
1 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-SWN]:

Service Witness Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

12/16/2011 1.0 New Released new document.

3/30/2012 2.0 Major Significantly changed the technical content.

7/12/2012 3.0 Major Significantly changed the technical content.

10/25/2012 4.0 Major Significantly changed the technical content.

1/31/2013 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 5.0 Major Significantly changed the technical content.

11/14/2013 6.0 Major Significantly changed the technical content.

2/13/2014 7.0 Major Significantly changed the technical content.

5/15/2014 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 8.0 Major Significantly changed the technical content.

10/16/2015 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 9.0 Major Significantly changed the technical content.

6/1/2017 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 10.0 Major Significantly changed the technical content.

12/1/2017 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 11.0 Major Significantly changed the technical content.

4/7/2021 12.0 Major Significantly changed the technical content.

6/25/2021 13.0 Major Significantly changed the technical content.

4/23/2024 14.0 Major Significantly changed the technical content.

3 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 6
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 7
1.6 Applicability Statement ... 7
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages ... 9
2.1 Transport .. 9
2.2 Common Data Types .. 9

2.2.1 Data Types .. 9
2.2.1.1 PCONTEXT_HANDLE .. 10
2.2.1.2 PPCONTEXT_HANDLE .. 10
2.2.1.3 PCONTEXT_HANDLE_SHARED ... 10

2.2.2 Structures ... 10
2.2.2.1 IPADDR_INFO ... 10
2.2.2.2 IPADDR_INFO_LIST .. 11
2.2.2.3 RESOURCE_CHANGE ... 12
2.2.2.4 RESP_ASYNC_NOTIFY.. 12
2.2.2.5 WITNESS_INTERFACE_INFO ... 13
2.2.2.6 WITNESS_INTERFACE_LIST ... 14

3 Protocol Details ... 15
3.1 Witness Server Details .. 15

3.1.1 Abstract Data Model .. 15
3.1.1.1 Global.. 15
3.1.1.2 Per Interface in InterfaceList .. 15
3.1.1.3 Per WitnessRegistration in WitnessRegistrationList 15
3.1.1.4 Per Notification in PendingChangeNotifications .. 16
3.1.1.5 PendingMoveNotification .. 16
3.1.1.6 PendingShareMoveNotification .. 16
3.1.1.7 PendingIPNotification ... 16

3.1.2 Timers .. 16
3.1.2.1 Unused Registration Timer ... 16
3.1.2.2 AsyncNotify Pending Timer ... 17

3.1.3 Initialization ... 17
3.1.4 Message Processing Events and Sequencing Rules .. 17

3.1.4.1 WitnessrGetInterfaceList (Opnum 0) ... 18
3.1.4.2 WitnessrRegister (Opnum 1) .. 19
3.1.4.3 WitnessrUnRegister (Opnum 2) ... 21
3.1.4.4 WitnessrAsyncNotify (Opnum 3) ... 21
3.1.4.5 WitnessrRegisterEx (Opnum 4) ... 24
3.1.4.6 WitnessrUnRegisterEx (Opnum 5) ... 27

3.1.5 Timer Events .. 27
3.1.5.1 Unused Registration Timer Event .. 27
3.1.5.2 AsyncNotify Pending Timer Event .. 28

3.1.6 Other Local Events .. 28
3.1.6.1 Server Application Notifies of an Interface Being Enabled or Disabled 28
3.1.6.2 Server Application Notifies of a Request to Move to a New Resource 29

4 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.6.3 Server Application Notifies of a Change in the Resource that Owns a Share .. 29
3.1.6.4 Server Application Notifies of an IP Address Being Added, Removed, Enabled or

Disabled .. 29
3.1.6.5 Transport Connection Shutdown ... 29

3.2 Witness Client Details ... 29
3.2.1 Abstract Data Model .. 30

3.2.1.1 Global.. 30
3.2.1.2 Per WitnessRegistration ... 30

3.2.2 Timers .. 30
3.2.3 Initialization ... 30
3.2.4 Message Processing Events and Sequencing Rules .. 31

3.2.4.1 Application Requests Witness Register ... 31
3.2.4.2 Application Requests Witness Event Notification .. 33
3.2.4.3 Application Requests Witness UnRegister ... 34

3.2.5 Timer Events .. 35
3.2.6 Other Local Events .. 35

4 Protocol Examples ... 36
4.1 Registering Notification Changes from the Witness Server 36

5 Security ... 39
5.1 Security Considerations for Implementers ... 39
5.2 Index of Security Parameters .. 39

6 Appendix A: Full IDL .. 40

7 Appendix B: Product Behavior ... 42

8 Change Tracking .. 44

9 Index ... 45

5 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The Service Witness Protocol is a remote procedure call (RPC)-based protocol that is used to promptly
notify a client of resource changes that have occurred on a highly available server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section

3.1 and [RFC2181] section 11.

Internet Protocol version 4 (IPv4): An Internet protocol that has 32-bit source and destination

addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128-bit IP address size, expanded
routing capabilities, and support for authentication and privacy.

Microsoft Interface Definition Language (MIDL): The Microsoft implementation and extension

of the OSF-DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS-RPCE].

NetBIOS name: A 16-byte address that is used to identify a NetBIOS resource on the network.
For more information, see [RFC1001] and [RFC1002].

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set

of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

RPC context handle: A representation of state maintained between a remote procedure call (RPC)
client and server. The state is maintained on the server on behalf of the client. An RPC context
handle is created by the server and given to the client. The client passes the RPC context handle
back to the server in method calls to assist in identifying the state. For more information, see

[C706].

RPC server: A computer on the network that waits for messages, processes them when they
arrive, and sends responses using RPC as its transport acts as the responder during a remote
procedure call (RPC) exchange.

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send

data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the

https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=127732
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261
https://go.microsoft.com/fwlink/?LinkId=89824

6 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

1.2.2 Informative References

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[SPNNAMES] Microsoft Corporation, "Name Formats for Unique SPNs", http://msdn.microsoft.com/en-
us/library/ms677601.aspx

1.3 Overview

In highly available systems, there can be many instances of a service (for instance an SMB3 file

service [MS-SMB2]) running on a server or group of servers. These service instances are accessed by
clients through network DNS names and associated IP addresses.

The Service Witness Protocol enables a client application (for instance, an SMB3 client) to receive
prompt and explicit notifications about the failure or recovery of a network name and associated
services, rather than relying on slower detection mechanisms such as time-outs and keep-alives.

The Service Witness Protocol is an independent protocol which is used alongside other protocols, as
illustrated by the following figure.

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-SRVS%5d.pdf#Section_accf23b00f57441c918543041f1b0ee9
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
https://go.microsoft.com/fwlink/?LinkId=90532
https://go.microsoft.com/fwlink/?LinkId=90532
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

7 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 1: Witness clients communicating with Witness servers

1.4 Relationship to Other Protocols

This protocol depends on the RPC transport and uses RPC over TCP, as specified in section 2.1.

1.5 Prerequisites/Preconditions

The Service Witness Protocol is an RPC interface and, as a result, has the prerequisites that are
described in [MS-RPCE] section 1.5 as being common to RPC interfaces.

1.6 Applicability Statement

This protocol applies in the following environments, where it is important that:

 The client promptly detects when a resource has failed, and is now available for reconnection.

 The administrator controls the client use of server resources, for instance, to achieve load-
balancing or during server maintenance periods.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

8 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1.7 Versioning and Capability Negotiation

The protocol supports versioning negotiation. The current protocol supports two versions.

Version Value

Witness protocol version 1 0x00010001

Witness protocol version 2 0x00020000

1.8 Vendor Extensible Fields

This protocol does not define any vendor-extensible fields.

This protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse

those values with their indicated meaning. Choosing any other value runs the risk of a collision in the
future.

1.9 Standards Assignments

Parameter Value Reference

UUID for Witness ccd8c074-d0e5-4a40-92b4-d074faa6ba28 [C706]

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

9 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

This protocol MUST use the UUID as specified in section 1.9. The RPC version number is 1.0.

This protocol allows any user to establish a connection to the RPC server. The protocol uses the
underlying RPC protocol to retrieve the identity of the caller that made the method call, as specified in
[MS-RPCE] section 3.3.3.4.3. The server SHOULD use this identity to perform method-specific access
checks as specified in section 3.1.4.

2.2 Common Data Types

In addition to RPC base types defined in [C706] and [MS-RPCE], the data types that follow are defined
in the Microsoft Interface Definition Language (MIDL) specification for this RPC interface.

The following data types are specified in [MS-DTYP]:

DataType name Section

BOOLEAN section 2.2.4

DWORD section 2.2.9

LPWSTR section 2.2.36

PBYTE section 2.2.6

UINT section 2.2.46

UINT32 section 2.2.49

ULONG section 2.2.51

USHORT section 2.2.58

WCHAR section 2.2.60

2.2.1 Data Types

DataType name Section Description

PCONTEXT_HANDLE 2.2.1.1 An RPC context handle returned by the WitnessrRegister or
WitnessrRegisterEx method, to be provided as an input parameter to
the WitnessrUnRegister or WitnessrRegisterEx method.

PCONTEXT_HANDLE_SHARED 2.2.1.3 An RPC context handle returned by the WitnessrRegister or
WitnessrRegisterEx method, to be provided as an input parameter to
the WitnessrAsyncNotify method.

PPCONTEXT_HANDLE 2.2.1.2 A reference to PCONTEXT_HANDLE.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

10 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.1.1 PCONTEXT_HANDLE

PCONTEXT_HANDLE: An RPC context handle, as specified in [C706] Chapter 6, returned by the
WitnessrRegister or WitnessrRegisterEx method, to be provided as an input parameter to the

WitnessrUnRegister method.

 typedef [context_handle] void* PCONTEXT_HANDLE;

2.2.1.2 PPCONTEXT_HANDLE

PPCONTEXT_HANDLE: A reference to PCONTEXT_HANDLE, as specified in section 2.2.1.1.

 typedef [ref] PCONTEXT_HANDLE *PPCONTEXT_HANDLE;

2.2.1.3 PCONTEXT_HANDLE_SHARED

PCONTEXT_HANDLE_SHARED: An RPC context handle, as specified in [C706] Chapter 6, returned
by the WitnessrRegister or WitnessrRegisterEx method, to be provided as a parameter to the
WitnessrAsyncNotify method.

 typedef [context_handle] PCONTEXT_HANDLE PCONTEXT_HANDLE_SHARED;

2.2.2 Structures

Unless otherwise specified, multiple-byte fields (16-bit, 32-bit, and 64-bit fields) MUST be transmitted
in little-endian order (least-significant byte first) for the structures specified in section 2.2.2.1

(IPADDR_INFO), 2.2.2.2 (IPADDR_INFO_LIST), and 2.2.2.3 (RESOURCE_CHANGE). Other structures
defined in this section use RPC encoding.

Structure name Section Description

IPADDR_INFO 2.2.2.1 The IPADDR_INFO structure specifies the IP addresses of the interface.

IPADDR_INFO_LIST 2.2.2.2 The IPADDR_INFO_LIST structure contains the list of available IP
addresses on the destination Interface group.

RESOURCE_CHANGE 2.2.2.3 The server notifies the registered client of resource state changes
through the RESOURCE_CHANGE structure.

RESP_ASYNC_NOTIFY 2.2.2.4 The RESP_ASYNC_NOTIFY structure contains the resource change type.

WITNESS_INTERFACE_INFO 2.2.2.5 The WITNESS_INTERFACE_INFO structure specifies the IP addresses of
the interface.

WITNESS_INTERFACE_LIST 2.2.2.6 The WITNESS_INTERFACE_LIST structure specifies the list of interfaces
available for witness registration.

2.2.2.1 IPADDR_INFO

The IPADDR_INFO structure specifies the IP addresses of the interface.

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

11 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

IPV4

IPV6

...

...

...

Flags (4 bytes): The Flags field SHOULD<1> be set to a combination of one or more of the following
values.

Value Description

0x00000001

IPADDR_V4

If set, the IPV4 field contains a valid address. When this bit is set, the IPADDR_IPV6
bit MUST NOT be set.

0x00000002

IPADDR_V6

If set, the IPV6 field contains a valid address. When this bit is set, the IPADDR_IPV4
bit MUST NOT be set.

0x00000008

IPADDR_ONLINE

If set, the IPV4 or IPV6 address is available. This flag is applicable only for the
servers implementing version 2.

0x00000010

IPADDR_OFFLINE

If set, the IPV4 or IPV6 address is not available. This flag is applicable only for the
server implementing version 2.

IPV4 (4 bytes): The IPv4 address of the interface, if the IPADDR_V4 flag is set in the Flags field.

IPV6 (16 bytes): The IPv6 address of the interface, if the IPADDR_V6 flag is set in the Flags field.

2.2.2.2 IPADDR_INFO_LIST

The IPADDR_INFO_LIST structure contains a list of available IP addresses on the destination Interface

group.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Reserved

IPAddrInstances

IPAddrInfo (variable)

...

12 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Length (4 bytes): The size of the IPADDR_INFO_LIST structure, in bytes.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
field to 0, and the client MUST ignore it on receipt.

IPAddrInstances (4 bytes): The number of IPADDR_INFO structures in the IPAddrInfo member.

IPAddrInfo (variable): An array of one or more IPADDR_INFO structures, as specified in section
2.2.2.1, indicating the IP addresses of the destination Interface group.

2.2.2.3 RESOURCE_CHANGE

The server notifies the registered client of resource state changes through the use of the
RESOURCE_CHANGE structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ChangeType

ResourceName (variable)

...

Length (4 bytes): The size of the resource change notification, in bytes.

ChangeType (4 bytes): Specifies state change of the resource. The following values are used to
specify the change type.

Value Meaning

0x00000000 RESOURCE_STATE_UNKNOWN

0x00000001 RESOURCE_STATE_AVAILABLE

0x000000FF RESOURCE_STATE_UNAVAILABLE

ResourceName (variable): The null terminated resource name on which the change has been
detected. This MUST be either the NetName or IP address provided in a WitnessrRegister call, or
an InterfaceGroupName returned to the client in a WitnessrGetInterfaceList response.

2.2.2.4 RESP_ASYNC_NOTIFY

The RESP_ASYNC_NOTIFY structure contains the resource change type.

 typedef struct _RESP_ASYNC_NOTIFY {
 UINT MessageType;
 UINT Length;
 UINT NumberOfMessages;
 [size_is(Length)] [unique] PBYTE MessageBuffer;
 } RESP_ASYNC_NOTIFY, *PRESP_ASYNC_NOTIFY;

MessageType: Specifies the notification type. This field MUST contain one of the following values.

13 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

1 RESOURCE_CHANGE_NOTIFICATION

2 CLIENT_MOVE_NOTIFICATION

3 SHARE_MOVE_NOTIFICATION

This value is applicable only for the server implementing version 2.

4 IP_CHANGE_NOTIFICATION

This value is applicable only for the server implementing version 2.

Length: Specifies the size of the MessageBuffer field, in bytes.

NumberOfMessages: Total number of notifications in the MessageBuffer field.

MessageBuffer: Contains an array of notification information structures whose type is determined
by the MessageType field.

2.2.2.5 WITNESS_INTERFACE_INFO

The WITNESS_INTERFACE_INFO structure specifies the IP addresses of the interface.

 typedef struct _WITNESS_INTERFACE_INFO {
 WCHAR InterfaceGroupName[260];
 ULONG Version;
 USHORT State;
 ULONG IPV4;
 USHORT IPV6[8];
 UINT Flags;
 } WITNESS_INTERFACE_INFO, *PWITNESS_INTERFACE_INFO;

InterfaceGroupName: The null-terminated string that specifies a name of the interface group.

Version: The current version of the Witness Service running on the server.

State: The current state of the interface. This field MUST contain one of the following values:

Value Meaning

UNKNOWN

0x0000

The state of the interface is unknown.

AVAILABLE

0x0001

The interface is available.

UNAVAILABLE

0x00FF

The interface is unavailable.

IPV4: The IPv4 address of the interface, if the IPv4 flag is set in Flags field.

IPV6: The IPv6 address of the interface, if the IPv6 flag is set in Flags field.

Flags: The Flags field specifies information about the interface. This field MUST be set to combination
of zero or more of the following values:

14 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

IPv4

0x00000001

If set, the IPV4 field contains a valid address.

IPv6

0x00000002

If set, the IPV6 field contains a valid address.

INTERFACE_WITNESS

0x00000004

If set, the interface is available for witness registration. If not set, the interface
MUST NOT be used for witness registration.

2.2.2.6 WITNESS_INTERFACE_LIST

The WITNESS_INTERFACE_LIST structure specifies the list of interfaces available for witness

registration.

 typedef struct _WITNESS_INTERFACE_LIST {
 UINT NumberOfInterfaces;
 [size_is(NumberOfInterfaces)] [unique] PWITNESS_INTERFACE_INFO InterfaceInfo;
 } WITNESS_INTERFACE_LIST, *PWITNESS_INTERFACE_LIST;

NumberOfInterfaces: The number of WITNESS_INTERFACE_INFO structures in InterfaceInfo.

InterfaceInfo: Contains an array of WITNESS_INTERFACE_INFO structures, as specified in section
2.2.2.5.

15 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

3.1 Witness Server Details

The server responds to messages it receives from the client and also produces notifications as

requested by the client. The server performs additional actions in response to administrative,
configuration, and status changes on the machine, as driven by applications local to the server.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to facilitate the explanation of
how the protocol behaves. This specification does not mandate that implementations adhere to this
model as long as their external behaviors are consistent with that described in this specification.

3.1.1.1 Global

The server implements the following properties:

 InterfaceList: A list of available Interfaces as specified in section 3.1.1.2.

 WitnessRegistrationList: A list of witness registrations on the server, as specified in section
3.1.1.3.

 WitnessServiceVersion: The highest Witness protocol version supported by the Witness Service.
The value MUST be one of those listed in section 1.7.

 ServerGlobalName: A hostname by which clients access the server being witnessed.

3.1.1.2 Per Interface in InterfaceList

 InterfaceGroupName: The name of the interface group, in the form of a NetBIOS name.

 State: The state of the interface. This MUST be set to one of the values specified in section
2.2.2.5.

 IPv4Address: An IPv4 address of the interface, if any.

 IPv6Address: An IPv6 address of the interface, if any.

3.1.1.3 Per WitnessRegistration in WitnessRegistrationList

The server implements the following properties per witness registration.

 WitnessClientName: A null-terminated string containing the name of the client.

 NetworkName: The NetName specified in the client registration call.

 IPAddress: An IP address specified in the client registration call.

 RegistrationKey: A unique value assigned by the server for this registration, in the form of

context_handle, as specified in section 2.2.1.1.

 PendingChangeNotifications: A list of change notifications pending for this registration.

 PendingMoveNotification: The most recent move notification, if any, pending for this
registration.

16 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the server implements version 2 of the protocol, the server also implements the following
properties:

 WitnessClientVersion: The Witness protocol version implemented by the client.

 ShareName: The ShareName specified in the client registration call.

 ShareNameNotificationRequired: A Boolean when set; indicates that this registration requires
notifications based on the ShareName.

 IPNotificationRequired: A Boolean when set; indicates that this registration requires
notifications based on the IP addresses changes on the server associated with NetName.

 PendingShareMoveNotification: The most recent share move notification, if any, pending for
this registration.

 PendingIPNotification: The most recent IP change notification, if any, pending for this

registration.

 KeepAliveTime: The maximum amount of the time, in seconds, the server can hold the pending
asynchronous notification.

 LastUseTime: The time at which the server received a registration request, an asynchronous
notify request, or at which time the server sent a response to an asynchronous notification.

 IsAsyncNotifyRegistered: A Boolean flag indicating whether asynchronous notification is

registered or not.

3.1.1.4 Per Notification in PendingChangeNotifications

 ResourceName: The name of the resource whose state has changed.

 NewState: The new resource state.

3.1.1.5 PendingMoveNotification

 Destination: A null-terminated string describing the resource to move to.

3.1.1.6 PendingShareMoveNotification

If the server implements version 2 of the protocol, the server also implements the following:

 Destination: A null-terminated string describing the resource the share has been moved to.

3.1.1.7 PendingIPNotification

If the server implements version 2 of the protocol, the server also implements the following:

 ChangeIndication: A null-terminated string describing the IP changes on the server.

3.1.2 Timers

3.1.2.1 Unused Registration Timer

If the server implements version 2 of the protocol, it MUST implement this timer.

This timer controls the amount of time that a registration can stay unused, in other words, the time
for which the registration is permitted to remain without registering for any asynchronous

17 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

notifications. The server MUST schedule this timer periodically with an implementation-specific interval
and remove unused registrations.

3.1.2.2 AsyncNotify Pending Timer

If the server implements version 2 of the protocol, it MUST implement this timer.

This timer controls the scheduling of periodic searches for pending asynchronous notifications that
have passed their expiration time. This value is based on the KeepAliveTimeout value provided by
the client as specified in section 3.1.4.5.

3.1.3 Initialization

The server MUST initialize WitnessRegistrationList to empty.

The server MUST initialize InterfaceList in an implementation-specific manner from the configuration
store.

The server MUST initialize WitnessServiceVersion to the highest Witness protocol version supported
by the server.<2>

The server MUST initialize ServerGlobalName with an administrator-defined string.

3.1.4 Message Processing Events and Sequencing Rules

The Witness interface defines the following methods:

Method Description

WitnessrGetInterfaceList The WitnessrGetInterfaceList method returns information about the interfaces to which
witness client connections can be made.

Opnum: 0

WitnessrRegister The WitnessrRegister method allows the witness client to register for notifications from
the server.

Opnum: 1

WitnessrUnRegister The WitnessrUnRegister method allows the client to unregister for notifications from
the server.

Opnum: 2

WitnessrAsyncNotify The WitnessrAsyncNotify method is used by the client to request notification of
resource changes from the server.

Opnum: 3

WitnessrRegisterEx The WitnessrRegisterEx method allows the witness client to register for notifications
from the server for a specific share and with optional flags. This opnum is only
applicable for Witness protocol version 2.

Opnum: 4

WitnessrUnRegisterEx The WitnessrUnRegisterEx method allows the client to unregister for notifications
from the server.<3> The Witness Service removes its internal state of the registration
and no longer notifies the client in the event of any resource state changes. This
opnum is only applicable for Witness protocol version 2.

Opnum: 5

For all methods, the server SHOULD<4> enforce security measures to verify that the caller has the
required permissions to execute any method. If the server enforces security measures, and the caller

18 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

does not have the required credentials, then the server MUST fail the call and return
ERROR_ACCESS_DENIED. For more details about determining the identity of the caller for the purpose

of performing an access check, see [MS-RPCE] section 3.3.3.1.3.

3.1.4.1 WitnessrGetInterfaceList (Opnum 0)

The WitnessrGetInterfaceList method returns information about the interfaces to which witness client
connections can be made.

 DWORD WitnessrGetInterfaceList(
 [in] handle_t Handle,
 [out] PWITNESS_INTERFACE_LIST* InterfaceList);

Handle: An RPC binding handle [C706].

InterfaceList: A pointer to a PWITNESS_INTERFACE_LIST, as specified in section 2.2.2.6.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following
table.

Return value/code Description

0x00000000

 ERROR_SUCCESS

The operation completed successfully.

0x00000005

 ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x00000103

ERROR_NO_MORE_ITEMS

No more data is available.

0x0000000E

ERROR_OUTOFMEMORY

There is not enough storage space to complete the operation.

If there are no entries in the InterfaceList, the server MUST fail the request and return the error
code ERROR_NO_MORE_ITEMS.

If no entry in the InterfaceList has a State of AVAILABLE, the server MUST wait until at least one entry
enters that State, as specified in section 3.1.6.1.

For each Interface in the InterfaceList, the server MUST construct a WITNESS_INTERFACE_INFO
structure as follows:

 The InterfaceGroupName field of the WITNESS_INTERFACE_INFO structure MUST be set to

Interface.InterfaceGroupName.

 The State field MUST be set to Interface.State.

 The Version field MUST be set to WitnessServiceVersion.

 If Interface.IPv4Address is not empty, the IPV4 field MUST be set to Interface.IPv4Address,
and IPv4 flag MUST be set in the Flags field.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

19 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 If Interface.IPv6Address is not empty, the IPV6 field MUST be set to Interface.IPv6Address,
and IPv6 flag MUST be set in the Flags field.

 In an implementation-dependent manner, the server MUST determine if the IPv4Address or
IPv6Address match any interface which is hosted on the server and the server is also running

this Witness Service instance. If the address is not hosted on the local server, the
INTERFACE_WITNESS flag MUST be set in the Flags field. Otherwise, the flag MUST NOT be set.

The server MUST construct the WITNESS_INTERFACE_LIST structure as follows:

 All WITNESS_INTERFACE_INFO structures MUST be copied into the InterfaceInfo field of the
WITNESS_INTERFACE_LIST structure.

 The NumberOfInterfaces field of the WITNESS_INTERFACE_LIST structure MUST be set to the
number of interfaces provided by InterfaceInfo.

The WITNESS_INTERFACE_LIST structures MUST be copied into the InterfaceList parameter.

The server MUST return ERROR_SUCCESS and the InterfaceList parameter to the caller.

3.1.4.2 WitnessrRegister (Opnum 1)

The WitnessrRegister method allows the witness client to register for resource state change
notifications of a NetName and IPAddress. The client can subsequently call the WitnessrAsyncNotify
method to receive notifications when there is a state change on any of these resources.

 DWORD WitnessrRegister(
 [in] handle_t Handle,
 [out] PPCONTEXT_HANDLE ppContext,
 [in] ULONG Version,
 [in] [string] [unique] LPWSTR NetName,
 [in] [string] [unique] LPWSTR IpAddress,
 [in] [string] [unique] LPWSTR ClientComputerName);

Handle: An RPC binding handle [C706].

ppContext: A context handle of type PPCONTEXT_HANDLE, as specified in section 2.2.1.2, that
identifies the client on the server.

Version: The version of the Witness protocol currently in use by the client.

NetName: A pointer to a null-terminated string that specifies the name of the resource for which the
client requires notifications.

IpAddress: A pointer to a null-terminated string that specifies the IP address to which the client
application connection is established.

ClientComputerName: A pointer to a null-terminated string that is used to identify the Witness

client.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following
table.

Return value/code Description

0x00000000

 ERROR_SUCCESS

The operation completed successfully.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

20 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x000005AA

ERROR_NO_SYSTEM_RESOURCES

Insufficient system resources exist to complete the requested service.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x0000139F

ERROR_INVALID_STATE

The specified resource state is invalid.

0x0000051A

ERROR_REVISION_MISMATCH

The client request contains an invalid Witness protocol version.

If the Version field of the request is not 0x00010001, the server MUST stop processing the request

and return the error code ERROR_REVISION_MISMATCH.

If NetName, IpAddress or ClientComputerName is NULL, the server MUST fail the request and return
the error code ERROR_INVALID_PARAMETER.

If the NetName parameter is not equal to ServerGlobalName, the server MUST fail the request and
return the error code ERROR_INVALID_PARAMETER.

The server MUST enumerate the shares by calling NetrShareEnum as specified in [MS-SRVS] section
3.1.4.8. In the enumerated list, if any of the shares has shi*_type set to STYPE_CLUSTER_SOFS, as

specified in [MS-SRVS] section 2.2.2.4, the server MUST search for an Interface in InterfaceList,
where Interface.IPv4Address or Interface.IPv6Address matches the IpAddress parameter based
on its format. If no matching entry is found, the server MUST fail the request and return the error
code ERROR_INVALID_STATE.

The server MUST create a WitnessRegistration entry as follows and insert it into the
WitnessRegistrationList.

 WitnessRegistration.WitnessClientName MUST be set to the ClientComputerName parameter.

 WitnessRegistration.NetworkName MUST be set to the NetName parameter.

 WitnessRegistration.IPAddress MUST be set to the IPAddress parameter.

 WitnessRegistration.RegistrationKey MUST be set to a UUID generated by the server.

 WitnessRegistration.PendingChangeNotifications and
WitnessRegistration.PendingMoveNotification MUST be set to empty.

If WitnessServiceVersion is 0x00020000, the server MUST set the following values in

WitnessRegistration entry:

 WitnessRegistration.WitnessClientVersion MUST be set to the value of the Version parameter
value in the request.

 WitnessRegistration.ShareName MUST be set to empty.

 WitnessRegistration.ShareNameNotificationRequired MUST be set to FALSE.

 WitnessRegistration.IPNotificationRequired MUST be set to FALSE.

 WitnessRegistration.PendingShareMoveNotification MUST be set to empty

%5bMS-SRVS%5d.pdf#Section_accf23b00f57441c918543041f1b0ee9

21 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 WitnessRegistration.PendingIPNotification MUST be set to empty.

The server MUST copy the WitnessRegistration.RegistrationKey into the ppContext parameter.

The server MUST return ERROR_SUCCESS and the ppContext parameter to the caller.

3.1.4.3 WitnessrUnRegister (Opnum 2)

The WitnessrUnRegister method allows the client to unregister for notifications from the server. The
Witness Service removes its internal state of the registration and no longer notifies the client in the
event of any resource state changes.

 DWORD WitnessrUnRegister(
 [in] handle_t Handle,
 [in] PCONTEXT_HANDLE pContext);

Handle: An RPC binding handle [C706].

pContext: A context handle of type PCONTEXT_HANDLE, specified in section 2.2.1.1, that identifies
the client on the server.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following
table.

Return value/code Description

0x00000000

 ERROR_SUCCESS

The operation completed successfully.

0x00000005

 ERROR_ACCESS_DENIED

Access is denied.

0x00000490

ERROR_NOT_FOUND

The specified CONTEXT_HANDLE is not found.

The server MUST search for the WitnessRegistration in WitnessRegistrationList, where
WitnessRegistration.RegistrationKey matches the pContext parameter.

If no matching entry is found, the server SHOULD<5> stop processing the request and return the

error code ERROR_INVALID_PARAMETER.

If the matching entry is found, the server MUST remove the WitnessRegistration entry from the
WitnessRegistrationList and return ERROR_SUCCESS to the caller.

3.1.4.4 WitnessrAsyncNotify (Opnum 3)

The WitnessrAsyncNotify method is used by the client to request notification of registered resource
changes from the server.

 DWORD WitnessrAsyncNotify(
 [in] handle_t Handle,
 [in] PCONTEXT_HANDLE_SHARED pContext,
 [out] PRESP_ASYNC_NOTIFY* pResp);

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

22 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Handle: An RPC binding handle [C706].

pContext: A context handle of type PCONTEXT_HANDLE_SHARED, as specified in section 2.2.1.3, that
identifies the client on the server.

pResp: A pointer to a PRESP_ASYNC_NOTIFY structure, as specified in section 2.2.2.4.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following
table.

Return value/code Description

0x00000000

 ERROR_SUCCESS

The operation completed successfully.

0x00000005

 ERROR_ACCESS_DENIED

Access is denied.

0x000005AA

ERROR_NO_SYSTEM_RESOURCES

Insufficient system resources exist to complete the requested service.

0x00000490

ERROR_NOT_FOUND

The specified resource name is not found.

The server MUST search for the WitnessRegistration in WitnessRegistrationList, where
WitnessRegistration.RegistrationKey matches the pContext parameter.

If no matching entry is found, the server MUST fail the request and return the error code

ERROR_NOT_FOUND.

If the matching entry is found, and WitnessServiceVersion is 0x00020000, the server MUST update
WitnessRegistration.LastUseTime to the current time, and

WitnessRegistration.IsAsyncNotifyRegistered to TRUE.

The server MUST wait until either WitnessRegistration.PendingChangeNotifications or
WitnessRegistration.PendingMoveNotification are not empty.

If WitnessRegistration.PendingChangeNotifications is not empty, the server MUST construct a

RESP_ASYNC_NOTIFY structure as follows:

 pResp.MessageType: MUST be set to RESOURCE_CHANGE_NOTIFICATION.

 pResp.MessageBuffer: MUST be set to a RESOURCE_CHANGE structure with the following values:

 The Length field MUST be set to the size of the RESOURCE_CHANGE structure.

 If the NewState of the Notification is UNAVAILABLE, the ChangeType field MUST be set to
RESOURCE_STATE_UNAVAILABLE, else ChangeType MUST be set to
RESOURCE_STATE_AVAILABLE.

 The ResourceName field MUST be set to the ResourceName of the Notification.

 If additional entries are present in WitnessRegistration.PendingChangeNotifications, the
server MUST continue to add RESOURCE_CHANGE structures to the pResp.MessageBuffer,
until no entries remain in the list.

 pResp.NumberOfMessages: MUST be set to the number of resources changed.

 pResp.Length: MUST be set to the length of the MessageBuffer field.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

23 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the WitnessRegistration.PendingMoveNotification is not empty, the server MUST construct the
structure as follows:

 pResp.MessageType: MUST be set to CLIENT_MOVE_NOTIFICATION.

 pResp.MessageBuffer: MUST be set to an IPADDR_INFO_LIST structure with the following values:

 The Reserved field MUST be set to 0.

 The IPAddrInstances field MUST be set to the number of available interfaces in
InterfaceList for which Interface.InterfaceGroupName matches the
Notification.ChangeIndication.

 For each Interface matched, the server MUST construct an IPADDR_INFO structure as
follows:

 If Interface.State is AVAILABLE, then the IPADDR_ONLINE flag in the Flags field MUST

be set. If Interface.State is UNAVAILABLE, then the IPADDR_OFFLINE flag in the Flags

field MUST be set.

 If Interface.IPv4Address is not empty, the IPV4 field MUST be set to
Interface.IPv4Address, and IPADDR_V4 MUST be set in the Flags field.

 If Interface.IPv6Address is not empty, the IPV6 field MUST be set to
Interface.IPv6Address, and IPADDR_V6 MUST be set in the Flags field.

 The IPADDR_INFO structure MUST be copied into the IPAddrInfo field.

 The Length field MUST be set to the size of the IPADDR_INFO_LIST structure.

 pResp.NumberOfMessages: MUST be set to 1.

 pResp.Length: MUST be set to the length of the MessageBuffer field.

If WitnessServiceVersion is 0x00020000, WitnessRegistration.WitnessClientVersion is

0x00020000, and WitnessRegistration.PendingShareMoveNotification is not empty, the server
MUST construct the structure as follows:

 pResp.MessageType: MUST be set to SHARE_MOVE_NOTIFICATION.

 pResp.MessageBuffer: MUST be set to an IPADDR_INFO_LIST structure with the following values:

 The Reserved field MUST be set to 0.

 The IPAddrInstances field MUST be set to the number of available interfaces in
InterfaceList for which Interface.InterfaceGroupName matches the
Notification.Destination.

 For each Interface matched, the server MUST construct an IPADDR_INFO structure as

follows:

 If Interface.IPv4Address is not empty, the IPV4 field MUST be set to
Interface.IPv4Address, and IPADDR_V4 MUST be set in the Flags field.

 If Interface.IPv6Address is not empty, the IPV6 field MUST be set to
Interface.IPv6Address, and IPADDR_V6 MUST be set in the Flags field.

 The IPADDR_INFO structure MUST be copied into the IPAddrInfo field.

 The Length field MUST be set to the size of the IPADDR_INFO_LIST structure.

 pResp.NumberOfMessages: MUST be set to 1.

24 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 pResp.Length: MUST be set to the length of the MessageBuffer field.

If WitnessServiceVersion is 0x00020000, WitnessRegistration.WitnessClientVersion is
0x00020000, and WitnessRegistration.PendingIPNotification is not empty, the server MUST
construct the structure as follows:

 pResp.MessageType: MUST be set to IP_CHANGE_NOTIFICATION.

 pResp.MessageBuffer: MUST be set to an IPADDR_INFO_LIST structure with the following values:

 The Reserved field MUST be set to 0.

 The IPAddrInstances field MUST be set to the number of available interfaces in
InterfaceList for which Interface.InterfaceGroupName matches the
Notification.Destination.

 For each Interface matched, the server MUST construct an IPADDR_INFO structure as

follows:

 If Interface.IPv4Address is not empty, the IPV4 field MUST be set to
Interface.IPv4Address, and IPADDR_V4 MUST be set in the Flags field.

 If Interface.IPv6Address is not empty, the IPV6 field MUST be set to
Interface.IPv6Address, and IPADDR_V6 MUST be set in the Flags field.

 The IPADDR_INFO structure MUST be copied into the IPAddrInfo field.

 The Length field MUST be set to the size of the IPADDR_INFO_LIST structure.

 pResp.NumberOfMessages: MUST be set to 1.

 pResp.Length: MUST be set to the length of the MessageBuffer field.

The server MUST remove all entries that were processed from
WitnessRegistration.PendingChangeNotifications,

WitnessRegistration.PendingMoveNotification,
WitnessRegistration.PendingShareMoveNotification, and

WitnessRegistration.PendingIPNotification.

If WitnessServiceVersion is 0x00020000, the server MUST set
WitnessRegistration.LastUseTime to the current time and
WitnessRegistration.IsAsyncNotifyRegistered to FALSE.

The server MUST return ERROR_SUCCESS and the pResp parameter to the client.

3.1.4.5 WitnessrRegisterEx (Opnum 4)

The WitnessrRegisterEx method allows the witness client to register for resource state change
notifications of a NetName, ShareName and multiple IPAddresses. The client can subsequently call the
WitnessrAsyncNotify method to receive notifications when there is a state change on any of these

resources.

 DWORD WitnessrRegisterEx(
 [in] handle_t Handle,
 [out] PPCONTEXT_HANDLE ppContext,
 [in] ULONG Version,
 [in] [string] [unique] LPWSTR NetName,
 [in] [string] [unique] LPWSTR ShareName,
 [in] [string] [unique] LPWSTR IpAddress,
 [in] [string] [unique] LPWSTR ClientComputerName,
 [in] ULONG Flags,

25 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] ULONG KeepAliveTimeout);

Handle: An RPC binding handle [C706].

ppContext: A context handle of type PPCONTEXT_HANDLE, as specified in section 2.2.1.2, that
identifies the client on the server.

Version: The version of the Witness protocol currently in use by the client.

NetName: A pointer to a null-terminated string that specifies the name of the resource for which the
client requires notifications.

ShareName: A pointer to a null-terminated string that specifies the name of the share resource for
which the client requires notifications.

IpAddress: A pointer to a null-terminated string that specifies the IP address to which the client

application connection is established.

ClientComputerName: A pointer to a null-terminated string that is used to identify the Witness
client.

Flags: The type of Witness registration. This field MUST be set to one of the following values:

Value Meaning

WITNESS_REGISTER_NONE

0x00000000

If set, the client requests notifications only for the registered IP
address.

WITNESS_REGISTER_IP_NOTIFICATION

0x00000001

If set, the client requests notifications of any eligible server IP
addresses.

KeepAliveTimeout: The maximum number of seconds for any notification response from the server.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as

specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following
table.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x000005AA

ERROR_NO_SYSTEM_RESOURCES

Insufficient system resources exist to complete the requested service.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x0000139F

ERROR_INVALID_STATE

The specified resource state is invalid.

0x0000051A

ERROR_REVISION_MISMATCH

The client request contains an invalid Witness protocol version.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

26 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This opnum is applicable only to servers that implement Witness protocol version 2.

If the Version field of the request is not 0x00020000, the server MUST stop processing the request
and return the error code ERROR_REVISION_MISMATCH.

If NetName, IpAddress, or ClientComputerName is NULL, the server MUST fail the request and return

the error code ERROR_INVALID_PARAMETER.

If the NetName parameter is not equal to ServerGlobalName, the server MUST fail the request and
return the error code ERROR_INVALID_PARAMETER.

If ShareName is not NULL, the server MUST enumerate the shares by calling NetrShareEnum as
specified in [MS-SRVS] section 3.1.4.8. If the enumeration fails or if no shares are returned, the
server MUST return the error code ERROR_INVALID_STATE.

If none of the shares in the list has shi*_type set to STYPE_CLUSTER_SOFS as specified in [MS-SRVS]

section 3.1.4.8, the server MUST ignore ShareName.

Otherwise, the server MUST fail the request with the error code ERROR_INVALID_STATE for the
following:

 ShareName does not exist in the enumerated list.

 The server MUST search for an Interface in InterfaceList, where Interface.IPv4Address or
Interface.IPv6Address matches the IpAddress parameter based on its format. If no matching

entry is found and ShareName has shi*_type set to STYPE_CLUSTER_SOFS, as specified in [MS-
SRVS] section 2.2.2.4, the server MUST fail the request with ERROR_INVALID_STATE.

The server MUST create a WitnessRegistration entry as follows and insert it into the
WitnessRegistrationList.

 WitnessRegistration.WitnessClientVersion MUST be set to the value of the Version
parameter.

 WitnessRegistration.WitnessClientName MUST be set to the ClientComputerName parameter.

 WitnessRegistration.LastUseTime MUST be set to the current time.

 WitnessRegistration.KeepAliveTime MUST be set to KeepAliveTimeout.

 WitnessRegistration.IsAsyncNotifyRegistered MUST be set to FALSE.

 WitnessRegistration.NetworkName MUST be set to the NetName parameter.

 WitnessRegistration.ShareName MUST be set to the ShareName parameter.

 If ShareName is not NULL, WitnessRegistration.ShareNameNotificationRequired MUST be
set to TRUE; otherwise set to FALSE.

 If Flags field has WITNESS_REGISTER_IP_NOTIFICATION set,
WitnessRegistration.IPNotificationRequired MUST be set to TRUE; otherwise set to FALSE.

 WitnessRegistration.IPAddress MUST be set to the IPAddress parameter.

 WitnessRegistration.RegistrationKey MUST be set to a newly generated UUID.

 WitnessRegistration.PendingChangeNotifications,
WitnessRegistration.PendingMoveNotification,

WitnessRegistration.PendingShareMoveNotification,
WitnessRegistration.PendingIPNotification MUST be set to empty.

The server MUST copy the WitnessRegistration.RegistrationKey into the ppContext parameter.

%5bMS-SRVS%5d.pdf#Section_accf23b00f57441c918543041f1b0ee9

27 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server MUST return ERROR_SUCCESS and the ppContext parameter to the caller.

3.1.4.6 WitnessrUnRegisterEx (Opnum 5)

The WitnessrUnRegisterEx method allows the client to unregister for notifications from the
server.<6> The Witness Service removes its internal state of the registration and no longer notifies
the client in the event of any resource state changes.

 DWORD WitnessrUnRegisterEx(
 [in] handle_t Handle,
 [in, out] PPCONTEXT_HANDLE ppContext);

Handle: An RPC binding handle [C706].

ppContext: A context handle of type PPCONTEXT_HANDLE, specified in section 2.2.1.2, that identifies

the client on the server.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following
table.

Return value/code Description

0x00000000

 ERROR_SUCCESS

The operation completed successfully.

0x00000005

 ERROR_ACCESS_DENIED

Access is denied.

0x00000490

ERROR_NOT_FOUND

The specified CONTEXT_HANDLE is not found.

The server MUST search for WitnessRegistration in WitnessRegistrationList, where
WitnessRegistration.RegistrationKey matches the ppContext parameter.

If no matching entry is found, the server MUST stop processing the request and return the error code
ERROR_INVALID_PARAMETER.

If the matching entry is found, the server MUST remove the WitnessRegistration entry from

WitnessRegistrationList. The server MUST set ppContext to NULL and return ERROR_SUCCESS to
the caller.

3.1.5 Timer Events

3.1.5.1 Unused Registration Timer Event

If the server implements version 2 of the protocol, it MUST implement this timer event.

When the Unused Registration Timer (section 3.1.2.1) expires, the server MUST search for the
WitnessRegistration entry in WitnessRegistrationList. If

WitnessRegistration.IsAsyncNotifyRegistered is FALSE and WitnessRegistration.LastUseTime
plus an implementation-specific time-out<7> is earlier than the current time, the server MUST remove
the WitnessRegistration entry from the WitnessRegistrationList.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

28 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.5.2 AsyncNotify Pending Timer Event

If the server implements version 2 of the protocol, it MUST implement this timer event.

When the Notification Pending Timer (section 3.1.2.2) expires, the server MUST search for the

WitnessRegistration entry in WitnessRegistrationList. If
WitnessRegistration.IsAsyncNotifyRegistered is TRUE and WitnessRegistration.LastUseTime
plus WitnessRegistration.KeepAliveTime is earlier than the current time, the server MUST fail the
request with ERROR_TIMEOUT.

3.1.6 Other Local Events

The Service Witness Protocol is driven by a series of higher-layer triggered events in the following
categories:

 A resource being enabled or disabled.

 A request for a client to move to another resource.

 The ownership of a share moving between resources.

 An IP address being added, removed, enabled, or disabled.

3.1.6.1 Server Application Notifies of an Interface Being Enabled or Disabled

The calling application provides the interface group name, IPv4 and/or IPv6 addresses, and state.

The server MUST search for the Interface in the InterfaceList where

Interface.InterfaceGroupName matches the application-provided interface group name, and
Interface.IPv4Address or Interface.IPv6Address matches one or both of the application-provided
IP addresses.

If a matching entry is found, the server MUST set Interface.State to the application-provided state.

Then for each entry in the WitnessRegistrationList where WitnessRegistration.NetworkName
matches the application-provided network name and WitnessRegistration.IPAddress matches the
application-provided IP address, the server SHOULD<8> add a change entry to

WitnessRegistration.PendingChangeNotifications, with a ResourceName of the
Interface.InterfaceGroupName and a NewState of the application-provided state.

Else if no matching entry is found, the server MUST create a new Interface as follows, and add it to
the InterfaceList:

 Interface.InterfaceGroupName: MUST be set to the application-provided interface group
name.

 Interface.State: MUST be set to the application-supplied state.

 If the application supplied an IPv4 address, then Interface.IPv4Address MUST be set to it, else
Interface.IPv4Address MUST be set to empty.

 If the application supplied an IPv6 address, then Interface.IPv6Address MUST be set to it, else
Interface.IPv6Address MUST be set to empty.

The server MUST awaken any pending client requests awaiting notification in sections 3.1.4.1 and
3.1.4.4.

29 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.6.2 Server Application Notifies of a Request to Move to a New Resource

The calling application provides the Witness client name and resource name. The resource name can
be an interface group name, an IP address, or a host name.

The server MUST search for all WitnessRegistrations in the WitnessRegistrationList where
WitnessRegistration.WitnessClientName matches the application-provided witness client name.

For each WitnessRegistration matched, the server MUST create or overwrite the move entry in
WitnessRegistration.PendingMoveNotification, setting the Notification.Destination to the
application-provided resource name.

The server MUST awaken any client requests awaiting notification in section 3.1.4.4.

3.1.6.3 Server Application Notifies of a Change in the Resource that Owns a Share

This notification is applicable only to servers implementing version 2 (0x00020000). The calling

application provides the Witness client name, share name, and resource name. The resource name
can be an interface group name, an IP address, or a host name.

The server MUST search for all WitnessRegistrations in the WitnessRegistrationList where
WitnessRegistration.WitnessClientName matches the application-provided witness client name,
WitnessRegistration.ShareName matches the application-provided share name, and
WitnessRegistration.ShareNameNotificationRequired is TRUE.

For each WitnessRegistration matched, the server MUST create or overwrite the share move entry
in WitnessRegistration.PendingShareMoveNotification, setting the Notification.Destination to
the application-provided resource name.

The server MUST awaken any client requests awaiting notification in section 3.1.4.4.

3.1.6.4 Server Application Notifies of an IP Address Being Added, Removed, Enabled

or Disabled

This notification is applicable only to servers implementing version 2 (0x00020000).The calling
application provides the Witness client name and resource name. The resource name can be an
interface group name, an IP address, or a host name.

The server MUST search for all WitnessRegistrations in the WitnessRegistrationList where
WitnessRegistration.WitnessClientName matches the application-provided witness client name and
WitnessRegistration.IPNotificationRequired is TRUE.

For each WitnessRegistration matched, the server MUST create or overwrite the move entry in
WitnessRegistration.PendingIPNotification, setting the Notification.ChangeIndication to the
application-provided resource name.

The server MUST awaken any client requests awaiting notification in section 3.1.4.4.

3.1.6.5 Transport Connection Shutdown

When the RPC transport indicates that an RPC connection with a client has timed out, as specified in
[MS-RPCE] section 3.3.3.2.1, the server MUST delete the WitnessRegistration entry for that client
from the WitnessRegistrationList.

3.2 Witness Client Details

The client performs requests made to it by the application.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

30 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to facilitate the explanation of

how the protocol behaves. This specification does not mandate that implementations adhere to this
model as long as their external behaviors are consistent with that described in this specification.

3.2.1.1 Global

The client implements the following properties:

 WitnessRegistrationList: A list of WitnessRegistration initiated by the client to the witness
servers. The structure of registration is as specified in section 3.2.1.2.

 WitnessClientVersion: The highest Witness protocol version supported by the Witness client.
The value MUST be one of those listed in section 1.7.

3.2.1.2 Per WitnessRegistration

The client implements the following properties per witness registration.

 WitnessServerName: A null-terminated string that contains the name of the server.

 IPAddress: An IP address of a connection target.

 RegistrationKey: A unique value assigned by the server for this registration, in the form of
context_handle, as specified in section 2.2.1.1.

 RPCHandle: An RPC handle to be used for making requests of the Witness server.

 WitnessNotifyRequest: A Boolean indicating whether a WitnessrAsyncNotify request is
outstanding.

If the client implements version 2 (0x00020000) of the Witness protocol, the client implements the
following properties:

 ShareName: A null-terminated string that contains the share name.

 NetNameNotificationRequired: A Boolean when set; indicates that this registration requires

notifications based on the NetName.

 ShareNameNotificationRequired: A Boolean when set; indicates that this registration requires
notifications based on the ShareName.

 IPNotificationRequired: A Boolean when set; indicates that this registration requires
notifications based on the IP address changes on the server associated with NetName.

 WitnessServerVersion: The Witness protocol version supported by the Witness server for this

registration.

3.2.2 Timers

The client uses non-default behavior for the RPC Call Timeout timer defined in [MS-RPCE] section
3.3.2.2.2. The timer value that the client uses is implementation-specific.<9>

3.2.3 Initialization

The client MUST initialize WitnessRegistrationList to empty.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

31 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The client MUST initialize WitnessClientVersion in an implementation-specific manner<10>.

3.2.4 Message Processing Events and Sequencing Rules

After the client is initialized, it is subsequently driven by the higher-layer events triggered by the
applications. The following sections describe events triggered by the higher layer.

3.2.4.1 Application Requests Witness Register

The caller provides the following:

 NetName: The name that the application is requesting for notifications, typically the name to
which it has connected.

 IpAddress: The IP address for which the application requires receiving asynchronous notification.

 ShareName: A string containing the share name on which the application had requested for

notifications, typically the share name to which it has connected. This parameter is only applicable

for clients implementing Witness protocol version 2.

 IsNetNameNotificationRequired: A Boolean when set; indicates that the application is
requesting witness registration for receiving notifications based on the NetName. This parameter
is only applicable for clients implementing Witness protocol version 2.

 IsShareNameNotificationRequired: A Boolean when set; indicates that the application is
requesting witness registration for receiving notifications based on the ShareName. This
parameter is only applicable for clients implementing Witness protocol version 2.

 IsIPNotificationRequired: A Boolean when set; indicates that the application is requesting
witness registration for receiving notifications based on the IP addresses changes on the server
associated with NetName. This parameter is only applicable for clients implementing Witness
protocol version 2.

If the NetName parameter is an IPv4 address as dotted-decimal with four parts or an IPv6 address
as 8 hexadecimal numbers separated by colons, the client MUST return an implementation-specific

error to the calling application.

The client MUST establish an RPC connection to the Witness Service running on the IPAddress, as
specified in section 2.1 using implementation-specific<11> values for authentication level and
authentication service. If the connection is not established, the resulting error MUST be returned to
the caller.

The client MUST call the WitnessrGetInterfaceList method, by providing the RPC handle returned
from the previous step as the Handle input parameter, and subsequently close the RPC handle. If the

server returns an error, the client MUST return the same error code to the caller.

If the server returns STATUS_SUCCESS, the client MUST select an Interface returned in the
WITNESS_INTERFACE_LIST where the INTERFACE_WITNESS flag is set in the Flags field and State is
AVAILABLE.

If WitnessClientVersion is 0x00020000, the client MUST create a new WitnessRegistration entry
in WitnessRegistrationList and set WitnessRegistration.WitnessServerVersion to the Version
value returned in the WitnessrGetInterfaceList response and set WitnessRegistration.IpAddress

to the IpAddress.

The client MUST establish an RPC Connection to the Witness Service running on the selected Interface,
as specified in section 2.1 using implementation-specific<12> values for authentication level and
authentication service. If the IPv4 flag is set, the address in Interface.IPv4 SHOULD be used for the

32 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

connection. If the IPv6 flag is set, the address in Interface.IPv6 SHOULD be used for the
connection. If the connection is not established, the resulting error MUST be returned to the caller.

If WitnessClientVersion is 0x00020000, and if IsShareNameNotificationRequired or
IsIPNotificationRequired provided by the application is TRUE, the client MUST call the RPC

WitnessrRegisterEx method on the resulting RPC handle, providing the following values:

 WitnessClientVersion for the Version parameter

 NetName for the NetName parameter

 ShareName for the ShareName parameter

 IpAddress for the IpAddress parameter

 A name to be used to identify the client<13> for ClientComputerName

 If IsIPNotificationRequired is TRUE, 0x00000001 for Flags; otherwise 0x00000000 for Flags.

 An implementation-specific time out value for the KeepAliveTimeout parameter.<14>

If the server returns an error, the client MUST retry the registration using other entries returned by
the server for the WitnessrGetInterfaceList response. If all the entries are exhausted, the client
MUST again call the WitnessrGetInterfaceList method as specified earlier. The client SHOULD<15>
retry this registration sequence until it gets STATUS_SUCCESS from the server. If the server returns
STATUS_SUCCESS, the client MUST update WitnessRegistration entry with the following values:

 WitnessServerName: This value MUST be set to the NetName parameter.

 ShareName: This value MUST be set to ShareName parameter.

 RegistrationKey: This value MUST be set to the value in the ppContext parameter.

 RPCHandle: This value MUST be set to the RPC handle used in the previous step.

 WitnessNotifyRequest: This value MUST be set to FALSE.

 NetNameNotificationRequired: This value MUST be set to TRUE.

 ShareNameNotificationRequired: This value MUST be set to TRUE if

IsShareNameNotificationRequired is TRUE; otherwise set to FALSE.

 IPNotificationRequired: This value MUST be set to TRUE if IsIPNotificationRequired is TRUE;
otherwise set to FALSE.

Otherwise, the client MUST call the RPC WitnessrRegister method on the resulting RPC handle,
providing 0x00010001 for Version, NetName, IpAddress, and a name to be used to identify the
client<16>, as input parameters. If the server returns an error, the client MUST retry the registration
using other entries returned by the server for the WitnessrGetInterfaceList response. If all the

entries are exhausted, the client MUST again call the WitnessrGetInterfaceList method as specified
earlier. The client SHOULD<17> retry this registration sequence until it gets STATUS_SUCCESS from

the server. If the server returns STATUS_SUCCESS, the client MUST create a new
WitnessRegistration entry with the following values, insert the entry in WitnessRegistrationList,
and return success to the caller:

 WitnessServerName: This value MUST be set to the NetName parameter.

 IPAddress: This value MUST be set to the IpAddress parameter.

 RegistrationKey: This value MUST be set to the value in the ppContext parameter.

 WitnessNotifyRequest: This value MUST be set to FALSE.

33 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 RPCHandle: This value MUST be set to the RPC handle used in the previous step.

 If WitnessClientVersion is 0x00020000, ShareName MUST be set to NULL,
NetNameNotificationRequired MUST be set to TRUE, ShareNameNotificationRequired MUST
be set to FALSE, and IPNotificationRequiredRequired MUST be set to FALSE.

The client MUST return success to the caller.

3.2.4.2 Application Requests Witness Event Notification

The caller provides the following:

 NetName: The name that the application is requesting for notifications, typically the name to
which it has connected.

 IpAddress: The IP address for which the application requires receiving asynchronous notification.

 ShareName: A string containing the share name that the application is requesting for

notifications, typically the share name to which it has connected. This parameter is only applicable
for clients implementing Witness protocol version 2.

 IsNetNameNotificationRequired: A Boolean when set; indicates that the application had

requested witness registration for receiving notifications based on the NetName. This parameter
is only applicable for clients implementing Witness protocol version 2.

 IsShareNameNotificationRequired: A Boolean when set; indicates that the application had
requested witness registration for receiving notifications based on the ShareName. This
parameter is only applicable for clients implementing Witness protocol version 2.

 IsIPNotificationRequired: A Boolean when set; indicates that the application had requested
witness registration for receiving notifications based on the IP addresses changes on the server

associated with NetName. This parameter is only applicable for clients implementing Witness
protocol version 2.

If WitnessClientVersion is 0x00020000, the client MUST locate the WitnessRegistration entry in
the WitnessRegistrationList where WitnessRegistration.WitnessServerName matches
NetName, WitnessRegistration.WitnessShareName matches ShareName,
WitnessRegistration.IPAddress matches IPAddress,

WitnessRegistration.NetNameNotificationRequired matches IsNetNameNotificationRequired,
WitnessRegistration.ShareNameNotificationRequired matches
IsShareNameNotificationRequired, and WitnessRegistration.IPNotificationRequired matches
IsIPNotificationRequired.

If WitnessClientVersion is 0x00010001, the client MUST locate a WitnessRegistration entry in the
WitnessRegistrationList where WitnessRegistration.WitnessServerName matches the
application-provided NetName and WitnessRegistration.IPAddress matches the application-

provided IPAddress.

If no matching entry is found, or if the WitnessRegistration.WitnessNotifyRequest is TRUE, the

client MUST stop processing and return an implementation-defined local error to the caller.

The client MUST set WitnessRegistration.WitnessNotifyRequest to TRUE.

The client MUST call the WitnessrAsyncNotify method, on WitnessRegistration.RPCHandle,
passing WitnessRegistration.RegistrationKey as pContext.

When the server replies, if WitnessClientVersion is 0x00020000 and the status indicates

ERROR_TIMEOUT, the client MUST call the WitnessrAsyncNotify method as specified earlier.

Otherwise, the client MUST set WitnessRegistration.WitnessNotifyRequest to FALSE.

34 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The status and any received RESP_ASYNC_NOTIFY result obtained from the server in the previous
step MUST be returned to the caller.

3.2.4.3 Application Requests Witness UnRegister

The caller provides the following:

 NetName: The name that the application is requesting to be unregistered, typically the name to
which it has previously registered.

 IpAddress: The IP address on which the application previously registered for receiving

asynchronous notification.

 ShareName: A string containing the share name that the application is requesting for
notifications, typically the share name to which it has connected. This parameter is only applicable
for clients implementing Witness protocol version 2.

 IsNetNameNotificationRequired: A Boolean when set; indicates that the application had

requested witness registration for receiving notifications based on the NetName. This parameter
is only applicable for clients implementing Witness protocol version 2.

 IsShareNameNotificationRequired: A Boolean when set; indicates that the application had
requested witness registration for receiving notifications based on the ShareName. This
parameter is only applicable for clients implementing Witness protocol version 2.

 IsIPNotificationRequired: A Boolean when set; indicates that the application had requested
witness registration for receiving notifications based on the IP addresses changes on the server
associated with NetName. This parameter is only applicable for clients implementing Witness
protocol version 2.

If WitnessClientVersion is 0x00020000, the client MUST locate the WitnessRegistration entry in
the WitnessRegistrationList where WitnessRegistration.WitnessServerName matches
NetName, WitnessRegistration.WitnessShareName matches ShareName,

WitnessRegistration.IPAddress matches IPAddress,
WitnessRegistration.NetNameNotificationRequired matches IsNetNameNotificationRequired,
WitnessRegistration.ShareNameNotificationRequired matches

IsShareNameNotificationRequired, and WitnessRegistration.IPNotificationRequired matches
IsIPNotificationRequired.

If WitnessClientVersion is 0x00010001, the client MUST locate a WitnessRegistration entry in the
WitnessRegistrationList where WitnessRegistration.WitnessServerName matches the
application-provided NetName and WitnessRegistration.IPAddress matches the application-
provided IPAddress.

If no matching entry is found, or if the WitnessRegistration.WitnessNotifyRequest is TRUE, the

client MUST stop processing and return an implementation-defined local error to the caller.

If WitnessClientVersion is 0x00020000, the client SHOULD<18> call the WitnessrUnRegisterEx
method, on the WitnessRegistration.RPCHandle, passing the

WitnessRegistration.RegistrationKey as the context.

If WitnessClientVersion is 0x00010001, the client MUST call the WitnessrUnRegister method, on the
WitnessRegistration.RPCHandle, passing the WitnessRegistration.RegistrationKey as the
context.

If the server returns an error, the client MUST return the same error code to the caller. If the server
returns STATUS_SUCCESS, the client MUST close WitnessRegistration.RPCHandle, remove the
WitnessRegistration from WitnessRegistrationList, and return STATUS_SUCCESS to the caller.

35 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2.5 Timer Events

Upon the expiration of RPC Call Timeout Timer, as specified in section 3.2.2, the client MUST close the
RPC connection to the server and release the binding handle.

3.2.6 Other Local Events

None.

36 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

The following section describes common scenarios that indicate normal traffic flow in order to illustrate
the function of the Service Witness Protocol.

4.1 Registering Notification Changes from the Witness Server

The following diagram demonstrates the steps taken to register and unregister the client to receive
notification changes from the server.

Figure 2: Message sequence used to register and unregister for notifications

1. The client sends a WitnessrGetInterfaceList request to the SMB3 Fileserver.

2. The SMB3 Fileserver returns information about the witness interfaces to which client connections

can be made.

 SWN: WitnessrGetInterfaceList Response, ReturnValue=0
 InterfaceList:
 WitnessInterfaceListPtr: Pointer To 0x00020000
 ReferentID: 0x00020000
 WitnessInterfaceList:
 NumberOfInterfaces: 2 (0x2)
 WitnessInterfaceInfoPtr: Pointer To 0x00020004
 ReferentID: 0x00020004
 InterfaceInfo:

37 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Size: 2 Elements
 MaxCount: 2
 Element:
 InterfaceGroupName: NODE02
 padding: 0 Bytes
 Version: 4294967295 (0xFFFFFFFF)
 State: 1 (0x1)
 padding1: 2 Bytes
 Padding: Binary Large Object (2 Bytes)
 IPV4: 192.168.1.22
 IPV6: 0:0:0:0:0:0:0:0
 padding2: 0 Bytes
 Flags: 5 (0x5)
 Element:
 InterfaceGroupName: NODE01
 padding: 0 Bytes
 Version: 4294967295 (0xFFFFFFFF)
 State: 1 (0x1)
 padding1: 2 Bytes
 Padding: Binary Large Object (2 Bytes)
 IPV4: 192.168.1.12
 IPV6: 0:0:0:0:0:0:0:0
 padding2: 0 Bytes
 Flags: 1 (0x1)
 ReturnValue: 0 (0x0)

3. The client selects any one interface from the interface list and sends a WitnessrRegister request
to register for resource state change notifications of NetName and IPAddress.

 SWN: WitnessrRegister Request, Version=65537, NetName=generalfs, IpAddress=192.168.1.200,
ClientComputerName=CLIENT01.contoso.com

 Version: 65537 (0x10001)
 NetName: generalfs
 Pointer: Pointer To 0x00020000
 ReferentID: 0x00020000
 stringValue: generalfs
 Length: 10 Elements
 MaxCount: 10
 Offset: 0
 ActualCount: 10
 Array: generalfs
 ArrayData: generalfs
 IpAddress: 192.168.1.200
 Pointer: Pointer To 0x00020004
 ReferentID: 0x00020004
 stringValue: 192.168.1.200
 Length: 14 Elements
 MaxCount: 14
 Offset: 0
 ActualCount: 14
 Array: 192.168.1.200
 ArrayData: 192.168.1.200
 ClientComputerName: CLIENT01.contoso.com
 Pointer: Pointer To 0x00020008
 ReferentID: 0x00020008
 stringValue: CLIENT01.contoso.com
 Length: 21 Elements
 MaxCount: 21
 Offset: 0
 ActualCount: 21
 Array: CLIENT01.contoso.com
 ArrayData: CLIENT01.contoso.com

4. The Witness server processes the request and returns a context handle that identifies the client on
the server.

38 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 SWN: WitnessrRegister Response, Context=0x1, ReturnValue=0
 Context: 0x1
 ContextType: 0 (0x0)
 ContextUuid: {8FC957B7-6C9B-9790-496A-F8A0F2193318}
 ReturnValue: 0 (0x0)

5. The client sends a WitnessrAsyncNotify request to receive asynchronous notifications of
registered resource changes from the server.

 SWN: WitnessrAsyncNotify Request, Context=0x1
 Context: 0x1
 ContextType: 0 (0x0)
 ContextUuid: {8FC957B7-6C9B-9790-496A-F8A0F2193318}

6. Whenever there is a state change on the registered resource, the Witness server responds to the
client with a WitnessrAsyncNotify response.

 SWN: WitnessrAsyncNotify Response, Resource Change Notification, ReturnValue=0
 Resp:
 RespAsyncNotifyPtr: Pointer To 0x00020000
 ReferentID: 0x00020000
 RespAsyncNotify:
 MessageType: 1 (0x1)
 Length: 28 (0x1C)
 NumberOfMessages: 1 (0x1)
 NotificationPtr: Pointer To 0x00020004, 28 Elements
 ReferentID: 0x00020004
 MaxCount: 28
 Notification:
 ResourceChange:
 Length: 28 (0x1C)
 ChangeType: 255 (0xFF)
 ResourceName: GENERALFS
 pad: 0 Bytes
 ReturnValue: 0 (0x0)

7. The client sends a context handle in a WitnessrUnRegister request to unregister for notifications
from the Witness server.

 SWN: WitnessrUnRegister Request, Context=0x1
 Context: 0x1
 ContextType: 0 (0x0)
 ContextUuid: {8FC957B7-6C9B-9790-496A-F8A0F2193318}

8. The Witness server processes the requests by removing the entry and no longer notifies the client
of resource state changes.

 SWN: WitnessrUnRegister Response, ReturnValue=0
 ReturnValue: 0 (0x0)

39 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

This protocol allows any user to connect to the server; therefore, any security weakness in the server

implementation could be exploitable. The server implementation ought to enforce security on each
method.

5.2 Index of Security Parameters

This protocol allows any user to establish a connection to the RPC server as specified in section 2.1.

40 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix A: Full IDL

For ease of implementation the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL found
in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE] section
2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required and pointer_default(unique) is assumed.

The MessageBuffer field in the RESP_ASYNC_NOTIFY structure contains either a

RESOURCE_CHANGE or an IPADDR_INFO_LIST structure. See sections 2.2.2.3 and 2.2.2.2 for details.

 import "ms-dtyp.idl";
 typedef [context_handle] void * PCONTEXT_HANDLE;
 typedef [context_handle] PCONTEXT_HANDLE PCONTEXT_HANDLE_SHARED;
 typedef [ref] PCONTEXT_HANDLE * PPCONTEXT_HANDLE;

 typedef struct _RESP_ASYNC_NOTIFY {
 UINT MessageType;
 UINT Length;
 UINT NumberOfMessages;
 [size_is(Length)] [unique] PBYTE MessageBuffer;
 } RESP_ASYNC_NOTIFY, *PRESP_ASYNC_NOTIFY;

 typedef struct _WITNESS_INTERFACE_INFO {
 WCHAR InterfaceGroupName[260];
 ULONG Version;
 USHORT State;
 ULONG IPV4;
 USHORT IPV6[8];
 UINT Flags;
 } WITNESS_INTERFACE_INFO, *PWITNESS_INTERFACE_INFO;

 typedef struct _WITNESS_INTERFACE_LIST {
 UINT NumberOfInterfaces;
 [size_is(NumberOfInterfaces)] [unique] PWITNESS_INTERFACE_INFO InterfaceInfo;
 } WITNESS_INTERFACE_LIST, *PWITNESS_INTERFACE_LIST;

 [uuid(ccd8c074-d0e5-4a40-92b4-d074faa6ba28)]
 [version(1.1)]
 [pointer_default(unique)]
 interface Witness {
 DWORD WitnessrGetInterfaceList(
 [in] handle_t Handle,
 [out] PWITNESS_INTERFACE_LIST * InterfaceList);
 DWORD WitnessrRegister(
 [in] handle_t Handle,
 [out] PPCONTEXT_HANDLE ppContext,
 [in] ULONG Version,
 [in] [string] [unique] LPWSTR NetName,
 [in] [string] [unique] LPWSTR IpAddress,
 [in] [string] [unique] LPWSTR ClientComputerName);
 DWORD WitnessrUnRegister(
 [in] handle_t Handle,
 [in] PCONTEXT_HANDLE pContext);
 DWORD WitnessrAsyncNotify(
 [in] handle_t Handle,
 [in] PCONTEXT_HANDLE_SHARED pContext,
 [out] PRESP_ASYNC_NOTIFY * pResp);
 DWORD WitnessrRegisterEx(
 [in] handle_t Handle,
 [out] PPCONTEXT_HANDLE ppContext,
 [in] ULONG Version,
 [in] [string] [unique] LPWSTR NetName,
 [in] [string] [unique] LPWSTR ShareName,
 [in] [string] [unique] LPWSTR IpAddress,
 [in] [string] [unique] LPWSTR ClientComputerName,

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

41 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] ULONG Flags,
 [in] ULONG KeepAliveTimeout);
 DWORD WitnessrUnRegisterEx(
 [in] handle_t Handle,
 [in, out] PPCONTEXT_HANDLE ppContext);
 };

42 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.2.1: Windows Server 2012 operating system and later set the undefined Flags field
bits to arbitrary values.

<2> Section 3.1.3: Windows Server 2012 sets this value to 0x00010001. Windows Server 2012 R2
operating system and later set this value to 0x00020000.

<3> Section 3.1.4: Windows Server 2022 and earlier do not support this opnum and return
RPC_S_PROCNUM_OUT_OF_RANGE when called.

<4> Section 3.1.4: If the authentication level is not RPC_C_AUTHN_LEVEL_PKT_PRIVACY or
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, Windows Server 2012 operating system and later will fail the
call with ERROR_ACCESS_DENIED.

Windows Server 2012 operating system and later will fail the call with ERROR_NOT_AUTHENTICATED

if the authentication service is not equal to one of the following values:

 RPC_C_AUTHN_GSS_KERBEROS

 RPC_C_AUTHN_GSS_NEGOTIATE

 RPC_C_AUTHN_WINNT

<5> Section 3.1.4.3: Windows Server 2012 operating system operating system fail the request with
ERROR_NOT_FOUND.

43 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<6> Section 3.1.4.6: Windows Server 2022 and earlier do not support this opnum and return
RPC_S_PROCNUM_OUT_OF_RANGE when called.

<7> Section 3.1.5.1: Windows Server 2012 R2 operating system and later server use a 30-second
time-out.

<8> Section 3.1.6.1: Windows-based servers will send a single notification for NetNames that are
aliases of each other.

<9> Section 3.2.2: Windows 8.1 operating system and later and Windows Server 2012 R2 operating
system and later use a default of 180 seconds.

<10> Section 3.2.3: Windows 8 and Windows Server 2012 clients set WitnessClientVersion to
0x00010001; Windows 8.1 operating system and later and Windows Server 2012 R2 operating system
and later clients set WitnessClientVersion to 0x00020000.

<11> Section 3.2.4.1: By default, Windows 8 operating system and later and Windows Server 2012
operating system and later set the authentication level tospecify

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY and the authentication service to
RPC_C_AUTHN_GSS_NEGOTIATE.

Windows 10 v1607 operating system and later and Windows Server 2016 and later compose Service
Principal Name (SPN) in the format, e.g., “CIFS/<ClusterNetworkName>”, as specified in [SPNNAMES]

to be passed to the authentication layer. Windows 10 v1511 operating system and earlier and
Windows Server 2012 R2 and earlier, obtain the SPN in the format, e.g., “node@contoso.com”, as
specified in [MS-RPCE] section 2.2.1.3.4.

<12> Section 3.2.4.1: By default, Windows 8 operating system and later and Windows Server 2012
operating system and later set the authentication level to RPC_C_AUTHN_LEVEL_PKT_INTEGRITY and
the authentication service to RPC_C_AUTHN_GSS_NEGOTIATE.

<13> Section 3.2.4.1: Windows uses the fully qualified domain name (FQDN) of the local

computer to identify the client.

<14> Section 3.2.4.1: Windows 8.1 operating system and later and Windows Server 2012 R2
operating system and later use a default KeepAliveTime value of 120 seconds.

<15> Section 3.2.4.1: Windows clients retry the registration every 60 seconds.

<16> Section 3.2.4.1: Windows uses the fully qualified domain name (FQDN) of the local computer to
identify the client.

<17> Section 3.2.4.1: Windows clients return the registration every 60 seconds.

<18> Section 3.2.4.3: Windows Server 2025 and Windows 11, version 24H2 operating system clients
call WitnessrUnRegisterEx method. If the method fails with RPC_S_PROCNUM_OUT_OF_RANGE, the
client will call WitnessrUnRegister method.

https://go.microsoft.com/fwlink/?LinkId=90532
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

44 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.2.1 Data Types Added content about the WitnessrRegisterEx method. Major

2.2.1.1 PCONTEXT_HANDLE Added content about the WitnessrRegisterEx method. Major

2.2.1.3 PCONTEXT_HANDLE_SHARED Added content about the WitnessrRegisterEx method. Major

3.1.4 Message Processing Events and
Sequencing Rules

11541 : Added note about WitnessrUnRegisterEx. Major

3.1.4 Message Processing Events and
Sequencing Rules

Added content about the WitnessrUnRegisterEx
method and updated content for Windows Server
2022.

Major

3.1.4.3 WitnessrUnRegister (Opnum
2)

Added content about error code
ERROR_INVALID_PARAMETER and updated content
for Windows Server 2012.

Major

3.1.4.6 WitnessrUnRegisterEx (Opnum
5)

11541 : Added new section about the
WitnessrUnRegisterEx method.

Major

3.1.4.6 WitnessrUnRegisterEx (Opnum
5)

Added content about error code
ERROR_INVALID_PARAMETER and updated content
for Windows Server 2022.

Major

3.2.4.1 Application Requests Witness
Register

11656 : 11656: Updated Product Behavior Note to
specify how ServicePrincipalName is generated

Major

3.2.4.3 Application Requests Witness

UnRegister

Added content about WitnessClientVersion and
updated content for Windows 11 24H2 and Windows
Server 2025.

Major

4.1 Registering Notification Changes
from the Witness Server

Removed a PB. Major

6 Appendix A: Full IDL Added code that includes WitnessrUnRegisterEx. Major

7 Appendix B: Product Behavior Updated content for Windows Server 2025. Major

mailto:dochelp@microsoft.com

45 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

9 Index

A

Abstract data model
 client 30
 Witness 30
 server 15
 Witness 15
Applicability 7
Application Requests Witness Event Notification

method 33
Application Requests Witness Register method 31
Application Requests Witness UnRegister method 34

C

Capability negotiation 8
Change tracking 44
Client

 abstract data model 30
 Application Requests Witness Event Notification

method 33
 Application Requests Witness Register method 31
 Application Requests Witness UnRegister method

34
 initialization 30
 local events 35
 message processing 31
 overview 29
 sequencing rules 31
 timer events 35
 timers 30
 Witness
 abstract data model 30
 Application Requests Witness Event Notification

method 33
 Application Requests Witness Register method

31
 Application Requests Witness UnRegister method

34
 initialization 30
 interface 29
 local events 35
 message processing 31
 sequencing rules 31
 timer events 35
 timers 30
 witness interface 29
Common data types 9
 structures 10

D

Data model - abstract
 client 30
 Witness 30
 server 15
 Witness 15

Data types
 common - overview 9
 PCONTEXT_HANDLE 10
 PCONTEXT_HANDLE_SHARED 10

 PPCONTEXT_HANDLE 10

E

Events
 local
 client
 Witness 35
 server
 Witness 28
 local - client 35
 local - server 28
 timer
 client
 Witness 35
 timer - client 35
Examples
 overview 36
 registering notification changes from the witness

server 36

F

Fields - vendor extensible 8
Full IDL 40

G

Glossary 5

I

IDL 40
Implementer - security considerations 39
Index of security parameters 39
Informative references 6
Initialization
 client 30
 Witness 30
 server 17
 Witness 17
Interfaces
 client
 Witness 29
 server
 Witness 15
Interfaces - client
 witness 29
Interfaces - server
 witness 15
Introduction 5

IPADDR_INFO_LISTstructure 11
IPADDR_INFOstructure 10

L

Local events
 client 35
 Witness 35
 server 28
 Witness 28

46 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

M

Message processing
 client 31
 Witness 31
 server 17
 Witness 17
Messages
 common data types 9
 transport 9
Methods
 Application Requests Witness Event Notification 33
 Application Requests Witness Register 31
 Application Requests Witness UnRegister 34
 WitnessrAsyncNotify (Opnum 3) 21
 WitnessrGetInterfaceList (Opnum 0) 18

 WitnessrRegister (Opnum 1) 19
 WitnessrRegisterEx (Opnum 4) 24
 WitnessrUnRegister (Opnum 2) (section 3.1.4 17,

section 3.1.4.3 21, section 3.1.4.6 27)
 WitnessrUnRegisterEx (Opnum 5) 27

N

Normative references 6

O

Overview (synopsis) 6

P

Parameters - security index 39
PCONTEXT_HANDLE data type 10
PCONTEXT_HANDLE_SHARED data type 10
PPCONTEXT_HANDLE data type 10
Preconditions 7
Prerequisites 7
Product behavior 42

R

References 6
 informative 6
 normative 6
Registering notification changes from the witness

server example 36
Relationship to other protocols 7
RESOURCE_CHANGEstructure 12
RESP_ASYNC_NOTIFYstructure 12

S

Security
 implementer considerations 39
 parameter index 39
Sequencing rules
 client 31
 Witness 31
 server 17
 Witness 17
Server
 abstract data model 15

 initialization 17
 local events 28
 message processing 17
 overview 15
 sequencing rules 17
 Witness
 abstract data model 15
 initialization 17
 interface 15
 local events 28
 message processing 17
 PendingChangeNotifications 16
 PendingMoveNotification 16
 Request to Move to a New Resource 29
 sequencing rules 17
 WitnessrAsyncNotify (Opnum 3) method 21
 WitnessrGetInterfaceList (Opnum 0) method 18
 WitnessrRegister (Opnum 1) method 19
 WitnessrRegisterEx (Opnum 4) method 24
 WitnessrUnRegister (Opnum 2) method (section

3.1.4 17, section 3.1.4.3 21, section 3.1.4.6 27)
 witness interface 15
 WitnessrAsyncNotify (Opnum 3) method 21

 WitnessrGetInterfaceList (Opnum 0) method 18
 WitnessrRegister (Opnum 1) method 19
 WitnessrRegisterEx (Opnum 4) method 24
 WitnessrUnRegister (Opnum 2) method 21
 WitnessrUnRegisterEx (Opnum 5) method 27
Standards assignments 8
Structures
 IPADDR_INFO 10
 IPADDR_INFO_LIST 11
 overview 10
 RESOURCE_CHANGE 12
 RESP_ASYNC_NOTIFY 12
 WITNESS_INTERFACE_INFO 13
 WITNESS_INTERFACE_LIST 14

T

Timer events
 client 35
 Witness 35
Timers
 client 30
 Witness 30
Tracking changes 44
Transport 9

V

Vendor extensible fields 8
Versioning 8

W

Witness
 client - overview 29
 interface
 client 29
 server 15
 server - overview 15
witness interface (section 3.1 15, section 3.2 29)
WITNESS_INTERFACE_INFOstructure 13
WITNESS_INTERFACE_LISTstructure 14

47 / 47

[MS-SWN] - v20240423
Service Witness Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

WitnessrAsyncNotify (Opnum 3) method 21
WitnessrGetInterfaceList (Opnum 0) method 18
WitnessrRegister (Opnum 1) method 19
WitnessrRegisterEx (Opnum 4) method 24
WitnessrUnRegister (Opnum 2) method (section

3.1.4 17, section 3.1.4.3 21, section 3.1.4.6 27)
WitnessrUnRegisterEx (Opnum 5) method 27

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 PCONTEXT_HANDLE
	2.2.1.2 PPCONTEXT_HANDLE
	2.2.1.3 PCONTEXT_HANDLE_SHARED

	2.2.2 Structures
	2.2.2.1 IPADDR_INFO
	2.2.2.2 IPADDR_INFO_LIST
	2.2.2.3 RESOURCE_CHANGE
	2.2.2.4 RESP_ASYNC_NOTIFY
	2.2.2.5 WITNESS_INTERFACE_INFO
	2.2.2.6 WITNESS_INTERFACE_LIST

	3 Protocol Details
	3.1 Witness Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global
	3.1.1.2 Per Interface in InterfaceList
	3.1.1.3 Per WitnessRegistration in WitnessRegistrationList
	3.1.1.4 Per Notification in PendingChangeNotifications
	3.1.1.5 PendingMoveNotification
	3.1.1.6 PendingShareMoveNotification
	3.1.1.7 PendingIPNotification

	3.1.2 Timers
	3.1.2.1 Unused Registration Timer
	3.1.2.2 AsyncNotify Pending Timer

	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 WitnessrGetInterfaceList (Opnum 0)
	3.1.4.2 WitnessrRegister (Opnum 1)
	3.1.4.3 WitnessrUnRegister (Opnum 2)
	3.1.4.4 WitnessrAsyncNotify (Opnum 3)
	3.1.4.5 WitnessrRegisterEx (Opnum 4)
	3.1.4.6 WitnessrUnRegisterEx (Opnum 5)

	3.1.5 Timer Events
	3.1.5.1 Unused Registration Timer Event
	3.1.5.2 AsyncNotify Pending Timer Event

	3.1.6 Other Local Events
	3.1.6.1 Server Application Notifies of an Interface Being Enabled or Disabled
	3.1.6.2 Server Application Notifies of a Request to Move to a New Resource
	3.1.6.3 Server Application Notifies of a Change in the Resource that Owns a Share
	3.1.6.4 Server Application Notifies of an IP Address Being Added, Removed, Enabled or Disabled
	3.1.6.5 Transport Connection Shutdown

	3.2 Witness Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Global
	3.2.1.2 Per WitnessRegistration

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Application Requests Witness Register
	3.2.4.2 Application Requests Witness Event Notification
	3.2.4.3 Application Requests Witness UnRegister

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Registering Notification Changes from the Witness Server

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

