
1 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

[MS-TDS]:

Tabular Data Stream Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

3/14/2008 0.1 Major Initial Availability.

6/20/2008 0.1.1 Editorial Changed language and formatting in the technical content.

7/25/2008 0.1.2 Editorial Changed language and formatting in the technical content.

8/29/2008 0.1.3 Editorial Changed language and formatting in the technical content.

10/24/2008 0.1.4 Editorial Changed language and formatting in the technical content.

12/5/2008 0.2 Minor Clarified the meaning of the technical content.

1/16/2009 0.3 Minor Clarified the meaning of the technical content.

2/27/2009 0.4 Minor Clarified the meaning of the technical content.

4/10/2009 0.5 Minor Clarified the meaning of the technical content.

5/22/2009 0.5.1 Editorial Changed language and formatting in the technical content.

7/2/2009 1.0 Major Updated and revised the technical content.

8/14/2009 1.1 Minor Clarified the meaning of the technical content.

9/25/2009 2.0 Major Updated and revised the technical content.

11/6/2009 3.0 Major Updated and revised the technical content.

12/18/2009 4.0 Major Updated and revised the technical content.

1/29/2010 4.1 Minor Clarified the meaning of the technical content.

3/12/2010 5.0 Major Updated and revised the technical content.

4/23/2010 6.0 Major Updated and revised the technical content.

6/4/2010 7.0 Major Updated and revised the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0 Major Updated and revised the technical content.

11/19/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 9.1 Minor Clarified the meaning of the technical content.

2/11/2011 9.2 Minor Clarified the meaning of the technical content.

3/25/2011 9.3 Minor Clarified the meaning of the technical content.

5/6/2011 9.4 Minor Clarified the meaning of the technical content.

6/17/2011 10.0 Major Updated and revised the technical content.

9/23/2011 11.0 Major Updated and revised the technical content.

3 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Date
Revision
History

Revision
Class Comments

12/16/2011 12.0 Major Updated and revised the technical content.

3/30/2012 12.1 Minor Clarified the meaning of the technical content.

7/12/2012 12.2 Minor Clarified the meaning of the technical content.

10/25/2012 12.2 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 Major Updated and revised the technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 15.0 Major Updated and revised the technical content.

2/13/2014 16.0 Major Updated and revised the technical content.

5/15/2014 17.0 Major Updated and revised the technical content.

6/30/2015 18.0 Major Significantly changed the technical content.

10/16/2015 19.0 Major Significantly changed the technical content.

5/10/2016 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2017 20.0 Major Significantly changed the technical content.

6/1/2017 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/16/2017 21.0 Major Significantly changed the technical content.

9/15/2017 22.0 Major Significantly changed the technical content.

12/1/2017 23.0 Major Significantly changed the technical content.

3/16/2018 24.0 Major Significantly changed the technical content.

4 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 13
1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments ... 16

2 Messages ... 17
2.1 Transport .. 17
2.2 Message Syntax ... 17

2.2.1 Client Messages .. 17
2.2.1.1 Pre-Login ... 18
2.2.1.2 Login ... 18
2.2.1.3 Federated Authentication Token .. 18
2.2.1.4 SQL Batch .. 18
2.2.1.5 Bulk Load ... 18
2.2.1.6 Remote Procedure Call... 19
2.2.1.7 Attention ... 19
2.2.1.8 Transaction Manager Request ... 19

2.2.2 Server Messages .. 19
2.2.2.1 Pre-Login Response ... 20
2.2.2.2 Login Response... 20
2.2.2.3 Federated Authentication Information .. 20
2.2.2.4 Row Data ... 20
2.2.2.5 Return Status ... 20
2.2.2.6 Return Parameters .. 20
2.2.2.7 Response Completion .. 21
2.2.2.8 Error and Info ... 21
2.2.2.9 Attention Acknowledgment ... 21

2.2.3 Packets ... 21
2.2.3.1 Packet Header .. 22

2.2.3.1.1 Type .. 22
2.2.3.1.2 Status .. 23
2.2.3.1.3 Length ... 24
2.2.3.1.4 SPID .. 24
2.2.3.1.5 PacketID .. 24
2.2.3.1.6 Window .. 24

2.2.3.2 Packet Data .. 24
2.2.4 Packet Data Token and Tokenless Data Streams ... 25

2.2.4.1 Tokenless Stream ... 25
2.2.4.2 Token Stream ... 26

2.2.4.2.1 Token Definition .. 26
2.2.4.2.1.1 Zero Length Token(xx01xxxx) ... 26
2.2.4.2.1.2 Fixed Length Token(xx11xxxx) .. 26
2.2.4.2.1.3 Variable Length Tokens(xx10xxxx)... 26
2.2.4.2.1.4 Variable Count Tokens(xx00xxxx) .. 27

2.2.4.3 Done and Attention Tokens .. 27
2.2.5 Grammar Definition for Token Description ... 27

2.2.5.1 General Rules ... 27

5 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.5.1.1 Least Significant Bit Order .. 30
2.2.5.1.2 Collation Rule Definition ... 30

2.2.5.2 Data Stream Types ... 31
2.2.5.2.1 Unknown Length Data Streams ... 31
2.2.5.2.2 Variable-Length Data Streams .. 31
2.2.5.2.3 Data Type Dependent Data Streams .. 31

2.2.5.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition 33
2.2.5.3.1 Query Notifications Header ... 34
2.2.5.3.2 Transaction Descriptor Header .. 34
2.2.5.3.3 Trace Activity Header ... 35

2.2.5.4 Data Type Definitions .. 35
2.2.5.4.1 Fixed-Length Data Types .. 35
2.2.5.4.2 Variable-Length Data Types .. 36
2.2.5.4.3 Partially Length-Prefixed Data Types .. 39

2.2.5.5 Data Type Details ... 39
2.2.5.5.1 System Data Type Values ... 39

2.2.5.5.1.1 Integers ... 39
2.2.5.5.1.2 Timestamp .. 40
2.2.5.5.1.3 Character and Binary Strings ... 40
2.2.5.5.1.4 Fixed-Point Numbers .. 40
2.2.5.5.1.5 Floating-Point Numbers .. 40
2.2.5.5.1.6 Decimal/Numeric ... 40
2.2.5.5.1.7 GUID .. 40
2.2.5.5.1.8 Date/Times ... 40

2.2.5.5.2 Common Language Runtime (CLR) Instances 41
2.2.5.5.3 XML Values ... 42
2.2.5.5.4 SQL_VARIANT Values ... 42
2.2.5.5.5 Table Valued Parameter (TVP) Values .. 43

2.2.5.5.5.1 Metadata .. 43
2.2.5.5.5.2 Optional Metadata Tokens ... 45
2.2.5.5.5.3 TDS Type Restrictions .. 47

2.2.5.6 Type Info Rule Definition .. 48
2.2.5.7 Encryption Key Rule Definition .. 49
2.2.5.8 Data Packet Stream Tokens.. 50

2.2.6 Packet Header Message Type Stream Definition .. 50
2.2.6.1 Bulk Load BCP .. 50
2.2.6.2 Bulk Load Update Text/Write Text ... 51
2.2.6.3 Federated Authentication Token .. 52
2.2.6.4 LOGIN7 ... 53
2.2.6.5 PRELOGIN .. 65
2.2.6.6 RPC Request... 69
2.2.6.7 SQLBatch ... 72
2.2.6.8 SSPI Message ... 73
2.2.6.9 Transaction Manager Request ... 74

2.2.7 Packet Data Token Stream Definition .. 77
2.2.7.1 ALTMETADATA .. 77
2.2.7.2 ALTROW .. 80
2.2.7.3 COLINFO .. 81
2.2.7.4 COLMETADATA ... 82
2.2.7.5 DONE .. 85
2.2.7.6 DONEINPROC ... 86
2.2.7.7 DONEPROC .. 88
2.2.7.8 ENVCHANGE ... 89
2.2.7.9 ERROR ... 93
2.2.7.10 FEATUREEXTACK .. 95
2.2.7.11 FEDAUTHINFO .. 98
2.2.7.12 INFO ... 99
2.2.7.13 LOGINACK .. 100

6 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.7.14 NBCROW... 102
2.2.7.15 OFFSET ... 103
2.2.7.16 ORDER ... 104
2.2.7.17 RETURNSTATUS ... 105
2.2.7.18 RETURNVALUE ... 105
2.2.7.19 ROW .. 108
2.2.7.20 SESSIONSTATE ... 109
2.2.7.21 SSPI ... 110
2.2.7.22 TABNAME .. 111
2.2.7.23 TVP ROW .. 112

3 Protocol Details ... 114
3.1 Common Details ... 114

3.1.1 Abstract Data Model ... 114
3.1.2 Timers ... 114
3.1.3 Initialization .. 114
3.1.4 Higher-Layer Triggered Events .. 114
3.1.5 Message Processing Events and Sequencing Rules ... 114
3.1.6 Timer Events ... 119
3.1.7 Other Local Events ... 119

3.2 Client Details .. 120
3.2.1 Abstract Data Model ... 120
3.2.2 Timers ... 121
3.2.3 Initialization .. 121
3.2.4 Higher-Layer Triggered Events .. 122
3.2.5 Message Processing Events and Sequencing Rules ... 123

3.2.5.1 Sent Initial PRELOGIN Packet State .. 123
3.2.5.2 Sent TLS/SSL Negotiation Packet State ... 124
3.2.5.3 Sent LOGIN7 Record with Complete Authentication Token State 125
3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State 125
3.2.5.5 Sent LOGIN7 Record with Federated Authentication Information Request State

 ... 126
3.2.5.6 Logged In State ... 126
3.2.5.7 Sent Client Request State ... 126
3.2.5.8 Sent Attention State ... 126
3.2.5.9 Routing Completed State .. 127
3.2.5.10 Final State .. 127

3.2.6 Timer Events ... 127
3.2.7 Other Local Events ... 127

3.3 Server Details ... 127
3.3.1 Abstract Data Model ... 128
3.3.2 Timers ... 129
3.3.3 Initialization .. 129
3.3.4 Higher-Layer Triggered Events .. 129
3.3.5 Message Processing Events and Sequencing Rules ... 129

3.3.5.1 Initial State ... 129
3.3.5.2 TLS/SSL Negotiation State .. 130
3.3.5.3 Login Ready State .. 130
3.3.5.4 SPNEGO Negotiation State .. 132
3.3.5.5 Federated Authentication Ready State .. 132
3.3.5.6 Logged In State ... 133
3.3.5.7 Client Request Execution State .. 133
3.3.5.8 Routing Completed State .. 133
3.3.5.9 Final State .. 134

3.3.6 Timer Events ... 134
3.3.7 Other Local Events ... 134

4 Protocol Examples ... 135
4.1 Pre-Login Request ... 135

7 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

4.2 Login Request ... 136
4.3 Login Request with Federated Authentication .. 138
4.4 Login Response ... 145
4.5 Login Response with Federated Authentication Feature Extension Acknowledgement148
4.6 SQL Batch Client Request ... 152
4.7 SQL Batch Server Response ... 153
4.8 RPC Client Request .. 155
4.9 RPC Server Response .. 157
4.10 Attention Request ... 158
4.11 SSPI Message ... 158
4.12 Bulk Load ... 159
4.13 Transaction Manager Request ... 160
4.14 TVP Insert Statement .. 161
4.15 SparseColumn Select Statement ... 163
4.16 FeatureExt with SESSIONRECOVERY Feature Data .. 168
4.17 FeatureExtAck with SESSIONRECOVERY Feature Data ... 173
4.18 Table Response with SESSIONSTATE Token Data .. 178
4.19 Token Stream Communication .. 180

4.19.1 Sending a SQL Batch .. 180
4.19.2 Out-of-Band Attention Signal .. 180

4.20 FeatureExt with AZURESQLSUPPORT Feature Data .. 181
4.21 FeatureExtAck with AZURESQLSUPPORT Feature Data ... 184

5 Security ... 192
5.1 Security Considerations for Implementers .. 192
5.2 Index of Security Parameters ... 192

6 Appendix A: Product Behavior ... 193

7 Change Tracking .. 199

8 Index ... 200

8 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

1 Introduction

The Tabular Data Stream (TDS) protocol is an application layer request/response protocol that
facilitates interaction with a database server and provides for the following:

 Authentication and channel encryption negotiation.

 Specification of requests in SQL (including Bulk Insert).

 Invocation of a stored procedure or user-defined function, also known as a remote procedure

call (RPC).

 The return of data.

 Transaction manager requests.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the
memory location with the lowest address.

bulk insert: A method for efficiently populating the rows of a table from the client to the server.

common language runtime user-defined type (CLR UDT): A data type that is created and
defined by the user on a database server that supports SQL by using a Microsoft .NET
Framework common language runtime assembly.

data stream: A stream of data that corresponds to specific Tabular Data Stream (TDS) semantics.
A single data stream can represent an entire TDS message or only a specific, well-defined

portion of a TDS message. A TDS data stream can span multiple network data packets.

Distributed Transaction Coordinator (DTC): A Windows service that coordinates transactions

across multiple resource managers, including databases. For more information, see [MSDN-
DTC].

enclave: A protected region of memory that is used only on the server side. This region is within
the address space of SQL Server, and it acts as a trusted execution environment. Only code that
runs within the enclave can access data within that enclave. Neither the data nor the code inside
the enclave can be viewed from the outside, even with a debugger.

enclave computations: Locally enabled cryptographic operations and other operations in
Transact-SQL queries on encrypted columns that are performed inside an enclave.

federated authentication: An authentication mechanism that allows a security token service
(STS) in one trust domain to delegate user authentication to an identity provider in another

trust domain, while generating a security token for the user, when there is a trust relationship
between the two domains.

final state: The application layer has finished the communication, and the lower-layer connection

should be disconnected.

Global Transactions: A feature that allows users to execute transactions across multiple
databases that are hosted in a shared service, such as Microsoft Azure SQL Database.

https://go.microsoft.com/fwlink/?LinkId=89994
https://go.microsoft.com/fwlink/?LinkId=89994

9 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

initial state: A prerequisite for application-layer communication. A lower-layer channel that can
provide reliable communication must be established.

interface: A group of related function prototypes in a specific order, analogous to a C++ virtual
interface. Multiple objects, of different object class, may implement the same interface. A

derived interface may be created by adding methods after the end of an existing interface. In
the Distributed Component Object Model (DCOM), all interfaces initially derive from IUnknown.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Microsoft/Windows Data Access Components (MDAC/WDAC): With Microsoft/Windows Data
Access Components (MDAC/WDAC), developers can connect to and use data from a wide variety
of relational and nonrelational data sources. You can connect to many different data sources

using Open Database Connectivity (ODBC), ActiveX Data Objects (ADO), or OLE DB. You can do
this through providers and drivers that are built and shipped by Microsoft, or that are developed
by various third parties. For more information, see [MSDN-MDAC].

Multiple Active Result Sets (MARS): A feature in Microsoft SQL Server that allows applications
to have more than one pending request per connection. For more information, see [MSDN-
MARS].

nullable column: A database table column that is allowed to contain no value for a given row.

out-of-band: A type of event that happens outside of the standard sequence of events. For
example, an out-of-band signal or message can be sent during an unexpected time and will not
cause any protocol parsing issues.

query notification: A feature in SQL Server that allows the client to register for notification on
changes to a given query result. For more information, see [MSDN-QUERYNOTE].

remote procedure call (RPC): A communication protocol used primarily between client and

server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

result set: A list of records that results from running a stored procedure or query, or applying a
filter. The structure and content of the data in a result set varies according to the
implementation.

Security Support Provider Interface (SSPI): A Windows API that provides the means for
connected applications to call one of several security providers to establish authenticated
connections and to exchange data securely over those connections. It is equivalent to Generic
Security Services (GSS)-API, and the two APIs are on-the-wire compatible.

Session Multiplex Protocol (SMP): A multiplexing protocol that enables multiple logical client
connections to share a single transport connection to a server. Used by Multiple Active Result

Sets (MARS). For more information, see [MC-SMP].

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO): An authentication

mechanism that allows Generic Security Services (GSS) peers to determine whether their
credentials support a common set of GSS-API security mechanisms, to negotiate different
options within a given security mechanism or different options from several security
mechanisms, to select a service, and to establish a security context among themselves using
that service. SPNEGO is specified in [RFC4178].

SQL batch: A set of SQL statements.

https://go.microsoft.com/fwlink/?LinkId=213737
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=119984
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af
https://go.microsoft.com/fwlink/?LinkId=90461

10 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

SQL Server Native Client (SNAC): SNAC contains the SQL Server ODBC driver and the SQL
Server OLE DB provider in one native dynamic link library (DLL) supporting applications using

native-code APIs (ODBC, OLE DB, and ADO) to Microsoft SQL Server. For more information, see
[MSDN-SNAC].

SQL Server User Authentication (SQLAUTH): An authentication mechanism that is used to
support user accounts on a database server that supports SQL. The username and password of
the user account are transmitted as part of the login message that the client sends to the
server.

SQL statement: A character string expression in a language that the server understands.

stored procedure: A precompiled collection of SQL statements and, optionally, control-of-flow
statements that are stored under a name and processed as a unit. They are stored in a SQL

database and can be run with one call from an application. Stored procedures return an integer
return code and can additionally return one or more result sets. Also referred to as sproc.

table response: A collection of data, all formatted in a specific manner, that is sent by the server

to the client for the purpose of communicating the result of a client request. The server returns
the result in a table response format for LOGIN7, SQL, and remote procedure call (RPC)
requests.

TDS session: A successfully established communication over a period of time between a client and
a server on which the Tabular Data Stream (TDS) protocol is used for message exchange.

transaction manager: The party that is responsible for managing and distributing the outcome of
atomic transactions. A transaction manager is either a root transaction manager or a
subordinate transaction manager for a specified transaction.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Virtual Interface Architecture (VIA): A high-speed interconnect that requires special hardware

and drivers that are provided by third parties.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,

http://ieeexplore.ieee.org/servlet/opac?punumber=2355

https://go.microsoft.com/fwlink/?LinkId=213738
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89888
https://go.microsoft.com/fwlink/?LinkId=89903

11 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

[IETF-AuthEncr] McGrew, D., Foley, J., and Paterson, K., "Authenticated Encryption with AES-CBC and
HMAC-SHA", Network Working Group Internet-Draft, July 2014, http://tools.ietf.org/html/draft-

mcgrew-aead-aes-cbc-hmac-sha2-05

[MS-BINXML] Microsoft Corporation, "SQL Server Binary XML Structure".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC
1122, October 1989, http://www.rfc-editor.org/rfc/rfc1122.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editor.org/rfc/rfc2246.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC

4234, October 2005, http://www.rfc-editor.org/rfc/rfc4234.txt

[RFC6101] Freier, A., Karlton, P., and Kocher, P., "The Secure Sockets Layer (SSL) Protocol Version
3.0", RFC 6101, August 2011, http://www.rfc-editor.org/rfc/rfc6101.txt

[RFC6234] Eastlake III, D., and Hansen, T., "US Secure Hash Algorithms (SHA and SHA-based HMAC
and HKDF)", RFC 6234, May 2011, http://www.rfc-editor.org/rfc/rfc6234.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

[VIA2002] Cameron, D., and Regnier, G., "The Virtual Interface Architecture", Intel Press, 2002,
ISBN:0971288704.

1.2.2 Informative References

[MC-SMP] Microsoft Corporation, "Session Multiplex Protocol".

[MS-NETOD] Microsoft Corporation, "Microsoft .NET Framework Protocols Overview".

[MS-SSCLRT] Microsoft Corporation, "Microsoft SQL Server CLR Types Serialization Formats".

[MSDN-Autocommit] Microsoft Corporation, "Autocommit Transactions",
https://msdn.microsoft.com/en-us/library/ms187878.aspx

[MSDN-BEGIN] Microsoft Corporation, "BEGIN TRANSACTION (Transact SQL)",
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/begin-transaction-transact-sql

[MSDN-BOUND] Microsoft Corporation, "Using Bound Sessions", http://msdn.microsoft.com/en-

us/library/ms177480.aspx

[MSDN-BROWSE] Microsoft Corporation, "Browse Mode", in SQL Server 2000 Retired Technical
documentation, p. 12261, https://www.microsoft.com/en-us/download/confirmation.aspx?id=51958

[MSDN-Collation] Microsoft Corporation, "Collation and Unicode Support",
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support

[MSDN-ColSets] Microsoft Corporation, "Use Column Sets", https://docs.microsoft.com/en-
us/sql/relational-databases/tables/use-column-sets

https://go.microsoft.com/fwlink/?LinkId=524322
https://go.microsoft.com/fwlink/?LinkId=524322
%5bMS-BINXML%5d.pdf#Section_11ab6e8d247244d1a9e6bddf000e12f6
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
https://go.microsoft.com/fwlink/?LinkId=112180
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=509953
https://go.microsoft.com/fwlink/?LinkId=328921
https://go.microsoft.com/fwlink/?LinkId=150872
https://go.microsoft.com/fwlink/?LinkId=90550
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af
%5bMS-NETOD%5d.pdf#Section_bcca8164da0843f2a983c34ed99171b0
%5bMS-SSCLRT%5d.pdf#Section_77460aa98c2f4449a65e1d649ebd77fa
https://go.microsoft.com/fwlink/?LinkId=145156
https://go.microsoft.com/fwlink/?LinkId=144544
https://go.microsoft.com/fwlink/?LinkId=144543
https://go.microsoft.com/fwlink/?LinkId=144543
https://go.microsoft.com/fwlink/?LinkId=140931
https://go.microsoft.com/fwlink/?LinkId=233327
https://go.microsoft.com/fwlink/?LinkId=128616
https://go.microsoft.com/fwlink/?LinkId=128616

12 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

[MSDN-ColSortSty] Microsoft Corporation, "Windows Collation Sorting Styles",
http://msdn.microsoft.com/en-us/library/ms143515.aspx

[MSDN-COMMIT] Microsoft Corporation, "COMMIT TRANSACTION (Transact-SQL)",
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/commit-transaction-transact-sql

[MSDN-DTC] Microsoft Corporation, "Distributed Transaction Coordinator",
http://msdn.microsoft.com/en-us/library/ms684146.aspx

[MSDN-INSERT] Microsoft Corporation, "INSERT (Transact-SQL)", https://docs.microsoft.com/en-
us/sql/t-sql/statements/insert-transact-sql

[MSDN-ITrans] Microsoft Corporation, "ITransactionExport::GetTransactionCookie",
http://msdn.microsoft.com/en-us/library/ms679869(VS.85).aspx

[MSDN-MARS] Microsoft Corporation, "Using Multiple Active Result Sets (MARS)",
https://docs.microsoft.com/en-us/sql/relational-databases/native-client/features/using-multiple-
active-result-sets-mars

[MSDN-MDAC] Microsoft Corporation, "Microsoft Data Access Components (MDAC) Installation",
http://msdn.microsoft.com/en-us/library/ms810805.aspx

[MSDN-NamedPipes] Microsoft Corporation, "Creating a Valid Connection String Using Named Pipes",
http://msdn.microsoft.com/en-us/library/ms189307(v=sql.105).aspx

[MSDN-NP] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-
us/library/aa365590.aspx

[MSDN-NTLM] Microsoft Corporation, "Microsoft NTLM", http://msdn.microsoft.com/en-
us/library/aa378749.aspx

[MSDN-QUERYNOTE] Microsoft Corporation, "Using Query Notifications",

http://msdn.microsoft.com/en-us/library/ms175110.aspx

[MSDN-SNAC] Microsoft Corporation, "Microsoft SQL Server Native Client and Microsoft SQL Server
2008 Native Client", https://blogs.msdn.microsoft.com/sqlnativeclient/2008/02/27/microsoft-sql-
server-native-client-and-microsoft-sql-server-2008-native-client/

[MSDN-SQLCollation] Microsoft Corporation, "Selecting a SQL Server Collation",
http://msdn.microsoft.com/en-us/library/ms144250.aspx

[MSDN-TDSENDPT] Microsoft Corporation, "Network Protocols and TDS Endpoints",
https://msdn.microsoft.com/en-us/library/ms191220.aspx

[MSDN-UPDATETEXT] Microsoft Corporation, "UPDATETEXT (Transact-SQL)",
https://docs.microsoft.com/en-us/sql/t-sql/queries/updatetext-transact-sql

[MSDN-WRITETEXT] Microsoft Corporation, "WRITETEXT (Transact-SQL)",
https://docs.microsoft.com/en-us/sql/t-sql/queries/writetext-transact-sql

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication

Service (V5)", RFC 4120, July 2005, http://www.rfc-editor.org/rfc/rfc4120.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October
2005, http://www.rfc-editor.org/rfc/rfc4178.txt

[SSPI] Microsoft Corporation, "SSPI", http://msdn.microsoft.com/en-us/library/aa380493.aspx

https://go.microsoft.com/fwlink/?LinkId=233328
https://go.microsoft.com/fwlink/?LinkId=144542
https://go.microsoft.com/fwlink/?LinkId=89994
https://go.microsoft.com/fwlink/?LinkId=154273
https://go.microsoft.com/fwlink/?LinkId=154273
https://go.microsoft.com/fwlink/?LinkId=146594
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=213737
https://go.microsoft.com/fwlink/?LinkId=127839
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=119984
https://go.microsoft.com/fwlink/?LinkId=213738
https://go.microsoft.com/fwlink/?LinkId=213738
https://go.microsoft.com/fwlink/?LinkId=119987
https://go.microsoft.com/fwlink/?linkid=865399
https://go.microsoft.com/fwlink/?LinkId=154272
https://go.microsoft.com/fwlink/?LinkId=154269
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90461
https://go.microsoft.com/fwlink/?LinkId=90536

13 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

1.3 Overview

The Tabular Data Stream (TDS) Protocol is an application-level protocol used for the transfer of
requests and responses between clients and database server systems. In such systems, the client will

typically establish a long-lived connection with the server. Once the connection is established using a
transport-level protocol, TDS messages are used to communicate between the client and the server. A
database server can also act as the client if needed, in which case a separate TDS connection has to
be established. Note that the TDS session is directly tied to the transport-level session, meaning that
a TDS session is established when the transport-level connection is established and the server
receives a request to establish a TDS connection. It persists until the transport-level connection is
terminated (for example, when a TCP socket is closed). In addition, TDS does not make any

assumption about the transport protocol used, but it does assume the transport protocol supports
reliable, in-order delivery of the data.

TDS includes facilities for authentication and identification, channel encryption negotiation, issuing of
SQL batches, stored procedure calls, returning data, and transaction manager requests.
Returned data is self-describing and record-oriented. The data streams describe the names, types
and optional descriptions of the rows being returned. The following diagram depicts a (simplified)

typical flow of communication in the TDS Protocol.

Figure 1: Communication flow in the TDS protocol

The following example is a high-level description of the messages exchanged between the client and
the server to execute a simple client request such as the execution of a SQL statement. It is
assumed that the client and the server have already established a connection and authentication has
succeeded.

 Client:SQL statement

14 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

The server executes the SQL statement and then sends back the results to the client. The data
columns being returned are first described by the server (represented as column metadata or

COLMETADATA) and then the rows follow. A completion message is sent after all the row data has
been transferred.

 Server:COLMETADATAdata stream
 ROWdata stream
 .
 .
 ROWdata stream
 DONEdata stream

For more information about the correlation between data stream and TDS packet, see section
2.2.4.<1>

Additional details about which SQL Server version corresponds to which TDS version number are
defined in LOGINACK (section 2.2.7.13).

1.4 Relationship to Other Protocols

The Tabular Data Stream (TDS) protocol depends upon a network transport connection being
established prior to a TDS conversation occurring (the choice of transport protocol is not important to
TDS). TDS depends on Transport Layer Security (TLS)/Secure Socket Layer (SSL) for network channel
encryption. Although the TDS protocol depends on TLS/SSL to encrypt data transmission, the

negotiation of the encryption setting between the client and server and the initial TLS/SSL handshake
are handled in the TDS layer.

If the Multiple Active Result Sets (MARS) feature [MSDN-MARS] is enabled, then the Session
Multiplex Protocol (SMP) [MC-SMP] is required.

This relationship is illustrated in the following figure.

Figure 2: Protocol relationship

1.5 Prerequisites/Preconditions

Throughout this document, it is assumed that the client has already discovered the server and
established a network transport connection for use with TDS.

No security association is assumed to have been established at the lower layer before TDS begins
functioning. For Security Support Provider Interface (SSPI) [SSPI] authentication to be used,

https://go.microsoft.com/fwlink/?LinkId=98459
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af
https://go.microsoft.com/fwlink/?LinkId=90536

15 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

SSPI support needs to be available on both the client and server machines. For channel encryption to
be used, TLS/SSL support needs to be present on both client and server machines, and a certificate

suitable for encryption has to be deployed on the server machine. For federated authentication to
be used, a library that provides federated authentication support or an equivalent needs to be present

on the server, and the client needs to be able to generate a token for federated authentication.

1.6 Applicability Statement

The TDS protocol is appropriate for use to facilitate request/response communications between an

application and a database server in all scenarios where network or local connectivity is available.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas.

 Supported Transports: This protocol can be implemented on top of any network transport

protocol as discussed in section 2.1.

 Protocol Versions: The TDS protocol supports the TDS 7.0, TDS 7.1, TDS 7.2, TDS 7.3, and TDS
7.4 explicit dialects. The dialect version is negotiated as part of the LOGIN7 message data stream,
which is defined in section 2.2.6.4.

Note After a protocol feature is introduced, subsequent versions of the TDS protocol support that
feature until that feature is removed.

 Security and Authentication Methods: The TDS protocol supports SQL Server User

Authentication (SQLAUTH). The TDS protocol also supports SSPI authentication and indirectly
supports any authentication mechanism that SSPI supports. The use of SSPI in TDS is defined in
sections 2.2.6.4 and 3.2.5.1. The TDS protocol also supports federated authentication. The use
of federated authentication in TDS is defined in sections 2.2.6.4 and 3.2.5.

 Localization: Localization-dependent protocol behavior is specified in sections 2.2.5.1.2 and
2.2.5.6.

 Capability Negotiation: This protocol does explicit capability negotiation as specified in this
section.

In general, the TDS protocol does not provide facilities for capability negotiation because the complete
set of supported features is fixed for each version of the protocol. Certain features such as
authentication type are not usually negotiated but rather are requested by the client. However, the
protocol supports negotiation for the following two features:

 Channel encryption: The encryption behavior that is used for the TDS session is negotiated in

the initial messages exchanged by the client and the server.

 Authentication mechanism for integrated authentication identities: The authentication
mechanism that is used for the TDS session is negotiated in the initial messages exchanged by the
client and the server.

For more details about encryption behavior and about how the client and server negotiate between
SSPI authentication and federated authentication, see the PRELOGIN description in section 2.2.6.5.

Note that the cipher suite for TLS/SSL and the authentication mechanism for SSPI and federated

authentication are negotiated outside the influence of TDS in [RFC2246] and [RFC6101].

1.8 Vendor-Extensible Fields

None.

https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=509953

16 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

1.9 Standards Assignments

 Parameter TCP port value Reference

Default SQL Server instance TCP port 1433 [IANAPORT]

https://go.microsoft.com/fwlink/?LinkId=89888

17 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2 Messages

The formal syntax of all messages is provided in Augmented Backus-Naur Form (ABNF), as specified in
[RFC4234].

2.1 Transport

The TDS protocol does not prescribe a specific underlying transport protocol to use on the Internet or
on other networks. TDS only presumes a reliable transport that guarantees in-sequence delivery of
data.

The chosen transport can be either stream-oriented or message-oriented. If a message-oriented
transport is used, any TDS packet sent from a TDS client to a TDS server MUST be contained within a

single transport data unit. Any additional mapping of TDS data onto the transport data units of the
protocol in question is outside the scope of this specification.

The current version of the TDS protocol has implementations over the following transports:<2>

 TCP [RFC793].

 A reliable transport over the Virtual Interface Architecture (VIA) interface [VIA2002].<3>

 Named Pipes [MSDN-NP].

 Shared memory [MSDN-TDSENDPT].

 Optionally, the TDS protocol has implementations for the following two protocols on top of the
preceding transports:

 Transport Layer Security (TLS) [RFC2246]/Secure Socket Layer (SSL), in case TLS/SSL
encryption is negotiated.

 Session Multiplex Protocol (SMP) [MC-SMP], in case the Multiple Active Result Sets

(MARS) feature [MSDN-MARS] is requested.

2.2 Message Syntax

Character data, such as SQL statements, within a TDS message is in Unicode, unless the character
data represents the data value of an ASCII data type, such as a non-Unicode data column. A character
count within TDS is a count of characters, rather than of bytes, except when that character count is

explicitly specified as a byte count.

2.2.1 Client Messages

Messages sent from the client to the server are as follows:

 Pre-Login

 Login

 Federated Authentication Token

 SQL Batch

 Bulk Load

 Remote Procedure Call

 Attention

https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=150872
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?linkid=865399
https://go.microsoft.com/fwlink/?LinkId=90324
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af
https://go.microsoft.com/fwlink/?LinkId=98459

18 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Transaction Manager Request

These messages are briefly described in the sections that follow. Detailed descriptions of message

contents are in section 2.2.6.

2.2.1.1 Pre-Login

Before a login occurs, a Pre-Login handshake occurs between client and server, setting up contexts
such as encryption and MARS-enabled. For more details, see section 2.2.6.5.

2.2.1.2 Login

When the client makes the determination to establish a TDS protocol connection with the server side,
the client sends a Login message data stream to the server. The client can have more than one
connection to the server, but each connection is established separately in the same way. For more
details, see section 2.2.6.4.

After the server receives the login record from the client and, if necessary, performs subsequent
authentication handshakes (such as when SSPI [SSPI] or federated authentication is used), the
server notifies the client that it has either accepted or rejected the connection request. For more
details, see section 3.3.5.1.

2.2.1.3 Federated Authentication Token

When the client indicates in the Login record that federated authentication<4> is to be used but
that the intended client library needs additional information from the server to generate a federated
authentication token, if the server supports federated authentication that uses that client library, the
server responds with a token that the client uses to perform federated authentication. The client then
generates and sends a tokenless Federated Authentication Token message that contains binary

authentication data that is generated by the federated authentication library. For more details, see
section 2.2.6.3.

After the server receives the Federated Authentication Token message from the client, the server
notifies the client that it has either accepted or rejected the connection request. For more details, see
section 3.3.5.

2.2.1.4 SQL Batch

To send a SQL statement or a batch of SQL statements, the SQL batch, represented by a Unicode
string, is copied into the data section of a TDS packet and then sent to the database server that
supports SQL. A SQL batch can span more than one TDS packet. For more details, see section 2.2.6.7.

2.2.1.5 Bulk Load

In a bulk insert/bulk load operation, a SQL statement consists of a Unicode string that is followed
by binary data. The client sends the INSERT BULK SQL statement and then sends a COLMETADATA
token that describes the raw data. Multiple rows of binary data are then sent to the server. The data is

not formatted in storage row format but in the format described by the COLMETADATA token. The

stream is the same as if the data were being selected from the server rather than being sent to the
server. For more details, see section 2.2.6.1.

A bulk load operation is also used for inserting data with a previously issued UPDATETEXT BULK or
WRITETEXT BULK SQL statement. For more details, see section 2.2.6.2.

https://go.microsoft.com/fwlink/?LinkId=90536

19 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.1.6 Remote Procedure Call

To execute a remote procedure call (RPC) on the server, the client sends an RPC message data
stream to the server. This is a binary stream that contains the RPC name or numeric identifier,

options, and parameters. RPCs MUST be in a separate TDS message and not intermixed with SQL
statements. There can be several RPCs in one message. For more details, see section 2.2.6.6.

2.2.1.7 Attention

The client can interrupt and cancel the current request by sending an Attention message. This is also

known as out-of-band data, but any TDS packet that is currently being sent MUST be finished before
sending the Attention message. After the client sends an Attention message, the client MUST read
until it receives an Attention acknowledgment.

If a complete request has been sent to the server, sending a cancel requires sending an Attention
packet. An example of this behavior is if the client has already sent a request, which has the last
packet with EOM bit (0x01) set in status. The Attention packet is the only way to interrupt a

complete request that has already been sent to the server. For more information, see section 4.19.2.

If a complete request has not been sent to the server, the client MUST send the next packet with both
ignore bit (0x02) and EOM bit (0x01) set in the status to cancel the request. An example of this
behavior is if one or more packets have been sent but the last packet with EOM bit (0x01) set in
status has not been sent. Setting the ignore and EOM bits terminates the current request, and the
server MUST ignore the current request. When the ignore and EOM bits are set, the server does not
send an attention acknowledgment, but instead returns a table response with a single DONE token

that has a status of DONE_ERROR to indicate that the incoming request was ignored. For more details
about the packet header status code, see section 2.2.3.1.2.

2.2.1.8 Transaction Manager Request

The client can request that the connection enlist in a transaction as described in [MSDN-DTC].

2.2.2 Server Messages

Messages sent from the server to the client are the following:

 Pre-Login Response

 Login Response

 Federated Authentication Information

 Row Data

 Return Status

 Return Parameters

 Response Completion

 Error and Info

 Attention Acknowledgement

These messages are briefly described in the sections that follow. Detailed descriptions of message
contents are in section 2.2.6 and section 2.2.7.

https://go.microsoft.com/fwlink/?LinkId=89994

20 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.2.1 Pre-Login Response

The Pre-Login Response message is a tokenless packet data stream. The data stream consists of the
response to the information requested by the client's Pre-Login message. For more details, see section

2.2.6.5.

2.2.2.2 Login Response

The Login Response message is a token stream that consists of information about the server's
characteristics, optional information and error messages, and finally, a completion message.

The LOGINACK token data stream includes information about the server interface and the server's
product code and name. For more details, see section 2.2.7.13.

If there are any messages in the login response, an ERROR or INFO token data stream is returned
from the server to the client. For more details, see sections 2.2.7.9 and 2.2.7.12.

The server can send, as part of the login response, one or more ENVCHANGE token data streams if

the login changed the environment and the associated notification flag was set. An example of an

environment change includes the current database context and language setting. For more details, see
section 2.2.7.8.

A done packet MUST be present as the final part of the login response, and a DONE token data stream
is the last thing sent in response to a server login request. For more details, see section 2.2.7.5.

2.2.2.3 Federated Authentication Information

After the server receives a Login message that states that the client intends to use a federated
authentication token from a specific client library that needs additional information from the server
to generate that token, if the server supports federated authentication that uses that client library, the
server responds to the client with a message. This message contains a Federated Authentication
Information Token that provides the information necessary for the client to generate a federated
authentication token. If the server determines that no information is required for this particular client

library, the server does not send the information token. For more details, see section 2.2.7.11.

2.2.2.4 Row Data

If the server request results in data being returned, the data will precede any other data streams

returned from the server except warnings. Row data MUST be preceded by a description of the column
names and data types. For more information about how the column names and data types are
described, see section 2.2.7.4.

2.2.2.5 Return Status

When a stored procedure is executed by the server, the server MUST return a status value. This is a
4-byte integer and is sent via the RETURNSTATUS token. A stored procedure execution is requested
through either an RPC Batch or a SQL Batch message. For more information, see section 2.2.7.17.

2.2.2.6 Return Parameters

The response format for execution of a stored procedure is identical regardless of whether the
request was sent as SQL Batch or RPC Batch. It is always a tabular result-type message.

If the procedure explicitly sends any data, then the message starts with a single token stream of rows,
informational messages, and error messages. This data is sent in the usual way.

21 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

When the RPC is invoked, some or all of its parameters are designated as output parameters. All
output parameters will have values returned from the server. For each output parameter, there is a

corresponding return value, sent via the RETURNVALUE token. The RETURNVALUE token data stream
is also used for sending back the value returned by a user-defined function (UDF), if it is called as an

RPC. For more details about the RETURNVALUE token, see section 2.2.7.18.

2.2.2.7 Response Completion

The client reads results in logical units and can tell when all results have been received by examining

the DONE token data stream.

When executing a batch of SQL statements, the server MUST return a DONE token data stream for
each set of results. All but the last DONE will have the DONE_MORE bit set in the Status field of the
DONE token data stream. Therefore, the client can always tell after reading a DONE whether or not
there are more results. For more details, see section 2.2.7.5.

For stored procedures, completion of SQL statements in the stored procedure is indicated by a
DONEINPROC token data stream for each SQL statement and a DONEPROC token data stream for

each completed stored procedure. For more details about DONEINPROC and DONEPROC tokens, see
section 2.2.7.6 and 2.2.7.7, respectively.

2.2.2.8 Error and Info

Besides returning descriptions of Row data and the data itself, TDS provides a token data stream

type for the server to send error and informational messages to the client. These are the ERROR token
data stream and the INFO token data stream. For more details, see section 2.2.7.9 and section
2.2.7.12, respectively.

2.2.2.9 Attention Acknowledgment

After a client has sent an interrupt signal to the server, the client MUST read returning data until the
interrupt has been acknowledged. Attention messages are acknowledged in the DONE token data

stream. For more details, see section 2.2.7.5.

2.2.3 Packets

A packet is the unit written or read at one time. A message can consist of one or more packets. A
packet always includes a packet header and is usually followed by packet data that contains the
message. Each new message starts in a new packet.

In practice, both the client and server will try to read a packet full of data. They will pick out the
header to see how much more (or less) data there is in the communication.

At login time, clients MAY specify a requested "packet" size as part of the LOGIN7 message stream.

This identifies the size used to break large messages into different "packets". Server acknowledgment
of changes in the negotiated packet size is transmitted back to the client via ENVCHANGE token
stream. The negotiated packet size is the maximum value that can be specified in the Length packet
header field described in section 2.2.3.1.3.

Starting with TDS 7.3, the following behavior MUST also be enforced. For requests sent to the server
larger than the current negotiated "packet" size, the client MUST send all but the last packet with a

total number of bytes equal to the negotiated size. Only the last packet in the request can contain an
actual number of bytes smaller than the negotiated packet size. If any of the preceding packets are
sent with a length less than the negotiated packet size, the server SHOULD disconnect the client when
the next network payload arrives.

22 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.3.1 Packet Header

To implement messages on top of existing, arbitrary transport layers, a packet header is included as
part of the packet. The packet header precedes all data within the packet. It is always 8 bytes in

length. Most importantly, the packet header states the Type and Length of the entire packet.

The following is a detailed description of each item within the packet header.

2.2.3.1.1 Type

Type defines the type of message. Type is a 1-byte unsigned char. The following table describes the
types that are available.

Value Description Packet contains data?

1 SQL batch. Yes

2 Pre-TDS7 Login<5> Yes

3 RPC Yes

4 Tabular result Yes

5 Unused

6 Attention signal No

7 Bulk load data Yes

8 Federated Authentication Token Yes

9-13 Unused

14 Transaction manager request Yes

15 Unused

16 TDS7 Login<6> Yes

17 SSPI Yes

18 Pre-Login Yes

If an unknown Type is specified, the message receiver SHOULD disconnect the connection. If a valid
Type is specified, but is unexpected (per section 3), the message receiver SHOULD disconnect the
connection. This applies to both the client and the server. For example, the server could disconnect
the connection if the server receives a message with Type equal 16 when the connection is already

logged in.

The following table highlights which messages, as described previously in sections 2.2.1 and 2.2.2,
correspond to which packet header type.

Message type
Client or server
message Packet header type

Pre-Login Client 2 or 18 depending on whether the client supports
TDS v7.0+

Login Client 16 + 17 (if Integrated authentication)

Federated Authentication Token Client 8

23 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Message type
Client or server
message Packet header type

SQL Batch Client 1

Bulk Load Client 7

RPC Client 3

Attention Client 6

Transaction Manager Request Client 14

FeatureExtAck Server 4

Pre-Login Response Server 4

Login Response Server 4

Federated Authentication
Information

Server 4

Row Data Server 4

Return Status Server 4

Return Parameters Server 4

Response Completion Server 4

Session State Server 4

Error and Info Server 4

Attention Acknowledgement Server 4

2.2.3.1.2 Status

Status is a bit field used to indicate the message state. Status is a 1-byte unsigned char. The
following Status bit flags are defined.

Value Description

0x00 "Normal" message.

0x01 End of message (EOM). The packet is the last packet in the whole request.

0x02 (From client to server) Ignore this event (0x01 MUST also be set).

0x08 RESETCONNECTION

(Introduced in TDS 7.1)

(From client to server) Reset this connection before processing event. Only set for event types Batch,
RPC, or Transaction Manager request. If clients want to set this bit, it MUST be part of the first packet of
the message. This signals the server to clean up the environment state of the connection back to the
default environment setting, effectively simulating a logout and a subsequent login, and provides server
support for connection pooling. This bit SHOULD be ignored if it is set in a packet that is not the first
packet of the message.

This status bit MUST NOT be set in conjunction with the RESETCONNECTIONSKIPTRAN bit. Distributed
transactions and isolation levels will not be reset.

24 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Description

0x10 RESETCONNECTIONSKIPTRAN

(Introduced in TDS 7.3)

(From client to server) Reset the connection before processing event but do not modify the transaction
state (the state will remain the same before and after the reset). The transaction in the session can be a
local transaction that is started from the session or it can be a distributed transaction in which the
session is enlisted. This status bit MUST NOT be set in conjunction with the RESETCONNECTION bit.
Otherwise identical to RESETCONNECTION.

All other bits are not used and MUST be ignored.

2.2.3.1.3 Length

Length is the size of the packet including the 8 bytes in the packet header. It is the number of bytes

from the start of this header to the start of the next packet header. Length is a 2-byte, unsigned short
int and is represented in network byte order (big-endian). Starting with TDS 7.3, the Length MUST

be the negotiated packet size when sending a packet from client to server, unless it is the last packet
of a request (that is, the EOM bit in Status is ON), or the client has not logged in.

2.2.3.1.4 SPID

Spid is the process ID on the server, corresponding to the current connection. This information is sent

by the server to the client and is useful for identifying which thread on the server sent the TDS
packet. It is provided for debugging purposes. The client MAY send the SPID value to the server. If the
client does not, then a value of 0x0000 SHOULD be sent to the server. This is a 2-byte value and is
represented in network byte order (big-endian).

2.2.3.1.5 PacketID

PacketID is used for numbering message packets that contain data in addition to the packet header.
PacketID is a 1-byte, unsigned char. Each time packet data is sent, the value of PacketID is

incremented by 1, modulo 256.<7> This allows the receiver to track the sequence of TDS packets for
a given message. This value is currently ignored.

2.2.3.1.6 Window

This 1 byte is currently not used. This byte SHOULD be set to 0x00 and SHOULD be ignored by the

receiver.

2.2.3.2 Packet Data

Packet data for a given message follows the packet header (see Type in section 2.2.3.1.1 for
messages that contain packet data). As previously stated, a message can span more than one packet.

Because each new message MUST always begin within a new packet, a message that spans more than
one packet only occurs if the data to be sent exceeds the maximum packet data size, which is
computed as (negotiated packet size - 8 bytes), where the 8 bytes represents the size of the packet

header.

If a stream spans more than one packet, then the EOM bit of the packet header Status code MUST be
set to 0 for every packet header. The EOM bit MUST be set to 1 in the last packet to signal that the

stream ends. In addition, the PacketID field of subsequent packets MUST be incremented as defined
in section 2.2.3.1.5.

25 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.4 Packet Data Token and Tokenless Data Streams

The messages contained in packet data that pass between the client and the server can be one of two
types: a "token stream" or a "tokenless stream". A token stream consists of one or more "tokens"

each followed by some token-specific data. A "token" is a single byte identifier that is used to describe
the data that follows it and contains information such as token data type, token data length, and so
on. Tokenless streams are typically used for simple messages. Messages that might require a more
detailed description of the data within it are sent as a token stream. The following table highlights
which messages, as described previously in sections 2.2.1 and 2.2.2, use token streams and which do
not.

 Message type Client or server message Token stream?

Pre-Login Client No

Login Client No

Federated Authentication Token Client No

SQL Command Client No

Bulk Load Client Yes

Remote Procedure Call (RPC) Client Yes

Attention Client No

Transaction Manager Request Client No

Pre-Login Response Server No

Federated Authentication Information Server Yes

FeatureExtAck Server Yes

Login Response Server Yes

Row Data Server Yes

Return Status Server Yes

Return Parameters Server Yes

Response Completion Server Yes

Session State Server Yes

Error and Info Server Yes

Attention Acknowledgement Server No

2.2.4.1 Tokenless Stream

As shown in the previous section, some messages do not use tokens to describe the data portion of

the data stream. In these cases, all the information required to describe the packet data is contained
in the packet header. This is referred to as a tokenless stream and is essentially just a collection of
packets and data.

26 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.4.2 Token Stream

More complex messages (for example, colmetadata, row data, and data type data) are constructed by
using tokens. As previously described, a token stream consists of a single byte identifier, followed by

token-specific data. The definition of different token stream can be found in section 2.2.7.

2.2.4.2.1 Token Definition

There are four classes of token definitions:

 Zero Length Token(xx01xxxx)

 Fixed Length Token(xx11xxxx)

 Variable Length Tokens(xx10xxxx)

 Variable Count Tokens(xx00xxxx)

The following sections specify the bit pattern of each token class, various extensions to this bit pattern

for a given token class, and a description of its function(s).

2.2.4.2.1.1 Zero Length Token(xx01xxxx)

This class of token is not followed by a length specification. There is no data associated with the token.
A zero length token always has the following bit sequence:

0 1 2 3 4 5 6 7

0 or 1 0 or 1 0 1 0 or 1 0 or 1 0 or 1 0 or 1

A value of “0 or 1” denotes a bit position that can contain the bit value “0” or “1”.

2.2.4.2.1.2 Fixed Length Token(xx11xxxx)

This class of token is followed by 1, 2, 4, or 8 bytes of data. No length specification follows this token
because the length of its associated data is encoded in the token itself. The different fixed data-length
token definitions take the form of one of the following bit sequences, depending on whether the token
is followed by 1, 2, 4, or 8 bytes of data. Also in the table, a value of “0 or 1” denotes a bit position

that can contain the bit value “0” or “1”.

0 1 2 3 4 5 6 7 Description

0 or 1 0 or 1 1 1 0 0 0 or 1 0 or 1 Token is followed by 1 byte of data.

0 or 1 0 or 1 1 1 0 1 0 or 1 0 or 1 Token is followed by 2 bytes of data.

0 or 1 0 or 1 1 1 1 0 0 or 1 0 or 1 Token is followed by 4 bytes of data.

0 or 1 0 or 1 1 1 1 1 0 or 1 0 or 1 Token is followed by 8 bytes of data.

Fixed-length tokens are used by the following data types: bigint, int, smallint, tinyint, float, real,
money, smallmoney, datetime, smalldatetime, and bit. The type definition is always represented in
COLMETADATA and ALTMETADATA data streams as a single byte Type. Additional details are specified
in section 2.2.5.4.1.

2.2.4.2.1.3 Variable Length Tokens(xx10xxxx)

27 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

This class of token definition is followed by a length specification. The length (in bytes) of this length is
included in the token itself as a Length value (see section 2.2.7.3 for information about the Length

rule of the COLINFO token stream).

There are two data types that are of variable length. These are real variable length data types like

char and binary and nullable data types, which are either their normal fixed length corresponding to
their type_info, or a special length if null.

Char and binary data types have values that are either null or 0 to 65534 (0x0000 to 0xFFFE) bytes in
length. Null is represented by a length of 65535 (0xFFFF). A char or binary, which cannot be null, can
still have a length of zero (for example an empty value). A program that MUST pad a value to a fixed
length will typically add blanks to the end of a char and binary zeros to the end of a binary.

Text and image data types have values that are either null, or 0 to 2 gigabytes (0x00000000 to

0x7FFFFFFF bytes) in length. Null is represented by a length of -1 (0xFFFFFFFF). No other length
specification is supported.

Other nullable data types have a length of 0 if they are null.

2.2.4.2.1.4 Variable Count Tokens(xx00xxxx)

This class of token definition is followed by a count of the number of fields that follow the token. Each

field length is dependent on the token type. The total length of the token can be determined only by
walking the fields. As shown in the following table, a variable count token always has its third and
fourth bits set to “0”, and a value of “0 or 1” in the remaining bit positions denotes a bit position that
can contain the bit value “0” or “1”.

0 1 2 3 4 5 6 7

0 or 1 0 or 1 0 0 0 or 1 0 or 1 0 or 1 0 or 1

Currently there are two variable count tokens. COLMETADATA and ALTMETADATA both use a 2-byte
count.

2.2.4.3 Done and Attention Tokens

The DONE token marks the end of the response for each executed SQL statement. Based on the SQL
statement and the context in which it is executed, the server MAY generate a DONEPROC or
DONEINPROC token instead.

The attention signal is sent by using the out-of-band write provided by the network library. An out-

of-band write is the ability to send the attention signal no matter if the sender is in the middle of
sending or processing a message or simply sitting idle. If that function is not supported, the client
MUST simply read and discard all of the data, except SESSIONSTATE data, from the server until the
final DONE token, which acknowledges that the attention signal is read.<8>

2.2.5 Grammar Definition for Token Description

The Tabular Data Stream consists of a variety of messages. Each message consists of a set of bytes
transmitted in a predefined order. This predefined order or grammar can be specified using
Augmented Backus-Naur Form [RFC4234]. Details can be found in the following subsections.

2.2.5.1 General Rules

Data structure encodings in TDS are defined in terms of the following fundamental definitions.

BIT: A single bit value of either 0 or 1.

https://go.microsoft.com/fwlink/?LinkId=90462

28 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 BIT = %b0 / %b1

BYTE: An unsigned single byte (8-bit) value. The range is 0 to 255.

 BYTE = 8BIT

BYTELEN: An unsigned single byte (8-bit) value representing the length of the associated data. The
range is 0 to 255.

 BYTELEN = BYTE

USHORT: An unsigned 2-byte (16-bit) value. The range is 0 to 65535.

 USHORT = 2BYTE

LONG: A signed 4-byte (32-bit) value. The range is -(2^31) to (2^31)-1.

 LONG = 4BYTE

ULONG: An unsigned 4-byte (32-bit) value. The range is 0 to (2^32)-1

 ULONG = 4BYTE

DWORD: An unsigned 4-byte (32-bit) value. The range when used as a numeric value is 0 to (2^32)-
1.

 DWORD = 32BIT

LONGLONG: A signed 8-byte (64-bit) value. The range is –(2^63) to (2^63)-1.

 LONGLONG = 8BYTE

ULONGLONG: An unsigned 8-byte (64-bit) value. The range is 0 to (2^64)-1.

 ULONGLONG = 8BYTE

UCHAR: An unsigned single byte (8-bit) value representing a character. The range is 0 to 255.

 UCHAR = BYTE

USHORTLEN: An unsigned 2-byte (16-bit) value representing the length of the associated data. The
range is 0 to 65535.

 USHORTLEN = 2BYTE

29 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

USHORTCHARBINLEN: An unsigned 2-byte (16-bit) value representing the length of the associated
character or binary data. The range is 0 to 8000.

 USHORTCHARBINLEN = 2BYTE

LONGLEN: A signed 4-byte (32-bit) value representing the length of the associated data. The range is
-(2^31) to (2^31)-1.

 LONGLEN = 4BYTE

ULONGLONGLEN: An unsigned 8-byte (64-bit) value representing the length of the associated data.
The range is 0 to (2^64)-1.

 ULONGLONGLEN = 8BYTE

PRECISION: An unsigned single byte (8-bit) value representing the precision of a numeric number.

 PRECISION = 8BIT

SCALE: An unsigned single byte (8-bit) value representing the scale of a numeric number.

 SCALE = 8BIT

GEN_NULL: A single byte (8-bit) value representing a NULL value.

 GEN_NULL = %x00

CHARBIN_NULL: A 2-byte (16-bit) or 4-byte (32-bit) value representing a T-SQL NULL value for a

character or binary data type. Please refer to TYPE_VARBYTE (see section 2.2.5.2.3) for additional
details.

 CHARBIN_NULL = (%xFF %xFF) / (%xFF %xFF %xFF %xFF)

FRESERVEDBIT: A FRESERVEDBIT is a BIT value used for padding that does not transmit

information. FRESERVEDBIT fields SHOULD be set to %b0 and MUST be ignored on receipt.

 FRESERVEDBIT = %b0

FRESERVEDBYTE: A FRESERVEDBYTE is a BYTE value used for padding that does not transmit

information. FRESERVEDBYTE fields SHOULD be set to %x00 and MUST be ignored on receipt.

 FRESERVEDBYTE = %x00

UNICODECHAR: A single Unicode character in UCS-2 encoding, as specified in Unicode [UNICODE].

 UNICODECHAR = 2BYTE

https://go.microsoft.com/fwlink/?LinkId=90550

30 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Notes

 All integer types are represented in reverse byte order (little-endian) unless otherwise specified.

 FRESERVEDBIT and FRESERVEDBYTE are often used to pad unused parts of a byte or bytes. The
value of these reserved bits SHOULD be ignored. These elements are generally set to 0.

2.2.5.1.1 Least Significant Bit Order

Certain tokens will possess rules that comprise an array of independent bits. These are typically "flag"
rules in which each bit is a flag indicating that a specific feature or option is enabled/requested.
Normally, the bit array will be arranged in least significant bit order (or typical array index order)
meaning that the first listed flag is placed in the least significant bit position (identifying the least
significant bit as one would in an integer variable). For example, if Fn is the nth flag, then the

following rule definition:

 FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7

would be observed on the wire in the natural value order F7F6F5F4F3F2F1F0.

If the rule contains 16 bits, then the order of the bits observed on the wire will follow the little-

endian byte ordering. For example, the following rule definition:

 FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

will have the following order on the wire: F7F6F5F4F3F2F1F0 F15F14F13F12F11F10F9F8.

2.2.5.1.2 Collation Rule Definition

The collation rule is used to specify collation information for character data or metadata describing
character data.<9> This is typically specified as part of the LOGIN7 message or part of a column

definition in server results containing character data. For more information about column definition,
see COLMETADATA.

 LCID = 20BIT

 fIgnoreCase = BIT
 fIgnoreAccent = BIT
 fIgnoreWidth = BIT
 fIgnoreKana = BIT
 fBinary = BIT
 fBinary2 = BIT
 ColFlags = fIgnoreCase fIgnoreAccent fIgnoreKana
 fIgnoreWidth fBinary fBinary2 FRESERVEDBIT
 FRESERVEDBIT
 Version = 4BIT
 SortId = BYTE

 COLLATION = LCID ColFlags Version SortId

A SQL collation is one of a predefined set of sort orders. The sort orders are identified with non-zero
SortId values described by [MSDN-SQLCollation].

For a SortId==0 collation, the LCID bits correspond to a LocaleId as defined by the National Language

Support (NLS) functions. For more details, see [MS-LCID].

https://go.microsoft.com/fwlink/?LinkId=119987
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f

31 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Note

 ColFlags is represented in least significant bit order.

 A COLLATION<10> value of 0x00 00 00 00 00 specifies a request for the use of raw collation.

2.2.5.2 Data Stream Types

2.2.5.2.1 Unknown Length Data Streams

Unknown length data streams can be used by tokenless data streams. It is a stream of bytes. The
number of bytes within the data stream is defined in the packet header as specified in section 2.2.3.1.

 BYTESTREAM = *BYTE
 UNICODESTREAM = *(2BYTE)

2.2.5.2.2 Variable-Length Data Streams

Variable-length data streams consist of a stream of characters or a stream of bytes. The two types are
similar, in that they both have a length rule and a data rule.

Characters

Variable-length character streams are defined by a length field followed by the data itself. There are

two types of variable-length character streams, each dependent on the size of the length field (for
example, a BYTE or USHORT). If the length field is zero, then no data follows the length field.

 B_VARCHAR = BYTELEN *CHAR
 US_VARCHAR = USHORTLEN *CHAR

Note that the lengths of B_VARCHAR and US_VARCHAR are given in Unicode characters.

Generic Bytes

Similar to the variable-length character stream, variable-length byte streams are defined by a length
field followed by the data itself. There are three types of variable-length byte streams, each
dependent on the size of the length field (for example, a BYTE, USHORT, or LONG). If the value of the

length field is zero, then no data follows the length field.

 B_VARBYTE = BYTELEN *BYTE
 US_VARBYTE = USHORTLEN *BYTE
 L_VARBYTE = LONGLEN *BYTE

2.2.5.2.3 Data Type Dependent Data Streams

Some messages contain variable data types. The actual type of a given variable data type is

dependent on the type of the data being sent within the message as defined in the TYPE_INFO rule.

For example, the RPCRequest message contains the TYPE_INFO and TYPE_VARBYTE rules. These two
rules contain data of a type that is dependent on the actual type used in the value of the
FIXEDLENTYPE or VARLENTYPE rules of the TYPE_INFO rule.

Data type-dependent data streams occur in three forms: integers, fixed and variable bytes, and

partially length-prefixed bytes.

Integers

32 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Data type-dependent integers can be either a BYTELEN, USHORTCHARBINLEN, or LONGLEN in length.
This length is dependent on the TYPE_INFO associated with the message. If the data type (for

example, FIXEDLENTYPE or VARLENTYPE rule of the TYPE_INFO rule) is of type SSVARIANTTYPE,
TEXTTYPE, NTEXTTYPE, or IMAGETYPE, the integer length is LONGLEN. If the data type is

BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTYPE, or
BIGVARBINARYTYPE, the integer length is USHORTCHARBINLEN. For all other data types, the integer
length is BYTELEN.

 TYPE_VARLEN = BYTELEN
 /
 USHORTCHARBINLEN
 /
 LONGLEN

Fixed and Variable Bytes

The data type to be used in a data type-dependent byte stream is defined by the TYPE_INFO rule

associated with the message.

For variable-length types, with the exception of PLP (see Partially Length-prefixed Bytes below), the
TYPE_VARLEN value defines the length of the data to follow. As described above, the TYPE_INFO rule
defines the type of TYPE_VARLEN (for example BYTELEN, USHORTCHARBINLEN, or LONGLEN).

For fixed-length types, the TYPE_VARLEN rule is not present. In these cases, the number of bytes to
be read is determined by the TYPE_INFO rule . For example, if "INT2TYPE" is specified as the value for
the FIXEDLENTYPE rule of the TYPE_INFO rule, 2 bytes are read because "INT2TYPE" is always 2 bytes
in length. For more details, see Data Types Definitions.

The data following this can be a stream of bytes or a NULL value. The 2-byte CHARBIN_NULL rule is
used for BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTYPE, and
BIGVARBINARYTYPE types, and the 4-byte CHARBIN_NULL rule is used for TEXTTYPE, NTEXTTYPE,

and IMAGETYPE. The GEN_NULL rule applies to all other types aside from PLP:

 TYPE_VARBYTE = GEN_NULL / CHARBIN_NULL / PLP_BODY
 / ([TYPE_VARLEN] *BYTE)

Partially Length-prefixed Bytes

Unlike fixed or variable byte stream formats, Partially length-prefixed bytes (PARTLENTYPE),
introduced in TDS 7.2, do not require the full data length to be specified before the actual data is
streamed out. Thus, it is ideal for those applications where the data length is not known upfront (that
is, xml serialization). A value sent as PLP can be either NULL, a length followed by chunks (as defined

by PLP_CHUNK), or an unknown length token followed by chunks, which MUST end with a
PLP_TERMINATOR. The rule below describes the stream format (for example, the format of a singleton
PLP value):

 PLP_BODY= PLP_NULL
 /
 ((ULONGLONGLEN / UNKNOWN_PLP_LEN)
 *PLP_CHUNK PLP_TERMINATOR)

 PLP_NULL = %xFFFFFFFFFFFFFFFF

 UNKNOWN_PLP_LEN = %xFFFFFFFFFFFFFFFE

 PLP_CHUNK = ULONGLEN 1*BYTE

 PLP_TERMINATOR = %x00000000

33 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Notes

 TYPE_INFO rule specifies a Partially Length-prefixed Data type (PARTLENTYPE, see 2.2.5.4.3).

 In the UNKNOWN_PLP_LEN case, the data is represented as a series of zero or more chunks, each
consisting of the length field followed by length bytes of data (see the PLP_CHUNK rule). The data

is terminated by PLP_TERMINATOR (which is essentially a zero-length chunk).

 In the actual data length case, the ULONGLONGLEN specifies the length of the data and is followed
by any number of PLP_CHUNKs containing the data. The length of the data specified by
ULONGLONGLEN is used as a hint for the receiver. The receiver SHOULD validate that the length
value specified by ULONGLONGLEN matches the actual data length.

2.2.5.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition

Message streams can be preceded by a variable number of headers as specified by the ALL_HEADERS
rule. The ALL_HEADERS rule, the Query Notifications header, and the Transaction Descriptor header
were introduced in TDS 7.2. The Trace Activity header was introduced in TDS 7.4.

The list of headers that are applicable to the different types of messages are described in the following

table.

Stream headers MUST be present only in the first packet of requests that span more than one packet.
The ALL_HEADERS rule applies only to the three client request types defined in the table below and
MUST NOT be included for other request types. For the applicable request types, each header MUST
appear at most once in the stream or packet's ALL_HEADERS field.

Header Value SQLBatch RPCRequest TransactionManagerRequest

Query Notifications 0x00 01 Optional Optional Disallowed

Transaction Descriptor 0x00 02 Required Required Required

Trace Activity 0x00 03 Optional Optional Optional

Stream-Specific Rules:

 TotalLength = DWORD ;including itself
 HeaderLength = DWORD ;including itself
 HeaderType = USHORT;
 HeaderData = *BYTE
 Header = HeaderLength HeaderType HeaderData

Stream Definition:

 ALL_HEADERS = TotalLength 1*Header

Parameter Description

TotalLength Total length of ALL_HEADERS stream.

HeaderLength Total length of an individual header.

HeaderType The type of header, as defined by the value field in the preceding table.

HeaderData The data stream for the header. See header definitions in the following subsections.

34 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

Header A structure containing a single header.

2.2.5.3.1 Query Notifications Header

This packet data stream header allows the client to specify that a notification is to be supplied on the
results of the request. The contents of the header specify the information necessary for delivery of the

notification. For more information about query notifications<11> functionality for a database server
that supports SQL, see [MSDN-QUERYNOTE].

Stream Specific Rules:

 NotifyId = USHORT UNICODESTREAM ; user specified value
 when subscribing to
 query notifications
 SSBDeployment = USHORT UNICODESTREAM ;
 NotifyTimeout = ULONG ; duration in which the query
 notification subscription
 is valid

The USHORT field defined within the NotifyId and SSBDeployment rules specifies the length, in bytes,
of the actual data value, defined by the UNICODESTREAM, that follows it.<12> The time unit of
NotifyTimeout is milliseconds.

Stream Definition:

 Header Data = NotifyId
 SSBDeployment
 [NotifyTimeout]

2.2.5.3.2 Transaction Descriptor Header

This packet data stream contains information regarding transaction descriptor and number of
outstanding requests as they apply to Multiple Active Result Sets (MARS) [MSDN-MARS].

The TransactionDescriptor MUST be 0, and OutstandingRequestCount MUST be 1 if the connection is

operating in AutoCommit mode. For more information about autocommit transactions, see [MSDN-
Autocommit].

Stream-Specific Rules:

 OutstandingRequestCount = DWORD ; number of requests currently active on
 the connection
 TransactionDescriptor = ULONGLONG ; for each connection, a number that uniquely
 identifies the transaction with which the
 request is associated; initially generated
 by the server when a new transaction is
 created and returned to the client as part
 of the ENVCHANGE token stream

For more information about processing the Transaction Descriptor header, see section 2.2.6.9.

Stream Definition:

https://go.microsoft.com/fwlink/?LinkId=119984
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=145156
https://go.microsoft.com/fwlink/?LinkId=145156

35 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Header Data = TransactionDescriptor
 OutstandingRequestCount

2.2.5.3.3 Trace Activity Header

This packet data stream contains a client trace activity ID intended to be used by the server for
debugging purposes, to allow correlating the server's processing of the request with the client request.

A client MUST NOT send a Trace Activity header when the negotiated TDS major version is less than
7.4. If the negotiated TDS major version is less than TDS 7.4 and the server receives a Trace Activity
header token, the server MUST reject the request with a TDS protocol error.

Stream-Specific Rules:

 GUID_ActivityID = 16 bytes ; client application activity id
 ; used for debugging purposes
 ActivitySequence = ULONG ; client application activity sequence
 ; used for debugging purposes

Stream Definition:

 Header Data = ActivityId

2.2.5.4 Data Type Definitions

The subsections within this section describe the different sets of data types and how they are
categorized. Specifically, data values are interpreted and represented in association with their data
type. Details about each data type categorization are described in the following sections.

2.2.5.4.1 Fixed-Length Data Types

The fixed-length data types include the following types.

 NULLTYPE = %x1F ; Null
 INT1TYPE = %x30 ; TinyInt
 BITTYPE = %x32 ; Bit
 INT2TYPE = %x34 ; SmallInt
 INT4TYPE = %x38 ; Int
 DATETIM4TYPE = %x3A ; SmallDateTime
 FLT4TYPE = %x3B ; Real
 MONEYTYPE = %x3C ; Money
 DATETIMETYPE = %x3D ; DateTime
 FLT8TYPE = %x3E ; Float
 MONEY4TYPE = %x7A ; SmallMoney
 INT8TYPE = %x7F ; BigInt

 FIXEDLENTYPE = NULLTYPE
 /
 INT1TYPE
 /
 BITTYPE
 /
 INT2TYPE
 /
 INT4TYPE
 /
 DATETIM4TYPE
 /
 FLT4TYPE

36 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 /
 MONEYTYPE
 /
 DATETIMETYPE
 /
 FLT8TYPE
 /
 MONEY4TYPE
 /
 INT8TYPE

Non-nullable values are returned using these fixed-length data types. There is no data associated with
NULLTYPE.<13> For the rest of the fixed-length data types, the length of data is predefined by the

type. There is no TYPE_VARLEN field in the TYPE_INFO rule for these types. In the TYPE_VARBYTE rule
for these types, the TYPE_VARLEN field is BYTELEN, and the value is 1 for INT1TYPE/BITTYPE, 2 for
INT2TYPE, 4 for INT4TYPE/DATETIM4TYPE/FLT4TYPE/MONEY4TYPE, and 8 for
MONEYTYPE/DATETIMETYPE/FLT8TYPE/INT8TYPE. The value represents the number of bytes of data to
be followed. The SQL data types of the corresponding fixed-length data types are in the comment part

of each data type.

2.2.5.4.2 Variable-Length Data Types

The data type token values defined in this section have a length value associated with the data type
because the data values corresponding to these data types are represented by a variable number of
bytes.

 GUIDTYPE = %x24 ; UniqueIdentifier
 INTNTYPE = %x26 ; (see below)
 DECIMALTYPE = %x37 ; Decimal (legacy support)
 NUMERICTYPE = %x3F ; Numeric (legacy support)
 BITNTYPE = %x68 ; (see below)
 DECIMALNTYPE = %x6A ; Decimal
 NUMERICNTYPE = %x6C ; Numeric
 FLTNTYPE = %x6D ; (see below)
 MONEYNTYPE = %x6E ; (see below)
 DATETIMNTYPE = %x6F ; (see below)
 DATENTYPE = %x28 ; (introduced in TDS 7.3)
 TIMENTYPE = %x29 ; (introduced in TDS 7.3)
 DATETIME2NTYPE = %x2A ; (introduced in TDS 7.3)
 DATETIMEOFFSETNTYPE = %x2B ; (introduced in TDS 7.3)
 CHARTYPE = %x2F ; Char (legacy support)
 VARCHARTYPE = %x27 ; VarChar (legacy support)
 BINARYTYPE = %x2D ; Binary (legacy support)
 VARBINARYTYPE = %x25 ; VarBinary (legacy support)

 BIGVARBINTYPE = %xA5 ; VarBinary
 BIGVARCHRTYPE = %xA7 ; VarChar
 BIGBINARYTYPE = %xAD ; Binary
 BIGCHARTYPE = %xAF ; Char
 NVARCHARTYPE = %xE7 ; NVarChar
 NCHARTYPE = %xEF ; NChar
 XMLTYPE = %xF1 ; XML (introduced in TDS 7.2)
 UDTTYPE = %xF0 ; CLR UDT (introduced in TDS 7.2)

 TEXTTYPE = %x23 ; Text
 IMAGETYPE = %x22 ; Image
 NTEXTTYPE = %x63 ; NText
 SSVARIANTTYPE = %x62 ; Sql_Variant (introduced in TDS 7.2)

 BYTELEN_TYPE = GUIDTYPE
 /
 INTNTYPE
 /
 DECIMALTYPE

37 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 /
 NUMERICTYPE
 /
 BITNTYPE
 /
 DECIMALNTYPE
 /
 NUMERICNTYPE
 /
 FLTNTYPE
 /
 MONEYNTYPE
 /
 DATETIMNTYPE
 /
 DATENTYPE
 /
 TIMENTYPE
 /
 DATETIME2NTYPE
 /
 DATETIMEOFFSETNTYPE
 /
 CHARTYPE
 /
 VARCHARTYPE
 /
 BINARYTYPE
 /
 VARBINARYTYPE ; the length value associated
 with these data types is
 specified within a BYTE

For MONEYNTYPE, the only valid lengths are 0x04 and 0x08, which map to smallmoney and money
SQL data types respectively.

For DATETIMNTYPE, the only valid lengths are 0x04 and 0x08, which map to smalldatetime and

datetime SQL data types respectively.

For INTNTYPE, the only valid lengths are 0x01, 0x02, 0x04, and 0x08, which map to tinyint, smallint,
int, and bigint SQL data types respectively.

For FLTNTYPE, the only valid lengths are 0x04 and 0x08, which map to 7-digit precision float and 15-
digit precision float SQL data types respectively.

For GUIDTYPE, the only valid lengths are 0x10 for non-null instances and 0x00 for NULL instances.

For BITNTYPE, the only valid lengths are 0x01 for non-null instances and 0x00 for NULL instances.

For DATENTYPE, the only valid lengths are 0x03 for non-NULL instances and 0x00 for NULL instances.

For TIMENTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x03 0x03 0x04 0x04 0x05 0x05 0x05

For DATETIME2NTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x06 0x06 0x07 0x07 0x08 0x08 0x08

38 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

For DATETIMEOFFSETNTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x08 0x08 0x09 0x09 0x0A 0x0A 0x0A

Exceptions are thrown when invalid lengths are presented to the server during BulkLoadBCP and RPC
requests.

 USHORTLEN_TYPE = BIGVARBINTYPE
 /
 BIGVARCHRTYPE
 /
 BIGBINARYTYPE
 /
 BIGCHARTYPE
 /
 NVARCHARTYPE
 /
 NCHARTYPE ; the length value associated with
 these data types is specified
 within a USHORT

 LONGLEN_TYPE = IMAGETYPE
 /
 NTEXTTYPE
 /
 SSVARIANTTYPE
 /
 TEXTTYPE
 /
 XMLTYPE ; the length value associated with
 these data types is specified
 within a LONG

Notes

 MaxLength for an SSVARIANTTYPE is 8009 (8000 for strings). For more details, see section

2.2.5.5.4.

 XMLTYPE is only a valid LONGLEN_TYPE for BulkLoadBCP.

MaxLength for an SSVARIANTTYPE is 8009 (string of 8000 bytes).

 VARLENTYPE = BYTELEN_TYPE
 /
 USHORTLEN_TYPE
 /
 LONGLEN_TYPE

Nullable values are returned by using the INTNTYPE, BITNTYPE, FLTNTYPE, GUIDTYPE, MONEYNTYPE,

and DATETIMNTYPE tokens which will use the length byte to specify the length of the value or
GEN_NULL as appropriate.

There are two types of variable-length data types. These are real variable-length data types, like char
and binary, and nullable data types, which have either a normal fixed length that corresponds to their
type or to a special length if null.

Char and binary data types have values that either are null or are 0 to 65534 (0x0000 to 0xFFFE)
bytes of data. Null is represented by a length of 65535 (0xFFFF). A non-nullable char or binary can

39 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

still have a length of zero (for example, an empty value). A program that MUST pad a value to a fixed
length typically adds blanks to the end of a char and adds binary zeros to the end of a binary.

Text and image data types have values that either are null or are 0 to 2 gigabytes (0x00000000 to
0x7FFFFFFF bytes) of data. Null is represented by a length of -1 (0xFFFFFFFF). No other length

specification is supported.

Other nullable data types have a length of 0 when they are null.

2.2.5.4.3 Partially Length-Prefixed Data Types

The data value corresponding to the set of data types defined in this section follows the rule defined in
the partially length-prefixed stream definition (section 2.2.5.2.3).

 PARTLENTYPE = XMLTYPE
 /
 BIGVARCHRTYPE
 /
 BIGVARBINTYPE
 /
 NVARCHARTYPE

 /
 UDTTYPE

BIGVARCHRTYPE, BIGVARBINTYPE, and NVARCHARTYPE can represent two types each:

 The regular type with a known maximum size range from 0 to 8000, defined by
USHORTLEN_TYPE.

 A type with unlimited max size, known as varchar(max), varbinary(max) and nvarchar(max),
which has a max size of 0xFFFF, defined by PARTLENTYPE. This class of types was introduced in
TDS 7.2.

2.2.5.5 Data Type Details

The subsections within this section specify the formats in which values of system data types are
serialized in TDS.

2.2.5.5.1 System Data Type Values

The subsections within this section specify the formats in which values of various common system
data types are serialized in TDS.

2.2.5.5.1.1 Integers

All integer types are represented in reverse byte order (little-endian) unless otherwise specified.

Each integer takes a whole number of bytes as follows:

bit: 1 byte

tinyint: 1 byte

smallint: 2 bytes

int: 4 bytes

bigint: 8 bytes

40 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.5.5.1.2 Timestamp

timestamp/rowversion is represented as an 8-byte binary sequence with no particular
interpretation.

2.2.5.5.1.3 Character and Binary Strings

See Variable-Length Data Types (section 2.2.5.4.2) and Partially Length-Prefixed Data
Types (section 2.2.5.4.3).

2.2.5.5.1.4 Fixed-Point Numbers

smallmoney is represented as a 4-byte signed integer. The TDS value is the smallmoney value

multiplied by 104.

money is represented as an 8-byte signed integer. The TDS value is the money value multiplied by
104. The 8-byte signed integer itself is represented in the following sequence:

 One 4-byte integer that represents the more significant half.

 One 4-byte integer that represents the less significant half.

2.2.5.5.1.5 Floating-Point Numbers

float(n) follows the 32-bit [IEEE754] binary specification when n <= 24 and the 64-bit [IEEE754]
binary specification when 25 <= n <= 53.

2.2.5.5.1.6 Decimal/Numeric

Decimal or Numeric is defined as decimal(p, s) or numeric(p, s), where p is the precision and s is
the scale. The value is represented in the following sequence:

 One 1-byte unsigned integer that represents the sign of the decimal value as follows:

 0 means negative.

 1 means nonnegative.

 One 4-, 8-, 12-, or 16-byte signed integer that represents the decimal value multiplied by 10s. The
maximum size of this integer is determined based on p as follows:

 4 bytes if 1 <= p <= 9.

 8 bytes if 10 <= p <= 19.

 12 bytes if 20 <= p <= 28.

 16 bytes if 29 <= p <= 38.

The actual size of this integer could be less than the maximum size, depending on the value. In all
cases, the integer part MUST be 4, 8, 12, or 16 bytes.

2.2.5.5.1.7 GUID

uniqueidentifier is represented as a 16-byte binary sequence with no specific interpretation.

2.2.5.5.1.8 Date/Times

smalldatetime is represented in the following sequence:

https://go.microsoft.com/fwlink/?LinkId=89903

41 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 One 2-byte unsigned integer that represents the number of days since January 1, 1900.

 One 2-byte unsigned integer that represents the number of minutes elapsed since 12 AM that day.

datetime is represented in the following sequence:

 One 4-byte signed integer that represents the number of days since January 1, 1900. Negative

numbers are allowed to represent dates since January 1, 1753.

 One 4-byte unsigned integer that represents the number of one three-hundredths of a second
(300 counts per second) elapsed since 12 AM that day.

date is represented as one 3-byte unsigned integer that represents the number of days since January
1, year 1.

time(n) is represented as one unsigned integer that represents the number of 10-n second increments
since 12 AM within a day. The length, in bytes, of that integer depends on the scale n as follows:

 3 bytes if 0 <= n < = 2.

 4 bytes if 3 <= n < = 4.

 5 bytes if 5 <= n < = 7.

datetime2(n) is represented as a concatenation of time(n) followed by date as specified above.

datetimeoffset(n) is represented as a concatenation of datetime2(n) followed by one 2-byte signed
integer that represents the time zone offset as the number of minutes from UTC. The time zone offset

MUST be between -840 and 840.

2.2.5.5.2 Common Language Runtime (CLR) Instances

The following data type definition stream is used for UDT_INFO in TYPE_INFO. This data type was
introduced in TDS 7.2.

 DB_NAME = B_VARCHAR ; database name of the UDT
 SCHEMA_NAME = B_VARCHAR ; schema name of the UDT
 TYPE_NAME = B_VARCHAR ; type name of the UDT

 MAX_BYTE_SIZE = USHORT ; max length in bytes
 ASSEMBLY_QUALIFIED_NAME = US_VARCHAR ; name of the CLR assembly

 UDT_METADATA = ASSEMBLY_QUALIFIED_NAME

 UDT_INFO_IN_COLMETADATA = MAX_BYTE_SIZE
 DB_NAME
 SCHEMA_NAME
 TYPE_NAME
 UDT_METADATA

 UDT_INFO_IN_RPC = DB_NAME ; database name of the UDT
 SCHEMA_NAME ; schema name of the UDT
 TYPE_NAME ; type name of the UDT

 UDT_INFO = UDT_INFO_IN_COLMETADATA ;when sent as part of COLMETADATA
 /
 UDT_INFO_IN_RPC ;when sent as part of RPC call

MAX_BYTE_SIZE is only sent from the server to the client in COLMETADATA and is an unsigned short
with a value within the range 1 to 8000 or 0xFFFF. The value 0xFFFF signifies the maximum LOB size
indicating a UDT with a maximum size greater than 8000 bytes (also referred to as a Large UDT;
introduced in TDS 7.3). MAX_BYTE_SIZE is not sent to the server as part of RPC calls.

42 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Note UserType in the COLMETADATA stream is always 0x0000 for UDTs. The actual data value
format associated with a UDT data type definition stream is specified in [MS-SSCLRT].

2.2.5.5.3 XML Values

This section defines the XML data type definition stream, which was introduced in TDS 7.2.

 SCHEMA_PRESENT= BYTE;
 DBNAME = B_VARCHAR
 OWNING_SCHEMA = B_VARCHAR
 XML_SCHEMA_COLLECTION = US_VARCHAR

 XML_INFO = SCHEMA_PRESENT
 [DBNAME OWNING_SCHEMA
 XML_SCHEMA_COLLECTION]

SCHEMA_PRESENT specifies "0x01" if the type has an associated schema collection and DBNAME,
OWNING_SCHEMA and XML_SCHEMA_COLLECTION MUST be included in the stream, or '0x00'

otherwise.

DBNAME specifies the name of the database where the schema collection is defined.

OWNING_SCHEMA specifies the name of the relational schema containing the schema collection.

XML_SCHEMA_COLLECTION specifies the name of the XML schema collection to which the type is
bound.

Note The actual data value format that is associated with an XML data type definition stream uses
the Microsoft SQL Server Binary XML structure format [MS-BINXML].<14>

2.2.5.5.4 SQL_VARIANT Values

The SSVARIANTTYPE is a special data type that acts as a place holder for other data types. When a
SSVARIANTTYPE is filled with a data value, it takes on properties of the base data type that represents

the data value. To support this dynamic change, for those that are not NULL (GEN_NULL) the
SSVARIANTTYPE instance has an SSVARIANT_INSTANCE internal structure according to the following
definition.

 VARIANT_BASETYPE = BYTE ; data type definition
 VARIANT_PROPBYTES = BYTE ; see below
 VARIANT_PROPERTIES = *BYTE ; see below
 VARIANT_DATAVAL = 1*BYTE ; actual data value

 SSVARIANT_INSTANCE = VARIANT_BASETYPE
 VARIANT_PROPBYTES
 VARIANT_PROPERTIES
 VARIANT_DATAVAL

VARIANT_BASETYPE is the TDS token of the base type.

VARIANT_BASETYPE

VARIANT_PROPBYTES VARIANT_PROPERTIES

GUIDTYPE, BITTYPE, INT1TYPE, INT2TYPE,
INT4TYPE, INT8TYPE, DATETIMETYPE,
DATETIM4TYPE, FLT4TYPE, FLT8TYPE, MONEYTYPE,
MONEY4TYPE, DATENTYPE

0 <not specified>

TIMENTYPE, DATETIME2NTYPE, 1 1 byte specifying scale

%5bMS-SSCLRT%5d.pdf#Section_77460aa98c2f4449a65e1d649ebd77fa
%5bMS-BINXML%5d.pdf#Section_11ab6e8d247244d1a9e6bddf000e12f6

43 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

VARIANT_BASETYPE

VARIANT_PROPBYTES VARIANT_PROPERTIES

DATETIMEOFFSETNTYPE

BIGVARBINTYPE, BIGBINARYTYPE 2 2 bytes specifying max length

NUMERICNTYPE, DECIMALNTYPE 2 1 byte for precision followed by
1 byte for scale

BIGVARCHRTYPE, BIGCHARTYPE, NVARCHARTYPE,
NCHARTYPE

7 5-byte COLLATION, followed
by a 2-byte max length

Note Data types cannot be NULL when inside a sql_variant. If the value is NULL, the sql_variant itself
has to be NULL, but it is not allowed to specify a non-null sql_variant instance and have a NULL value
wrapped inside it. A raw collation SHOULD NOT be specified within a sql_variant.<15>

2.2.5.5.5 Table Valued Parameter (TVP) Values

Table Valued Parameters (or User Defined Table Type, as this type is known on the server)
encapsulate an entire table of data with 1 to 1024 columns and an arbitrary number of rows. At the
present time, TVPs are permitted to be used only as input parameters and do not appear as output
parameters or in result set columns.

TVPs MUST be sent only by a TDS client that reports itself as a TDS major version 7.3 or later. If a
client reporting itself as older than TDS 7.3 attempts to send a TVP, the server MUST reject the

request with a TDS protocol error.

2.2.5.5.5.1 Metadata

TVPTYPE = %xF3

 TVP_TYPE_INFO = TVPTYPE
 TVP_TYPENAME
 TVP_COLMETADATA
 [TVP_ORDER_UNIQUE]
 [TVP_COLUMN_ORDERING]
 TVP_END_TOKEN
 *TVP_ROW
 TVP_END_TOKEN

Parameter Description

TVPTYPE %xF3

TVP_TYPENAME Type name of the TVP

TVP_COLMETADATA Column-specific metadata

[TVP_ORDER_UNIQUE] Optional metadata token

[TVP_COLUMN_ORDERING] Optional metadata token

TVP_END_TOKEN End optional metadata

*TVP_ROW 0..N TVP_ROW tokens

TVP_END_TOKEN End of rows

TVP_TYPENAME definition

44 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 DBNAME = B_VARCHAR ; Database where TVP type resides
 OwningSchema = B_VARCHAR ; Schema where TVP type resides
 TypeName = B_VARCHAR ; TVP type name
 TVP_TYPENAME = DbName
 OwningSchema
 TypeName

TVP_COLMETADATA definition

 DbName = B_VARCHAR ; Database where TVP type resides
 fNullable = BIT ; Column is nullable - %x01
 fCaseSen = BIT ; Column is case-sensitive - %x02
 usUpdateable = 2BIT ; 2-bit value, one of:
 ; 0 = ReadOnly - %x00
 ; 1 = ReadWrite - %x04
 ; 2 = Unknown - %x08
 fIdentity = BIT ; Column is identity column - %x10
 fComputed = BIT ; Column is computed - %x20
 usReservedODBC = 2BIT ; Reserved bits for ODBC - %x40+80
 fFixedLenCLRType = BIT ; Fixed length CLR type - %x100
 fDefault = BIT ; Column is default value - %x200
 usReserved = 6BIT ; Six leftover reserved bits

 Flags = fNullable
 fCaseSen
 usUpdateable
 fIdentity
 fComputed
 usReservedODBC
 fFixedLenCLRType
 fDefault
 usReserved
 Count = USHORT ; Column count up to 1024 max
 ColName = B_VARCHAR ; Name of column
 UserType = ULONG ; UserType of column

 TypeColumnMetaData = UserType
 Flags
 TYPE_INFO
 ColName ; Column metadata instance

 TVP_NULL_TOKEN = %xFFFF

 TVP_COLMETADATA = TVP_NULL_TOKEN / (Count <Count>TvpColumnMetaData)

DbName, OwningSchema, and TypeName are limited to 128 Unicode characters max identifier
length.

DbName is required to be zero-length, only OwningSchema and TypeName can be specified. DbName,
OwningSchema, and TypeName are all optional fields and might ALL contain zero length strings. Client
SHOULD follow these two rules:

 If the TVP is a parameter to a stored procedure or function where parameter metadata is
available on the server side, the client can send all zero-length strings for TVP_TYPENAME.

 If the TVP is a parameter to an ad-hoc SQL statement, parameter metadata information is not
available on a stored procedure or function on the server. In this case, the client is responsible to
send sufficient type information with the TVP to allow the server to resolve the TVP type from
sys.types. Failure to send needed type information in this case will result in complete failure of
RPC call prior to execution.

45 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Only one new flag, fDefault, is added here from existing COLMETADATA. ColName MUST be a zero-
length string in the TVP.

Additional details about input TVPs and usage of flags

 For an input TVP, if the fDefault flag is set on a column, then the client MUST NOT emit the

corresponding TvpColumnData data for the associated column when sending each TVP_ROW.

 For an input TVP, the fCaseSen, usUpdateable, and fFixedLenCLRType flags are ignored.

 usUpdateable is ignored by server on input, it is "calculated" metadata.

 The fFixedLenCLRType flag is not used by the server.

 Output TVPs are not currently supported.

TVP Flags Usage Chart

Flag Input behavior

fNullable Allowed

fCaseSen Ignored

usUpdateable Ignored

fIdentity Allowed

fComputed Allowed

usReservedODBC Ignored

fFixedLenCLRType Ignored

fDefault Allowed (if set, data not sent in TvpColumnData)

usReserved Ignored

2.2.5.5.5.2 Optional Metadata Tokens

TVP_ORDER_UNIQUE definition

 TVP_ORDER_UNIQUE_TOKEN = %x10
 Count = USHORT ; Count of ColNums to follow
 ColNum = USHORT ; A single-column ordinal
 fOrderAsc = BIT ; Column-ordered ascending – %x01
 fOrderDesc = BIT ; Column-ordered descending – %x02
 fUnique = BIT ; Column is in unique set – %x04
 Reserved1 = 5BIT ; Five reserved bits

 OrderUniqueFlags = fOrderAsc
 fOrderDesc
 fUnique
 Reserved1

 TVP_ORDER_UNIQUE = TVP_ORDER_UNIQUE_TOKEN
 (Count <Count>(ColNum OrderUniqueFlags))

TVP_ORDER_UNIQUE is similar to the ORDER token that is currently used in TDS responses from the
server.

46 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

TVP_ORDER_UNIQUE is optional.

ColNum ordinals are 1..N, where 1 is the first column in TVP_COLMETADATA. That is, ordinals start

with 1.

Each TVP_ORDER_UNIQUE token can describe a set of columns for ordering and/or a set of columns

for uniqueness.

The first column ordinal with an ordering bit set is the primary sort column, the second column ordinal
with an ordering bit set is the secondary sort column, and so on.

The client can send 0 or 1 TVP_ORDER_UNIQUE tokens in a single TVP.

The TVP_ORDER_UNIQUE token MUST always be sent after TVP_COLMETADATA and before the first
TVP_ROW token.

When a TVP is sent to the server, each ColNum ordinal inside a TVP_ORDER_UNIQUE token MUST

refer to a client generated column. Ordinals that refer to columns with fDefault set will be rejected by
the server.

OrderUniqueFlags Possible Combinations And Meaning

fOrderAsc fOrderDesc fUnique Meaning

FALSE FALSE FALSE Invalid flag state, rejected by server

FALSE FALSE TRUE Column is in unique set

FALSE TRUE FALSE Column is ordered descending

FALSE TRUE TRUE Column is ordered descending and in unique set

TRUE FALSE FALSE Column is ordered ascending

TRUE FALSE TRUE Column is ordered ascending and in unique set

TRUE TRUE FALSE Invalid flag state, rejected by server

TRUE TRUE TRUE Invalid flag state, rejected by server

TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is an optional TVP metadata token that is used to allow the TDS client to
send a different ordering of the columns in a TVP from the default ordering.

ColNum ordinals are 1..N where 1 is first column in the TVP (ordinals start with 1 in other words).
These are the same ordinals used with the TDS ORDER token, for example, to refer to column ordinal
as the columns appear in left to right order.

 TVP_COLUMN_ORDERING_TOKEN = %x11
 Count = USHORT ; Count of ColNums to follow
 ColNum = USHORT ; A single-column ordinal

 TVP_COLUMN_ORDERING = TVP_COLUMN_ORDERING_TOKEN
 (Count <Count>ColNum)

The client can send 0 or 1 TVP_COLUMN_ORDERING tokens in a single TVP.

The TVP_COLUMN_ORDERING token MUST always be sent after TVP_COLMETADATA and before the
first TVP_ROW token.

47 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Additional details about TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is used to re-order the columns in a TVP. For example if a TVP is defined as:

 create type myTvpe as table (f1 int, f2 varchar(max), f3 datetime)

The TDS client might want to send the f2 field last inside the TVP as an optimization (streaming the
large value last). So the client can send TVP_COLUMN_ORDERING with order 1,3,2 to indicate that
inside the TVP_ROW section the column f1 is sent first, f3 is sent second, and f2 is sent third.

So the TVP_COLUMN_ORDERING token on the wire for this example would be:

 11 ; TVP_COLUMN_ORDERING_TOKEN
 03 00 ; Count - Number of ColNums to follow.
 01 00 ; ColNum - TVP column ordinal 1 is sent first in TVP_COLMETADATA.
 03 00 ; ColNum - TVP column ordinal 3 is sent second in TVP_COLMETADATA.
 02 00 ; ColNum - TVP column ordinal 2 is sent third in TVP_COLMETADATA.

Duplicate ColNum values are considered an error condition. The ordinal values of the columns in the
actual TVP type are ordered starting with 1 for the first column and adding one for each column from
left to right. The client MUST send one ColNum for each column described in the TVP_COLMETADATA
(so Count MUST match number of columns in TVP_COLMETADATA).

TVP_ROW definition

 TVP_ROW_TOKEN = %x01 ; A row as defined by TVP_COLMETADATA follows
 TvpColumnData = TYPE_VARBYTE ; Actual value must match metadata for the column
 AllColumnData = *TvpColumnData ; Chunks of data, one per non-default column defined
 in TVP_COLMETADATA
 TVP_ROW = TVP_ROW_TOKEN
 AllColumnData
 TVP_END_TOKEN = %x00 ; Terminator tag for TVP type, meaning
 no more TVP_ROWs to follow and end of
 successful transmission of a single TVP

TvpColumnData is repeated once for each non-default column of data defined in TVP_COLMETADATA.

Each row will contain one data "cell" per column specified in TVP_COLMETADATA. On input, columns
with the fDefault flag set in TVP_COLMETADATA will be skipped to avoid sending redundant data.

Column data is ordered in same order as the order of items defined in TVP_COLMETADATA unless a
TVP_COLUMN_ORDERING token has been sent to indicate a change in the ordering of the row values.

2.2.5.5.5.3 TDS Type Restrictions

Within a TVP, the following legacy TDS types are not supported:

TDS type Replacement type

Binary BigBinary

VarBinary BigVarBinary

Char BigChar

VarChar BigVarChar

Bit BitN

48 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

TDS type Replacement type

Int1 IntN

Int2 IntN

Int4 IntN

Int8 IntN

Float4 FloatN

Float8 FloatN

Money MoneyN

Decimal DecimalN

Numeric NumericN

DateTime DatetimeN

DateTime4 DatetimeN

Money4 MoneyN

Additional types not allowed in TVP:

 Null type (NULLTYPE:='0x1f') is not allowed in a TVP.

 TVP type is not allowed in a TVP (no nesting of TVP in a TVP).

 TDS types are not to be confused with data types for a database server that supports SQL.

2.2.5.6 Type Info Rule Definition

The TYPE_INFO rule applies to several messages used to describe column information. For columns of
fixed data length, the type is all that is required to determine the data length. For columns of a
variable-length type, TYPE_VARLEN defines the length of the data contained within the column, with
the following exceptions introduced in TDS 7.3:

DATE MUST NOT have a TYPE_VARLEN. The value is either 3 bytes or 0 bytes (null).

TIME, DATETIME2, and DATETIMEOFFSET MUST NOT have a TYPE_VARLEN. The lengths are
determined by the SCALE as indicated in section 2.2.5.4.2.

PRECISION and SCALE MUST occur if the type is NUMERIC, NUMERICN, DECIMAL, or DECIMALN.

SCALE (without PRECISION) MUST occur if the type is TIME, DATETIME2, or DATETIMEOFFSET
(introduced in TDS 7.3). PRECISION MUST be less than or equal to decimal 38 and SCALE MUST be
less than or equal to the precision value.

COLLATION occurs only if the type is BIGCHARTYPE, BIGVARCHRTYPE, TEXTTYPE, NTEXTTYPE,
NCHARTYPE, or NVARCHARTYPE.

UDT_INFO always occurs if the type is UDTTYPE.

XML_INFO always occurs if the type is XMLTYPE.

USHORTMAXLEN does not occur if PARTLENTYPE is XMLTYPE or UDTTYPE.

49 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 USHORTMAXLEN = %xFFFF

 TYPE_INFO = FIXEDLENTYPE
 /
 (VARLENTYPE TYPE_VARLEN [COLLATION])
 /
 (VARLENTYPE TYPE_VARLEN [PRECISION SCALE])
 /
 (VARLENTYPE SCALE) ; (introduced in TDS 7.3)
 /
 VARLENTYPE ; (introduced in TDS 7.3)
 /
 (PARTLENTYPE
 [USHORTMAXLEN]
 [COLLATION]
 [XML_INFO]
 [UDT_INFO])

2.2.5.7 Encryption Key Rule Definition

The EK_INFO rule applies to messages that have encrypted values and describes the encryption key

information. The encryption key information includes the various encryption key values that are
obtained by securing an encryption key by using different master keys. This rule applies only if the
column encryption feature is negotiated by the client and the server and is turned ON.

 Count = BYTE

 EncryptedKey = US_VARBYTES

 KeyStoreName = B_VARCHAR

 KeyPath = US_VARCHAR

 AsymmetricAlgo = B_VARCHAR

 EncryptionKeyValue = EncryptedKey
 KeyStoreName
 KeyPath
 AsymmetricAlgo

 DatabaseId = ULONG

 CekId = ULONG

 CekVersion = ULONG

 CekMDVersion = ULONGLONG

 EK_INFO = DatabaseId
 CekId
 CekVersion
 CekMDVersion
 Count
 *EncryptionKeyValue

Parameter Description

Count The count of EncryptionKeyValue elements that are present in the message.

EncryptedKey The ciphertext containing the encryption key that is secured with the master.

KeyStoreName The key store name component of the location where the master key is saved.

50 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

KeyPath The key path component of the location where the master key is saved.

AsymmetricAlgo The name of the algorithm that is used for encrypting the encryption key.

EncryptionKeyValue The metadata and encrypted value that describe an encryption key. This is enough
information to allow retrieval of plaintext encryption keys.

DatabaseId A 4 byte integer value that represents the database ID where the column encryption key is
stored.

CekId An identifier for the column encryption key.

CekVersion The key version of the column encryption key.

CekMDVersion The metadata version for the column encryption key.

2.2.5.8 Data Packet Stream Tokens

The tokens defined as follows are used as part of the token-based data stream. Details about how
each token is used inside the data stream are in section 2.2.6.

 ALTMETADATA_TOKEN = %x88
 ALTROW_TOKEN = %xD3
 COLMETADATA_TOKEN = %x81
 COLINFO_TOKEN = %xA5
 DONE_TOKEN = %xFD
 DONEPROC_TOKEN = %xFE
 DONEINPROC_TOKEN = %xFF
 ENVCHANGE_TOKEN = %xE3
 ERROR_TOKEN = %xAA
 FEATUREEXTACK_TOKEN = %xAE ; (introduced in TDS 7.4)
 FEDAUTHINFO_TOKEN = $xEE ; (introduced in TDS 7.4)
 INFO_TOKEN = %xAB
 LOGINACK_TOKEN = %xAD
 NBCROW_TOKEN = %xD2 ; (introduced in TDS 7.3)
 OFFSET_TOKEN = %x78
 ORDER_TOKEN = %xA9
 RETURNSTATUS_TOKEN = %x79
 RETURNVALUE_TOKEN = %xAC
 ROW_TOKEN = %xD1
 SESSIONSTATE_TOKEN = %xE4 ; (introduced in TDS 7.4)
 SSPI_TOKEN = %xED
 TABNAME_TOKEN = %xA4

2.2.6 Packet Header Message Type Stream Definition

2.2.6.1 Bulk Load BCP

Stream Name:

 BulkLoadBCP

Stream Function:

51 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Describes the format of bulk-loaded data through the "INSERT BULK" T-SQL statement. The format
is a COLMETADATA token describing the data being sent, followed by multiple ROW tokens, ending

with a DONE token. The stream is equivalent to that produced by the server if it were sending the
same rowset on output.

Stream Comments:

 Packet header type is 0x07.

 This message sent to the server contains bulk data to be inserted. The client MUST have
previously notified the server where this data is to be inserted. For more information about the
INSERT BULK syntax, see [MSDN-INSERT].

 A sample BulkLoadBCP message is in section 4.12.

Stream-Specific Rules:

 BulkLoad_METADATA = COLMETADATA_TOKEN
 BulkLoad_ROW = ROW_TOKEN
 BulkLoad_DONE = DONE_TOKEN

Submessage Definition:

 BulkLoadBCP = BulkLoad_METADATA
 *BulkLoad_ROW
 BulkLoad_DONE

Note that for INSERT BULK operations, XMLTYPE is to be sent as NVARCHAR(N) or NVARCHAR(MAX)
data type. An error is produced if XMLTYPE is specified.

INSERT BULK operations for data type UDTTYPE is not supported. Use VARBINARYTYPE to insert
instances of User Defined Types.

INSERT BULK operations do not support type specifications of DECIMALTYPE and NUMERICTYPE. To
insert these data types, use DECIMALN and NUMERICNTYPE.

2.2.6.2 Bulk Load Update Text/Write Text

Stream Name:

 BulkLoadUTWT

Stream Function:

Describes the format of bulk-loaded data with UpdateText or WriteText. The format is the length of
the data followed by the data itself.

Stream Comments:

 Packet header type 0x07.

 This message sent to the server contains bulk data to be inserted. The client MUST have
previously issued a "UPDATETEXT BULK" or "WRITETEXT BULK" T-SQL statement to the
server. For information about the UPDATETEXT BULK and WRITETEXT BULK syntax, see [MSDN-
UPDATETEXT] and [MSDN-WRITETEXT], respectively.

 The server returns a RETURNVALUE token containing the new timestamp for this column.

https://go.microsoft.com/fwlink/?LinkId=154273
https://go.microsoft.com/fwlink/?LinkId=154272
https://go.microsoft.com/fwlink/?LinkId=154272
https://go.microsoft.com/fwlink/?LinkId=154269

52 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Stream-Specific Rules:

 BulkData = L_VARBYTE

Sub Message Definition:

 BulkLoadUTWT = BulkData

Stream Parameter Details

Parameter Description

BulkData Contains the BulkData length and BulkData data within the L_VARBYTE.

2.2.6.3 Federated Authentication Token

Stream Name:

 FEDAUTH

Stream Function:

An authentication token for federated authentication.<16>

Stream Comments:

 Packet header type 0x08.

 This stream contains the client’s federated authentication token, generated by a client library that

is supported by the server, and any other information, as laid out in the rules for the particular
bFedAuthLibrary that is indicated in the FEDAUTH FeatureExt in the Login message.

 The server MUST respond with a Login Response message or an error.

Stream-Specific Rules:

 DataLen = DWORD

 FedAuthToken = L_VARBYTE

 Nonce = 32BYTE

Stream Definition:

Stream is defined based on the bFedAuthLibrary that is used in Login message FEDAUTH FeatureExt.
This message MUST not be sent for any values of bFedAuthLibrary that are not listed in this section.

When bFedAuthLibrary is Active Directory Authentication Library (ADAL) [that is, 0x02]:

 FEDAUTH = DataLen
 FedAuthToken
 [Nonce]

53 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Stream Parameter Details

Parameter Description

DataLen The total length of the data in the Federated Authentication Token message that follows this
field. DataLen does not include the size that is used for the DataLen field itself.

FedAuthToken Contains the federated authentication token data that is generated by the federated
authentication library. The federated authentication library that is used to generate the token
MUST be the same library that is specified as bFedAuthLibrary in the client’s Login FEDAUTH
FeatureExt message.

Nonce The nonce, if provided by the server during the pre-login exchange, that is echoed back to the
server by the client. If the server provided a nonce in the pre-login exchange, the client MUST
echo the nonce back to the server in this field. If the server did not provide a nonce to the client
in the pre-login exchange, this field MUST NOT be included in the stream.

2.2.6.4 LOGIN7

Stream Name:

 LOGIN7

Stream Function:

Defines the authentication rules for use between client and server.

Stream Comments:

 Packet header type 0x10.

 The length of a LOGIN7 stream MUST NOT be longer than 128K-1(byte) bytes.

 The OffsetLength and Data rules define the variable-length portions of this data stream. The
OffsetLength rule lists the offset from the start of the structure, and the length for each
parameter. If the parameter is not used, the parameter length field MUST be 0. The data itself (for

example, the Data rule) follows these parameters.

 The first parameter of the OffsetLength rule (ibHostName) indicates the start of the variable
length portion of this data stream. As such it MUST NOT be 0. This is required for forward
compatibility (for example, later versions of TDS, with additional parameters, can be successfully
skipped by down-level servers).

 A sample LOGIN7 message is in section 4.2.

Stream-Specific Rules:

 Length = DWORD
 TDSVersion = DWORD
 PacketSize = DWORD
 ClientProgVer = DWORD
 ClientPID = DWORD
 ConnectionID = DWORD

 fByteorder = BIT
 fChar = BIT
 fFloat = 2BIT
 fDumpLoad = BIT

54 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 fUseDB = BIT
 fDatabase = BIT
 fSetLang = BIT

 OptionFlags1 = fByteorder
 fChar
 fFloat
 fDumpLoad
 fUseDB
 fDatabase
 fSetLang

 fLanguage = BIT
 fODBC = BIT
 fTranBoundary = BIT ; (removed in TDS 7.2)
 fCacheConnect = BIT ; (removed in TDS 7.2)
 fUserType = 3BIT
 fIntSecurity = BIT

 OptionFlags2 = fLanguage
 fODBC
 (fTransBoundary / FRESERVEDBIT)
 (fCacheConnect / FRESERVEDBIT)
 fUserType
 fIntSecurity

 fSQLType = 4BIT
 fOLEDB = BIT ; (introduced in TDS 7.2)
 fReadOnlyIntent = BIT ; (introduced in TDS 7.4)

 TypeFlags = fSQLType
 (FRESERVEDBIT / fOLEDB)
 (FRESERVEDBIT / fReadOnlyIntent)
 2FRESERVEDBIT

 fChangePassword = BIT ; (introduced in TDS 7.2)
 fUserInstance = BIT ; (introduced in TDS 7.2)
 fSendYukonBinaryXML = BIT ; (introduced in TDS 7.2)
 fUnknownCollationHandling = BIT ; (introduced in TDS 7.3)
 fExtension = BIT ; (introduced in TDS 7.4)

 OptionFlags3 = (FRESERVEDBIT / fChangePassword)
 (FRESERVEDBIT / fSendYukonBinaryXML)
 (FRESERVEDBIT / fUserInstance)
 (FRESERVEDBIT / fUnknownCollationHandling)
 (FRESERVEDBIT / fExtension)
 3FRESERVEDBIT

 ClientTimZone = LONG;
 ClientLCID = LCID
 ColFlags
 Version

 ibHostName = USHORT
 cchHostName = USHORT
 ibUserName = USHORT
 cchUserName = USHORT
 ibPassword = USHORT
 cchPassword = USHORT
 ibAppName = USHORT
 cchAppName = USHORT
 ibServerName = USHORT
 cchServerName = USHORT
 ibUnused = USHORT
 cbUnused = USHORT
 ibExtension = USHORT ; (introduced in TDS 7.4)
 cbExtension = USHORT ; (introduced in TDS 7.4)
 ibCltIntName = USHORT
 cchCltIntName = USHORT

55 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 ibLanguage = USHORT
 cchLanguage = USHORT
 ibDatabase = USHORT
 cchDatabase = USHORT
 ClientID = 6BYTE
 ibSSPI = USHORT
 cbSSPI = USHORT
 ibAtchDBFile = USHORT
 cchAtchDBFile = USHORT
 ibChangePassword = USHORT ; (introduced in TDS 7.2)
 cchChangePassword = USHORT ; (introduced in TDS 7.2)
 cbSSPILong = DWORD ; (introduced in TDS 7.2)

 OffsetLength = ibHostName
 cchHostName
 ibUserName
 cchUserName
 ibPassword
 cchPassword
 ibAppName
 cchAppName
 ibServerName
 cchServerName
 (ibUnused / ibExtension)
 (cchUnused / cbExtension)
 ibCltIntName
 cchCltIntName
 ibLanguage
 cchLanguage
 ibDatabase
 cchDatabase
 ClientID
 ibSSPI
 cbSSPI
 ibAtchDBFile
 cchAtchDBFile
 ibChangePassword
 cchChangePassword
 cbSSPILong

Note The ClientLCID value is no longer used to set language parameters and is ignored.

All variable-length fields in the login record are optional. This means that the length of the field can be

specified as 0. If the length is specified as 0, then the offset MUST be ignored. The only exception is
ibHostName, which MUST always point to the beginning of the variable-length data in the login record
even in the case where no variable-length data is included.

 Data = *BYTE

 FeatureId = BYTE ; (introduced in TDS 7.4)
 FeatureDataLen = DWORD ; (introduced in TDS 7.4)
 FeatureData = *BYTE ; (introduced in TDS 7.4)

 TERMINATOR = %xFF ; signal of end of feature option

 FeatureOpt = (FeatureId
 FeatureDataLen
 FeatureData)
 /
 TERMINATOR

 FeatureExt = 1*FeatureOpt ; (introduced in TDS 7.4)

Stream Definition:

56 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 LOGIN7 = Length
 TDSVersion
 PacketSize
 ClientProgVer
 ClientPID
 ConnectionID
 OptionFlags1
 OptionFlags2
 TypeFlags
 (FRESERVEDBYTE / OptionFlags3)
 ClientTimZone
 ClientLCID
 OffsetLength
 Data
 [FeatureExt]

Stream Parameter Details

Parameter Description

Length The total length of the LOGIN7 structure.

TDSVersion The highest TDS version being used by the client (for example, 0x00000071 for TDS 7.1). If
the TDSVersion value sent by the client is greater than the value that the server recognizes,
the server MUST use the highest TDS version that it can use. This provides a mechanism for
clients to discover the server TDS by sending a standard LOGIN7 message. If the TDSVersion
value sent by the client is lower than the highest TDS version the server recognizes, the server
MUST use the TDS version sent by the client.<17>

For information about what the server sends to the client, see the LOGINACK token.

PacketSize The packet size being requested by the client.

ClientProgVer The version of the interface library (for example, ODBC or OLEDB) being used by the client.

ClientPID The process ID of the client application.

ConnectionID The connection ID of the primary Server. Used when connecting to an "Always Up" backup

server.

OptionFlags1
 Represented in least significant bit order.

 fByteOrder: The byte order used by client for numeric and datetime data types.

 0 = ORDER_X86

 1 = ORDER_68000<18>

 fChar: The character set used on the client.

 0 = CHARSET_ASCII

 1 = CHARSET_EBCDIC

 fFloat: The type of floating point representation used by the client.<19>

 0 = FLOAT_IEEE_754

 1 = FLOAT_VAX

 2 = ND5000

57 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

 fDumpLoad: Set is dump/load or BCP capabilities are needed by the client.

 0 = DUMPLOAD_ON

 1 = DUMPLOAD_OFF

 fUseDB: Set if the client requires warning messages on execution of the USE SQL
statement. If this flag is not set, the server MUST NOT inform the client when the database
changes, and therefore the client will be unaware of any accompanying collation changes.

 0 = USE_DB_OFF

 1 = USE_DB_ON

 fDatabase: Set if the change to initial database needs to succeed if the connection is to
succeed.

 0 = INIT_DB_WARN

 1 = INIT_DB_FATAL

 fSetLang: Set if the client requires warning messages on execution of a language change
statement.

 0 = SET_LANG_OFF

 1 = SET_LANG_ON

OptionFlags2
 Represented in least significant bit order.

 fLanguage: Set if the change to initial language needs to succeed if the connect is to
succeed.

 0 = INIT_LANG_WARN

 1 = INIT_LANG_FATAL

 fODBC: Set if the client is the ODBC driver. This causes the server to set ANSI_DEFAULTS
to ON, CURSOR_CLOSE_ON_COMMIT and IMPLICIT_TRANSACTIONS to OFF, TEXTSIZE to
0x7FFFFFFF (2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite (introduced in TDS 7.3), and
ROWCOUNT to infinite.<20>

 0 = ODBC_OFF

 1 = ODBC_ON

 fTransBoundary

 fCacheConnect

 fUserType: The type of user connecting to the server.

 0 = USER_NORMAL—regular logins

 1 = USER_SERVER—reserved

 2 = USER_REMUSER—Distributed Query login

 3 = USER_SQLREPL—replication login

 fIntSecurity: The type of security required by the client.

58 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

 0 = INTEGRATED_SECURTY_OFF

 1 = INTEGRATED_SECURITY_ON

TypeFlags
 Represented in least significant bit order.

 fSQLType: The type of SQL the client sends to the server.

 0 = SQL_DFLT

 1 = SQL_TSQL

 fOLEDB: Set if the client is the OLEDB driver. This causes the server to set
ANSI_DEFAULTS to ON, CURSOR_CLOSE_ON_COMMIT and IMPLICIT_TRANSACTIONS to
OFF, TEXTSIZE to 0x7FFFFFFF (2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite
(introduced in TDS 7.3), and ROWCOUNT to infinite.

 0 = OLEDB_OFF

 1 = OLEDB_ON

 fReadOnlyIntent: This bit was introduced in TDS 7.4; however, TDS 7.1, 7.2, and 7.3
clients can also use this bit in LOGIN7 to specify that the application intent of the
connection is read-only. The server SHOULD ignore this bit if the highest TDS version
supported by the server is lower than TDS 7.4.

OptionFlags3
 Represented in least significant bit order.

 fChangePassword: Specifies whether the login request SHOULD change password.

 0 = No change request. ibChangePassword MUST be 0.

 1 = Request to change login's password.

 fSendYukonBinaryXML: 1 if XML data type instances are returned as binary XML.<21>

 fUserInstance: 1 if client is requesting separate process to be spawned as user instance.

 fUnknownCollationHandling: This bit is used by the server to determine if a client is able to
properly handle collations introduced after TDS 7.2. TDS 7.2 and earlier clients are
encouraged to use this login packet bit. Servers MUST ignore this bit when it is sent by
TDS 7.3 or 7.4 clients. See [MSDN-SQLCollation] and [MS-LCID] documents for the
complete list of collations for a database server that supports SQL and LCIDs.

 0 = The server MUST restrict the collations sent to a specific set of collations. It MAY
disconnect or send an error if some other value is outside the specific collation set.
The client MUST properly support all collations within the collation set.

 1 = The server MAY send any collation that fits in the storage space. The client MUST
be able to both properly support collations and gracefully fail for those it does not
support.

 fExtension: Specifies whether ibExtension/cbExtension fields are used.

 0 = ibExtension/cbExtension fields are not used. The fields are treated the same as
ibUnused/cchUnused.

 1 = ibExtension/cbExtension fields are used.

ClientTimeZone The time zone of the client machine.

https://go.microsoft.com/fwlink/?LinkId=119987
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f

59 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

ClientLCID The language code identifier (LCID) value for the client collation. If ClientLCID is specified, the
specified collation is set as the session collation. Note that the total ClientLCID is 4 bytes,
which implies that there is no support for SQL Sort orders.

OffsetLength The variable portion of this message. A stream of bytes in the order shown, indicates the offset
(from the start of the message) and length of various parameters:

 ibHostname & cchHostName: The client machine name.

 ibUserName & cchUserName: The client user ID.

 ibPassword & cchPassword: The password supplied by the client.

 ibAppName & cchAppName: The client application name.

 ibServerName & cchServerName: The server name.

 ibUnused & cbUnused: These parameters were reserved until TDS 7.4.

 ibExtension & cbExtension: This points to an extension block. Introduced in TDS 7.4 when
fExtension is 1. The content pointed by ibExtension is defined as follows:

 ibFeatureExtLong = DWORD

 Extension = ibFeatureExtLong

ibFeatureExtLong provides the offset (from the start of the message) of FeatureExt block.
ibFeatureExtLong MUST be 0 if FeatureExt block does not exist.

Extension block can be extended in future. The client MUST NOT send more data than
needed. The server SHOULD ignore any appended data that is unknown to the server.

 ibCltIntName & cchCltIntName: The interface library name (ODBC or OLEDB).

 ibLanguage & cchLanguage: The initial language (overrides the user ID's default
language).

 ibDatabase & cchDatabase: The initial database (overrides the user ID's default database).

 ClientID: The unique client ID (created by using the NIC address). ClientID is the MAC
address of the physical network layer. It is used to identify the client that is connecting to
the server. This value is mainly informational, and no processing steps on the server side

use it.

 ibSSPI & cbSSPI: SSPI data.

If cbSSPI < USHRT_MAX, then this length MUST be used for SSPI and cbSSPILong
MUST be ignored.

If cbSSPI == USHRT_MAX, then cbSSPILong MUST be checked.

If cbSSPILong > 0, then that value MUST be used. If cbSSPILong ==0, then cbSSPI
(USHRT_MAX) MUST be used.

 ibAtchDBFile & cchAtchDBFile: The file name for a database that is to be attached during
the connection process.

 ibChangePassword & cchChangePassword: New password for the specified login.
Introduced in TDS 7.2.

 cbSSPILong: Used for large SSPI data when cbSSPI==USHRT_MAX.
Introduced in TDS 7.2.

60 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

Data The actual variable-length data portion referred to by OffsetLength.

FeatureId The unique identifier number of a feature. The available features are described in the following
table.

Introduced in TDS 7.4.

FeatureDataLen The length, in bytes, of FeatureData for the corresponding FeatureId.

Introduced in TDS 7.4.

FeatureData Data of the feature. Each feature defines its own data format.

The data for existing features are defined in the following table.

Introduced in TDS 7.4.

FeatureExt The data block that can be used to inform and/or negotiate features between client and server.
It contains data for one or more optional features. Each feature is assigned an identifier,
followed by data length and data. The data for each feature is defined by the feature’s own
logic. If the server does not support the specific feature, it MUST skip the feature data and
jump to next feature. If needed, each feature SHOULD have its own logic to detect whether the
server accepts the feature option.

Optionally, a feature can use a FEATUREEXTACK token to acknowledge the feature along with
LOGINACK. The detailed acknowledge data SHOULD be defined by the feature itself.

Introduced in TDS 7.4.

The following table defines the options that are available in FeatureExt.

FeatureId FeatureData Description

%0x01

(SESSIONRECOVERY)

(introduced in TDS 7.4)

Session Recovery feature. This feature is used to recover the session state of a
previous connection. Content is defined as follows:

 Length = DWORD
 RecoveryDatabase = B_VARCHAR
 RecoveryCollation = BYTELEN [COLLATION]
 RecoveryLanguage = B_VARCHAR

 SessionRecoveryData = Length
 RecoveryDatabase
 RecoveryCollation
 RecoveryLanguage
 SessionStateDataSet

 InitSessionRecoveryData = SessionRecoveryData
 SessionRecoveryDataToBe = SessionRecoveryData

 FeatureData = [InitSessionRecoveryData
SessionRecoveryDataToBe]

The Length field is the length, in bytes, of SessionRecoveryData excluding the
Length field itself. SessionStateDataSet is described in section 2.2.7.20. The
length of SessionStateDataSet can be derived from the Length field and the
length of RecoveryDatabase, RecoveryCollation, and RecoveryLanguage. The
maximum length for RecoveryDatabase and RecoveryLanguage is 128 Unicode
characters.

There are two sets of SessionRecoveryData. The data for the first set,
InitSessionRecoveryData, SHOULD come from the initial login response data of
the initial connection to be recovered, specifically, the
Database/Collation/Language ENVCHANGE data and SessionStateDataSet in
FeatureExtAck.

61 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FeatureId FeatureData Description

Data for the second set, SessionRecoveryDataToBe, SHOULD come from the
latest ENVCHANGE for Database/Collation/Language from the connection to be
recovered and the latest data for each StateId in SessionStateData from the
connection to be recovered. If login succeeded on this recovery connection, the
session state of the connection MUST be set to SessionRecoveryDataToBe. To
save space, if data for RecoveryDatabase/RecoveryCollation/RecoveryLanguage
in SessionRecoveryDataToBe is the same as data in InitSessionRecoveryData,
the length value of each field SHOULD be 0. If data for any session StateId is
unchanged from InitSessionRecoveryData, the corresponding StateId data
SHOULD be skipped in SessionRecoveryDataToBe.

When this feature option is received and the server supports connection
recovery, a FEATUREEXTACK token that contains data for SESSIONRECOVERY
feature MUST be returned along with LOGINACK in the login response to
indicate that the server supports the feature. If SESSIONRECOVERY is not
acknowledged in the login response, the server does not support the feature
and the client MUST disable the feature for this connection.

The client can request this feature option with zero FeatureDataLen. This is
used during login for the initial connection to indicate that the client prefers this
feature.

When the client sends this feature option with non-zero FeatureDataLen during
login, the option data SHOULD come from a previous connection. The TDS
version in the login request MUST be the same as the TDS version negotiated
for the connection to be recovered. The server MUST return the same TDS
version in the login response, and if not, the client MUST disconnect the
connection and raise an error to the upper layer.

If a login record with non-zero FeatureDataLen of this feature is received and
the server supports this feature, the server MUST:

 Force TDS version negotiation to use the TDS version requested by the
client, and fail the login if the requested TDS version is not known to the
server, for example, a TDS version that is later than the highest one
currently on the server.

 Validate the content in SessionRecoveryData, and fail the login if any data
is invalid or any unknown session state exists.

After the feature is negotiated to be enabled, the server SHOULD send session
state updates to the client via a SESSIONSTATE token during the lifetime of the
connection. The client MUST track the initial session state data and the latest
session state data. Session state data is updated via a SESSIONSTATE token
incrementally.

When a client requests RESETCONNECTION/RESETCONNECTIONSKIPTRAN and
the server acknowledges the request, both client and server MUST update the
baseline of the session state data to be the same as the initial state as defined

by InitSessionRecoveryData, and any further state update SHOULD be on top
of the initial state.

Session state data can be used to recover a dead connection as defined by
SessionRecoveryData. The client SHOULD try to recover a dead connection if
the latest fRecovery bit is TRUE for all StateId that were received from the
server. The client MUST NOT try to recover a dead connection if the any latest
fRecovery bit is FALSE.

%0x02

(FEDAUTH)<22>

(introduced in TDS 7.4)

The presence of the FEDAUTH FeatureExt indicates that the client is
authenticating by federated authentication. If the FEDAUTH FeatureId is
present, the value of fIntSecurity MUST be 0. The format of the data is as
described below based on the bFedAuthLibrary that is used.

bFedAuthLibrary = 0x7F is a reserved value.

When the bFedAuthLibrary is Live ID Compact Token, the format is as follows:

 bFedAuthLibrary = 7BIT
 fFedAuthEcho = BIT

62 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FeatureId FeatureData Description

 Options = bFedAuthLibrary
 fFedAuthEcho

 FedAuthToken = L_VARBYTE

 Nonce = 32BYTE
 ChannelBindingToken = BYTESTREAM
 Signature = 32BYTE

 SignedData = Nonce
 [ChannelBindingToken]
 Signature

 FeatureData = Options
 FedAuthToken
 SignedData

bFedAuthLibrary: 7 bits, collectively treated as a 7-bit unsigned integer,
indicating the library that is used by the client for federated authentication.

0x00 = Live ID Compact Token. The format of the Live ID Compact Token and
the way in which the Live ID Compact Token is obtained are out of the scope of
this document.

fFedAuthEcho: The intention of this flag is for the client to echo the server’s
FEDAUTHREQUIRED prelogin option, so that the server can validate that the
response was not tampered with. When the FederatedAuth field is present, the
client MUST assign this flag to 1 if and only if the server’s PRELOGIN response
contained a FEDAUTHREQUIRED option with a B_FEDAUTHREQUIRED value of
0x01.

FedAuthToken: The binary authentication token generated by the specified
federated authentication library. The length of FedAuthToken MUST NOT be 0.

Nonce: The nonce provided by the server during the pre-login exchange,
echoed back to the server by the client.

ChannelBindingToken: This optional field MAY be omitted, but if encryption is
being used for the lifetime of the TDS connection and the client is able to
generate a channel binding token, the field SHOULD be included in the payload.
When present, ChannelBindingToken contains the channel binding token
associated with the underlying SSL stream.

Signature: The HMAC-SHA-256 [RFC6234] hash of the server-specified nonce
and, if it is present in the FeatureData, the ChannelBindingToken, is generated
by using the session key retrieved from the federated authentication context as
the shared secret.

The length of the ChannelBindingToken field is not explicitly conveyed in the
protocol but can be determined by comparing the FeatureDataLen against the
length of the remainder of the feature data, which is explicitly transmitted in
the protocol.

When bFedAuthLibrary is Security Token, the format is as follows:

 bFedAuthLibrary = 7BIT
 fFedAuthEcho = BIT
 Options = bFedAuthLibrary
 fFedAuthEcho

 FedAuthToken = L_VARBYTE

 Nonce = 32BYTE

 OtherData = Nonce

 FeatureData = Options
 FedAuthToken

https://go.microsoft.com/fwlink/?LinkId=328921

63 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FeatureId FeatureData Description

 [OtherData]

bFedAuthLibrary: 7 bits, collectively treated as a 7-bit unsigned integer,
indicating the library that is used by the client for federated authentication.

0x01 = Security Token. The format of the token and the way in which this
token is obtained are out of the scope of this document.

fFedAuthEcho: The intention of this flag is for the client to echo the server’s
FEDAUTHREQUIRED prelogin option, so that the server can validate that the
response was not tampered with. When the FederatedAuth field is present, the
client MUST assign this flag to 1 if and only if the server’s PRELOGIN response
contained a FEDAUTHREQUIRED option with a B_FEDAUTHREQUIRED value of
0x01.

FedAuthToken: The binary authentication token generated by the specified
federated authentication library. The length of FedAuthToken MUST NOT be 0.

Nonce: The nonce provided by the server during the Prelogin exchange and
echoed back to the server by the client. This field MUST be present if the
server’s PRELOGIN message included a NONCE field. Otherwise, this field MUST
NOT be present.

When bFedAuthLibrary is Active Directory Authentication Library (ADAL) [that
is, 0x02], the format is as follows:

 bFedAuthLibrary = 7BIT
 fFedAuthEcho = BIT
 Workflow = BYTE
 Options = bFedAuthLibrary
 fFedAuthEcho
 Workflow

bFedAuthLibrary: 7 bits, collectively treated as a 7-bit unsigned integer that
indicates the library that is used by the client for federated authentication.

0x02 = ADAL. After the client establishes the intent to use ADAL, for which
additional information is required by the client to generate a token, the server
MUST respond with the Federated Authentication Information token to the
client with "FedAuthInfoIDs: STSURL, SPN".

fFedAuthEcho: The intention of this flag is for the client to echo the server’s
FEDAUTHREQUIRED pre-login option so that the server can validate that the
response was not tampered with. When the FederatedAuth field is present, the

client MUST assign this flag to 1 if and only if the server’s PRELOGIN Response
contains a FEDAUTHREQUIRED option with a B_FEDAUTHREQUIRED value of
0x01.

Workflow: Indicates the ADAL (that is, 0x02) workflow that is being used.

0x01 = Username/password. A username and password are passed to ADAL to
retrieve a token.

0x02 = Integrated. A Windows identity is passed to ADAL to retrieve a token.

All other values of bFedAuthLibrary are reserved.

%0x04

(COLUMNENCRYPTION)

(introduced in TDS 7.4)

The presence of the COLUMNENCRYPTION FeatureExt indicates that the client
SHOULD<23> be capable of performing cryptographic operations on data. The
feature data are described as follows:

 Length = DWORD
 COLUMNENCRYPTION_VERSION = BYTE

 FeatureData = Length
 COLUMNENCRYPTION_VERSION
 *EnclaveType

64 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FeatureId FeatureData Description

COLUMNENCRYPTION_VERSION: This field describes the cryptographic protocol
version that the client understands. The values of this field are as follows:

 1 = The client supports column encryption without enclave
computations.

 2 = The client MAY<24> support column encryption when encrypted data
require enclave computations.

EnclaveType: This field MAY<25> be populated by the server and used by the
client to identify the type of enclave that the server is configured to use. If
EnclaveType is not returned and the column encryption version is returned as
2, the driver MUST raise an error.

%0x05

(GLOBALTRANSACTIONS)<26>

(introduced in TDS 7.4)

The presence of the GLOBALTRANSACTIONS FeatureExt indicates that the
client is capable of performing Global Transactions. The feature data is
described as follows:

 Length = DWORD (0)
 FeatureData = NO DATA

NO DATA: No feature data is sent with the GLOBALTRANSACTIONS FeatureExt.

%0x08

(AZURESQLSUPPORT)

(introduced in TDS 7.4)

The presence of the AZURESQLSUPPORT FeatureExt indicates that the client
MAY<27> support failover partner login with read-only intent in Azure SQL
Database. The feature data is described as follows:

 Length = DWORD

 FeatureData = BYTE

BYTE: The Bit 0 flag specifies that failover partner login with read-only intent is
supported.

%xFF

(TERMINATOR)

This option signals the end of the FeatureExt feature and MUST be the feature's
last option.

Login Data Validation Rules

cchHostName MUST specify at most 128 Unicode characters.

cchUserName MUST specify at most 128 Unicode characters.

cchPassword MUST specify at most 128 Unicode characters.

cchAppName MUST specify at most 128 Unicode characters.

cchServerName MUST specify at most 128 Unicode characters.

cbExtension MUST NOT exceed 255 bytes.

cchCltIntName MUST specify at most 128 Unicode characters.

cchLanguage MUST specify at most 128 Unicode characters.

cchDatabase MUST specify at most 128 Unicode characters.

cchAtchDBFile MUST specify at most 260 Unicode characters.

cchChangePassword MUST specify at most 128 Unicode characters.

65 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

The value at ibUserName—if specified—is semantically enclosed in brackets ([]) and MUST conform to
the rules for valid delimited object identifiers. Login MUST fail otherwise.

The value at ibDatabase—if specified—is semantically enclosed in brackets ([]) and MUST conform to
the rules for valid delimited object identifiers. Login MUST fail otherwise.

Before submitting a password from the client to the server, for every byte in the password buffer
starting with the position pointed to by ibPassword or ibChangePassword, the client SHOULD first swap
the four high bits with the four low bits and then do a bit-XOR with 0xA5 (10100101). After reading a
submitted password, for every byte in the password buffer starting with the position pointed to by
ibPassword or ibChangePassword, the server SHOULD first do a bit-XOR with 0xA5 (10100101) and
then swap the four high bits with the four low bits.

2.2.6.5 PRELOGIN

Stream Name:

 PRELOGIN

Stream Function:

A message sent by the client to set up context for login. The server responds to a client PRELOGIN
message with a message of packet header type 0x04 and the packet data containing a PRELOGIN
structure.

This message stream is also used to wrap SSL handshake payload, if encryption is needed. In this

scenario, where PRELOGIN message is transporting the SSL handshake payload, the packet data is
simply the raw bytes of the SSL handshake payload.

Stream Comments:

 Packet header type 0x12.

 A sample PRELOGIN message is in section 4.1.

Stream-Specific Rules:

 UL_VERSION = ULONG ; version of the sender

 US_SUBBUILD = USHORT ; sub-build number of the sender

 B_FENCRYPTION = BYTE
 B_INSTVALIDITY = *BYTE %x00 ; name of the instance
 ; of the database server that supports SQL
 ; or just %x00
 UL_THREADID = ULONG ; client application thread id
 ; used for debugging purposes
 B_MARS = BYTE ; sender requests MARS support
 GUID_CONNID = 16BYTE ; client application trace id
 ; used for debugging purposes
 GUID_ActivityID = 16 bytes ; client application activity id
 ; used for debugging purposes
 ActivitySequence = ULONG ; client application activity sequence
 ; used for debugging purposes
 B_FEDAUTHREQUIRED = BYTE ; authentication library requirement of the sender
 ; when using Integrated Authentication identity
 ; introduced in TDS 7.4
 NONCE = 32BYTE ; nonce to be encrypted by using session key from
 ; federated authentication handshake
 TERMINATOR = %xFF ; signals end of PRELOGIN message

66 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 PL_OPTION_DATA = *BYTE ; actual data for the option
 PL_OFFSET = USHORT ; big endian
 PL_OPTION_LENGTH = USHORT ; big endian
 PL_OPTION_TOKEN = BYTE ; token value representing the option

 PRELOGIN_OPTION = (PL_OPTION_TOKEN
 PL_OFFSET
 PL_OPTION_LENGTH)
 /
 TERMINATOR

 SSL_PAYLOAD = *BYTE ; SSL handshake raw payload

Stream Definition:

 PRELOGIN = (*PRELOGIN_OPTION
 *PL_OPTION_DATA)
 /
 SSL_PAYLOAD

PL_OPTION_TOKEN is described in the following table.

PL_OPTION_TOKEN Value Description

VERSION 0x00
PL_OPTION_DATA = UL_VERSION

 US_SUBBUILD

UL_VERSION is composed of major version (1 byte), minor version (1 byte),
and build number (2 bytes). It is represented in network byte order (big-
endian).

On x86 platforms, UL_VERSION is prepared as follows:

US_BUILD = SwapBytes (VER_SQL_BUILD);

UL_VERSION = ((US_BUILD<<16)|(VER_SQL_MINOR<<8)|(

VER_SQL_MAJOR))

SwapBytes is used to swap bytes. For example, SwapBytes(0x106A)=
0x6A10.

ENCRYPTION 0x01
PL_OPTION_DATA = B_FENCRYPTION

INSTOPT 0x02
PL_OPTION_DATA = B_INSTVALIDITY

THREADID 0x03
PL_OPTION_DATA = UL_THREADID

This value SHOULD be empty when being sent from the server to the client.

MARS 0x04
PL_OPTION_DATA = B_MARS

67 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

PL_OPTION_TOKEN Value Description

 0x00 = Off

 0x01 = On

TRACEID 0x05
PL_OPTION_DATA = GUID_CONNID

 ACTIVITY_GUID

 SEQUENCE_ID

FEDAUTHREQUIRED<28> 0x06
PL_OPTION_DATA = B_FEDAUTHREQUIRED

Introduced in TDS 7.4.

NONCEOPT 0x07
PL_OPTION_DATA = NONCE

The client MUST send this option if it expects to be able to use federated
authentication with Live ID Compact Token to authenticate to the server on
this connection.

If the server understands the NONCEOPT option and the client sends the
option, the server MUST respond with its own NONCEOPT.

TERMINATOR 0xFF Termination token.

Notes

 PL_OPTION_TOKEN VERSION is a required token, and it MUST be the first token sent as part of
PRELOGIN. If this is not the case, the connection is closed by the server.

 TERMINATOR is a required token, and it MUST be the last token of PRELOGIN_OPTION.

TERMINATOR does not include length and bits specifying offset.

 If encryption is agreed upon during pre-login, SSL negotiation between client and server happens
immediately after the PRELOGIN packet. Then login proceeds. For more information, see section
3.3.5.1.

 A PRELOGIN message wrapping the SSL_PAYLOAD will occur only after the initial PRELOGIN
message containing the PRELOGIN_OPTION and PL_OPTION_DATA information.

Encryption

During the Pre-Login handshake, the client and the server will negotiate the wire encryption to be
used. The encryption option values are as follows.

Setting Value Description

ENCRYPT_OFF 0x00 Encryption is available but off.

ENCRYPT_ON 0x01 Encryption is available and on.

ENCRYPT_NOT_SUP 0x02 Encryption is not available.

ENCRYPT_REQ 0x03 Encryption is required.

68 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

The client sends the server the value ENCRYPT_OFF, ENCRYPT_NOT_SUP, or ENCRYPT_ON. Depending
upon whether the server has encryption available and enabled, the server responds with an

ENCRYPTION value in the response according to the following table.

Client
Server
ENCRYPT_OFF Server ENCRYPT_ON Server ENCRYPT_NOT_SUP

ENCRYPT_OFF ENCRYPT_OFF ENCRYPT_REQ ENCRYPT_NOT_SUP

ENCRYPT_ON ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP (connection
terminated)

ENCRYPT_NOT_SUP ENCRYPT_NOT_SUP ENCRYPT_REQ (connection
terminated)

ENCRYPT_NOT_SUP

Assuming that the client is capable of encryption, the server requires the client to behave in the
following manner.

Client

Value returned
from server is
ENCRYPT_OFF

Value returned
from server is
ENCRYPT_ON

Value returned
from server is
ENCRYPT_REQ

Value returned from
server is
ENCRYPT_NOT_SUP

ENCRYPT_OFF Encrypt login packet
only

Encrypt entire
connection

Encrypt entire
connection

No encryption

ENCRYPT_ON Error (connection
terminated)

Encrypt entire
connection

Encrypt entire
connection

Error (connection
terminated)

If client and server negotiate to enable encryption, an SSL handshake takes place immediately after
the initial PRELOGIN/table response message exchange. The SSL payloads MUST be transported as
data in TDS packets with the message type set to 0x12 in the packet header. For example:

 0x 12 01 00 4e 00 00 00 00// Packet Header
 0x 16 03 01 00 &// SSL payload

This applies to SSL traffic. The client sends the SSL handshake payloads as data in a PRELOGIN
message. For TDS versions earlier than TDS 7.2, the server SHOULD send the SSL handshake

payloads as data in a table response message (0x04). For TDS 7.2, 7.3, and 7.4, the server SHOULD
send the SSL handshake payloads as data in a PRELOGIN message. Upon successful completion of the
SSL handshake, the client will proceed to send the LOGIN7 stream to the server to initiate
authentication.

Instance Name

If available, the client SHOULD send the server the name of the instance to which it is connecting as a
NULL-terminated multi-byte character set (MBCS) string in the INSTOPT option. If the string is empty

or is case-insensitively equal, by using the server's locale for comparison to either the server's
instance name or "MSSQLServer", the server SHOULD<29> return an INSTOPT containing a byte with
the value 0 to indicate that the client's INSTOPT matches the server's instance. Otherwise, the server

SHOULD return an INSTOPT containing a byte with the value of 1. The client SHOULD use the
INSTOPT value from the server's PRELOGIN response for verification purposes and SHOULD terminate
the connection if the INSTOPT option has the value 1.

Authentication Requirement

When the client wants to use either SSPI or federated authentication to determine the authentication
mechanism but does not necessarily have a requirement as to which library to use, the client can use
the FEDAUTHREQUIRED option to negotiate whether the server has a requirement for a given
authentication mechanism. If the client's PRELOGIN request message contains the

69 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FEDAUTHREQUIRED option, the client MUST specify 0x01 as the B_FEDAUTHREQUIRED value. If the
server supports the FEDAUTHREQUIRED option, the server MUST respond with a FEDAUTHREQUIRED

option that has either 0x00 or 0x01 as the B_FEDAUTHREQUIRED value. For the choice between SSPI
and federated authentication, a value of 0x00 indicates that the server does not require federated

authentication as the authentication mechanism, and a value of 0x01 indicates that the server
requires federated authentication as the authentication mechanism. However, this mechanism is used
only for capability negotiation when choosing between SSPI and federated authentication and does not
necessarily bind the actual authentication mechanism that is used.

2.2.6.6 RPC Request

Stream Name:

 RPCRequest

Stream Function:

Request to execute an RPC.

Stream Comments:

 Packet header type 0x03.

 To execute an RPC on the server, the client sends an RPCRequest data stream to the server. This
is a binary stream that contains the RPC Name (or ProcID), Options, and Parameters. Each RPC
MUST be contained within a separate message and not mixed with other SQL statements.

 A sample RPCRequest message is in section 4.8.

Stream-Specific Rules:

 ProcID = USHORT
 ProcIDSwitch = %xFF %xFF
 ProcName = US_VARCHAR
 NameLenProcID = ProcName
 /
 (ProcIDSwitch ProcID)

 fWithRecomp = BIT
 fNoMetaData = BIT
 fReuseMetaData = BIT
 OptionFlags = fWithRecomp
 fNoMetaData
 fReuseMetaData
 13FRESERVEDBIT

 fByRefValue = BIT
 fDefaultValue = BIT
 fEncrypted = BIT
 StatusFlags = fByRefValue
 fDefaultValue
 1FRESERVEDBIT
 fEncrypted
 4FRESERVEDBIT

 ParamMetaData = B_VARCHAR
 StatusFlags
 (TYPE_INFO / TVP_TYPE_INFO) ; (TVP_TYPE_INFO introduced in TDS 7.3)
 ParamLenData = TYPE_VARBYTE

 EncryptionAlgo = BYTE ; (introduced in TDS 7.4)

70 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 AlgoName = B_VARCHAR ; (introduced in TDS 7.4)

 EncryptionType = BYTE ; (introduced in TDS 7.4)

 NormVersion = BYTE ; (introduced in TDS 7.4)

 DatabaseId = ULONG ; (introduced in TDS 7.4)

 CekId = ULONG ; (introduced in TDS 7.4)

 CekVersion = ULONG ; (introduced in TDS 7.4)

 CekMDVersion = ULONGLONG ; (introduced in TDS 7.4)

 ParamCipherInfo = TYPE_INFO
 EncryptionAlgo
 [AlgoName]
 EncryptionType
 DatabaseId
 CekId
 CekVersion
 CekMDVersion
 NormVersion
 ParameterData = ParamMetaData
 ParamLenData
 [ParamCipherInfo]

 BatchFlag = %x80 / %xFF ; (Changed to %xFF in TDS 7.2)
 NoExecFlag = %xFE ; (introduced in TDS 7.2)

 RPCReqBatch = NameLenProcID
 OptionFlags
 *EnclavePackage ; (introduced in TDS 7.4)
 *ParameterData

The length for the instance value of UDTs is specified as a ULONGLONG. Also note that ParameterData
is repeated once for each parameter in the request.

A StatusFlags of fDefaultValue bit MUST be zero for TVP_TYPE_INFO.

fByRefValue MUST be zero for TVP_TYPE_INFO.

Stream Definition:

 RPCRequest = ALL_HEADERS
 RPCReqBatch
 *((BatchFlag / NoExecFlag) RPCReqBatch)
 [BatchFlag / NoExecFlag]

Note that RpcReqBatch is repeated once for each RPC in the batch.

Stream Parameter Details:

Parameter Description

ProcID The number identifying the special stored procedure to be executed. The valid numbers with
associated special stored procedure are as follows:

 Sp_Cursor = 1

 Sp_CursorOpen = 2

71 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

 Sp_CursorPrepare = 3

 Sp_CursorExecute = 4

 Sp_CursorPrepExec = 5

 Sp_CursorUnprepare = 6

 Sp_CursorFetch = 7

 Sp_CursorOption = 8

 Sp_CursorClose = 9

 Sp_ExecuteSql = 10

 Sp_Prepare = 11

 Sp_Execute = 12

 Sp_PrepExec = 13

 Sp_PrepExecRpc = 14

 Sp_Unprepare = 15

ProcIDSwitch ProcIDSwitch can occur as part of NameLenProcID (see below).

ProcName The procedure name length (within US_VARCHAR), which MUST be no more than 1046 bytes.

NameLenProcID If the first USHORT contains 0xFFFF the following USHORT contains the PROCID. Otherwise,
NameLenProcID contains the parameter name length and parameter name.

OptionFlags Bit flags in least significant bit order:

 fWithRecomp: 1 if RPC is sent with the "with recompile" option.

 fNoMetaData: The server sends NoMetaData only if fNoMetadata is set to 1 in the request
(see COLMETADATA, section 2.2.7.4).<30>

 fReuseMetaData: 1 if the metadata has not changed from the previous call and the server
SHOULD reuse its cached metadata (the metadata MUST still be sent).

StatusFlags Bit flags in least significant bit order:

 fByRefValue: 1 if the parameter is passed by reference (OUTPUT parameter) OR 0 if
parameter is passed by value.

 fDefaultValue: 1 if the parameter being passed is to be the default value.

 fEncrypted: 1 if the parameter that is being passed is encrypted. This flag is valid only
when the column encryption feature is negotiated by client and server and is turned on.

EnclavePackage An encrypted byte package that MAY<31> be generated by the client. This package contains
information that is required by the server-side enclave to perform computations on encrypted
columns.

Introduced in TDS 7.4.

ParameterData The parameter name length and parameter name (within B_VARCHAR), the TYPE_INFO of the
RPC data, and the type-dependent data for the RPC (within TYPE_VARBYTE).

EncryptionAlgo This byte describes the encryption algorithm that is used. For a custom encryption algorithm,

72 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

the EncryptionAlgo value MUST be set to 0 and the actual encryption algorithm MUST be
inferred from the AlgoName. For all other values, AlgoName MUST NOT be sent.

If the value is set to 1, the encryption algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF-AuthEncr] section 5.4.

AlgoName Algorithm name literal that is used for encrypting the plaintext value. This is an optional field
and MUST be sent when EncryptionAlgo = 0. For all other values of EncryptionAlgo, this field
MUST NOT be sent.

EncryptionType This byte describes the flavor of encryption algorithm that is used. The values of this field are
as follows:

1 = deterministic encryption.

2 = randomized encryption.

NormVersion Reserved for future use. The value MUST be set to 1.

DatabaseId A 4-byte integer value that represents the database ID where the column encryption key is
stored.

CekId An identifier for the column encryption key.

CekVersion The key version of the column encryption key.

CekMDVersion The metadata version for the column encryption key.

ParamCipherInfo Describes the parameter encryption information when the parameter is transparently
encrypted. It defines the original TYPE_INFO of the data that is encrypted, the encryption
algorithm that is used, the normalization version, the id of the database containing the column
encryption key used for encryption, the id of the column encryption key, the version of the
column encryption key, and the version of the column encryption key metadata. These fields
MUST be sent only when fEncrypted is set to 1.

BatchFlag Distinguishes the start of the next RPC from another parameter within the current RPC. If the
version of TDS in use supports these flags, either the BatchFlag element or the NoExecFlag
element MUST be present when another RPC request is in the current batch. BatchFlag
SHOULD NOT be sent after the last RPCReqBatch. If BatchFlag is received after the last
RPCReqBatch is received, the server MUST ignore it.

NoExecFlag Indicates that the preceding RPC will not be executed. If this separator is found, the previous
RPC will not be executed. Instead, an error message will be returned, followed by the
DONEPROC marking that the RPC in the batch has finished, and then execution proceeds to
the next RPC in the batch. The tabular data set returned will be very similar to what happens
if the RPC does not exist—never execute the RPC, just return an error message, followed by
DONEPROC, and then execute the next RPC.

2.2.6.7 SQLBatch

Stream Name:

 SQLBatch

Stream Function:

Describes the format of the SQL Batch message.

Stream Comments:

https://go.microsoft.com/fwlink/?LinkId=524322

73 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Packet header type 0x01.

 A sample SQLBatch message is in section 4.6.

Stream-Specific Rules:

 SQLText = UNICODESTREAM

Stream Definition:

 SQLBatch = ALL_HEADERS
 *EnclavePackage ; (described in section 2.2.6.6)
 SQLText

The Unicode stream contains the text of the batch. The following is an example of a valid value for
SQLText as follows.

 Select author_id from Authors

2.2.6.8 SSPI Message

Stream Name:

 SSPI

Stream Function:

A request to supply data for Security Support Provider Interface (SSPI) security. Note that SSPI
uses the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) [RFC4178] negotiation.

Stream Comments:

 Packet header type 0x11.

 The initial SSPI data block (the initial SPNEGO security token) is sent from the client to the server
in the LOGIN7 message. The server MUST respond with an SSPI token that is the SPNEGO security
token response from the server. The client MUST respond with another SSPI message, after calling
the SPNEGO interface with the server's response.

 This continues until completion or an error.

 The server completes the SSPI validation and returns the last SPNEGO security token as an SSPI
token within a LOGINACK token.

 A sample SSPI message is in section 4.11.

Stream-Specific Rules:

 SSPIData = BYTESTREAM

Stream Definition:

 SSPI = SSPIData

https://go.microsoft.com/fwlink/?LinkId=90461

74 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Stream Parameter Details

 Parameter Description

SSPIData The SSPIData length and SSPIData data using US_VARCHAR format.

2.2.6.9 Transaction Manager Request

Stream Name:

 TransMgrReq

Stream Function:

Query and control operations pertaining to the lifecycle and state of local and distributed transaction
objects. Note that distributed transaction operations are coordinated through a Distributed
Transaction Coordinator (DTC) implemented to the DTC Interface Specification. For more
information about DTC, see [MSDN-DTC].

Stream Comments:

 Packet header type 0x0E.

 A sample Transaction Manager Request message is given in section 4.13.

Stream-Specific Rules:

 RequestType = USHORT

Stream Definition:

 TransMgrReq = ALL_Headers
 RequestType
 [RequestPayload]

RequestPayload details are as specified in the following table.

Stream Parameter Details

 Parameter Description

RequestType The types of transaction manager operations that are requested by the client are specified as
follows. If an unknown Type is specified, the message receiver SHOULD disconnect the
connection.

 0 = TM_GET_DTC_ADDRESS. Returns DTC network address as a result set with a single-
column, single-row binary value.

 1 = TM_PROPAGATE_XACT. Imports DTC transaction into the server and returns a local
transaction descriptor as a varbinary result set.

 5 = TM_BEGIN_XACT. Begins a transaction and returns the descriptor in an ENVCHANGE
type 8.

 6 = TM_PROMOTE_XACT. Converts an active local transaction into a distributed transaction

https://go.microsoft.com/fwlink/?LinkId=89994

75 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Parameter Description

and returns an opaque buffer in an ENVCHANGE type 15.

 7 = TM_COMMIT_XACT. Commits a transaction. Depending on the payload of the request,
it can additionally request that another local transaction be started.

 8 = TM_ROLLBACK_XACT. Rolls back a transaction. Depending on the payload of the
request, it can indicate that after the rollback, a local transaction is to be started.

 9 = TM_SAVE_XACT. Sets a savepoint within the active transaction. This request MUST
specify a nonempty name for the savepoint.

Request types 5 through 9 were introduced in TDS 7.2.

RequestPayload
 For RequestType TM_GET_DTC_ADDRESS: The RequestPayload SHOULD be a zero-length

US_VARBYTE.

 RequestPayload = US_VARBYTE

 For RequestType TM_PROPAGATE_XACT: Data contains an opaque buffer used by the
server to enlist in a DTC transaction (for more information, see [MSDN-ITrans]).

 RequestPayload = US_VARBYTE

 For RequestType TM_BEGIN_XACT:

 ISOLATION_LEVEL = BYTE
 BEGIN_XACT_NAME = B_VARBYTE

 RequestPayload = ISOLATION_LEVEL
 BEGIN_XACT_NAME

This request begins a new transaction, or increments trancount if already in a transaction.
If BEGIN_XACT_NAME is nonempty, a transaction is started with the specified name. See
the definition for isolation level at the end of this table.

 For RequestType TM_PROMOTE_XACT – No payload.

This message promotes the transaction of the current request (specified in the Transaction
Descriptor header). The current transaction MUST be part of the specified header.

Note that TM_PROMOTE_XACT is supported only for transactions initiated via
TM_BEGIN_XACT, or via piggy back operation on TM_COMMIT/TM_ROLLBACK. An error is
returned if TM_PROMOTE_XACT is invoked for a TSQL initiated transaction.

 For RequestType TM_COMMIT_XACT:

 fBeginXact = BIT

 XACT_FLAGS = fBeginXact
 7FRESERVEDBIT

 ISOLATION_LEVEL = BYTE

 XACT_NAME = B_VARBYTE
 BEGIN_XACT_NAME = B_VARBYTE

 RequestPayload = XACT_NAME
 XACT_FLAGS

https://go.microsoft.com/fwlink/?LinkId=146594

76 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Parameter Description

 [ISOLATION_LEVEL
 BEGIN_XACT_NAME]

Without additional flags specified, this command is semantically equivalent to issuing a
TSQL COMMIT statement.

The flags in XACT_FLAGS are represented in least significant bit order.

If fBeginXact is 1, then a new local transaction is started after the commit operation is
done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to use to start the
new transaction, according to the definition at the end of this table. If fBeginXact is 0, then
ISOLATION_LEVEL SHOULD NOT be present.

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect for the session,

once the transaction ends.

If fBeginXact is 0, BEGIN_XACT_NAME SHOULD NOT be present. If fBeginXact is 1,
BEGIN_XACT_NAME can be nonempty.

If fBeginXact is 1, a new transaction MUST be started. If BEGIN_XACT_NAME is nonempty,
the new transaction MUST be given the specified name.

See the definition for isolation level at the end of this table.

 For RequestType TM_ROLLBACK_XACT:

 fBeginXact = BIT

 XACT_FLAGS = fBeginXact
 7FRESERVEDBIT

 ISOLATION_LEVEL = BYTE

 XACT_NAME = B_VARBYTE
 BEGIN_XACT_NAME = B_VARBYTE

 RequestPayload = XACT_NAME
 XACT_FLAGS
 [ISOLATION_LEVEL
 BEGIN_XACT_NAME]

The flags in XACT_FLAGS are represented in least significant bit order.

If XACT_NAME is nonempty, this request rolls back the named transaction. This implies
that if XACT_NAME specifies a savepoint name, the rollback only goes back until the
specified savepoint.

Without additional flags specified, this command is semantically equivalent to issuing a
TSQL ROLLBACK statement under the current transaction.

If fBeginXact is 1, then a new local transaction is started after the commit operation is
done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to use to start the
new transaction, according to the definition at the end of this table. If fBeginXact is 0, then
ISOLATION_LEVEL SHOULD NOT be present.

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect for the session,
once the transaction ends.

77 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Parameter Description

If fBeginXact is 0, BEGIN_XACT_NAME SHOULD NOT be present. If fBeginXact is 1,
BEGIN_XACT_NAME can be nonempty.

If fBeginXact is 1, a new transaction MUST be started. If BEGIN_XACT_NAME is nonempty,
the new transaction MUST be given the specified name.

If fBeginXact is 1, and the ROLLBACK only rolled back to a savepoint, the Begin_Xact
operation is ignored and trancount remains unchanged.

See the definition for isolation level at the end of this table.

 For RequestType TM_SAVE_XACT:

 XACT_SAVEPOINT_NAME = B_VARBYTE

 RequestPayload = XACT_SAVEPOINT_NAME

A nonempty name MUST be specified as part of this request. Otherwise, an error is raised.

ISOLATION_LEVEL MUST have one of the following values.

Value Description

0x00 No isolation level change requested. Use current.

0x01 Read Uncommitted.

0x02 Read Committed.

0x03 Repeatable Read.

0x04 Serializable.

0x05 Snapshot.

2.2.7 Packet Data Token Stream Definition

This section describes the various tokens supported in a token-based packet data stream, as described
in section 2.2.4.2. The corresponding message types that use token-based packet data streams are
identified in the table in section 2.2.4.

2.2.7.1 ALTMETADATA

Token Stream Name:

 ALTMETADATA

Token Stream Function:

Describes the data type, length, and name of column data that result from a SQL statement that
generates totals.

Token Stream Comments:

78 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

The token value is 0x88.

This token is used to tell the client the data type and length of the column data. It describes the

format of the data found in an ALTROW data stream. ALTMETADATA and the corresponding ALTROW
MUST be in the same result set.

All ALTMETADATA data streams are grouped.

A preceding COLMETADATA MUST exist before an ALTMETADATA token. There might be COLINFO and
TABNAME streams between COLMETADATA and ALTMETADATA.

Note ALTMETADATA was deprecated in TDS 7.4.

Token Stream-Specific Rules:

 TokenType = BYTE
 Count = USHORT
 Id = USHORT
 ByCols = UCHAR

 Op = BYTE
 Operand = USHORT
 UserType = USHORT/ULONG; (changed to ULONG in TDS 7.2)

 fNullable = BIT
 fCaseSen = BIT
 usUpdateable = 2BIT ; 0 = ReadOnly
 ; 1 = Read/Write
 ; 2 = Unused
 fIdentity = BIT
 fComputed = BIT ; (introduced in TDS 7.2)
 usReservedODBC = 2BIT
 fFixedLenCLRType = BIT ; (introduced in TDS 7.2)
 usReserved = 7BIT

 Flags = fNullable
 fCaseSen
 usUpdateable
 fIdentity
 (FRESERVEDBIT / fComputed)
 usReservedODBC
 (FRESERVEDBIT / fFixedLenCLRType)
 usReserved

 NumParts = BYTE ; (introduced in TDS 7.2)
 PartName = US_VARCHAR ; (introduced in TDS 7.2)

 TableName = US_VARCHAR ; (removed in TDS 7.2)
 /
 (NumParts
 1*PartName) ; (introduced in TDS 7.2)
 ColName = B_VARCHAR
 ColNum = USHORT

 ComputeData = Op
 Operand
 UserType
 Flags
 TYPE_INFO
 [TableName]
 ColName

The TableName field is specified only if a text, ntext, or image column is included in the result set.

Token Stream Definition:

79 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 ALTMETADATA = TokenType
 Count
 Id
 ByCols
 *<ByCols>ColNum
 1* ComputeData

Token Stream Parameter Details:

Parameter Description

TokenType ALTMETADATA_TOKEN<32>

Count The count of columns (number of aggregate operators) in the token stream.

Id The Id of the SQL statement to which the total column formats apply. Each ALTMETADATA token
MUST have its own unique Id in the same result set. This Id lets the client correctly interpret later
ALTROW data streams.

ByCols The number of grouping columns in the SQL statement that generates totals. For example, the SQL
clause compute count(sales) by year, month, division, department has four grouping columns.

Op The type of aggregate operator.

 AOPSTDEV = %x30 ; Standard deviation (STDEV)
 AOPSTDEVP = %x31 ; Standard deviation of the population (STDEVP)
 AOPVAR = %x32 ; Variance (VAR)
 AOPVARP = %x33 ; Variance of population (VARP)
 AOPCNT = %x4B ; Count of rows (COUNT)
 AOPSUM = %x4D ; Sum of the values in the rows (SUM)
 AOPAVG = %x4F ; Average of the values in the rows (AVG)
 AOPMIN = %x51 ; Minimum value of the rows (MIN)
 AOPMAX = %x52 ; Maximum value of the rows (MAX)

Operand The column number, starting from 1, in the result set that is the operand to the aggregate
operator.

UserType The user typeID of the data type of the column. The value will be 0x0000 with the exceptions of
TIMESTAMP (0x0050) and alias types (greater than 0x00FF).

Flags These bit flags are described in least significant bit order. With the exception of fNullable, all of
these bit flags SHOULD be set to zero. For a description of each bit flag, see section 2.2.7.4:

 fNullable is a bit flag, 1 if the column is nullable.

 fCaseSen

 usUpdateable

 fIdentity

 fComputed

 usReservedODBC

 fFixedLenCLRType

TableName See section 2.2.7.4 for a description of TableName. This field SHOULD never be sent because SQL
statements that generate totals exclude NTEXT/TEXT/IMAGE.

80 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

ColName The column name. Contains the column name length and column name.

ColNum USHORT specifying the column number as it appears in the COMPUTE clause. ColNum appears
ByCols times.

2.2.7.2 ALTROW

Token Stream Name:

 ALTROW

Token Stream Function:

Used to send a complete row of total data, where the data format is provided by the ALTMETADATA
token.

Token Stream Comments:

 The token value is 0xD3.

 The ALTROW token is similar to the ROW_TOKEN, but also contains an Id field. This Id matches an

Id given in ALTMETADATA (one Id for each SQL statement). This provides the mechanism for
matching row data with correct SQL statements. ALTROW and the corresponding ALTMETADATA
MUST be in the same result set.

 Note ALTROW was deprecated in TDS 7.4.

Token Stream-Specific Rules:

 TokenType = BYTE
 Id = USHORT

 Data = TYPE_VARBYTE

 ComputeData = Data

Token Stream Definition:

 ALTMETADATA = TokenType
 Id
 1*ComputeData

The ComputeData element is repeated Count times, where Count is specified in

ALTMETADATA_TOKEN.

Token Stream Parameter Details:

Parameter Description

TokenType ALTROW_TOKEN<33>

81 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

Id The Id of the SQL statement that generates totals to which the total column formats apply. This Id
lets the client correctly interpret later ALTROW data streams.

Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN, or OFFSET_TOKEN.

2.2.7.3 COLINFO

Token Stream Name:

 COLINFO

Token Stream Function:

Describes the column information in browse mode [MSDN-BROWSE], sp_cursoropen, and
sp_cursorfetch.

Token Stream Comments

 The token value is 0xA5.

 The TABNAME token contains the actual table name associated with COLINFO.

Token Stream Specific Rules:

 TokenType = BYTE
 Length = USHORT

 ColNum = BYTE
 TableNum = BYTE
 Status = BYTE
 ColName = B_VARCHAR

 ColProperty = ColNum
 TableNum
 Status
 [ColName]

The ColInfo element is repeated for each column in the result set.

Token Stream Definition:

 COLINFO = TokenType
 Length
 1*CpLProperty

Token Stream Parameter Details:

Parameter Description

TokenType COLINFO_TOKEN

https://go.microsoft.com/fwlink/?LinkId=140931

82 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

Length The actual data length, in bytes, of the ColProperty stream. The length does not include token type
and length field.

ColNum The column number in the result set.

TableNum The number of the base table that the column was derived from. The value is 0 if the value of
Status is EXPRESSION.

Status 0x4: EXPRESSION (the column was the result of an expression).

0x8: KEY (the column is part of a key for the associated table).

0x10: HIDDEN (the column was not requested, but was added because it was part of a key for the
associated table).

0x20: DIFFERENT_NAME (the column name is different than the requested column name in the
case of a column alias).

ColName The base column name. This only occurs if DIFFERENT_NAME is set in Status.

2.2.7.4 COLMETADATA

Token Stream Name:

 COLMETADATA

Token Stream Function:

Describes the result set for interpretation of following ROW data streams.

Token Stream Comments:

 The token value is 0x81.

 This token is used to tell the client the data type and length of the column data. It describes the
format of the data found in a ROW data stream.

 All COLMETADATA data streams are grouped together.

Token Stream-Specific Rules:

 TokenType = BYTE
 Count = USHORT

 UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)

 fNullable = BIT
 fCaseSen = BIT
 usUpdateable = 2BIT ; 0 = ReadOnly
 ; 1 = Read/Write
 ; 2 = Unused
 fIdentity = BIT
 fComputed = BIT ; (introduced in TDS 7.2)
 usReservedODBC = 2BIT ; (only exists in TDS 7.3.A and below)
 fSparseColumnSet = BIT ; (introduced in TDS 7.3.B)
 fEncrypted = BIT ; (introduced in TDS 7.4)
 usReserved3 = BIT ; (introduced in TDS 7.4)
 fFixedLenCLRType = BIT ; (introduced in TDS 7.2)

83 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 usReserved = 4BIT
 fHidden = BIT ; (introduced in TDS 7.2)
 fKey = BIT ; (introduced in TDS 7.2)
 fNullableUnknown = BIT ; (introduced in TDS 7.2)

 Flags = fNullable
 fCaseSen
 usUpdateable
 fIdentity
 (FRESERVEDBIT / fComputed)
 usReservedODBC
 (FRESERVEDBIT / fFixedLenCLRType)
 (usReserved / (FRESERVEDBIT fSparseColumnSet fEncrypted usReserved3))
 ; (introduced in TDS 7.4)
 (FRESERVEDBIT / fHidden)
 (FRESERVEDBIT / fKey)
 (FRESERVEDBIT / fNullableUnknown)

 NumParts = BYTE ; (introduced in TDS 7.2)
 PartName = US_VARCHAR ; (introduced in TDS 7.2)

 TableName = NumParts
 1*PartName

 ColName = B_VARCHAR

 BaseTypeInfo = TYPE_INFO ; (BaseTypeInfo introduced in TDS 7.4)

 EncryptionAlgo = BYTE ; (EncryptionAlgo introduced in TDS 7.4)

 AlgoName = B_VARCHAR ; (introduced in TDS 7.4)

 EncryptionAlgoType = BYTE ; (introduced in TDS 7.4)

 NormVersion = BYTE ; (introduced in TDS 7.4)

 Ordinal = USHORT ; (introduced in TDS 7.4)

 CryptoMetaData = Ordinal ; (CryptoMetaData introduced in TDS 7.4)
 UserType
 BaseTypeInfo
 EncryptionAlgo
 [AlgoName]
 EncryptionAlgoType
 NormVersion

 EkValueCount = USHORT ; (introduced in TDS 7.4)

 CekTable = EkValueCount ; (introduced in TDS 7.4)
 *EK_INFO ; (introduced in TDS 7.4)

 ColumnData = UserType
 Flags
 TYPE_INFO
 [TableName]
 [CryptoMetaData]
 ColName

 NoMetaData = %xFF %xFF

The TableName element is specified only if a text, ntext, or image column is included in the result
set.

Token Stream Definition:

84 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 COLMETADATA = TokenType
 Count
 CekTable
 NoMetaData / (1 *ColumnData)

Token Stream Parameter Details:

Parameter Description

TokenType COLMETADATA_TOKEN

Count The count of columns (number of aggregate operators) in the token stream. In the event
that the client requested no metadata to be returned (see section 2.2.6.6 for information
about the OptionFlags parameter in the RPCRequest token), the value of Count will be
0xFFFF. This has the same effect on Count as a zero value (for example, no ColumnData is
sent).

UserType The user type ID of the data type of the column. The value will be 0x0000 with the
exceptions of TIMESTAMP (0x0050) and alias types (greater than 0x00FF).

Flags The size of the Flags parameter is always fixed at 16 bits regardless of the TDS version.
Each of the 16 bits of the Flags parameter is interpreted based on the TDS version
negotiated during login. Bit flags, in least significant bit order:

 fNullable is a bit flag. Its value is 1 if the column is nullable.

 fCaseSen is a bit flag. Set to 1 for string columns with binary collation and always for
the XML data type. Set to 0 otherwise.

 usUpdateable is a 2-bit field. Its value is 0 if column is read-only, 1 if column is
read/write and 2 if updateable is unknown.

 fIdentity is a bit flag. Its value is 1 if the column is an identity column.

 fComputed is a bit flag. Its value is 1 if the column is a COMPUTED column.

 usReservedODBC is a 2-bit field that is used by ODS gateways supporting the ODBC
ODS gateway driver.

 fFixedLenCLRType is a bit flag. Its value is 1 if the column is a fixed-length common
language runtime user-defined type (CLR UDT).

 fSparseColumnSet, introduced in TDS version 7.3.B, is a bit flag. Its value is 1 if the
column is the special XML column for the sparse column set. For information about
using column sets, see [MSDN-ColSets].

 fEncrypted is a bit flag. Its value is 1 if the column is encrypted transparently and has
to be decrypted to view the plaintext value. This flag is valid when the column
encryption feature is negotiated between client and server and is turned on.

 fHidden is a bit flag. Its value is 1 if the column is part of a hidden primary key created
to support a T-SQL SELECT statement containing FOR BROWSE.<34>

 fKey is a bit flag. Its value is 1 if the column is part of a primary key for the row and

the T-SQL SELECT statement contains FOR BROWSE.

 fNullableUnknown is a bit flag. Its value is 1 if it is unknown whether the column might
be nullable.

TableName The fully qualified base table name for this column. It contains the table name length and
table name. This exists only for text, ntext, and image columns. It specifies how many
parts will be returned and then repeats PartName once for each NumParts.

https://go.microsoft.com/fwlink/?LinkId=128616

85 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

ColName The column name. It contains the column name length and column name.

BaseTypeInfo The TYPEINFO for the plaintext data.

EkValueCount The size of CekTable. It represents the number of entries in CekTable.

CekTable A table of various encryption keys that are used to secure the plaintext data. It contains
one row for each encryption key. Each row can have multiple encryption key values, and
each value represents the cipher text of the same encryption key that is secured by using a
different master key. The size of this table is determined by EkValueCount. This table MUST
be sent when COLUMNENCRYPTION is negotiated by client and server and is turned on.

EncryptionAlgo A byte that describes the encryption algorithm that is used.

If EncryptionAlgo is set to 1, the algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF-AuthEncr] section 5.4. Other
values are reserved for future use.

AlgoName Reserved for future use.

EncryptionAlgoType A field that describes the encryption algorithm type. Available values are defined as
follows:

1 = Deterministic encryption.

2 = Randomized encryption.

NormVersion The normalization version to which plaintext data MUST be normalized. Version numbering
starts at 0x01.

Ordinal Where the encryption key information is located in CekTable. Ordinal starts at 0.

CryptoMetaData This describes the encryption metadata for a column. It contains the ordinal, the UserType,
the TYPE_INFO (BaseTypeInfo) for the plaintext value, the encryption algorithm that is
used, the algorithm name literal, the encryption algorithm type, and the normalization
version.

NoMetaData This notifies client that no metadata will follow the COLMETADATA token. When
fNoMetadata is set to 1, client notifies server that it has already cached the metadata from

a previous RPC Request (section 2.2.6.6), and server sends no metadata.<35>

2.2.7.5 DONE

Token Stream Name:

 DONE

Token Stream Function:

Indicates the completion status of a SQL statement.

Token Stream Comments

 The token value is 0xFD.

 This token is used to indicate the completion of a SQL statement. As multiple SQL statements can
be sent to the server in a single SQL batch, multiple DONE tokens can be generated. In this case,
all but the final DONE token will have a Status value with DONE_MORE bit set (details follow).

https://go.microsoft.com/fwlink/?LinkId=524322

86 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 A DONE token is returned for each SQL statement in the SQL batch except variable declarations.

 For execution of SQL statements within stored procedures, DONEPROC and DONEINPROC tokens

are used in place of DONE tokens.

Token Stream-Specific Rules:

 TokenType = BYTE
 Status = USHORT
 CurCmd = USHORT
 DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

 DONE = TokenType
 Status
 CurCmd
 DoneRowCount

Token Stream Parameter Details:

Parameter Description

TokenType DONE_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

 0x00: DONE_FINAL. This DONE is the final DONE in the request.

 0x1: DONE_MORE. This DONE message is not the final DONE message in the response.
Subsequent data streams to follow.

 0x2: DONE_ERROR. An error occurred on the current SQL statement. A preceding ERROR
token SHOULD be sent when this bit is set.

 0x4: DONE_INXACT. A transaction is in progress.<36>

 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

 0x20: DONE_ATTN. The DONE message is a server acknowledgement of a client
ATTENTION message.

 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current SQL statement, which is severe enough to require the result set, if any, to be
discarded.

CurCmd The token of the current SQL statement. The token value is provided and controlled by the
application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount is
valid if the value of Status includes DONE_COUNT.<37>

2.2.7.6 DONEINPROC

 Token Stream Name:

87 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 DONEINPROC

Token Stream Function:

Indicates the completion status of a SQL statement within a stored procedure.

Token Stream Comments

 The token value is 0xFF.

 A DONEINPROC token is sent for each executed SQL statement within a stored procedure.

 A DONEINPROC token MUST be followed by another DONEPROC token or a DONEINPROC token.

Token Stream-Specific Rules:

 TokenType = BYTE
 Status = USHORT
 CurCmd = USHORT
 DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

 DONEINPROC = TokenType
 Status
 CurCmd
 DoneRowCount

Token Stream Parameter Details:

 Parameter Description

TokenType DONEINPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

 0x1: DONE_MORE. This DONEINPROC message is not the final
DONE/DONEPROC/DONEINPROC message in the response; more data streams are to
follow.

 0x2: DONE_ERROR. An error occurred on the current SQL statement or execution of a
stored procedure was interrupted. A preceding ERROR token SHOULD be sent when this bit
is set.

 0x4: DONE_INXACT. A transaction is in progress.<38>

 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current SQL statement that is severe enough to require the result set, if any, to be
discarded.

CurCmd The token of the current SQL statement. The token value is provided and controlled by the
application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount is

88 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Parameter Description

valid if the value of Status includes DONE_COUNT.

2.2.7.7 DONEPROC

Token Stream Name:

 DONEPROC

Token Stream Function:

Indicates the completion status of a stored procedure. This is also generated for stored procedures

executed through SQL statements.

Token Stream Comments:

 The token value is 0xFE.

 A DONEPROC token is sent when all the SQL statements within a stored procedure have been
executed.

 A DONEPROC token can be followed by another DONEPROC token or a DONEINPROC only if the

DONE_MORE bit is set in the Status value.

 There is a separate DONEPROC token sent for each stored procedure called.

Token Stream-Specific Rules:

 TokenType = BYTE
 Status = USHORT
 CurCmd = USHORT
 DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

 DONEPROC = TokenType
 Status
 CurCmd
 DoneRowCount

Token Stream Parameter Details:

 Parameter Description

TokenType DONEPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

 0x00: DONE_FINAL. This DONEPROC is the final DONEPROC in the request.

 0x1: DONE_MORE. This DONEPROC message is not the final DONEPROC message in the

89 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Parameter Description

response; more data streams are to follow.

 0x2: DONE_ERROR. An error occurred on the current stored procedure. A preceding ERROR
token SHOULD be sent when this bit is set.

 0x4: DONE_INXACT. A transaction is in progress.<39>

 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

 0x80: DONE_RPCINBATCH. This DONEPROC message is associated with an RPC within a
set of batched RPCs. This flag is not set on the last RPC in the RPC batch.

 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current stored procedure, which is severe enough to require the result set, if any, to be
discarded.

CurCmd The token of the SQL statement for executing stored procedures. The token value is provided
and controlled by the application layer, which utilizes TDS. The TDS layer does not evaluate the
value.

DoneRowCount The count of rows that were affected by the command. The value of DoneRowCount is valid if
the value of Status includes DONE_COUNT.

2.2.7.8 ENVCHANGE

Token Stream Name:

 ENVCHANGE

Token Stream Function:

A notification of an environment change (for example, database, language, and so on).

Token Stream Comments:

 The token value is 0xE3.

 Includes old and new environment values.

 Type 4 (Packet size) is sent in response to a LOGIN7 message. The server MAY send a value
different from the packet size requested by the client. That value MUST be greater than or equal
to 512 and smaller than or equal to 32767. Both the client and the server MUST start using this

value for packet size with the message following the login response message.

 Type 13 (Database Mirroring) is sent in response to a LOGIN7 message whenever connection is

requested to a database that it is being served as primary in real-time log shipping. The
ENVCHANGE stream reflects the name of the partner node of the database that is being log
shipped.

 Type 15 (Promote Transaction) is sent in response to transaction manager requests with
requests of type 6 (TM_PROMOTE_XACT).

 Type 16 (Transaction Manager Address) is sent in response to transaction manager requests with
requests of type 0 (TM_GET_DTC_ADDRESS).

90 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Type 20 (Routing) is sent in response to a LOGIN7 message when the server wants to route the
client to an alternate server. The ENVCHANGE stream returns routing information for the alternate

server. If the server decides to send the Routing ENVCHANGE token, the Routing ENVCHANGE
token MUST be sent after the LOGINACK token in the login response.

Token Stream-Specific Rules:

 TokenType = BYTE
 Length = USHORT

 Type = BYTE

 EnvValueData = Type
 NewValue
 [OldValue]

Token Stream Definition:

 ENVCHANGE = TokenType
 Length
 EnvValueData

Token Stream Parameter Details

Parameter Description

TokenType ENVCHANGE_TOKEN

Length The total length of the ENVCHANGE data stream (EnvValueData).

Type The type of environment change:

Note Types 8 to 19 were introduced in TDS 7.2. Type 20 was introduced in TDS 7.4.

 1: Database

 2: Language

 3: Character set

 4: Packet size

 5: Unicode data sorting local id

 6: Unicode data sorting comparison flags

 7: SQL Collation

 8: Begin Transaction (described in [MSDN-BEGIN])

 9: Commit Transaction (described in [MSDN-COMMIT])

 10: Rollback Transaction

 11: Enlist DTC Transaction

 12: Defect Transaction

 13: Real Time Log Shipping

 15: Promote Transaction

https://go.microsoft.com/fwlink/?LinkId=144544
https://go.microsoft.com/fwlink/?LinkId=144542

91 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

 16: Transaction Manager Address<40>

 17: Transaction ended

 18: RESETCONNECTION/RESETCONNECTIONSKIPTRAN Completion Acknowledgement

 19: Sends back name of user instance started per login request

 20: Sends routing information to client

Type Old Value New Value

1: Database OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

2: Language OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

3: Character Set OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

4: Packet Size OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

5: Unicode data sorting local
id

OLDVALUE =
%x00

NEWVALUE = B_VARCHAR

6: Unicode data sorting
comparison flags

OLDVALUE =
%x00

NEWVALUE = B_VARCHAR

7: SQL Collation OLDVALUE =
B_VARBYTE

NEWVALUE = B_VARBYTE

8: Begin Transaction OLDVALUE =
%x00

NEWVALUE = B_VARBYTE

9: Commit Transaction OLDVALUE =
B_VARBYTE

NEWVALUE = "0x00"

10: Rollback Transaction OLDVALUE =
B_VARBYTE

NEWVALUE = %x00

11: Enlist DTC Transaction OLDVALUE =

B_VARBYTE

NEWVALUE = %x00

12: Defect Transaction OLDVALUE =
%x00

NEWVALUE = B_VARBYTE

13: Database Mirroring
Partner

OLDVALUE =
%x00

PARTNER_NODE = B_VARCHAR

NEWVALUE = PARTNER_NODE

15: Promote Transaction OLDVALUE =
%x00

DTC_TOKEN = L_VARBYTE;

NEWVALUE = DTC_TOKEN

16: Transaction Manager
Address (not used)

OLDVALUE =
%x00

XACT_MANAGER_ADDRESS = B_VARBYTE

NEWVALUE = XACT_MANAGER_ADDRESS

17: Transaction Ended OLDVALUE =
B_VARBYTE

NEWVALUE = %x00

92 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Type Old Value New Value

18: Reset Completion
Acknowledgement

OLDVALUE =
%x00

NEWVALUE = %x00

19: Sends back info of user
instance for logins (login7)
requesting so.

OLDVALUE =
%x00

NEWVALUE = B_VARCHAR

20: Routing OLDVALUE =
%x00 %x00

Protocol = BYTE

ProtocolProperty = USHORT

AlternateServer = US_VARCHAR

Protocol MUST be 0, specifying TCP-IP protocol.
ProtocolProperty represents the TCP-IP port when Protocol is
0. A ProtocolProperty value of zero is not allowed when

Protocol is TCP-IP.

RoutingDataValue = Protocol

ProtocolProperty

AlternateServer

RoutingDataValueLength = USHORT

RoutingDataValueLength is the total length, in bytes, of the
following fields: Protocol, ProtocolProperty, and
AlternateServer.

RoutingData = RoutingDataValueLength

[RoutingDataValue]

NEWVALUE = RoutingData

Notes

 For types 1, 2, 3, 4, 5, 6, 13, and 19, the payload is a Unicode string; the LENGTH always reflects
the number of bytes.

 ENVCHANGE types 3, 5, and 6 are only sent back to clients running TDS 7.0 or earlier.

 For Types 8, 9, 10, 11, and 12, the ENVCHANGE event is returned only if the transaction lifetime
is controlled by the user, for example, explicit transaction commands, including transactions
started by SET IMPLICIT_TRANSACTIONS ON.

 For transactions started/committed under auto commit, no stream is generated.

 For operations that change only the value of @@trancount, no ENVCHANGE stream is generated.

 The payload of NEWVALUE for ENVCHANGE types 8, 11, and 17 and the payload of OLDVALUE for

ENVCHANGE types 9, 10, and 12 is a ULONGLONG.

 ENVCHANGE type 11 is sent by the server to confirm that it has joined a distributed transaction as
requested through a TM_PROPAGATE_XACT request from the client.

 ENVCHANGE type 12 is only sent when a batch defects from either a DTC or bound session

transaction.

 LENGTH for ENVCHANGE type 15 is sent as 0x01 indicating only the length of the type token.
Client drivers are responsible for reading the additional payload if type is 15.

 ENVCHANGE type 17 is sent when a batch is used that specified a descriptor for a transaction that
has ended. This is only sent in the bound session case. For information about using bound
sessions, see [MSDN-BOUND].

https://go.microsoft.com/fwlink/?LinkId=144543

93 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 ENVCHANGE type 18 always produces empty (0x00) old and new values. It simply acknowledges
completion of execution of a RESETCONNECTION/RESETCONNECTIONSKIPTRAN request.

 ENVCHANGE type 19 is sent after LOGIN and after
/RESETCONNECTION/RESETCONNECTIONSKIPTRAN when a client has requested use of user

instances. It is sent prior to the LOGINACK token.

 ENVCHANGE type 20 can be sent back to a client running TDS 7.4 or later regardless of whether
the fReadOnlyIntent bit is set in the preceding LOGIN7 record. If a client is running TDS 7.1 to
7.3, type 20 can be sent only if the fReadOnlyIntent bit is set in the preceding LOGIN7 record.

2.2.7.9 ERROR

Token Stream Name:

 ERROR

Token Stream Function:

Used to send an error message to the client.

Token Stream Comments:

 The token value is 0xAA.

Token Stream-Specific Rules:

 TokenType = BYTE
 Length = USHORT
 Number = LONG
 State = BYTE
 Class = BYTE
 MsgText = US_VARCHAR
 ServerName = B_VARCHAR
 ProcName = B_VARCHAR
 LineNumber = USHORT / LONG; (Changed to LONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

 ERROR = TokenType
 Length
 Number
 State
 Class
 MsgText
 ServerName
 ProcName
 LineNumber

Token Stream Parameter Details

Parameter Description

TokenType ERROR_TOKEN

94 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

Length The total length of the ERROR data stream, in bytes.

Number The error number.<41>

State The error state, used as a modifier to the error number.

Class The class (severity) of the error. A class of less than 10 indicates an informational message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and the stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers begin
at 1. If the line number is not applicable to the message, the value of LineNumber is 0.

 Class
level Description

0-9 Informational messages that return status information or report errors that are not severe.<42>

10 Informational messages that return status information or report errors that are not severe.<43>

11-16 Errors that can be corrected by the user.

11 The given object or entity does not exist.

12 A special severity for SQL statements that do not use locking because of special options. In some
cases, read operations performed by these SQL statements could result in inconsistent data, because
locks are not taken to guarantee consistency.

13 Transaction deadlock errors.

14 Security-related errors, such as permission denied.

15 Syntax errors in the SQL statement.

16 General errors that can be corrected by the user.

17-19 Software errors that cannot be corrected by the user. These errors require system administrator action.

17 The SQL statement caused the database server to run out of resources (such as memory, locks, or disk
space for the database) or to exceed some limit set by the system administrator.

18 There is a problem in the Database Engine software, but the SQL statement completes execution, and
the connection to the instance of the Database Engine is maintained. System administrator action is
required.

19 A non-configurable Database Engine limit has been exceeded and the current SQL batch has been
terminated. Error messages with a severity level of 19 or higher stop the execution of the current SQL
batch. Severity level 19 errors are rare and can be corrected only by the system administrator. Error
messages with a severity level from 19 through 25 are written to the error log.

20-25 System problems have occurred. These are fatal errors, which means the Database Engine task that
was executing a SQL batch is no longer running. The task records information about what occurred and
then terminates. In most cases, the application connection to the instance of the Database Engine can
also terminate. If this happens, depending on the problem, the application might not be able to
reconnect.

95 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Class
level Description

Error messages in this range can affect all of the processes accessing data in the same database and
might indicate that a database or object is damaged. Error messages with a severity level from 19
through 25 are written to the error log.

20 Indicates that a SQL statement has encountered a problem. Because the problem has affected only the
current task, it is unlikely that the database itself has been damaged.

21 Indicates that a problem has been encountered that affects all tasks in the current database, but it is
unlikely that the database itself has been damaged.

22 Indicates that the table or index specified in the message has been damaged by a software or hardware
problem.

Severity level 22 errors occur rarely. If one occurs, run DBCC CHECKDB to determine whether other
objects in the database are also damaged. The problem might be in the buffer cache only and not on
the disk itself. If so, restarting the instance of the Database Engine corrects the problem. To continue
working, reconnect to the instance of the Database Engine; otherwise, use DBCC to repair the problem.
In some cases, restoration of the database might be required.

If restarting the instance of the Database Engine does not correct the problem, then the problem is on
the disk. Sometimes destroying the object specified in the error message can solve the problem. For
example, if the message reports that the instance of the Database Engine has found a row with a
length of 0 in a non-clustered index, delete the index and rebuild it.

23 Indicates that the integrity of the entire database is in question because of a hardware or software
problem.

Severity level 23 errors occur rarely. If one occurs, run DBCC CHECKDB to determine the extent of the
damage. The problem might be in the cache only and not on the disk itself. If so, restarting the
instance of the Database Engine corrects the problem. To continue working, reconnect to the instance
of the Database Engine; otherwise, use DBCC to repair the problem. In some cases, restoration of the
database might be required.

24 Indicates a media failure. The system administrator might have to restore the database or resolve a
hardware issue.

If an error is produced within a result set, the ERROR token is sent before the DONE token for the
SQL statement, and such DONE token is sent with the error bit set.

2.2.7.10 FEATUREEXTACK

Token Stream Name:

 FEATUREEXTACK

Token Stream Function:

Introduced in TDS 7.4, FEATUREEXTACK is used to send an optional acknowledge message to the
client for features that are defined in FeatureExt. The token stream is sent only along with the
LOGINACK in a Login Response message.

Token Stream Comments:

 The token value is 0xAE.

Token Stream-Specific Rules:

 TokenType = BYTE

 FeatureId = BYTE

96 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 FeatureAckDataLen = DWORD
 FeatureAckData = *BYTE

 TERMINATOR = %xFF ; signal of end of feature ack data

 FeatureAckOpt = (FeatureId
 FeatureAckDataLen
 FeatureAckData)
 /
 TERMINATOR

Token Stream Definition:

 FEATUREEXTACK = TokenType
 1*FeatureAckOpt

Token Stream Parameter Details

Parameter Description

TokenType FEATUREEXTACK_TOKEN

FeatureId The unique identifier number of a feature. Each feature MUST use the same ID number
here as in FeatureExt. If the client did not send a request for a specific feature but the
FeatureId is returned, the client MUST consider it as a TDS Protocol error and MUST
terminate the connection.

Each feature defines its own logic if it wants to use FeatureAckOpt to send information back
to the client during the login response. The features available to use by a FeatureId are
defined in the following table.

FeatureAckDataLen The length of FeatureAckData, in bytes.

FeatureAckData The acknowledge data of a specific feature. Each feature SHOULD define its own data
format in the FEATUREEXTACK token if it is selected to acknowledge the feature.

The following table describes the FeatureExtAck feature option and description.

FeatureId FeatureExtData Description

%0x00 Reserved.

%0x01

(SESSIONRECOVERY)

(introduced in TDS 7.4)

Session Recovery feature. Content is defined as follows:

 InitSessionStateData = SessionStateDataSet
 FeatureAckData = InitSessionStateData

SessionStateDataSet is described in section 2.2.7.20. The length of
SessionStateDataSet is specified by the corresponding FeatureAckDataLen.

On a recovery connection, the client sends a login request with
SessionRecoveryDataToBe. The server MUST set the session state as requested
by the client. If the server cannot do so, the server MUST fail the login request
and terminate the connection.

%0x02

(FEDAUTH)<44>

Whenever a login response stream is sent for a TDS connection whose login
request includes a FEDAUTH FeatureExt, the server login response message
stream MUST include a FEATUREEXTACK token, and the FEATUREEXTACK token
stream MUST include the FEDAUTH FeatureId. The format is described below
based on the bFedAuthLibrary that is used in FEDAUTH FeatureExt.

When the bFedAuthLibrary is Live ID Compact Token, the format is as follows:

97 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FeatureId FeatureExtData Description

 Nonce = 32BYTE
 Signature = 32BYTE

 FeatureAckData = Nonce
 Signature

Nonce: The client-specified nonce in PRELOGIN.

Signature: The HMAC-SHA-256 [RFC6234] of the client-specified nonce, using
the session key retrieved from the federated authentication context as the
shared secret.

When the bFedAuthLibrary is Security Token, the format is as follows:

 Nonce = 32BYTE

 FeatureAckData = [Nonce]

Nonce: The client-specified nonce in PRELOGIN. This field MUST be present if
the client’s PRELOGIN message included a NONCE field. Otherwise, this field
MUST NOT be present.

%0x04

(COLUMNENCRYPTION)

(introduced in TDS 7.4)

The presence of the COLUMNENCRYPTION FeatureExt SHOULD<45> indicate
that the client is capable of performing cryptographic operations on data. The
feature data is described as follows:

 Length = DWORD
 COLUMNENCRYPTION_VERSION = BYTE

 FeatureData = Length
 COLUMNENCRYPTION_VERSION
 *EnclaveType

COLUMNENCRYPTION_VERSION: This field defines the cryptographic protocol
version that the client understands. The values of this field are as follows:

 1 = The client supports column encryption without enclave
computations.

 2 = The client MAY<46> support column encryption when encrypted data
require enclave computations.

EnclaveType: This field MAY<47> be populated by the server and used by the
client to identify the type of enclave that the server is configured to use. If
EnclaveType is not returned and the column encryption version is returned as
2, the driver MUST raise an error.

%0x05

(GLOBALTRANSACTIONS)<48>

Whenever a login response stream is sent for a TDS connection whose login
request includes a GLOBALTRANSACTIONS FeatureExt token, the server login
response message stream can optionally include a FEATUREEXTACK token by
including the GLOBALTRANSACTIONS FeatureId in the FEATUREEXTACK token
stream. The corresponding FeatureAckData MUST then include a flag that
indicates whether the server supports Global Transactions. The
FeatureAckData format is as follows:

 IsEnabled = BYTE

 FeatureAckData = IsEnabled

IsEnabled: Specifies whether the server supports Global Transactions. The

https://go.microsoft.com/fwlink/?LinkId=328921

98 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FeatureId FeatureExtData Description

values of this field are as follows:

 0 = The server does not support Global Transactions.

 1 = The server supports Global Transactions.

%0x08

(AZURESQLSUPPORT)

(introduced in TDS 7.4)

The presence of the AZURESQLSUPPORT FeatureExt indicates that failover
partner login with read-only intent to Azure SQL Database MAY<49> be
supported. Whenever a login response stream is sent for a TDS connection
whose login request includes an AZURESQLSUPPORT FeatureExt token, the
server login response message stream can optionally include a
FEATUREEXTACK token by setting the corresponding feature switch in Azure
SQL Database. If it is included, the FEATUREEXTACK token stream MUST
include the AZURESQLSUPPORT FeatureId.

 FeatureAckData = BYTE

BYTE: The Bit 0 flag specifies that failover partner login with read-only intent is
supported.

%xFF

(TERMINATOR)

This option signals the end of the FeatureExtAck feature and MUST be the
feature's last option.

2.2.7.11 FEDAUTHINFO

Token Stream Name:

 FEDAUTHINFO

Token Stream Function:

Introduced in TDS 7.4, federated authentication information is returned to the client to be used for
generating a Federated Authentication Token during the login process. This token MUST be the only
token in a Federated Authentication Information message and MUST NOT be included in any other
message type.<50>

Token Stream Comments:

 The token value is 0xEE.

Token Stream-Specific Rules:

 TokenType = BYTE

 TokenLength = DWORD ; (introduced in TDS 7.4)

 CountOfInfoIDs = DWORD ; (introduced in TDS 7.4)

 FedAuthInfoID = BYTE ; (introduced in TDS 7.4)
 FedAuthInfoDataLen = DWORD ; (introduced in TDS 7.4)
 FedAuthInfoDataOffset = DWORD ; (introduced in TDS 7.4)
 FedAuthInfoData = VARBYTES ; (introduced in TDS 7.4)

 FedAuthInfoOpt = (FedAuthInfoID ; (introduced in TDS 7.4)
 FedAuthInfoDataLen

99 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 FedAuthInfoDataOffset)

Token Stream Definition:

 FEDAUTHINFO = TokenType ; (introduced in TDS 7.4)
 TokenLength
 CountOfInfoIDs
 1* FedAuthInfoOpt
 FedAuthInfoData

Token Stream Parameter Details

Parameter Description

TokenType FEDAUTHINFO_TOKEN

TokenLength The length of the whole Federated Authentication Information token, not including the
size occupied by TokenLength itself. The minimum value for this field is sizeof(DWORD)
because the field CountOfInfoIDs MUST be present even if no federated authentication
information is sent as part of the token.

CountOfInfoIDs The number of federated authentication information options that are sent in the token.
If no FedAuthInfoOpt is sent in the token, this field MUST be present and set to 0.

FedAuthInfoID The unique identifier number for the type of information.

FedAuthInfoDataLen The length of FedAuthInfoData, in bytes.

FedAuthInfoDataOffset The offset at which the federated authentication information data for FedAuthInfoID is
present, measured from the address of CountOfInfoIDs.

FedAuthInfoData The actual information data as binary, with the length in bytes equal to
FedAuthInfoDataLen.

The following table describes the FedAuthInfo feature option and description.

FedAuthInfoID FedAuthInfoData Description

%0x00 Reserved.

%0x01

(STSURL)

A Unicode string that represents the token endpoint URL from which to acquire a Federated
Authentication Token.

%0x02

(SPN)

A Unicode string that represents the Service Principal Name (SPN) to use for acquiring a
Federated Authentication Token. SPN is a string that represents the resource in a directory.

2.2.7.12 INFO

Token Stream Name:

 INFO

Token Stream Function:

Used to send an information message to the client.

100 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Token Stream Comments

 The token value is 0xAB.

Token Stream-Specific Rules:

 TokenType = BYTE
 Length = USHORT
 Number = LONG
 State = BYTE
 Class = BYTE
 MsgText = US_VARCHAR
 ServerName = B_VARCHAR
 ProcName = B_VARCHAR
 LineNumber = USHORT / ULONG; (Changed to ULONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

 INFO = TokenType
 Length
 Number
 State
 Class
 MsgText
 ServerName
 ProcName
 LineNumber

Token Stream Parameter Details

Parameter Description

TokenType INFO_TOKEN

Length The total length of the INFO data stream, in bytes.

Number The info number.<51>

State The error state, used as a modifier to the info Number.

Class The class (severity) of the error. A class of less than 10 indicates an informational message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers begin
at 1; therefore, if the line number is not applicable to the message as determined by the upper
layer, the value of LineNumber will be 0.

2.2.7.13 LOGINACK

Token Stream Name:

101 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 LOGINACK

Token Stream Function:

Used to send a response to a login request (LOGIN7) to the client.

Token Stream Comments

 The token value is 0xAD.

 If a LOGINACK is not received by the client as part of the login procedure, the login to the server
is unsuccessful.

Token Stream-Specific Rules:

 TokenType = BYTE
 Length = USHORT
 Interface = BYTE
 TDSVersion = DWORD
 ProgName = B_VARCHAR

 MajorVer = BYTE
 MinorVer = BYTE
 BuildNumHi = BYTE
 BuildNumLow = BYTE

 ProgVersion = MajorVer
 MinorVer
 BuildNumHi
 BuildNumLow

Token Stream Definition:

 LOGINACK = TokenType
 Length
 Interface
 TDSVersion
 ProgName
 ProgVersion

Token Stream Parameter Details

Parameter Description

TokenType LOGINACK_TOKEN

Length The total length, in bytes, of the following fields: Interface, TDSVersion, Progname, and
ProgVersion.

Interface The type of interface with which the server will accept client requests:

0: SQL_DFLT (server confirms that whatever is sent by the client is acceptable. If the client
requested SQL_DFLT, SQL_TSQL will be used).

1: SQL_TSQL (TSQL is accepted).

TDSVersion The TDS version being used by the server.<52>

ProgName The name of the server.

MajorVer The major version number (0-255).

102 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

MinorVer The minor version number (0-255).

BuildNumHi The high byte of the build number (0-255).

BuildNumLow The low byte of the build number (0-255).

2.2.7.14 NBCROW

Token Stream Name:

 NBCROW

Token Stream Function:

NBCROW, introduced in TDS 7.3.B, is used to send a row as defined by the COLMETADATA token to
the client with null bitmap compression. Null bitmap compression is implemented by using a single bit
to specify whether the column is null or not null and also by removing all null column values from the

row. Removing the null column values (which can be up to 8 bytes per null instance) from the row
provides the compression. The null bitmap contains one bit for each column defined in COLMETADATA.
In the null bitmap, a bit value of 1 means that the column is null and therefore not present in the row,
and a bit value of 0 means that the column is not null and is present in the row. The null bitmap is
always rounded up to the nearest multiple of 8 bits, so there might be 1 to 7 leftover reserved bits at
the end of the null bitmap in the last byte of the null bitmap. NBCROW is only used by TDS result set

streams from server to client. NBCROW MUST NOT be used in BulkLoadBCP streams. NBCROW MUST
NOT be used in TVP row streams.

Token Stream Comments

 The token value is 0xD2/210.

Token Stream-Specific Rules:

 TokenType = BYTE
 TextPointer = B_VARBYTE
 Timestamp = 8BYTE
 Data = TYPE_VARBYTE
 NullBitmap = <NullBitmapByteCount>BYTE; see note on NullBitmapByteCount
 ColumnData = [TextPointer Timestamp] Data
 AllColumnData = *ColumnData

ColumnData is repeated once for each non-null column of data.

NullBitmapBitCount is equal to the number of columns in COLMETADATA.

NullBitmapByteCount is equal to the smallest number of bytes needed to hold 'NullBitmapBitCount'
bits.

The server can decide to send either a NBCROW token or a ROW token. For example, the server might
choose to send a ROW token if there is no byte savings if the result set has no nullable columns, or
if a particular row in a result set has no null values. This implies that NBCROW and ROW tokens can be
intermixed in the same result set.

When determining whether or not a specific column is null, consider all the columns from left to right
ordered using a zero-based index from 0 to 65534 as they occur in the ColumnData section of the

103 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

COLMETADATA token. The null bitmap indicates that a column is null using a zero bit at the following
byte and bit layout:

 Byte 1 Byte 2 Byte 3
 ----------------------- ----------------------- -----------------------
 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 23 22 21 20 19 18 17 16

Hence the first byte will contain flags for columns 0 through 7, with the least significant (or rightmost)
bit within the byte indicating the zeroth column and the most significant (or leftmost) bit within the
byte indicating the seventh column. For example, column index 8 would be in the second byte as the
least significant bit. If the null bitmap bit is set, the column is null and no null token value for the
column will follow in the row. If the null bitmap bit is clear, the column is not null and the value for the

column follows in the row.

Token Stream Definition:

 NBCROW = TokenType
 NullBitmap
 AllColumnData

Token Stream Parameter Details

Parameter Description

TokenType NBCROW_TOKEN (0xD2)

TextPointer The length of the text pointer and the text pointer for Data.

Timestamp The timestamp of a text/image column.

Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN.

2.2.7.15 OFFSET

Token Stream Name:

 OFFSET ; (removed in TDS 7.2)

Token Stream Function:

Used to inform the client where in the client's SQL text buffer a particular keyword occurs.

Token Stream Comments:

 The token value is 0x78.

 The token was removed in TDS 7.2.

Token Stream-Specific Rules:

 TokenType = BYTE
 Identifier = USHORT
 OffSetLen = USHORT

104 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Token Stream Definition:

 OFFSET = TokenType
 Identifier
 OffSetLen

Token Stream Parameter Details

Parameter Description

TokenType OFFSET_TOKEN

Identifier The keyword to which OffSetLen refers.

OffsetLen The offset in the SQL text buffer received by the server of the identifier. The SQL text buffer begins
with an OffSetLen value of 0 (MOD 64 kilobytes if value of OffSet is larger than 64 kilobytes).

2.2.7.16 ORDER

Token Stream Name:

 ORDER

Token Stream Function:

Used to inform the client by which columns the data is ordered.

Token Stream Comments

 The token value is 0xA9.

 This token is sent only in the event that an ORDER BY clause is executed.

Token Stream-Specific Rules:

 TokenType = BYTE
 Length = USHORT
 ColNum = *USHORT

The ColNum element is repeated once for each column within the ORDER BY clause.

Token Stream Definition:

 ORDER = TokenType
 Length
 ColNum

Token Stream Parameter Details

105 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Parameter Description

TokenType ORDER_TOKEN

Length The total length of the ORDER data stream.

ColNum The column number in the result set.

2.2.7.17 RETURNSTATUS

Token Stream Name:

 RETURNSTATUS

Token Stream Function:

Used to send the status value of an RPC to the client. The server also uses this token to send the
result status value of a T-SQL EXEC query.

Token Stream Comments:

 The token value is 0x79.

 This token MUST be returned to the client when an RPC is executed by the server.

Token Stream-Specific Rules:

 TokenType = BYTE
 Value = LONG

Token Stream Definition:

 RETURNSTATUS = TokenType
 Value

Token Stream Parameter Details

 Parameter Description

TokenType RETURNSTATUS_TOKEN

Value The return status value determined by the remote procedure. Return status MUST NOT be NULL.

2.2.7.18 RETURNVALUE

Token Stream Name:

 RETURNVALUE

Token Stream Function:

106 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Used to send the return value of an RPC to the client. When an RPC is executed, the associated
parameters might be defined as input or output (or "return") parameters. This token is used to send a

description of the return parameter to the client. This token is also used to describe the value returned
by a UDF when executed as an RPC.

Token Stream Comments:

 The token value is 0xAC.

 Multiple return values can exist per RPC. There is a separate RETURNVALUE token sent for each
parameter returned.

 Large Object output parameters are reordered to appear at the end of the stream. First the group
of small parameters is sent, followed by the group of large output parameters. There is no
reordering within the groups.

 A UDF cannot have return parameters. As such, if a UDF is executed as an RPC there is exactly
one RETURNVALUE token sent to the client.

Token Stream-Specific Rules:

 TokenType = BYTE
 ParamName = B_VARCHAR
 ParamOrdinal = USHORT
 Status = BYTE
 UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)

 fNullable = BIT
 fCaseSen = BIT
 usUpdateable = 2BIT ; 0 = ReadOnly
 ; 1 = Read/Write
 ; 2 = Unused

 fIdentity = BIT
 fComputed = BIT ; (introduced in TDS 7.2)
 usReservedODBC = 2BIT
 fFixedLenCLRType = BIT ; (introduced in TDS 7.2)
 usReserved = 7BIT
 usReserved2 = 2BIT
 fEncrypted = BIT ; (introduced in TDS 7.4)
 usReserved3 = 4BIT

 Flags = fNullable
 fCaseSen
 usUpdateable
 fIdentity
 (FRESERVEDBIT / fComputed)
 usReservedODBC
 (FRESERVEDBIT / fFixedLenCLRType)

 (usReserved / (usReserved2 fEncrypted usReserved3))
 ; (introduced in TDS 7.4)

 TypeInfo = TYPE_INFO
 Value = TYPE_VARBYTE

 BaseTypeInfo = TYPE_INFO ; (BaseTypeInfo introduced in TDS 7.4)

 EncryptionAlgo = BYTE ; (EncryptionAlgo introduced in TDS 7.4)

 AlgoName = B_VARCHAR ; (introduced in TDS 7.4)

 EncryptionAlgoType = BYTE ; (introduced in TDS 7.4)

 NormVersion = BYTE ; (introduced in TDS 7.4)

107 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 CryptoMetaData = UserType ; (CryptoMetaData introduced in TDS 7.4)
 BaseTypeInfo
 EncryptionAlgo
 [AlgoName]
 EncryptionAlgoType
 NormVersion

Token Stream Definition:

 RETURNVALUE = TokenType
 ParamOrdinal
 ParamName
 Status
 UserType
 Flags
 TypeInfo
 CryptoMetadata
 Value

Token Stream Parameter Details:

Parameter Description

TokenType RETURNVALUE_TOKEN

ParamOrdinal Indicates the ordinal position of the output parameter in the original RPC call. Large Object
output parameters are reordered to appear at the end of the stream. First the group of
small parameters is sent, followed by the group of large output parameters. There is no
reordering within the groups.

ParamName The parameter name length and parameter name (within B_VARCHAR).

Status 0x01: If ReturnValue corresponds to OUTPUT parameter of a stored procedure
invocation.

0x02: If ReturnValue corresponds to return value of User Defined Function.

UserType The user-defined data type of the column. The value will be 0x00 00 with the exceptions of
TIMESTAMP (0x00 50) and alias types (> 0x00 FF).

Flags These bit flags are described in least significant bit order. All of these bit flags SHOULD be
set to zero. For a description of each bit flag, see section 2.2.7.4.

 fNullable

 fCaseSen

 usUpdateable

 fIdentity

 fComputed

 usReservedODBC

 fFixedLengthCLRType

 fEncrypted

TypeInfo The TYPE_INFO for the message.

108 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

BaseTypeInfo TYPE_INFO for the unencrypted type.

EncryptionAlgo A byte that describes the encryption algorithm that is used. AlgoName is populated with
the name of the custom encryption algorithm. For all EncryptionAlgo values other than 0,
AlgoName MUST NOT be sent. If EncryptionAlgo is set to 1, the algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF-AuthEncr] section 5.4.

AlgoName Algorithm name literal that is used to encrypt the plaintext value.

EncryptionAlgoType A field that describes the encryption algorithm type. Available values are defined as
follows:

1 = Deterministic encryption.

2 = Randomized encryption.

NormVersion The normalization version to which plaintext data MUST be normalized. Version numbering
starts at 0x01.

CryptoMetaData This describes the encryption metadata for a column. It contains the UserType, the
TYPE_INFO (BaseTypeInfo) for the plaintext value, the encryption algorithm that is used,
the algorithm name literal, the encryption algorithm type, and the normalization version.

Value The type-dependent data for the parameter (within TYPE_VARBYTE).

2.2.7.19 ROW

Token Stream Name:

 ROW

Token Stream Function:

Used to send a complete row, as defined by the COLMETADATA token, to the client.

Token Stream Comments:

 The token value is 0xD1.

Token Stream-Specific Rules:

 TokenType = BYTE

 TextPointer = B_VARBYTE
 Timestamp = 8BYTE
 Data = TYPE_VARBYTE

 ColumnData = [TextPointer Timestamp]
 Data

 AllColumnData = *ColumnData

The ColumnData element is repeated once for each column of data.

TextPointer and Timestamp MUST NOT be specified if the instance of type text/ntext/image is a NULL
instance (GEN_NULL).

109 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Token Stream Definition:

 ROW = TokenType
 AllColumnData

Token Stream Parameter Details:

Parameter Description

TokenType ROW_TOKEN

TextPointer The length of the text pointer and the text pointer for data.

Timestamp The timestamp of a text/image column. This is not present if the value of data is CHARBIN_NULL
or GEN_NULL.

Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN or OFFSET_TOKEN.

2.2.7.20 SESSIONSTATE

Token Stream Name:

 SESSIONSTATE

Token Stream Function:

Used to send session state data to the client. The data format defined here can also be used to send
session state data for session recovery during login and login response.

Token Stream Comments:

 The token value is 0xE4.

 This token stream MUST NOT be sent if the SESSIONRECOVERY feature is not negotiated on the
connection.

 When this token stream is sent, the next token MUST be DONE or DONEPROC with DONE_FINAL.

 If the SESSIONRECOVERY feature is negotiated on the connection, the server SHOULD send this
token to the client to inform any session state update.

Token Stream-Specific Rules:

 fRecoverable = BIT
 Status = fRecoverable 7FRESERVEDBIT

 TokenType = BYTE
 Length = DWORD
 SeqNo = DWORD
 Status = BYTE

 StateId = BYTE
 StateLen = BYTE ; 0-%xFE
 /
 (%xFF

110 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 DWORD) ; %xFF - %xFFFF

 SessionStateData = StateId
 StateLen
 StateValue

 SessionStateDataSet = 1*SessionStateData

Token Stream Definition:

 SESSIONSTATE = TokenType
 Length
 SeqNo
 Status
 SessionStateDataSet

Token Stream Parameter Details

Parameter Description

TokenType SESSIONSTATE_TOKEN

Length The length, in bytes, of the token stream (excluding TokenType and Length).

SeqNo The sequence number of the SESSIONSTATE token in the connection. This number, which starts at
0 and increases by one each time, can be used to track the order of SESSIONSTATE tokens sent
during the course of a connection. The SeqNo applies to all StateIds in the token. If the SeqNo for
any StateId reaches %xFFFFFFFF, both client and server MUST consider that the
SESSIONRECOVERY feature is permanently disabled on the connection. The server SHOULD send a
token with fRecoverable set to FALSE to disable SESSIONRECOVERY for this session. The client

SHOULD NOT set either ResetConn bit (RESETCONNECTION or RESETCONNECTIONSKIPTRAN) on
the connection once it receives any SeqNo of %xFFFFFFFF because ResetConn could reset a
connection back to an initial recoverable state and SESSIONRECOVERY needs to be permanently
disabled on the connection in this case. If the server does receive ResetConn after SeqNo reaches
%xFFFFFFFF, it SHOULD reuse this same SeqNo to disable SESSIONRECOVERY.

The client SHOULD track SeqNo for each StateId and keep the latest data for session recovery.

Status Status of the session StateId in this token.

fRecoverable: TRUE means all session StateIds in this token are recoverable.

The client SHOULD track Status for each StateId and keep the latest data for session recovery. A
client MUST NOT try to recover a dead connection unless fRecoverable is TRUE for all session
StateIds received from server.

StateId The identification number of the session state. %xFF is reserved.

StateLen The length, in bytes, of the corresponding StateValue. If the length is 254 bytes or smaller, one
BYTE is used to represent the field. If the length is 255 bytes or larger, %xFF followed by a DWORD
is used to represent the field. If this field is 0, client SHOULD skip sending SessionStateData for the
StateId during session recovery.

StateValue The value of the session state. This can be any arbitrary data as long as the server understands it.

2.2.7.21 SSPI

Token Stream Name:

 SSPI

111 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Token Stream Function:

The SSPI token returned during the login process.

Token Stream Comments:

 The token value is 0xED.

Token Stream-Specific Rules:

 TokenType = BYTE
 SSPIBuffer = US_VARBYTE

Token Stream Definition:

 SSPI = TokenType
 SSPIBuffer

Token Stream Parameter Details:

 Parameter Description

TokenType SSPI_TOKEN

SSPIBuffer The length of the SSPIBuffer and the SSPI buffer using B_VARBYTE format.

2.2.7.22 TABNAME

Token Stream Name:

 TABNAME

Token Stream Function:

Used to send the table name to the client only when in browser mode or from sp_cursoropen.

Token Stream Comments:

 The token value is 0xA4.

Token Stream-Specific Rules:

 TokenType = BYTE
 Length = USHORT

 NumParts = BYTE ; (introduced in TDS 7.1 Revision 1)
 PartName = US_VARCHAR ; (introduced in TDS 7.1 Revision 1)

 TableName = US_VARCHAR ; (removed in TDS 7.1 Revision 1)
 /
 (NumParts
 1*PartName) ; (introduced in TDS 7.1 Revision 1)

 AllTableNames = TableName

112 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

The TableName element is repeated once for each table name in the query.

Token Stream Definition:

 TABNAME = TokenType
 Length
 AllTableNames

Token Stream Parameter Details

Parameter Description

TokenType TABNAME_TOKEN

Length The actual data length, in bytes, of the TABNAME token stream. The length does not include token
type and length field.

TableName The name of the base table referenced in the query statement.

2.2.7.23 TVP ROW

Token Stream Name:

 TVP ROW

Token Stream Function:

Used to send a complete table valued parameter (TVP) row, as defined by the TVP_COLMETADATA
token from client to server.

Token Stream Comments:

 The token value is 0x01/1.

Token Stream-Specific Rules:

 TokenType = BYTE
 TvpColumnData = TYPE_VARBYTE
 AllColumnData = *TvpColumnData

TvpColumnData is repeated once for each column of data with a few exceptions. For details about
when certain TvpColumnData items are required to be omitted, see the Flags description of the
TVP_COLMETADATA definition (see section 2.2.5.5.5.1).

Note that unlike the ROW token, TVP_ROW does not use TextPointer + TimeStamp prefix with TEXT,
NTEXT and IMAGE types.

Token Stream Definition:

 TVP ROW = TokenType
 AllColumnData

Token Stream Parameter Details:

113 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter Description

TokenType TVP_ROW_TOKEN

TvpColumnData The actual data for the TVP column. The TYPE_INFO information describing the data type of
this data is given in the preceding TVP_COLMETADATA token.

114 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3 Protocol Details

This section describes the important elements of the client software and the server software necessary
to support the TDS protocol.

3.1 Common Details

As described in section 1.3, TDS is an application-level protocol that is used for the transfer of
requests and responses between clients and database server systems. The protocol defines a limited
set of messages through which the client can make a request to the server. The TDS server is
message-oriented. Once a connection has been established between the client and server, a complete
message is sent from client to server. Following this, a complete response is sent from server to client

(with the possible exception of when the client aborts the request), and the server then waits for the
next request. Other than this Post-Login state, the other states defined by the TDS protocol are (i)
pre-authentication (Pre-Login), (ii) authentication (Login), and (iii) when the client sends an attention
message (Attention). These will be expanded upon in subsequent sections.

3.1.1 Abstract Data Model

See sections 3.2.1 and 3.3.1 for the abstract data model of the client and server, respectively.

3.1.2 Timers

See section 3.2.2 for a description of the client timer used and section 3.3.2 for a description of the

server timer used.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

For information about higher-layer triggered events, see section 3.2.4 for a TDS client and section
3.3.4 for a TDS server.

3.1.5 Message Processing Events and Sequencing Rules

The following series of sequence diagrams illustrate the messages that can be exchanged between
client and server. See sections 3.2.5 and 3.3.5 for specific client and server details regarding message
processing events and sequencing rules.

115 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 3: Pre-login to post-login sequence

116 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 4: Pre-login to post-login sequence with federated authentication that uses a client
library that requires additional information from a server to generate a federated
authentication token

117 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 5: SQL command and RPC sequence

118 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 6: Transaction manager request sequence

119 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 7: Bulk insert sequence

3.1.6 Timer Events

See sections 3.2.6 and 3.3.6 for the timer events of the client and server, respectively.

3.1.7 Other Local Events

A TDS session is tied to the underlying established network protocol session. As such, loss or
termination of a network connection is equivalent to immediate termination of a TDS session.

See sections 3.2.7 and 3.3.7 for the other local events of the client and server, respectively.

120 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.2 Client Details

The following state machine diagram describes TDS on the client side.

Figure 8: TDS client state machine

3.2.1 Abstract Data Model

This section describes a conceptual model of data organization that an implementation maintains to
participate in this protocol. The described organization is provided to facilitate the explanation of how

121 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

the protocol behaves. This document does not mandate that implementations adhere to this model as
long as their external behavior is consistent with that described in this document.

A TDS client SHOULD maintain the following states:

 Sent Initial PRELOGIN Packet State

 Sent TLS/SSL Negotiation Packet State

 Sent LOGIN7 Record with Complete Authentication Token State

 Sent LOGIN7 Record with SPNEGO Packet State

 Sent LOGIN7 Record with Federated Authentication Information Request State

 Logged In State

 Sent Client Request State

 Sent Attention State

 Routing Completed State

 Final State

3.2.2 Timers

A TDS client SHOULD implement the following three timers:

 Connection Timer. Controls the maximum time spent during the establishment of a TDS
connection. The default value SHOULD be 15 seconds. The implementation SHOULD allow the
upper layer to specify a nondefault value, including an infinite value (for example, no timeout).

 Client Request Timer. Controls the maximum time spent waiting for a query response from the
server for a client request sent after the connection has been established. The default value is

implementation-dependent. The implementation SHOULD allow the upper layer to specify a non-

default value, including an infinite value (for example, no timeout).<53>

 Cancel Timer. Controls the maximum time spent waiting for a query cancellation
acknowledgement after an Attention request is sent to the server. The default value is
implementation-dependent. The implementation SHOULD allow the upper layer to specify a
nondefault value, including an infinite value (for example, no timeout).<54>

For all three timers, a client can implement a minimum timeout value that is as short as required. If a

TDS client implementation implements any of the timers, it MUST implement their behavior according
to this specification.

A TDS client SHOULD request the transport to detect and indicate a broken connection if the transport
provides such mechanism. If the transport used is TCP, it SHOULD use the TCP Keep-Alives [RFC1122]
in order to detect a nonresponding server in case infinite connection timeout or infinite client request
timeout is used. The default values of the TCP Keep-Alive values set by a TDS client are 30 seconds of

no activity until the first keep-alive packet is sent and 1 second between when successive keep-alive

packets are sent if no acknowledgement is received. The implementation SHOULD allow the upper
layer to specify other TCP keep-alive values.

3.2.3 Initialization

None.

https://go.microsoft.com/fwlink/?LinkId=112180

122 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.2.4 Higher-Layer Triggered Events

A TDS client MUST support the following events from the upper layer:

 Connection Open Request to establish a new TDS connection to a TDS server.

 Client Request to send a query to a TDS server on an already established TDS connection. The
Client Request is a request for one of four types of queries to be sent: SQL Command, Bulk Load,
Transaction Manager Request, or an RPC.

In addition, it SHOULD support the following event from the upper layer:

 Cancel Request to cancel a client request while waiting for a server response. For example, this
enables the upper layer to cancel a long-running client request if the user/upper layer is no longer
seeking the result, thus freeing up thus client and server resources. If a client implementation of

the TDS protocol supports the Cancel Request event, it MUST handle it as described in this
specification.

The processing and actions triggered by these events is described in the remaining parts of this

section.

When a TDS client receives a Connection Open Request from the upper layer in the "Initial" state of a
TDS connection, it performs the following actions:

 If the TDS client implements the Connection Timer, it MUST start the Connection Timer if the
connection timeout value is not infinite.

 If there is upper-layer request MARS support, it MUST set the B_MARS byte in the PRELOGIN
message to 0x01.

 It MUST send a PRELOGIN message to the server by using the underlying transport protocol.

 If the transport does not report an error, it MUST enter the "Sent Initial PRELOGIN Packet" state.

When a TDS client receives a Connection Open Request from the upper layer in any state other than

the Initial state of a TDS connection, it MUST indicate an error to the upper layer.

When a TDS client receives a Client Request from the upper layer in the "Logged In" state, it MUST
perform the following actions:

 If the TDS client implements the Query Timer, it MUST start the Client Request Timer if the client
request timeout value is not infinite.

 If MARS is enabled, the client MUST keep track whether there is an outstanding active request. If
this is the case, then the client MUST initiate a new SMP session, or else an existing SMP session

MAY be used.

 Send either SQL Command, Bulk Load, Transaction Manager Request, or a RPC message to the
server. The message and its content MUST match the requested message from the Client Request.
If MARS is enabled, the TDS message MUST be passed through to the SMP layer.

 If the transport does not report an error, then enter the "Sent Client Request" state.

When a TDS client supporting the Cancel Request receives a Cancel Request from the upper layer in

the "Sent Client Request" state, it MUST perform the following actions:

 If the TDS client implements the Cancel Timer, it MUST start the Cancel Timer if the Attention
request timeout value is not infinite.

123 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Send an Attention message to the server. This indicates to the server that the client intends to
abort the currently executing request. If MARS is enabled, the Attention message MUST be passed

through to the SMP layer.

 Enter the "Sent Attention" state.

3.2.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS server depends on the message type and the current
state of the TDS client. The rest of this section describes the processing and actions to take on them.

The message type is determined from the TDS packet type and the token stream inside the TDS
packet payload, as described in section 2.2.3.

Whenever the TDS client enters either the "Logged In" state or the "Final State" state, it MUST stop
the Connection Timer (if implemented and running), the Client Request Timer (if implemented and
running), and the Cancel Timer (if implemented and running).

Whenever a TDS client receives a structurally invalid TDS message, it MUST close the underlying

transport connection, indicate an error to the upper layer, and enter the "Final State" state.

When a TDS client receives a table response (TDS packet type %x04) from the server, it MUST
behave as follows, according to the state of the TDS client.

3.2.5.1 Sent Initial PRELOGIN Packet State

If the response contains a structurally valid PRELOGIN response indicating a success, the TDS client

MUST take action according to the Encryption option and Authentication scheme:

 The Encryption option MUST be handled as described in section 2.2.6.5 in the PRELOGIN message
description.

 If encryption was negotiated, the TDS client MUST initiate a TLS/SSL handshake, send to the
server a TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS packet(s) of type

PRELOGIN (0x12), and enter the "Sent TLS/SSL negotiation packet" state.

 If encryption was not negotiated and the upper layer did not request full encryption, the TDS
client MUST send to the server a Login message that contains the authentication scheme that is
specified by the user and MUST enter one of the following three states, depending on the message
sent:

 "Sent LOGIN7 record with Complete Authentication Token" state, if a login message that
contains either of the following was sent.

 Standard authentication.

 FEDAUTH FeatureExt that indicates a client library that does not need any additional
information from the server for authentication.

 "Sent LOGIN7 record with SPNEGO packet" state, if a Login message with SPNEGO
authentication was sent.

 "Sent LOGIN7 record with Federated Authentication Information Request" state, if a Login
message with FEDAUTH FeatureExt that indicates a client library that needs additional
information from the server for authentication was sent.

The TDS specification does not prescribe the authentication protocol if SSPI [SSPI] authentication
is used. The current implementation of SSPI supports NTLM [MSDN-NTLM] and Kerberos
[RFC4120].

https://go.microsoft.com/fwlink/?LinkId=90536
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=90458

124 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 If encryption was not negotiated and the upper layer requested full encryption, then the TDS client
MUST close the underlying transport connection, indicate an error to the upper layer, and enter

the "Final State" state.

 If the response received from the server does not contain a structurally valid PRELOGIN response

or it contains a structurally valid PRELOGIN response indicating an error, the TDS client MUST
close the underlying transport connection, indicate an error to the upper layer, and enter the
"Final State" state.

 If NONCEOPT is specified in both the client PRELOGIN message and the server PRELOGIN
message, the TDS client MUST maintain a state variable that includes the value of the NONCE that
is sent to the server and a state variable that includes the value of the NONCE that is contained in
the server’s response.

3.2.5.2 Sent TLS/SSL Negotiation Packet State

If the response contains a structurally valid TLS/SSL response message (TDS packet Type 0x12), the
TDS client MUST pass the TLS/SSL message contained in it to the TLS/SSL layer and MUST proceed as

follows:

 If the TLS/SSL layer indicates that further handshake is needed, the TDS client MUST send to the
server the TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS packet(s) of
Type PRELOGIN (0x12).

 If the TLS/SSL layer indicates successful completion of the TLS/SSL handshake, the TDS client
MUST send a Login message to the server that contains the authentication scheme that is
specified by the user. The TDS client then enters one of the following three states, depending on

the message sent:

 "Sent LOGIN7 record with Complete Authentication Token" state, if a Login message that
contains either of the following was sent:

 Standard authentication.

 FEDAUTH FeatureId that indicates a client library that does not need any additional
information from the server for authentication.

 The "Sent LOGIN7 record with SPNEGO packet" state, if a Login message with SPNEGO
authentication was sent.

 "Sent LOGIN7 record with Federated Authentication Information Request" state, if a Login
message with FEDAUTH FeatureExt that indicates a client library that needs additional
information from server for authentication was sent.

The TDS specification does not prescribe the authentication protocol if SSPI [SSPI] authentication
or federated authentication is used. The current implementation of SSPI supports NTLM [MSDN-

NTLM] and Kerberos [RFC4120].

 If login-only encryption was negotiated as described in section 2.2 in the PRELOGIN message
description, then the first TDS packet of the Login message MUST be encrypted using TLS/SSL and

encapsulated in a TLS/SSL message. All other TDS packets sent or received MUST be in plaintext.

 If full encryption was negotiated as described in section 2.2 in the PRELOGIN message description,
then all subsequent TDS packets sent or received from this point on MUST be encrypted using
TLS/SSL and encapsulated in a TLS/SSL message.

 If the TLS/SSL layer indicates an error, the TDS client MUST close the underlying transport
connection, indicate an error to the upper layer, and enter the "Final State" state.

https://go.microsoft.com/fwlink/?LinkId=90536
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=90458

125 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

If the response received from the server does not contain a structurally valid TLS/SSL response or it
contains a structurally valid response indicating an error, the TDS client MUST close the underlying

transport connection, indicate an error to the upper layer, and enter the "Final State" state.

3.2.5.3 Sent LOGIN7 Record with Complete Authentication Token State

If the response received from the server contains a structurally valid Login response that indicates a
successful login, and if the client used federated authentication to authenticate to the server, the
client MUST read the Login response stream to find the FEATUREEXTACK token and find the FEDAUTH

FeatureId. If the FEDAUTH FeatureId is not present, the TDS client MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the "Final State" state. If the
FEDAUTH FeatureId is present, the client's action is based on the bFedAuthLibrary as follows:

 When the bFedAuthLibrary is Live ID Compact Token, the client MUST use the session key from its
federated authentication token to compute the HMAC-SHA-256 [RFC6234] of the NONCE field in
the FEDAUTH Feature Extension Acknowledgement, and the client MUST verify that the nonce
matches the nonce sent by the client in its PRELOGIN request. If the signature field does not

match the computed HMAC-SHA-256 or if the nonce does not match the nonce sent by the client

in its PRELOGIN request, the TDS client MUST close the underlying transport connection, indicate
an error to the upper layer, and enter the "Final State" state.

 When the bFedAuthLibrary is Security Token or Active Directory Authentication Library (ADAL)
[that is, 0x02] and any of the following statements is true, the TDS client MUST close the
underlying transport connection, indicate an error to the upper layer, and enter the "Final State"
state:

 The client had sent a nonce in the PRELOGIN message and either the NONCE field in FEDAUTH
Feature Extension Acknowledgement is not present or the NONCE field does not match the
nonce sent by the client in its PRELOGIN request.

 The client had not sent a nonce in its PRELOGIN request, and there is a NONCE field present in
the FEDAUTH Feature Extension Acknowledgement.

If the response received from the server contains a structurally valid Login response indicating a

successful login and no Routing response is detected, the TDS client MUST indicate successful Login
completion to the upper layer and enter the "Logged In" state.

If the response received from the server contains a structurally valid Login response indicating a
successful login and also contains a routing response (a Routing ENVCHANGE token) after the
LOGINACK token, the TDS client MUST enter the "Routing Completed" state.

If the response received from the server does not contain a structurally valid Login response or it
contains a structurally valid Login response indicating login failure, the TDS client MUST close the

underlying transport connection, indicate an error to the upper layer, and enter the "Final State"
state.

3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State

If the response received from the server contains a structurally valid Login response indicating a

successful login and no Routing response is detected, the TDS client MUST indicate successful Login
completion to the upper layer and enter the "Logged In" state.

If the response received from the server contains a structurally valid Login response indicating a
successful login and also contains a routing response (a Routing ENVCHANGE token) after the
LOGINACK token, the TDS client MUST enter the "Routing Completed" state.

If the response received from the server contains a structurally valid SSPI response message, the TDS

client MUST send to the server a SSPI message (TDS packet type %x11) containing the data obtained

https://go.microsoft.com/fwlink/?LinkId=328921

126 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

from the applicable SSPI layer. The TDS client SHOULD wait for the response and reenter this state
when the response is received.

If the response received from the server does not contain a structurally valid Login response or SSPI
response, or if it contains a structurally valid Login response indicating login failure, the TDS client

MUST close the underlying transport connection, indicate an error to the upper layer, and enter the
"Final State" state.

3.2.5.5 Sent LOGIN7 Record with Federated Authentication Information Request

State

If the response received from the server contains a structurally valid Login Response message that
contains a Routing ENVCHANGE token in the response after the LOGINACK token, the TDS client MUST
enter the "Routing Completed" state.

If the response received from the server contains a structurally valid Login Response message that
contains a FEDAUTHINFO token, the TDS client MUST generate a Federated Authentication message,

send that Federated Authentication message to the server, and enter the "Sent LOGIN7 record with

Complete Authentication Token" state.

If the response received from the server does not contain a structurally valid Login Response message
that contains a routing response or a structurally valid FEDAUTHINFO token, the TDS client MUST
close the underlying transport connection, indicate an error to the upper layer, and enter the "Final
State" state.

3.2.5.6 Logged In State

The TDS client waits for notification from the upper layer. If the upper layer requests a query to be
sent to the server, the TDS client MUST send the appropriate request to the server and enter the
"Sent Client Request" state. If MARS is enabled, the TDS client MUST send the appropriate request to
the SMP layer. If the upper layer requests a termination of the connection, the TDS client MUST

disconnect from the server and enter the "Final State" state. If the TDS client detects a connection
error from the transport layer, the TDS client MUST disconnect from the server and enter the "Final

State" state.

3.2.5.7 Sent Client Request State

If the response received from the server contains a structurally valid response, the TDS client MUST
indicate the result of the request to the upper layer and enter the "Logged In" state.

The client has the ability to return data/control to the upper layers while remaining in the "Sent Client
Request" state while the complete response has not been received or processed.

If the TDS client supports Cancel Request and the upper layer requests a Cancel Request to be sent to
the server, the TDS client will send an Attention message to the server, start the Cancel Timer, and

enter the "Sent Attention" state.

If the response received from the server does not contain a structurally valid response, the TDS client

MUST close the underlying transport connection, indicate an error to the upper layer, and enter the
"Final State" state.

3.2.5.8 Sent Attention State

If the response is structurally valid and it does not acknowledge the Attention as described in section
2.2.1.7, then the TDS client MUST discard any data contained in the response and remain in the "Sent
Attention" state.

127 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

If the response is structurally valid and it acknowledges the Attention as described in section 2.2.1.7,
then the TDS client MUST discard any data contained in the response, indicate the completion of the

query to the upper layer together with the cause of the Attention (either an upper-layer cancellation
as described in section 3.2.4 or query timeout as described in section 3.2.2), and enter the "Logged

In" state.

If the response received from the server is not structurally valid, then the TDS client MUST close the
underlying transport connection, indicate an error to the upper layer, and enter the "Final State"
state.

3.2.5.9 Routing Completed State

The TDS client MUST:

 Read the rest of the login response from the server, processing the remaining tokens until the
final DONE token is read, as it does with a normal login response.

 Discard all information read from the original login response except for the routing information

supplied in the Routing ENVCHANGE token.

 Any information in the original login response (for example, the language, collation, packet
size, or database mirroring partner) will not apply to the subsequent connection established to
the alternate server specified in the Routing ENVCHANGE token.

 Close the original connection, and enter the "Final State" state. The original connection cannot be
used for any other purpose after the Routing ENVCHANGE token is read and the response is
drained.

3.2.5.10 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS server.

3.2.6 Timer Events

If a TDS client implements the Connection Timer and the timer times out, then the TDS client MUST
close the underlying connection, indicate the error to the upper layer, and enter the "Final State"
state.

If a TDS client implements the Client Request Timer and the timer times out, then the TDS client
MUST send an Attention message to the server and enter the "Sent Attention" state.

 If a TDS client implements the Cancel Timer and the timer times out, then the TDS client MUST close
the underlying connection, indicate the error to the upper layer, and enter the "Final State" state.

3.2.7 Other Local Events

Whenever an indication of a connection error is received from the underlying transport, the TDS client

MUST close the transport connection, indicate an error to the upper layer, stop any timers if running,

and enter the "Final State" state. If TCP is used as the underlying transport, examples of events that
can trigger such action—dependent on the actual TCP implementation—might be media sense loss, a
TCP connection going down in the middle of communication, or a TCP keep-alive failure.

3.3 Server Details

The following state machine diagram describes TDS on the server side.

128 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 9: TDS server state machine

3.3.1 Abstract Data Model

This section describes a conceptual model of data organization that an implementation maintains to
participate in this protocol. The organization is provided to explain how the protocol behaves. This

document does not mandate that implementations adhere to this model as long as their external
behavior is consistent with what is described in this document.

The server SHOULD maintain the following states:

129 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Initial State

 TLS/SSL Negotiation State

 Login Ready State

 SPNEGO Negotiation State

 Federated Authentication Ready State

 Logged In State

 Client Request Execution State

 Routing Completed State

 Final State

3.3.2 Timers

The TDS protocol does not regulate any timer on a data stream. The TDS server MAY implement a
timer on any message found in section 2.

3.3.3 Initialization

The server MUST establish a listening endpoint based on one of the transport protocols described in
section 2.1. The server can establish additional listening endpoints.

When a client makes a connection request, the transport layer listening endpoint will initialize all
resources required for this connection. The server will be ready to receive a Pre-Login message.

3.3.4 Higher-Layer Triggered Events

A higher layer can choose to terminate a TDS connection at any time. In the current TDS
implementation, the upper layer can kill a connection. When this happens, the server MUST terminate
the connection and recycle all resources for this connection. No response will be sent to the client.

3.3.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS client depends on the message type and the current
state of the TDS server. The rest of this section describes the processing and actions to take on them.
The message type is determined from the TDS packet type and the token stream inside the TDS

packet payload, as described in section 2.2.

The corresponding action will be taken when the server in the following states.

3.3.5.1 Initial State

The TDS server receives the first packet from the client. The packet SHOULD be a PRELOGIN packet to
set up context for login. A Pre-Login message is indicated by the PRELOGIN (0x12) message type
described in section 2. The TDS server SHOULD close the underlying transport connection, indicate an
error to the upper layer, and enter the "Final State" state, if the first packet is not a structurally
correct PRELOGIN packet or if the PRELOGIN packet does not contain the client version as the first
option token. Otherwise, the TDS server MUST do one of the following:

 Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet and enter

"TLS/SSL Negotiation" state if encryption is negotiated.

130 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet and enter
unencrypted "Login Ready" state if encryption is not negotiated.

If a FEDAUTHREQUIRED option is contained in the PRELOGIN structure sent by the server to the
client, the TDS server MUST maintain the value of the FEDAUTHREQUIRED option in a state variable to

validate the LOGIN7 message with FEDAUTH FeatureId when the message arrives, as described in
section 3.3.5.3.

If no FEDAUTHREQUIRED option is contained in the PRELOGIN structure sent by the server to the
client, or if the value of B_FEDAUTHREQUIRED = 0, the TDS client can treat both events as equivalent
and MUST remember the event in a state variable. Either state will be treated the same when the
state variables are examined in the "Login Ready" state (see section 3.3.5.3 for further details).

If NONCEOPT is specified in both the client PRELOGIN message and the server PRELOGIN message,

the TDS server MUST maintain a state variable that includes the values of both the NONCE it sent to
the client and the NONCE the client sent to it during the PRELOGIN exchange.

3.3.5.2 TLS/SSL Negotiation State

If the next packet from the TDS client is not a TLS/SSL negotiation packet or the packet is not
structurally correct, the TDS server SHOULD close the underlying transport connection, indicate an
error to the upper layer, and enter the "Final State" state. A TLS/SSL negotiation packet is a
PRELOGIN (0x12) packet header encapsulated with TLS/SSL payload. The TDS server MUST exchange
TLS/SSL negotiation packet with the client and reenter this state until the TLS/SSL negotiation is
successfully completed. In this case, TDS server enters the "Login Ready" state.

3.3.5.3 Login Ready State

If the TDS server receives a valid LOGIN7 message with the FEDAUTH FeatureId from the client, the
server MUST validate that one of the following is true:

 The TDS server’s PRELOGIN structure contained a FEDAUTHREQUIRED option with the value 0x00,

or the TDS server’s PRELOGIN structure did not contain a FEDAUTHREQUIRED option, and the

value of fFedAuthEcho is 0.

 The TDS server’s PRELOGIN structure contained a FEDAUTHREQUIRED option with the value 0x01,
and the value of fFedAuthEcho is 1.

If the TDS server receives a valid LOGIN7 message with the FEDAUTH FeatureId from the client but
neither of the above statements is true, the server MUST send an ERROR packet, described in section
2, to the client. The TDS server MUST then close the underlying transport connection, indicate an error

to the upper layer, and enter the "Final State" state. Otherwise, the TDS server MUST process the
FedAuthToken embedded in the packet in a way appropriate for the value of bFedAuthLibrary.

When the bFedAuthLibrary is a Live ID Compact token, the TDS Server MUST respond as follows:

 If no NONCEOPT was specified in the client’s PRELOGIN message, the TDS server MUST send a
"Login failed" ERROR token to the client, the server MUST close the connection, and the server
MUST enter the "Final State" state.

 If a NONCEOPT was specified in the client's PRELOGIN message, the federated authentication

library layer responds with one of two results, and the TDS server continues processing according
to the response as follows:

 Success:

 The TDS server MUST use the session key from the federated authentication token to
compute the HMAC-SHA-256 [RFC6234] of the data sent by the client. If the Signature
field does not match the computed HMAC-SHA-256, or if the nonce does not match the

https://go.microsoft.com/fwlink/?LinkId=328921

131 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

nonce sent by the server in its PRELOGIN response, then the TDS server MUST send a
"Login failed" ERROR token to the client, the TDS server MUST close the connection, and

the TDS server MUST enter the "Final State" state.

 If a ChannelBindingToken is present, the server MUST compare the ChannelBindingToken

against the channel binding token calculated from the underlying TLS/SSL channel. If the
two values do not match, then the TDS server MUST send a "Login failed" ERROR token to
the client, the TDS server MUST close the connection, and the TDS server MUST enter the
"Final State" state.

 If both the channel binding token and the nonce match the expected values, the server
MUST send the security token to the upper layer (typically an application that provides
database management functions) for authorization. If the upper layer approves the

security token, the TDS server MUST send a LOGINACK message that includes a
FEATUREEXTACK token with the FEDAUTH FeatureId and immediately enter the "Logged
In" state or enter the "Routing Completed" state if the server decides to route. If the
upper layer rejects the security token, the TDS server MUST send a "Login failed" ERROR
token to the client, the TDS server MUST close the connection, and the TDS server MUST

enter the "Final State" state.

 Error: The server then MUST close the underlying transport connection, indicate an error to
the upper layer, and enter the "Final State" state.

When the bFedAuthLibrary is Security Token, the TDS server MUST respond as follows:

 If the server’s PRELOGIN response contained a NONCEOPT, the TDS Server MUST validate to see
whether the client's LOGIN7 packet has the same nonce echoed back as part of FEDAUTH Feature
SignedData. If the NONCE field is not present or if the nonce does not match, the TDS server
MUST send a "Login failed" ERROR token to the client, the TDS server MUST close the connection,

and the TDS server MUST enter the "Final State" state.

 If the server’s PRELOGIN response did not contain a NONCEOPT, the TDS Server MUST verify that
there is NO NONCE as part LOGIN7 FEDAUTH Feature SignedData. If a NONCE field is present, the
TDS server MUST send a "Login failed" ERROR token back to the client, the TDS server MUST close

the connection and the TDS server MUST enter the "Final State" state.

 Success:

 The server MUST send the security token to the upper layer (typically an application that

provides database management functions) for authorization. If the upper layer approves
the security token, the TDS server MUST send a LOGINACK message that includes a
FEATUREEXTACK token with the FEDAUTH FeatureId and immediately enter the "Logged
In" state or enter the "Routing Completed" state if the server decides to route. If the
upper layer rejects the security token, the TDS server MUST send a "Login failed" ERROR
token to the client, the TDS server MUST close the connection, and the TDS server MUST

enter the "Final State" state.

 Error: The server then MUST close the underlying transport connection, indicate an error to
the upper layer, and enter the "Final State" state.

When bFedAuthLibrary is Active Directory Authentication Library (ADAL) [that is, 0x02], the TDS
server MUST validate that no other data was sent as part of the feature extension, that is, that
FeatureExt is structurally valid for this library type. Then the TDS server MUST send a FEDAUTHINFO
token with data for FedAuthInfoIDs of STSURL and SPN and enter the "Federated Authentication

Ready" state. This FEDAUTHINFO Token message SHOULD be used by the client to generate a
federated authentication token.

If the TDS server receives a valid LOGIN7 packet with standard login, the TDS server MUST respond
to the TDS client with a LOGINACK (0xAD) described in section 2 indicating login succeed. The TDS

132 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

server MUST enter the "Logged in" state or enter the "Routing Completed" state if the server decides
to route.

If the TDS server receives a LOGIN7 packet with SSPI Negotiation packet, the TDS server MUST enter
the "SPNEGO Negotiation" state.

If the TDS server receives a LOGIN7 packet with standard login packet, but the login is invalid, the
TDS server MUST send an ERROR packet, described in section 2, to the client. The TDS server MUST
close the underlying transport connection, indicate an error to the upper layer, and enter the "Final
State" state.

If the packet received is not a structurally valid LOGIN7 packet, the TDS server will not send any
response to the client. The TDS server MUST close the underlying transport connection, indicate an
error to the upper layer, and enter the "Final State" state.

3.3.5.4 SPNEGO Negotiation State

This state is used to negotiate the security scheme between the client and server. The TDS server

processes the packet received according to the following rules.

 If the packet received is a structurally valid SPNEGO [RFC4178] negotiation packet, the TDS
server delegates processing of the security token embedded in the packet to the SPNEGO layer.
The SPNEGO layer responds with one of three results, and the TDS server continues processing
according to the response as follows:

 Complete: The TDS server then sends the security token to the upper layer (typically an
application that provides database management functions) for authorization. If the upper layer
approves the security token, the TDS server returns the security token to the client within a

LOGINACK message and immediately enters the "Logged In" state or enters the "Routing
Completed" state if the server decides to route. If the upper layer rejects the security token,
then a "Login failed" ERROR token is sent back to the client, the TDS server closes the
connection, and the TDS server enters the "Final State" state.

 Continue: The TDS server sends a SPNEGO [RFC4178] negotiation response to the client,

embedding the new security token returned by SPNEGO as part of the Continue response. The

server then waits for a message from the client and re-renters the SPNEGO negotiation state
when such a packet is received.

 Error: The server then MUST close the underlying transport connection, indicate an error to
the upper layer, and enter the "Final State" state.

 If the packet received is not a structurally valid SPNEGO [RFC4178] negotiation packet, the TDS
server will send no response to the client. The TDS server MUST close the underlying transport
connection, indicate an error to the upper layer, and enter the "Final State" state.

3.3.5.5 Federated Authentication Ready State

This state is used to process the federated authentication token that is obtained from the client.
The TDS server processes the packet that is received according to the following rules:

 If the packet that is received is a structurally valid Federated Authentication Token message, the

TDS server MUST delegate processing of the security token embedded in the packet to the
federated authentication layer, using the library that is indicated by the state variable that
maintains the value of the bFedAuthLibrary field of the login packet’s FEDAUTH FeatureExt. The
federated authentication layer responds with one of two results, and the TDS server continues
processing according to the response as follows:

 SUCCESS: The TDS Server MUST send the Federated Authentication Token to the upper layer

(typically, an application that provides database management functions) for authorization. If

https://go.microsoft.com/fwlink/?LinkId=90461

133 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

the upper layer approves the token, the TDS server MUST send a LoginACK message that
includes a FEATUREEXTACK token that contains FEDAUTH FeatureId and immediately enter

the "Logged In" state or enter the "Routing Completed" state if the server decides to route. If
the upper layer rejects the token, then a "Login Failed" ERROR token MUST be sent back to

the client, the TDS server MUST close the connection, and the TDS server MUST enter the
"Final State" state.

 ERROR: The server MUST close the underlying transport connection, indicate an error to the
upper layer, and enter the "Final State" state.

 If the packet that is received is not a structurally valid Federated Authentication Token message,
the TDS server SHOULD send no response to the client. The TDS server MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the "Final State" state.

3.3.5.6 Logged In State

If a TDS of type 1, 3, 7, or 14 (see section 2.2.3.1.1) arrives, then the TDS server begins processing
by raising an event to the upper layer containing the data of the client request and entering the Client

Request Execution state. If any other TDS types arrive, then the server MUST enter the Final State
state. The TDS server MUST continue to listen for messages from the client while awaiting notification
of client request completion from the upper layer.

3.3.5.7 Client Request Execution State

The TDS server MUST continue to listen for messages from the client while awaiting notification of
client request for completion from the upper layer. The TDS server MUST also do one of the following:

 If the upper layer notifies TDS that the client request has finished successfully, the TDS server
MUST send the results in the formats described in section 2 to the TDS client and enter the
"Logged In" state.

 If the upper layer notifies TDS that an error has been encountered during client request, the TDS

server MUST send an error message (described in section 2) to the TDS client and enter the

"Logged In" state.

 If an attention packet (described in section 2) is received during the execution of the current client
request, it MUST deliver a cancel indication to the upper layer. If an attention packet (described in
section 2) is received after the execution of the current client request, it SHOULD NOT deliver a
cancel indication to the upper layer because there is no existing execution to cancel. The TDS
server MUST send an attention acknowledgment to the TDS client and enter the "Logged In" state.

 If another client request packet is received during the execution of the current client request, the
TDS server SHOULD queue the new client request, and continue processing the client request
already in progress according to the preceding rules. When this operation is complete, the TDS
server re-enters the "Client Request Execution" state and processes the newly arrived message.

 If MARS is enabled, all TDS server responses to client request messages MUST be passed through
to the SMP layer.

 If any other message type arrives, the server MUST close the connection and enter the "Final

State" state.

3.3.5.8 Routing Completed State

The TDS server SHOULD wait for connection closure initiated by the client and enter the "Final State"

state. If any request is received from the client in this state, the server SHOULD close the connection
with no response and enter the "Final State" state.

134 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.3.5.9 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS server.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

When there is a failure in under-layers, the server SHOULD terminate the TDS session without
sending any response to the client. The under-layer failure could be triggered by network failure. It
can also be triggered by the termination action from the client, which could be communicated to the
server stack by under-layers.

135 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the TDS protocol. For each example, the binary TDS message is provided followed by the
decomposition displayed in XML.

4.1 Pre-Login Request

Pre-Login request sent from the client to the server:

 12 01 00 2F 00 00 01 00 00 00 1A 00 06 01 00 20
 00 01 02 00 21 00 01 03 00 22 00 04 04 00 26 00
 01 FF 09 00 00 00 00 00 01 00 B8 0D 00 00 01

 <PacketHeader>
 <Type>
 <BYTE>12 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>2F </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <Prelogin>
 <TokenType>
 <BYTE>00 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 1A</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 06</USHORT>
 </TokenLeng>
 <TokenType>
 <BYTE>01 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 20</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 01</USHORT>
 </TokenLeng>
 <TokenType>
 <BYTE>02 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 21</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 01</USHORT>
 </TokenLeng>

136 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <TokenType>
 <BYTE>03 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 22</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 04</USHORT>
 </TokenLeng>
 <TokenType>
 <BYTE>04 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 26</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 01</USHORT>
 </TokenLeng>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <PreloginData>
 <BYTES>09 00 00 00 00 00 01 00 B8 0D 00 00 01</BYTE>
 </PreloginData>
 </Prelogin>
 </PacketData>

4.2 Login Request

LOGIN7 stream sent from the client to the server:

 10 01 00 90 00 00 01 00 88 00 00 00 02 00 09 72
 00 10 00 00 00 00 00 07 00 01 00 00 00 00 00 00
 E0 03 00 00 E0 01 00 00 09 04 00 00 5E 00 08 00
 6E 00 02 00 72 00 00 00 72 00 07 00 80 00 00 00
 80 00 00 00 80 00 04 00 88 00 00 00 88 00 00 00
 00 50 8B E2 B7 8F 88 00 00 00 88 00 00 00 88 00
 00 00 00 00 00 00 73 00 6B 00 6F 00 73 00 74 00
 6F 00 76 00 31 00 73 00 61 00 4F 00 53 00 51 00
 4C 00 2D 00 33 00 32 00 4F 00 44 00 42 00 43 00

 <PacketHeader>
 <Type>
 <BYTE>10 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>90 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <Login7>
 <Length>

137 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <DWORD>88 00 00 00 </DWORD>
 </Length>
 <TDSVersion>
 <DWORD>02 00 09 72 </DWORD>
 </TDSVersion>
 <PacketSize>
 <DWORD>00 10 00 00 </DWORD>
 </PacketSize>
 <ClientProgVer>
 <DWORD>00 00 00 07 </DWORD>
 </ClientProgVer>
 <ClientPID>
 <DWORD>00 01 00 00 </DWORD>
 </ClientPID>
 <ConnectionID>
 <DWORD>00 00 00 00 </DWORD>
 </ConnectionID>
 <OptionFlags1>
 <BYTE>E0 </BYTE>
 </OptionFlags1>
 <OptionFlags2>
 <BYTE>03 </BYTE>
 </OptionFlags2>
 <TypeFlags>
 <BYTE>00 </BYTE>
 </TypeFlags>
 <OptionFlags3>
 <BYTE>00 </BYTE>
 </OptionFlags3>
 <ClientTimZone>
 <LONG>E0 01 00 00 </LONG>
 </ClientTimZone>
 <ClientLCID>
 <DWORD>09 04 00 00 </DWORD>
 </ClientLCID>
 <OffsetLength>
 <ibHostName>
 <USHORT>5E 00 </USHORT>
 </ibHostName>
 <cchHostName>
 <USHORT>08 00 </USHORT>
 </cchHostName>
 <ibUserName>
 <USHORT>6E 00 </USHORT>
 </ibUserName>
 <cchUserName>
 <USHORT>02 00 </USHORT>
 </cchUserName>
 <ibPassword>
 <USHORT>72 00 </USHORT>
 </ibPassword>
 <cchPassword>
 <USHORT>00 00 </USHORT>
 </cchPassword>
 <ibAppName>
 <USHORT>72 00 </USHORT>
 </ibAppName>
 <cchAppName>
 <USHORT>07 00 </USHORT>
 </cchAppName>
 <ibServerName>
 <USHORT>80 00 </USHORT>
 </ibServerName>
 <cchServerName>
 <USHORT>00 00 </USHORT>
 </cchServerName>
 <ibUnused>
 <USHORT>80 00 </USHORT>
 </ibUnused>

138 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <cbUnused>
 <USHORT>00 00 </USHORT>
 </cbUnused>
 <ibCltIntName>
 <USHORT>80 00 </USHORT>
 </ibCltIntName>
 <cchCltIntName>
 <USHORT>04 00 </USHORT>
 </cchCltIntName>
 <ibLanguage>
 <USHORT>88 00 </USHORT>
 </ibLanguage>
 <cchLanguage>
 <USHORT>00 00 </USHORT>
 </cchLanguage>
 <ibDatabase>
 <USHORT>88 00 </USHORT>
 </ibDatabase>
 <cchDatabase>
 <USHORT>00 00 </USHORT>
 </cchDatabase>
 <ClientID>
 <BYTES>00 50 8B E2 B7 8F </BYTES>
 </ClientID>
 <ibSSPI>
 <USHORT>88 00 </USHORT>
 </ibSSPI>
 <cbSSPI>
 <USHORT>00 00 </USHORT>
 </cbSSPI>
 <ibAtchDBFile>
 <USHORT>88 00 </USHORT>
 </ibAtchDBFile>
 <cchAtchDBFile>
 <USHORT>00 00 </USHORT>
 </cchAtchDBFile>
 <ibChangePassword>
 <USHORT>88 00 </USHORT>
 </ibChangePassword>
 <cchChangePassword>
 <USHORT>00 00 </USHORT>
 </cchChangePassword>
 <cbSSPILong>
 <LONG>00 00 00 00 </LONG>
 </cbSSPILong>
 </OffsetLength>
 <Data>
 <BYTES>73 00 6B 00 6F 00 73 00 74 00 6F 00 76 00 31 00 73 00 61 00
 4F 00 53 00 51 00 4C 00 2D 00 33 00 32 00 4F 00 44 00 42 00 43 00 </BYTES>
 </Data>
 </Login7>
 </PacketData>

4.3 Login Request with Federated Authentication

LOGIN7 stream sent from client to server, including the Feature Extension block that contains the

federated authentication feature:

 10 01 08 10 00 00 01 00 08 08 00 00 04 00 00 74
 00 10 00 00 00 00 00 07 40 37 00 00 00 00 00 00
 E0 03 00 10 E0 01 00 00 09 04 00 00 5E 00 0F 00
 00 00 00 00 00 00 00 00 7C 00 06 00 88 00 18 00
 B8 00 04 00 BC 00 04 00 C4 00 00 00 C4 00 00 00
 00 15 5D 71 E7 42 00 00 00 00 C4 00 00 00 00 00
 00 00 00 00 00 00 44 00 41 00 4E 00 42 00 45 00
 4E 00 45 00 44 00 33 00 2D 00 58 00 47 00 5A 00

139 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 55 00 4F 00 53 00 51 00 4C 00 43 00 4D 00 44 00
 63 00 6C 00 6F 00 75 00 64 00 2E 00 64 00 65 00
 76 00 2E 00 6D 00 73 00 63 00 64 00 73 00 2E 00
 63 00 6F 00 6D 00 2C 00 31 00 34 00 33 00 35 00
 C4 00 00 00 4F 00 44 00 42 00 43 00 02 3E 07 00
 00 01 E2 06 00 00 74 00 3D 00 45 00 77 00 43 00
 51 00 41 00 6A 00 4B 00 6A 00 42 00 77 00 41 00
 55 00 53 00 30 00 48 00 6F 00 2F 00 30 00 65 00
 31 00 52 00 35 00 4D 00 32 00 77 00 37 00 74 00
 69 00 44 00 72 00 36 00 70 00 4D 00 63 00 75 00
 77 00 33 00 35 00 6B 00 41 00 41 00 61 00 62 00
 76 00 45 00 38 00 6F 00 55 00 45 00 71 00 2F 00
 50 00 45 00 75 00 4C 00 37 00 32 00 64 00 54 00
 74 00 64 00 4D 00 42 00 43 00 7A 00 46 00 37 00
 41 00 64 00 4A 00 6D 00 6E 00 70 00 45 00 68 00
 34 00 32 00 65 00 41 00 46 00 57 00 37 00 2F 00
 38 00 49 00 6A 00 41 00 53 00 6D 00 78 00 79 00
 50 00 30 00 30 00 71 00 59 00 64 00 76 00 65 00
 31 00 5A 00 6B 00 45 00 2F 00 58 00 6C 00 63 00
 4E 00 79 00 69 00 77 00 6F 00 55 00 76 00 54 00
 4E 00 4F 00 6B 00 74 00 42 00 45 00 4C 00 71 00
 76 00 37 00 58 00 4A 00 54 00 6F 00 47 00 71 00
 56 00 32 00 6F 00 6B 00 51 00 6E 00 2F 00 65 00
 63 00 50 00 41 00 78 00 32 00 71 00 6A 00 55 00
 57 00 74 00 6B 00 54 00 59 00 56 00 66 00 62 00
 72 00 51 00 58 00 78 00 76 00 4E 00 58 00 66 00
 69 00 72 00 77 00 47 00 57 00 63 00 43 00 45 00
 4B 00 79 00 46 00 64 00 76 00 35 00 62 00 78 00
 55 00 75 00 68 00 69 00 49 00 62 00 39 00 42 00
 55 00 56 00 54 00 56 00 4B 00 6A 00 57 00 51 00
 34 00 78 00 4E 00 46 00 4E 00 6B 00 43 00 33 00
 73 00 58 00 71 00 6F 00 46 00 52 00 31 00 49 00
 46 00 64 00 76 00 6A 00 4C 00 76 00 63 00 71 00
 71 00 38 00 70 00 47 00 69 00 54 00 64 00 51 00
 2F 00 76 00 37 00 6F 00 44 00 6B 00 38 00 78 00
 5A 00 42 00 6E 00 61 00 73 00 4C 00 36 00 71 00
 2F 00 62 00 38 00 36 00 73 00 5A 00 6C 00 2B 00
 55 00 35 00 77 00 69 00 4C 00 50 00 50 00 54 00
 68 00 67 00 4D 00 70 00 49 00 46 00 2F 00 42 00
 61 00 43 00 2F 00 72 00 45 00 4F 00 51 00 50 00
 6B 00 6B 00 63 00 51 00 4A 00 4F 00 56 00 54 00
 71 00 51 00 72 00 64 00 63 00 4B 00 4F 00 4D 00
 56 00 4E 00 4A 00 61 00 55 00 50 00 49 00 52 00
 33 00 64 00 2B 00 42 00 62 00 43 00 66 00 31 00
 6D 00 5A 00 62 00 7A 00 6F 00 6E 00 64 00 4F 00
 51 00 77 00 39 00 57 00 37 00 49 00 77 00 63 00
 6D 00 30 00 45 00 44 00 69 00 78 00 51 00 71 00
 70 00 41 00 74 00 61 00 75 00 63 00 42 00 48 00
 4F 00 33 00 46 00 75 00 37 00 6D 00 49 00 63 00
 69 00 78 00 46 00 39 00 67 00 53 00 2F 00 46 00
 4B 00 38 00 2F 00 37 00 6C 00 6E 00 78 00 34 00
 53 00 6E 00 33 00 5A 00 2F 00 51 00 7A 00 2B 00
 48 00 76 00 6A 00 4C 00 49 00 57 00 2F 00 76 00
 44 00 77 00 7A 00 77 00 44 00 5A 00 67 00 41 00
 41 00 43 00 4E 00 6D 00 73 00 64 00 34 00 65 00
 79 00 68 00 4E 00 49 00 75 00 59 00 41 00 47 00
 62 00 58 00 62 00 41 00 4B 00 51 00 37 00 63 00
 4A 00 66 00 31 00 6B 00 78 00 31 00 31 00 6D 00
 4E 00 42 00 49 00 34 00 79 00 42 00 44 00 36 00
 4E 00 4E 00 54 00 53 00 6F 00 63 00 75 00 46 00
 42 00 6A 00 4F 00 6B 00 2B 00 73 00 41 00 5A 00
 4C 00 35 00 5A 00 34 00 56 00 4E 00 32 00 4D 00
 4C 00 71 00 49 00 35 00 71 00 38 00 58 00 54 00
 58 00 35 00 72 00 58 00 57 00 65 00 79 00 4B 00
 75 00 62 00 76 00 49 00 2F 00 59 00 2F 00 6D 00
 64 00 42 00 6A 00 64 00 4E 00 36 00 37 00 51 00
 57 00 49 00 72 00 75 00 65 00 73 00 4B 00 52 00
 56 00 65 00 32 00 35 00 31 00 31 00 54 00 6E 00
 42 00 58 00 46 00 62 00 70 00 53 00 47 00 6E 00

140 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 42 00 4A 00 65 00 38 00 6F 00 31 00 4B 00 69 00
 50 00 55 00 70 00 55 00 4B 00 6A 00 48 00 74 00
 54 00 6D 00 75 00 34 00 36 00 4F 00 43 00 4F 00
 38 00 4A 00 49 00 62 00 48 00 47 00 6C 00 70 00
 4F 00 70 00 62 00 70 00 6E 00 50 00 49 00 73 00
 79 00 36 00 39 00 49 00 58 00 6B 00 45 00 7A 00
 67 00 38 00 64 00 36 00 34 00 43 00 74 00 65 00
 54 00 2F 00 61 00 63 00 73 00 35 00 68 00 4F 00
 72 00 62 00 32 00 44 00 73 00 44 00 6F 00 6E 00
 4A 00 71 00 65 00 6D 00 46 00 58 00 54 00 47 00
 6D 00 35 00 30 00 37 00 30 00 65 00 71 00 35 00
 74 00 75 00 6A 00 69 00 5A 00 75 00 43 00 52 00
 30 00 4C 00 54 00 36 00 62 00 59 00 49 00 76 00
 59 00 64 00 76 00 42 00 6D 00 70 00 52 00 6C 00
 31 00 33 00 38 00 41 00 53 00 42 00 32 00 58 00
 48 00 30 00 36 00 43 00 4B 00 39 00 33 00 55 00
 38 00 63 00 4F 00 54 00 38 00 68 00 68 00 6E 00
 6A 00 32 00 53 00 4D 00 49 00 61 00 2B 00 4B 00
 30 00 37 00 62 00 72 00 6F 00 66 00 43 00 50 00
 4B 00 35 00 37 00 51 00 66 00 43 00 4D 00 35 00
 32 00 4F 00 49 00 4B 00 33 00 2F 00 30 00 67 00
 70 00 6F 00 4C 00 41 00 6C 00 4A 00 6E 00 49 00
 56 00 59 00 72 00 45 00 6B 00 6B 00 41 00 6E 00
 47 00 59 00 79 00 70 00 52 00 34 00 45 00 34 00
 6F 00 4D 00 4D 00 33 00 63 00 48 00 32 00 38 00
 4D 00 42 00 4C 00 66 00 30 00 76 00 47 00 57 00
 2F 00 4D 00 62 00 6E 00 74 00 61 00 31 00 35 00
 47 00 37 00 47 00 72 00 71 00 76 00 54 00 41 00
 73 00 5A 00 30 00 78 00 42 00 6C 00 35 00 76 00
 38 00 74 00 44 00 31 00 4F 00 70 00 70 00 6B 00
 47 00 6D 00 2B 00 78 00 56 00 62 00 54 00 78 00
 49 00 6E 00 2F 00 31 00 7A 00 51 00 67 00 67 00
 32 00 71 00 54 00 4F 00 45 00 53 00 6D 00 6E 00
 63 00 49 00 4B 00 38 00 49 00 44 00 6A 00 46 00
 50 00 7A 00 79 00 59 00 31 00 71 00 38 00 45 00
 49 00 6A 00 38 00 39 00 52 00 72 00 2B 00 63 00
 6C 00 51 00 4C 00 33 00 62 00 76 00 39 00 69 00
 38 00 4F 00 34 00 68 00 77 00 66 00 43 00 62 00
 5A 00 51 00 65 00 63 00 38 00 59 00 4F 00 31 00
 4D 00 67 00 4F 00 5A 00 32 00 63 00 2B 00 5A 00
 74 00 39 00 45 00 55 00 54 00 67 00 31 00 78 00
 51 00 49 00 31 00 6A 00 49 00 71 00 76 00 2B 00
 65 00 47 00 63 00 62 00 47 00 50 00 66 00 47 00
 78 00 4C 00 4C 00 45 00 57 00 76 00 66 00 2B 00
 6A 00 54 00 71 00 58 00 63 00 6B 00 55 00 68 00
 79 00 4A 00 42 00 47 00 33 00 6D 00 41 00 45 00
 3D 00 26 00 70 00 3D 00 DF 31 12 79 58 7C 0F CD
 2B ED 31 0D 8A 06 71 A7 C4 A6 DE BB 08 4F 37 12
 07 E2 E9 09 C7 B0 2A 1D 74 6C 73 2D 75 6E 69 71
 75 65 3A 20 87 E9 38 E3 2C 32 4F 6C F9 8E 5B 0D
 40 B2 1B 57 0E AB FE EF 2F CD 58 DA 0F 7F BD 9C
 D0 8B F2 15 85 F3 83 20 7C 22 F8 17 9A 95 8F FF

 <PacketHeader>
 <Type>
 <BYTE>10 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>08 </BYTE>
 <BYTE>10 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>

141 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <Login7>
 <Length>
 <DWORD>08 08 00 00 </DWORD>
 </Length>
 <TDSVersion>
 <DWORD>04 00 00 74 </DWORD>
 </TDSVersion>
 <PacketSize>
 <DWORD>00 10 00 00 </DWORD>
 </PacketSize>
 <ClientProgVer>
 <DWORD>00 00 00 07 </DWORD>
 </ClientProgVer>
 <ClientPID>
 <DWORD>40 37 00 00 </DWORD>
 </ClientPID>
 <ConnectionID>
 <DWORD>00 00 00 00 </DWORD>
 </ConnectionID>
 <OptionFlags1>
 <BYTE>E0 </BYTE>
 </OptionFlags1>
 <OptionFlags2>
 <BYTE>03 </BYTE>
 </OptionFlags2>
 <TypeFlags>
 <BYTE>00 </BYTE>
 </TypeFlags>
 <OptionFlags3>
 <BYTE>10 </BYTE>
 </OptionFlags3>
 <ClientTimZone>
 <LONG>E0 01 00 00 </LONG>
 </ClientTimZone>
 <ClientLCID>
 <DWORD>09 04 00 00 </DWORD>
 </ClientLCID>
 <OffsetLength>
 <ibHostName>
 <USHORT>5E 00 </USHORT>
 </ibHostName>
 <cchHostName>
 <USHORT>0F 00 </USHORT>
 </cchHostName>
 <ibUserName>
 <USHORT>00 00 </USHORT>
 </ibUserName>
 <cchUserName>
 <USHORT>00 00 </USHORT>
 </cchUserName>
 <ibPassword>
 <USHORT>00 00 </USHORT>
 </ibPassword>
 <cchPassword>
 <USHORT>00 00 </USHORT>
 </cchPassword>
 <ibAppName>
 <USHORT>7C 00 </USHORT>
 </ibAppName>
 <cchAppName>
 <USHORT>06 00 </USHORT>
 </cchAppName>

142 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <ibServerName>
 <USHORT>88 00 </USHORT>
 </ibServerName>
 <cchServerName>
 <USHORT>18 00 </USHORT>
 </cchServerName>
 <ibExtension>
 <USHORT>B8 00 </USHORT>
 </ibExtension>
 <cbExtension>
 <USHORT>04 00 </USHORT>
 </cbExtension>
 <ibCltIntName>
 <USHORT>BC 00 </USHORT>
 </ibCltIntName>
 <cchCltIntName>
 <USHORT>04 00 </USHORT>
 </cchCltIntName>
 <ibLanguage>
 <USHORT>C4 00 </USHORT>
 </ibLanguage>
 <cchLanguage>
 <USHORT>00 00 </USHORT>
 </cchLanguage>
 <ibDatabase>
 <USHORT>C4 00 </USHORT>
 </ibDatabase>
 <cchDatabase>
 <USHORT>00 00 </USHORT>
 </cchDatabase>
 <ClientID>
 <BYTES>00 15 5D 71 E7 42 </BYTES>
 </ClientID>
 <ibSSPI>
 <USHORT>00 00 </USHORT>
 </ibSSPI>
 <cbSSPI>
 <USHORT>00 00 </USHORT>
 </cbSSPI>
 <ibAtchDBFile>
 <USHORT>C4 00 </USHORT>
 </ibAtchDBFile>
 <cchAtchDBFile>
 <USHORT>00 00 </USHORT>
 </cchAtchDBFile>
 <ibChangePassword>
 <USHORT>00 00 </USHORT>
 </ibChangePassword>
 <cchChangePassword>
 <USHORT>00 00 </USHORT>
 </cchChangePassword>
 <cbSSPILong>
 <LONG>00 00 00 00 </LONG>
 </cbSSPILong>
 </OffsetLength>
 <Data>
 <BYTES>44 00 41 00 4E 00 42 00 45 00
 4E 00 45 00 44 00 33 00 2D 00 58 00 47 00 5A 00
 55 00 4F 00 53 00 51 00 4C 00 43 00 4D 00 44 00
 63 00 6C 00 6F 00 75 00 64 00 2E 00 64 00 65 00
 76 00 2E 00 6D 00 73 00 63 00 64 00 73 00 2E 00
 63 00 6F 00 6D 00 2C 00 31 00 34 00 33 00 35 00
 C4 00 00 00 4F 00 44 00 42 00 43 00 </BYTES>
 </Data>
 <FeatureExt>
 <FeatureOpt>
 <FeatureId>
 <BYTE>02 </BYTE>
 </FeatureId>

143 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <FeatureDataLen>
 <DWORD>3E 07 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureData>
 <Options>
 <BYTE>01 </BYTE>
 </Options>
 <FedAuthToken>
 <L_VARBYTE>
 <LONGLEN>
 <DWORD>E2 06 00 00 </DWORD>
 </LONGLEN>
 <BYTES>74 00 3D 00 45 00 77 00 43 00
 51 00 41 00 6A 00 4B 00 6A 00 42 00 77 00 41 00
 55 00 53 00 30 00 48 00 6F 00 2F 00 30 00 65 00
 31 00 52 00 35 00 4D 00 32 00 77 00 37 00 74 00
 69 00 44 00 72 00 36 00 70 00 4D 00 63 00 75 00
 77 00 33 00 35 00 6B 00 41 00 41 00 61 00 62 00
 76 00 45 00 38 00 6F 00 55 00 45 00 71 00 2F 00
 50 00 45 00 75 00 4C 00 37 00 32 00 64 00 54 00
 74 00 64 00 4D 00 42 00 43 00 7A 00 46 00 37 00
 41 00 64 00 4A 00 6D 00 6E 00 70 00 45 00 68 00
 34 00 32 00 65 00 41 00 46 00 57 00 37 00 2F 00
 38 00 49 00 6A 00 41 00 53 00 6D 00 78 00 79 00
 50 00 30 00 30 00 71 00 59 00 64 00 76 00 65 00
 31 00 5A 00 6B 00 45 00 2F 00 58 00 6C 00 63 00
 4E 00 79 00 69 00 77 00 6F 00 55 00 76 00 54 00
 4E 00 4F 00 6B 00 74 00 42 00 45 00 4C 00 71 00
 76 00 37 00 58 00 4A 00 54 00 6F 00 47 00 71 00
 56 00 32 00 6F 00 6B 00 51 00 6E 00 2F 00 65 00
 63 00 50 00 41 00 78 00 32 00 71 00 6A 00 55 00
 57 00 74 00 6B 00 54 00 59 00 56 00 66 00 62 00
 72 00 51 00 58 00 78 00 76 00 4E 00 58 00 66 00
 69 00 72 00 77 00 47 00 57 00 63 00 43 00 45 00
 4B 00 79 00 46 00 64 00 76 00 35 00 62 00 78 00
 55 00 75 00 68 00 69 00 49 00 62 00 39 00 42 00
 55 00 56 00 54 00 56 00 4B 00 6A 00 57 00 51 00
 34 00 78 00 4E 00 46 00 4E 00 6B 00 43 00 33 00
 73 00 58 00 71 00 6F 00 46 00 52 00 31 00 49 00
 46 00 64 00 76 00 6A 00 4C 00 76 00 63 00 71 00
 71 00 38 00 70 00 47 00 69 00 54 00 64 00 51 00
 2F 00 76 00 37 00 6F 00 44 00 6B 00 38 00 78 00
 5A 00 42 00 6E 00 61 00 73 00 4C 00 36 00 71 00
 2F 00 62 00 38 00 36 00 73 00 5A 00 6C 00 2B 00
 55 00 35 00 77 00 69 00 4C 00 50 00 50 00 54 00
 68 00 67 00 4D 00 70 00 49 00 46 00 2F 00 42 00
 61 00 43 00 2F 00 72 00 45 00 4F 00 51 00 50 00
 6B 00 6B 00 63 00 51 00 4A 00 4F 00 56 00 54 00
 71 00 51 00 72 00 64 00 63 00 4B 00 4F 00 4D 00
 56 00 4E 00 4A 00 61 00 55 00 50 00 49 00 52 00
 33 00 64 00 2B 00 42 00 62 00 43 00 66 00 31 00
 6D 00 5A 00 62 00 7A 00 6F 00 6E 00 64 00 4F 00
 51 00 77 00 39 00 57 00 37 00 49 00 77 00 63 00
 6D 00 30 00 45 00 44 00 69 00 78 00 51 00 71 00
 70 00 41 00 74 00 61 00 75 00 63 00 42 00 48 00
 4F 00 33 00 46 00 75 00 37 00 6D 00 49 00 63 00
 69 00 78 00 46 00 39 00 67 00 53 00 2F 00 46 00
 4B 00 38 00 2F 00 37 00 6C 00 6E 00 78 00 34 00
 53 00 6E 00 33 00 5A 00 2F 00 51 00 7A 00 2B 00
 48 00 76 00 6A 00 4C 00 49 00 57 00 2F 00 76 00
 44 00 77 00 7A 00 77 00 44 00 5A 00 67 00 41 00
 41 00 43 00 4E 00 6D 00 73 00 64 00 34 00 65 00
 79 00 68 00 4E 00 49 00 75 00 59 00 41 00 47 00
 62 00 58 00 62 00 41 00 4B 00 51 00 37 00 63 00
 4A 00 66 00 31 00 6B 00 78 00 31 00 31 00 6D 00
 4E 00 42 00 49 00 34 00 79 00 42 00 44 00 36 00
 4E 00 4E 00 54 00 53 00 6F 00 63 00 75 00 46 00
 42 00 6A 00 4F 00 6B 00 2B 00 73 00 41 00 5A 00
 4C 00 35 00 5A 00 34 00 56 00 4E 00 32 00 4D 00

144 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 4C 00 71 00 49 00 35 00 71 00 38 00 58 00 54 00
 58 00 35 00 72 00 58 00 57 00 65 00 79 00 4B 00
 75 00 62 00 76 00 49 00 2F 00 59 00 2F 00 6D 00
 64 00 42 00 6A 00 64 00 4E 00 36 00 37 00 51 00
 57 00 49 00 72 00 75 00 65 00 73 00 4B 00 52 00
 56 00 65 00 32 00 35 00 31 00 31 00 54 00 6E 00
 42 00 58 00 46 00 62 00 70 00 53 00 47 00 6E 00
 42 00 4A 00 65 00 38 00 6F 00 31 00 4B 00 69 00
 50 00 55 00 70 00 55 00 4B 00 6A 00 48 00 74 00
 54 00 6D 00 75 00 34 00 36 00 4F 00 43 00 4F 00
 38 00 4A 00 49 00 62 00 48 00 47 00 6C 00 70 00
 4F 00 70 00 62 00 70 00 6E 00 50 00 49 00 73 00
 79 00 36 00 39 00 49 00 58 00 6B 00 45 00 7A 00
 67 00 38 00 64 00 36 00 34 00 43 00 74 00 65 00
 54 00 2F 00 61 00 63 00 73 00 35 00 68 00 4F 00
 72 00 62 00 32 00 44 00 73 00 44 00 6F 00 6E 00
 4A 00 71 00 65 00 6D 00 46 00 58 00 54 00 47 00
 6D 00 35 00 30 00 37 00 30 00 65 00 71 00 35 00
 74 00 75 00 6A 00 69 00 5A 00 75 00 43 00 52 00
 30 00 4C 00 54 00 36 00 62 00 59 00 49 00 76 00
 59 00 64 00 76 00 42 00 6D 00 70 00 52 00 6C 00
 31 00 33 00 38 00 41 00 53 00 42 00 32 00 58 00
 48 00 30 00 36 00 43 00 4B 00 39 00 33 00 55 00
 38 00 63 00 4F 00 54 00 38 00 68 00 68 00 6E 00
 6A 00 32 00 53 00 4D 00 49 00 61 00 2B 00 4B 00
 30 00 37 00 62 00 72 00 6F 00 66 00 43 00 50 00
 4B 00 35 00 37 00 51 00 66 00 43 00 4D 00 35 00
 32 00 4F 00 49 00 4B 00 33 00 2F 00 30 00 67 00
 70 00 6F 00 4C 00 41 00 6C 00 4A 00 6E 00 49 00
 56 00 59 00 72 00 45 00 6B 00 6B 00 41 00 6E 00
 47 00 59 00 79 00 70 00 52 00 34 00 45 00 34 00
 6F 00 4D 00 4D 00 33 00 63 00 48 00 32 00 38 00
 4D 00 42 00 4C 00 66 00 30 00 76 00 47 00 57 00
 2F 00 4D 00 62 00 6E 00 74 00 61 00 31 00 35 00
 47 00 37 00 47 00 72 00 71 00 76 00 54 00 41 00
 73 00 5A 00 30 00 78 00 42 00 6C 00 35 00 76 00
 38 00 74 00 44 00 31 00 4F 00 70 00 70 00 6B 00
 47 00 6D 00 2B 00 78 00 56 00 62 00 54 00 78 00
 49 00 6E 00 2F 00 31 00 7A 00 51 00 67 00 67 00
 32 00 71 00 54 00 4F 00 45 00 53 00 6D 00 6E 00
 63 00 49 00 4B 00 38 00 49 00 44 00 6A 00 46 00
 50 00 7A 00 79 00 59 00 31 00 71 00 38 00 45 00
 49 00 6A 00 38 00 39 00 52 00 72 00 2B 00 63 00
 6C 00 51 00 4C 00 33 00 62 00 76 00 39 00 69 00
 38 00 4F 00 34 00 68 00 77 00 66 00 43 00 62 00
 5A 00 51 00 65 00 63 00 38 00 59 00 4F 00 31 00
 4D 00 67 00 4F 00 5A 00 32 00 63 00 2B 00 5A 00
 74 00 39 00 45 00 55 00 54 00 67 00 31 00 78 00
 51 00 49 00 31 00 6A 00 49 00 71 00 76 00 2B 00
 65 00 47 00 63 00 62 00 47 00 50 00 66 00 47 00
 78 00 4C 00 4C 00 45 00 57 00 76 00 66 00 2B 00
 6A 00 54 00 71 00 58 00 63 00 6B 00 55 00 68 00
 79 00 4A 00 42 00 47 00 33 00 6D 00 41 00 45 00
 3D 00 26 00 70 00 3D 00 </BYTES>
 </L_VARBYTE>
 </FedAuthToken>
 <SignedData>
 <Nonce>
 <BYTES>DF 31 12 79 58 7C 0F CD
 2B ED 31 0D 8A 06 71 A7 C4 A6 DE BB 08 4F 37 12
 07 E2 E9 09 C7 B0 2A 1D </BYTES>
 </Nonce>
 <ChannelBindingToken>
 <BYTES>74 6C 73 2D 75 6E 69 71
 75 65 3A 20 87 E9 38 E3 2C 32 4F 6C F9 8E 5B </BYTES>
 </ChannelBindingToken>
 <Signature>
 <BYTES>0D
 40 B2 1B 57 0E AB FE EF 2F CD 58 DA 0F 7F BD 9C

145 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 D0 8B F2 15 85 F3 83 20 7C 22 F8 17 9A 95 8F </BYTES>
 </Signature>
 </SignedData>
 </FeatureData>
 </FeatureOpt>
 <TERMINATOR>
 <BYTE>FF </BYTE>
 </TERMINATOR>
 </FeatureExt>
 </Login7>
 </PacketData>

4.4 Login Response

Login response from the server to the client:

 04 01 01 61 00 00 01 00 E3 1B 00 01 06 6D 00 61
 00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00
 74 00 65 00 72 00 AB 58 00 45 16 00 00 02 00 25
 00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20
 00 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65
 00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74
 00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73
 00 74 00 65 00 72 00 27 00 2E 00 00 00 00 00 00
 00 E3 08 00 07 05 09 04 D0 00 34 00 E3 17 00 02
 0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69
 00 73 00 68 00 00 E3 13 00 04 04 34 00 30 00 39
 00 36 00 04 34 00 30 00 39 00 36 00 AB 5C 00 47
 16 00 00 01 00 27 00 43 00 68 00 61 00 6E 00 67
 00 65 00 64 00 20 00 6C 00 61 00 6E 00 67 00 75
 00 61 00 67 00 65 00 20 00 73 00 65 00 74 00 74
 00 69 00 6E 00 67 00 20 00 74 00 6F 00 20 00 75
 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73
 00 68 00 2E 00 00 00 00 00 00 00 AD 36 00 01 72
 09 00 02 16 4D 00 69 00 63 00 72 00 6F 00 73 00
 6F 00 66 00 74 00 20 00 53 00 51 00 4C 00 20 00
 53 00 65 00 72 00 76 00 65 00 72 00 00 00 00 00
 00 00 00 00 FD 00 00 00 00 00 00 00 00 00 00 00
 00

 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>01 </BYTE>
 <BYTE>61 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <ENVCHANGE>
 <TokenType>

146 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>1B 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>01 06 6D 00 61 00 73 00 74 00 65 00 72 00 06 6D 00 61 00
 73 00 74 00 65 00 72 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>58 00 </USHORT>
 </Length>
 <Number>
 <LONG>45 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>02 </BYTE>
 </State>
 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>25 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="C.h.a.n.g.e.d. .d.a.t.a.b.a.s.e. .c.o.n.t.e.x.t.
 .t.o. .'.m.a.s.t.e.r.'...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00
 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65 00 20 00 63 00 6F 00 6E 00 74
 00 65 00 78 00 74 00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73 00 74 00
 65 00 72 00 27 00 2E 00 </BYTES>
 </US_UNICODE>
 </MsgText>
 <ServerName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ServerName>
 <ProcName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ProcName>
 <LineNumber>
 <LONG>00 00 00 00 </LONG>
 </LineNumber>
 </INFO>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>08 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>07 05 09 04 D0 00 34 00 </BYTES>

147 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </EnvChangeData>
 </ENVCHANGE>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>17 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>02 0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73
 00 68 00 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>5C 00 </USHORT>
 </Length>
 <Number>
 <LONG>47 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>01 </BYTE>
 </State>
 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>27 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="C.h.a.n.g.e.d. .l.a.n.g.u.a.g.e. .s.e.t.t.i.n.g.
 .t.o. .u.s._.e.n.g.l.i.s.h...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20
 00 6C 00 61 00 6E 00 67 00 75 00 61 00 67 00 65 00 20 00 73 00 65 00 74 00
 74 00 69 00 6E 00 67 00 20 00 74 00 6F 00 20 00 75 00 73 00 5F 00 65 00 6E
 00 67 00 6C 00 69 00 73 00 68 00 2E 00 </BYTES>
 </US_UNICODE>
 </MsgText>
 <ServerName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ServerName>
 <ProcName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ProcName>
 <LineNumber>
 <LONG>00 00 00 00 </LONG>
 </LineNumber>
 </INFO>
 <LOGINACK>
 <TokenType>
 <BYTE>AD </BYTE>
 </TokenType>
 <Length>

148 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <USHORT>36 00 </USHORT>
 </Length>
 <Interface>
 <BYTE>01 </BYTE>
 </Interface>
 <TDSVersion>
 <DWORD>72 09 00 02 </DWORD>
 </TDSVersion>
 <ProgName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>16 </BYTE>
 </BYTELEN>
 <BYTES ascii="M.i.c.r.o.s.o.f.t. .S.Q.L. .S.e.r.v.e.r.....">4D
 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00 53 00 51 00 4C 00
 20 00 53 00 65 00 72 00 76 00 65 00 72 00 00 00 00 00 </BYTES>
 </B_UNICODE>
 </ProgName>
 <ProgVersion>
 <DWORD>00 00 00 00 </DWORD>
 </ProgVersion>
 </LOGINACK>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>13 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>04 04 34 00 30 00 39 00 36 00 04 34 00 30 00 39 00 36 00
 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>00 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>

4.5 Login Response with Federated Authentication Feature Extension

Acknowledgement

Login response from server to client, including the Feature Extension Acknowledgement token that

contains a federated authentication feature extension option:

 04 01 01 BC 01 4A 01 00 E3 1B 00 01 06 6D 00 61
 00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00
 74 00 65 00 72 00 AB 62 00 45 16 00 00 02 00 25
 00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20
 00 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65
 00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74
 00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73
 00 74 00 65 00 72 00 27 00 2E 00 05 63 00 6C 00
 6F 00 75 00 64 00 00 01 00 00 00 E3 08 00 07 05

149 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 09 04 D0 00 34 00 E3 17 00 02 0A 75 00 73 00 5F
 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 00 00
 AB 66 00 47 16 00 00 01 00 27 00 43 00 68 00 61
 00 6E 00 67 00 65 00 64 00 20 00 6C 00 61 00 6E
 00 67 00 75 00 61 00 67 00 65 00 20 00 73 00 65
 00 74 00 74 00 69 00 6E 00 67 00 20 00 74 00 6F
 00 20 00 75 00 73 00 5F 00 65 00 6E 00 67 00 6C
 00 69 00 73 00 68 00 2E 00 05 63 00 6C 00 6F 00
 75 00 64 00 00 01 00 00 00 AD 36 00 01 74 00 00
 04 16 4D 00 69 00 63 00 72 00 6F 00 73 00 6F 00
 66 00 74 00 20 00 53 00 51 00 4C 00 20 00 53 00
 65 00 72 00 76 00 65 00 72 00 00 00 00 00 0B 00
 08 CB E3 13 00 04 04 34 00 30 00 39 00 36 00 04
 34 00 30 00 39 00 36 00 AE 02 40 00 00 00 C9 08
 46 4E 58 49 0C 71 80 72 CD 69 F0 EC 3D E2 F6 ED
 75 8C 77 7D 9C B8 BB 87 4A 9C 90 80 A4 EE 40 B6
 07 71 0E A8 3C 0E D7 DE 14 DE F3 8B 65 C2 06 8C
 F9 51 D3 BC 32 55 15 A5 E4 A2 45 62 78 80 FF FD
 00 00 00 00 00 00 00 00 00 00 00 00

 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>01 </BYTE>
 <BYTE>BC </BYTE>
 </Length>
 <SPID>
 <BYTE>01 </BYTE>
 <BYTE>4A </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>1B 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>01 06 6D 00 61 00 73 00 74 00 65 00
 72 00 06 6D 00 61 00 73 00 74 00 65 00 72 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>62 00 </USHORT>
 </Length>
 <Number>
 <LONG>45 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>02 </BYTE>
 </State>

150 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>25 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="C.h.a.n.g.e.d. .d.a.t.a.b.a.s.e. .c.o.n.t.e.x.t.
 .t.o. .'.m.a.s.t.e.r.'...">
 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00
 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65 00
 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74 00
 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73 00
 74 00 65 00 72 00 27 00 2E 00 </BYTES>
 </US_UNICODE>
 </MsgText>
 <ServerName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>05 </BYTE>
 </BYTELEN>
 <BYTES ascii="c.l.o.u.d.">
 63 00 6C 00 6F 00 75 00 64 00 </BYTES>
 </B_UNICODE>
 </ServerName>
 <ProcName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ProcName>
 <LineNumber>
 <LONG>01 00 00 00
 </LineNumber>
 </INFO>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>08 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>07 05 09 04 D0 00 34 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>17 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>02 0A 75 00 73 00 5F
 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 00 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>66 00 </USHORT>
 </Length>

151 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <Number>
 <LONG>47 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>01 </BYTE>
 </State>
 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>27 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="C.h.a.n.g.e.d. .l.a.n.g.u.a.g.e. .s.e.t.t.i.n.g.
 .t.o. .u.s._.e.n.g.l.i.s.h...">
 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00
 6C 00 61 00 6E 00 67 00 75 00 61 00 67 00 65 00
 20 00 73 00 65 00 74 00 74 00 69 00 6E 00 67 00
 20 00 74 00 6F 00 20 00 75 00 73 00 5F 00 65 00
 6E 00 67 00 6C 00 69 00 73 00 68 00 2E 00 </BYTES>
 </US_UNICODE>
 </MsgText>
 <ServerName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>05 </Byte>
 </BYTELEN>
 <BYTES ascii="c.l.o.u.d.">
 63 00 6C 00 6F 00 75 00 64 00 </BYTES>
 </B_UNICODE>
 </ServerName>
 <ProcName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ProcName>
 <LineNumber>
 <LONG>01 00 00 00 </LONG>
 </LineNumber>
 </INFO>
 <LOGINACK>
 <TokenType>
 <BYTE>AD </BYTE>
 </TokenType>
 <Length>
 <USHORT>36 00 </USHORT>
 </Length>
 <Interface>
 <BYTE>01 </BYTE>
 </Interface>
 <TDSVersion>
 <DWORD>74 00 00 04 </DWORD>
 </TDSVersion>
 <ProgName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>16 </BYTE>
 </BYTELEN>
 <BYTES ascii="M.i.c.r.o.s.o.f.t. .S.Q.L. .S.e.r.v.e.r.....">4D
 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00 53 00 51 00 4C 00
 20 00 53 00 65 00 72 00 76 00 65 00 72 00 00 00 00 00 </BYTES>
 </B_UNICODE>
 </ProgName>
 <ProgVersion>

152 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <DWORD>0B 00 08 CB </DWORD>
 </ProgVersion>
 </LOGINACK>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>13 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>04 04 34 00 30 00 39 00 36 00 04 34 00 30 00 39 00 36 00
 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <FEATUREEXTACK>
 <TokenType>
 <BYTE>AE </BYTE>
 </TokenType>
 <FeatureAckOpt>
 <FeatureId>
 <BYTE>02 </BYTE>
 </FeatureId>
 <FeatureAckDataLen>
 <DWORD>40 00 00 00 </DWORD>
 </FeatureAckDataLen>
 <FeatureAckData>
 <Nonce>
 <BYTES>
 C9 08 46 4E 58 49 0C 71 80 72 CD 69 F0 EC 3D E2
 F6 ED 75 8C 77 7D 9C B8 BB 87 4A 9C 90 80 A4 EE </BYTES>
 </Nonce>
 <Signature>
 <BYTES>
 40 B6 07 71 0E A8 3C 0E D7 DE 14 DE F3 8B 65 C2
 06 8C F9 51 D3 BC 32 55 15 A5 E4 A2 45 62 78 80 </BYTES>
 </Signature>
 </FeatureAckData>
 </FeatureAckOpt>
 <FeatureAckOpt>
 <TERMINATOR>
 <BYTE>FF </BYTE>
 </TERMINATOR>
 </FeatureAckOpt>
 </FEATUREEXTACK>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>00 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>

4.6 SQL Batch Client Request

Client request sent from the client to the server:

153 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 01 01 00 5C 00 00 01 00 16 00 00 00 12 00 00 00
 02 00 00 00 00 00 00 00 00 01 00 00 00 00 0A 00
 73 00 65 00 6C 00 65 00 63 00 74 00 20 00 27 00
 66 00 6F 00 6F 00 27 00 20 00 61 00 73 00 20 00
 27 00 62 00 61 00 72 00 27 00 0A 00 20 00 20 00
 20 00 20 00 20 00 20 00 20 00 20 00

 <PacketHeader>
 <Type>
 <BYTE>01 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>5C </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <SQLBatch>
 <All_HEADERS>
 <TotalLength>
 <DWORD>16 00 00 00 </DWORD>
 </TotalLength>
 <Header>
 <HeaderLength>
 <DWORD>12 00 00 00 </DWORD>
 </HeaderLength>
 <HeaderType>
 <USHORT>02 00 </USHORT>
 </HeaderType>
 <HeaderData>
 <MARS>
 <TransactionDescriptor>
 <ULONGLONG>00 00 00 00 00 00 00 01 </ULONGLONG>
 </TransactionDescriptor>
 <OutstandingRequestCount>
 <DWORD>00 00 00 00 </DWORD>
 </OutstandingRequestCount>
 </MARS>
 </HeaderData>
 </Header>
 </All_HEADERS>
 <SQLText>
 <UNICODESTREAM>
 <BYTES>0A 00 73 00 65 00 6C 00 65 00 63 00 74 00 20 00 27 00 66
 00 6F 00 6F 00 27 00 20 00 61 00 73 00 20 00 27 00 62 00 61 00 72 00 27 00
 0A 00 20 00 20 00 20 00 20 00 20 00 20 00 20 00 20 00 </BYTES>
 </UNICODESTREAM>
 </SQLText>
 </SQLBatch>
 </PacketData>

4.7 SQL Batch Server Response

Server response sent from the server to the client:

154 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 04 01 00 33 00 00 01 00 81 01 00 00 00 00 00 20
 00 A7 03 00 09 04 D0 00 34 03 62 00 61 00 72 00
 D1 03 00 66 6F 6F FD 10 00 C1 00 01 00 00 00 00
 00 00 00

 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>33 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <COLMETADATA>
 <TokenType>
 <BYTE>81 </BYTE>
 </TokenType>
 <Count>
 <USHORT>01 00 </USHORT>
 </Count>
 <ColumnData>
 <UserType>
 <ULONG>00 00 00 00 </ULONG>
 </UserType>
 <Flags>
 <USHORT>20 00 </USHORT>
 </Flags>
 <TYPE_INFO>
 <VARLENTYPE>
 <USHORTLEN_TYPE>
 <BYTE>A7 </BYTE>
 </USHORTLEN_TYPE>
 </VARLENTYPE>
 <TYPE_VARLEN>
 <USHORTCHARBINLEN>
 <USHORT>03 00 </USHORT>
 </USHORTCHARBINLEN>
 </TYPE_VARLEN>
 <COLLATION>
 <BYTES>09 04 D0 00 34 </BYTES>
 </COLLATION>
 </TYPE_INFO>
 <ColName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>03 </BYTE>
 </BYTELEN>
 <BYTES ascii="b.a.r.">62 00 61 00 72 00 </BYTES>
 </B_UNICODE>
 </ColName>
 </ColumnData>
 </COLMETADATA>
 <ROW>

155 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <TokenType>
 <BYTE>D1 </BYTE>
 </TokenType>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <USHORTCHARBINLEN>
 <USHORT>03 00 </USHORT>
 </USHORTCHARBINLEN>
 </TYPE_VARLEN>
 <BYTES ascii="fio">66 6F 6F </BYTES>
 </TYPE_VARBYTE>
 </ROW>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>10 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>

4.8 RPC Client Request

RPC request sent from the client to the server:

 03 01 00 2F 00 00 01 00 16 00 00 00 12 00 00 00
 02 00 00 00 00 00 00 00 00 01 00 00 00 00 04 00
 66 00 6F 00 6F 00 33 00 00 00 00 02 26 02 00

 <PacketHeader>
 <Type>
 <BYTE>03 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>2F </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <RPCRequest>
 <All_HEADERS>
 <TotalLength>
 <DWORD>16 00 00 00 </DWORD>
 </TotalLength>
 <Header>

156 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <HeaderLength>
 <DWORD>12 00 00 00 </DWORD>
 </HeaderLength>
 <HeaderType>
 <USHORT>02 00 </USHORT>
 </HeaderType>
 <HeaderData>
 <MARS>
 <TransactionDescriptor>
 <ULONGLONG>00 00 00 00 00 00 00 01 </ULONGLONG>
 </TransactionDescriptor>
 <OutstandingRequestCount>
 <DWORD>00 00 00 00 </DWORD>
 </OutstandingRequestCount>
 </MARS>
 </HeaderData>
 </Header>
 </All_HEADERS>
 <RPCReqBatch>
 <NameLenProcID>
 <ProcName>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>04 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="f.o.o.3.">66 00 6F 00 6F 00 33 00 </BYTES>
 </US_UNICODE>
 </ProcName>
 </NameLenProcID>
 <OptionFlags>
 <fWithRecomp>
 <BIT>0</BIT>
 </fWithRecomp>
 <fNoMetaData>
 <BIT>0</BIT>
 </fNoMetaData>
 <fReuseMetaData>
 <BIT>false</BIT>
 </fReuseMetaData>
 </OptionFlags>
 <ParameterData>
 <ParamMetaData>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 <StatusFlags>
 <fByRefValue>
 <BIT>0</BIT>
 </fByRefValue>
 <fDefaultValue>
 <BIT>1</BIT>
 </fDefaultValue>
 </StatusFlags>
 <TYPE_INFO>
 <VARLENTYPE>
 <BYTELEN_TYPE>
 <BYTE>26 </BYTE>
 </BYTELEN_TYPE>
 </VARLENTYPE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>02 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 </TYPE_INFO>

157 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </ParamMetaData>
 <ParamLenData>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>
 </BYTES>
 </TYPE_VARBYTE>
 </ParamLenData>
 </ParameterData>
 </RPCReqBatch>
 </RPCRequest>
 </PacketData>

4.9 RPC Server Response

RPC response sent from the server to the client:

 04 01 00 27 00 00 01 00 FF 11 00 C1 00 01 00 00
 00 00 00 00 00 79 00 00 00 00 FE 00 00 E0 00 00
 00 00 00 00 00 00 00

 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>27 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <RETURNSTATUS>
 <TokenType>
 <BYTE>79 </BYTE>

158 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </TokenType>
 <VALUE>
 <LONG>00 00 00 00 </LONG>
 </VALUE>
 </RETURNSTATUS>
 <DONEPROC>
 <TokenType>
 <BYTE>FE </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>E0 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEPROC>
 </TableResponse>
 </PacketData>

4.10 Attention Request

 Attention request sent from client to server:

 06 01 00 08 00 00 01 00

 <PacketHeader>
 <Type>
 <BYTE>06</BYTE>
 </Type>
 <Status>
 <BYTE>01</BYTE>
 </Status>
 <Length>
 <BYTE>00</BYTE>
 <BYTE>08</BYTE>
 </Length>
 <SPID>
 <BYTE>00</BYTE>
 <BYTE>00</BYTE>
 </SPID>
 <Packet>
 <BYTE>01</BYTE>
 </Packet>
 <Window>
 <BYTE>00</BYTE>
 </Window>
 </PacketHeader>

4.11 SSPI Message

SSPI message carrying SSPI payload sent from client to server:

 11 01 00 60 00 00 01 00 4E 54 4C 4D 53 53 50 00
 03 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00
 58 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00
 58 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00
 58 00 00 00 15 C2 88 E2 06 00 71 17 00 00 00 0F
 30 81 C1 7D 59 5F E9 3E 1A 7C 98 05 01 72 5C 4F

159 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <PacketHeader>
 <Type>
 <BYTE>11 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>60 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <SSPI>
 <BYTES>4E 54 4C 4D 53 53 50 00 03 00 00 00 00 00 00 00 58 00 00 00 00
 00 00 00 58 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00 58 00 00 00 00
 00 00 58 00 00 00 00 00 00 00 58 00 00 00 15 C2 88 E2 06 00 71 17 00 00
 0F 30 81 C1 7D 59 5F E9 3E 1A 7C 98 05 01 72 5C 4F </BYTES>
 </SSPI>
 </PacketData>

4.12 Bulk Load

BULKLOADBCP request sent from client to server:

 07 01 00 26 00 00 01 00 81 01 00 00 00 00 00 05
 00 32 02 63 00 31 00 D1 00 FD 00 00 00 00 00 00
 00 00 00 00 00 00

 <PacketHeader>
 <Type>
 <BYTE>07 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>26 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <BulkLoadBCP>
 <COLMETADATA>
 <TokenType>

160 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>81 </BYTE>
 </TokenType>
 <Count>
 <USHORT>01 00 </USHORT>
 </Count>
 <ColumnData>
 <UserType>
 <ULONG>00 00 00 00 </ULONG>
 </UserType>
 <Flags>
 <USHORT>05 00 </USHORT>
 </Flags>
 <TYPE_INFO>
 <FIXEDLENTYPE>
 <BYTE>32 </BYTE>
 </FIXEDLENTYPE>
 </TYPE_INFO>
 <ColName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>02 </BYTE>
 </BYTELEN>
 <BYTES ascii="c.1.">63 00 31 00 </BYTES>
 </B_UNICODE>
 </ColName>
 </ColumnData>
 </COLMETADATA>
 <ROW>
 <TokenType>
 <BYTE>D1 </BYTE>
 </TokenType>
 <TYPE_VARBYTE>
 <BYTES>00 </BYTES>
 </TYPE_VARBYTE>
 </ROW>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>00 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 </BulkLoadBCP>
 </PacketData>

4.13 Transaction Manager Request

Transaction Manager Request sent from client to server:

 0E 01 00 20 00 00 01 00 16 00 00 00
 12 00 00 00 02 00 00 00 00 00 00 00
 00 00 00 00 00 01 06 00

 <PacketHeader>
 <Type>
 <BYTE>0E </BYTE>
 </Type>
 <Status>

161 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>20 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TransMgrReq>
 <All_HEADERS>
 <TotalLength>
 <DWORD>16 00 00 00 </DWORD>
 </TotalLength>
 <Header>
 <HeaderLength>
 <DWORD>12 00 00 00 </DWORD>
 </HeaderLength>
 <HeaderType>
 <USHORT>02 00 </USHORT>
 </HeaderType>
 <HeaderData>
 <MARS>
 <TransactionDescriptor>
 <ULONGLONG>00 00 00 00 00 00 00 01 </ULONGLONG>
 </TransactionDescriptor>
 <OutstandingRequestCount>
 <DWORD>00 00 00 00 </DWORD>
 </OutstandingRequestCount>
 </MARS>
 </HeaderData>
 </Header>
 </All_HEADERS>
 <RequestType>
 <USHORT>16 00 </USHORT>
 </RequestType>
 <RequestPayload>
 <TM_PROMOTE_XACT>
 </TM_PROMOTE_XACT>
 </RequestPayload>
 </TransMgrReq>
 </PacketData>

4.14 TVP Insert Statement

TVP insert statement sent from client to server:

 03 01 00 52 00 00 01 00 16 00 00 00
 12 00 00 00 02 00 00 00 00 00 00 00
 00 00 00 00 00 01 03 00 66 00 6F 00
 6F 00 00 00 00 00 F3 00 03 64 00 62
 00 6F 00 07 74 00 76 00 70 00 74 00
 79 00 70 00 65 00 01 00 00 00 00 00
 00 00 26 01 00 00 01 01 02 00

162 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <tds version="katmai">
 <PacketData>
 <RPCRequest>
 <RPCReqBatch>
 <NameLenProcID>
 <ProcName>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>03 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="f.o.o.">66 00 6F 00 6F 00 </BYTES>
 </US_UNICODE>
 </ProcName>
 </NameLenProcID>
 <OptionFlags>
 <fWithRecomp>
 <BIT>false</BIT>
 </fWithRecomp>
 <fNoMetaData>
 <BIT>false</BIT>
 </fNoMetaData>
 <fReuseMetaData>
 <BIT>false</BIT>
 </fResuseMetaData>
 </OptionFlags>
 <ParameterData>
 <ParamMetaData>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 <StatusFlags>
 <fByRefValue>
 <BIT>false</BIT>
 </fByRefValue>
 <fDefaultValue>
 <BIT>false</BIT>
 </fDefaultValue>
 <fCookie>
 <BIT>false</BIT>
 </fCookie>
 </StatusFlags>
 <TYPE_INFO>
 <TVP_TYPE_INFO>
 <TVP_TYPE>
 <BYTE>F3 </BYTE>
 </TVP_TYPE>
 <TVP_TYPE_NAME>
 <DbName>
 <B_UNICODE></B_UNICODE>
 </DbName>
 <OwningSchema>
 <B_UNICODE>dbo</B_UNICODE>
 </OwningSchema>
 <TypeName>
 <B_UNICODE>tvptype</B_UNICODE>
 </TypeName>
 </TVP_TYPE_NAME>
 <TVP_COLMETADATA>
 <Count>
 <USHORT>01 00 </USHORT>
 </Count>
 <TvpColumnMetaData>
 <UserType>
 <ULONG>00 00 00 00 </ULONG>
 </UserType>

163 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <Flags>
 <USHORT>00 00 </USHORT>
 </Flags>
 <TYPE_INFO>
 <VARLENTYPE>
 <BYTELEN_TYPE>
 <BYTE>26 </BYTE>
 </BYTELEN_TYPE>
 </VARLENTYPE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>01 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 </TYPE_INFO>
 <ColName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ColName>
 </TvpColumnMetaData>
 </TVP_COLMETADATA>
 <TVP_END_TOKEN>
 <TokenType>
 <BYTE>00 </BYTE>
 </TokenType>
 </TVP_END_TOKEN>
 <TVP_ROW>
 <TokenType>
 <BYTE>01 </BYTE>
 </TokenType>
 <AllColumnData>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>01</BYTE>
 </BYTELEN>
 <BYTES>02</BYTES>
 </TYPE_VARLEN>
 </TYPE_VARBYTE>
 </AllColumnData>
 </TVP_ROW>
 <TVP_END_TOKEN>
 <TokenType>
 <BYTE>00 </BYTE>
 </TokenType>
 </TVP_END_TOKEN>
 </TVP_TYPE_INFO>
 </TYPE_INFO>
 </ParamMetaData>
 <ParamLenData>
 </ParamLenData>
 </ParameterData>
 </RPCReqBatch>
 </RPCRequest>
 </PacketData>
 </tds>

4.15 SparseColumn Select Statement

SparseColumn select statement sent from client to server:

164 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 04 01 01 B9 00 00 01 00 81 02 00 00 00 00 00 09 00
 26 04 02 69 00 64 00 00 00 00 00 0B 04 F1 00 11 73
 00 70 00 61 00 72 00 73 00 65 00 50 00 72 00 6F 00
 70 00 65 00 72 00 74 00 79 00 53 00 65 00 74 00 D1
 04 01 00 00 00 FE FF FF FF FF FF FF FF 7A 00 00 00
 3C 00 73 00 70 00 61 00 72 00 73 00 65 00 50 00 72
 00 6F 00 70 00 31 00 3E 00 31 00 30 00 30 00 30 00
 3C 00 2F 00 73 00 70 00 61 00 72 00 73 00 65 00 50
 00 72 00 6F 00 70 00 31 00 3E 00 3C 00 73 00 70 00
 61 00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32
 00 3E 00 66 00 6F 00 6F 00 3C 00 2F 00 73 00 70 00
 61 00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32
 00 3E 00 00 00 00 00 D1 04 02 00 00 00 FE FF FF FF
 FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61 00 72
 00 73 00 65 00 50 00 72 00 6F 00 70 00 31 00 3E 00
 31 00 30 00 30 00 30 00 3C 00 2F 00 73 00 70 00 61
 00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 31
 00 3E 00 00 00 00 00 D1 04 03 00 00 00 FE FF FF
 FF FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61
 00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32
 00 3E 00 61 00 62 00 63 00 64 00 3C 00 2F 00 73
 00 70 00 61 00 72 00 73 00 65 00 50 00 72 00 6F
 00 70 00 32 00 3E 00 00 00 00 00 FD 10 00 C1 00
 0A 00 00 00 00 00 00 00

 <tds version="katmai">
 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>01 </BYTE>
 <BYTE>B9 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <COLMETADATA>
 <TokenType>
 <BYTE>81 </BYTE>
 </TokenType>
 <Count>
 <USHORT>02 00 </USHORT>
 </Count>
 <ColumnData>
 <UserType>
 <ULONG>00 00 00 00 </ULONG>
 </UserType>
 <Flags>
 <USHORT>09 00 </USHORT>
 </Flags>
 <TYPE_INFO>
 <VARLENTYPE>
 <BYTELEN_TYPE>

165 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>26 </BYTE>
 </BYTELEN_TYPE>
 </VARLENTYPE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 </TYPE_INFO>
 <ColName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>02 </BYTE>
 </BYTELEN>
 <BYTES ascii="i.d.">69 00 64 00 </BYTES>
 </B_UNICODE>
 </ColName>
 </ColumnData>
 <ColumnData>
 <UserType>
 <ULONG>00 00 00 00 </ULONG>
 </UserType>
 <Flags fSparseColumn="true">
 <USHORT>0B 04 </USHORT>
 </Flags>
 <TYPE_INFO>
 <VARLENTYPE>
 <USHORTLEN_TYPE>
 <BYTE>F1 </BYTE>
 </USHORTLEN_TYPE>
 </VARLENTYPE>
 <XML_INFO>
 <SCHEMA_PRESENT>
 <BYTE>00 </BYTE>
 </SCHEMA_PRESENT>
 </XML_INFO>
 </TYPE_INFO>
 <ColName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>11 </BYTE>
 </BYTELEN>
 <BYTES ascii="s.p.a.r.s.e.P.r.o.p.e.r.t.y.S.e.t.">73 00 70 00 61 00 72 00 73 00
65 00 50 00 72 00 6F 00 70 00 65 00 72 00 74 00 79 00 53 00 65 00 74 00 </BYTES>

 </B_UNICODE>
 </ColName>
 </ColumnData>
 </COLMETADATA>
 <ROW>
 <TokenType>
 <BYTE>D1 </BYTE>
 </TokenType>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>01 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 <TYPE_VARBYTE>
 <BYTES>FE FF FF FF FF FF FF FF 7A 00 00 00 3C 00 73 00 70 00 61 00 72 00 73 00 65
00 50 00 72 00 6F 00 70 00 31 00 3E 00 31 00 30 00 30 00 30 00 3C 00 2F 00 73 00 70 00 61 00

72 00 73 00 65 00 50 00 72 00 6F 00 70 00 31 00 3E 00 3C 00 73 00 70 00 61 00 72 00 73 00 65

00 50 00 72 00 6F 00 70 00 32 00 3E 00 66 00 6F 00 6F 00 3C 00 2F 00 73 00 70 00 61 00 72 00

73 00 65 00 50 00 72 00 6F 00 70 00 32 00 3E 00 00 00 00 00 </BYTES>

 </TYPE_VARBYTE>
 </ROW>
 <ROW>

166 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <TokenType>
 <BYTE>D1 </BYTE>
 </TokenType>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>02 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 <TYPE_VARBYTE>
 <BYTES>FE FF FF FF FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61 00 72 00 73 00 65
00 50 00 72 00 6F 00 70 00 31 00 3E 00 31 00 30 00 30 00 30 00 3C 00 2F 00 73 00 70 00 61 00

72 00 73 00 65 00 50 00 72 00 6F 00 70 00 31 00 3E 00 00 00 00 00 </BYTES>

 </TYPE_VARBYTE>
 </ROW>
 <ROW>
 <TokenType>
 <BYTE>D1 </BYTE>
 </TokenType>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>03 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 <TYPE_VARBYTE>
 <BYTES>FE FF FF FF FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61 00 72 00 73 00 65
00 50 00 72 00 6F 00 70 00 32 00 3E 00 61 00 62 00 63 00 64 00 3C 00 2F 00 73 00 70 00 61 00

72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32 00 3E 00 00 00 00 00 </BYTES>

 </TYPE_VARBYTE>
 </ROW>
 <NBCROW>
 <TokenType>
 <BYTE>D2 </BYTE>
 </TokenType>
 <NBCBitMap>
 <BYTES>02 </BYTES>
 </NBCBitMap>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>04 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </NBCROW>
 <NBCROW>
 <TokenType>
 <BYTE>D2 </BYTE>
 </TokenType>
 <NBCBitMap>
 <BYTES>02 </BYTES>
 </NBCBitMap>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>05 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </NBCROW>
 <NBCROW>
 <TokenType>

167 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>D2 </BYTE>
 </TokenType>
 <NBCBitMap>
 <BYTES>02 </BYTES>
 </NBCBitMap>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>06 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </NBCROW>
 <NBCROW>
 <TokenType>
 <BYTE>D2 </BYTE>
 </TokenType>
 <NBCBitMap>
 <BYTES>02 </BYTES>
 </NBCBitMap>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>07 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </NBCROW>
 <NBCROW>
 <TokenType>
 <BYTE>D2 </BYTE>
 </TokenType>
 <NBCBitMap>
 <BYTES>02 </BYTES>
 </NBCBitMap>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>08 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </NBCROW>
 <NBCROW>
 <TokenType>
 <BYTE>D2 </BYTE>
 </TokenType>
 <NBCBitMap>
 <BYTES>02 </BYTES>
 </NBCBitMap>
 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>09 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </NBCROW>
 <NBCROW>
 <TokenType>
 <BYTE>D2 </BYTE>
 </TokenType>
 <NBCBitMap>
 <BYTES>02 </BYTES>
 </NBCBitMap>

168 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <TYPE_VARBYTE>
 <TYPE_VARLEN>
 <BYTELEN>
 <BYTE>04 </BYTE>
 </BYTELEN>
 </TYPE_VARLEN>
 <BYTES>0A 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </NBCROW>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>10 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>0A 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>
 </tds>

4.16 FeatureExt with SESSIONRECOVERY Feature Data

A login message that contains FeatureExt data for the SESSIONRECOVERY feature:

 10 01 01 0D 00 00 01 00 05 01 00 00 04 00 00 74
 00 10 00 00 00 00 00 07 00 01 00 00 00 00 00 00
 E0 03 00 10 E0 01 00 00 09 04 00 00 5E 00 00 00
 5E 00 02 00 62 00 08 00 72 00 07 00 80 00 00 00
 80 00 04 00 84 00 04 00 8C 00 00 00 8C 00 06 00
 00 50 8B E2 B7 8F 98 00 00 00 98 00 00 00 98 00
 00 00 00 00 00 00 73 00 61 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 4F 00 53 00 51 00
 4C 00 2D 00 33 00 32 00 98 00 00 00 4F 00 44 00
 42 00 43 00 74 00 65 00 6D 00 70 00 64 00 62 00
 01 67 00 00 00 56 00 00 00 06 6D 00 61 00 73 00
 74 00 65 00 72 00 05 09 04 D0 00 34 0A 75 00 73
 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68
 00 00 09 00 60 81 14 FF E7 FF FF 00 02 02 07 01
 04 01 00 05 04 FF FF FF FF 06 01 00 07 01 02 08
 08 00 00 00 00 00 00 00 00 09 04 FF FF FF FF 09
 00 00 00 00 00 00 09 04 28 23 00 00 FF

 <tds version="latest">
 <PacketHeader>
 <Type>
 <BYTE>10 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>01 </BYTE>
 <BYTE>0D </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>

169 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <Login7>
 <Length>
 <DWORD>05 01 00 00 </DWORD>
 </Length>
 <TDSVersion>
 <DWORD>04 00 00 74 </DWORD>
 </TDSVersion>
 <PacketSize>
 <DWORD>00 10 00 00 </DWORD>
 </PacketSize>
 <ClientProgVer>
 <DWORD>00 00 00 07 </DWORD>
 </ClientProgVer>
 <ClientPID>
 <DWORD>00 01 00 00 </DWORD>
 </ClientPID>
 <ConnectionID>
 <DWORD>00 00 00 00 </DWORD>
 </ConnectionID>
 <OptionFlags1>
 <BYTE>E0 </BYTE>
 </OptionFlags1>
 <OptionFlags2>
 <BYTE>03 </BYTE>
 </OptionFlags2>
 <TypeFlags>
 <BYTE>00 </BYTE>
 </TypeFlags>
 <OptionFlags3>
 <BYTE>10 </BYTE>
 </OptionFlags3>
 <ClientTimZone>
 <DWORD>E0 01 00 00 </DWORD>
 </ClientTimZone>
 <ClientLCID>
 <DWORD>09 04 00 00 </DWORD>
 </ClientLCID>
 <OffsetLength>
 <ibHostName>
 <USHORT>5E 00 </USHORT>
 </ibHostName>
 <cchHostName>
 <USHORT>00 00 </USHORT>
 </cchHostName>
 <ibUserName>
 <USHORT>5E 00 </USHORT>
 </ibUserName>
 <cchUserName>
 <USHORT>02 00 </USHORT>
 </cchUserName>
 <ibPassword>
 <USHORT>62 00 </USHORT>
 </ibPassword>
 <cchPassword>
 <USHORT>08 00 </USHORT>
 </cchPassword>
 <ibAppName>
 <USHORT>72 00 </USHORT>
 </ibAppName>
 <cchAppName>
 <USHORT>07 00 </USHORT>

170 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </cchAppName>
 <ibServerName>
 <USHORT>80 00 </USHORT>
 </ibServerName>
 <cchServerName>
 <USHORT>00 00 </USHORT>
 </cchServerName>
 <ibExtension>
 <USHORT>80 00 </USHORT>
 </ibExtension>
 <cbExtension>
 <USHORT>04 00 </USHORT>
 </cbExtension>
 <ibCltIntName>
 <USHORT>84 00 </USHORT>
 </ibCltIntName>
 <cchCltIntName>
 <USHORT>04 00 </USHORT>
 </cchCltIntName>
 <ibLanguage>
 <USHORT>8C 00 </USHORT>
 </ibLanguage>
 <cchLanguage>
 <USHORT>00 00 </USHORT>
 </cchLanguage>
 <ibDatabase>
 <USHORT>8C 00 </USHORT>
 </ibDatabase>
 <cchDatabase>
 <USHORT>06 00 </USHORT>
 </cchDatabase>
 <ClientID>
 <BYTES>00 50 8B E2 B7 8F </BYTES>
 </ClientID>
 <ibSSPI>
 <USHORT>98 00 </USHORT>
 </ibSSPI>
 <cbSSPI>
 <USHORT>00 00 </USHORT>
 </cbSSPI>
 <ibAtchDBFile>
 <USHORT>98 00 </USHORT>
 </ibAtchDBFile>
 <cchAtchDBFile>
 <USHORT>00 00 </USHORT>
 </cchAtchDBFile>
 <ibChangePassword>
 <USHORT>98 00 </USHORT>
 </ibChangePassword>
 <cchChangePassword>
 <USHORT>00 00 </USHORT>
 </cchChangePassword>
 <cbSSPILong>
 <LONG>00 00 00 00 </LONG>
 </cbSSPILong>
 </OffsetLength>
 <Data>
 <BYTES>73 00 61 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4F 00 53 00 51 00
4C 00 2D 00 33 00 32 00 98 00 00 00 4F 00 44 00 42 00 43 00 74 00 65 00 6D 00 70 00 64 00 62

00 </BYTES>

 </Data>
 <FeatureExt>
 <FeatureOpt>
 <FeatureId>
 <BYTE>01 </BYTE>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>67 00 00 00 </DWORD>
 </FeatureDataLen>

171 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <FeatureData>
 <InitSessionRecoveryData>
 <Length>
 <DWORD>56 00 00 00 </DWORD>
 </Length>
 <RecoveryDatabase>
 <B_VARCHAR>
 <BYTE>06 </BYTE>
 <BYTES ascii="m.a.s.t.e.r.">6D 00 61 00 73 00 74 00 65 00 72 00 </BYTES>
 </B_VARCHAR>
 </RecoveryDatabase>
 <RecoveryCollation>
 <BYTELEN>
 <BYTE>05 </BYTE>
 </BYTELEN>
 <BYTES>09 04 D0 00 34 </BYTES>
 </RecoveryCollation>
 <RecoveryLanguage>
 <B_VARCHAR>
 <BYTE>0A </BYTE>
 <BYTES ascii="u.s._.e.n.g.l.i.s.h.">75 00 73 00 5F 00 65 00 6E 00 67 00 6C
00 69 00 73 00 68 00 </BYTES>

 </B_VARCHAR>
 </RecoveryLanguage>
 <SessionStateDataSet>
 <SessionStateData>
 <StateId>
 <BYTE>00 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>09 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>00 60 81 14 FF E7 FF FF 00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>02 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>02 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>07 01 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>04 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>01 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>05 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>04 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>FF FF FF FF </BYTES>
 </StateValue>
 </SessionStateData>

172 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <SessionStateData>
 <StateId>
 <BYTE>06 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>01 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>07 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>01 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>02 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>08 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>08 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>00 00 00 00 00 00 00 00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>09 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>04 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>FF FF FF FF </BYTES>
 </StateValue>
 </SessionStateData>
 </SessionStateDataSet>
 </InitSessionRecoveryData>
 <SessionRecoveryDataToBe>
 <Length>
 <DWORD>09 00 00 00 </DWORD>
 </Length>
 <RecoveryDatabase>
 <B_VARCHAR>
 <BYTE>00 </BYTE>
 <BYTES ascii="">
 </BYTES>
 </B_VARCHAR>
 </RecoveryDatabase>
 <RecoveryCollation>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES>
 </BYTES>
 </RecoveryCollation>
 <RecoveryLanguage>
 <B_VARCHAR>
 <BYTE>00 </BYTE>
 <BYTES ascii="">
 </BYTES>

173 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </B_VARCHAR>
 </RecoveryLanguage>
 <SessionStateDataSet>
 <SessionStateData>
 <StateId>
 <BYTE>09 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>04 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>28 23 00 00 </BYTES>
 </StateValue>
 </SessionStateData>
 </SessionStateDataSet>
 </SessionRecoveryDataToBe>
 </FeatureData>
 </FeatureOpt>
 <FeatureOpt>
 <TERMINATOR>
 <BYTE>FF </BYTE>
 </TERMINATOR>
 </FeatureOpt>
 </FeatureExt>
 </Login7>
 </PacketData>
 </tds>

4.17 FeatureExtAck with SESSIONRECOVERY Feature Data

A login response message that contains FeatureExtAck data for the SESSIONRECOVERY feature:

 04 01 01 96 00 34 01 00 E3 1B 00 01 06 6D 00 61
 00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00
 74 00 65 00 72 00 AB 58 00 45 16 00 00 02 00 25
 00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20
 00 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65
 00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74
 00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73
 00 74 00 65 00 72 00 27 00 2E 00 00 00 00 00 00
 00 E3 08 00 07 05 09 04 D0 00 34 00 E3 17 00 02
 0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69
 00 73 00 68 00 00 AB 5C 00 47 16 00 00 01 00 27
 00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20
 00 6C 00 61 00 6E 00 67 00 75 00 61 00 67 00 65
 00 20 00 73 00 65 00 74 00 74 00 69 00 6E 00 67
 00 20 00 74 00 6F 00 20 00 75 00 73 00 5F 00 65
 00 6E 00 67 00 6C 00 69 00 73 00 68 00 2E 00 00
 00 00 00 00 00 AD 36 00 01 74 00 00 04 16 4D 00
 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00
 20 00 53 00 51 00 4C 00 20 00 53 00 65 00 72 00
 76 00 65 00 72 00 00 00 00 00 0B 00 08 C3 E3 13
 00 04 04 34 00 30 00 39 00 36 00 04 34 00 30 00
 39 00 36 00 AE 01 2E 00 00 00 00 09 00 60 81 14
 FF E7 FF FF 00 02 02 07 01 04 01 00 05 04 FF FF
 FF FF 06 01 00 07 01 02 08 08 00 00 00 00 00 00
 00 00 09 04 28 23 00 00 FF FD 00 00 00 00 00 00
 00 00 00 00 00 00

 <tds version="latest">
 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>

174 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>01 </BYTE>
 <BYTE>96 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>1B 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>01 06 6D 00 61 00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00 74 00 65 00
72 00 </BYTES>

 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>58 00 </USHORT>
 </Length>
 <Number>
 <LONG>45 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>02 </BYTE>
 </State>
 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>25 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="C.h.a.n.g.e.d. .d.a.t.a.b.a.s.e. .c.o.n.t.e.x.t. .t.o.
.'.m.a.s.t.e.r.'...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00 64 00 61 00 74 00 61 00

62 00 61 00 73 00 65 00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74 00 20 00 74 00 6F 00 20

00 27 00 6D 00 61 00 73 00 74 00 65 00 72 00 27 00 2E 00 </BYTES>

 </US_UNICODE>
 </MsgText>
 <ServerName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ServerName>
 <ProcName>
 <B_UNICODE>

175 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ProcName>
 <LineNumber>
 <LONG>00 00 00 00 </LONG>
 </LineNumber>
 </INFO>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>08 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>07 05 09 04 D0 00 34 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>17 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>02 0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 00 00
</BYTES>

 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>5C 00 </USHORT>
 </Length>
 <Number>
 <LONG>47 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>01 </BYTE>
 </State>
 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_UNICODE>
 <USHORTLEN>
 <USHORT>27 00 </USHORT>
 </USHORTLEN>
 <BYTES ascii="C.h.a.n.g.e.d. .l.a.n.g.u.a.g.e. .s.e.t.t.i.n.g. .t.o.
.u.s._.e.n.g.l.i.s.h...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00 6C 00 61 00 6E 00 67

00 75 00 61 00 67 00 65 00 20 00 73 00 65 00 74 00 74 00 69 00 6E 00 67 00 20 00 74 00 6F 00

20 00 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 00 2E 00 </BYTES>

 </US_UNICODE>
 </MsgText>
 <ServerName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>

176 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </ServerName>
 <ProcName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>00 </BYTE>
 </BYTELEN>
 <BYTES ascii="">
 </BYTES>
 </B_UNICODE>
 </ProcName>
 <LineNumber>
 <LONG>00 00 00 00 </LONG>
 </LineNumber>
 </INFO>
 <LOGINACK>
 <TokenType>
 <BYTE>AD </BYTE>
 </TokenType>
 <Length>
 <USHORT>36 00 </USHORT>
 </Length>
 <Interface>
 <BYTE>01 </BYTE>
 </Interface>
 <TDSVersion>
 <DWORD>FILTERED LATEST VERSION</DWORD>
 </TDSVersion>
 <ProgName>
 <B_UNICODE>
 <BYTELEN>
 <BYTE>16 </BYTE>
 </BYTELEN>
 <BYTES ascii="M.i.c.r.o.s.o.f.t. .S.Q.L. .S.e.r.v.e.r.....">4D 00 69 00 63 00 72
00 6F 00 73 00 6F 00 66 00 74 00 20 00 53 00 51 00 4C 00 20 00 53 00 65 00 72 00 76 00 65 00

72 00 00 00 00 00 </BYTES>

 </B_UNICODE>
 </ProgName>
 <ProgVersion>
 <DWORD>00 00 00 00 </DWORD>
 </ProgVersion>
 </LOGINACK>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>13 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>04 04 34 00 30 00 39 00 36 00 04 34 00 30 00 39 00 36 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <FEATUREEXTACK>
 <TokenType>
 <BYTE>AE </BYTE>
 </TokenType>
 <FeatureAckOpt>
 <FeatureId>
 <BYTE>01 </BYTE>
 </FeatureId>
 <FeatureAckDataLen>
 <DWORD>2E 00 00 00 </DWORD>
 </FeatureAckDataLen>
 <SessionStateDataSet>
 <SessionStateData>
 <StateId>
 <BYTE>00 </BYTE>
 </StateId>
 <StateLen>

177 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>09 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>00 60 81 14 FF E7 FF FF 00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>02 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>02 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>07 01 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>04 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>01 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>05 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>04 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>FF FF FF FF </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>06 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>01 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>07 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>01 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>02 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>08 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>08 </BYTE>
 </StateLen>
 <StateValue>

178 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTES>00 00 00 00 00 00 00 00 </BYTES>
 </StateValue>
 </SessionStateData>
 <SessionStateData>
 <StateId>
 <BYTE>09 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>04 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>28 23 00 00 </BYTES>
 </StateValue>
 </SessionStateData>
 </SessionStateDataSet>
 </FeatureAckOpt>
 <FeatureAckOpt>
 <TERMINATOR>
 <BYTE>FF </BYTE>
 </TERMINATOR>
 </FeatureAckOpt>
 </FEATUREEXTACK>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>00 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>
 </tds>

4.18 Table Response with SESSIONSTATE Token Data

A response message that contains SESSIONSTATE token data:

 04 01 00 32 00 34 01 00 FD 01 00 BE 00 00 00 00
 00 00 00 00 00 E4 0B 00 00 00 01 00 00 00 01 09
 04 FF FF FF FF FD 00 00 FD 00 00 00 00 00 00 00
 00 00

 <tds version="latest">
 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>32 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>

179 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>01 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>BE 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 <SESSIONSTATE>
 <TokenType>
 <BYTE>E4 </BYTE>
 </TokenType>
 <Length>
 <DWORD>0B 00 00 00 </DWORD>
 </Length>
 <SeqNo>
 <DWORD>01 00 00 00 </DWORD>
 </SeqNo>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <SessionStateDataSet>
 <SessionStateData>
 <StateId>
 <BYTE>09 </BYTE>
 </StateId>
 <StateLen>
 <BYTE>04 </BYTE>
 </StateLen>
 <StateValue>
 <BYTES>FF FF FF FF </BYTES>
 </StateValue>
 </SessionStateData>
 </SessionStateDataSet>
 </SESSIONSTATE>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>FD 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>
 </tds>

180 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

4.19 Token Stream Communication

The following two examples highlight token stream communication. The packaging of these token
streams into packets is not shown in this section. Actual TDS network data samples are available in

section 4.

4.19.1 Sending a SQL Batch

In this example, a SQL statement is sent to the server and the results are sent to the client. The SQL
statement is as follows:

 SQLStatement = select name, empid from employees
 update employees set salary = salary * 1.1
 select name from employees where department = 'HR'

 Client: SQLStatement

 Server: COLMETADATA data stream
 ROW data stream
 .
 .
 ROW data stream
 DONE data stream (with DONE_COUNT & DONE_MORE
 bits set)
 DONE data stream (for UPDATE, with DONE_COUNT &
 DONE_MORE bits set)
 COLMETADATA data stream
 ROW data stream
 .
 .
 ROW data stream
 DONE data stream (with DONE_COUNT bit set)

4.19.2 Out-of-Band Attention Signal

In this example, a SQL statement is sent to the server, yet before all the data has been returned an
interrupt or "Attention Signal" is sent to the server. The client reads and discards any data received
between the time the interrupt was sent and the interrupt acknowledgment was received. The

interrupt acknowledgment from the server is a bit set in the status field of the DONE token.

 Client: select name, empid from employees

 Server: COLMETADATA data stream
 ROW data stream
 .
 .
 ROW data stream

 Client: ATTENTION SENT

[The client reads and discards any data already buffered by the server until the acknowledgment is

found. There might be or might not be a DONE token with the DONE_MORE bit clear prior to the DONE
token with the DONE_ATTN bit set.]

 Server: DONE data stream (with DONE_ATTN bit set)

181 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

4.20 FeatureExt with AZURESQLSUPPORT Feature Data

A login message that contains FeatureExt data for the AZURESQLSUPPORT feature:

 10 01 01 C7 00 00 01 00 BF 01 00 00 04 00 00 74
 40 1F 00 00 00 00 00 06 98 1D 00 00 00 00 00 00
 E0 03 20 10 00 00 00 00 00 00 00 00 5E 00 0C 00
 76 00 07 00 84 00 08 00 94 00 1C 00 CC 00 4A 00
 60 01 04 00 64 01 1C 00 9C 01 00 00 9C 01 06 00
 C2 CC 3D 20 B7 AB A8 01 00 00 A8 01 00 00 A8 01
 00 00 00 00 00 00 5A 00 4C 00 49 00 4E 00 36 00
 43 00 4C 00 49 00 45 00 4E 00 54 00 32 00 63 00
 6C 00 6F 00 75 00 64 00 73 00 61 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 2E 00 4E 00
 65 00 74 00 20 00 53 00 71 00 6C 00 43 00 6C 00
 69 00 65 00 6E 00 74 00 20 00 44 00 61 00 74 00
 61 00 20 00 50 00 72 00 6F 00 76 00 69 00 64 00
 65 00 72 00 65 00 32 00 66 00 38 00 38 00 37 00
 36 00 61 00 64 00 36 00 35 00 38 00 2E 00 6C 00
 6F 00 63 00 61 00 6C 00 2E 00 6F 00 6E 00 65 00
 62 00 6F 00 78 00 2E 00 63 00 6F 00 6E 00 74 00
 72 00 6F 00 6C 00 2E 00 7A 00 6C 00 69 00 6E 00
 68 00 65 00 6B 00 61 00 36 00 64 00 65 00 76 00
 34 00 2E 00 6F 00 6E 00 65 00 62 00 6F 00 78 00
 2E 00 78 00 64 00 62 00 2E 00 6D 00 73 00 63 00
 64 00 73 00 2E 00 63 00 6F 00 6D 00 2C 00 33 00
 37 00 30 00 30 00 38 00 A8 01 00 00 2E 00 4E 00
 65 00 74 00 20 00 53 00 71 00 6C 00 43 00 6C 00
 69 00 65 00 6E 00 74 00 20 00 44 00 61 00 74 00
 61 00 20 00 50 00 72 00 6F 00 76 00 69 00 64 00
 65 00 72 00 74 00 65 00 73 00 74 00 64 00 62 00
 01 00 00 00 00 04 01 00 00 00 01 05 00 00 00 00
 08 01 00 00 00 01 FF

 <tds version="latest">
 <PacketHeader>
 <Type>
 <BYTE>10 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>01 </BYTE>
 <BYTE>C7 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <Login7>
 <Length>
 <DWORD>BF 01 00 00 </DWORD>
 </Length>
 <TDSVersion>
 <DWORD>04 00 00 74 </DWORD>
 </TDSVersion>
 <PacketSize>
 <DWORD>40 1F 00 00 </DWORD>
 </PacketSize>
 <ClientProgVer>

182 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <DWORD>00 00 00 06 </DWORD>
 </ClientProgVer>
 <ClientPID>
 <DWORD>96 1D 00 00 </DWORD>
 </ClientPID>
 <ConnectionID>
 <DWORD>00 00 00 00 </DWORD>
 </ConnectionID>
 <OptionFlags1>
 <BYTE>E0 </BYTE>
 </OptionFlags1>
 <OptionFlags2>
 <BYTE>03 </BYTE>
 </OptionFlags2>
 <TypeFlags>
 <BYTE>20 </BYTE>
 </TypeFlags>
 <OptionFlags3>
 <BYTE>10 </BYTE>
 </OptionFlags3>
 <ClientTimZone>
 <DWORD>00 00 00 00 </DWORD>
 </ClientTimZone>
 <ClientLCID>
 <DWORD>00 00 00 00 </DWORD>
 </ClientLCID>
 <OffsetLength>
 <ibHostName>
 <USHORT>5E 00 </USHORT>
 </ibHostName>
 <cchHostName>
 <USHORT>0C 00 </USHORT>
 </cchHostName>
 <ibUserName>
 <USHORT>76 00 </USHORT>
 </ibUserName>
 <cchUserName>
 <USHORT>07 00 </USHORT>
 </cchUserName>
 <ibPassword>
 <USHORT>84 00 </USHORT>
 </ibPassword>
 <cchPassword>
 <USHORT>08 00 </USHORT>
 </cchPassword>
 <ibAppName>
 <USHORT>94 00 </USHORT>
 </ibAppName>
 <cchAppName>
 <USHORT>1C 00 </USHORT>
 </cchAppName>
 <ibServerName>
 <USHORT>CC 00 </USHORT>
 </ibServerName>
 <cchServerName>
 <USHORT>4A 00 </USHORT>
 </cchServerName>
 <ibExtension>
 <USHORT>60 01 </USHORT>
 </ibExtension>
 <cbExtension>
 <USHORT>04 00 </USHORT>
 </cbExtension>
 <ibCltIntName>
 <USHORT>64 01 </USHORT>
 </ibCltIntName>
 <cchCltIntName>
 <USHORT>1C 00 </USHORT>
 </cchCltIntName>

183 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <ibLanguage>
 <USHORT>9C 01 </USHORT>
 </ibLanguage>
 <cchLanguage>
 <USHORT>00 00 </USHORT>
 </cchLanguage>
 <ibDatabase>
 <USHORT>9C 01 </USHORT>
 </ibDatabase>
 <cchDatabase>
 <USHORT>06 00 </USHORT>
 </cchDatabase>
 <ClientID>
 <BYTES>C2 CC 3D 20 B7 AB </BYTES>
 </ClientID>
 <ibSSPI>
 <USHORT>AB 01 </USHORT>
 </ibSSPI>
 <cbSSPI>
 <USHORT>00 00 </USHORT>
 </cbSSPI>
 <ibAtchDBFile>
 <USHORT>AB 01 </USHORT>
 </ibAtchDBFile>
 <cchAtchDBFile>
 <USHORT>00 00 </USHORT>
 </cchAtchDBFile>
 <ibChangePassword>
 <USHORT>AB 01 </USHORT>
 </ibChangePassword>
 <cchChangePassword>
 <USHORT>00 00 </USHORT>
 </cchChangePassword>
 <cbSSPILong>
 <LONG>00 00 00 00 </LONG>
 </cbSSPILong>
 </OffsetLength>
 <Data>
 <BYTES>
 5A 00 4C 00 49 00 4E 00 36 00
 43 00 4C 00 49 00 45 00 4E 00 54 00 32 00 63 00
 6C 00 6F 00 75 00 64 00 73 00 61 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 2E 00 4E 00
 65 00 74 00 20 00 53 00 71 00 6C 00 43 00 6C 00
 69 00 65 00 6E 00 74 00 20 00 44 00 61 00 74 00
 61 00 20 00 50 00 72 00 6F 00 76 00 69 00 64 00
 65 00 72 00 65 00 32 00 66 00 38 00 38 00 37 00
 36 00 61 00 64 00 36 00 35 00 38 00 2E 00 6C 00
 6F 00 63 00 61 00 6C 00 2E 00 6F 00 6E 00 65 00
 62 00 6F 00 78 00 2E 00 63 00 6F 00 6E 00 74 00
 72 00 6F 00 6C 00 2E 00 7A 00 6C 00 69 00 6E 00
 68 00 65 00 6B 00 61 00 36 00 64 00 65 00 76 00
 34 00 2E 00 6F 00 6E 00 65 00 62 00 6F 00 78 00
 2E 00 78 00 64 00 62 00 2E 00 6D 00 73 00 63 00
 64 00 73 00 2E 00 63 00 6F 00 6D 00 2C 00 33 00
 37 00 30 00 30 00 38 00 A8 01 00 00 2E 00 4E 00
 65 00 74 00 20 00 53 00 71 00 6C 00 43 00 6C 00
 69 00 65 00 6E 00 74 00 20 00 44 00 61 00 74 00
 61 00 20 00 50 00 72 00 6F 00 76 00 69 00 64 00
 65 00 72 00 74 00 65 00 73 00 74 00 64 00 62 00
 </BYTES>
 </Data>
 <FeatureExt>
 <FeatureOpt>
 <FeatureId>
 <BYTE>01 </BYTE>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>00 00 00 00 </DWORD>

184 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </FeatureDataLen>
 <FeatureId>
 <BYTE>04 </BYTE>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>01 00 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureData>
 <BYTE>01</BYTE>
 </FeatureData>
 <FeatureId>
 <BYTE>05 </BYTE>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>00 00 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureId>
 <AZURESQLSUPPORT>
 <BYTE>08 </BYTE>
 </AZURESQLSUPPORT>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>01 00 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureData>
 <BYTE>01</BYTE>
 </FeatureData>
 <TERMINATOR>
 <BYTE>FF </BYTE>
 </TERMINATOR>
 </FeatureOpt>
 </FeatureExt>
 </Login7>
 </PacketData>
 </tds>

4.21 FeatureExtAck with AZURESQLSUPPORT Feature Data

A login response message that contains FeatureExtAck data for the AZURESQLSUPPORT feature:

 04 01 02 C3 00 77 01 00 FF 11 00 C1 00 01 00 00
 00 00 00 00 00 FF 11 00 C1 00 00 00 00 00 00 00
 00 00 FF 01 00 C0 00 00 00 00 00 00 00 00 00 FF
 11 00 C1 00 01 00 00 00 00 00 00 00 FF 11 00 C1
 00 00 00 00 00 00 00 00 00 FF 01 00 C0 00 00 00
 00 00 00 00 00 00 FF 11 00 C1 00 01 00 00 00 00
 00 00 00 FF 11 00 C1 00 01 00 00 00 00 00 00 00
 FF 11 00 C1 00 00 00 00 00 00 00 00 00 FF 01 00
 C0 00 00 00 00 00 00 00 00 00 FF 11 00 C1 00 01
 00 00 00 00 00 00 00 FF 11 00 C1 00 00 00 00 00
 00 00 00 00 FF 01 00 C0 00 00 00 00 00 00 00 00
 00 FF 11 00 C1 00 01 00 00 00 00 00 00 00 E3 1B
 00 01 06 74 00 65 00 73 00 74 00 64 00 62 00 06
 6D 00 61 00 73 00 74 00 65 00 72 00 AB 66 00 45
 16 00 00 02 00 25 00 43 00 68 00 61 00 6E 00 67
 00 65 00 64 00 20 00 64 00 61 00 74 00 61 00 62
 00 61 00 73 00 65 00 20 00 63 00 6F 00 6E 00 74
 00 65 00 78 00 74 00 20 00 74 00 6F 00 20 00 27
 00 74 00 65 00 73 00 74 00 64 00 62 00 27 00 2E
 00 07 74 00 65 00 73 00 74 00 73 00 76 00 72 00
 00 01 00 00 00 E3 08 00 07 05 09 04 D0 00 34 00
 E3 17 00 02 0A 75 00 73 00 5F 00 65 00 6E 00 67
 00 6C 00 69 00 73 00 68 00 00 AB 6A 00 47 16 00
 00 01 00 27 00 43 00 68 00 61 00 6E 00 67 00 65
 00 64 00 20 00 6C 00 61 00 6E 00 67 00 75 00 61
 00 67 00 65 00 20 00 73 00 65 00 74 00 74 00 69

185 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 00 6E 00 67 00 20 00 74 00 6F 00 20 00 75 00 73
 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68
 00 2E 00 07 74 00 65 00 73 00 74 00 73 00 76 00
 72 00 00 01 00 00 00 AD 36 00 01 74 00 00 04 16
 4D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00
 74 00 20 00 53 00 51 00 4C 00 20 00 53 00 65 00
 72 00 76 00 65 00 72 00 00 00 00 00 0C 00 03 E8
 E3 13 00 04 04 38 00 30 00 30 00 30 00 04 34 00
 30 00 39 00 36 00 AE 01 77 00 00 00 00 09 00 60
 81 14 FF E7 FF FF 00 02 02 07 01 04 01 00 05 04
 FF FF FF FF 06 01 00 07 01 02 08 08 00 00 00 00
 00 00 00 00 09 04 FF FF FF FF 0B 47 35 00 44 00
 37 00 45 00 44 00 37 00 30 00 42 00 2D 00 42 00
 39 00 32 00 45 00 2D 00 34 00 31 00 32 00 42 00
 2D 00 42 00 33 00 32 00 46 00 2D 00 37 00 36 00
 30 00 43 00 44 00 37 00 34 00 44 00 42 00 39 00
 32 00 43 04 01 00 00 00 01 05 01 00 00 00 01 08
 01 00 00 00 01 FF FD 00 00 00 00 00 00 00 00 00
 00 00 00

 <tds version="latest">
 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>02 </BYTE>
 <BYTE>C3 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>77 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>

186 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>01 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C0 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>01 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C0 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>

187 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>01 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C0 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>

188 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>01 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C0 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONEINPROC>
 <ENVCHANGE>
 <BYTE>E3</BYTE>
 <LENGTH>
 1B 00
 </LENGTH>
 <TOKEN type="database">
 01
 </TOKEN>
 <DATA>
 06 74 00 65 00 73 00 74 00 64 00 62 00 06 6D 00 61 00 73 00 74 00 65 00 72 00
 </DATA>
 </ENVCHANGE>
 <INFO>
 <BYTE>AB</BYTE>
 <LENGTH>
 66 00
 </LENGTH>
 <DATA>
 45 16 00 00 02 00 25 00 43 00 68 00 61 00 6E 00
 67 00 65 00 64 00 20 00 64 00 61 00 74 00 61 00
 62 00 61 00 73 00 65 00 20 00 63 00 6F 00 6E 00
 74 00 65 00 78 00 74 00 20 00 74 00 6F 00 20 00
 27 00 74 00 65 00 73 00 74 00 64 00 62 00 27 00
 2E 00 07 74 00 65 00 73 00 74 00 73 00 76 00 72
 00 00 01 00 00 00
 </DATA>
 </INFO>
 <ENVCHANGE>
 <BYTE>E3</BYTE>
 <LENGTH>
 08 00
 </LENGTH>
 <TOKEN type="sql collation">
 07
 </TOKEN>

189 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <DATA>
 05 09 04 D0 00 34 00
 </DATA>
 </ENVCHANGE>
 <ENVCHANGE>
 <BYTE>E3</BYTE>
 <LENGTH>
 17 00
 </LENGTH>
 <TOKEN type="language">
 02
 </TOKEN>
 <DATA>
 0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 00 00
 </DATA>
 </ENVCHANGE>
 <INFO>
 <BYTE>AB</BYTE>
 <LENGTH>
 6A 00
 </LENGTH>
 <DATA>
 47 16 00 00 01 00 27 00 43 00 68 00 61 00 6E 00
 67 00 65 00 64 00 20 00 6C 00 61 00 6E 00 67 00
 75 00 61 00 67 00 65 00 20 00 73 00 65 00 74 00
 74 00 69 00 6E 00 67 00 20 00 74 00 6F 00 20 00
 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00
 73 00 68 00 2E 00 07 74 00 65 00 73 00 74 00 73
 00 76 00 72 00 00 01 00 00 00
 </DATA>
 </INFO>
 <LOGINACK>
 <BYTE>AD</BYTE>
 <LENGTH>
 36 00
 </LENGTH>
 <INTERFACE>1</INTERFACE>
 <TDSVERSION>74 00 00 04</TDSVERSION>
 <PROGNAME>
 16
 4D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00
 74 00 20 00 53 00 51 00 4C 00 20 00 53 00 65 00
 72 00 76 00 65 00 72 00 00 00 00
 </PROGNAME>
 <VERSIONBUILD>
 0C 00 03 E8
 </VERSIONBUILD>
 <DATA>
 47 16 00 00 01 00 27 00 43 00 68 00 61 00 6E 00
 67 00 65 00 64 00 20 00 6C 00 61 00 6E 00 67 00
 75 00 61 00 67 00 65 00 20 00 73 00 65 00 74 00
 74 00 69 00 6E 00 67 00 20 00 74 00 6F 00 20 00
 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00
 73 00 68 00 2E 00 07 74 00 65 00 73 00 74 00 73
 00 76 00 72 00 00 01 00 00 00 00
 </DATA>
 </LOGINACK>
 <ENVCHANGE>
 <BYTE>E3</BYTE>
 <LENGTH>
 13 00
 </LENGTH>
 <TOKEN type="packsize">
 04
 </TOKEN>
 <DATA>
 04 38 00 30 00 30 00 30 00 04 34 00 30 00 39 00 36 00
 </DATA>
 </ENVCHANGE>

190 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 <FeatureExtAck>
 <BYTE>AE</BYTE>
 <FeatureOpt>
 <FeatureId>
 <BYTE>01 </BYTE>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>77 00 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureData>
 <BYTE>
 00 09 00 60 81 14 FF E7 FF FF 00 02 02 07 01 04
 01 00 05 04 FF FF FF FF 06 01 00 07 01 02 08 08
 00 00 00 00 00 00 00 00 09 04 FF FF FF FF 0B 47
 35 00 44 00 37 00 45 00 44 00 37 00 30 00 42 00
 2D 00 42 00 39 00 32 00 45 00 2D 00 34 00 31 00
 32 00 42 00 2D 00 42 00 33 00 32 00 46 00 2D 00
 37 00 36 00 30 00 43 00 44 00 37 00 34 00 44 00
 42 00 39 00 32 00 43
 </BYTE>
 </FeatureData>
 <FeatureId>
 <BYTE>04 </BYTE>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>01 00 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureData>
 <BYTE>01</BYTE>
 </FeatureData>
 <FeatureId>
 <BYTE>05 </BYTE>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>01 00 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureData>
 <BYTE>01</BYTE>
 </FeatureData>
 <FeatureId>
 <AZURESQLSUPPORT>
 <BYTE>08 </BYTE>
 </AZURESQLSUPPORT>
 </FeatureId>
 <FeatureDataLen>
 <DWORD>01 00 00 00 </DWORD>
 </FeatureDataLen>
 <FeatureData>
 <BYTE>01</BYTE>
 </FeatureData>
 <TERMINATOR>
 <BYTE>FF </BYTE>
 </TERMINATOR>
 </FeatureOpt>
 </FeatureExtAck>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>00 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>
 </DoneRowCount>
 </DONE>

191 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 </TableResponse>
 </PacketData>
 </tds>

192 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

5 Security

5.1 Security Considerations for Implementers

As previously described in this document, the TDS protocol provides facilities for authentication and

channel encryption negotiation. If SSPI authentication is requested by the client application, the exact
choice of security mechanisms is determined by the SSPI layer. Likewise, although the decision as to
whether channel encryption is used is negotiated in the TDS layer, the exact choice of cipher suite is
negotiated by the TLS/SSL layer. Likewise, although the decision as to whether federated
authentication or SSPI authentication is used can optionally be negotiated in the TDS layer, the exact
choice of authentication mechanism is determined by either the SSPI layer or the federated

authentication layer.

5.2 Index of Security Parameters

The following table lists the sections in this document in which the available Tabular Data Stream

(TDS) security parameters are mentioned.

Security parameter Section

TLS Negotiation 2.1 Transport

3.2.5.1 Sent Initial PRELOGIN Packet State

3.2.5.2 Sent TLS/SSL Negotiation Packet State

3.3.5.1 Initial State

3.3.5.2 TLS/SSL Negotiation State

SSPI Authentication 2.2.1.2 Login

2.2.6.5 PRELOGIN

2.2.6.8 SSPI Message

2.2.7.21 SSPI

3.2.5.1 Sent Initial PRELOGIN Packet State

3.2.5.2 Sent TLS/SSL Negotiation Packet State

3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State

3.3.5.3 Login Ready State

Federated Authentication 2.2.1.2 Login

2.2.1.3 Federated Authentication Token

2.2.2.3 Federated Authentication Information

2.2.6.3 Federated Authentication Token

2.2.6.4 LOGIN7

2.2.6.5 PRELOGIN

2.2.7.10 FEATUREEXTACK

2.2.7.11 FEDAUTHINFO

3.2.5.1 Sent Initial PRELOGIN Packet State

3.2.5.2 Sent TLS/SSL Negotiation Packet State

3.2.5.3 Sent LOGIN7 Record with Complete Authentication Token State

3.2.5.5 Sent LOGIN7 Record with Federated Authentication Information Request State

3.3.5.1 Initial State

3.3.5.3 Login Ready State

3.3.5.5 Federated Authentication Ready State

193 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see [MS-NETOD] section 4.

 Microsoft .NET Framework 1.1

 Microsoft .NET Framework 2.0

 Microsoft .NET Framework 4.0

 Microsoft .NET Framework 4.5

 Microsoft .NET Framework 4.6

 Microsoft .NET Framework 4.7

 Microsoft SQL Server 7.0

 Microsoft SQL Server 2000

 Microsoft SQL Server 2005

 Microsoft SQL Server 2008

 Microsoft SQL Server 2008 R2

 Microsoft SQL Server 2012

 Microsoft SQL Server 2014

 Microsoft SQL Server 2016

 Microsoft SQL Server 2017

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.3: The following table describes the latest TDS version that is supported by a particular
version of Microsoft SQL Server. To determine the earliest TDS version that is supported by a

particular SQL Server version, refer to the product documentation.

TDS version SQL Server version

7.0 SQL Server 7.0

7.1 SQL Server 2000

7.1 Revision 1 SQL Server 2000 SP1

%5bMS-NETOD%5d.pdf#Section_bcca8164da0843f2a983c34ed99171b0

194 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

TDS version SQL Server version

7.2 SQL Server 2005

7.3.A SQL Server 2008

7.3.B SQL Server 2008 R2

7.4 SQL Server 2012

SQL Server 2014

SQL Server 2016

SQL Server 2017

The following table describes the TDS versions that are supported by particular versions of the .NET
Framework.

TDS version .NET Framework version

7.0 .NET Framework 1.1

7.1 .NET Framework 1.1

7.1 Revision 1 .NET Framework 1.1

7.2 .NET Framework 2.0

7.3.A .NET Framework 2.0

.NET Framework 4.0

7.3.B .NET Framework 2.0

.NET Framework 4.0

7.4 .NET Framework 4.5

.NET Framework 4.6

.NET Framework 4.7

<2> Section 2.1: Microsoft Windows Named Pipes in message mode [MSDN-NP]. Please see [MSDN-
NamedPipes] for additional information related to Microsoft-specific implementations.

<3> Section 2.1: VIA is supported only by SQL Server 7.0, SQL Server 2000, SQL Server 2005, SQL
Server 2008, and SQL Server 2008 R2. This means that VIA will never be the underlying transport
protocol if either the server or the client can support TDS version 7.4.

<4> Section 2.2.1.3: Federated authentication is not supported by SQL Server.

<5> Section 2.2.3.1.1: Only legacy clients that support SQL Server versions that were released prior

to SQL Server 7.0 can use Pre-TDS7 Login.

<6> Section 2.2.3.1.1: Only clients that support SQL Server 7.0 or later can use TDS7 Login.

<7> Section 2.2.3.1.5: Depending on the message type and provider, such as Microsoft SQL Server
Native Client or Microsoft .NET Framework Data Provider for SQL Server, PacketID values start with
either 0 or 1, which is an implementation choice. The .NET Framework Data Provider for SQL Server
uses 1.

<8> Section 2.2.4.3: Not all pre-SQL Server 7.0 servers support the attention signal by using the

message header. The older implementation was for the client to send a 1-byte message (no header)
containing "A" by using the out-of-band write.

https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=127839
https://go.microsoft.com/fwlink/?LinkId=127839

195 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

<9> Section 2.2.5.1.2: The sorting styles that are used by SQL Server are described in [MSDN-
ColSortSty].

<10> Section 2.2.5.1.2: COLLATION represents a collation in SQL Server, as described in [MSDN-
Collation]. It can be either a SQL Server collation or a Windows collation.

Version can be of value 0, 1, 2, or 3. A value of 0 denotes collations introduced in SQL Server 2000. A
value of 1 denotes collations introduced in SQL Server 2005. A value of 2 denotes collations
introduced in SQL Server 2008. A value of 3 denotes collations introduced in SQL Server 2017.

The GetLocaleInfo Windows API can be used to retrieve information about the locale. In particular,
querying for the LOCALE_IDEFAULTANSICODEPAGE locale information constant retrieves the code
page information for the given locale.

For either collation type, the different comparison flags map to those defined as valid comparison flags

for the CompareString Windows API.

However, for SQL collations with non-Unicode data, the SortId is used to derive comparison
information flags, such as whether, for a given SortId, a lowercase "a" equals an uppercase "A".

<11> Section 2.2.5.3.1: Query notifications is not supported by SQL Server 7.0 and SQL Server 2000.

<12> Section 2.2.5.3.1: SSBDeployment corresponds to the SQL Server Service Broker deployment
version.

<13> Section 2.2.5.4.1: NULLTYPE can be sent to SQL Server (for example, in RPCRequest), but SQL
Server never emits NULLTYPE data.

<14> Section 2.2.5.5.3: When a .NET Framework Data Provider for SQL Server accesses an XML
field, the returned data value is encoded in [MS-BINXML] format. For other providers, the value is sent
in Unicode text format.

<15> Section 2.2.5.5.4: Microsoft implementations return an error if a client does send a raw collation
within a sql_variant.

<16> Section 2.2.6.3: Federated Authentication and the FEDAUTH token are not supported by SQL
Server.

<17> Section 2.2.6.4: The version numbers used by clients are as follows.

SQL Server version Version sent from client to server

SQL Server 7.0 0x00000070

SQL Server 2000 0x00000071

SQL Server 2000 SP1 0x01000071

SQL Server 2005 0x02000972

SQL Server 2008 0x03000A73

SQL Server 2008 R2 0x03000B73

SQL Server 2012

SQL Server 2014

SQL Server 2016

SQL Server 2017

0x04000074

https://go.microsoft.com/fwlink/?LinkId=233328
https://go.microsoft.com/fwlink/?LinkId=233328
https://go.microsoft.com/fwlink/?LinkId=233327
https://go.microsoft.com/fwlink/?LinkId=233327
%5bMS-BINXML%5d.pdf#Section_11ab6e8d247244d1a9e6bddf000e12f6

196 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

<18> Section 2.2.6.4: The value "1" for fByteOrder is supported only by SQL Server 7.0.

<19> Section 2.2.6.4: SQL Server assumes fFloat to be FLOAT_IEEE_754 and ignores the other

settings.

<20> Section 2.2.6.4: ANSI_DEFAULTS, CURSOR_CLOSE_ON_COMMIT, IMPLICIT_TRANSACTIONS,

and ROWCOUNT are supported by SQL Server 7.0, SQL Server 2000, SQL Server 2005, SQL Server
2008, SQL Server 2008 R2, SQL Server 2012, SQL Server 2014, and SQL Server 2016.

<21> Section 2.2.6.4: SQL Server implementations do not inspect the fSendYukonBinaryXML bit.
When using the .NET Framework Data Provider for SQL Server, the server sends binary XML if the TDS
version is 7.2 or later.

<22> Section 2.2.6.4: The FEDAUTH feature extension is not supported by SQL Server.

<23> Section 2.2.6.4: The COLUMNENCRYPTION feature extension is not supported by SQL Server

7.0, SQL Server 2000, SQL Server 2005, SQL Server 2008, SQL Server 2008 R2, SQL Server 2012,
and SQL Server 2014.

<24> Section 2.2.6.4: Enclave computations are not supported by SQL Server. Support for this
functionality was introduced in the .NET Framework 4.7.2 and is not supported by the .NET
Framework 1.1, .NET Framework 2.0, .NET Framework 4.0, .NET Framework 4.5, .NET Framework
4.6, .NET Framework 4.7, and .NET Framework 4.7.1.

<25> Section 2.2.6.4: The EnclaveType field is not supported by SQL Server. This field was
introduced in the .NET Framework 4.7.2 and is not supported by the .NET Framework 1.1, .NET
Framework 2.0, .NET Framework 4.0, .NET Framework 4.5, .NET Framework 4.6, .NET Framework
4.7, and .NET Framework 4.7.1.

<26> Section 2.2.6.4: The GLOBALTRANSACTIONS feature extension is not supported by SQL Server.

<27> Section 2.2.6.4: The AZURESQLSUPPORT feature extension is not supported by SQL Server.
This feature extension was introduced in .NET Framework 4.7.2 and is not supported by the .NET

Framework 1.1, .NET Framework 2.0, .NET Framework 4.0, .NET Framework 4.5, .NET Framework
4.6, .NET Framework 4.7, and .NET Framework 4.7.1.

<28> Section 2.2.6.5: The FEDAUTHREQUIRED payload option token is not supported by SQL Server.

<29> Section 2.2.6.5: In SQL Server 2012, SQL Server 2014, and SQL Server 2016, the server
always sends the value 0 for the INSTOPT option when the string specified in the client's INSTOPT
option is "MSSQLServer". The reason for this is that "MSSQLServer" is the name of a default instance,
and "MSSQLServer" can be provided by the client even in the absence of an explicit instance name.

SQL Server 2000, SQL Server 2005, SQL Server 2008, and SQL Server 2008 R2, which support the
INSTOPT field, always validate the client-specified string against the server's instance name.

<30> Section 2.2.6.6: The fNoMetaData flag is not supported by SQL Server 2016.

<31> Section 2.2.6.6: The EnclavePackage parameter is not supported by SQL Server. This
parameter was introduced in the .NET Framework 4.7.2 and is not supported by .NET Framework 1.1,
.NET Framework 2.0, .NET Framework 4.0, .NET Framework 4.5, .NET Framework 4.6, .NET

Framework 4.7, and .NET Framework 4.7.1.

<32> Section 2.2.7.1: ALTMETADATA_TOKEN is supported only by SQL Server 7.0, SQL Server 2000,
SQL Server 2005, SQL Server 2008, and SQL Server 2008 R2.

<33> Section 2.2.7.2: ALTROW_TOKEN is supported only by SQL Server 7.0, SQL Server 2000, SQL
Server 2005, SQL Server 2008, and SQL Server 2008 R2.

<34> Section 2.2.7.4: SQL Server 2016 supports the fHidden flag only through a many-to-many
result and by connecting via ODBC.

197 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

<35> Section 2.2.7.4: The NoMetaData parameter is not supported by SQL Server 2016.

<36> Section 2.2.7.5: The 0x4: DONE_INXACT bit is not set by SQL Server and is reserved for future

use.

<37> Section 2.2.7.5: The DONE token is usually sent after login has succeeded. In this case, the

negotiated TDS version is known, and the client can determine whether DoneRowCount is LONG or
ULONGLONG.

When login fails for any reason, SQL Server might also send an error message followed by a DONE
token. In this case, the server has already completed TDS version negotiation and has to send
DoneRowCount as LONG or ULONGLONG based on the negotiated TDS version.

However, sometimes the client cannot determine the server TDS version and cannot determine
whether LONG or ULONGLONG is expected for DoneRowCount. If the client TDS level is 7.0 or 7.1,

DoneRowCount is always LONG. If the client TDS level is 7.2, 7.3.A, 7.3.B, or 7.4, the DoneRowCount
can be LONG or ULONGLONG, depending on which version of the server the client is connecting to.

SNAC [MSDN-SNAC] and SQLClient use the VERSION option in the Pre-Login Response message to

detect whether DoneRowCount is LONG or ULONGLONG. It is ULONGLONG if VERSION in the Pre-
Login Response message indicates that the server is SQL Server 2005, SQL Server 2008, SQL Server
2008 R2, SQL Server 2012, SQL Server 2014, or SQL Server 2016. Otherwise, DoneRowCount is

LONG.

A third-party implementation has its own logic to detect whether DoneRowCount is LONG or
ULONGLONG or to make the client able to handle both LONG and ULONGLONG. In any
implementation, before the client performs this task, the server performs TDS version negotiation and
determines whether to send LONG or ULONGLONG.

<38> Section 2.2.7.6: The 0x4: DONE_INXACT bit is not set by SQL Server and is reserved for future
use.

<39> Section 2.2.7.7: The 0x4: DONE_INXACT bit is not set by SQL Server and is reserved for future
use.

<40> Section 2.2.7.8: Type 16: Transaction Manager Address is not used by SQL Server.

<41> Section 2.2.7.9: Numbers less than 20001 are reserved by SQL Server.

<42> Section 2.2.7.9: SQL Server does not raise system errors with severities of 0 through 9.

<43> Section 2.2.7.9: For compatibility reasons, SQL Server converts severity 10 to severity 0 before
returning the error information to the calling application.

<44> Section 2.2.7.10: The FEDAUTH feature extension is not supported by SQL Server.

<45> Section 2.2.7.10: The COLUMNENCRYPTION feature extension is not supported by SQL Server
7.0, SQL Server 2000, SQL Server 2005, SQL Server 2008, SQL Server 2008 R2, SQL Server 2012,
and SQL Server 2014.

<46> Section 2.2.7.10: Enclave computations are not supported by SQL Server. Support for this

feature was introduced in the .NET Framework 4.7.2 and is not supported by the .NET Framework 1.1,

.NET Framework 2.0, .NET Framework 4.0, .NET Framework 4.5, .NET Framework 4.6, .NET
Framework 4.7, and .NET Framework 4.7.1.

<47> Section 2.2.7.10: The EnclaveType field is not supported by SQL Server. This field was
introduced in the .NET Framework 4.7.2 and is not supported by the .NET Framework 1.1, .NET
Framework 2.0, .NET Framework 4.0, .NET Framework 4.5, .NET Framework 4.6, .NET Framework
4.7, and .NET Framework 4.7.1.

https://go.microsoft.com/fwlink/?LinkId=213738

198 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

<48> Section 2.2.7.10: The GLOBALTRANSACTIONS feature extension is not supported by SQL
Server.

<49> Section 2.2.7.10: The AZURESQLSUPPORT feature extension is not supported by SQL Server.
This feature extension was introduced in .NET Framework 4.7.2 and is not supported by the .NET

Framework 1.1, .NET Framework 2.0, .NET Framework 4.0, .NET Framework 4.5, .NET Framework
4.6, .NET Framework 4.7, and .NET Framework 4.7.1.

<50> Section 2.2.7.11: The FEDAUTHINFO token is not supported by SQL Server.

<51> Section 2.2.7.12: Numbers less than 20001 are reserved by SQL Server.

<52> Section 2.2.7.13: The following table shows the values in network transfer format.

SQL Server Client to server Server to client

SQL Server 7.0 0x00000070 0x07000000

SQL Server 2000 0x00000071 0x07010000

SQL Server 2000 SP1 0x01000071 0x71000001

SQL Server 2005 0x02000972 0x72090002

SQL Server 2008* 0x03000A73 0x730A0003

SQL Server 2008 R2 0x03000B73 0x730B0003

SQL Server 2012

SQL Server 2014

SQL Server 2016

SQL Server 2017

0x04000074 0x74000004

*SQL Server 2008 TDS version 0x03000A73 does not include support for NBCROW and

fSparseColumnSet.

<53> Section 3.2.2: In Microsoft implementations, the default value for the Microsoft/Windows
Data Access Components (MDAC/WDAC) and SNAC Client Request Timers is zero, which is
interpreted as no timeout. For a SqlClient Client Request, the default value is 30 seconds. For a
description of the data access drivers, see [MSDN-MDAC].

<54> Section 3.2.2: In Microsoft implementations, the default setting for MDAC/WDAC and SNAC
Cancel Timer values is 120 seconds. For a SqlClient Cancel Timer, the default value is 5 seconds. For a

description of the data access drivers, see [MSDN-MDAC].

https://go.microsoft.com/fwlink/?LinkId=213737

199 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.2.6.4 LOGIN7
Added information about AZURESQLSUPPORT and
Enclave functionality added in the .NET Framework
4.7.2.

Major

2.2.6.6 RPC Request
Added information about the EnclavePackage parameter
in the .NET Framework 4.7.2.

Major

2.2.6.7 SQLBatch
Added information about EnclavePackage in the .NET
Framework 4.7.2.

Major

2.2.7.10 FEATUREEXTACK
Added information about AZURESQLSUPPORT and
Enclave functionality in .NET Framework 4.7.2.

Major

4.20 FeatureExt with
AZURESQLSUPPORT Feature Data

Added section. Major

4.21 FeatureExtAck with

AZURESQLSUPPORT Feature Data
Added section. Major

mailto:dochelp@microsoft.com

200 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

8 Index

A

Abstract data model
 client (section 3.1.1 114, section 3.2.1 120)
 server (section 3.1.1 114, section 3.3.1 128)
ALL_HEADERS rule definition
 overview 33
 Query Notifications header 34
 Transaction Descriptor header 34
Applicability 15
Attention message 19
Attention request example 158
Attention signal - out-of-band 180
Attention tokens 27

C

Capability negotiation 15

Change tracking 199
Client
 abstract data model (section 3.1.1 114, section

3.2.1 120)
 higher-layer triggered events (section 3.1.4 114,

section 3.2.4 122)
 initialization (section 3.1.3 114, section 3.2.3 121)
 local events 119
 message processing (section 3.1.5 114, section

3.2.5 123)
 Final state 127
 Logged In state 126
 Sent Attention state 126
 Sent Client Request state 126
 Sent Initial PRELOGIN Packet state 123
 Sent LOGIN7 Record with SPNEGO Packet state

125
 Sent LOGIN7 Record with Standard Login state

125
 Sent TLS/SSL Negotiation Packet state 124
 messages
 Attention 19
 login 18
 overview 17
 pre-login 18
 remote procedure call 19
 SQL command 18
 SQL command with binary data 18
 transaction manager request 19
 other local events 127
 overview (section 3.1 114, section 3.2 120)
 sequencing rules (section 3.1.5 114, section 3.2.5

123)
 Final state 127
 Logged In state 126
 Sent Attention state 126
 Sent Client Request state 126
 Sent Initial PRELOGIN Packet state 123
 Sent LOGIN7 Record with SPNEGO Packet state

125
 Sent LOGIN7 Record with Standard Login state

125
 Sent TLS/SSL Negotiation Packet state 124

 timer events (section 3.1.6 119, section 3.2.6 127)
 timers (section 3.1.2 114, section 3.2.2 121)
Client Messages message 17
Client Request Execution state 133

D

Data model - abstract
 client (section 3.1.1 114, section 3.2.1 120)
 server (section 3.1.1 114, section 3.3.1 128)
Data stream types
 data type dependent data streams 31
 unknown-length data streams 31
 variable-length data streams 31
Data type definitions
 fixed-length data types 35
 overview 35
 partially length-prefixed data types 39
 SQL_VARIANT 42
 Table Valued Parameter
 metadata 43
 optional metadata tokens 45
 overview 43

 TDS type restrictions 47
 UDT Assembly Information 41
 variable-length data types 36
 XML data type 42
DONE tokens 27

E

Error messages 21
Examples
 attention request 158
 FeatureExt with AZURESQLSUPPORT Feature Data

181
 FeatureExt with SESSIONRECOVERY feature data

168
 FeatureExtAck with AZURESQLSUPPORT Feature

Data 184
 FeatureExtAck with SESSIONRECOVERY feature

data 173
 login request 136
 login request with federated authentication 138
 login response 145
 login response with federated authentication 148
 overview 135
 pre-login request 135
 RPC client request 155
 RPC server response 157
 SQL batch client request 152
 SQL batch server response 153
 SQL command with binary data 159
 SSPI message 158
 Table response with SESSIONSTATE token data

178
 transaction manager request 160

F

201 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FeatureExt with AZURESQLSUPPORT Feature Data
example 181

FeatureExt with SESSIONRECOVERY feature data
example 168

FeatureExtAck with AZURESQLSUPPORT Feature
Data example 184

FeatureExtAck with SESSIONRECOVERY feature data
example 173

Fields - vendor-extensible 15
Final state (section 3.2.5.10 127, section 3.3.5.9

134)
Fixed-length token 26

G

Glossary 8
Grammar definition - token description

 data packet stream tokens 50
 data stream types
 data type dependent data streams 31
 unknown-length data streams 31
 variable-length data streams 31
 data type definitions
 fixed-length data types 35
 overview 35
 partially length-prefixed data types 39
 SQL_VARIANT 42
 Table Valued Parameter 43
 UDT Assembly Information 41
 variable-length data types 36
 XML data type 42
 general rules
 collation rule definition 30
 least significant bit order 30
 overview 27
 packet data stream headers
 overview 33
 Query Notifications header 34
 Transaction Descriptor header 34
 TYPE_INFO rule definition 48
Grammar Definition for Token Description message

27

H

Higher-layer triggered events
 client (section 3.1.4 114, section 3.2.4 122)
 server (section 3.1.4 114, section 3.3.4 129)

I

Implementer - security considerations 192
Index of security parameters 192
Informational messages 21
Informative references 11
Initial state 129
Initialization
 client (section 3.1.3 114, section 3.2.3 121)
 server (section 3.1.3 114, section 3.3.3 129)
Introduction 8

L

Local events
 client (section 3.1.7 119, section 3.2.7 127)

 server 119
Logged In state (section 3.2.5.6 126, section 3.3.5.6

133)
Login Ready state 130
Login request example 136
Login request with federated authentication example

138
Login response example 145
Login response with federated authentication

example 148

M

Message processing
 client (section 3.1.5 114, section 3.2.5 123)
 Final state 127
 Logged In state 126

 Sent Attention state 126
 Sent Client Request state 126
 Sent Initial PRELOGIN Packet state 123
 Sent LOGIN7 Record with SPNEGO Packet state

125
 Sent LOGIN7 Record with Standard Login state

125
 Sent TLS/SSL Negotiation Packet state 124
 server (section 3.1.5 114, section 3.3.5 129)
 Client Request Execution state 133
 Final state 134
 Initial state 129
 Logged In state 133
 Login Ready state 130
 SPNEGO Negotiation state 132
 TLS/SSL Negotiation state 130
Messages
 Client Messages 17
 Grammar Definition for Token Description 27
 overview 17
 Packet Data Token and Tokenless Data Streams 25
 Packet Data Token Stream Definition 77
 Packets 21
 Server Messages 19
 syntax
 client messages 17
 grammar definition for token description 27
 overview 17
 packet data token and tokenless data streams

25
 packet data token stream definition 77
 packet header message type - stream definition

50
 packets 21
 server messages 19
 transport 17

N

Normative references 10

O

Other local events
 client 127
 server 134
Out-of-band attention signal 180
Overview (synopsis) 13

202 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

P

Packet data - token stream definition
 ALTMETADATA 77
 ALTROW 80
 COLINFO 81
 COLMETADATA 82
 DONE 85
 DONEINPROC 86
 DONEPROC 88
 ENVCHANGE 89
 ERROR 93
 FEATUREEXTACK 95
 INFO 99
 LOGINACK 100
 NBCROW 102

 OFFSET 103
 ORDER 104
 RETURNSTATUS 105
 RETURNVALUE 105
 ROW 108
 SESSIONSTATE 109
 SSPI 110
 Table Valued Parameter row 112
 TABNAME 111
Packet data stream headers
 overview 33
 Query Notifications header 34
 Transaction Descriptor header 34
Packet Data Token and Tokenless Data Streams

message 25
Packet Data Token Stream Definition message 77
Packet header message type - stream definition
 BulkLoad - UpdateText/WriteText 51
 BulkLoadBCP 50
 LOGIN7 53
 PRELOGIN 65
 RPCRequest 69
 SparseColumn select statement 163
 SQLBatch 72
 SSPI message 73
 transaction manager request 74
 TVP insert statement 161
Packets
 overview 21
 packet data 24
 packet header
 Length 24
 overview 22
 PacketID 24
 SPID 24
 Status 23
 Type 22
 Window 24
Packets message 21
Parameters - security index 192
Preconditions 14
Pre-login request example 135
Prerequisites 14
Product behavior 193
Protocol Details

 overview 114

Q

Query Notifications header 34

R

References 10
 informative 11
 normative 10
Relationship to other protocols 14
Remote procedure call 19
RPC client request example 155
RPC server response example 157

S

Security
 implementer considerations 192
 parameter index 192
Sending an SQL batch 180
Sent Attention state 126
Sent Client Request state 126
Sent Initial PRELOGIN Packet state 123
Sent LOGIN7 Record with SPNEGO Packet state 125
Sent LOGIN7 Record with Standard Login state 125
Sent TLS/SSL Negotiation Packet state 124
Sequencing rules
 client (section 3.1.5 114, section 3.2.5 123)
 Final state 127
 Logged In state 126
 Sent Attention state 126
 Sent Client Request state 126
 Sent Initial PRELOGIN Packet state 123
 Sent LOGIN7 Record with SPNEGO Packet state

125
 Sent LOGIN7 Record with Standard Login state

125
 Sent TLS/SSL Negotiation Packet state 124
 server (section 3.1.5 114, section 3.3.5 129)
 Client Request Execution state 133
 Final state 134
 Initial state 129
 Logged In state 133
 Login Ready state 130
 SPNEGO Negotiation state 132
 TLS/SSL Negotiation state 130
Server
 abstract data model (section 3.1.1 114, section

3.3.1 128)
 higher-layer triggered events (section 3.1.4 114,

section 3.3.4 129)
 initialization (section 3.1.3 114, section 3.3.3 129)
 local events 119
 message processing (section 3.1.5 114, section

3.3.5 129)
 Client Request Execution state 133
 Final state 134
 Initial state 129

 Logged In state 133
 Login Ready state 130
 SPNEGO Negotiation state 132
 TLS/SSL Negotiation state 130
 messages
 attention acknowledgment 21
 error and informational messages 21
 login response 20

203 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 overview 19
 pre-login response 20
 response completion 21
 return parameters 20
 return status 20
 row data 20
 other local events 134
 overview (section 3.1 114, section 3.3 127)
 sequencing rules (section 3.1.5 114, section 3.3.5

129)
 Client Request Execution state 133
 Final state 134
 Initial state 129
 Logged In state 133
 Login Ready state 130
 SPNEGO Negotiation state 132
 TLS/SSL Negotiation state 130
 timer events (section 3.1.6 119, section 3.3.6 134)
 timers (section 3.1.2 114, section 3.3.2 129)
Server Messages message 19
SPNEGO Negotiation state 132
SQL batch - sending 180
SQL batch client request example 152

SQL batch server response example 153
SQL command 18
SQL command with binary data 18
SQL command with binary data example 159
SSPI message example 158
Standards assignments 16
Syntax
 client messages
 Attention 19
 login 18
 overview 17
 pre-login 18
 remote procedure call 19
 SQL command 18
 SQL command with binary data 18
 transaction manager request 19
 grammar definition for token description
 data packet stream tokens 50
 data stream types 31
 data type definitions 35
 general rules 27
 overview 27
 packet data stream headers 33
 TYPE_INFO rule definition 48
 overview 17
 packet data token and tokenless data streams
 DONE and attention tokens 27
 overview 25
 token stream 26
 token stream examples 180
 tokenless stream 25
 packet data token stream definition
 ALTMETADATA 77
 ALTROW 80
 COLINFO 81
 COLMETADATA 82
 DONE 85
 DONEINPROC 86
 DONEPROC 88
 ENVCHANGE 89
 ERROR 93
 FEATUREEXTACK 95

 INFO 99
 LOGINACK 100
 NBCROW 102
 OFFSET 103
 ORDER 104
 overview 77
 RETURNSTATUS 105
 RETURNVALUE 105
 ROW 108
 SESSIONSTATE 109
 SSPI 110
 Table Valued Parameter row 112
 TABNAME 111
 packet header message type - stream definition
 BulkLoad - UpdateText/WriteText 51
 BulkLoadBCP 50
 LOGIN7 53
 PRELOGIN 65
 RPCRequest 69
 SparseColumn select statement 163
 SQLBatch 72
 SSPI message 73
 transaction manager request 74

 TVP insert statement 161
 TVP insert statement 161
 packets
 overview 21
 packet data 24
 packet header 22
 server messages
 attention acknowledgment 21
 error and informational messages 21
 login response 20
 overview 19
 pre-login response 20
 response completion 21
 return parameters 20
 return status 20
 row data 20

T

Table response with SESSIONSTATE token data

example 178
Timer events
 client (section 3.1.6 119, section 3.2.6 127)
 server (section 3.1.6 119, section 3.3.6 134)
Timers
 client (section 3.1.2 114, section 3.2.2 121)
 server (section 3.1.2 114, section 3.3.2 129)
TLS/SSL Negotiation state 130
Token data stream
 overview 26
 token definition
 fixed-length token 26
 overview 26
 variable-count tokens 27
 variable-length tokens 26
 zero-length token 26
Token data stream definition
 ALTMETADATA 77
 ALTROW 80

 COLINFO 81
 COLMETADATA 82
 DONE 85

204 / 204

[MS-TDS] - v20180316
Tabular Data Stream Protocol
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

 DONEINPROC 86
 DONEPROC 88
 ENVCHANGE 89
 ERROR 93
 FEATUREEXTACK 95
 INFO 99
 LOGINACK 100
 NBCROW 102
 OFFSET 103
 ORDER 104
 overview 77
 RETURNSTATUS 105
 RETURNVALUE 105
 ROW 108
 SESSIONSTATE 109
 SSPI 110
 Table Valued Parameter row 112
 TABNAME 111
Token data stream examples
 out-of-band attention signal 180
 overview 180
 sending an SQL batch 180
Token description - grammar definition

 data packet stream tokens 50
 data stream types
 data type dependent data streams 31
 unknown-length data streams 31
 variable-length data streams 31
 data type definitions
 fixed-length data types 35
 overview 35
 partially length-prefixed data types 39
 SQL_VARIANT 42
 Table Valued Parameter 43
 UDT Assembly Information 41
 variable-length data types 36
 XML data type 42
 general rules
 collation rule definition 30
 least significant bit order 30
 overview 27
 overview 27
 packet data stream headers
 overview 33
 Query Notifications header 34
 Transaction Descriptor header 34
 TYPE_INFO rule definition 48
Tokenless data stream 25
Tracking changes 199
Transaction Descriptor header 34
Transaction manager request 19
Transaction manager request example 160
Transport 17
Triggered events - higher-layer
 client (section 3.1.4 114, section 3.2.4 122)
 server (section 3.1.4 114, section 3.3.4 129)

U

Unknown-length data streams 31

V

Variable-count tokens 27
Variable-length data streams 31

Variable-length tokens 26
Vendor-extensible fields 15
Versioning 15

Z

Zero-length token 26

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Client Messages
	2.2.1.1 Pre-Login
	2.2.1.2 Login
	2.2.1.3 Federated Authentication Token
	2.2.1.4 SQL Batch
	2.2.1.5 Bulk Load
	2.2.1.6 Remote Procedure Call
	2.2.1.7 Attention
	2.2.1.8 Transaction Manager Request

	2.2.2 Server Messages
	2.2.2.1 Pre-Login Response
	2.2.2.2 Login Response
	2.2.2.3 Federated Authentication Information
	2.2.2.4 Row Data
	2.2.2.5 Return Status
	2.2.2.6 Return Parameters
	2.2.2.7 Response Completion
	2.2.2.8 Error and Info
	2.2.2.9 Attention Acknowledgment

	2.2.3 Packets
	2.2.3.1 Packet Header
	2.2.3.1.1 Type
	2.2.3.1.2 Status
	2.2.3.1.3 Length
	2.2.3.1.4 SPID
	2.2.3.1.5 PacketID
	2.2.3.1.6 Window

	2.2.3.2 Packet Data

	2.2.4 Packet Data Token and Tokenless Data Streams
	2.2.4.1 Tokenless Stream
	2.2.4.2 Token Stream
	2.2.4.2.1 Token Definition
	2.2.4.2.1.1 Zero Length Token(xx01xxxx)
	2.2.4.2.1.2 Fixed Length Token(xx11xxxx)
	2.2.4.2.1.3 Variable Length Tokens(xx10xxxx)
	2.2.4.2.1.4 Variable Count Tokens(xx00xxxx)

	2.2.4.3 Done and Attention Tokens

	2.2.5 Grammar Definition for Token Description
	2.2.5.1 General Rules
	2.2.5.1.1 Least Significant Bit Order
	2.2.5.1.2 Collation Rule Definition

	2.2.5.2 Data Stream Types
	2.2.5.2.1 Unknown Length Data Streams
	2.2.5.2.2 Variable-Length Data Streams
	2.2.5.2.3 Data Type Dependent Data Streams

	2.2.5.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition
	2.2.5.3.1 Query Notifications Header
	2.2.5.3.2 Transaction Descriptor Header
	2.2.5.3.3 Trace Activity Header

	2.2.5.4 Data Type Definitions
	2.2.5.4.1 Fixed-Length Data Types
	2.2.5.4.2 Variable-Length Data Types
	2.2.5.4.3 Partially Length-Prefixed Data Types

	2.2.5.5 Data Type Details
	2.2.5.5.1 System Data Type Values
	2.2.5.5.1.1 Integers
	2.2.5.5.1.2 Timestamp
	2.2.5.5.1.3 Character and Binary Strings
	2.2.5.5.1.4 Fixed-Point Numbers
	2.2.5.5.1.5 Floating-Point Numbers
	2.2.5.5.1.6 Decimal/Numeric
	2.2.5.5.1.7 GUID
	2.2.5.5.1.8 Date/Times

	2.2.5.5.2 Common Language Runtime (CLR) Instances
	2.2.5.5.3 XML Values
	2.2.5.5.4 SQL_VARIANT Values
	2.2.5.5.5 Table Valued Parameter (TVP) Values
	2.2.5.5.5.1 Metadata
	2.2.5.5.5.2 Optional Metadata Tokens
	2.2.5.5.5.3 TDS Type Restrictions

	2.2.5.6 Type Info Rule Definition
	2.2.5.7 Encryption Key Rule Definition
	2.2.5.8 Data Packet Stream Tokens

	2.2.6 Packet Header Message Type Stream Definition
	2.2.6.1 Bulk Load BCP
	2.2.6.2 Bulk Load Update Text/Write Text
	2.2.6.3 Federated Authentication Token
	2.2.6.4 LOGIN7
	2.2.6.5 PRELOGIN
	2.2.6.6 RPC Request
	2.2.6.7 SQLBatch
	2.2.6.8 SSPI Message
	2.2.6.9 Transaction Manager Request

	2.2.7 Packet Data Token Stream Definition
	2.2.7.1 ALTMETADATA
	2.2.7.2 ALTROW
	2.2.7.3 COLINFO
	2.2.7.4 COLMETADATA
	2.2.7.5 DONE
	2.2.7.6 DONEINPROC
	2.2.7.7 DONEPROC
	2.2.7.8 ENVCHANGE
	2.2.7.9 ERROR
	2.2.7.10 FEATUREEXTACK
	2.2.7.11 FEDAUTHINFO
	2.2.7.12 INFO
	2.2.7.13 LOGINACK
	2.2.7.14 NBCROW
	2.2.7.15 OFFSET
	2.2.7.16 ORDER
	2.2.7.17 RETURNSTATUS
	2.2.7.18 RETURNVALUE
	2.2.7.19 ROW
	2.2.7.20 SESSIONSTATE
	2.2.7.21 SSPI
	2.2.7.22 TABNAME
	2.2.7.23 TVP ROW

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sent Initial PRELOGIN Packet State
	3.2.5.2 Sent TLS/SSL Negotiation Packet State
	3.2.5.3 Sent LOGIN7 Record with Complete Authentication Token State
	3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State
	3.2.5.5 Sent LOGIN7 Record with Federated Authentication Information Request State
	3.2.5.6 Logged In State
	3.2.5.7 Sent Client Request State
	3.2.5.8 Sent Attention State
	3.2.5.9 Routing Completed State
	3.2.5.10 Final State

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Initial State
	3.3.5.2 TLS/SSL Negotiation State
	3.3.5.3 Login Ready State
	3.3.5.4 SPNEGO Negotiation State
	3.3.5.5 Federated Authentication Ready State
	3.3.5.6 Logged In State
	3.3.5.7 Client Request Execution State
	3.3.5.8 Routing Completed State
	3.3.5.9 Final State

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Pre-Login Request
	4.2 Login Request
	4.3 Login Request with Federated Authentication
	4.4 Login Response
	4.5 Login Response with Federated Authentication Feature Extension Acknowledgement
	4.6 SQL Batch Client Request
	4.7 SQL Batch Server Response
	4.8 RPC Client Request
	4.9 RPC Server Response
	4.10 Attention Request
	4.11 SSPI Message
	4.12 Bulk Load
	4.13 Transaction Manager Request
	4.14 TVP Insert Statement
	4.15 SparseColumn Select Statement
	4.16 FeatureExt with SESSIONRECOVERY Feature Data
	4.17 FeatureExtAck with SESSIONRECOVERY Feature Data
	4.18 Table Response with SESSIONSTATE Token Data
	4.19 Token Stream Communication
	4.19.1 Sending a SQL Batch
	4.19.2 Out-of-Band Attention Signal

	4.20 FeatureExt with AZURESQLSUPPORT Feature Data
	4.21 FeatureExtAck with AZURESQLSUPPORT Feature Data

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

