
1 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[MS-TCC]:

Tethering Control Channel Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

8/8/2013 1.0 New Released new document.

11/14/2013 1.1 Minor Clarified the meaning of the technical content.

2/13/2014 2.0 Major Significantly changed the technical content.

5/15/2014 2.0 None
No change to the meaning, language, or formatting of the
technical content.

6/30/2015 3.0 Major Significantly changed the technical content.

10/16/2015 4.0 Major Significantly changed the technical content.

7/14/2016 5.0 Major Significantly changed the technical content.

6/1/2017 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 6.0 Major Significantly changed the technical content.

9/12/2018 7.0 Major Significantly changed the technical content.

4/7/2021 8.0 Major Significantly changed the technical content.

3 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages ... 9
2.1 Transport .. 9
2.2 Message Syntax ... 9

2.2.1 Enumerations ... 9
2.2.1.1 MessageId Enumeration ... 9
2.2.1.2 StatusCodeEnum Enumeration .. 9
2.2.1.3 TypeId Enumeration .. 10

2.2.2 Structures ... 11
2.2.2.1 Bssid Structure ... 11
2.2.2.2 CommonHeader Structure .. 11
2.2.2.3 DisplayName Structure .. 12
2.2.2.4 EncryptedBringUpSuccessResponse Structure ... 12
2.2.2.5 ErrorString Structure ... 13
2.2.2.6 HMAC Structure .. 13
2.2.2.7 InitializationVector Structure .. 14
2.2.2.8 MessageType Structure .. 14
2.2.2.9 Passphrase Structure ... 14
2.2.2.10 Ssid Structure .. 15
2.2.2.11 StatusCode Structure .. 15
2.2.2.12 Timestamp Structure ... 15

2.2.3 Messages ... 16
2.2.3.1 BringUpStartRequest Message .. 16
2.2.3.2 BringUpSuccessResponse Message .. 17
2.2.3.3 BringUpSuccessResponseUnpaired Message ... 18
2.2.3.4 BringUpFailureResponse Message .. 19
2.2.3.5 ProtocolErrorResponse Message .. 20

3 Protocol Details ... 21
3.1 Client Details ... 21

3.1.1 Abstract Data Model .. 21
3.1.2 Timers .. 21
3.1.3 Initialization ... 21
3.1.4 Higher-Layer Triggered Events ... 21

3.1.4.1 Cancellation ... 22
3.1.5 Message Processing Events and Sequencing Rules .. 22

3.1.5.1 BringUpSuccessResponse ... 22
3.1.5.2 BringUpSuccessResponseUnpaired .. 22
3.1.5.3 BringUpFailureResponse .. 22
3.1.5.4 Failure Messages ... 22
3.1.5.5 Other Messages .. 22

3.1.6 Timer Events .. 22
3.1.7 Other Local Events .. 22

4 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.7.1 Disconnect Event of Transport Channel .. 23
3.2 Server Details .. 23

3.2.1 Abstract Data Model .. 23
3.2.2 Timers .. 24
3.2.3 Initialization ... 24
3.2.4 Higher-Layer Triggered Events ... 24

3.2.4.1 Shutdown .. 24
3.2.4.2 Tethering Started or Failed to Start ... 24

3.2.5 Message Processing Events and Sequencing Rules .. 25
3.2.5.1 BringUpStartRequest ... 25
3.2.5.2 Failure Messages ... 25
3.2.5.3 Other Messages .. 25

3.2.6 Timer Events .. 25
3.2.7 Other Local Events .. 25

3.2.7.1 Disconnect Event of Transport Channel .. 26

4 Protocol Examples ... 27
4.1 Successful Startup ... 27

4.1.1 BringUpStartRequest Example (Successful) .. 27
4.1.2 BringUpSuccessResponse Example (Successful) ... 27

4.2 Unsuccessful Startup .. 27
4.2.1 BringUpStartRequest Example (Unsuccessful) .. 27
4.2.2 BringUpFailureResponse Example (Unsuccessful) .. 27

5 Security ... 28
5.1 Security Considerations for Implementers ... 28
5.2 Index of Security Parameters .. 28

6 Appendix A: Product Behavior ... 29

7 Change Tracking .. 30

8 Index ... 31

5 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1 Introduction

The Tethering Control Channel Protocol [MS-TCC] facilitates the sharing of a server’s network
connection with one or more clients over Bluetooth transport. This Protocol allows a client to send
control messages to a sharing-capable server to request to share a server's Internet connection. The
control message informs the server that a client is interested in tethering, and the server can then
bring up a Wi-Fi access point for the client to connect to. At the point that the access point has been

set up or is not able to be set up, the server responds to the client with the appropriate Wi-Fi
connection credentials (SSID and Password) and specifies the tethering configuration settings or an
error code denoting why the connection failed.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit

ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

basic service set identifier (BSSID): A 48-bit structure that is used to identify an entity such as
the access point in a wireless network. This is typically a MAC address.

display name: A text string that is used to identify a principal or other object in the user interface.
Also referred to as title.

encryption: In cryptography, the process of obscuring information to make it unreadable without

special knowledge.

encryption key: One of the input parameters to an encryption algorithm. Generally speaking, an
encryption algorithm takes as input a clear-text message and a key, and results in a cipher-text
message. The corresponding decryption algorithm takes a cipher-text message, and the key,
and results in the original clear-text message.

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Hash-based Message Authentication Code (HMAC): A mechanism for message authentication
using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash

function (for example, MD5 and SHA-1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

network byte order: The order in which the bytes of a multiple-byte number are transmitted on a
network, most significant byte first (in big-endian storage). This may or may not match the
order in which numbers are normally stored in memory for a particular processor.

paired relationship: In a Bluetooth communication scenario, two devices that have established a
relationship through the creation of a shared secret known as a link key. The link key enables

confirmation of device identity and is used to maintain security across devices.

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824

6 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

passphrase: One or more words entered as a security setting to enable device or identity
authentication.

radio frequency communications (RFCOMM): A protocol that provides serial port emulation of
EIA-232 (formerly RS-232) control signals over the Bluetooth baseband layer. RFCOMM is used

to create a virtual serial data stream to enable binary data transport.

Service Discovery Protocol (SDP): This protocol allows a device to discover services (and their
associated configuration settings) offered by other devices. A service is identified by a
universally unique identifier (UUID) where recognized services, such as Bluetooth profiles, are
assigned a short form UUID (16 bits rather than 128).

service set identifier (SSID): A sequence of characters that names a wireless local area network
(WLAN).

tether: Enables a device to gain access to the Internet by establishing a connection with another
device that is connected to the Internet.

timestamp: A condition of a digital signature that indicates whether the signature was created

with a valid certificate that has expired or was created with a certificate that had expired
already. If the certificate expired after the signature was created, the signature can be trusted.
If it expired before the signature was created, it cannot be trusted.

trust: To accept another authority's statements for the purposes of authentication and
authorization, especially in the case of a relationship between two domains. If domain A trusts
domain B, domain A accepts domain B's authentication and authorization statements for
principals represented by security principal objects in domain B; for example, the list of groups
to which a particular user belongs. As a noun, a trust is the relationship between two domains
described in the previous sentence.

type-length-value (TLV): A method of organizing data that involves a Type code (16-bit), a

specified length of a Value field (16-bit), and the data in the Value field (variable).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[BT-RFCOMM] Bluetooth Special Interest Group, "Bluetooth Specification version 1.1, Part F:1,
RFCOMM with TS 07.10, Serial Port Emulation", June 2003,

https://www.bluetooth.com/specifications/archived-specifications/

[BT-SDP] Bluetooth Special Interest Group, "Bluetooth Specification Version 4.0, Volume 3 - Core
System Package [Host Volume], Part B - Service Discovery Protocol (SDP) Specification", June 2010,
https://www.bluetooth.com/specifications/archived-specifications/

[IEEE802.11-2012] IEEE, "Standard for Information Technology - Telecommunications and
Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=294277
https://go.microsoft.com/fwlink/?LinkId=294278

7 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications", ANSI/IEEE Std 802.11-2012, https://ieeexplore.ieee.org/document/6361248/

Note There is a charge to download this document.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4086] Eastlake III, D., Schiller, J., and Crokcer, S., "Randomness Requirements for Security",

BCP 106, RFC 4086, June 2005, http://www.ietf.org/rfc/rfc4086.txt

[WF-Security] Wi-Fi Alliance, "Security", https://www.wi-fi.org/discover-wi-fi/security

1.2.2 Informative References

[NIST-SP800-90C] NIST, "Recommendation for Random Bit Generator (RBG) Constructions- Second
Draft", SP800-90C, April 2016, https://csrc.nist.gov/CSRC/media/Publications/sp/800-
90c/draft/documents/sp800_90c_second_draft.pdf

1.3 Overview

The Tethering Control Channel Protocol facilitates the sharing of a server's Internet connection with
one or more clients that are using Wi-Fi over Bluetooth transport. To initiate the connection, a client
sends a request to a server to indicate that it is seeking to share the server's Internet connection.
When the connection is successful, the server responds to the client with the appropriate Wi-Fi
information. In the event that connection sharing is unsuccessful, the server returns an error

message.

To use this protocol, the client is required to establish a secure, authenticated connection with the
server that is capable of tethering. The client sends a request to the server to initiate tethering and
to obtain the tethering configuration settings. In response, the server enables tethering, if it is not
already enabled, and replies to the client with the tethering configuration settings, including the Wi-Fi
service set identifier (SSID), basic service set identifier (BSSID), passphrase, and display

name. The client uses these settings to connect to the tethering network. In the event that the server
is unable to successfully enable tethering, the server sends the appropriate error message to the
client.

Figure 1: Tethering Control Channel Protocol request-reply sequence

https://go.microsoft.com/fwlink/?LinkID=306038
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90456
https://go.microsoft.com/fwlink/?LinkId=390211
https://go.microsoft.com/fwlink/?linkid=856909
https://go.microsoft.com/fwlink/?linkid=856909

8 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1.4 Relationship to Other Protocols

None.

1.5 Prerequisites/Preconditions

The Tethering Control Channel Protocol depends on a secure and authenticated communication
channel between the client and server. If the client and server do not have a Bluetooth pairing
relationship, three 256-bit keys (K1, K2, and K3) MUST be generated and be known to the client and
server to be used in establishing the communication channel. The keys MUST be constructed following

the recommendations for random number generation as described in [NIST-SP800-90C] and specified
in [RFC4086].

1.6 Applicability Statement

This protocol is only applicable when the client initiates the tethering request. The client is required
to support connecting to Wi-Fi networks and the server is required to support Internet connection

sharing.

1.7 Versioning and Capability Negotiation

This protocol covers versioning issues in the following areas:

Protocol Versions: The Tethering Control Channel protocol supports future enhancements as defined
in sections 3.1.5.5 and 3.2.5.3. See also Messages (section 2.2.3).

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

https://go.microsoft.com/fwlink/?linkid=856909
https://go.microsoft.com/fwlink/?LinkId=90456

9 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2 Messages

2.1 Transport

To use the Tethering Control Channel Protocol, a byte stream connection MUST be established by
using radio frequency communications (RFCOMM) [BT-RFCOMM] between the client and server.
To identify a tethering-capable server using RFCOMM, the client MUST use the Bluetooth Service
Discovery Protocol (SDP) [BT-SDP].

Tethering-capable servers MUST be identified through SDP by using the globally unique identifier
(GUID) {232E51D8-91FF-4c24-AC0F-9EE055DA30A5}. To ensure that the RFCOMM communication

is authenticated, the client MUST have either a Bluetooth pairing relationship with the server, or in
the BringUpStartRequest message (section 2.2.3.1) an HMAC structure (section 2.2.2.6) and a
Timestamp structure (section 2.2.2.12) SHOULD<1> be included.

2.2 Message Syntax

The protocol uses a common type-length-value (TLV) encoding schema for all messages. All strings
are in Unicode UTF-8 format unless otherwise specified.

2.2.1 Enumerations

2.2.1.1 MessageId Enumeration

The MessageId enumeration indicates the type of message being sent within the header of each
message. For details about the message header, see section 2.2.2.2. The following values

SHOULD<2> be supported.

Field/Value Description

BringUpStartRequest

1

Indicates the BringUpStartRequest message (section 2.2.3.1).

BringUpSuccessResponse

2

Indicates the BringUpSuccessResponse message (section 2.2.3.2).

BringUpFailureResponse

3

Indicates the BringUpFailureResponse message (section 2.2.3.4).

ProtocolErrorResponse

4

Indicates the ProtocolErrorResponse message (section 2.2.3.5).

BringUpSuccessResponseUnpaired

5

Indicates the BringUpSuccessResponseUnpaired message

(section 2.2.3.3).

2.2.1.2 StatusCodeEnum Enumeration

The StatusCodeEnum enumeration specifies possible outcomes for the attempt to start tethering on
the server. The following values SHOULD<3> be supported.

https://go.microsoft.com/fwlink/?LinkId=294277
https://go.microsoft.com/fwlink/?LinkId=294278

10 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Field/Value Description

Success

0

The operation succeeded; tethering is enabled on the server.

UnspecifiedError

1

The operation failed, and the server is unable to provide a specific status
code.

OperationCancel

2

The operation failed because it was canceled by the user.

EntitlementCheckFail

3

The operation failed because the mobile operator has not authorized the
subscriber to use tethering on the server.

NoCellularSignal

4

The operation failed because there is no cellular signal on the server.

CellularDataTurnedOff

5

The operation failed because cellular data is turned off on the server.

CannotConnectToCellularNetwork

6

The operation failed because the server is unable to connect to the cellular
network.

ConnectToCellularNetworkTimedOut

7

The operation failed because the connection attempt to the cellular
network timed out.

RoamingNotAllowed

8

The operation failed because the server is not allowed to connect to the
cellular network when the latter is in the roaming state.

TimestampOutOfSync

9

The operation failed because the timestamp sent to the server is outside
of the server’s allowable skew.

SecurityFailure

10

The operation failed because there was an error on the server while
authenticating or encrypting a protocol message.

2.2.1.3 TypeId Enumeration

The TypeId enumeration identifies the type of structure contained within the message payload. The

structure is encoded by using the CommonHeader (section 2.2.2.2). The following values
SHOULD<4> be supported.

Field/Value Description

StatusCode

1

The message contains a StatusCode structure (section 2.2.2.11).

Ssid

2

The message contains an Ssid structure (section 2.2.2.10).

Bssid

3

The message contains a Bssid structure (section 2.2.2.1).

Passphrase

4

The message contains a Passphrase structure (section 2.2.2.9).

DisplayName The message contains a DisplayName structure (section 2.2.2.3).

11 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Field/Value Description

5

ErrorString

6

The message contains an ErrorString structure (section 2.2.2.5).

MessageType

7

The message contains a MessageType structure (section 2.2.2.8).

Timestamp

8

The message contains a Timestamp structure (section 2.2.2.12).

HMAC

9

The message contains an HMAC structure (section 2.2.2.6).

InitializationVector

10

The message contains an InitializationVector structure (section 2.2.2.7).

EncryptedBringUpSuccessResponse

11

The message contains an EncryptedBringUpSuccessResponse structure
(section 2.2.2.4).

2.2.2 Structures

The following sections define the structures that are used to encode the message payload. Each
structure is formatted with a TLV encoding schema by using a common header.

2.2.2.1 Bssid Structure

The Bssid structure specifies the basic service set identifier (BSSID) of the Wi-Fi network used by
the server in the Internet connection, as specified in [IEEE802.11-2012].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 3 (Bssid), as specified in TypeId enumeration (section
2.2.1.3), and the value of the Length field is set to 6 bytes.

Value (6 bytes): The Value field contains the value of the BSSID.

2.2.2.2 CommonHeader Structure

The CommonHeader structure is used by all structures to identify the type and length of the
structure encoded in the message payload.

https://go.microsoft.com/fwlink/?LinkID=306038

12 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Id Length

Id (1 byte): The Id field specifies the type of the structure encoded in the message, as specified in
TypeId enumeration (section 2.2.1.3).

Length (2 bytes): The Length field specifies the number of bytes that follow the CommonHeader

which correspond to the length of the encoded structure. Note that the structure is encoded in
network byte order.

2.2.2.3 DisplayName Structure

The DisplayName structure specifies the display name for the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value (variable)

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 5 (DisplayName), as specified in TypeId enumeration
(section 2.2.1.3), and the value of the Length field is variable.

Value (variable): The Value field contains the display name string. Because the length of the
Length field within the CommonHeader structure is 2 bytes, the length of the display name

string is limited to a maximum of 65,535 bytes.

2.2.2.4 EncryptedBringUpSuccessResponse Structure

The EncryptedBringUpSuccessResponse structure is used to contain an encrypted
BringUpSuccessResponse message (section 2.2.3.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value (variable)

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 11 (EncryptedBringUpSuccessResponse), as specified in
TypeId enumeration (section 2.2.1.3), and the value of the Length field is variable.

Value (variable): The Value field contains an encrypted BringUpSuccessResponse message
(section 2.2.3.2). The message is encrypted using AES-256 in cipher block chaining (CBC) mode,
with PKCS#7 padding used to encrypt the message. The encryption key is a 256-bit key (K2)

13 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

already known by both the server and the client. A randomly generated initialization vector is
used. This initialization vector is communicated to the client through the InitializationVector

structure. Because the length of the Length field within the CommonHeader structure is 2
bytes, the length of the encrypted message is limited to a maximum of 65,535 bytes.

2.2.2.5 ErrorString Structure

The ErrorString structure specifies the error message corresponding to the result of the tethering
attempt to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value (variable)

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),

where the value of the Id field is set to 6 (ErrorString), as specified in TypeId enumeration
(section 2.2.1.3), and the value of the Length field is variable.

Value (variable): The Value field contains the error message string. Because the length of the
Length field within the CommonHeader structure is 2 bytes, the length of the error message
string is limited to a maximum of 65,535 bytes.

2.2.2.6 HMAC Structure

The HMAC structure is used to contain a SHA-256 HMAC.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value (32 bytes)

...

...

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),

where the value of the Id field is set to 9 (HMAC), as specified in TypeId enumeration (section

2.2.1.3), and the value of the Length field set to 32 bytes.

Value (32 bytes): The Value field contains the 32 bytes making up the SHA-256 HMAC.

14 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.7 InitializationVector Structure

The InitializationVector structure is used to contain the initialization vector used to encrypt the
EncryptedBringUpSuccessResponse structure (section 2.2.2.4) in the

BringUpSuccessResponseUnpaired message (section 2.2.3.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value

...

...

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 10 (InitializationVector), as specified in TypeId
enumeration (section 2.2.1.3), and the value of the Length field set to 16 bytes.

Value (16 bytes): The Value field contains the 16 bytes making up the initialization vector.

2.2.2.8 MessageType Structure

The MessageType structure identifies the type of structure contained within the message payload.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),

where the value of the Id field is set to 7 (MessageType), as specified in TypeId enumeration
(section 2.2.1.3), and the value of the Length field is set to 1.

Value (1 byte): The Value field identifies the type of structure contained within the message
payload, as defined in MessageId enumeration (section 2.2.1.1).

2.2.2.9 Passphrase Structure

The Passphrase structure specifies the Wi-Fi Protected Access 2 (WPA2) passphrase, as defined in
[WF-Security], that is used in the tethering connection. The passphrase contains 8 to 64 characters.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value (variable)

...

https://go.microsoft.com/fwlink/?LinkId=390211

15 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 4 (Passphrase), as specified in TypeId enumeration
(section 2.2.1.3), and the value of the Length field MUST be 8 to 64 characters.

Value (variable): The Value field specifies the WPA2 passphrase encoded as ASCII. If the length of

the passphrase is 64 characters, all the characters MUST be hexadecimal characters. If the length
is 8 to 63 characters, all the characters MUST be ASCII characters in the range of 32 to 126.

2.2.2.10 Ssid Structure

The Ssid structure specifies the Wi-Fi service set identifier (SSID) for the tethering connection.
The Wi-Fi SSID is a byte BLOB of 0 to 32 bytes as defined in [IEEE802.11-2012].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value (variable)

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 2 (Ssid), as specified in TypeId enumeration (section
2.2.1.3), and the value of the Length field is in the range of 0 to 32 bytes.

Value (variable): The Value field specifies the SSID.

2.2.2.11 StatusCode Structure

The StatusCode structure specifies the status code representing the outcome of the attempt by the
client to enable tethering on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),

where the value of the Id field is set to 1 (StatusCode), as specified in TypeId enumeration
(section 2.2.1.3), and the value of the Length field is set to 1.

Value (1 byte): The Value field specifies the status code representing the outcome of the attempt to

start tethering on the server, as defined in StatusCodeEnum enumeration (section 2.2.1.2).

2.2.2.12 Timestamp Structure

The Timestamp structure is used to contain the current system time of the client.

https://go.microsoft.com/fwlink/?LinkID=306038

16 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Value

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 8 (Timestamp), as specified in TypeId enumeration
(section 2.2.1.3), and the value of the Length field is set to 8 bytes.

Value (8 bytes): The Value field is a 64-bit value representing the number of 100-nanosecond
intervals since January 1, 1601 (UTC).

2.2.3 Messages

The messages described in the following sections each contain the CommonHeader structure
(section 2.2.2.2) that specifies the message type and length, and zero or more other structures as
defined in section 2.2.2. In an implementation, the messages MUST contain all defined fields unless a
field is marked as (optional). Optional fields MAY be included as required by the implementation.

When a message contains more than one structure, the location of the structures within the message
MUST be in increasing numeric order as indicated by the value of the TypeId enumeration (section
2.2.1.3). Unless otherwise specified, a message MUST NOT contain multiple structures with the same

TypeId (section 2.2.1.3) value.

Messages MAY contain structures that are not defined in this protocol. However, implementations of
this protocol MUST ignore all message structures that are not specified in this specification [MS-TCC]
to enable compatibility with future protocol versions.

2.2.3.1 BringUpStartRequest Message

The BringUpStartRequest message is sent from the client to the server to request to share the
server's Internet connection. The payload is optional if the client and server have a pairing
relationship. If not, then HMAC structure and Timestamp structure SHOULD<5> be included.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header HMAC (optional)

...

...

...

... Timestamp (optional)

...

...

17 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 1 (BringUpStartRequest), as specified in MessageId
enumeration (section 2.2.1.1), the length of the Length field is variable, and the value MUST be

set to the combined size of all structures contained within the message.

HMAC (35 bytes): (optional) The HMAC field contains the HMAC structure (section 2.2.2.6), which
consists of the header (3 bytes), and 32 bytes containing a SHA-256 hash of an 8-byte
timestamp contained in the Timestamp structure (section 2.2.2.12). The hashing key is a 256-
bit key (K1) already known by both the server and the client.

Timestamp (11 bytes): (optional) The Timestamp field contains the Timestamp structure (section

2.2.2.12), which consists of the header (3 bytes), and the current client system time (8 bytes).

2.2.3.2 BringUpSuccessResponse Message

The BringUpSuccessResponse message is sent by the server to the client in response to a
BringUpStartRequest message (section 2.2.3.1) when the request for tethering is successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header ssid (variable)

...

...

bssid (optional)

...

... passphrase (variable)

...

...

displayName (variable)

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 2 (BringUpSuccessResponse), as specified in MessageId
(section 2.2.1.1), the length of the Length field is variable, and the value MUST be set to the
combined size of all structures contained within the message.

ssid (variable): The ssid field has a variable length and specifies the Wi-Fi SSID for the tethering
connection, as defined in the Ssid structure (section 2.2.2.10). The Wi-Fi SSID is a byte BLOB of 0

to 32 bytes as defined in [IEEE802.11-2012].

https://go.microsoft.com/fwlink/?LinkID=306038

18 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

bssid (9 bytes): (optional) The bssid field contains the Bssid structure (section 2.2.2.1), which
consists of the header (3 bytes) and the BSSID value (6 bytes) of the Wi-Fi network used by the

server in the Internet connection, as specified in [IEEE802.11-2012].

passphrase (variable): The passphrase field has a variable length and specifies the Wi-Fi WPA2

passphrase, as defined in the Passphrase structure (section 2.2.2.9), used in the tethering
connection, as defined by the Wi-Fi Alliance Security Certification [WF-Security]. The passphrase
contains 8 to 64 characters. If the length of the passphrase is 64 characters, all the characters
MUST be hexadecimal characters. If the length is 8 to 63 characters, all the characters MUST be
ASCII characters in the range of 32 to 126.

displayName (variable): The displayName field has a variable length and specifies the display
name for the server, as defined in the DisplayName structure (section 2.2.2.3).

2.2.3.3 BringUpSuccessResponseUnpaired Message

The BringUpSuccessResponseUnpaired message is sent by the server to the client in response to a
BringUpStartRequest message (section 2.2.3.1) when the request for tethering is successful, but

there is no pairing relationship between the server and client. Thus, the sensitive content is
encrypted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header HMAC (35 bytes)

...

...

...

... Initialization Vector (19 bytes)

...

...

...

... Encrypted Response (variable)

...

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 5 (BringUpSuccessResponseUnpaired), as specified in
MessageId (section 2.2.1.1), the length of the Length field is variable, and the value MUST be

set to the combined size of all structures contained within the message.

https://go.microsoft.com/fwlink/?LinkId=390211

19 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

HMAC (35 bytes): The HMAC field contains the HMAC structure (section 2.2.2.6), which consists of
the header (3 bytes), and 32 bytes containing a SHA-256 hash of the 16-byte initialization vector

contained in the Initialization Vector field, the EncryptedBringUpSuccessResponse
contained in the Encrypted Response field, and the 8-byte timestamp contained in the

Timestamp structure (section 2.2.2.12) sent by the client in the BringUpStartRequest (section
2.2.3.1) message. The hashing key is a 256-bit key (K3) already known by both the server and
the client.

Initialization Vector (19 bytes): The Initialization Vector field contains the InitializationVector
structure (section 2.2.2.7), which consists of the header (3 bytes) and the 16 randomly generated
bytes used by the server to encrypt the EncryptedBringUpSuccessResponse (Encrypted
Response) that is also contained in the message.

Encrypted Response (variable): The Encrypted Response field contains the encrypted
BringUpSuccessResponse, as defined in the EncryptedBringUpSuccessResponse structure
(section 2.2.2.4). The BringUpSuccessResponse is encrypted using AES-256 in CBC mode, with
PKCS#7 padding used to encrypt the message. The encryption key is a 256-bit key (K2) already
known by both the server and the client. A randomly generated initialization vector is used, and is

included in the message as the Initialization Vector field.

2.2.3.4 BringUpFailureResponse Message

The BringUpFailureResponse message is sent by the server to the client in response to a
BringUpStartRequest message (section 2.2.3.1) when the request for tethering fails. If the reason
for the failure cannot be adequately described in the statusCode field, the message SHOULD only

contain an error string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header statusCode

... Error (variable)

...

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),
where the value of the Id field is set to 3 (BringUpFailureResponse), as specified in MessageId
(section 2.2.1.1), the length of the Length field is variable, and the value MUST be set to the
combined size of all structures contained within the message.

statusCode (4 bytes): The statusCode field specifies the status code, as defined in the
StatusCodeEnum enumeration (section 2.2.1.2), that represents the outcome of the attempt to
start tethering on the server. For the BringUpFailureResponse message, the value of the
statusCode field MUST NOT be set to 0 (Success).

Error (variable): (optional) When the Error field is present in the message, it contains an error
message, as defined in the ErrorString structure (section 2.2.2.5), that corresponds to the result
of the tethering attempt to the server. If the error message is an empty string, this field SHOULD

NOT be included in the message.

20 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.3.5 ProtocolErrorResponse Message

The ProtocolErrorResponse message is sent in response to the receipt of a message from the client
that is not specified as expected according to the structures defined in this specification [MS-TCC].

The ProtocolErrorResponse message enables compatibility with future protocol versions that MAY
contain messages, structures, or values not defined in this protocol version. In this protocol version,
an implementation sends this message in response to the receipt of a message where the MessageId
value is not within the expected range as defined in section 2.2.1.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header Type

...

header (3 bytes): The header field contains the CommonHeader structure (section 2.2.2.2),

where the value of the Id field is set to 4 (ProtocolErrorResponse), as specified in MessageId
enumeration (section 2.2.1.1), the length of the Length field is variable, and the value MUST be

set to the combined size of all structures contained within the message.

Type (4 bytes): The Type field specifies the type of the received message, as defined in the
MessageType structure (section 2.2.2.8). The Value field is set to the MessageId value of the
received message which is the unrecognized message type that is not within the expected range
as defined in section 2.2.1.1.

21 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3 Protocol Details

3.1 Client Details

In the Tethering Control Channel Protocol, the client role performs one primary operation and that is
to send a BringUpStartRequest message (section 2.2.3.1) to the server and to wait for the server’s
response. When the client receives a BringUpSuccessResponse message (section 2.2.3.2) or
BringUpFailureResponse message (section 2.2.3.4) from the server, the client sends the contents
of the message to the higher layer, disconnects the transport, notifies the higher layer that it has
completed the operation, and terminates the connection.

Figure 2: Client message processing

3.1.1 Abstract Data Model

None.

3.1.2 Timers

MessageTimer: Specifies the time-out interval for the request operation. The interval is set to one
minute.

3.1.3 Initialization

The Tethering Control Channel Protocol is initialized after the transport protocol has created a

communication channel with the server. After the communication channel is initialized, the client
sends a BringUpStartRequest message (section 2.2.3.1) to the server. If the client is not paired to
the server, the BringUpStartRequest MUST contain the optional HMAC and Timestamp fields. The
client SHOULD<6> include the HMAC and Timestamp fields regardless of pairing relationship.
Providing the HMAC and Timestamp field regardless of pairing state provides resiliency when the

server has broken the pairing relationship without the client’s knowledge.

3.1.4 Higher-Layer Triggered Events

22 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.1 Cancellation

The higher layer can terminate the client’s connection while the client is waiting for a response from
the server.

3.1.5 Message Processing Events and Sequencing Rules

Messages in the Tethering Control Channel Protocol are identified by the values specified in the
CommonHeader structure (section 2.2.2.2) contained in each message. A message is only processed
after the entire contents of the message have been received as indicated by the value of the Length

field specified within the CommonHeader.

When the client receives a message, the MessageTimer (see section 3.1.2) is started or restarted.

3.1.5.1 BringUpSuccessResponse

When the client receives a BringUpSuccessResponse message (section 2.2.3.2), the client sends

the contents of the message to the higher layer and terminates the connection.

3.1.5.2 BringUpSuccessResponseUnpaired

When a client receives a BringUpSuccessResponseUnpaired message (section 2.2.3.3), the client

first validates that the HMAC is correct. After verifying the HMAC is correct, the encrypted payload is
decrypted and reprocessed as a BringUpSuccessResponse.<7>

3.1.5.3 BringUpFailureResponse

When the client receives a BringUpFailureResponse message (section 2.2.3.4), the client sends the
contents of the message to the higher layer and terminates the connection.

3.1.5.4 Failure Messages

When the client receives a BringUpStartRequest message (section 2.2.3.1) or

ProtocolErrorResponse message (section 2.2.3.5), the client indicates to the higher layer that a
protocol failure event has occurred and terminates the connection.

3.1.5.5 Other Messages

When the client receives a message with an unrecognized message type, that is, a MessageId value

that is not within the expected range defined in section 2.2.1.1, the client sends a
ProtocolErrorResponse message (section 2.2.3.5) with the Value field of the MessageType
structure (section 2.2.2.8) set to the unrecognized value.

When the client receives a message that cannot be parsed according to the message syntax specified
in section 2.2, the client indicates to the higher layer that a protocol error has occurred and
terminates the connection.

3.1.6 Timer Events

After the MessageTimer (section 3.1.2) expires, the client sends the time-out to the higher layer
then disconnects and terminates the connection.

3.1.7 Other Local Events

23 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.7.1 Disconnect Event of Transport Channel

If the transport channel becomes disconnected, the client indicates to the higher layer that a transport
failure has occurred and terminates the connection.

3.2 Server Details

In the Tethering Control Channel Protocol, initialization occurs when a client makes a connection to
the server and the server creates an instance of the server role for each connection with a client. The
server MAY handle multiple clients simultaneously by having an instance of the server role for each

client.

Figure 3: Server message processing

Note When the server is in the STARTING state, the server MUST NOT process messages.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

The following elements are specific to this protocol:

State: Indicates the server state, either IDLE or STARTING.

Tethering Settings: A data set that contains the following items:

24 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 SSID: A Wi-Fi SSID which is a byte blob of 0 to 32 bytes as defined in [IEEE802.11-2012].

 BSSID: A Wi-Fi BSSID as specified in [IEEE802.11-2012].

 Passphrase: A Wi-Fi WPA2 passphrase. The passphrase contains 8 to 64 characters. If the
length of the passphrase is 64 characters, all the characters MUST be hexadecimal characters. If

the length is 8 to 63 characters, all the characters MUST be ASCII characters in the range of 32
to 126.

 DisplayName: A Unicode string.

Failure Description: A data set that contains the following items:

 Status Code: A status code as defined in the StatusCodeEnum enumeration (section 2.2.1.2).

 ErrorString: A Unicode string. Note that the string can be empty.

3.2.2 Timers

ServerTimer: Specifies the time-out interval for the response to the client. The interval is set to one
minute.

3.2.3 Initialization

The server is initialized when the transport protocol indicates that a client has connected. The initial
state for the server is set to IDLE.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Shutdown

The higher-layer can shut down the server at any time. The server disconnects the transport protocol
at shutdown.

3.2.4.2 Tethering Started or Failed to Start

When the server indicates to the higher layer that tethering has to be started, the higher layer
responds either by confirming that tethering has been started, or that tethering failed to start.

When the higher layer confirms that tethering has been started, the higher layer provides the current
Tethering Settings. If the server does not have a pairing relationship with the client, then the
server MUST send a BringUpSuccessResponseUnpaired message (section 2.2.3.3). If the client
previously included the HMAC and Timestamp in the BringUpStartRequest message (section

2.2.3.1), the server SHOULD<8> send a BringUpSuccessResponseUnpaired message regardless of
pairing state. If the server does not send a BringUpSuccessResponseUnpaired message, the
server sends a BringUpSuccessResponse message (section 2.2.3.2) that contains the Tethering

Settings and returns to the IDLE state.

If the higher layer failed to start tethering, the higher layer provides a reason for the failure. The
server sends a BringUpFailureResponse message (section 2.2.3.4) that contains the reason for the
failure and returns to the IDLE state.

https://go.microsoft.com/fwlink/?LinkID=306038

25 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.5 Message Processing Events and Sequencing Rules

Messages in the Tethering Control Channel Protocol are identified by the values specified in the
CommonHeader structure (section 2.2.2.2) contained in each message. A message is only processed

after the entire contents of the message have been received as indicated by the value of the Length
field specified within the CommonHeader.

When the server receives a message, the ServerTimer (see section 3.2.2) is started or restarted.

3.2.5.1 BringUpStartRequest

When the server is in the IDLE state and receives a BringUpStartRequest message (section
2.2.3.1), the server MUST check that the client is trusted.

If there is no pairing relationship between the client and the server, the BringUpStartRequest
sent by the client MUST include the HMAC and Timestamp. The server MUST validate that the
timestamp is within some allowable skew (recommended 5 minutes). If it is not, the server MUST
reply with a BringupFailureResponse with TimestampOutOfSync (9) error (section 2.2.1.2). It

MUST also validate that the HMAC is as expected. The HMAC MUST be computed using SHA-256 and
a 32-byte pre-shared key (K1). If the HMAC is not as expected, the server should reply with a
BringupFailureResponse with the SecurityFailure (10) error (section 2.2.1.2).

If the HMAC and Timestamp match the expected values, or there is a pairing relationship between
the client and server, then the server enters the STARTING state and indicates to the higher layer that
tethering has to be started.

When the server is in the STARTING state, it MUST NOT process messages.

3.2.5.2 Failure Messages

When the server receives a BringupFailureResponse, BringUpSuccessResponse or
ProtocolErrorResponse message (section 2.2.3), the server indicates to the higher layer that a
protocol failure event has occurred and terminates the connection.

3.2.5.3 Other Messages

When the server receives a message with an unrecognized message type, that is, a MessageId value
that is not within the expected range defined in section 2.2.1.1, the server sends a

ProtocolErrorResponse message (section 2.2.3.5) with the Value field of the MessageType
structure (section 2.2.2.8) set to the unrecognized value.

When the server receives a message that cannot be parsed according to the message syntax specified
in section 2.2, the server indicates to the higher layer that a protocol error has occurred and
terminates the connection.

3.2.6 Timer Events

After the ServerTimer (section 3.2.2) expires, the server disconnects from the client and terminates

the connection.

3.2.7 Other Local Events

26 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.7.1 Disconnect Event of Transport Channel

If the transport channel becomes disconnected, the server indicates to the higher layer that a
transport failure has occurred and terminates the connection.

27 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4 Protocol Examples

4.1 Successful Startup

In the following example, the server successfully completes the client request and sends a
BringUpSuccessResponse message (section 2.2.3.2). For more information, see the figure in
section 1.3.

4.1.1 BringUpStartRequest Example (Successful)

 Message Header: 0x01 0x00 0x00 (Type == BringUpStartRequest, Length == 0)

4.1.2 BringUpSuccessResponse Example (Successful)

 Message Header: 0x02 00 31 (Type == BringUpSuccessResponse, Length == 49)
 Common Header: 0x02 00 0B (Type == SSID, Length == 11)
 SSID payload: 0x53 0x61 0x6D 0x70 0x6C 0x65 0x20 0x53 0x53 0x49 0x44 ("Sample SSID")
 Common Header: 0x03 00 06 (Type == BSSID, Length == 6)
 BSSID payload: 0x01 0x02 0x03 0x04 0x05 0x06 (BSSID: 01:02:03:04:05:06)
 Common Header: 0x04 00 09 (Type == Passphrase, Length == 9)
 Passphrase payload: 0x73 0x65 0x63 0x72 0x65 0x74 ("secret123")
 Common Header: 0x05 00 0B (Type == DisplayName, Length == 11)
 DisplayName payload: 0x42 0x6F 0x62 0x27 0x73 0x20 0x70 0x68 0x6F 0x6E 0x65 ("Bob’s phone")

4.2 Unsuccessful Startup

In the following example, the server does not successfully complete the client request and sends a
BringUpFailureResponse message (section 2.2.3.4). For more information, see the figure in section
1.3.

4.2.1 BringUpStartRequest Example (Unsuccessful)

 Message Header: 0x01 0x00 0x00 (Type == BringUpStartRequest, Length == 0)

4.2.2 BringUpFailureResponse Example (Unsuccessful)

 Message Header: 0x03 00 (Type == BringUpFailureResponse, Length == 4)
 Common Header: 0x01 00 01 (Type == StatusCode, Length == 1)
 Status code payload: 0x04 (StatusCode.NoCellularSignal)

28 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

5 Security

5.1 Security Considerations for Implementers

The Tethering Control Channel Protocol requires an authenticated and encrypted communication
channel.

5.2 Index of Security Parameters

None.

29 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

 Windows 8.1 operating system

 Windows 10 operating system

Windows Server

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: The HMAC and Timestamp structures are not available in the Windows 10 v1703
operating system and earlier.

<2> Section 2.2.1.1: The BringUpSuccessResponseUnpaired (5) MessageId enumeration value and
the associated message is not available in Windows 10 v1703 and earlier.

<3> Section 2.2.1.2: The TimestampOutOfSync (9) and SecurityFailure (10) StatusCodeEnum
enumeration values are not available in Windows 10 v1703 and earlier.

<4> Section 2.2.1.3: The Timestamp (8), HMAC (9), InitializationVector (10) and
EncryptedBringUpSuccessResponse (11) TypeId enumeration values and their associated structures
are not available in Windows 10 v1703 and earlier.

<5> Section 2.2.3.1: The HMAC and Timestamp structures are not available in Windows 10 v1703

and earlier.

<6> Section 3.1.3: The HMAC and Timestamp fields are not available in Windows 10 v1703 and
earlier.

<7> Section 3.1.5.2: The BringUpSuccessResponseUnpaired message is not available Windows 10
v1703 and earlier.

<8> Section 3.2.4.2: The BringUpSuccessResponseUnpaired message is not available in Windows
10 v1703 and earlier.

30 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior Updated for this version of Windows Server. Major

mailto:dochelp@microsoft.com

31 / 31

[MS-TCC] - v20210407
Tethering Control Channel Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

8 Index

A

Abstract data model
 client 21
 server 23
Applicability 8

C

Capability negotiation 8
Change tracking 30
Client
 abstract data model 21
 initialization 21
 message processing 22
 overview 21
 sequencing rules 22
 timer events 22

 timers 21

D

Data model - abstract
 client 21
 server 23

F

Fields - vendor-extensible 8

G

Glossary 5

I

Implementer - security considerations 28
Index of security parameters 28
Informative references 7
Initialization

 client 21
 server 24
Introduction 5

M

Message processing
 client 22
 server 25
Messages
 Messages 16
 Messages message 16
 Structures 11
 Structures message 11
 transport (section 1.5 8, section 2.1 9)
Messages message 16

N

Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 28
Preconditions 8
Prerequisites 8
Product behavior 29

R

References 6
 informative 7
 normative 6
Relationship to other protocols 8

S

Security
 implementer considerations 28
 parameter index 28
Sequencing rules
 client 22
 server 25
Server
 abstract data model 23
 initialization 24
 message processing 25
 overview 23
 sequencing rules 25
 timer events 25
 timers 24
SMB2_TREE_CONNECT_Request packet (section 1.5

8, section 2.1 9, section 2.2.1.3 10, section
3.2.4.2 24, section 3.2.5.1 25)

Standards assignments 8
Structures message 11

T

Timer events
 client 22
 server 25

Timers
 client 21
 server 24
Tracking changes 30
Transport (section 1.5 8, section 2.1 9)

V

Vendor-extensible fields 8
Versioning 8

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Enumerations
	2.2.1.1 MessageId Enumeration
	2.2.1.2 StatusCodeEnum Enumeration
	2.2.1.3 TypeId Enumeration

	2.2.2 Structures
	2.2.2.1 Bssid Structure
	2.2.2.2 CommonHeader Structure
	2.2.2.3 DisplayName Structure
	2.2.2.4 EncryptedBringUpSuccessResponse Structure
	2.2.2.5 ErrorString Structure
	2.2.2.6 HMAC Structure
	2.2.2.7 InitializationVector Structure
	2.2.2.8 MessageType Structure
	2.2.2.9 Passphrase Structure
	2.2.2.10 Ssid Structure
	2.2.2.11 StatusCode Structure
	2.2.2.12 Timestamp Structure

	2.2.3 Messages
	2.2.3.1 BringUpStartRequest Message
	2.2.3.2 BringUpSuccessResponse Message
	2.2.3.3 BringUpSuccessResponseUnpaired Message
	2.2.3.4 BringUpFailureResponse Message
	2.2.3.5 ProtocolErrorResponse Message

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Cancellation

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 BringUpSuccessResponse
	3.1.5.2 BringUpSuccessResponseUnpaired
	3.1.5.3 BringUpFailureResponse
	3.1.5.4 Failure Messages
	3.1.5.5 Other Messages

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 Disconnect Event of Transport Channel

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Shutdown
	3.2.4.2 Tethering Started or Failed to Start

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 BringUpStartRequest
	3.2.5.2 Failure Messages
	3.2.5.3 Other Messages

	3.2.6 Timer Events
	3.2.7 Other Local Events
	3.2.7.1 Disconnect Event of Transport Channel

	4 Protocol Examples
	4.1 Successful Startup
	4.1.1 BringUpStartRequest Example (Successful)
	4.1.2 BringUpSuccessResponse Example (Successful)

	4.2 Unsuccessful Startup
	4.2.1 BringUpStartRequest Example (Unsuccessful)
	4.2.2 BringUpFailureResponse Example (Unsuccessful)

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

