

1 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-TDS]:
Tabular Data Stream Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

03/14/2008 0.1 Major Initial Availability.

06/20/2008 0.1.1 Editorial Revised and edited the technical content.

07/25/2008 0.1.2 Editorial Revised and edited the technical content.

08/29/2008 0.1.3 Editorial Revised and edited the technical content.

10/24/2008 0.1.4 Editorial Revised and edited the technical content.

12/05/2008 0.2 Minor Updated the technical content.

01/16/2009 0.3 Minor Updated the technical content.

02/27/2009 0.4 Minor Updated the technical content.

04/10/2009 0.5 Minor Updated the technical content.

05/22/2009 0.5.1 Editorial Revised and edited the technical content.

07/02/2009 1.0 Major Updated and revised the technical content.

08/14/2009 1.1 Minor Updated the technical content.

09/25/2009 2.0 Major Updated and revised the technical content.

11/06/2009 3.0 Major Updated and revised the technical content.

12/18/2009 4.0 Major Updated and revised the technical content.

01/29/2010 4.1 Minor Updated the technical content.

03/12/2010 5.0 Major Updated and revised the technical content.

04/23/2010 6.0 Major Updated and revised the technical content.

06/04/2010 7.0 Major Updated and revised the technical content.

07/16/2010 8.0 Major Significantly changed the technical content.

08/27/2010 8.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 9.0 Major Significantly changed the technical content.

11/19/2010 9.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 9.1 Minor Clarified the meaning of the technical content.

02/11/2011 9.2 Minor Clarified the meaning of the technical content.

3 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Date

Revision

History

Revision

Class Comments

03/25/2011 9.3 Minor Clarified the meaning of the technical content.

05/06/2011 9.4 Minor Clarified the meaning of the technical content.

06/17/2011 10.0 Major Significantly changed the technical content.

09/23/2011 11.0 Major Significantly changed the technical content.

12/16/2011 12.0 Major Significantly changed the technical content.

03/30/2012 12.1 Minor Clarified the meaning of the technical content.

07/12/2012 12.2 Minor Clarified the meaning of the technical content.

10/25/2012 12.2 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 13.0 Major Significantly changed the technical content.

08/08/2013 14.0 Major Significantly changed the technical content.

4 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 8
1.1 Glossary ... 8
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 12
1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments .. 15

2 Messages.. 16
2.1 Transport .. 16
2.2 Message Syntax .. 16

2.2.1 Client Messages ... 16
2.2.1.1 Pre-Login ... 17
2.2.1.2 Login .. 17
2.2.1.3 SQL Batch ... 17
2.2.1.4 Bulk Load .. 17
2.2.1.5 Remote Procedure Call .. 17
2.2.1.6 Attention ... 17
2.2.1.7 Transaction Manager Request... 18

2.2.2 Server Messages .. 18
2.2.2.1 Pre-Login Response .. 18
2.2.2.2 Login Response .. 18
2.2.2.3 Row Data .. 19
2.2.2.4 Return Status ... 19
2.2.2.5 Return Parameters .. 19
2.2.2.6 Response Completion ("DONE") .. 19
2.2.2.7 ERROR and INFO Messages .. 19
2.2.2.8 Attention Acknowledgment .. 20

2.2.3 Packets ... 20
2.2.3.1 Packet Header .. 20

2.2.3.1.1 Type .. 20
2.2.3.1.2 Status.. 22
2.2.3.1.3 Length ... 22
2.2.3.1.4 SPID .. 22
2.2.3.1.5 PacketID .. 23
2.2.3.1.6 Window.. 23

2.2.3.2 Packet Data ... 23
2.2.4 Packet Data Token and Tokenless Data Streams .. 23

2.2.4.1 Tokenless Stream ... 24
2.2.4.2 Token Stream .. 24

2.2.4.2.1 Token Definition .. 24
2.2.4.2.1.1 Zero Length Token(xx01xxxx)... 24
2.2.4.2.1.2 Fixed Length Token(xx11xxxx) .. 25
2.2.4.2.1.3 Variable Length Tokens(xx10xxxx) .. 25
2.2.4.2.1.4 Variable Count Tokens(xx00xxxx) ... 25

5 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.4.3 Done and Attention Tokens .. 26
2.2.5 Grammar Definition for Token Description ... 26

2.2.5.1 General Rules ... 26
2.2.5.1.1 Least Significant Bit Order .. 29
2.2.5.1.2 Collation Rule Definition ... 29

2.2.5.2 Data Stream Types ... 30
2.2.5.2.1 Unknown Length Data Streams ... 30
2.2.5.2.2 Variable-Length Data Streams .. 30
2.2.5.2.3 Data Type Dependent Data Streams .. 31

2.2.5.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition 32
2.2.5.3.1 Query Notifications Header ... 33
2.2.5.3.2 Transaction Descriptor Header .. 34
2.2.5.3.3 Trace Activity Header ... 34

2.2.5.4 Data Type Definitions .. 35
2.2.5.4.1 Fixed-Length Data Types .. 35
2.2.5.4.2 Variable-Length Data Types .. 36
2.2.5.4.3 Partially Length-Prefixed Data Types ... 39

2.2.5.5 Data Type Details ... 39
2.2.5.5.1 System Data Type Values ... 39

2.2.5.5.1.1 Integers ... 39
2.2.5.5.1.2 Timestamp ... 40
2.2.5.5.1.3 Character and Binary Strings .. 40
2.2.5.5.1.4 Fixed-Point Numbers .. 40
2.2.5.5.1.5 Floating-Point Numbers .. 40
2.2.5.5.1.6 Decimal/Numeric ... 40
2.2.5.5.1.7 GUID ... 41
2.2.5.5.1.8 Date/Times ... 41

2.2.5.5.2 Common Language Runtime (CLR) Instances .. 41
2.2.5.5.3 XML Values... 42
2.2.5.5.4 SQL_VARIANT Values .. 42
2.2.5.5.5 Table Valued Parameter (TVP) Values .. 43

2.2.5.5.5.1 Metadata .. 43
2.2.5.5.5.2 Optional Metadata Tokens .. 46
2.2.5.5.5.3 TDS Type Restrictions .. 48

2.2.5.6 Type Info Rule Definition ... 49
2.2.5.7 Data Buffer Stream Tokens .. 50

2.2.6 Packet Header Message Type Stream Definition ... 51
2.2.6.1 Bulk Load BCP .. 51
2.2.6.2 Bulk Load Update Text/Write Text... 51
2.2.6.3 LOGIN7 ... 52
2.2.6.4 PRELOGIN ... 62
2.2.6.5 RPC Request .. 66
2.2.6.6 SQLBatch .. 69
2.2.6.7 SSPI Message .. 69
2.2.6.8 Transaction Manager Request... 70

2.2.7 Packet Data Token Stream Definition .. 74
2.2.7.1 ALTMETADATA ... 74
2.2.7.2 ALTROW .. 77
2.2.7.3 COLINFO ... 78
2.2.7.4 COLMETADATA ... 79
2.2.7.5 DONE .. 81
2.2.7.6 DONEINPROC ... 83
2.2.7.7 DONEPROC .. 84

6 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.7.8 ENVCHANGE .. 85
2.2.7.9 ERROR .. 90
2.2.7.10 FEATUREEXTACK .. 92
2.2.7.11 INFO ... 94
2.2.7.12 LOGINACK ... 95
2.2.7.13 NBCROW ... 96
2.2.7.14 OFFSET ... 98
2.2.7.15 ORDER .. 99
2.2.7.16 RETURNSTATUS .. 99
2.2.7.17 RETURNVALUE ... 100
2.2.7.18 ROW .. 102
2.2.7.19 SESSIONSTATE ... 103
2.2.7.20 SSPI... 105
2.2.7.21 TABNAME .. 106
2.2.7.22 TVP ROW .. 107

3 Protocol Details .. 108
3.1 Common Details ... 108

3.1.1 Abstract Data Model .. 108
3.1.2 Timers ... 108
3.1.3 Initialization ... 108
3.1.4 Higher-Layer Triggered Events .. 108
3.1.5 Message Processing Events and Sequencing Rules ... 108
3.1.6 Timer Events .. 112
3.1.7 Other Local Events .. 112

3.2 Client Details .. 112
3.2.1 Abstract Data Model .. 113
3.2.2 Timers ... 114
3.2.3 Initialization ... 114
3.2.4 Higher-Layer Triggered Events .. 114
3.2.5 Message Processing Events and Sequencing Rules ... 116

3.2.5.1 Sent Initial PRELOGIN Packet State .. 116
3.2.5.2 Sent TLS/SSL Negotiation Packet State .. 116
3.2.5.3 Sent LOGIN7 Record with Standard Login State ... 117
3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State .. 117
3.2.5.5 Logged In State ... 118
3.2.5.6 Sent Client Request State ... 118
3.2.5.7 Sent Attention State .. 118
3.2.5.8 Routing Completed State .. 118
3.2.5.9 Final State .. 119

3.2.6 Timer Events .. 119
3.2.7 Other Local Events .. 119

3.3 Server Details .. 119
3.3.1 Abstract Data Model .. 120
3.3.2 Timers ... 121
3.3.3 Initialization ... 121
3.3.4 Higher-Layer Triggered Events .. 121
3.3.5 Message Processing Events and Sequencing Rules ... 121

3.3.5.1 Initial State ... 121
3.3.5.2 TLS/SSL Negotiation State .. 122
3.3.5.3 Login Ready State ... 122
3.3.5.4 SPNEGO Negotiation State .. 122
3.3.5.5 Logged In State ... 123

7 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.5.6 Client Request Execution State .. 123
3.3.5.7 Routing Completed State .. 123
3.3.5.8 Final State .. 123

3.3.6 Timer Events .. 124
3.3.7 Other Local Events .. 124

4 Protocol Examples .. 125
4.1 Pre-Login Request... 125
4.2 Login Request .. 126
4.3 Login Response .. 129
4.4 SQL Batch Client Request .. 133
4.5 SQL Batch Server Response ... 134
4.6 RPC Client Request ... 136
4.7 RPC Server Response .. 138
4.8 Attention Request ... 139
4.9 SSPI Message .. 140
4.10 SQL Command with Binary Data ... 141
4.11 Transaction Manager Request ... 142
4.12 TVP Insert Statement .. 143
4.13 SparseColumn Select Statement ... 146
4.14 FeatureExt with SessionRecovery Feature Data ... 151
4.15 FeatureExtAck with SessionRecovery Feature Data .. 157
4.16 Table Response with SessionState Token Data .. 163
4.17 Token Stream Communication .. 165

4.17.1 Sending a SQL Batch ... 165
4.17.2 Out-of-Band Attention Signal .. 165

5 Security .. 167
5.1 Security Considerations for Implementers .. 167

6 Appendix A: Product Behavior .. 168

7 Change Tracking... 172

8 Index ... 174

8 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

The Tabular Data Stream (TDS) protocol is an application layer request/response protocol that
facilitates interaction with a database server and provides for:

Authentication and channel encryption negotiation.

Specification of requests in SQL (including Bulk Insert).

Invocation of a stored procedure or user-defined function, also known as a remote procedure

call (RPC).

The return of data.

Transaction manager requests.

All references in this document to SQL Server refer to the Microsoft SQL Server product line.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also

normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

big-endian

interface
little-endian
nullable column
Security Support Provider Interface (SSPI)

Session Multiplex Protocol (SMUX)
stored procedure
table response

transaction manager

The following terms are specific to this document:

bulk insert: A method for efficiently populating the rows of a table from the client to the
server.

client: A program that establishes connections for the purpose of sending requests.

column: A set of data composed of the same field from each row in a table.

Common Language Runtime User-Defined Type (CLR UDT): A data type created and
defined by the user on a database server that supports SQL by using a .NET Framework

common language runtime assembly.

data store: A repository for data.

data stream: A stream of data that corresponds to specific TDS semantics. A single data stream
can represent an entire TDS message or only a specific, well-defined portion of a TDS
message. A TDS data stream can span multiple network data packets.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

delete: To remove a row from a table.

Distributed Transaction Coordinator (DTC): A service that coordinates transactions across
multiple databases. For more information, see [MSDN-DTC].

final state: The application layer has finished communication and the lower layer connection

should be disconnected.

initial state: A prerequisite for application layer communication. A lower layer channel which can
provide reliable communication must be established.

insert: To add a row to a table.

Microsoft/Windows Data Access Components (MDAC/WDAC): With Microsoft/Windows
Data Access Components (MDAC/WDAC), developers can connect to and use data from a wide
variety of relational and nonrelational data sources. You can connect to many different data

sources using Open Database Connectivity (ODBC), ActiveX Data Objects (ADO), or OLE DB.
You can do this through providers and drivers that are built and shipped by Microsoft, or that

are developed by various third parties. For more information, see [MSDN-MDAC].

Multiple Active Result Sets (MARS): A feature introduced in SQL Server 2005 that allows
applications to have more than one pending request per connection. For more information,
see [MSDN-MARS].

out-of-band: A type of event that happens outside of the standard sequence of events.
Specifically, the idea that a signal or message can be sent during an unexpected time and will
not cause any protocol parsing issues.

query: A character string expression sent to a data store that contains a set of operations that
request data from the data store.

query notification: A feature introduced in SQL Server 2005 that allows the client to register
for notification on changes to a given query result. For more information, see [MSDN-

QUERYNOTE].

Remote Procedure Call (RPC): The direct invocation of a stored procedure or user-defined
function on the server.

request: A TDS message initiated by a client and sent to a server.

response: A TDS message sent by a server to a client related to a previously issued request.

result set: A set of data streams representing the result of a query. A result set starts with a
COLMETADATA token and ends with a DONE, DONEPROC, or DONEINPROC token.

server: An application program that accepts connections to service requests by sending back
responses. Any program might be capable of being both a client and a server. Use of these
terms refers only to the role being performed by the program for a particular connection
rather than to the program's capabilities in general.

SQL Server Native Client (SNAC): SNAC contains the SQL Server ODBC driver and the SQL
Server OLE DB provider in one native dynamic link library (DLL) supporting applications using

native-code APIs (ODBC, OLE DB, and ADO) to Microsoft SQL Server. For more information,
see [MSDN-SNAC].

SPNEGO: Simple and Protected GSS-API Negotiation as defined by [RFC4178]. This mechanism
is used by SSPI for negotiation.

http://go.microsoft.com/fwlink/?LinkId=89994
http://go.microsoft.com/fwlink/?LinkId=213737
http://go.microsoft.com/fwlink/?LinkId=98459
http://go.microsoft.com/fwlink/?LinkId=119984
http://go.microsoft.com/fwlink/?LinkId=119984
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=213738
http://go.microsoft.com/fwlink/?LinkId=90461

10 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

SQL batch: A set of SQL statements.

SQL Server User Authentication (SQLAUTH): An authentication mechanism used to support
user accounts on a database server that supports SQL. The username and password of the
user account are transmitted as part of the login message that the client sends to the

server.

SQL statement: A character string expression in a language the server understands.

structurally invalid: A data stream that does not follow the header defined, the rule for the
specific message type defined in section 2, or both.

TDS session: A successfully established communication over a period of time between a client
and a server on which the Tabular Data Stream (TDS) protocol is used for message
exchange.

Unicode: The set of characters as defined by [UNICODE] that are encoded in UCS-2.

update: An add, modify, or delete operation of one or more objects or attribute values.

Virtual Interface Architecture (VIA): A high-speed interconnect requiring special hardware
and drivers provided by third parties.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no

longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[IANAPORT] IANA, "Port Numbers", November 2006, http://www.iana.org/assignments/port-
numbers

[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating-Point
Arithmetic", IEEE 754-1985, October 1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-BINXML] Microsoft Corporation, "SQL Server Binary XML Structure".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[MSDN-ITrans] Microsoft Corporation, "ITransactionExport::GetTransactionCookie",
http://msdn.microsoft.com/en-us/library/ms679869(VS.85).aspx

http://go.microsoft.com/fwlink/?LinkId=90550
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=120872
%5bMS-LCID%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=146594

11 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981,
http://www.ietf.org/rfc/rfc0793.txt

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC
1122, October 1989, http://www.ietf.org/rfc/rfc1122.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.ietf.org/rfc/rfc2246.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt

[SSL3] Netscape, "SSL 3.0 Specification", http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00

If you have any trouble finding [SSL3], please check here.

[UNICODE] The Unicode Consortium, "Unicode Home Page", 2006, http://www.unicode.org/

[VIA2002] Cameron, D., and Regnier, G., "The Virtual Interface Architecture", Intel Press, 2002,
ISBN:0971288704.

If you have any trouble finding [VIA2002], please check here.

1.2.2 Informative References

[MC-SMP] Microsoft Corporation, "Session Multiplex Protocol".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-SSCLRT] Microsoft Corporation, "SQL Server Common Language Runtime (CLR) Types
Serialization Formats".

[MSDN-Autocommit] Microsoft Corporation, "SQL Server - Autocommit Transactions",
http://msdn.microsoft.com/en-us/library/aa386980(VS.85).aspx

[MSDN-BEGIN] Microsoft Corporation, "BEGIN TRANSACTION (Transact SQL)",
http://msdn.microsoft.com/en-us/library/ms188929.aspx

[MSDN-BOUND] Microsoft Corporation, "Using Bound Sessions", http://msdn.microsoft.com/en-
us/library/ms177480.aspx

[MSDN-BROWSE] Microsoft Corporation, "Browse Mode", http://msdn.microsoft.com/en-
us/library/aa936959(SQL.80).aspx

[MSDN-Collation] Microsoft Corporation, "Collation and International Terminology",

http://msdn.microsoft.com/en-us/library/ms143726.aspx

[MSDN-ColSets] Microsoft Corporation, "Using Column Sets", http://msdn.microsoft.com/en-

us/library/cc280521.aspx

[MSDN-ColSortSty] Microsoft Corporation, "Windows Collation Sorting Style",
http://msdn.microsoft.com/en-us/library/ms143515.aspx

[MSDN-COMMIT] Microsoft Corporation, "COMMIT TRANSACTION (Transact SQL)",

http://msdn.microsoft.com/en-us/library/ms190295.aspx

http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=112180
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90534
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90550
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMC-SMP%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=161004
http://go.microsoft.com/fwlink/?LinkId=161004
http://go.microsoft.com/fwlink/?LinkId=145156
http://go.microsoft.com/fwlink/?LinkId=144544
http://go.microsoft.com/fwlink/?LinkId=144543
http://go.microsoft.com/fwlink/?LinkId=144543
http://go.microsoft.com/fwlink/?LinkId=140931
http://go.microsoft.com/fwlink/?LinkId=140931
http://go.microsoft.com/fwlink/?LinkId=233327
http://go.microsoft.com/fwlink/?LinkId=128616
http://go.microsoft.com/fwlink/?LinkId=128616
http://go.microsoft.com/fwlink/?LinkId=233328
http://go.microsoft.com/fwlink/?LinkId=144542

12 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MSDN-DTC] Microsoft Corporation, "Distributed Transaction Coordinator",
http://msdn.microsoft.com/en-us/library/ms684146.aspx

[MSDN-INSERT] Microsoft Corporation, "INSERT (Transact-SQL)", http://msdn.microsoft.com/en-
us/library/ms174335.aspx

[MSDN-MARS] Microsoft Corporation, "Multiple Active Result Sets (MARS) in SQL Server 2005",
http://msdn.microsoft.com/en-us/library/ms345109.aspx

[MSDN-MDAC] Microsoft Corporation, "Microsoft Data Access Components (MDAC) Installation",
http://msdn.microsoft.com/en-us/library/ms810805.aspx

[MSDN-NamedPipes] Microsoft Corporation, "Creating a Valid Connection String Using Named
Pipes", http://msdn.microsoft.com/en-us/library/ms189307(SQL.100).aspx

[MSDN-QUERYNOTE] Microsoft Corporation, "Using Query Notifications",

http://msdn.microsoft.com/en-us/library/ms175110.aspx

[MSDN-SNAC] Microsoft Corporation, "Microsoft SQL Server Native Client and Microsoft SQL Server
2008 Native Client", http://blogs.msdn.com/b/sqlnativeclient/archive/2008/02/27/microsoft-sql-
server-native-client-and-microsoft-sql-server-2008-native-client.aspx

[MSDN-SQLCollation] Microsoft Corporation, "Selecting a SQL Collation",
http://msdn.microsoft.com/en-us/library/ms144250.aspx

[MSDN-UPDATETEXT] Microsoft Corporation, "UPDATETEXT (Transact-SQL)",
http://msdn.microsoft.com/en-us/library/ms189466.aspx

[MSDN-WRITETEXT] Microsoft Corporation, "WRITETEXT (Transact-SQL)",
http://msdn.microsoft.com/en-us/library/ms186838.aspx

[NTLM] Microsoft Corporation, "Microsoft NTLM", http://msdn.microsoft.com/en-
us/library/aa378749.aspx

If you have any trouble finding [NTLM], please check here.

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-
us/library/aa365590.aspx

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network
Authentication Service (V5)", RFC 4120, July 2005, http://www.ietf.org/rfc/rfc4120.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178,
October 2005, http://www.ietf.org/rfc/rfc4178.txt

[SSPI] Microsoft Corporation, "SSPI", http://msdn.microsoft.com/en-us/library/aa380493.aspx

1.3 Overview

The Tabular Data Stream (TDS) Protocol is an application-level protocol used for the transfer of
requests and responses between clients and database server systems. In such systems, the client
will typically establish a long-lived connection with the server. Once the connection is established

using a transport-level protocol, TDS messages are used to communicate between the client and the
server. A database server can also act as the client if needed, in which case a separate TDS
connection must be established. Note that the TDS session is directly tied to the transport-level
session, meaning that a TDS session is established when the transport-level connection is

http://go.microsoft.com/fwlink/?LinkId=89994
http://go.microsoft.com/fwlink/?LinkId=154273
http://go.microsoft.com/fwlink/?LinkId=154273
http://go.microsoft.com/fwlink/?LinkId=98459
http://go.microsoft.com/fwlink/?LinkId=213737
http://go.microsoft.com/fwlink/?LinkId=127839
http://go.microsoft.com/fwlink/?LinkId=119984
http://go.microsoft.com/fwlink/?LinkId=213738
http://go.microsoft.com/fwlink/?LinkId=213738
http://go.microsoft.com/fwlink/?LinkId=119987
http://go.microsoft.com/fwlink/?LinkId=154272
http://go.microsoft.com/fwlink/?LinkId=154269
http://go.microsoft.com/fwlink/?LinkId=90235
http://go.microsoft.com/fwlink/?LinkId=90235
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90536

13 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

established and the server receives a request to establish a TDS connection. It persists until the
transport-level connection is terminated (for example, when a TCP socket is closed). In addition,

TDS does not make any assumption about the transport protocol used, but it does assume the
transport protocol supports reliable, in-order delivery of the data.

TDS includes facilities for authentication and identification, channel encryption negotiation, issuing
of SQL batches, stored procedure calls, returning data, and transaction manager requests.
Returned data is self-describing and record-oriented. The data streams describe the names, types
and optional descriptions of the rows being returned. The following diagram depicts a (simplified)
typical flow of communication in the TDS Protocol.

Figure 1: Communication flow in the TDS protocol

The following example is a high-level description of the messages exchanged between the client and
the server to execute a simple client request such as the execution of a SQL statement. It is
assumed that the client and the server have already established a connection and authentication
has succeeded.

Client:SQL statement

The server executes the SQL statement and then sends back the results to the client. The data

columns being returned are first described by the server (represented as column metadata or
COLMETADATA) and then the rows follow. A completion message is sent after all the row data has
been transferred.

14 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Server:COLMETADATAdata stream

ROWdata stream

.

.

ROWdata stream

DONEdata stream

For more information about the correlation between data stream and TDS buffer, see section

2.2.4.<1>

Additional details about which Microsoft SQL Server version corresponds to which TDS version
number are defined in LOGINACK (section 2.2.7.12).

TDS 7.3.A does not include support for NBCROW and fSparseColumnSet.

1.4 Relationship to Other Protocols

The Tabular Data Stream (TDS) protocol depends upon a network transport connection being
established prior to a TDS conversation occurring (the choice of transport protocol is not important
to TDS). TDS depends on Transport Layer Security (TLS)/Secure Socket Layer (SSL) for network
channel encryption. Although the TDS protocol depends on TLS/SSL to encrypt data transmission,
the negotiation of the encryption setting between the client and server and the initial TLS/SSL
handshake are handled in the TDS layer.

If the Multiple Active Result Set (MARS) feature [MSDN-MARS] is enabled, then the Session
Multiplex Protocol (SMUX) [MC-SMP] is required.

This relationship is illustrated in the following figure.

Figure 2: Protocol relationship

1.5 Prerequisites/Preconditions

Throughout this document, it is assumed that the client has already discovered the server and
established a network transport connection for use with TDS.

No security association is assumed to have been established at the lower layer before TDS begins
functioning. For Security Support Provider Interface (SSPI) [SSPI] authentication to be used,

http://go.microsoft.com/fwlink/?LinkId=98459
http://go.microsoft.com/fwlink/?LinkId=120873
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90536

15 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[SSPI] support must be available on both the client and server machines. If channel encryption is to
be used, TLS/SSL support must be present on both the client and server machines, and a certificate

suitable for encryption must be deployed on the server machine.

1.6 Applicability Statement

The TDS protocol is appropriate for use to facilitate request/response communications between an
application and a database server in all scenarios where network or local connectivity is available.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas.

Supported Transports: This protocol can be implemented on top of any network transport

protocol as discussed in section 2.1.

Protocol Versions: The TDS protocol supports the "TDS 7.0", "TDS 7.1", "TDS 7.2", "TDS 7.3",

and "TDS 7.4" explicit dialects. The dialect version is negotiated as part of the LOGIN7 message
data stream, which is defined in section 2.2.6.3. (Note that once a protocol feature has been
introduced, it is supported in subsequent versions of the TDS protocol until explicitly removed.)

Security and Authentication Methods: The TDS protocol supports SQL Server User

Authentication (SQLAUTH). It also supports SSPI authentication and indirectly supports any
authentication mechanism that SSPI supports. The use of SSPI in TDS is defined in sections
2.2.6.3 and 3.2.5.1.

Localization: Localization-dependent protocol behavior is specified in sections 2.2.5.1.2 and

2.2.5.6.

Capability Negotiation: This protocol does explicit capability negotiation as specified in this

section.

In general, the TDS protocol does not provide facilities for capability negotiation as the complete set
of supported features is fixed for each version of the protocol. Certain features such as

authentication type are not negotiated but rather requested by the client. However, one feature that
is negotiated is channel encryption. The encryption behavior used for the TDS session is negotiated

in the initial messages exchanged by the client and server. See the PRELOGIN description in section
2.2.6.4 for further details.

Note that the cipher suite for TLS/SSL and the authentication mechanism for SSPI are negotiated
outside the influence of TDS in [RFC2246] and [SSL3].

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

Parameter TCP port value Reference

Default SQL Server instance TCP port 1433 [IANAPORT]

http://go.microsoft.com/fwlink/?LinkId=90536
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=89888

16 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Messages

The formal syntax of all messages is provided in Augmented Backus-Naur Form (ABNF), as specified
in [RFC4234].

2.1 Transport

The TDS protocol does not prescribe a specific underlying transport protocol to use on the Internet
or on other networks. TDS only presumes a reliable transport that guarantees in-sequence delivery
of data.

The chosen transport can be either stream-oriented or message-oriented. If a message-oriented
transport is used, any TDS packet sent from a TDS client to a TDS server MUST be contained within
a single transport data unit. Any additional mapping of TDS data onto the transport data units of the
protocol in question is outside the scope of this specification.

The current version of the TDS protocol has implementations over the following transports:<2>

TCP [RFC793].

A reliable transport over the Virtual Interface Architecture (VIA) interface [VIA2002].<3>

Named Pipes (see [PIPE])

Optionally, the TDS protocol has implementations for the following two protocols on top of the

preceding transports:

Transport Layer Security (TLS) [RFC2246]/Secure Socket Layer (SSL), in case TLS/SSL

encryption is negotiated.

Session Multiplex Protocol (SMUX) [MC-SMP], in case the Multiple Active Results Set

(MARS) feature [MSDN-MARS] is requested.

2.2 Message Syntax

Character data, such as SQL statements, within a TDS message is in Unicode, unless the character

data represents the data value of an ASCII data type, such as a non-Unicode data column.
Character counts within TDS are a count of characters, rather than bytes, except when explicitly
specified as byte counts.

2.2.1 Client Messages

Messages sent from the client to the server are as follows:

A pre-login record

A login record

A SQL batch (in any language that the server will accept)

A SQL statement followed by its associated binary data (for example, the data for a bulk load

SQL statement)

A remote procedure call

An attention signal

http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90493
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=98556
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120873
http://go.microsoft.com/fwlink/?LinkId=98459

17 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

These are briefly described later; detailed descriptions of message contents are in section 2.2.6.

2.2.1.1 Pre-Login

Before a login occurs, a handshake denominated pre-login occurs between client and server, setting

up contexts such as encryption and MARS-enabled. For more details, see section 2.2.6.4.

2.2.1.2 Login

When the client makes the determination to establish a TDS protocol connection with the server
side, the client sends a login message data stream to the server. The client can have more than one
connection to the server, but each one is established separately in the same way. For more details,
see section 2.2.6.3.

After the server has received the login record from the client, it will notify the client that it has
either accepted or rejected the connection request. For more details, see section 3.3.5.1.

2.2.1.3 SQL Batch

To send a SQL statement or a batch of SQL statements, the SQL batch, represented by a Unicode
string, is copied into the data section of a TDS packet and then sent to the database server that
supports SQL. A SQL batch can span more than one TDS packet. For more details, see section

2.2.6.6.

2.2.1.4 Bulk Load

The bulk insert/bulk load operation is a case of a SQL statement that consists of a Unicode string
followed by binary data. The client sends the INSERT BULK SQL statement and then a
COLMETADATA token that describes the raw data is sent. Multiple rows of binary data are then sent

to the server. The data is not formatted in storage row format but in the format described by the
COLMETADATA token. The stream is the same as if the data were being selected from the server
rather than being sent to the server. For more details, see section 2.2.6.1.

2.2.1.5 Remote Procedure Call

To execute a remote procedure call (RPC) on the server, the client sends an RPC message data
stream to the server. This is a binary stream that contains the RPC name or numeric identifier,

options, and parameters. RPCs MUST be in a separate TDS message and not intermixed with SQL
statements. There can be several RPCs in one message. For more details, see section 2.2.6.5.

2.2.1.6 Attention

The client can interrupt and cancel the current request by sending an Attention message. This is
also known as out-of-band data, but any TDS packet that is currently being sent MUST be finished
before sending the Attention message. After the client sends an Attention message, the client

MUST read until it receives an Attention acknowledgment.

If a complete request has been sent to the server, sending a cancel requires sending an Attention

packet. An example of this behavior is if the client has already sent a request, which has the last
packet with EOM bit (0x01) set in status. The Attention packet is the only way to interrupt a
complete request that has already been sent to the server. For more information, see section
4.17.2.

If a complete request has not been sent to the server, the client MUST send the next packet with

both ignore bit (0x02) and EOM bit (0x01) set in the status to cancel the request. An example of

18 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

this behavior is if one or more packets have been sent but the last packet with EOM bit (0x01) set in
status has not been sent. Setting the ignore and EOM bit terminates the current request, and the

server MUST ignore the current request. When the ignore and EOM bit is set the server will not send
an attention acknowledgment but instead return a table response with a single DONE token with a

status of DONE_ERROR to indicate the incoming request was ignored. For more details about the
buffer header status code, see section 2.2.3.1.2.

2.2.1.7 Transaction Manager Request

The client can request that the connection enlist in an [MSDN-DTC] transaction.

2.2.2 Server Messages

Messages sent from the server to the client are:

A pre-login response

A login response

Row data

The return status of an RPC

Return parameters of an RPC

Response completion information

ERROR and INFO messages

An attention acknowledgement

These are briefly described below; detailed descriptions of message contents are in section 2.2.6.

2.2.2.1 Pre-Login Response

The pre-login response is a tokenless packet data stream. The data stream consists of the response
to the information requested by the client pre-login message. For a detailed description of this
stream, see section 2.2.6.4.

2.2.2.2 Login Response

The login response is a token stream consisting of information about the server's characteristics,
optional information and error messages, followed by a completion message.

The LOGINACK token data stream includes information about the server interface and the server's
product code and name. For a detailed description of the login response data stream, see section
2.2.7.12.

If there are any messages in the login response, an ERROR or INFO token data stream is returned

from the server to the client. For more information, see sections 2.2.7.9 and 2.2.7.11.

The server can send, as part of the login response, one or more ENVCHANGE token data streams if
the login changed the environment and the associated notification flag was set. An example of an
environment change includes the current database context and language setting. For details about
the different environment changes, see section 2.2.7.8.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89994

19 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

A done packet MUST be present as the final part of the login response, and a DONE token data
stream is the last thing sent in response to a server login request. For more information about the

DONE token data stream, see section 2.2.7.5.

2.2.2.3 Row Data

If the server request results in data being returned, the data will precede any other data streams
returned from the server except warnings. Row data MUST be preceded by a description of the
column names and data types. For more information about how the column names and data types
are described, see section 2.2.7.4.

2.2.2.4 Return Status

When a stored procedure is executed by the server, the server MUST return a status value. This is a
4-byte integer and is sent via the RETURNSTATUS token. A stored procedure execution is requested
through either an RPC Batch or a SQL Batch message. For more information, see section 2.2.7.16.

2.2.2.5 Return Parameters

The response format for execution of a stored procedure is identical regardless of whether the
request was sent as SQL Batch or RPC Batch. It is always a tabular result-type message.

If the procedure explicitly sends any data, then the message starts with a single token stream of
rows, informational messages, and error messages. This data is sent in the usual way.

When the RPC is invoked, some or all of its parameters are designated as output parameters. All
output parameters will have values returned from the server. For each output parameter, there is a
corresponding return value, sent via the RETURNVALUE token. The RETURNVALUE token data
stream is also used for sending back the value returned by a user-defined function (UDF), if it is

called as an RPC. For more details about the RETURNVALUE token, see section 2.2.7.17.

2.2.2.6 Response Completion ("DONE")

The client reads results in logical units and can tell when all results have been received by
examining the DONE token data stream.

When executing a batch of SQL statements, the server MUST return a DONE token data stream for
each set of results. All but the last DONE will have the DONE_MORE bit set in the Status field of the

DONE token data stream. Therefore, the client can always tell after reading a DONE whether or not
there are more results. For more details about the DONE token, see section 2.2.7.5.

For stored procedures, completion of SQL statements in the stored procedure is indicated by a
DONEINPROC token data stream for each SQL statement and a DONEPROC token data stream for
each completed stored procedure. For more details about DONEINPROC and DONEPROC tokens, see
section 2.2.7.6 and 2.2.7.7, respectively.

2.2.2.7 ERROR and INFO Messages

Besides returning description of Row data and the data itself, TDS provides a token data stream
type for the server to send error or informational messages to the client. These are the INFO token
data stream and the ERROR token data stream.

20 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.8 Attention Acknowledgment

After a client has sent an interrupt signal to the server, the client MUST read returning data until the
interrupt has been acknowledged. Attentions are acknowledged in the DONE token data stream.

2.2.3 Packets

A packet is the unit written or read at one time. A message can consist of one or more packets. A
packet always includes a packet header and is usually followed by packet data that contains the
message. Each new message starts in a new packet.

In practice, both the client and server will try to read a packet full of data. They will pick out the
header to see how much more (or less) data there is in the communication.

At login time, clients MAY specify a requested "packet" size as part of the LOGIN7 message stream.
This identifies the size used to break large messages into different "packets". Server
acknowledgment of changes in the negotiated packet size is transmitted back to the client via
ENVCHANGE token stream. The negotiated packet size is the maximum value that can be specified

in the Length packet header field described in section 2.2.3.1.3.

Starting with TDS 7.3, the following behavior MUST also be enforced. For requests sent to the server

larger than the current negotiated "packet" size, the client MUST send all but the last packet with a
total number of bytes equal to the negotiated size. Only the last packet in the request can contain
an actual number of bytes smaller than the negotiated packet size. If any of the preceding packets
are sent with a length less than the negotiated packet size, the server SHOULD disconnect the client
when the next network payload arrives.

2.2.3.1 Packet Header

To implement messages on top of existing, arbitrary transport layers, a packet header is included as
part of the packet. The packet header precedes all data within the packet. It is always 8 bytes in
length. Most importantly, the buffer header states the Type and Length of the entire packet.

The following is a detailed description of each item within the packet header.

2.2.3.1.1 Type

Type defines the type of message. Type is a 1-byte unsigned char. Types are as follows:

Value Description

Buffer

data?

1 SQL batch. This can be any language that the server understands. Yes

2 Pre-TDS7 login (only used by legacy clients older than Microsoft SQL Server 7.0). Yes

3 RPC. Yes

4 Tabular result. This indicates a stream that contains the server response to a

client request.

Yes

5 Unused. -

6 Attention signal. No

7 Bulk load data. This type is used to send binary data to the server. Yes

21 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Description

Buffer

data?

8-13 Unused. -

14 Transaction manager request. Yes

15 Unused. -

16 TDS7 login (MUST be used by all clients that support SQL Server 7.0 or later). Yes

17 SSPI message. Yes

18 Pre-login message. Yes

If an unknown Type is specified, the message receiver SHOULD disconnect the connection. If a valid
Type is specified, but is unexpected (per section 3), the message receiver SHOULD disconnect the
connection. This applies to both the client and the server. For example, the server could disconnect

the connection if the server receives a message with Type equal 16 when the connection is already
logged in.

The following table highlights which messages, as described previously in sections 2.2.1 and 2.2.2,
correspond to which packet header type.

Message type

Client or server

message Buffer header type

Pre-Login Client 2 or 18 depending on whether the client supports

TDS v7.0+

Login Client 16 + 17 (if Integrated authentication)

SQL batch Client 1

Bulk load Client 7

RPC Client 3

Attention Client 6

Transaction Manager

Request

Client 14

FeatureExtAck Server 4

Pre-Login Response Server 4

Login Response Server 4

Row Data Server 4

Return Status Server 4

Return Parameters Server 4

Request Completion Server 4

Session State Server 4

22 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Message type

Client or server

message Buffer header type

Error and Info Messages Server 4

Attention

Acknowledgement

Server 4

2.2.3.1.2 Status

Status is a bit field used to indicate the message state. Status is a 1-byte unsigned char. The
following Status bit flags are defined.

Value Description

0x00 "Normal" message.

0x01 End of message (EOM). The packet is the last packet in the whole request.

0x02 (From client to server) Ignore this event (0x01 MUST also be set).

0x08 RESETCONNECTION

(Introduced in TDS 7.1)

(From client to server) Reset this connection before processing event. Only set for event types

Batch, RPC, or Distributed Transaction Coordinator (DTC) Request. If clients want to set this

bit, it MUST be part of the first packet of the message. This signals the server to clean up the

environment state of the connection back to the default environment setting, effectively

simulating a logout and a subsequent login, and provides server support for connection pooling.

This bit SHOULD be ignored if it is set in a packet that is not the first packet of the message.

This status bit MUST NOT be set in conjunction with the RESETCONNECTIONSKIPTRAN bit.

Distributed transactions and isolation levels will not be reset.

0x10 RESETCONNECTIONSKIPTRAN

(Introduced in TDS 7.3)

(From client to server) Reset the connection before processing event but do not modify the

transaction state (the state will remain the same before and after the reset). The transaction in

the session can be a local transaction that is started from the session or it can be a distributed

transaction in which the session is enlisted. This status bit MUST NOT be set in conjunction with

the RESETCONNECTION bit. Otherwise identical to RESETCONNECTION.

All other bits are not used and MUST be ignored.

2.2.3.1.3 Length

Length is the size of the packet including the 8 bytes in the packet header. It is the number of
bytes from the start of this header to the start of the next packet header. Length is a 2-byte,
unsigned short int and is represented in network byte order (big-endian). Starting with TDS 7.3,
the Length MUST be the negotiated packet size when sending a packet from client to server, unless

it is the last packet of a request (that is, the EOM bit in Status is ON), or the client has not logged
in.

2.2.3.1.4 SPID

Spid is the process ID on the server, corresponding to the current connection. This information is
sent by the server to the client and is useful for identifying which thread on the server sent the TDS

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

23 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

packet. It is provided for debugging purposes. The client MAY send the SPID value to the server. If
the client does not, then a value of 0x0000 SHOULD be sent to the server. This is a 2-byte value

and is represented in network byte order (big-endian).

2.2.3.1.5 PacketID

PacketID is used for numbering message packets that contain data in addition to the packet
header. PacketID is a 1-byte, unsigned char. Each time packet data is sent, the value of PacketID
is incremented by 1, modulo 256. This allows the receiver to track the sequence of TDS packets for
a given message. This value is currently ignored.

2.2.3.1.6 Window

This 1 byte is currently not used. This byte SHOULD be set to 0x00 and SHOULD be ignored by the
receiver.

2.2.3.2 Packet Data

Packet data for a given message follows the packet header (see Type in section 2.2.3.1.1 for
messages that contain packet data). As previously stated, a message can span more than one
packet. Because each new message MUST always begin within a new packet, a message that spans

more than one packet only occurs if the data to be sent exceeds the maximum packet data size,
which is computed as (negotiated packet size - 8 bytes), where the 8 bytes represents the size of
the packet header.

If a stream spans more than one packet, then the EOM bit of the packet header Status code MUST
be set to 0 for every packet header. The EOM bit MUST be set to 1 in the last packet to signal that
the stream ends. In addition, the PacketID field of subsequent packets MUST be incremented as

defined in section 2.2.3.1.5.

2.2.4 Packet Data Token and Tokenless Data Streams

The messages contained in packet data that pass between the client and the server can be one of

two types: a "token stream" or a "tokenless stream". A token stream consists of one or more
"tokens" each followed by some token-specific data. A "token" is a single byte identifier used to
describe the data that follows it (for example contains token data type, token data length, and so

on). Tokenless streams are typically used for simple messages. Messages that might require a more
detailed description of the data within it are sent as a token stream. The following table highlights
which messages, as described previously in sections 2.2.1 and 2.2.2, use token streams and which
do not.

Message type Client or server message Token stream?

Pre-Login Client No

Login Client No

SQL Command Client No

SQL Command with Binary Data Client Yes

Remote Procedure Call (RPC) Client Yes

Attention Client No

Transaction Manager Request Client No

24 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Message type Client or server message Token stream?

Pre-Login Response Server No

FeatureExtAck Server Yes

Login Response Server Yes

Row Data Server Yes

Return Status Server Yes

Return Parameters Server Yes

Request Completion Server Yes

Session State Server Yes

Error and Info Messages Server Yes

Attention Acknowledgement Server No

2.2.4.1 Tokenless Stream

As shown in the previous section, some messages do not use tokens to describe the data portion of
the data stream. In these cases, all the information required to describe the packet data is
contained in the packet header. This is referred to as a tokenless stream and is essentially just a
collection of packets and data.

2.2.4.2 Token Stream

More complex messages (for example, colmetadata, row data, and data type data) are constructed
by using tokens. As previously described, a token stream consists of a single byte identifier, followed
by token-specific data. The definition of different token stream can be found in section 2.2.7.

2.2.4.2.1 Token Definition

There are four classes of token definitions:

Zero Length Token(xx01xxxx)

Fixed Length Token(xx11xxxx)

Variable Length Tokens(xx10xxxx)

Variable Count Tokens(xx00xxxx)

The following sections specify the bit pattern of each token class, various extensions to this bit

pattern for a given token class, and a description of its function(s).

2.2.4.2.1.1 Zero Length Token(xx01xxxx)

This class of token is not followed by a length specification. There is no data associated with the
token. A zero length token always has the following bit sequence:

25 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

0 1 2 3 4 5 6 7

x x 0 1 x x x x

In the diagram above, x denotes a bit position that can contain the bit value 0 or 1.

2.2.4.2.1.2 Fixed Length Token(xx11xxxx)

This class of token is followed by 1, 2, 4, or 8 bytes of data. No length specification follows this
token because the length of its associated data is encoded in the token itself. The different fixed
data-length token definitions take the form of one of the following bit sequences, depending on
whether the token is followed by 1, 2, 4, or 8 bytes of data.

0 1 2 3 4 5 6 7 Description

x x 1 1 0 0 x x Token is followed by 1 byte of data.

x x 1 1 0 1 x x Token is followed by 2 bytes of data.

x x 1 1 1 0 x x Token is followed by 4 bytes of data.

x x 1 1 1 1 x x Token is followed by 8 bytes of data.

In the diagram above, x denotes a bit position that can contain the bit value 0 or 1.

Fixed-length tokens are used by the following data types: bigint, int, smallint, tinyint, float, real,
money, smallmoney, datetime, smalldatetime, and bit. The type definition is always represented in
COLMETADATA and ALTMETADATA data streams as a single byte Type. Additional details are

specified in section 2.2.5.3.1.

2.2.4.2.1.3 Variable Length Tokens(xx10xxxx)

This class of token definition is followed by a length specification. The length (in bytes) of this length

is included in the token itself as a Length value (see the Length rule of the COLINFO token stream).

There are two data types that are of variable length. These are real variable length data types like
char and binary and nullable data types, which are either their normal fixed length corresponding to

their type_info, or a special length if null.

Char and binary data types have values that are either null or 0 to 65534 (0x0000 to 0xFFFE) bytes
in length. Null is represented by a length of 65535 (0xFFFF). A char or binary, which cannot be null,
can still have a length of zero (for example an empty value). A program that MUST pad a value to a
fixed length will typically add blanks to the end of a char and binary zeros to the end of a binary.

Text and image data types have values that are either null, or 0 to 2 gigabytes (0x00000000 to

0x7FFFFFFF bytes) in length. Null is represented by a length of -1 (0xFFFFFFFF). No other length
specification is supported.

Other nullable data types have a length of 0 if they are null.

2.2.4.2.1.4 Variable Count Tokens(xx00xxxx)

This class of token definition is followed by a count of the number of fields that follow the token.
Each field length is dependent on the token type. The total length of the token can be determined

only by walking the fields. A variable count token always has its third and fourth bits set to 0.

26 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

0 1 2 3 4 5 6 7

x x 0 0 x x x x

In the diagram above, x denotes a bit position that can contain the bit value 0 or 1.

Currently there are two variable count tokens. COLMETADATA and ALTMETADATA both use a 2-byte
count.

2.2.4.3 Done and Attention Tokens

The DONE token marks the end of the response for each executed SQL statement. Based on the
SQL statement and the context in which it is executed, the server MAY generate a DONEPROC or

DONEINPROC token instead.

The attention signal is sent using the out-of-band write provided by the network library. An out-of-
band write is the ability to send the attention signal no matter if the sender is in the middle of

sending or processing a message or simply sitting idle. If that function is not supported, the client
MUST simply read and discard all of the data, except SESSIONSTATE data, from the server until the
final DONE token, which acknowledges that the attention signal is read.<4>

2.2.5 Grammar Definition for Token Description

The Tabular Data Stream consists of a variety of messages. Each message consists of a set of bytes
transmitted in a predefined order. This predefined order or grammar can be specified using
Augmented Backus-Naur Form [RFC4234]. Details can be found in the following subsections.

2.2.5.1 General Rules

Data structure encodings in TDS are defined in terms of the following fundamental definitions:

BIT: A single bit value of either 0 or 1.

BIT = %b0 / %b1

BYTE: An unsigned single byte (8-bit) value. The range is 0 to 255.

BYTE = 8BIT

BYTELEN: An unsigned single byte (8-bit) value representing the length of the associated data. The

range is 0 to 255.

BYTELEN = BYTE

USHORT: An unsigned 2-byte (16-bit) value. The range is 0 to 65535.

USHORT = 2BYTE

http://go.microsoft.com/fwlink/?LinkId=90462

27 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

LONG: A signed 4-byte (32-bit) value. The range is -(2^31) to (2^31)-1.

LONG = 4BYTE

ULONG: An unsigned 4-byte (32-bit) value. The range is 0 to (2^32)-1

ULONG = 4BYTE

DWORD: An unsigned 4-byte (32-bit) value. The range when used as a numeric value is 0 to

(2^32)-1.

DWORD = 32BIT

LONGLONG: A signed 8-byte (64-bit) value. The range is –(2^63) to (2^63)-1.

LONGLONG = 8BYTE

ULONGLONG: An unsigned 8-byte (64-bit) value. The range is 0 to (2^64)-1.

ULONGLONG = 8BYTE

UCHAR: An unsigned single byte (8-bit) value representing a character. The range is 0 to 255.

UCHAR = BYTE

USHORTLEN: An unsigned 2-byte (16-bit) value representing the length of the associated data.
The range is 0 to 65535.

USHORTLEN = 2BYTE

USHORTCHARBINLEN: An unsigned 2-byte (16-bit) value representing the length of the

associated character or binary data. The range is 0 to 8000.

USHORTCHARBINLEN = 2BYTE

LONGLEN: A signed 4-byte (32-bit) value representing the length of the associated data. The range

is -(2^31) to (2^31)-1.

LONGLEN = 4BYTE

28 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ULONGLONGLEN: An unsigned 8-byte (64-bit) value representing the length of the associated

data. The range is 0 to (2^64)-1.

ULONGLONGLEN = 8BYTE

PRECISION: An unsigned single byte (8-bit) value representing the precision of a numeric number.

PRECISION = 8BIT

SCALE: An unsigned single byte (8-bit) value representing the scale of a numeric number.

SCALE = 8BIT

GEN_NULL: A single byte (8-bit) value representing a NULL value.

GEN_NULL = %x00

CHARBIN_NULL: A 2-byte (16-bit) or 4-byte (32-bit) value representing a T-SQL NULL value for a
character or binary data type. Please refer to TYPE_VARBYTE (see section 2.2.5.2.3) for additional

details.

CHARBIN_NULL = (%xFF %xFF) / (%xFF %xFF %xFF %xFF)

FRESERVEDBIT: A FRESERVEDBIT is a BIT value used for padding that does not transmit

information. FRESERVEDBIT fields SHOULD be set to %b0 and MUST be ignored on receipt.

FRESERVEDBIT = %b0

FRESERVEDBYTE: A FRESERVEDBYTE is a BYTE value used for padding that does not transmit

information. FRESERVEDBYTE fields SHOULD be set to %x00 and MUST be ignored on receipt.

FRESERVEDBYTE = %x00

UNICODECHAR: A single Unicode character in UCS-2 encoding, as specified in UNICODE

[UNICODE].

UNICODECHAR = 2BYTE

Notes

http://go.microsoft.com/fwlink/?LinkId=90550

29 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

All integer types are represented in reverse byte order (little-endian) unless otherwise

specified.

FRESERVEDBIT and FRESERVEDBYTE are often used to pad unused parts of a byte or bytes. The

value of these reserved bits should be ignored. These elements are generally set to 0.

2.2.5.1.1 Least Significant Bit Order

Certain tokens will possess rules that comprise an array of independent bits. These are typically
"flag" rules in which each bit is a flag indicating that a specific feature or option is
enabled/requested. Normally, the bit array will be arranged in least significant bit order (or typical
array index order) meaning that the first listed flag is placed in the least significant bit position

(identifying the least significant bit as one would in an integer variable). For example, if Fn is the
nth flag, then the following rule definition:

FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7

would be observed on the wire in the natural value order F7F6F5F4F3F2F1F0.

If the rule contains 16 bits, then the order of the bits observed on the wire will follow the little-
endian byte ordering. For example, the following rule definition:

FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

will have the following order on the wire: F7F6F5F4F3F2F1F0 F15F14F13F12F11F10F9F8.

2.2.5.1.2 Collation Rule Definition

The collation rule is used to specify collation information for character data or metadata describing
character data. This is typically specified as part of the LOGIN7 message or part of a column

definition in server results containing character data. For more information about column definition,
see COLMETADATA.

LCID = 20BIT

fIgnoreCase = BIT

fIgnoreAccent = BIT

fIgnoreWidth = BIT

fIgnoreKana = BIT

fBinary = BIT

fBinary2 = BIT

ColFlags = fIgnoreCase fIgnoreAccent fIgnoreKana

 fIgnoreWidth fBinary fBinary2 FRESERVEDBIT

 FRESERVEDBIT

Version = 4BIT

SortId = BYTE

COLLATION = LCID ColFlags Version SortId

A SQL (SortId==1) collation is one of a predefined set of sort orders. It is identified by having

SortId with values as defined by [MSDN-SQLCollation].

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=119987

30 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

For a SortId==0 collation, the LCID bits correspond to a LocaleId as defined by the National
Language Support (NLS) functions. For more details, see [MS-LCID].

Notes<5>

The sorting styles used in SQL Server are defined at [MSDN-ColSortSty].

If COLLATION specifies 0x00 00 00 00 00 then it indicates request for use of raw collation.

ColFlags is represented in least significant bit order.

2.2.5.2 Data Stream Types

2.2.5.2.1 Unknown Length Data Streams

Unknown length data streams can be used by tokenless data streams. It is a stream of bytes. The
number of bytes within the data stream is defined in the packet header as specified in section
2.2.3.1.

BYTESTREAM = *BYTE

UNICODESTREAM = *(2BYTE)

2.2.5.2.2 Variable-Length Data Streams

Variable-length data streams consist of a stream of characters or a stream of bytes. The two types
are similar, in that they both have a length rule and a data rule.

Characters

Variable-length character streams are defined by a length field followed by the data itself. There are
two types of variable-length character streams, each dependent on the size of the length field (for
example, a BYTE or USHORT). If the length field is zero, then no data follows the length field.

B_VARCHAR = BYTELEN *CHAR

US_VARCHAR = USHORTLEN *CHAR

Note that the lengths of B_VARCHAR and US_VARCHAR are given in Unicode characters.

Generic Bytes

Similar to the variable-length character stream, variable-length byte streams are defined by a
length field followed by the data itself. There are three types of variable-length byte streams, each

dependent on the size of the length field (for example, a BYTE, USHORT, or LONG). If the value of
the length field is zero, then no data follows the length field.

B_VARBYTE = BYTELEN *BYTE

US_VARBYTE = USHORTLEN *BYTE

L_VARBYTE = LONGLEN *BYTE

%5bMS-LCID%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=233328

31 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.5.2.3 Data Type Dependent Data Streams

Some messages contain variable data types. The actual type of a given variable data type is
dependent on the type of the data being sent within the message as defined in the TYPE_INFO rule.

For example, the RPCRequest message contains the TYPE_INFO and TYPE_VARBYTE rules. These
two rules contain data of a type that is dependent on the actual type used in the value of the
FIXEDLENTYPE or VARLENTYPE rules of the TYPE_INFO rule.

Data type-dependent data streams occur in three forms: integers, fixed and variable bytes, and
partially length-prefixed bytes.

Integers

Data type-dependent integers can be either a BYTELEN, USHORTCHARBINLEN, or LONGLEN in

length. This length is dependent on the TYPE_INFO associated with the message. If the data type
(for example, FIXEDLENTYPE or VARLENTYPE rule of the TYPE_INFO rule) is of type
SSVARIANTTYPE, TEXTTYPE, NTEXTTYPE, or IMAGETYPE, the integer length is LONGLEN. If the data

type is BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTYPE, or
BIGVARBINARYTYPE, the integer length is USHORTCHARBINLEN. For all other data types, the
integer length is BYTELEN.

TYPE_VARLEN = BYTELEN

 /

 USHORTCHARBINLEN

 /

 LONGLEN

Fixed and Variable Bytes

The data type to be used in a data type-dependent byte stream is defined by the TYPE_INFO rule

associated with the message.

For variable-length types, with the exception of PLP (see Partially Length-prefixed Bytes below), the
TYPE_VARLEN value defines the length of the data to follow. As described above, the TYPE_INFO
rule defines the type of TYPE_VARLEN (for example BYTELEN, USHORTCHARBINLEN, or LONGLEN).

For fixed-length types, the TYPE_VARLEN rule is not present. In these cases the number of bytes to
be read is determined by the TYPE_INFO rule (for example, if "INT2TYPE" is specified as the value

for the FIXEDLENTYPE rule of the TYPE_INFO rule, 2 bytes should be read, as "INT2TYPE" is always
2 bytes in length. For more details, see Data Types Definitions).

The data following this can be a stream of bytes or a NULL value. The 2-byte CHARBIN_NULL rule is
used for BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTYPE, and
BIGVARBINARYTYPE types, and the 4-byte CHARBIN_NULL rule is used for TEXTTYPE, NTEXTTYPE,
and IMAGETYPE. The GEN_NULL rule applies to all other types aside from PLP:

TYPE_VARBYTE = GEN_NULL / CHARBIN_NULL / PLP_BODY

 / ([TYPE_VARLEN] *BYTE)

Partially Length-prefixed Bytes

32 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Unlike fixed or variable byte stream formats, Partially length-prefixed bytes (PARTLENTYPE),
introduced in TDS 7.2, do not require the full data length to be specified before the actual data is

streamed out. Thus, it is ideal for those applications where the data length is not known upfront
(that is, xml serialization). A value sent as PLP can be either NULL, a length followed by chunks (as

defined by PLP_CHUNK), or an unknown length token followed by chunks, which MUST end with a
PLP_TERMINATOR. The rule below describes the stream format (for example, the format of a
singleton PLP value):

PLP_BODY= PLP_NULL

 /

 ((ULONGLONGLEN / UNKNOWN_PLP_LEN)

 *PLP_CHUNK PLP_TERMINATOR)

PLP_NULL = %xFFFFFFFFFFFFFFFF

UNKNOWN_PLP_LEN = %xFFFFFFFFFFFFFFFE

PLP_CHUNK = ULONGLEN 1*BYTE

PLP_TERMINATOR = %x00000000

Notes

TYPE_INFO rule specifies a Partially Length-prefixed Data type (PARTLENTYPE, see 2.2.5.4.3).

In the UNKNOWN_PLP_LEN case, the data is represented as a series of zero or more chunks,

each consisting of the length field followed by length bytes of data (see the PLP_CHUNK rule).
The data is terminated by PLP_TERMINATOR (which is essentially a zero-length chunk).

In the actual data length case, the ULONGLONGLEN specifies the length of the data and is

followed by any number of PLP_CHUNKs containing the data. The length of the data specified by

ULONGLONGLEN is used as a hint for the receiver. The receiver SHOULD validate that the length
value specified by ULONGLONGLEN matches the actual data length.

2.2.5.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition

Message streams can be preceded by a variable number of headers as specified by the
ALL_HEADERS rule. The ALL_HEADERS rule, the Query Notifications header, and the Transaction
Descriptor header were introduced in TDS 7.2. The Trace Activity header was introduced in TDS 7.4.

The list of headers that are applicable to the different types of messages are described in the
following table.

Stream headers MUST be present only in the first packet of requests that span more than one
packet. The ALL_HEADERS rule applies only to the three client request types defined in the table

below and MUST NOT be included for other request types. For the applicable request types, each
header MUST appear at most once in the stream or packet's ALL_HEADERS field.

Header Value SQLBatch RPCRequest TransactionManagerRequest

Query Notifications 0x00 01 Optional Optional Disallowed

Transaction Descriptor 0x00 02 Required Required Required

33 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Header Value SQLBatch RPCRequest TransactionManagerRequest

Trace Activity 0x00 03 Optional Optional Optional

Stream-Specific Rules:

TotalLength = DWORD ;including itself

HeaderLength = DWORD ;including itself

HeaderType = USHORT;

HeaderData = *BYTE

Header = HeaderLength HeaderType HeaderData

Stream Definition:

ALL_HEADERS = TotalLength 1*Header

Parameter Description

TotalLength Total length of ALL_HEADERS stream.

HeaderLength Total length of an individual header.

HeaderType The type of header, as defined by the value field in the preceding table.

HeaderData The data stream for the header. See header definitions in the following subsections.

Header A structure containing a single header.

2.2.5.3.1 Query Notifications Header

This packet data stream header allows the client to specify that a notification is desired on the

results of the request. The contents of the header specify the information necessary for delivery of
the notification. For more details on query notification functionality for a database server that
supports SQL, see [MSDN-QUERYNOTE].

Stream Specific Rules:

NotifyId = USHORT UNICODESTREAM ; user specified value

 when subscribing to the

 query notification

SSBDeployment = USHORT UNICODESTREAM ;

NotifyTimeout = ULONG ; duration in which the query

 notification subscription

 is valid

The USHORT field defined within the NotifyId and SSBDeployment rules specifies the length, in

bytes, of the actual data value, defined by the UNICODESTREAM, that follows it.

Stream Definition:

Header Data = NotifyId

 SSBDeployment

http://go.microsoft.com/fwlink/?LinkId=119984

34 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [NotifyTimeout]

2.2.5.3.2 Transaction Descriptor Header

This packet data stream contains information regarding transaction descriptor and number of
outstanding requests as they apply to [MSDN-MARS].

The TransactionDescriptor MUST be 0, and OutstandingRequestCount MUST be 1 if the connection is
operating in AutoCommit mode. For more information about autocommit transactions, see [MSDN-
Autocommit].

Stream-Specific Rules:

OutstandingRequestCount = DWORD ; number of requests currently

 active on the connection

TransactionDescriptor = ULONGLONG ; For each connection, a number that

 uniquely

 identifies the transaction

 the request is associated

 with.

 Initially generated by

 the server when a new transaction

 is created and returned to

 the client as part of the

 ENVCHANGE token stream.

For more information about processing the Transaction Descriptor header, see section 2.2.6.8.

Stream Definition:

Header Data = TransactionDescriptor

 OutstandingRequestCount

2.2.5.3.3 Trace Activity Header

This packet data stream contains a client trace activity ID intended to be used by the server for

debugging purposes, to allow correlating the server's processing of the request with the client
request.

A client MUST NOT send a Trace Activity Header when the negotiated TDS major version is less than
7.4. If the negotiated TDS major version is less than TDS 7.4 and the server receives a Trace
Activity Header token, the server MUST reject the request with a TDS protocol error.

Stream-Specific Rules:

ActivityId = 20BYTE ; client Activity ID

 ; for debugging purposes

Stream Definition:

Header Data = ActivityId

http://go.microsoft.com/fwlink/?LinkId=98459
http://go.microsoft.com/fwlink/?LinkId=145156
http://go.microsoft.com/fwlink/?LinkId=145156

35 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.5.4 Data Type Definitions

The subsections within this section describe the different sets of data types and how they are
categorized. Specifically, data values are interpreted and represented in association with their data

type. Details about each data type categorization are described in the following sections.

2.2.5.4.1 Fixed-Length Data Types

The fixed-length data types include the following types.

NULLTYPE = %x1F ; Null

INT1TYPE = %x30 ; TinyInt

BITTYPE = %x32 ; Bit

INT2TYPE = %x34 ; SmallInt

INT4TYPE = %x38 ; Int

DATETIM4TYPE = %x3A ; SmallDateTime

FLT4TYPE = %x3B ; Real

MONEYTYPE = %x3C ; Money

DATETIMETYPE = %x3D ; DateTime

FLT8TYPE = %x3E ; Float

MONEY4TYPE = %x7A ; SmallMoney

INT8TYPE = %x7F ; BigInt

FIXEDLENTYPE = NULLTYPE

 /

 INT1TYPE

 /

 BITTYPE

 /

 INT2TYPE

 /

 INT4TYPE

 /

 DATETIM4TYPE

 /

 FLT4TYPE

 /

 MONEYTYPE

 /

 DATETIMETYPE

 /

 FLT8TYPE

 /

 MONEY4TYPE

 /

 INT8TYPE

Non-nullable values are returned using these fixed-length data types. There is no data associated

with NULLTYPE.<6> For the rest of the fixed-length data types, the length of data is predefined by
the type. There is no TYPE_VARLEN field in the TYPE_INFO rule for these types. In the

TYPE_VARBYTE rule for these types, the TYPE_VARLEN field is BYTELEN, and the value is 1 for
INT1TYPE/BITTYPE, 2 for INT2TYPE, 4 for INT4TYPE/DATETIM4TYPE/FLT4TYPE/MONEY4TYPE, and 8
for MONEYTYPE/DATETIMETYPE/FLT8TYPE/INT8TYPE. The value represents the number of bytes of
data to be followed. The SQL data types of the corresponding fixed-length data types are in the

comment part of each data type.

36 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.5.4.2 Variable-Length Data Types

The data type token values defined in this section have a length value associated with the data type
because the data values corresponding to these data types are represented by a variable number of

bytes.

GUIDTYPE = %x24 ; UniqueIdentifier

INTNTYPE = %x26 ; (see below)

DECIMALTYPE = %x37 ; Decimal (legacy support)

NUMERICTYPE = %x3F ; Numeric (legacy support)

BITNTYPE = %x68 ; (see below)

DECIMALNTYPE = %x6A ; Decimal

NUMERICNTYPE = %x6C ; Numeric

FLTNTYPE = %x6D ; (see below)

MONEYNTYPE = %x6E ; (see below)

DATETIMNTYPE = %x6F ; (see below)

DATENTYPE = %x28 ; (introduced in TDS 7.3)

TIMENTYPE = %x29 ; (introduced in TDS 7.3)

DATETIME2NTYPE = %x2A ; (introduced in TDS 7.3)

DATETIMEOFFSETNTYPE = %x2B ; (introduced in TDS 7.3)

CHARTYPE = %x2F ; Char (legacy support)

VARCHARTYPE = %x27 ; VarChar (legacy support)

BINARYTYPE = %x2D ; Binary (legacy support)

VARBINARYTYPE = %x25 ; VarBinary (legacy support)

BIGVARBINTYPE = %xA5 ; VarBinary

BIGVARCHRTYPE = %xA7 ; VarChar

BIGBINARYTYPE = %xAD ; Binary

BIGCHARTYPE = %xAF ; Char

NVARCHARTYPE = %xE7 ; NVarChar

NCHARTYPE = %xEF ; NChar

XMLTYPE = %xF1 ; XML (introduced in TDS 7.2)

UDTTYPE = %xF0 ; CLR-UDT (introduced in TDS 7.2)

TEXTTYPE = %x23 ; Text

IMAGETYPE = %x22 ; Image

NTEXTTYPE = %x63 ; NText

SSVARIANTTYPE = %x62 ; Sql_Variant (introduced in TDS 7.2)

BYTELEN_TYPE = GUIDTYPE

 /

 INTNTYPE

 /

 DECIMALTYPE

 /

 NUMERICTYPE

 /

 BITNTYPE

 /

 DECIMALNTYPE

 /

 NUMERICNTYPE

 /

 FLTNTYPE

 /

 MONEYNTYPE

 /

 DATETIMNTYPE

 /

37 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 DATENTYPE

 /

 TIMENTYPE

 /

 DATETIME2NTYPE

 /

 DATETIMEOFFSETNTYPE

 /

 CHARTYPE

 /

 VARCHARTYPE

 /

 BINARYTYPE

 /

 VARBINARYTYPE ; the length value associated

 with these data types is

 specified within a BYTE

For MONEYNTYPE, the only valid lengths are 0x04 and 0x08, which map to smallmoney and money
SQL data types respectively.

For DATETIMNTYPE, the only valid lengths are 0x04 and 0x08, which map to smalldatetime and

datetime SQL data types respectively.

For INTNTYPE, the only valid lengths are 0x01, 0x02, 0x04, and 0x08, which map to tinyint,
smallint, int, and bigint SQL data types respectively.

For FLTNTYPE, the only valid lengths are 0x04 and 0x08, which map to 7-digit precision float and
15-digit precision float SQL data types respectively.

For GUIDTYPE, the only valid lengths are 0x10 for non-null instances and 0x00 for NULL instances.

For BITNTYPE, the only valid lengths are 0x01 for non-null instances and 0x00 for NULL instances.

For DATENTYPE, the only valid lengths are 0x03 for non-NULL instances and 0x00 for NULL
instances.

For TIMENTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x03 0x03 0x04 0x04 0x05 0x05 0x05

For DATETIME2NTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x06 0x06 0x07 0x07 0x08 0x08 0x08

For DATETIMEOFFSETNTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x08 0x08 0x09 0x09 0x0A 0x0A 0x0A

38 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Exceptions are thrown when invalid lengths are presented to the server during BulkLoadBCP and
RPC requests.

USHORTLEN_TYPE = BIGVARBINTYPE

 /

 BIGVARCHRTYPE

 /

 BIGBINARYTYPE

 /

 BIGCHARTYPE

 /

 NVARCHARTYPE

 /

 NCHARTYPE ; the length value associated with

 these data types is specified

 within a USHORT

LONGLEN_TYPE = IMAGETYPE

/

NTEXTTYPE

/

SSVARIANTTYPE

/

TEXTTYPE

 /

 XMLTYPE ; the length value associated with

 these data types is specified

 within a LONG

Notes

MaxLength for an SSVARIANTTYPE is 8009 (8000 for strings). For more details, see section

2.2.5.5.4.

XMLTYPE is only a valid LONGLEN_TYPE for BulkLoadBCP.

MaxLength for an SSVARIANTTYPE is 8009 (string of 8000 bytes).

VARLENTYPE = BYTELEN_TYPE

 /

 USHORTLEN_TYPE

 /

 LONGLEN_TYPE

Nullable values are returned by using the INTNTYPE, BITNTYPE, FLTNTYPE, GUIDTYPE,

MONEYNTYPE, and DATETIMNTYPE tokens which will use the length byte to specify the length of the

value or GEN_NULL as appropriate.

There are two types of variable-length data types. These are real variable-length data types, like
char and binary, and nullable data types, which have either a normal fixed length that corresponds
to their type or to a special length if null.

39 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Char and binary data types have values that either are null or are 0 to 65534 (0x0000 to 0xFFFE)
bytes of data. Null is represented by a length of 65535 (0xFFFF). A non-nullable char or binary can

still have a length of zero (for example, an empty value). A program that MUST pad a value to a
fixed length typically adds blanks to the end of a char and adds binary zeros to the end of a binary.

Text and image data types have values that either are null or are 0 to 2 gigabytes (0x00000000 to
0x7FFFFFFF bytes) of data. Null is represented by a length of -1 (0xFFFFFFFF). No other length
specification is supported.

Other nullable data types have a length of 0 when they are null.

2.2.5.4.3 Partially Length-Prefixed Data Types

The data value corresponding to the set of data types defined in this section follows the rule defined

in the partially length-prefixed stream definition (section 2.2.5.2.3).

PARTLENTYPE = XMLTYPE

 /

 BIGVARCHRTYPE

 /

 BIGVARBINTYPE

 /

 NVARCHARTYPE

 /

 UDTTYPE

BIGVARCHRTYPE, BIGVARBINTYPE, and NVARCHARTYPE can represent two types each:

The regular type with a known maximum size range from 0 to 8000, defined by

USHORTLEN_TYPE.

A type with unlimited max size, known as varchar(max), varbinary(max) and nvarchar(max),

which has a max size of 0xFFFF, defined by PARTLENTYPE. This class of types was introduced in
TDS 7.2.

2.2.5.5 Data Type Details

The subsections within this section specify the formats in which values of system data types are
serialized in TDS.

2.2.5.5.1 System Data Type Values

The subsections within this section specify the formats in which values of various common system
data types are serialized in TDS.

2.2.5.5.1.1 Integers

All integer types are represented in reverse byte order (little-endian) unless otherwise specified.

Each integer takes a whole number of bytes as follows:

bit: 1 byte

tinyint: 1 byte

smallint: 2 bytes

40 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

int: 4 bytes

bigint: 8 bytes

2.2.5.5.1.2 Timestamp

timestamp/rowversion is represented as an 8-byte binary sequence with no particular
interpretation.

2.2.5.5.1.3 Character and Binary Strings

See Variable-Length Data Types (section 2.2.5.4.2) and Partially Length-Prefixed Data Types
(section 2.2.5.4.3).

2.2.5.5.1.4 Fixed-Point Numbers

smallmoney is represented as a 4-byte signed integer. The TDS value is the smallmoney value

multiplied by 104.

money is represented as an 8-byte signed integer. The TDS value is the money value multiplied by
104. The 8-byte signed integer itself is represented in the following sequence:

One 4-byte integer that represents the more significant half.

One 4-byte integer that represents the less significant half.

2.2.5.5.1.5 Floating-Point Numbers

float(n) follows the 32-bit [IEEE754] binary specification when n <= 24 and the 64-bit [IEEE754]
binary specification when 25 <= n <= 53.

2.2.5.5.1.6 Decimal/Numeric

Decimal or Numeric is defined as decimal(p, s) or numeric(p, s), where p is the precision and s is
the scale. The value is represented in the following sequence:

One 1-byte unsigned integer that represents the sign of the decimal value as follows:

1 means negative.

0 means nonnegative.

One 4-, 8-, 12-, or 16-byte signed integer that represents the decimal value multiplied by 10s.

The maximum size of this integer is determined based on p as follows:

4 bytes if 1 <= p <= 9.

8 bytes if 10 <= p <= 19.

12 bytes if 20 <= p <= 28.

16 bytes if 29 <= p <= 38.

The actual size of this integer could be less than the maximum size, depending on the value. In all
cases, the integer part must be either 4, 8, 12, or 16 bytes.

http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=89903

41 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.5.5.1.7 GUID

uniqueidentifier is represented as a 16-byte binary sequence with no specific interpretation.

2.2.5.5.1.8 Date/Times

smalldatetime is represented in the following sequence:

One 2-byte unsigned integer that represents the number of days since January 1, 1900.

One 2-byte unsigned integer that represents the number of minutes elapsed since 12 AM that

day.

datetime is represented in the following sequence:

One 4-byte signed integer that represents the number of days since January 1, 1900. Negative

numbers are allowed to represent dates since January 1, 1753.

One 4-byte unsigned integer that represents the number of one three-hundredths of a second

(300 counts per second) elapsed since 12 AM that day.

date is represented as one 3-byte unsigned integer that represents the number of days since
January 1, year 1.

time(n) is represented as one unsigned integer that represents the number of 10-n second
increments since 12 AM within a day. The length, in bytes, of that integer depends on the scale n as
follows:

3 bytes if 0 <= n < = 2.

4 bytes if 3 <= n < = 4.

5 bytes if 5 <= n < = 7.

datetime2(n) is represented as a concatenation of time(n) followed by date as specified above.

datetimeoffset(n) is represented as a concatenation of datetime2(n) followed by one 2-byte
signed integer that represents the time zone offset as the number of minutes from UTC. The time
zone offset MUST be between -840 and 840.

2.2.5.5.2 Common Language Runtime (CLR) Instances

The following data type definition stream is used for UDT_INFO in TYPE_INFO. This data type was
introduced in TDS 7.2.

DB_NAME = B_VARCHAR ; database name of the UDT

SCHEMA_NAME = B_VARCHAR ; schema name of the UDT

TYPE_NAME = B_VARCHAR ; type name of the UDT

MAX_BYTE_SIZE = USHORT ; max length in bytes

ASSEMBLY_QUALIFIED_NAME = US_VARCHAR ; name of the CLR assembly

UDT_METADATA = ASSEMBLY_QUALIFIED_NAME

UDT_INFO_IN_COLMETADATA = MAX_BYTE_SIZE

 DB_NAME

 SCHEMA_NAME

42 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 TYPE_NAME

 UDT_METADATA

UDT_INFO_IN_RPC = DB_NAME ; database name of the UDT

 SCHEMA_NAME ; schema name of the UDT

 TYPE_NAME ; type name of the UDT

UDT_INFO = UDT_INFO_IN_COLMETADATA ;when sent as part of COLMETADATA

 /

 UDT_INFO_IN_RPC ;when sent as part of RPC call

MAX_BYTE_SIZE is only sent from the server to the client in COLMETADATA and is an unsigned
short with a value within the range 1 to 8000 or 0xFFFF. The value 0xFFFF signifies the maximum

LOB size indicating a UDT with a maximum size greater than 8000 bytes (also referred to as a Large
UDT; introduced in TDS 7.3). MAX_BYTE_SIZE is not sent to the server as part of RPC calls.

Note UserType in the COLMETADATA stream is always 0x0000 for UDTs. The actual data value

format associated with a UDT data type definition stream is specified in [MS-SSCLRT].

2.2.5.5.3 XML Values

This section defines the XML data type definition stream, which was introduced in TDS 7.2.

SCHEMA_PRESENT= BYTE;

DBNAME = B_VARCHAR

OWNING_SCHEMA = B_VARCHAR

XML_SCHEMA_COLLECTION = US_VARCHAR

XML_INFO = SCHEMA_PRESENT

 [DBNAME OWNING_SCHEMA

 XML_SCHEMA_COLLECTION]

SCHEMA_PRESENT specifies "0x01" if the type has an associated schema collection and DBNAME,

OWNING_SCHEMA and XML_SCHEMA_COLLECTION MUST be included in the stream, or '0x00'
otherwise.

DBNAME specifies the name of the database where the schema collection is defined.

OWNING_SCHEMA specifies the name of the relational schema containing the schema collection.

XML_SCHEMA_COLLECTION specifies the name of the XML schema collection to which the type is
bound.

Note The actual data value format associated with a XML data type definition stream uses the [MS-
BINXML] format. For more details, see [MS-BINXML].

2.2.5.5.4 SQL_VARIANT Values

The SSVARIANTTYPE is a special data type that acts as a place holder for other data types. When a
SSVARIANTTYPE is filled with a data value, it takes on properties of the base data type that
represents the data value. To support this dynamic change, for those that are not NULL (GEN_NULL)
the SSVARIANTTYPE instance has an SSVARIANT_INSTANCE internal structure according to the
following definition.

VARIANT_BASETYPE = BYTE ; data type definition

http://go.microsoft.com/fwlink/?LinkId=161004
http://go.microsoft.com/fwlink/?LinkId=120872
http://go.microsoft.com/fwlink/?LinkId=120872
http://go.microsoft.com/fwlink/?LinkId=120872

43 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VARIANT_PROPBYTES = BYTE ; see below

VARIANT_PROPERTIES = *BYTE ; see below

VARIANT_DATAVAL = 1*BYTE ; actual data value

SSVARIANT_INSTANCE = VARIANT_BASETYPE

 VARIANT_PROPBYTES

 VARIANT_PROPERTIES

 VARIANT_DATAVAL

VARIANT_BASETYPE is the TDS token of the base type.

VARIANT_BASETYPE VARIANT_PROPBYTES VARIANT_PROPERTIES

GUIDTYPE, BITTYPE, INT1TYPE, INT2TYPE,

INT4TYPE, INT8TYPE, DATETIMETYPE,

DATETIM4TYPE, FLT4TYPE, FLT8TYPE,

MONEYTYPE, MONEY4TYPE, DATENTYPE

0 <not specified>

TIMENTYPE, DATETIME2NTYPE,

DATETIMEOFFSETNTYPE

1 1 byte specifying scale

BIGVARBINTYPE, BIGBINARYTYPE 2 2 bytes specifying max

length

NUMERICNTYPE, DECIMALNTYPE 2 1 byte for precision followed

by 1 byte for scale

BIGVARCHRTYPE, BIGCHARTYPE,

NVARCHARTYPE, NCHARTYPE

7 5-byte COLLATION, followed

by a 2-byte max length

Note that data types cannot be NULL when inside a sql_variant. If the value is NULL, then the
sql_variant itself should be NULL, but it is not allowed to specify a non-null sql_variant instance and
have a NULL value wrapped inside it. A raw collation SHOULD NOT be specified within a

sql_variant.<7>

2.2.5.5.5 Table Valued Parameter (TVP) Values

Table Valued Parameters (or User Defined Table Type as the type is known on the server)
encapsulate an entire table of data with 1 to 1024 columns and an arbitrary number of rows. At the
present time, TVPs are only permitted to be used as input parameters and do not appear in output
parameters or in result set columns.

TVPs MUST only be sent by a TDS client reporting itself as a TDS major version 7.3 or later. If a
client reporting itself less than TDS 7.3 attempts to send a TVP, this MUST result in the server
rejecting the request with a TDS protocol error.

2.2.5.5.5.1 Metadata

TVPTYPE = %xF3

TVP_TYPE_INFO = TVPTYPE

 TVP_TYPENAME

 TVP_COLMETADATA

 [TVP_ORDER_UNIQUE]

 [TVP_COLUMN_ORDERING]

 TVP_END_TOKEN

 *TVP_ROW

44 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 TVP_END_TOKEN

Parameter Description

TVPTYPE %xF3

TVP_TYPENAME Type name of the TVP

TVP_COLMETADATA Column-specific metadata

[TVP_ORDER_UNIQUE] Optional metadata token

[TVP_COLUMN_ORDERING] Optional metadata token

TVP_END_TOKEN End optional metadata

*TVP_ROW 0..N TVP_ROW tokens

TVP_END_TOKEN End of rows

TVP_TYPENAME definition

DBNAME = B_VARCHAR ; Database where TVP type resides

OwningSchema = B_VARCHAR ; Schema where TVP type resides

TypeName = B_VARCHAR ; TVP type name

TVP_TYPENAME = DbName

 OwningSchema

 TypeName

TVP_COLMETADATA definition

DbName = B_VARCHAR ; Database where TVP type resides

fNullable = BIT ; Column is nullable - %x01

fCaseSen = BIT ; Column is case-sensitive - %x02

usUpdateable = 2BIT ; 2-bit value, one of:

 ; 0 = ReadOnly - %x00

 ; 1 = ReadWrite - %x04

 ; 2 = Unknown - %x08

fIdentity = BIT ; Column is identity column - %x10

fComputed = BIT ; Column is computed - %x20

usReservedODBC = 2BIT ; Reserved bits for ODBC - %x40+80

fFixedLenCLRType = BIT ; Fixed length CLR type - %x100

fDefault = BIT ; Column is default value - %x200

usReserved = 6BIT ; Six leftover reserved bits.

Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 fComputed

 usReservedODBC

 fFixedLenCLRType

45 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 fDefault

 usReserved

Count = USHORT ; Column count up to 1024 max

ColName = B_VARCHAR ; Name of column

UserType = ULONG ; UserType of column

TypeColumnMetaData = UserType

 Flags

 TYPE_INFO

 ColName ; Column metadata instance

TVP_NULL_TOKEN = %xFFFF

TVP_COLMETADATA = TVP_NULL_TOKEN / (Count <Count>TvpColumnMetaData)

DbName, OwningSchema, and TypeName are limited to 128 Unicode characters max identifier

length.

DbName is required to be zero-length, only OwningSchema and TypeName can be specified.
DbName, OwningSchema, and TypeName are all optional fields and might ALL contain zero length

strings. Client SHOULD follow these two rules:

If the TVP is a parameter to a stored procedure or function where parameter metadata is

available on the server side, then the client can send all zero-length strings for TVP_TYPENAME.

If the TVP is a parameter to an ad-hoc SQL statement, parameter metadata information is not

available on a stored procedure or function on the server. In this case the client is responsible to

send sufficient type information with the TVP to allow the server to resolve the TVP type from
sys.types. Failure to send needed type information in this case will result in complete failure of

RPC call prior to execution.

Only one new flag, fDefault, is added here from existing COLMETADATA. ColName MUST be a zero-
length string in the TVP.

Additional details about input TVPs and usage of flags

For an input TVP, if the fDefault flag is set on a column, then the client MUST not emit the

corresponding TvpColumnData data for the associated column when sending each TVP_ROW.

For an input TVP, the fCaseSen, usUpdateable, and fFixedLenCLRType flags are ignored.

usUpdateable is ignored by server on input, it is "calculated" metadata.

The fFixedLenCLRType flag is not used by the server.

Output TVPs are not currently supported.

TVP Flags Usage Chart

Flag Input behavior

fNullable Allowed

46 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Flag Input behavior

fCaseSen Ignored

usUpdateable Ignored

fIdentity Allowed

fComputed Allowed

usReservedODBC Ignored

fFixedLenCLRType Ignored

fDefault Allowed (if set, data not sent in TvpColumnData)

usReserved Ignored

2.2.5.5.5.2 Optional Metadata Tokens

TVP_ORDER_UNIQUE definition

TVP_ORDER_UNIQUE_TOKEN = %x10

Count = USHORT ; Count of ColNums to follow

ColNum = USHORT ; A single-column ordinal

fOrderAsc = BIT ; Column-ordered ascending – %x01

fOrderDesc = BIT ; Column-ordered descending – %x02

fUnique = BIT ; Column is in unique set – %x04

Reserved1 = 5BIT ; Five reserved bits

OrderUniqueFlags = fOrderAsc

 fOrderDesc

 fUnique

 Reserved1

TVP_ORDER_UNIQUE = TVP_ORDER_UNIQUE_TOKEN

 (Count <Count>(ColNum OrderUniqueFlags))

TVP_ORDER_UNIQUE is similar to the ORDER token that is currently used in TDS responses from the

server.

TVP_ORDER_UNIQUE is optional.

ColNum ordinals are 1..N, where 1 is the first column in TVP_COLMETADATA. That is, ordinals start
with 1.

Each TVP_ORDER_UNIQUE token can describe a set of columns for ordering and/or a set of columns

for uniqueness.

The first column ordinal with an ordering bit set is the primary sort column, the second column
ordinal with an ordering bit set is the secondary sort column, and so on.

The client can send 0 or 1 TVP_ORDER_UNIQUE tokens in a single TVP.

47 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The TVP_ORDER_UNIQUE token must always be sent after TVP_COLMETADATA and before the first
TVP_ROW token.

When a TVP is sent to the server, each ColNum ordinal inside a TVP_ORDER_UNIQUE token MUST
refer to a client generated column. Ordinals that refer to columns with fDefault set will be rejected

by the server.

OrderUniqueFlags Possible Combinations And Meaning

fOrderAsc fOrderDesc fUnique Meaning

FALSE FALSE FALSE Invalid flag state, rejected by server

FALSE FALSE TRUE Column is in unique set

FALSE TRUE FALSE Column is ordered descending

FALSE TRUE TRUE Column is ordered descending and in unique set

TRUE FALSE FALSE Column is ordered ascending

TRUE FALSE TRUE Column is ordered ascending and in unique set

TRUE TRUE FALSE Invalid flag state, rejected by server

TRUE TRUE TRUE Invalid flag state, rejected by server

TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is an optional TVP metadata token that is used to allow the TDS client to
send a different ordering of the columns in a TVP from the default ordering.

ColNum ordinals are 1..N where 1 is first column in the TVP (ordinals start with 1 in other words).
These are the same ordinals used with the TDS ORDER token, for example, to refer to column
ordinal as the columns appear in left to right order.

TVP_COLUMN_ORDERING_TOKEN = %x11

Count = USHORT ; Count of ColNums to follow

ColNum = USHORT ; A single-column ordinal

TVP_COLUMN_ORDERING = TVP_COLUMN_ORDERING_TOKEN

 (Count <Count>ColNum)

The client can send 0 or 1 TVP_COLUMN_ORDERING tokens in a single TVP.

The TVP_COLUMN_ORDERING token MUST always be sent after TVP_COLMETADATA and before the
first TVP_ROW token.

Additional details about TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is used to re-order the columns in a TVP. For example if a TVP is defined
as:

create type myTvpe as table (f1 int, f2 varchar(max), f3 datetime)

48 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The TDS client might want to send the f2 field last inside the TVP as an optimization (streaming the

large value last). So the client can send TVP_COLUMN_ORDERING with order 1,3,2 to indicate that
inside the TVP_ROW section the column f1 is sent first, f3 is sent second, and f2 is send third.

So the TVP_COLUMN_ORDERING token on the wire for this example would be:

11 ; TVP_COLUMN_ORDERING_TOKEN

03 00 ; Count - Number of ColNums to follow.

01 00 ; ColNum - TVP column ordinal 1 is sent first in TVP_COLMETADATA.

03 00 ; ColNum - TVP column ordinal 3 is sent second in TVP_COLMETADATA.

02 00 ; ColNum - TVP column ordinal 2 is sent third in TVP_COLMETADATA.

Duplicate ColNum values are considered an error condition. The ordinal values of the columns in the

actual TVP type are ordered starting with 1 for the first column and adding one for each column
from left to right. The client MUST send one ColNum for each column described in the
TVP_COLMETADATA (so Count MUST match number of columns in TVP_COLMETADATA).

TVP_ROW definition

TVP_ROW_TOKEN = %x01 ; A row as defined by TVP_COLMETADATA follows

TvpColumnData = TYPE_VARBYTE ; Actual value must match metadata for the column

AllColumnData = *TvpColumnData ; Chunks of data, one per non-default column defined in

TVP_COLMETADATA.

TVP_ROW = TVP_ROW_TOKEN

 AllColumnData

TVP_END_TOKEN = %x00 ; Terminator tag for TVP type meaning no moreTVP_ROWs to

follow and end of successful transmission of a single TVP.

TvpColumnData is repeated once for each non-default column of data defined in

TVP_COLMETADATA.

Each row will contain one data "cell" per column specified in TVP_COLMETADATA. On input, columns

with the fDefault flag set in TVP_COLMETADATA will be skipped to avoid sending redundant data.

Column data is ordered in same order as the order of items defined in TVP_COLMETADATA unless a
TVP_COLUMN_ORDERING token has been sent to indicate a change in the ordering of the row
values.

2.2.5.5.5.3 TDS Type Restrictions

Within a TVP, the following legacy TDS types are not supported:

TDS type Replacement type

Binary BigBinary

VarBinary BigVarBinary

49 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TDS type Replacement type

Char BigChar

VarChar BigVarChar

Bit BitN

Int1 IntN

Int2 IntN

Int4 IntN

Int8 IntN

Float4 FloatN

Float8 FloatN

Money MoneyN

Decimal DecimalN

Numeric NumericN

DateTime DatetimeN

DateTime4 DatetimeN

Money4 MoneyN

Additional types not allowed in TVP:

Null type (NULLTYPE:='0x1f') is not allowed in a TVP.

TVP type is not allowed in a TVP (no nesting of TVP in a TVP).

TDS types should not be confused with data types for a database server that supports SQL.

2.2.5.6 Type Info Rule Definition

The TYPE_INFO rule applies to several messages used to describe column information. For columns
of fixed data length, the type is all that is required to determine the data length. For columns of a
variable-length type, TYPE_VARLEN defines the length of the data contained within the column, with
the following exceptions introduced in TDS 7.3:

DATE MUST NOT have a TYPE_VARLEN. The value is either 3 bytes or 0 bytes (null).

TIME, DATETIME2, and DATETIMEOFFSET MUST NOT have a TYPE_VARLEN. The lengths are
determined by the SCALE as indicated in section 2.2.5.4.2.

PRECISION and SCALE MUST occur if the type is NUMERIC, NUMERICN, DECIMAL, or DECIMALN.

SCALE (without PRECISION) MUST occur if the type is TIME, DATETIME2, or DATETIMEOFFSET
(introduced in TDS 7.3). PRECISION MUST be less than or equal to decimal 38 and SCALE MUST be
less than or equal to the precision value.

50 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

COLLATION occurs only if the type is BIGCHARTYPE, BIGVARCHRTYPE, TEXTTYPE, NTEXTTYPE,
NCHARTYPE, or NVARCHARTYPE.

UDT_INFO always occurs if the type is UDTTYPE.

XML_INFO always occurs if the type is XMLTYPE.

USHORTMAXLEN does not occur if PARTLENTYPE is XMLTYPE or UDTTYPE.

USHORTMAXLEN = %xFFFF

TYPE_INFO = FIXEDLENTYPE

 /

 (VARLENTYPE TYPE_VARLEN [COLLATION])

 /

 (VARLENTYPE TYPE_VARLEN [PRECISION SCALE])

 /

 (VARLENTYPE SCALE) ; (introduced in TDS 7.3)

 /

 VARLENTYPE ; (introduced in TDS 7.3)

 /

 (PARTLENTYPE

 [USHORTMAXLEN]

 [COLLATION]

 [XML_INFO]

 [UDT_INFO])

2.2.5.7 Data Buffer Stream Tokens

The tokens defined as follows are used as part of the token-based data stream. Details about how
each token is used inside the data stream are in section 2.2.6.

ALTMETADATA_TOKEN = %x88

ALTROW_TOKEN = %xD3

COLMETADATA_TOKEN = %x81

COLINFO_TOKEN = %xA5

DONE_TOKEN = %xFD

DONEPROC_TOKEN = %xFE

DONEINPROC_TOKEN = %xFF

ENVCHANGE_TOKEN = %xE3

ERROR_TOKEN = %xAA

FEATUREEXTACK_TOKEN = %xAE ; (introduced in TDS 7.4)

INFO_TOKEN = %xAB

LOGINACK_TOKEN = %xAD

NBCROW_TOKEN = %xD2 ; (introduced in TDS 7.3)

OFFSET_TOKEN = %x78

ORDER_TOKEN = %xA9

RETURNSTATUS_TOKEN = %x79

RETURNVALUE_TOKEN = %xAC

ROW_TOKEN = %xD1

SESSIONSTATE_TOKEN = %xE4 ; (introduced in TDS 7.4)

SSPI_TOKEN = %xED

TABNAME_TOKEN = %xA4

51 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.6 Packet Header Message Type Stream Definition

2.2.6.1 Bulk Load BCP

Stream Name:

BulkLoadBCP

Stream Function:

Describes the format of bulk-loaded data through the "INSERT BULK" T-SQL statement. The

format is a COLMETADATA token describing the data being sent, followed by multiple ROW tokens,
ending with a DONE token. The stream is equivalent to that produced by the server if it were
sending the same rowset on output.

Stream Comments:

Packet header type is 0x07.

This message sent to the server contains bulk data to be inserted. The client MUST have

previously notified the server where this data is to be inserted. For more details about the
INSERT BULK syntax, see [MSDN-INSERT].

A sample BulkLoadBCP message is in section 4.10.

Stream-Specific Rules:

BulkLoad_METADATA = COLMETADATA_TOKEN

BulkLoad_ROW = ROW_TOKEN

BulkLoad_DONE = DONE_TOKEN

Submessage Definition:

BulkLoadBCP = BulkLoad_METADATA

 *BulkLoad_ROW

 BulkLoad_DONE

Note that for INSERT BULK operations, XMLTYPE is to be sent as NVARCHAR(N) or NVARCHAR(MAX)
data type. An error is produced if XMLTYPE is specified.

INSERT BULK operations for data type UDTTYPE is not supported. Use VARBINARYTYPE to insert
instances of User Defined Types.

INSERT BULK operations do not support type specifications of DECIMALTYPE and NUMERICTYPE. To
insert these data types, use DECIMALN and NUMERICNTYPE.

2.2.6.2 Bulk Load Update Text/Write Text

Stream Name:

http://go.microsoft.com/fwlink/?LinkId=154273

52 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

BulkLoadUTWT

Stream Function:

Describes the format of bulk-loaded data with UpdateText or WriteText. The format is the length of
the data followed by the data itself.

Stream Comments:

Packet header type 0x07.

This message sent to the server contains bulk data to be inserted. The client MUST have

previously issued a "WRITETEXT BULK" or "UPDATETEXT BULK" T-SQL statement to the
server. For details about the WRITETEXT BULK and UPDATETEXT BULK syntax, see [MSDN-
WRITETEXT] and [MSDN-UPDATETEXT], respectively.

The server returns a RETURNVALUE token containing the new timestamp for this column.

Stream-Specific Rules:

BulkData = L_VARBYTE

Sub Message Definition:

BulkLoadUTWT = BulkData

Stream Parameter Details

Parameter Description

BulkData Contains the BulkData length and BulkData data within the L_VARBYTE.

2.2.6.3 LOGIN7

Stream Name:

LOGIN7

Stream Function:

Defines the authentication rules for use between client and server.

Stream Comments:

Packet header type 0x10.

The length of a LOGIN7 stream MUST NOT be longer than 128K-1(byte) bytes.

The OffsetLength and Data rules define the variable-length portions of this data stream. The

OffsetLength rule lists the offset from the start of the structure, and the length for each

http://go.microsoft.com/fwlink/?LinkId=154269
http://go.microsoft.com/fwlink/?LinkId=154269
http://go.microsoft.com/fwlink/?LinkId=154272

53 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

parameter. If the parameter is not used, the parameter length field MUST be 0. The data itself
(for example, the Data rule) follows these parameters.

The first parameter of the OffsetLength rule (ibHostName) indicates the start of the variable

length portion of this data stream. As such it MUST NOT be 0. This is required for forward
compatibility (for example, later versions of TDS, with additional parameters, can be successfully
skipped by down-level servers).

A sample LOGIN7 message is in section 4.2.

Stream-Specific Rules:

Length = DWORD

TDSVersion = DWORD

PacketSize = DWORD

ClientProgVer = DWORD

ClientPID = DWORD

ConnectionID = DWORD

fByteorder = BIT

fChar = BIT

fFloat = 2BIT

fDumpLoad = BIT

fUseDB = BIT

fDatabase = BIT

fSetLang = BIT

OptionFlags1 = fByteorder

 fChar

 fFloat

 fDumpLoad

 fUseDB

 fDatabase

 fSetLang

fLanguage = BIT

fODBC = BIT

fTranBoundary = BIT ; (removed in TDS 7.2)

fCacheConnect = BIT ; (removed in TDS 7.2)

fUserType = 3BIT

fIntSecurity = BIT

OptionFlags2 = fLanguage

 fODBC

 (fTransBoundary / FRESERVEDBIT)

 (fCacheConnect / FRESERVEDBIT)

 fUserType

 fIntSecurity

fSQLType = 4BIT

fOLEDB = BIT ; (introduced in TDS 7.2)

fReadOnlyIntent = BIT ; (introduced in TDS 7.4)

TypeFlags = fSQLType

 (FRESERVEDBIT / fOLEDB)

 (FRESERVEDBIT / fReadOnlyIntent)

 2FRESERVEDBIT

fChangePassword = BIT ; (introduced in TDS 7.2)

54 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

fUserInstance = BIT ; (introduced in TDS 7.2)

fSendYukonBinaryXML = BIT ; (introduced in TDS 7.2)

fUnknownCollationHandling = BIT ; (introduced in TDS 7.3)

fExtension = BIT ; (introduced in TDS 7.4)

OptionFlags3 = (FRESERVEDBIT / fChangePassword)

 (FRESERVEDBIT / fSendYukonBinaryXML)

 (FRESERVEDBIT / fUserInstance)

 (FRESERVEDBIT / fUnknownCollationHandling)

 (FRESERVEDBIT / fExtension)

 3FRESERVEDBIT

ClientTimZone = LONG;

ClientLCID = LCID

 ColFlags

 Version

ibHostName = USHORT

cchHostName = USHORT

ibUserName = USHORT

cchUserName = USHORT

ibPassword = USHORT

cchPassword = USHORT

ibAppName = USHORT

cchAppName = USHORT

ibServerName = USHORT

cchServerName = USHORT

ibUnused = USHORT

cbUnused = USHORT

ibExtension = USHORT ; (introduced in TDS 7.4)

cbExtension = USHORT ; (introduced in TDS 7.4)

ibCltIntName = USHORT

cchCltIntName = USHORT

ibLanguage = USHORT

cchLanguage = USHORT

ibDatabase = USHORT

cchDatabase = USHORT

ClientID = 6BYTE

ibSSPI = USHORT

cbSSPI = USHORT

ibAtchDBFile = USHORT

cchAtchDBFile = USHORT

ibChangePassword = USHORT ; (introduced in TDS 7.2)

cchChangePassword = USHORT ; (introduced in TDS 7.2)

cbSSPILong = DWORD ; (introduced in TDS 7.2)

OffsetLength = ibHostName

 cchHostName

 ibUserName

 cchUserName

 ibPassword

 cchPassword

 ibAppName

 cchAppName

 ibServerName

 cchServerName

 (ibUnused / ibExtension)

 (cchUnused / cbExtension)

 ibCltIntName

55 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 cchCltIntName

 ibLanguage

 cchLanguage

 ibDatabase

 cchDatabase

 ClientID

 ibSSPI

 cbSSPI

 ibAtchDBFile

 cchAtchDBFile

 ibChangePassword

 cchChangePassword

 cbSSPILong

All variable-length fields in the login record are optional. This means that the length of the field can

be specified as 0. If the length is specified as 0, then the offset MUST be ignored. The only

exception is ibHostName, which MUST always point to the beginning of the variable-length data in
the login record even in the case where no variable-length data is included.

Data = *BYTE

FeatureId = BYTE

FeatureDataLen = DWORD

FeatureData = *BYTE

TERMINATOR = %xFF ; signal of end of feature option

FeatureOpt = (FeatureId

 FeatureDataLen

 FeatureData)

 /

 TERMINATOR

FeatureExt = 1*FeatureOpt ; (introduced in TDS 7.4)

Stream Definition:

LOGIN7 = Length

 TDSVersion

 PacketSize

 ClientProgVer

 ClientPID

 ConnectionID

 OptionFlags1

 OptionFlags2

 TypeFlags

 (FRESERVEDBYTE / OptionFlags3)

 ClientTimZone

 ClientLCID

 OffsetLength

 Data

 [FeatureExt]

56 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Stream Parameter Details

Parameter Description

Length The total length of the LOGIN7 structure.

TDSVersion The highest TDS version being used by the client (for example, 0x00000071 for TDS

7.1). If the TDSVersion value sent by the client is greater than the value that the server

recognizes, the server MUST use the highest TDS version that it can use. This provides

a mechanism for clients to discover the server TDS by sending a standard LOGIN7

message. If the TDSVersion value sent by the client is lower than the highest TDS

version the server recognizes, the server MUST use the TDS version sent by the

client.<8>

For information about what the server sends to the client, see the LOGINACK token.

PacketSize The desired packet size being requested by the client.

ClientProgVer The version of the interface library (for example, ODBC or OLEDB) being used by the

client.

ClientPID The process ID of the client application.

ConnectionID The connection ID of the primary Server. Used when connecting to an "Always Up"

backup server.

OptionFlags1
Represented in least significant bit order.

fByteOrder: The byte order used by client for numeric and datetime data types.

0 = ORDER_X86

1 = ORDER_68000

fChar: The character set used on the client.

0 = CHARSET_ASCII

1 = CHARSET_EBDDIC

fFloat: The type of floating point representation used by the client.

0 = FLOAT_IEEE_754

1 = FLOAT_VAX

2 = ND5000

fDumpLoad: Set is dump/load or BCP capabilities are needed by the client.

0 = DUMPLOAD_ON

1 = DUMPLOAD_OFF

fUseDB: Set if the client desires warning messages on execution of the USE SQL

statement. If this flag is not set, the server MUST NOT inform the client when the
database changes, and therefore the client will be unaware of any accompanying

57 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

collation changes.

0 = USE_DB_OFF

1 = USE_DB_ON

fDatabase: Set if the change to initial database needs to succeed if the connection is

to succeed.

0 = INIT_DB_WARN

1 = INIT_DB_FATAL

fSetLang: Set if the client desires warning messages on execution of a language

change statement.

0 = SET_LANG_OFF

1 = SET_LANG_ON

OptionFlags2
Represented in least significant bit order.

fLanguage: Set if the change to initial language needs to succeed if the connect is to

succeed.

0 = INIT_LANG_WARN

1 = INIT_LANG_FATAL

fODBC: Set if the client is the ODBC driver. This causes the server to set

ANSI_DEFAULTS to ON, IMPLICIT_TRANSACTIONS to OFF, TEXTSIZE to 0x7FFFFFFF
(2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite (introduced in TDS 7.3), and
ROWCOUNT to infinite.

0 = ODBC_OFF

1 = ODBC_ON

fTransBoundary

fCacheConnect

fUserType: The type of user connecting to the server.

0 = USER_NORMAL—regular logins

1 = USER_SERVER—reserved

2 = USER_REMUSER—Distributed Query login

3 = USER_SQLREPL—replication login

fIntSecurity: The type of security required by the client.

0 = INTEGRATED_SECURTY_OFF

1 = INTEGRATED_SECURITY_ON

58 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

TypeFlags
Represented in least significant bit order.

fSQLType: The type of SQL the client sends to the server.

0 = SQL_DFLT

1 = SQL_TSQL

fOLEDB: Set if the client is the OLEDB driver. This causes the server to set

ANSI_DEFAULTS to ON, IMPLICIT_TRANSACTIONS to OFF, TEXTSIZE to 0x7FFFFFFF
(2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite (introduced in TDS 7.3), and
ROWCOUNT to infinite.

0 = OLEDB_OFF

1 = OLEDB_ON

fReadOnlyIntent: This bit is introduced in TDS 7.4; however, TDS 7.1, 7.2, and 7.3

clients can also use this bit in LOGIN7 to specify that the application intent of the
connection is read-only. The server SHOULD ignore this bit if the highest TDS
version supported by the server is lower than TDS 7.4.

OptionFlags3
Represented in least significant bit order.

fChangePassword: Specifies whether the login request SHOULD change password.

0 = No change request. ibChangePassword MUST be 0.

1 = Request to change login's password.

fSendYukonBinaryXML: 1 if XML data type instances are returned as binary XML.

fUserInstance: 1 if client is requesting separate process to be spawned as user

instance.

fUnknownCollationHandling: This bit is used by the server to determine if a client is

able to properly handle collations introduced after TDS 7.2. TDS 7.2 and earlier
clients are encouraged to use this login packet bit. Servers MUST ignore this bit
when it is sent by TDS 7.3 or 7.4 clients. See [MSDN-SQLCollation] and [MS-LCID]
documents for the complete list of collations for a database server that supports SQL
and LCIDs.

0 = The server MUST restrict the collations sent to a specific set of collations. It

MAY disconnect or send an error if some other value is outside the specific
collation set. The client MUST properly support all collations within the collation
set.

1 = The server MAY send any collation that fits in the storage space. The client

MUST be able to both properly support collations and gracefully fail for those it
does not support.

fExtension: Specifies whether ibExtension/cbExtension fields are used.

0 = ibExtension/cbExtension fields are not used. The fields are treated the same

as ibUnused/cchUnused.

1 = ibExtension/cbExtension fields are used.

http://go.microsoft.com/fwlink/?LinkId=119987
%5bMS-LCID%5d.pdf

59 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

ClientTimeZone The time zone of the client machine.

ClientLCID The language code identifier (LCID) value for the client collation. If ClientLCID is

specified, the specified collation is set as the session collation. Note that the total

ClientLCID is 4 bytes, which implies that there is no support for SQL Sort orders.

OffsetLength The variable portion of this message. A stream of bytes in the order shown, indicates

the offset (from the start of the message) and length of various parameters:

IbHostname & cchHostName: The client machine name.

IbUserName & cchUserName: The client user ID.

IbPassword & cchPassword: The password supplied by the client.

IbAppName & cchAppName: The client application name.

IbServerName & cchServerName: The server name.

ibUnused & cbUnused: These parameters were reserved until TDS 7.4.

ibExtension & cbExtension: This points to an extension block. Introduced in TDS 7.4

when fExtension is 1. The content pointed by ibExtension is defined as follows:

ibFeatureExtLong = DWORD

Extension = ibFeatureExtLong

ibFeatureExtLong provides the offset (from the start of the message) of

FeatureExt block. ibFeatureExtLong MUST be 0 if FeatureExt block does not
exist.

Extension block can be extended in future. The client MUST NOT send

more data than needed. The server SHOULD ignore any appended data
that is unknown to the server.

ibCltIntName & cchCltIntName: The interface library name (ODBC or OLEDB).

ibLanguage & cchLanguage: The initial language (overrides the user ID's default

language).

ibDatabase & cchDatabase: The initial database (overrides the user ID's default

database).

ClientID: The unique client ID (created used NIC address).

ibSSPI & cbSSPI: SSPI data.

If cbSSPI < USHRT_MAX, then this length MUST be used for SSPI and
cbSSPILong MUST be ignored.

If cbSSPI == USHRT_MAX, then cbSSPILong MUST be checked.

If cbSSPILong > 0, then that value MUST be used. If cbSSPILong ==0,
then cbSSPI (USHRT_MAX) MUST be used.

ibAtchDBFile & cchAtchDBFile: The file name for a database that is to be attached

60 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

during the connection process.

ibChangePassword & cchChangePassword: New password for the specified login.

Introduced in TDS 7.2.

cbSSPILong: Used for large SSPI data when cbSSPI==USHRT_MAX. Introduced in

TDS 7.2.

Data The actual variable-length data portion referred to by OffsetLength.

FeatureId The unique identifier number of a feature. See detailed description in the table below.

FeatureDataLen The length, in bytes, of FeatureData for the corresponding FeatureID.

FeatureData Data of the feature. Each feature defines its own data format.

Data for existing features are defined in the table below.

FeatureExt The data block that can be used to inform and/or negotiate features between client and

server. It contains data for one or more optional features. Each feature is assigned an

identifier, followed by data length and data. The data for each feature is defined by the

feature’s own logic. If the server does not support the specific feature, it MUST skip the

feature data and jump to next feature. If needed, each feature SHOULD have its own

logic to detect if the server accepts the feature option.

Optionally, a feature can use FeatureExtAck token to acknowledge the feature along

with LOGINACK. The detailed acknowledge data SHOULD be defined by the feature

itself.

FeatureExt Feature Option and Description

FeatureId FeatureData Description

%0x01

(SESSIONRECOVERY)

Session Recovery feature. This feature is used to recover the session state of a

previous connection. Content is defined as follows:

Length = DWORD

RecoveryDatabase = B_VARCHAR

RecoveryCollation = BYTELEN [COLLATION]

RecoveryLanguage = B_VARCHAR

SessionRecoveryData = Length

 RecoveryDatabase

 RecoveryCollation

 RecoveryLanguage

 SessionStateDataSet

InitSessionRecoveryData = SessionRecoveryData

SessionRecoveryDataToBe = SessionRecoveryData

FeatureData = [InitSessionRecoveryData

SessionRecoveryDataToBe]

The Length field is the length, in bytes, of SessionRecoveryData excluding the

Length field itself. SessionStateDataSet is described in section 2.2.7.19. The

length of SessionStateDataSet can be derived from the Length field and the

61 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

FeatureId FeatureData Description

length of RecoveryDatabase, RecoveryCollation, and RecoveryLanguage. The

maximum length for RecoveryDatabase and RecoveryLanguage is 128 UNICODE

characters.

There are two sets of SessionRecoveryData. The data for the first set,

InitSessionRecoveryData, SHOULD come from the initial login response data of

the initial connection to be recovered, specifically, the

Database/Collation/Language ENVCHANGE data and SessionStateDataSet in

FeatureExtAck.

Data for the second set, SessionRecoveryDataToBe, SHOULD come from the

latest ENVCHANGE for Database/Collation/Language from the connection to be

recovered and the latest data for each StateId in SessionStateData from the

connection to be recovered. If login succeeded on this recovery connection, the

session state of the connection MUST be set to SessionRecoveryDataToBe. To

save space, if data for RecoveryDatabase/RecoveryCollation/RecoveryLanguage in

SessionRecoveryDataToBe is the same as data in InitSessionRecoveryData, the

length value of each field SHOULD be 0. If data for any session StateId is

unchanged from InitSessionRecoveryData, the corresponding StateId data

SHOULD be skipped in SessionRecoveryDataToBe.

When this feature option is received and the server supports connection recovery,

a FeatureExtAck token that contains data for SESSIONRECOVERY feature MUST

be returned along with LOGINACK in the login response to indicate that the server

supports the feature. If SESSIONRECOVERY was not acknowledged in the login

response, the server does not support the feature and the client MUST disable the

feature for this connection.

The client can request this feature option with zero FeatureDataLen. This is used

during login for the initial connection to indicate that the client prefers this

feature.

When the client sends this feature option with non-zero FeatureDataLen during

login, the option data SHOULD come from a previous connection. The TDS version

in the login request MUST be the same as the TDS version negotiated for the

connection to be recovered. The server MUST return the same TDS version in the

login response, and if not, the client MUST disconnect the connection and raise an

error to the upper layer.

If a login record with non-zero FeatureDataLen of this feature is received and the

server supports this feature, the server MUST:

Force TDS version negotiation to use the TDS version requested by the client,

and fail the login if the requested TDS version is not known to the server, for
example, a TDS version that is later than the highest one currently on the
server.

Validate the content in SessionRecoveryData, and fail the login if any data is

invalid or any unknown session state exists.

Once the feature is negotiated to be enabled, the server SHOULD send session

state updates to the client via a SESSIONSTATE token during the lifetime of the

connection. The client MUST track the initial session state data as well as the

latest session state data. Session state data is updated via a SESSIONSTATE

token incrementally. When a client requests

RESETCONNECTION/RESETCONNECTIONSKIPTRAN and the server acknowledges

the request, both the client and the server MUST update the baseline of the

session state data to be the same as the initial state as defined by

InitSessionRecoveryData, and any further state update SHOULD be on top of the

initial state. Session state data can be used to recover a dead connection as

defined by SessionRecoveryData. The client SHOULD try to recover a dead

connection if the latest fRecovery bit is TRUE for all StateId received from the

62 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

FeatureId FeatureData Description

server. The client MUST NOT try to recover a dead connection if the any latest

fRecovery bit is FALSE.

%xFF

(TERMINATOR)

This is the last option in FeatureExt.

Login Data Validation Rules

cchHostName MUST specify at most 128 Unicode characters.

cchUserName MUST specify at most 128 Unicode characters.

cchPassword MUST specify at most 128 Unicode characters.

cchAppName MUST specify at most 128 Unicode characters.

cchServerName MUST specify at most 128 Unicode characters.

cbExtension MUST NOT exceed 255 bytes.

cchCltIntName MUST specify at most 128 Unicode characters.

cchLanguage MUST specify at most 128 Unicode characters.

cchDatabase MUST specify at most 128 Unicode characters.

cchAtchDBFile MUST specify at most 260 Unicode characters.

cchChangePassword MUST specify at most 128 Unicode characters.

The value at ibUserName—if specified—is semantically enclosed in brackets ([]) and MUST conform
to the rules for valid delimited object identifiers. Login MUST fail otherwise.

The value at ibDatabase—if specified—is semantically enclosed in brackets ([]) and MUST conform
to the rules for valid delimited object identifiers. Login MUST fail otherwise.

Before submitting a password from the client to the server, for every byte in the password buffer
starting with the position pointed to by IbPassword, the client SHOULD first swap the four high bits

with the four low bits and then do a bit-XOR with 0xA5 (10100101). After reading a submitted
password, for every byte in the password buffer starting with the position pointed to by IbPassword,
the server SHOULD first do a bit-XOR with 0xA5 (10100101) and then swap the four high bits with
the four low bits.

2.2.6.4 PRELOGIN

Stream Name:

PRELOGIN

Stream Function:

A message sent by the client to set up context for login. The server responds to a client PRELOGIN
message with a message of packet header type 0x04 and the packet data containing a PRELOGIN

structure.

63 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This message stream is also used to wrap SSL handshake payload, if encryption is needed. In this
scenario, where PRELOGIN message is transporting the SSL handshake payload, the packet data is

simply the raw bytes of the SSL handshake payload.

Stream Comments:

Packet header type 0x12.

A sample PRELOGIN message is in section 4.1.

Stream-Specific Rules:

UL_VERSION = ULONG ; version of the sender

US_SUBBUILD = USHORT ; sub-build number of the sender

B_FENCRYPTION = BYTE

B_INSTVALIDITY = *BYTE %x00 ; name of the instance

 ; of the database server that supports SQL

 ; or just %x00

UL_THREADID = ULONG ; client application thread id

 ; used for debugging purposes

B_MARS = BYTE ; sender requests MARS support

GUID_CONNID = 16BYTE ; client application trace id

 ; used for debugging purposes

ACTIVITYID = 20BYTE ; client application activity id

 ; used for debugging purposes

TERMINATOR = %xFF ; signals end of PRELOGIN message

PL_OPTION_DATA = *BYTE ; actual data for the option

PL_OFFSET = USHORT ; big endian

PL_OPTION_LENGTH = USHORT ; big endian

PL_OPTION_TOKEN = BYTE ; token value representing the option

PRELOGIN_OPTION = (PL_OPTION_TOKEN

 PL_OFFSET

 PL_OPTION_LENGTH)

 /

 TERMINATOR

SSL_PAYLOAD = *BYTE ; SSL handshake raw payload

Stream Definition:

PRELOGIN = (*PRELOGIN_OPTION

 *PL_OPTION_DATA)

 /

 SSL_PAYLOAD

PL_OPTION_TOKEN is described in the following table.

64 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

PL_OPTION_TOKEN Value Description

VERSION 0x00 PL_OPTION_DATA = UL_VERSION

 US_SUBBUILD

UL_VERSION is represented in network byte order (big-endian).

The server SHOULD use the VERSION sent by the client to the server.

The client SHOULD use the version returned from the server to

determine which features are enabled or disabled. The client SHOULD do

this only if it is known that this feature is supported by that version of

the database.<9>

ENCRYPTION 0x01 PL_OPTION_DATA = B_FENCRYPTION

INSTOPT 0x02 PL_OPTION_DATA = B_INSTVALIDITY

THREADID 0x03 PL_OPTION_DATA = UL_THREADID

This value SHOULD be empty when being sent from the server to the

client.

MARS 0x04 PL_OPTION_DATA = B_MARS

0x00 = Off

0x01 = On

TRACEID 0x05 PL_OPTION_DATA = GUID_CONNID ACTIVITYID

TERMINATOR 0xFF Termination token.

Notes

PL_OPTION_TOKEN VERSION is a required token, and it MUST be the first token sent as part of

PRELOGIN. If this is not the case, the connection is closed by the server.

TERMINATOR is a required token, and it MUST be the last token of PRELOGIN_OPTION.

TERMINATOR does not include length and bits specifying offset.

If encryption is agreed upon during pre-login, SSL negotiation between client and server happens

immediately after the PRELOGIN packet. Then login proceeds. For more information, see section

3.3.5.1.

A PRELOGIN message wrapping the SSL_PAYLOAD will occur only after the initial PRELOGIN

message containing the PRELOGIN_OPTION and PL_OPTION_DATA information.

Encryption

65 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

During the pre-login handshake, the client and the server will negotiate the wire encryption to be
used. The possible encryption option values are as follows.

Setting Value Description

ENCRYPT_OFF 0x00 Encryption is available but off.

ENCRYPT_ON 0x01 Encryption is available and on.

ENCRYPT_NOT_SUP 0x02 Encryption is not available.

ENCRYPT_REQ 0x03 Encryption is required.

The client sends the server the value ENCRYPT_OFF, ENCRYPT_NOT_SUP, or ENCRYPT_ON.
Depending upon whether the server has encryption available and enabled, the server will respond
with an ENCRYPTION value in the response according to the following table.

Client

Server

ENCRYPT_OFF Server ENCRYPT_ON Server ENCRYPT_NOT_SUP

ENCRYPT_OFF ENCRYPT_OFF ENCRYPT_REQ ENCRYPT_NOT_SUP

ENCRYPT_ON ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP

(connection terminated)

ENCRYPT_NOT_SUP ENCRYPT_NOT_SUP ENCRYPT_REQ

(connection terminated)

ENCRYPT_NOT_SUP

Assuming that the client is capable of encryption, the server will require the client to behave in the
following manner.

Client

Value returned

from server is

ENCRYPT_OFF

Value returned

from server is

ENCRYPT_ON

Value returned

from server is

ENCRYPT_REQ

Value returned from

server is

ENCRYPT_NOT_SUP

ENCRYPT_OFF Encrypt login

packet only

Encrypt entire

connection

Encrypt entire

connection

No encryption

ENCRYPT_ON Error (connection

terminated)

Encrypt entire

connection

Encrypt entire

connection

Error (connection

terminated)

If the client and server negotiate to enable encryption, an SSL handshake will take place
immediately after the initial PRELOGIN/table response message exchange. The SSL payloads MUST
be transported as data in TDS buffers with the message type set to 0x12 in the packet header. For
example:

0x 12 01 00 4e 00 00 00 00// Buffer Header

0x 16 03 01 00 &// SSL payload

This applies to SSL traffic. The client sends the SSL handshake payloads as data in a PRELOGIN

message. For TDS versions earlier than TDS 7.2, the server SHOULD send the SSL handshake
payloads as data in a table response message (0x04). For TDS 7.2, 7.3, and 7.4, the server
SHOULD send the SSL handshake payloads as data in a PRELOGIN message. Upon successful

66 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

completion of the SSL handshake, the client will proceed to send the LOGIN7 stream to the server to
initiate authentication.

Instance Name

If available, the client SHOULD send the server the name of the instance to which it is connecting as

a NULL-terminated multi-byte character set (MBCS) string in the INSTOPT option. If the string is
empty or is case-insensitively equal, by using the server's locale for comparison to either the
server’s instance name or "MSSQLServer", the server SHOULD<10> return an INSTOPT containing a
byte with the value 0 to indicate that the client's INSTOPT matches the server's instance. Otherwise,
the server SHOULD return an INSTOPT containing a byte with the value of 1. The client SHOULD use
the INSTOPT value from the server’s Prelogin response for verification purposes and SHOULD
terminate the connection if the INSTOPT option has the value 1.

2.2.6.5 RPC Request

Stream Name:

RPCRequest

Stream Function:

Request to execute an RPC.

Stream Comments:

Packet header type 0x03.

To execute an RPC on the server, the client sends an RPCRequest data stream to the server. This

is a binary stream that contains the RPC Name (or ProcID), Options, and Parameters. Each RPC

MUST be contained within a separate message and not mixed with other SQL statements.

A sample RPCRequest message is in section 4.6.

Stream-Specific Rules:

ProcID = USHORT

ProcIDSwitch = %xFF %xFF

ProcName = US_VARCHAR

NameLenProcID = ProcName

 /

 (ProcIDSwitch ProcID)

fWithRecomp = BIT

fNoMetaData = BIT

fReuseMetaData = BIT

OptionFlags = fWithRecomp

 fNoMetaData

 fReuseMetaData

 13FRESERVEDBIT

fByRefValue = BIT

fDefaultValue = BIT

StatusFlags = fByRefValue

 fDefaultValue

 6FRESERVEDBIT

67 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ParamMetaData = B_VARCHAR

 StatusFlags

 (TYPE_INFO / TVP_TYPE_INFO) ; (TVP_TYPE_INFO introduced in TDS 7.3)

ParamLenData = TYPE_VARBYTE

ParameterData = ParamMetaData

 ParamLenData;

BatchFlag = %x80 / %xFF ; (Changed to %xFF in TDS 7.2)

NoExecFlag = %xFE ; (introduced in TDS 7.2)

RPCReqBatch = NameLenProcID

 OptionFlags

 *ParameterData

The length for the instance value of UDTs is specified as a ULONGLONG. Also note that
ParameterData is repeated once for each parameter in the request.

A StatusFlags of fDefaultValue bit MUST be zero for TVP_TYPE_INFO.

fByRefValue MUST be zero for TVP_TYPE_INFO.

Stream Definition:

RPCRequest = ALL_HEADERS

 RPCReqBatch

 *((BatchFlag / NoExecFlag) RPCReqBatch)

 [BatchFlag / NoExecFlag]

Note that RpcReqBatch is repeated once for each RPC in the batch.

Stream Parameter Details:

Parameter Description

ProcID The number identifying the special stored procedure to be executed. The valid numbers

with associated special stored procedure are as follows:

Sp_Cursor = 1

Sp_CursorOpen = 2

Sp_CursorPrepare = 3

Sp_CursorExecute = 4

Sp_CursorPrepExec = 5

Sp_CursorUnprepare = 6

Sp_CursorFetch = 7

68 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

Sp_CursorOption = 8

Sp_CursorClose = 9

Sp_ExecuteSql = 10

Sp_Prepare = 11

Sp_Execute = 12

Sp_PrepExec = 13

Sp_PrepExecRpc = 14

Sp_Unprepare = 15

ProcIDSwitch ProcIDSwitch can occur as part of NameLenProcID (see below).

ProcName The procedure name length (within US_VARCHAR), which MUST be no more than 1046

bytes.

NameLenProcID If the first USHORT contains 0xFFFF the following USHORT contains the PROCID.

Otherwise, NameLenProcID contains the parameter name length and parameter name.

OptionFlags Bit flags in least significant bit order:

fWithRecomp: 1 if RPC is sent with the "with recompile" option.

fNoMetaData: 1 if the client has already cached the metadata for the result set from

previous calls to the same RPC, and wants the server to avoid sending metadata by
using NoMetaData see COLMETADATA (section 2.2.7.4).

fReuseMetaData: 1 if the metadata has not changed from the previous call and the

server SHOULD reuse its cached metadata (the metadata must still be sent).

StatusFlags Bit flags in least significant bit order:

fByRefValue: 1 if the parameter is passed by reference (OUTPUT parameter) OR 0 if

parameter is passed by value.

fDefaultValue: 1 if the parameter being passed is to be the default value.

ParameterData The parameter name length and parameter name (within B_VARCHAR), the TYPE_INFO

of the RPC data and the type-dependent data for the RPC (within TYPE_VARBYTE).

BatchFlag Distinguishes the start of the next RPC from another parameter within the current RPC.

If the version of TDS in use supports these flags, either the BatchFlag element or the

NoExecFlag element MUST be present when another RPC request is in the current

batch. BatchFlag SHOULD NOT be sent after the last RPCReqBatch. If BatchFlag is

received after the last RPCReqBatch is received, the server MUST ignore it.

NoExecFlag Indicates that the preceding RPC will not be executed. If this separator is found, the

previous RPC will not be executed. Instead, an error message will be returned, followed

by the DONEPROC marking that the RPC in the batch has finished, and then execution

proceeds to the next RPC in the batch. The tabular data set returned will be very similar

to what happens if the RPC does not exist—never execute the RPC, just return an error

message, followed by DONEPROC, and then execute the next RPC.

69 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.6.6 SQLBatch

Stream Name:

SQLBatch

Stream Function:

Describes the format of the SQL Batch message.

Stream Comments:

Packet header type 0x01.

A sample SQLBatch message is in section 4.4.

Stream-Specific Rules:

SQLText = UNICODESTREAM

Stream Definition:

SQLBatch = ALL_HEADERS

 SQLText

The Unicode stream contains the text of the batch. The following is an example of a valid value for

SQLText as follows.

Select author_id from Authors

2.2.6.7 SSPI Message

Stream Name:

SSPIMessage

Stream Function:

A request to supply data for Security Support Provider Interface (SSPI) security. Note that SSPI

uses the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) [RFC4178] negotiation.

Stream Comments:

Packet header type 0x11.

http://go.microsoft.com/fwlink/?LinkId=90461

70 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The initial SSPI data block (the initial SPNEGO security token) is sent from the client to the server

in the LOGIN7 message. The server MUST respond with an SSPI token that is the SPNEGO

security token response from the server. The client MUST respond with another SSPIMessage,

after calling the SPNEGO interface with the server's response.

This continues until completion or an error.

The server completes the SSPI validation and returns the last SPNEGO security token as an SSPI

token within a LOGINACK token.

A sample SSPIMessage message is in section 4.9.

Stream-Specific Rules:

SSPIData = BYTESTREAM

Stream Definition:

SSPIMessage = SSPIData

Stream Parameter Details

Parameter Description

SSPIData The SSPIData length and SSPIData data using US_VARCHAR format.

2.2.6.8 Transaction Manager Request

Stream Name:

TransMgrReq

Stream Function:

Query and control operations pertaining to the lifecycle and state of local and distributed
transaction objects. Note that distributed transaction operations are coordinated through a
Distributed Transaction Coordinator (DTC) implemented to the DTC Interface Specification
[MSDN-DTC].

Stream Comments:

Packet header type 0x0E.

A sample Transaction Manager Request message is given in section 4.11.

Stream-Specific Rules:

RequestType = USHORT

http://go.microsoft.com/fwlink/?LinkId=89994

71 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Stream Definition:

TransMgrReq = ALL_Headers

 RequestType

 [RequestPayload]

RequestPayload details are as specified in the following table.

Stream Parameter Details

Parameter Description

RequestType The types of transaction manager operations desired by the client are specified as

follows. If an unknown Type is specified, the message receiver SHOULD disconnect the

connection.

0 = TM_GET_DTC_ADDRESS. Returns DTC network address as a result set with a

single-column, single-row binary value.

1 = TM_PROPAGATE_XACT. Imports DTC transaction into the server and returns a

local transaction descriptor as a varbinary result set.

5 = TM_BEGIN_XACT. Begins a transaction and returns the descriptor in an

ENVCHANGE type 8.

6 = TM_PROMOTE_XACT. Converts an active local transaction into a distributed

transaction and returns an opaque buffer in an ENVCHANGE type 15.

7 = TM_COMMIT_XACT. Commits a transaction. Depending on the payload of the

request, it can additionally request that another local transaction be started.

8 = TM_ROLLBACK_XACT. Rolls back a transaction. Depending on the payload of the

request, it can indicate that after the rollback, a local transaction is to be started.

9 = TM_SAVE_XACT. Sets a savepoint within the active transaction. This request

MUST specify a nonempty name for the savepoint.

The request types 5 - 9 were introduced in TDS 7.2.

RequestPayload
For RequestType TM_GET_DTC_ADDRESS: The RequestPayload SHOULD be a zero-

length US_VARBYTE.

RequestPayload = US_VARBYTE

For RequestType TM_PROPAGATE_XACT: Data contains an opaque buffer used by

the server to enlist in a DTC transaction [MSDN-ITrans].

RequestPayload = US_VARBYTE

For RequestType TM_BEGIN_XACT:

http://go.microsoft.com/fwlink/?LinkId=146594

72 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

ISOLATION_LEVEL = BYTE

BEGIN_XACT_NAME = B_VARBYTE

RequestPayload = ISOLATION_LEVEL

BEGIN_XACT_NAME

This request begins a new transaction, or increments trancount if already

in a transaction. If BEGIN_XACT_NAME is nonempty, a transaction is
started with the specified name. See the definition for isolation level at the
end of this table.

For RequestType TM_PROMOTE_XACT – No payload.

This message promotes the transaction of the current request (specified in

the Transaction Descriptor header). The current transaction must be part
of the specified header.

Note that TM_PROMOTE_XACT is supported only for transactions initiated
via TM_BEGIN_XACT, or via piggy back operation on
TM_COMMIT/TM_ROLLBACK. An error is returned if TM_PROMOTE_XACT is
invoked for a TSQL initiated transaction.

For RequestType TM_COMMIT_XACT:

fBeginXact = BIT

XACT_FLAGS = fBeginXact

 7FRESERVEDBIT

ISOLATION_LEVEL = BYTE

XACT_NAME = B_VARBYTE

BEGIN_XACT_NAME = B_VARBYTE

RequestPayload = XACT_NAME

 XACT_FLAGS

 [ISOLATION_LEVEL

 BEGIN_XACT_NAME]

Without additional flags specified, this command is semantically equivalent

to issuing a TSQL COMMIT statement.

The flags in XACT_FLAGS are represented in least significant bit order.

If fBeginXact is 1, then a new local transaction is started after the commit

operation is done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to
use to start the new transaction, according to the definition at the end of
this table. If fBeginXact is 0, then ISOLATION_LEVEL SHOULD NOT be

73 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

present.

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect
for the session, once the xact ends.

If fBeginXact is 0, BEGIN_XACT_NAME SHOULD NOT be present. If

fBeginXact is 1, BEGIN_XACT_NAME is nonempty.

If fBeginXact is 1, a transaction MUST be started with the specified name.

See the definition for isolation level at the end of this table.

For RequestType TM_ROLLBACK_XACT:

fBeginXact = BIT

XACT_FLAGS = fBeginXact

 7FRESERVEDBIT

ISOLATION_LEVEL = BYTE

XACT_NAME = B_VARBYTE

BEGIN_XACT_NAME = B_VARBYTE

RequestPayload = XACT_NAME

 XACT_FLAGS

 [ISOLATION_LEVEL

 BEGIN_XACT_NAME]

The flags in XACT_FLAGS are represented in least significant bit order.

If XACT_NAME is nonempty, this request rolls back the named transaction.
This implies that if XACT_NAME specifies a savepoint name, the rollback
only goes back until the specified savepoint.

Without additional flags specified, this command is semantically equivalent
to issuing a TSQL ROLLBACK statement under the current transaction.

If fBeginXact is 1, then a new local transaction is started after the commit

operation is done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to
use to start the new transaction, according to the definition at the end of
this table. If fBeginXact is 0, then ISOLATION_LEVELSHOULD NOT be
present.

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect
for the session, once the xact ends.

If fBeginXact is 0, BEGIN_XACT_NAME SHOULD NOT be present. If
fBeginXact is 1, BEGIN_XACT_NAME MAY be nonempty.

74 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

If fBeginXact is 1, a transaction MUST be started with the specified name.

If fBeginXact is 1, and the ROLLBACK only rolled back to a savepoint, the
Begin_Xact operation is ignored and trancount remains unchanged.

See the definition for isolation level at the end of this table.

For RequestType TM_SAVE_XACT:

XACT_SAVEPOINT_NAME = B_VARBYTE

RequestPayload = XACT_SAVEPOINT_NAME

A nonempty name must be specified as part of this request. Otherwise, an

error is raised.

ISOLATION_LEVEL MUST have one of the following values.

Value Description

0x00 No isolation level change requested. Use current.

0x01 Read Uncommitted.

0x02 Read Committed.

0x03 Repeatable Read.

0x04 Serializable.

0x05 Snapshot.

2.2.7 Packet Data Token Stream Definition

This section describes the various tokens supported in a token-based packet data stream, as

described in section 2.2.4.2. The corresponding message types that use token-based packet data
streams are identified in the table in section 2.2.4.

2.2.7.1 ALTMETADATA

Token Stream Name:

ALTMETADATA

Token Stream Function:

Describes the data type, length, and name of column data that result from a SQL statement that
generates totals.

Token Stream Comments:

75 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The token value is 0x88.

This token is used to tell the client the data type and length of the column data. It describes the
format of the data found in an ALTROW data stream. The ALTMETADATA and corresponding
ALTROW MUST be in the same result set.

All ALTMETADATA data streams are grouped.

A preceding COLMETADATA MUST exist before an ALTMETADATA token. There might be COLINFO
and TABNAME streams between COLMETADATA and ALTMETADATA.

Token Stream-Specific Rules:

TokenType = BYTE

Count = USHORT

Id = USHORT

ByCols = UCHAR

Op = BYTE

Operand = USHORT

UserType = USHORT/ULONG; (changed to ULONG in TDS 7.2)

fNullable = BIT

fCaseSen = BIT

usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

fIdentity = BIT

fComputed = BIT ; (Introduced in TDS 7.2)

usReservedODBC = 2BIT

fFixedLenCLRType = BIT ; (Introduced in TDS 7.2)

usReserved = 7BIT

Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 (FRESERVEDBIT / fComputed)

 usReservedODBC

 (FRESERVEDBIT / fFixedLenCLRType)

 usReserved

NumParts = BYTE ; (introduced in TDS 7.2)

PartName = US_VARCHAR ; (introduced in TDS 7.2)

TableName = US_VARCHAR ; (removed in TDS 7.2)

 /

 (NumParts

 1*PartName) ; (introduced in TDS 7.2)

ColName = B_VARCHAR

ColNum = USHORT

ComputeData = Op

 Operand

 UserType

 Flags

 TYPE_INFO

76 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [TableName]

 ColName

The TableName field is specified only if text, ntext, or image columns are included in the result set.

Token Stream Definition:

ALTMETADATA = TokenType

 Count

 Id

 ByCols

 *<ByCols>ColNum

 1* ComputeData

Token Stream Parameter Details:

Parameter Description

TokenType ALTMETADATA_TOKEN

Count The count of columns (number of aggregate operators) in the token stream.

Id The Id of the SQL statement to which the total column formats apply. Each ALTMETADATA

token MUST have its own unique Id in the same result set. This Id lets the client correctly

interpret later ALTROW data streams.

ByCols The number of grouping columns in the SQL statement that generates totals. For example,

the SQL clause compute count(sales) by year, month, division, department has four

grouping columns.

Op The type of aggregate operator.

AOPSTDEV = %x30 ; Standard deviation (STDEV)

AOPSTDEVP = %x31 ; Standard deviation of the population (STDEVP)

AOPVAR = %x32 ; Variance (VAR)

AOPVARP = %x33 ; Variance of population (VARP)

AOPCNT = %x4B ; Count of rows (COUNT)

AOPSUM = %x4D ; Sum of the values in the rows (SUM)

AOPAVG = %x4F ; Average of the values in the rows (AVG)

AOPMIN = %x51 ; Minimum value of the rows (MIN)

AOPMAX = %x52 ; Maximum value of the rows (MAX)

Operand The column number, starting from 1, in the result set that is the operand to the aggregate

operator.

UserType The user typeID of the data type of the column. The value will be 0x0000 with the

exceptions of TIMESTAMP (0x0050) and alias types (greater than 0x00FF).

Flags These bit flags are described in least significant bit order. With the exception of fNullable,

all of these bit flags SHOULD be set to zero. For a description of each bit flag, see section

2.2.7.4:

fCaseSens

77 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

fNullable is a bit flag, 1 if the column is nullable.

usUpdateable

fIdentity

fComputed

usReservedODBC

fFixedLenCLRType

TableName See section 2.2.7.4 for a description of TableName. This field SHOULD never be sent

because SQL statements that generate totals exclude NTEXT/TEXT/IMAGE.

ColName The column name. Contains the column name length and column name.

ColNum USHORT specifying the column number as it appears in the COMPUTE clause. ColNum

appears ByCols times.

2.2.7.2 ALTROW

Token Stream Name:

ALTROW

Token Stream Function:

Used to send a complete row of total data, where the data format is provided by the ALTMETADATA

token.

Token Stream Comments:

The token value is 0xD3.

The ALTROW token is similar to the ROW_TOKEN, but also contains an Id field. This Id matches

an Id given in ALTMETADATA (one Id for each SQL statement). This provides the mechanism for
matching row data with correct SQL statements.

Token Stream-Specific Rules:

TokenType = BYTE

Id = USHORT

Data = TYPE_VARBYTE

ComputeData = Data

Token Stream Definition:

78 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ALTMETADATA = TokenType

 Id

 1*ComputeData

The ComputeData element is repeated Count times (where Count is specified in
ALTMETADATA_TOKEN).

Token Stream Parameter Details:

Parameter Description

TokenType ALTROW_TOKEN

Id The Id of the SQL statement that generates totals to which the total column formats apply.

This Id lets the client correctly interpret later ALTROW data streams.

Data The actual data for the column. The TYPE_INFO information describing the data type of this

data is given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN or

OFFSET_TOKEN.

2.2.7.3 COLINFO

Token Stream Name:

COLINFO

Token Stream Function:

Describes the column information in browse mode [MSDN-BROWSE], sp_cursoropen, and
sp_cursorfetch.

Token Stream Comments

The token value is 0xA5.

The TABNAME token contains the actual table name associated with COLINFO.

Token Stream Specific Rules:

TokenType = BYTE

Length = USHORT

ColNum = BYTE

TableNum = BYTE

Status = BYTE

ColName = B_VARCHAR

ColProperty = ColNum

 TableNum

 Status

 [ColName]

http://go.microsoft.com/fwlink/?LinkId=140931

79 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The ColInfo element is repeated for each column in the result set.

Token Stream Definition:

COLINFO = TokenType

 Length

 1*CpLProperty

Token Stream Parameter Details:

Parameter Description

TokenType COLINFO_TOKEN

Length The actual data length, in bytes, of the ColProperty stream. The length does not include

token type and length field.

ColNum The column number in the result set.

TableNum The number of the base table that the column was derived from. The value is 0 if the value

of Status is EXPRESSION.

Status 0x4: EXPRESSION (the column was the result of an expression).

0x8: KEY (the column is part of a key for the associated table).

0x10: HIDDEN (the column was not requested, but was added because it was part of a key

for the associated table).

0x20: DIFFERENT_NAME (the column name is different than the requested column name in

the case of a column alias).

ColName The base column name. This only occurs if DIFFERENT_NAME is set in Status.

2.2.7.4 COLMETADATA

Token Stream Name:

COLMETADATA

Token Stream Function:

Describes the result set for interpretation of following ROW data streams.

Token Stream Comments:

The token value is 0x81.

This token is used to tell the client the data type and length of the column data. It describes the

format of the data found in a ROW data stream.

All COLMETADATA data streams are grouped together.

Token Stream-Specific Rules:

TokenType = BYTE

Count = USHORT

80 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)

fNullable = BIT

fCaseSen = BIT

usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

fIdentity = BIT

fComputed = BIT ; (introduced in TDS 7.2)

usReservedODBC = 2BIT ; (only exists in TDS 7.3.A and below)

fSparseColumnSet = BIT ; (introduced in TDS 7.3.B)

usReserved2 = 2BIT ; (introduced in TDS 7.3.B)

fFixedLenCLRType = BIT ; (introduced in TDS 7.2)

usReserved = 4BIT

fHidden = BIT ; (introduced in TDS 7.2)

fKey = BIT ; (introduced in TDS 7.2)

fNullableUnknown = BIT ; (introduced in TDS 7.2)

Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 (FRESERVEDBIT / fComputed)

 usReservedODBC

 (FRESERVEDBIT / fFixedLenCLRType)

 (usReserved / (FRESERVEDBIT fSparseColumnSet usReserved2))

 (FRESERVEDBIT / fHidden)

 (FRESERVEDBIT / fKey)

 (FRESERVEDBIT / fNullableUnknown)

NumParts = BYTE ; (introduced in TDS 7.2)

PartName = US_VARCHAR ; (introduced in TDS 7.2)

TableName = NumParts

 1*PartName

ColName = B_VARCHAR

ColumnData = UserType

 Flags

 TYPE_INFO

 [TableName]

 ColName

NoMetaData = %xFF %xFF

The TableName element is specified only if text, ntext, or image columns are included in the result

set.

Token Stream Definition:

COLMETADATA = TokenType

 NoMetaData / (1 *ColumnData)

81 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Token Stream Parameter Details:

Parameter Description

TokenType COLMETADATA_TOKEN

Count The count of columns (number of aggregate operators) in the token stream. In the event

that the client requested no metadata to be returned (see OptionFlags parameter in

RPCRequest token), the value of Count will be 0xFFFF. This has the same effect on Count

as a zero value (for example, no ColumnData is sent).

UserType The user type ID of the data type of the column. The value will be 0x0000 with the

exceptions of TIMESTAMP (0x0050) and alias types (greater than 0x00FF).

Flags Bit flags in least significant bit order:

fCaseSen is a bit flag. Set to 1 for string columns with binary collation and always for

the XML data type. Set to 0 otherwise.

fNullable is a bit flag. Its value is 1 if the column is nullable.

usUpdateable is a 2-bit field. Its value is 0 if column is read-only, 1 if column is

read/write and 2 if updateable is unknown.

fIdentity is a bit flag. Its value is 1 if the column is an identity column.

fComputed is a bit flag. Its value is 1 if the column is a COMPUTED column.

usReservedODBC is a 2-bit field that is used by ODS gateways supporting the ODBC

ODS gateway driver.

fFixedLenCLRType is a bit flag. Its value is 1 if the column is a fixed-length CLR UDT.

fSparseColumnSet is a bit flag. Set to 1 if the column is the special XML column for the

sparse column set [MSDN-ColSets].

fHidden is a bit flag. Its value is 1 if the column is part of a hidden primary key created

to support a T-SQL SELECT statement containing FOR BROWSE.

fKey is a bit flag. Its value is 1 if the column is part of a primary key for the row and the

T-SQL SELECT statement contains FOR BROWSE.

fNullableUnknown is a bit flag. Its value is 1 if it is unknown whether the column might

be nullable.

TableName The fully qualified base table name for this column. Contains the table name length and

table name. This exists only for text, ntext and image columns. Specifies how many parts

will be returned and then repeats PartName once for each NumParts.

ColName The column name. Contains the column name length and column name.

NoMetaData This notifies client that no metadata will follow the COLMETADATA token. Client notifies the

server that it has already cached the metadata from previous request, by setting

fNoMetadata to 1 in RPC Request (section 2.2.6.5). The server SHOULD not send

NoMetaData unless fNoMetadata is set to 1 in the request.

2.2.7.5 DONE

Token Stream Name:

http://go.microsoft.com/fwlink/?LinkId=128616

82 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

DONE

Token Stream Function:

Indicates the completion status of a SQL statement.

Token Stream Comments

The token value is 0xFD.

This token is used to indicate the completion of a SQL statement. As multiple SQL statements can

be sent to the server in a single SQL batch, multiple DONE tokens can be generated. In this case,

all but the final DONE token will have a Status value with DONE_MORE bit set (details follow).

A DONE token is returned for each SQL statement in the SQL batch except variable declarations.

For execution of SQL statements within stored procedures, DONEPROC and DONEINPROC tokens

are used in place of DONE tokens.

Token Stream-Specific Rules:

TokenType = BYTE

Status = USHORT

CurCmd = USHORT

DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

DONE = TokenType

 Status

 CurCmd

 DoneRowCount

Token Stream Parameter Details:

Parameter Description

TokenType DONE_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

0x00: DONE_FINAL. This DONE is the final DONE in the request.

0x1: DONE_MORE. This DONE message is not the final DONE message in the

response. Subsequent data streams to follow.

0x2: DONE_ERROR. An error occurred on the current SQL statement. A preceding

ERROR token SHOULD be sent when this bit is set.

83 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

0x4: DONE_INXACT. A transaction is in progress.<11>

0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish

between a valid value of 0 for DoneRowCount or just an initialized variable.

0x20: DONE_ATTN. The DONE message is a server acknowledgement of a client

ATTENTION message).

0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on

the current SQL statement, which is severe enough to require the result set, if any,
to be discarded.

CurCmd The token of the current SQL statement. The token value is provided and controlled by

the application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount

is valid if the value of Status includes DONE_COUNT.<12>

2.2.7.6 DONEINPROC

Token Stream Name:

DONEINPROC

Token Stream Function:

Indicates the completion status of a SQL statement within a stored procedure.

Token Stream Comments

The token value is 0xFF.

A DONEINPROC token is sent for each executed SQL statement within a stored procedure.

A DONEINPROC token MUST be followed by another DONEPROC token or a DONEINPROC token.

Token Stream-Specific Rules:

TokenType = BYTE

Status = USHORT

CurCmd = USHORT

DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

DONEINPROC = TokenType

 Status

 CurCmd

 DoneRowCount

84 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Token Stream Parameter Details:

Parameter Description

TokenType DONEINPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

0x1: DONE_MORE. This DONEINPROC message is not the final

DONE/DONEPROC/DONEINPROC message in the response; more data streams are to
follow.

0x2: DONE_ERROR. An error occurred on the current SQL statement or execution of

a stored procedure was interrupted. A preceding ERROR token SHOULD be sent when
this bit is set.

0x4: DONE_INXACT. A transaction is in progress.<13>

0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish

between a valid value of 0 for DoneRowCount or just an initialized variable.

0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on

the current SQL statement that is severe enough to require the result set, if any, to
be discarded.

CurCmd The token of the current SQL statement. The token value is provided and controlled by

the application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount

is valid if the value of Status includes DONE_COUNT.

2.2.7.7 DONEPROC

Token Stream Name:

DONEPROC

Token Stream Function:

Indicates the completion status of a stored procedure. This is also generated for stored procedures
executed through SQL statements.

Token Stream Comments:

The token value is 0xFE.

A DONEPROC token is sent when all the SQL statements within a stored procedure have been

executed.

A DONEPROC token can be followed by another DONEPROC token or a DONEINPROC only if the

DONE_MORE bit is set in the Status value.

There is a separate DONEPROC token sent for each stored procedure called.

Token Stream-Specific Rules:

85 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TokenType = BYTE

Status = USHORT

CurCmd = USHORT

DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

DONEPROC = TokenType

 Status

 CurCmd

 DoneRowCount

Token Stream Parameter Details:

Parameter Description

TokenType DONEPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

0x00: DONE_FINAL. This DONEPROC is the final DONEPROC in the request.

0x1: DONE_MORE. This DONEPROC message is not the final DONEPROC message in

the response; more data streams are to follow.

0x2: DONE_ERROR. An error occurred on the current stored procedure. A preceding

ERROR token SHOULD be sent when this bit is set.

0x4: DONE_INXACT. A transaction is in progress.<14>

0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish

between a valid value of 0 for DoneRowCount or just an initialized variable.

0x80: DONE_RPCINBATCH. This DONEPROC message is associated with an RPC

within a set of batched RPCs. This flag is not set on the last RPC in the RPC batch).

0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on

the current stored procedure, which is severe enough to require the result set, if any,
to be discarded.

CurCmd The token of the SQL statement for executing stored procedures. The token value is

provided and controlled by the application layer, which utilizes TDS. The TDS layer does

not evaluate the value.

DoneRowCount The count of rows that were affected by the command. The value of DoneRowCount is

valid if the value of Status includes DONE_COUNT.

2.2.7.8 ENVCHANGE

Token Stream Name:

86 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ENVCHANGE

Token Stream Function:

A notification of an environment change (for example, database, language, and so on).

Token Stream Comments:

The token value is 0xE3.

Includes old and new environment values.

Type 4 (Packet size) is sent in response to a LOGIN7 message. The server MAY send a value

different from the packet size requested by the client. That value MUST be greater than or equal
to 512 and smaller than or equal to 32767. Both the client and the server MUST start using this
value for packet size with the message following the login response message.

Type 13 (Database Mirroring) is sent in response to a LOGIN7 message whenever connection is

requested to a database that it is being served as primary in real-time log shipping. The
ENVCHANGE stream reflects the name of the partner node of the database that is being log

shipped.

Type 15 (Promote Transaction) is sent in response to transaction manager requests with requests

of type 6 (TM_PROMOTE_XACT).

Type 16 (Transaction Manager Address) is sent in response to transaction manager requests with

requests of type 0 (TM_GET_DTC_ADDRESS).

Type 20 (Routing) is sent in response to a LOGIN7 message when the server wants to route the

client to an alternate server. The ENVCHANGE stream returns routing information for the
alternate server. If the server decides to send the Routing ENVCHANGE token, the Routing
ENVCHANGE token MUST be sent after the LOGINACK token in the login response.

Token Stream-Specific Rules:

TokenType = BYTE

Length = USHORT

Type = BYTE

EnvValueData = Type

 NewValue

 [OldValue]

Token Stream Definition:

ENVCHANGE = TokenType

 Length

 EnvValueData

Token Stream Parameter Details

87 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

TokenType ENVCHANGE_TOKEN

Length The total length of the ENVCHANGE data stream (EnvValueData).

Type The type of environment change:

Note: All types from 8 to 19 were introduced in TDS 7.2. Type 20 was introduced in TDS

7.4.

1: Database

2: Language

3: Character set

4: Packet size

5: Unicode data sorting local id

6: Unicode data sorting comparison flags

7: SQL Collation

8: Begin Transaction [MSDN-BEGIN]

9: Commit Transaction [MSDN-COMMIT]

10: Rollback Transaction

11: Enlist DTC Transaction

12: Defect Transaction

13: Real Time Log Shipping

15: Promote Transaction

16: Transaction Manager Address<15>

17: Transaction ended

18: RESETCONNECTION/RESETCONNECTIONSKIPTRAN Completion Acknowledgement

19: Sends back name of user instance started per login request

20: Sends routing information to client

Type Old Value New Value

1: Database OLDVALUE =

B_VARCHAR

NEWVALUE = B_VARCHAR

2: Language OLDVALUE =

B_VARCHAR

NEWVALUE = B_VARCHAR

3: Character Set OLDVALUE = NEWVALUE = B_VARCHAR

http://go.microsoft.com/fwlink/?LinkId=144544
http://go.microsoft.com/fwlink/?LinkId=144542

88 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Type Old Value New Value

B_VARCHAR

4: Packet Size OLDVALUE =

B_VARCHAR

NEWVALUE = B_VARCHAR

5: Unicode data sorting

local id

OLDVALUE =

%x00

NEWVALUE = B_VARCHAR

6: Unicode data sorting

comparison flags

OLDVALUE =

%x00

NEWVALUE = B_VARCHAR

7: SQL Collation OLDVALUE =

B_VARBYTE

NEWVALUE = B_VARBYTE

8: Begin Transaction OLDVALUE =

%x00

NEWVALUE = B_VARBYTE

9: Commit Transaction OLDVALUE =

B_VARBYTE

NEWVALUE = "0x00"

10: Rollback Transaction OLDVALUE =

B_VARBYTE

NEWVALUE = %x00

11: Enlist DTC Transaction OLDVALUE =

B_VARBYTE

NEWVALUE = %x00

12: Defect Transaction OLDVALUE =

%x00

NEWVALUE = B_VARBYTE

13: Database Mirroring

Partner

OLDVALUE =

%x00

PARTNER_NODE = B_VARCHAR

NEWVALUE = PARTNER_NODE

15: Promote Transaction OLDVALUE =

%x00

DTC_TOKEN = L_VARBYTE;

NEWVALUE = DTC_TOKEN

16: Transaction Manager

Address (not used)

OLDVALUE =

%x00

XACT_MANAGER_ADDRESS = B_VARBYTE

NEWVALUE = XACT_MANAGER_ADDRESS

17: Transaction Ended OLDVALUE =

B_VARBYTE

NEWVALUE = %x00

18: Reset Completion

Acknowledgement

OLDVALUE =

%x00

NEWVALUE = %x00

19: Sends back info of user

instance for logins (login7)

requesting so.

OLDVALUE =

%x00

NEWVALUE = B_VARCHAR

20: Routing OLDVALUE =

%x00 %x00

Protocol = BYTE

ProtocolProperty = USHORT

AlternateServer = US_VARCHAR

Protocol MUST be 0, specifying TCP-IP protocol.

ProtocolProperty represents the TCP-IP port when

Protocol is 0. A ProtocolProperty value of zero is not

allowed when Protocol is TCP-IP.

RoutingDataValue = Protocol

89 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Type Old Value New Value

ProtocolProperty

AlternateServer

RoutingDataValueLength = USHORT

RoutingDataValueLength is the total length, in bytes, of

the following fields: Protocol, ProtocolProperty, and

AlternateServer.

RoutingData = RoutingDataValueLength

[RoutingDataValue]

NEWVALUE = RoutingData

Notes

For types 1, 2, 3, 4, 5, 6, 13, and 19, the payload is a Unicode string; the LENGTH will always

reflect the number of bytes.

ENVCHANGE types 3, 5, and 6 are only sent back to clients running TDS 7.0 or earlier.

For Types 8, 9, 10, 11, 12 the ENVCHANGE event is returned only if the transaction lifetime is

controlled by the user for example explicit transaction commands, including transactions started
by SET IMPLICIT_TRANSACTIONS ON.

For transactions started/committed under auto commit, no stream is generated.

For operations that change only the value of @@trancount, no ENVCHANGE stream is generated.

The payload of NEWVALUE for ENVCHANGE types 8, 11, and 17 and the payload of OLDVALUE for

ENVCHANGE types 9, 10, and 12 is a ULONGLONG.

ENVCHANGE type 11 is sent by the server to confirm that it has joined a distributed transaction

as requested through a TM_PROPAGATE_XACT request from the client.

ENVCHANGE type 12 is only sent when a batch defects from either a DTC or bound session

transaction.

LENGTH for ENVCHANGE type 15 is sent as 0x01 indicating only the length of the type token.

Client drivers are responsible for reading the additional payload if type is 15.

ENVCHANGE type 17 is sent when a batch is used that specified a descriptor for a transaction

that has ended. This is only sent in the bound session [MSDN-BOUND] case.

ENVCHANGE type 18 always produces empty (0x00) old and new values. It simply acknowledges

completion of execution of a RESETCONNECTION/RESETCONNECTIONSKIPTRAN request.

ENVCHANGE type 19 is sent after LOGIN and after

/RESETCONNECTION/RESETCONNECTIONSKIPTRAN when a client has requested use of user
instances. It is sent prior to the LOGINACK token.

ENVCHANGE type 20 MAY be sent back to a client running TDS 7.4 or later whether or not the

fReadOnlyIntent bit is set in the preceding LOGIN7 record. Type 20 MAY be sent to a TDS client
running TDS 7.1 to 7.3 but only when the fReadOnlyIntent bit is set in the preceding LOGIN7
record.

http://go.microsoft.com/fwlink/?LinkId=144543

90 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.7.9 ERROR

Token Stream Name:

ERROR

Token Stream Function:

Used to send an error message to the client.

Token Stream Comments:

The token value is 0xAA.

Token Stream-Specific Rules:

TokenType = BYTE

Length = USHORT

Number = LONG

State = BYTE

Class = BYTE

MsgText = US_VARCHAR

ServerName = B_VARCHAR

ProcName = B_VARCHAR

LineNumber = USHORT / LONG; (Changed to LONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

ERROR = TokenType

 Length

 Number

 State

 Class

 MsgText

 ServerName

 ProcName

 LineNumber

Token Stream Parameter Details

Parameter Description

TokenType ERROR_TOKEN

Length The total length of the ERROR data stream, in bytes.

Number The error number (numbers less than 20001 are reserved by Microsoft SQL Server).

State The error state, used as a modifier to the error number.

Class The class (severity) of the error. A class of less than 10 indicates an informational

message.

91 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and the stored procedure name using B_VARCHAR

format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers

begin at 1; therefore, if the line number is not applicable to the message, the value of

LineNumber will be 0.

Class

level Description

0-9 Informational messages that return status information or report errors that are not severe.<16>

10 Informational messages that return status information or report errors that are not severe.<17>

11-16 Errors that can be corrected by the user.

11 The given object or entity does not exist.

12 A special severity for SQL statements that do not use locking because of special options. In some

cases, read operations performed by these SQL statements could result in inconsistent data,

because locks are not taken to guarantee consistency.

13 Transaction deadlock errors.

14 Security-related errors, such as permission denied.

15 Syntax errors in the SQL statement.

16 General errors that can be corrected by the user.

17-19 Software errors that cannot be corrected by the user. These errors require system administrator

action.

17 The SQL statement caused the database server to run out of resources (such as memory, locks,

or disk space for the database) or to exceed some limit set by the system administrator.

18 There is a problem in the Database Engine software, but the SQL statement completes

execution, and the connection to the instance of the Database Engine is maintained. System

administrator action is required.

19 A non-configurable Database Engine limit has been exceeded and the current SQL batch has

been terminated. Error messages with a severity level of 19 or higher stop the execution of the

current SQL batch. Severity level 19 errors are rare and can be corrected only by the system

administrator. Error messages with a severity level from 19 through 25 are written to the error

log.

20-25 System problems have occurred. These are fatal errors, which means the Database Engine task

that was executing a SQL batch is no longer running. The task records information about what

occurred and then terminates. In most cases, the application connection to the instance of the

Database Engine can also terminate. If this happens, depending on the problem, the application

might not be able to reconnect.

92 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Class

level Description

Error messages in this range can affect all of the processes accessing data in the same database

and might indicate that a database or object is damaged. Error messages with a severity level

from 19 through 25 are written to the error log.

20 Indicates that a SQL statement has encountered a problem. Because the problem has affected

only the current task, it is unlikely that the database itself has been damaged.

21 Indicates that a problem has been encountered that affects all tasks in the current database, but

it is unlikely that the database itself has been damaged.

22 Indicates that the table or index specified in the message has been damaged by a software or

hardware problem.

Severity level 22 errors occur rarely. If one occurs, run DBCC CHECKDB to determine whether

other objects in the database are also damaged. The problem might be in the buffer cache only

and not on the disk itself. If so, restarting the instance of the Database Engine corrects the

problem. To continue working, reconnect to the instance of the Database Engine; otherwise, use

DBCC to repair the problem. In some cases, restoration of the database might be required.

If restarting the instance of the Database Engine does not correct the problem, then the problem

is on the disk. Sometimes destroying the object specified in the error message can solve the

problem. For example, if the message reports that the instance of the Database Engine has

found a row with a length of 0 in a non-clustered index, delete the index and rebuild it.

23 Indicates that the integrity of the entire database is in question because of a hardware or

software problem.

Severity level 23 errors occur rarely. If one occurs, run DBCC CHECKDB to determine the extent

of the damage. The problem might be in the cache only and not on the disk itself. If so,

restarting the instance of the Database Engine corrects the problem. To continue working,

reconnect to the instance of the Database Engine; otherwise, use DBCC to repair the problem. In

some cases, restoration of the database might be required.

24 Indicates a media failure. The system administrator might have to restore the database or

resolve a hardware issue.

If an error is produced within a result set, the ERROR token is sent before the DONE token for the
SQL statement, and such DONE token is sent with the error bit set.

2.2.7.10 FEATUREEXTACK

Token Stream Name:

FEATUREEXTACK

Token Stream Function:

Used to send an optional acknowledge message to the client for features defined in FeatureExt. The
token stream is sent only along with the LOGINACK in a login response message.

Token Stream Comments:

The token value is 0xAE.

Token Stream-Specific Rules:

93 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TokenType = BYTE

FeatureId = BYTE

FeatureAckDataLen = DWORD

FeatureAckData = *BYTE

TERMINATOR = %xFF ; signal of end of feature ack data

FeatureAckOpt = (FeatureId

 FeatureAckDataLen

 FeatureAckData)

 /

 TERMINATOR

Token Stream Definition:

FEATUREEXTACK = TokenType

 1*FeatureAckOpt

Token Stream Parameter Details

Parameter Description

TokenType FEATUREEXTACK_TOKEN

FeatureId The unique identifier number of a feature. Each feature MUST use the same ID

number here as in FeatureExt. If the client did not send a request for a specific

feature but the FeatureId is returned, the client MUST consider it as a TDS Protocol

error and MUST terminate the connection.

Each feature defines its own logic if it wants to use FeatureAckOpt to send

information back to the client during the login response. Known FeatureId is

described in the table below.

FeatureAckDataLen The length of FeatureAckData, in bytes.

FeatureAckData Ack data of specific feature. Each feature SHOULD define its own data format here if

this token is chosen to acknowledge the feature.

The following table describes the FeatureExtAck feature option and description.

FeatureId FeatureExtData Description

%0x00 Reserved.

%0x01

(SESSIONRECOVERY)

Session Recovery feature. Content is defined as follows:

InitSessionStateData = SessionStateDataSet

FeatureAckData = InitSessionStateData

SessionStateDataSet is described in section 2.2.7.19. The length of

SessionStateDataSet is specified by the corresponding FeatureAckDataLen.

On a recovery connection, the client sends a login request with

SessionRecoveryDataToBe. The server MUST set the session state as requested

by the client. If the server cannot do so, the server MUST fail the login request

and terminate the connection.

94 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

FeatureId FeatureExtData Description

%xFF

(TERMINATOR)

This is the last option in FeatureExtAck.

2.2.7.11 INFO

Token Stream Name:

INFO

Token Stream Function:

Used to send an information message to the client.

Token Stream Comments

The token value is 0xAB.

Token Stream-Specific Rules:

TokenType = BYTE

Length = USHORT

Number = LONG

State = BYTE

Class = BYTE

MsgText = US_VARCHAR

ServerName = B_VARCHAR

ProcName = B_VARCHAR

LineNumber = USHORT / ULONG; (Changed to ULONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

INFO = TokenType

 Length

 Number

 State

 Class

 MsgText

 ServerName

 ProcName

 LineNumber

Token Stream Parameter Details

Parameter Description

TokenType INFO_TOKEN

95 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

Length The total length of the INFO data stream, in bytes.

Number The info number.<18>

State The error state, used as a modifier to the info Number.

Class The class (severity) of the error. A class of less than 10 indicates an informational

message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers

begin at 1; therefore, if the line number is not applicable to the message as determined by

the upper layer, the value of LineNumber will be 0.

2.2.7.12 LOGINACK

Token Stream Name:

LOGINACK

Token Stream Function:

Used to send a response to a login request (LOGIN7) to the client.

Token Stream Comments

The token value is 0xAD.

If a LOGINACK is not received by the client as part of the login procedure, the login to the server

is unsuccessful.

Token Stream-Specific Rules:

TokenType = BYTE

Length = USHORT

Interface = BYTE

TDSVersion = DWORD

ProgName = B_VARCHAR

MajorVer = BYTE

MinorVer = BYTE

BuildNumHi = BYTE

BuildNumLow = BYTE

ProgVersion = MajorVer

 MinorVer

 BuildNumHi

 BuildNumLow

96 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Token Stream Definition:

LOGINACK = TokenType

 Length

 Interface

 TDSVersion

 ProgName

 ProgVersion

Token Stream Parameter Details

Parameter Description

TokenType LOGINACK_TOKEN

Length The total length, in bytes, of the following fields: Interface, TDSVersion, Progname, and

ProgVersion.

Interface The type of interface with which the server will accept client requests:

0: SQL_DFLT (server confirms that whatever is sent by the client is acceptable. If the

client requested SQL_DFLT, SQL_TSQL will be used).

1: SQL_TSQL (TSQL is accepted).

TDSVersion The TDS version being used by the server (for example, 0x07000000 for a 7.0

server).<19>

ProgName The name of the server (for example, "Microsoft SQL Server ").

MajorVer The major version number (0-255).

MinorVer The minor version number (0-255).

BuildNumHi The high byte of the build number (0-255).

BuildNumLow The low byte of the build number (0-255).

2.2.7.13 NBCROW

Token Stream Name:

NBCROW

Token Stream Function:

NBCROW, introduced in TDS 7.3.B, is used to send a row as defined by the COLMETADATA token to
the client with null bitmap compression. Null bitmap compression is implemented by using a single
bit to specify whether the column is null or not null and also by removing all null column values from

the row. Removing the null column values (which can be up to 8 bytes per null instance) from the
row provides the compression. The null bitmap contains one bit for each column defined in
COLMETADATA. In the null bitmap, a bit value of 1 means that the column is null and therefore not
present in the row, and a bit value of 0 means that the column is not null and is present in the row.

97 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The null bitmap is always rounded up to the nearest multiple of 8 bits, so there might be 1 to 7
leftover reserved bits at the end of the null bitmap in the last byte of the null bitmap. NBCROW is

only used by TDS result set streams from server to client. NBCROW MUST NOT be used in
BulkLoadBCP streams. NBCROW MUST NOT be used in TVP row streams.

Token Stream Comments

The token value is 0xD2/210.

Token Stream-Specific Rules:

TokenType = BYTE

TextPointer = B_VARBYTE

Timestamp = 8BYTE

Data = TYPE_VARBYTE

NullBitmap = <NullBitmapByteCount>BYTE; see note on NullBitmapByteCount

ColumnData = [TextPointer Timestamp] Data

AllColumnData = *ColumnData

ColumnData is repeated once for each non-null column of data.

NullBitmapBitCount is equal to the number of columns in COLMETADATA.

NullBitmapByteCount is equal to the smallest number of bytes needed to hold 'NullBitmapBitCount'
bits.

The server can decide to send either a NBCROW token or a ROW token. For example, the server
MAY choose to send a ROW token if there will be no byte savings if the result set has no nullable
columns, or if a particular row in a result set has no null values. This implies that NBCROW and

ROW tokens can be intermixed in the same result set.

When determining whether or not a specific column is null, consider all the columns from left to

right ordered using a zero-based index from 0 to 65534 as they occur in the ColumnData section of
the COLMETADATA token. The null bitmap indicates that a column is null using a zero bit at the
following byte and bit layout:

Byte 1 Byte 2 Byte 3

----------------------- ----------------------- -----------------------

07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 23 22 21 20 19 18 17 16

Hence the first byte will contain flags for columns 0 through 7, with the least significant (or
rightmost) bit within the byte indicating the zeroth column and the most significant (or leftmost) bit

within the byte indicating the seventh column. For example, column index 8 would be in the second
byte as the least significant bit. If the null bitmap bit is set, the column is null and no null token

value for the column will follow in the row. If the null bitmap bit is clear, the column is not null and
the value for the column follows in the row.

Token Stream Definition:

NBCROW = TokenType

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

98 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 NullBitmap

 AllColumnData

Token Stream Parameter Details

Parameter Description

TokenType NBCROW_TOKEN (0xD2)

TextPointer The length of the text pointer and the text pointer for Data.

Timestamp The timestamp of a text/image column.

Data The actual data for the column. The TYPE_INFO information describing the data type of this

data is given in the preceding COLMETADATA_TOKEN.

2.2.7.14 OFFSET

Token Stream Name:

OFFSET ; (removed in TDS 7.2)

Token Stream Function:

Used to inform the client where in the client's SQL text buffer a particular keyword occurs.

Token Stream Comments:

The token value is 0x78.

The token was removed in TDS 7.2.

Token Stream-Specific Rules:

TokenType = BYTE

Identifier = USHORT

OffSetLen = USHORT

Token Stream Definition:

OFFSET = TokenType

 Identifier

 OffSetLen

Token Stream Parameter Details

Parameter Description

TokenType OFFSET_TOKEN

Identifier The keyword to which OffSetLen refers.

99 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

OffsetLen The offset in the SQL text buffer received by the server of the identifier. The SQL text buffer

begins with an OffSetLen value of 0 (MOD 64 kilobytes if value of OffSet is larger than 64

kilobytes).

2.2.7.15 ORDER

Token Stream Name:

ORDER

Token Stream Function:

Used to inform the client by which columns the data is ordered.

Token Stream Comments

The token value is 0xA9.

This token is sent only in the event that an ORDER BY clause is executed.

Token Stream-Specific Rules:

TokenType = BYTE

Length = USHORT

ColNum = *USHORT

The ColNum element is repeated once for each column within the ORDER BY clause.

Token Stream Definition:

ORDER = TokenType

 Length

 ColNum

Token Stream Parameter Details

Parameter Description

TokenType ORDER_TOKEN

Length The total length of the ORDER data stream.

ColNum The column number in the result set.

2.2.7.16 RETURNSTATUS

Token Stream Name:

100 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

RETURNSTATUS

Token Stream Function:

Used to send the status value of an RPC to the client. The server also uses this token to send the
result status value of a T-SQL EXEC query.

Token Stream Comments:

The token value is 0x79.

This token MUST be returned to the client when an RPC is executed by the server.

Token Stream-Specific Rules:

TokenType = BYTE

Value = LONG

Token Stream Definition:

RETURNSTATUS = TokenType

 Value

Token Stream Parameter Details

Parameter Description

TokenType RETURNSTATUS_TOKEN

Value The return status value determined by the remote procedure. Return status MUST NOT be

NULL.

2.2.7.17 RETURNVALUE

Token Stream Name:

RETURNVALUE

Token Stream Function:

Used to send the return value of an RPC to the client. When an RPC is executed, the associated
parameters might be defined as input or output (or "return") parameters. This token is used to send

a description of the return parameter to the client. This token is also used to describe the value
returned by a UDF when executed as an RPC.

Token Stream Comments:

The token value is 0xAC.

101 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Multiple return values can exist per RPC. There is a separate RETURNVALUE token sent for each

parameter returned.

Large Object output parameters are reordered to appear at the end of the stream. First the group

of small parameters is sent, followed by the group of large output parameters. There is no
reordering within the groups.

A UDF cannot have return parameters. As such, if a UDF is executed as an RPC there is exactly

one RETURNVALUE token sent to the client.

Token Stream-Specific Rules:

TokenType = BYTE

ParamName = B_VARCHAR

ParamOrdinal = USHORT

Status = BYTE

UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)

fNullable = BIT

fCaseSen = BIT

usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

fIdentity = BIT

fComputed = BIT ; (introduced in TDS 7.2)

usReservedODBC = 2BIT

fFixedLenCLRType = BIT ; (introduced in TDS 7.2)

usReserved = 7BIT

Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 (FRESERVEDBIT / fComputed)

 usReservedODBC

 (FRESERVEDBIT / fFixedLenCLRType)

 usReserved

TypeInfo = TYPE_INFO

Value = TYPE_VARBYTE

Token Stream Definition:

RETURNVALUE = TokenType

 ParamOrdinal

 ParamName

 Status

 UserType

 Flags

102 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 TypeInfo

 Value

Token Stream Parameter Details:

Parameter Description

TokenType RETURNVALUE_TOKEN

ParamOrdinal Indicates the ordinal position of the output parameter in the original RPC call. Large

Object output parameters are reordered to appear at the end of the stream. First the

group of small parameters is sent, followed by the group of large output parameters.

There is no reordering within the groups.

ParamName The parameter name length and parameter name (within B_VARCHAR).

Status 0x01: If ReturnValue corresponds to OUTPUT parameter of a stored procedure invocation.

0x02: If ReturnValue corresponds to return value of User Defined Function.

UserType The user-defined data type of the column. The value will be 0x00 00 with the exceptions

of TIMESTAMP (0x00 50) and alias types (> 0x00 FF).

Flags These bit flags are described in least significant bit order. All of these bit flags SHOULD be

set to zero. For a description of each bit flag, see section 2.2.7.4.

fCaseSen

fNullable

usUpdateable

fIdentity

fComputed

usReservedODBC

fFixedLengthCLRType

TypeInfo The TYPE_INFO for the message.

Value The type-dependent data for the parameter (within TYPE_VARBYTE).

2.2.7.18 ROW

Token Stream Name:

ROW

Token Stream Function:

Used to send a complete row, as defined by the COLMETADATA token, to the client.

Token Stream Comments:

The token value is 0xD1.

103 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Token Stream-Specific Rules:

TokenType = BYTE

TextPointer = B_VARBYTE

Timestamp = 8BYTE

Data = TYPE_VARBYTE

ColumnData = [TextPointer Timestamp]

 Data

AllColumnData = *ColumnData

The ColumnData element is repeated once for each column of data.

TextPointer and Timestamp MUST NOT be specified if the instance of type text/ntext/image is a
NULL instance (GEN_NULL).

Token Stream Definition:

ROW = TokenType

 AllColumnData

Token Stream Parameter Details:

Parameter Description

TokenType ROW_TOKEN

TextPointer The length of the text pointer and the text pointer for data.

Timestamp The timestamp of a text/image column. This is not present if the value of data is

CHARBIN_NULL or GEN_NULL.

Data The actual data for the column. The TYPE_INFO information describing the data type of this

data is given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN or

OFFSET_TOKEN.

2.2.7.19 SESSIONSTATE

Token Stream Name:

SESSIONSTATE

Token Stream Function:

Used to send session state data to the client. The data format defined here can also be used to send
session state data for session recovery during login and login response.

Token Stream Comments:

104 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The token value is 0xE4.

This token stream MUST NOT be sent if the SESSIONRECOVERY feature is not negotiated on the

connection.

When this token stream is sent, the next token MUST be DONE or DONEPROC with DONE_FINAL.

If the SESSIONRECOVERY feature is negotiated on the connection, the server SHOULD send this

token to the client to inform any session state update.

Token Stream-Specific Rules:

fRecoverable = BIT

Status = fRecoverable 7FRESERVEDBIT

TokenType = BYTE

Length = DWORD

SeqNo = DWORD

Status = BYTE

StateId = BYTE

StateLen = BYTE ; 0-%xFE

 /

 (%xFF

 DWORD) ; %xFF - %xFFFF

SessionStateData = StateId

 StateLen

 StateValue

SessionStateDataSet = 1*SessionStateData

Token Stream Definition:

SESSIONSTATE = TokenType

 Length

 SeqNo

 Status

 SessionStateDataSet

Token Stream Parameter Details

Parameter Description

TokenType SESSIONSTATE_TOKEN

Length The length, in bytes, of the token stream (excluding TokenType and Length).

SeqNo The sequence number of the SESSIONSTATE token in the connection. This number, which

starts at 0 and increases by one each time, can be used to track the order of

SESSIONSTATE tokens sent during the course of a connection. The SeqNo applies to all

StateIds in the token. If the SeqNo for any StateId reaches %xFFFFFFFF, both client and

server MUST consider that the SESSIONRECOVERY feature is permanently disabled on the

connection. The server SHOULD send a token with fRecoverable set to FALSE to disable

SESSIONRECOVERY for this session. The client SHOULD NOT set either ResetConn bit

105 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

(RESETCONNECTION or RESETCONNECTIONSKIPTRAN) on the connection once it receives

any SeqNo of %xFFFFFFFF because ResetConn could reset a connection back to an initial

recoverable state and SESSIONRECOVERY needs to be permanently disabled on the

connection in this case. If the server does receive ResetConn after SeqNo reaches

%xFFFFFFFF, it SHOULD reuse this same SeqNo to disable SESSIONRECOVERY.

The client SHOULD track SeqNo for each StateId and keep the latest data for session

recovery.

Status Status of the session StateId in this token.

fRecoverable: TRUE means all session StateIds in this token are recoverable.

The client SHOULD track Status for each StateId and keep the latest data for session

recovery. A client MUST NOT try to recover a dead connection unless fRecoverable is TRUE

for all session StateIds received from server.

StateId The identification number of the session state. %xFF is reserved.

StateLen The length, in bytes, of the corresponding StateValue. If the length is 254 bytes or smaller,

one BYTE is used to represent the field. If the length is 255 bytes or larger, %xFF followed

by a DWORD is used to represent the field. If this field is 0, client SHOULD skip sending

SessionStateData for the StateId during session recovery.

StateValue The value of the session state. This can be any arbitrary data as long as the server

understands it.

2.2.7.20 SSPI

Token Stream Name:

SSPI

Token Stream Function:

The SSPI token returned during the login process.

Token Stream Comments:

The token value is 0xED.

Token Stream-Specific Rules:

TokenType = BYTE

SSPIBuffer = US_VARBYTE

Token Stream Definition:

SSPI = TokenType

 SSPIBuffer

106 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Token Stream Parameter Details:

Parameter Description

TokenType SSPI_TOKEN

SSPIBuffer The length of the SSPIBuffer and the SSPI buffer using B_VARBYTE format.

2.2.7.21 TABNAME

Token Stream Name:

TABNAME

Token Stream Function:

Used to send the table name to the client only when in browser mode or from sp_cursoropen.

Token Stream Comments:

The token value is 0xA4.

Token Stream-Specific Rules:

TokenType = BYTE

Length = USHORT

NumParts = BYTE ; (introduced in TDS 7.1 Revision 1)

PartName = US_VARCHAR ; (introduced in TDS 7.1 Revision 1)

TableName = US_VARCHAR ; (removed in TDS 7.1 Revision 1)

 /

 (NumParts

 1*PartName) ; (introduced in TDS 7.1 Revision 1)

AllTableNames = TableName

The TableName element is repeated once for each table name in the query.

Token Stream Definition:

TABNAME = TokenType

 Length

 AllTableNames

Token Stream Parameter Details

Parameter Description

TokenType TABNAME_TOKEN

107 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Description

Length The actual data length, in bytes, of the TABNAME token stream. The length does not include

token type and length field.

TableName The name of the base table referenced in the query statement.

2.2.7.22 TVP ROW

Token Stream Name:

TVP ROW

Token Stream Function:

Used to send a complete table valued parameter (TVP) row, as defined by the TVP_COLMETADATA

token from client to server.

Token Stream Comments:

The token value is 0x01/1.

Token Stream-Specific Rules:

TokenType = BYTE

TvpColumnData = TYPE_VARBYTE

AllColumnData = *TvpColumnData

TvpColumnData is repeated once for each column of data with a few exceptions. For details about

when certain TvpColumnData items are required to be omitted, see the Flags description of the

TVP_COLMETADATA definition (see section 2.2.5.5.5.1).

Note that unlike the ROW token, TVP_ROW does not use TextPointer + TimeStamp prefix with TEXT,
NTEXT and IMAGE types.

Token Stream Definition:

TVP ROW = TokenType

 AllColumnData

Token Stream Parameter Details:

Parameter Description

TokenType TVP_ROW_TOKEN

TvpColumnData The actual data for the TVP column. The TYPE_INFO information describing the data

type of this data is given in the preceding TVP_COLMETADATA token.

108 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Details

This section describes the important elements of the client software and the server software
necessary to support the TDS protocol.

3.1 Common Details

As described in section 1.3, TDS is an application-level protocol that is used for the transfer of
requests and responses between clients and database server systems. The protocol defines a limited
set of messages through which the client can make a request to the server. The TDS server is

message-oriented. Once a connection has been established between the client and server, a
complete message is sent from client to server. Following this, a complete response is sent from
server to client (with the possible exception of when the client aborts the request), and the server
then waits for the next request. Other than this Post-Login state, the other states defined by the
TDS protocol are (i) pre-authentication (Pre-Login), (ii) authentication (Login), and (iii) when the
client sends an attention message (Attention). These will be expanded upon in subsequent sections.

3.1.1 Abstract Data Model

See sections 3.2.1 and 3.3.1 for the abstract data model of the client and server, respectively.

3.1.2 Timers

See section 3.2.2 for a description of the client timer used and section 3.3.2 for a description of the
server timer used.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

For information on higher-layer triggered events, see section 3.2.4 for a TDS client and section
3.3.4 for a TDS server.

3.1.5 Message Processing Events and Sequencing Rules

The following series of sequence diagrams illustrate the possible messages that can be exchanged
between client and server. See sections 3.2.5 and 3.3.5 for specific client and server details
regarding message processing events and sequencing rules.

109 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 3: Pre-login to post-login sequence

110 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 4: SQL command and RPC sequence

111 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 5: Transaction manager request sequence

112 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 6: Bulk insert sequence

3.1.6 Timer Events

See sections 3.2.6 and 3.3.6 for the timer events of the client and server, respectively.

3.1.7 Other Local Events

A TDS session is tied to the underlying established network protocol session. As such, loss or

termination of a network connection is equivalent to immediate termination of a TDS session.

See sections 3.2.7 and 3.3.7 for the other local events of the client and server, respectively.

3.2 Client Details

The following state machine diagram describes TDS on the client side.

113 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 7: TDS client state machine

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

A TDS client SHOULD maintain the following states:

Sent Initial PRELOGIN Packet State

114 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Sent TLS/SSL Negotiation Packet State

Sent LOGIN7 Record with Standard Login State

Sent LOGIN7 Record with SPNEGO Packet State

Logged In State

Sent Client Request State

Sent Attention State

Routing Completed State

Final State

3.2.2 Timers

A TDS client SHOULD implement the following three timers:

Connection Timer. Controls the maximum time spent during the establishment of a TDS

connection. The default value SHOULD be 15 seconds. The implementation SHOULD allow the

upper layer to specify a nondefault value, including an infinite value (for example, no timeout).

Client Request Timer. Controls the maximum time spent waiting for a query response from the

server for a client request sent after the connection has been established. The default value is
implementation-dependent. The implementation SHOULD allow the upper layer to specify a non-
default value, including an infinite value (for example, no timeout).<20>

Cancel Timer. Controls the maximum time spent waiting for a query cancellation

acknowledgement after an Attention request is sent to the server. The default value is
implementation-dependent. The implementation SHOULD allow the upper layer to specify a
nondefault value, including an infinite value (for example, no timeout).<21>

For all three timers, a client can implement a minimum timeout value that is as short as desired. If a
TDS client implementation implements any of the timers, it MUST implement their behavior
according to this specification.

A TDS client SHOULD request the transport to detect and indicate a broken connection if the
transport provides such mechanism. If the transport used is TCP, it SHOULD use the TCP Keep-
Alives [RFC1122] in order to detect a nonresponding server in case infinite connection timeout or
infinite client request timeout is used. The default values of the TCP Keep-Alive values set by a TDS
client are 30 seconds of no activity until the first keep-alive packet is sent and 1 second between
when successive keep-alive packets are sent if no acknowledgement is received. The
implementation SHOULD allow the upper layer to specify other TCP keep-alive values.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

A TDS client MUST support the following events from the upper layer:

Connection Open Request to establish a new TDS connection to a TDS server.

http://go.microsoft.com/fwlink/?LinkId=112180

115 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Client Request to send a query to a TDS server on an already established TDS connection. The

Client Request is a request for one of four types of queries to be sent: SQL Command, SQL

Command with Binary Data, Transaction Manager Request, or an RPC.

In addition, it SHOULD support the following event from the upper layer:

Cancel Request to cancel a client request while waiting for a server response. For example, this

enables the upper layer to cancel a long-running client request if the user/upper layer is no
longer seeking the result, thus freeing up thus client and server resources. If a client
implementation of the TDS protocol supports the Cancel Request event, it MUST handle it as
described in this specification.

The processing and actions triggered by these events is described in the remaining parts of this

section.

When a TDS client receives a Connection Open Request from the upper layer in the "Initial" state of
a TDS connection, it performs the following actions:

If the TDS client implements the Connection Timer, it MUST start the Connection Timer if the

connection timeout value is not infinite.

If there is upper-layer request MARS support, it MUST set the B_MARS byte in the Pre-Login

message to 0x01.

It should send a Pre-Login message to the server by using the underlying transport protocol.

If the transport does not report an error, it MUST enter the "Sent Initial PRELOGIN Packet" state.

When a TDS client receives a Connection Open Request from the upper layer in any state other than
the Initial state of a TDS connection, it MUST indicate an error to the upper layer.

When a TDS client receives a Client Request from the upper layer in the "Logged In" state, it MUST
perform the following actions:

If the TDS client implements the Query Timer, it MUST start the Client Request Timer if the client

request timeout value is not infinite.

If MARS is enabled, the client MUST keep track whether there is an outstanding active request. If

this is the case, then the client MUST initiate a new SMUX session, or else an existing SMUX

session MAY be used.

Send either SQL Command, SQL Command with Binary Data, Transaction Manager Request, or a

RPC message to the server. The message and its content must match the requested message
from the Client Request. If MARS is enabled, the TDS message MUST be passed through to the
SMUX layer.

If the transport does not report an error, then enter the "Sent Client Request" state.

When a TDS client supporting the Cancel Request receives a Cancel Request from the upper layer in
the "Sent Client Request" state, it MUST perform the following actions:

If the TDS client implements the Cancel Timer, it MUST start the Cancel Timer if the Attention

request timeout value is not infinite.

Send an Attention message to the server. This indicates to the server that the currently

executing request should be aborted. If MARS is enabled, the Attention message MUST be passed
through to the SMUX layer.

116 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Enter the "Sent Attention" state.

3.2.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS server depends on the message type and the
current state of the TDS client. The rest of this section describes the processing and actions to take
on them. The message type is determined from the TDS packet type and the token stream inside
the TDS packet payload, as described in section 2.2.3.

Whenever the TDS client enters either the "Logged In" state or the "Final State" state, it MUST
stop the Connection Timer (if implemented and running), the Client Request Timer (if implemented
and running), and the Cancel Timer (if implemented and running).

Whenever a TDS client receives a structurally invalid TDS message, it MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the "Final State" state.

When a TDS client receives a table response (TDS packet type %x04) from the server, it MUST
behave as follows, according to the state of the TDS client.

3.2.5.1 Sent Initial PRELOGIN Packet State

If the response contains a structurally valid PRELOGIN response indicating a success, the TDS client

MUST take action according to the Encryption option and Authentication scheme:

The Encryption option MUST be handled as described in section 2.2.6.4 in the PRELOGIN

message description.

If encryption was negotiated, the TDS client MUST initiate a TLS/SSL handshake, send to the

server a TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS packet(s) of
type PRELOGIN (0x12), and enter the "Sent TLS/SSL negotiation packet" state.

If encryption was not negotiated and the upper layer did not request full encryption, the TDS

client MUST send to the server a Login message with the authentication scheme specified by the
user, and enter either state "Sent LOGIN7 record with standard login" or "Sent LOGIN7 record

with SPNEGO packet" accordingly. The TDS specification does not prescribe the authentication
protocol if SSPI authentication is used. The current implementation supports NTLM [NTLM] and
Kerberos [RFC4120].

If encryption was not negotiated and the upper layer requested full encryption, then the TDS

client MUST close the underlying transport connection, indicate an error to the upper layer, and
enter the "Final State" state.

If the response received from the server does not contain a structurally valid PRELOGIN response

or it contains a structurally valid PRELOGIN response indicating an error, the TDS client MUST
close the underlying transport connection, indicate an error to the upper layer, and enter the

"Final State" state.

3.2.5.2 Sent TLS/SSL Negotiation Packet State

If the response contains a structurally valid TLS/SSL response message (TDS packet Type 0x12),
the TDS client MUST pass the TLS/SSL message contained in it to the TLS/SSL layer and MUST
proceed as follows:

If the TLS/SSL layer indicates that further handshake is needed, the TDS client MUST send to the

server the TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS packet(s) of
Type PRELOGIN (0x12).

http://go.microsoft.com/fwlink/?LinkId=90235
http://go.microsoft.com/fwlink/?LinkId=90458

117 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the TLS/SSL layer indicates successful completion of the TLS/SSL handshake, the TDS client

MUST send a Login message to the server with the authentication scheme specified by the user.

The TDS client will then enter one of two states, either the "Sent LOGIN7 record with standard

login" or "Sent LOGIN7 record with SSPI negotiation packet". The TDS specification does not
prescribe the authentication protocol if SSPI authentication is used. The current implementation
supports NTLM [NTLM] and Kerberos [RFC4120].

If login-only encryption was negotiated as described in section Message Syntax in the PreLogin

message description, then the first and only the first TDS packet of the Login message MUST be
encrypted using TLS/SSL and encapsulated in a TLS/SSL message. All other TDS packets sent or
received MUST be in plaintext.

If full encryption was negotiated as described in section Message Syntax in the PreLogin message

description, then all subsequent TDS packets sent or received from this point on MUST be
encrypted using TLS/SSL and encapsulated in a TLS/SSL message.

If the TLS/SSL layer indicates an error, the TDS client MUST close the underlying transport

connection, indicate an error to the upper layer, and enter the "Final State" state.

If the response received from the server does not contain a structurally valid TLS/SSL response or it
contains a structurally valid response indicating an error, the TDS client MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the "Final State" state.

3.2.5.3 Sent LOGIN7 Record with Standard Login State

If the response received from the server contains a structurally valid Login response indicating a
successful login and no Routing response is detected, the TDS client MUST indicate successful Login

completion to the upper layer and enter the "Logged In" state.

If the response received from the server contains a structurally valid Login response indicating a
successful login and also contains a routing response (a Routing ENVCHANGE token) after the
LOGINACK token, the TDS MUST enter the "Routing Completed" state.

If the response received from the server does not contain a structurally valid Login response or it

contains a structurally valid Login response indicating login failure, the TDS client MUST close the
underlying transport connection, indicate an error to the upper layer, and enter the "Final State"

state.

3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State

If the response received from the server contains a structurally valid Login response indicating a
successful login and no Routing response is detected, the TDS client MUST indicate successful Login
completion to the upper layer and enter the "Logged In" state.

If the response received from the server contains a structurally valid Login response indicating a

successful login and also contains a routing response (a Routing ENVCHANGE token) after the
LOGINACK token, the TDS client MUST enter the "Routing Completed" state.

If the response received from the server contains a structurally valid SSPI response message, the

TDS client MUST send to the server a SSPI message (TDS packet type %x11) containing the data
obtained from the applicable SSPI layer. The TDS client SHOULD wait for the response and reenter
this state when the response is received.

If the response received from the server does not contain a structurally valid Login response or SSPI
response, or if it contains a structurally valid Login response indicating login failure, the TDS client

http://go.microsoft.com/fwlink/?LinkId=90235
http://go.microsoft.com/fwlink/?LinkId=90458

118 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

MUST close the underlying transport connection, indicate an error to the upper layer, and enter the
"Final State" state.

3.2.5.5 Logged In State

The TDS client waits for notification from the upper layer. If the upper layer requests a query to be
sent to the server, the TDS client MUST send the appropriate request to the server and enter the
"Sent Client Request" state. If MARS is enabled, the TDS client MUST send the appropriate request
to the SMUX layer. If the upper layer requests a termination of the connection, the TDS client MUST
disconnect from the server and enter the "Final State" state. If the TDS client detects a connection
error from the transport layer, the TDS client MUST disconnect from the server and enter the "Final
State" state.

3.2.5.6 Sent Client Request State

If the response received from the server contains a structurally valid response, the TDS client MUST
indicate the result of the request to the upper layer and enter the "Logged In" state.

The client has the ability to return data/control to the upper layers while remaining in the "Sent
Client Request" state while the complete response has not been received or processed.

If the TDS client supports Cancel Request and the upper layer requests a Cancel Request to be sent
to the server, the TDS client will send an Attention message to the server, start the Cancel Timer,
and enter the "Sent Attention" state.

If the response received from the server does not contain a structurally valid response, the TDS
client MUST close the underlying transport connection, indicate an error to the upper layer, and
enter the "Final State" state.

3.2.5.7 Sent Attention State

If the response is structurally valid and it does not acknowledge the Attention as described in
section 2.2.1.6, then the TDS client MUST discard any data contained in the response and remain in

the "Sent Attention" state.

If the response is structurally valid and it acknowledges the Attention as described in section
2.2.1.6, then the TDS client MUST discard any data contained in the response, indicate the
completion of the query to the upper layer together with the cause of the Attention (either an

upper-layer cancellation as described in section 3.2.4 or query timeout as described in section
3.2.2), and enter the "Logged In" state.

If the response received from the server is not structurally valid, then the TDS client MUST close the
underlying transport connection, indicate an error to the upper layer, and enter the "Final State"
state.

3.2.5.8 Routing Completed State

The TDS client MUST:

Read the rest of the login response from the server, processing the remaining tokens until the

final DONE token is read, as it does with a normal login response.

Discard all information read from the original login response except for the routing information

supplied in the Routing ENVCHANGE token.

119 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Any information in the original login response (for example, the language, collation, packet

size, or database mirroring partner) will not apply to the subsequent connection established to

the alternate server specified in the Routing ENVCHANGE token.

Close the original connection, and enter the "Final State" state. The original connection cannot be

used for any other purpose after the Routing ENVCHANGE token is read and the response is
drained.

3.2.5.9 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS server.

3.2.6 Timer Events

If a TDS client implements the Connection Timer and the timer times out, then the TDS client MUST
close the underlying connection, indicate the error to the upper layer, and enter the "Final State"
state.

If a TDS client implements the Client Request Timer and the timer times out, then the TDS client
MUST send an Attention message to the server and enter the "Sent Attention" state.

If a TDS client implements the Cancel Timer and the timer times out, then the TDS client MUST
close the underlying connection, indicate the error to the upper layer, and enter the "Final State"
state.

3.2.7 Other Local Events

Whenever an indication of a connection error is received from the underlying transport, the TDS
client MUST close the transport connection, indicate an error to the upper layer, stop any timers if

running, and enter the "Final State" state. If TCP is used as the underlying transport, examples of
events that can trigger such action—dependent on the actual TCP implementation—might be media
sense loss, a TCP connection going down in the middle of communication, or a TCP keep-alive
failure.

3.3 Server Details

The following state machine diagram describes TDS on the server side.

120 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 8: TDS server state machine

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to explain how the protocol

behaves. This document does not mandate that implementations adhere to this model as long as
their external behavior is consistent with what is described in this document.

The server SHOULD maintain the following states:

Initial State

TLS/SSL Negotiation State

121 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Login Ready State

SPNEGO Negotiation State

Logged In State

Client Request Execution State

Routing Completed State

Final State

3.3.2 Timers

The TDS protocol does not regulate any timer on a data stream. The TDS server MAY implement a
timer on any message found in section 2.

3.3.3 Initialization

The server MUST establish a listening endpoint based on one of the transport protocols described in
section 2.1. The server can establish additional listening endpoints.

When a client makes a connection request, the transport layer listening endpoint will initialize all

resources required for this connection. The server will be ready to receive a pre-login message.

3.3.4 Higher-Layer Triggered Events

A higher layer can choose to terminate a TDS connection at any time. In the current TDS
implementation, the upper layer can kill a connection. When this happens, the server MUST
terminate the connection and recycle all resources for this connection. No response will be sent to

the client.

3.3.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS client depends on the message type and the
current state of the TDS server. The rest of this section describes the processing and actions to take
on them. The message type is determined from the TDS packet type and the token stream inside
the TDS packet payload, as described in section 2.2.

The corresponding action will be taken when the server in the following states.

3.3.5.1 Initial State

The TDS server receives the first packet from the client. The packet SHOULD be a PRELOGIN packet
to set up context for login. A pre-login message is indicated by the PRELOGIN (0x12) message type
described in section 2. The TDS server SHOULD close the underlying transport connection, indicate
an error to the upper layer, and enter the "Final State" state, if the first packet is not a structurally

correct PRELOGIN packet or the PRELOGIN packet does not contain the client version as the first
option token. Otherwise, the TDS server MUST do one of the following:

Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet with

Encryption and enter "TLS/SSL Negotiation" state if encryption is negotiated.

Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet without

Encryption and enter unencrypted "Login Ready" state if encryption is not negotiated.

122 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.5.2 TLS/SSL Negotiation State

If the next packet from the TDS client is not a TLS/SSL negotiation packet or the packet is not
structurally correct, the TDS server SHOULD close the underlying transport connection, indicate an

error to the upper layer, and enter the "Final State" state. A TLS/SSL negotiation packet is a
PRELOGIN (0x12) packet header encapsulated with TLS/SSL payload. The TDS server MUST
exchange TLS/SSL negotiation packet with the client and reenter this state until the TLS/SSL
negotiation is successfully completed. In this case, TDS server enters the "Login Ready" state.

3.3.5.3 Login Ready State

Depending on the type of packet received, the server MUST take one of the following actions:

If a valid LOGIN7 packet with standard login is received, the TDS server MUST respond to the

TDS client with a LOGINACK (0xAD) described in section 2 indicating login succeed. The TDS
server MUST enter the "Logged in" state or enter the "Routing Completed" state if the server
decides to route.

If a LOGIN7 packet with SSPI Negotiation packet is received, the TDS server MUST enter the

"SPNEGO Negotiation" state.

If a LOGIN7 packet with standard login packet is received, but the login is invalid, the TDS server

MUST send an ERROR packet, described in section 2, to the client. The TDS server MUST close
the underlying transport connection, indicate an error to the upper layer, and enter the "Final
State" state.

If the packet received is not a structurally valid LOGIN7 packet, the TDS server will not send any

response to the client. The TDS server MUST close the underlying transport connection, indicate
an error to the upper layer, and enter the "Final State" state.

3.3.5.4 SPNEGO Negotiation State

This state is used to negotiate the security scheme between the client and server. The TDS server

processes the packet received according to the following rules.

If the packet received is a structurally valid SPNEGO [RFC4178] negotiation packet, the TDS

server delegates processing of the security token embedded in the packet to the SPNEGO layer.
The SPNEGO layer responds with one of three results, and the TDS server continues processing
according to the response as follows:

Complete: The TDS server then sends the security token to the upper layer (typically an

application that provides database management functions) for authorization. If the upper layer
approves the security token, the TDS server returns the security token to the client within a

LOGINACK message and immediately enters the "Logged In" state or enters the "Routing
Completed" state if the server decides to route. If the upper layer rejects the security token,
then a "Login failed" ERROR token is sent back to the client, the TDS server closes the
connection, and the TDS server enters the "Final State" state.

Continue: The TDS server sends a SPNEGO [RFC4178] negotiation response to the client,

embedding the new security token returned by SPNEGO as part of the Continue response. The

server then waits for a message from the client and re-renters the SPNEGO negotiation state
when such a packet is received.

Error: The server then MUST close the underlying transport connection, indicate an error to

the upper layer, and enter the "Final State" state.

http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90461

123 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the packet received is not a structurally valid SPNEGO [RFC4178] negotiation packet, the TDS

server will send no response the client. The TDS server MUST close the underlying transport

connection, indicate an error to the upper layer, and enter the "Final State" state.

3.3.5.5 Logged In State

If a TDS of type 1, 3, 7, or 14 (see section 2.2.3.1.1) arrives, then the TDS server begins processing
by raising an event to the upper layer containing the data of the client request and entering the
Client Request Execution state. If any other TDS types arrive, then the server MUST enter the Final
State state. The TDS server MUST continue to listen for messages from the client while awaiting
notification of client request completion from the upper layer.

3.3.5.6 Client Request Execution State

The TDS server MUST continue to listen for messages from the client while awaiting notification of
client request for completion from the upper layer. The TDS server MUST also do one of the
following:

If the upper layer notifies TDS that the client request has finished successfully, the TDS server

MUST send the results in the formats described in section 2 to the TDS client and enter the
"Logged In" state.

If the upper layer notifies TDS that an error has been encountered during client request, the TDS

server MUST send an error message (described in section 2) to the TDS client and enter the
"Logged In" state.

If an attention packet (described in section 2) is received during the execution of the current

client request, it MUST deliver a cancel indication to the upper layer. If an attention packet
(described in section 2) is received after the execution of the current client request, it SHOULD
NOT deliver a cancel indication to the upper layer because there is no existing execution to
cancel. The TDS server MUST send an attention acknowledgment to the TDS client and enter the
"Logged In" state.

If another client request packet is received during the execution of the current client request, the

TDS server SHOULD queue the new client request, and continue processing the client request
already in progress according to the preceding rules. When this operation is complete, the TDS
server re-enters the "Client Request Execution" state and processes the newly arrived message.

If MARS is enabled, all TDS server responses to client request messages MUST be passed through

to the SMUX layer.

If any other message type arrives, the server MUST close the connection and enter the "Final

State" state.

3.3.5.7 Routing Completed State

The TDS server should wait for connection closure initiated by the client and enter the "Final State"
state. If any request is received from the client in this state, the server SHOULD close the
connection with no response and enter the "Final State" state.

3.3.5.8 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS server.

http://go.microsoft.com/fwlink/?LinkId=90461

124 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.6 Timer Events

None.

3.3.7 Other Local Events

When there is a failure in under-layers, the server SHOULD terminate the TDS session without
sending any response to the client. The under-layer failure could be triggered by network failure. It
can also be triggered by the termination action from the client, which could be communicated to the
server stack by under-layers.

125 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the TDS protocol. For each example, the binary TDS message is provided followed by the
decomposition displayed in XML.

4.1 Pre-Login Request

Pre-Login request sent from the client to the server:

12 01 00 2F 00 00 01 00 00 00 1A 00 06 01 00 20

00 01 02 00 21 00 01 03 00 22 00 04 04 00 26 00

01 FF 09 00 00 00 00 00 01 00 B8 0D 00 00 01

<PacketHeader>

 <Type>

 <BYTE>12 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>2F </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <Prelogin>

 <TokenType>

 <BYTE>00 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 1A</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 06</USHORT>

 </TokenLeng>

 <TokenType>

 <BYTE>01 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 20</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 01</USHORT>

 </TokenLeng>

 <TokenType>

126 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BYTE>02 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 21</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 01</USHORT>

 </TokenLeng>

 <TokenType>

 <BYTE>03 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 22</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 04</USHORT>

 </TokenLeng>

 <TokenType>

 <BYTE>04 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 26</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 01</USHORT>

 </TokenLeng>

 <TokenType>

 <BYTE>FF </BYTE>

 </TokenType>

 <PreloginData>

 <BYTES>09 00 00 00 00 00 01 00 B8 0D 00 00 01</BYTE>

 </PreloginData>

 </Prelogin>

 </PacketData>

4.2 Login Request

LOGIN7 stream sent from the client to the server:

10 01 00 90 00 00 01 00 88 00 00 00 02 00 09 72

00 10 00 00 00 00 00 07 00 01 00 00 00 00 00 00

E0 03 00 00 E0 01 00 00 09 04 00 00 5E 00 08 00

6E 00 02 00 72 00 00 00 72 00 07 00 80 00 00 00

80 00 00 00 80 00 04 00 88 00 00 00 88 00 00 00

00 50 8B E2 B7 8F 88 00 00 00 88 00 00 00 88 00

00 00 00 00 00 00 73 00 6B 00 6F 00 73 00 74 00

6F 00 76 00 31 00 73 00 61 00 4F 00 53 00 51 00

4C 00 2D 00 33 00 32 00 4F 00 44 00 42 00 43 00

 <PacketHeader>

 <Type>

 <BYTE>10 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

127 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>90 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <Login7>

 <Length>

 <DWORD>88 00 00 00 </DWORD>

 </Length>

 <TDSVersion>

 <DWORD>02 00 09 72 </DWORD>

 </TDSVersion>

 <PacketSize>

 <DWORD>00 10 00 00 </DWORD>

 </PacketSize>

 <ClientProgVer>

 <DWORD>00 00 00 07 </DWORD>

 </ClientProgVer>

 <ClientPID>

 <DWORD>00 01 00 00 </DWORD>

 </ClientPID>

 <ConnectionID>

 <DWORD>00 00 00 00 </DWORD>

 </ConnectionID>

 <OptionFlags1>

 <BYTE>E0 </BYTE>

 </OptionFlags1>

 <OptionFlags2>

 <BYTE>03 </BYTE>

 </OptionFlags2>

 <TypeFlags>

 <BYTE>00 </BYTE>

 </TypeFlags>

 <OptionFlags3>

 <BYTE>00 </BYTE>

 </OptionFlags3>

 <ClientTimZone>

 <LONG>E0 01 00 00 </LONG>

 </ClientTimZone>

 <ClientLCID>

 <DWORD>09 04 00 00 </DWORD>

 </ClientLCID>

 <OffsetLength>

 <ibHostName>

 <USHORT>5E 00 </USHORT>

 </ibHostName>

 <cchHostName>

 <USHORT>08 00 </USHORT>

128 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </cchHostName>

 <ibUserName>

 <USHORT>6E 00 </USHORT>

 </ibUserName>

 <cchUserName>

 <USHORT>02 00 </USHORT>

 </cchUserName>

 <ibPassword>

 <USHORT>72 00 </USHORT>

 </ibPassword>

 <cchPassword>

 <USHORT>00 00 </USHORT>

 </cchPassword>

 <ibAppName>

 <USHORT>72 00 </USHORT>

 </ibAppName>

 <cchAppName>

 <USHORT>07 00 </USHORT>

 </cchAppName>

 <ibServerName>

 <USHORT>80 00 </USHORT>

 </ibServerName>

 <cchServerName>

 <USHORT>00 00 </USHORT>

 </cchServerName>

 <ibUnused>

 <USHORT>80 00 </USHORT>

 </ibUnused>

 <cbUnused>

 <USHORT>00 00 </USHORT>

 </cbUnused>

 <ibCltIntName>

 <USHORT>80 00 </USHORT>

 </ibCltIntName>

 <cchCltIntName>

 <USHORT>04 00 </USHORT>

 </cchCltIntName>

 <ibLanguage>

 <USHORT>88 00 </USHORT>

 </ibLanguage>

 <cchLanguage>

 <USHORT>00 00 </USHORT>

 </cchLanguage>

 <ibDatabase>

 <USHORT>88 00 </USHORT>

 </ibDatabase>

 <cchDatabase>

 <USHORT>00 00 </USHORT>

 </cchDatabase>

 <ClientID>

 <BYTES>00 50 8B E2 B7 8F </BYTES>

 </ClientID>

 <ibSSPI>

 <USHORT>88 00 </USHORT>

 </ibSSPI>

 <cbSSPI>

 <USHORT>00 00 </USHORT>

 </cbSSPI>

 <ibAtchDBFile>

129 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <USHORT>88 00 </USHORT>

 </ibAtchDBFile>

 <cchAtchDBFile>

 <USHORT>00 00 </USHORT>

 </cchAtchDBFile>

 <ibChangePassword>

 <USHORT>88 00 </USHORT>

 </ibChangePassword>

 <cchChangePassword>

 <USHORT>00 00 </USHORT>

 </cchChangePassword>

 <cbSSPILong>

 <LONG>00 00 00 00 </LONG>

 </cbSSPILong>

 </OffsetLength>

 <Data>

 <BYTES>73 00 6B 00 6F 00 73 00 74 00 6F 00 76 00 31 00 73 00 61 00

4F 00 53 00 51 00 4C 00 2D 00 33 00 32 00 4F 00 44 00 42 00 43 00 </BYTES>

 </Data>

 </Login7>

 </PacketData>

4.3 Login Response

Login response from the server to the client:

04 01 01 61 00 00 01 00 E3 1B 00 01 06 6D 00 61

00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00

74 00 65 00 72 00 AB 58 00 45 16 00 00 02 00 25

00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20

00 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65

00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74

00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73

00 74 00 65 00 72 00 27 00 2E 00 00 00 00 00 00

00 E3 08 00 07 05 09 04 D0 00 34 00 E3 17 00 02

0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69

00 73 00 68 00 00 E3 13 00 04 04 34 00 30 00 39

00 36 00 04 34 00 30 00 39 00 36 00 AB 5C 00 47

16 00 00 01 00 27 00 43 00 68 00 61 00 6E 00 67

00 65 00 64 00 20 00 6C 00 61 00 6E 00 67 00 75

00 61 00 67 00 65 00 20 00 73 00 65 00 74 00 74

00 69 00 6E 00 67 00 20 00 74 00 6F 00 20 00 75

00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73

00 68 00 2E 00 00 00 00 00 00 00 AD 36 00 01 72

09 00 02 16 4D 00 69 00 63 00 72 00 6F 00 73 00

6F 00 66 00 74 00 20 00 53 00 51 00 4C 00 20 00

53 00 65 00 72 00 76 00 65 00 72 00 00 00 00 00

00 00 00 00 FD 00 00 00 00 00 00 00 00 00 00 00

00

 <PacketHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

130 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <Length>

 <BYTE>01 </BYTE>

 <BYTE>61 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <TableResponse>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>1B 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>01 06 6D 00 61 00 73 00 74 00 65 00 72 00 06 6D 00 61 00

73 00 74 00 65 00 72 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <INFO>

 <TokenType>

 <BYTE>AB </BYTE>

 </TokenType>

 <Length>

 <USHORT>58 00 </USHORT>

 </Length>

 <Number>

 <LONG>45 16 00 00 </LONG>

 </Number>

 <State>

 <BYTE>02 </BYTE>

 </State>

 <Class>

 <BYTE>00 </BYTE>

 </Class>

 <MsgText>

 <US_UNICODE>

 <USHORTLEN>

 <USHORT>25 00 </USHORT>

 </USHORTLEN>

 <BYTES ascii="C.h.a.n.g.e.d. .d.a.t.a.b.a.s.e. .c.o.n.t.e.x.t.

.t.o. .'.m.a.s.t.e.r.'...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00

64 00 61 00 74 00 61 00 62 00 61 00 73 00 65 00 20 00 63 00 6F 00 6E 00 74

00 65 00 78 00 74 00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73 00 74 00

65 00 72 00 27 00 2E 00 </BYTES>

 </US_UNICODE>

 </MsgText>

 <ServerName>

 <B_UNICODE>

131 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ServerName>

 <ProcName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ProcName>

 <LineNumber>

 <LONG>00 00 00 00 </LONG>

 </LineNumber>

 </INFO>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>08 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>07 05 09 04 D0 00 34 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>17 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>02 0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73

00 68 00 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <INFO>

 <TokenType>

 <BYTE>AB </BYTE>

 </TokenType>

 <Length>

 <USHORT>5C 00 </USHORT>

 </Length>

 <Number>

 <LONG>47 16 00 00 </LONG>

 </Number>

 <State>

 <BYTE>01 </BYTE>

 </State>

 <Class>

 <BYTE>00 </BYTE>

 </Class>

132 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <MsgText>

 <US_UNICODE>

 <USHORTLEN>

 <USHORT>27 00 </USHORT>

 </USHORTLEN>

 <BYTES ascii="C.h.a.n.g.e.d. .l.a.n.g.u.a.g.e. .s.e.t.t.i.n.g.

.t.o. .u.s._.e.n.g.l.i.s.h...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20

00 6C 00 61 00 6E 00 67 00 75 00 61 00 67 00 65 00 20 00 73 00 65 00 74 00

74 00 69 00 6E 00 67 00 20 00 74 00 6F 00 20 00 75 00 73 00 5F 00 65 00 6E

00 67 00 6C 00 69 00 73 00 68 00 2E 00 </BYTES>

 </US_UNICODE>

 </MsgText>

 <ServerName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ServerName>

 <ProcName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ProcName>

 <LineNumber>

 <LONG>00 00 00 00 </LONG>

 </LineNumber>

 </INFO>

 <LOGINACK>

 <TokenType>

 <BYTE>AD </BYTE>

 </TokenType>

 <Length>

 <USHORT>36 00 </USHORT>

 </Length>

 <Interface>

 <BYTE>01 </BYTE>

 </Interface>

 <TDSVersion>

 <DWORD>72 09 00 02 </DWORD>

 </TDSVersion>

 <ProgName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>16 </BYTE>

 </BYTELEN>

 <BYTES ascii="M.i.c.r.o.s.o.f.t. .S.Q.L. .S.e.r.v.e.r.....">4D

00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00 53 00 51 00 4C 00

20 00 53 00 65 00 72 00 76 00 65 00 72 00 00 00 00 00 </BYTES>

 </B_UNICODE>

 </ProgName>

 <ProgVersion>

 <DWORD>00 00 00 00 </DWORD>

133 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </ProgVersion>

 </LOGINACK>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>13 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>04 04 34 00 30 00 39 00 36 00 04 34 00 30 00 39 00 36 00

</BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>00 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>00 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONE>

 </TableResponse>

 </PacketData>

4.4 SQL Batch Client Request

Client request sent from the client to the server:

01 01 00 5C 00 00 01 00 16 00 00 00 12 00 00 00

02 00 00 00 00 00 00 00 00 01 00 00 00 00 0A 00

73 00 65 00 6C 00 65 00 63 00 74 00 20 00 27 00

66 00 6F 00 6F 00 27 00 20 00 61 00 73 00 20 00

27 00 62 00 61 00 72 00 27 00 0A 00 20 00 20 00

20 00 20 00 20 00 20 00 20 00 20 00

 <PacketHeader>

 <Type>

 <BYTE>01 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>5C </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

134 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <SQLBatch>

 <All_HEADERS>

 <TotalLength>

 <DWORD>16 00 00 00 </DWORD>

 </TotalLength>

 <Header>

 <HeaderLength>

 <DWORD>12 00 00 00 </DWORD>

 </HeaderLength>

 <HeaderType>

 <USHORT>02 00 </USHORT>

 </HeaderType>

 <HeaderData>

 <MARS>

 <TransactionDescriptor>

 <ULONGLONG>00 00 00 00 00 00 00 01 </ULONGLONG>

 </TransactionDescriptor>

 <OutstandingRequestCount>

 <DWORD>00 00 00 00 </DWORD>

 </OutstandingRequestCount>

 </MARS>

 </HeaderData>

 </Header>

 </All_HEADERS>

 <SQLText>

 <UNICODESTREAM>

 <BYTES>0A 00 73 00 65 00 6C 00 65 00 63 00 74 00 20 00 27 00 66

00 6F 00 6F 00 27 00 20 00 61 00 73 00 20 00 27 00 62 00 61 00 72 00 27 00

0A 00 20 00 20 00 20 00 20 00 20 00 20 00 20 00 20 00 </BYTES>

 </UNICODESTREAM>

 </SQLText>

 </SQLBatch>

 </PacketData>

4.5 SQL Batch Server Response

Server response sent from the server to the client:

04 01 00 33 00 00 01 00 81 01 00 00 00 00 00 20

00 A7 03 00 09 04 D0 00 34 03 62 00 61 00 72 00

D1 03 00 66 6F 6F FD 10 00 C1 00 01 00 00 00 00

00 00 00

 <PacketHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

135 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>33 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <TableResponse>

 <COLMETADATA>

 <TokenType>

 <BYTE>81 </BYTE>

 </TokenType>

 <Count>

 <USHORT>01 00 </USHORT>

 </Count>

 <ColumnData>

 <UserType>

 <ULONG>00 00 00 00 </ULONG>

 </UserType>

 <Flags>

 <USHORT>20 00 </USHORT>

 </Flags>

 <TYPE_INFO>

 <VARLENTYPE>

 <USHORTLEN_TYPE>

 <BYTE>A7 </BYTE>

 </USHORTLEN_TYPE>

 </VARLENTYPE>

 <TYPE_VARLEN>

 <USHORTCHARBINLEN>

 <USHORT>03 00 </USHORT>

 </USHORTCHARBINLEN>

 </TYPE_VARLEN>

 <COLLATION>

 <BYTES>09 04 D0 00 34 </BYTES>

 </COLLATION>

 </TYPE_INFO>

 <ColName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>03 </BYTE>

 </BYTELEN>

 <BYTES ascii="b.a.r.">62 00 61 00 72 00 </BYTES>

 </B_UNICODE>

 </ColName>

 </ColumnData>

 </COLMETADATA>

 <ROW>

 <TokenType>

136 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BYTE>D1 </BYTE>

 </TokenType>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <USHORTCHARBINLEN>

 <USHORT>03 00 </USHORT>

 </USHORTCHARBINLEN>

 </TYPE_VARLEN>

 <BYTES ascii="foo">66 6F 6F </BYTES>

 </TYPE_VARBYTE>

 </ROW>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>10 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>C1 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONE>

 </TableResponse>

 </PacketData>

4.6 RPC Client Request

RPC request sent from the client to the server:

03 01 00 2F 00 00 01 00 16 00 00 00 12 00 00 00

02 00 00 00 00 00 00 00 00 01 00 00 00 00 04 00

66 00 6F 00 6F 00 33 00 00 00 00 02 26 02 00

 <PacketHeader>

 <Type>

 <BYTE>03 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>2F </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

137 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </PacketHeader>

 <PacketData>

 <RPCRequest>

 <All_HEADERS>

 <TotalLength>

 <DWORD>16 00 00 00 </DWORD>

 </TotalLength>

 <Header>

 <HeaderLength>

 <DWORD>12 00 00 00 </DWORD>

 </HeaderLength>

 <HeaderType>

 <USHORT>02 00 </USHORT>

 </HeaderType>

 <HeaderData>

 <MARS>

 <TransactionDescriptor>

 <ULONGLONG>00 00 00 00 00 00 00 01 </ULONGLONG>

 </TransactionDescriptor>

 <OutstandingRequestCount>

 <DWORD>00 00 00 00 </DWORD>

 </OutstandingRequestCount>

 </MARS>

 </HeaderData>

 </Header>

 </All_HEADERS>

 <RPCReqBatch>

 <NameLenProcID>

 <ProcName>

 <US_UNICODE>

 <USHORTLEN>

 <USHORT>04 00 </USHORT>

 </USHORTLEN>

 <BYTES ascii="f.o.o.3.">66 00 6F 00 6F 00 33 00 </BYTES>

 </US_UNICODE>

 </ProcName>

 </NameLenProcID>

 <OptionFlags>

 <fWithRecomp>

 <BIT>0</BIT>

 </fWithRecomp>

 <fNoMetaData>

 <BIT>0</BIT>

 </fNoMetaData>

 <fReuseMetaData>

 <BIT>false</BIT>

 </fReuseMetaData>

 </OptionFlags>

 <ParameterData>

 <ParamMetaData>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 <StatusFlags>

 <fByRefValue>

138 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BIT>0</BIT>

 </fByRefValue>

 <fDefaultValue>

 <BIT>1</BIT>

 </fDefaultValue>

 </StatusFlags>

 <TYPE_INFO>

 <VARLENTYPE>

 <BYTELEN_TYPE>

 <BYTE>26 </BYTE>

 </BYTELEN_TYPE>

 </VARLENTYPE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>02 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 </TYPE_INFO>

 </ParamMetaData>

 <ParamLenData>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>

 </BYTES>

 </TYPE_VARBYTE>

 </ParamLenData>

 </ParameterData>

 </RPCReqBatch>

 </RPCRequest>

 </PacketData>

4.7 RPC Server Response

RPC response sent from the server to the client:

04 01 00 27 00 00 01 00 FF 11 00 C1 00 01 00 00

00 00 00 00 00 79 00 00 00 00 FE 00 00 E0 00 00

00 00 00 00 00 00 00

 <PacketHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>27 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

139 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <TableResponse>

 <DONEINPROC>

 <TokenType>

 <BYTE>FF </BYTE>

 </TokenType>

 <Status>

 <USHORT>11 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>C1 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>01 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONEINPROC>

 <RETURNSTATUS>

 <TokenType>

 <BYTE>79 </BYTE>

 </TokenType>

 <VALUE>

 <LONG>00 00 00 00 </LONG>

 </VALUE>

 </RETURNSTATUS>

 <DONEPROC>

 <TokenType>

 <BYTE>FE </BYTE>

 </TokenType>

 <Status>

 <USHORT>00 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>E0 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONEPROC>

 </TableResponse>

 </PacketData>

4.8 Attention Request

Attention request sent from client to server:

06 01 00 08 00 00 01 00

<PacketHeader>

 <Type>

140 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BYTE>06</BYTE>

 </Type>

 <Status>

 <BYTE>01</BYTE>

 </Status>

 <Length>

 <BYTE>00</BYTE>

 <BYTE>08</BYTE>

 </Length>

 <SPID>

 <BYTE>00</BYTE>

 <BYTE>00</BYTE>

 </SPID>

 <Packet>

 <BYTE>01</BYTE>

 </Packet>

 <Window>

 <BYTE>00</BYTE>

 </Window>

</PacketHeader>

4.9 SSPI Message

SSPI message carrying SSPI payload sent from client to server:

11 01 00 60 00 00 01 00 4E 54 4C 4D 53 53 50 00

03 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00

58 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00

58 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00

58 00 00 00 15 C2 88 E2 06 00 71 17 00 00 00 0F

30 81 C1 7D 59 5F E9 3E 1A 7C 98 05 01 72 5C 4F

<PacketHeader>

 <Type>

 <BYTE>11 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>60 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

</PacketHeader>

<PacketData>

141 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <SSPI>

 <BYTES>4E 54 4C 4D 53 53 50 00 03 00 00 00 00 00 00 00 58 00 00 00 00

00 00 00 58 00 00 00 00 00 00 00 58 00 00 00 00 00 00 00 58 00 00 00 00

00 00 58 00 00 00 00 00 00 00 58 00 00 00 15 C2 88 E2 06 00 71 17 00 00

0F 30 81 C1 7D 59 5F E9 3E 1A 7C 98 05 01 72 5C 4F </BYTES>

 </SSPI>

</PacketData>

4.10 SQL Command with Binary Data

BULKLOADBCP request sent from client to server:

07 01 00 26 00 00 01 00 81 01 00 00 00 00 00 05

00 32 02 63 00 31 00 D1 00 FD 00 00 00 00 00 00

00 00 00 00 00 00

<PacketHeader>

 <Type>

 <BYTE>07 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>26 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

</PacketHeader>

<PacketData>

 <BulkLoadBCP>

 <COLMETADATA>

 <TokenType>

 <BYTE>81 </BYTE>

 </TokenType>

 <Count>

 <USHORT>01 00 </USHORT>

 </Count>

 <ColumnData>

 <UserType>

 <ULONG>00 00 00 00 </ULONG>

 </UserType>

 <Flags>

 <USHORT>05 00 </USHORT>

 </Flags>

142 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <TYPE_INFO>

 <FIXEDLENTYPE>

 <BYTE>32 </BYTE>

 </FIXEDLENTYPE>

 </TYPE_INFO>

 <ColName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>02 </BYTE>

 </BYTELEN>

 <BYTES ascii="c.1.">63 00 31 00 </BYTES>

 </B_UNICODE>

 </ColName>

 </ColumnData>

 </COLMETADATA>

 <ROW>

 <TokenType>

 <BYTE>D1 </BYTE>

 </TokenType>

 <TYPE_VARBYTE>

 <BYTES>00 </BYTES>

 </TYPE_VARBYTE>

 </ROW>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>00 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>00 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONE>

 </BulkLoadBCP>

</PacketData>

4.11 Transaction Manager Request

Transaction Manager Request sent from client to server:

0E 01 00 20 00 00 01 00 16 00 00 00

12 00 00 00 02 00 00 00 00 00 00 00

00 00 00 00 00 01 06 00

<PacketHeader>

 <Type>

 <BYTE>0E </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

143 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>20 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

</PacketHeader>

<PacketData>

 <TransMgrReq>

 <All_HEADERS>

 <TotalLength>

 <DWORD>16 00 00 00 </DWORD>

 </TotalLength>

 <Header>

 <HeaderLength>

 <DWORD>12 00 00 00 </DWORD>

 </HeaderLength>

 <HeaderType>

 <USHORT>02 00 </USHORT>

 </HeaderType>

 <HeaderData>

 <MARS>

 <TransactionDescriptor>

 <ULONGLONG>00 00 00 00 00 00 00 01 </ULONGLONG>

 </TransactionDescriptor>

 <OutstandingRequestCount>

 <DWORD>00 00 00 00 </DWORD>

 </OutstandingRequestCount>

 </MARS>

 </HeaderData>

 </Header>

 </All_HEADERS>

 <RequestType>

 <USHORT>16 00 </USHORT>

 </RequestType>

 <RequestPayload>

 <TM_PROMOTE_XACT>

 </TM_PROMOTE_XACT>

 </RequestPayload>

 </TransMgrReq>

</PacketData>

4.12 TVP Insert Statement

TVP insert statement sent from client to server:

144 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

03 01 00 52 00 00 01 00 16 00 00 00

12 00 00 00 02 00 00 00 00 00 00 00

00 00 00 00 00 01 03 00 66 00 6F 00

6F 00 00 00 00 00 F3 00 03 64 00 62

00 6F 00 07 74 00 76 00 70 00 74 00

79 00 70 00 65 00 01 00 00 00 00 00

00 00 26 01 00 00 01 01 02 00

<tds version="katmai">

 <BufferData>

 <RPCRequest>

 <RPCReqBatch>

 <NameLenProcID>

 <ProcName>

 <US_UNICODE>

 <USHORTLEN>

 <USHORT>03 00 </USHORT>

 </USHORTLEN>

 <BYTES ascii="f.o.o.">66 00 6F 00 6F 00 </BYTES>

 </US_UNICODE>

 </ProcName>

 </NameLenProcID>

 <OptionFlags>

 <fWithRecomp>

 <BIT>false</BIT>

 </fWithRecomp>

 <fNoMetaData>

 <BIT>false</BIT>

 </fNoMetaData>

 <fReuseMetaData>

 <BIT>false</BIT>

 </fResuseMetaData>

 </OptionFlags>

 <ParameterData>

 <ParamMetaData>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 <StatusFlags>

 <fByRefValue>

 <BIT>false</BIT>

 </fByRefValue>

 <fDefaultValue>

 <BIT>false</BIT>

 </fDefaultValue>

 <fCookie>

 <BIT>false</BIT>

 </fCookie>

 </StatusFlags>

 <TYPE_INFO>

 <TVP_TYPE_INFO>

 <TVP_TYPE>

 <BYTE>F3 </BYTE>

145 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </TVP_TYPE>

 <TVP_TYPE_NAME>

 <DbName>

 <B_UNICODE></B_UNICODE>

 </DbName>

 <OwningSchema>

 <B_UNICODE>dbo</B_UNICODE>

 </OwningSchema>

 <TypeName>

 <B_UNICODE>tvptype</B_UNICODE>

 </TypeName>

 </TVP_TYPE_NAME>

 <TVP_COLMETADATA>

 <Count>

 <USHORT>01 00 </USHORT>

 </Count>

 <TvpColumnMetaData>

 <UserType>

 <ULONG>00 00 00 00 </ULONG>

 </UserType>

 <Flags>

 <USHORT>00 00 </USHORT>

 </Flags>

 <TYPE_INFO>

 <VARLENTYPE>

 <BYTELEN_TYPE>

 <BYTE>26 </BYTE>

 </BYTELEN_TYPE>

 </VARLENTYPE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>01 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 </TYPE_INFO>

 <ColName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ColName>

 </TvpColumnMetaData>

 </TVP_COLMETADATA>

 <TVP_END_TOKEN>

 <TokenType>

 <BYTE>00 </BYTE>

 </TokenType>

 </TVP_END_TOKEN>

 <TVP_ROW>

 <TokenType>

 <BYTE>01 </BYTE>

 </TokenType>

 <AllColumnData>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

146 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BYTE>01</BYTE>

 </BYTELEN>

 <BYTES>02</BYTES>

 </TYPE_VARLEN>

 </TYPE_VARBYTE>

 </AllColumnData>

 </TVP_ROW>

 <TVP_END_TOKEN>

 <TokenType>

 <BYTE>00 </BYTE>

 </TokenType>

 </TVP_END_TOKEN>

 </TVP_TYPE_INFO>

 </TYPE_INFO>

 </ParamMetaData>

 <ParamLenData>

 </ParamLenData>

 </ParameterData>

 </RPCReqBatch>

 </RPCRequest>

 </BufferData>

</tds>

4.13 SparseColumn Select Statement

SparseColumn select statement sent from client to server:

04 01 01 B9 00 00 01 00 81 02 00 00 00 00 00 09 00

26 04 02 69 00 64 00 00 00 00 00 0B 04 F1 00 11 73

00 70 00 61 00 72 00 73 00 65 00 50 00 72 00 6F 00

70 00 65 00 72 00 74 00 79 00 53 00 65 00 74 00 D1

04 01 00 00 00 FE FF FF FF FF FF FF FF 7A 00 00 00

3C 00 73 00 70 00 61 00 72 00 73 00 65 00 50 00 72

00 6F 00 70 00 31 00 3E 00 31 00 30 00 30 00 30 00

3C 00 2F 00 73 00 70 00 61 00 72 00 73 00 65 00 50

00 72 00 6F 00 70 00 31 00 3E 00 3C 00 73 00 70 00

61 00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32

00 3E 00 66 00 6F 00 6F 00 3C 00 2F 00 73 00 70 00

61 00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32

00 3E 00 00 00 00 00 D1 04 02 00 00 00 FE FF FF FF

FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61 00 72

00 73 00 65 00 50 00 72 00 6F 00 70 00 31 00 3E 00

31 00 30 00 30 00 30 00 3C 00 2F 00 73 00 70 00 61

00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 31

00 3E 00 00 00 00 00 D1 04 03 00 00 00 FE FF FF

FF FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61

00 72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32

00 3E 00 61 00 62 00 63 00 64 00 3C 00 2F 00 73

00 70 00 61 00 72 00 73 00 65 00 50 00 72 00 6F

00 70 00 32 00 3E 00 00 00 00 00 FD 10 00 C1 00

0A 00 00 00 00 00 00 00

<tds version="katmai">

147 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BufferHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>01 </BYTE>

 <BYTE>B9 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </BufferHeader>

 <BufferData>

 <TableResponse>

 <COLMETADATA>

 <TokenType>

 <BYTE>81 </BYTE>

 </TokenType>

 <Count>

 <USHORT>02 00 </USHORT>

 </Count>

 <ColumnData>

 <UserType>

 <ULONG>00 00 00 00 </ULONG>

 </UserType>

 <Flags>

 <USHORT>09 00 </USHORT>

 </Flags>

 <TYPE_INFO>

 <VARLENTYPE>

 <BYTELEN_TYPE>

 <BYTE>26 </BYTE>

 </BYTELEN_TYPE>

 </VARLENTYPE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 </TYPE_INFO>

 <ColName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>02 </BYTE>

 </BYTELEN>

 <BYTES ascii="i.d.">69 00 64 00 </BYTES>

 </B_UNICODE>

 </ColName>

 </ColumnData>

148 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <ColumnData>

 <UserType>

 <ULONG>00 00 00 00 </ULONG>

 </UserType>

 <Flags fSparseColumn="true">

 <USHORT>0B 04 </USHORT>

 </Flags>

 <TYPE_INFO>

 <VARLENTYPE>

 <USHORTLEN_TYPE>

 <BYTE>F1 </BYTE>

 </USHORTLEN_TYPE>

 </VARLENTYPE>

 <XML_INFO>

 <SCHEMA_PRESENT>

 <BYTE>00 </BYTE>

 </SCHEMA_PRESENT>

 </XML_INFO>

 </TYPE_INFO>

 <ColName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>11 </BYTE>

 </BYTELEN>

 <BYTES ascii="s.p.a.r.s.e.P.r.o.p.e.r.t.y.S.e.t.">73 00 70 00 61 00 72 00 73 00

65 00 50 00 72 00 6F 00 70 00 65 00 72 00 74 00 79 00 53 00 65 00 74 00 </BYTES>

 </B_UNICODE>

 </ColName>

 </ColumnData>

 </COLMETADATA>

 <ROW>

 <TokenType>

 <BYTE>D1 </BYTE>

 </TokenType>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>01 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 <TYPE_VARBYTE>

 <BYTES>FE FF FF FF FF FF FF FF 7A 00 00 00 3C 00 73 00 70 00 61 00 72 00 73 00 65

00 50 00 72 00 6F 00 70 00 31 00 3E 00 31 00 30 00 30 00 30 00 3C 00 2F 00 73 00 70 00 61 00

72 00 73 00 65 00 50 00 72 00 6F 00 70 00 31 00 3E 00 3C 00 73 00 70 00 61 00 72 00 73 00 65

00 50 00 72 00 6F 00 70 00 32 00 3E 00 66 00 6F 00 6F 00 3C 00 2F 00 73 00 70 00 61 00 72 00

73 00 65 00 50 00 72 00 6F 00 70 00 32 00 3E 00 00 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </ROW>

 <ROW>

 <TokenType>

 <BYTE>D1 </BYTE>

 </TokenType>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

149 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </TYPE_VARLEN>

 <BYTES>02 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 <TYPE_VARBYTE>

 <BYTES>FE FF FF FF FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61 00 72 00 73 00 65

00 50 00 72 00 6F 00 70 00 31 00 3E 00 31 00 30 00 30 00 30 00 3C 00 2F 00 73 00 70 00 61 00

72 00 73 00 65 00 50 00 72 00 6F 00 70 00 31 00 3E 00 00 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </ROW>

 <ROW>

 <TokenType>

 <BYTE>D1 </BYTE>

 </TokenType>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>03 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 <TYPE_VARBYTE>

 <BYTES>FE FF FF FF FF FF FF FF 3E 00 00 00 3C 00 73 00 70 00 61 00 72 00 73 00 65

00 50 00 72 00 6F 00 70 00 32 00 3E 00 61 00 62 00 63 00 64 00 3C 00 2F 00 73 00 70 00 61 00

72 00 73 00 65 00 50 00 72 00 6F 00 70 00 32 00 3E 00 00 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </ROW>

 <NBCROW>

 <TokenType>

 <BYTE>D2 </BYTE>

 </TokenType>

 <NBCBitMap>

 <BYTES>02 </BYTES>

 </NBCBitMap>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>04 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </NBCROW>

 <NBCROW>

 <TokenType>

 <BYTE>D2 </BYTE>

 </TokenType>

 <NBCBitMap>

 <BYTES>02 </BYTES>

 </NBCBitMap>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>05 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </NBCROW>

150 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <NBCROW>

 <TokenType>

 <BYTE>D2 </BYTE>

 </TokenType>

 <NBCBitMap>

 <BYTES>02 </BYTES>

 </NBCBitMap>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>06 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </NBCROW>

 <NBCROW>

 <TokenType>

 <BYTE>D2 </BYTE>

 </TokenType>

 <NBCBitMap>

 <BYTES>02 </BYTES>

 </NBCBitMap>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>07 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </NBCROW>

 <NBCROW>

 <TokenType>

 <BYTE>D2 </BYTE>

 </TokenType>

 <NBCBitMap>

 <BYTES>02 </BYTES>

 </NBCBitMap>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>08 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </NBCROW>

 <NBCROW>

 <TokenType>

 <BYTE>D2 </BYTE>

 </TokenType>

 <NBCBitMap>

 <BYTES>02 </BYTES>

 </NBCBitMap>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

151 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>09 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </NBCROW>

 <NBCROW>

 <TokenType>

 <BYTE>D2 </BYTE>

 </TokenType>

 <NBCBitMap>

 <BYTES>02 </BYTES>

 </NBCBitMap>

 <TYPE_VARBYTE>

 <TYPE_VARLEN>

 <BYTELEN>

 <BYTE>04 </BYTE>

 </BYTELEN>

 </TYPE_VARLEN>

 <BYTES>0A 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </NBCROW>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>10 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>C1 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>0A 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONE>

 </TableResponse>

 </BufferData>

</tds>

4.14 FeatureExt with SessionRecovery Feature Data

A login message that contains FeatureExt data for the SessionRecovery feature:

10 01 01 0D 00 00 01 00 05 01 00 00 04 00 00 74

00 10 00 00 00 00 00 07 00 01 00 00 00 00 00 00

E0 03 00 10 E0 01 00 00 09 04 00 00 5E 00 00 00

5E 00 02 00 62 00 08 00 72 00 07 00 80 00 00 00

80 00 04 00 84 00 04 00 8C 00 00 00 8C 00 06 00

00 50 8B E2 B7 8F 98 00 00 00 98 00 00 00 98 00

00 00 00 00 00 00 73 00 61 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 4F 00 53 00 51 00

4C 00 2D 00 33 00 32 00 98 00 00 00 4F 00 44 00

42 00 43 00 74 00 65 00 6D 00 70 00 64 00 62 00

01 67 00 00 00 56 00 00 00 06 6D 00 61 00 73 00

74 00 65 00 72 00 05 09 04 D0 00 34 0A 75 00 73

152 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68

00 00 09 00 60 81 14 FF E7 FF FF 00 02 02 07 01

04 01 00 05 04 FF FF FF FF 06 01 00 07 01 02 08

08 00 00 00 00 00 00 00 00 09 04 FF FF FF FF 09

00 00 00 00 00 00 09 04 28 23 00 00 FF

<tds version="latest">

 <BufferHeader>

 <Type>

 <BYTE>10 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>01 </BYTE>

 <BYTE>0D </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </BufferHeader>

 <BufferData>

 <Login7>

 <Length>

 <DWORD>05 01 00 00 </DWORD>

 </Length>

 <TDSVersion>

 <DWORD>04 00 00 74 </DWORD>

 </TDSVersion>

 <PacketSize>

 <DWORD>00 10 00 00 </DWORD>

 </PacketSize>

 <ClientProgVer>

 <DWORD>00 00 00 07 </DWORD>

 </ClientProgVer>

 <ClientPID>

 <DWORD>00 01 00 00 </DWORD>

 </ClientPID>

 <ConnectionID>

 <DWORD>00 00 00 00 </DWORD>

 </ConnectionID>

 <OptionFlags1>

 <BYTE>E0 </BYTE>

 </OptionFlags1>

 <OptionFlags2>

 <BYTE>03 </BYTE>

 </OptionFlags2>

 <TypeFlags>

 <BYTE>00 </BYTE>

 </TypeFlags>

153 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <OptionFlags3>

 <BYTE>10 </BYTE>

 </OptionFlags3>

 <ClientTimZone>

 <DWORD>E0 01 00 00 </DWORD>

 </ClientTimZone>

 <ClientLCID>

 <DWORD>09 04 00 00 </DWORD>

 </ClientLCID>

 <OffsetLength>

 <ibHostName>

 <USHORT>5E 00 </USHORT>

 </ibHostName>

 <cchHostName>

 <USHORT>00 00 </USHORT>

 </cchHostName>

 <ibUserName>

 <USHORT>5E 00 </USHORT>

 </ibUserName>

 <cchUserName>

 <USHORT>02 00 </USHORT>

 </cchUserName>

 <ibPassword>

 <USHORT>62 00 </USHORT>

 </ibPassword>

 <cchPassword>

 <USHORT>08 00 </USHORT>

 </cchPassword>

 <ibAppName>

 <USHORT>72 00 </USHORT>

 </ibAppName>

 <cchAppName>

 <USHORT>07 00 </USHORT>

 </cchAppName>

 <ibServerName>

 <USHORT>80 00 </USHORT>

 </ibServerName>

 <cchServerName>

 <USHORT>00 00 </USHORT>

 </cchServerName>

 <ibExtension>

 <USHORT>80 00 </USHORT>

 </ibExtension>

 <cbExtension>

 <USHORT>04 00 </USHORT>

 </cbExtension>

 <ibCltIntName>

 <USHORT>84 00 </USHORT>

 </ibCltIntName>

 <cchCltIntName>

 <USHORT>04 00 </USHORT>

 </cchCltIntName>

 <ibLanguage>

 <USHORT>8C 00 </USHORT>

 </ibLanguage>

 <cchLanguage>

 <USHORT>00 00 </USHORT>

 </cchLanguage>

 <ibDatabase>

154 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <USHORT>8C 00 </USHORT>

 </ibDatabase>

 <cchDatabase>

 <USHORT>06 00 </USHORT>

 </cchDatabase>

 <ClientID>

 <BYTES>00 50 8B E2 B7 8F </BYTES>

 </ClientID>

 <ibSSPI>

 <USHORT>98 00 </USHORT>

 </ibSSPI>

 <cbSSPI>

 <USHORT>00 00 </USHORT>

 </cbSSPI>

 <ibAtchDBFile>

 <USHORT>98 00 </USHORT>

 </ibAtchDBFile>

 <cchAtchDBFile>

 <USHORT>00 00 </USHORT>

 </cchAtchDBFile>

 <ibChangePassword>

 <USHORT>98 00 </USHORT>

 </ibChangePassword>

 <cchChangePassword>

 <USHORT>00 00 </USHORT>

 </cchChangePassword>

 <cbSSPILong>

 <LONG>00 00 00 00 </LONG>

 </cbSSPILong>

 </OffsetLength>

 <Data>

 <BYTES>73 00 61 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4F 00 53 00 51 00

4C 00 2D 00 33 00 32 00 98 00 00 00 4F 00 44 00 42 00 43 00 74 00 65 00 6D 00 70 00 64 00 62

00 </BYTES>

 </Data>

 <FeatureExt>

 <FeatureOpt>

 <FeatureId>

 <BYTE>01 </BYTE>

 </FeatureId>

 <FeatureDataLen>

 <DWORD>67 00 00 00 </DWORD>

 </FeatureDataLen>

 <FeatureData>

 <InitSessionRecoveryData>

 <Length>

 <DWORD>56 00 00 00 </DWORD>

 </Length>

 <RecoveryDatabase>

 <B_VARCHAR>

 <BYTE>06 </BYTE>

 <BYTES ascii="m.a.s.t.e.r.">6D 00 61 00 73 00 74 00 65 00 72 00 </BYTES>

 </B_VARCHAR>

 </RecoveryDatabase>

 <RecoveryCollation>

 <BYTELEN>

 <BYTE>05 </BYTE>

 </BYTELEN>

 <BYTES>09 04 D0 00 34 </BYTES>

155 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </RecoveryCollation>

 <RecoveryLanguage>

 <B_VARCHAR>

 <BYTE>0A </BYTE>

 <BYTES ascii="u.s._.e.n.g.l.i.s.h.">75 00 73 00 5F 00 65 00 6E 00 67 00 6C

00 69 00 73 00 68 00 </BYTES>

 </B_VARCHAR>

 </RecoveryLanguage>

 <SessionStateDataSet>

 <SessionStateData>

 <StateId>

 <BYTE>00 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>09 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>00 60 81 14 FF E7 FF FF 00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>02 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>02 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>07 01 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>04 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>01 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>05 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>04 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>FF FF FF FF </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>06 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>01 </BYTE>

156 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </StateLen>

 <StateValue>

 <BYTES>00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>07 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>01 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>02 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>08 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>08 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>00 00 00 00 00 00 00 00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>09 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>04 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>FF FF FF FF </BYTES>

 </StateValue>

 </SessionStateData>

 </SessionStateDataSet>

 </InitSessionRecoveryData>

 <SessionRecoveryDataToBe>

 <Length>

 <DWORD>09 00 00 00 </DWORD>

 </Length>

 <RecoveryDatabase>

 <B_VARCHAR>

 <BYTE>00 </BYTE>

 <BYTES ascii="">

 </BYTES>

 </B_VARCHAR>

 </RecoveryDatabase>

 <RecoveryCollation>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES>

 </BYTES>

 </RecoveryCollation>

 <RecoveryLanguage>

157 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <B_VARCHAR>

 <BYTE>00 </BYTE>

 <BYTES ascii="">

 </BYTES>

 </B_VARCHAR>

 </RecoveryLanguage>

 <SessionStateDataSet>

 <SessionStateData>

 <StateId>

 <BYTE>09 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>04 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>28 23 00 00 </BYTES>

 </StateValue>

 </SessionStateData>

 </SessionStateDataSet>

 </SessionRecoveryDataToBe>

 </FeatureData>

 </FeatureOpt>

 <FeatureOpt>

 <TERMINATOR>

 <BYTE>FF </BYTE>

 </TERMINATOR>

 </FeatureOpt>

 </FeatureExt>

 </Login7>

 </BufferData>

</tds>

4.15 FeatureExtAck with SessionRecovery Feature Data

A login response message that contains FeatureExt data for the SessionRecovery feature:

04 01 01 96 00 34 01 00 E3 1B 00 01 06 6D 00 61

00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00

74 00 65 00 72 00 AB 58 00 45 16 00 00 02 00 25

00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20

00 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65

00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74

00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73

00 74 00 65 00 72 00 27 00 2E 00 00 00 00 00 00

00 E3 08 00 07 05 09 04 D0 00 34 00 E3 17 00 02

0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69

00 73 00 68 00 00 AB 5C 00 47 16 00 00 01 00 27

00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20

00 6C 00 61 00 6E 00 67 00 75 00 61 00 67 00 65

00 20 00 73 00 65 00 74 00 74 00 69 00 6E 00 67

00 20 00 74 00 6F 00 20 00 75 00 73 00 5F 00 65

00 6E 00 67 00 6C 00 69 00 73 00 68 00 2E 00 00

00 00 00 00 00 AD 36 00 01 74 00 00 04 16 4D 00

69 00 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00

20 00 53 00 51 00 4C 00 20 00 53 00 65 00 72 00

76 00 65 00 72 00 00 00 00 00 0B 00 08 C3 E3 13

00 04 04 34 00 30 00 39 00 36 00 04 34 00 30 00

158 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

39 00 36 00 AE 01 2E 00 00 00 00 09 00 60 81 14

FF E7 FF FF 00 02 02 07 01 04 01 00 05 04 FF FF

FF FF 06 01 00 07 01 02 08 08 00 00 00 00 00 00

00 00 09 04 28 23 00 00 FF FD 00 00 00 00 00 00

00 00 00 00 00 00

<tds version="latest">

 <BufferHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>01 </BYTE>

 <BYTE>96 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </BufferHeader>

 <BufferData>

 <TableResponse>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>1B 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>01 06 6D 00 61 00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00 74 00 65 00

72 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <INFO>

 <TokenType>

 <BYTE>AB </BYTE>

 </TokenType>

 <Length>

 <USHORT>58 00 </USHORT>

 </Length>

 <Number>

 <LONG>45 16 00 00 </LONG>

 </Number>

 <State>

 <BYTE>02 </BYTE>

 </State>

 <Class>

159 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BYTE>00 </BYTE>

 </Class>

 <MsgText>

 <US_UNICODE>

 <USHORTLEN>

 <USHORT>25 00 </USHORT>

 </USHORTLEN>

 <BYTES ascii="C.h.a.n.g.e.d. .d.a.t.a.b.a.s.e. .c.o.n.t.e.x.t. .t.o.

.'.m.a.s.t.e.r.'...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00 64 00 61 00 74 00 61 00

62 00 61 00 73 00 65 00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74 00 20 00 74 00 6F 00 20

00 27 00 6D 00 61 00 73 00 74 00 65 00 72 00 27 00 2E 00 </BYTES>

 </US_UNICODE>

 </MsgText>

 <ServerName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ServerName>

 <ProcName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ProcName>

 <LineNumber>

 <LONG>00 00 00 00 </LONG>

 </LineNumber>

 </INFO>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>08 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>07 05 09 04 D0 00 34 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>17 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>02 0A 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 00 00

</BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <INFO>

160 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <TokenType>

 <BYTE>AB </BYTE>

 </TokenType>

 <Length>

 <USHORT>5C 00 </USHORT>

 </Length>

 <Number>

 <LONG>47 16 00 00 </LONG>

 </Number>

 <State>

 <BYTE>01 </BYTE>

 </State>

 <Class>

 <BYTE>00 </BYTE>

 </Class>

 <MsgText>

 <US_UNICODE>

 <USHORTLEN>

 <USHORT>27 00 </USHORT>

 </USHORTLEN>

 <BYTES ascii="C.h.a.n.g.e.d. .l.a.n.g.u.a.g.e. .s.e.t.t.i.n.g. .t.o.

.u.s._.e.n.g.l.i.s.h...">43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00 6C 00 61 00 6E 00 67

00 75 00 61 00 67 00 65 00 20 00 73 00 65 00 74 00 74 00 69 00 6E 00 67 00 20 00 74 00 6F 00

20 00 75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 00 2E 00 </BYTES>

 </US_UNICODE>

 </MsgText>

 <ServerName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ServerName>

 <ProcName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>00 </BYTE>

 </BYTELEN>

 <BYTES ascii="">

 </BYTES>

 </B_UNICODE>

 </ProcName>

 <LineNumber>

 <LONG>00 00 00 00 </LONG>

 </LineNumber>

 </INFO>

 <LOGINACK>

 <TokenType>

 <BYTE>AD </BYTE>

 </TokenType>

 <Length>

 <USHORT>36 00 </USHORT>

 </Length>

 <Interface>

 <BYTE>01 </BYTE>

 </Interface>

 <TDSVersion>

161 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <DWORD>FILTERED LATEST VERSION</DWORD>

 </TDSVersion>

 <ProgName>

 <B_UNICODE>

 <BYTELEN>

 <BYTE>16 </BYTE>

 </BYTELEN>

 <BYTES ascii="M.i.c.r.o.s.o.f.t. .S.Q.L. .S.e.r.v.e.r.....">4D 00 69 00 63 00 72

00 6F 00 73 00 6F 00 66 00 74 00 20 00 53 00 51 00 4C 00 20 00 53 00 65 00 72 00 76 00 65 00

72 00 00 00 00 00 </BYTES>

 </B_UNICODE>

 </ProgName>

 <ProgVersion>

 <DWORD>00 00 00 00 </DWORD>

 </ProgVersion>

 </LOGINACK>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>13 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>04 04 34 00 30 00 39 00 36 00 04 34 00 30 00 39 00 36 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <FEATUREEXTACK>

 <TokenType>

 <BYTE>AE </BYTE>

 </TokenType>

 <FeatureAckOpt>

 <FeatureId>

 <BYTE>01 </BYTE>

 </FeatureId>

 <FeatureAckDataLen>

 <DWORD>2E 00 00 00 </DWORD>

 </FeatureAckDataLen>

 <SessionStateDataSet>

 <SessionStateData>

 <StateId>

 <BYTE>00 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>09 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>00 60 81 14 FF E7 FF FF 00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>02 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>02 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>07 01 </BYTES>

162 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>04 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>01 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>05 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>04 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>FF FF FF FF </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>06 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>01 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>07 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>01 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>02 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

 <BYTE>08 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>08 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>00 00 00 00 00 00 00 00 </BYTES>

 </StateValue>

 </SessionStateData>

 <SessionStateData>

 <StateId>

163 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <BYTE>09 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>04 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>28 23 00 00 </BYTES>

 </StateValue>

 </SessionStateData>

 </SessionStateDataSet>

 </FeatureAckOpt>

 <FeatureAckOpt>

 <TERMINATOR>

 <BYTE>FF </BYTE>

 </TERMINATOR>

 </FeatureAckOpt>

 </FEATUREEXTACK>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>00 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>00 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONE>

 </TableResponse>

 </BufferData>

</tds>

4.16 Table Response with SessionState Token Data

A response message that contains SessionState token data:

04 01 00 32 00 34 01 00 FD 01 00 BE 00 00 00 00

00 00 00 00 00 E4 0B 00 00 00 01 00 00 00 01 09

04 FF FF FF FF FD 00 00 FD 00 00 00 00 00 00 00

00 00

<tds version="latest">

 <BufferHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>32 </BYTE>

 </Length>

164 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </BufferHeader>

 <BufferData>

 <TableResponse>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>01 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>BE 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONE>

 <SESSIONSTATE>

 <TokenType>

 <BYTE>E4 </BYTE>

 </TokenType>

 <Length>

 <DWORD>0B 00 00 00 </DWORD>

 </Length>

 <SeqNo>

 <DWORD>01 00 00 00 </DWORD>

 </SeqNo>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <SessionStateDataSet>

 <SessionStateData>

 <StateId>

 <BYTE>09 </BYTE>

 </StateId>

 <StateLen>

 <BYTE>04 </BYTE>

 </StateLen>

 <StateValue>

 <BYTES>FF FF FF FF </BYTES>

 </StateValue>

 </SessionStateData>

 </SessionStateDataSet>

 </SESSIONSTATE>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

165 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <USHORT>00 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>FD 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONGLONG>00 00 00 00 00 00 00 00 </LONGLONG>

 </DoneRowCount>

 </DONE>

 </TableResponse>

 </BufferData>

</tds>

4.17 Token Stream Communication

The following two examples highlight token stream communication. The packaging of these token
streams into packets is not shown in this section. Actual TDS network data samples are available in

section 4.

4.17.1 Sending a SQL Batch

In this example, a SQL statement is sent to the server and the results are sent to the client. The
SQL statement is as follows:

SQLStatement = select name, empid from employees

 update employees set salary = salary * 1.1

 select name from employees where department = 'HR'

Client: SQLStatement

Server: COLMETADATA data stream

 ROW data stream

 .

 .

 ROW data stream

 DONE data stream (with DONE_COUNT & DONE_MORE

 bits set)

 DONE data stream (for UPDATE, with DONE_COUNT &

 DONE_MORE bits set)

 COLMETADATA data stream

 ROW data stream

 .

 .

 ROW data stream

 DONE data stream (with DONE_COUNT bit set)

4.17.2 Out-of-Band Attention Signal

In this example, a SQL statement is sent to the server, yet before all the data has been returned an
interrupt or "Attention Signal" is sent to the server. The client reads and discards any data received
between the time the interrupt was sent and the interrupt acknowledgment was received. The
interrupt acknowledgment from the server is a bit set in the status field of the DONE token.

166 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Client: select name, empid from employees

Server: COLMETADATA data stream

 ROW data stream

 .

 .

 ROW data stream

Client: ATTENTION SENT

[The client reads and discards any data already buffered by the server until the acknowledgment is

found. There might be or might not be a DONE token with the DONE_MORE bit clear prior to the
DONE token with the DONE_ATTN bit set.]

Server: DONE data stream (with DONE_ATTN bit set)

167 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Security

5.1 Security Considerations for Implementers

As previously described in this document, the TDS protocol provides facilities for authentication and

channel encryption negotiation. If SSPI authentication is requested by the client application, then
the exact choice of security mechanisms is determined by the SSPI layer. Likewise, although the
decision as to whether channel encryption should be used is negotiated in the TDS layer, the exact
choice of cipher suite is negotiated by the TLS/SSL layer.

168 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows 2000 operating system

Microsoft SQL Server 2000

Windows XP operating system

Windows Server 2003 operating system

Microsoft SQL Server 2005

Windows Vista operating system

Windows Server 2008 operating system

Microsoft SQL Server 2008

Windows 7 operating system

Windows Server 2008 R2 operating system

Microsoft SQL Server 2008 R2

Microsoft SQL Server 2012

Windows Server 2012 operating system

Windows 8 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.3: The following table outlines the SQL Server version and the corresponding TDS
version.

SQL Server version TDS version

SQL Server 7.0 7.0

SQL Server 2000 7.1

SQL Server 2000 SP1 7.1 Revision 1

169 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

SQL Server version TDS version

SQL Server 2005 7.2

SQL Server 2008 7.3.A, 7.3.B

SQL Server 2012 7.4

<2> Section 2.1: Microsoft Windows Named Pipes in message mode [PIPE]. Please see [MSDN-
NamedPipes] for additional information related to Microsoft-specific implementations.

<3> Section 2.1: VIA is deprecated in SQL Server 2012. This means that VIA will never be the
underlying transport protocol if either the server or the client can support TDS versions up to TDS
7.4 or higher.

<4> Section 2.2.4.3: Not all pre-SQL Server 7.0 servers support the attention signal using the
message header. The older implementation was for the client to send a 1-byte message (no header)
containing "A" using the out-of-band write.

<5> Section 2.2.5.1.2: COLLATION represents a collation in SQL Server [MSDN-Collation]. It can be
either a SQL Server collation or a Windows collation.

Version can be of value 0, 1, or 2. A value of 0 denotes collations in SQL Server 2000. A value of 1
denotes collations introduced in SQL Server 2005. A value of 2 denotes collations introduced in SQL

Server 2008.

The GetLocaleInfo Windows API can be used to retrieve information about the locale. In particular,
querying for the LOCALE_IDEFAULTANSICODEPAGE locale information constant retrieves the code
page information for the given locale.

For either collation type, the different comparison flags map to those defined as valid comparison
flags for the CompareString Windows API.

However, for SQL collations with non-Unicode data, the SortId should be used to derive comparison

information flags, such as whether for a given SortId a lowercase "a" equals an uppercase "A".

<6> Section 2.2.5.4.1: NULLTYPE can be sent to SQL Server (for example, in RPCRequest), but
SQL Server never emits NULLTYPE data.

<7> Section 2.2.5.5.4: Windows implementations return an error if a client does send a raw
collation within a sql_variant.

<8> Section 2.2.6.3: The version numbers used by clients up to SQL Server 2012 are as follows.

SQL Server Version Version Sent from Client to Server

7.0 0x00000070

2000 0x00000071

2000 SP1 0x01000071

2005 0x02000972

2008 0x03000A73

2008 0x03000B73

http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=127839
http://go.microsoft.com/fwlink/?LinkId=127839
http://go.microsoft.com/fwlink/?LinkId=233327

170 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

SQL Server Version Version Sent from Client to Server

SQL Server 2012 0x04000074

<9> Section 2.2.6.4: The US_SUBBUILD returned by SQL Server is always 0.

<10> Section 2.2.6.4: Beginning with SQL Server 2012, the server always sends the value 0 for the
INSTOPT option, if the string specified in the client’s INSTOPT option is "MSSQLServer". The reason
for this is that "MSSQLServer" is the name of a default instance, and it may be provided by the
client even in the absence of an explicit instance name. Previous versions of SQL Server which
support the INSTOPT field always validate the client-specified string against the server’s instance
name.

<11> Section 2.2.7.5: This bit is not set by SQL Server and should be considered reserved for
future use.

<12> Section 2.2.7.5: The DONE token is usually sent after login has succeeded. In this case, the

negotiated TDS version is known, and the client can determine whether DoneRowCount is LONG or
ULONGLONG. However, when login fails for any reason, SQL Server may also send an error message
followed by a DONE token. In this case, the server should have already done TDS version
negotiation and must send DoneRowCount as LONG or ULONGLONG based on the negotiated TDS

version. However, the client may not be able to determine the server TDS version and thus
sometimes cannot determine whether LONG or ULONGLONG should be expected for DoneRowCount.
If the client TDS level is lower than 7.2, DoneRowCount will always be LONG. If the client TDS level
is 7.2 or higher, the DoneRowCount could be LONG or ULONGLONG depending on which version of
the server the client is connecting to. SNAC and SQLClient use the VERSION option in the prelogin
response to detect whether DoneRowCount will be LONG or ULONGLONG. It will be ULONGLONG if
VERSION in the prelogin response indicates that the server is SQL Server 2005 or higher; otherwise,

it is LONG. A third-party implementation should have its own logic to detect whether DoneRowCount
is LONG or ULONGLONG or to make the client able to handle both LONG and ULONGLONG. In
addition, this also means that the server has already done TDS version negotiation and can
determine whether LONG or ULONGLONG should be sent.

<13> Section 2.2.7.6: This bit is not set by SQL Server and should be considered reserved for
future use.

<14> Section 2.2.7.7: This bit is not set by SQL Server and should be considered reserved for
future use.

<15> Section 2.2.7.8: This type is not used by SQL Server.

<16> Section 2.2.7.9: SQL Server does not raise system errors with severities of 0 through 9.

<17> Section 2.2.7.9: For compatibility reasons, SQL Server converts severity 10 to severity 0
before returning the error information to the calling application.

<18> Section 2.2.7.11: Numbers less than 20001 are reserved by SQL Server.

<19> Section 2.2.7.12: The following table shows the values in network transfer format.

SQL Server Client to server Server to client

7.0 0x00000070 0x07000000

2000 0x00000071 0x07010000

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

171 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

SQL Server Client to server Server to client

2000 SP1 0x01000071 0x71000001

2005 0x02000972 0x72090002

*2008 0x03000A73 0x730A0003

2008 0x03000B73 0x730B0003

SQL Server 2012 0x04000074 0x74000004

*SQL Server 2008 TDS version 0x03000A73 does not include support for NBCROW and
fSparseColumnSet.

<20> Section 3.2.2: In a Windows implementation, the default value for the MDAC/WDAC and

SNAC Client Request Timers is zero, which is interpreted as no timeout. For a SqlClient Client
Request the default value is 30 seconds. Please refer to Microsoft Data Access Components ([MSDN-

MDAC]) for the data access drivers mentioned here.

<21> Section 3.2.2: In a Windows implementation the default setting for MDAC/WDAC and SNAC
Cancel Timer values is 120 seconds. For a SqlClient Cancel Timer the default value is 5 seconds.
Please refer to Microsoft Data Access Components ([MSDN-MDAC]) for the data access drivers

mentioned here.

http://go.microsoft.com/fwlink/?LinkId=213737
http://go.microsoft.com/fwlink/?LinkId=213737
http://go.microsoft.com/fwlink/?LinkId=213737

172 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Change Tracking

This section identifies changes that were made to the [MS-TDS] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

173 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

2.2.6.3

LOGIN7

67979

Clarified DQ login as Distributed Query login.

N Content

updated.

3.2.5.4

Sent LOGIN7 Record

with SPNEGO Packet

State

1190060

Clarified that it is the client that receives the

response to a SSPI message.

N Content

updated.

6

Appendix A: Product

Behavior

Added Windows 8.1 operating system and Windows

Server 2012 R2 operating system to the list of

applicable products.

Y Content

updated.

mailto:protocol@microsoft.com

174 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8 Index

A

Abstract data model
client (section 3.1.1 108, section 3.2.1 113)
server (section 3.1.1 108, section 3.3.1 120)

ALL_HEADERS rule definition
overview 32
Query Notifications header 33
Transaction Descriptor header 34

Applicability 15
Attention message 17
Attention request example 139
Attention signal - out-of-band 165
Attention tokens 26

C

Capability negotiation 15
Change tracking 172
Client

abstract data model (section 3.1.1 108, section
3.2.1 113)

higher-layer triggered events (section 3.1.4 108,
section 3.2.4 114)

initialization (section 3.1.3 108, section 3.2.3
114)

local events (section 3.1.7 112, section 3.2.7
119)

message processing 108
Final state 119
Logged In state 118
overview 116
Sent Attention state 118
Sent Client Request state 118
Sent Initial PRELOGIN Packet state 116
Sent LOGIN7 Record with SPNEGO Packet state

117
Sent LOGIN7 Record with Standard Login state

117
Sent TLS/SSL Negotiation Packet state 116

messages
Attention 17
login 17
overview 16
pre-login 17
remote procedure call 17
SQL command 17
SQL command with binary data 17
transaction manager request 18

overview (section 3.1 108, section 3.2 112)
sequencing rules 108

Final state 119
Logged In state 118
overview 116
Sent Attention state 118
Sent Client Request state 118
Sent Initial PRELOGIN Packet state 116

Sent LOGIN7 Record with SPNEGO Packet state
117

Sent LOGIN7 Record with Standard Login state
117

Sent TLS/SSL Negotiation Packet state 116
timer events (section 3.1.6 112, section 3.2.6

119)
timers (section 3.1.2 108, section 3.2.2 114)

Client Request Execution state 123

D

Data model - abstract
client (section 3.1.1 108, section 3.2.1 113)
server (section 3.1.1 108, section 3.3.1 120)

Data stream types
data type dependent data streams 31
unknown-length data streams 30
variable-length data streams 30

Data type definitions
fixed-length data types 35
overview 35
partially length-prefixed data types 39
SQL_VARIANT 42
Table Valued Parameter

metadata 43
optional metadata tokens 46
overview 43
TDS type restrictions 48

UDT Assembly Information 41
variable-length data types 36
XML data type 42

DONE tokens 26

E

Error messages 19

Examples
attention request 139
login request 126
login response 129
overview 125
pre-login request 125
RPC client request 136
RPC server response 138
SQL batch client request 133
SQL batch server response 134
SQL command with binary data 141
SSPI message 140
transaction manager request 142

F

Fields - vendor-extensible 15
Final state (section 3.2.5.9 119, section 3.3.5.8

123)
Fixed-length token 25

175 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

G

Glossary 8
Grammar definition - token description

data buffer stream tokens 50
data stream types

data type dependent data streams 31
unknown-length data streams 30
variable-length data streams 30

data type definitions
fixed-length data types 35
overview 35
partially length-prefixed data types 39
SQL_VARIANT 42
Table Valued Parameter 43
UDT Assembly Information 41
variable-length data types 36
XML data type 42

general rules
collation rule definition 29
least significant bit order 29
overview 26

overview 26
packet data stream headers

overview 32
Query Notifications header 33
Transaction Descriptor header 34

TYPE_INFO rule definition 49

H

Higher-layer triggered events
client (section 3.1.4 108, section 3.2.4 114)
server (section 3.1.4 108, section 3.3.4 121)

I

Implementer - security considerations 167
Informational messages 19
Informative references 11
Initial state 121
Initialization

client (section 3.1.3 108, section 3.2.3 114)
server (section 3.1.3 108, section 3.3.3 121)

Introduction 8

L

Local events
client (section 3.1.7 112, section 3.2.7 119)
server (section 3.1.7 112, section 3.3.7 124)

Logged In state (section 3.2.5.5 118, section

3.3.5.5 123)
Login Ready state 122
Login request example 126
Login response example 129

M

Message processing
client 108

Final state 119

Logged In state 118
overview 116
Sent Attention state 118
Sent Client Request state 118
Sent Initial PRELOGIN Packet state 116
Sent LOGIN7 Record with SPNEGO Packet state

117
Sent LOGIN7 Record with Standard Login state

117
Sent TLS/SSL Negotiation Packet state 116

server 108
Client Request Execution state 123
Final state 123
Initial state 121
Logged In state 123
Login Ready state 122
overview 121
SPNEGO Negotiation state 122
TLS/SSL Negotiation state 122

Messages
overview 16
syntax

client messages 16

grammar definition for token description 26
overview 16
packet data token and tokenless data streams

23
packet data token stream definition 74
packet header message type - stream

definition 51
packets 20
server messages 18

transport 16

N

Normative references 10

O

Out-of-band attention signal 165
Overview (synopsis) 12

P

Packet data - token and tokenless streams 23
Packet data - token stream definition

ALTMETADATA 74
ALTROW 77
COLINFO 78
COLMETADATA 79
DONE 81
DONEINPROC 83
DONEPROC 84
ENVCHANGE 85
ERROR 90
FEATUREEXTACK 92

INFO 94
LOGINACK 95
NBCROW 96
OFFSET 98
ORDER 99

176 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

overview 74
RETURNSTATUS 99
RETURNVALUE 100
ROW 102
SESSIONSTATE 103
SSPI 105
Table Valued Parameter row 107
TABNAME 106

Packet data stream headers
overview 32
Query Notifications header 33
Transaction Descriptor header 34

Packet header message type - stream definition
BulkLoad - UpdateText/WriteText 51
BulkLoadBCP 51
FeatureExt with SessionRecovery feature data

151
FeatureExtAck with SessionRecovery feature data

157
LOGIN7 52
PRELOGIN 62
RPCRequest 66
SparseColumn select statement 146

SQLBatch 69
SSPIMessage 69
Table response with SessionState token data 163
transaction manager request 70
TVP insert statement 143

Packets
overview 20
packet data 23
packet header

Length 22
overview 20
PacketID 23
SPID 22
Status 22
Type 20
Window 23

Preconditions 14
Pre-login request example 125
Prerequisites 14
Product behavior 168

Q

Query Notifications header 33

R

References
informative 11
normative 10

Relationship to other protocols 14
Remote procedure call 17
RPC client request example 136
RPC server response example 138

S

Security - implementer considerations 167
Sending an SQL batch 165

Sent Attention state 118
Sent Client Request state 118
Sent Initial PRELOGIN Packet state 116
Sent LOGIN7 Record with SPNEGO Packet state 117
Sent LOGIN7 Record with Standard Login state 117
Sent TLS/SSL Negotiation Packet state 116
Sequencing rules

client 108
Final state 119
Logged In state 118
overview 116
Sent Attention state 118
Sent Client Request state 118
Sent Initial PRELOGIN Packet state 116
Sent LOGIN7 Record with SPNEGO Packet state

117
Sent LOGIN7 Record with Standard Login state

117
Sent TLS/SSL Negotiation Packet state 116

server 108
Client Request Execution state 123
Final state 123
Initial state 121

Logged In state 123
Login Ready state 122
overview 121
SPNEGO Negotiation state 122
TLS/SSL Negotiation state 122

Server
abstract data model (section 3.1.1 108, section

3.3.1 120)
higher-layer triggered events (section 3.1.4 108,

section 3.3.4 121)
initialization (section 3.1.3 108, section 3.3.3

121)
local events (section 3.1.7 112, section 3.3.7

124)
message processing 108

Client Request Execution state 123
Final state 123
Initial state 121
Logged In state 123
Login Ready state 122
overview 121
SPNEGO Negotiation state 122
TLS/SSL Negotiation state 122

messages
attention acknowledgment 20
error and informational messages 19
login response 18
overview 18
pre-login response 18
response completion ("DONE") 19
return parameters 19
return status 19
row data 19

overview (section 3.1 108, section 3.3 119)
sequencing rules 108

Client Request Execution state 123
Final state 123
Initial state 121

177 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Logged In state 123
Login Ready state 122
overview 121
SPNEGO Negotiation state 122
TLS/SSL Negotiation state 122

timer events (section 3.1.6 112, section 3.3.6
124)

timers (section 3.1.2 108, section 3.3.2 121)
SPNEGO Negotiation state 122
SQL batch - sending 165
SQL batch client request example 133
SQL batch server response example 134
SQL command 17
SQL command with binary data 17
SQL command with binary data example 141
SSPI message example 140
Standards assignments 15
Syntax

client messages
Attention 17
login 17
overview 16
pre-login 17

remote procedure call 17
SQL command 17
SQL command with binary data 17
transaction manager request 18

grammar definition for token description
data buffer stream tokens 50
data stream types 30
data type definitions 35
general rules 26
overview 26
packet data stream headers 32
TYPE_INFO rule definition 49

overview 16
packet data token and tokenless data streams

DONE and attention tokens 26
overview 23
token stream 24
token stream examples 165
tokenless stream 24

packet data token stream definition
ALTMETADATA 74
ALTROW 77
COLINFO 78
COLMETADATA 79
DONE 81
DONEINPROC 83
DONEPROC 84
ENVCHANGE 85
ERROR 90
FEATUREEXTACK 92
INFO 94
LOGINACK 95
NBCROW 96
OFFSET 98
ORDER 99
overview 74
RETURNSTATUS 99
RETURNVALUE 100

ROW 102
SESSIONSTATE 103
SSPI 105
Table Valued Parameter row 107
TABNAME 106

packet header message type - stream definition
BulkLoad - UpdateText/WriteText 51
BulkLoadBCP 51
FeatureExt with SessionRecovery feature data

151
FeatureExtAck with SessionRecovery feature

data 157
LOGIN7 52
PRELOGIN 62
RPCRequest 66
SparseColumn select statement 146
SQLBatch 69
SSPIMessage 69
Table response with SessionState token data

163
transaction manager request 70
TVP insert statement 143

packets

overview 20
packet data 23
packet header 20

server messages
attention acknowledgment 20
error and informational messages 19
login response 18
overview 18
pre-login response 18
response completion ("DONE") 19
return parameters 19
return status 19
row data 19

T

Timer events
client (section 3.1.6 112, section 3.2.6 119)
server (section 3.1.6 112, section 3.3.6 124)

Timers
client (section 3.1.2 108, section 3.2.2 114)
server (section 3.1.2 108, section 3.3.2 121)

TLS/SSL Negotiation state 122
Token data stream

overview 24
token definition

fixed-length token 25
overview 24
variable-count tokens 25
variable-length tokens 25
zero-length token 24

Token data stream definition
ALTMETADATA 74
ALTROW 77
COLINFO 78
COLMETADATA 79
DONE 81
DONEINPROC 83
DONEPROC 84

178 / 178

[MS-TDS] — v20130722
 Tabular Data Stream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ENVCHANGE 85
ERROR 90
FEATUREEXTACK 92
INFO 94
LOGINACK 95
NBCROW 96
OFFSET 98
ORDER 99
overview 74
RETURNSTATUS 99
RETURNVALUE 100
ROW 102
SESSIONSTATE 103
SSPI 105
Table Valued Parameter row 107
TABNAME 106

Token data stream examples
out-of-band attention signal 165
overview 165
sending an SQL batch 165

Token description - grammar definition
data buffer stream tokens 50
data stream types

data type dependent data streams 31
unknown-length data streams 30
variable-length data streams 30

data type definitions
fixed-length data types 35
overview 35
partially length-prefixed data types 39
SQL_VARIANT 42
Table Valued Parameter 43
UDT Assembly Information 41
variable-length data types 36
XML data type 42

general rules
collation rule definition 29
least significant bit order 29
overview 26

overview 26
packet data stream headers

overview 32
Query Notifications header 33
Transaction Descriptor header 34

TYPE_INFO rule definition 49
Tokenless data stream 24
Tracking changes 172
Transaction Descriptor header 34
Transaction manager request 18
Transaction manager request example 142
Transport 16
Triggered events - higher-layer

client (section 3.1.4 108, section 3.2.4 114)
server (section 3.1.4 108, section 3.3.4 121)

U

Unknown-length data streams 30

V

Variable-count tokens 25

Variable-length data streams 30
Variable-length tokens 25
Vendor-extensible fields 15
Versioning 15

Z

Zero-length token 24

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Client Messages
	2.2.1.1 Pre-Login
	2.2.1.2 Login
	2.2.1.3 SQL Batch
	2.2.1.4 Bulk Load
	2.2.1.5 Remote Procedure Call
	2.2.1.6 Attention
	2.2.1.7 Transaction Manager Request

	2.2.2 Server Messages
	2.2.2.1 Pre-Login Response
	2.2.2.2 Login Response
	2.2.2.3 Row Data
	2.2.2.4 Return Status
	2.2.2.5 Return Parameters
	2.2.2.6 Response Completion ("DONE")
	2.2.2.7 ERROR and INFO Messages
	2.2.2.8 Attention Acknowledgment

	2.2.3 Packets
	2.2.3.1 Packet Header
	2.2.3.1.1 Type
	2.2.3.1.2 Status
	2.2.3.1.3 Length
	2.2.3.1.4 SPID
	2.2.3.1.5 PacketID
	2.2.3.1.6 Window

	2.2.3.2 Packet Data

	2.2.4 Packet Data Token and Tokenless Data Streams
	2.2.4.1 Tokenless Stream
	2.2.4.2 Token Stream
	2.2.4.2.1 Token Definition
	2.2.4.2.1.1 Zero Length Token(xx01xxxx)
	2.2.4.2.1.2 Fixed Length Token(xx11xxxx)
	2.2.4.2.1.3 Variable Length Tokens(xx10xxxx)
	2.2.4.2.1.4 Variable Count Tokens(xx00xxxx)

	2.2.4.3 Done and Attention Tokens

	2.2.5 Grammar Definition for Token Description
	2.2.5.1 General Rules
	2.2.5.1.1 Least Significant Bit Order
	2.2.5.1.2 Collation Rule Definition

	2.2.5.2 Data Stream Types
	2.2.5.2.1 Unknown Length Data Streams
	2.2.5.2.2 Variable-Length Data Streams
	2.2.5.2.3 Data Type Dependent Data Streams

	2.2.5.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition
	2.2.5.3.1 Query Notifications Header
	2.2.5.3.2 Transaction Descriptor Header
	2.2.5.3.3 Trace Activity Header

	2.2.5.4 Data Type Definitions
	2.2.5.4.1 Fixed-Length Data Types
	2.2.5.4.2 Variable-Length Data Types
	2.2.5.4.3 Partially Length-Prefixed Data Types

	2.2.5.5 Data Type Details
	2.2.5.5.1 System Data Type Values
	2.2.5.5.1.1 Integers
	2.2.5.5.1.2 Timestamp
	2.2.5.5.1.3 Character and Binary Strings
	2.2.5.5.1.4 Fixed-Point Numbers
	2.2.5.5.1.5 Floating-Point Numbers
	2.2.5.5.1.6 Decimal/Numeric
	2.2.5.5.1.7 GUID
	2.2.5.5.1.8 Date/Times

	2.2.5.5.2 Common Language Runtime (CLR) Instances
	2.2.5.5.3 XML Values
	2.2.5.5.4 SQL_VARIANT Values
	2.2.5.5.5 Table Valued Parameter (TVP) Values
	2.2.5.5.5.1 Metadata
	2.2.5.5.5.2 Optional Metadata Tokens
	2.2.5.5.5.3 TDS Type Restrictions

	2.2.5.6 Type Info Rule Definition
	2.2.5.7 Data Buffer Stream Tokens

	2.2.6 Packet Header Message Type Stream Definition
	2.2.6.1 Bulk Load BCP
	2.2.6.2 Bulk Load Update Text/Write Text
	2.2.6.3 LOGIN7
	2.2.6.4 PRELOGIN
	2.2.6.5 RPC Request
	2.2.6.6 SQLBatch
	2.2.6.7 SSPI Message
	2.2.6.8 Transaction Manager Request

	2.2.7 Packet Data Token Stream Definition
	2.2.7.1 ALTMETADATA
	2.2.7.2 ALTROW
	2.2.7.3 COLINFO
	2.2.7.4 COLMETADATA
	2.2.7.5 DONE
	2.2.7.6 DONEINPROC
	2.2.7.7 DONEPROC
	2.2.7.8 ENVCHANGE
	2.2.7.9 ERROR
	2.2.7.10 FEATUREEXTACK
	2.2.7.11 INFO
	2.2.7.12 LOGINACK
	2.2.7.13 NBCROW
	2.2.7.14 OFFSET
	2.2.7.15 ORDER
	2.2.7.16 RETURNSTATUS
	2.2.7.17 RETURNVALUE
	2.2.7.18 ROW
	2.2.7.19 SESSIONSTATE
	2.2.7.20 SSPI
	2.2.7.21 TABNAME
	2.2.7.22 TVP ROW

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sent Initial PRELOGIN Packet State
	3.2.5.2 Sent TLS/SSL Negotiation Packet State
	3.2.5.3 Sent LOGIN7 Record with Standard Login State
	3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State
	3.2.5.5 Logged In State
	3.2.5.6 Sent Client Request State
	3.2.5.7 Sent Attention State
	3.2.5.8 Routing Completed State
	3.2.5.9 Final State

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Initial State
	3.3.5.2 TLS/SSL Negotiation State
	3.3.5.3 Login Ready State
	3.3.5.4 SPNEGO Negotiation State
	3.3.5.5 Logged In State
	3.3.5.6 Client Request Execution State
	3.3.5.7 Routing Completed State
	3.3.5.8 Final State

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Pre-Login Request
	4.2 Login Request
	4.3 Login Response
	4.4 SQL Batch Client Request
	4.5 SQL Batch Server Response
	4.6 RPC Client Request
	4.7 RPC Server Response
	4.8 Attention Request
	4.9 SSPI Message
	4.10 SQL Command with Binary Data
	4.11 Transaction Manager Request
	4.12 TVP Insert Statement
	4.13 SparseColumn Select Statement
	4.14 FeatureExt with SessionRecovery Feature Data
	4.15 FeatureExtAck with SessionRecovery Feature Data
	4.16 Table Response with SessionState Token Data
	4.17 Token Stream Communication
	4.17.1 Sending a SQL Batch
	4.17.2 Out-of-Band Attention Signal

	5 Security
	5.1 Security Considerations for Implementers

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

