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the application's registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The line device that contains the address to be
queried. A valid value of dwDeviceID is in the range 0 to dwNumDevs – 1. The client obtains
dwNumDevs by sending a Initialize packet to the remote server.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line device whose
capabilities are to be queried. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades. valid value of dwAddressID is in the
range 0 to dwNumAddresses – 1. The client obtains dwNumAddresses from the LIVEDEVCAPS

obtained by sending a GetDevCaps packet to the remote server. This parameter is not validated
by TAPI when this function is called.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The version number of the TSPI to be used.

The high-order word contains the major version number; the low-order word contains the minor
version number. This number is obtained by NegotiateAPIVersion.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The version number of the service provider–

specific extensions to be used. This number is zero if no device-specific extensions are to be used.
Otherwise, the high-order word contains the major version number; the low-order word contains
the minor version number. This value is obtained for this device by sending the
NegotiateExtVersion packet. This parameter is not validated by TAPI when this function is called.

lpAddressCaps (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINEADDRESSCAPS
packet that is filled with address capabilities information upon successful completion of the
request. On successful completion, this field contains the offset, in bytes, of the packet in the

VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINEADDRESSCAPS
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.1.5 Open

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

100 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Open packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet opens the line device that is specified by its device identifier and returns a line

handle for the corresponding opened line device. This line handle is used in subsequent operations on
the line device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

dwDeviceID

hLine

dwNegotiatedVersion

dwExtVersion

OpenContext

dwPrivileges

dwMediaModes

pCallParams

dwAsciiCallParamsCodePage

pGetCallParams

hRemoteLine

Reserved2

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 54.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

101 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_ALLOCATED 0x80000001

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_NODRIVER 0x80000043

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the client application's registration with TAPI. This

field MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. Identifies the line device to be opened. A valid
value of dwDeviceID is in the range 0 to dwNumDevs – 1. The client obtains dwNumDevs by

sending a Initialize packet to the remote server.

hLine (4 bytes): An HLINE. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon successful completion of the
request, this field MUST contain the handle representing the opened line device.

dwNegotiatedVersion (4 bytes): An unsigned 32-bit integer. The version that is negotiated via the
NegotiateAPIVersion request.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The extension version number under which the
application and the service provider agree to operate. This number is obtained with

NegotiateExtVersion.

OpenContext (4 bytes): An unsigned 32-bit integer. The Callback instance, set to 0.

dwPrivileges (4 bytes): An unsigned 32-bit integer. The privilege that the application requests when
notified of a call.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The media type or modes of interest to the
application.

pCallParams (4 bytes): The offset, in bytes, from the beginning of the variable data area to the

LINECALLPARAMS packet. This field is set to TAPI_NO_DATA (0xFFFFFFFF) if no LINECALLPARAMS
packet is specified.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. The code page of the
pCallParams field, set to TAPI_NO_DATA (0xFFFFFFFF).

pGetCallParams (4 bytes): An unsigned 32-bit integer. The value of this field is ignored by the
server. On successful completion, this field is set to TAPI_NO_DATA (0xFFFFFFFF).

hRemoteLine (4 bytes): An unsigned 32-bit integer. If this field is nonzero, the server MUST use
this value for ASYNCEVENTMSG.hDevice for all unsolicited events and completion notifications sent
to the client, instead of the returned hLine value.

Similar handle-swapping semantics can exist between the TAPI service and telephony service
providers.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

102 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (variable): This field MUST contain the LINECALLPARAMS packet that is indicated by the
pCallParams field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.2 Terminate Session for Line Device

The following sections describe the buffers that clients use to terminate the session.

2.2.4.1.2.1 Close

The Close packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet closes the specified open line device after completing or aborting all outstanding
calls and asynchronous operations on the device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reserved13

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 9.

Return Values

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

103 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hLine (4 bytes): An HLINE. A handle to the line to close. This field MUST have been obtained by
sending the Open packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.2.2 ShutDown

104 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Shutdown packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST shut down the application's usage of the line abstraction of the TAPI.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reserved13

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 86.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common

return values are:

Name Value

LINEERR_INVALAPPHANDLE 0x80000014

LINEERR_RESOURCEUNAVAIL 0x8000004B

105 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The usage handle of the application for the line. This field MUST
have been obtained by sending the Initialize packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3 Line Device Requests

The packets in the following sections, from the Accept (section 2.2.4.1.3.1) packet through the
UnPark (section 2.2.4.1.3.82) packet, describe line device requests that are sent from the TAPI client
to the TAPI server on the tapsrv interface by using the ClientRequest remote procedure call.

2.2.4.1.3.1 Accept

The Accept packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.

Sending this packet accepts the specified offered call. Optionally, it can send the specified user-user
information to the calling party.

106 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

lpsUserUserInfo

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 4.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds; or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same MUST be used as
the value for the returned positive request identifier. Common return values are as follows:

107 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_USERUSERINFOTOOBIG 0x80000051

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): The identifier of an asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hCall (4 bytes): The handle to the call to be accepted. The application MUST be an owner of the call.
The call state of hCall must be offering. The client can obtain a valid hCall from the
LINE_CALLSTATE packet sent by the remote server.

lpsUserUserInfo (4 bytes): The offset, in bytes, in the VarData field of the user-user information to

send to the remote party as part of the call accept. When this field is set to -1 (0xFFFFFFFF), no
user-user information is to be sent.

dwSize (4 bytes): The size, in bytes, of the user-user information in lpsUserUserInfo (including the
null terminator). If lpsUserUserInfo is -1 (0xFFFFFFFF), no user-user information is sent to the
calling party and dwSize is ignored.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

108 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the lpsUserUserInfo field. The
user information can be an ASCII or Unicode string and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.2 AddToConference

The AddToConference packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet adds the call that is specified by hConsultCall to the conference

call that is specified by hConfCall.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hConfCall

hConsultCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 5.

Return Values

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

109 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used as the value for the returned positive request identifier. Common return values are as
follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_CONFERENCEFULL 0x80000007

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hConfCall (4 bytes): An HCALL. The handle to the conference call obtained by sending the
SetUpConference packet. The application MUST be an owner of this call. Any monitoring (media,

tones, digits) on a conference call applies only to the hConfCall and not to the individual
participating calls. The call state of hConfCall MUST be onHoldPendingConference or onHold.

hConsultCall (4 bytes): An HCALL. The handle to the call to be added to the conference call. One

way of obtaining a valid hConsultCall is by sending the MakeCall packet. The application MUST be
an owner of this call. This call cannot be either a parent of another conference or a participant in
any conference. Depending on the device capabilities that are indicated in LINEADDRESSCAPS, the
hConsultCall parameter might not necessarily have been established by using the
SetUpConference or PrepareAddToConference packet. The call state of hConsultCall can be
connected, onHold, proceeding, or ringback.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

110 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.3 AgentSpecific

The AgentSpecific packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet allows the application to access proprietary handler-specific functions of the
agent handler that is associated with the address.

The meaning of the extensions are specific to the agent handler. Each set of agent-related extensions
is identified by a universally unique 128-bit extension ID that MUST be obtained, along with the

specification for the extension, from the promulgator of that extension (usually the author of the
agent handler software on the telephony server).

The list of extensions that are supported by the agent handler is obtained from the LINEAGENTCAPS
packet that is returned by the GetAgentCaps packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwAddressID

dwAgentExtensionIDIndex

lpParamsContext

lpParams

dwSize

Reserved2

Reserved3

111 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved4

Reserved5

Reserved6

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 6.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. If the client specified a nonzero value in the dwRequestID field of
the packet, the same MUST be used as the value for the returned positive request identifier.

Common return values are as follows:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALAGENTID 0x80000057

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_INVALPOINTER 0x80000035

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_UNINITIALIZED 0x80000050

Additional return values are specific to the agent handler.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

112 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive
request ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion

packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device. An
address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. A valid value of dwAddressID is in the range 0 to

dwNumAddresses –1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by

sending a GetDevCaps packet to the remote server.

dwAgentExtensionIDIndex (4 bytes): An unsigned 32-bit integer. The position in the
ExtensionIDList packet in LINEAGENTCAPS of the agent handler extension being invoked. A valid
value of dwAgentExtensionIDIndex is in the range 0 to dwNumAgentExtensionIDs – 1. The client
obtains dwNumAgentExtensionIDs from the LINEAGENTCAPS obtained by sending a GetAgentCaps
packet to the remote server.

lpParamsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
parameter block. The format of this parameter block is device specific and its contents are passed
by TAPI to and from the agent handler application on the telephony server. This parameter block

MUST specify the function to invoke and include sufficient room for data to be returned.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the parameter block that is
indicated in the lpParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a parameter block that corresponds to the proprietary handler-specific

functions of the agent handler. This data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.4 Answer

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

113 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Answer packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet answers the specified offering call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

lpsUserUserInfo

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 7.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

114 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier.

The following table shows the return values for this function.

Value Meaning

LINEERR_INVALCALLHANDLE

0x80000018

The handle to the call is invalid.

LINEERR_OPERATIONUNAVAIL

0x80000049

The operation is unavailable.

LINEERR_INVALCALLSTATE

0x8000001C

The call state is invalid.

LINEERR_OPERATIONFAILED

0x80000048

The operation failed.

LINEERR_INUSE

0x8000000F

The line is in use.

LINEERR_RESOURCEUNAVAIL

0x8000004B

The resources are unavailable.

LINEERR_NOMEM

0x80000044

Not enough memory is available.

LINEERR_USERUSERINFOTOOBIG

0x80000051

The user-user information is too big.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hCall (4 bytes): An HCALL. A handle to the call to be answered. The application MUST be an owner of
this call. The call state of hCall must be offering or accepted. One way in which the client can
obtain a valid hCall is from the LINE_CALLSTATE packet sent by the remote server.

lpsUserUserInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of

user-user information to send to the remote party at the time the call is answered. When this field
is set to -1 (0xFFFFFFFF), no user-user information is to be sent.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the user-user information in
lpsUserUserInfo (including the null terminator). If lpsUserUserInfo is -1 (0xFFFFFFFF), no user-
user information MUST be sent to the calling party and dwSize MUST be ignored.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

115 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the lpsUserUserInfo field. The

user information can be an ASCII or Unicode string, and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.5 BlindTransfer

The BlindTransfer packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet performs a blind or single-step transfer of the specified call to the specified
destination address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

lpszDestAddress

dwCountryCode

Reserved2

Reserved3

Reserved4

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

116 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 8.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously. A LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier.

The following table shows the return values for this function.

Value Meaning

LINEERR_INVALCALLHANDLE

0x80000018

The handle to the call is invalid.

LINEERR_NOMEM

0x80000044

Not enough memory is available.

LINEERR_INVALCALLSTATE

0x8000001C

The call state is invalid.

LINEERR_OPERATIONFAILED

0x80000048

The operation failed.

LINEERR_ADDRESSBLOCKED

0x80000053

The address is blocked.

LINEERR_RESOURCEUNAVAIL

0x8000004B

The resource is unavailable.

LINEERR_INVALCOUNTRYCODE

0x80000022

The country/region code is invalid.

117 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be transferred. One way in which the client can

obtain a valid hCall is from the LINE_CALLSTATE packet sent by the remote server. The
application MUST be an owner of this call. The call state of hCall must be connected. For hCall to
be in connected state, the client needs to send an Answer packet to the remote server.

lpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that identifies where to transfer the call.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the destination. The
implementation SHOULD use this field to select the call progress protocols for the destination

address. If a value of 0 is specified, the service provider SHOULD use a default. TAPI does not
validate dwCountryCode when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated in the
lpszDestAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.6 DeallocateCall

The DeallocateCall packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet MUST deallocate the call after completing or aborting all outstanding
asynchronous operations on the call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

118 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reserved13

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 12.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

119 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hCall (4 bytes): An HCALL. The call handle to be deallocated. One way of obtaining a valid hCall is by
sending the MakeCall packet. An application with monitoring privileges for a call can always

deallocate its handle for that call. An application with owner privilege for a call can deallocate its
handle unless it is the only owner of the call and the call is not in the idle state. The call handle is

no longer valid after it has been deallocated.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.7 CompleteCall

The CompleteCall packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet specifies how a call that cannot be connected in the usual manner is to be
completed instead. The network or switch cannot be able to complete a call because network
resources are busy or the remote station is busy or does not answer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

120 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext

hCall

lpdwCompletionIDContext

dwCompletionMode

dwMessageID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 10.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLCOMPLMODE 0x80000017

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALPOINTER 0x80000035

121 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_COMPLETIONOVERRUN 0x80000006

LINEERR_INVALMESSAGEID 0x80000030

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call whose completion is requested. One way of

obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall must be busy, ringback.

lpdwCompletionIDContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

dwCompletionMode (4 bytes): An unsigned 32-bit integer. The way in which the call is to be

completed. This parameter MUST use one of the LINECALLCOMPLMODE_Constants.

dwMessageID (4 bytes): An unsigned 32-bit integer. The packet that is to be sent when completing
the call using LINECALLCOMPLMODE_MESSAGE. This identifier selects the packet from a small
number of predefined packets. This parameter is not validated by TAPI when this function is
called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.8 CompleteTransfer

The CompleteTransfer packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet completes the transfer of the specified call to the party that is
connected in the consultation call. If dwTransferMode is LINETRANSFERMODE_CONFERENCE, the

122 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

original call handle is changed to a conference call. Otherwise, the service provider SHOULD send call
state packets to change the calls to idle.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hCall

hConsultCall

lpConfCallContext

dwTransferMode

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 11.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

123 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call to be transferred. One way in which the client can
obtain a valid hCall is from the LINE_CALLSTATE packet sent by the remote server. The
application MUST be an owner of this call. The call state of hCall must be onHold or
onHoldPendingTransfer. For hCall to be in onHoldPendingTransfer state, the client needs to send
SetUpTransfer packet to the remote server. For hCall to be in onHold state, the client needs to
send Hold packet to the remote server.

hConsultCall (4 bytes): An HCALL. The handle to the call that represents a connection with the

destination of the transfer. One way in which the client can obtain a valid hCall is from the
LINE_CALLSTATE packet sent by the remote server. The application MUST be an owner of this call.
The call state of hConsultCall MUST be connected, ringback, busy, or proceeding.

lpConfCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

dwTransferMode (4 bytes): An unsigned 32-bit integer. Specifies how the initiated transfer request

is to be resolved. This parameter MUST use one of the LINETRANSFERMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

124 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.9 ConditionalMediaDetection

The ConditionalMediaDetection packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. The function is invoked by TAPI whenever a client application uses LINEMAPPER as
the dwDeviceID in an Open packet call to request that lines be scanned to find one that supports the
desired media types and call parameters.

TAPI scans based on the union of the desired media type and the other media types currently being
monitored on the line to give the service provider the opportunity to indicate if it cannot
simultaneously monitor for all the requested media types. If the service provider can monitor for the

indicated set of media types and support the capabilities that are indicated in lpCallParams, it replies
with a success indication. It leaves the active media monitoring modes for the line unchanged.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwMediaModes

lpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

125 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 127.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NODRIVER 0x80000043

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line on which media monitoring and parameter
capabilities are to be set. This field MUST have been obtained by sending the Open packet.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The media types currently of interest to the

calling application. This parameter MUST use one or more of the LINEMEDIAMODE_Constants.

lpCallParams (4 bytes): An unsigned 32-bit integer. The offset in the VarData field of a
LINECALLPARAMS packet.

 dwBearerMode

 dwMinRate

 dwMaxRate

 dwMediaMode

 dwCallParamFlags

 dwAddressMode

If dwAddressMode is LINEADDRESSMODE_ADDRESSID, any address on the line is acceptable. If
dwAddressMode is LINEADDRESSMODE_DIALABLEADDR, indicating that a specific originating

address (phone number) is searched for, or if it is a provider-specific extension, then
dwOrigAddressSize/Offset and the portion of the variable part they refer to are also relevant. If
dwAddressMode is a provider-specific extension, additional information can be contained in the
dwDeviceSpecific variably sized field. All other fields are irrelevant to the function.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (0xFFFFFFFF).

126 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Contains a LINECALLPARAMS packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.10 CreateAgent

The CreateAgent packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet creates a new agent object. It generates a LINE_PROXYREQUEST packet to

be sent to a registered proxy function handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_CREATEAGENT.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

lpszAgentID

lpszAgentPIN

lphAgentContext

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

127 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 146.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

128 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

lpszAgentID (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a null-terminated
Unicode string that contains the agent identifier in the VarData field. This field is set to
TAPI_NO_DATA (0xFFFFFFFF) if no agent identifier was specified.

lpszAgentPIN (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a null-terminated

Unicode string that contains the agent PIN or password in the VarData field. This field is set to
TAPI_NO_DATA (0xFFFFFFFF) if no agent PIN was specified.

lphAgentContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the null-terminated Unicode strings that are indicated in the
lpszAgentID and lpszAgentPIN fields.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.11 CreateAgentSession

The CreateAgentSession packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet creates a new AgentSession object. It generates a
LINE_PROXYREQUEST packet to be sent to a registered proxy function handler, referencing a
LINEPROXYREQUEST packet of type LINEPROXYREQUEST_CREATEAGENTSESSION.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

129 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

hAgent

lpszAgentPIN

dwWorkingAddressID

lpGroupID

dwSize

lphAgentSessionContext

Reserved2

Reserved3

Reserved4

Reserved5

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 147.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a request identifier if the asynchronous operation starts; otherwise, the function MUST
return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

130 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by

the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent for whom the session is to
be created. This field MUST have been obtained by sending the CreateAgent packet.

lpszAgentPIN (4 bytes): An unsigned 32-bit integer. The offset in the VarData field that contains a

null-terminated Unicode string that contains the agent PIN or password. This field is set to
TAPI_NO_DATA (0xFFFFFFFF) if no PIN was supplied.

dwWorkingAddressID (4 bytes): An unsigned 32-bit integer. The identifier of the address on which
the agent receives calls for this session.

lpGroupID (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field and
GUID, as specified in [MS-DTYP] section 2.3.4.2, that identifies the group for which the session is
being created.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the GUID that is indicated in the
lpGroupID field.

lphAgentSessionContext (4 bytes): An unsigned 32-bit integer. The handle to the created agent
session that is returned by the ACD proxy. It is the responsibility of the agent handler proxy
application to generate and maintain uniqueness of these identifiers.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

131 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated in the lpszAgentPIN
field and a GUID that is indicated in the lpGroupID field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.12 DevSpecific

The DevSpecific packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. The function is used as a general extension mechanism to enable service providers to provide

access to features that are not described in other operations. The meanings of the extensions are
device-specific, and to take advantage of these extensions, the application MUST be fully aware of
them.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwAddressID

hCall

lpParamsContext

lpParams

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

VarData (variable)

132 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 13.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to a line device. This field MUST have been obtained by

sending the Open packet. This parameter is required.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line to be
operated on. An address identifier is permanently associated with an address; the identifier MUST
remain constant across operating system upgrades. A valid value of dwAddressID is in the range 0
to dwNumAddresses –1. The client obtains dwNumAddresses from the LINEDEVCAPSobtained by
sending a GetDevCapspacket to the remote server.

hCall (4 bytes): An HCALL. The handle to a call. This parameter is optional, but if it is specified, the

call it represents MUST belong to the hLine line device. One way of obtaining a valid hCall is by
sending the MakeCall packet. The call state of hCall is device specific.

lpParamsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

133 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
parameter block. The format of this parameter block is device-specific and its contents are passed

by TAPI, to or from the TSP.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the parameter block that is

indicated in the lpParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a parameter block that is indicated in the lpParams field. The format of
this parameter block is device-specific and its contents are passed by TAPI, to or from the TSP.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.13 DevSpecificFeature

The DevSpecificFeature packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. The function is used as an extension mechanism to enable service providers to
provide access to features that are not described in other operations. The meanings of these
extensions are device-specific, and taking advantage of these extensions requires TAPI or its client

application to be fully aware of them.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwFeature

lpParamsContext

lpParams

dwSize

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

134 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 14.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same MUST be used as
the value for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALFEATURE 0x80000055

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by

sending the Open packet.

135 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwFeature (4 bytes): An unsigned 32-bit integer. The feature to invoke on the line device. This
parameter MUST use PHONEBUTTONFUNCTION_Constants.

lpParamsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
feature-dependent parameter block. The format of this parameter block is device-specific and its
contents are passed by TAPI, to or from the TSP.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the parameter block that is
indicated in the lpParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a feature-dependent parameter block that is indicated in the lpParams
field. The format of this parameter block is device-specific and its contents are passed by TAPI, to

or from the TSP.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.14 Dial

The Dial packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet dials the specified dialable number on the specified call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

lpszDestAddress

dwCountryCode

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

136 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 15.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALADDRESS 0x80000010

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALCOUNTRYCODE 0x80000022

LINEERR_DIALBILLING 0x80000008

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_DIALQUIET 0x8000000B

LINEERR_ADDRESSBLOCKED 0x80000053

137 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_DIALDIALTONE 0x80000009

LINEERR_NOMEM 0x80000044

LINEERR_DIALPROMPT 0x8000000A

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call on which a number is to be dialed. One way of

obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall can be any state except idle and disconnected.

lpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that specifies the destination to dial by using the standard
dialable number format.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the destination. The
implementation uses this field to select the call-progress protocols for the destination address. If a

value of 0 is specified, a default call-progress protocol that is defined by the service provider is
used. TAPI does not validate this parameter when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated in the
lpszDestAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.15 Drop

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

138 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Drop packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet drops or disconnects the specified call. User-user information can optionally be

transmitted as part of the call disconnect. This function can be called by the application at any time.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

lpsUserUserInfo

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 16.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

139 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_USERUSERINFOTOOBIG 0x80000051

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be dropped. One way of obtaining a valid hCall
is by sending the MakeCall packet. The application MUST be an owner of the call. The call state of
hCall can be any state except idle.

lpsUserUserInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
user-user information, to send to the remote party as part of the call disconnect. When this field is

set to -1 (0xFFFFFFFF), no user-user information is sent.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the user-user information in
lpsUserUserInfo. If lpsUserUserInfo is -1 (0xFFFFFFFF), no user-user information MUST be sent
and dwSize MUST be ignored.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

140 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the lpsUserUserInfo field. The
user information can be an ASCII or Unicode string, and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.16 Forward

The Forward packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet forwards calls that are destined for the specified address on the specified line,
according to the specified forwarding instructions.

When an originating address (dwAddressID) is forwarded, the specified incoming calls for that address

are deflected to the other number by the switch. This function provides a combination of forward and
do-not-disturb features. This function can also cancel specific forwarding that is currently in effect.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

bAllAddresses

dwAddressID

lpForwardList

dwNumRingsNoAnswer

lphConsultCallContext

lpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

VarData (variable)

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

141 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 17.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously. A LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_NOMEM 0x80000044

LINEERR_INVALADDRESS 0x80000010

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALCOUNTRYCODE 0x80000022

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALPARAM 0x80000032

LINEERR_STRUCTURETOOSMALL 0x8000004D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion

packet.

hLine (4 bytes): An HLINE. The handle to the line to be forwarded. This field MUST have been
obtained by sending the Openpacket.

bAllAddresses (4 bytes): An unsigned 32-bit integer. Specifies whether all originating addresses on
the line, or just the one that is specified, is forwarded. If TRUE, all addresses on the line are
forwarded and dwAddressID is ignored; if FALSE, only the address that is specified as

dwAddressID is forwarded. This parameter is not validated by TAPI when this function is called.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line whose
incoming calls are to be forwarded. This parameter is ignored if bAllAddresses is TRUE. This
parameter is not validated by TAPI when this function is called. An address identifier is
permanently associated with an address; the identifier remains constant across operating system

142 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

upgrades. A valid value of dwAddressID is in the range 0 to dwNumAddresses –1. The client
obtains dwNumAddresses from the LINEDEVCAPS obtained by sending a GetDevCaps packet to

the remote server.

lpForwardList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a

variable-size LINEFORWARDLIST packet that describes the specific forwarding instructions.

dwNumRingsNoAnswer (4 bytes): An unsigned 32-bit integer. Specifies the number of rings before
an incoming call is considered a "no answer." If dwNumRingsNoAnswer is out of range, the actual
value is set to the nearest value in the allowable range. This parameter is not validated by TAPI
when this function is called.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpCallParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
LINECALLPARAMS packet that contains the specified call parameters.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. The code page of the
lpCallParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the LINEFORWARDLIST and LINECALLPARAMS packets that are
indicated in the fields lpForwardList and lpCallParams.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.17 GatherDigits

The GatherDigits packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet initiates the buffered gathering of digits on the specified call. TAPI specifies a
packet in which to place the digits and the maximum number of digits to be collected.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

lpContext

hCall

dwEndtoEndID

dwDigitModes

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

143 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpsDigitsContext

dwNumDigits

lpszTerminationDigits

dwFirstDigitTimeout

dwInterDigitTimeout

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 18.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_NOMEM 0x80000044

LINEERR_INVALTIMEOUT 0x8000003B

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALDIGITMODE 0x80000027

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALDIGITS 0x80000028

144 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALPARAM 0x80000032

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call on which digits are to be gathered. One way of
obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall can be any state.

dwEndtoEndID (4 bytes): An unsigned 32-bit integer. A unique, uninterpreted identifier of the
request for its entire lifetime, that is, until the matching LINE_GATHERDIGITS packet is sent. The

service provider MUST include this identifier as one of the parameters in the packet.

dwDigitModes (4 bytes): An unsigned 32-bit integer. The digit modes that are to be monitored. This
parameter MUST use one or more of the following LINEDIGITMODE_Constants:

LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of the use of rotary pulse sequences. Valid digits
for pulse mode are "0" through "9".

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF mode are "0" through "9", "A", "B", "C", "D",

"*", "#".

lpsDigitsContext (4 bytes): An unsigned 32-bit integer. Set to 0 if digit gathering is to be canceled;
otherwise, digit gathering is initiated.

dwNumDigits (4 bytes): An unsigned 32-bit integer. The number of digits to be collected before a
LINE_GATHERDIGITS packet is sent to TAPI. This function MUST return a LINEERR_INVALPARAM if
dwNumDigits is zero.

lpszTerminationDigits (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the varData

field of a null-terminated Unicode string of termination digits as text characters, or if none are
supplied, the value TAPI_NO_DATA (0xFFFFFFFF).

dwFirstDigitTimeout (4 bytes): An unsigned 32-bit integer. The time duration, in milliseconds, in
which the first digit is expected. If the first digit is not received in this time frame, digit collection
is terminated and a LINE_GATHERDIGITS packet is sent to TAPI. A single null character is written
to the packet, indicating no digits were received and the first digit time-out terminated digit

gathering. The line device capabilities of the call specify the valid range for this parameter or
indicate that time-outs are not supported. This parameter is not validated by TAPI when this
function is called.

dwInterDigitTimeout (4 bytes): An unsigned 32-bit integer. The maximum time duration, in
milliseconds, between consecutive digits. If no digit is received in this time frame, digit collection
is terminated and a LINE_GATHERDIGITS packet is sent to TAPI. A single null character is written
to the packet, indicating that an interdigit time-out terminated digit gathering. The LINEDEVCAPS

packet MUST specify the valid range for this parameter or indicate that time-outs are not
supported. This parameter is not validated by TAPI when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

145 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present if the lpszTerminationDigits field is not set to TAPI_NO_DATA
(0xFFFFFFFF). Contains a null-terminated Unicode string as specified by lpszTerminationDigits.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.18 GenerateDigits

The GenerateDigits packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet initiates the generation of the specified digits on the specified
call as inband tones by using the specified signaling mode. Invoking this function while digit or tone
generation is in progress aborts the current digit or tone generation. Passing a NULL value for

lpszDigits generates no new digits.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

dwDigitMode

lpszDigits

dwDuration

dwEndToEndID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

146 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8

Reserved9

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 19.

Note At any time, only one inband generation request (tone generation or digit generation) can

be in progress per call.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALDIGITMODE 0x80000027

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call. One way of obtaining a valid hCall is by sending
the MakeCall packet. The application MUST be an owner of the call. The call state of hCall can be
any state. TAPI does not impose any call state requirements; however, some Tapi Service
Providers can require that the hCall be is the LINECALLSTATE_CONNECTED state.

dwDigitMode (4 bytes): An unsigned 32-bit integer. The format to be used for signaling these

digits. This parameter MUST use one of the LINEDIGITMODE_Constants.

lpszDigits (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a null-
terminated Unicode character packet that contains the digits to generate.

dwDuration (4 bytes): An unsigned 32-bit integer. Specifies both the duration, in milliseconds, of
DTMF digits and pulse and DTMF interdigit spacing. A value of 0 uses a default value. The
dwDuration parameter MUST be within the range that is specified by MinDialParams to

MaxDialParams in LINEDEVCAPS. If out of range, the actual value is set by the service provider to

147 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

the nearest value in the range. This parameter is not validated by TAPI when this function is
called.

dwEndToEndID (4 bytes): An unsigned 32-bit integer. This unique request identifier MUST be
stored by the server and passed back as dwParam2 of the corresponding LINE_GENERATE packet

to the client when the digit generation is completed.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode character packet that is indicated in the
lpszDigits field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.19 GenerateTone

The GenerateTone packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet generates the specified tone inband over the specified call. Invoking this
function with a zero for dwToneMode aborts any tone generation that is currently in progress on the
specified call. Sending a GenerateTone or GenerateDigits packet while tone generation is in progress
aborts the current tone generation or digit generation in progress and initiates the generation of the

newly specified tone or digits.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

dwToneMode

dwDuration

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

148 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwNumTones

lpTones

dwSize

dwEndToEndID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 20.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALTONEMODE 0x8000003E

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALTONE 0x8000003C

LINEERR_RESOURCEUNAVAIL 0x8000004B

149 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call on which a tone is to be generated. One way of
obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of

the call. The call state of hCall can be any state.

dwToneMode (4 bytes): An unsigned 32-bit integer. Defines the tone to be generated. Tones can be
either standard or custom. A custom tone is composed of a set of arbitrary frequencies. A small
number of standard tones are predefined. The duration of the tone MUST be specified by
dwDuration for both standard and custom tones. If dwToneMode is set to zero, any digit or tone
generation in progress is canceled. This parameter MUST use one of the
LINETONEMODE_Constants.

dwDuration (4 bytes): An unsigned 32-bit integer. The duration, in milliseconds, during which the
tone is sustained. A value of 0 for dwDuration uses a default duration for the specified tone.
Default values are:

 CUSTOM: infinite

 RINGBACK: infinite

 BUSY: infinite

 BEEP: infinite

 BILLING: fixed (single cycle)

This parameter is not validated by TAPI when this function is called.

dwNumTones (4 bytes): An unsigned 32-bit integer. The number of entries in the lpTones array.
This parameter is ignored if dwToneMode is not equal to LINETONEMODE_CUSTOM.

lpTones (4 bytes): An unsigned 32-bit integer. If dwToneMode is set to LINETONEMODE_CUSTOM,

this field contains the offset, in bytes, of a LINEGENERATETONE packet in the VarData field.

Otherwise, this field is set to the value TAPI_NO_DATA (0xFFFFFFFF).

dwSize (4 bytes): An unsigned 32-bit integer. If dwToneMode is set to LINETONEMODE_CUSTOM,
this field is set to the value of (dwNumTones * sizeof (LINEGENERATETONE)). Otherwise, this field
is set to zero.

dwEndToEndID (4 bytes): An unsigned 32-bit integer. A unique, uninterpreted identifier of the
request for its entire lifetime, that is, until the matching LINE_GENERATE packet is sent. The
service provider MUST include this identifier as one of the parameters in the packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

150 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a number of LINEGENERATETONE packets that are equal to the value
of the dwNumTones field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.20 GetAddressID

The GetAddressID packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns the address identifier that is associated with address, in a different
format on the specified line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

lpdwAddressID

dwAddressMode

lpsAddress

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 22.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

151 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESS 0x80000010

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line whose address is to be retrieved. This field MUST
have been obtained by sending the Open packet.

lpdwAddressID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon
successful completion of the request, this field contains the address identifier.

dwAddressMode (4 bytes): An unsigned 32-bit integer. The address mode of the address that is

contained in lpsAddress. LINEADDRESSMODE_DIALABLEADDR MUST be specified for the

dwAddressMode parameter.

lpsAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
packet that holds the address that is assigned to the specified line device. The format of the
address is determined by the dwAddressMode parameter.

dwSize (4 bytes): An unsigned 32-bit integer. The size of the address that is contained in
lpsAddress. The size of the string MUST include the null terminator.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

152 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a packet that holds
the address that is assigned to the specified line device, as indicated in the lpsAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.21 GetAddressStatus

The GetAddressStatus packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet queries the specified address for its current status.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwAddressID

lpAddressStatus

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

VarData (64 bytes, optional)

...

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

153 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 23.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A value of 0 indicates success and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the opened line device that contains the address to query.
This field MUST have been obtained by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. An address on the particular open line device.
This is the address to be queried. An address identifier is permanently associated with an address;
the identifier remains constant across operating system upgrades. A valid value of dwAddressID is
in the range 0 to dwNumAddresses –1. The client obtains dwNumAddresses from the
LINEDEVCAPS obtained by sending a GetDevCaps packet to the remote server. This parameter is
not validated by TAPI when this function is called.

lpAddressStatus (4 bytes): An unsigned 32-bit integer. The size of a LINEADDRESSSTATUS packet
that, upon successful completion of the request, contains the current status of an address. Upon
successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

154 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (64 bytes): This field is only present on successful completion of the request. Contains a

LINEADDRESSSTATUS packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.22 GetAgentActivityList

The GetAgentActivityList packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet obtains the identities of activities that the application can select

by using the SetAgentActivity packet to indicate what function the agent is actually performing at the
moment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwAddressID

lpAgentActivityListContext

lpAgentActivityList

Reserved2

Reserved3

Reserved4

Reserved5

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

155 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 24.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, this

function MUST return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALAGENTID 0x80000057

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALPOINTER 0x80000035

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_NOMEM 0x80000044

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the

Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

156 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device whose
agent status is to be queried. An address identifier is permanently associated with an address; the

identifier remains constant across operating system upgrades. A valid value of dwAddressID is in
the range 0 to dwNumAddresses – 1. The client obtains dwNumAddresses from the LINEDEVCAPS

obtained by sending a GetDevCaps packet to the remote server.

lpAgentActivityListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

lpAgentActivityList (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent activity list data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.23 GetAgentCaps

The GetAgentCaps packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet obtains the agent-related capabilities that are supported on the specified line
device. If a specific agent is named, the capabilities include a listing of ACD groups into which the
agent is permitted to log in.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLineApp

dwDeviceID

dwAddressID

157 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwAppAPIVersion

lpAgentCapsContext

lpAgentCapsSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 25.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, this
function MUST return one of these negative error values:

Name Value

LINEERR_BADDEVICEID 0x80000002

LINEERR_INCOMPATIBLEAPIVERSION 0x8000000C

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALAPPHANDLE 0x80000014

LINEERR_INVALPOINTER 0x80000035

LINEERR_NODEVICE 0x80000042

LINEERR_NODRIVER 0x80000043

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

158 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by

the client upon request completion; MUST be returned by the server in the request completion
packet.

hLineApp (4 bytes): An HLINEAPP. The handle to the registration of the application with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The line device that contains the address to be

queried.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line device whose

capabilities are to be queried. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades. A valid value of dwAddressID is in
the range 0 to dwNumAddresses – 1. The client obtains dwNumAddresses from the LINEDEVCAPS
obtained by sending a GetDevCaps packet to the remote server.

dwAppAPIVersion (4 bytes): An unsigned 32-bit integer. The highest TAPI version that is
supported by the application. This SHOULD not be the value that is negotiated by using

NegotiateAPIVersion on the device being queried.

lpAgentCapsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that
is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpAgentCapsSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of agent
capabilities data that the client accepts on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.24 GetAgentGroupList

The GetAgentGroupList packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet obtains the identities of agent groups (a combination of queue,
supervisor, skill level, and so on) into which the agent that is currently logged on to the workstation is

permitted to log on to the automatic call distributor.

159 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwAddressID

lpAgentGroupListContext

lpAgentGroupListSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 26.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, this

function MUST return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALAGENTID 0x80000057

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPOINTER 0x80000035

160 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by

the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device whose
agent status is to be queried. A valid value of dwAddressID is in the range 0 to dwNumAddresses
–1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by sending a

GetDevCaps packet to the remote server.

lpAgentGroupListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpAgentGroupListSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent group list data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

161 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.25 GetAgentInfo

The GetAgentInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns a packet that holds the ACD information that is associated with a
particular agent handle. It generates a LINE_PROXYREQUEST packet to be sent to a registered
proxy function handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_GETAGENTINFO.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

hAgent

lpAgentInfoContext

lpAgentInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 148.

Return Values

162 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function

MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion

packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent whose information is to be
retrieved. This field MUST have been obtained by sending the CreateAgent packet.

lpAgentInfoContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that
is used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpAgentInfo (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the agent
information data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

163 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.26 GetAgentSessionInfo

The GetAgentSessionInfo packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet returns a packet that holds the ACD information that is
associated with a particular agent session handle. It generates a LINE_PROXYREQUEST packet to be
sent to a registered proxy function handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_GETAGENTSESSIONINFO.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

hAgentSession

lpAgentSessionInfoContext

lpAgentSessionInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 149.

Return Values

164 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a request identifier if the asynchronous operation starts; otherwise, the function MUST

return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by

the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

hAgentSession (4 bytes): An unsigned 32-bit integer. The identifier of the agent session whose
information is to be retrieved. This field MUST have been obtained by sending the

CreateAgentSession packet.

lpAgentSessionInfoContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

lpAgentSessionInfo (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent session information data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

165 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.27 GetAgentSessionList

The GetAgentSessionList packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet returns a list of agent sessions that are created for the specified
agent. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy function
handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_GETAGENTSESSIONLIST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

hAgent

lpAgentSessionListContext

lpAgentSessionList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

166 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 150.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a request identifier if the asynchronous operation starts; otherwise, the function MUST
return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive
request ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent whose information is to be
retrieved. This field MUST have been obtained by sending the CreateAgent packet.

lpAgentSessionListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

lpAgentSessionList (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent session list data that the client will accept on successful completion of this request.

167 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.28 GetAgentStatus

The GetAgentStatus packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet obtains the agent-related status on the specified address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwAddressID

lpAgentStatusContext

lpAgentStatusSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

168 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 27.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, MUST
return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPOINTER 0x80000035

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive
request ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device whose
agent status is to be queried. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades. A valid value of dwAddressID is in

169 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

the range 0 to dwNumAddresses –1. The client obtains dwNumAddresses from the LINEDEVCAPS
obtained by sending a GetDevCaps packet to the remote server.

lpAgentStatusContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpAgentStatusSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the agent
status data that the client accepts on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.29 GetCallHubTracking

The GetCallHubTracking packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet returns the current state of call-hub tracking for the service
provider. This function requires TAPI 3.0 or 3.1 version negotiation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

lpTrackingInfo

Reserved2

Reserved3

Reserved4

Reserved5

170 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (20 bytes, optional)

...

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 140.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

lpTrackingInfo (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a
LINECALLHUBTRACKINGINFO packet that is filled with call-related information upon successful

completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

171 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (20 bytes): Present on successful completion of the request. Contains a

LINECALLHUBTRACKINGINFO packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.30 GetCallIDs

The GetCallIDs packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns the call identifiers for the service provider. This function requires
TAPI 3.0 or 3.1 version negotiation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

lpdwAddressID

lpdwCallID

lpdwRelatedCallID

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

172 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 141.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds, or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call whose identifier is needed. One way of obtaining a

valid hCall is by sending the MakeCall packet.

lpdwAddressID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon
successful completion of the request, this field contains the address identifier of the call.

lpdwCallID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon
successful completion of the request, this field contains the call identifier.

lpdwRelatedCallID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF).
Upon successful completion of the request, this field contains the identifier of a related call.

173 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.31 GetCallInfo

The GetCallInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns detailed information about the specified call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

lpCallInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

174 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 30.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call whose call information is to be retrieved. The call
state of hCall can be any state. One way of obtaining a valid hCall is by sending the MakeCall
packet.

lpCallInfo (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLINFO packet that

is filled with call-related information upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

175 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINECALLINFO
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.32 GetCallStatus

The GetCallStatus packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet returns the current status of the specified call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

lpCallStatus

Reserved2

Reserved3

Reserved4

Reserved5

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

176 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 31.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call to query for its status. The call state of hCall can

be any state. One way of obtaining a valid hCall is by sending the MakeCall packet.

lpCallStatus (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLSTATUS packet
that is filled with call status information upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

177 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINECALLSTATUS
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.33 GetDevConfig

The GetDevConfig packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST return a packet object, the contents of which are specific to the line
(service provider) and device class, giving the current configuration of a device that is associated one-
to-one with the line device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwDeviceID

lpDeviceConfig

lpszDeviceClass

Reserved2

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

178 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 35.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALDEVICECLASS 0x80000023

LINEERR_NOMEM 0x80000044

LINEERR_INVALPOINTER 0x80000035

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NODRIVER 0x80000043

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

179 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDeviceID (4 bytes): An unsigned 32-bit integer. The line device for which the data is retrieved.
This field MUST have been obtained by sending the Initialize packet.

lpDeviceConfig (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet
that contains the device configuration packet of the associated device upon successful completion

of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

lpszDeviceClass (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated Unicode string that specifies the device class of the device whose configuration is
requested.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated by the
lpszDeviceClass field in the original request. On successful completion of the request, this field

contains only a VARSTRING packet that is indicated by the lpDeviceConfig field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.34 GetGroupList

The GetGroupList packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns a list of ACD groups that are available on the ACD system. It

generates a LINE_PROXYREQUEST packet to be sent to a registered proxy function handler,
referencing a LINEPROXYREQUEST packet of type LINEPROXYREQUEST_GETGROUPLIST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

180 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1

dwRequestID

lpContext

hLine

lpGroupListContext

lpAgentGroupListSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 152.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

181 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive
request ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

lpGroupListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is

used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpAgentGroupListSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent group list data that the client accepts on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.35 GetID

The GetID packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns a device identifier for the specified device class that is associated with the
selected line, address, or call.

182 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwAddressID

hCall

dwSelect

lpDeviceID

lpszDeviceClass

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 37.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

183 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NODEVICE 0x80000042

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to an open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. An address on the specified open line device.
An address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. A valid value of dwAddressID is in the range 0 to
dwNumAddresses – 1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by
sending a GetDevCaps packet to the remote server. TAPI does not validate this parameter when
this function is called.

hCall (4 bytes): An HCALL. The handle to a call. One way of obtaining a valid hCall is by sending the
MakeCall packet.

dwSelect (4 bytes): An unsigned 32-bit integer. Specifies whether the device identifier that is
requested is associated with the line, address, or a single call. The dwSelect parameter MUST have

only one of the LINECALLSELECT_Constants.

lpDeviceID (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet that
contains the device identifier upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

lpszDeviceClass (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated string that specifies the device class of the device whose identifier is requested.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

184 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated by the
lpszDeviceClass field in the original request. On successful completion of the request, this field

contains only a VARSTRING packet that is indicated by the lpDeviceConfig field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.36 GetLineDevStatus

The GetLineDevStatus packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet queries the specified open line device for its current status. The
information that is returned is global to all addresses on the line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

lpLineDevStatus

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

185 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 38.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the open line to be queried. This field MUST have been
obtained by sending the Open packet.

lpLineDevStatus (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINEDEVSTATUS
packet that is filled with the device status of the line, upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

186 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINEDEVSTATUS
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.37 GetNewCalls

The GetNewCalls packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns call handles to calls on a specified line or address for which the

application currently does not have handles. The client is granted owner privilege to these calls.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwAddressID

dwSelect

pCallList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

187 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 39.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALCALLSELECT 0x8000001B

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_INVALPOINTER 0x80000035

LINEERR_UNINITIALIZED 0x80000050

LINEERR_NOMEM 0x80000044

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to an open line device. This field MUST have been obtained
by sending the Openpacket.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified open line device.
An address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. A valid value of dwAddressID is in the range 0 to
dwNumAddresses –1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by
sending a GetDevCaps packet to the remote server.

dwSelect (4 bytes): An unsigned 32-bit integer. The selection of calls that are requested. This
parameter MUST be either LINECALLSELECT_ADDRESS or LINECALLSELECT_LINE.

pCallList (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLLIST packet that
contains a list of handles to calls on the specified line or address for which the client currently does
not have handles, upon successful completion of the request.

On successful completion, this field MUST contain the offset, in bytes, of the packet in the VarData
field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

188 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): This field is present only on successful completion of the request and contains a
LINECALLLIST packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.38 GetNumAddressIDs

The GetNumAddressIDs packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet retrieves the number of address identifiers that are supported on
the indicated line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

lpdwNumAddressIDs

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

189 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 40.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line for which the number of address identifiers is to be

retrieved. This field MUST have been obtained by sending the Open packet.

lpdwNumAddressIDs (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF).
Upon successful completion of the request, this field contains the number of address identifiers
supported on the indicated line.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

190 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.39 GetProxyStatus

The GetProxyStatus packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet returns a list of proxy request types that are currently being
serviced for the specified device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

dwDeviceID

dwAppAPIVersion

lpLineProxyRequestList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

191 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 158.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the request succeeds; otherwise, the function MUST return one of the
following negative error values:

Name Value

LINEERR_BADDEVICEID 0x80000002

LINEERR_INCOMPATIBLEAPIVERSION 0x8000000C

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The line device to query. A valid value of
dwDeviceID is in the range 0 to dwNumDevs –1. The client obtains dwNumDevs by sending a

Initialize packet to the remote server.

dwAppAPIVersion (4 bytes): An unsigned 32-bit integer. The version number of TAPI to be used.
This value is obtained by sending the NegotiateAPIVersion packet.

lpLineProxyRequestList (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a
LINEPROXYREQUESTLIST packet that contains a list of the currently supported proxy requests,
upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

192 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Contains a LINEPROXYREQUESTLIST packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.40 GetQueueInfo

The GetQueueInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet returns a packet that holds the ACD information that is associated with a
particular queue. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy
function handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_GETQUEUEINFO.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwQueueID

lpQueueInfoContext

lpQueueInfo

Reserved2

Reserved3

Reserved4

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

193 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 151.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

194 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwQueueID (4 bytes): An unsigned 32-bit integer. The identifier of the queue whose information is
retrieved. This field MUST have been obtained from LINEQUEUEENTRY in LINEQUEUELIST. The

LINEQUEUELIST MUST have been obtained by sending GetQueueList packet.

lpQueueInfoContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that

is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpQueueInfo (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the queue
information data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.41 GetQueueList

The GetQueueList packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns a list of queues that are associated with a particular ACD group. It
generates a LINE_PROXYREQUEST packet to be sent to a registered proxy function handler,
referencing a LINEPROXYREQUEST packet of type LINEPROXYREQUEST_GETQUEUELIST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

pGroupID

cbGUID

195 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpQueueListContext

lpQueueList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (16 bytes)

...

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 153.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

196 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion

packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

pGroupID (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a GUID
that identifies the group for which the list of queues is requested. The GUID of the group is
obtained by sending a GetAgentGroupList packet to the remote server.

cbGUID (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the packet that is indicated in

the pGroupID field, set to "sizeof (GUID)".

lpQueueListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that
is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpQueueList (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the queue list
data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (16 bytes): Contains the GUID that is indicated by the pGroupID field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.42 Hold

The Hold packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet places the specified call on hold.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

197 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 46.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

198 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be placed on hold. One way of obtaining a valid

hCall is by sending the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE
packet sent by the remote server. The application MUST be an owner of the call. The call state of

hCall must be connected. One way to have hCall in connected state is by sending Answer packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.43 MakeCall

The MakeCall packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet places a call on the specified line to the specified destination address. Optionally,
call parameters can be specified if anything but default call setup parameters are requested.

199 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

lphCallContext

lpszDestAddress

dwCountryCode

lpCallParams

dwCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 48.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

200 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_ADDRESSBLOCKED 0x80000053

LINEERR_INVALLINESTATE 0x8000002C

LINEERR_BEARERMODEUNAVAIL 0x80000003

LINEERR_INVALRATE 0x80000037

LINEERR_CALLUNAVAIL 0x80000005

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_DIALBILLING 0x80000008

LINEERR_INVALADDRESS 0x80000010

LINEERR_DIALQUIET 0x8000000B

LINEERR_INVALADDRESSID 0x80000011

LINEERR_DIALDIALTONE 0x80000009

LINEERR_INVALCALLPARAMS 0x80000019

LINEERR_DIALPROMPT 0x8000000A

LINEERR_NOMEM 0x80000044

LINEERR_INUSE 0x8000000F

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESSMODE 0x80000012

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALBEARERMODE 0x80000016

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALCOUNTRYCODE 0x80000022

LINEERR_RATEUNAVAIL 0x8000004A

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_USERUSERINFOTOOBIG 0x80000051

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by

the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line on which the new call is to originate. This
field MUST have been obtained by sending the Open packet.

201 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lphCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of

a null-terminated Unicode string that specifies the destination address. If this field is -1
(0xFFFFFFFF), no destination address is sent.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the called party. f a
value of 0 is specified, an implementation specific default MUST be used.

lpCallParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
LINECALLPARAMS packet that contains call parameters. If this field is -1 (0xFFFFFFFF), no call
parameters are sent.

dwCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (0xFFFFFFFF).

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated by the

lpszDestAddress field and a LINECALLPARAMS packet that is indicated by the lpCallParams field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.44 MonitorDigits

The MonitorDigits packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet enables or disables the unbuffered detection of digits that are received on
the call. Each time a digit of the specified digit modes is detected, a LINE_MONITORDIGITS packet is

sent to the application by TAPI, indicating which digit is detected.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

dwDigitModes

Reserved2

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

202 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 49.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALDIGITMODE 0x80000027

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call on which digits are to be detected. The call state of
hCall can be any state except idle or disconnected. One way of obtaining a valid hCall is by
sending the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet
sent by the remote server.

203 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDigitModes (4 bytes): An unsigned 32-bit integer. The digit modes that are to be monitored. A
dwDigitModes parameter with a value of 0 cancels digit monitoring. The dwDigitModes parameter

MUST have one of the LINEDIGITMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.45 MonitorMedia

The MonitorMedia packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet enables or disables the detection of media types on the specified call. When
a media type is detected, a LINE_MONITORMEDIA packet is sent to TAPI.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

dwMediaModes

Reserved2

Reserved3

204 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 50.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call. The call state of hCall can be any state except
idle. One way of obtaining a valid hCall is by sending the MakeCall packet. Also a valid hCall can
be obtained from LINE_CALLSTATE packet sent by the remote server.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The media types to be monitored. The
dwMediaModes parameter MUST be a bitwise combination of LINEMEDIAMODE_Constants. A value
of 0 cancels all media type monitoring.

205 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.46 MonitorTones

The MonitorTones packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet enables and disables the detection of inband tones on the call. Each time a
specified tone is detected, a packet is sent to the client application through TAPI.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

lpToneList

dwNumEntries

dwToneListID

Reserved2

Reserved3

206 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (20 bytes)

...

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 51.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALTONE 0x8000003C

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_INVALPOINTER 0x80000035

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call on whose voice channel tones are to be monitored.
The call state of hCall can be any state except idle. One way of obtaining a valid hCall is by

207 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sending the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet
sent by the remote server.

lpToneList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field. Contains
a list of tones to be monitored of type LINEMONITORTONE.

dwNumEntries (4 bytes): An unsigned 32-bit integer. This value is equal to the number of entries in
lpToneList multiplied by size of LINEMONITORTONE. The dwNumEntries parameter is ignored if
lpToneList is -1(0xFFFFFFFF). TAPI does not validate this parameter when this function is called.

dwToneListID (4 bytes): An unsigned 32-bit integer. The unique identifier for this tone list.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (20 bytes): Contains a LINEMONITORTONE packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.47 NegotiateExtVersion

The NegotiateExtVersion packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet MUST return the highest extension version number that the
service provider can operate under for this device and for the range of possible extension versions.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

dwDeviceID

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

208 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwTSPIVersion

dwLowVersion

dwHighVersion

lpdwExtVersion

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 53.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INCOMPATIBLEAPIVERSION 0x8000000C

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INCOMPATIBLEEXTVERSION 0x8000000D

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NODRIVER 0x80000043

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the client application's registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

209 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDeviceID (4 bytes): An unsigned 32-bit integer. Identifies the line device for which interface
version negotiation is performed. A valid value of dwDeviceID is in the range 0 to dwNumDevs –1.

The client obtains dwNumDevs by sending a Initialize packet to the remote server.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The TAPI version number that was

negotiated for the specified line device using NegotiateAPIVersion.

dwLowVersion (4 bytes): An unsigned 32-bit integer. The lowest extension version number under
which TAPI or its client application can operate. The most-significant WORD is the major version
number and the least-significant WORD is the minor version number. TAPI does not validate this
parameter when this function is called.

dwHighVersion (4 bytes): An unsigned 32-bit integer. The highest extension version number under
which TAPI or its client application can operate. The most-significant WORD is the major version

number and the least-significant WORD is the minor version number. TAPI does not validate this
parameter when this function is called.

lpdwExtVersion (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon

successful completion, this field contains the negotiated extension version number.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.48 Park

The Park packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet parks the specified call according to the specified park mode.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hCall

210 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwParkMode

lpszDirAddress

lpNonDirAddressContext

lpNonDirAddress

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 55.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_INVALPARKMODE 0x80000034

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALADDRESS 0x80000010

211 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_STRUCTURETOOSMALL 0x8000004D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call to be parked. One way of obtaining a valid hCall is
by sending the MakeCall packet. The application MUST be an owner of the call. The call state of
hCall must be connected. One way to have hCall in connected state is by sending Answer packet.

dwParkMode (4 bytes): An unsigned 32-bit integer. The park mode with which the call is to be
parked; MUST be one of the LINEPARKMODE_Constants.

lpszDirAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated Unicode string that indicates the address where the call is parked when using
directed park.

lpNonDirAddressContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpNonDirAddress (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet
in the VarData field that will contain the address where a non-directed call has been parked upon
successful completion of the request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Contains the null-terminated Unicode string that is indicated by the
lpszDirAddress field or a VARSTRING packet that is indicated by the lpszNonDirAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.49 PickUp

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

212 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The PickUp packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet picks up a call alert at the specified destination address and returns a call handle

for the picked-up call. If invoked with NULL for the lpszDestAddress parameter, a group pickup is
performed. If required by the device capabilities, lpszGroupID specifies the group identifier to which

the alerting station belongs.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwAddressID

lphCallContext

lpszDestAddress

lpszGroupID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 56.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

213 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY

packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be

used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_NOMEM 0x80000044

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESS 0x80000010

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALGROUPID 0x8000002A

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line on which a call is to be picked up. This field MUST
have been obtained by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on hLine at which the pickup is to
be originated. An address identifier is permanently associated with an address; the identifier

remains constant across operating system upgrades. A valid value of dwAddressID is in the range
0 to dwNumAddresses – 1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained
by sending a GetDevCaps packet to the remote server.

lphCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that contains the address whose call is to be picked up.

lpszGroupID (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated Unicode string that contains the group identifier to which the alerting station

belongs.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

214 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains two null-terminated Unicode strings that are indicated by the
lpszDestAddress and lpszGroupID fields.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.50 PrepareAddToConference

The PrepareAddToConference packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet prepares an existing conference call for the addition of another

party. It creates a new, temporary consultation call. The new consultation call can be subsequently
added to the conference call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hConfCall

lphConsultCallContext

lpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

215 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 57.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_BEARERMODEUNAVAIL 0x80000003

LINEERR_INVALLINESTATE 0x8000002C

LINEERR_CALLUNAVAIL 0x80000005

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_CONFERENCEFULL 0x80000007

LINEERR_INVALRATE 0x80000037

LINEERR_INUSE 0x8000000F

LINEERR_NOMEM 0x80000044

LINEERR_INVALADDRESSMODE 0x80000012

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALBEARERMODE 0x80000016

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALCALLPARAMS 0x80000019

LINEERR_RATEUNAVAIL 0x8000004A

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALCONFCALLHANDLE 0x80000020

LINEERR_USERUSERINFOTOOBIG 0x80000051

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

216 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion

packet.

hConfCall (4 bytes): An HCALL. The handle to a conference call. This field MUST have been obtained

by sending the SetUpConference packet. The application MUST be an owner of this call. The call
state of hConfCall MUST be connected.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpCallParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
LINECALLPARAMS packet that contains call parameters to use when establishing the consultation

call. If this field is -1 (0xFFFFFFFF), no call parameters are sent.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (0xFFFFFFFF).

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a LINECALLPARAMS packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.51 Redirect

The Redirect packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet redirects the specified offering call to the specified destination address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

217 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hCall

lpszDestAddress

dwCountryCode

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 60.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCOUNTRYCODE 0x80000022

218 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALADDRESS 0x80000010

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be redirected. The client can obtain a valid hCall
from the LINE_CALLSTATE packet sent by the remote server. The application MUST be an owner
of the call. The call state of hCall must be offering. The client must have sent MakeCall packet to
have hCall in offering state.

lpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that specifies the destination address.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the party to which the
call is redirected. If a value of 0 is specified, a default is used by the implementation. This
parameter is not validated by TAPI when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): MUST contain the null-terminated Unicode strings that are indicated by the
lpszDestAddress.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.52 ReleaseUserUserInfo

The ReleaseUserUserInfo packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet informs the service provider that the user-user information that

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

219 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

is contained in the LINECALLINFO packet has been processed and that subsequently received user-
user information can now be written into that packet. The service provider sends a LINE_CALLINFO

packet to indicate LINECALLINFOSTATE_USERUSERINFO when new information is available.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 62.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

220 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call for which user-user information is to be released.

One way of obtaining a valid hCall is by sending the MakeCall packet. Also a valid hCall can be
obtained from LINE_CALLSTATE packet sent by the remote server. The application MUST be an

owner of the call. The call state of hCall can be any state.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.53 RemoveFromConference

The RemoveFromConference packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet removes the specified call from the conference call to which it
currently belongs. The remaining calls in the conference call are unaffected.

221 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. Identifier of the function that will be invoked on
the remote server. This value MUST be set to 63.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same MUST be used as
the value for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

222 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): A HCALL. Handle to the call to be removed from the conference. The application

MUST be an owner of this call. The call state of hCall must be conferenced. The client must have
sent the AddToConference packet to have hCall in the conference state.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.54 SecureCall

The SecureCall packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet secures the call from any interruptions or interference that can affect the
media stream of the call.

223 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 64.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

224 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be secured. One way of obtaining a valid hCall is

by sending the MakeCall packet. The application MUST be an owner of the call. The call state of
hCall can be any state.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.55 SelectExtVersion

The SelectExtVersion packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet selects the indicated extension version for the indicated line
device. Subsequent requests operate according to that extension version.

225 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwExtVersion

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 128.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INCOMPATIBLEEXTVERSION 0x8000000D

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

226 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line where an extension version is to be selected. This
field MUST have been obtained by sending the Open packet.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The extension version to be selected. This

version number has been negotiated by using the NegotiateExtVersion packet. The most-
significant WORD is the major version number and the least-significant WORD is the minor version
number. Calling this function with a dwExtVersion of zero cancels the current selection.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.56 SendUserUserInfo

The SendUserUserInfo packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet sends user-user information to the remote party on the specified
call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

227 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1

dwRequestID

hCall

lpsUserUserInfo

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 65.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY

packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

228 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_USERUSERINFOTOOBIG 0x80000051

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call on which to send user-user information. One way

of obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall must be connected, offering, accepted, or ringback.

lpsUserUserInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
user-user information to send to the remote party. When this field is set to -1 (0xFFFFFFFF), no
user-user information is to be sent.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, including the null terminator, of the
user-user information in lpsUserUserInfo. If lpsUserUserInfo is -1 (0xFFFFFFFF), no user-user
information MUST be sent and dwSize MUST be ignored.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the lpsUserUserInfo field. The
user information can be an ASCII or Unicode string, and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

229 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.3.57 SetAgentActivity

The SetAgentActivity packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet sets the agent activity code that is associated with a particular

address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

dwAddressID

dwActivityID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 66.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, the
function MUST return one of these negative error values:

230 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALADDRESSSTATE 0x80000013

LINEERR_INVALAGENTACTIVITY 0x8000005B

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPOINTER 0x80000035

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —

0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request

ID.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The identifier of the address for which the
agent activity code is to be changed. An address identifier is permanently associated with an
address; the identifier remains constant across operating system upgrades. A valid value of

dwAddressID is in the range 0 to dwNumAddresses –1. The client obtains dwNumAddresses from
the LINEDEVCAPS obtained by sending a GetDevCaps packet to the remote server.

dwActivityID (4 bytes): An unsigned 32-bit integer. New agent activity id. The meaning of all
values of this parameter are specific to the application and call center server.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

231 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.58 SetAgentGroup

The SetAgentGroup packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet sets the agent groups on which the agent is logged into on a
particular address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

dwAddressID

lpAgentGroupList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

232 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 67.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, the
function MUST return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALADDRESSSTATE 0x80000013

LINEERR_INVALAGENTGROUP 0x80000058

LINEERR_INVALAGENTID 0x80000057

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_INVALPASSWORD 0x80000059

LINEERR_INVALPOINTER 0x80000035

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive
request ID.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The identifier of the address for which the
agent information is to be changed. An address identifier is permanently associated with an
address; the identifier remains constant across operating system upgrades. A valid value of

233 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwAddressID is in the range 0 to dwNumAddresses –1. The client obtains dwNumAddresses from
the LINEDEVCAPS obtained by sending a GetDevCaps packet to the remote server.

lpAgentGroupList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a LINEAGENTGROUPLIST packet. This packet identifies the groups that the current agent will be

logged into at the address that is specified in the dwAddressID field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): A LINEAGENTGROUPLIST packet that describes a list of ACD agent groups. This

packet can contain an array of LINEAGENTGROUPENTRY packets.

2.2.4.1.3.59 SetAgentMeasurementPeriod

The SetAgentMeasurementPeriod packet is transmitted from a TAPI client to a TAPI server in a
remote procedure call. Sending this packet sets the measurement period that is associated with a
particular agent. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy
function handler, referencing a LINEPROXYREQUEST packet of type

LINEPROXYREQUEST_SETAGENTMEASUREMENTPERIOD.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

hAgent

234 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwMeasurementPeriod

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 154.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the

235 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent whose information is to be
changed. The client obtains this handle by sending a CreateAgent packet to the remote server.

dwMeasurementPeriod (4 bytes): An unsigned 32-bit integer. The new measurement period, in
seconds. MUST be greater than zero.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.60 SetAgentSessionState

The SetAgentSessionState packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet sets the agent session state that is associated with a particular
agent session handle. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy

function handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_SETAGENTSESSIONSTATE.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

236 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hLine

hAgentSession

dwAgentSessionState

dwNextAgentSessionState

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 155.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALAGENTSTATE 0x8000005A

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

237 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

hAgentSession (4 bytes): An unsigned 32-bit integer. The identifier of the agent session whose
information is to be changed. The client obtains this handle by sending a CreateAgentSession

packet to the remote server.

dwAgentSessionState (4 bytes): An unsigned 32-bit integer. The new agent session state. MUST

be one of the LINEAGENTSESSIONSTATE_Constants or zero to leave the agent session state
unchanged and modify only the next state.

dwNextAgentSessionState (4 bytes): An unsigned 32-bit integer. The next agent session state.
MUST be one of the LINEAGENTSESSIONSTATE_Constants or zero. At most, one of
dwAgentSessionState or dwNextAgentSessionState can be zero.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.61 SetAgentState

The SetAgentState packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet sets the agent state that is associated with a particular address. It generates
a LINE_PROXYREQUEST packet to be sent to a registered proxy function handler, referencing a
LINEPROXYREQUEST packet of type LINEPROXYREQUEST_SETAGENTSTATE.

238 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

dwAddressID

dwAgentState

dwNextAgentState

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 68.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, the

function MUST return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALADDRESSSTATE 0x80000013

LINEERR_INVALAGENTSTATE 0x8000005A

LINEERR_INVALLINEHANDLE 0x8000002B

239 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by

sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The identifier of the address for which the
agent information is to be changed. An address identifier is permanently associated with an
address; the identifier remains constant across operating system upgrades. A valid value of
dwAddressID is in the range 0 to dwNumAddresses – 1. The client obtains dwNumAddresses from

the LINEDEVCAPS obtained by sending a GetDevCaps packet to the remote server.

dwAgentState (4 bytes): An unsigned 32-bit integer. The new agent state. MUST be one of the

LINEAGENTSTATE_Constants, or zero to leave the agent state unchanged and modify only the
next state.

dwNextAgentState (4 bytes): An unsigned 32-bit integer. The agent state that SHOULD be
automatically set when the current call on the address becomes idle. For example, if it is known
that after-call work is to be performed, this field can be set to
LINEAGENTSTATE_WORKINGAFTERCALL so that a new call is not assigned to the agent after the
current call. MUST be one of the LINEAGENTSTATE_Constants, or zero to use the default next

state that is configured for the agent.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

240 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.62 SetAgentStateEx

The SetAgentStateEx packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet sets the agent state that is associated with a particular agent
handle. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy function

handler, referencing a LINEPROXYREQUEST packet of type LINEPROXYREQUEST_SETAGENTSTATEEX.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

hAgent

dwAgentState

dwNextAgentState

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 157.

Return Values

241 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function

MUST return one of the following error values:

Name Value

LINEERR_INVALAGENTSTATE 0x8000005A

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent whose information is to be
changed. The client obtains this handle by sending a CreateAgent packet to the remote server.

dwAgentState (4 bytes): An unsigned 32-bit integer. The new agent state. MUST be one of the

LINEAGENTSTATEEX_Constants, or zero, to leave the agent state unchanged and modify only the
next state.

dwNextAgentState (4 bytes): An unsigned 32-bit integer. The next agent state. MUST be one of
the LINEAGENTSTATEEX_Constants, or zero, to use the default next state that is configured for
the agent.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

242 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.63 SetAppSpecific

The SetAppSpecific packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet sets the application-specific field of the specified call's LINECALLINFO packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

dwAppSpecific

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

243 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 70.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hCall (4 bytes): The handle to the call whose application-specific field needs to be set. One way of
obtaining a valid hCall is by sending the MakeCall packet. Also a valid hCall can be obtained from
LINE_CALLSTATE packet sent by the remote server. The application MUST be an owner of the call.
The call state of hCall can be any state.

dwAppSpecific (4 bytes): The new content of the dwAppSpecific member for the call's

LINECALLINFO packet. This value is uninterpreted by the service provider. This parameter is not

validated by TAPI when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

244 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.64 SetCallData

The SetCallData packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. The function service provider stores the indicated call data with its information that is related to
the call, and subsequently delivers it whenever the GetCallInfo packet is sent. The service provider

sends a LINE_CALLINFO packet indicating LINECALLINFOSTATE_CALLDATA to show that the call data
has changed.

Depending on the service provider implementation, the call data can be propagated to all entities

having handles to the call, including those on other machines (through the server), and can travel
with the call when it is transferred.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

lpCallData

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

245 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 71.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the asynchronous operation starts; otherwise, the function
returns one of these negative error values:

Name Value

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier for reporting asynchronous
completion information.

hCall (4 bytes): An HCALL. The handle to the call. One way of obtaining a valid hCall is by sending
the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet sent by the

remote server. The application MUST have OWNER privileges.

lpCallData (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field, that
contains the data to be copied to the CallData field in LINECALLINFO, replacing any existing data.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the data that is indicated in the
lpCallData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

246 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains data to copy to the CallData member of a LINECALLINFO packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.65 SetCallHubTracking

The SetCallHubTracking packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet sets the call-hub tracking mode. This function requires TAPI 3.0
or 3.1 version negotiation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

lpTrackingInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

247 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (20 bytes)

...

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 143.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. A handle to the line whose call-hub tracking state will be modified. This
field MUST have been obtained by sending the Open packet.

lpTrackingInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the varData field of a
LINECALLHUBTRACKINGINFO packet that contains call information upon successful completion of

the request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

248 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (20 bytes): Contains a LINECALLHUBTRACKINGINFO packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.66 SetCallParams

The SetCallParams packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet allows an application to change the bearer mode, rate parameters, and dial
parameters of an existing call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

dwBearerMode

dwMinRate

dwMaxRate

lpDialParams

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

249 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved6

Reserved7

VarData (16 bytes, optional)

...

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 72.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. The following table shows the return values for
this function.

Value Meaning

LINEERR_BEARERMODEUNAVAIL

0x80000003

The bearer mode member in the LINECALLPARAMS packet is invalid, the
bearer mode that is specified in LINECALLPARAMS is not available, or
the bearer mode of the call cannot be changed to the specified bearer
mode.

LINEERR_NOTOWNER

0x80000046

The application is not the owner of the call.

LINEERR_INVALBEARERMODE

0x80000016

The bearer mode is invalid.

LINEERR_OPERATIONUNAVAIL

0x80000049

The operation is invalid.

LINEERR_INVALCALLHANDLE

0x80000018

The call handle is invalid.

LINEERR_RATEUNAVAIL

0x8000004A

The rate is unavailable.

LINEERR_INVALRATE

0x80000037

The rate is invalid.

LINEERR_NOMEM

0x80000044

Not enough memory is available.

LINEERR_OPERATIONFAILED

0x80000048

The operation failed.

250 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

LINEERR_RESOURCEUNAVAIL

0x8000004B

The resource is unavailable.

LINEERR_UNINITIALIZED

0x80000050

The parameter is uninitialized.

LINEERR_INVALCALLSTATE

0x8000001C

The call state is invalid.

LINEERR_INVALPOINTER

0x80000035

The pointer is invalid.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hCall (4 bytes): An HCALL. The handle to the call whose parameters are to be changed. One way of
obtaining a valid hCall is by sending the MakeCall packet. Also a valid hCall can be obtained from
LINE_CALLSTATE packet sent by the remote server. The application MUST be an owner of the call.
The call state of hCall can be any state except idle or disconnected.

dwBearerMode (4 bytes): An unsigned 32-bit integer. The new bearer mode for the call. This field

MUST use one of the LINEBEARERMODE_Constants.

dwMinRate (4 bytes): An unsigned 32-bit integer. The lower bound for the new data rate of the call.

dwMaxRate (4 bytes): An unsigned 32-bit integer. The upper bound for the new data rate of the
call.

lpDialParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
LINEDIALPARAMS packet that contains the new dial parameters of the call. If this field is -1
(0xFFFFFFFF), no call parameter is sent.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the packet that is indicated in
the lpDialParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

251 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (16 bytes): Contains the LINEDIALPARAMS packet that specifies a collection of dialing-
related fields.

2.2.4.1.3.67 SetCallQualityOfService

The SetCallQualityOfService packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST allow a change to the quality of service parameters
(reserved capacity and performance guarantees) for an existing call. Except for basic parameter

validation, this is a straight pass-through to a service provider.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

lpSendingFlowspec

dwSendingFlowspecSize

lpReceivingFlowspec

dwReceivingFlowspecSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (32 bytes)

...

252 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 74.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of these negative error values:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_INVALPARAM 0x80000032

LINEERR_INVALPOINTER 0x80000035

LINEERR_INVALRATE 0x80000037

LINEERR_NOMEM 0x80000044

LINEERR_NOTOWNER 0x80000046

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_RATEUNAVAIL 0x8000004A

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive
request ID.

hCall (4 bytes): An HCALL. The handle to the call. One way of obtaining a valid hCall is by sending
the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet sent by the
remote server. The application MUST have OWNER privilege.

lpSendingFlowspec (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field
of a WinSock2 FLOWSPEC packet that is followed by provider-specific data.

253 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwSendingFlowspecSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of the
FLOWSPEC packet and accompanying provider-specific data. This is equivalent to what would have

been stored in SendingFlowspec in a QoS packet.

lpReceivingFlowspec (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData

field of a WinSock2 FLOWSPEC packet, followed by provider-specific data.

dwReceivingFlowspecSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of the
FLOWSPEC and accompanying provider-specific data. This is equivalent to what would have been
stored in ReceivingFlowspec in a QoS packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (32 bytes): MUST Contain a WinSock2 FLOWSPEC packet that is followed by provider-
specific data that is indicated in the lpSendingFlowspec field; and a WinSock2 FLOWSPEC packet

that is followed by the provider-specific data that is indicated by the lpReceivingFlowspec field.

The contents of this field are DWORD-aligned.

2.2.4.1.3.67.1 FLOWSPEC

The FLOWSPEC packet allows the changing of Quality of Service (QoS) settings for a particular flow.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TokenRate

TokenBucketSize

PeakBandwidth

Latency

DelayVariation

ServiceType

254 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

MaxSduSize

MinimumPolicedSize

TokenRate (4 bytes): An unsigned 32-bit integer. Specifies the permitted rate at which data can be
transmitted over the life of the flow.

TokenBucketSize (4 bytes): An unsigned 32-bit integer. The maximum amount of credits, in bytes,

that a particular direction of a flow can accrue, regardless of time.

PeakBandwidth (4 bytes): An unsigned 32-bit integer. The upper limit, in bytes per second, on
time-based transmission permission for a particular flow. PeakBandwidth restricts flows that can
have accrued a significant amount of transmission credits, or tokens from overburdening network
resources with one-time or cyclical data bursts, by enforcing a per-second data transmission
ceiling. Some intermediate systems can take advantage of this information, resulting in more

efficient resource allocation.

Latency (4 bytes): An unsigned 32-bit integer. The maximum acceptable delay, in microseconds,
between transmission of a bit by the sender and its receipt by one or more intended receivers. The
precise interpretation of this number depends on the level of guarantee that is specified in the QoS
request.

DelayVariation (4 bytes): An unsigned 32-bit integer. The difference between the maximum and
minimum possible delay, in microseconds, that a packet will experience. DelayVariation is used

to determine the amount of packet space that is needed at the receiving end of the flow. This
packet space information can be used to restore the original data transmission pattern.

ServiceType (4 bytes): An unsigned 32-bit integer. Specifies the level of service to negotiate for the
flow.

Value Meaning

SERVICETYPE_NOTRAFFIC

0x00000000

Indicates that no traffic will be transmitted in the specified
direction. On duplex-capable media, this value signals underlying
software to set up unidirectional connections only.

SERVICETYPE_BESTEFFORT

0x00000001

Results in no action taken. However, traffic control does create a
BESTEFFORT flow, and traffic on the flow is handled by traffic
control similarly to other BESTEFFORT traffic.

SERVICETYPE_CONTROLLEDLOAD

0x00000002

Provides an end-to-end QoS that closely approximates
transmission quality that is provided by best-effort service, as
expected under unloaded conditions from the associated network
components along the data path. Therefore, applications that use
SERVICETYPE_CONTROLLEDLOAD can assume the following:

 The network will deliver a high percentage of transmitted
packets to its intended receivers. In other words, packet loss
will closely approximate the basic packet error rate of the
transmission medium.

 Transmission delay for a high percentage of the delivered
packets will not greatly exceed the minimum transit delay
that is experienced by any successfully delivered packet.

SERVICETYPE_GUARANTEED

0x00000003

Guarantees that datagrams arrive within the guaranteed delivery
time and are not discarded because of queue overflows—
provided the flow's traffic stays within its specified traffic
parameters. This service is intended for applications that need a
firm guarantee that a datagram arrives no later than a certain

255 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

time after it was transmitted by its source.

SERVICETYPE_NETWORK_UNAVAILBLE

0x00000004

Used to notify network changes.

SERVICETYPE_GENERAL_INFORMATION

0x00000005

Specifies that all service types are supported for a flow. Can be
used on the sender side only.

SERVICETYPE_NOCHANGE

0x00000006

Indicates that the Quality of Service (QoS) in a transmission that
uses this ServiceType value is not changed.
SERVICETYPE_NOCHANGE can be used when requesting a
change in the QoS for one direction only or when requesting a
change only within the ProviderSpecific parameters of a QoS
specification and not in the SendingFlowspec or
ReceivingFlowspec.

SERVICETYPE_NONCONFORMING

0x00000009

Used to indicate nonconforming traffic.

SERVICETYPE_NETWORK_CONTROL

0x0000000A

Used only for transmission of control packets, such as Resource
Reservation Protocol (RSVP) signaling packets [RFC2205]. This
ServiceType has the highest priority.

SERVICETYPE_QUALITATIVE

0x0000000D

Requires better than BESTEFFORT transmission but cannot
quantify its transmission requirements. Traffic control treats
flows of this type with the same priority as BESTEFFORT traffic.

SERVICE_NO_TRAFFIC_CONTROL

0x81000000

Indicates that traffic control is not to be invoked in the specified
direction.

SERVICE_NO_QOS_SIGNALING

0x40000000

Suppresses RSVP signaling in the specified direction.

MaxSduSize (4 bytes): An unsigned 32-bit integer. Specifies the maximum packet size, in bytes,
that is permitted or used in the traffic flow.

MinimumPolicedSize (4 bytes): An unsigned 32-bit integer. Specifies the minimum packet size, in
bytes, for which the requested Quality of Service is provided. Packets smaller than this size are

treated by traffic control as MinimumPolicedSize. When using the FLOWSPEC packet together
with RSVP, the value of MinimumPolicedSize cannot be zero.

2.2.4.1.3.68 SetCallTreatment

The SetCallTreatment packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST set the sounds that a party hears for an unanswered call

or when on hold. Except for basic parameter validation, it is a straight pass-through by TAPI to the
service provider.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

https://go.microsoft.com/fwlink/?LinkId=120109

256 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hCall

dwTreatment

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 75.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of these negative error values:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_NOTOWNER 0x80000046

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

257 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hCall (4 bytes): An HCALL. The handle to the call. One way of obtaining a valid hCall is by sending
the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet sent by the
remote server. The application MUST have OWNER privileges.

dwTreatment (4 bytes): An unsigned 32-bit integer. MUST be one of the call treatments that are

supported on the address on which the call appears, as indicated by LINEADDRESSCAPS.
LINEERR_INVALPARAM is returned if the specified treatment is not supported.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.69 SetDefaultMediaDetection

The SetDefaultMediaDetection packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST tell the service provider the new set of media types to
detect for the indicated line (replacing any previous set). It MUST also set the initial set of media
types that SHOULD be monitored for on subsequent calls (inbound or outbound) on this line.

258 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwMediaModes

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 76.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the function succeeds, or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_RESOURCEUNAVAIL 0x8000004B

259 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_NODRIVER 0x80000043

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line to have media monitoring set. This field MUST
have been obtained by sending the Open packet.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The media types of interest to TAPI. This
parameter MUST use one of the LINEMEDIAMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.70 SetDevConfig

The SetDevConfig packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST restore the configuration of a device that is associated one-to-one with
the line device.

260 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwDeviceID

lpDeviceConfig

dwSize

lpszDeviceClass

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 77.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the function succeeds or an error number if an error occurs. Common return values
are:

Name Value

LINEERR_INVALDEVICECLASS 0x80000023

261 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_INVALPOINTER 0x80000035

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALPARAM 0x80000032

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALLINESTATE 0x8000002C

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NODRIVER 0x80000043

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The line device to be configured. A valid value of
dwDeviceID is in the range 0 to dwNumDevs –1. The client obtains dwNumDevs by sending a
Initialize packet to the remote server.

lpDeviceConfig (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
the device configuration data structure VARSTRING that was returned by the GetDevConfig
packet.

dwSize (4 bytes): An unsigned 32-bit integer. The number of bytes in the packet that is pointed to
by lpDeviceConfig.

lpszDeviceClass (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated Unicode string that specifies the device class of the device whose configuration will
be restored.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

262 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST contain a configuration data packet VARSTRING that is indicated by the
lpDeviceConfig field and a null-terminated Unicode string that is indicated by the lpszDeviceClass

field in the original request. This field is not present in the response.

The contents of this field are DWORD-aligned.

2.2.4.1.3.71 SetLineDevStatus

The SetLineDevStatus packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST set the device status as indicated, and the appropriate
LINE_LINEDEVSTATE packets to indicate the new status.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

dwStatusToChange

fStatus

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 78.

Return Values

263 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the asynchronous operation starts; otherwise, the function

returns one of these negative error values:

Name Value

LINEERR_INVALLINESTATE 0x8000002C

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier for reporting asynchronous
function results.

hLine (4 bytes): An HLINE. The service provider's handle to the line device. This field MUST have
been obtained by sending the Open packet.

dwStatusToChange (4 bytes): An unsigned 32-bit integer. MUST use one or more of the
LINEDEVSTATUSFLAGS_Constants.

fStatus (4 bytes): An unsigned 32-bit integer. 1 to turn on the indicated status bits; 0 to turn off.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.72 SetMediaControl

264 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The SetMediaControl packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST enable or disable control actions on the media stream that

is associated with the specified line, address, or call.

Media control actions can be triggered by the detection of specified digits, media types, custom tones,

and call states. The new specified media controls replace all the ones that were in effect for this line,
address, or call prior to this request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwAddressID

hCall

dwSelect

lpDigitList

dwDigitNumEntries

lpMediaList

dwMediaNumEntries

lpToneList

dwToneNumEntries

lpCallStateList

dwCallStateNumEntries

Reserved2

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 79.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

265 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Returns zero if the function succeeds or an error number if an error occurs. Common return values
are as follows:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_INVALPOINTER 0x80000035

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_INVALTONELIST 0x8000003D

LINEERR_INVALCALLSELECT 0x8000001B

LINEERR_NOMEM 0x80000044

LINEERR_INVALCALLSTATELIST 0x8000001D

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALDIGITLIST 0x80000026

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALMEDIALIST 0x8000002E

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hLine (4 bytes): An HLINE. The handle to a line. This field MUST have been obtained by sending the
Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. An address on the particular open line device.
An address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. TAPI does not validate this parameter when this function is
called. A valid value of dwAddressID is in the range 0 to dwNumAddresses –1. The client obtains

dwNumAddresses from the LINEDEVCAPS obtained by sending a GetDevCaps packet to the remote
server.

hCall (4 bytes): An HCALL. The handle to a call. One way of obtaining a valid hCall is by sending the
MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet sent by the
remote server. The call state of hCall can be any state.

dwSelect (4 bytes): An unsigned 32-bit integer. Specifies whether the requested media control is

associated with a single call; is the default for all calls on an address; or is the default for all calls
on a line. This parameter MUST use the LINECALLSELECT_Constants.

lpDigitList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a
LINEMEDIACONTROLDIGIT packet in the VarData field that contains the digits to trigger media
control actions.

dwDigitNumEntries (4 bytes): An unsigned 32-bit integer. This value is equal to the number of
entries in the lpDigitList multiplied by the size of LINEMEDIACONTROLDIGIT. TAPI does not

validate this parameter when this function is called.

266 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpMediaList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a
LINEMEDIACONTROLMEDIA packet in the VarData field that contains a media type to monitor,

media-type specific information such as duration, and a media control field.

dwMediaNumEntries (4 bytes): An unsigned 32-bit integer. This value is equal to the number of

entries in the lpMediaList multiplied by the size of LINEMEDIACONTROLMEDIA. TAPI does not
validate this parameter when this function is called.

lpToneList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a
LINEMEDIACONTROLTONE packet in the VarData field that contains a description of a tone to
monitor, the duration of the tone, and a media-control field.

dwToneNumEntries (4 bytes): An unsigned 32-bit integer. This value is equal to the number of
entries in the lpToneList multiplied by the size of LINEMEDIACONTROLTONE. TAPI does not

validate this parameter when this function is called.

lpCallStateList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a
LINEMEDIACONTROLCALLSTATE packet in the VarData field that contains a call state and a media

control action.

dwCallStateNumEntries (4 bytes): An unsigned 32-bit integer. This value is equal to the number of
entries in the lpCallStateList multiplied by the size of LINEMEDIACONTROLCALLSTATE. TAPI does

not validate this parameter when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST Contain an array of LINEMEDIACONTROLDIGIT packets that is indicated
in the lpDigitList field; an array of LINEMEDIACONTROLMEDIA packets that is indicated in the
lpMediaList field; an array of LINEMEDIACONTROLTONE packets that is indicated in the lpToneList
field; and an array of LINEMEDIACONTROLCALLSTATE packets that is indicated in the

lpCallStateList field.

The contents of this field are DWORD-aligned.

2.2.4.1.3.73 SetMediaMode

The SetMediaMode packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST set the media types of the specified call in its LINECALLINFO packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hCall

dwMediaMode

Reserved2

Reserved3

Reserved4

267 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 80.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_UNINITIALIZED 0x80000050

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call whose media type is to be changed. One way of
obtaining a valid hCall is by sending the MakeCall packet. Also a valid hCall can be obtained from
LINE_CALLSTATE packet sent by the remote server. The application MUST be an owner of the call.
The call state of hCall can be any state.

dwMediaMode (4 bytes): An unsigned 32-bit integer. The new media types for the call. This
parameter MUST use the LINEMEDIAMODE_Constants. If the UNKNOWN media type flag is set,

other media type flags can also be set. This field MUST be used to identify the media type of a call
when the media type is not fully determined, but is narrowed down to one of a small set of
specified media types. If the UNKNOWN flag is not set, only a single media type can be specified.

268 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.74 SetQueueMeasurementPeriod

The SetQueueMeasurementPeriod packet is transmitted from a TAPI client to a TAPI server in a
remote procedure call. Sending this packet MUST set the measurement period that is associated
with a particular queue. It generates a LINE_PROXYREQUEST packet to be sent to a registered
proxy function handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_SETQUEUEMEASUREMENTPERIOD.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

dwQueueID

dwMeasurementPeriod

Reserved2

269 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 156.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a request identifier if the asynchronous operation starts; otherwise, the function MUST
return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

270 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

dwQueueID (4 bytes): An unsigned 32-bit integer. The identifier of the queue whose information is
to be changed. This field MUST have been obtained from LINEQUEUEENTRY in LINEQUEUELIST.

The LINEQUEUELIST MUST have been obtained by sending GetQueueList packet.

dwMeasurementPeriod (4 bytes): An unsigned 32-bit integer. The new measurement period, in
seconds. MUST be greater than zero.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.75 SetStatusMessages

The SetStatusMessages packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST enable an application to specify which notification packets
to receive for events that are related to status changes for the specified line or any of its addresses.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLine

dwLineStates

dwAddressStates

Reserved2

271 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 82.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

LINEERR_INVALADDRESSSTATE 0x80000013

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALLINESTATE 0x8000002C

LINEERR_UNINITIALIZED 0x80000050

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

dwLineStates (4 bytes): An unsigned 32-bit integer. The bit array that identifies the line-device
status changes for which a packet is sent to the application. This parameter MUST use one or

more of the LINEDEVSTATE_Constants.

272 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwAddressStates (4 bytes): An unsigned 32-bit integer. The bit array that identifies the address
status changes for which a packet is sent to the application. This parameter MUST use one or

more of the LINEADDRESSSTATE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.76 SetTerminal

The SetTerminal packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST enable an application to specify which terminal information related to
the specified line, address, or call is to be routed. This function can be used while calls are in progress
on the line to allow an application to route these events to different devices, as required.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

dwAddressID

hCall

dwSelect

273 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwTerminalModes

dwTerminalID

bEnable

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 83.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are:

Name Value

LINEERR_INVALADDRESSID 0x80000011

LINEERR_NOMEM 0x80000044

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSELECT 0x8000001B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALTERMINALID 0x80000039

LINEERR_UNINITIALIZED 0x80000050

LINEERR_INVALTERMINALMODE 0x8000003A

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

274 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hLine (4 bytes): An HLINE. The handle to an open line device. This field MUST have been obtained

by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified open line device.
An address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. A valid value of dwAddressID is in the range 0 to
dwNumAddresses –1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by
sending a GetDevCaps packet to the remote server.

hCall (4 bytes): An HCALL. The handle to a call. One way of obtaining a valid hCall is by sending the

MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet sent by the
remote server. The call state of hCall can be any state if dwSelect is CALL.

dwSelect (4 bytes): An unsigned 32-bit integer. Specifies whether the terminal setting is requested
for the line, the address, or just the specified call. If line or address is specified, events either
apply to the line or address itself, or serve as a default initial setting for all new calls on the line or
address. This parameter MUST use one of the LINECALLSELECT_Constants.

dwTerminalModes (4 bytes): An unsigned 32-bit integer. The class of low-level events to be routed
to the specified terminal. This parameter MUST use one or more of the
LINETERMMODE_Constants.

dwTerminalID (4 bytes): An unsigned 32-bit integer. The device identifier of the terminal device
where the specified events are to be routed. Terminal identifiers are small integers in the range of

zero to one less than dwNumTerminals, where dwNumTerminals, and the terminal modes that
each terminal is capable of handling, are obtained by sending the GetDevCaps packet.

These terminal identifiers have no relation to other device identifiers and are defined by the
service provider using device capabilities.

bEnable (4 bytes): An unsigned 32-bit integer. If TRUE, dwTerminalID is valid and the specified
event classes are routed to or from that terminal. If FALSE, these events are not routed to or from
the terminal device with identifier equal to dwTerminalID.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.77 SetUpConference

275 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The SetUpConference packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST set up a conference call for the addition of the third party.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hCall

hLine

lphConfCallContext

lphConsultCallContext

dwNumParties

lpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 84.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

276 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are:

Name Value

LINEERR_BEARERMODEUNAVAIL 0x80000003

LINEERR_UNINITIALIZED 0x80000050

LINEERR_CALLUNAVAIL 0x80000005

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_CONFERENCEFULL 0x80000007

LINEERR_INVALPOINTER 0x80000035

LINEERR_INUSE 0x8000000F

LINEERR_INVALRATE 0x80000037

LINEERR_INVALADDRESSMODE 0x80000012

LINEERR_NOMEM 0x80000044

LINEERR_INVALBEARERMODE 0x80000016

LINEERR_NOTOWNER 0x80000046

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALCALLPARAMS 0x80000019

LINEERR_RATEUNAVAIL 0x8000004A

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALLINESTATE 0x8000002C

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_USERUSERINFOTOOBIG 0x80000051

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): The identifier of the asynchronous request.

Value Meaning

0x00000000 An unsigned 32-bit integer. The server MUST generate a unique positive request
ID to return as the Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request ID.

277 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion

packet.

hCall (4 bytes): An HCALL. The handle to the Initial call that identifies the first party of a conference

call. In some environments, a call MUST exist to start a conference call, and the application MUST
be an owner of this call. In other telephony environments, where no call initially exists, hCall
MUST be left NULL, and hLine MUST be specified to identify the line on which the conference call is
to be initiated. If hCall is not NULL, the call state of hCall must be connected. One way in which
this handle can be obtained is by sending the MakeCall packet to the remote server.

hLine (4 bytes): An HLINE. The handle to the line. This handle MUST be used to identify the line
device on which to originate the conference call if hCall is NULL. The hLine parameter is ignored if

hCall is not NULL. This field MUST have been obtained by sending the Open packet.

lphConfCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request

completion packet.

dwNumParties (4 bytes): An unsigned 32-bit integer. The expected number of parties in the
conference call. This number MUST be passed to the service provider. The service provider is free
to do as it pleases with this number: ignore it, use it as a hint to allocate the correct size of the
conference bridge inside the switch, and so on.

lpCallParams (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLPARAMS
packet in the VarData field that contains call parameters to use when establishing the consultation

call. If this field is -1 (0xFFFFFFFF), it indicates that no LINECALLPARAMS packet was specified.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (0xFFFFFFFF).

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST contain a LINECALLPARAMS packet.

The contents of this field are aligned to the next byte.

2.2.4.1.3.78 SetUpTransfer

The SetUpTransfer packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST initiate a transfer of the call that is specified by the hCall parameter. It
establishes a consultation call on which the party can be dialed that can become the destination of the
transfer. The application acquires owner privileges to the lphConsultCallContext parameter.

278 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hCall

lphConsultCallContext

lpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 85.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are:

279 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_BEARERMODEUNAVAIL 0x80000003

LINEERR_INVALRATE 0x80000037

LINEERR_CALLUNAVAIL 0x80000005

LINEERR_NOMEM 0x80000044

LINEERR_INUSE 0x8000000F

LINEERR_NOTOWNER 0x80000046

LINEERR_INVALADDRESSMODE 0x80000012

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALBEARERMODE 0x80000016

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_RATEUNAVAIL 0x8000004A

LINEERR_INVALCALLPARAMS 0x80000019

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_STRUCTURETOOSMALL 0x8000004D

LINEERR_INVALLINESTATE 0x8000002C

LINEERR_UNINITIALIZED 0x80000050

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_USERUSERINFOTOOBIG 0x80000051

LINEERR_INVALPOINTER 0x80000035

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 An unsigned 32-bit integer. The server MUST generate a unique positive request
ID to return as the Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call to be transferred. One way of obtaining a valid
hCall is by sending the MakeCall packet. The application MUST be an owner of the call. The call

280 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

state of hCall must be connected. One way to have hCall in connected state is by sending Answer
packet.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpCallParams (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLPARAMS
packet in the VarData field that contains call parameters to use when establishing the consultation
call. If this field is -1 (0xFFFFFFFF), no LINECALLPARAMS packet was specified.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (0xFFFFFFFF).

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST contain a LINECALLPARAMS packet.

The contents of this field are DWORD-aligned.

2.2.4.1.3.79 SwapHold

The SwapHold packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST swap the specified active call with the specified call on consultation
hold.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hActiveCall

hHeldCall

281 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 87.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOTOWNER 0x80000046

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

282 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 An unsigned 32-bit integer. The server MUST generate a unique positive request
ID to return as the Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hActiveCall (4 bytes): An HCALL. The handle to the active call. One way of obtaining a valid hCall is

by sending the MakeCall packet. The application MUST be an owner of the call. The call state of
hActiveCall MUST be connected. One way to have hCall in connected state is by sending Answer
packet.

hHeldCall (4 bytes): An HCALL. The handle to the consultation call. One way of obtaining a valid
hCall is from LINE_CALLSTATE packet sent by the remote server. The application MUST be an
owner of the call. The call state of hHeldCall can be onHoldPendingTransfer,

onHoldPendingConference, or onHold.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.80 UnCompleteCall

The UnCompleteCall packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST cancel the specified call completion request on the
specified line.

283 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hLine

dwCompletionID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 88.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

284 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCOMPLETIONID 0x8000001F

LINEERR_RESOURCEUNAVAIL 0x80000049

LINEERR_NOMEM 0x80000044

LINEERR_UNINITIALIZED 0x80000050

LINEERR_OPERATIONUNAVAIL 0x80000049

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 An unsigned 32-bit integer. The server MUST generate a unique positive request
ID to return as the Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request ID.

hLine (4 bytes): An HLINE. The handle to the line device on which a call completion is to be
canceled. This field MUST have been obtained by sending the Open packet.

dwCompletionID (4 bytes): An unsigned 32-bit integer. The completion identifier for the request
that is to be canceled. This value is obtained by sending a CompleteCall request to the remote

server.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

285 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.3.81 UnHold

The UnHold packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST retrieve the specified held call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 89.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are:

286 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_NOTOWNER 0x80000046

LINEERR_UNINITIALIZED 0x80000050

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 An unsigned 32-bit integer. The server MUST generate a unique positive request
ID to return as the Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

hCall (4 bytes): An HCALL. The handle to the call to be retrieved. The application MUST be an owner
of this call. The call state of hCall must be onHold, onHoldPendingTransfer, or
onHoldPendingConference. This handle can be obtained by sending the Hold packet to the remote

server.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

287 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.82 UnPark

The UnPark packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet retrieves the call that is parked at the specified address and returns a call handle
for it.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hLine

dwAddressID

lphCallContext

lpszDestAddress

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

...

288 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 90.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are:

Name Value

LINEERR_INVALADDRESS 0x80000010

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_RESOURCEUNAVAIL 0x80000049

LINEERR_INVALPOINTER 0x80000035

LINEERR_UNINITIALIZED 0x80000050

LINEERR_NOMEM 0x80000044

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 An unsigned 32-bit integer. The server MUST generate a unique positive request
ID to return as the Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device on which a call is to be unparked. This
field MUST have been obtained by sending the Open packet. To park the call, the client needs to
send a Park packet to the remote server.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on hLine at which the unpark is to
be originated. An address identifier is permanently associated with an address; the identifier
remains constant across operating system upgrades. A valid value of dwAddressID is in the range
0 to dwNumAddresses – 1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained

by sending a GetDevCaps packet to the remote server.

289 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lphCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request

completion packet.

lpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of

a null-terminated Unicode string that contains the address where the call is parked.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST contain a null-terminated Unicode string that is indicated by the
lpszDestAddress.

The contents of this field are DWORD-aligned.

2.2.4.1.4 Create Session for Phone Device

The packets in the following sections describe the buffers that clients use while creating the session
for phone device usage.

2.2.4.1.4.1 Initialize

The Initialize packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet initializes the application's use of TAPI for the subsequent use of the phone
functions in the TAPI. It registers the application's specified notification mechanism and returns the

number of phone devices that are available to the application.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

hInstance

InitContext

290 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwFriendlyNameOffset

dwNumDevs

dwModuleNameOffset

dwAPIVersion

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 106.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

PHONEERR_INVALAPPNAME 0x00000008

PHONEERR_INIFILECORRUPT 0x00000005

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_NOMEM 0x0000001A

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_REINIT 0x00000023

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_NODEVICE 0x00000018

PHONEERR_NODRIVER 0x00000019

291 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPARAM 0x00000012

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. Upon successful completion of the request, this field
contains the client usage handle for TAPI phone requests.

hInstance (4 bytes): An unsigned 32-bit integer. Unused and MUST be ignored by the server.

InitContext (4 bytes): An unsigned 32-bit integer. The instance handle of the client application.

dwFriendlyNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of the variable data area to a null-terminated Unicode string that contains the display
name of the client. For remote clients, this name is the remote computer name.

dwNumDevs (4 bytes): An unsigned 32-bit integer. Upon successful completion of the request, this
field MUST contain the number of phone devices that are available to the client.

dwModuleNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of the variable data area to a null-terminated Unicode string that contains the display
name of the client. For remote clients, this name MUST be the remote computer name.

dwAPIVersion (4 bytes): An unsigned 32-bit integer. The highest TAPI version that is supported by
the client.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the null-terminated Unicode strings that are indicated by the
dwFriendlyNameOffset and dwModuleNameOffset fields.

The contents of this field are DWORD-aligned.

2.2.4.1.4.2 NegotiateAPIVersion

The NegotiateAPIVersion packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST allow an application to negotiate a TAPI version to use for
the specified phone device.

292 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

dwDeviceIDLocal

dwVersion

dwVersionCurrent

dwNegotiatedVersion

ExtensionID

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (16 bytes)

...

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 108.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of zero indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

293 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALAPPHANDLE 0x00000007

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_BADDEVICEID 0x00000002

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_NODRIVER 0x00000019

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INCOMPATIBLEAPIVERSION 0x00000003

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_NODEVICE 0x00000018

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. The handle to the application registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDeviceIDLocal (4 bytes): An unsigned 32-bit integer. The phone device to query. A valid value
of dwDeviceIDLocal is in the range 0 to dwNumDevs – 1. The client obtains dwNumDevs by
sending a Initialize packet to the remote server.

dwVersion (4 bytes): An unsigned 32-bit integer. The minimum TAPI version the request will

support. Set to TAPI_VERSION1_0 (0x00010003).

dwVersionCurrent (4 bytes): An unsigned 32-bit integer. The most current version of TAPI.

dwNegotiatedVersion (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF).
Upon successful completion of the request, this field contains the TAPI version number that was
negotiated.

ExtensionID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon

successful completion of the request, this field contains the offset, in bytes, of a
PHONEEXTENSIONID packet in the VarData field, indicating the extension identifier of the
provider-specific extensions.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the packet that is indicated in
the ExtensionID field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

294 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (16 bytes): Present on successful completion of the request. MUST contain a
PHONEEXTENSIONID packet.

The contents of this field are DWORD-aligned.

2.2.4.1.4.3 GetDevCaps

The GetDevCaps packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet queries a specified phone device to determine its telephony capabilities.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

dwDeviceID

dwTSPIVersion

dwExtVersion

lpPhoneCaps

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

VarData (variable)

...

295 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 95.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

PHONEERR_INVALAPPHANDLE 0x00000008

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_BADDEVICEID 0x00000002

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INCOMPATIBLEAPIVERSION 0x00000003

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_INCOMPATIBLEEXTVERSION 0x00000004

PHONEERR_NOMEM 0x0000001A

PHONEERR_STRUCTURETOOSMALL 0x00000021

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_NODRIVER 0x00000019

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_NODEVICE 0x00000018

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. The handle to the application registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The identifier of the phone device to be queried.
A valid value of dwDeviceID is in the range 0 to dwNumDevs – 1. The client obtains dwNumDevs
by sending a Initialize packet to the remote server.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The version number of the TAPI to be used.

The high-order word contains the major version number; the low-order word contains the minor

version number. This number is obtained by using NegotiateAPIVersion.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The version number of the service provider-
specific extensions to be used. This number is obtained by using NegotiateExtVersion. It can be
zero if no device-specific extensions are used. Otherwise, the high-order word contains the major
version number; the low-order word contains the minor version number.

lpPhoneCaps (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a PHONECAPS packet that

contains phone device capability information on successful completion of the request.

296 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On successful completion, this field contains the offset of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST be present on successful completion of the request. MUST contain a
PHONECAPS packet.

The contents of this field are DWORD-aligned.

2.2.4.1.4.4 Open

The Open packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.

Sending this packet MUST open the specified phone device.

A phone device can be opened by using either owner privilege or monitor privilege. An application that
opens the phone with owner privileges can control the lamps, display, ringer, and hookswitch or
hookswitches of the phone. An application that opens the phone device with monitor privilege is
notified only about events that occur at the phone, such as hookswitch changes or button presses.
Opening a phone device in owner mode also provides monitoring of the phone device.

Ownership of a phone device is exclusive; that is, at any time, only one application can have a phone
device opened with owner privileges. However, a phone device can be opened multiple times with

monitor privilege.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

dwDeviceID

hPhone

297 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwNegotiatedVersion

dwExtVersion

OpenContext

dwPrivilege

hRemotePhone

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 107.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

PHONEERR_ALLOCATED 0x00000001

PHONEERR_NODRIVER 0x00000019

PHONEERR_BADDEVICEID 0x00000002

PHONEERR_NOMEM 0x0000001A

PHONEERR_INCOMPATIBLEAPIVERSION 0x00000003

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INCOMPATIBLEEXTVERSION 0x00000004

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_INVALAPPHANDLE 0x00000007

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_UNINITIALIZED 0x00000022

298 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPRIVILEGE 0x00000016

PHONEERR_REINIT 0x00000023

PHONEERR_INUSE 0x00000006

PHONEERR_NODEVICE 0x00000018

PHONEERR_INIFILECORRUPT 0x00000005

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. The handle to the application registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The identifier of the phone device to be opened.
A valid value of dwDeviceID is in the range 0 to dwNumDevs – 1. The client obtains dwNumDevs
by sending a Initialize packet to the remote server.

hPhone (4 bytes): An HPHONE. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon successful completion of
the request, this field contains the handle for the phone device to be used by TAPI in subsequent

calls to identify the device.

dwNegotiatedVersion (4 bytes): An unsigned 32-bit integer. The version that is negotiated via the
NegotiateAPIVersion request.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The extension version number under which the
application and the service provider agree to operate. This number is zero if the application does
not use any extensions. This number is obtained from NegotiateExtVersion.

OpenContext (4 bytes): An unsigned 32-bit integer. The Callback instance, set to 0.

dwPrivilege (4 bytes): An unsigned 32-bit integer. The privilege that is requested. This parameter
MUST use one of the PHONEPRIVILEGE_Constants.

hRemotePhone (4 bytes): An unsigned 32-bit integer. If this field is nonzero, the server MUST use
this value for ASYNCEVENTMSG.hDevice for all unsolicited event and completion notifications that
are sent to the client, instead of the returned hPhone value.

Similar handle-swapping semantics can exist between TAPI service and telephony service

providers

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.5 Terminate Session for Phone Device

299 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The packets in the following sections describe the buffers that clients use for terminating the session.

2.2.4.1.5.1 Close

The phone Close packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet MUST close the specified open phone device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reserved13

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 91.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

300 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_UNINITIALIZED 0x00000022

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device to be closed. If the function

succeeds, the handle is no longer valid. This field MUST have been obtained by sending the Open
packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.5.2 ShutDown

301 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The phone ShutDown packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST shut down the application usage of TAPI's phone

abstraction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reserved13

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 119.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

PHONEERR_INVALAPPHANDLE 0x00000007

302 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_NOMEM 0x0000001A

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_RESOURCEUNAVAIL 0x0000001F

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. The usage handle of the application for TAPI. This field
MUST have been obtained by sending the Initialize packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.6 Phone Device Requests

The packets in the following sections, from the DevSpecific (section 2.2.4.1.6.1) packet to the
SetVolume (section 2.2.4.1.6.22) packet, describe phone device requests that are sent from a TAPI
client to a TAPI server on the tapsrv interface by using a ClientRequest remote procedure call.

2.2.4.1.6.1 DevSpecific

The DevSpecific packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST be used as a general extension mechanism to enable a TAPI

303 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

implementation to provide features that are not described in the other TAPI functions. The meanings
of these extensions are device specific.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

lpContext

hPhone

lpParamsContext

lpParams

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This

value MUST be set to 92.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client

304 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used
for the returned positive request identifier. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_OPERATIONFAILED 0x0000001C

Additional return values are device specific.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 —
0x7FFFFFFF

The server MUST use this value instead of generating a unique positive request
ID.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hPhone (4 bytes): An HPHONE. The handle to a phone device. This field MUST have been obtained
by sending the Open packet.

lpParamsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

lpParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a

parameter block.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the parameter block that is
indicated in the lpParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

305 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST contain a parameter block indicated in the lpParams field.

The contents of this field are DWORD-aligned.

2.2.4.1.6.2 GetButtonInfo

The GetButtonInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call (RPC). Sending this packet MUST return information about the specified button.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

dwButtonLampID

lpButtonInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

306 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 93.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALBUTTONLAMPID 0x00000009

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_STRUCTURETOOSMALL 0x00000021

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_UNINITIALIZED 0x00000022

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been
obtained by sending the Open packet.

dwButtonLampID (4 bytes): An unsigned 32-bit integer. The button on the phone device. A valid
value of dwButtonLampID is in the range 0 to dwNumButtonLamps –1. The client obtains
dwNumButtonLamps from the PHONECAPS obtained by sending a GetDevCaps packet to the
remote server.

lpButtonInfo (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a PHONEBUTTONINFO
packet that contains the mode and the function; and provides additional descriptive text that
corresponds to the button, upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

307 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): This field MUST be present only on successful completion of the request. MUST

contain a PHONEBUTTONINFO packet.

The contents of this field are DWORD-aligned.

2.2.4.1.6.3 GetData

The GetData packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST upload the information from the specified location in the open phone device
to the specified packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

dwDataID

lpData

dwSize

Reserved2

Reserved3

Reserved4

308 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 94.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALDATAID 0x0000000C

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been

obtained by sending the Open packet.

dwDataID (4 bytes): An unsigned 32-bit integer. Specifies from where in the phone device, the
packet is to be uploaded. A valid value of dwDataID is in the range 0 to dwNumGetData – 1. The

309 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

client obtains dwNumGetData from the PHONECAPS obtained by sending a GetDevCaps packet to
the remote server.

lpData (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon successful
completion of the request, this field contains the offset, in bytes, of the uploaded data in the

VarData field.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the data packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): This field MUST be present only on successful completion of the request and
MUST contain the uploaded data on successful completion.

The contents of this field are DWORD-aligned.

2.2.4.1.6.4 GetDisplay

The GetDisplay packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST return the current contents of the specified phone display.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

lpDisplay

Reserved2

310 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 96.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_STRUCTURETOOSMALL 0x00000021

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_NOMEM 0x0000001A

311 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been
obtained by sending the Open packet.

lpDisplay (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet that
contains the display content upon successful completion of the request. The values of
dwDisplayNumColumns and dwDisplayNumRows can be used to determined the required size. The
client obtains dwDisplayNumColumns and dwDisplayNumRows from the PHONECAPS obtained by
sending a GetDevCaps packet to the remote server.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): This field MUST be present only on successful completion of the request. MUST
contain a VARSTRING packet.

The contents of this field are DWORD-aligned.

2.2.4.1.6.5 GetGain

The GetGain packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST return the gain setting of the microphone of the specified phone's
hookswitch device.

312 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

dwHookSwitchDev

lpdwGain

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 97.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following

table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_RESOURCEUNAVAIL 0x0000001F

313 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALHOOKSWITCHDEV 0x0000000F

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been
obtained by sending the Open packet.

dwHookSwitchDev (4 bytes): An unsigned 32-bit integer. A hookswitch device whose gain level is
queried. The dwHookSwitchDev parameter can have only one bit set. This parameter MUST use
one of the PHONEHOOKSWITCHDEV_Constants.

lpdwGain (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon
successful completion of the request, this field contains the current gain setting of the hookswitch

microphone component.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.6.6 GetHookSwitch

The GetHookSwitch packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST return the current hookswitch mode of the specified open
phone device.

314 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

lpdwHookSwitchDevs

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 98.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following

table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_RESOURCEUNAVAIL 0x0000001F

315 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_UNINITIALIZED 0x00000022

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been
obtained by sending the Open packet.

lpdwHookSwitchDevs (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF).
Upon successful completion of the request, this field contains the mode of the phone's hookswitch

devices. If a bit position is 0, the corresponding hookswitch device is onhook; if 1, the microphone
and or speaker part of the corresponding hookswitch device is offhook.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.7 GetID

The GetID packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST return a device identifier for the particular device class that is associated
with the specified phone device.

316 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

lpDeviceID

lpszDeviceClass

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 99.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

317 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALDEVICECLASS 0x0000000D

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_STRUCTURETOOSMALL 0x00000021

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to an open phone device. This field MUST have been
obtained by sending the Open packet.

lpDeviceID (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet that
contains the device identifier on successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

lpszDeviceClass (4 bytes): An unsigned 32-bit integer. The offset in the VarData field that contains

a null-terminated Unicode string that specifies the device class of the device whose identifier is
requested.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

318 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (variable): MUST contain a null-terminated Unicode string as specified in the
lpszDeviceClass field. On successful completion, this field MUST also contain a VARSTRING packet

as specified in the lpDeviceID field.

The contents of this field are DWORD-aligned.

2.2.4.1.6.8 GetLamp

The GetLamp packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST return the current lamp mode of the specified lamp.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

dwButtonLampID

lpdwLampMode

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 101.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

319 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Returns 0 if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALBUTTONLAMPID 0x00000009

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been
obtained by sending the Open packet.

dwButtonLampID (4 bytes): An unsigned 32-bit integer. The identifier of the lamp to be queried. A
valid value of dwButtonLampID is in the range 0 to dwNumButtonLamps – 1. The client obtains
dwNumButtonLamps from the PHONECAPS obtained by sending a GetDevCaps packet to the
remote server.

lpdwLampMode (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon

successful completion of the request, this field contains the lamp mode status of the specified

lamp. The constant names, values, and descriptions are listed in PHONELAMPMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

320 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.9 GetRing

The GetRing packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST enable an application to query the current ring mode of the specified open
phone device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

lpdwRingMode

lpdwVolume

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This

value MUST be set to 102.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

321 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Returns 0 if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_UNINITIALIZED 0x00000022

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been
obtained by sending the Open packet.

lpdwRingMode (4 bytes): An unsigned 32-bit integer. The ringing pattern with which the phone is
ringing. Zero indicates that the phone is not ringing.

lpdwVolume (4 bytes): An unsigned 32-bit integer. The volume level with which the phone is
ringing. This MUST be in the range 0x00000000 (silence) to 0x0000FFFF (maximum volume). The
actual granularity and quantization of volume settings in this range are specific to the service
provider.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

322 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.10 GetStatus

The GetStatus packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST enable an application to query the specified open phone device for its
overall status.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

lpPhoneStatus

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reserved13

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 103.

Return Values

323 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following

table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_STRUCTURETOOSMALL 0x00000021

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_UNINITIALIZED 0x00000022

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device to be queried. This field MUST

have been obtained by sending the Open packet.

lpPhoneStatus (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a PHONESTATUS packet
that contains information about the phone's status upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

324 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST present upon successful completion of the request. MUST contain a
PHONESTATUS packet. The contents of this field are DWORD-aligned.

2.2.4.1.6.11 GetVolume

The GetVolume packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet MUST return the volume setting of the hookswitch device for the specified
phone.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

dwHookSwitchDev

lpdwVolume

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 105.

325 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALHOOKSWITCHDEV 0x0000000F

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the open phone device. This field MUST have been
obtained by sending the Open packet.

dwHookSwitchDev (4 bytes): An unsigned 32-bit integer. A single hookswitch device whose volume
level is queried. This parameter MUST use one of the PHONEHOOKSWITCHDEV_Constants.

lpdwVolume (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon
successful completion of the request, this field contains the current volume setting of the
hookswitch device. This is a number between 0x00000000 (silence) through 0x0000FFFF
(maximum volume).

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

326 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.12 NegotiateExtVersion

The NegotiateExtVersion packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet MUST allow an application to negotiate an extension version to
use with the specified phone device. This operation need not be called if the application does not
support extensions.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

dwDeviceID

dwTSPIVersion

dwLowVersion

dwHighVersion

lpdwExtVersion

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

327 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 109.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the request succeeds or a negative error number if an error occurs. The following
table lists common return values.

Name Value

PHONEERR_INVALAPPHANDLE 0x00000007

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_BADDEVICEID 0x00000002

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_NODRIVER 0x00000019

PHONEERR_NOMEM 0x0000001A

PHONEERR_INCOMPATIBLEAPIVERSION 0x00000003

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INCOMPATIBLEEXTVERSION 0x00000004

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_NODEVICE 0x00000018

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. The handle to the application registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDeviceID (4 bytes): An unsigned 32-bit integer. The identifier of the phone device to be queried.
A valid value of dwDeviceID is in the range 0 to dwNumDevs –1. The client obtains dwNumDevs
by sending a Initialize packet to the remote server.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The TAPI version number that was
negotiated for the specified phone device by using NegotiateAPIVersion.

dwLowVersion (4 bytes): An unsigned 32-bit integer. The least recent extension version of the

extension identifier that is returned by NegotiateAPIVersion and with which the application is

compliant. The high-order word is the major version number; the low-order word is the minor
version number.

dwHighVersion (4 bytes): An unsigned 32-bit integer. The most recent extension version of the
extension identifier that is returned by NegotiateAPIVersion and with which the application is
compliant. The high-order word is the major version number; the low-order word is the minor
version number.

328 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpdwExtVersion (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (0xFFFFFFFF). Upon
successful completion of the request, this field contains the highest extension version number,

within the range that is requested by the caller, under which the service provider can operate. The
most-significant WORD is the major version number and the least-significant WORD is the minor

version number.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.13 SelectExtVersion

The SelectExtVersion packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST select the indicated extension version for the indicated
phone device. Subsequent requests operate according to that extension version.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

dwExtVersion

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

329 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 129.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the function succeeds or an error number if an error occurs. The following table lists
common return values.

Name Value

PHONEERR_INCOMPATIBLEEXTVERSION 0x00000004

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_NOMEM 0x0000001A

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_RESOURCEUNAVAIL 0x0000001F

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhone (4 bytes): An HPHONE. The handle to the phone for which an extension version is to be
selected. This field MUST have been obtained by sending the Open packet.

dwExtVersion (4 bytes): The extension version to be selected. This field MUST have been obtained
by sending the NegotiateExtVersion packet. The most-significant WORD is the major version

number and the least-significant WORD is the minor version number. Calling this function with a
dwExtVersion of zero cancels the current selection.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

330 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.14 SetButtonInfo

The SetButtonInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet MUST set information about the specified button on the specified phone.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwButtonLampID

lpButtonInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

331 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved9

Reserved10

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 110.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding PHONE_REPLY
packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client

specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used
for the returned positive request identifier. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALBUTTONLAMPID 0x00000009

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_NOMEM 0x0000001A

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request. The
service provider MUST return this value if the function completes asynchronously.

hPhone (4 bytes): An HPHONE. The handle to the phone for which button information is to be set.
This field MUST have been obtained by sending the Open packet.

dwButtonLampID (4 bytes): An unsigned 32-bit integer. A button on the phone device. A valid

value of dwButtonLampID is in the range 0 to dwNumButtonLamps –1. The client obtains

dwNumButtonLamps from the PHONECAPS obtained by sending a GetDevCaps packet to the
remote server.

lpButtonInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
PHONEBUTTONINFO packet that describes the mode and function, and provides additional
descriptive text about the button.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

332 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST contain a PHONEBUTTONINFO packet.

The contents of this field are DWORD-aligned.

2.2.4.1.6.15 SetData

The SetData packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST download the information in the specified packet to the opened phone
device at the selected data identifier.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwDataID

lpData

dwSize

Reserved2

Reserved3

Reserved4

333 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 111.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding PHONE_REPLY
packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client

specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used
for the returned positive request identifier. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALDATAID 0x0000000C

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_NOMEM 0x0000001A

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hPhone (4 bytes): An HPHONE. The handle to the phone into which data is to be downloaded. This
field MUST have been obtained by sending the Open packet.

dwDataID (4 bytes): An unsigned 32-bit integer. Specifies where in the phone device the packet is
to be downloaded. A valid value of dwDataID is in the range 0 to dwNumSetData –1. The client
obtains dwNumSetData from the PHONECAPS obtained by sending a GetDevCaps packet to the
remote server.

334 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpData (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of the data to
upload into the phone device.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the data indicated in the lpData
field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the data to upload into the phone device. The format of the data, its
meaning to the phone device, and the meaning of the data identifier are specific to the service
provider.

The contents of this field are DWORD-aligned.

2.2.4.1.6.16 SetDisplay

The SetDisplay packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST cause the specified string to be displayed on the specified open phone
device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwRow

dwColumn

335 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpsDisplay

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 112.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function is completed asynchronously or a negative
error number if an error occurs. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_NOTOWNER 0x0000001B

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_UNINITIALIZED 0x00000022

PHONEERR_INVALPOINTER 0x00000015

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPARAM 0x00000012

PHONEERR_RESOURCEUNAVAIL 0x0000001F

336 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hPhone (4 bytes): An HPHONE. The handle to the phone on which the string is to be displayed. This

field MUST have been obtained by sending the Open packet.

dwRow (4 bytes): An unsigned 32-bit integer. The row on the display where the new text is to be
displayed. A valid value of dwRow is in the range 0 to dwDisplayNumRows – 1. The client obtains
dwDisplayNumRows from the PHONECAPS obtained by sending a GetDevCaps packet to the
remote server.

dwColumn (4 bytes): An unsigned 32-bit integer. The column position on the display where the new
text is to be displayed. A valid value of dwColumn is in the range 0 to dwDisplayNumColumns –1.

The client obtains dwDisplayNumColumns from the PHONECAPS obtained by sending a
GetDevCaps packet to the remote server.

lpsDisplay (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field where the
display content string is stored. The display information MUST have the format that is specified in
the dwStringFormat member of the PHONECAPS packet, which describes the device capabilities of
the phone.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, including the null terminator, of the
information that is pointed to by lpsDisplay.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST contain a display content string.

The contents of this field are DWORD-aligned.

2.2.4.1.6.17 SetGain

The SetGain packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST set the gain of the microphone of the specified hookswitch device to the
specified gain level.

337 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwHookSwitchDev

dwGain

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 113.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding PHONE_REPLY
packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client

specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used
for the returned positive request identifier. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_RESOURCEUNAVAIL 0x0000001F

338 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALHOOKSWITCHDEV 0x0000000F

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_NOMEM 0x0000001A

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): The identifier of the asynchronous request.

hPhone (4 bytes): An HPHONE. The handle to the phone that contains the hookswitch device whose

gain is to be set. This field MUST have been obtained by sending the Open packet.

dwHookSwitchDev (4 bytes): The hookswitch device whose microphone gain is to be set. This
parameter MUST use one of the PHONEHOOKSWITCHDEV_Constants.

dwGain (4 bytes): A DWORD-sized location that contains the desired new gain setting of the device.
This MUST be in the range from 0x00000000 (silence) through 0x0000FFFF (maximum volume).

The actual granularity and quantization of gain settings in this range are specific to the service
provider. A value for dwGain that is out of range is clamped by TAPI to the nearest in-range value.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.18 SetHookSwitch

The SetHookSwitch packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST set the hook state of the specified open phone's
hookswitch devices to the specified mode. Only the hookswitch state of the hookswitch devices that
are listed is affected.

339 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwHookSwitchDevs

dwHookSwitchMode

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 114.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously, or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding PHONE_REPLY
packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client

specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used
for the returned positive request identifier. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

340 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALHOOKSWITCHDEV 0x0000000F

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALHOOKSWITCHMODE 0x00000010

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hPhone (4 bytes): An HPHONE. The handle to the phone that contains the hookswitch devices whose
modes are to be set. This field MUST have been obtained by sending the Open packet.

dwHookSwitchDevs (4 bytes): The devices whose hookswitch mode is to be set. This parameter

MUST use one of the PHONEHOOKSWITCHDEV_Constants.

dwHookSwitchMode (4 bytes): The hookswitch mode to set. This parameter MUST have one of the
PHONEHOOKSWITCHMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.6.19 SetLamp

The SetLamp packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST cause the specified lamp to be set on the specified open phone device in
the specified lamp mode.

341 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwButtonLampID

dwLampMode

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 115.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously, or a negative

error number if an error occurs. The dwParam2 parameter of the corresponding PHONE_REPLY
packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client

specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used
for the returned positive request identifier. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

342 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALBUTTONLAMPID 0x00000009

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALLAMPMODE 0x00000011

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hPhone (4 bytes): An HPHONE. The handle to the phone whose lamp is to be set. This field MUST
have been obtained by sending the Open packet.

dwButtonLampID (4 bytes): An unsigned 32-bit integer. The button whose lamp is to be set. A

valid value of dwButtonLampID is in the range 0 to dwNumButtonLamps – 1. The client obtains
dwNumButtonLamps from the PHONECAPS obtained by sending a GetDevCaps packet to the
remote server.

dwLampMode (4 bytes): An unsigned 32-bit integer. Specifies how the lamp is to be lit. The
dwLampMode parameter MUST have one of the PHONELAMPMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.20 SetRing

343 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The SetRing packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST ring the specified open phone device by using the specified ring mode and

volume.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwRingMode

dwVolume

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 116.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding PHONE_REPLY
packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client
specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used
for the returned positive request identifier. The following table lists common return values.

344 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALRINGMODE 0x00000017

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_NOMEM 0x0000001A

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hPhone (4 bytes): An HPHONE. The handle to the phone to be rung. This field MUST have been

obtained by sending the Open packet.

dwRingMode (4 bytes): An unsigned 32-bit integer. The ringing pattern with which to ring the
phone. This parameter MUST be within the range from zero through the value of the
dwNumRingModes member in the PHONECAPS packet. If dwNumRingModes is zero, the ring mode
of the phone cannot be controlled; if dwNumRingModes is 1, a value of 0 for dwRingMode indicates
that the phone SHOULD NOT be rung (silence); and other values from 1 through

dwNumRingModes are valid ring modes for the phone device.

dwVolume (4 bytes): An unsigned 32-bit integer. The volume level with which the phone is to be
rung. This MUST be in the range from 0x00000000 (silence) through 0x0000FFFF (maximum
volume). The actual granularity and quantization of volume settings in this range are specific to

the service provider. A value for dwVolume that is out of range is clamped by TAPI to the nearest
value in range.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

345 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.21 SetStatusMessages

The SetStatusMessages packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST cause the service provider to filter status packets that are
not currently of interest to any application.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhone

dwPhoneStates

dwButtonModes

dwButtonStates

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This

value MUST be set to 117.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a PHONEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns 0 if the function succeeds, or an error number if an error occurs. The following table lists
common return values.

346 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_NOMEM 0x0000001A

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALBUTTONMODE 0x0000000A

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALBUTTONSTATE 0x0000000B

PHONEERR_OPERATIONUNAVAIL 0x0000001D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hPhone (4 bytes): An HPHONE. The opaque handle to the phone whose state-change monitoring
filter is to be set. This field MUST have been obtained by sending the Open packet.

dwPhoneStates (4 bytes): An unsigned 32-bit integer. Flags that specify the set of phone status
changes and events for which TAPI wants to receive notification packets. This parameter MUST
have zero, one, or more than one of the PHONESTATE_Constants.

dwButtonModes (4 bytes): An unsigned 32-bit integer. Flags that specify the set of phone button

modes for which TAPI wants to receive notification packets. If dwButtonModes is 0,
dwButtonStates is ignored. This parameter MUST have zero, one, or more than one of the
PHONEBUTTONMODE_Constants. If dwButtonModes has at least one of these flags set,
dwButtonStates MUST also have at least one bit set.

dwButtonStates (4 bytes): An unsigned 32-bit integer. This parameter specifies the set of phone

button state changes, which MUST be one of the PHONEBUTTONSTATE_Constants, for which TAPI
wants to receive notification packets.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

347 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.6.22 SetVolume

The SetVolume packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST set the volume of the speaker component of the specified hookswitch
device to the specified level.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwRequestID

hPhone

dwHookSwitchDev

dwVolume

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This

value MUST be set to 118.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a PHONEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding PHONE_REPLY

348 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

packet is 0 if the function succeeds, or is a negative error number if an error occurs. If the client
specified a nonzero value in the dwRequestID field of the packet, the same value MUST be used

for the returned positive request identifier. The following table lists common return values.

Name Value

PHONEERR_INVALPHONEHANDLE 0x00000013

PHONEERR_RESOURCEUNAVAIL 0x0000001F

PHONEERR_INVALPHONESTATE 0x00000014

PHONEERR_OPERATIONFAILED 0x0000001C

PHONEERR_INVALHOOKSWITCHDEV 0x0000000F

PHONEERR_OPERATIONUNAVAIL 0x0000001D

PHONEERR_NOMEM 0x0000001A

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hPhone (4 bytes): An HPHONE. The handle to the phone that contains the speaker whose volume is
to be set. This field MUST have been obtained by sending the Open packet.

dwHookSwitchDev (4 bytes): An unsigned 32-bit integer. Identifies the hookswitch device whose
speaker volume is to be set. This parameter MUST use one of the

PHONEHOOKSWITCHDEV_Constants.

dwVolume (4 bytes): An unsigned 32-bit integer that specifies the new volume level of the
hookswitch device. This MUST be in the range from 0x00000000 (silence) through 0x0000FFFF
(maximum volume). The actual granularity and quantization of volume settings in this range are

specific to the service provider. A value for dwVolume that is out of range is clamped by TAPI to
the nearest value in range.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

349 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.7 MMC Requests

The packets in the following sections, from the GetAvailableProviders (section 2.2.4.1.7.1) packet to
the SetServerConfig (section 2.2.4.1.7.12) packet, describe MMC requests that are sent from a TAPI
client to the TAPI server on the tapsrv interface by using a ClientRequest remote procedure call.

2.2.4.1.7.1 GetAvailableProviders

The GetAvailableProviders packet retrieves all available telephony service providers (TSPs), in the
server system. On success, an AVAILABLEPROVIDERLIST packet, which MUST contain zero or more

AVAILABLEPROVIDERENTRY sub-packets, is returned.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

lpProviderList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

350 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 131.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

lpProviderList (4 bytes): An unsigned 32-bit integer. The size, in bytes, of an
AVAILABLEPROVIDERLIST packet that is filled with agent capabilities information, upon successful

completion of the request. On successful completion, this field MUST contain the offset, in bytes,
of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved12 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST present upon successful completion of the request. MUST contain an
AVAILABLEPROVIDERLIST packet that MUST contain zero or more AVAILABLEPROVIDERENTRY

sub-packets.

2.2.4.1.7.2 GetDeviceFlags

The GetDeviceFlags packet retrieves the zero-based device ID and device capabilities flag for the
specified device. This request is only supported for line devices. The returned flags match those that
are returned by the service in dwDevCapsFlags of the LINEDEVCAPS packet.

351 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

fLine

dwProviderID

dwPermanentDeviceID

dwFlags

dwDeviceID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 165.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

fLine (4 bytes): An unsigned 32-bit integer. The value equals 1 for line devices and 0 for phone
devices.

dwProviderID (4 bytes): An unsigned 32-bit integer. The provider identifier of the entry.

dwPermanentDeviceID (4 bytes): An unsigned 32-bit integer. Unsupported; set to zero.

352 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwFlags (4 bytes): An unsigned 32-bit integer. Upon successful completion of the request, this field
MUST contain the device capabilities. This member MUST use one or more of the

LINEDEVCAPFLAGS_Constants.

dwDeviceID (4 bytes): An unsigned 32-bit integer. Upon successful completion of the request, this

field MUST contain the value of the device ID, which can be greater than or equal to 0.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

2.2.4.1.7.3 GetLineInfo

The GetLineInfo packet queries information that pertains to the line device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

lpDeviceInfoList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

353 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 132.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of zero indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

lpDeviceInfoList (4 bytes): An unsigned 32-bit integer. The size of a DEVICEINFOLIST packet that,
upon successful completion of the request, MUST contain a list of device information entries.

Upon successful completion, this field MUST contain the offset, in bytes, of the packet in the
VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

354 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved12 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST contain a DEVICEINFOLIST packet. The contents of this field are DWORD-
aligned.

2.2.4.1.7.4 GetPhoneInfo

The GetPhoneInfo packet queries information that pertains to the phone device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

lpDeviceInfoList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

355 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 133.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of zero indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. The handle to the application registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

lpDeviceInfoList (4 bytes): An unsigned 32-bit integer. The size of a DEVICEINFOLIST packet that,
upon successful completion of the request, MUST contain a list of device information entries.

Upon successful completion, this field MUST contain the offset, in bytes, of the packet in the
VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved12 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST contain a DEVICEINFOLIST packet. The contents of this field are DWORD-
aligned.

2.2.4.1.7.5 GetProviderList

The GetProviderList packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST return a list of service providers that are currently
installed in the telephony system.

356 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwAPIVersion

lpProviderList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 42.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony

request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure. The remote server
MUST complete this call synchronously.

MUST return zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

357 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

LINEERR_INCOMPATIBLEAPIVERSION 0x8000000C

LINEERR_NOMEM 0x80000044

LINEERR_INIFILECORRUPT 0x8000000E

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALPOINTER 0x80000035

LINEERR_STRUCTURETOOSMALL 0x8000004D

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwAPIVersion (4 bytes): An unsigned 32-bit integer. The highest version of TAPI that is supported

by the application (not necessarily the value that is negotiated by the NegotiateAPIVersion packet
on some particular line devices).

lpProviderList (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINEPROVIDERLIST

packet that is filled with agent capabilities information, upon successful completion of the request.
On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): On successful completion of the request, MUST contain a LINEPROVIDERLIST
packet.

358 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.7.6 GetServerConfig

The GetServerConfig packet queries the configuration of the TAPI server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

lpProviderList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This

value MUST be set to 134.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

359 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpProviderList (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a TAPISERVERCONFIG
packet that is filled with agent capabilities information, upon successful completion of the request.

On successful completion, this field MUST contain the offset, in bytes, of the packet in the VarData
field.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved12 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST present upon successful completion of the request. MUST contain a
TAPISERVERCONFIG packet. The contents of this field are DWORD-aligned.

2.2.4.1.7.7 SetLineInfo

The SetLineInfo packet sets information that pertains to the line device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

lpDeviceInfoList

Reserved2

360 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 135.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants or PHONEERR_Constants value
indicates failure. The remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

lpDeviceInfoList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a DEVICEINFOLIST packet that MUST contain a list of device information entries.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

361 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved12 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

VarData (variable): MUST contain a DEVICEINFOLIST packet. The contents of this field are DWORD-
aligned.

2.2.4.1.7.8 SetPhoneInfo

The SetPhoneInfo packet sets information that pertains to the phone device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hPhoneApp

lpDeviceInfoList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

362 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved11

Reserved12

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 136.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of zero indicates success, and a LINEERR_Constants or PHONEERR_Constants
value indicates failure. The remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hPhoneApp (4 bytes): An HPHONEAPP. The handle to the application registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

lpDeviceInfoList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a DEVICEINFOLIST packet that MUST contain a list of device information entries.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved12 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST contain a DEVICEINFOLIST packet. The contents of this field are DWORD-
aligned.

363 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.7.9 GetUIDllName

The GetUIDllName packet, along with the TUISPIDLLCallback packet and the FreeDialogInstance
packet, is used to install, configure, or remove a TSP on the server. The GetUIDllName packet begins

the installation or removal process of the TSP; the TUISPIDLLCallback packet obtains any data
required for display by the TSP user interface during installation, configuration, or removal of the TSP;
and the FreeDialogInstance packet informs the server about the completion of the installation,
configuration, or removal process of the TSP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwObjectID

dwObjectType

dwUIDllNameOffset

dwUIDllNameSize

dwProviderFilenameOffset

bRemoveProvider

htDlgInst

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that is invoked on the remote server. This value
MUST be set to 1.

On completion of the ClientRequest method, this field MUST contain the result of the encapsulated
telephony request. A value of 0 indicates success, and a LINEERR_Constants value indicates
failure. The remote server MUST complete this call synchronously.

364 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved1 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

dwObjectID (4 bytes): The dwObjectType field in this packet determines the interpretation of this
field as follows:

 TUISPIDLL_OBJECT_LINEID: dwObjectID is a line device identifier.

 TUISPIDLL_OBJECT_PHONEID: dwObjectID is a phone device identifier.

 TUISPIDLL_OBJECT_PROVIDERID: dwObjectID is a permanent provider identifier. The client
MUST provide a valid permanent provider identifier corresponding to the TSP being configured
or removed. If this operation is an installation of the TSP, as indicated by the
dwProviderFilenameOffset field of this packet being a valid Unicode string (not 0xffffffff),
then upon successful completion of this request, the server MUST provide the permanent
provider identifier that will be used for the TSP being installed.

 TUISPIDLL_OBJECT_DIALOGINSTANCE: dwObjectID is an opaque handle that was provided
as part of the LINE_CREATEDIALOGINSTANCE packet.

dwObjectType (4 bytes): One of the TUISPIDLL_OBJECT_Constants.

dwUIDllNameOffset (4 bytes): On successful completion of this client request, the server MUST
provide in this field the offset of a Unicode string in the VARDATA field of the packet. This
Unicode string is the path to a DLL on the client. It is the responsibility of the client to call one or

more functions exported by this DLL corresponding to the operation desired by the client. The
function or functions to be called for the operation to be performed is part of the API contract
between the TSP and the server or client. Typically, the functions called will display some user
interface on the client so that the user can control the operation being performed. Note that the
name or path of the user interface DLL is from the client perspective. Ensuring the presence the
DLL at the given path or in that name so the client can use the DLL is the responsibility of the
client.

dwUIDllNameSize (4 bytes): Gives the size of the Unicode string specified by the UIDllName field.

dwProviderFilenameOffset (4 bytes): This field is used only if the dwObjectType is
TUISPIDLL_OBJECT_PROVIDERID; otherwise, it is ignored. This field MUST be the offset of a
Unicode string in the VARDATA field of this packet if the client wants to install the TSP;
otherwise, this field MUST be set to 0xffffffff. The Unicode string corresponds to the DLL file name
of the TSP that MUST be installed, configured, or uninstalled. Note that the name or path of the
user interface DLL is from the server perspective. Ensuring the presence of that DLL at that path

or in that name so that the server can use that DLL is the responsibility of the server.

bRemoveProvider (4 bytes): This field MUST be set to 1 if the client wants to remove (uninstall)
the TSP; otherwise, this field MUST be set to 0.

htDlgInst (4 bytes): On successful completion of the request, the server MUST provide in this field
an opaque handle that the client MUST provide to the server when calling the FreeDialogInstance
packet after the client completes an operation (for example, the client completes calling the

corresponding function in the user interface DLL for installing, removing, or configuring the TSP).
This opaque handle value cannot be used after it is used in a FreeDialogInstance packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

365 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved7 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

VarData (variable): A Unicode string that corresponds to the DLL file name of the TSP that

MUST be installed, configured, or uninstalled.

2.2.4.1.7.10 TUISPIDLLCallback

The client uses the TUISPIDLLCallback packet to send or receive opaque data between the TSP on the
server and the corresponding TSP user interface DLL on the client. The client obtains the user
interface DLL earlier by sending the GetUIDllName packet to begin the operation of installing,
configuring, or removing the TSP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwObjectID

dwObjectType

dwParamsInOffset

dwParamsInSize

dwParamsOutOffset

dwParamsOutSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VARDATA (variable)

...

Req_Func (4 bytes): Identifier of the function that will be invoked on the remote server. This value

MUST be set to 2.

366 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

On completion of the ClientRequest method, this field MUST contain the result of the encapsulated
telephony request. A value of 0 indicates success, and a LINEERR_Constants value indicates

failure. The remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

dwObjectID (4 bytes): The dwObjectType field in this packet determines the interpretation of this
field, as follows:

 TUISPIDLL_OBJECT_LINEID: dwObjectID is a line device identifier.

 TUISPIDLL_OBJECT_PHONEID: dwObjectID is a phone device identifier.

 TUISPIDLL_OBJECT_PROVIDERID: dwObjectID is a permanent provider identifier. The
dwObjectID field in this case MUST be filled up by the server when the client wants to install
the TSP; otherwise, this identifies the TSP being configured or removed.

 TUISPIDLL_OBJECT_DIALOGINSTANCE: dwObjectID is an opaque handle that was provided

by the server to the client as part of corresponding GetUIDllName packet. This opaque handle
value cannot be used after it is used in a FreeDialogInstance packet.

dwObjectType (4 bytes): One of the TUISPIDLL_OBJECT_Constants.

dwParamsInOffset (4 bytes): The offset in the VARDATA field to opaque data that the client is
sending to the TSP on the server. This opaque data is not interpreted by the protocol.

dwParamsInSize (4 bytes): The size of the opaque data in the VARDATA field that the client is
sending to the TSP on the server.

dwParamsOutOffset (4 bytes): On successful completion of the request, the server MUST set this
field to the offset in the VARDATA field to the opaque data that the TSP is sending to the client.
This opaque data is not interpreted by the protocol.

dwParamsOutSize (4 bytes): A 32-bit integer. The client MUST set this field to the size of the data

that it can receive from the server (for example, the size of the packet allocated on the client). On

successful completion of the request, the server MUST set this field to the size of the data being
returned in the VARDATA field at dwParamsOutOffset.

Reserved2 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

VARDATA (variable): Opaque data that the TSP is sending to the client.

2.2.4.1.7.11 FreeDialogInstance

The FreeDialogInstance packet indicates the end of the TSP installation, configuration, or removal

operation on the client side. The client MUST have started this operation by sending the GetUIDllName
packet, and this operation might have had one or more TUISPIDLLCallback packets sent by the client
during the operation. The server takes appropriate action corresponding to the end of this operation,

367 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

for example, completing the configuration of the server and the TSP, or allocating or releasing
resources.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

htDlgInst

lUIDllResult

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This

value MUST be set to 3.

On completion of the ClientRequest method, this field MUST contain the result of the encapsulated
telephony request. A value of 0 indicates success, and a LINEERR_Constants value indicates
failure. The remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

htDlgInst (4 bytes): An opaque handle that was returned by the server in the corresponding

htDlgInst field of the GetUIDllName packet. This opaque handle value cannot be used further
after it is used in a FreeDialogInstance packet.

lUIDllResult (4 bytes): This field MUST be set to 0 if the current operation (as identified by
htDlgInst, namely, installing, configuring, or removing a TSP) was successfully completed on the
client side, and set to nonzero to indicate that the operation was unsuccessful or canceled on the
client side. Correspondingly, the server either terminates and cleans up the setup involved for the
current operation or completes the work remaining on the server side for the current operation.

368 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved2 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on
receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on

receipt.

Reserved12 (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and ignored on
receipt.

2.2.4.1.7.12 SetServerConfig

The SetServerConfig packet sets the configuration of the TAPI server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

dwServerConfigOffset

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

369 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved10

Reserved11

Reserved12

VarData (48 bytes)

...

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 137.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of zero indicates success, and a LINEERR_Constants or PHONEERR_Constants
value indicates failure. The remote server MUST complete this call synchronously.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to 0 when sent and MUST be ignored
on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

dwServerConfigOffset (4 bytes): An unsigned 32-bit integer. Valid offset, relative to the start of
the VarData area.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to 0 when sent and MUST be ignored
on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

370 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved12 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (48 bytes): MUST contain a TAPISERVERCONFIG packet. The contents of this field are
DWORD-aligned.

2.2.4.1.8 Generic Requests

The packets in the following sections, from GetAsyncEvents (section 2.2.4.1.8.1) to
RSPSetEventFilterMasks (section 2.2.4.1.8.3), describe generic requests (not specific to just line or
phone devices) that are sent from a TAPI client to the TAPI server on the tapsrv interface by using a
ClientRequest remote procedure call.

2.2.4.1.8.1 GetAsyncEvents

The GetAsyncEvents packet allows clients to use the "pull" model for retrieval of unsolicited events
and completion notifications from the server by using this request.

In the "pull" model, servers notify clients that packets are available for retrieval by writing a DWORD
value that matches the client dwInitContext parameter to the client mailslot.

On successful completion of this request, any packets that are returned to the client are packed in the

variable-length data portion of the remote procedure call packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwTotalBufferSize

dwNeededBufferSize

dwUsedBufferSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

371 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved11

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 0.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwTotalBufferSize (4 bytes): An unsigned 32-bit integer. MUST contain the total size, in bytes, that

are allocated for the variable-length data packet.

dwNeededBufferSize (4 bytes): An unsigned 32-bit integer. On successful completion, this field

MUST contain the size, in bytes, of all the unsolicited event and completion notification data that
are available for retrieval on the server at the time the request was received.

dwUsedBufferSize (4 bytes): An unsigned 32-bit integer. On successful completion, this field MUST
contain the size, in bytes, of the unsolicited event and completion notification data that is returned
in the VarData field. This value MUST be less than, or equal to, dwTotalBufferSize.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved8 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved9 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved10 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved11 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST contain any packet on successful completion.

The contents of this field are DWORD-aligned.

372 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.1.8.2 NegotiateAPIVersionForAllDevices

The NegotiateAPIVersionForAllDevices request condenses version negotiation for all devices into a
single request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

hLineApp

dwNumLineDevices

dwNumPhoneDevices

dwAPIHighVersion

dwLineAPIVersionListOffset

dwLineAPIVersionListSize

dwLineExtensionIDListOffset

dwLineExtensionIDListSize

dwPhoneAPIVersionListOffset

dwPhoneAPIVersionListSize

dwPhoneExtensionIDListOffset

dwPhoneExtensionIDListSize

Reserved2

VarData (variable)

...

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 130.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of zero indicates success, and a LINEERR_Constants value indicates failure.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

373 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwNumLineDevices (4 bytes): An unsigned 32-bit integer. The number of line devices to negotiate,
starting with the line device ID zero.

dwNumPhoneDevices (4 bytes): An unsigned 32-bit integer. The number of phone devices to
negotiate, starting with the phone device ID zero.

dwAPIHighVersion (4 bytes): An unsigned 32-bit integer. The latest TAPI version that is wanted by
the client.

dwLineAPIVersionListOffset (4 bytes): An unsigned 32-bit integer. On successful completion, this
field MUST contain the offset, in bytes, of the packet in the VarData field.

dwLineAPIVersionListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of an ordered
list of negotiated line device versions. For example, in the DWORD array, the element[0] is the
negotiated version for the line device ID zero.

dwLineExtensionIDListOffset (4 bytes): An unsigned 32-bit integer. On successful completion,
this field MUST contain the offset, in bytes, of the packet in the VarData field.

dwLineExtensionIDListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of an
ordered list of line device extension IDs. For example, in the LINEEXTENSIONID array, the
element[0] is an extension ID for the line device ID zero.

dwPhoneAPIVersionListOffset (4 bytes): An unsigned 32-bit integer. On successful completion,

this field MUST contain the offset, in bytes, of the packet in the VarData field.

dwPhoneAPIVersionListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of an
ordered list of negotiated phone device versions. For example, in the DWORD array, the
element[0] is the negotiated version for the phone device ID zero.

dwPhoneExtensionIDListOffset (4 bytes): An unsigned 32-bit integer. On successful completion,
this field MUST contain the offset, in bytes, of the packet in the VarData field.

dwPhoneExtensionIDListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of an

ordered list of phone device extension IDs. For example, in the PHONEEXTENSIONID array, the
element[0] is an extension ID for the phone device ID zero.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

VarData (variable): MUST contain a LINEEXTENSIONID packet, a PHONEEXTENSIONID packet, and
DWORD arrays of Line API Version and Phone API Version.

The contents of this field are DWORD-aligned.

2.2.4.1.8.3 RSPSetEventFilterMasks

The RSPSetEventFilterMasks packet controls what packets get sent to TAPI version 3.0 and newer
clients. Clients that negotiate versions that are lower than 3.0 do not receive this filtering.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func

Reserved1

dwObjType

374 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lObjectID

fSubMask

dwSubMasks

ulEventMasksLo

ulEventMasksHi

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 161.

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony

request. A value of zero indicates success, and a LINEERR_Constants value indicates failure.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwObjType (4 bytes): An unsigned 32-bit integer. An ordinal that describes the type of lObjectID.

Value Meaning

0x00000000 lObjectID is ignored.

0x00000001 lObjectID is of type HLINEAPP.

0x00000002 lObjectID is of type HLINE.

0x00000003 lObjectID is of type HCALL.

0x00000004 lObjectID is of type HPHONEAPP.

0x00000005 lObjectID is of type HPHONE.

lObjectID (4 bytes): An unsigned 32-bit integer. The handle of the object.

fSubMask (4 bytes): A BOOL. The flag that indicates filters on packets to be sent to the client.

If the value is TRUE, the ulEventMasksLo and ulEventMasksHi fields MUST have only one valid bit
that is set for both of them (for example, EM_LINE_CALLSTATE, referring to the LINE_CALLSTATE
packet). The dwSubMasks field is treated as a bit array of sub-types of that packet (for example,

LINE_CALLSTATE_* values). A bit that is set to 1 allows packets of the corresponding sub-type to

375 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

be sent to the client. A bit that is set to 0 prevents packets of the corresponding sub-type from
being sent to the client.

If the value is FALSE, the ulEventMasksLo and ulEventMasksHi fields are treated as bit arrays. A
bit that is set to 1 allows packets of the corresponding sub-type to be sent to the client. A bit that

is set to zero prevents packets of the corresponding sub-type from being sent to the client.

dwSubMasks (4 bytes): An unsigned 32-bit integer. If the fSubMask value is TRUE, the
ulEventMasksLo and ulEventMasksHi fields MUST have only one valid bit that is set for both of
them (for example, EM_LINE_CALLSTATE, referring to the LINE_CALLSTATE packet). The
dwSubMasks field is treated as a bit array of sub-types of that packet (for example,
LINE_CALLSTATE_* values). A bit that is set to 1 allows packets of the corresponding sub-type to
be sent to the client. A bit that is set to 0 prevents packets of the corresponding sub-type from

being sent to the client.

ulEventMasksLo (4 bytes): An unsigned 32-bit integer. If fSubMask is set to true, this MUST contain
a bit that is set referencing the packet (for example, LINE_CALLSTATE) to allow or prevent the
subevents that are specified by the dwSubMasks field (for example, LINE_CALLSTATE_* values).

If fSubMask is set to false, each mask bit that is set to correspond to a valid LINE_* or PHONE_*
event, allows all events of this type to be sent to the client. Each cleared mask bit that is set to

correspond to a valid LINE_* or PHONE_* event, prevents all events of this type from being sent
to the client.

Name Value

EM_LINE_ADDRESSSTATE 0x00000001

EM_LINE_LINEDEVSTATE 0x00000002

EM_LINE_CALLINFO 0x00000004

EM_LINE_CALLSTATE 0x00000008

EM_LINE_APPNEWCALL 0x00000010

EM_LINE_CREATE 0x00000020

EM_LINE_REMOVE 0x00000040

EM_LINE_CLOSE 0x00000080

EM_LINE_PROXYREQUEST 0x00000100

EM_LINE_DEVSPECIFIC 0x00000200

EM_LINE_DEVSPECIFICFEATURE 0x00000400

EM_LINE_AGENTSTATUS 0x00000800

EM_LINE_AGENTSTATUSEX 0x00001000

EM_LINE_AGENTSPECIFIC 0x00002000

EM_LINE_AGENTSESSIONSTATUS 0x00004000

EM_LINE_QUEUESTATUS 0x00008000

EM_LINE_GROUPSTATUS 0x00010000

EM_LINE_PROXYSTATUS 0x00020000

EM_LINE_APPNEWCALLHUB 0x00040000

376 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Value

EM_LINE_CALLHUBCLOSE 0x00080000

EM_LINE_DEVSPECIFICEX 0x00100000

EM_LINE_QOSINFO 0x00200000

EM_PHONE_CREATE 0x01000000

EM_PHONE_REMOVE 0x02000000

EM_PHONE_CLOSE 0x04000000

EM_PHONE_STATE 0x08000000

EM_PHONE_DEVSPECIFIC 0x10000000

EM_PHONE_BUTTONMODE 0x20000000

EM_PHONE_BUTTONSTATE 0x40000000

EM_ALL 0x7FFFFFFF

EM_NUM_MASKS 0x0000001F

ulEventMasksHi (4 bytes): An unsigned 32-bit integer. If fSubMask is set to true, this MUST contain
a bit that is set to reference the packet (for example, LINE_CALLSTATE) to allow or prevent the
subevents that are specified by the dwSubMasks field (for example, LINE_CALLSTATE_* values).
If fSubMask is set to false, each mask bit that is set to correspond to a valid LINE_* or PHONE_*
event, allows all events of this type to be sent to the client. Each mask bit that is cleared to

correspond to a valid LINE_* or PHONE_* event, prevents all events of this type from being sent
to the client.

There are 31 EM_* bits that are reserved for the existing LINE_* and PHONE_* packets. To

provide extensibility for future packets that might be added, a 64-bit value that is composed of a
ulEventMasksLo (the low 32 bits) and ulEventMasksHi (the high 32 bits) was chosen over a single
32-bit ulEventMask value.

Reserved2 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

Reserved3 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved4 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved5 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved6 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Reserved7 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

The RSPSetEventFilterMasks packet controls packets that are sent to clients of TAPI versions 3.0 and
3.1. Clients that negotiate TAPI versions prior to 3.0 do not receive this filtering.

377 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.2 Response Packets

 The following packets are sent from TAPI server to TAPI client to indicate the completion of an
asynchronous request or to indicate any spontaneous event that is related to the TAPI operations on

the server. The pBuffer parameter in the method RemoteSPEventProc is used. Each packet follows the
AYNCEVENTMSG packet.

2.2.4.2.1 Completion Packets

The following sections, from LINE_ADDRESSSTATE (section 2.2.4.2.1.1) to
PHONE_STATE (section 2.2.4.2.1.32), describe asynchronous event packets that transmit an
asynchronous event from a TAPI server to a TAPI client in order to inform the client of events

regarding a telephony device on the client.

2.2.4.2.1.1 LINE_ADDRESSSTATE

The LINE_ADDRESSSTATE packet is sent when the status of an address changes on a line that is

currently open by the application. The line can be opened by the client by sending Open packet to the
server. The application can invoke the GetAddressStatus packet to determine the current status of the
address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. This MUST be 0x00000000 and

ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

378 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Msg (4 bytes): An unsigned 32-bit integer. The packet type, which MUST be set to 0x00000000
(LINE_ADDRESSSTATE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open

request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The address identifier of the address that changed
status.

Param2 (4 bytes): An unsigned 32-bit integer. The address state that changed. MUST be one or
more of the LINEADDRESSSTATE_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.2 LINE_AGENTSESSIONSTATUS

The LINE_AGENTSESSIONSTATUS packet is sent when the status of an Application Connection
Designer (ACD) agent session changes on an agent handler for which the application currently has an
open line. An agent session can be established using CreateAgentSession packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

379 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000001B

(LINE_AGENTSESSIONSTATUS).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The handle of the agent session whose status has

changed.

Param2 (4 bytes): An unsigned 32-bit integer. Specifies the agent session status that changed.
MUST be one or more of the LINEAGENTSESSIONSTATUS_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. If the Param2 field includes the
LINEAGENTSESSIONSTATUS_STATE bit, this field indicates the new value of the agent session
state, which MUST be only one of the LINEAGENTSESSIONSTATUS_Constants. Otherwise, this

field MUST be set to 0.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.3 LINE_AGENTSPECIFIC

The LINE_AGENTSPECIFIC packet is sent when the status of an ACD agent changes on a line that the
application currently has open. An ACD agent can be established using CreateAgent packet. The

application can send the GetAgentStatus packet to determine the current status of the agent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

Param2

Param3

380 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or line device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000015

(LINE_AGENTSPECIFIC).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The index into the array of handler extension

identifiers in the LINEAGENTCAPS packet of the handler extension with which the asynchronous
event is associated.

Param2 (4 bytes): An unsigned 32-bit integer. Specific to the handler extension. This value MUST be
used to cause the application to send an AgentSpecific packet to obtain further details about the
asynchronous event.

Param3 (4 bytes): An unsigned 32-bit integer. Specific to the handler extension.

Param4 (4 bytes): An unsigned 32-bit integer. The remote handle to the line device.

If there is a valid call handle that is associated with the packet, the server MUST set the hDevice
field to the hCall value and the Param4 field to the hRemoteLine value.

If there is no valid call handle that is associated with the packet, the server MUST set the hDevice
field to the hRemoteLine value and the Param4 field to 0.

2.2.4.2.1.4 LINE_AGENTSTATUS

The LINE_AGENTSTATUS packet is sent when the status of an ACD agent changes on a line that the

application currently has open. An ACD agent can be created using CreateAgent packet. The
application can invoke the GetAgentStatus packet to determine the current status of the agent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

381 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000016
(LINE_AGENTSTATUS).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open

request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The identifier of the address on the line on which the
agent status has changed.

Param2 (4 bytes): An unsigned 32-bit integer. Specifies the agent status that changed and can be a
combination of LINEAGENTSTATUS_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. If the dwParam2 includes the
LINEAGENTSTATUS_STATE bit, this field indicates the new value of the dwState member in a
LINEAGENTSTATUS structure. Otherwise, this field is set to 0.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.5 LINE_AGENTSTATUSEX

The LINE_AGENTSTATUSEX packet is sent when the status of an ACD agent changes on an agent
handler for which the application currently has an open line. An ACD agent can be created using
CreateAgent packet.

382 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000001D
(LINE_AGENTSTATUSEX).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The handle of the agent whose status has changed.

Param2 (4 bytes): An unsigned 32-bit integer. Specifies the agent status that changed. MUST be

one or more of the LINEAGENTSTATUSEX_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. If the Param2 field includes the
LINEAGENTSTATUSEX_STATE bit, the field indicates the new value of the agent state, which MUST
be only one of the LINEAGENTSTATEEX_Constants. Otherwise, the field is set to 0.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

383 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.2.1.6 LINE_APPNEWCALL

The LINE_APPNEWCALL packet is sent to inform an application that a new call handle has been
created on its behalf.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000017
(LINE_APPNEWCALL).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The address ID of the new call.

Param2 (4 bytes): An unsigned 32-bit integer. The new call handle value. The client is granted
owner privilege to the call.

Param3 (4 bytes): An unsigned 32-bit integer. The call ID value.

384 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param4 (4 bytes): An unsigned 32-bit integer. The related call ID value.

2.2.4.2.1.7 LINE_CALLINFO

The LINE_CALLINFO packet is sent when call information about the specified call has changed. A call

can be established using MakeCall packet. The application can send the GetCallInfo packet to
determine the current call information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hCall

Msg

OpenContext

Param1

Param2

Param3

hRemoteLine

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call or line device that is associated with the
asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. MUST be set to 0x00000001 (LINE_CALLINFO).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque client-specified context value that

MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The call information item that has changed. MUST be
one or more of the LINECALLINFOSTATE_Constants.

385 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

A LINE_CALLINFO message with number of owners incremented, number of owners decremented,
and/or number of monitors changed indication is sent to applications that already have a handle for
the call. This can be the result of another application changing ownership or monitorship to a call, for
example using Open, Close, GetNewCalls and Shutdown packet.

The application that causes a change in the number of owners or monitors, for example, using
DeallocateCall packet, does not itself receive a message indicating that the change has been done.

These LINE_CALLINFO messages are not sent when a notification of a new call is provided in a
LINE_CALLSTATE message, because the call information already reflects the correct number of owners

and monitors at the time the LINE_CALLSTATE messages are sent. LINE_CALLINFO messages are also
suppressed in the case where a call is offered by TAPI to monitors through the
LINECALLSTATE_UNKNOWN mechanism.

No LINE_CALLINFO messages are sent for a call after the call has entered the idle state. Specifically,

changes in the number of owners and monitors are not reported as applications deallocate their
handles for the idle call.

2.2.4.2.1.8 LINE_CALLSTATE

The LINE_CALLSTATE packet is sent when the status of the specified call has changed. Typically,
several such packets are received during the lifetime of a call. Applications are notified of new
incoming calls with this packet. A call can be established using the MakeCall packet. The application

can use the GetCallStatus packet to retrieve more detailed information about the current status of the
call.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hCall

Msg

OpenContext

Param1

Param2

Param3

386 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hRemoteLine

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. The call state–dependent
information.

Value Meaning

"LINECALLSTATE_BUSY" If Param1 is LINECALLSTATE_BUSY, fnPostProcessProcHandle
MUST contain details about the busy mode. This parameter MUST use
one of the LINEBUSYMODE_Constants.

"LINECALLSTATE_CONNECTED" If Param1 is LINECALLSTATE_CONNECTED,
fnPostProcessProcHandle MUST contain details about the
connected mode. This parameter MUST use one of the
LINECONNECTEDMODE_Constants.

"LINECALLSTATE_DIALTONE" If Param1 is LINECALLSTATE_DIALTONE,

fnPostProcessProcHandle MUST contain details about the dial tone
mode. This parameter MUST use one of the
LINEDIALTONEMODE_Constants.

"LINECALLSTATE_OFFERING" If Param1 is LINECALLSTATE_OFFERING,
fnPostProcessProcHandle MUST contain details about the
connected mode. This parameter MUST use one of the
LINEOFFERINGMODE_Constants.

"LINECALLSTATE_SPECIALINFO" If Param1 is LINECALLSTATE_SPECIALINFO,
fnPostProcessProcHandle MUST contain the details about the
special information mode. This parameter MUST use one of the
LINESPECIALINFO_Constants.

"LINECALLSTATE_DISCONNECTED" If Param1 is LINECALLSTATE_DISCONNECTED,
fnPostProcessProcHandle MUST contain details about the
disconnect mode. This parameter MUST use one of the
LINEDISCONNECTMODE_Constants.

"LINECALLSTATE_CONFERENCED" If Param1 is LINECALLSTATE_CONFERENCED,
fnPostProcessProcHandle MUST contain the handle of the parent
call of the conference.

If param1 is not any of the preceding specified values, fnPostProcessProcHandle is unused.

hCall (4 bytes): An HCALL. The handle to the call or line device that is associated with the
asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000002
(LINE_CALLSTATE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open

request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

387 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param1 (4 bytes): An unsigned 32-bit integer. The new call state. This parameter MUST be one of
the LINECALLSTATE_Constants.

Param2 (4 bytes): An unsigned 32-bit integer. The privilege of the client on the call. The client is
granted owner privilege to the call and so is set to LINECALLPRIVILEGE_OWNER.

Param3 (4 bytes): An unsigned 32-bit integer. The media type of the call. This is a combination of
one or more LINEMEDIAMODE_Constants.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

2.2.4.2.1.9 LINE_CLOSE

The LINE_CLOSE packet is sent when the specified line device which was opened using the Open
packet is forcibly closed. The line device handle or any call handles for calls on the line are no longer

valid after this packet is sent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000003
(LINE_CLOSE).

OpenContext (4 bytes): The opaque, client-specified context value that MUST be equal to the
OpenContext value that is specified in the original scoping of the line Open request.

388 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.10 LINE_CREATE

The LINE_CREATE packet is sent to inform the application of the creation of a new line device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that

MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be ignored
on receipt.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000013
(LINE_CREATE).

389 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

OpenContext (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Param1 (4 bytes): An unsigned 32-bit integer. The device identifier of the newly created device.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.11 LINE_CREATEDIALOGINSTANCE

The LINE_CREATEDIALOGINSTANCE packet causes TAPI to create an association between the service
provider and the application that invoked the asynchronous Telephony Service Provider Interface

(TSPI) function that generated this asynchronous event.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

Param2

Param3

Param4

VarData (variable)

...

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that

MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

390 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or line device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x000001F7
(LINE_CREATEDIALOGINSTANCE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the ASYNCEVENTMSG packet
(40).

Param2 (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the VarData field.

Param3 (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of the VarData field.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

VarData (variable): A string of UNICODE characters, which can be null terminated.

2.2.4.2.1.12 LINE_DEVSPECIFIC

The LINE_DEVSPECIFIC packet is sent to notify the application about device-specific events that occur
on a line, address, or call. The meaning of the event and the interpretation of the fields are device
specific.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

391 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent

and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or line device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000004
(LINE_DEVSPECIFIC).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open

request.

This information MUST be passed back to the application with each completion and event that is

associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. Device specific.

Param2 (4 bytes): An unsigned 32-bit integer. Device specific.

Param3 (4 bytes): An unsigned 32-bit integer. Device specific.

Param4 (4 bytes): An unsigned 32-bit integer. If the event is specific to a call, this field MUST
contain the remote handle to the line device. Otherwise, this field is set to 0.

If there is a valid call handle that is associated with the packet, the server MUST set the hDevice
field to the hCall value and the Param4 field to the hRemoteLine value.

If there is no valid call handle that is associated with the packet, the server MUST set the hDevice
field to the hRemoteLine value and the Param4 field to 0.

2.2.4.2.1.13 LINE_DEVSPECIFICFEATURE

The LINE_DEVSPECIFICFEATURE packet is sent as notification about device-specific events that occur
on a line, address, or call. The meaning of the event and the interpretation of the fields are device
specific.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

392 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or line device that is

associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000005

(LINE_DEVSPECIFICFEATURE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. Device specific.

Param2 (4 bytes): An unsigned 32-bit integer. Device specific.

Param3 (4 bytes): An unsigned 32-bit integer. Device specific.

Param4 (4 bytes): An unsigned 32-bit integer. If the event is specific to a call, this field MUST
contain the remote handle to the line device. Otherwise, the field is set to 0.

If there is a valid call handle that is associated with the packet, the server MUST set the hDevice
field to the hCall value and the Param4 field to the hRemoteLine value.

If there is no valid call handle that is associated with the packet, the server MUST set the hDevice

field to the hRemoteLine value and the Param4 field to 0.

2.2.4.2.1.14 LINE_GATHERDIGITS

The LINE_GATHERDIGITS packet is sent when the current buffered digit-gathering request has
terminated or is canceled. The digit packet can be examined after this packet is received by the
application. The LINE_GATHERDIGITS packet is sent only if the client initiated the digit gathering on

the call using GatherDigits.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

393 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext

hDevice

Msg

OpenContext

Param1

lpsDigitsContext

Param3

dwNumDigits

dwEndToEndID

hRemoteLine

VarData (variable)

...

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that MUST be
equal to the lpContext value in the original GatherDigits request.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or line device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000006

(LINE_GATHERDIGITS).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is

associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The reason why digit gathering has been terminated.

This parameter MUST be one of the LINEGATHERTERM_Constants.

lpsDigitsContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST
be equal to the lpsDigitsContext value in the original line GatherDigits request.

Param3 (4 bytes): An unsigned 32-bit integer. The "tick count" at which the digit gathering is
completed. For TAPI versions earlier than 2.0, this parameter is unused.

394 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwNumDigits (4 bytes): An unsigned 32-bit integer. The number of WCHAR digit characters in the
variable-length data that immediately follows this packet.

dwEndToEndID (4 bytes): An unsigned 32-bit integer. A client-specified value that MUST be equal
to the dwEndToEndID value in the original line GatherDigits request.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The client handle for the line value.

VarData (variable): Contains the gathered WCHAR digit characters. The number of digits is
determined by dwNumDigits.

2.2.4.2.1.15 LINE_GENERATE

The LINE_GENERATE packet is sent to notify the application that the current digit or tone generation
has terminated. Only one generation request can be in progress for a particular call at any time. This

packet is also sent when digit or tone generation is canceled. The LINE_GENERATE packet is sent only
if the client initiated the digit generation on the call using GenerateDigits or if the client initiated the
tone generation using GenerateTone.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hCall

Msg

OpenContext

Param1

Param2

Param3

hRemoteLine

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that

MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call or line device that is associated with the
asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type, which MUST be set to 0x00000007

(LINE_GENERATE).

395 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open

request.

This information MUST be passed back to the application with each completion and event that is

associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The reason why digit or tone generation has been
terminated. This parameter MUST be one of the LINEGENERATETERM_Constants.

Param2 (4 bytes): An unsigned 32-bit integer. This value MUST be equal to the dwEndToEndID
value that was specified in the original GenerateDigits request.

Param3 (4 bytes): An unsigned 32-bit integer. The "tick count" at which the digit or tone generation
is completed. For TAPI versions earlier than 2.0, this parameter is unused.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The client handle for the line value.

2.2.4.2.1.16 LINE_GROUPSTATUS

The LINE_GROUPSTATUS packet is sent when the status of an ACD group changes on an agent
handler for which the application currently has an open line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

396 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000001E
(LINE_GROUPSTATUS).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open

request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param2 (4 bytes): An unsigned 32-bit integer. Specifies the group status that has changed.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.17 LINE_LINEDEVSTATE

The LINE_LINEDEVSTATE packet is sent when the state of a line device has changed. The

GetLineDevStatus packet can be sent to determine the new status of the line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

397 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000008

(LINE_LINEDEVSTATE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The line device status item that has changed. The

parameter MUST be one or more of the LINEDEVSTATE_Constants.

Param2 (4 bytes): An unsigned 32-bit integer. The interpretation of this field depends on the value
of the Param1 field. If the Param1 field is set to LINEDEVSTATE_RINGING, the field MUST
contain the ring mode that the switch instructs the line to ring. Valid ring modes are numbers in
the range from one to dwNumRingModes, where dwNumRingModes is a line device capability.

If the Param1 field is set to LINEDEVSTATE_REINIT, this field MUST contain LINE_CREATE

(0x00000013) or LINE_LINEDEVSTATE(0x00000008). If this field is set to zero, a Shutdown
packet MUST be sent.

Param3 (4 bytes): An unsigned 32-bit integer. The interpretation of this parameter depends on the
value of the Param1 field. If the Param1 field is set to LINEDEVSTATE_RINGING, this field MUST
contain the ring count for this ring event. The ring count starts at zero.

If the Param1 field is set to LINEDEVSTATE_REINIT, this field MUST be set to one of the
LINEDEVSTATE_Constants values.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.18 LINE_MONITORDIGITS

The LINE_MONITORDIGITS packet is sent when a digit is detected. The sending of this packet is
controlled with the MonitorDigits packet. The LINE_MONITORDIGITS packet is sent if the client has
enabled digit monitoring.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hCall

Msg

OpenContext

398 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param1

Param2

Param3

hRemoteLine

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent

and MUST be ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call or line device that is associated with the
asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000009

(LINE_MONITORDIGITS).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The low-order byte that MUST contain the last digit

that is received in a text representation.

Param2 (4 bytes): An unsigned 32-bit integer. The digit mode that was detected. This parameter
MUST be one of the LINEDIGITMODE_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. The "tick count" (the number of milliseconds since
Windows started) at which the specified digit was detected. For TAPI versions earlier than 2.0, this
parameter is unused.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

2.2.4.2.1.19 LINE_MONITORMEDIA

The LINE_MONITORMEDIA packet is sent when a change in the media type of the call is detected. The
sending of this packet is controlled with the MonitorMedia packet. The LINE_MONITORMEDIA packet
is sent if the client has enabled media monitoring for the media type detected.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

399 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hCall

Msg

OpenContext

Param1

Param2

Param3

hRemoteLine

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call or line device that is associated with the
asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000000A

(LINE_MONITORMEDIA).

OpenContext (4 bytes): The opaque, client-specified context value that MUST be equal to the

OpenContext value that is specified in the original scoping of the line Open request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The new media type (or mode). This parameter
MUST be one of the LINEMEDIAMODE_Constants.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. The "tick count" at which the specified media was
detected. For TAPI versions earlier than 2.0, this parameter is unused.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

2.2.4.2.1.20 LINE_MONITORTONE

The LINE_MONITORTONE packet is sent when a tone is detected. The sending of this packet is
controlled with the MonitorTones packet. The LINE_MONITORTONE packet is sent if client has
requested the tone be monitored.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

400 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

InitContext

fnPostProcessProcHandle

hCall

Msg

OpenContext

Param1

Param2

Param3

hRemoteLine

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hCall (4 bytes): An HCALL. An unsigned 32-bit integer. The handle to the call or line device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000000B

(LINE_MONITORTONE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The dwAppSpecific member of the

LINEMONITORTONE packet for the tone that was detected.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. The "tick count" at which the tone was detected. For
TAPI versions earlier than 2.0, this parameter is unused.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

2.2.4.2.1.21 LINE_PROXYREQUEST

The LINE_PROXYREQUEST packet delivers a request to a registered proxy function handler. An
application can register as proxy function handler using an option in Open packet.

401 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

Param2

Param3

Param4

Vardata (variable)

...

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize

request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or line device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000018

(LINE_PROXYREQUEST).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

402 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Vardata (variable): Contains a variably sized LINEPROXYREQUEST.

2.2.4.2.1.22 LINE_PROXYSTATUS

The LINE_PROXYSTATUS packet is sent when the available proxies change on a line that the
application currently has open.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000001F
(LINE_PROXYSTATUS).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

403 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param1 (4 bytes): An unsigned 32-bit integer. Specifies the proxy status that changed. MUST be
one or more of the LINEPROXYSTATUS_Constants.

Param2 (4 bytes): An unsigned 32-bit integer. If the Param1 field is set to
LINEPROXYSTATUS_OPEN or LINEPROXYSTATUS_CLOSE, this field MUST indicate the related

proxy request type. MUST be one of the LINEPROXYREQUEST_Constants. Otherwise, Param2 is
set to zero

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.23 LINE_QUEUESTATUS

The LINE_QUEUESTATUS packet is sent when the status of an ACD queue changes on an agent
handler for which the application currently has an open line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemoteLine

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that

MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemoteLine (4 bytes): An unsigned 32-bit integer. The handle of the client for the line value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000001C
(LINE_QUEUESTATUS).

404 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open

request.

This information MUST be passed back to the application with each completion and event that is

associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The identifier of the queue whose status has
changed.

Param2 (4 bytes): An unsigned 32-bit integer. Specifies the queue status that changed. MUST be
one or more of the LINEQUEUESTATUS_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.24 LINE_REMOVE

The LINE_REMOVE packet is sent to inform an application of the removal (deletion from the telephony
system) of a line device. Generally, this is not used for temporary removals but for permanent

removals in which the device would no longer be reported by the service provider if TAPI were
reinitialized.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

405 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be ignored
on receipt.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000019
(LINE_REMOVE).

OpenContext (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Param1 (4 bytes): An unsigned 32-bit integer. The identifier of the line device that was removed.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.25 LINE_REPLY

The LINE_REPLY packet is sent to report the results of a function call that completed asynchronously.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

dwRemoteRequestID

dwParam2

Reserved1

Reserved2

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the line Initialize
request.

406 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that MUST be equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or line device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000000C
(LINE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the line Open
request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the line or call on the line. This field is not interpreted by TAPI.

dwRemoteRequestID (4 bytes): An unsigned 32-bit integer. The client ID for the request value.

dwParam2 (4 bytes): An unsigned 32-bit integer. Indicates success or error. A zero indicates
success; a negative number indicates an error.

Reserved1 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Reserved2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

2.2.4.2.1.26 PHONE_BUTTON

The PHONE_BUTTON packet is sent to notify the application that it has detected a button press on the
local phone.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemotePhone

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

407 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the phone

Initialize request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent

and MUST be ignored on receipt.

hRemotePhone (4 bytes): An unsigned 32-bit integer. The handle of the client for the phone value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000000E
(PHONE_BUTTON).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the phone
Open request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the phone. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The button or lamp identifier of the button that was
pressed.

Param2 (4 bytes): An unsigned 32-bit integer. The mode of the button. This parameter MUST use
one of the PHONEBUTTONMODE_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. Specifies whether this is a button-down event or a
button-up event. This parameter MUST use one of the PHONEBUTTONSTATE_Constants.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.27 PHONE_CLOSE

The PHONE_CLOSE packet is sent when an open phone device is forcibly closed as part of resource

reclamation. The device handle is no longer valid after this packet is sent. The PHONE_CLOSE packet
is sent only after an open phone has been forcibly closed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemotePhone

Msg

OpenContext

Param1

Param2

408 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the phone

Initialize request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemotePhone (4 bytes): An unsigned 32-bit integer. The handle of the client for the phone value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000000F

(PHONE_CLOSE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the phone
Open request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the phone. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.28 PHONE_CREATE

The PHONE_CREATE packet is sent to inform applications of the creation of a new phone device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

409 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the phone

Initialize request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent

and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be ignored
on receipt.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000014

(PHONE_CREATE).

OpenContext (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Param1 (4 bytes): An unsigned 32-bit integer. The device identifier of the newly created device.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.29 PHONE_DEVSPECIFIC

The PHONE_DEVSPECIFIC packet is sent to notify the application about device-specific events that
occur on a phone, address, or call. The meaning of the event and the interpretation of the fields are

device-specific.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

410 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the phone

Initialize request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the call or phone device that is
associated with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000010

(PHONE_DEVSPECIFIC).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the phone
Open request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the phone. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. Device specific.

Param2 (4 bytes): An unsigned 32-bit integer. Device specific.

Param3 (4 bytes): An unsigned 32-bit integer. Device specific.

Param4 (4 bytes): An unsigned 32-bit integer. If the event is specific to a call, this field MUST
contain the remote handle to the phone device. Otherwise, this field is set to 0.

If a valid call handle is associated with the packet, the server MUST set the hDevice field to the hCall
value and the Param4 field to the hRemotePhone value.

If no valid call handle is associated with the packet, the server MUST set the hDevice field to the

hRemotePhone value and the Param4 field to 0.

2.2.4.2.1.30 PHONE_REMOVE

The PHONE_REMOVE packet is sent to inform an application of the removal (deletion from the
telephony system) of a phone device. Generally, this is not used for temporary removals, such as
extraction of a PC Card, but only for permanent removals in which the device would no longer be
reported by the service provider if TAPI were reinitialized.

411 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the phone

Initialize request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hDevice (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be ignored
on receipt.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x0000001A

(PHONE_REMOVE).

OpenContext (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

Param1 (4 bytes): An unsigned 32-bit integer. The identifier of the phone device that was removed.

Param2 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.1.31 PHONE_REPLY

The PHONE_REPLY packet is sent to an application to report the results of a function call that was
completed asynchronously.

412 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hDevice

Msg

OpenContext

dwRemoteRequestID

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the phone

Initialize request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that MUST be equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. The handle to the phone device that is associated
with the asynchronous event.

Msg (4 bytes): An unsigned 32-bit integer. The packet type; MUST be set to 0x00000011

(PHONE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the phone
Open request.

This information MUST be passed back to the application with each completion and event that is
associated with the handle of the phone. This field is not interpreted by TAPI.

dwRemoteRequestID (4 bytes): An unsigned 32-bit integer. The ID of the client for the request

value.

Param2 (4 bytes): An unsigned 32-bit integer. Indicates the success or error of the request that is
identified in the Param1 field. A zero indicates success; a negative number indicates an error.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

413 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.2.1.32 PHONE_STATE

The PHONE_STATE packet is sent when the status of a phone device changes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

fnPostProcessProcHandle

hRemotePhone

Msg

OpenContext

Param1

Param2

Param3

Param4

TotalSize (4 bytes): An unsigned 32-bit integer. The total size of the asynchronous event packet.

InitContext (4 bytes): An unsigned 32-bit integer. The opaque client-specified session value that
MUST be equal to the InitContext value that is specified in the original scoping of the phone
Initialize request.

fnPostProcessProcHandle (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent
and MUST be ignored on receipt.

hRemotePhone (4 bytes): An unsigned 32-bit integer. The handle of the client for the phone value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type, which MUST be set to 0x00000012
(PHONE_STATE).

OpenContext (4 bytes): An unsigned 32-bit integer. The opaque client-specified context value that
MUST be equal to the OpenContext value that is specified in the original scoping of the phone
Open request.

This information MUST be passed back to the application with each completion and event that is

associated with the handle of the phone. This field is not interpreted by TAPI.

Param1 (4 bytes): An unsigned 32-bit integer. The phone state that changed. This field MUST use
one of the PHONESTATE_Constants.

Param2 (4 bytes): An unsigned 32-bit integer. The phone state-dependent information that details
the status change. This parameter is not used if multiple flags are set in the Param1 field from
multiple status items that have changed. The application SHOULD invoke the GetStatus packet to
obtain complete information.

414 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the Param1 field is set to PHONESTATE_OWNER, this field MUST contain the new number of
owners.

If the Param1 field is set to PHONESTATE_MONITORS, this field MUST contain the new number of
monitors.

If the Param1 field is set to PHONESTATE_LAMP, this field MUST contain the button/lamp
identifier of the lamp that changed.

If the Param1 field is set to PHONESTATE_RINGMODE, this field MUST contain the new ring
mode.

If the Param1 field is set to one of the PHONESTATE_HANDSETHOOKSWITCH,
PHONESTATE_SPEAKERHOOKSWITCH, or PHONESTATE_HEADSETHOOKSWITCH constants, this
field MUST contain the new hookswitch mode of that device. This parameter MUST use one of the

PHONEHOOKSWITCHMODE_Constants.

Param3 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Param4 (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

2.2.4.2.2 Special Case Line Device Completion Packets

Special Case Line Device Completion Packets are structures that are derived from the base
ASYNCEVENTMSG structure.

The following sections, AgentSpecific (section 2.2.4.2.2.1) to UnPark (section 2.2.4.2.2.25), describe
Line Device Completion packets that the TAPI server sends to the TAPI client for asynchronous
requests.

2.2.4.2.2.1 AgentSpecific

This is the completion packet sent by the server for the line AgentSpecific request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpParamsContext

415 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original AgentSpecific request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to 0x0000000C
(LINE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestID value in the original AgentSpecific request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpParamsContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that

MUST be equal to the lpParamsContext value in the original AgentSpecific request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that is returned in the VarData field.

VarData (variable): Opaque data sent to the client according to the corresponding AgentSpecific
request. The server provides padding to ensure that the entire packet is aligned on a QWORD

boundary, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.2 CompleteCall

This is the completion packet sent by the server for the line CompleteCall request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

416 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Msg

OpenContext

dwRequestId

Result

dwCompletionID

lpdwCompletionIDContext

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original CompleteCall request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, zero for success or a

LINEERR_Constants value for an error.

dwCompletionID (4 bytes): An unsigned 32-bit integer. On success, the completion ID.

lpdwCompletionIDContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value
that MUST be equal to the lpdwCompletionIDContext value in the original line CompleteCall
request.

2.2.4.2.2.3 CompleteTransfer

This is the completion packet sent by the server for the line CompleteTransfer request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

417 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hDevice

Msg

OpenContext

dwRequestId

Result

hConfCall

lphConfCallContext

dwConfCallAddressID

dwConfCallID

dwConfCallRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. the request result, for example, 0 for success or a

LINEERR_Constants value for an error.

hConfCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new conference call
handle. The client is granted owner privilege to the call.

lphConfCallContext (4 bytes): An unsigned 32-bit integer. Opaque client-specified value which
MUST be equal to the lpConfCallContext value in the original line CompleteTransfer request.

dwConfCallAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the address
ID of the new conference call. This field is valid if dwTransferMode in the original

CompleteTransfer request is set to LINETRANSFERMODE_CONFERENCE.

418 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwConfCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the
new conference call. This field is valid if dwTransferMode in the original CompleteTransfer

request is set to LINETRANSFERMODE_CONFERENCE.

dwConfCallRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the

related call ID of the new conference call. This field is valid if dwTransferMode in the original
CompleteTransfer request is set to LINETRANSFERMODE_CONFERENCE.

2.2.4.2.2.4 CreateAgent

This is the completion packet sent by the server for the line CreateAgent request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lphAgentContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any

trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

419 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

lphAgentContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpAgentContext value in the original line CreateAgent request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains opaque data of the size specified by dwSize. The contents of this field

MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.5 CreateAgentSession

This is the completion packet sent by the server for the line CreateAgentSession request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lphAgentSessionContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any

trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

420 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lphAgentSessionContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value
that MUST be equal to the lpAgentSessionContext value in the original line CreateAgentSession
request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains opaque data of the size specified by dwSize. The contents of this field
MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.6 DevSpecific

This is the completion packet sent by the server for the line DevSpecific request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpParamsContext

dwSize

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

421 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpParamsContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpParamsContext value in the original line DevSpecific request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length

data that immediately follows this packet.

VarData (variable): Contains opaque data of the size specified by dwSize. The contents of this field
MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.7 DevSpecificFeature

This is the completion packet sent by the server for the line DevSpecificFeature request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

422 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRequestId

Result

lpParamsContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpParamsContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpParamsContext value in the original line DevSpecificFeature request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains opaque data of the size specified by dwSize. The contents of this field
MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.8 Forward

This is the completion packet sent by the server for the line Forward request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

423 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

hConsultCall

lphConsultCallContext

dwConsultCallAddressID

dwConsultCallID

dwConsultCallRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

hConsultCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new consultation
call handle. The client is granted owner privilege to the call.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lphConsultCallContext value in the original line Forward request.

dwConsultCallAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the
address ID of the new consultation call. This field is sent if hConsultCall is not NULL(0x00000000).

424 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwConsultCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the
new consultation call. This field is sent if hConsultCall is not NULL(0x00000000).

dwConsultCallRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the
related call ID of the new consultation call. This field is sent if hConsultCall is not

NULL(0x00000000).

2.2.4.2.2.9 GetAgentActivityList

This is the completion packet sent by the server for the line GetAgentActivityList request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpAgentActivityListContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any

value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to 0x0000000C
(LINE_REPLY).

425 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

lpAgentActivityListContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified
value that MUST be equal to the lpAgentActivityListContext value in the original line
GetAgentActivityList request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains a LINEAGENTACTIVITYLIST packet. The offset and size fields within the
LINEAGENTACTIVITYLIST and further included packets MUST refer to data within this VarData

field. The contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section
2.2.40.

2.2.4.2.2.10 GetAgentCaps

This is the completion packet sent by the server for the line GetAgentCaps request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpAgentCapsContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

426 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be

equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to 0x0000000C
(LINE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

lpAgentCapsContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpAgentCapsContext value in original line GetAgentCaps request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet. The dwSize MUST NOT exceed the lpAgentCapsSize
specified in the original line GetAgentCaps request.

VarData (variable): Contains the LINEAGENTCAPS packet. The offset and size fields within the
LINEAGENTCAPS and further included packets MUST refer to data within this VarData field. The
contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.11 GetAgentGroupList

This is the completion packet sent by the server for the line GetAgentGroupList request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

427 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpAgentGroupListContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to 0x0000000C
(LINE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpAgentGroupListContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value
that MUST be equal to the lpAgentGroupListContext value in the original line GetAgentGroupList
request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet. The dwSize MUST NOT exceed the lpAgentGroupListSize
specified in the original line GetAgentGroupList request.

VarData (variable): Contains LINEAGENTGROUPLIST packet. The offset and size fields within the
LINEAGENTGROUPLIST and further included packets MUST refer to data within this VarData field.
The contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.12 GetAgentInfo

This is the completion packet sent by the server for the line GetAgentInfo request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

428 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpAgentInfoContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to 0x0000000C
(LINE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, zero for success or a

LINEERR_Constants value for an error.

lpAgentInfoContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpAgentInfoContext value in the original line GetAgentInfo request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains a LINEAGENTINFO packet. Offset and size fields within the
LINEAGENTINFO and further included packets MUST refer to data within this VarData field. The

contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

429 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.2.2.13 GetAgentSessionInfo

This is the completion packet sent by the server for the line GetAgentSessionInfo request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpAgentSessionInfoContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to 0x0000000C

(LINE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

430 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpAgentSessionInfoContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified
value that MUST be equal to the lpAgentSessionInfoContext value in the original line

GetAgentSessionInfo request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length

data that immediately follows this packet.

VarData (variable): Contains a LINEAGENTSESSIONINFO packet. The offset and size fields within
the LINEAGENTSESSIONINFO and further included packets MUST refer to data within this VarData
field. The contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section
2.2.40.

2.2.4.2.2.14 GetAgentSessionList

This is the completion packet sent by the server for the line GetAgentSessionList request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpAgentSessionListContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. Total size, in bytes, of this packet and any trailing

variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

431 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to 0x0000000C
(LINE_REPLY).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

lpAgentSessionListContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified
value that MUST be equal to the lpAgentSessionListContext value in the original line
GetAgentSessionList request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains a LINEAGENTSESSIONLIST packet. The offset and size fields within the
LINEAGENTSESSIONLIST and further included packets MUST refer to data within this VarData
field. The contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section
2.2.40.

2.2.4.2.2.15 GetAgentStatus

This is the completion packet sent by the server for the line GetAgentStatus request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpAgentStatusContext

dwSize

VarData (variable)

...

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

432 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

lpAgentStatusContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpAgentStatusContext value in the original line GetAgentStatus request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet. The dwSize field MUST be less than the
lpAgentStatusSize of the original GetAgentStatus request.

VarData (variable): Contains the agent status LINEAGENTSTATUS data of size dwSize. The offset
and size fields within the LINEAGENTSTATUS MUST refer to data within this VarData field.

The contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.16 GetGroupList

This is the completion packet sent by the server for the line GetGroupList request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

433 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Result

lpGroupListContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpGroupListContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpGroupListContext value in the original line GetGroupList request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet. The dwSize is MUST NOT exceed the
lpAgentGroupListSize specified in the original line GetGroupList request.

VarData (variable): Contains LINEAGENTGROUPLIST packet. The offset and size fields within the

LINEAGENTGROUPLIST and further included packets MUST refer to data within this VarData field.
The contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.17 GetQueueInfo

This is the completion packet sent by the server for the line GetQueueInfo request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

434 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpQueueInfoContext

dwSize

VarData (52 bytes)

...

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpQueueInfoContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpQueueInfoContext value in the original line GetQueueInfo request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

435 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

VarData (52 bytes): Contains a LINEQUEUEINFO packet. The offset and size fields within the
LINEQUEUEINFO and further included packets MUST refer to data within this VarData field. The

contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.18 GetQueueList

This is the completion packet sent by the server for the line GetQueueList request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpQueueListContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY

(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

436 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

lpQueueListContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpQueueListContext value in the original line GetQueueList request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains a LINEQUEUELIST packet. The offset and size fields within the
LINEQUEUELIST and further included packets MUST refer to data within this VarData field. The
contents of this field MUST be QWORD-aligned, as specified in [MS-DTYP] section 2.2.40.

2.2.4.2.2.19 MakeCall

This is the completion packet sent by the server for the line MakeCall request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

hCall

lphCallContext

dwAddressID

dwCallID

dwRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

437 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be

equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

hCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new call handle. The
client is granted owner privilege to the call.

lphCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST
be equal to the lphCallContext value in the original line MakeCall request.

dwAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the address ID of
the new call.

dwCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the new
call.

dwRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the related call

ID of the new call.

2.2.4.2.2.20 Park

This is the completion packet sent by the server for the line Park request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

438 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Result

lpNonDirAddressContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpNonDirAddressContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value
that MUST be equal to the lpNonDirAddressContext value in the original line Park request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that immediately follows this packet.

VarData (variable): Contains the VARSTRING packet that will contain the address where a
nondirected call has been parked, the size as specified by dwSize.

2.2.4.2.2.21 PickUp

This is the completion packet sent by the server for the line PickUp request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

439 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hDevice

Msg

OpenContext

dwRequestId

Result

hCall

lphCallContext

dwAddressID

dwCallID

dwRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

hCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new call handle. The
client is granted owner privilege to the call.

lphCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST
be equal to the lphCallContext value in the original line PickUp request.

dwAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the address ID of
the new call.

dwCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the new
call.

440 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the related call
ID of the new call.

2.2.4.2.2.22 PrepareAddToConference

This is the completion packet sent by the server for the line PrepareAddToConference request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

hConsultCall

lphConsultCallContext

dwConsultCallAddressID

dwConsultCallID

dwConsultCallRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be

equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

441 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

hConsultCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new consultation
call handle. The client is granted owner privilege to the call.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lphConsultCallContext value in the original line PrepareAddToConference
request.

dwConsultCallAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the
address ID of the new consultation call.

dwConsultCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the
new consultation call.

dwConsultCallRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the
related call ID of the new consultation call.

2.2.4.2.2.23 SetUpConference

This is the completion packet sent by the server for the line SetUpConference request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

hConfCall

lphConfCallContext

hConsultCall

lphConsultCallContext

dwConfCallAddressID

442 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwConfCallID

dwConfCallRelatedCallID

dwConsultCallAddressID

dwConsultCallID

dwConsultCallRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

hConfCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new conference call
handle. The client is granted owner privilege to the call.

lphConfCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpConfCallContext value in the original line SetUpConference request.

hConsultCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new consultation
call handle. The client is granted owner privilege to the call.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lphConsultCallContext value in the original line SetUpConference request.

dwConfCallAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the address

ID of the new conference call.

dwConfCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the
new conference call.

dwConfCallRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the
related call ID of the new conference call.

dwConsultCallAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the
address ID of the new consultation call.

443 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwConsultCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the
new consultation call.

dwConsultCallRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the
related call ID of the new consultation call.

2.2.4.2.2.24 SetUpTransfer

This is the completion packet sent by the server for the line SetUpTransfer request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

hConsultCall

lphConsultCallContext

dwConsultCallAddressID

dwConsultCallID

dwConsultCallRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize

request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

444 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a
LINEERR_Constants value for an error.

hConsultCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new consultation
call handle. The client is granted owner privilege to the call.

lphConsultCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lphConsultCallContext value in the original line SetUpTransfer request.

dwConsultCallAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the

address ID of the new consultation call.

dwConsultCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the
new consultation call.

dwConsultCallRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the
related call ID of the new consultation call.

2.2.4.2.2.25 UnPark

This is the completion packet sent by the server for the line UnPark request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

hCall

lphCallContext

dwAddressID

dwCallID

445 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRelatedCallID

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the line Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to LINE_REPLY
(0x0000000C).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of line Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestId value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

hCall (4 bytes): An unsigned 32-bit integer. On successful completion, the new call handle. The
client is granted owner privilege to the call.

lphCallContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST
be equal to the lphCallContext value in the original line UnPark request.

dwAddressID (4 bytes): An unsigned 32-bit integer. On successful completion, the address ID of
the new call.

dwCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the call ID of the new
call.

dwRelatedCallID (4 bytes): An unsigned 32-bit integer. On successful completion, the related call
ID of the new call.

2.2.4.2.3 Special Case Phone Device Completion Packets

DevSpecific (section 2.2.4.2.3.1) is a phone device completion packet sent by the TAPI server to the

TAPI client for specific (phone DevSpecific) requests.

2.2.4.2.3.1 DevSpecific

This is the completion packet sent by the server for a phone DevSpecific request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Totalsize

InitContext

446 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

lpContext

hDevice

Msg

OpenContext

dwRequestId

Result

lpParamsContext

dwSize

VarData (variable)

...

Totalsize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that

MUST be equal to the InitContext value specified in the original scoping of the phone Initialize
request.

lpContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. This MUST be ignored on receipt and can be any
value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. MUST be set to PHONE_REPLY
(0x00000011).

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the phone Open request.

dwRequestId (4 bytes): An unsigned 32-bit integer. The positive, nonzero, client-specified request
ID value equal to the dwRequestID value in the original request.

Result (4 bytes): An unsigned 32-bit integer. The request result, for example, 0 for success or a

LINEERR_Constants value for an error.

lpParamsContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that
MUST be equal to the lpParamsContext value in the original phone DevSpecific request.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of any returned variable-length
data that is returned in VarData field.

VarData (variable): Opaque data sent to the client according to the corresponding original
DevSpecific request. The server provides padding to ensure that the entire packet is aligned on a

QWORD boundary, as specified in [MS-DTYP] section 2.2.40.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

447 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.5 Data Templates

 The following sections ASYNCEVENTMSG(section 2.2.5.1) to TAPI32_MSG(section 2.2.5.2), specify
the templates of communication buffers that are used between TAPI client and TAPI server.

2.2.5.1 ASYNCEVENTMSG

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalSize

InitContext

PostProcessProcContext

hDevice

Msg

OpenContext

Param1

Param2

Param3

Param4

VarData (variable)

...

TotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of this packet and any
trailing variable-length data.

InitContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified session value that
MUST be equal to the InitContext value specified in the original scoping of the line Initialize or the
phone Initialize requests.

PostProcessProcContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value
that MUST be equal to the lpContext value in the original request.

hDevice (4 bytes): An unsigned 32-bit integer. The handle of the object that pertains to the packet.

For instance, hCall for the LINE_CALLSTATE packet.

This field is unused for some packets, for example, LINE_REPLY or PHONE_REPLY.

If hDevice refers to a line device handle and the hRemoteLine value specified in the original
scoping of the line Open request was nonzero, then the server MUST set this field to the
hRemoteLine value.

448 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If hDevice refers to a phone device handle and the hRemotePhone value specified in the original
scoping of the phone Open request was nonzero, then the server MUST set this field to the

hRemotePhone value.

Msg (4 bytes): An unsigned 32-bit integer. The packet type identifier. The value MUST be one of the

packet type identifier values in the completion packets in section 2.2.4.2.1.

OpenContext (4 bytes): An unsigned 32-bit integer. An opaque, client-specified value that MUST be
equal to the OpenContext value specified in the original scoping of the line Open or the phone
Open requests.

Param1 (4 bytes): An unsigned 32-bit integer. An event-specific value.

Param2 (4 bytes): An unsigned 32-bit integer. An event-specific value.

Param3 (4 bytes): An unsigned 32-bit integer. An event-specific value.

Param4 (4 bytes): An unsigned 32-bit integer. An event-specific value.

VarData (variable): Any variable length data. This field is an optional and dependent on packet
usage

This packet serves as a template for the Response Packets.

2.2.5.2 TAPI32_MSG

The TAPI32_MSG packet is used in the following situations:

 Requests from the client to the server to specify a function type.

 Acknowledgments from the server to the client to specify a return value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Req_Func/Ack_ReturnValue

Reserved1

PARAMETERS FOR REQUEST (52 bytes)

...

...

VarData (variable)

...

Req_Func/Ack_ReturnValue (4 bytes): An unsigned 32-bit integer. The function type requested

by the client from the server.

The return value from the server request. The following table lists the possible return values.

Value Meaning

TAPI_SUCCESS The requested function is valid.

449 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000000

TAPIERR_INVALRPCCONTEXT

0x0000F101

The RPC request is made with an invalid handle.

LINEERR_INVALPARAM

0x80000032

A parameter or packet that a parameter points to contains invalid
information.

LINEERR_OPERATIONUNAVAIL

0x80000049

The operation is not available.

LINEERR_REINIT

0x80000052

The application attempted to initialize TAPI twice.

Reserved1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

PARAMETERS FOR REQUEST (52 bytes): An unsigned 32-bit integer. The parameters for the
request. The size of the Params array MUST be specified by MAX_TAPI_FUNC_ARGS, which has a
value of 13.

VarData (variable): Any variable length data. This field is dependent on packet usage.

This packet serves as a template for the Request Packets.

2.2.6 Data Structures

The following sections, AVAILABLEPROVIDERENTRY (section 2.2.6.1) to
LINETERMCAPS (section 2.2.6.49), specify the communication packets that are used between the TAPI
client and the TAPI server (that is, they are used by the packets and packets that are being sent
between the client and the server). The following Data Structures are sent as part of the

communication packet between client and server.

2.2.6.1 AVAILABLEPROVIDERENTRY

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwFileNameSize

dwFileNameOffset

dwFriendlyNameSize

dwFriendlyNameOffset

dwOptions

dwFileNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the string containing
the file name and the null terminator.

dwFileNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
AVAILABLEPROVIDERLIST to a null-terminated string containing the file name of the service-
provider DLL .tsp file.

450 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwFriendlyNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the string
containing the display name and the null terminator.

dwFriendlyNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
AVAILABLEPROVIDERLIST to a null-terminated string containing the display name of the service-

provider DLL .tsp file.

dwOptions (4 bytes): An unsigned 32-bit integer.

Value Meaning

AVAILABLEPROVIDER_INSTALLABLE

0x00000001

The TAPI Service Provider can be installed.

AVAILABLEPROVIDER_CONFIGURABLE

0x00000002

The TSP can be configured.

AVAILABLEPROVIDER_REMOVABLE

0x00000004

The TSP can be removed.

2.2.6.2 AVAILABLEPROVIDERLIST

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumProviderListEntries

dwProviderListSize

dwProviderListOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to the packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed for the packet to
hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of the packet
that MUST contain useful information.

dwNumProviderListEntries (4 bytes): An unsigned 32-bit integer. The number of
AVAILABLEPROVIDERENTRY packets present in the array denominated by dwProviderListSize and

dwProviderListOffset.

451 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwProviderListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the provider list
array.

dwProviderListOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to an array of AVAILABLEPROVIDERENTRY elements that provide the information on each

service provider. The size of the array MUST be specified by dwProviderListSize.

VarData (variable): An array of AVAILABLEPROVIDERENTRY elements that provide the information
on each service provider as specified by dwProviderListOffset.

2.2.6.3 DEVICEINFO

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwPermanentDeviceID

dwProviderID

dwDeviceNameSize

dwDeviceNameOffset

dwAddressesSize

dwAddressesOffset

dwDomainUserNamesSize

dwDomainUserNamesOffset

dwFriendlyUserNamesSize

dwFriendlyUserNamesOffset

dwPermanentDeviceID (4 bytes): An unsigned 32-bit integer. The permanent identifier by which
the device is known in the computing system configuration.

dwProviderID (4 bytes): An unsigned 32-bit integer. The provider identifier of the entry.

dwDeviceNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized
device field containing a user-configurable name for this device.

dwDeviceNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
DEVICEINFOLIST packet.

dwAddressesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the address field.

dwAddressesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
DEVICEINFOLIST packet. Each address string MUST be null-terminated and the last address string
MUST be terminated with two null characters. The size, in bytes, includes the terminating null
characters.

dwDomainUserNamesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the list of
accounts in domain or user format. This is a list of users that can access this device.

452 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDomainUserNamesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning
of the DEVICEINFOLIST packet. Each account string MUST be null-terminated and the last account

string MUST be terminated with two null characters. The size, in bytes, includes the terminating
null characters.

dwFriendlyUserNamesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the list of
display names corresponding to DomainUserNames list entries.

dwFriendlyUserNamesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning
of the DEVICEINFOLIST packet. Each display name string MUST be null-terminated and the last
display name string MUST be terminated with two null characters. The size, in bytes, includes the
terminating null characters.

2.2.6.4 DEVICEINFOLIST

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumDeviceInfoEntries

dwDeviceInfoSize

dwDeviceInfoOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to the packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed for the packet to

hold all of the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of the packet
that MUST contain useful information.

dwNumDeviceInfoEntries (4 bytes): An unsigned 32-bit integer. The number of DEVICEINFO
packets present in the array denominated by dwDeviceInfoSize and dwDeviceInfoOffset.

dwDeviceInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the device info list

array in the VarData field.

dwDeviceInfoOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to an array of DEVICEINFO elements that provide the information on each service provider.
The size of the array MUST be specified by dwDeviceInfoSize.

VarData (variable): An array of DEVICEINFO elements that provides the information on each service
provider, as specified by dwDeviceInfoOffset.

453 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.5 TAPISERVERCONFIG

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwFlags

dwDomainNameSize

dwDomainNameOffset

dwUserNameSize

dwUserNameOffset

dwPasswordSize

dwPasswordOffset

dwAdministratorsSize

dwAdministratorsOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to the packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed for the packet to
hold all of the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of the packet
that MUST contain useful information.

dwFlags (4 bytes): An unsigned 32-bit integer.

Value Meaning

TAPISERVERCONFIGFLAGS_ISSERVER

0x00000001

The server has remote telephony server
capability.

TAPISERVERCONFIGFLAGS_ENABLESERVER

0x00000002

The server is configured by enabling the
telephony remote protocol server role.

TAPISERVERCONFIGFLAGS_SETACCOUNT

0x00000004

The client changes the credentials (user
account and password) for the process
corresponding to the remote telephony

454 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

server role

TAPISERVERCONFIGFLAGS_SETTAPIADMINISTRATORS

0x00000008

The client changes the TAPI administrator's
list.

TAPISERVERCONFIGFLAGS_LOCKMMCWRITE

0x00000020

The client locks the server configuration
database and prevents other clients from
locking or writing.

TAPISERVERCONFIGFLAGS_UNLOCKMMCWRITE

0x00000040

Client unlocks the server configuration
database and allows other clients to lock or
write.

dwDomainNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the string
containing the domain name and including the terminating null character.

dwDomainNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this

packet.

dwUserNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the string containing
the user name and including the terminating null character.

dwUserNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet.

dwPasswordSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the string containing
the password and including the terminating null character.

dwPasswordOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet.

dwAdministratorsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a list of TAPI
administrator accounts in domain or user formats.

dwAdministratorsOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
this packet. Each account string is null-terminated and the last account string is terminated with
two null characters. The size, in bytes, including the terminating null characters.

VarData (variable): This field contains the Domain name as specified by dwDomainNameOffset,
User Name as specified by dwUserNameOffset, Password as specified by dwPaswordOffset
and Administrator accounts in domain as specified by dwAdministratorSize.

2.2.6.6 LINEADDRESSCAPS

The LINEADDRESSCAPS packet describes the capabilities of a specified address. LINEADDRESSCAPS is
supplied by the server in the field VarData of the returned version of the GetAddressCaps packet if the
request is completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

455 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwLineDeviceID

dwAddressSize

dwAddressOffset

dwDevSpecificSize

dwDevSpecificOffset

dwAddressSharing

dwAddressStates

dwCallInfoStates

dwCallerIDFlags

dwCalledIDFlags

dwConnectedIDFlags

dwRedirectionIDFlags

dwRedirectingIDFlags

dwCallStates

dwDialToneModes

dwBusyModes

dwSpecialInfo

dwDisconnectModes

dwMaxNumActiveCalls

dwMaxNumOnHoldCalls

dwMaxNumOnHoldPendingCalls

dwMaxNumConference

dwMaxNumTransConf

dwAddrCapFlags

dwCallFeatures

456 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRemoveFromConfCaps

dwRemoveFromConfState

dwTransferModes

dwParkModes

dwForwardModes

dwMaxForwardEntries

dwMaxSpecificEntries

dwMinFwdNumRings

dwMaxFwdNumRings

dwMaxCallCompletions

dwCallCompletionConds

dwCallCompletionModes

dwNumCompletionMessages

dwCompletionMsgTextEntrySize

dwCompletionMsgTextSize

dwCompletionMsgTextOffset

dwAddressFeatures

dwPredictiveAutoTransferStates (optional)

dwNumCallTreatments (optional)

dwCallTreatmentListSize (optional)

dwCallTreatmentListOffset (optional)

dwDeviceClassesSize (optional)

dwDeviceClassesOffset (optional)

dwMaxCallDataSize (optional)

dwCallFeatures2 (optional)

457 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwMaxNoAnswerTimeout (optional)

dwConnectedModes (optional)

dwOfferingModes (optional)

dwAvailableMediaModes (optional)

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, that is allocated to this
packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet that is

needed to hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwLineDeviceID (4 bytes): An unsigned 32-bit integer. The device identifier of the line device with
which this address is associated.

dwAddressSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the address field.

dwAddressOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the variably sized address field. The size of the field MUST be specified by
dwAddressSize.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the device-specific

field.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the variably sized device-specific field. The size of the field MUST be specified by

dwDevSpecificSize.

dwAddressSharing (4 bytes): An unsigned 32-bit integer. The sharing mode of the address. This
member MUST be one of the LINEADDRESSSHARING_Constants.

dwAddressStates (4 bytes): An unsigned 32-bit integer. When the address state changes, the
application can get notified in the LINE_ADDRESSSTATE packet. This member MUST use one or
more of the LINEADDRESSSTATE_Constants.

dwCallInfoStates (4 bytes): An unsigned 32-bit integer. The call information elements that are

meaningful for all calls on this address. An application can get notified about changes in some of
these states in LINE_CALLINFO packets. This member MUST use one or more of the

LINECALLINFOSTATE_Constants.

dwCallerIDFlags (4 bytes): An unsigned 32-bit integer. The party identifier information types that
can be provided for calls on this address. The caller MUST be the originator of the session. MUST
be one or more of the LINECALLPARTYID_Constants.

dwCalledIDFlags (4 bytes): An unsigned 32-bit integer. The party identifier information types that
can be provided for calls on this address. Here, "called" refers to the original destination. MUST be
one or more of the LINECALLPARTYID_Constants.

458 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwConnectedIDFlags (4 bytes): An unsigned 32-bit integer. The party identifier information types
that can be provided for calls on this address. MUST be one or more of the

LINECALLPARTYID_Constants.

dwRedirectionIDFlags (4 bytes): An unsigned 32-bit integer. The party identifier information types

that can be provided for calls on this address. Here, "redirection" is the new destination. MUST be
one or more of the LINECALLPARTYID_Constants.

dwRedirectingIDFlags (4 bytes): An unsigned 32-bit integer. The party identifier information types
that can be provided for calls on this address. Here, "redirecting" is the address that invoked
redirection. MUST be one or more of the LINECALLPARTYID_Constants.

dwCallStates (4 bytes): An unsigned 32-bit integer. The call states that can be reported for calls on
this address. This member MUST use one or more of the LINECALLSTATE_Constants.

dwDialToneModes (4 bytes): An unsigned 32-bit integer. The dial tone modes that can be reported
for calls made on this address. This member is meaningful only if the dial tone call state can be
reported. This member MUST use one or more of the LINEDIALTONEMODE_Constants.

dwBusyModes (4 bytes): An unsigned 32-bit integer. The busy modes that can be reported for calls
made on this address. This member is meaningful only if the busy call state can be reported. This
member MUST use one or more of the LINEBUSYMODE_Constants.

dwSpecialInfo (4 bytes): An unsigned 32-bit integer. The special information types that can be
reported for calls made on this address. This member is meaningful only if the specialInfo call
state can be reported. This member MUST use one or more of the LINESPECIALINFO_Constants.

dwDisconnectModes (4 bytes): An unsigned 32-bit integer. The disconnect modes that can be
reported for calls that are made on this address. This member is meaningful only if the
disconnected call state can be reported. This member MUST use one or more of the
LINEDISCONNECTMODE_Constants.

dwMaxNumActiveCalls (4 bytes): An unsigned 32-bit integer. The maximum number of active call
appearances that the address can handle. This number does not include calls on hold or calls on

hold pending transfer or conference.

dwMaxNumOnHoldCalls (4 bytes): An unsigned 32-bit integer. The maximum number of call
appearances at the address that can be on hold.

dwMaxNumOnHoldPendingCalls (4 bytes): An unsigned 32-bit integer. The maximum number of
call appearances at the address that can be on hold pending transfer or conference.

dwMaxNumConference (4 bytes): An unsigned 32-bit integer. The maximum number of parties
that can join a single conference call on this address.

dwMaxNumTransConf (4 bytes): An unsigned 32-bit integer. The number of parties (including
"self") that can be added in a conference call that is initiated as a generic consultation call using
the SetUpTransfer packet.

dwAddrCapFlags (4 bytes): An unsigned 32-bit integer. The packed bit flags that describe a variety

of address capabilities. This member MUST use one or more of the
LINEADDRCAPFLAGS_Constants.

dwCallFeatures (4 bytes): An unsigned 32-bit integer. The switching capabilities or features that
are available for all calls on this address by using the LINECALLFEATURE_Constants. This member
represents the call-related features that can possibly be available on an address (static availability
as opposed to dynamic availability). Invoking a supported feature requires the call to be in the
correct state and the underlying line device to be opened in a compatible mode. A zero in a bit

position indicates that the corresponding feature is never available. A one indicates that the
corresponding feature can be available if the application has the right privileges to the call and the

459 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

call is in the appropriate state for the operation to be meaningful. This member allows an
application to discover which call features can be (and which can never be) supported by the

address.

dwRemoveFromConfCaps (4 bytes): An unsigned 32-bit integer. The capabilities of an address for

removing calls from a conference call. This member MUST use one of the
LINEREMOVEFROMCONF_Constants.

dwRemoveFromConfState (4 bytes): An unsigned 32-bit integer. Uses one or more of the
LINECALLSTATE_Constants to specify the state of the call after it has been removed from a
conference call.

dwTransferModes (4 bytes): An unsigned 32-bit integer. The capabilities of an address for
resolving transfer requests. This member MUST use one of the LINETRANSFERMODE_Constants.

dwParkModes (4 bytes): An unsigned 32-bit integer. The different call park modes that are
available at this address. This member MUST use one of the LINEPARKMODE_Constants.

dwForwardModes (4 bytes): An unsigned 32-bit integer. The different modes of forwarding that are
available for this address. This member MUST use one or more of the
LINEFORWARDMODE_Constants.

dwMaxForwardEntries (4 bytes): An unsigned 32-bit integer. The maximum number of entries that

can be passed to the Forward packet in the lpForwardList parameter.

dwMaxSpecificEntries (4 bytes): An unsigned 32-bit integer. The maximum number of entries in
the lpForwardList parameter that is passed to the Forward packet that can contain forwarding
instructions based on a specific caller ID (selective call forwarding). This member is zero if
selective call forwarding is not supported.

dwMinFwdNumRings (4 bytes): An unsigned 32-bit integer. The minimum number of rings that
can be set to determine when a call is officially considered "no answer."

dwMaxFwdNumRings (4 bytes): An unsigned 32-bit integer. The maximum number of rings that

can be set to determine when a call is officially considered "no answer." If this number of rings
cannot be set, then dwMinFwdNumRings and dwMaxNumRings are equal.

dwMaxCallCompletions (4 bytes): An unsigned 32-bit integer. The maximum number of concurrent
call completion requests that can be outstanding on this line device. Zero implies that call
completion is not available.

dwCallCompletionConds (4 bytes): An unsigned 32-bit integer. The different call conditions under

which call completion can be requested. This member MUST use one or more of the
LINECALLCOMPLCOND_Constants.

dwCallCompletionModes (4 bytes): An unsigned 32-bit integer. The ways in which the call can be
completed. This member MUST use one of the LINECALLCOMPLMODE_Constants.

dwNumCompletionMessages (4 bytes): An unsigned 32-bit integer. The number of call completion
packets that can be selected from, when using the LINECALLCOMPLMODE_MESSAGE option.

Individual packets are identified by values in the range zero through one less than
dwNumCompletionMessages.

dwCompletionMsgTextEntrySize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of each
of the call completion text descriptions that are specified by dwCompletionMsgTextSize and
dwCompletionMsgTextOffset.

dwCompletionMsgTextSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the call
completion text.

460 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCompletionMsgTextOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning
of this packet to the variably sized field that contains descriptive text about each of the call

completion packets. Each packet is dwCompletionMsgTextEntrySize bytes long. The string
format of these textual descriptions is indicated by dwStringFormat in the line's device

capabilities. The size of the field MUST be specified by dwCompletionMsgTextSize.

dwAddressFeatures (4 bytes): An unsigned 32-bit integer. The features that are available for this
address by using the LINEADDRFEATURE_Constants. Invoking a supported feature requires the
address to be in the proper state and the underlying line device to be opened in a compatible
mode. A zero in a bit position indicates that the corresponding feature is never available. A one
indicates that the corresponding feature can be available if the address is in the appropriate state
for the operation to be meaningful. This member allows an application to discover which address

features can be (and which can never be) supported by the address.

dwPredictiveAutoTransferStates (4 bytes): An unsigned 32-bit integer. The call state or states
upon which a call that is made by a predictive dialer can be set to automatically transfer the call to
another address; one or more of the LINECALLSTATE_Constants. The value 0 indicates that
automatic transfer based on call state is unavailable. This member of the packet is available only if

the negotiated TAPI version is 2.0 or higher.

dwNumCallTreatments (4 bytes): An unsigned 32-bit integer. The number of entries in the array
of LINECALLTREATMENTENTRY packets delimited by dwCallTreatmentListSize and
dwCallTreatmentListOffset. This member of the packet is available only if the negotiated TAPI
version is 2.0 or higher.

dwCallTreatmentListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the call
treatment array. This member of the packet is available only if the negotiated TAPI version is 2.0
or higher.

dwCallTreatmentListOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
the packet to an array of LINECALLTREATMENTENTRY packets that specify the call treatments
supported on the address (that can be selected using the SetCallTreatment packet). The value is
dwNumCallTreatments times SIZEOF(LINECALLTREATMENTENTRY). The size of the field MUST

be specified by dwCallTreatmentListSize. This member of the packet is available only if the
negotiated TAPI version is 2.0 or higher.

dwDeviceClassesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the list of

supported device classes. This member of the packet is available only if the negotiated TAPI
version is 2.0 or higher.

dwDeviceClassesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to a string that consists of the device class identifiers that are supported on this address
for use with the GetID packet. The elements are separated by null characters, and the last class
identifier is followed by two null characters. The size of the field MUST be specified by

dwDeviceClassesSize. This member of the packet is available only if the negotiated TAPI version
is 2.0 or higher.

dwMaxCallDataSize (4 bytes): An unsigned 32-bit integer. The maximum number of bytes that an
application can set in LINECALLINFO by using the SetCallData packet. This member of the packet

is available only if the negotiated TAPI version is 2.0 or higher.

dwCallFeatures2 (4 bytes): An unsigned 32-bit integer. The additional switching capabilities or
features that are available for all calls on this address by using the

LINECALLFEATURE2_Constants. It is an extension of the dwCallFeatures member. This member of
the packet is available only if the negotiated TAPI version is 2.0 or higher.

dwMaxNoAnswerTimeout (4 bytes): An unsigned 32-bit integer. The maximum value, in
seconds, that can be set in the dwNoAnswerTimeout member in LINECALLPARAMS when
making a call. A value of 0 indicates that automatic abandonment of unanswered calls is not

461 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

supported by the service provider or that the time-out value is not adjustable by applications.
This member of the packet is available only if the negotiated TAPI version is 2.0 or higher.

dwConnectedModes (4 bytes): An unsigned 32-bit integer. The LINECONNECTEDMODE_Constants
that can appear in the dwCallStateMode member of LINECALLSTATUS and in LINE_CALLSTATE

packets for calls on this address. This member of the packet is available only if the negotiated
TAPI version is 2.0 or higher.

dwOfferingModes (4 bytes): An unsigned 32-bit integer. The LINECONNECTEDMODE_Constants
that can appear in the dwCallStateMode member of LINECALLSTATUS and in LINE_CALLSTATE
packets for calls on this address. This member of the packet is available only if the negotiated
TAPI version is 2.0 or higher.

dwAvailableMediaModes (4 bytes): An unsigned 32-bit integer. The media types (modes) that can

be invoked on new calls created on this address, when the dwAddressFeatures member
indicates that new calls are possible. If this member is zero, it indicates that the service provider
either does not know or cannot indicate which media types are available; in which case, any or all
of the media types that are indicated in the dwMediaModes member in LINEDEVCAPS can be

available. This member of the packet is available only if the negotiated TAPI version is 2.0 or
higher.

VarData (variable): MUST contain

 Address information as specified by dwAddressOffset.

 Device-specific information as specified by dwDevSpecificOffset.

 Descriptive text about each of the call completion packets as specified by
dwCompletionMsgTextOffset.

 An array of LINECALLTREATMENTENTRY packets that specify the call treatments supported on
the address as specified by dwCallTreatmentListOffset.

 A string consisting of the device class identifiers that are supported on this address as

specified by dwDeviceClassesOffset.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and
dwDevSpecificOffset) variably sized area of this packet.

Sessions that are negotiated with TAPI versions that are earlier than TAPI version 2.0 are not aware of
the new members in the LINEADDRESSCAPS packet. The application passes in a dwAPIVersion
parameter with the GetAddressCaps packet, which can be used for guidance by TAPI in handling this

situation. If the application passes in a dwTotalSize member that is less than the size of the fixed
portion of the packet, as defined in the dwAPIVersion member specified,
LINEERR_STRUCTURETOOSMALL MUST be returned. If sufficient memory has been allocated by the
application, before sending the GetAddressCaps packet, TAPI MUST set the dwNeededSize and
dwUsedSize members to the fixed size of the packet as it existed in the specified TAPI version.

New service providers (that support the new TAPI version) MUST examine the TAPI version that is

passed in. If the TAPI version is less than the highest version that is supported by the provider, the

service provider MUST NOT fill in fields that are not supported in older TAPI versions because these
would fall in the variable portion of the older packet.

New applications MUST be aware of the TAPI version that is negotiated and not examine the contents
of fields in the fixed portion beyond the original end of the fixed portion of the packet for the
negotiated TAPI version.

The members dwPredictiveAutoTransferStates through dwAvailableMediaModes are available

only to sessions that request a TAPI version of 2.0, 2.1, 2.2, 3.0, or 3.1 by using the GetAddressCaps
packet.

462 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.7 LINEADDRESSSTATUS

The LINEADDRESSSTATUS packet describes the current status of an address. LINEADDRESSSTATUS is
supplied by the server in the field VarData of the returned version of the GetAddressStatus packet if

the request is completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumInUse

dwNumActiveCalls

dwNumOnHoldCalls

dwNumOnHoldPendCalls

dwAddressFeatures

dwNumRingsNoAnswer

dwForwardNumEntries

dwForwardSize

dwForwardOffset

dwTerminalModesSize

dwTerminalModesOffset

dwDevSpecificSize

dwDevSpecificOffset

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet that is
needed to hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwNumInUse (4 bytes): An unsigned 32-bit integer. The number of stations that are currently
using the address.

463 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwNumActiveCalls (4 bytes): An unsigned 32-bit integer. The number of calls on the address that
are in call states other than idle, onHold, onHoldPendingTransfer, and onHoldPendingConference.

dwNumOnHoldCalls (4 bytes): An unsigned 32-bit integer. The number of calls on the address in
the onHold state.

dwNumOnHoldPendCalls (4 bytes): An unsigned 32-bit integer. The number of calls on the
address in the onHoldPendingTransfer or onHoldPendingConference state.

dwAddressFeatures (4 bytes): An unsigned 32-bit integer. Address-related functions that can be
invoked on the address in its current state. This field MUST use one or more of the
LINEADDRFEATURE_Constants.

dwNumRingsNoAnswer (4 bytes): An unsigned 32-bit integer. The number of rings set for this
address before an unanswered call is considered "no answer."

dwForwardNumEntries (4 bytes): An unsigned 32-bit integer. The number of entries in the array
referred to by dwForwardSize and dwForwardOffset.

dwForwardSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the forwarding
information array.

dwForwardOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the variably sized field that describes the address's forwarding information. This

information MUST be an array of dwForwardNumEntries elements, of type LINEFORWARD. The
offsets of the addresses in the array are relative to the beginning of the LINEADDRESSSTATUS
packet. The offsets dwCallerAddressOffset and dwDestAddressOffset in the variably sized field of
type LINEFORWARD pointed to by dwForwardOffset are relative to the beginning of the
LINEADDRESSSTATUS packet (the "root" container). The size of the array MUST be specified by
dwForwardSize.

dwTerminalModesSize (4 bytes): An unsigned 32-bit integer.

The size of the terminal modes array, in bytes.

dwTerminalModesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
the packet to the variably sized device field containing an array with DWORD-sized entries that
use one or more of the LINETERMMODE_Constants. This array is indexed by terminal identifiers, in
the range from 0 to one less than dwNumTerminals. Each entry in the array specifies the current
terminal modes for the corresponding terminal set with the SetTerminal packet for this address.
The size of the array MUST be specified by dwTerminalModesSize.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the device-specific
field.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to the variably sized device-specific field. The size of the field MUST be specified by
dwDevSpecificSize.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and

dwDevSpecificOffset) variably sized area of this packet.

This packet MUST be returned by the GetAddressStatus packet. When items in this packet change
as a consequence of activities on the address, a LINE_ADDRESSSTATE packet is sent. A parameter
to this packet is the address state, one of the LINEADDRESSSTATE_Constants, which indicates
that the status item in this record changed.

464 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.8 LINEAGENTSTATUS

The LINEAGENTSTATUS packet describes the current status of an ACD agent. LINEAGENTSTATUS is
supplied by the server in the field VarData of the completion packet of the GetAgentStatus request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumEntries

dwGroupListSize

dwGroupListOffset

dwState

dwNextState

dwActivityID

dwActivitySize

dwActivityOffset

dwAgentFeatures

dwValidStates

dwValidNextStates

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this data
packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the
information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwNumEntries (4 bytes): An unsigned 32-bit integer. The number of LINEAGENTGROUPENTRY
packets that appear in the array specified by dwGroupListOffset. The value MUST be 0 if no
agent is associated with (logged in) the address.

dwGroupListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the group list array.

dwGroupListOffset (4 bytes): An unsigned 32-bit integer. Offset from the beginning of this packet
to an array of LINEAGENTGROUPENTRY packets. The size is dwNumEntries times

SIZEOF(LINEAGENTGROUPENTRY). The array contains ACD groups into which the agent is

465 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

currently associated with (logged in) the address. The size of the field MUST be specified by
dwGroupListSize.

dwState (4 bytes): An unsigned 32-bit integer. The current state of the agent. MUST be one of the
LINEAGENTSTATE_Constants.

dwNextState (4 bytes): An unsigned 32-bit integer. The state into which the agent is automatically
placed when the current call completes. MUST be one of the LINEAGENTSTATE_Constants.

dwActivityID (4 bytes): An unsigned 32-bit integer. The identifier of the current agent activity.

dwActivitySize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the agent activity string.

dwActivityOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the packet
to a null-terminated string specifying the current agent activity. The size of the string MUST be
specified by dwActivitySize. This string MUST be part of the VarData field of the packet

containing this packet.

dwAgentFeatures (4 bytes): An unsigned 32-bit integer. The agent-related features available at the
time the status was obtained, using the LINEAGENTFEATURE_Constants.

dwValidStates (4 bytes): An unsigned 32-bit integer. The agent states that could be selected, at
this point in time, using the SetAgentState packet. MUST consist of one or more of the
LINEAGENTSTATE_Constants.

dwValidNextStates (4 bytes): An unsigned 32-bit integer. The next agent states that could be
selected, at this point in time, by calling the SetAgentState packet. MUST consist of one or more
of the LINEAGENTSTATE_Constants.

2.2.6.9 LINEAGENTACTIVITYENTRY

The LINEAGENTACTIVITYENTRY packet specifies a single ACD agent activity. The
LINEAGENTACTIVITYLIST packet can contain an array of LINEAGENTACTIVITYENTRY packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwID

dwNameSize

dwNameOffset

dwID (4 bytes): An unsigned 32-bit integer. The unique identifier for an activity. It is the
responsibility of the agent handler to generate and maintain uniqueness of this identifier.

dwNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the activity name,

including the null terminator.

dwNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this packet
to a null-terminated string specifying the name and other identifying information of an activity
that can be selected by sending the SetAgentActivity packet. The size of the string is specified by
dwNameSize.

466 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.10 LINEAGENTACTIVITYLIST

The LINEAGENTACTIVITYLIST packet describes a list of ACD agent activities. This packet can contain
an array of LINEAGENTACTIVITYENTRY packets. LINEAGENTACTIVITYLIST is supplied by the server in

the field VarData of the completion packet of the GetAgentActivityList request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumEntries

dwListSize

dwListOffset

VarData (variable)

...

dwTotalSize (4 bytes): The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): The size, in bytes, needed to hold all the information requested.

dwUsedSize (4 bytes): The size, in bytes, of the portion of this packet that contains useful

information.

dwNumEntries (4 bytes): The number of LINEAGENTACTIVITYENTRY packets that appear in the list

array. The value is 0 if no agent activity codes are available.

dwListSize (4 bytes): The size, in bytes, of the activity list array.

dwListOffset (4 bytes): The offset from the beginning of the packet to an array of
LINEAGENTACTIVITYENTRY packets that indicate information about an activity that could be
specified for the current logged-on agent. This MUST be dwNumEntries times
SIZEOF(LINEAGENTACTIVITYENTRY). The size of the array MUST be specified by dwListSize.

VarData (variable): An array of LINEAGENTACTIVITYENTRY packets that indicate information about
an activity that could be specified for the current logged-on agent, as specified by dwListOffset.

2.2.6.11 LINEAGENTGROUPLIST

The LINEAGENTGROUPLIST packet describes a list of ACD agent groups. This packet can contain an

array of LINEAGENTGROUPENTRY packets.

Multiple packets use the LINEAGENTGROUPLIST packet; these include the GetAgentGroupList,
GetGroupList, and SetAgentGroup packets.

467 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumEntries

dwListSize

dwListOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this data
structure.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the

information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwNumEntries (4 bytes): An unsigned 32-bit integer. The number of LINEAGENTGROUPENTRY
packets that appear in the list array specified by dwListOffset. The value MUST be 0 if no agent

is associated with (logged on) the address.

dwListSize (4 bytes): An unsigned 32-bit integer. The size of the group list array, in bytes.

dwListOffset (4 bytes): An unsigned 32-bit integer. Offset from the beginning of this packet to an
array of LINEAGENTGROUPENTRY packets that specify information about each ACD group into
which the current agent is to be associated with (logged on) the address. This is dwNumEntries
times SIZEOF(LINEAGENTGROUPENTRY). The size of the field MUST be specified by dwListSize.

VarData (variable): An array of LINEAGENTGROUPENTRY packets that specify information about
each ACD group into which the current agent is to be associated with (logged on) at the address

as specified by dwListOffset.

2.2.6.12 LINEAGENTGROUPENTRY

The LINEAGENTGROUPENTRY packet provides information on ACD agent groups. The

LINEAGENTGROUPLIST packet can contain an array of LINEAGENTGROUPENTRY packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwGroupID1

dwGroupID2

468 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwGroupID3

dwGroupID4

dwNameSize

dwNameOffset

dwGroupID1 (4 bytes): An unsigned 32-bit integer. The first part of the UUID for the group.

dwGroupID2 (4 bytes): An unsigned 32-bit integer. The second part of the UUID for the group.

dwGroupID3 (4 bytes): An unsigned 32-bit integer. The third part of the UUID for the group.

dwGroupID4 (4 bytes): An unsigned 32-bit integer. The fourth part of the UUID for a group. It is
the responsibility of the agent handler to generate and maintain the uniqueness of this identifier.

dwNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the ACD group or queue
name, including the null terminator.

dwNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the packet
to a null-terminated string specifying the name and other identifying information of an ACD group

or queue into which the agent can log on. This string can contain information, such as supervisor
and skill level, to assist the agent in selecting the correct group from a list displayed on the
workstation screen. The size of the field MUST be specified by dwNameSize.

2.2.6.13 LINEAGENTCAPS

The LINEAGENTCAPS packet describes the capabilities of an ACD agent. LINEAGENTCAPS is supplied
by the server in the field VarData of the completion packet of the GetAgentCaps request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwAgentHandlerInfoSize

dwAgentHandlerInfoOffset

dwCapsVersion

dwFeatures

dwStates

dwNextStates

dwMaxNumGroupEntries

469 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwAgentStatusMessages

dwNumAgentExtensionIDs

dwAgentExtensionIDListSize

dwAgentExtensionIDListOffset

ProxyGUID (16 bytes, optional)

...

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the
information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwAgentHandlerInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the agent
handler information.

dwAgentHandlerInfoOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
the packet to a null-terminated string specifying the name, version, or other identifying

information of the server application that is handling agent requests. The size of the string MUST
be specified by dwAgentHandlerInfoSize.

dwCapsVersion (4 bytes): An unsigned 32-bit integer. The TAPI version that the agent handler
application used in preparing the contents of this packet. This MUST NOT be greater than the TAPI
version that the calling application passed in to the GetAgentCaps packet.

dwFeatures (4 bytes): An unsigned 32-bit integer. The agent-related features available for this line
using the LINEAGENTFEATURE_Constants. Invoking a supported feature requires the line and

address to be in the proper state. A 0 in a bit position indicates that the corresponding feature is
never available. A 1 indicates that the corresponding feature can be available if the line is in the
appropriate state for the operation to be meaningful. This field allows for the discovery of which
agent features can be (and which can never be) supported by the device.

dwStates (4 bytes): An unsigned 32-bit integer. The LINEAGENTSTATE_Constants that can be used
in the dwAgentState parameter of the SetAgentState packet. Setting a supported state requires
the line and address to be in the proper state. A 0 in a bit position indicates that the

corresponding state is never available. A 1 indicates that the corresponding state can be available
if the line is in the appropriate state for the state to be meaningful. This field allows for the

discovery of which agent features can be (and which can never be) supported by the device.

dwNextStates (4 bytes): An unsigned 32-bit integer. The LINEAGENTSTATE_Constants that can be
used in the dwNextAgentState parameter of the SetAgentState packet. Setting a supported state
requires the line and address to be in the proper state. A 0 in a bit position indicates that the

corresponding state is never available. A 1 indicates that the corresponding state can be available
if the line is in the appropriate state for the state to be meaningful. This field allows for the
discovery of which agent features can be (and which can never be) supported by the device.

470 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwMaxNumGroupEntries (4 bytes): An unsigned 32-bit integer. The maximum number of agent
identifiers that can be logged on to the address simultaneously. This field determines the highest

value that can be passed in as the dwNumEntries member in the LINEAGENTGROUPLIST packet
to the SetAgentGroup packet.

dwAgentStatusMessages (4 bytes): An unsigned 32-bit integer. Indicates the
LINEAGENTSTATUS_Constants that can be received by the application in dwParam2 of a
LINE_AGENTSTATUS packet.

dwNumAgentExtensionIDs (4 bytes): An unsigned 32-bit integer. The number of
LINEEXTENSIONID packets that appear in the ExtensionIDList array specified by
dwAgentExtensionIDListOffset. The value is 0 if agent-handler–specific extensions are
supported on the address.

dwAgentExtensionIDListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the
agent extension IDs array.

dwAgentExtensionIDListOffset (4 bytes): An unsigned 32-bit integer. The offset from the

beginning of the packet to an array of LINEEXTENSIONID packets. The size is dwNumExtensionIDs
times SIZEOF(LINEEXTENSIONID). The array lists the 128-bit UUID for all agent-handler–specific
extensions supported by the agent handle for the address. The extension being used is referenced

in the AgentSpecific packet and the LINE_AGENTSPECIFIC packet by its position in this table, the
first entry being entry 0, so it is important that the agent handler always present extension
identifiers in this array in the same order. The size of the array MUST be specified by
dwAgentExtensionIDListOffset.

ProxyGUID (16 bytes): The GUID for the ACD proxy associated with the line. This element is
exposed only if a TAPI version of 2.2, 3.0, or 3.1 has been negotiated.

2.2.6.14 LINEAGENTSESSIONENTRY

The LINEAGENTSESSIONENTRY packet describes an ACD agent session. The LINEAGENTSESSIONLIST
packet can contain an array of LINEAGENTSESSIONENTRY packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hAgentSession

hAgent

GroupID (16 bytes)

...

...

dwWorkingAddressID

hAgentSession (4 bytes): An HAGENTSESSION. The unique identifier for an agent session. It is the
responsibility of the agent handler to generate and maintain the uniqueness of these identifiers.

hAgent (4 bytes): An unsigned 32-bit integer. The unique identifier for an agent. It is the
responsibility of the agent handler to generate and maintain the uniqueness of these identifiers.

GroupID (16 bytes): An unsigned 32-bit integer. The UUID for an ACD group. It is the responsibility
of the agent handler to generate and maintain the uniqueness of this identifier.

471 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwWorkingAddressID (4 bytes): An unsigned 32-bit integer. The address identifier on which the
agent will receive calls for this session.

2.2.6.15 LINEAGENTSESSIONLIST

The LINEAGENTSESSIONLIST packet describes a list of ACD agent sessions. This packet can contain
an array of LINEAGENTSESSIONENTRY packets. LINEAGENTSESSIONENTRY is supplied by the server
in the field VarData of the completion packet of the GetAgentSessionList request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumEntries

dwListSize

dwListOffset (variable)

...

VarData (variable)

...

dwTotalSize (4 bytes): The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): The size, in bytes, needed to hold all the information requested.

dwUsedSize (4 bytes): The size, in bytes, of the portion of this packet that contains useful
information.

dwNumEntries (4 bytes): The number of LINEAGENTSESSIONENTRY packets that appear in the list
array. The value is 0 if no agent sessions have been created.

dwListSize (4 bytes): The size, in bytes, of the agent session list array.

dwListOffset (variable): The offset from the beginning of this packet to an array of
LINEAGENTSESSIONENTRY packets that specify information about agents. The dwListOffset
member is dwNumEntries times SIZEOF(LINEAGENTSESSIONENTRY). The size of the field MUST

be specified by dwListSize.

VarData (variable): An array of LINEAGENTSESSIONENTRY packets that specify information about
agents as specified by dwListOffset.

2.2.6.16 LINEAGENTSESSIONINFO

The LINEAGENTSESSIONINFO packet contains information about the ACD agent session.

472 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwAgentSessionState

dwNextAgentSessionState

dateSessionStartTime

dwSessionDuration

dwNumberOfCalls

dwTotalTalkTime

dwAverageTalkTime

dwTotalCallTime

dwAverageCallTime

dwTotalWrapUpTime

dwAverageWrapUpTime

cyACDCallRate

dwLongestTimeToAnswer

dwAverageTimeToAnswer

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the
information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet

that contains useful information.

dwAgentSessionState (4 bytes): An unsigned 32-bit integer. MUST be one of the
LINEAGENTSESSIONSTATE_Constants.

dwNextAgentSessionState (4 bytes): An unsigned 32-bit integer. MUST be one of the
LINEAGENTSESSIONSTATE_Constants.

dateSessionStartTime (4 bytes): An unsigned 32-bit integer. The time the session was created.

473 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwSessionDuration (4 bytes): An unsigned 32-bit integer. The duration of the agent session, in
seconds. The active period only; timing stops when a session enters the ASST_SESSION_ENDED

state.

dwNumberOfCalls (4 bytes): An unsigned 32-bit integer. The number of ACD calls handled during

this agent session by this agent.

dwTotalTalkTime (4 bytes): An unsigned 32-bit integer. The number of seconds spent talking in
ACD calls during this agent session by this agent.

dwAverageTalkTime (4 bytes): An unsigned 32-bit integer. The average time, in seconds, spent
talking for each ACD call during this agent session by this agent.

dwTotalCallTime (4 bytes): An unsigned 32-bit integer. The number of seconds spent on ACD calls
during this agent session by this agent. It includes time on the phone plus wrap-up time.

dwAverageCallTime (4 bytes): An unsigned 32-bit integer. The average time, in seconds, spent for
each ACD call during this agent session. Includes time on the phone plus wrap-up time.

dwTotalWrapUpTime (4 bytes): An unsigned 32-bit integer. The number of seconds spent on ACD
call wrap-up (after-call work) during this agent session by this agent.

dwAverageWrapUpTime (4 bytes): An unsigned 32-bit integer. The average time, in seconds, for
each ACD call spent in wrap-up (after-call work) during this agent session.

cyACDCallRate (4 bytes): An unsigned 32-bit integer. The call rate for each agent session. This is a
fixed-point decimal number.

dwLongestTimeToAnswer (4 bytes): An unsigned 32-bit integer. The longest time, in seconds,
that calls waited to be answered.

dwAverageTimeToAnswer (4 bytes): An unsigned 32-bit integer. The average time, in seconds,
that calls waited to be answered.

2.2.6.17 LINECALLSTATUS

The LINECALLSTATUS packet describes the current status of a call. The information in this packet
depends on the device capabilities of the address, the ownership of the call by the invoking
application, and the current state of the call being queried. LINECALLSTATUS is supplied by the server

in the field VarData of the returned version of the GetCallStatus packet if the request is completed
successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwCallState

dwCallStateMode

dwCallPrivilege

474 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallFeatures

dwDevSpecificSize

dwDevSpecificOffset

dwCallFeatures2 (optional)

tStateEntryTime (16 bytes, optional)

...

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet that is
needed to hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwCallState (4 bytes): An unsigned 32-bit integer. The value that specifies the current call state of
the call using one of the LINECALLSTATE_Constants.

dwCallStateMode (4 bytes): An unsigned 32-bit integer. The interpretation of the
dwCallStateMode member is call-state–dependent. In many cases, the value will be 0. The

following table shows dwCallStateMode types for a given dwCallState value.

dwCallState CallStateMode

LINECALLSTATE_BUSY LINEBUSYMODE_Constants

LINECALLSTATE_CONNECTED LINECONNECTEDMODE_Constants

LINECALLSTATE_DIALTONE LINEDIALTONEMODE_Constants

LINECALLSTATE_DISCONNECTED LINEDISCONNECTMODE_Constants

LINECALLSTATE_OFFERING LINEOFFERINGMODE_Constants

LINECALLSTATE_SPECIALINFO LINESPECIALINFO_Constants

dwCallPrivilege (4 bytes): An unsigned 32-bit integer. The privilege level for this call. This field
MUST use one or more of the LINECALLPRIVILEGE_Constants.

dwCallFeatures (4 bytes): An unsigned 32-bit integer. These flags indicate the TAPI functions that

can be invoked on the call, given the availability of the feature in the device capabilities, the
current call state, and call ownership of the invoking application. A 0 indicates the corresponding
feature cannot be invoked on the call in its current state; a 1 indicates the feature can be invoked.
This field MUST use LINECALLFEATURE_Constants.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized

device-specific field.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

475 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallFeatures2 (4 bytes): An unsigned 32-bit integer. The value that indicates additional
functions can be invoked on the call, given the availability of the feature in the device capabilities,

the current call state, and call ownership of the invoking application. An extension of the
dwCallFeatures field. This field MUST use LINECALLFEATURE2_Constants.

tStateEntryTime (16 bytes): A SYSTEMTIME. The Coordinated Universal Time (UTC) at which the
current call state was entered.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and
dwDevSpecificOffset) variably sized area of this packet.

A LINE_CALLSTATE packet is sent whenever the call state of a call changes. This packet provides only
the new call state of the call. Additional status about a call is available with the GetCallStatus packet.

The fields dwCallFeatures2 and tStateEntryTime are available only to a line device opened with a

TAPI version of 2.0, 2.1, 2.2, 3.0, or 3.1.

2.2.6.18 LINECALLHUBTRACKINGINFO

The LINECALLHUBTRACKINGINFO packet contains information that reports the type of tracking

available to a call hub. This packet is exposed only to applications that negotiate a TAPI version of 2.2
or higher. The GetCallHubtracking and SetCallHubTracking packets use this packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwAvailableTracking

dwCurrentTracking

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, used.

dwAvailableTracking (4 bytes): An unsigned 32-bit integer. The available tracking, as represented

by one of the LINECALLHUBTRACKING_Constants.

dwCurrentTracking (4 bytes): An unsigned 32-bit integer. The current tracking, as represented by
a LINECALLHUBTRACKING_Constants.

2.2.6.19 LINECALLINFO

The LINECALLINFO packet MUST contain call data. This data remains fixed during the call and is
obtained with the GetCallInfo packet. If a part of the packet does change, then a LINE_CALLINFO
packet is sent indicating which data item has changed. Dynamically changing call data, such as call
progress status, is available in the LINECALLSTATUS packet, returned with the GetCallStatus packet.

476 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

hLine

dwLineDeviceID

dwAddressID

dwBearerMode

dwRate

dwMediaMode

dwAppSpecific

dwCallID

dwRelatedCallID

dwCallParamFlags

dwCallStates

dwMonitorDigitModes

dwMonitorMediaModes

DialParams (16 bytes)

...

...

dwOrigin

dwReason

dwCompletionID

dwNumOwners

dwNumMonitors

477 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCountryCode

dwTrunk

dwCallerIDFlags

dwCallerIDSize

dwCallerIDOffset

dwCallerIDNameSize

dwCallerIDNameOffset

dwCalledIDFlags

dwCalledIDSize

dwCalledIDOffset

dwCalledIDNameSize

dwCalledIDNameOffset

dwConnectedIDFlags

dwConnectedIDSize

dwConnectedIDOffset

dwConnectedIDNameSize

dwConnectedIDNameOffset

dwRedirectionIDFlags

dwRedirectionIDSize

dwRedirectionIDOffset

dwRedirectionIDNameSize

dwRedirectionIDNameOffset

dwRedirectingIDFlags

dwRedirectingIDSize

dwRedirectingIDOffset

478 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRedirectingIDNameSize

dwRedirectingIDNameOffset

dwAppNameSize

dwAppNameOffset

dwDisplayableAddressSize

dwDisplayableAddressOffset

dwCalledPartySize

dwCalledPartyOffset

dwCommentSize

dwCommentOffset

dwDisplaySize

dwDisplayOffset

dwUserUserInfoSize

dwUserUserInfoOffset

dwHighLevelCompSize

dwHighLevelCompOffset

dwLowLevelCompSize

dwLowLevelCompOffset

dwChargingInfoSize

dwChargingInfoOffset

dwTerminalModesSize

dwTerminalModesOffset

dwDevSpecificSize

dwDevSpecificOffset

dwCallTreatment (optional)

479 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallDataSize (optional)

dwCallDataOffset (optional)

dwSendingFlowspecSize (optional)

dwSendingFlowspecOffset (optional)

dwReceivingFlowspecSize

dwReceivingFlowspecOffset

dwCallerIDAddressType (optional)

dwCalledIDAddressType (optional)

dwConnectedIDAddressType (optional)

dwRedirectionIDAddressType (optional)

dwRedirectingIDAddressType (optional)

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet needed to
contain all the returned data.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful data.

hLine (4 bytes): An unsigned 32-bit integer. The handle for the line device with which this call is
associated.

dwLineDeviceID (4 bytes): An unsigned 32-bit integer. The device identifier of the line device with
which this call is associated.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address identifier of the address on the
line on which this call exists.

dwBearerMode (4 bytes): An unsigned 32-bit integer. The value that specifies the current bearer
mode of the call. It MUST use LINE_CALLINFO

dwRate (4 bytes): An unsigned 32-bit integer. The rate, in bits per second (bps), of the call data
stream.

dwMediaMode (4 bytes): An unsigned 32-bit integer. The value that specifies the media mode of

the data stream currently on the call. This is the media mode determined by the owner of the call,
which is not necessarily the same as that of the last LINE_MONITORMEDIA packet. This member is
not directly affected by the LINE_MONITORMEDIA packets. It MUST use one or more of the
LINEMEDIAMODE_Constants.

dwAppSpecific (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
uninterpreted by the protocol.

480 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallID (4 bytes): An unsigned 32-bit integer. In some telephony environments, the switch, or
service provider, can assign a unique identifier to each call. This enables the call to be tracked

across transfers, forwards, or other events. The domain of these call identifiers and their scope is
service provider-defined. The dwCallID member makes this unique identifier available.

dwRelatedCallID (4 bytes): An unsigned 32-bit integer. Telephony environments that use the call
identifier can find it necessary to relate one call to another. The dwRelatedCallID member can
be used by the service provider for this purpose.

dwCallParamFlags (4 bytes): An unsigned 32-bit integer. This field specifies a collection of call-
related parameters when the call is outgoing. These are the same call parameters specified in the
MakeCall packet This member MUST use LINECALLPARAMFLAGS_Constants.

dwCallStates (4 bytes): An unsigned 32-bit integer. The value that specifies the call states of type

LINECALLSTATE_Constants for which the application can be notified on this call. The
dwCallStates member is constant in LINECALLINFO and does not change depending on the call
state. It MUST use LINECALLSTATE_Constants.

dwMonitorDigitModes (4 bytes): An unsigned 32-bit integer. The value that specifies the various
digit modes using LINEDIGITMODE_Constants.

dwMonitorMediaModes (4 bytes): An unsigned 32-bit integer. This field specifies the various media

modes for which monitoring is currently enabled using LINEMEDIAMODE_Constants.

DialParams (16 bytes): A LINEDIALPARAMS. The dialing parameters currently in effect on the call,
of type LINEDIALPARAMS. Unless these parameters are set by either MakeCall or the
SetCallParams packet, their values MUST be the same as the defaults used in the LINEDEVCAPS
packet.

dwOrigin (4 bytes): An unsigned 32-bit integer. The value that identifies where the call originated.
It uses one or more of the LINECALLORIGIN_Constants.

dwReason (4 bytes): An unsigned 32-bit integer. The value that specifies the reason why the call
occurred. It uses one or more of the LINECALLREASON_Constants.

dwCompletionID (4 bytes): An unsigned 32-bit integer. The value that specifies the completion
identifier for the incoming call if it is the result of a completion request that terminates. This
identifier is meaningful only if dwReason is LINECALLREASON_CALLCOMPLETION.

dwNumOwners (4 bytes): An unsigned 32-bit integer. The number of application modules with
different call handles that have owner privilege for the call.

dwNumMonitors (4 bytes): An unsigned 32-bit integer. The number of application modules with
different call handles with monitor privilege for the call.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country or region code of the
destination party. Zero if unknown.

dwTrunk (4 bytes): An unsigned 32-bit integer. The number of the trunk over which the call is
routed. This member is used for both incoming and outgoing calls. The dwTrunk member

SHOULD be set to 0xFFFFFFFF if it is unknown.

dwCallerIDFlags (4 bytes): An unsigned 32-bit integer. The value that determines the validity and
content of the caller party identifier data. The caller is the originator of the call. It MUST use one
or more of the LINECALLPARTYID_Constants.

dwCallerIDSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that contains
the data identifying the caller.

dwCallerIDOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning of

this packet.

481 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallerIDNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
contains the data identifying the name of the calling party.

dwCallerIDNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwCalledIDFlags (4 bytes): An unsigned 32-bit integer. The value that determines the validity and
content of the called-party identifier data. The called party corresponds to the originally addressed
party. It uses one or more of the LINECALLPARTYID_Constants.

dwCalledIDSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that contains
the called-party identifier number data.

dwCalledIDOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning of
this packet.

dwCalledIDNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
contains the called-party identifier name data.

dwCalledIDNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwConnectedIDFlags (4 bytes): An unsigned 32-bit integer. The value that determines the validity
and content of the connected-party identifier data. The connected party is the party to which the

connection was made. This can be different from the called-party identifier if the call was diverted.
It uses one or more of the LINECALLPARTYID_Constants.

dwConnectedIDSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
contains the connected-party identifier number data.

dwConnectedIDOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwConnectedIDNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field

that contains the connected-party identifier name data.

dwConnectedIDNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwRedirectionIDFlags (4 bytes): An unsigned 32-bit integer. The value that determines the
validity and content of the redirection-party identifier data. The redirection party identifies to the
calling user the number toward which diversion was invoked. It uses one or more of the
LINECALLPARTYID_Constants.

dwRedirectionIDSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
contains the redirection-party identifier number data.

dwRedirectionIDOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwRedirectionIDNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field
that contains the redirection-party identifier name data.

dwRedirectionIDNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwRedirectingIDFlags (4 bytes): An unsigned 32-bit integer. The value that determines the
validity and content of the redirection-party identifier data. The party that received the call
identifies the new destination number or whatever data is detected to the call originator. It uses
one or more of the LINECALLPARTYID_Constants.

482 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRedirectingIDSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
contains the redirection-party identifier number data.

dwRedirectingIDOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwRedirectingIDNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field
that contains the redirection-party identifier name data.

dwRedirectingIDNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwAppNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds
the application name of the application that first originated, accepted, or answered the call.

dwAppNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning

of this packet. This is the name that an application can specify in the Initialize packet. If the
application specifies no such name, then the application's module file name is used.

dwDisplayableAddressSize (4 bytes): An unsigned 32-bit integer. This field specifies the
displayable string that is used for logging purposes. The data is obtained from LINECALLPARAMS
for functions that initiate calls.

dwDisplayableAddressOffset (4 bytes): An unsigned 32-bit integer. This field specifies the

displayable string that is used for logging purposes. The data is obtained from LINECALLPARAMS
for functions that initiate calls.

dwCalledPartySize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds
a user-friendly description of the called party.

dwCalledPartyOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet. This data can be specified with the MakeCall packet and can be optionally
specified in the lpCallParams parameter whenever a new call is established. It is useful for call

logging purposes.

dwCommentSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds a
comment about the call that is provided by the application that originated the call using the
MakeCall packet.

dwCommentOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning
of this packet. This data can be optionally specified in the lpCallParams parameter using the
MakeCall packet whenever a new call is established.

dwDisplaySize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds raw
display data.

dwDisplayOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning of
this packet. Depending on the telephony environment, a service provider can extract functional
data from this member pair for formatting and presentation that is most appropriate for this
telephony configuration.

dwUserUserInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
holds user-user data.

dwUserUserInfoOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet. The protocol discriminator field for the user-user data, if used, appears
as the first byte of the data pointed to by dwUserUserInfoOffset and is accounted for in
dwUserUserInfoSize.

dwHighLevelCompSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that

holds high-level compatibility data.

483 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwHighLevelCompOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet. The format of this data MUST be specified by other standards (ISDN

Q.931).

dwLowLevelCompSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that

holds low-level compatibility data.

dwLowLevelCompOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet. The format of this data MUST be specified by other standards (ISDN
Q.931).

dwChargingInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
holds charging data.

dwChargingInfoOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the

beginning of this packet. The format of this data MUST be specified by other standards (ISDN
Q.931).

dwTerminalModesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably
sized device field that contains an array with DWORD-sized entries.

dwTerminalModesOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet. The set of LINETERMMODE is indexed by terminal identifiers, in the

range from 0 to one less than dwNumTerminals. Each entry in the array specifies the current
terminal modes for the corresponding terminal set with the SetTerminal packet for this call's
media stream. The following values are predefined.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds
device-specific data.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet.

dwCallTreatment (4 bytes): An unsigned 32-bit integer. The call treatment currently being applied

on the call or that is applied when the call enters the next applicable state. Can be 0 if call
treatments are not supported.

dwCallDataSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the application-settable
call data.

dwCallDataOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the application-settable call data. The size of the field is specified by dwCallDataSize.

dwSendingFlowspecSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the quality of
service information.

dwSendingFlowspecOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
the packet to a FLOWSPEC packet followed by Winsock provider-specific data, equivalent to what
would have been stored in SendingFlowspec in a QoS packet. Specifies the quality of service
currently in effect in the sending direction on the call. The size of the field is specified by

dwSendingFlowspecSize.

dwReceivingFlowspecSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the QoS
information.

dwReceivingFlowspecOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning
of the packet to a FLOWSPEC packet followed by Winsock provider-specific data, equivalent to
what would have been stored in ReceivingFlowspec in a QoS packet. Specifies the quality of
service currently in effect in the receiving direction on the call. The size of the field is specified by

dwReceivingFlowspecSize.

484 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallerIDAddressType (4 bytes): An unsigned 32-bit integer. The address type of the caller. This
MUST use one of the LINEADDRESSTYPE_Constants. This member of the packet is available only if

the negotiated TAPI version is 3.0 or 3.1.

dwCalledIDAddressType (4 bytes): An unsigned 32-bit integer. The address type of the called

party. This MUST use one of the LINEADDRESSTYPE_Constants. This member of the packet is
available only if the negotiated TAPI version is 3.0 or 3.1.

dwConnectedIDAddressType (4 bytes): An unsigned 32-bit integer. The address type of the
destination to which the call was actually connected. This MUST use one of the
LINEADDRESSTYPE_Constants. This member of the packet is available only if the negotiated TAPI
version is 3.0 or 3.1.

dwRedirectionIDAddressType (4 bytes): An unsigned 32-bit integer. The address type of the new

call destination. This member of the packet is available only if the negotiated TAPI version is 3.0
or 3.1.

dwRedirectingIDAddressType (4 bytes): An unsigned 32-bit integer. The address type of the

location that redirected the call. This member of the packet is available only if the negotiated TAPI
version is 3.0 or 3.1.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and

dwDevSpecificOffset) variably sized area of this packet.

The LINECALLINFO packet contains relatively fixed data about a call. This packet is returned with the
GetCallInfo packet. When data items in this packet have changed, a LINECALLINFO packet is sent to
the application. A parameter to this packet is the data item or field that changed.

The fields dwCallTreatment through dwReceivingFlowspecOffset are available only to
applications that open the line device with a TAPI version of 2.0, 2.1, 2.2, 3.0, or 3.1.

Note The preferred format for specification of the contents of the dwCallID member and the other

five similar members (dwCallerIDFlag, dwCallerIDSize, dwCallerIDOffset,
dwCallerIDNameSize, and dwCallerIDNameOffset) is the TAPI canonical number format. For

example, an incoming call line identification (ICLID) of 5551234567 received from the switch SHOULD
be converted to "+1 (555) 1234567" before being placed in the LINECALLINFO packet. This
standardized format facilitates searching of databases and call-back functions implemented in
applications.

2.2.6.20 LINECALLPARAMS

The LINECALLPARAMS packet describes parameters supplied when making calls using the MakeCall
packet. The LINECALLPARAMS packet is also used as a parameter in other operations, such as line
Open.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwBearerMode

dwMinRate

dwMaxRate

dwMediaMode

485 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallParamFlags

dwAddressMode

dwAddressID

DialParams (16 bytes)

...

...

dwOrigAddressSize

dwOrigAddressOffset

dwDisplayableAddressSize

dwDisplayableAddressOffset

dwCalledPartySize

dwCalledPartyOffset

dwCommentSize

dwCommentOffset

dwUserUserInfoSize

dwUserUserInfoOffset

dwHighLevelCompSize

dwHighLevelCompOffset

dwLowLevelCompSize

dwLowLevelCompOffset

dwDevSpecificSize

dwDevSpecificOffset

dwPredictiveAutoTransferStates

dwTargetAddressSize

dwTargetAddressOffset

486 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwSendingFlowspecSize

dwSendingFlowspecOffset

dwReceivingFlowspecSize

dwReceivingFlowspecOffset

dwDeviceClassSize

dwDeviceClassOffset

dwDeviceConfigSize

dwDeviceConfigOffset

dwCallDataSize

dwCallDataOffset

dwNoAnswerTimeout

dwCallingPartyIDSize

dwCallingPartyIDOffset

dwAddressType (optional)

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.
This size SHOULD be large enough to hold all the fixed and variably sized portions of this packet.

dwBearerMode (4 bytes): An unsigned 32-bit integer. The value that specifies the bearer mode for

the call. If dwBearerMode is set to any value except LINEBEARERMODE_PASSTHROUGH, the call
will attempt to complete if that bearer mode is supported on the line being accessed. This member
MUST use one or more of the LINEBEARERMODE_Constants.

If dwBearerMode is 0, the default value is LINEBEARERMODE_VOICE.

dwMinRate (4 bytes): An unsigned 32-bit integer. The minimum data rate requested for the call's

data stream, in bits per second. When making a call, the service provider attempts to provide the

highest available rate in the requested range. If a specific data rate is required, both dwMinRate
and dwMaxRate SHOULD be set to that value. If an application works best with one rate but is
able to degrade to lower rates, the application SHOULD specify these as the maximum and
minimum rates, respectively.

dwMaxRate (4 bytes): An unsigned 32-bit integer. The value that specifies the data rate range
requested for the call's data stream in bits per second. When making a call, the service provider
attempts to provide the highest available rate in the requested range. If a specific data rate is

required, both dwMinRate and dwMaxRate SHOULD be set to that value. If an application works

487 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

best with one rate but is able to degrade to lower rates, the application SHOULD specify these as
the maximum and minimum rates, respectively. If dwMaxRate is 0, the default value is as

specified by the dwMaxRate member of the LINEDEVCAPS packet. This is the maximum rate
supported by the device.

dwMediaMode (4 bytes): An unsigned 32-bit integer. The value that specifies the expected media
mode of the call. This member MUST use one or more of the LINEMEDIAMODE_Constants. If
dwMediaMode is 0, the default value is LINEMEDIAMODE_INTERACTIVEVOICE.

dwCallParamFlags (4 bytes): An unsigned 32-bit integer. The value that specifies a collection of
Boolean call-setup parameters. This member MUST use one or more of the
LINECALLPARAMFLAGS_Constants.

dwAddressMode (4 bytes): An unsigned 32-bit integer. The value that specifies the mode by which

the originating address is specified. The dwAddressMode member cannot be
LINEADDRESSMODE_ADDRESSID for the Open packet. This member MUST use one or more of the
LINEADDRESSMODE_Constants.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address identifier of the originating
address if dwAddressMode is set to LINEADDRESSMODE_ADDRESSID.

DialParams (16 bytes): A LINEDIALPARAMS. When a value of 0 is specified for this field, the default

value for the field is used as indicated in the DefaultDialParams member of the LINEDEVCAPS
packet. If a nonzero value is specified for a field that is outside the range specified by the
corresponding fields in MinDialParams and MaxDialParams in the LINEDEVCAPS packet, the
nearest value within the valid range is used instead.

dwOrigAddressSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field holding
the originating address.

dwOrigAddressOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the

beginning of this packet. The format of this address is dependent on the dwAddressMode
member.

dwDisplayableAddressSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the
displayable string including the null terminator.

dwDisplayableAddressOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet that specifies the displayable string that is used for logging purposes. The
content of this string is recorded in the dwDisplayableAddressOffset and

dwDisplayableAddressSize fields of the call's LINECALLINFO packet.

dwCalledPartySize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds
called-party data.

dwCalledPartyOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet. This data can be specified by the client that makes the call and is made
available in the call's packet for logging purposes. The format of this field is that of

dwStringFormat, as specified in LINEDEVCAPS.

dwCommentSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds
comments about the call.

dwCommentOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning
of this packet. This data can be specified by the client that makes the call and is made available in
the call's packet for logging purposes. The format of this field is that of dwStringFormat, as
specified in LINEDEVCAPS.

dwUserUserInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
holds user-user data.

488 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwUserUserInfoOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet. The protocol discriminator field for the user-user data, if required,

SHOULD appear as the first byte of the data pointed to by dwUserUserInfoOffset and MUST be
accounted for in dwUserUserInfoSize.

dwHighLevelCompSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
holds high-level compatibility data.

dwHighLevelCompOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet for the HighLevelCompOffset.

dwLowLevelCompSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
holds low-level compatibility data.

dwLowLevelCompOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the

beginning of this packet for the LowLevelCompOffset.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that holds

device-specific data.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet for the DevSpecificOffset.

dwPredictiveAutoTransferStates (4 bytes): An unsigned 32-bit integer. The

LINECALLSTATE_Constants, entry into which cause the call to be blind-transferred to the specified
target address. Set to 0 if automatic transfer is not desired.

dwTargetAddressSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a string
specifying the target address that can be dialed not using dwAddressID. Used in the case of
certain automatic actions. In the case of predictive dialing, specifies the address to which the call
SHOULD be automatically transferred. Set to 0 if automatic transfer is not desired. In the case of a
No Hold Conference, specifies the address that SHOULD be added to the call. In the case of a One

Step Transfer, specifies the address to dial on the consultation call.

dwTargetAddressOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
LINECALLPARAMS of a string specifying the target-dialable address not using dwAddressID. Used
in the case of certain automatic actions. In the case of predictive dialing, specifies the address to
which the call SHOULD be automatically transferred. Set to 0 if automatic transfer is not desired.
In the case of a No Hold Conference, specifies the address that SHOULD be added to the call. In
the case of a One Step Transfer, specifies the address to dial on the consultation call.

dwSendingFlowspecSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of a
Winsock2 FLOWSPEC packet followed by Winsock2 provider-specific data.

dwSendingFlowspecOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
LINECALLPARAMS of a Winsock2 FLOWSPEC packet followed by Winsock2 provider-specific data.

dwReceivingFlowspecSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of a
Winsock2 FLOWSPEC packet.

dwReceivingFlowspecOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning
of LINECALLPARAMS of a Winsock2 FLOWSPEC packet.

dwDeviceClassSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a null-terminated
ASCII string (the size includes the NULL) that indicates the device class of the device whose
configuration is specified in DeviceConfig. Valid device class strings are the same as those
specified for the GetID packet.

489 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDeviceClassOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
LINECALLPARAMS of a null-terminated ASCII string (the size includes the NULL) that indicates the

device class of the device whose configuration is specified in DeviceConfig.

dwDeviceConfigSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the opaque

configuration packet pointed to by dwDevConfigOffset. This value is returned in the
dwStringSize member in the VARSTRING packet returned by the GetDevConfig packet. If the
size is 0, the default device configuration is used. This enables the application to set the device
configuration before the call is initiated.

dwDeviceConfigOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
LINECALLPARAMS to the opaque configuration packet. This value is returned in the dwStringSize
field in the VARSTRING packet returned by GetDevConfig. If the size is 0, the default device

configuration is used. This allows the application to set the device configuration before the call is
initiated.

dwCallDataSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the call data set by the
application to be initially attached to the call.

dwCallDataOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
LINECALLPARAMS of the call data set by the application to be initially attached to the call.

dwNoAnswerTimeout (4 bytes): An unsigned 32-bit integer. The number of seconds, after the
completion of dialing, that the call SHOULD wait in the proceeding or ring-back state before it is
abandoned by the service provider with a LINECALLSTATE_DISCONNECTED and
LINEDISCONNECTMODE_NOANSWER. A value of 0 indicates that automatic call abandonment is
not used.

dwCallingPartyIDSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a null-
terminated ASCII string (the size includes the NULL) that specifies the identity of the party placing

the call.

dwCallingPartyIDOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
LINECALLPARAMS of a null-terminated ASCII string (the size includes the NULL) that specifies the

identity of the party placing the call. If the content of the identifier is acceptable and a path is
available, the service provider passes the identifier to the called party to indicate the identity of
the calling party.

dwAddressType (4 bytes): An unsigned 32-bit integer. The address type used for the call. This

member is available only if the negotiated TAPI version is 3.0 or 3.1.

VarData (variable): MUST contain:

 Originating address, as specified by dwOrigAddressOffset.

 Displayable string that is used for logging purposes, as specified by
dwDisplayableAddressOffset.

 Called-party data, as specified by dwCalledPartyOffset.

 Comments about the call, as specified by dwCommentOffset.

 User-user data, as specified by dwUserUserInfoOffset.

 High-level compatibility data, as specified by dwHighLevelCompOffset.

 Low-level compatibility data, as specified by dwLowLevelCompOffset.

 Device-specific information, as specified by dwDevSpecificOffset.

 Target-dialable address, as specified by dwTargetAddressOffset.

490 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 A FLOWSPEC packet, as specified by dwSendingFlowspecOffset and
dwReceivingFlowspecOffset.

 Device class of the device, as specified by dwDeviceClassOffset.

 Opaque configuration packet, as specified by dwDeviceConfigOffset.

 Call data set by the application to be initially attached to the call, as specified by
dwCallDataOffset.

 Identity of the party placing the call, as specified by dwCallingPartyIDOffset.

Device-specific extensions SHOULD use the dwDevSpecificSize and dwDevSpecificOffset members
of this packet.

This packet is used as a parameter to the MakeCall packet when setting up a call. Its fields enable the
application to specify a variety of ISDN call-setup parameters. If no LINECALLPARAMS packet is

supplied to MakeCall, a default POTS voice-grade call is requested with the default values listed above.

Note The members dwOrigAddressSize through dwDevSpecificOffset are ignored when an
lpCallParams parameter is specified with the Open function.

2.2.6.21 LINECALLLIST

The LINECALLLIST packet describes a list of call handles. LINECALLLIST is supplied by the server in
the field VarData of the returned version of the GetNewCalls packet if the request is completed
successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwCallsNumEntries

dwCallsSize

dwCallsOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet that is

needed to hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

491 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallsNumEntries (4 bytes): An unsigned 32-bit integer. The number of handles in the hCalls
array.

dwCallsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the array of call handles.

dwCallsOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the packet to

the variably sized array of HCALL handles. The size of the array MUST be specified by
dwCallsSize.

VarData (variable): An array of HCALL handles, as specified by dwCallsOffset.

2.2.6.22 LINECALLTREATMENTENTRY

The LINECALLTREATMENTENTRY packet provides information on the type of call treatment, such as
music, recorded announcement, or silence, on the current call. The LINEADDRESSCAPS packet can
contain an array of LINECALLTREATMENTENTRY packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwCallTreatmentID

dwCallTreatmentNameSize

dwCallTreatmentNameOffset

dwCallTreatmentID (4 bytes): One of the LINECALLTREATMENT_Constants (if the treatment is of a
predefined type) or a service provider-specific value.

dwCallTreatmentNameSize (4 bytes): The size, in bytes, of the call treatment name string,
including the terminating null character.

dwCallTreatmentNameOffset (4 bytes): The offset from the beginning of LINEADDRESSCAPS to a
null-terminated string identifying the treatment. This would ordinarily describe the content of the
music or recorded announcement. If the treatment is of a predefined type, a meaningful name is
still specified, for example, "Silence\0", "Busy Signal\0", "Ringback\0", or "Music\0". The size of
the string is specified by dwCallTreatmentNameSize.

2.2.6.23 LINEDEVCAPS

This LINEDEVCAPS packet specifies the capabilities of a line device. LINEDEVCAPS is supplied by the
server in the field VarData of the returned version of the GetDevCaps packet if the request is

completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwProviderInfoSize

492 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwProviderInfoOffset

dwSwitchInfoSize

dwSwitchInfoOffset

dwPermanentLineID

dwLineNameSize

dwLineNameOffset

dwStringFormat

dwAddressModes

dwNumAddresses

dwBearerModes

dwMaxRate

dwMediaModes

dwGenerateToneModes

dwGenerateToneMaxFreq

dwGenerateDigitModes

dwMonitorToneMaxNumFreq

dwMonitorToneMaxNumEntries

dwMonitorDigitModes

dwGatherDigitsMinTimeout

dwGatherDigitsMaxTimeout

dwMedCtlDigitMaxListSize

dwMedCtlMediaMaxListSize

dwMedCtlToneMaxListSize

dwMedCtlCallStateMaxListSize

dwDevCapFlags

493 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwMaxNumActiveCalls

dwAnswerMode

dwRingModes

dwLineStates

dwUUIAcceptSize

dwUUIAnswerSize

dwUUIMakeCallSize

dwUUIDropSize

dwUUISendUserUserInfoSize

dwUUICallInfoSize

MinDialParams (16 bytes)

...

...

MaxDialParams (16 bytes)

...

...

DefaultDialParams (16 bytes)

...

...

dwNumTerminals

dwTerminalCapsSize

dwTerminalCapsOffset

dwTerminalTextEntrySize

dwTerminalTextSize

dwTerminalTextOffset

494 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDevSpecificSize

dwDevSpecificOffset

dwLineFeatures

dwSettableDevStatus (optional)

dwDeviceClassesSize (optional)

dwDeviceClassesOffset (optional)

PermanentLineGuid (16 bytes, optional)

...

...

dwAddressTypes (optional)

ProtocolGuid (16 bytes, optional)

...

...

dwAvailableTracking (optional)

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, that is allocated to this
data packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this data packet that is

needed to hold all the returned data.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful data.

dwProviderInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the field that
contains service provider data.

dwProviderInfoOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the

beginning of this packet. The dwProviderInfoSize and dwProviderInfoOffset fields are
intended to provide data about the provider hardware or software, such as the vendor name and
version numbers of hardware and software. This data can be useful when a user needs to call
customer service with problems regarding the provider.

dwSwitchInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized
device field that contains switch data.

495 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwSwitchInfoOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning
of this packet.

The dwSwitchInfoSize and dwSwitchInfoOffset fields are intended to provide data about the
switch to which the line device is connected, such as the switch manufacturer, the model name,

the software version, and so on. This data can be useful when a user needs to call customer
service with problems regarding the switch.

dwPermanentLineID (4 bytes): An unsigned 32-bit integer. A permanent identifier by which the
line device is known in the computing system configuration. It is a permanent name for the line
device. This permanent name does not change as lines are added to, or removed from, the system
and persists through operating system upgrades. Therefore, it can be used to link line-specific
information in .ini files (or other files) in a way that is not affected by adding or removing other

lines or by changing the operating system.

dwLineNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized
device field that contains a user configurable name for this line device.

dwLineNameOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the beginning
of this packet. This name can be configured by the user when configuring the service provider of
the line device and is provided for user convenience.

dwStringFormat (4 bytes): An unsigned 32-bit integer. The value that specifies the string format
that is used with this line device. This member MUST use one of the STRINGFORMAT_Constants.

dwAddressModes (4 bytes): An unsigned 32-bit integer. The value that specifies the mode by
which the originating address is specified. This field MUST use one of the
LINEADDRESSMODE_Constants.

dwNumAddresses (4 bytes): An unsigned 32-bit integer. The number of addresses that is
associated with this line device. Individual addresses are referred to by address identifiers.

Address identifiers range from zero to one less than the value that is indicated by
dwNumAddresses.

dwBearerModes (4 bytes): An unsigned 32-bit integer. A flag array that indicates the different
bearer modes that the address is able to support. This member MUST use
LINEBEARERMODE_Constants.

dwMaxRate (4 bytes): An unsigned 32-bit integer. The maximum data rate, in bits per second, for
data exchange over the call.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The flag array that indicates the different
media modes that the address is able to support. This member MUST use
LINEMEDIAMODE_Constants.

dwGenerateToneModes (4 bytes): An unsigned 32-bit integer. The tones that can be generated on
this line. This field uses one or more of the LINETONEMODE_Constants. A value of 0 means that
tone generation is not supported on this device.

dwGenerateToneMaxFreq (4 bytes): An unsigned 32-bit integer. The maximum number of

frequencies that can be specified in describing a general tone that uses the LINEGENERATETONE
packet when generating a tone using lineGenerateTone. A value of 0 indicates that tone
generation is not available.

dwGenerateDigitModes (4 bytes): An unsigned 32-bit integer. The digit modes that can be
generated on this line. This member uses one or more of the LINEDIGITMODE_Constants. A value
of 0 means that digit generation is not supported on this device.

dwMonitorToneMaxNumFreq (4 bytes): An unsigned 32-bit integer. The maximum number of
frequencies that can be specified in describing a general tone that uses the LINEGENERATETONE

496 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

packet when monitoring a general tone that uses lineMonitorTones. A value of 0 indicates that
tone monitor is not available.

dwMonitorToneMaxNumEntries (4 bytes): An unsigned 32-bit integer. A maximum number of
entries that can be specified in a tone list to lineMonitorTones.

dwMonitorDigitModes (4 bytes): An unsigned 32-bit integer. The digit modes that can be detected
on this line. This member uses one or more of the LINEDIGITMODE_Constants. A value of 0
means that digit mode detection is not supported on this device.

dwGatherDigitsMinTimeout (4 bytes): An unsigned 32-bit integer. The minimum value, in
milliseconds, that can be specified for both the first digit and interdigit time-out values that are
used by lineGatherDigits. If both dwGatherDigitsMinTimeout and
dwGatherDigitsMaxTimeout are zero, time-outs are not supported.

dwGatherDigitsMaxTimeout (4 bytes): An unsigned 32-bit integer. The maximum value, in
milliseconds, that can be specified for both the first digit and interdigit time-out values that are
used by lineGatherDigits. If both dwGatherDigitsMinTimeout and

dwGatherDigitsMaxTimeout are zero, time-outs are not supported.

dwMedCtlDigitMaxListSize (4 bytes): An unsigned 32-bit integer. The maximum number of entries
that can be specified in the digit list parameter of SetMediaControl.

dwMedCtlMediaMaxListSize (4 bytes): An unsigned 32-bit integer. The maximum number of
entries that can be specified in the media list.

dwMedCtlToneMaxListSize (4 bytes): An unsigned 32-bit integer. The maximum number of entries
that can be specified in the tone list parameter of SetMediaControl.

dwMedCtlCallStateMaxListSize (4 bytes): An unsigned 32-bit integer. The maximum number of
entries that can be specified in the call state list.

dwDevCapFlags (4 bytes): An unsigned 32-bit integer. The value that specifies various Boolean

device capabilities. This member MUST use LINEDEVCAPFLAGS_Constants.

dwMaxNumActiveCalls (4 bytes): An unsigned 32-bit integer. The maximum number of (minimum
bandwidth) calls that can be active (connected) on the line at one time. The actual number of
active calls can be lower if higher bandwidth calls have been established on the line.

dwAnswerMode (4 bytes): An unsigned 32-bit integer. A value that specifies the effect on the
active call when answering another offering call on a line device. This member MUST use one or
more of LINEANSWERMODE_Constants.

dwRingModes (4 bytes): An unsigned 32-bit integer. The number of different ring modes that can
be reported in the LINE_LINEDEVSTATE packet with the ringing indication. Different ring modes
range from one to dwRingModes. Zero indicates no ring.

dwLineStates (4 bytes): An unsigned 32-bit integer. Specifies the different line status components
for which the application can be notified in a LINE_LINEDEVSTATE packet on this line. This
member MUST use one or more of LINEDEVSTATE_Constants.

dwUUIAcceptSize (4 bytes): An unsigned 32-bit integer. The maximum size of user-user data that
can be sent during a call accept.

dwUUIAnswerSize (4 bytes): An unsigned 32-bit integer. The maximum size of user-user data that
can be sent during a call answer.

dwUUIMakeCallSize (4 bytes): An unsigned 32-bit integer. The maximum size of user-user data
that can be sent during a make call.

497 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwUUIDropSize (4 bytes): An unsigned 32-bit integer. The maximum size of user-user data that
can be sent during a call drop.

dwUUISendUserUserInfoSize (4 bytes): An unsigned 32-bit integer. The maximum size of user-
user information, including the null terminator, that can be sent separately any time during a call

with SendUserUserInfo.

dwUUICallInfoSize (4 bytes): An unsigned 32-bit integer. The maximum size of user-user data that
can be received in the LINECALLINFO packet.

MinDialParams (16 bytes): A LINEDIALPARAMS packet. The minimum value, in milliseconds, for the
dial parameters that can be set for calls on this line. Dialing parameters can be set to values in the
range MinDialParams to MaxDialParams. The granularity of the actual settings is service
provider–specific.

MaxDialParams (16 bytes): A LINEDIALPARAMS packet. The maximum value, in milliseconds, for
the dial parameters that can be set for calls on this line. Dialing parameters can be set to values in
the range MinDialParams to MaxDialParams. The granularity of the actual settings is service

provider–specific.

DefaultDialParams (16 bytes): A LINEDIALPARAMS packet. The default dial parameters that are
used for calls on this line. These parameter values can be overridden on a per-call basis.

dwNumTerminals (4 bytes): An unsigned 32-bit integer. The number of terminals that can be set
for this line device, its addresses, or its calls. Individual terminals are referred to by terminal IDs
and range from zero to one less than the value that is indicated by dwNumTerminals.

dwTerminalCapsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized
device field that contains an array with entries of type LINETERMCAPS.

dwTerminalCapsOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
structure to the variably sized device field that contains an array with entries of type

LINETERMCAPS. This array is indexed by terminal IDs, in the range from zero to
dwNumTerminals minus one. Each entry in the array specifies the terminal device capabilities of

the corresponding terminal. The size of the field is specified by dwTerminalCapsSize.

dwTerminalTextEntrySize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of each
terminal text description, including the null terminator that is pointed to by dwTerminalTextSize
and dwTerminalTextOffset.

dwTerminalTextSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized

field that contains descriptive text about each of the line's available terminals, including the null
terminator.

dwTerminalTextOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this packet to the descriptive text about each of the line's available terminals. Each
packet is dwTerminalTextEntrySize bytes long. The string format of these textual descriptions
is indicated by dwStringFormat in the device capabilities of the line. The size of the field is

specified by dwTerminalTextSize.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized
device-specific field.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset, in bytes, from the
beginning of this data packet.

dwLineFeatures (4 bytes): An unsigned 32-bit integer. A value that specifies the available features
for this line that use one or more of the LINEFEATURE_Constants. Invoking a supported feature

requires the line to be in the proper state and the underlying line device to be opened in a
compatible mode. A zero in a bit position indicates that the corresponding feature is never

498 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

available. A one indicates that the corresponding feature can be available if the line is in the
appropriate state for the operation to be meaningful. This member enables an application to

discover which line features can be, and which can never be, supported by the device.

dwSettableDevStatus (4 bytes): An unsigned 32-bit integer. LINEDEVSTATUSFLAGS_Constants

that can be modified. This member of the packet is available only if the negotiated TAPI version is
2.0 or higher.

dwDeviceClassesSize (4 bytes): An unsigned 32-bit integer. The length, in bytes, from the
beginning of LINEDEVCAPS of a string that consists of the device class identifiers that are
supported on one or more addresses on this line for use with the GetID packet, separated by null
characters; the last identifier in the list is followed by two null characters. This member of the
packet is available only if the negotiated TAPI version is 2.0 or higher.

dwDeviceClassesOffset (4 bytes): An unsigned 32-bit integer. The offset of the string that is
described in the dwDeviceClassesSize member. This member of the packet is available only if
the negotiated TAPI version is 2.0 or higher.

PermanentLineGuid (16 bytes): The GUID that is permanently associated with the line device. This
member of the packet is available only if the negotiated TAPI version is 2.2 or higher.

dwAddressTypes (4 bytes): An unsigned 32-bit integer. The address type that is used for the call.

This member of the packet is available only if the negotiated TAPI version is 3.0 or higher.

ProtocolGuid (16 bytes): A GUID that indicates the current TAPI protocol. This member of the
packet is available only if the negotiated TAPI version is 3.0 or higher. This field MUST be one of
the following values:

Value Meaning

TAPIPROTOCOL_PSTN

831CE2D6-83B5-11d1-BB5C-00C04FB6809F

PSTN protocol

TAPIPROTOCOL_H323

831CE2D7-83B5-11d1-BB5C-00C04FB6809F

H.323 protocol

TAPIPROTOCOL_Multicast

831CE2D8-83B5-11d1-BB5C-00C04FB6809F

Multicast protocol

dwAvailableTracking (4 bytes): An unsigned 32-bit integer. The available tracking, as represented
by a LINECALLHUBTRACKING_Constants. This member of the packet is available only if the
negotiated TAPI version is 3.0 or higher.

VarData (variable): MUST contain:

 Service provider–specific information as specified by dwProviderInfoOffset.

 Data about the switch as specified by dwSwitchInfoOffset.

 The name of the line device as specified by dwLineNameOffset.

 An array that has entries of type LINETERMCAPS as specified by dwTerminalCapsOffset.

 Text about the available terminals for each line as specified by dwTerminalTextOffset.

 Device-specific information as specified by dwDevSpecificOffset.

 Device class identifiers that are supported on the device as specified by
dwDeviceClassesOffset.

499 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Device-specific extensions SHOULD use the dwDevSpecificSize and dwDevSpecificOffset members
of this packet.

Applications that are negotiated with TAPI versions earlier than TAPI versions 2.0, 2.2, or 3.0 are not
aware of the new members in the LINEDEVCAPS packet that are available only from the corresponding

TAPI version and MUST use a SIZEOF LINEDEVCAPS that is smaller than the new size. The application
passes in a dwAPIVersion parameter with the GetDevCaps packet, which can be used for guidance
by TAPI in handling this situation. If the application passes in a dwTotalSize member less than the
size of the fixed portion of the packet, as defined in the specified dwAPIVersion,
LINEERR_STRUCTURETOOSMALL is returned. If sufficient memory has been allocated by the
application, before calling the GetDevCaps packet, TAPI sets the dwNeededSize and dwUsedSize
members to the fixed size of the packet as it existed in the specified TAPI version.

New applications MUST be aware of the negotiated TAPI version and not examine the contents of
members in the fixed portion beyond the original end of the fixed portion of the packet for the
negotiated TAPI version.

If the LINEBEARERMODE_DATA bit is set in the dwBearerModes member, the dwMaxRate member

indicates the maximum rate of digital transmission on the bearer channel. The dwMaxRate member
of the LINEDEVCAPS packet can contain valid values even if the dwBearerModes member of the

LINEDEVCAPS packet is not set to LINEBEARERMODE_DATA.

If LINEBEARERMODE_DATA is not set in dwBearerModes, but the LINEBEARERMODE_VOICE value is
set and the LINEMEDIAMODE_DATAMODEM value is set in the dwMediaModes member, the
dwMaxRate member indicates the maximum SYNCHRONOUS (DCE) bit rate on the phone line for the
attached modem or functional equivalent. For example, if the fastest modulation speed of the modem
is V.32bis at 14,400 bps, dwMaxRate equals 14400. This is not the fastest DTE port rate (which would
most likely be 38400, 57600, or 115200), but the fastest bit rate the modem supports on the phone

line.

2.2.6.24 LINEDEVSTATUS

The LINEDEVSTATUS packet describes the current status of a line device. LINEDEVSTATUS is supplied

by the server in the field VarData of the returned version of the GetLineDevStatus packet if the
request is completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumOpens

dwOpenMediaModes

dwNumActiveCalls

dwNumOnHoldCalls

dwNumOnHoldPendCalls

500 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwLineFeatures

dwNumCallCompletions

dwRingMode

dwSignalLevel

dwBatteryLevel

dwRoamMode

dwDevStatusFlags

dwTerminalModesSize

dwTerminalModesOffset

dwDevSpecificSize

dwDevSpecificOffset

dwAvailableMediaModes (optional)

dwAppInfoSize (optional)

dwAppInfoOffset (optional)

dwTotalSize (4 bytes): The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): The size, in bytes, for this packet that is needed to hold all the returned
information.

dwUsedSize (4 bytes): The size, in bytes, of the portion of this packet that contains useful
information.

dwNumOpens (4 bytes): The number of active opens on the line device.

dwOpenMediaModes (4 bytes): The bit array that indicates the media types for which the line
device is currently open.

dwNumActiveCalls (4 bytes): The number of calls on the line in call states other than idle, onHold,

onHoldPendingTransfer, and onHoldPendingConference.

dwNumOnHoldCalls (4 bytes): the number of calls on the line in the onHold state.

dwNumOnHoldPendCalls (4 bytes): The number of calls on the line in the onHoldPendingTransfer
or onHoldPendingConference state.

dwLineFeatures (4 bytes): Line-related functions that are currently available on this line. This
member MUST use one or more of the LINEFEATURE_Constants.

dwNumCallCompletions (4 bytes): The number of outstanding call-completion requests on the line.

501 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwRingMode (4 bytes): The current ring mode on the line device.

dwSignalLevel (4 bytes): The current signal level of the connection on the line. This MUST be a
value in the range 0x00000000 (weakest signal) to 0x0000FFFF (strongest signal).

dwBatteryLevel (4 bytes): The current battery level of the line device hardware. This MUST be a

value in the range 0x00000000 (battery empty) to 0x0000FFFF (battery full).

dwRoamMode (4 bytes): The current roam mode of the line device. This member MUST use one of
the LINEROAMMODE_Constants.

dwDevStatusFlags (4 bytes): The flags that indicate status information, such as whether the device
is locked. It consists of one or more members of LINEDEVSTATUSFLAGS_Constants.

dwTerminalModesSize (4 bytes): The size, in bytes, of the variably sized device field containing an
array of current terminal modes.

dwTerminalModesOffset (4 bytes): The offset, in bytes, from the beginning of the packet to an

array of current terminal modes. This array is indexed by terminal IDs, in the range from 0 to
dwNumTerminals minus one. Each entry in the array specifies the current terminal modes for
the corresponding terminal set using the SetTerminal packet for this line. Each entry is a DWORD
that specifies one or more of the LINETERMMODE_Constants. The size of the array MUST be
specified by dwTerminalModesSize.

dwDevSpecificSize (4 bytes): The size, in bytes, of the variably sized device-specific field. If the
device-specific information is a pointer to a string, the size MUST include the null terminator.

dwDevSpecificOffset (4 bytes): The offset, in bytes, from the beginning of the packet to the
device-specific field. The size of the field MUST be specified by dwDevSpecificSize.

dwAvailableMediaModes (4 bytes): Indicates the media types that can be invoked on new calls
created on this line device when the dwLineFeatures member indicates that new calls are possible.
If this member is 0, it indicates that the service provider either does not know or cannot indicate

which media types are available, in which case any or all of the media types indicated in the

dwMediaModes member in LINEDEVCAPS can be available.

dwAppInfoSize (4 bytes): The size, in bytes, of the array that identifies the applications that have
the line open.

dwAppInfoOffset (4 bytes): The offset from the beginning of the packet to an array of
LINEAPPINFO packets. The dwNumOpens member indicates the number of elements in the
array. Each element in the array identifies an application that has the line open. The size of the

array MUST be specified by dwAppInfoSize.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and
dwDevSpecificOffset) variably sized area of this packet.

The members dwAvailableMediaModes through dwAppInfoOffset are available only to line
device's with a TAPI version of 2.0, 2.1, 2.2, 3.0, or 3.1.

2.2.6.25 LINEAPPINFO

The LINEAPPINFO packet contains information about the application that is currently running. The
LINEDEVSTATUS packet can contain an array of LINEAPPINFO packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwMachineNameSize

502 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwMachineNameOffset

dwUserNameSize

dwUserNameOffset

dwModuleFilenameSize

dwModuleFilenameOffset

dwFriendlyNameSize

dwFriendlyNameOffset

dwMediaModes

dwAddressID

dwMachineNameSize (4 bytes): The size, in bytes, of the computer name string, including the null
terminator.

dwMachineNameOffset (4 bytes): The offset, from the beginning of the LINEDEVSTATUS packet to

a string specifying the name of the computer on which the application is executing. The size of the
field is specified by dwMachineNameSize.

dwUserNameSize (4 bytes): The size, in bytes, of the user name string, including the null
terminator.

dwUserNameOffset (4 bytes): The offset, from the beginning of the LINEDEVSTATUS packet to a

string specifying the user name under whose account the application is running. The size of the

field is specified by dwUserNameSize.

dwModuleFilenameSize (4 bytes): The size, in bytes, of the module file name string.

dwModuleFilenameOffset (4 bytes): The offset, from the beginning of LINEDEVSTATUS to a string
specifying the module file name of the application. The size of the field is specified by
dwModuleFilenameSize.

dwFriendlyNameSize (4 bytes): The size, in bytes, of the display name string.

dwFriendlyNameOffset (4 bytes): The offset, from the beginning of LINEDEVSTATUS to the string

provided by the application to line Initialize, which is used in any display to the user. The size of
the field is specified by dwFriendlyNameSize.

dwMediaModes (4 bytes): The media types for which the application has requested ownership of
new calls; 0 if dwPrivileges in line Open did not include LINECALLPRIVILEGE_OWNER.

dwAddressID (4 bytes): If the line handle was opened using LINEOPENOPTION_SINGLEADDRESS,
then this field contains the address identifier specified; set to 0xFFFFFFFF if the single address
option was not used.

An address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades.

503 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.26 LINEDIALPARAMS

The LINEDIALPARAMS packet specifies a collection of dialing-related fields. Send the SetCallParams
packet to set parameters for a call using the LINEDIALPARAMS packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwDialPause

dwDialSpeed

dwDigitDuration

dwWaitForDialtone

dwDialPause (4 bytes): An unsigned 32-bit integer. The duration, in milliseconds, of a comma in
the dialable address.

dwDialSpeed (4 bytes): An unsigned 32-bit integer. The interdigit time period, in milliseconds,
between successive digits.

dwDigitDuration (4 bytes): An unsigned 32-bit integer. The duration, in milliseconds, of a digit.

dwWaitForDialtone (4 bytes): An unsigned 32-bit integer. The maximum amount of time, in

milliseconds, to wait for a dial tone when a "W" is used in the dialable address.

This packet cannot be extended.

If 0 is specified for a member, the default value is used. If a nonzero value is specified for a member
that is outside the range specified by the MinDialParams and MaxDialParams members in the
LINEDEVCAPS packet, the nearest value within the valid range is used instead.

The MakeCall packet allows an application to adjust the dialing parameters to be used for the call. The

SetCallParams packet can be used to adjust the dialing parameters of an existing call. The
LINECALLINFO packet lists the call's current dialing parameters.

2.2.6.27 LINEGENERATETONE

The LINEGENERATETONE packet contains information about a tone to be generated. This packet is

used by the GenerateTone packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwFrequency

dwCadenceOn

dwCadenceOff

dwVolume

dwFrequency (4 bytes): An unsigned 32-bit integer. The frequency, in hertz, of this tone
component. A service provider can adjust (round up or down) the frequency specified by the
application to fit its resolution.

504 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCadenceOn (4 bytes): An unsigned 32-bit integer. The length, in milliseconds, of the "on"
duration of the cadence of the custom tone to be generated. Zero means no tone is generated.

dwCadenceOff (4 bytes): An unsigned 32-bit integer. The length, in milliseconds, of the "off"
duration of the cadence of the custom tone to be generated. Zero means no off time, that is, a

constant tone.

dwVolume (4 bytes): An unsigned 32-bit integer. The volume level at which the tone is to be
generated. A value of 0x0000FFFF represents full volume and a value of 0x00000000 is silence.

This packet cannot be extended. This packet is used only for the generation of tones. It MUST NOT be
used for tone monitoring.

2.2.6.28 LINEPROXYREQUEST

The LINEPROXYREQUEST packet contains parameter values of the application making the proxy
request. Multiple TAPI call center functions generate a LINE_PROXYREQUEST packet that references a

LINEPROXYREQUEST packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSize

dwClientMachineNameSize

dwClientMachineNameOffset

dwClientUserNameSize

dwClientUserNameOffset

dwClientAppAPIVersion

dwRequestType

dwAddressIDSETAGENTGROUP (optional)

GroupListSETAGENTGROUP (variable)

...

dwAddressIDSETAGENTSTATE (optional)

dwAgentStateSETAGENTSTATE (optional)

dwNextAgentStateSETAGENTSTATE (optional)

dwAddressIDSETAGENTACTIVITY (optional)

dwActivityIDSETAGENTACTIVITY (optional)

dwAddressIDGETAGENTCAPS (optional)

505 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

AgentCapsGETAGENTCAPS (72 bytes, optional)

...

...

dwAddressIDGETAGENTSTATUS (optional)

AgentStatusGETAGENTSTATUS (variable)

...

dwAddressIDAGENTSPECIFIC (optional)

dwAgentExtensionIDIndexAGENTSPECIFIC (optional)

dwSizeAGENTSPECIFIC (optional)

ParamsAGENTSPECIFIC (variable)

...

dwAddressIDGETAGENTACTIVITYLIST (optional)

ActivityListGETAGENTACTIVITYLIST (variable)

...

dwAddressIDGETAGENTGROUPLIST (optional)

GroupListGETAGENTACTIVITYLIST (variable)

...

hAgentCREATEAGENT (optional)

dwAgentIDSizeCREATEAGENT (optional)

dwAgentIDOffsetCREATEAGENT (optional)

dwAgentPINSizeCREATEAGENT (optional)

dwAgentPINOffsetCREATEAGENT (optional)

hAgentSETAGENTSTATEEX (optional)

dwAgentStateSETAGENTSTATEEX (optional)

dwNextAgentStateSETAGENTSTATEEX (optional)

506 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

hAgentSETAGENTMEASUREMENTPERIOD (optional)

dwMeasurementPeriodSETAGENTMEASUREMENTPERIOD (optional)

hAgentGETAGENTINFO (optional)

AgentInfoGETAGENTINFO (variable)

...

hAgentSessionCREATEAGENTSESSION (optional)

dwAgentPINSizeCREATEAGENTSESSION (optional)

dwAgentPINOffsetCREATEAGENTSESSION (optional)

hAgentCREATEAGENTSESSION (optional)

GroupIDCREATEAGENTSESSION (16 bytes, optional)

...

...

dwWorkingAddressIDCREATEAGENTSESSION (optional)

hAgentGETAGENTSESSIONLIST (optional)

SessionListGETAGENTSESSIONLIST (variable)

...

hAgentSessionGETAGENTSESSIONINFO (optional)

SessionInfoGETAGENTSESSIONINFO (variable)

...

hAgentSessionSETAGENTSESSIONSTATE (optional)

dwAgentSessionStateSETAGENTSESSIONSTATE (optional)

dwNextAgentSessionStateSETAGENTSESSIONSTATE (optional)

GroupIDGETQUEUELIST (16 bytes, optional)

...

...

507 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

QueueListGETQUEUELIST (variable)

...

dwQueueIDSETQUEUEMEASUREMENTPERIOD (optional)

dwMeasurementPeriodSETQUEUEMEASUREMENTPERIOD (optional)

dwQueueIDGETQUEUEINFO (optional)

QueueInfoGETQUEUEINFO (52 bytes, optional)

...

...

GroupListGETGROUPLIST (variable)

...

dwSize (4 bytes): An unsigned 32-bit integer. The total number of bytes allocated by TAPI to
contain the LINEPROXYREQUEST packet. The dwTotalSize member of any packet contained
within LINEPROXYREQUEST (for example, LINEAGENTCAPS) reflects only the number of bytes

allocated for that specific packet. The total size, in bytes, of the Params parameter block.

dwClientMachineNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the client
machine name string, including the terminating null character.

dwClientMachineNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning

of the packet to a null-terminated string identifying the client machine that made this request. The
size of the string MUST be specified by dwClientMachineNameSize.

dwClientUserNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the client user
name string, including the terminating null character.

dwClientUserNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
the packet to a null-terminated string identifying the user under whose account the application is
running on the client machine. The size of the string MUST be specified by
dwClientUserNameSize.

dwClientAppAPIVersion (4 bytes): An unsigned 32-bit integer. The highest TAPI version supported

by the application that made the request. The proxy handler SHOULD restrict the contents of any
data returned to the application to those members and values that were defined in this, or earlier,
versions of TAPI.

dwRequestType (4 bytes): An unsigned 32-bit integer. This field MUST use one of the
LINEPROXYREQUEST_Constants. Identifies the type of function and the union component that
defines the remaining data in the packet.

dwAddressIDSETAGENTGROUP (4 bytes): An unsigned 32-bit integer. The identifier of the

address for which the agent is to be set. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_SETAGENTGROUP.

GroupListSETAGENTGROUP (variable): A packet of type LINEAGENTGROUPLIST. The offsets within
this packet are relative to the beginning of SetAgent.GroupList rather than to the beginning of the

508 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LINEPROXYREQUEST packet. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_SETAGENTGROUP.

dwAddressIDSETAGENTSTATE (4 bytes): An unsigned 32-bit integer. The identifier of the address
for which the agent state is to be set. This field is present only when dwRequestType is set to

LINEPROXYREQUEST_SETAGENTSTATE.

dwAgentStateSETAGENTSTATE (4 bytes): An unsigned 32-bit integer. The new agent state, or 0
to leave the agent state unchanged. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_SETAGENTSTATE.

dwNextAgentStateSETAGENTSTATE (4 bytes): An unsigned 32-bit integer. The new next agent
state, or 0 to use the default next state associated with the specified agent state. This field is
present only when dwRequestType is set to LINEPROXYREQUEST_SETAGENTSTATE.

dwAddressIDSETAGENTACTIVITY (4 bytes): An unsigned 32-bit integer. The identifier of the
address for which the agent activity is to be set. This field is present only when dwRequestType
is set to LINEPROXYREQUEST_SETAGENTACTIVITY.

dwActivityIDSETAGENTACTIVITY (4 bytes): An unsigned 32-bit integer. The identifier for the
activity being selected. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_SETAGENTACTIVITY.

dwAddressIDGETAGENTCAPS (4 bytes): An unsigned 32-bit integer. The identifier of the address
for which the agent capabilities are to be retrieved. This field is present only when
dwRequestType is set to LINEPROXYREQUEST_GETAGENTCAPS.

AgentCapsGETAGENTCAPS (72 bytes): The packet of type LINEAGENTCAPS. The offsets within this
packet are relative to the beginning of GetAgentCaps.AgentCaps rather than to the beginning of
the LINEPROXYREQUEST packet. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_GETAGENTCAPS.

dwAddressIDGETAGENTSTATUS (4 bytes): An unsigned 32-bit integer. The identifier of the
address for which the agent status is to be retrieved. This field is present only when

dwRequestType is set to LINEPROXYREQUEST_GETAGENTSTATUS.

AgentStatusGETAGENTSTATUS (variable): The packet of type LINEAGENTSTATUS. The offsets
within this packet are relative to the beginning of SetAgentStatus.AgentStatus rather than to the
beginning of the LINEPROXYREQUEST packet. This field is present only when dwRequestType is
set to LINEPROXYREQUEST_GETAGENTSTATUS.

dwAddressIDAGENTSPECIFIC (4 bytes): An unsigned 32-bit integer. The identifier of the address
for which the agent status is to be retrieved. This field is present only when dwRequestType is
set to LINEPROXYREQUEST_AGENTSPECIFIC.

dwAgentExtensionIDIndexAGENTSPECIFIC (4 bytes): An unsigned 32-bit integer. The index of
the handler extension being invoked; the identifier's position within the array of extension
identifiers returned in LINEAGENTCAPS. This field is present only when dwRequestType is set to

LINEPROXYREQUEST_AGENTSPECIFIC.

dwSizeAGENTSPECIFIC (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of the
Params parameter block. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_AGENTSPECIFIC.

ParamsAGENTSPECIFIC (variable): The block of memory that includes the contents passed to the
handler from the application. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_AGENTSPECIFIC.

509 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwAddressIDGETAGENTACTIVITYLIST (4 bytes): An unsigned 32-bit integer. The identifier of the
address for which the agent activity list is to be retrieved. This field is present only when

dwRequestType is set to LINEPROXYREQUEST_GETAGENTACTIVITYLIST.

ActivityListGETAGENTACTIVITYLIST (variable): The packet of type LINEAGENTACTIVITYLIST.

The offsets within this packet are relative to the beginning of GetAgentActivityList.ActivityList
rather than to the beginning of the LINEPROXYREQUEST packet. This field is present only when
dwRequestType is set to LINEPROXYREQUEST_GETAGENTACTIVITYLIST.

dwAddressIDGETAGENTGROUPLIST (4 bytes): An unsigned 32-bit integer. Identifier of the
address for which the agent group list is to be retrieved. This field is present only when
dwRequestType is set to LINEPROXYREQUEST_GETAGENTGROUPLIST.

GroupListGETAGENTACTIVITYLIST (variable): The packet of type LINEAGENTGROUPLIST. The

offsets within this packet are relative to the beginning of GetAgentGroupList.GroupList rather than
to the beginning of the LINEPROXYREQUEST packet. This field is present only when
dwRequestType is set to LINEPROXYREQUEST_GETAGENTGROUPLIST.

hAgentCREATEAGENT (4 bytes): A HAGENT. The unique identifier for an agent. It is the
responsibility of the agent handler to generate and maintain the uniqueness of this identifier. This
field is present only when dwRequestType is set to LINEPROXYREQUEST_CREATEAGENT.

dwAgentIDSizeCREATEAGENT (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the
agent ID string. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_CREATEAGENT.

dwAgentIDOffsetCREATEAGENT (4 bytes): An unsigned 32-bit integer. The offset from the
beginning of the field hAgentCREATEAGENT to a null-terminated string that specifies the ID of
the agent. The size of the string MUST be specified by dwAgentIDSize. This field is present only
when dwRequestType is set to LINEPROXYREQUEST_CREATEAGENT.

dwAgentPINSizeCREATEAGENT (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the
PIN string, including the null terminator. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_CREATEAGENT.

dwAgentPINOffsetCREATEAGENT (4 bytes): An unsigned 32-bit integer. The offset from the
beginning of the field hAgentCREATEAGENT to a null-terminated string that specifies the PIN or
password of the agent. The size of the string MUST be specified by dwAgentPINSize. This field is
present only when dwRequestType is set to LINEPROXYREQUEST_CREATEAGENT.

hAgentSETAGENTSTATEEX (4 bytes): A HAGENT. The unique identifier for an agent. It is the
responsibility of the agent handler to generate and maintain the uniqueness of this identifier. This
field is present only when dwRequestType is set to LINEPROXYREQUEST_SETAGENTSTATEEX.

dwAgentStateSETAGENTSTATEEX (4 bytes): An unsigned 32-bit integer. MUST use one of the
LINEAGENTSTATEEX_Constants. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_SETAGENTSTATEEX.

dwNextAgentStateSETAGENTSTATEEX (4 bytes): An unsigned 32-bit integer. This field MUST use
one of the LINEAGENTSTATEEX_Constants. This field is present only when dwRequestType is set

to LINEPROXYREQUEST_SETAGENTSTATEEX.

hAgentSETAGENTMEASUREMENTPERIOD (4 bytes): A HAGENT. The unique identifier for an
agent. It is the responsibility of the agent handler to generate and maintain the uniqueness of this
identifier. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_SETAGENTMEASUREMENTPERIOD.

dwMeasurementPeriodSETAGENTMEASUREMENTPERIOD (4 bytes): An unsigned 32-bit integer.
The period, in seconds, for which the switch or implementation stores and calculates information.
For example, dwNumberOfACDCalls holds the number of calls the agent handled;

510 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwMeasurementPeriod indicates if this value referenced the calls handled in the last hour, day,
or month. This field is present only when dwRequestType is set to

LINEPROXYREQUEST_SETAGENTMEASUREMENTPERIOD.

hAgentGETAGENTINFO (4 bytes): A HAGENT. The unique identifier for an agent. It is the

responsibility of the agent handler to generate and maintain the uniqueness of this identifier. This
field is present only when dwRequestType is set to LINEPROXYREQUEST_GETAGENTINFO.

AgentInfoGETAGENTINFO (variable): The packet of type LINEAGENTINFO. This field is present
only when dwRequestType is set to LINEPROXYREQUEST_GETAGENTINFO.

hAgentSessionCREATEAGENTSESSION (4 bytes): A HAGENTSESSION. The unique identifier for
an agent session. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_CREATEAGENTSESSION.

dwAgentPINSizeCREATEAGENTSESSION (4 bytes): An unsigned 32-bit integer. The size, in
bytes, of the agent PIN string, including the null terminator. This field is present only when
dwRequestType is set to LINEPROXYREQUEST_CREATEAGENTSESSION.

dwAgentPINOffsetCREATEAGENTSESSION (4 bytes): An unsigned 32-bit integer. The offset from
the beginning of the field hAgentSessionCREATEAGENTSESSION to a null-terminated string
that specifies the PIN or password of the agent. The size of this string MUST be specified by

dwAgentPINSize. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_CREATEAGENTSESSION.

hAgentCREATEAGENTSESSION (4 bytes): A HAGENT. The unique identifier for an agent. It is the
responsibility of the agent handler to generate and maintain the uniqueness of this identifier. This
field is present only when dwRequestType is set to
LINEPROXYREQUEST_CREATEAGENTSESSION.

GroupIDCREATEAGENTSESSION (16 bytes): GUID for an ACD group. It is the responsibility of the

agent handler to generate and maintain the uniqueness of this identifier. This field is present only
when dwRequestType is set to LINEPROXYREQUEST_CREATEAGENTSESSION.

dwWorkingAddressIDCREATEAGENTSESSION (4 bytes): An unsigned 32-bit integer. The
identifier of the address on which the agent will receive calls for this session. This field is present
only when dwRequestType is set to LINEPROXYREQUEST_CREATEAGENTSESSION.

hAgentGETAGENTSESSIONLIST (4 bytes): A HAGENT. The unique identifier for an agent. It is the
responsibility of the agent handler to generate and maintain the uniqueness of this identifier. This

field is present only when dwRequestType is set to
LINEPROXYREQUEST_GETAGENTSESSIONLIST.

SessionListGETAGENTSESSIONLIST (variable): The packet of type LINEAGENTSESSIONLIST. This
field is present only when dwRequestType is set to
LINEPROXYREQUEST_GETAGENTSESSIONLIST.

hAgentSessionGETAGENTSESSIONINFO (4 bytes): A HAGENTSESSION. The unique identifier for

an agent session. It is the responsibility of the agent handler to generate and maintain the
uniqueness of this identifier. This field is present only when dwRequestType is set to

LINEPROXYREQUEST_GETAGENTSESSIONINFO.

SessionInfoGETAGENTSESSIONINFO (variable): The packet of type LINEAGENTSESSIONINFO.
This field is present only when dwRequestType is set to
LINEPROXYREQUEST_GETAGENTSESSIONINFO.

hAgentSessionSETAGENTSESSIONSTATE (4 bytes): A HAGENTSESSION. The unique identifier for

an agent session. It is the responsibility of the agent handler to generate and maintain the
uniqueness of this identifier. This field is present only when dwRequestTypee is set to
LINEPROXYREQUEST_SETAGENTSESSIONSTATE.

511 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwAgentSessionStateSETAGENTSESSIONSTATE (4 bytes): An unsigned 32-bit integer. This field
MUST use one of the LINEAGENTSESSIONSTATE_Constants. This field is present only when

dwRequestType is set to LINEPROXYREQUEST_SETAGENTSESSIONSTATE.

dwNextAgentSessionStateSETAGENTSESSIONSTATE (4 bytes): An unsigned 32-bit integer. This

field MUST use one of the LINEAGENTSESSIONSTATE_Constants. This field is present only when
dwRequestType is set to LINEPROXYREQUEST_SETAGENTSESSIONSTATE.

GroupIDGETQUEUELIST (16 bytes): GUID for an ACD group. It is the responsibility of the agent
handler to generate and maintain the uniqueness of this identifier. This field is present only when
dwRequestType is set to LINEPROXYREQUEST_GETQUEUELIST.

QueueListGETQUEUELIST (variable): The packet of type LINEQUEUELIST. This field is present only
when dwRequestType is set to LINEPROXYREQUEST_GETQUEUELIST.

dwQueueIDSETQUEUEMEASUREMENTPERIOD (4 bytes): An unsigned 32-bit integer. The unique
identifier for a queue. It is the responsibility of the agent handler to generate and maintain the
uniqueness of this identifier. This field is present only when dwRequestType is set to

LINEPROXYREQUEST_SETQUEUEMEASUREMENTPERIOD.

dwMeasurementPeriodSETQUEUEMEASUREMENTPERIOD (4 bytes): An unsigned 32-bit integer.
The period, in seconds, for which the switch or implementation stores and calculates information.

This field is present only when dwRequestType is set to
LINEPROXYREQUEST_SETQUEUEMEASUREMENTPERIOD.

dwQueueIDGETQUEUEINFO (4 bytes): An unsigned 32-bit integer. The unique identifier for a
queue. It is the responsibility of the agent handler to generate and maintain the uniqueness of this
identifier. This field is present only when dwRequestType is set to
LINEPROXYREQUEST_GETQUEUEINFO.

QueueInfoGETQUEUEINFO (52 bytes): The packet of type LINEQUEUEINFO. This field is present

only when dwRequestType is set to LINEPROXYREQUEST_GETQUEUEINFO.

GroupListGETGROUPLIST (variable): The packet of type LINEAGENTGROUPLIST. This field is

present only when dwRequestType is set to LINEPROXYREQUEST_GETGROUPLIST.

An address identifier is permanently associated with an address; the identifier remains constant across
operating system upgrades.

2.2.6.29 LINEQUEUEINFO

The LINEQUEUEINFO packet provides information about a queue on a line device. The GetQueueInfo
function returns the LINEQUEUEINFO packet. This packet requires TAPI 3.0 version negotiation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwMeasurementPeriod

dwTotalCallsQueued

512 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCurrentCallsQueued

dwTotalCallsAbandoned

dwTotalCallsFlowedIn

dwTotalCallsFlowedOut

dwLongestEverWaitTime

dwCurrentLongestWaitTime

dwAverageWaitTime

dwFinalDisposition

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the
information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwMeasurementPeriod (4 bytes): An unsigned 32-bit integer. The period, in seconds, for which
the switch or implementation stores and calculates information. For example,
dwTotalCallsAbandoned holds the number of abandoned calls; dwMeasurementPeriod would
indicate if this value referenced the calls queued in an hour, day, or month.

dwTotalCallsQueued (4 bytes): An unsigned 32-bit integer. The total number of incoming calls for

this queue during this measurement period.

dwCurrentCallsQueued (4 bytes): An unsigned 32-bit integer. The number of incoming calls
currently waiting.

dwTotalCallsAbandoned (4 bytes): An unsigned 32-bit integer. The number of abandoned calls
during this measurement period.

dwTotalCallsFlowedIn (4 bytes): An unsigned 32-bit integer. The total number of calls that flowed

into this queue (passed down from another queue or ACD group) during this measurement period.

dwTotalCallsFlowedOut (4 bytes): An unsigned 32-bit integer. The total number of calls that
flowed out of this queue (passed down to another queue or ACD group) during this measurement
period.

dwLongestEverWaitTime (4 bytes): An unsigned 32-bit integer. The longest time, in seconds, any

call has waited in the queue.

dwCurrentLongestWaitTime (4 bytes): An unsigned 32-bit integer. The longest time, in seconds,

that a current call (still in the queue) has been waiting.

dwAverageWaitTime (4 bytes): An unsigned 32-bit integer. The average time, in seconds, that a
call has waited in the queue.

dwFinalDisposition (4 bytes): An unsigned 32-bit integer. The final disposition of the queue.

513 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.30 LINEFORWARD

The LINEFORWARD packet describes an entry of the forwarding instructions. The LINEFORWARDLIST
and the LINEADDRESSSTATUS packets can contain an array of LINEFORWARD packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwForwardMode

dwCallerAddressSize

dwCallerAddressOffset

dwDestCountryCode

dwDestAddressSize

dwDestAddressOffset

dwCallerAddressType

dwDestAddressType

dwForwardMode (4 bytes): An unsigned 32-bit integer. The types of forwarding. This member
MUST use one of the LINEFORWARDMODE_Constants.

dwCallerAddressSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized
field containing the address of a caller to be forwarded.

dwCallerAddressOffset (4 bytes): The offset from the beginning of this packet to the variably sized
field containing the address of a caller to be forwarded.

The size of the field is specified by dwCallerAddressSize.

This member is set to 0 if dwForwardMode is not one of the following values:

Name Value

LINEFORWARDMODE_BUSYNASPECIFIC 0x00008000

LINEFORWARDMODE_NOANSWSPECIFIC 0x00000800

LINEFORWARDMODE_UNCONDSPECIFIC 0x00000008

LINEFORWARDMODE_BUSYSPECIFIC 0x00000080

dwDestCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the destination
address to which the call is to be forwarded.

dwDestAddressSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the variably sized
field containing the address of the address where calls are to be forwarded.

dwDestAddressOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this

packet to the variably sized field containing the address of the address where calls are to be
forwarded. The size of the field is specified by dwDestAddressSize.

514 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwCallerAddressType (4 bytes): An unsigned 32-bit integer. The address type of the caller. This
can be one of the LINEADDRESSTYPE_Constants. This member of the packet is available only if

the negotiated version of TAPI is 3.1 or higher.

dwDestAddressType (4 bytes): An unsigned 32-bit integer. The address type for the called

destination. This can be one of the LINEADDRESSTYPE_Constants. This member of the packet is
available only if the negotiated version of TAPI is 3.1 or higher.

2.2.6.31 LINEFORWARDLIST

The LINEFORWARDLIST packet describes a list of forwarding instructions. This packet can contain an
array of LINEFORWARD packets. The line Forward packet uses this packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNumEntries

ForwardList (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, of the data packet.

dwNumEntries (4 bytes): An unsigned 32-bit integer. The number of entries in the array specified
as ForwardList.

ForwardList (variable): An array of forwarding instructions. The array's entries are of type

LINEFORWARD.

This packet cannot be extended.

The LINEFORWARDLIST packet defines the forwarding parameters requested for forwarding calls on
an address or on all addresses on a line.

2.2.6.32 LINEPROVIDERLIST

The LINEPROVIDERLIST packet describes a list of service providers. A packet of this type is returned
by the GetProviderList packet. The LINEPROVIDERLIST packet can contain an array of
LINEPROVIDERENTRY packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumProviders

515 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwProviderListSize

dwProviderListOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this data
packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet that is

needed to hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet

that contains useful information.

dwNumProviders (4 bytes): An unsigned 32-bit integer. The number of LINEPROVIDERENTRY
packets present in the array denominated by dwProviderListSize and dwProviderListOffset.

dwProviderListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the provider list

array.

dwProviderListOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to an array of LINEPROVIDERENTRY elements that provide the information on each service
provider. The size of the array MUST be specified by dwProviderListSize.

VarData (variable): An array of LINEPROVIDERENTRY elements that provide the information on each
service provider as specified by dwProviderListOffset.

This packet cannot be extended.

2.2.6.33 LINEPROVIDERENTRY

The LINEPROVIDERENTRY packet provides the information for a single service provider entry. An array
of these packets is returned as part of the LINEPROVIDERLIST packet returned by GetProviderList.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwPermanentProviderID

dwProviderFilenameSize

dwProviderFilenameOffset

dwPermanentProviderID (4 bytes): An unsigned 32-bit integer. The permanent provider identifier
of the entry.

dwProviderFilenameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the provider
file name string, including the null terminator.

dwProviderFilenameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of
the LINEPROVIDERLIST packet to a null-terminated string containing the file name (path) of the

service provider DLL (.tsp) file. The size of the string is specified by dwProviderFilenameSize.

516 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.34 LINEPROXYREQUESTLIST

The LINEPROXYREQUESTLIST packet describes a list of proxy requests. LINEPROXYREQUESTLIST is
supplied by the server in the field VarData of the returned version of the GetProxyStatus packet if the

request is completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumEntries

dwListSize

dwListOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the
information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwNumEntries (4 bytes): An unsigned 32-bit integer. The number of DWORD elements that appear
in the list array.

dwListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the proxy request type list.

dwListOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the packet to
an array of DWORD elements indicating the currently supported proxy request types. Each
element MUST be one of the LINEPROXYREQUEST_Constants. The dwListOffset member is

dwNumEntries times SIZEOF(DWORD). The size of the field MUST be specified by dwListSize.

VarData (variable): An array of DWORD elements indicating the currently supported proxy request
types, as specified by dwListOffset.

2.2.6.35 LINEQUEUELIST

The LINEQUEUELIST packet describes a list of queues. This packet can contain an array of
LINEQUEUEENTRY packets. LINEQUEUELIST is supplied by the server in the field VarData of the
completion packet of the GetQueueList request. This packet requires TAPI 3.0 version negotiation.

517 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwNumEntries

dwListSize

dwListOffset

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the
information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwNumEntries (4 bytes): An unsigned 32-bit integer. The number of LINEQUEUEENTRY packets
that appear in the list array. The value is 0 if no queue is available.

dwListSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the agent information array.

dwListOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the packet to

an array of the LINEQUEUEENTRY packet that specifies information about agents. The
dwListOffset member is dwNumEntries times SIZEOF(LINEQUEUEENTRY). The size of the field
MUST be specified bydwListSize.

VarData (variable): An array of the LINEQUEUEENTRY packet that specifies information about
agents as specified by dwListOffset.

2.2.6.36 LINEQUEUEENTRY

The LINEQUEUEENTRY packet provides the information for a single queue entry. The LINEQUEUELIST
packet can contain an array of LINEQUEUEENTRY packets. This packet requires TAPI 3.0 version
negotiation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwQueueID

dwNameSize

dwNameOffset

518 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwQueueID (4 bytes): An unsigned 32-bit integer. The unique identifier for a queue. It is the
responsibility of the agent handler to generate and maintain the uniqueness of this identifier.

dwNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the queue name string,
including the null terminator.

dwNameOffset (4 bytes): An unsigned 32-bit integer. The offset, from the beginning of the packet
to a null-terminated string that specifies the name of the queue. The size of the string is specified
by dwNameSize.

2.2.6.37 LINEMONITORTONE

The LINEMONITORTONE packet describes a tone to be monitored. This is used as an entry in an array.
The MonitorTones packet uses this packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwAppSpecific

dwDuration

dwFrequency1

dwFrequency2

dwFrequency3

dwAppSpecific (4 bytes): An unsigned 32-bit integer. This field is used by the application for
tagging the tone. When this tone is detected, the value of the dwAppSpecific member MUST be
passed back to the application.

dwDuration (4 bytes): An unsigned 32-bit integer. The duration of time, in milliseconds, during
which the tone SHOULD be present before a detection is made.

dwFrequency1 (4 bytes): An unsigned 32-bit integer. The first frequency, in hertz, of the tone.

dwFrequency2 (4 bytes): An unsigned 32-bit integer. The second frequency, in hertz, of the tone.

dwFrequency3 (4 bytes): An unsigned 32-bit integer. The third frequency, in hertz, of the tone. If
fewer than three frequencies are needed in the tone, a value of 0 SHOULD be used for the unused
frequencies. A tone with all three frequencies set to 0 is interpreted as silence and can be use for

silence detection.

This packet cannot be extended.

The LINEMONITORTONE packet defines a tone for the purpose of detection. An array of tones is

passed to the MonitorTones packet, which monitors these tones and sends a LINE_MONITORTONE
packet to the application when a detection is made.

A tone with all frequencies set to 0 corresponds to silence. An application can thus monitor the call's

information stream for silence.

2.2.6.38 LINEMEDIACONTROLDIGIT

The LINEMEDIACONTROLDIGIT packet describes a media action to be executed when detecting a digit.
It is used as an entry in an array. The SetMediaControl packet uses this packet.

519 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwDigit

dwDigitModes

dwMediaControl

dwDigit (4 bytes): An unsigned 32-bit integer. Low-order byte is the digit in whose detection is to
trigger a media action.Valid digits depend on the media type.

dwDigitModes (4 bytes): An unsigned 32-bit integer. The digit modes to monitor. This member

MUST use one or more of the LINEDIGITMODE_Constants.

dwMediaControl (4 bytes): An unsigned 32-bit integer. The media control action. This member

MUST use one of the LINEMEDIACONTROL_Constants.

This packet cannot be extended.

The LINEMEDIACONTROLDIGIT packet defines a triple <digit, digit modes, media-control action>. An
array of these triples is passed to the SetMediaControl packet to set the media control actions

triggered by digits detected on a given call. When a listed digit is detected, then the corresponding
action on the media stream is invoked.

2.2.6.39 LINEMEDIACONTROLMEDIA

The LINEMEDIACONTROLMEDIA packet describes a media action to be executed when detecting a

media type change. It is used as an entry in an array. The SetMediaControl packet uses this packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwMediaModes

dwDuration

dwMediaControl

dwMediaModes (4 bytes): An unsigned 32-bit integer. This field specifies one or more media types.
This member MUST use one of the LINEMEDIAMODE_Constants.

dwDuration (4 bytes): An unsigned 32-bit integer. The duration of time, in milliseconds, during
which the media type SHOULD be present before the application SHOULD be notified or media
control action SHOULD be taken.

dwMediaControl (4 bytes): An unsigned 32-bit integer. The media control action. This member
MUST use one of the LINEMEDIACONTROL_Constants.

This packet cannot be extended.

The LINEMEDIACONTROLMEDIA packet defines a triple <media types, duration, media-control
action>. An array of these triples is passed to the SetMediaControl packet to set the media control
actions triggered by media type changes for a given call. When a change to a listed media type is

detected, then the corresponding action on the media stream MUST be invoked.

520 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.40 LINEMEDIACONTROLTONE

The LINEMEDIACONTROLTONE packet describes a media action to be executed when a tone has been
detected. It is used as an entry in an array. The SetMediaControl packet uses this packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwAppSpecific

dwDuration

dwFrequency1

dwFrequency2

dwFrequency3

dwMediaControl

dwAppSpecific (4 bytes): An unsigned 32-bit integer. This field is used by the application for
tagging the tone. When this tone is detected, the value of the dwAppSpecific member MUST be
passed back to the application.

dwDuration (4 bytes): An unsigned 32-bit integer. The duration of time, in milliseconds, during
which the tone SHOULD be present before detection is made.

dwFrequency1 (4 bytes): An unsigned 32-bit integer. The first frequency, in hertz, of the tone.

dwFrequency2 (4 bytes): An unsigned 32-bit integer. The second frequency, in hertz, of the tone.

dwFrequency3 (4 bytes): An unsigned 32-bit integer. The third frequency, in hertz, of the tone. If
fewer than three frequencies are needed in the tone, a value of 0 SHOULD be used for the unused
frequencies. A tone with all three frequencies set to zero is interpreted as silence and can be use
for silence detection.

dwMediaControl (4 bytes): An unsigned 32-bit integer. The media control action. This member

MUST use one of the LINEMEDIACONTROL_Constants.

This packet cannot be extended.

The LINEMEDIACONTROLTONE packet defines a tuple <tone, media-control action>. An array of these
tuples is passed to the SetMediaControl packet to set media control actions triggered by media type
changes for a given call. When a change to a listed media type is detected, the corresponding action
on the media stream is invoked.

A tone with all frequencies set to 0 corresponds to silence. An application can thus monitor the call's

information stream for silence.

2.2.6.41 PHONEBUTTONINFO

The PHONEBUTTONINFO packet contains information about a button on a phone device. This packet is

used by multiple TAPI and TSPI functions.

521 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwButtonMode

dwButtonFunction

dwButtonTextSize

dwButtonTextOffset

dwDevSpecificSize

dwDevSpecificOffset

dwButtonState

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet that is
needed to hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwButtonMode (4 bytes): An unsigned 32-bit integer. The mode or general usage class of the
button. This member MUST use one of the PHONEBUTTONMODE_Constants.

dwButtonFunction (4 bytes): An unsigned 32-bit integer. The function assigned to the button. This
member MUST use one of the PHONEBUTTONFUNCTION_Constants.

dwButtonTextSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the descriptive text
for the button.

dwButtonTextOffset (4 bytes): An unsigned 32-bit integer. The offset, from the beginning of this

packet to the variably sized field containing descriptive text for this button. The format of this
information is as specified in the dwStringFormat member of the phone's device capabilities. The
size of the field MUST be specified by dwButtonTextSize.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the device-specific

field. If the device-specific field is a pointer to a string, the size MUST include the null terminator.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. the offset, from the beginning of the
packet to the variably sized device-specific field. The size of the field MUST be specified by
dwDevSpecificSize.

522 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwButtonState (4 bytes): An unsigned 32-bit integer. For the GetButtonInfo packet, this field
indicates the current state of the button, using one or more of the

PHONEBUTTONSTATE_Constants. This field is ignored by the SetButtonInfo packet.

VarData (variable):

 Descriptive text for the button, as specified by dwButtonTextOffset.

 Device-specific information, as specified by dwDevSpecificOffset.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and
dwDevSpecificOffset) variably sized area of this packet.

Older applications are compiled without this field in the PHONEBUTTONINFO packet and using a
SIZEOF(PHONEBUTTONINFO) smaller than the new size. The application passes in a dwAPIVersion
parameter with the Open packet, which can be used for guidance by TAPI in handling this situation. If

the application passes in a dwTotalSize less than the size of the fixed portion of the packet, as
defined in the specified dwAPIVersion, PHONEERR_STRUCTURETOOSMALL is returned. If sufficient

memory has been allocated by the application, before sending the GetButtonInfo packet, TAPI sets the
dwNeededSize and dwUsedSize members to the fixed size of the packet as it existed in the
specified TAPI version.

New service providers (that support the new TAPI version) MUST examine the TAPI version passed in.

If the TAPI version is less than the highest version supported by the provider, the service provider
MUST NOT fill in fields not supported in older TAPI versions, as these would fall in the variable portion
of the older packet.

New applications MUST be cognizant of the TAPI version negotiated and not examine the contents of
fields in the fixed portion beyond the original end of the fixed portion of the packet for the negotiated
TAPI version.

2.2.6.42 PHONECAPS

The PHONECAPS packet describes the capabilities of a phone device. The phone GetDevCaps packet
returns this packet. PHONECAPS is supplied by the server in the field VarData of the returned version
of the phone GetDevCaps packet if the request is completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwProviderInfoSize

dwProviderInfoOffset

dwPhoneInfoSize

dwPhoneInfoOffset

dwPermanentPhoneID

523 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwPhoneNameSize

dwPhoneNameOffset

dwStringFormat

dwPhoneStates

dwHookSwitchDevs

dwHandsetHookSwitchModes

dwSpeakerHookSwitchModes

dwHeadsetHookSwitchModes

dwVolumeFlags

dwGainFlags

dwDisplayNumRows

dwDisplayNumColumns

dwNumRingModes

dwNumButtonLamps

dwButtonModesSize

dwButtonModesOffset

dwButtonFunctionsSize

dwButtonFunctionsOffset

dwLampModesSize

dwLampModesOffset

dwNumSetData

dwSetDataSize

dwSetDataOffset

dwNumGetData

dwGetDataSize

524 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwGetDataOffset

dwDevSpecificSize

dwDevSpecificOffset

dwDeviceClassesSize (optional)

dwDeviceClassesOffset (optional)

dwPhoneFeatures (optional)

dwSettableHandsetHookSwitchModes (optional)

dwSettableSpeakerHookSwitchModes (optional)

dwSettableHeadsetHookSwitchModes (optional)

dwMonitoredHandsetHookSwitchModes (optional)

dwMonitoredSpeakerHookSwitchModes (optional)

dwMonitoredHeadsetHookSwitchModes (optional)

PermanentPhoneGuid (16 bytes)

...

...

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, that is allocated to this
packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The needed size, in bytes, for this packet to

hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwProviderInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the provider-
specific information. If the provider-specific information is a pointer to a string, the size MUST
include the null terminator.

dwProviderInfoOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the variably sized field that contains service provider–specific information.

This member provides information about the provider hardware and software, such as the vendor
name and version numbers of hardware and software. This information can be useful when a user

525 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

needs to call customer service with problems regarding the provider. The size of the field MUST be
specified by dwProviderInfoSize.

dwPhoneInfoSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the phone-specific
information. If the phone-specific information is a pointer to a string, the size MUST include the

null terminator.

dwPhoneInfoOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the variably sized device field that contains phone-specific information.

This member provides information about the attached phone device, such as the phone device
manufacturer, the model name, the software version, and so on. This information can be useful
when a user needs to call customer service with problems about the phone. The size of the field
MUST be specified by dwPhoneInfoSize.

dwPermanentPhoneID (4 bytes): An unsigned 32-bit integer. The permanent identifier by which
the phone device is known in the computing system configuration.

dwPhoneNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the configurable
name for the phone, including the null terminator.

dwPhoneNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the variably sized device field that contains a user-configurable name for this phone

device. This name can be configured by the user when configuring the service provider of the
phone and is provided for user convenience. The size of the field MUST be specified by
dwPhoneNameSize.

dwStringFormat (4 bytes): An unsigned 32-bit integer. The string format to be used with this
phone device. This member MUST use one of the STRINGFORMAT_Constants.

dwPhoneStates (4 bytes): An unsigned 32-bit integer. The state changes for this phone device for
which the application can be notified in a PHONE_STATE packet. This member MUST be one or

more of the PHONESTATE_Constants.

dwHookSwitchDevs (4 bytes): An unsigned 32-bit integer. The hookswitch devices of the phone.
This member MUST use one of the PHONEHOOKSWITCHDEV_Constants.

dwHandsetHookSwitchModes (4 bytes): An unsigned 32-bit integer. The hookswitch mode of the
handset. The member is only meaningful if dwHookSwitchDevs is
PHONEHOOKSWITCHDEV_HANDSET. It MUST use one of the
PHONEHOOKSWITCHMODE_Constants.

dwSpeakerHookSwitchModes (4 bytes): An unsigned 32-bit integer. The hookswitch mode of the
speaker. The member is only meaningful if dwHookSwitchDevs is
PHONEHOOKSWITCHDEV_SPEAKER. It MUST use one of the
PHONEHOOKSWITCHMODE_Constants.

dwHeadsetHookSwitchModes (4 bytes): An unsigned 32-bit integer. The hookswitch mode of the
headset. The member is only meaningful if dwHookSwitchDevs is

PHONEHOOKSWITCHDEV_HEADSET. It MUST use one of the

PHONEHOOKSWITCHMODE_Constants.

dwVolumeFlags (4 bytes): An unsigned 32-bit integer. The volume-setting capabilities of the
speaker components of the phone device. The volume of the hookswitch device's speaker
component can be adjusted with phone SetVolume packet.

dwGainFlags (4 bytes): An unsigned 32-bit integer. The gain-setting capabilities of the phone
device's microphone components. The gain level of the hookswitch device's microphone

component can be adjusted with the SetGain packet.

526 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDisplayNumRows (4 bytes): An unsigned 32-bit integer. The display capabilities of the phone
device by describing the number of rows in the phone display. The dwDisplayNumRows and

dwDisplayNumColumns members are both zero for a phone device without a display.

dwDisplayNumColumns (4 bytes): An unsigned 32-bit integer. The display capabilities of the

phone device by describing the number of columns in the phone display. The dwDisplayNumRows
and dwDisplayNumColumns members are both zero for a phone device without a display.

dwNumRingModes (4 bytes): An unsigned 32-bit integer. The ring capabilities of the phone device.
The phone is able to ring with dwNumRingModes different ring patterns, identified as 1, 2, through
dwNumRingModes minus one. If the value of this member is 0, applications have no control over
the ring mode of the phone. If the value of this member is greater than 0, it indicates the number
of ring modes, in addition to silence, that are supported by the service provider. A value of 0 in

the lpdwRingMode parameter of GetRing or the dwRingMode parameter of SetRing indicates
silence (the phone is not ringing or SHOULD NOT be rung), and dwRingMode values of 1 to
dwNumRingModes are valid ring modes for the phone device.

dwNumButtonLamps (4 bytes): An unsigned 32-bit integer. The number of button/lamps on the

phone device that are detectable in TAPI. Button/lamps are identified by their identifier. Valid
button/lamp identifiers range from zero to dwNumButtonLamps minus one. The keypad buttons

"0", through "9", "*", and "#" are assigned the identifiers 0 through 12.

dwButtonModesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the button modes
array.

dwButtonModesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to the variably sized field that contains the button modes of the phone buttons. The array
is indexed by button/lamp identifier. This array uses the PHONEBUTTONMODE_Constants. The size
of the array MUST be specified by dwButtonModesSize.

dwButtonFunctionsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the button
functions field.

dwButtonFunctionsOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of

this packet to the variably sized field that contains the button functions of the phone buttons. The
array is indexed by button/lamp identifier. This array uses the
PHONEBUTTONFUNCTION_Constants. The size of the array MUST be specified by
dwButtonFunctionsSize.

dwLampModesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the lamp modes
array.

dwLampModesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to the variably sized field that contains the lamp modes of the phone lamps. The array is
indexed by button/lamp identifier. This array uses the PHONELAMPMODE_Constants. The size of
the array MUST be specified by dwLampModesSize.

dwNumSetData (4 bytes): An unsigned 32-bit integer. The number of different download areas in
the phone device. The different areas are referred to by using the data IDs 0, 1, dwNumSetData
minus one. If this member is zero, the phone does not support the download capability.

dwSetDataSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the data size array.

dwSetDataOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to the variably sized field that contains the sizes, in bytes, of the phone's download data
areas. This is an array that has DWORD-sized elements that are indexed by data identifier. The

size of the array MUST be specified by dwSetDataSize.

527 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwNumGetData (4 bytes): An unsigned 32-bit integer. The number of different upload areas in the
phone device. The different areas are referred to by using the data IDs 0, 1, dwNumGetData

minus one. If this field is zero, the phone does not support the upload capability.

dwGetDataSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the data size array.

dwGetDataOffset (4 bytes): An unsigned 32-bit integer. The offset, from the beginning of this
packet to the variably sized field, that contains the sizes, in bytes, of the phone's upload data
areas. This is an array that has DWORD-sized elements that are indexed by data identifier. The
size of the array MUST be specified by dwGetDataSize.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the device-specific
field. If the device-specific information is a pointer to a string, the size MUST include the null
terminator.

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this
packet to the variably sized device-specific field. The size of the field MUST be specified by
dwDevSpecificSize.

dwDeviceClassesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the supported
device class identifiers.

dwDeviceClassesOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of this

packet to a string that consists of the device class identifiers that are supported on this device for
use with the GetID packet. The identifiers are separated by NULLs, and the last identifier in the list
is followed by two NULLs. The size of the field MUST be specified by dwDeviceClassesSize.

dwPhoneFeatures (4 bytes): An unsigned 32-bit integer. The flags that indicate which TAPI
functions can be invoked on the phone. A zero indicates that the corresponding feature is not
implemented and can never be invoked by the application on the phone; a one indicates that the
feature can be invoked, depending on the device state and other factors. This member MUST use

PHONEFEATURE_Constants.

dwSettableHandsetHookSwitchModes (4 bytes): An unsigned 32-bit integer. The

PHONEHOOKSWITCHMODE_Constants that can be set on the handset by using the SetHookSwitch
packet.

dwSettableSpeakerHookSwitchModes (4 bytes): An unsigned 32-bit integer. The
PHONEHOOKSWITCHMODE_Constants that can be set on the speakerphone by using the
SetHookSwitch packet.

dwSettableHeadsetHookSwitchModes (4 bytes): An unsigned 32-bit integer. The
PHONEHOOKSWITCHMODE_Constants that can be set on the headset by using the SetHookSwitch
packet.

dwMonitoredHandsetHookSwitchModes (4 bytes): An unsigned 32-bit integer. The
PHONEHOOKSWITCHMODE_Constants that can be detected and reported for the handset in a
PHONE_STATE packet and by the GetHookSwitch packet.

dwMonitoredSpeakerHookSwitchModes (4 bytes): An unsigned 32-bit integer. The

PHONEHOOKSWITCHMODE_Constants that can be detected and reported for the speakerphone in
a PHONE_STATE packet and by the GetHookSwitch packet.

dwMonitoredHeadsetHookSwitchModes (4 bytes): An unsigned 32-bit integer. The
PHONEHOOKSWITCHMODE_Constants that can be detected and reported for the headset in a
PHONE_STATE packet and by the GetHookSwitch packet.

PermanentPhoneGuid (16 bytes): The GUID that is permanently associated with this phone.

VarData (variable): MUST contain:

528 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Service provider–specific information, as specified by dwProviderInfoOffset.

 Phone-specific information, as specified by dwPhoneInfoOffset.

 The user-configurable name for the phone, as specified by dwPhoneNameOffset.

 The button modes of the phone buttons, as specified by dwButtonModesOffset.

 The button functions of the phone buttons, as specified by dwButtonFunctionsOffset.

 The lamp modes of the phone lamps, as specified by dwLampModesOffset.

 The sizes, in bytes, of the phone's download data areas, as specified by dwSetDataOffset.

 The sizes, in bytes, of the phone's upload data areas, as specified by dwGetDataOffset.

 Device-specific information, as specified by dwDevSpecificOffset

 The device class identifiers that are supported on the device, as specified by

dwDeviceClassesOffset.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this packet.

The members dwDeviceClassesSize through dwMonitoredHeadsetHookSwitchModes are available only
to applications that open the phone device with TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

2.2.6.43 PHONEEXTENSIONID

The PHONEEXTENSIONID packet describes an extension identifier. Extension identifiers are used to
identify service provider-specific extensions for phone device classes. PHONEEXTENSIONID is supplied
by the server in the field VarData of the returned version of the phone NegotiateAPIVersion packet if
the request is completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwExtensionID0

dwExtensionID1

dwExtensionID2

dwExtensionID3

dwExtensionID0 (4 bytes): An unsigned 32-bit integer. The first part of the extension identifier.

dwExtensionID1 (4 bytes): An unsigned 32-bit integer. The second part of the extension identifier.

dwExtensionID2 (4 bytes): An unsigned 32-bit integer. The third part of the extension identifier.

dwExtensionID3 (4 bytes): An unsigned 32-bit integer. The fourth part of the extension identifier.

These four members together specify a universally unique extension identifier that identifies a phone
device class extension. This packet cannot be extended.

529 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.44 LINEMEDIACONTROLCALLSTATE

The LINEMEDIACONTROLCALLSTATE packet describes a media action to be executed when detecting
transitions into one or more call states. The SetMediaControl packet uses this packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwCallStates

dwMediaControl

dwCallStates (4 bytes): An unsigned 32-bit integer. One or more call states. This member MUST
use one of the LINECALLSTATE_Constants.

dwMediaControl (4 bytes): An unsigned 32-bit integer. The media control action. This member
MUST use one of the LINEMEDIACONTROL_Constants.

This packet cannot be extended.

The LINEMEDIACONTROLCALLSTATE packet defines a tuple <call states, media-control action>. An

array of these tuples is passed to the SetMediaControl packet to set the media control actions
triggered by the transition to the call state of the given call. When a transition to a listed call state is
detected, the corresponding action on the media stream MUST be invoked.

2.2.6.45 LINEEXTENSIONID

The LINEEXTENSIONID packet describes an extension identifier. Extension identifiers are used to
identify service provider-specific extensions for line devices. This packet is used by the line
NegotiateAPIVersion packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwExtensionID0

dwExtensionID1

dwExtensionID2

dwExtensionID3

dwExtensionID0 (4 bytes): An unsigned 32-bit integer. The first part of the extension identifier.

dwExtensionID1 (4 bytes): An unsigned 32-bit integer. The second part of the extension identifier.

dwExtensionID2 (4 bytes): An unsigned 32-bit integer. The third part of the extension identifier.

dwExtensionID3 (4 bytes): An unsigned 32-bit integer. The fourth part of the extension identifier.

These four members together specify a universally unique extension identifier that identifies a line
device class extension. This packet cannot be extended.

530 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.46 VARSTRING

The VARSTRING packet is used for returning variably sized strings. It is used both by the line device
class and the phone device class.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwStringFormat

dwStringSize

dwStringOffset

VarData (variable)

...

dwTotalSize (4 bytes): The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): The size, in bytes, for this packet that is needed to hold all the returned
information.

dwUsedSize (4 bytes): The size, in bytes, of the portion of this packet that contains useful

information.

dwStringFormat (4 bytes): The format of the string. This member uses one of the

STRINGFORMAT_Constants.

dwStringSize (4 bytes): The size, in bytes, of the string information, including the null terminator.

dwStringOffset (4 bytes): The offset, from the beginning of the packet to the variably sized device
field containing the string information. The size of the field is specified by dwStringSize.

VarData (variable): The string information, as specified by dwStringOffset. The encoding of the
string is specified by dwStringFormat.

This packet is not extendible.

If a string cannot be returned in a variable packet, the dwStringSize and dwStringOffset fields are
set in one of the following ways:

 dwStringSize and dwStringOffset members are both set to 0.

 dwStringOffset is nonzero and dwStringSize is 0.

 dwStringOffset is nonzero, dwStringSize is 1, and the byte at the given offset is 0.

531 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.47 LINEAGENTINFO

The LINEAGENTINFO packet contains information about an ACD agent. LINEAGENTINFO is supplied by
the server in the field VarData of the completion packet of the GetAgentInfo request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwAgentState

dwNextAgentState

dwMeasurementPeriod

cyOverallCallRate

dwNumberOfACDCalls

dwNumberOfIncomingCalls

dwNumberOfOutgoingCalls

dwTotalACDTalkTime

dwTotalACDCallTime

dwTotalACDWrapUpTime

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet,
including the null terminator.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, needed to hold all the
information requested.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwAgentState (4 bytes): An unsigned 32-bit integer. This field MUST be one of the

LINEAGENTSTATEEX_Constants.

dwNextAgentState (4 bytes): An unsigned 32-bit integer. This field MUST be one of the
LINEAGENTSTATEEX_Constants.

dwMeasurementPeriod (4 bytes): An unsigned 32-bit integer. The period, in seconds, for which
the switch or implementation stores and calculates information. For example,

dwNumberOfACDCalls holds the number of calls the agent handled; dwMeasurementPeriod
indicates if this value referenced the calls handled in the last hour, day, or month.

532 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

cyOverallCallRate (4 bytes): An unsigned 32-bit integer. The agent's call rate (calls per agent hour,
where agent hour represents the time that an agent was active in one or more agent sessions)

across all agent sessions. This is a fixed-point decimal number.

dwNumberOfACDCalls (4 bytes): An unsigned 32-bit integer. The number of ACD calls handled by

this agent across all sessions.

dwNumberOfIncomingCalls (4 bytes): An unsigned 32-bit integer. The number of incoming non-
ACD calls handled by this agent.

dwNumberOfOutgoingCalls (4 bytes): An unsigned 32-bit integer. The number of outgoing non-
ACD calls handled by this agent.

dwTotalACDTalkTime (4 bytes): An unsigned 32-bit integer. The number of seconds spent talking
in ACD calls by this agent across all sessions.

dwTotalACDCallTime (4 bytes): An unsigned 32-bit integer. The number of seconds spent on ACD
calls by this agent (across all sessions). Includes time on the phone plus wrap-up time.

dwTotalACDWrapUpTime (4 bytes): An unsigned 32-bit integer. The number of seconds spent on
ACD call wrap-up (after call work) by this agent across all sessions.

2.2.6.48 PHONESTATUS

The PHONESTATUS packet specifies the current status of a phone device. PHONESTATUS is supplied
by the server in the field VarData of the returned version of the GetStatus packet if the request is
completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTotalSize

dwNeededSize

dwUsedSize

dwStatusFlags

dwNumOwners

dwNumMonitors

dwRingMode

dwRingVolume

dwHandsetHookSwitchMode

dwHandsetVolume

dwHandsetGain

dwSpeakerHookSwitchMode

533 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwSpeakerVolume

dwSpeakerGain

dwHeadsetHookSwitchMode

dwHeadsetVolume

dwHeadsetGain

dwDisplaySize

dwDisplayOffset

dwLampModesSize

dwLampModesOffset

dwOwnerNameSize

dwOwnerNameOffset

dwDevSpecificSize

dwDevSpecificOffset

dwPhoneFeatures (optional)

VarData (variable)

...

dwTotalSize (4 bytes): An unsigned 32-bit integer. The total size, in bytes, allocated to this packet.

dwNeededSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, for this packet that is
needed to hold all the returned information.

dwUsedSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the portion of this packet
that contains useful information.

dwStatusFlags (4 bytes): An unsigned 32-bit integer. The status flags for this phone device. This
member uses one of the PHONESTATUSFLAGS_Constants.

dwNumOwners (4 bytes): An unsigned 32-bit integer. The number of application modules with
owner privilege for the phone.

dwNumMonitors (4 bytes): An unsigned 32-bit integer. The number of application modules with
monitor privilege for the phone.

dwRingMode (4 bytes): An unsigned 32-bit integer. The current ring mode of a phone device.

dwRingVolume (4 bytes): An unsigned 32-bit integer. The current ring volume of a phone device.
This is a value between 0x00000000 (silence) and 0x0000FFFF (maximum volume).

534 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwHandsetHookSwitchMode (4 bytes): An unsigned 32-bit integer. The current hook-switch mode
of the phone's handset. This member uses one of the PHONEHOOKSWITCHMODE_Constants.

dwHandsetVolume (4 bytes): An unsigned 32-bit integer. The current speaker volume of the
phone's handset device. This is a value between 0x00000000 (silence) and 0x0000FFFF

(maximum volume).

dwHandsetGain (4 bytes): An unsigned 32-bit integer. The current microphone gain of the phone's
handset device. This is a value between 0x00000000 (silence) and 0x0000FFFF (maximum gain).

dwSpeakerHookSwitchMode (4 bytes): An unsigned 32-bit integer. The current hook-switch mode
of the phone's speakerphone. This member uses one of the
PHONEHOOKSWITCHMODE_Constants.

dwSpeakerVolume (4 bytes): An unsigned 32-bit integer. The current speaker volume of the

phone's speaker device. This is a value between 0x00000000 (silence) and 0x0000FFFF
(maximum volume).

dwSpeakerGain (4 bytes): An unsigned 32-bit integer. The current microphone gain of the phone's
speaker device. This is a value between 0x00000000 (silence) and 0x0000FFFF (maximum gain).

dwHeadsetHookSwitchMode (4 bytes): An unsigned 32-bit integer. The current hook-switch mode
of the phone's headset. This member uses one of the PHONEHOOKSWITCHMODE_Constants.

dwHeadsetVolume (4 bytes): An unsigned 32-bit integer. The current speaker volume of the
phone's headset device. This is a value between 0x00000000 (silence) and 0x0000FFFF
(maximum volume).

dwHeadsetGain (4 bytes): An unsigned 32-bit integer. The current microphone gain of the phone's
headset device. This is a value between 0x00000000 (silence) and 0x0000FFFF (maximum gain).

dwDisplaySize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the display information.

dwDisplayOffset (4 bytes): An unsigned 32-bit integer. The offset, from the beginning of this

packet to a VARSTRING containing the phone's current display information. The size of the field is
specified by dwDisplaySize.

dwLampModesSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the current lamp
modes array.

dwLampModesOffset (4 bytes): An unsigned 32-bit integer. The offset, from the beginning of this
packet to the variably sized field containing the phone's current lamp modes. The size of the field
is specified by dwLampModesSize. Each lamp mode in the array MUST be one or more of the

PHONELAMPMODE_Constants.

dwOwnerNameSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the name of the
current owner, including the null terminator.

dwOwnerNameOffset (4 bytes): An unsigned 32-bit integer. The offset from the beginning of the
packet to the variably sized field containing the name of the application that is the current owner

of the phone device. The name is the application name provided by the application when it is

invoked with phoneInitialize or phoneInitializeEx. If no application name was supplied, the
application's file name is used instead. The size of the field is specified by dwOwnerNameSize. If
the phone currently has no owner, dwOwnerNameSize is 0.

dwDevSpecificSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the device-specific
field. If the device-specific information is a pointer to a string, the size MUST include the null
terminator.

535 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

dwDevSpecificOffset (4 bytes): An unsigned 32-bit integer. The offset, from the beginning of this
packet to the variably sized device-specific field. The size of the field is specified by

dwDevSpecificSize.

dwPhoneFeatures (4 bytes): An unsigned 32-bit integer. The flags that indicate which functions

can be invoked on the phone, considering the availability of the feature in the device capabilities,
the current device state, and device ownership of the invoking application. A 0 indicates that the
corresponding feature cannot be invoked by the application on the phone in its current state; a 1
indicates the feature can be invoked. This member uses one or more of the
PHONEFEATURE_Constants.

VarData (variable): MUST contain:

 The phone's current display information, as specified by dwDisplayOffset.

 The phone's current lamp modes, as specified by dwLampModesOffset.

 The name of the application that is the current owner of the phone device, as specified by

dwOwnerNameOffset.

 The device-specific information, as specified by dwDevSpecificOffset.

Device-specific extensions SHOULD use the DevSpecific (dwDevSpecificSize and
dwDevSpecificOffset) variably sized area of this packet.

The dwPhoneFeatures member is available only to the phone device with a TAPI version of 2.0 or
later.

2.2.6.49 LINETERMCAPS

The LINETERMCAPS packet describes the capabilities of a line's terminal device. The LINEDEVCAPS

packet can contain an array of LINETERMCAPS packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwTermDev

dwTermModes

dwTermSharing

dwTermDev (4 bytes): An unsigned 32-bit integer. The device type of the terminal. This member
uses one of the LINETERMDEV_Constants.

dwTermModes (4 bytes): An unsigned 32-bit integer. The terminal modes that the terminal device
can deal with. This member uses one of the LINETERMMODE_Constants.

dwTermSharing (4 bytes): An unsigned 32-bit integer. The sharing modes for the terminal device.
This member uses one of the LINETERMSHARING_Constants.

2.3 Directory Service Schema Elements

The Telephony Remote protocol accesses the following Directory Service schema classes and

attributes listed in the following table. For the syntactic specifications of the following <Class> or
<Class><Attribute> pairs, refer to : [MS-ADA3].

%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0

536 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Class Attribute

ServiceConnectionPoint serviceDNSName serviceBindingInformation

537 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

The server can publish itself by creating a serviceConnectionPoint object in Active Directory with
B1A37774-E3F7-488E-ADBFD4DB8A4AB2E5 as a keyword and the client discovers the Telephony
Remote Protocol servers that are published in the domain by searching Active Directory for
serviceConnectionPoint objects with the same keyword.<5>

The client uses the serviceDNSName attribute to make RPC calls to the Telephony Remote Protocol

servers, if the server is currently valid. To determine if the server is valid, the client uses information
in the serviceBindingInformation.

The serviceBindingInformation attribute of the object contains the information which is used by the
client to identify Telephony Remote Protocol servers. The attribute contains a substring of the format
S{<Serverstate>}TTL{<TimeToLive>}. <TimeToLive> string is the concatenation of Year, Month,
Date, Hour, Minute, Second, Milliseconds. There are 5 digits allocated for year, 3 digits for

milliseconds, and 2 digits for the remaining fields. All the numbers are prefixed with zeros to fill the
extra space. The client determines a server as a valid Telephony Remote Protocol servers if

<ServerState> is 'Active' and <TimeToLive> is ahead of the current SystemTime. After identifying the
Telephony Remote Protocol servers, the client uses the serviceDNSName attribute to make RPC calls
to the server.

The client side of the Telephony Remote Protocol MUST call the ClientAttach method on the tapsrv
interface to obtain a context handle before calling any other methods of the tapsrv interface.

The obtained context handle is used in subsequent ClientRequest method invocations.

The context handle MUST be passed in a ClientDetach method call to the server after the client is
finished using telephony devices on the server. This allows the server to free the resources allocated
for the client as identified by the context handle.

A context handle freed by passing it to the server in a ClientDetach method call cannot be used again;
instead, the client MUST invoke the ClientAttach method again to obtain a fresh context handle.

Connection-oriented clients of the protocol MUST be listening on the remotesp interface on the RPC

protocol sequence and endpoint specified to the server in ClientAttach before invoking the
ClientAttach method.

Connectionless clients of the protocol MUST first create a mailslot and then pass the mailslot details to
the server in a ClientAttach request.

For asynchronous TAPI operations, the higher-layer protocol or application on the client side needs to
maintain the request ID returned by the server. The stored request ID is needed to match the

completion notification from the server against the corresponding ClientRequest method call.

The client side of this protocol is simply a pass-through except for the dependencies noted above. That
is, there are no additional timers or other states required on the client side of this protocol. Calls made
by the higher-layer protocol or application are passed directly to the transport, and the results
returned by the transport are passed directly back to the higher-layer protocol or application.

3.1 Tapsrv Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

538 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Provider List: A list of all telephony service providers that are installed on the machine. For each
provider, the server maintains the name of the provider, the service provider version, the provider

ID, and the list of lines available from this provider. For each line available from the provider, the
server keeps track of the registered proxy function handler, if any.

Handle Table: The Handle Table contains all the handles that are used in the Telephony Remote
Protocol. The details of the various handles (obtained/released) are described in section 2.2.2. The
handle is added to the Handle Table when it is obtained (for example, when HLINEAPP is obtained
in an Initialize request) and removed from the Handle Table when it is released (for example,
when HLINEAPP is released in a ShutDown packet).

List of Opened Lines: The server maintains the list of opened lines. For each opened line, the server
maintains the client that opened the line, the handle to the line (HLINE), the list of calls present

on the line, telephony service provider information (provider name, service provider version, and
so on) on which this line is available, the device identifier, and the negotiated version.

List of Opened Phones: The server maintains the list of opened phone devices. For each opened
phone device, the server maintains the client that opened the phone, the handle to the phone

(HPHONE), telephony service provider information (provider name, service provider version, and
so on) on which this phone device is available, the device identifier, and the negotiated version.

LineApp Handle List: The LineApp Handle List is the list of clients' usage handles for TAPI line
requests (HLINEAPP) obtained by sending the Initialize packet. For each handle, the server
maintains a list of lines that were opened using this handle.

PhoneApp Handle List: The PhoneApp Handle List is the list of client's usage handle for TAPI phone
requests (HPHONEAPP) obtained by sending the Initialize packet. For each handle, the server
maintains a list of phone devices that were opened using this handle.

Client List: The Client List is the list of all clients that established a binding instance with the server

using ClientAttach. For each client, the server maintains the client's machine name, the user's
domain account name, and the list of usage handles (HLINEAPP/HPHONEAPP) obtained using the
Initialize packet.

Call List: The Call List is the list of all calls that are present on the server. For each call, the server
maintains a list of clients that have the handle to the call. For each call, the server also maintains
the handle to the line on which the call is present, the call state, and the handle to the call
(HCALL). The server maintains the association between the handle to the call and the client.

Conference List: The Conference List is the list of all conference calls present on the server. For each
conference call, the server maintains the list of calls present on the conference.

3.1.2 Timers

None

3.1.3 Initialization

The server MUST listen on the well-known endpoint corresponding to the tapsrv interface, as
specified in [C706] section 6.2.2.

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data-consistency
check at target level 5.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data-consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

539 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with a
nonzero conformant value, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute that it is to
reject use of context handles created by a method of a different RPC interface than this one, as

specified in [MS-RPCE] section 3.

Methods in RPC Opnum Order

Method Description

ClientAttach Used to establish a binding instance with the server.

Opnum: 0

ClientRequest Used to submit requests to the server.

Opnum: 1

ClientDetach Used to release the allocated resources created on the client side.

Opnum: 2

3.1.4.1 ClientAttach (Opnum 0)

The ClientAttach method is called by the client to establish a binding instance with the server.

 long ClientAttach(
 [out] PCONTEXT_HANDLE_TYPE* pphContext,
 [in] long lProcessID,
 [out] long* phAsyncEventsEvent,
 [in, string] wchar_t* pszDomainUser,
 [in, string] wchar_t* pszMachine
);

pphContext: Pointer to a PCONTEXT_HANDLE_TYPE context handle.

lProcessID: Identifier of the process on the client that generated the attach request.

Value Meaning

0xFFFFFFFF Client is a remote instance that wants to control the telephony devices on this server.

0xFFFFFFFD Client is a remote instance that wants to manage and administer the telephony server.

phAsyncEventsEvent: If applicable, a pointer to a packet containing any asynchronous event that
was triggered by the client attaching to the server.

If lProcessId equals 0xFFFFFFFF (-1) and the server supports the

NegotiateAPIVersionForAllDevices request, the server MUST set the value of phAsyncEventsEvent
to 0xa5c369a5.

If lProcessId equals 0xFFFFFFFD (-3), the server MUST set the value of phAsyncEventsEvent to

0x32323232 for a 32-bit platform or to 0x64646464 for a 64-bit platform.

pszDomainUser: Pointer to a null-terminated string indicating the user's domain account name. The
string is passed on the wire.

540 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If lProcessId equals 0xFFFFFFFF (-1), pszDomainUser MUST contain either an empty string ("") or
the name of a client mailslot. If a mailslot name is specified and the server is able to successfully

open the mailslot, then the client and the server MUST use the "pull" model event scheme. The
server MUST inform the client that events are available for retrieval by writing a DWORD value to

the client's mailslot, and the client retrieves events via the ClientRequest method. If an empty
string is specified or the server is unable to open the client's mailslot, then the "push" model event
scheme MUST be used in which the server calls the client's RemoteSPEventProc method.

If lProcessId equals 0xFFFFFFFD (-3), pszDomainUser MUST contain the user name. The client in
this case is an MMC client that is not interested in events occurring on the telephony devices.

pszMachine: Pointer to a null-terminated string indicating the client's machine name. The string
MUST be passed on the wire.

If lProcessId equals 0xFFFFFFFF (-1), the pszMachine string takes the following format:
<clientComputerName>"<protocolSequence1>"<endpoint1>"<protSeqN>"<epN>"\0. This allows
the client to inform the server of its machine name and what protocols and endpoints are
supported by the client on its remotesp interface. Quotation marks MUST be used as delimiting

tokens. For instance, CLIENT-PC-NAME"ncacn_ip_tcp"251"ncacn_nb_nb"251"\0.

If lProcessId equals 0xFFFFFFFD (-3), pszMachine MUST contain the computer name.

Return Values: The method returns 0 on success; otherwise, it returns a nonzero error code, as
specified in [MS-ERREF]. The following table includes a common error code.

Return value/code Description

0x80000048

LINEERR_OPERATIONFAILED

Generic error on the server.

-19 Requesting administrator access via lProcessId equals 0xFFFFFFFD (-3), but
the user credentials of the client do not have administrator access on the
server.

On success, the server adds the client to the client list and updates the client's machine name and
the user's domain account name.

Exceptions Thrown:

No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

The opnum field value for this method is 0.

Either the client or the server can reject unencrypted packets based on the configuration.<6>

3.1.4.2 ClientRequest (Opnum 1)

The ClientRequest method is called by the client to submit requests to the server.

 void ClientRequest(
 [in] PCONTEXT_HANDLE_TYPE phContext,
 [in, out, length_is(*plUsedSize), size_is(lNeededSize)]
 unsigned char* pBuffer,
 [in] long lNeededSize,
 [in, out] long* plUsedSize
);

phContext: Parameter that MUST contain the context handle of type PCONTEXT_HANDLE_TYPE.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

541 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

pBuffer: Packet that MUST contain event packets or function calls. The packet follows the structure of
a TAPI32_MSG (section 2.2.5.2) packet. The Req_Func field of this packet contains information

about the operation to be performed on the server.

lNeededSize: The size, in bytes, of a valid pBuffer.

plUsedSize: The size, in bytes, of a valid pBuffer data. If any variable-length input data is specified,
both the size of the input data length and all the padding bytes are included, or else all the
padding bytes are excluded.

Return Values: This method has no return values. However, the status of the request is encapsulated
within the pBuffer parameter and contained in the TAPI32_MSG.Ack_ReturnValue field.

Exceptions Thrown:

No exceptions are thrown beyond those thrown by the underlying RPC protocol as specified in [MS-

RPCE].

The opnum field value for this method is 1.

When processing a call, the server MUST do the following:

 Fail the request if lNeededSize is less than the size of the structure TAPI32_MSG.

 Fail the request if the value in plUsedSize is less than the size of a ULONG_PTR.

 Fail the request if phContext is not a valid handle.

 Fail the request if Req_Func in pBuffer is not a valid value.

Depending on the value of Req_Func in pBuffer, the server performs additional checks described as
follows:

When Req_Func is equal to 47 (Initialize):

 The server MUST fail if dwFriendlyNameOffset is not WCHAR-aligned.

 The server MUST fail if dwFriendlyNameOffset lies outside the variable data area (VarData).

 The server MUST fail if the string pointed by dwFriendlyNameOffset is not NULL-terminated.

 The server MUST fail if dwModuleNameOffset is not WCHAR-aligned.

 The server MUST fail if dwModuleNameOffset lies outside the variable data area (VarData).

 The server MUST fail if the string pointed by dwModuleNameOffset is not NULL-terminated.

 On success, the server creates a new client's usage handle (HLINEAPP) and adds it to the
LineApp Handle List. The server also adds the handle to the list of usage handles for the client
in the Client List. The server queries the number of lines from service providers installed on the
machine and updates the Provider List with this information.

When Req_Func is equal to 52 (NegotiateAPIVersion):

 The server MUST fail if the size of VarData is less than the size of the LINEEXTENSIONID
structure.

 The server MUST fail if dwDeviceID is invalid.

 The server MUST fail if hLineApp is an invalid handle.

 The server MUST fail if dwVersion is greater than dwVersionCurrent.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

542 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if no valid TAPI version exists between dwVersion or dwVersionCurrent (both
inclusive). The valid values are 0x00010003, 0x00010004, 0x00020000, 0x00020001,

0x00020002, 0x00030000 and 0x00030001.

When Req_Func is equal to 34 (GetDevCaps):

 The server MUST fail if the size of VarData is less than the size of lpLineDevCaps.

 The server MUST fail if the size of lpLineDevCaps is less than the size of the LINEDEVCAPS packet.

 The server MUST fail if dwDeviceID is invalid.

 The server MUST fail if dwTSPIVersion is invalid. The valid values are 0x00010003, 0x00010004,
0x00020000, 0x00020001, 0x00020002, 0x00030000 and 0x00030001.

 The server MUST fail if dwExtVersion is invalid.

 The server MUST fail if hLineApp is an invalid handle.

When Req_Func is equal to 21 (GetAddressCaps):

 The server MUST fail if hLineApp is an invalid handle.

 The server MUST fail if the size of VarData is less than the size of lpAddressCaps.

 The server MUST fail if the size of lpAddressCaps is less than size of the LINEADDRESSCAPS
packet.

 The server MUST fail if VarData is less than the size of the LINEADDRESSCAPS packet.

 The server MUST fail if dwDeviceID is invalid.

 The server MUST fail if dwTSPIVersion is invalid. The valid values are 0x00010003, 0x00010004,
0x00020000, 0x00020001, 0x00020002, 0x00030000 and 0x00030001.

 The server MUST fail if dwExtVersion is invalid.

When Req_Func is equal to 9 (Close):

 The server MUST fail if hLine is an invalid handle.

 On success, the server removes the handle (HLINE) and removes the client from the List of

Opened Lines.

When Req_Func is equal to 86 (Shutdown):

 The server MUST fail if hLineApp is an invalid handle.

 On success, the server removes the handle from the LineApp Handle List and from the list of
usage handles for the client in the Client List.

When Req_Func is equal to 4 (Accept):

 If lpsUserUserInfo is not set to -1(0xFFFFFFFF), the server MUST check that lpsUserUserInfo

(offset) is DWORD-aligned and lies within VarData and fail otherwise.

 If lpsUserUserInfo is not set to -1(0xFFFFFFFF), the server MUST fail if the sum of lpsUserUserInfo
(offset) and dwSize falls beyond VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 5 (AddToConference):

543 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if hConfCall is an invalid handle.

 The server MUST fail if hConsultCall is an invalid handle.

When Req_Func is equal to 6 (AgentSpecific):

 The server MUST check that lpParams (offset) is DWORD-aligned and lies within VarData and fail

otherwise.

 The server MUST fail if the sum of lpParams (offset) and dwSize falls beyond VarData.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 7 (Answer):

 The server MUST check that lpsUserUserInfo (offset) is DWORD-aligned and lies within VarData
and fail otherwise.

 The server MUST fail if the sum of lpsUserUserInfo (offset) and dwSize falls beyond VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 8 (BlindTransfer):

 The server MUST fail if the string pointed to by lpszDestAddress is not WCHAR-aligned, not NULL-

terminated, or lies outside VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 12 (DeallocateCall):

 The server MUST fail if hCall is an invalid handle.

 On success, the server removes the client for the call from the Call List.

When Req_Func is equal to 10 (CompleteCall):

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if dwCompletionMode has more than one bit set or its value is not one among
LINECALLCOMPLMODE_Constants.

When Req_Func is equal to 11 (CompleteTransfer):

 The server MUST fail if dwTransferMode is not one among LINETRANSFERMODE_Constants.

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if hConsultCall is an invalid handle.

 The server MUST fail if hCall and hConsultCall are the same.

 The server MUST fail if hCall and hConsultCall are not on the same line.

 On success, if dwTransferMode is set to LINETRANSFERMODE_CONFERENCE, the server creates
a conference call with a new handle (HCALL) and adds it to the Conference List. The server adds

544 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

the hCall and hConsultCall to the list of calls maintained for the conference call in the Conference
List.

When Req_Func is equal to 146 (CreateAgent):

 If lpszAgentPIN is not set to TAPI_NO_DATA (0xffffffff), the server MUST fail if the string pointed

to by lpszAgentPIN is not WCHAR-aligned, not NULL-terminated, or lies outside VarData.

 If lpszAgentID is not set to TAPI_NO_DATA (0xffffffff), the server MUST fail if the string pointed to
by lpszAgentID is not WCHAR-aligned, not NULL-terminated, or lies outside VarData.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 147 (CreateAgentSession):

 If lpszAgentPIN is not set to TAPI_NO_DATA (0xffffffff), the server MUST fail if the string pointed
to by lpszAgentPIN is not WCHAR-aligned, not NULL-terminated, or lies outside VarData.

 The server MUST check that lpGroupID (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

 The server MUST fail if the sum of lpGroupID (offset) and dwSize falls beyond VarData.

 The server MUST fail if dwSize is less than the size of GUID.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if dwWorkingAddressID is invalid.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 13 (DevSpecific):

 The server MUST fail if hCall is specified and is an invalid handle.

 The server MUST fail if hCall is not specified and hLine is an invalid handle.

 The server MUST check that lpParams (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

 The server MUST fail if the sum of lpParams (offset) and dwSize falls beyond VarData.

 If hCall is passed, the server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 14 (DevSpecificFeature):

 The server MUST check that lpParams (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

 The server MUST fail if the sum of lpParams (offset) and dwSize falls beyond VarData.

 The server MUST fail if hLine is an invalid handle.

545 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if dwFeature is invalid.

When Req_Func is equal to 15 (Dial):

 The server MUST fail if the string pointed to by lpszDestAddress is not WCHAR-aligned, not NULL-
terminated, or lies outside VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 16 (Drop):

 The server MUST check that lpsUserUserInfo (offset) is DWORD-aligned and lies within VarData
and fail otherwise.

 The server MUST fail if the sum of lpsUserUserInfo (offset) and dwSize falls beyond VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 18 (GatherDigits):

 If lpszTerminationDigits is not set to TAPI_NO_DATA (0xffffffff), the server MUST fail if the string
pointed to by lpszTerminationDigits is not WCHAR-aligned, not NULL-terminated, or lies outside
VarData.

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if dwDigitModes does not have value either LINEDIGITMODE_PULSE or
LINEDIGITMODE_DTMF (LINEDIGITMODE_Constants).

 The server MUST fail if lpsDigitsContext is not set to 0 and the value of dwNumDigits is set to 0.

When Req_Func is equal to 19 (GenerateDigits):

 If lpszDigits is not set to 0xffffffff, server MUST fail if the string pointed to by lpszDigits is not
WCHAR-aligned, not NULL-terminated, or lies outside VarData.

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if dwDigitMode does not have a value of either LINEDIGITMODE_PULSE or
LINEDIGITMODE_DTMF.

When Req_Func is equal to 20 (GenerateTone):

 If dwToneMode is set to LINETONEMODE_CUSTOM, the server MUST fail if the size of VarData is
less than the size of the LINEGENERATETONE packets which will be dwNumTones in number.

 For dwToneMode = LINETONEMODE_CUSTOM, the server MUST check that lpTones (offset) is
DWORD-aligned and lies within VarData and fail otherwise.

 For dwToneMode = LINETONEMODE_CUSTOM, the server MUST fail if the sum of lpTones (offset)
and dwSize falls beyond VarData.

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if dwToneMode has more than one bit set or its value is not one among
LINETONEMODE_Constants.

When Req_Func is equal to 22 (GetAddressID):

 The server MUST check that lpsAddress (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

546 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if the sum of lpsAddress (offset) and dwSize falls beyond VarData.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if dwAddressMode does not have value LINEADDRESSMODE_DIALABLEADDR.

When Req_Func is equal to 23 (GetAddressStatus):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the size of VarData is less than lpAddressCaps.

 The server MUST fail if lpAddressCaps is less than size of the LINEADDRESSSTATUS packet.

When Req_Func is equal to 24 (GetAgentActivityList):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if dwAddressID is invalid or there is no agent associated with dwAddressID.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 The server MUST fail if lpAgentActivityList is greater than 0x40000.

 The server MUST fail if lpAgentActivityList is less than size of LINEAGENTACTIVITYLIST packet.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 25 (GetAgentCaps):

 The server MUST fail if hLineApp is an invalid handle.

 The server MUST fail if the size of VarData is less than lpAgentCapsSize.

 The server MUST fail if lpAgentCapsSize is less than the size of LINEAGENTCAPS packet.

 The server MUST fail if dwAppAPIVersion is invalid. The valid values are 0x00020000,
0x00020001, 0x00020002, 0x00030000, and 0x00030001.

 The server MUST fail if there is no registered proxy function handler for the line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 26 (GetAgentGroupList):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if dwAddressID is invalid or there is no agent associated with dwAddressID.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 The server MUST fail if lpAgentGroupListSize is greater than 0x40000.

 The server MUST fail if lpAgentGroupListSize is less than the size of the LINEAGENTGROUPLIST

packet.

 On success, the server sends the request to the registered proxy function handler.

547 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When Req_Func is equal to 148 (GetAgentInfo):

 The server MUST fail if lpAgentInfo is greater than 0x40000.

 The server MUST fail if lpAgentInfo is less than the size of the LINEAGENTINFO packet.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if hAgent is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 149 (GetAgentSessionInfo):

 The server MUST fail if lpAgentSessionInfo is greater than 0x40000.

 The server MUST fail if lpAgentSessionInfo is less than the size of the LINEAGENTSESSIONINFO

packet.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if hAgentSession is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 150 (GetAgentSessionList):

 The server MUST fail if lpAgentSessionList is greater than 0x40000.

 The server MUST fail if lpAgentSessionList is less than the size of the LINEAGENTSESSIONLIST
packet.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if hAgent is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 27 (GetAgentStatus):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if dwAddressID is invalid or there is no agent associated with dwAddressID.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 The server MUST fail if lpAgentStatusSize is greater than 0x40000.

 The server MUST fail if lpAgentStatusSize is less than the size of the LINEAGENTSTATUS packet.

548 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 140 (GetCallHubTracking):

 The server MUST fail if the size of VarData is less than lpTrackingInfo.

 The server MUST fail if the size of lpTrackingInfo is less than the size of the

LINECALLHUBTRACKINGINFO packet.

 The server MUST fail if the size of VarData is less than the size of the
LINECALLHUBTRACKINGINFO packet.

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 141 (GetCallIDs):

 The server MUST fail if no lines are initialized on the server.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 30 (GetCallInfo):

 The server MUST fail if the size of VarData is less than lpCallInfo.

 The server MUST fail if lpCallInfo is less than size of the LINECALLINFO packet.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 31 (GetCallStatus):

 The server MUST fail if the size of VarData is less than lpCallStatus.

 The server MUST fail if lpCallStatus is less than size of the LINECALLSTATUS packet.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 35 (GetDevConfig):

 The server MUST fail if the size of VarData is less than the size of the VARSTRING packet.

 The server MUST fail if the string pointed to by lpszDeviceClass is not WCHAR-aligned, not NULL-
terminated, or lies outside VarData.

 The server MUST fail if dwDeviceID is invalid.

When Req_Func is equal to 152 (GetGroupList):

 The server MUST fail if lpAgentGroupListSize is greater than 0x40000.

 The server MUST fail if lpAgentGroupListSize is less than the size of the LINEAGENTGROUPLIST
packet.

 The server MUST fail if the size of VarData is less than the size of the LINEAGENTGROUPLIST
packet.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for the line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

549 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When Req_Func is equal to 37 (GetID):

 The Server MUST fail if lpDeviceId is less than size of the VARSTRING packet.

 The server MUST fail if the size of VarData is less than lpDeviceID.

 The server MUST fail if the string pointed to by lpszDeviceClass is not WCHAR-aligned, not NULL-

terminated, or lies outside VarData.

 Depending upon the type of parameter passed in dwSelect, the server MUST check that hCall and
hLine handles are valid and fail otherwise.

 The server MUST fail if dwSelect is set to LINECALLSELECT_DEVICEID and dwAddressID is invalid.

 The server MUST fail if dwSelect is invalid.

When Req_Func is equal to 38 (GetLineDevStatus):

 The server MUST fail if the size of VarData is less than lpLineDevStatus.

 The server MUST fail if lpLineDevStatus is less than size of the LINEDEVSTATUS packet.

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 39 (GetNewCalls):

 The server MUST fail if the size of VarData is less than pCallList.

 The server MUST fail if the pCallList is less than size of the LINECALLLIST packet.

 The server MUST fail if dwSelect does not have value either LINECALLSELECT_ADDRESS or

LINECALLSELECT_LINE.

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 40 (GetNumAddressIDs):

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 158 (GetProxyStatus):

 The server MUST fail if dwDeviceID is invalid.

 The server MUST fail if dwAppAPIVersion is invalid. The valid values are 0x00010003,

0x00010004, 0x00020000, 0x00020001, 0x00020002, 0x00030000, and 0x00030001.

 The server MUST fail if the size of VarData is less than lpLineProxyRequestList.

 The server MUST fail if the lpLineProxyRequestList is less than size of the
LINEPROXYREQUESTLIST packet.

When Req_Func is equal to 151 (GetQueueInfo):

 The server MUST fail if lpQueueInfo is less than the size of the LINEQUEUEINFO packet.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the size of lpQueueInfo is greater than 0x40000.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

550 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 153 (GetQueueList):

 The server MUST fail if the size of VarData is less than the size of the LINEQUEUELIST packet.

 The server MUST check that pGroupID (offset) is DWORD-aligned and lies within VarData and fail

otherwise.

 The server MUST fail if the sum of pGroupID (offset) and cbGUID falls beyond VarData.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler doesn't handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 46 (Hold):

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 49 (MonitorDigits):

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if dwDigitModes is invalid.

When Req_Func is equal to 50 (MonitorMedia):

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if dwMediaModes is invalid.

When Req_Func is equal to 51 (MonitorTones):

 If lpTones is not set to -1(0xFFFFFFFF), the server MUST check that lpToneList (offset) is DWORD-
aligned and lies within VarData and fail otherwise.

 The server MUST fail if the sum of lpToneList (offset) and dwNumEntries falls beyond VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 53 (NegotiateExtVersion):

 The Server MUST fail if hLineApp is an invalid handle.

 The server MUST fail if dwDeviceID is invalid.

 The server MUST fail if dwTSPIVersion is invalid. The valid values are 0x00010003, 0x00010004,
0x00020000, 0x00020001, 0x00020002, 0x00030000, and 0x00030001.

When Req_Func is equal to 55 (Park):

 The Server MUST fail if dwParkMode is invalid.

 If dwParkMode is equal to LINEPARKMODE_DIRECTED, the server MUST fail if the string pointed to

by lpszDirAddress is not WCHAR-aligned, not NULL-terminated, or lies outside VarData.

 If dwParkMode is equal to LINEPARKMODE_NONDIRECTED, the server MUST fail if the size of
lpNonDirAddress is less than the size of the VARSTRING packet.

551 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 56 (Pickup):

 If lpszDestAddress is not set to 0xffffffff, the server MUST fail if the string pointed to by
lpszDestAddress is not WCHAR-aligned, not NULL-terminated, or lies outside VarData.

 If lpszGroupID is not set to 0xffffffff, the server MUST fail if the string pointed to by lpszGroupID is
not WCHAR-aligned, not NULL-terminated, or lies outside VarData.

 The server MUST fail if hLine is an invalid handle.

 On success, the server creates a call with a new handle (HCALL) and add it to the Call List. The
server updates the call with the handle of the line on which the call is made and adds this call to
the list of calls maintained for an opened line. The server adds the client to the list of clients
maintained for the call handle (HCALL) in the Call List.

When Req_Func is equal to 60 (Redirect):

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if the string pointed to by lpszDestAddress is not WCHAR-aligned, not NULL-
terminated, or lies outside VarData.

When Req_Func is equal to 62 (ReleaseUseruserInfo):

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 63 (RemoveFromConference):

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if the call is not currently conferenced.

When Req_Func is equal to 64 (SecureCall):

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 128 (SelectExtVersion):

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 65 (SendUserUserInfo):

 The server MUST fail if hCall is an invalid handle.

 The server MUST check that lpsUserUserInfo (offset) is DWORD-aligned and lies within VarData
and fail otherwise.

 The server MUST fail if the sum of lpsUserUserInfo (offset) and dwSize falls beyond VarData.

When Req_Func is equal to 66 (SetAgentActivity):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 67 (SetAgentGroup):

552 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the LINEAGENTGROUPLIST packet pointed by lpAgentGroupList (offset) lies
outside VarData or is not DWORD-aligned.

 The server MUST fail if VarData is not big enough to accommodate LINEAGENTGROUPLIST packet.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 154 (SetAgentMeasurementPeriod):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the value of dwMeasurementPeriod is zero.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 155 (SetAgentSessionState):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the values of both dwAgentSessionState and dwNextAgentSessionState are
zero.

 If the value of dwAgentSessionState is nonzero, the server MUST fail if dwAgentSessionState has
more than one bit set or its value is not one among LINEAGENTSESSIONSTATE_Constants.

 If the value of dwNextAgentSessionState is nonzero, the server MUST fail if
dwNextAgentSessionState has more than one bit set or its value is not one among
LINEAGENTSESSIONSTATE_Constants.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 68 (SetAgentState):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the values of both dwAgentState and dwNextAgentState are zero.

 If the value of dwAgentState is nonzero, server MUST fail if dwAgentState has more than one bit

set or its value is not one among LINEAGENTSESSIONSTATE_Constants.

 If the value of dwNextAgentState is nonzero, the server MUST fail if dwNextAgentState has more

than one bit set or its value is not one among LINEAGENTSESSIONSTATE_Constants.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

553 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When Req_Func is equal to 157 (SetAgentStateEx):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the values of both dwAgentState and dwNextAgentState are zero.

 If the value of dwAgentState is nonzero, the server MUST fail if dwAgentState has more than one

bit set or its value is not one among LINEAGENTSTATEEX_Constants.

 If the value of dwNextAgentState is nonzero, the server MUST fail if dwBearerMode has more than
one bit set or its value is not one among LINEAGENTSTATEEX_Constants.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

When Req_Func is equal to 70 (SetAppSpecific):

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 71 (SetCallData):

 The server MUST check that lpCallData (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

 The server MUST fail if the sum of lpCallData (offset) and dwSize falls beyond VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 143 (SetCallhubTracking):

 The server MUST fail if the LINECALLHUBTRACKINGINFO packet pointed by lpTrackingInfo lies
outside VarData or is not DWORD-aligned.

 The server MUST fail if VarData is not big enough to accommodate the

LINECALLHUBTRACKINGINFO packet.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if LINECALLHUBTRACKINGINFO.dwCurrentTracking is invalid.

When Req_Func is equal to 72 (SetCallParams):

 If lpDialParams is not set to -1(0xffffffff), the server MUST check that lpDialParams (offset) is
DWORD-aligned and lies within VarData and fail otherwise.

 If lpDialParams is not set to -1(0xffffffff), the server MUST fail if the sum of lpDialParams (offset)
and dwSize falls beyond VarData.

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if dwBearerMode has more than one bit set or its value is not one among

LINEBEARERMODE_Constants.

When Req_Func is equal to 74 (SetCallqualityofservice):

 The server MUST check that lpSendingFlowspec (offset) is DWORD-aligned and lies within VarData
and fail otherwise.

 The server MUST fail if the sum of lpSendingFlowspec (offset) and dwSendingFlowspecSize falls
beyond VarData.

554 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST check that lpReceivingFlowspec (offset) is DWORD-aligned and lies within
VarData and fail otherwise.

 The server MUST fail if the sum of lpReceivingFlowspec (offset) and dwSendingFlowspecSize falls
beyond VarData.

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 75 (SetCallTreatment):

 The server MUST fail if hCall is an invalid handle.

 The server MUST fail if the value of dwTreatment is zero or between 4 to 256.

When Req_Func is equal to 76 (SetDefaultMediaDetection):

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 77 (SetDevConfig):

 The server MUST check that lpDeviceConfig (offset) is DWORD-aligned and lies within VarData and
fail otherwise.

 The server MUST fail if the sum of lpDeviceConfig (offset) and dwSize falls beyond VarData.

 The server MUST fail if the string pointed to by lpszDeviceClass is not WCHAR-aligned, not NULL-
terminated, or lies outside VarData.

 The server MUST fail if dwDeviceID is invalid.

When Req_Func is equal to 78 (SetLineDevStatus):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if dwStatusToChange is zero or does not have a value among

LINEDEVSTATUSFLAGS_Constants.

When Req_Func is equal to 79 (SetMediaControl):

 The server MUST check that lpDigitList (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

 The server MUST fail if the sum of lpDigitList (offset) and dwDigitNumEntries falls beyond VarData.

 The server MUST check that lpMediaList (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

 The server MUST fail if the sum of lpMediaList (offset) and dwMediaNumEntries falls beyond
VarData.

 The server MUST check that lpToneList (offset) is DWORD-aligned and lies within VarData and fail
otherwise.

 The server MUST fail if the sum of lpToneList (offset) and dwToneNumEntries falls beyond
VarData.

 The server MUST check that lpCallStateList (offset) is DWORD-aligned and lies within VarData and
fail otherwise.

 The server MUST fail if the sum of lpCallStateList (offset) and dwCallStateNumEntries falls beyond
VarData.

555 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Depending upon the type of parameter passed in dwSelect, the server MUST check that hCall and
hLine handles are valid or fail otherwise.

When Req_Func is equal to 80 (SetMediaMode):

 The server MUST fail if hCall is an invalid handle.

 For version < = 2.1, the server MUST fail if there is more than one bit set in dwMediaModes
without the UNKNOWN flag set or its value is not one among LINEMEDIAMODE_Constants.

When Req_Func is equal to 156 (SetQueueMeasurementPeriod):

 The Server MUST fail if dwMeasurementPeriod is set to zero.

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if there is no registered proxy function handler for line handle.

 The server MUST fail if the registered proxy function handler does not handle this request.

 On success, the server sends the request to the registered proxy function handler.

When Req_Func is equal to 82 (SetStatusMessages):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if dwLineStates value is not one among valid LINEDEVSTATE_Constants.

 The server MUST fail if the dwAddressStates value is not one among valid
LINEADDRESSSTATE_Constants.

When Req_Func is equal to 83 (SetTerminal):

 Depending upon the type of parameter passed in dwSelect, the server MUST check that hCall and
hLine handles are valid or fail otherwise.

 The server MUST fail if dwSelect has more than one bit set or its value is not one among
LINECALLSELECT_Constants.

 The server MUST fail if the dwTerminalModes is zero or its value is not one among valid
LINETERMMODE_Constants.

When Req_Func is equal to 87 (SwapHold):

 The server MUST fail if hActiveCall is an invalid handle.

 The server MUST fail if hHeldCall is an invalid handle.

 The server MUST fail if call handle for HeldCall and ActiveCall are the same.

When Req_Func is equal to 88 (UncompleteCall):

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 89 (Unhold):

 The server MUST fail if hCall is an invalid handle.

When Req_Func is equal to 90 (Unpark):

 The server MUST fail if the string pointed to by lpszDestAddress is not WCHAR-aligned, not NULL-
terminated, or lies outside VarData.

556 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if hLine is an invalid handle.

 On success, the server creates a call with a new handle (HCALL) and adds it to the Call List. The
server updates the call with the handle of the line on which the call is made and adds this call to
the list of calls maintained for an opened line. The server adds the client to the list of clients

maintained for the call handle (HCALL) in the Call List.

When Req_Func is equal to 54 (Open):

 The server MUST fail if hLineApp is an invalid handle.

 The server MUST fail if dwAPIVersion is invalid. The valid values are 0x00010003, 0x00010004,
0x00020000, 0x00020001, 0x00020002, 0x00030000, and 0x00030001.

 The server MUST fail if none of the privilege bits are set in dwPrivileges or
LINECALLPRIVILEGE_NONE is set with either LINECALLPRIVILEGE_MONITOR and

LINECALLPRIVILEGE_OWNER also being set.

 The server MUST fail if any bit other than a valid bit is set in dwPrivileges.

 The server MUST fail if dwPrivileges is set to LINEOPENOPTION_SINGLEADDRESS or
LINEOPENOPTION_PROXY and the LINECALLPARAMS packet pointed to by pCallParams lies outside
VarData or is not DWORD-aligned.

 The server MUST fail if dwPrivileges has LINEOPENOPTION_SINGLEADDRESS set and

dwAddressMode is not set to LINEADDRESSMODE_ADDRESSID.

 The server MUST fail if dwPrivileges has LINEOPENOPTION_OWNER set and dwMediaModes is
invalid.

 The server MUST fail if dwExtVersion is invalid.

 The server MUST fail if dwPrivileges has LINEOPENOPTION_SINGLEADDRESS set and dwAddressID
is invalid.

 The server MUST fail if dwPrivileges is set to LINEOPENOPTION_SINGLEADDRESS or

LINEOPENOPTION_PROXY and the LINECALLPARAMS packet pointed by pCallParams is invalid. The
invalidity of the LINECALLPARAMS packet is defined directly after the processing rules for
SetUpTransfer.

 On success, the server creates a line with a new handle (HLINE) and adds it to the List of
Opened Lines. The server updates the client and provider information for the added line handle
(HLINE). If dwPrivileges is set to LINEOPENOPTION_PROXY, add the client as a registered proxy
function handler to the line in the Provider List.

When Req_Func is equal to 127 (ConditionalMediaDetection):

 The server MUST fail if LINECALLPARAMS packet pointed by lpCallParams is invalid. The invalidity
of the LINECALLPARAMS packet is defined directly after the processing rules for SetUpTransfer.

 The server MUST fail if the lpCallParams(offset) lies outside VarData or is not DWORD-aligned.

 The server MUST fail if VarData is not big enough to accommodate LINECALLPARAMS packet.

 The server MUST fail if hLine is an invalid handle.

When Req_Func is equal to 17 (Forward):

 The server MUST fail if hLine is an invalid handle.

557 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 If lpForwardList is not set to 0xffffffff, the server MUST fail if the LINEFORWARDLIST packet
pointed by lpForwardList lies outside VarData or is not DWORD-aligned.

 If lpCallParams is not set to 0xffffffff, the server MUST fail if the LINECALLPARAMS packet pointed
by lpCallParams lies outside VarData or is not DWORD-aligned.

 The server MUST fail if the size of lpForwardList is less than size of LINEFORWARDLIST packet.

 For each LINEFORWARD in LINEFORWARDLIST packet:

 The server MUST fail if dwForwardMode has more than one bit set or its value is not one
among LINEFORWARDMODE_Constants.

 The server MUST check that dwCallerAddressOffset is DWORD-aligned and lies within VarData
and fail otherwise.

 The server MUST fail if the sum of dwCallerAddressOffset and dwSize falls beyond VarData.

 The server MUST check that dwDestAddressOffset is DWORD-aligned and lies within VarData
and fail otherwise.

 The server MUST fail if the sum of dwDestAddressOffset and dwSize falls beyond VarData.

 The server MUST fail if the LINECALLPARAMS packet pointed by lpCallParams is invalid. The
invalidity of the LINECALLPARAMS packet is defined directly after the processing rules for
SetUpTransfer.

 On success, the server creates a call with a new handle (HCALL) and adds it to the Call List. The
server updates the call with the handle of the line on which the call is made and adds this call to
the list of calls maintained for an opened line. The server adds the client to the list of clients
maintained for the call handle (HCALL) in the Call List.

When Req_Func is equal to 48 (MakeCall):

 The server MUST fail if hLine is an invalid handle.

 The server MUST fail if the string pointed to by lpszDestAddress is not WCHAR-aligned, not NULL-

terminated, or lies outside VarData.

 If lpszDigits is not set to 0xffffffff, the server MUST fail if the LINECALLPARAMS packet pointed by
dwCallParamsOffset lies outside VarData or is not DWORD-aligned.

 The server MUST fail if VarData is not big enough to accommodate LINECALLPARAMS packet.

 The server MUST fail if the LINECALLPARAMS packet pointed by lpCallParams is invalid. The
invalidity of the LINECALLPARAMS packet is defined directly after the processing rules for
SetUpTransfer.

 On success, the server creates a call with a new handle (HCALL) and adds it to the Call List. The
server updates the call with the handle of the line on which the call is made and adds this call to
the list of calls maintained for an opened line. The server adds the client to the list of clients

maintained for the call handle (HCALL) in the Call List.

When Req_Func is equal to 57 (PrepareAddtoConference):

 The server MUST fail if hConfCall is an invalid handle.

 The server MUST fail if the LINECALLPARAMS packet pointed by lpCallParams lies outside VarData
buffer or is not DWORD-aligned.

 The server MUST fail if VarData is not big enough to accommodate LINECALLPARAMS packet.

558 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if the LINECALLPARAMS packet pointed by lpCallParams is invalid. The
invalidity of the LINECALLPARAMS packet is defined directly after the processing rules for

SetUpTransfer.

 On success, the server creates a consultation call with a new handle (HCALL) and adds it to the

Call List. The server updates the call with the handle of the line on which the call is made and
adds this call to the list of calls maintained for an opened line. The server adds the client to the list
of clients maintained for the call handle (HCALL) in the Call List.

When Req_Func is equal to 84 (SetUpConference):

 The server MUST check that hCall and hLine handles are valid or fail otherwise.

 If lpCallParams is not set to 0xffffffff, the server MUST fail if the LINECALLPARAMS packet pointed
by lpCallParams lies outside VarData buffer or is not DWORD-aligned.

 The server MUST fail if VarData is not big enough to accommodate the LINECALLPARAMS packet.

 The server MUST fail if the LINECALLPARAMS packet pointed by lpCallParams is invalid. The
invalidity of the LINECALLPARAMS packet is defined directly after the processing rules for
SetUpTransfer.

 On success, the server creates a conference call with a new handle (HCALL) and adds it to the
Conference List. The server also creates a consultation call with a new handle (HCALL) and adds

it to the call list. The server updates the calls with the handle of the line on which the call is made
and adds the calls to the list of calls maintained for an opened line. The server adds the client to
the list of clients maintained for the call handle (HCALL) in the Call List. If hCall is specified, the
server adds the call to the list of calls maintained for the conference call in the Conference List.

When Req_Func is equal to 85 (SetUpTransfer):

 The server MUST fail if hCall is an invalid handle.

 If lpCallParams is not set to 0xffffffff, the server MUST fail if the LINECALLPARAMS packet pointed

by lpCallParams lies outside VarData buffer or is not DWORD-aligned.

 The server MUST fail if VarData is not big enough to accommodate the LINECALLPARAMS packet.

 The server MUST fail if the LINECALLPARAMS packet pointed by lpCallParams is invalid. The
invalidity of the LINECALLPARAMS packet is defined directly after the processing rules for
SetUpTransfer.

 On success, the server creates a consultation call with a new handle (HCALL) and adds it to the
Call List. The server updates the call with the handle of the line on which the call is made and

adds this call to the list of calls maintained for an opened line. The server adds the client to the list
of clients maintained for the call handle (HCALL) in the Call List.

LINECALLPARAMS packet is invalid if (this validity is checked as part of Open,
ConditionalMediaDetection, Forward, MakeCall, PrepareAddtoConference, SetUpConference, and
SetUpTransfer requests):

 dwTotalSize is less than size of fixed portion of LINECALLPARAMS.

 dwBearerMode is invalid.

 More than one bit is set for dwBearerMode; this is valid for API versions greater than 0x00020000.

 dwMediaMode, dwCallParamFlags, dwAddressMode, dwPredictiveAutoTransferStates, or
dwAddressType are invalid.

559 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 dwOrigAddressOffset, dwUserUserInfoOffset, dwHighLevelCompOffset, dwLowLevelCompOffset,
dwDevSpecificOffset, dwDisplayableAddressOffset, dwCalledPartyOffset, dwCommentOffset,

dwTargetAddressOffset, dwSendingFlowspecOffset, dwReceivingFlowspecOffset,
dwDeviceClassOffset, dwDeviceConfigOffset, dwCallDataOffset, dwCallingPartyIDOffset are not

DWORD-aligned or do not lie within VarData.

 The sum of dwOrigAddressSize and dwOrigAddressOffset, or sum of dwUserUserInfoSize and
dwUserUserInfoOffset, or sum of dwHighLevelCompSize and dwHighLevelCompOffset, or sum of
dwLowLevelCompSize and dwLowLevelCompOffset, or sum of dwDevSpecificSize and
dwDevSpecificOffset, or sum of dwTargetAddressSize and dwTargetAddressOffset, or sum of
dwSendingFlowspecSize and dwSendingFlowspecOffset, or sum of dwReceivingFlowspecSize and
dwReceivingFlowspecOffset, or sum of dwDeviceClassSize and dwDeviceClassOffset, or sum of

dwDeviceConfigSize and dwDeviceConfigOffset, or sum of dwCallDataSize and dwCallDataOffset,
or sum of dwCallingPartyIDSize and dwCallingPartyIDOffset do not lie within varData.

 For API version greater than 0x00020000, the sum of dwDisplayableAddressSize and
dwDisplayableAddressOffset or sum of dwCalledPartySize and dwCalledPartyOffset or sum of
dwCommentSize and dwCommentOffset do not lie within varData.

When Req_Func is equal to 106 (Initialize):

 The server MUST fail if dwFriendlyNameOffset is not WCHAR-aligned.

 The server MUST fail if the string pointed by dwFriendlyNameOffset lies outside the variable data
area (VarData).

 The server MUST fail if the string pointed by dwFriendlyNameOffset is not NULL-terminated.

 The server MUST fail if dwModuleNameOffset is not WCHAR-aligned.

 The server MUST fail if the string pointed by dwModuleNameOffset lies outside the variable data
area.

 The server MUST fail if the string pointed by dwModuleNameOffset is not NULL-terminated.

 On success, the server creates a new client's usage handle (HPHONEAPP) and adds it to the
PhoneApp Handle List. The server also adds the handle to the list of usage handles for the client
in the Client List. The server queries the number of phones from service providers installed on
the machine and updates the Provider List with this information.

When Req_Func is equal to 108 (NegotiateAPIVersion):

 The server MUST fail if the size of vardata is less than the size of the PHONEEXTENSIONID

structure.

 The server MUST fail if dwDeviceIDLocal is invalid.

 The server MUST fail if hPhoneApp is invalid.

 The server MUST fail if dwVersion is greater than dwVersionCurrent.

 The server MUST fail if no valid TAPI version exists between dwVersion or dwVersionCurrent (both
inclusive). The valid values are 0x00010003, 0x00010004, 0x00020000, 0x00020001,

0x00020002, 0x00030000, and 0x00030001.

When Req_Func is equal to 95 (GetDevCaps):

 The server MUST fail if the size of VarData is less than the size of the PHONECAPS structure.

 The server MUST fail if dwExtVersion is invalid.

560 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if dwDeviceID is invalid.

When Req_Func is equal to 107 (Open):

 The server MUST fail if hPhoneApp is an invalid handle.

 The server MUST fail if dwPrivilege is invalid. The valid values are PHONEPRIVILEGE_MONITOR

and PHONEPRIVILEGE_OWNER.

 The server MUST fail if dwNegotiatedVersion is invalid.

 The server MUST fail if dwExtVersion is invalid.

 On success, the server creates a phone with a new handle (HPHONE) and adds it to the List of
Opened Phones. The server updates the client and provider information for the added phone
handle (HPHONE).

When Req_Func is equal to 91 (Close):

 The server MUST fail if hPhone is an invalid handle.

 On success, the server removes the handle (HPHONE) and the client from the List of Opened
Phones.

When Req_Func is equal to 119 (Shutdown):

 The server MUST fail if hPhoneApp is an invalid handle.

 On success, the server removes the handle from PhoneApp Handle List and from the list of

usage handles for the client in the Client List.

When Req_Func is equal to 92 (DevSpecific):

 The server MUST fail if lpParams is invalid (negative) or dwSize + lpParams points outside
VarData.

 The server MUST fail if hPhone is an invalid handle.

When Req_Func is equal to 93 (GetButtonInfo):

 The server MUST fail if lpButtonInfo is greater than the size of the VarData.

 The server MUST fail if hPhone is an invalid handle.

 The server MUST fail if lpButtonInfo is less than size of PHONEBUTTONINFO.

When Req_Func is equal to 94 (GetData):

 The server MUST fail if dwSize is greater than the size of VarData.

When Req_Func is equal to 96 (GetDisplay):

 The server MUST fail if hPhone is an invalid handle.

 The server MUST fail if lpDisplay greater than the size of VarData.

 The server MUST fail if lpDisplay is less than the size of VARSTRING structure.

When Req_Func is equal to 97 (GetGain):

 The server MUST fail if hPhone is an invalid handle.

561 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if dwHookSwitchDev has more than one bit set or its value is not one among
PHONEHOOKSWITCHDEV_Constants.

When Req_Func is equal to 98 (GetHookSwitch):

 The server MUST fail if hPhone is an invalid handle.

When Req_Func is equal to 99 (GetID):

 The server MUST fail if lpDeviceID is greater than the size of varData.

 The server MUST fail if lpDeviceID is less than the size of VARSTRING packet.

 The server MUST fail if the string pointed to by lpszDeviceClass is not WCHAR-aligned, not NULL-
terminated, or lies outside varData.

 The server MUST fail if hPhone is an invalid handle.

When Req_Func is equal to 101 (GetLamp):

 The server MUST fail if hPhone is an invalid handle.

When Req_Func is equal to 102 (GetRing):

 The server MUST fail if hPhone is an invalid handle.

When Req_Func is equal to 103 (GetStatus):

 The server MUST fail if lpPhoneStatus is greater than the size of varData.

 The server MUST fail if hPhone is an invalid handle.

 The server MUST fail if lpPhoneStatus is not equal to the size of the PHONESTATUS packet.

When Req_Func is equal to 105 (GetVolume):

 The server MUST fail if hPhone is an invalid handle.

 The server MUST fail if exactly one of the following bits are not set in dwHookSwitchDev:

 PHONEHOOKSWITCHDEV_HANDSET

 PHONEHOOKSWITCHDEV_SPEAKER

 PHONEHOOKSWITCHDEV_HEADSET

When Req_Func is equal to 109 (NegotiateExtVersion):

 The server MUST fail if hPhoneApp is an invalid handle.

 The server MUST fail if dwDeviceID is an invalid handle.

 The server MUST fail if dwTSPIVersion is invalid. The valid values are 0x00010003, 0x00010004,
0x00020000, 0x00020001, 0x00020002, 0x00030000, and 0x00030001.

When Req_Func is equal to 129 (SelectExtVersion):

 The server MUST fail if hPhone is an invalid handle.

When Req_Func is equal to 110 (SetButtonInfo):

 The server MUST fail if hPhone is an invalid handle.

562 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST fail if the PHONEBUTTIONINFO packet lies outside varData buffer or is not
DWORD-aligned.

When Req_Func is equal to 111 (SetData):

 The server MUST fail if hPhone is invalid.

 The server MUST check that lpData (offset) is DWORD-aligned and lies within varData and fail
otherwise.

 The server MUST fail if the sum of lpData (offset) and dwSize falls beyond varData.

 The server MUST fail if the client does not have privileges greater than or equal to
PHONEPRIVILEGE_OWNER.

When Req_Func is equal to 112 (SetDisplay):

 The server MUST fail if hPhone is invalid.

 The server MUST check that lpsDisplay (offset) is DWORD-aligned and lies within varData and fail
otherwise.

 The server MUST fail if the sum of lpsDisplay (offset) and dwSize falls beyond varData.

 The server MUST fail if the client does not have privileges greater than or equal to
PHONEPRIVILEGE_OWNER.

When Req_Func is equal to 113 (SetGain):

 The server MUST fail if hPhone is invalid.

 The server MUST fail if dwHookSwitchDev is invalid.

 The server MUST fail if the client does not have privileges greater than or equal to
PHONEPRIVILEGE_OWNER.

When Req_Func is equal to 114 (SetHookSwitch):

 The server MUST fail if hPhone is invalid.

 The server MUST fail if dwHookSwitchDev is invalid.

 The server MUST fail if dwHookSwitchMode is invalid.

 The server MUST fail if the client does not have privileges greater than or equal to
PHONEPRIVILEGE_OWNER.

When Req_Func is equal to 115 (SetLamp):

 The server MUST fail if hPhone is invalid.

 The server MUST fail if dwLampMode is invalid.

 The server MUST fail if the client does not have privileges greater than or equal to

PHONEPRIVILEGE_OWNER.

When Req_Func is equal to 116 (SetRing):

 The server MUST fail if hPhone is invalid.

 The server MUST fail if the client does not have privileges greater than or equal to
PHONEPRIVILEGE_OWNER.

563 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When Req_Func is equal to 117 (SetStatusMessages):

 The server MUST fail if hPhone is invalid.

 The server MUST fail if dwPhoneStates is invalid.

 The server MUST fail if dwButtonModes is invalid.

 The server MUST fail if dwButtonStates is invalid.

 The server MUST fail if dwButtonModes has at least one valid flag set and dwButtonStates has no
valid flag set.

 The server MUST fail if the client does not have privileges greater than or equal to
PHONEPRIVILEGE_MONITOR.

When Req_Func is equal to 118 (SetVolume):

 The server MUST fail if hPhone is invalid.

 The server MUST fail if dwHookSwitchDev is invalid.

 The server MUST fail if the client does not have privileges greater than or equal to
PHONEPRIVILEGE_OWNER.

 The server MUST fail if VarData is not big enough to accommodate PHONEBUTTONINFO.

When Req_Func is equal to 131 (GetAvailableProviders):

 The server MUST fail if lpProviderList is greater than size of VarData.

 The server MUST fail if lpProviderList is less than size of AVAILABLEPROVIDERLIST.

When Req_Func is equal to 165 (GetDeviceFlags):

 The server MUST fail if dwProviderID is invalid.

When Req_Func is equal to 132 (GetLineInfo):

 The server MUST fail if lpDeviceInfoList is greater than size of VarData.

 The server MUST fail if VarData is not big enough to accommodate DEVICEINFOLIST.

When Req_Func is equal to 133 (GetPhoneInfo):

 The server MUST fail if lpDeviceInfoList is greater than size of VarData.

 The server MUST fail if VarData is not big enough to accommodate DEVICEINFOLIST.

When Req_Func is equal to 42 (GetProviderList):

 The server MUST fail if lpProviderList is greater than size of VarData.

 The server MUST fail if dwAPIVersion is invalid. The valid values are 0x00010003, 0x00010004,
0x00020000, 0x00020001, 0x00020002, 0x00030000, and 0x00030001.

 The server MUST fail if lpProviderList is less than size of LINEPROVIDERLIST.

When Req_Func is equal to 134 (GetServerConfig):

 The server MUST fail if lpProviderList is greater than size of VarData.

 The server MUST fail if VarData is not big enough to accommodate TAPISERVERCONFIG.

564 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When Req_Func is equal to 135 (SetLineInfo):

 The server MUST fail if client does not have admin privileges.

 The server MUST fail if lpDeviceInfoList is not a multiple of 4.

 The server MUST fail if VarData is not big enough to accommodate DEVICEINFOLIST.

When Req_Func is equal to 136 (SetPhoneInfo):

 The server MUST fail if client does not have admin privileges.

 The server MUST fail if lpDeviceInfoList is not a multiple of 4.

 The server MUST fail if VarData is not big enough to accommodate DEVICEINFOLIST.

When Req_Func is equal to 1 (GetUIDllName):

 The server MUST fail if dwObjectType is set to TUISPIDLL_OBJECT_LINEID or

TUISPIDLL_OBJECT_PHONEID and the client does not have admin privileges.

 The server MUST fail if dwObjectType is set to TUISPIDLL_OBJECT_PROVIDERID and the client is
trying to install or uninstall the TSP and does not have admin privileges. The server MUST fail if
dwObjectID is invalid.

 The following failures are valid if dwProviderFileNameOffset is not set to 0xffffffff.

 The server MUST fail if dwProviderFileNameOffset is not WCHAR-aligned.

 The server MUST fail if the string pointed by dwProviderFileNameOffset lies outside the

variable data area (VarData).

 The server MUST fail if the string pointed by dwProviderFileNameOffset is not NULL-
terminated.

When Req_Func is equal to 2 (TUISPIDLLCallBack):

 The server MUST check that dwParamsInOffset is DWORD-aligned and lies within varData and fail
otherwise.

 The server MUST fail if the sum of dwParamsInOffset and dwParamsInSize falls beyond varData.

 The server MUST fail if dwObjectType is set to TUISPIDLL_OBJECT_LINEID or
TUISPIDLL_OBJECT_PHONEID and the client does not have admin privileges.

 The server MUST fail if dwObjectID is invalid.

When Req_Func is equal to 3 (FreeDialogInstance):

 The server MUST fail if htDlgInst is an invalid handle.

 On success, the server adds (or removes) a provider to (or from) the provider list if the operation

that is initiated using the GetUIDllName packet is installation (or removal) of the provider. If

added, the server updates the provider with the provider name, service provider version, provider
ID, and the list of lines available on the service provider.

When Req_Func is equal to 137 (SetServerConfig):

 The server MUST fail if client does not have admin privileges.

 The server MUST fail if VarData is not big enough to accommodate TAPISERVERCONFIG.

565 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When Req_Func is equal to 0 (GetAsyncEvents):

 The server MUST fail if dwTotalBufferSize is greater than the size of VarData.

When Req_Func is equal to 130 (NegotiateAPIVersionForAllDevices):

 The server MUST fail if VarData is not big enough to accommodate a LINEEXTENSIONID packet, a

PHONEEXTENSIONID packet, and DWORD-arrays of Line API Version and Phone API Version.

 The server MUST fail if dwNumLineDevices or dwNumPhoneDevices is invalid.

 The server MUST fail if dwLineAPIVersionListSize is not a multiple of 4 and dwNumLineDevices.

 The server MUST fail if dwPhoneAPIVersionListSize is not a multiple of 4 and dwNumPhoneDevices.

 The server MUST fail if dwLineExtensionIDListSize is not equal to a multiple of the size of
LINEEXTENSIONID and dwNumLineDevices.

 The server MUST fail if dwPhoneExtensionIDListSize is not equal to a multiple of the size of

PHONEEXTENSIONID and dwNumPhoneDevices.

 The server MUST fail if dwAPIHighVersion is invalid. The valid values are 0x00010003,
0x00010004, 0x00020000, 0x00020001, 0x00020002, 0x00030000, and 0x00030001.

When Req_Func is equal to 161 (RSPSetEventFilterMasks):

 The server MUST fail if dwObjType is invalid.

 The server MUST fail if lObjectID is invalid.

3.1.4.3 ClientDetach (Opnum 2)

The ClientDetach method is called by a client when it finishes using the telephony resources on a
server. In response, the server frees the referenced binding instance and releases the allocated

resources associated with the client. For connection-oriented clients, the server then calls

RemoteSPDetach on the client to release the allocated resources created on the client side.

 void ClientDetach(
 [in, out] PCONTEXT_HANDLE_TYPE* pphContext
);

pphContext: Pointer to a PCONTEXT_HANDLE_TYPE handle to the binding instance being terminated.

This method has no return values.

On success, the server removes the client from the Client list.

Exceptions Thrown:

No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

The opnum field value for this method is 2.

3.1.5 Timer Events

No protocol timer events are required on the server beyond the timers required in the underlying
RPC protocol.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

566 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server can cancel an ongoing RPC (for example, RemoteSPEventProc) to connection-oriented
clients if it determines on another thread that the thread making the RPC has been continuously

blocked for more than a time-out period. The time-out period can be configurable with some default
value.

The server can release resources allocated for connectionless clients that do not request event data
(by calling ClientRequest with the GetAsyncEvents packet) within a time-out period after notifying the
client of the availability of new events (by writing a DWORD to the mailslot of the client). The time-out
can be configurable with some default value.<7>

3.1.6 Other Local Events

The server does not retry a connection dropped by the lower layers.

3.2 Tapsrv Client Details

3.2.1 Abstract Data Model

None

3.2.2 Timers

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

This protocol uses nondefault behavior for the RPC Call Timeout timer defined in [MS-RPCE] section
3.3.2.2.2. The timer value that this protocol uses is configurable, with a default value of 5 seconds.

This time-out applies to all method calls on the tapsrv interface.

3.2.3 Initialization

If the client uses a mailslot or the remotesp interface, as specified in the ClientAttach call, then the
client MUST be listening on the protocol sequence and the endpoint specified for the remotesp

interface or MUST have opened the specified mailslot, respectively.

3.2.4 Message Processing Events and Sequencing Rules

The Telephony Remote Protocol MUST indicate to the RPC runtime that it is to perform a strict NDR

data-consistency check at target level 5.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data-consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with a
nonzero conformant value, as specified in [MS-RPCE] section 3.

3.2.5 Timer Events

None

3.2.6 Other Local Events

When a server is not responding or not available, the client can poll for the availability of the server
by using means external to this protocol—for example, an Internet Control Packet Protocol (ICMP)
ping request to check that the server computer is running and connected to the network—and connect

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

567 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

automatically to the server after the polling indicates that the server is available. The polling interval
can be configurable with some default value.<8>

The client can choose to retry ClientRequest calls to the server for specific TAPI operations when these
calls result in an RPC exception (for example, for TAPI32_MSG.Req_Func == GetAsyncEvents). The

retry time-out and the number of retries can be configurable on the client with some default
values.<9>

3.3 Remotesp Server Details

The remotesp interface server corresponds to the connection-oriented client side of this protocol.
The term client is used interchangeably with the term remotesp server, and the term server is used
interchangeably with the term remotesp client.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

Server List: The list of all servers that have established a binding instance with the client using
RemoteSPAttach.

Request ID list: The list of all request identifiers that were returned by the server for each
asynchronous request. When an asynchronous request (for example, MakeCall) is made by the
client using ClientRequest, this list is updated with the request identifier returned by the server.
The client also maintains the association between the request identifier and the request made by
the client. When the client receives the completion response event of the asynchronous operation
(either by pull model or push model), the corresponding request identifier is removed from the

list.

3.3.2 Timers

None

3.3.3 Initialization

The remotesp server MUST be listening on the RPC protocol sequence and the endpoint it
specifies to the server during the ClientAttach method, as specified in [C706] section 6.2.2.

3.3.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data-consistency
check at target level 5.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data-consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with a
nonzero conformant value, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute that it is to
reject the use of context handles created by a method from a different RPC interface than this one, as
specified in [MS-RPCE] section 3.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

568 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Methods in RPC Opnum Order

Method Description

RemoteSPAttach The RemoteSPAttach method is called by the server to establish a binding instance in
response to a client call to the server's ClientAttach method.

Opnum: 0

RemoteSPEventProc The RemoteSPEventProc method is called by the server to "push" completion notifications
and unsolicited events to the client.

Opnum: 1

RemoteSPDetach The RemoteSPDetach method is called by the server in response to a client call to the
server's ClientDetach method to free the binding instance and to release the associated
resources.

Opnum: 2

3.3.4.1 RemoteSPAttach (Opnum 0)

The RemoteSPAttach method is called by the server to establish a binding instance in response to a
client call to the server's ClientAttach method.

 long RemoteSPAttach(
 [out] PCONTEXT_HANDLE_TYPE2* pphContext
);

pphContext: Client handle of type PCONTEXT_HANDLE_TYPE2.

Return Values: The method returns 0 on success; otherwise, it returns a nonzero error code, as
specified in [MS-ERREF]. On success, the Server List is updated with the binding instance.

Exceptions Thrown:

The client raises an RPC_S_ACCESS_DENIED exception if it fails to obtain the RPC call attributes. The
client also raises an RPC_S_ACCESS_DENIED exception if it determines from the call attributes that
the server did not specify RPC_C_AUTHN_LEVEL_PKT_PRIVACY, and the client configuration requires

this authentication level.

Except as noted above, no exceptions are thrown beyond those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

The opnum field value for this method is 0.<10>

3.3.4.2 RemoteSPEventProc (Opnum 1)

The RemoteSPEventProc method is called by the server to "push" completion notifications and
unsolicited events to the client. The server MUST call this method of the remotesp interface with the
endpoint and protocol sequence as specified by the connection-oriented client in the ClientAttach
RPC packet.

 void RemoteSPEventProc(
 [in] PCONTEXT_HANDLE_TYPE2 phContext,
 [in, length_is(lSize), size_is(lSize)]
 unsigned char pBuffer[],
 [in] long lSize

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

569 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

);

phContext: Client handle of type PCONTEXT_HANDLE_TYPE2.

pBuffer: Packet MUST contain a list of ASYNCEVENTMSG structures, each of which MUST be
ASYNCEVENTMSG.TotalSize bytes in size.

lSize: Size of the pBuffer.

Return Values: This method has no return values.

Exceptions Thrown:

No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

The opnum field value for this method is 1.

When processing a notification, remotesp MUST do the following:

 Fail if the lsize is a negative value, not DWORD-aligned, or less than the size of the fixed portion of
the ASYNCEVENTMSG structure.

 Fail if any of ASYNCEVENTMSG structure present in the buffer does not have a valid TotalSize.
TotalSize is invalid if it is less than the size of the fixed portion of the ASYNCEVENTMSG packet, it

is not DWORD-aligned, or it overflows the pBuffer.

 Fail if the size of pBuffer has data other than a list of ASYNCEVENTMSG structures.

 Fail if ASYNCEVENTMSG.InitContext is an invalid value.

Depending on the value of ASYNCEVENTMSG.Msg, remotesp performs additional checks described as
follows:

For Msg = 0x00000008(LINE_LINEDEVSTATE), 0x00000003(LINE_CLOSE),

0x00000000(LINE_ADDRESSSTATE), 0x00000016 (LINE_AGENTSTATUS), 0x0000001B
(LINE_AGENTSESSIONSTATUS), 0x0000001C (LINE_QUEUESTATUS) , 0x0000001D
(LINE_AGENTSTATUSEX), 0x0000001E (LINE_GROUPSTATUS), 0x0000001F (LINE_PROXYSTATUS),
0x00000001 (LINE_CALLINFO), 0x00000002 (LINE_CALLSTATE), 0x00000007 (LINE_GENERATE),
0x00000009 (LINE_MONITORDIGITS), 0x0000000A (LINE_MONITORMEDIA), 0x0000000B
(LINE_MONITORTONE), 0x00000017 (LINE_APPNEWCALL):

 Ignore the response if hRemoteLine is set and is an invalid handle.

For Msg = 0x0000000C (LINE_REPLY), 0x00000011 (PHONE_REPLY):

 Ignore the response if dwRemoteRequestID is invalid.

For Msg = 0x00000012 (PHONE_STATE), 0x0000000F (PHONE_CLOSE), 0x00000010
(PHONE_DEVSPECIFIC):

 Ignore the response if hRemotePhone is set and is an invalid handle.

For Msg= 0x00000013 (LINE_CREATE), 0x00000014 (PHONE_CREATE):

 Ignore the response if the device identifier passed in Param1 is invalid.

For Msg = 0x00000019 (LINE_REMOVE), 0x0000001A (PHONE_REMOVE):

 Ignore the response if Param1 is an invalid handle.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

570 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For Msg = 0x0000000E (PHONE_BUTTON):

 Ignore the response if hDevice is invalid.

For Msg = 0x00000015 (LINE_AGENTSPECIFIC), 0x00000004 (LINE_DEVSPECIFIC), 0x00000005
(LINE_DEVSPECIFICFEATURE):

 Ignore the response if param4 is set and is invalid.

 Ignore the response if param4 is not set and hDevice is invalid.

3.3.4.3 RemoteSPDetach (Opnum 2)

The RemoteSPDetach method is called by the server in response to a Client call to the server's
ClientDetach method to free the binding instance and to release the associated resources.

 void RemoteSPDetach(
 [in, out] PCONTEXT_HANDLE_TYPE2* pphContext
);

pphContext: Pointer to a PCONTEXT_HANDLE_TYPE2 handle to the binding instance being

terminated.

This method has no return values.

On success, the binding instance is removed from the Server List.

Exceptions Thrown:

No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

The opnum field value for this method is 2.

3.3.5 Timer Events

None

3.3.6 Other Local Events

The server does not retry a connection dropped by the lower layers.

3.4 Remotesp Client Details

The remotesp interface client corresponds to the server side of the Telephony Remote Protocol. The
term server is used interchangeably with the term remotesp Client, and the term Client is used
interchangeably with the term remotesp server.

3.4.1 Abstract Data Model

None

3.4.2 Timers

None

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

571 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.4.3 Initialization

None

3.4.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data-consistency
check at target level 5.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data-consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with a
nonzero conformant value, as specified in [MS-RPCE] section 3.

3.4.5 Timer Events

None

3.4.6 Other Local Events

None

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

572 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

 A client can negotiate versions for each device one at a time (NegotiateAPIVersion) or for all devices
at once (NegotiateAPIVersionForAllDevices). A client can ask the server to use either the remotesp
interface or mailslot for communication of asynchronous completion or spontaneous events. The
remotesp interface is assumed in the sequence diagrams.

4.1 Packet Exchanges to Establish the Session

Figure 3: Client establishing the session

The client can establish the session for line device usage by following the steps below:

573 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1. The Client first calls ClientAttach to establish a binding instance with the server. The method
returns 0 on success; otherwise, it returns a nonzero error code.

2. The Client calls ClientRequest with the Initialize packet to initialize the client's use of TAPI for
subsequent use of the line abstraction. The server returns the number of line devices available to

the application. The return value of the function is 0 if it is successful and a negative error number
if an error occurs.

3. The client then calls ClientRequest with NegotiateAPIVersionForAllDevices to negotiate which TAPI
version to use for which device. The server returns the list of negotiated TAPI and extension
versions. The return value of the function is 0 if it is successful and a negative error number if an
error occurs.

4. To get the telephony capabilities of a specified line device, the client calls ClientRequest with

GetDevCaps with the device ID. The server returns a packet of LINEDEVCAPS, which is valid for all
addresses on the line device. The return value of the function is 0 if it is successful and a negative
error number if an error occurs.

5. To get the telephony capabilities of a specified address on a specific line device, the client calls
ClientRequest with GetAddressCaps with the device ID. The server returns a packet of
LINEADDRESSCAPS, which is valid for the line address. The return value of the function is 0 if it is

successful and a negative error number if an error occurs.

6. The client then calls ClientRequest with Open to open the line device specified by its device
identifier. The server opens the line device and returns a handle for the opened line device. The
return value of the function is 0 if it is successful and a negative error number if an error occurs.
The values of the parameters for Open depend on the intended purpose and need to refer to the
Open packet documentation. For receiving the incoming calls, the LINECALLPRIVILEGE_OWNER bit
is set in the dwPrivileges parameter of Open so that the application can own and answer any

incoming calls on this line device.

4.2 Packet Exchanges to Terminate the Session

Figure 4: Client terminating the session

The client can terminate the session by following the steps below:

574 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1. The client calls ClientRequest with Close and the specified open line device to close the line. The
server closes the line and returns 0 if it is successful and a negative error number if an error

occurs.

2. The client then calls ClientRequest with Shutdown to terminate the application's use of the line

abstraction. The server shuts down the abstraction and returns 0 if it is successful and a negative
error number if an error occurs.

3. The client finally calls ClientDetach to detach from the binding instance. In response, the server
frees the referenced binding instance and releases the allocated resources associated with the
client.

4.3 Packet Exchanges to Make an Outgoing Call

Figure 5: Client making an outgoing call

A client can make an outgoing call by following the steps below:

1. The client establishes the session as described in the example in section 4.1.

2. The client calls the MakeCall packet to the server to make an outgoing call. The return value is a
positive number that is the request identifier or a negative number in case of error.

3. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which
matches the request identifier previously returned for the MakeCall packet. The LINE_REPLY
packet that is returned is actually the MakeCall completion packet, and it contains the handle to

575 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

the newly created call, which is then used in packets requiring HCALL. A return value of zero
indicates that the call was made successfully, or a negative number is returned on error.

4. When done with the call, the client calls ClientRequest with the Drop packet to terminate the call.
It uses the HCALL returned by the MakeCall completion packet. The server closes the call and

returns 0 if it is successful and a negative error number if an error occurs.

5. The client calls ClientRequest with the DeallocateCall packet to release any resources on the
server. For example, even after terminating the call, the client might want to query information
about the terminated call, such as the caller ID. The server closes the call and the handle for this
call is no longer valid. The server returns 0 if the DeallocateCall operation is successful and a
negative error number if an error occurs.

6. The client can terminate the session as described in the example in section 4.2.

4.4 Packet Exchanges to Answer an Incoming Call

Figure 6: Client answering an incoming call

A client can answer an incoming call by following the steps below:

1. The client establishes the session as described in the example in section 4.1.

2. The server calls the RemoteSPEventProc method of the client with the LINE_APPNEWCALL packet
to indicate that a new call has appeared on the line device. The handle to the newly created call is

provided as part of this LINE_APPNEWCALL packet. The client can allocate any required resources
for a new call at this stage.

3. The server calls the RemoteSPEventProc method of the client with the LINE_CALLSTATE packet;
the call state is LINECALLSTATE_OFFERING to indicate that the client is being offered a new call.

576 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4. The client calls the Answer packet to the server to accept the incoming call. The return value is a
positive number that is the request identifier, or a negative number in case of error.

5. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which
matches the request identifier previously returned for the Answer packet. A return value of 0

indicates that the call was answered successfully, or a negative number is returned on error.

6. When done with the call, the client calls ClientRequest with the Drop packet to terminate the call.
The server closes the call and returns 0 if it is successful, and a negative error number if an error
occurs.

7. The client calls ClientRequest with the DeallocateCall packet to release any resources on the
server. For example, even after terminating the call, the client might want to query information
about the terminated call, such as the caller ID. The server closes the call, and the handle for this

call is no longer valid. The server returns 0 if the DeallocateCall operation is successful, and a
negative error number if an error occurs.

8. The client can terminate the session as described in the example in section 4.2.

4.5 Packet Exchanges to Transfer a Connected call

Figure 7: Client transferring an existing connected call

577 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

A client can transfer an existing connected call. Both outgoing calls and incoming calls that are in a
connected state can be transferred to another address (phone number). The following steps describe

transferring an incoming call that has been answered:

1. The client establishes the session as described in the example in section 4.1.

2. The server calls the RemoteSPEventProc method of the client with the LINE_APPNEWCALL packet
to indicate that a new call has appeared on the line device. The client can allocate any required
resources for a new call at this stage.

3. The server calls the RemoteSPEventProc method of the client with the LINE_CALLSTATE packet;
the call state is LINECALLSTATE_OFFERING to indicate that the client is being offered a new call.

4. The client calls the Answer packet to the server to accept the incoming call. The return value is a
positive number that is the request identifier, or a negative number in case of error.

5. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which
matches the request identifier previously returned for the Answer packet. A return value of 0

indicates that the call was answered successfully, or a negative number is returned on error.

6. The client calls the BlindTransfer packet to the server to transfer the answered call. The return
value is a positive number that is the request identifier, or a negative number in case of error.

7. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which

matches the request identifier previously returned for the BlindTransfer packet. A return value of 0
indicates that the call was answered successfully, or a negative number is returned on error.

8. The answered call has transitioned to the idle state upon successful blind transfer, so there is no
need to drop the call. The client sends the DeallocateCall packet to release any resources on the
server. The server closes the call, and the handle for this call is no longer valid. The server returns
0 if the DeallocateCall operation is successful, and a negative error number if an error occurs

9. The client can terminate the session as described in the example in section 4.2.

4.6 Packet Exchanges to Forward Incoming Calls or Modify the Existing Forward

State

Figure 8: Client forwarding a call

 The client can forward incoming calls by following the steps below:

1. The client establishes the session as described in the example in section 4.1.

578 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2. The client calls the Forward packet to the server to forward calls on the line address or to modify
(including cancel) existing forward instructions. The return value is a positive number that is the

request identifier, or a negative number in case of error.

3. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which

matches the request identifier previously returned for the Forward packet. A return value of 0
indicates that the operation was carried out successfully, or a negative number is returned on
error.

4. The client can terminate the session as described in the example in section 4.2.

4.7 Packet Exchange for Establishing a Management Session

Figure 9: Client establishing a management session

1. A client connecting to the server for managing the server is typically not interested in using the

functionality of the telephony devices on the server or the event occurring on those devices. Such
a client is called an MMC client and uses 0xFFFFFFFD for the lProcessID field of the ClientAttach
method. The server does not send any events to such an MMC client – neither RemoteSPAttach
nor the mailslot mechanism as described in the ClientAttach method are used.

2. The client sends the Initialize buffer for line devices as part of establishing a management session.
This is required to get a HLINEAPP handle that is used in subsequent requests to the server.

579 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.8 Packet Exchanges to Terminate the Management Session

Figure 10: Client terminating a management session

The client can terminate the session by following these steps:

1. The client calls ClientRequest with Shutdown to terminate the application's use of the line
abstraction. The server shuts down the abstraction and returns 0 if it is successful and a negative
error number if an error occurs.

2. The client calls ClientDetach to detach from the binding instance. In response, the server frees the
referenced binding instance and releases the allocated resources associated with the client.

4.9 Packet Exchange for Getting the Server Configuration

Figure 11: Client establishing a management session

1. The client establishes the management session as described in section 4.7.

2. The client sends the GetServerConfig packet to get the server configuration.

3. The server responds with the server configuration information in the corresponding response
packet as given in the description of GetServerConfig packet.

4. The client can terminate the management session as described in section 4.8.

580 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.10 Packet Exchange for Setting the Server Configuration

Figure 12: Client establishing a management session

1. The client establishes the management session as described in section 4.7.

2. The client sends the SetServerConfig packet with the desired server configuration parameters as

given in description of the SetServerConfig packet.

3. The server responds with the corresponding response packet as given in the description of the
SetServerConfig packet.

4. The client can terminate the management session as described in section 4.8.

4.11 Packet Exchanges for ACD proxy requests and responses

Figure 13: ACD proxy request and response exchange

The agent application can send proxy requests and receive proxy responses by following these steps:

1. The client establishes the session as described in the example in section 4.1.

2. The client sends a CreateAgent packet to server to create an agent. The return value is a positive
number that is the request identifier, or a negative number in case of error.

3. The server creates a packet LINE_PROXYREQUEST with structure based on the client requested
packet type. For CreateAgent packet, LINE_PROXYREQUEST packet is created with structure of
type LINEPROXYREQUEST_CREATEAGENT.

4. The server sends the LINE_PROXYREQUEST packet to registered proxy function handler.

5. After completing the request, proxy application sends the response by calling lineProxyResponse
function which results in generation of LINE_REPLY packet.

581 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which
matches the request identifier previously returned for the proxy request packet. A return value of

0 indicates that the operation was carried out successfully, or a negative number is returned on
error.

4.12 Packet Exchanges to Create an Agent Session for an ACD Group

Figure 14: Creating agent session for an ACD group

The agent application can create an agent session for an ACD group by following these steps:

1. The client establishes the session and creates an agent as described in the example in section
4.11.

2. The client sends a GetAgentGroupList packet to server to obtain the agent groups into which agent
is permitted to log on to the automatic call distributor. The return value is a positive number that

is the request identifier, or a negative number in case of error.

3. The server creates a packet LINE_PROXYREQUEST with structure based on the client requested
packet type. For GetAgentGroupList packet, LINE_PROXYREQUEST packet is created with structure
of type LINEPROXYREQUEST_GETAGENTGROUPLIST.

4. The server sends the LINE_PROXYREQUEST packet to registered proxy function handler.

5. After completing the request, proxy application sends the response by calling lineProxyResponse

function which results in generation of LINE_REPLY packet with LINEAGENTGROUPLIST.

582 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which
matches the request identifier previously returned for the proxy request packet. A return value of

0 indicates that the operation was carried out successfully, or a negative number is returned on
error.

7. The client sends a CreateAgentSession packet to server to create a session for an ACD group. The
return value is a positive number that is the request identifier, or a negative number in case of
error.

8. The server creates a packet LINE_PROXYREQUEST with structure based on the client requested
packet type. For CreateAgentSession packet, LINE_PROXYREQUEST packet is created with
structure of type LINEPROXYREQUEST_CREATEAGENTSESSION.

9. The server sends the LINE_PROXYREQUEST packet to registered proxy function handler.

10. After completing the request, the proxy application sends the response by calling the
lineProxyResponse function, which results in generation of the LINE_REPLY packet.

11. The server calls the RemoteSPEventProc method of the client with the LINE_REPLY packet, which
matches the request identifier previously returned for the proxy request packet. A return value of
0 indicates that the operation was carried out successfully, or a negative number is returned on
error.

583 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

The following sections specify security considerations for implementers of the Telephony Remote
Protocol.

5.1 Security Considerations for Implementers

Security considerations for authenticated RPCs that are used in the Telephony Remote Protocol are as
specified in [MS-RPCE]. The client always performs authenticated RPCs.

The RPC connection uses the ncacn_ip_tcp protocol sequence. Both client and server use
RPC_C_AUTHN_LEVEL_PKT_PRIVACY for ClientAttach and RemoteSPAttach, respectively, based on the
version of Windows that supports this level of authentication. Either the client or the server can reject

unencrypted packets based on configuration.<11>

The server performs access control checks based on the credentials of the user.

5.2 Index of Security Parameters

None

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

584 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix A: Full IDL

For ease of implementation, the full IDLs for all interfaces that are defined in this protocol are
provided in this appendix.

6.1 Appendix A.1: Remotesp.IDL

For ease of implementation, the full IDL is provided below.

 [
 uuid(2F5F6521-CA47-1068-B319-00DD010662DB),
 version(1.0),
 #ifdef __midl
 ms_union,
 #endif // __midl
 pointer_default(unique)
]

 interface remotesp

 {
 typedef [context_handle] void * PCONTEXT_HANDLE_TYPE2;

 long
 RemoteSPAttach(
 [out] PCONTEXT_HANDLE_TYPE2 *pphContext
);

 void
 RemoteSPEventProc(
 [in] PCONTEXT_HANDLE_TYPE2 phContext,
 [in, length_is(lSize), size_is(lSize)] unsigned char pBuffer[],
 [in] long lSize
);

 void
 RemoteSPDetach(
 [in, out] PCONTEXT_HANDLE_TYPE2 *pphContext
);
 }

6.2 Appendix A.2: Tapsrv.IDL

For ease of implementation, the full IDL is provided below.

 [
 uuid(2F5F6520-CA46-1067-B319-00DD010662DA),
 version(1.0),
 #ifdef __midl
 ms_union,
 #endif // __midl
 pointer_default(unique)
]

 interface tapsrv
 {

 typedef [context_handle] void * PCONTEXT_HANDLE_TYPE;

 long

585 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ClientAttach(
 [out] PCONTEXT_HANDLE_TYPE *pphContext,
 [in] long lProcessID,
 [out] long *phAsyncEventsEvent,
 [in, string] wchar_t *pszDomainUser,
 [in, string] wchar_t *pszMachine
);

 void
 ClientRequest(
 [in] PCONTEXT_HANDLE_TYPE phContext,
 [in, out, length_is(*plUsedSize), size_is(lNeededSize)]
 unsigned char* pBuffer,

 [in] long lNeededSize,
 [in, out] long *plUsedSize
);

 void
 ClientDetach(
 [in, out] PCONTEXT_HANDLE_TYPE *pphContext
);

 }

586 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

 Windows 98 operating system

 Windows NT 4.0 operating system

 Windows 2000 Professional operating system

 Windows XP operating system

 Windows Vista operating system

 Windows 7 operating system

 Windows 8 operating system

 Windows 8.1 operating system

 Windows 10 operating system

 Windows 11 operating system

Windows Server

 Windows 98

 Windows NT 4.0

 Windows 2000 Server operating system

 Windows Server 2003 operating system

 Windows Server 2008 operating system

 Windows Server 2008 R2 operating system

 Windows Server 2012 operating system

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base

(KB) number appears with a product name, the behavior changed in that update. The new behavior

587 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.3: The default behavior of Windows clients is connection-less unless explicitly
configured to be connection-oriented. Applicable Windows Server releases support both connection-
oriented and connection-less clients.

<2> Section 1.5: By default, a Windows-based computer is not configured to act as a client for the
Telephony Remote Protocol. The default, when enabled, is to act as a connection-less client.

<3> Section 1.7: The following table lists the TAPI version and the Windows versions in which they
are supported:

TAPI
version Distribution

1.4 Supported in Windows.

2.0 Supported in Windows NT 4.0 operating system Service Pack 3 (SP3), Windows 2000 Professional
and later, and Windows 2000 Server and later.

2.1 Supported in Windows 98, Windows NT 4.0 operating system Service Pack 4 (SP4), Windows 2000
Professional and later, and Windows 2000 Server and later.

2.2 Not supported in Windows 98 and Windows NT 4.0.

3.0 Not supported in Windows 98 and Windows NT 4.0.

3.1 Not supported in Windows 98, Windows NT 4.0, and Windows 2000 operating system.

<4> Section 2.1: Both client and server use RPC_C_AUTHN_GSS_NEGOTIATE for authentication in
Windows 7 and later, and in Windows Server 2008 R2 and later.

<5> Section 3: Automatic detection of servers is not supported in: Windows 98, Windows NT 4.0,
and Windows 2000.

<6> Section 3.1.4.1: Both client and server use authentication level

RPC_C_AUTHN_LEVEL_PKT_PRIVACY for ClientAttach and RemoteSPAttach, respectively, based on the
version of Windows that supports this level of authentication:

 Windows XP operating system Service Pack 2 (SP2)

 Windows Server 2003 operating system with Service Pack 1 (SP1)

 Windows Vista and later.

 Windows Server 2008 and later.

 Windows 2000, Windows XP, and Windows Server 2003 use the default authentication level

provided by that platform.

<7> Section 3.1.5: Default time-out is 30 milliseconds for timers.

<8> Section 3.2.6: The default polling interval is 5 minutes.

588 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<9> Section 3.2.6: The default value is 1 second for time-out, and the number of retries is 2.

<10> Section 3.3.4.1: Starting with Windows Server 2003 with SP1, the client and server reject
unencrypted packets. The authentication-level constant RPC_C_AUTHN_LEVEL_PKT_PRIVACY is
required for a client/server connection to succeed.

<11> Section 5.1: Both client and server use the authentication level
RPC_C_AUTHN_LEVEL_PKT_PRIVACY for ClientAttach and RemoteSPAttach, respectively, based on the
version of Windows that supports this level of authentication:

 Windows XP SP2

 Windows Server 2003 with SP1

 Windows Vista and later.

 Windows Server 2008 and later.

 Windows 2000, Windows XP, and Windows Server 2003 use the default authentication level that is
provided by that platform.

589 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

7 Appendix B: Product
Behavior

Added Windows Server 2025 to the list of applicable
products.

Major

mailto:dochelp@microsoft.com

590 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

9 Index

A

Abstract data model
 client (section 3.2.1 566, section 3.4.1 570)
 remotesp client 570
 remotesp server 567
 server (section 3.1.1 537, section 3.3.1 567)
 tapsrv client 566
 tapsrv server 537
Accept packet 106
AddToConference packet 108
AgentSpecific_Line packet 110
AgentSpecific_Special_Case_Line packet 414
Answer packet 113
Applicability 20
ASYNCEVENTMSG packet 447
AVAILABLEPROVIDERENTRY packet 449
AVAILABLEPROVIDERLIST packet 450

B

BlindTransfer packet 115

C

Capability negotiation 20
Change tracking 589
Client
 abstract data model (section 3.2.1 566, section

3.4.1 570)
 communication packages 449
 initialization (section 3.2.3 566, section 3.4.3 571)
 local events (section 3.2.6 566, section 3.4.6 571)
 message processing (section 3.2.4 566, section

3.4.4 571)
 overview 570
 remotesp - abstract data model 570
 remotesp - initialization 571
 remotesp - local events 571
 remotesp - overview 570
 remotesp - packet processing 571
 remotesp - sequencing rules 571
 remotesp - timer events 571
 remotesp - timers 570
 remotesp interface 570
 sequencing rules (section 3.2.4 566, section 3.4.4

571)
 tapsrv - abstract data model 566
 tapsrv - initialization 566
 tapsrv - local events 566
 tapsrv - packet processing 566
 tapsrv - sequencing rules 566
 tapsrv - timer events 566
 tapsrv - timers 566
 timer events (section 3.2.5 566, section 3.4.5 571)
 timers (section 3.2.2 566, section 3.4.2 570)
ClientAttach (Opnum 0) method 539

ClientAttach method 539
ClientDetach (Opnum 2) method 565
ClientDetach method 565
ClientRequest (Opnum 1) method 540

ClientRequest method 540
Close_Line packet 102
Close_Phone packet 299
Common data types 23
Communication packages - client and server 449
CompleteCall_Line packet 119
CompleteCall_Special_Case_Line packet 415
CompleteTransfer_Line packet 122
CompleteTransfer_Special_Case_Line packet 416
Completion packets
 line device 414
 packets 377
Completion packets phone device 445
ConditionalMediaDetection packet 124
Constants
 line device 27
 phone device 78
Create session
 line device 91
 phone device 289
CreateAgent_Line packet 126
CreateAgent_Special_Case_Line packet 418
CreateAgentSession_Line packet 128
CreateAgentSession_Special_Case_Line packet 419

D

Data model - abstract
 client (section 3.2.1 566, section 3.4.1 570)
 remotesp client 570
 remotesp server 567
 server (section 3.1.1 537, section 3.3.1 567)
 tapsrv client 566
 tapsrv server 537
Data types 23
 common - overview 23
DeallocateCall packet 118
DEVICEINFO packet 451
DEVICEINFOLIST packet 452
DevSpecific_Line packet 131
DevSpecific_Phone packet 302
DevSpecific_Special_Case_Line packet 420
DevSpecific_Special_Case_Phone packet 445
DevSpecificFeature_Line packet 133
DevSpecificFeature_Special_Case_Line packet 421
Dial packet 135
Directory service schema elements 535
Drop packet 138

E

Elements - directory service schema 535
Establishing session packets example 572
Events
 local - client (section 3.2.6 566, section 3.4.6 571)
 local - server (section 3.1.6 566, section 3.3.6

570)
 timer - client (section 3.2.5 566, section 3.4.5

571)
 timer - server (section 3.1.5 565, section 3.3.5

570)

591 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Examples 572
 overview 572
 packet exchange for establishing a management

session 578
 packet exchange for getting the server

configuration 579
 packet exchange for setting the server

configuration 580
 packet exchanges for acd proxy requests and

responses 580
 packet exchanges to answer an incoming call 575
 packet exchanges to create an agent session for

an acd group 581
 packet exchanges to establish the session 572
 packet exchanges to forward incoming calls or

modify the existing forward state 577
 packet exchanges to make an outgoing call 574
 packet exchanges to terminate the management

session 579
 packet exchanges to terminate the session 573
 packet exchanges to transfer a connected call 576

F

Fields - vendor-extensible 21
FLOWSPEC packet 253
Forward_Line packet 140
Forward_Special_Case_Line packet 422
Forwarding calls packets example 577
FreeDialogInstance packet 366
Full IDL (section 6 584, section 6.1 584, section 6.2

584)

G

GatherDigits_Line packet 142
GenerateDigits packet 145
GenerateTone packet 147
Generic requests 370
GetAddressCaps packet 98
GetAddressID packet 150
GetAddressStatus packet 152
GetAgentActivityList_Line packet 154
GetAgentActivityList_Special_Case_Line packet 424
GetAgentCaps_Line packet 156
GetAgentCaps_Special_Case_Line packet 425
GetAgentGroupList_Line packet 159
GetAgentGroupList_Special_Case_Line packet 426
GetAgentInfo_Line packet 161
GetAgentInfo_Special_Case_Line packet 427
GetAgentSessionInfo_Line packet 163
GetAgentSessionInfo_Special_Case_Line packet 429
GetAgentSessionList_Line packet 165
GetAgentSessionList_Special_Case_Line packet 430
GetAgentStatus_Line packet 167
GetAgentStatus_Special_Case_Line packet 431
GetAsyncEvents packet 370

GetAvailableProviders packet 349
GetButtonInfo packet 305
GetCallHubTracking packet 169
GetCallIDs packet 171
GetCallInfo packet 173
GetCallStatus packet 175
GetData packet 307
GetDevCaps_Line packet 96

GetDevCaps_Phone packet 294
GetDevConfig packet 177
GetDeviceFlags packet 350
GetDisplay packet 309
GetGain packet 311
GetGroupList_Line packet 179
GetGroupList_Special_Case_Line packet 432
GetHookSwitch packet 313
GetID_Line packet 181
GetID_Phone packet 315
GetLamp packet 318
GetLineDevStatus packet 184
GetLineInfo packet 352
GetNewCalls packet 186
GetNumAddressIDs packet 188
GetPhoneInfo packet 354
GetProviderList packet 355
GetProxyStatus packet 190
GetQueueInfo_Line packet 192
GetQueueInfo_Special_Case_Line packet 433
GetQueueList_Line packet 194
GetQueueList_Special_Case_Line packet 435
GetRing packet 320

GetServerConfig packet 358
GetStatus packet 322
GetUIDllName packet 363
GetVolume packet 324
Glossary 13

H

Handle table 26
Hold packet 196

I

IDL (section 6 584, section 6.1 584, section 6.2 584)
Implementer - security considerations 583
Incoming call packets example 575
Index of security parameters 583
Informative references 15
Initialization
 client (section 3.2.3 566, section 3.4.3 571)
 remotesp client 571
 remotesp server 567
 server (section 3.1.3 538, section 3.3.3 567)
 tapsrv client 566
 tapsrv server 538
Initialize_Line packet 91
Initialize_Phone packet 289
Interfaces - client
 remotesp 570
Interfaces - server
 remotesp 567
Introduction 13

L

Line device
 completion packets 414
 constants 27
 create session 91
 requests 105
 terminate session 102
LINE_ADDRESSSTATE packet 377

592 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LINE_AGENTSESSIONSTATUS packet 378
LINE_AGENTSPECIFIC packet 379
LINE_AGENTSTATUS packet 380
LINE_AGENTSTATUSEX packet 381
LINE_APPNEWCALL packet 383
LINE_CALLINFO packet 384
LINE_CALLSTATE packet 385
LINE_CLOSE packet 387
LINE_CREATE packet 388
LINE_CREATEDIALOGINSTANCE packet 389
LINE_DEVSPECIFIC packet 390
LINE_DEVSPECIFICFEATURE packet 391
LINE_GATHERDIGITS packet 392
LINE_GENERATE packet 394
LINE_GROUPSTATUS packet 395
LINE_LINEDEVSTATE packet 396
LINE_MONITORDIGITS packet 397
LINE_MONITORMEDIA packet 398
LINE_MONITORTONE packet 399
LINE_PROXYREQUEST packet 400
LINE_PROXYSTATUS packet 402
LINE_QUEUESTATUS packet 403
LINE_REMOVE packet 404

LINE_REPLY packet 405
LINEADDRCAPFLAGS_ACCEPTTOALERT 27
LINEADDRCAPFLAGS_ACDGROUP 27
LINEADDRCAPFLAGS_AUTORECONNECT 27
LINEADDRCAPFLAGS_BLOCKIDDEFAULT 27
LINEADDRCAPFLAGS_BLOCKIDOVERRIDE 27
LINEADDRCAPFLAGS_COMPLETIONID 27
LINEADDRCAPFLAGS_CONFDROP 27
LINEADDRCAPFLAGS_CONFERENCEHELD 27
LINEADDRCAPFLAGS_CONFERENCEMAKE 27
LINEADDRCAPFLAGS_DESTOFFHOOK 27
LINEADDRCAPFLAGS_DIALED 27
LINEADDRCAPFLAGS_FWDBUSYNAADDR 27
LINEADDRCAPFLAGS_FWDCONSULT 27
LINEADDRCAPFLAGS_FWDINTEXTADDR 27
LINEADDRCAPFLAGS_FWDNUMRINGS 27
LINEADDRCAPFLAGS_FWDSTATUSVALID 27
LINEADDRCAPFLAGS_HOLDMAKESNEW 27
LINEADDRCAPFLAGS_NOEXTERNALCALLS 27
LINEADDRCAPFLAGS_NOINTERNALCALLS 27
LINEADDRCAPFLAGS_NOPSTNADDRESSTRANSLATIO

N 27
LINEADDRCAPFLAGS_ORIGOFFHOOK 27
LINEADDRCAPFLAGS_PARTIALDIAL 27
LINEADDRCAPFLAGS_PICKUPCALLWAIT 27
LINEADDRCAPFLAGS_PICKUPGROUPID 27
LINEADDRCAPFLAGS_PREDICTIVEDIALER 27
LINEADDRCAPFLAGS_QUEUE 27
LINEADDRCAPFLAGS_ROUTEPOINT 27
LINEADDRCAPFLAGS_SECURE 27
LINEADDRCAPFLAGS_SETCALLINGID 27
LINEADDRCAPFLAGS_SETUPCONFNULL 27
LINEADDRCAPFLAGS_TRANSFERHELD 27
LINEADDRCAPFLAGS_TRANSFERMAKE 27
LINEADDRESSCAPS packet 454
LINEADDRESSMODE_ADDRESSID 29
LINEADDRESSMODE_DIALABLEADDR 29
LINEADDRESSSHARING_BRIDGEDEXCL 30
LINEADDRESSSHARING_BRIDGEDNEW 30
LINEADDRESSSHARING_BRIDGEDSHARED 30
LINEADDRESSSHARING_MONITORED 30
LINEADDRESSSHARING_PRIVATE 30

LINEADDRESSSTATE_CAPSCHANGE 30
LINEADDRESSSTATE_DEVSPECIFIC 30
LINEADDRESSSTATE_FORWARD 30
LINEADDRESSSTATE_INUSEMANY 30
LINEADDRESSSTATE_INUSEONE 30
LINEADDRESSSTATE_INUSEZERO 30
LINEADDRESSSTATE_NUMCALLS 30
LINEADDRESSSTATE_OTHER 30
LINEADDRESSSTATE_TERMINALS 30
LINEADDRESSSTATUS packet 462
LINEADDRESSTYPE_DOMAINNAME 31
LINEADDRESSTYPE_EMAILNAME 31
LINEADDRESSTYPE_IPADDRESS 31
LINEADDRESSTYPE_PHONENUMBER 31
LINEADDRESSTYPE_SDP 31
LINEADDRFEATURE_FORWARD 32
LINEADDRFEATURE_FORWARDDND 32
LINEADDRFEATURE_FORWARDFWD 32
LINEADDRFEATURE_MAKECALL 32
LINEADDRFEATURE_PICKUP 32
LINEADDRFEATURE_PICKUPDIRECT 32
LINEADDRFEATURE_PICKUPGROUP 32
LINEADDRFEATURE_PICKUPHELD 32

LINEADDRFEATURE_PICKUPWAITING 32
LINEADDRFEATURE_SETMEDIACONTROL 32
LINEADDRFEATURE_SETTERMINAL 32
LINEADDRFEATURE_SETUPCONF 32
LINEADDRFEATURE_UNCOMPLETECALL 32
LINEADDRFEATURE_UNPARK 32
LINEAGENTACTIVITYENTRY packet 465
LINEAGENTACTIVITYLIST packet 466
LINEAGENTCAPS packet 468
LINEAGENTFEATURE_AGENTSPECIFIC 33
LINEAGENTFEATURE_GETAGENTACTIVITYLIST 33
LINEAGENTFEATURE_GETAGENTGROUP 33
LINEAGENTFEATURE_SETAGENTACTIVITY 33
LINEAGENTFEATURE_SETAGENTGROUP 33
LINEAGENTFEATURE_SETAGENTSTATE 33
LINEAGENTGROUPENTRY packet 467
LINEAGENTGROUPLIST packet 466
LINEAGENTINFO packet 531
LINEAGENTSESSIONENTRY packet 470
LINEAGENTSESSIONINFO packet 471
LINEAGENTSESSIONLIST packet 471
LINEAGENTSESSIONSTATE_BUSYONCALL 34
LINEAGENTSESSIONSTATE_BUSYWRAPUP 34
LINEAGENTSESSIONSTATE_ENDED 34
LINEAGENTSESSIONSTATE_NOTREADY 34
LINEAGENTSESSIONSTATE_READY 34
LINEAGENTSESSIONSTATE_RELEASED 34
LINEAGENTSESSIONSTATUS_NEWSESSION 34
LINEAGENTSESSIONSTATUS_STATE 34
LINEAGENTSESSIONSTATUS_UPDATEINFO 34
LINEAGENTSTATE_BUSYACD 34
LINEAGENTSTATE_BUSYINCOMING 34
LINEAGENTSTATE_BUSYOTHER 34
LINEAGENTSTATE_BUSYOUTBOUND 34
LINEAGENTSTATE_LOGGEDOFF 34
LINEAGENTSTATE_NOTREADY 34
LINEAGENTSTATE_READY 34
LINEAGENTSTATE_UNAVAIL 34
LINEAGENTSTATE_UNKNOWN 34
LINEAGENTSTATE_WORKINGAFTERCALL 34
LINEAGENTSTATEEX_BUSYACD 35
LINEAGENTSTATEEX_BUSYINCOMING 35

593 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LINEAGENTSTATEEX_BUSYOUTGOING 35
LINEAGENTSTATEEX_NOTREADY 35
LINEAGENTSTATEEX_READY 35
LINEAGENTSTATEEX_RELEASED 35
LINEAGENTSTATEEX_UNKNOWN 35
LINEAGENTSTATUS packet 464
LINEAGENTSTATUS_ACTIVITY 36
LINEAGENTSTATUS_ACTIVITYLIST 36
LINEAGENTSTATUS_CAPSCHANGE 36
LINEAGENTSTATUS_GROUP 36
LINEAGENTSTATUS_GROUPLIST 36
LINEAGENTSTATUS_NEXTSTATE 36
LINEAGENTSTATUS_STATE 36
LINEAGENTSTATUS_VALIDNEXTSTATES 36
LINEAGENTSTATUS_VALIDSTATES 36
LINEAGENTSTATUSEX_NEWAGENT 37
LINEAGENTSTATUSEX_STATE 37
LINEAGENTSTATUSEX_UPDATEINFO 37
LINEANSWERMODE_DROP 37
LINEANSWERMODE_HOLD 37
LINEANSWERMODE_NONE 37
LINEAPPINFO packet 501
LINEBEARERMODE_ALTSPEECHDATA 37

LINEBEARERMODE_DATA 37
LINEBEARERMODE_MULTIUSE 37
LINEBEARERMODE_NONCALLSIGNALING 37
LINEBEARERMODE_PASSTHROUGH 37
LINEBEARERMODE_RESTRICTEDDATA 37
LINEBEARERMODE_SPEECH 37
LINEBEARERMODE_VOICE 37
LINEBUSYMODE_STATION 38
LINEBUSYMODE_TRUNK 38
LINEBUSYMODE_UNAVAIL 38
LINEBUSYMODE_UNKNOWN 38
LINECALLCOMPLCOND_BUSY 39
LINECALLCOMPLCOND_NOANSWER 39
LINECALLCOMPLMODE_CALLBACK 39
LINECALLCOMPLMODE_CAMPON 39
LINECALLCOMPLMODE_INTRUDE 39
LINECALLCOMPLMODE_MESSAGE 39
LINECALLFEATURE_ACCEPT 39
LINECALLFEATURE_ADDTOCONF 39
LINECALLFEATURE_ANSWER 39
LINECALLFEATURE_BLINDTRANSFER 39
LINECALLFEATURE_COMPLETECALL 39
LINECALLFEATURE_COMPLETETRANSF 39
LINECALLFEATURE_DIAL 39
LINECALLFEATURE_DROP 39
LINECALLFEATURE_GATHERDIGITS 39
LINECALLFEATURE_GENERATEDIGITS 39
LINECALLFEATURE_GENERATETONE 39
LINECALLFEATURE_HOLD 39
LINECALLFEATURE_MONITORDIGITS 39
LINECALLFEATURE_MONITORMEDIA 39
LINECALLFEATURE_MONITORTONES 39
LINECALLFEATURE_PARK 39
LINECALLFEATURE_PREPAREADDCONF 39
LINECALLFEATURE_REDIRECT 39
LINECALLFEATURE_RELEASEUSERUSERINFO 39
LINECALLFEATURE_REMOVEFROMCONF 39
LINECALLFEATURE_SECURECALL 39
LINECALLFEATURE_SENDUSERUSER 39
LINECALLFEATURE_SETCALLDATA 39
LINECALLFEATURE_SETCALLPARAMS 39
LINECALLFEATURE_SETMEDIACONTROL 39

LINECALLFEATURE_SETQOS 39
LINECALLFEATURE_SETTERMINAL 39
LINECALLFEATURE_SETTREATMENT 39
LINECALLFEATURE_SETUPCONF 39
LINECALLFEATURE_SETUPTRANSFER 39
LINECALLFEATURE_SWAPHOLD 39
LINECALLFEATURE_UNHOLD 39
LINECALLFEATURE2_COMPLCALLBACK 42
LINECALLFEATURE2_COMPLCAMPON 42
LINECALLFEATURE2_COMPLINTRUDE 42
LINECALLFEATURE2_COMPLMESSAGE 42
LINECALLFEATURE2_NOHOLDCONFERENCE 42
LINECALLFEATURE2_ONESTEPTRANSFER 42
LINECALLFEATURE2_PARKDIRECT 42
LINECALLFEATURE2_PARKNONDIRECT 42
LINECALLFEATURE2_TRANSFERCONF 42
LINECALLFEATURE2_TRANSFERNORM 42
LINECALLHUBTRACKING_ALLCALLS 43
LINECALLHUBTRACKING_NONE 43
LINECALLHUBTRACKING_PROVIDERLEVEL 43
LINECALLHUBTRACKINGINFO packet 475
LINECALLINFO packet 475
LINECALLINFOSTATE_APPSPECIFIC 43

LINECALLINFOSTATE_BEARERMODE 43
LINECALLINFOSTATE_CALLDATA 43
LINECALLINFOSTATE_CALLEDID 43
LINECALLINFOSTATE_CALLERID 43
LINECALLINFOSTATE_CALLID 43
LINECALLINFOSTATE_CHARGINGINFO 43
LINECALLINFOSTATE_COMPLETIONID 43
LINECALLINFOSTATE_CONNECTEDID 43
LINECALLINFOSTATE_DEVSPECIFIC 43
LINECALLINFOSTATE_DIALPARAMS 43
LINECALLINFOSTATE_DISPLAY 43
LINECALLINFOSTATE_HIGHLEVELCOMP 43
LINECALLINFOSTATE_LOWLEVELCOMP 43
LINECALLINFOSTATE_MEDIAMODE 43
LINECALLINFOSTATE_MONITORMODES 43
LINECALLINFOSTATE_NUMMONITORS 43
LINECALLINFOSTATE_NUMOWNERDECR 43
LINECALLINFOSTATE_NUMOWNERINCR 43
LINECALLINFOSTATE_ORIGIN 43
LINECALLINFOSTATE_OTHER 43
LINECALLINFOSTATE_QOS 43
LINECALLINFOSTATE_RATE 43
LINECALLINFOSTATE_REASON 43
LINECALLINFOSTATE_REDIRECTINGID 43
LINECALLINFOSTATE_REDIRECTIONID 43
LINECALLINFOSTATE_RELATEDCALLID 43
LINECALLINFOSTATE_TERMINAL 43
LINECALLINFOSTATE_TREATMENT 43
LINECALLINFOSTATE_TRUNK 43
LINECALLINFOSTATE_USERUSERINFO 43
LINECALLLIST packet 490
LINECALLORIGIN_CONFERENCE 45
LINECALLORIGIN_EXTERNAL 45
LINECALLORIGIN_INBOUND 45
LINECALLORIGIN_INTERNAL 45
LINECALLORIGIN_OUTBOUND 45
LINECALLORIGIN_UNAVAIL 45
LINECALLORIGIN_UNKNOWN 45
LINECALLPARAMFLAGS_BLOCKID 46
LINECALLPARAMFLAGS_DESTOFFHOOK 46
LINECALLPARAMFLAGS_IDLE 46
LINECALLPARAMFLAGS_NOHOLDCONFERENCE 46

594 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LINECALLPARAMFLAGS_ONESTEPTRANSFER 46
LINECALLPARAMFLAGS_ORIGOFFHOOK 46
LINECALLPARAMFLAGS_PREDICTIVEDIAL 46
LINECALLPARAMFLAGS_SECURE 46
LINECALLPARAMS packet 484
LINECALLPARTYID_ADDRESS 47
LINECALLPARTYID_BLOCKED 47
LINECALLPARTYID_NAME 47
LINECALLPARTYID_OUTOFAREA 47
LINECALLPARTYID_PARTIAL 47
LINECALLPARTYID_UNAVAIL 47
LINECALLPARTYID_UNKNOWN 47
LINECALLPRIVILEGE_MONITOR 48
LINECALLPRIVILEGE_NONE 48
LINECALLPRIVILEGE_OWNER 48
LINECALLREASON_CALLCOMPLETION 48
LINECALLREASON_CAMPEDON 48
LINECALLREASON_DIRECT 48
LINECALLREASON_FWDBUSY 48
LINECALLREASON_FWDNOANSWER 48
LINECALLREASON_FWDUNCOND 48
LINECALLREASON_INTRUDE 48
LINECALLREASON_PARKED 48

LINECALLREASON_PICKUP 48
LINECALLREASON_REDIRECT 48
LINECALLREASON_REMINDER 48
LINECALLREASON_ROUTEREQUEST 48
LINECALLREASON_TRANSFER 48
LINECALLREASON_UNAVAIL 48
LINECALLREASON_UNKNOWN 48
LINECALLREASON_UNPARK 48
LINECALLSELECT_ADDRESS 49
LINECALLSELECT_CALL 49
LINECALLSELECT_CALLID 49
LINECALLSELECT_DEVICEID 49
LINECALLSELECT_LINE 49
LINECALLSTATE_ACCEPTED 50
LINECALLSTATE_BUSY 50
LINECALLSTATE_CONFERENCED 50
LINECALLSTATE_CONNECTED 50
LINECALLSTATE_DIALING 50
LINECALLSTATE_DIALTONE 50
LINECALLSTATE_DISCONNECTED 50
LINECALLSTATE_IDLE 50
LINECALLSTATE_OFFERING 50
LINECALLSTATE_ONHOLD 50
LINECALLSTATE_ONHOLDPENDCONF 50
LINECALLSTATE_ONHOLDPENDTRANSFER 50
LINECALLSTATE_PROCEEDING 50
LINECALLSTATE_RINGBACK 50
LINECALLSTATE_SPECIALINFO 50
LINECALLSTATE_UNKNOWN 50
LINECALLSTATUS packet 473
LINECALLTREATMENT_BUSY 51
LINECALLTREATMENT_MUSIC 51
LINECALLTREATMENT_RINGBACK 51
LINECALLTREATMENT_SILENCE 51
LINECALLTREATMENTENTRY packet 491
LINECONNECTEDMODE_ACTIVE 52
LINECONNECTEDMODE_ACTIVEHELD 52
LINECONNECTEDMODE_CONFIRMED 52
LINECONNECTEDMODE_INACTIVE 52
LINECONNECTEDMODE_INACTIVEHELD 52
LINEDEVCAPFLAGS_CALLHUB 53
LINEDEVCAPFLAGS_CALLHUBTRACKING 53

LINEDEVCAPFLAGS_CLOSEDROP 53
LINEDEVCAPFLAGS_CROSSADDRCONF 53
LINEDEVCAPFLAGS_DIALBILLING 53
LINEDEVCAPFLAGS_DIALDIALTONE 53
LINEDEVCAPFLAGS_DIALQUIET 53
LINEDEVCAPFLAGS_HIGHLEVCOMP 53
LINEDEVCAPFLAGS_LOCAL 53
LINEDEVCAPFLAGS_LOWLEVCOMP 53
LINEDEVCAPFLAGS_MEDIACONTROL 53
LINEDEVCAPFLAGS_MULTIPLEADDR 53
LINEDEVCAPFLAGS_PRIVATEOBJECTS 53
LINEDEVCAPS packet 491
LINEDEVSTATE_BATTERY 55
LINEDEVSTATE_CAPSCHANGE 55
LINEDEVSTATE_CLOSE 55
LINEDEVSTATE_COMPLCANCEL 55
LINEDEVSTATE_CONFIGCHANGE 55
LINEDEVSTATE_CONNECTED 55
LINEDEVSTATE_DEVSPECIFIC 55
LINEDEVSTATE_DISCONNECTED 55
LINEDEVSTATE_INSERVICE 55
LINEDEVSTATE_LOCK 55
LINEDEVSTATE_MAINTENANCE 55

LINEDEVSTATE_MSGWAITOFF 55
LINEDEVSTATE_MSGWAITON 55
LINEDEVSTATE_NUMCALLS 55
LINEDEVSTATE_NUMCOMPLETIONS 55
LINEDEVSTATE_OPEN 55
LINEDEVSTATE_OTHER 55
LINEDEVSTATE_OUTOFSERVICE 55
LINEDEVSTATE_REINIT 55
LINEDEVSTATE_REMOVED 55
LINEDEVSTATE_RINGING 55
LINEDEVSTATE_ROAMMODE 55
LINEDEVSTATE_SIGNAL 55
LINEDEVSTATE_TERMINALS 55
LINEDEVSTATUS packet 499
LINEDEVSTATUSFLAGS_CONNECTED 57
LINEDEVSTATUSFLAGS_INSERVICE 57
LINEDEVSTATUSFLAGS_LOCKED 57
LINEDEVSTATUSFLAGS_MSGWAIT 57
LINEDIALPARAMS packet 503
LINEDIALTONEMODE_EXTERNAL 57
LINEDIALTONEMODE_INTERNAL 57
LINEDIALTONEMODE_NORMAL 57
LINEDIALTONEMODE_SPECIAL 57
LINEDIALTONEMODE_UNAVAIL 57
LINEDIALTONEMODE_UNKNOWN 57
LINEDIGITMODE_DTMF 58
LINEDIGITMODE_DTMFEND 58
LINEDIGITMODE_PULSE 58
LINEDISCONNECTMODE_BADADDRESS 58
LINEDISCONNECTMODE_BLOCKED 58
LINEDISCONNECTMODE_BUSY 58
LINEDISCONNECTMODE_CANCELLED 58
LINEDISCONNECTMODE_CONGESTION 58
LINEDISCONNECTMODE_DONOTDISTURB 58
LINEDISCONNECTMODE_FORWARDED 58
LINEDISCONNECTMODE_INCOMPATIBLE 58
LINEDISCONNECTMODE_NOANSWER 58
LINEDISCONNECTMODE_NODIALTONE 58
LINEDISCONNECTMODE_NORMAL 58
LINEDISCONNECTMODE_NUMBERCHANGED 58
LINEDISCONNECTMODE_OUTOFORDER 58
LINEDISCONNECTMODE_PICKUP 58

595 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LINEDISCONNECTMODE_QOSUNAVAIL 58
LINEDISCONNECTMODE_REJECT 58
LINEDISCONNECTMODE_TEMPFAILURE 58
LINEDISCONNECTMODE_UNAVAIL 58
LINEDISCONNECTMODE_UNKNOWN 58
LINEDISCONNECTMODE_UNREACHABLE 58
LINEERR_ADDRESSBLOCKED 60
LINEERR_ALLOCATED 60
LINEERR_BADDEVICEID 60
LINEERR_BEARERMODEUNAVAIL 60
LINEERR_BILLINGREJECTED 60
LINEERR_CALLUNAVAIL 60
LINEERR_COMPLETIONOVERRUN 60
LINEERR_CONFERENCEFULL 60
LINEERR_DIALBILLING 60
LINEERR_DIALDIALTONE 60
LINEERR_DIALPROMPT 60
LINEERR_DIALQUIET 60
LINEERR_DIALVOICEDETECT 60
LINEERR_DISCONNECTED 60
LINEERR_INCOMPATIBLEAPIVERSION 60
LINEERR_INCOMPATIBLEEXTVERSION 60
LINEERR_INIFILECORRUPT 60

LINEERR_INUSE 60
LINEERR_INVALADDRESS 60
LINEERR_INVALADDRESSID 60
LINEERR_INVALADDRESSMODE 60
LINEERR_INVALADDRESSSTATE 60
LINEERR_INVALADDRESSTYPE 60
LINEERR_INVALAGENTACTIVITY 60
LINEERR_INVALAGENTGROUP 60
LINEERR_INVALAGENTID 60
LINEERR_INVALAGENTSESSIONSTATE 60
LINEERR_INVALAGENTSTATE 60
LINEERR_INVALAPPHANDLE 60
LINEERR_INVALAPPNAME 60
LINEERR_INVALBEARERMODE 60
LINEERR_INVALCALLCOMPLMODE 60
LINEERR_INVALCALLHANDLE 60
LINEERR_INVALCALLPARAMS 60
LINEERR_INVALCALLPRIVILEGE 60
LINEERR_INVALCALLSELECT 60
LINEERR_INVALCALLSTATE 60
LINEERR_INVALCALLSTATELIST 60
LINEERR_INVALCARD 60
LINEERR_INVALCOMPLETIONID 60
LINEERR_INVALCONFCALLHANDLE 60
LINEERR_INVALCONSULTCALLHANDLE 60
LINEERR_INVALCOUNTRYCODE 60
LINEERR_INVALDEVICECLASS 60
LINEERR_INVALDEVICEHANDLE 60
LINEERR_INVALDIALPARAMS 60
LINEERR_INVALDIGITLIST 60
LINEERR_INVALDIGITMODE 60
LINEERR_INVALDIGITS 60
LINEERR_INVALEXTVERSION 60
LINEERR_INVALFEATURE 60
LINEERR_INVALGROUPID 60
LINEERR_INVALLINEHANDLE 60
LINEERR_INVALLINESTATE 60
LINEERR_INVALLOCATION 60
LINEERR_INVALMEDIALIST 60
LINEERR_INVALMEDIAMODE 60
LINEERR_INVALMESSAGEID 60
LINEERR_INVALPARAM 60

LINEERR_INVALPARKID 60
LINEERR_INVALPARKMODE 60
LINEERR_INVALPASSWORD 60
LINEERR_INVALPOINTER 60
LINEERR_INVALPRIVSELECT 60
LINEERR_INVALRATE 60
LINEERR_INVALREQUESTMODE 60
LINEERR_INVALTERMINALID 60
LINEERR_INVALTERMINALMODE 60
LINEERR_INVALTIMEOUT 60
LINEERR_INVALTONE 60
LINEERR_INVALTONELIST 60
LINEERR_INVALTONEMODE 60
LINEERR_INVALTRANSFERMODE 60
LINEERR_LINEMAPPERFAILED 60
LINEERR_NOCONFERENCE 60
LINEERR_NODEVICE 60
LINEERR_NODRIVER 60
LINEERR_NOMEM 60
LINEERR_NOMULTIPLEINSTANCE 60
LINEERR_NOREQUEST 60
LINEERR_NOTOWNER 60
LINEERR_NOTREGISTERED 60

LINEERR_OPERATIONFAILED 60
LINEERR_OPERATIONUNAVAIL 60
LINEERR_RATEUNAVAIL 60
LINEERR_REINIT 60
LINEERR_REQUESTOVERRUN 60
LINEERR_RESOURCEUNAVAIL 60
LINEERR_SERVICE_not_RUNNING 60
LINEERR_STRUCTURETOOSMALL 60
LINEERR_TARGETNOTFOUND 60
LINEERR_TARGETSELF 60
LINEERR_UNINITIALIZED 60
LINEERR_USERCANCELLED 60
LINEERR_USERUSERINFOTOOBIG 60
LINEEXTENSIONID packet 529
LINEFEATURE_DEVSPECIFIC 66
LINEFEATURE_DEVSPECIFICFEAT 66
LINEFEATURE_FORWARD 66
LINEFEATURE_FORWARDDND 66
LINEFEATURE_FORWARDFWD 66
LINEFEATURE_MAKECALL 66
LINEFEATURE_SETDEVSTATUS 66
LINEFEATURE_SETMEDIACONTROL 66
LINEFEATURE_SETTERMINAL 66
LINEFORWARD packet 513
LINEFORWARDLIST packet 514
LINEFORWARDMODE_BUSY 67
LINEFORWARDMODE_BUSYEXTERNAL 67
LINEFORWARDMODE_BUSYINTERNAL 67
LINEFORWARDMODE_BUSYNA 67
LINEFORWARDMODE_BUSYNAEXTERNAL 67
LINEFORWARDMODE_BUSYNAINTERNAL 67
LINEFORWARDMODE_BUSYNASPECIFIC 67
LINEFORWARDMODE_BUSYSPECIFIC 67
LINEFORWARDMODE_NOANSW 67
LINEFORWARDMODE_NOANSWEXTERNAL 67
LINEFORWARDMODE_NOANSWINTERNAL 67
LINEFORWARDMODE_NOANSWSPECIFIC 67
LINEFORWARDMODE_UNAVAIL 67
LINEFORWARDMODE_UNCOND 67
LINEFORWARDMODE_UNCONDEXTERNAL 67
LINEFORWARDMODE_UNCONDINTERNAL 67
LINEFORWARDMODE_UNCONDSPECIFIC 67

596 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LINEFORWARDMODE_UNKNOWN 67
LINEGATHERTERM_BUFFERFULL 69
LINEGATHERTERM_CANCEL 69
LINEGATHERTERM_FIRSTTIMEOUT 69
LINEGATHERTERM_INTERTIMEOUT 69
LINEGATHERTERM_TERMDIGIT 69
LINEGENERATETERM_CANCEL 69
LINEGENERATETERM_DONE 69
LINEGENERATETONE packet 503
LINEMEDIACONTROL_NONE 69
LINEMEDIACONTROL_PAUSE 69
LINEMEDIACONTROL_RATEDOWN 69
LINEMEDIACONTROL_RATENORMAL 69
LINEMEDIACONTROL_RATEUP 69
LINEMEDIACONTROL_RESET 69
LINEMEDIACONTROL_RESUME 69
LINEMEDIACONTROL_START 69
LINEMEDIACONTROL_VOLUMEDOWN 69
LINEMEDIACONTROL_VOLUMENORMAL 69
LINEMEDIACONTROL_VOLUMEUP 69
LINEMEDIACONTROLCALLSTATE packet 529
LINEMEDIACONTROLDIGIT packet 518
LINEMEDIACONTROLMEDIA packet 519

LINEMEDIACONTROLTONE packet 520
LINEMEDIAMODE_ADSI 70
LINEMEDIAMODE_AUTOMATEDVOICE 70
LINEMEDIAMODE_DATAMODEM 70
LINEMEDIAMODE_DIGITALDATA 70
LINEMEDIAMODE_G3FAX 70
LINEMEDIAMODE_G4FAX 70
LINEMEDIAMODE_INTERACTIVEVOICE 70
LINEMEDIAMODE_MIXED 70
LINEMEDIAMODE_TDD 70
LINEMEDIAMODE_TELETEX 70
LINEMEDIAMODE_TELEX 70
LINEMEDIAMODE_UNKNOWN 70
LINEMEDIAMODE_VIDEO 70
LINEMEDIAMODE_VIDEOTEX 70
LINEMEDIAMODE_VOICEVIEW 70
LINEMONITORTONE packet 518
LINEOFFERINGMODE_ACTIVE 72
LINEOFFERINGMODE_INACTIVE 72
LINEOPENOPTION_PROXY 72
LINEOPENOPTION_SINGLEADDRESS 72
LINEPARKMODE_DIRECTED 73
LINEPARKMODE_NONDIRECTED 73
LINEPROVIDERENTRY packet 515
LINEPROVIDERLIST packet 514
LINEPROXYREQUEST packet 504
LINEPROXYREQUEST_AGENTSPECIFIC 73
LINEPROXYREQUEST_CREATEAGENT 73
LINEPROXYREQUEST_CREATEAGENTSESSION 73
LINEPROXYREQUEST_GETAGENTACTIVITYLIST 73
LINEPROXYREQUEST_GETAGENTCAPS 73
LINEPROXYREQUEST_GETAGENTGROUPLIST 73
LINEPROXYREQUEST_GETAGENTINFO 73
LINEPROXYREQUEST_GETAGENTSESSIONINFO 73
LINEPROXYREQUEST_GETAGENTSESSIONLIST 73
LINEPROXYREQUEST_GETAGENTSTATUS 73
LINEPROXYREQUEST_GETGROUPLIST 73
LINEPROXYREQUEST_GETQUEUEINFO 73
LINEPROXYREQUEST_GETQUEUELIST 73
LINEPROXYREQUEST_SETAGENTACTIVITY 73
LINEPROXYREQUEST_SETAGENTGROUP 73

LINEPROXYREQUEST_SETAGENTMEASUREMENTPERI
OD 73

LINEPROXYREQUEST_SETAGENTSESSIONSTATE 73
LINEPROXYREQUEST_SETAGENTSTATE 73
LINEPROXYREQUEST_SETAGENTSTATEEX 73
LINEPROXYREQUEST_SETQUEUEMEASUREMENTPERI

OD 73
LINEPROXYREQUESTLIST packet 516
LINEPROXYSTATUS_ALLOPENFORACD 74
LINEPROXYSTATUS_CLOSE 74
LINEPROXYSTATUS_OPEN 74
LINEQUEUEENTRY packet 517
LINEQUEUEINFO packet 511
LINEQUEUELIST packet 516
LINEQUEUESTATUS_NEWQUEUE 75
LINEQUEUESTATUS_QUEUEREMOVED 75
LINEQUEUESTATUS_UPDATEINFO 75
LINEREMOVEFROMCONF_ANY 75
LINEREMOVEFROMCONF_LAST 75
LINEREMOVEFROMCONF_NONE 75
LINEROAMMODE_HOME 75
LINEROAMMODE_ROAMA 75
LINEROAMMODE_ROAMB 75

LINEROAMMODE_UNAVAIL 75
LINEROAMMODE_UNKNOWN 75
LINESPECIALINFO_CUSTIRREG 76
LINESPECIALINFO_NOCIRCUIT 76
LINESPECIALINFO_REORDER 76
LINESPECIALINFO_UNAVAIL 76
LINESPECIALINFO_UNKNOWN 76
LINETERMCAPS packet 535
LINETERMDEV_HEADSET 76
LINETERMDEV_PHONE 76
LINETERMDEV_SPEAKER 76
LINETERMMODE_BUTTONS 77
LINETERMMODE_DISPLAY 77
LINETERMMODE_HOOKSWITCH 77
LINETERMMODE_LAMPS 77
LINETERMMODE_MEDIABIDIRECT 77
LINETERMMODE_MEDIAFROMLINE 77
LINETERMMODE_MEDIATOLINE 77
LINETERMMODE_RINGER 77
LINETERMSHARING_PRIVATE 77
LINETERMSHARING_SHAREDCONF 77
LINETERMSHARING_SHAREDEXCL 77
LINETONEMODE_BEEP 78
LINETONEMODE_BILLING 78
LINETONEMODE_BUSY 78
LINETONEMODE_CUSTOM 78
LINETONEMODE_RINGBACK 78
LINETRANSFERMODE_CONFERENCE 78
LINETRANSFERMODE_TRANSFER 78
Local events
 client (section 3.2.6 566, section 3.4.6 571)
 remotesp client 571
 remotesp server 570
 server (section 3.1.6 566, section 3.3.6 570)
 tapsrv client 566
 tapsrv server 566

M

MakeCall_Line packet 198
MakeCall_Special_Case_Line packet 436
Message processing

597 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 client (section 3.2.4 566, section 3.4.4 571)
 server (section 3.1.4 538, section 3.3.4 567)
Messages
 common data types 23
 transport 23
Methods
 ClientAttach (Opnum 0) 539
 ClientDetach (Opnum 2) 565
 ClientRequest (Opnum 1) 540
 RemoteSPAttach (Opnum 0) 568
 RemoteSPDetach (Opnum 2) 570
 RemoteSPEventProc (Opnum 1) 568
MMC requests 349
MonitorDigits packet 201
MonitorMedia packet 203
MonitorTones packet 205

N

NegotiateAPIVersion packet 291
NegotiateAPIVersion_Line packet 93
NegotiateAPIVersionForAllDevices packet 372
NegotiateExtVersion_Line packet 207
NegotiateExtVersion_Phone packet 326
Normative references 15

O

Open packet 296
Open_Line packet 100
Outgoing call packets example 574
Overview (synopsis) 16

P

Packet exchange for establishing a management

session example 578
Packet exchange for getting the server configuration

example 579
Packet exchange for setting the server configuration

example 580
Packet exchanges for acd proxy requests and

responses example 580
Packet exchanges to answer an incoming call

example 575
Packet exchanges to create an agent session for an

acd group example 581
Packet exchanges to establish the session example

572
Packet exchanges to forward incoming calls or

modify the existing forward state example 577

Packet exchanges to make an outgoing call example
574

Packet exchanges to terminate the management
session example 579

Packet exchanges to terminate the session example
573

Packet exchanges to transfer a connected call
example 576

Packet processing
 remotesp client 571
 remotesp server 567
 tapsrv client 566
 tapsrv server 538
Packets

 completion packets 377
 establishing session example 572
 forwarding calls example 577
 incoming call example 575
 line device completion 414
 outgoing call example 574
 overview 23
 phone device completion 445
 terminating session example 573
 transfer connected call example 576
 transport 23
Parameters - security index 583
Park_Line packet 209
Park_Special_Case_Line packet 437
Phone device
 completion packets 445
 constants 78
 create session 289
 requests 302
 terminate session 298
PHONE_BUTTON packet 406
PHONE_CLOSE packet 407
PHONE_CREATE packet 408

PHONE_DEVSPECIFIC packet 409
PHONE_REMOVE packet 410
PHONE_REPLY packet 411
PHONE_STATE packet 413
PHONEBUTTONFUNCTION_ABBREVDIAL 78
PHONEBUTTONFUNCTION_BRIDGEDAPP 78
PHONEBUTTONFUNCTION_BUSY 78
PHONEBUTTONFUNCTION_CALLAPP 78
PHONEBUTTONFUNCTION_CALLID 78
PHONEBUTTONFUNCTION_CAMPON 78
PHONEBUTTONFUNCTION_CONFERENCE 78
PHONEBUTTONFUNCTION_CONNECT 78
PHONEBUTTONFUNCTION_COVER 78
PHONEBUTTONFUNCTION_DATAOFF 78
PHONEBUTTONFUNCTION_DATAON 78
PHONEBUTTONFUNCTION_DATETIME 78
PHONEBUTTONFUNCTION_DIRECTORY 78
PHONEBUTTONFUNCTION_DISCONNECT 78
PHONEBUTTONFUNCTION_DONOTDISTURB 78
PHONEBUTTONFUNCTION_DROP 78
PHONEBUTTONFUNCTION_FLASH 78
PHONEBUTTONFUNCTION_FORWARD 78
PHONEBUTTONFUNCTION_HOLD 78
PHONEBUTTONFUNCTION_INTERCOM 78
PHONEBUTTONFUNCTION_LASTNUM 78
PHONEBUTTONFUNCTION_MSGINDICATOR 78
PHONEBUTTONFUNCTION_MSGWAITOFF 78
PHONEBUTTONFUNCTION_MSGWAITON 78
PHONEBUTTONFUNCTION_MUTE 78
PHONEBUTTONFUNCTION_NIGHTSRV 78
PHONEBUTTONFUNCTION_NONE 78
PHONEBUTTONFUNCTION_PARK 78
PHONEBUTTONFUNCTION_PICKUP 78
PHONEBUTTONFUNCTION_QUEUECALL 78
PHONEBUTTONFUNCTION_RECALL 78
PHONEBUTTONFUNCTION_REDIRECT 78
PHONEBUTTONFUNCTION_REJECT 78
PHONEBUTTONFUNCTION_REPDIAL 78
PHONEBUTTONFUNCTION_RINGAGAIN 78
PHONEBUTTONFUNCTION_SAVEREPEAT 78
PHONEBUTTONFUNCTION_SELECTRING 78
PHONEBUTTONFUNCTION_SEND 78

598 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

PHONEBUTTONFUNCTION_SENDCALLS 78
PHONEBUTTONFUNCTION_SETREPDIAL 78
PHONEBUTTONFUNCTION_SPEAKEROFF 78
PHONEBUTTONFUNCTION_SPEAKERON 78
PHONEBUTTONFUNCTION_STATIONSPEED 78
PHONEBUTTONFUNCTION_SYSTEMSPEED 78
PHONEBUTTONFUNCTION_TRANSFER 78
PHONEBUTTONFUNCTION_UNKNOWN 78
PHONEBUTTONFUNCTION_VOLUMEDOWN 78
PHONEBUTTONFUNCTION_VOLUMEUP 78
PHONEBUTTONINFO packet 520
PHONEBUTTONMODE_CALL 81
PHONEBUTTONMODE_DISPLAY 81
PHONEBUTTONMODE_DUMMY 81
PHONEBUTTONMODE_FEATURE 81
PHONEBUTTONMODE_KEYPAD 81
PHONEBUTTONMODE_LOCAL 81
PHONEBUTTONSTATE_DOWN 82
PHONEBUTTONSTATE_UNAVAIL 82
PHONEBUTTONSTATE_UNKNOWN 82
PHONEBUTTONSTATE_UP 82
PHONECAPS packet 522
PHONEERR_ALLOCATED 82

PHONEERR_BADDEVICEID 82
PHONEERR_DISCONNECTED 82
PHONEERR_INCOMPATIBLEAPIVERSION 82
PHONEERR_INCOMPATIBLEEXTVERSION 82
PHONEERR_INIFILECORRUPT 82
PHONEERR_INUSE 82
PHONEERR_INVALAPPHANDLE 82
PHONEERR_INVALAPPNAME 82
PHONEERR_INVALBUTTONLAMPID 82
PHONEERR_INVALBUTTONMODE 82
PHONEERR_INVALBUTTONSTATE 82
PHONEERR_INVALDATAID 82
PHONEERR_INVALDEVICECLASS 82
PHONEERR_INVALEXTVERSION 82
PHONEERR_INVALHOOKSWITCHDEV 82
PHONEERR_INVALHOOKSWITCHMODE 82
PHONEERR_INVALLAMPMODE 82
PHONEERR_INVALPARAM 82
PHONEERR_INVALPHONEHANDLE 82
PHONEERR_INVALPHONESTATE 82
PHONEERR_INVALPOINTER 82
PHONEERR_INVALPRIVILEGE 82
PHONEERR_INVALRINGMODE 82
PHONEERR_NODEVICE 82
PHONEERR_NODRIVER 82
PHONEERR_NOMEM 82
PHONEERR_notOWNER 82
PHONEERR_OPERATIONFAILED 82
PHONEERR_OPERATIONUNAVAIL 82
PHONEERR_REINIT 82
PHONEERR_REQUESTOVERRUN 82
PHONEERR_RESOURCEUNAVAIL 82
PHONEERR_SERVICE_not_RUNNING 82
PHONEERR_STRUCTURETOOSMALL 82
PHONEERR_UNINITIALIZED 82
PHONEEXTENSIONID packet 528
PHONEFEATURE_GENERICPHONE 85
PHONEFEATURE_GETBUTTONINFO 85
PHONEFEATURE_GETDATA 85
PHONEFEATURE_GETDISPLAY 85
PHONEFEATURE_GETGAINHANDSET 85
PHONEFEATURE_GETGAINHEADSET 85

PHONEFEATURE_GETGAINSPEAKER 85
PHONEFEATURE_GETHOOKSWITCHHANDSET 85
PHONEFEATURE_GETHOOKSWITCHHEADSET 85
PHONEFEATURE_GETHOOKSWITCHSPEAKER 85
PHONEFEATURE_GETLAMP 85
PHONEFEATURE_GETRING 85
PHONEFEATURE_GETVOLUMEHANDSET 85
PHONEFEATURE_GETVOLUMEHEADSET 85
PHONEFEATURE_GETVOLUMESPEAKER 85
PHONEFEATURE_SETBUTTONINFO 85
PHONEFEATURE_SETDATA 85
PHONEFEATURE_SETDISPLAY 85
PHONEFEATURE_SETGAINHANDSET 85
PHONEFEATURE_SETGAINHEADSET 85
PHONEFEATURE_SETGAINSPEAKER 85
PHONEFEATURE_SETHOOKSWITCHHANDSET 85
PHONEFEATURE_SETHOOKSWITCHHEADSET 85
PHONEFEATURE_SETHOOKSWITCHSPEAKER 85
PHONEFEATURE_SETLAMP 85
PHONEFEATURE_SETRING 85
PHONEFEATURE_SETVOLUMEHANDSET 85
PHONEFEATURE_SETVOLUMEHEADSET 85
PHONEFEATURE_SETVOLUMESPEAKER 85

PHONEHOOKSWITCHDEV_HANDSET 87
PHONEHOOKSWITCHDEV_HEADSET 87
PHONEHOOKSWITCHDEV_SPEAKER 87
PHONEHOOKSWITCHMODE_MIC 87
PHONEHOOKSWITCHMODE_MICSPEAKER 87
PHONEHOOKSWITCHMODE_ONHOOK 87
PHONEHOOKSWITCHMODE_SPEAKER 87
PHONEHOOKSWITCHMODE_UNKNOWN 87
PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT

87
PHONEINITIALIZEEXOPTION_USEEVENT 87
PHONEINITIALIZEEXOPTION_USEHIDDENWINDOW

87
PHONELAMPMODE_BROKENFLUTTER 88
PHONELAMPMODE_DUMMY 88
PHONELAMPMODE_FLASH 88
PHONELAMPMODE_FLUTTER 88
PHONELAMPMODE_OFF 88
PHONELAMPMODE_STEADY 88
PHONELAMPMODE_UNKNOWN 88
PHONELAMPMODE_WINK 88
PHONEPRIVILEGE_MONITOR 88
PHONEPRIVILEGE_OWNER 88
PHONESTATE_CAPSCHANGE 89
PHONESTATE_CONNECTED 89
PHONESTATE_DEVSPECIFIC 89
PHONESTATE_DISCONNECTED 89
PHONESTATE_DISPLAY 89
PHONESTATE_HANDSETGAIN 89
PHONESTATE_HANDSETHOOKSWITCH 89
PHONESTATE_HANDSETVOLUME 89
PHONESTATE_HEADSETGAIN 89
PHONESTATE_HEADSETHOOKSWITCH 89
PHONESTATE_HEADSETVOLUME 89
PHONESTATE_LAMP 89
PHONESTATE_MONITORS 89
PHONESTATE_OTHER 89
PHONESTATE_OWNER 89
PHONESTATE_REINIT 89
PHONESTATE_REMOVED 89
PHONESTATE_RESUME 89
PHONESTATE_RINGMODE 89

599 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

PHONESTATE_RINGVOLUME 89
PHONESTATE_SPEAKERGAIN 89
PHONESTATE_SPEAKERHOOKSWITCH 89
PHONESTATE_SPEAKERVOLUME 89
PHONESTATE_SUSPEND 89
PHONESTATUS packet 532
PHONESTATUSFLAGS_CONNECTED 90
PHONESTATUSFLAGS_SUSPENDED 90
PickUp_Line packet 211
PickUp_Special_Case_Line packet 438
Preconditions 20
PrepareAddToConference_Line packet 214
PrepareAddToConference_Special_Case_Line packet

440
Prerequisites 20
Product behavior 586
Protocol Details
 overview 537

R

Redirect packet 216
References 15
 informative 15
 normative 15
Relationship to other protocols 20
ReleaseUserUserInfo packet 218
remotesp
 client - abstract data model 570
 client - initialization 571
 client - local events 571
 client - overview 570
 client - packet processing 571
 client - sequencing rules 571
 client - timer events 571
 client - timers 570
 IDL 584
 server - abstract data model 567
 server - initialization 567
 server - local events 570
 server - overview 567
 server - packet processing 567
 server - sequencing rules 567
 server - timer events 570
 server - timers 567
remotesp interface (section 3.3 567, section 3.4

570)
RemoteSPAttach (Opnum 0) method 568
RemoteSPAttach method 568
RemoteSPDetach (Opnum 2) method 570
RemoteSPDetach method 570
RemoteSPEventProc (Opnum 1) method 568
RemoteSPEventProc method 568
RemoveFromConference packet 220
Requests
 generic 370
 line device 105
 MMC 349
 phone device 302
RSPSetEventFilterMasks packet 373

S

Schema elements - directory service 535
SecureCall packet 222

Security
 implementer considerations 583
 overview 583
 parameter index 583
SelectExtVersion_Line packet 224
SelectExtVersion_Phone packet 328
SendUserUserInfo packet 226
Sequencing rules
 client (section 3.2.4 566, section 3.4.4 571)
 remotesp client 571
 remotesp server 567
 server (section 3.1.4 538, section 3.3.4 567)
 tapsrv client 566
 tapsrv server 538
Server
 abstract data model (section 3.1.1 537, section

3.3.1 567)
 ClientAttach (Opnum 0) method 539
 ClientDetach (Opnum 2) method 565
 ClientRequest (Opnum 1) method 540
 communication packages 449
 initialization (section 3.1.3 538, section 3.3.3 567)
 local events (section 3.1.6 566, section 3.3.6 570)

 message processing (section 3.1.4 538, section
3.3.4 567)

 overview 567
 remotesp - abstract data model 567
 remotesp - initialization 567
 remotesp - local events 570
 remotesp - overview 567
 remotesp - packet processing 567
 remotesp - sequencing rules 567
 remotesp - timer events 570
 remotesp - timers 567
 remotesp interface 567
 RemoteSPAttach (Opnum 0) method 568
 RemoteSPDetach (Opnum 2) method 570
 RemoteSPEventProc (Opnum 1) method 568
 sequencing rules (section 3.1.4 538, section 3.3.4

567)
 tapsrv - abstract data model 537
 tapsrv - initialization 538
 tapsrv - local events 566
 tapsrv - packet processing 538
 tapsrv - sequencing rules 538
 tapsrv - timer events 565
 tapsrv - timers 538
 timer events (section 3.1.5 565, section 3.3.5 570)
 timers (section 3.1.2 538, section 3.3.2 567)
SetAgentActivity packet 229
SetAgentGroup packet 231
SetAgentMeasurementPeriod packet 233
SetAgentSessionState packet 235
SetAgentState packet 237
SetAgentStateEx packet 240
SetAppSpecific packet 242
SetButtonInfo packet 330
SetCallData packet 244
SetCallHubTracking packet 246
SetCallParams packet 248
SetCallQualityOfService packet 251
SetCallTreatment packet 255
SetData packet 332
SetDefaultMediaDetection packet 257
SetDevConfig packet 259

600 / 600

[MS-TRP] - v20240423
Telephony Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

SetDisplay packet 334
SetGain packet 336
SetHookSwitch packet 338
SetLamp packet 340
SetLineDevStatus packet 262
SetLineInfo packet 359
SetMediaControl packet 263
SetMediaMode packet 266
SetPhoneInfo packet 361
SetQueueMeasurementPeriod packet 268
SetRing packet 342
SetServerConfig packet 368
SetStatusMessages_Line packet 270
SetStatusMessages_Phone packet 345
SetTerminal packet 272
SetUpConference_Line packet 274
SetUpConference_Special_Case_Line packet 441
SetUpTransfer_Line packet 277
SetUpTransfer_Special_Case_Line packet 443
SetVolume packet 347
ShutDown_Line packet 104
ShutDown_Phone packet 300
Special case

 line device completion packets 414
 phone device completion packets 445
Standards assignments 21
STRINGFORMAT_ASCII 25
STRINGFORMAT_BINARY 25
STRINGFORMAT_DBCS 25
STRINGFORMAT_UNICODE 25
SwapHold packet 280

T

TAPI32_MSG packet 448
TAPISERVERCONFIG packet 453
tapsrv
 client - abstract data model 566
 client - initialization 566
 client - local events 566
 client - packet processing 566
 client - sequencing rules 566
 client - timer events 566
 client - timers 566
 IDL 584
 server - abstract data model 537
 server - initialization 538
 server - local events 566
 server - packet processing 538
 server - sequencing rules 538
 server - timer events 565
 server - timers 538
Terminate session
 line device 102
 packets example 573
 phone device 298
Timer events
 client (section 3.2.5 566, section 3.4.5 571)
 remotesp client 571
 remotesp server 570
 server (section 3.1.5 565, section 3.3.5 570)
 tapsrv client 566

 tapsrv server 565
Timers
 client (section 3.2.2 566, section 3.4.2 570)

 remotesp client 570
 remotesp server 567
 server (section 3.1.2 538, section 3.3.2 567)
 tapsrv client 566
 tapsrv server 538
Tracking changes 589
Transfer connected call packets example 576
Transport 23
Transport - packet 23
TUISPIDLL_OBJECT_DIALOGINSTANCE 25
TUISPIDLL_OBJECT_LINEID 25
TUISPIDLL_OBJECT_PHONEID 25
TUISPIDLL_OBJECT_PROVIDERID 25
TUISPIDLLCallback packet 365

U

UnCompleteCall packet 282
UnHold packet 285
UnPark_Line packet 287
UnPark_Special_Case_Line packet 444

V

VARSTRING packet 530
Vendor-extensible fields 21
Versioning 20

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 HCALL
	2.2.1.2 HLINE
	2.2.1.3 HLINEAPP
	2.2.1.4 HPHONE
	2.2.1.5 HPHONEAPP
	2.2.1.6 PCONTEXT_HANDLE_TYPE
	2.2.1.7 PCONTEXT_HANDLE_TYPE2
	2.2.1.8 STRINGFORMAT_Constants
	2.2.1.9 TUISPIDLL_OBJECT_Constants
	2.2.1.10 HAGENTSESSION
	2.2.1.11 HAGENT

	2.2.2 HANDLE TABLE
	2.2.3 Device Constants
	2.2.3.1 Line Device Constants
	2.2.3.1.1 LINEADDRCAPFLAGS_Constants
	2.2.3.1.2 LINEADDRESSMODE_Constants
	2.2.3.1.3 LINEADDRESSSHARING_Constants
	2.2.3.1.4 LINEADDRESSSTATE_Constants
	2.2.3.1.5 LINEADDRESSTYPE_Constants
	2.2.3.1.6 LINEADDRFEATURE_Constants
	2.2.3.1.7 LINEAGENTFEATURE_Constants
	2.2.3.1.8 LINEAGENTSESSIONSTATE_Constants
	2.2.3.1.9 LINEAGENTSESSIONSTATUS_Constants
	2.2.3.1.10 LINEAGENTSTATE_Constants
	2.2.3.1.11 LINEAGENTSTATEEX_Constants
	2.2.3.1.12 LINEAGENTSTATUS_Constants
	2.2.3.1.13 LINEAGENTSTATUSEX_Constants
	2.2.3.1.14 LINEANSWERMODE_Constants
	2.2.3.1.15 LINEBEARERMODE_Constants
	2.2.3.1.16 LINEBUSYMODE_Constants
	2.2.3.1.17 LINECALLCOMPLCOND_Constants
	2.2.3.1.18 LINECALLCOMPLMODE_Constants
	2.2.3.1.19 LINECALLFEATURE_Constants
	2.2.3.1.20 LINECALLFEATURE2_Constants
	2.2.3.1.21 LINECALLHUBTRACKING_Constants
	2.2.3.1.22 LINECALLINFOSTATE_Constants
	2.2.3.1.23 LINECALLORIGIN_Constants
	2.2.3.1.24 LINECALLPARAMFLAGS_Constants
	2.2.3.1.25 LINECALLPARTYID_Constants
	2.2.3.1.26 LINECALLPRIVILEGE_Constants
	2.2.3.1.27 LINECALLREASON_Constants
	2.2.3.1.28 LINECALLSELECT_Constants
	2.2.3.1.29 LINECALLSTATE_Constants
	2.2.3.1.30 LINECALLTREATMENT_Constants
	2.2.3.1.31 LINECONNECTEDMODE_Constants
	2.2.3.1.32 LINEDEVCAPFLAGS_Constants
	2.2.3.1.33 LINEDEVSTATE_Constants
	2.2.3.1.34 LINEDEVSTATUSFLAGS_Constants
	2.2.3.1.35 LINEDIALTONEMODE_Constants
	2.2.3.1.36 LINEDIGITMODE_Constants
	2.2.3.1.37 LINEDISCONNECTMODE_Constants
	2.2.3.1.38 LINEERR_Constants
	2.2.3.1.39 LINEFEATURE_Constants
	2.2.3.1.40 LINEFORWARDMODE_Constants
	2.2.3.1.41 LINEGATHERTERM_Constants
	2.2.3.1.42 LINEGENERATETERM_Constants
	2.2.3.1.43 LINEMEDIACONTROL_Constants
	2.2.3.1.44 LINEMEDIAMODE_Constants
	2.2.3.1.45 LINEOFFERINGMODE_Constants
	2.2.3.1.46 LINEOPENOPTION_Constants
	2.2.3.1.47 LINEPARKMODE_Constants
	2.2.3.1.48 LINEPROXYREQUEST_Constants
	2.2.3.1.49 LINEPROXYSTATUS_Constants
	2.2.3.1.50 LINEQUEUESTATUS_Constants
	2.2.3.1.51 LINEREMOVEFROMCONF_Constants
	2.2.3.1.52 LINEROAMMODE_Constants
	2.2.3.1.53 LINESPECIALINFO_Constants
	2.2.3.1.54 LINETERMDEV_Constants
	2.2.3.1.55 LINETERMMODE_Constants
	2.2.3.1.56 LINETERMSHARING_Constants
	2.2.3.1.57 LINETONEMODE_Constants
	2.2.3.1.58 LINETRANSFERMODE_Constants

	2.2.3.2 Phone Device Constants
	2.2.3.2.1 PHONEBUTTONFUNCTION_Constants
	2.2.3.2.2 PHONEBUTTONMODE_Constants
	2.2.3.2.3 PHONEBUTTONSTATE_Constants
	2.2.3.2.4 PHONEERR_Constants
	2.2.3.2.5 PHONEFEATURE_Constants
	2.2.3.2.6 PHONEHOOKSWITCHDEV_Constants
	2.2.3.2.7 PHONEHOOKSWITCHMODE_Constants
	2.2.3.2.8 PHONEINITIALIZEEXOPTION_Constants
	2.2.3.2.9 PHONELAMPMODE_Constants
	2.2.3.2.10 PHONEPRIVILEGE_Constants
	2.2.3.2.11 PHONESTATE_Constants
	2.2.3.2.12 PHONESTATUSFLAGS_Constants

	2.2.4 Communication Packets Between Client and Server
	2.2.4.1 Request Packets
	2.2.4.1.1 Create Session for Line Device
	2.2.4.1.1.1 Initialize
	2.2.4.1.1.2 NegotiateAPIVersion
	2.2.4.1.1.3 GetDevCaps
	2.2.4.1.1.4 GetAddressCaps
	2.2.4.1.1.5 Open

	2.2.4.1.2 Terminate Session for Line Device
	2.2.4.1.2.1 Close
	2.2.4.1.2.2 ShutDown

	2.2.4.1.3 Line Device Requests
	2.2.4.1.3.1 Accept
	2.2.4.1.3.2 AddToConference
	2.2.4.1.3.3 AgentSpecific
	2.2.4.1.3.4 Answer
	2.2.4.1.3.5 BlindTransfer
	2.2.4.1.3.6 DeallocateCall
	2.2.4.1.3.7 CompleteCall
	2.2.4.1.3.8 CompleteTransfer
	2.2.4.1.3.9 ConditionalMediaDetection
	2.2.4.1.3.10 CreateAgent
	2.2.4.1.3.11 CreateAgentSession
	2.2.4.1.3.12 DevSpecific
	2.2.4.1.3.13 DevSpecificFeature
	2.2.4.1.3.14 Dial
	2.2.4.1.3.15 Drop
	2.2.4.1.3.16 Forward
	2.2.4.1.3.17 GatherDigits
	2.2.4.1.3.18 GenerateDigits
	2.2.4.1.3.19 GenerateTone
	2.2.4.1.3.20 GetAddressID
	2.2.4.1.3.21 GetAddressStatus
	2.2.4.1.3.22 GetAgentActivityList
	2.2.4.1.3.23 GetAgentCaps
	2.2.4.1.3.24 GetAgentGroupList
	2.2.4.1.3.25 GetAgentInfo
	2.2.4.1.3.26 GetAgentSessionInfo
	2.2.4.1.3.27 GetAgentSessionList
	2.2.4.1.3.28 GetAgentStatus
	2.2.4.1.3.29 GetCallHubTracking
	2.2.4.1.3.30 GetCallIDs
	2.2.4.1.3.31 GetCallInfo
	2.2.4.1.3.32 GetCallStatus
	2.2.4.1.3.33 GetDevConfig
	2.2.4.1.3.34 GetGroupList
	2.2.4.1.3.35 GetID
	2.2.4.1.3.36 GetLineDevStatus
	2.2.4.1.3.37 GetNewCalls
	2.2.4.1.3.38 GetNumAddressIDs
	2.2.4.1.3.39 GetProxyStatus
	2.2.4.1.3.40 GetQueueInfo
	2.2.4.1.3.41 GetQueueList
	2.2.4.1.3.42 Hold
	2.2.4.1.3.43 MakeCall
	2.2.4.1.3.44 MonitorDigits
	2.2.4.1.3.45 MonitorMedia
	2.2.4.1.3.46 MonitorTones
	2.2.4.1.3.47 NegotiateExtVersion
	2.2.4.1.3.48 Park
	2.2.4.1.3.49 PickUp
	2.2.4.1.3.50 PrepareAddToConference
	2.2.4.1.3.51 Redirect
	2.2.4.1.3.52 ReleaseUserUserInfo
	2.2.4.1.3.53 RemoveFromConference
	2.2.4.1.3.54 SecureCall
	2.2.4.1.3.55 SelectExtVersion
	2.2.4.1.3.56 SendUserUserInfo
	2.2.4.1.3.57 SetAgentActivity
	2.2.4.1.3.58 SetAgentGroup
	2.2.4.1.3.59 SetAgentMeasurementPeriod
	2.2.4.1.3.60 SetAgentSessionState
	2.2.4.1.3.61 SetAgentState
	2.2.4.1.3.62 SetAgentStateEx
	2.2.4.1.3.63 SetAppSpecific
	2.2.4.1.3.64 SetCallData
	2.2.4.1.3.65 SetCallHubTracking
	2.2.4.1.3.66 SetCallParams
	2.2.4.1.3.67 SetCallQualityOfService
	2.2.4.1.3.67.1 FLOWSPEC

	2.2.4.1.3.68 SetCallTreatment
	2.2.4.1.3.69 SetDefaultMediaDetection
	2.2.4.1.3.70 SetDevConfig
	2.2.4.1.3.71 SetLineDevStatus
	2.2.4.1.3.72 SetMediaControl
	2.2.4.1.3.73 SetMediaMode
	2.2.4.1.3.74 SetQueueMeasurementPeriod
	2.2.4.1.3.75 SetStatusMessages
	2.2.4.1.3.76 SetTerminal
	2.2.4.1.3.77 SetUpConference
	2.2.4.1.3.78 SetUpTransfer
	2.2.4.1.3.79 SwapHold
	2.2.4.1.3.80 UnCompleteCall
	2.2.4.1.3.81 UnHold
	2.2.4.1.3.82 UnPark

	2.2.4.1.4 Create Session for Phone Device
	2.2.4.1.4.1 Initialize
	2.2.4.1.4.2 NegotiateAPIVersion
	2.2.4.1.4.3 GetDevCaps
	2.2.4.1.4.4 Open

	2.2.4.1.5 Terminate Session for Phone Device
	2.2.4.1.5.1 Close
	2.2.4.1.5.2 ShutDown

	2.2.4.1.6 Phone Device Requests
	2.2.4.1.6.1 DevSpecific
	2.2.4.1.6.2 GetButtonInfo
	2.2.4.1.6.3 GetData
	2.2.4.1.6.4 GetDisplay
	2.2.4.1.6.5 GetGain
	2.2.4.1.6.6 GetHookSwitch
	2.2.4.1.6.7 GetID
	2.2.4.1.6.8 GetLamp
	2.2.4.1.6.9 GetRing
	2.2.4.1.6.10 GetStatus
	2.2.4.1.6.11 GetVolume
	2.2.4.1.6.12 NegotiateExtVersion
	2.2.4.1.6.13 SelectExtVersion
	2.2.4.1.6.14 SetButtonInfo
	2.2.4.1.6.15 SetData
	2.2.4.1.6.16 SetDisplay
	2.2.4.1.6.17 SetGain
	2.2.4.1.6.18 SetHookSwitch
	2.2.4.1.6.19 SetLamp
	2.2.4.1.6.20 SetRing
	2.2.4.1.6.21 SetStatusMessages
	2.2.4.1.6.22 SetVolume

	2.2.4.1.7 MMC Requests
	2.2.4.1.7.1 GetAvailableProviders
	2.2.4.1.7.2 GetDeviceFlags
	2.2.4.1.7.3 GetLineInfo
	2.2.4.1.7.4 GetPhoneInfo
	2.2.4.1.7.5 GetProviderList
	2.2.4.1.7.6 GetServerConfig
	2.2.4.1.7.7 SetLineInfo
	2.2.4.1.7.8 SetPhoneInfo
	2.2.4.1.7.9 GetUIDllName
	2.2.4.1.7.10 TUISPIDLLCallback
	2.2.4.1.7.11 FreeDialogInstance
	2.2.4.1.7.12 SetServerConfig

	2.2.4.1.8 Generic Requests
	2.2.4.1.8.1 GetAsyncEvents
	2.2.4.1.8.2 NegotiateAPIVersionForAllDevices
	2.2.4.1.8.3 RSPSetEventFilterMasks

	2.2.4.2 Response Packets
	2.2.4.2.1 Completion Packets
	2.2.4.2.1.1 LINE_ADDRESSSTATE
	2.2.4.2.1.2 LINE_AGENTSESSIONSTATUS
	2.2.4.2.1.3 LINE_AGENTSPECIFIC
	2.2.4.2.1.4 LINE_AGENTSTATUS
	2.2.4.2.1.5 LINE_AGENTSTATUSEX
	2.2.4.2.1.6 LINE_APPNEWCALL
	2.2.4.2.1.7 LINE_CALLINFO
	2.2.4.2.1.8 LINE_CALLSTATE
	2.2.4.2.1.9 LINE_CLOSE
	2.2.4.2.1.10 LINE_CREATE
	2.2.4.2.1.11 LINE_CREATEDIALOGINSTANCE
	2.2.4.2.1.12 LINE_DEVSPECIFIC
	2.2.4.2.1.13 LINE_DEVSPECIFICFEATURE
	2.2.4.2.1.14 LINE_GATHERDIGITS
	2.2.4.2.1.15 LINE_GENERATE
	2.2.4.2.1.16 LINE_GROUPSTATUS
	2.2.4.2.1.17 LINE_LINEDEVSTATE
	2.2.4.2.1.18 LINE_MONITORDIGITS
	2.2.4.2.1.19 LINE_MONITORMEDIA
	2.2.4.2.1.20 LINE_MONITORTONE
	2.2.4.2.1.21 LINE_PROXYREQUEST
	2.2.4.2.1.22 LINE_PROXYSTATUS
	2.2.4.2.1.23 LINE_QUEUESTATUS
	2.2.4.2.1.24 LINE_REMOVE
	2.2.4.2.1.25 LINE_REPLY
	2.2.4.2.1.26 PHONE_BUTTON
	2.2.4.2.1.27 PHONE_CLOSE
	2.2.4.2.1.28 PHONE_CREATE
	2.2.4.2.1.29 PHONE_DEVSPECIFIC
	2.2.4.2.1.30 PHONE_REMOVE
	2.2.4.2.1.31 PHONE_REPLY
	2.2.4.2.1.32 PHONE_STATE

	2.2.4.2.2 Special Case Line Device Completion Packets
	2.2.4.2.2.1 AgentSpecific
	2.2.4.2.2.2 CompleteCall
	2.2.4.2.2.3 CompleteTransfer
	2.2.4.2.2.4 CreateAgent
	2.2.4.2.2.5 CreateAgentSession
	2.2.4.2.2.6 DevSpecific
	2.2.4.2.2.7 DevSpecificFeature
	2.2.4.2.2.8 Forward
	2.2.4.2.2.9 GetAgentActivityList
	2.2.4.2.2.10 GetAgentCaps
	2.2.4.2.2.11 GetAgentGroupList
	2.2.4.2.2.12 GetAgentInfo
	2.2.4.2.2.13 GetAgentSessionInfo
	2.2.4.2.2.14 GetAgentSessionList
	2.2.4.2.2.15 GetAgentStatus
	2.2.4.2.2.16 GetGroupList
	2.2.4.2.2.17 GetQueueInfo
	2.2.4.2.2.18 GetQueueList
	2.2.4.2.2.19 MakeCall
	2.2.4.2.2.20 Park
	2.2.4.2.2.21 PickUp
	2.2.4.2.2.22 PrepareAddToConference
	2.2.4.2.2.23 SetUpConference
	2.2.4.2.2.24 SetUpTransfer
	2.2.4.2.2.25 UnPark

	2.2.4.2.3 Special Case Phone Device Completion Packets
	2.2.4.2.3.1 DevSpecific

	2.2.5 Data Templates
	2.2.5.1 ASYNCEVENTMSG
	2.2.5.2 TAPI32_MSG

	2.2.6 Data Structures
	2.2.6.1 AVAILABLEPROVIDERENTRY
	2.2.6.2 AVAILABLEPROVIDERLIST
	2.2.6.3 DEVICEINFO
	2.2.6.4 DEVICEINFOLIST
	2.2.6.5 TAPISERVERCONFIG
	2.2.6.6 LINEADDRESSCAPS
	2.2.6.7 LINEADDRESSSTATUS
	2.2.6.8 LINEAGENTSTATUS
	2.2.6.9 LINEAGENTACTIVITYENTRY
	2.2.6.10 LINEAGENTACTIVITYLIST
	2.2.6.11 LINEAGENTGROUPLIST
	2.2.6.12 LINEAGENTGROUPENTRY
	2.2.6.13 LINEAGENTCAPS
	2.2.6.14 LINEAGENTSESSIONENTRY
	2.2.6.15 LINEAGENTSESSIONLIST
	2.2.6.16 LINEAGENTSESSIONINFO
	2.2.6.17 LINECALLSTATUS
	2.2.6.18 LINECALLHUBTRACKINGINFO
	2.2.6.19 LINECALLINFO
	2.2.6.20 LINECALLPARAMS
	2.2.6.21 LINECALLLIST
	2.2.6.22 LINECALLTREATMENTENTRY
	2.2.6.23 LINEDEVCAPS
	2.2.6.24 LINEDEVSTATUS
	2.2.6.25 LINEAPPINFO
	2.2.6.26 LINEDIALPARAMS
	2.2.6.27 LINEGENERATETONE
	2.2.6.28 LINEPROXYREQUEST
	2.2.6.29 LINEQUEUEINFO
	2.2.6.30 LINEFORWARD
	2.2.6.31 LINEFORWARDLIST
	2.2.6.32 LINEPROVIDERLIST
	2.2.6.33 LINEPROVIDERENTRY
	2.2.6.34 LINEPROXYREQUESTLIST
	2.2.6.35 LINEQUEUELIST
	2.2.6.36 LINEQUEUEENTRY
	2.2.6.37 LINEMONITORTONE
	2.2.6.38 LINEMEDIACONTROLDIGIT
	2.2.6.39 LINEMEDIACONTROLMEDIA
	2.2.6.40 LINEMEDIACONTROLTONE
	2.2.6.41 PHONEBUTTONINFO
	2.2.6.42 PHONECAPS
	2.2.6.43 PHONEEXTENSIONID
	2.2.6.44 LINEMEDIACONTROLCALLSTATE
	2.2.6.45 LINEEXTENSIONID
	2.2.6.46 VARSTRING
	2.2.6.47 LINEAGENTINFO
	2.2.6.48 PHONESTATUS
	2.2.6.49 LINETERMCAPS

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 Tapsrv Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 ClientAttach (Opnum 0)
	3.1.4.2 ClientRequest (Opnum 1)
	3.1.4.3 ClientDetach (Opnum 2)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Tapsrv Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Remotesp Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 RemoteSPAttach (Opnum 0)
	3.3.4.2 RemoteSPEventProc (Opnum 1)
	3.3.4.3 RemoteSPDetach (Opnum 2)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 Remotesp Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	4 Protocol Examples
	4.1 Packet Exchanges to Establish the Session
	4.2 Packet Exchanges to Terminate the Session
	4.3 Packet Exchanges to Make an Outgoing Call
	4.4 Packet Exchanges to Answer an Incoming Call
	4.5 Packet Exchanges to Transfer a Connected call
	4.6 Packet Exchanges to Forward Incoming Calls or Modify the Existing Forward State
	4.7 Packet Exchange for Establishing a Management Session
	4.8 Packet Exchanges to Terminate the Management Session
	4.9 Packet Exchange for Getting the Server Configuration
	4.10 Packet Exchange for Setting the Server Configuration
	4.11 Packet Exchanges for ACD proxy requests and responses
	4.12 Packet Exchanges to Create an Agent Session for an ACD Group

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	6.1 Appendix A.1: Remotesp.IDL
	6.2 Appendix A.2: Tapsrv.IDL

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

