

1 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-SWN]:
Service Witness Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

12/16/2011 1.0 New Released new document.

03/30/2012 2.0 Major Significantly changed the technical content.

07/12/2012 3.0 Major Significantly changed the technical content.

10/25/2012 4.0 Major Significantly changed the technical content.

01/31/2013 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 5.0 Major Significantly changed the technical content.

3 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 6

1.3 Overview .. 6
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 7
1.6 Applicability Statement ... 7
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor Extensible Fields ... 8
1.9 Standards Assignments .. 8

2 Messages.. 9
2.1 Transport .. 9
2.2 Common Data Types .. 9

2.2.1 Data Types .. 9
2.2.1.1 PCONTEXT_HANDLE .. 10
2.2.1.2 PPCONTEXT_HANDLE .. 10
2.2.1.3 PCONTEXT_HANDLE_SHARED .. 10

2.2.2 Structures ... 10
2.2.2.1 IPADDR_INFO .. 10
2.2.2.2 IPADDR_INFO_LIST .. 11
2.2.2.3 RESOURCE_CHANGE ... 11
2.2.2.4 RESP_ASYNC_NOTIFY ... 12
2.2.2.5 WITNESS_INTERFACE_INFO .. 13
2.2.2.6 WITNESS_INTERFACE_LIST ... 14

3 Protocol Details .. 15
3.1 Witness Server Details ... 15

3.1.1 Abstract Data Model ... 15
3.1.1.1 Global ... 15
3.1.1.2 Per Interface in InterfaceList .. 15
3.1.1.3 Per WitnessRegistration in WitnessRegistrationList .. 15
3.1.1.4 Per Notification in PendingChangeNotifications ... 16
3.1.1.5 PendingMoveNotification .. 16
3.1.1.6 PendingShareMoveNotification .. 16
3.1.1.7 PendingIPNotification .. 16

3.1.2 Timers .. 17
3.1.2.1 Unused Registration Timer ... 17
3.1.2.2 AsyncNotify Pending Timer .. 17

3.1.3 Initialization .. 17
3.1.4 Message Processing Events and Sequencing Rules .. 17

3.1.4.1 WitnessrGetInterfaceList (Opnum 0) ... 18
3.1.4.2 WitnessrRegister (Opnum 1) .. 19
3.1.4.3 WitnessrUnRegister (Opnum 2) .. 21
3.1.4.4 WitnessrAsyncNotify (Opnum 3) ... 22
3.1.4.5 WitnessrRegisterEx (Opnum 4) ... 25

3.1.5 Timer Events ... 27
3.1.5.1 Unused Registration Timer Event .. 27

4 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.5.2 AsyncNotify Pending Timer Event .. 27
3.1.6 Other Local Events ... 27

3.1.6.1 Server Application Notifies of an Interface Being Enabled or Disabled 28
3.1.6.2 Server Application Notifies of a Request to Move to a New Resource 28
3.1.6.3 Server Application Notifies of a Change in the Resource that Owns a Share...... 28
3.1.6.4 Server Application Notifies of an IP Address Being Added, Removed, Enabled

or Disabled ... 29
3.1.6.5 Transport Connection Shutdown ... 29

3.2 Witness Client Details ... 29
3.2.1 Abstract Data Model ... 29

3.2.1.1 Global ... 29
3.2.1.2 Per WitnessRegistration ... 29

3.2.2 Timers .. 30
3.2.3 Initialization .. 30
3.2.4 Message Processing Events and Sequencing Rules .. 30

3.2.4.1 Application Requests Witness Register ... 30
3.2.4.2 Application Requests Witness Event Notification ... 32
3.2.4.3 Application Requests Witness UnRegister ... 33

3.2.5 Timer Events ... 34
3.2.6 Other Local Events ... 34

4 Protocol Examples .. 35

5 Security .. 36
5.1 Security Considerations for Implementers ... 36
5.2 Index of Security Parameters .. 36

6 Appendix A: Full IDL ... 37

7 Appendix B: Product Behavior .. 39

8 Change Tracking... 40

9 Index ... 44

5 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

The Service Witness Protocol is a remote procedure call (RPC)-based protocol that is used to
promptly notify a client of resource changes that have occurred on a highly available server.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

fully qualified domain name (FQDN)

IPv4
IPv6
Microsoft Interface Definition Language (MIDL)

NetBIOS name
remote procedure call (RPC)
RPC context handle
RPC server
RPC transport
Transmission Control Protocol (TCP)

UUID

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

http://www.opengroup.org/public/pubs/catalog/c706.htm

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824

6 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

1.3 Overview

In highly available systems, there can be many instances of a service (for instance an SMB3 file
service [MS-SMB2]) running on a server or group of servers. These service instances are accessed
by clients through network DNS names and associated IP addresses.

The Service Witness Protocol enables a client application (for instance, an SMB3 client) to receive
prompt and explicit notifications about the failure or recovery of a network name and associated

services, rather than relying on slower detection mechanisms such as timeouts and keep alives.

The Service Witness Protocol is an independent protocol which is used alongside other protocols, as
illustrated by the following figure.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SRVS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

7 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 1: Witness clients communicating with Witness servers

1.4 Relationship to Other Protocols

This protocol depends on the RPC transport and uses RPC over TCP, as specified in section 2.1.

1.5 Prerequisites/Preconditions

The Service Witness Protocol is an RPC interface and, as a result, has the prerequisites that are
described in [MS-RPCE] section 1.5 as being common to RPC interfaces.

1.6 Applicability Statement

This protocol applies in the following environments, where it is important that:

The client promptly detects when a resource has failed, and is now available for reconnection.

The administrator controls the client use of server resources, for instance, to achieve load-

balancing or during server maintenance periods.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf

8 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.7 Versioning and Capability Negotiation

The protocol supports versioning negotiation. The current protocol supports two versions.

Version Value

Witness protocol version 1 0x00010001

Witness protocol version 2 0x00020000

1.8 Vendor Extensible Fields

This protocol does not define any vendor-extensible fields.

This protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse
those values with their indicated meaning. Choosing any other value runs the risk of a collision in
the future.

1.9 Standards Assignments

Parameter Value Reference

UUID for Witness ccd8c074-d0e5-4a40-92b4-d074faa6ba28 [C706]

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

9 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Messages

2.1 Transport

This protocol MUST use the UUID as specified in section 1.9. The RPC version number is 1.0.

This protocol allows any user to establish a connection to the RPC server. The protocol uses the
underlying RPC protocol to retrieve the identity of the caller that made the method call, as specified
in [MS-RPCE] section 3.3.3.4.3. The server SHOULD use this identity to perform method-specific
access checks as specified in section 3.1.4.

2.2 Common Data Types

In addition to RPC base types defined in [C706] and [MS-RPCE], the data types that follow are
defined in the Microsoft Interface Definition Language (MIDL) specification for this RPC
interface.

The following data types are specified in [MS-DTYP]:

DataType name Section

BOOLEAN section 2.2.4

DWORD section 2.2.9

LPWSTR section 2.2.36

PBYTE section 2.2.6

UINT section 2.2.46

UINT32 section 2.2.49

ULONG section 2.2.51

USHORT section 2.2.58

WCHAR section 2.2.60

2.2.1 Data Types

DataType name Section Description

PCONTEXT_HANDLE 2.2.1.1 An RPC context handle returned by the WitnessrRegister

method, to be provided as an input parameter to the

WitnessrUnRegister method.

PCONTEXT_HANDLE_SHARED 2.2.1.3 An RPC context handle returned by the WitnessrRegister

method, to be provided as an input parameter to the

WitnessrAsyncNotify method.

PPCONTEXT_HANDLE 2.2.1.2 A reference to PCONTEXT_HANDLE.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

10 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.1 PCONTEXT_HANDLE

PCONTEXT_HANDLE: An RPC context handle, as specified in [C706] Chapter 6, returned by the
WitnessrRegister method, to be provided as an input parameter to the WitnessrUnRegister method.

typedef [context_handle] void* PCONTEXT_HANDLE;

2.2.1.2 PPCONTEXT_HANDLE

PPCONTEXT_HANDLE: A reference to PCONTEXT_HANDLE, as specified in section 2.2.1.1.

typedef [ref] PCONTEXT_HANDLE *PPCONTEXT_HANDLE;

2.2.1.3 PCONTEXT_HANDLE_SHARED

PCONTEXT_HANDLE_SHARED: An RPC context handle, as specified in [C706] Chapter 6, returned by
the WitnessrRegister method, to be provided as a parameter to the WitnessrAsyncNotify method.

typedef [context_handle] PCONTEXT_HANDLE PCONTEXT_HANDLE_SHARED;

2.2.2 Structures

Structure name Section Description

IPADDR_INFO 2.2.2.1 The IPADDR_INFO structure specifies the IP addresses of the

interface.

IPADDR_INFO_LIST 2.2.2.2 The IPADDR_INFO_LIST structure contains the list of available

IP addresses on the destination Interface group.

RESOURCE_CHANGE 2.2.2.3 The server notifies the registered client of resource state

changes through the RESOURCE_CHANGE structure.

RESP_ASYNC_NOTIFY 2.2.2.4 The RESP_ASYNC_NOTIFY structure contains the resource

change type.

WITNESS_INTERFACE_INFO 2.2.2.5 The WITNESS_INTERFACE_INFO structure specifies the IP

addresses of the interface.

WITNESS_INTERFACE_LIST 2.2.2.6 The WITNESS_INTERFACE_LIST structure specifies the list of

interfaces available for witness registration.

2.2.2.1 IPADDR_INFO

The IPADDR_INFO structure specifies the IP addresses of the interface.

typedef struct _IPADDR_INFO {

 UINT Flags;

 ULONG IPV4;

 USHORT IPV6[8];

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

11 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

} IPADDR_INFO, *PIPADDR_INFO;

Flags: The Flags field MUST be set to a combination of one or more of the following values.

Value Description

0x00000001

IPADDR_V4

If set, the IPV4 field contains a valid address. When this bit is set, the IPADDR_IPV6

bit MUST NOT be set.

0x00000002

IPADDR_V6

If set, the IPV6 field contains a valid address. When this bit is set, the IPADDR_IPV4

bit MUST NOT be set.

0x00000008

IPADDR_ONLINE

If set, the IPV4 or IPV6 address is available. This flag is applicable only for the servers

implementing version 2.

0x00000010

IPADDR_OFFLINE

If set, the IPV4 or IPV6 address is not available. This flag is applicable only for the

server implementing version 2.

IPV4: The IPv4 address of the interface.

IPV6: The IPv6 address of the interface.

2.2.2.2 IPADDR_INFO_LIST

The IPADDR_INFO_LIST structure contains a list of available IP addresses on the destination
Interface group.

typedef struct _IPADDR_INFO_LIST {

 UINT Length;

 ULONG Reserved;

 ULONG IPAddrInstances;

 IPADDR_INFO IPAddrInfo[];

} IPADDR_INFO_LIST, *PIPADDR_INFO_LIST;

Length: The size of the IPADDR_INFO_LIST structure, in bytes.

Reserved: This field MUST NOT be used and MUST be reserved. The server MUST set this field to
0, and the client MUST ignore it on receipt.

IPAddrInstances: The number of IPADDR_INFO structures in the IPAddrInfo member.

IPAddrInfo: Indicates the IP addresses, as specified in section 2.2.2.1, of the destination Interface
group.

2.2.2.3 RESOURCE_CHANGE

The server notifies the registered client of resource state changes through the use of the
RESOURCE_CHANGE structure.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

12 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef struct _RESOURCE_CHANGE {

 UINT Length;

 UINT32 ChangeType;

 WCHAR ResourceName[];

} RESOURCE_CHANGE, *PRESOURCE_CHANGE;

Length: The size of the resource change notification, in bytes.

ChangeType: Specifies state change of the resource. The following values are used to specify the
change type.

Value Meaning

0x00000000 RESOURCE_STATE_UNKNOWN

0x00000001 RESOURCE_STATE_AVAILABLE

0x000000FF RESOURCE_STATE_UNAVAILABLE

ResourceName: The null terminated resource name on which the change has been detected. This
MUST be either the NetName or IP address provided in a WitnessrRegister call, or an
InterfaceGroupName returned to the client in a WitnessrGetInterfaceList response.

2.2.2.4 RESP_ASYNC_NOTIFY

The RESP_ASYNC_NOTIFY structure contains the resource change type.

typedef struct _RESP_ASYNC_NOTIFY {

 UINT MessageType;

 UINT Length;

 UINT NumberOfMessages;

 [size_is(Length)] [unique] PBYTE MessageBuffer;

} RESP_ASYNC_NOTIFY, *PRESP_ASYNC_NOTIFY;

MessageType: Specifies the notification type. This field MUST contain one of the following values.

Value Meaning

1 RESOURCE_CHANGE_NOTIFICATION

2 CLIENT_MOVE_NOTIFICATION

3 SHARE_MOVE_NOTIFICATION

This value is applicable only for the server implementing version 2.

4 IP_CHANGE_NOTIFICATION

This value is applicable only for the server implementing version 2.

Length: Specifies the size of the MessageBuffer field, in bytes.

13 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

NumberOfMessages: Total number of notifications in the MessageBuffer field.

MessageBuffer: Contains an array of notification information structures whose type is determined
by the MessageType field.

2.2.2.5 WITNESS_INTERFACE_INFO

The WITNESS_INTERFACE_INFO structure specifies the IP addresses of the interface.

typedef struct _WITNESS_INTERFACE_INFO {

 WCHAR InterfaceGroupName[260];

 ULONG Version;

 USHORT State;

 ULONG IPV4;

 USHORT IPV6[8];

 UINT Flags;

} WITNESS_INTERFACE_INFO, *PWITNESS_INTERFACE_INFO;

InterfaceGroupName: The null-terminated string that specifies a name of the interface group.

Version: The current version of the Witness Service running on the server.

State: The current state of the interface. This field MUST contain one of the following values:

Value Meaning

UNKNOWN

0x0000

The state of the interface is unknown.

AVAILABLE

0x0001

The interface is available.

UNAVAILABLE

0x00FF

The interface is unavailable.

IPV4: The IPv4 address of the interface.

IPV6: The IPv6 address of the interface.

Flags: The Flags field specifies information about the interface. This field MUST be set to
combination of zero or more of the following values:

Value Meaning

IPv4

0x00000001

If set, the IPV4 field contains a valid address.

IPv6

0x00000002

If set, the IPV6 field contains a valid address.

INTERFACE_WITNESS

0x00000004

If set, the interface is available for witness registration. If not set, the interface

MUST NOT be used for witness registration.

14 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.6 WITNESS_INTERFACE_LIST

The WITNESS_INTERFACE_LIST structure specifies the list of interfaces available for witness
registration.

typedef struct _WITNESS_INTERFACE_LIST {

 UINT NumberOfInterfaces;

 [size_is(NumberOfInterfaces)] [unique] PWITNESS_INTERFACE_INFO InterfaceInfo;

} WITNESS_INTERFACE_LIST, *PWITNESS_INTERFACE_LIST;

NumberOfInterfaces: The number of WITNESS_INTERFACE_INFO structures in InterfaceInfo.

InterfaceInfo: Contains an array of WITNESS_INTERFACE_INFO structures, as specified in section
2.2.2.5.

15 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Details

3.1 Witness Server Details

The server responds to messages it receives from the client and also produces notifications as
requested by the client. The server performs additional actions in response to administrative,
configuration, and status changes on the machine, as driven by applications local to the server.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to facilitate the explanation of
how the protocol behaves. This specification does not mandate that implementations adhere to this
model as long as their external behaviors are consistent with that described in this specification.

3.1.1.1 Global

The server implements the following properties:

InterfaceList: A list of available Interfaces as specified in section 3.1.1.2.

WitnessRegistrationList: A list of witness registrations on the server, as specified in section

3.1.1.3.

WitnessServiceVersion: The highest Witness protocol version supported by the Witness

Service. The value MUST be one of those listed in section 1.7.

3.1.1.2 Per Interface in InterfaceList

InterfaceGroupName: The name of the interface group, in the form of a NetBIOS name.

State: The state of the interface. This MUST be set to one of the values specified in section

2.2.2.5.

IPv4Address: An IPv4 address of the interface, if any.

IPv6Address: An IPv6 address of the interface, if any.

3.1.1.3 Per WitnessRegistration in WitnessRegistrationList

The server implements the following properties per witness registration.

WitnessClientName: A null-terminated string containing the name of the client.

NetworkName: The NetName specified in the client registration call.

IPAddress: An IP address specified in the client registration call.

RegistrationKey: A unique value assigned by the server for this registration, in the form of

context_handle, as specified in section 2.2.1.1.

PendingChangeNotifications: A list of change notifications pending for this registration.

PendingMoveNotification: The most recent move notification, if any, pending for this

registration.

%5bMS-GLOS%5d.pdf

16 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the server implements version 2 of the protocol, the server also implements the following
properties:

WitnessClientVersion: The Witness protocol version implemented by the client.

ShareName: The ShareName specified in the client registration call.

NetNameNotificationRequired: A Boolean when set; indicates that this registration requires

notifications based on the NetName.

ShareNameNotificationRequired: A Boolean when set; indicates that this registration requires

notifications based on the ShareName.

IPNotificationRequired: A Boolean when set; indicates that this registration requires

notifications based on the IP addresses changes on the server associated with NetName.

PendingShareMoveNotification: The most recent share move notification, if any, pending for

this registration.

PendingIPNotification: The most recent IP change notification, if any, pending for this

registration.

KeepAliveTime: The maximum amount of the time, in milliseconds, the server can hold the

pending asynchronous notification.

LastUseTime: The time at which the server received a registration request, an asynchronous

notify request, or at which time the server sent a response to an asynchronous notification.

IsAsyncNotifyRegistered: A Boolean flag indicating whether asynchronous notification is

registered or not.

3.1.1.4 Per Notification in PendingChangeNotifications

ResourceName: The name of the resource whose state has changed.

NewState: The new resource state.

3.1.1.5 PendingMoveNotification

Destination: A null-terminated string describing the resource to move to.

3.1.1.6 PendingShareMoveNotification

If the server implements version 2 of the protocol, the server also implements the following:

Destination: A null-terminated string describing the resource the share has been moved to.

3.1.1.7 PendingIPNotification

If the server implements version 2 of the protocol, the server also implements the following:

ChangeIndication: A null-terminated string describing the IP changes on the server.

17 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.2 Timers

3.1.2.1 Unused Registration Timer

If the server implements version 2 of the protocol, it MUST implement this timer.

This timer controls the amount of time that a registration can stay unused, in other words, the time
for which the registration is permitted to remain without registering for any asynchronous
notifications. The server MUST schedule this timer periodically with an implementation-specific
interval and remove unused registrations.

3.1.2.2 AsyncNotify Pending Timer

If the server implements version 2 of the protocol, it MUST implement this timer.

This timer controls the scheduling of periodic searches for pending asynchronous notifications that
have passed their expiration time. This value is based on the KeepAliveTimeout value provided by

the client as specified in section 3.1.4.5.

3.1.3 Initialization

The server MUST initialize WitnessRegistrationList to empty.

The server MUST initialize InterfaceList in an implementation-specific manner from the
configuration store.

The server MUST initialize WitnessServiceVersion to the highest Witness protocol version
supported by the server.<1>

If WitnessServiceVersion is 0x00020000, the server MUST initialize WitnessClientVersion to
0x00010001.

3.1.4 Message Processing Events and Sequencing Rules

The Witness interface defines the following methods:

Method Description

WitnessrGetInterfaceList The WitnessrGetInterfaceList method returns information about the interfaces

to which witness client connections can be made.

Opnum: 0

WitnessrRegister The WitnessrRegister method allows the witness client to register for

notifications from the server.

Opnum: 1

WitnessrUnRegister The WitnessrUnRegister method allows the client to unregister for notifications

from the server.

Opnum: 2

WitnessrAsyncNotify The WitnessrAsyncNotify method is used by the client to request notification of

resource changes from the server.

Opnum: 3

WitnessrRegisterEx The WitnessrRegisterEx method allows the witness client to register for

notifications from the server for a specific share and with optional flags. This

18 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

opnum is only applicable for Witness protocol version 2.

Opnum: 4

For all methods, the server SHOULD enforce security measures to verify that the caller has the
required permissions to execute any method. If the server enforces security measures, and the
caller does not have the required credentials, then the server MUST fail the call and return
ERROR_ACCESS_DENIED. For more details about determining the identity of the caller for the
purpose of performing an access check, see [MS-RPCE] section 3.3.3.1.3.

3.1.4.1 WitnessrGetInterfaceList (Opnum 0)

The WitnessrGetInterfaceList method returns information about the interfaces to which witness
client connections can be made.

DWORD WitnessrGetInterfaceList(

 [in] handle_t Handle,

 [out] PWITNESS_INTERFACE_LIST* InterfaceList);

Handle: An RPC binding handle [C706].

InterfaceList: A pointer to a PWITNESS_INTERFACE_LIST, as specified in section 2.2.2.6.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x00000103

ERROR_NO_MORE_ITEMS

No more data is available.

0x0000000E

ERROR_OUTOFMEMORY

There is not enough storage space to complete the operation.

If there are no entries in the InterfaceList, the server MUST fail the request and return the error
code ERROR_NO_MORE_ITEMS.

If no entry in the InterfaceList has a State of AVAILABLE, the server MUST wait until at least one
entry enters that State, as specified in section 3.1.6.1.

For each Interface in the InterfaceList, the server MUST construct a WITNESS_INTERFACE_INFO
structure as follows:

%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf

19 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The InterfaceGroupName field of the WITNESS_INTERFACE_INFO structure MUST be set to

Interface.InterfaceGroupName.

The State field MUST be set to Interface.State.

The Version field MUST be set to WitnessServiceVersion.

If Interface.IPv4Address is not empty, the IPV4 field MUST be set to

Interface.IPv4Address, and IPv4 flag MUST be set in the Flags field.

If Interface.IPv6Address is not empty, the IPV6 field MUST be set to

Interface.IPv6Address, and IPv6 flag MUST be set in the Flags field.

In an implementation-dependent manner, the server MUST determine if the IPv4Address or

IPv6Address match any interface which is hosted on the server and the server is also running
this Witness Service instance. If the address is not hosted on the local server, the
INTERFACE_WITNESS flag MUST be set in the Flags field. Otherwise, the flag MUST NOT be set.

The server MUST construct the WITNESS_INTERFACE_LIST structure as follows:

All WITNESS_INTERFACE_INFO structures MUST be copied into the InterfaceInfo field of the

WITNESS_INTERFACE_LIST structure.

The NumberOfInterfaces field of the WITNESS_INTERFACE_LIST structure MUST be set to the

number of interfaces provided by InterfaceInfo.

The WITNESS_INTERFACE_LIST structures MUST be copied into the InterfaceList parameter.

The server MUST return ERROR_SUCCESS and the InterfaceList parameter to the caller.

3.1.4.2 WitnessrRegister (Opnum 1)

The WitnessrRegister method allows the witness client to register for resource state change
notifications of a NetName and IPAddress. The client can subsequently call the WitnessrAsyncNotify

method to receive notifications when there is a state change on any of these resources.

DWORD WitnessrRegister(

 [in] handle_t Handle,

 [out] PPCONTEXT_HANDLE ppContext,

 [in] ULONG Version,

 [in] [string] [unique] LPWSTR NetName,

 [in] [string] [unique] LPWSTR IpAddress,

 [in] [string] [unique] LPWSTR ClientComputerName);

Handle: An RPC binding handle [C706].

ppContext: A context handle of type PPCONTEXT_HANDLE, as specified in section 2.2.1.2, that
identifies the client on the server.

Version: The version of the Witness protocol currently in use by the client.

NetName: A pointer to a null-terminated string that specifies the name of the resource for which
the client requires notifications.

IpAddress: A pointer to a null-terminated string that specifies the IP address to which the client
application connection is established.

http://go.microsoft.com/fwlink/?LinkId=89824

20 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ClientComputerName: A pointer to a null-terminated string that is used to identify the Witness
client.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x000005AA

ERROR_NO_SYSTEM_RESOURCES

Insufficient system resources exist to complete the requested service.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x0000139F

ERROR_INVALID_STATE

The specified resource state is invalid.

0x0000051A

ERROR_REVISION_MISMATCH

The client request contains an invalid Witness protocol version.

If the Version field of the request is not 0x00010001, the server MUST stop processing the request

and return ERROR_REVISION_MISMATCH.

The server MUST search for an Interface in InterfaceList, where
Interface.InterfaceGroupName matches the NetName parameter. If no matching entry is found,
the server MUST fail the request and return the error code ERROR_INVALID_PARAMETER.

The server MUST search for an Interface in InterfaceList, where Interface.Ipv4Address or
Interface.IPv6Address matches the IpAddress parameter based on its format. If no matching
entry is found, the server MUST fail the request and return the error code ERROR_INVALID_STATE.

The server MUST create a WitnessRegistration entry as follows and insert it into the
WitnessRegistrationList.

WitnessRegistration.WitnessClientName MUST be set to the ClientComputerName

parameter.

WitnessRegistration.NetworkName MUST be set to the NetName parameter.

WitnessRegistration.IPAddress MUST be set to the IPAddress parameter.

WitnessRegistration.RegistrationKey MUST be set to a UUID generated by the server.

WitnessRegistration.PendingChangeNotifications and

WitnessRegistration.PendingMoveNotification MUST be set to empty.

If WitnessServiceVersion is 0x00020000, the server MUST set the following values in
WitnessRegistration entry:

%5bMS-ERREF%5d.pdf

21 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

WitnessRegistration.WitnessClientVersion MUST be set to the value of the Version

parameter value in the request.

WitnessRegistration.ShareName MUST be set to empty.

WitnessRegistration.NetNameNotificationRequired MUST be set to TRUE.

WitnessRegistration.ShareNameNotificationRequired MUST be set to FALSE.

WitnessRegistration.IPNotificationRequired MUST be set to FALSE.

WitnessRegistration.PendingShareMoveNotification MUST be set to empty

WitnessRegistration.PendingIPNotification MUST be set to empty.

The server MUST copy the WitnessRegistration.RegistrationKey into the ppContext parameter.

The server MUST return ERROR_SUCCESS and the ppContext parameter to the caller.

3.1.4.3 WitnessrUnRegister (Opnum 2)

The WitnessrUnRegister method allows the client to unregister for notifications from the server. The
Witness Service removes its internal state of the registration and no longer notifies the client in the

event of any resource state changes.

DWORD WitnessrUnRegister(

 [in] handle_t Handle,

 [in] PCONTEXT_HANDLE pContext);

Handle: An RPC binding handle [C706].

pContext: A context handle of type PCONTEXT_HANDLE, specified in section 2.2.1.1, that identifies

the client on the server.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000490

ERROR_NOT_FOUND

The specified CONTEXT_HANDLE is not found.

The server MUST search for the WitnessRegistration in WitnessRegistrationList, where

WitnessRegistration.RegistrationKey matches the pContext parameter.

If no matching entry is found, the server MUST stop processing the request and return the error
code ERROR_NOT_FOUND.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf

22 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the matching entry is found, the server MUST remove the WitnessRegistration entry from the
WitnessRegistrationList and return ERROR_SUCCESS to the caller.

3.1.4.4 WitnessrAsyncNotify (Opnum 3)

The WitnessrAsyncNotify method is used by the client to request notification of registered resource
changes from the server.

DWORD WitnessrAsyncNotify(

 [in] handle_t Handle,

 [in] PCONTEXT_HANDLE_SHARED pContext,

 [out] PRESP_ASYNC_NOTIFY* pResp);

Handle: An RPC binding handle [C706].

pContext: A context handle of type PCONTEXT_HANDLE_SHARED, as specified in section 2.2.1.3,

that identifies the client on the server.

pResp: A pointer to a PRESP_ASYNC_NOTIFY structure, as specified in section 2.2.2.4.

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as

specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x000005AA

ERROR_NO_SYSTEM_RESOURCES

Insufficient system resources exist to complete the requested service.

0x00000490

ERROR_NOT_FOUND

The specified resource name is not found.

The server MUST search for the WitnessRegistration in WitnessRegistrationList, where
WitnessRegistration.RegistrationKey matches the pContext parameter.

If no matching entry is found, and WitnessServiceVersion is 0x00020000, the server MUST set
WitnessRegistration.LastUseTime to the current time,
WitnessRegistration.IsAsyncNotifyRegistered to FALSE, and MUST fail the request and return
the error code ERROR_NOT_FOUND.

If the matching entry is found, and WitnessServiceVersion is 0x00020000, the server MUST

update WitnessRegistration.LastUseTime to the current time, and

WitnessRegistration.IsAsyncNotifyRegistered to TRUE.

The server MUST wait until either WitnessRegistration.PendingChangeNotifications or
WitnessRegistration.PendingMoveNotification are not empty.

If WitnessRegistration.PendingChangeNotifications is not empty, the server MUST construct a
RESP_ASYNC_NOTIFY structure as follows:

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf

23 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pResp.MessageType: MUST be set to RESOURCE_CHANGE_NOTIFICATION.

pResp.MessageBuffer: MUST be set to a RESOURCE_CHANGE structure with the following values:

The Length field MUST be set to the size of the RESOURCE_CHANGE structure.

If the NewState of the Notification is UNAVAILABLE, the ChangeType field MUST be set to

RESOURCE_STATE_UNAVAILABLE, else ChangeType MUST be set to
RESOURCE_STATE_AVAILABLE.

The ResourceName field MUST be set to the ResourceName of the Notification.

If additional entries are present in WitnessRegistration.PendingChangeNotifications, the

server MUST continue to add RESOURCE_CHANGE structures to the pResp.MessageBuffer,
until no entries remain in the list.

pResp.NumberOfMessages: MUST be set to the number of resources changed.

pResp.Length: MUST be set to the length of the MessageBuffer field.

If the WitnessRegistration.PendingMoveNotification is not empty, the server MUST construct

the structure as follows:

pResp.MessageType: MUST be set to CLIENT_MOVE_NOTIFICATION.

pResp.MessageBuffer: MUST be set to a IPADDR_INFO_LIST structure with the following values:

The Reserved field MUST be set to 0.

The IPAddrInstances field MUST be set to the number of available interfaces in

InterfaceList for which Interface.InterfaceGroupName matches the
Notification.Destination.

For each Interface in InterfaceList, the server MUST construct a IPADDR_INFO structure as

follows:

If Interface.IPv4Address is not empty, the IPV4 field MUST be set to

Interface.IPv4Address, and IPADDR_V4 MUST be set in the Flags field.

If Interface.IPv6Address is not empty, the IPV6 field MUST be set to

Interface.IPv6Address, and IPADDR_V6 MUST be set in the Flags field.

The IPADDR_INFO structure MUST be copied into the IPAddrInfo field.

The Length field MUST be set to the size of the IPADDR_INFO_LIST structure.

pResp.NumberOfMessages: MUST be set to 1.

pResp.Length: MUST be set to the length of the MessageBuffer field.

If WitnessServiceVersion is 0x00020000, WitnessRegistration.WitnessClientVersion is

0x00020000, and WitnessRegistration.PendingShareMoveNotification is not empty, the server
MUST construct the structure as follows:

pResp.MessageType: MUST be set to SHARE_MOVE_NOTIFICATION.

pResp.MessageBuffer: MUST be set to a IPADDR_INFO_LIST structure with the following values:

The Reserved field MUST be set to 0.

24 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The IPAddrInstances field MUST be set to the number of available interfaces in

InterfaceList for which Interface.InterfaceGroupName matches the

Notification.Destination.

For each Interface in InterfaceList, the server MUST construct an IPADDR_INFO structure

as follows:

If Interface.IPv4Address is not empty, the IPV4 field MUST be set to

Interface.IPv4Address, and IPADDR_V4 MUST be set in the Flags field.

If Interface.IPv6Address is not empty, the IPV6 field MUST be set to

Interface.IPv6Address, and IPADDR_V6 MUST be set in the Flags field.

The IPADDR_INFO structure MUST be copied into the IPAddrInfo field.

The Length field MUST be set to the size of the IPADDR_INFO_LIST structure.

pResp.NumberOfMessages: MUST be set to 1.

pResp.Length: MUST be set to the length of the MessageBuffer field.

If WitnessServiceVersion is 0x00020000, WitnessRegistration.WitnessClientVersion is
0x00020000, and WitnessRegistration.PendingIPNotification is not empty, the server MUST
construct the structure as follows:

pResp.MessageType: MUST be set to IP_CHANGE_NOTIFICATION.

pResp.MessageBuffer: MUST be set to an IPADDR_INFO_LIST structure with the following values:

The Reserved field MUST be set to 0.

The IPAddrInstances field MUST be set to the number of available interfaces in

InterfaceList for which Interface.InterfaceGroupName matches the
Notification.Destination.

For each Interface in InterfaceList, the server MUST construct an IPADDR_INFO structure

as follows:

If Interface.IPv4Address is not empty, the IPV4 field MUST be set to

Interface.IPv4Address, and IPADDR_V4 MUST be set in the Flags field.

If Interface.IPv6Address is not empty, the IPV6 field MUST be set to

Interface.IPv6Address, and IPADDR_V6 MUST be set in the Flags field.

The IPADDR_INFO structure MUST be copied into the IPAddrInfo field.

The Length field MUST be set to the size of the IPADDR_INFO_LIST structure.

pResp.NumberOfMessages: MUST be set to 1.

pResp.Length: MUST be set to the length of the MessageBuffer field.

The server MUST remove all entries that were processed from
WitnessRegistration.PendingChangeNotifications,
WitnessRegistration.PendingMoveNotification,

WitnessRegistration.PendingShareMoveNotification, and
WitnessRegistration.PendingIPNotification.

25 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If WitnessServiceVersion is 0x00020000, the server MUST set
WitnessRegistration.LastUseTime to the current time and

WitnessRegistration.IsAsyncNotifyRegistered to FALSE.

The server MUST return ERROR_SUCCESS and the pResp parameter to the client.

3.1.4.5 WitnessrRegisterEx (Opnum 4)

The WitnessrRegisterEx method allows the witness client to register for resource state change
notifications of a NetName, ShareName and multiple IPAddresses. The client can subsequently call
the WitnessrAsyncNotify method to receive notifications when there is a state change on any of
these resources.

DWORD WitnessrRegisterEx(

 [in] handle_t Handle,

 [out] PPCONTEXT_HANDLE ppContext,

 [in] ULONG Version,

 [in] [string] [unique] LPWSTR NetName,

 [in] [string] [unique] LPWSTR ShareName,

 [in] [string] [unique] LPWSTR IpAddress,

 [in] [string] [unique] LPWSTR ClientComputerName,

 [in] ULONG Flags,

 [in] ULONG KeepAliveTimeout);

Handle: An RPC binding handle [C706].

ppContext: A context handle of type PPCONTEXT_HANDLE, as specified in section 2.2.1.2, that
identifies the client on the server.

Version: The version of the Witness protocol currently in use by the client.

NetName: A pointer to a null-terminated string that specifies the name of the resource for which

the client requires notifications.

ShareName: A pointer to a null-terminated string that specifies the name of the share resource for

which the client requires notifications.

IpAddress: A pointer to a null-terminated string that specifies the IP address to which the client
application connection is established.

ClientComputerName: A pointer to a null-terminated string that is used to identify the Witness
client.

Flags: The type of Witness registration. This field MUST be set to one of the following values:

Value Meaning

WITNESS_REGISTER_NONE

0x00000000

If set, the client requests notifications only for the registered IP

address.

WITNESS_REGISTER_IP_NOTIFICATION

0x00000001

If set, the client requests notifications of any eligible server IP

addresses.

KeepAliveTimeout:

http://go.microsoft.com/fwlink/?LinkId=89824

26 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: Returns 0x00000000 (ERROR_SUCCESS) on success or a nonzero error code, as
specified in [MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x000005AA

ERROR_NO_SYSTEM_RESOURCES

Insufficient system resources exist to complete the requested service.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x0000139F

ERROR_INVALID_STATE

The specified resource state is invalid.

0x0000051A

ERROR_REVISION_MISMATCH

The client request contains an invalid Witness protocol version.

This opnum is applicable only to servers that implement Witness protocol version 2.

If the Version field of the request is not 0x00020000, the server MUST stop processing the request
and return ERROR_REVISION_MISMATCH.

The server MUST search for an Interface in InterfaceList, where
Interface.InterfaceGroupName matches the NetName parameter. If no matching entry is found,
the server MUST fail the request and return the error code ERROR_INVALID_PARAMETER.

If ShareName is not NULL, the server MUST enumerate the shares by calling NetrShareEnum as

specified in [MS-SRVS] section 3.1.4.8. If the ShareName does not exist in the enumerated list,
the server MUST fail the request and return the error code ERROR_INVALID_STATE. The server
MUST search for an Interface in InterfaceList, where Interface.Ipv4Address or

Interface.IPv6Address matches the IpAddress parameter based on its format. If no matching
entry is found, the server MUST fail the request and return the error code ERROR_INVALID_STATE.

The server MUST create a WitnessRegistration entry as follows and insert it into the
WitnessRegistrationList.

WitnessRegistration.WitnessClientName MUST be set to the ClientComputerName

parameter.

WitnessRegistration.LastUseTime MUST be set to the current time.

WitnessRegistration.KeepAliveTime MUST be set to KeepAliveTimeout.

WitnessRegistration.IsAsyncNotifyRegistered MUST be set to FALSE.

WitnessRegistration.NetworkName MUST be set to the NetName parameter.

WitnessRegistration.ShareName MUST be set to the ShareName parameter.

WitnessRegistration.NetNameNotificationRequired MUST be set to TRUE.

%5bMS-ERREF%5d.pdf
%5bMS-SRVS%5d.pdf

27 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If ShareName is not NULL, WitnessRegistration.ShareNameNotificationRequired MUST be

set to TRUE; otherwise set to FALSE.

If Flags field has WITNESS_REGISTER_IP_NOTIFICATION set,

WitnessRegistration.IPNotificationRequired MUST be set to TRUE; otherwise set to FALSE.

WitnessRegistration.IPAddress MUST be set to the IPAddress parameter.

WitnessRegistration.RegistrationKey MUST be set to a newly generated UUID.

WitnessRegistration.PendingChangeNotifications,

WitnessRegistration.PendingMoveNotification,

WitnessRegistration.PendingShareMoveNotification,
WitnessRegistration.PendingIPNotification MUST be set to empty.

The server MUST copy the WitnessRegistration.RegistrationKey into the ppContext parameter.

The server MUST return ERROR_SUCCESS and the ppContext parameter to the caller.

3.1.5 Timer Events

3.1.5.1 Unused Registration Timer Event

If the server implements version 2 of the protocol, it MUST implement this timer event.

When the Unused Registration Timer (section 3.1.2.1) expires, the server MUST search for the
WitnessRegistration entry in WitnessRegistrationList. If
WitnessRegistration.IsAsyncNotifyRegistered is FALSE and
WitnessRegistration.LastUseTime plus an implementation-specific timeout<2> is earlier than
the current time, the server MUST remove the WitnessRegistration entry from the

WitnessRegistrationList.

3.1.5.2 AsyncNotify Pending Timer Event

If the server implements version 2 of the protocol, it MUST implement this timer event.

When the Notification Pending Timer (section 3.1.2.2) expires, the server MUST search for the
WitnessRegistration entry in WitnessRegistrationList. If
WitnessRegistration.IsAsyncNotifyRegistered is TRUE and

WitnessRegistration.LastUseTime plus WitnessRegistration.KeepAliveTime is earlier than
the current time, the server MUST fail the request with ERROR_TIMEOUT.

3.1.6 Other Local Events

The Service Witness Protocol is driven by a series of higher-layer triggered events in the following
categories:

A resource being enabled or disabled.

A request for a client to move to another resource.

The ownership of a share moving between resources.

An IP address being added, removed, enabled, or disabled.

28 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.6.1 Server Application Notifies of an Interface Being Enabled or Disabled

The calling application provides the interface group name, IPv4 and/or IPv6 addresses, and state.

The server MUST search for the Interface in the InterfaceList where

Interface.InterfaceGroupName matches the application-provided interface group name, and
Interface.IPv4Address or Interface.IPv6Address matches one or both of the application-
provided IP addresses.

If a matching entry is found, the server MUST set Interface.State to the application-provided
state. Then for each entry in the WitnessRegistrationList where
WitnessRegistration.NetworkName matches the application-provided interface group name and
WitnessRegistration.IPAddress matches the application-provided IP address, the server MUST

add a change entry to WitnessRegistration.PendingChangeNotifications, with a
ResourceName of the Interface.InterfaceGroupName and a NewState of the application-
provided state.

Else if no matching entry is found, the server MUST create a new Interface as follows, and add it to

the InterfaceList:

Interface.InterfaceGroupName: MUST be set to the application-provided interface group

name.

Interface.State: MUST be set to the application-supplied state.

If the application supplied an IPv4 address, then Interface.IPv4Address MUST be set to it, else

Interface.IPv4Address MUST be set to empty.

If the application supplied an IPv6 address, then Interface.IPv6Address MUST be set to it, else

Interface.IPv6Address MUST be set to empty.

The server MUST awaken any pending client requests awaiting notification in sections 3.1.4.1 and
3.1.4.4.

3.1.6.2 Server Application Notifies of a Request to Move to a New Resource

The calling application provides the Witness client name and resource name. The resource name can
be an interface group name, an IP address, or a host name.

The server MUST search for all WitnessRegistrations in the WitnessRegistrationList where
WitnessRegistration.WitnessClientName matches the application-provided witness client name.

For each WitnessRegistration matched, the server MUST create or overwrite the move entry in
WitnessRegistration.PendingMoveNotification, setting the Notification.Destination to the
application-provided resource name.

The server MUST awaken any client requests awaiting notification in section 3.1.4.4.

3.1.6.3 Server Application Notifies of a Change in the Resource that Owns a Share

This notification is applicable only to servers implementing version 2 (0x00020000). The calling
application provides the Witness client name, share name, and resource name. The resource name
can be an interface group name, an IP address, or a host name.

The server MUST search for all WitnessRegistrations in the WitnessRegistrationList where
WitnessRegistration.WitnessClientName matches the application-provided witness client name,

29 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

WitnessRegistration.ShareName matches the application-provided share name, and
WitnessRegistration.ShareNameNotificationRequired is TRUE.

For each WitnessRegistration matched, the server MUST create or overwrite the share move
entry in WitnessRegistration.PendingShareMoveNotification, setting the

Notification.Destination to the application-provided resource name.

The server MUST awaken any client requests awaiting notification in section 3.1.4.4.

3.1.6.4 Server Application Notifies of an IP Address Being Added, Removed,

Enabled or Disabled

This notification is applicable only to servers implementing version 2 (0x00020000).The calling

application provides the Witness client name and resource name. The resource name can be an
interface group name, an IP address, or a host name.

The server MUST search for all WitnessRegistrations in the WitnessRegistrationList where
WitnessRegistration.WitnessClientName matches the application-provided witness client name and

WitnessRegistration.IPNotificationRequired is TRUE.

For each WitnessRegistration matched, the server MUST create or overwrite the move entry in

WitnessRegistration.PendingIPNotification, setting the Notification.Destination to the
application-provided resource name.

The server MUST awaken any client requests awaiting notification in section 3.1.4.4.

3.1.6.5 Transport Connection Shutdown

When the RPC transport indicates that an RPC connection with a client has timed out, as specified in
[MS-RPCE] section 3.3.3.2.1, the server MUST delete the WitnessRegistration entry for that client

from the WitnessRegistrationList.

3.2 Witness Client Details

The client performs requests made to it by the application.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The organization is provided to facilitate the explanation of
how the protocol behaves. This specification does not mandate that implementations adhere to this
model as long as their external behaviors are consistent with that described in this specification.

3.2.1.1 Global

The client implements the following properties:

WitnessRegistrationList: A list of WitnessRegistration initiated by the client to the witness

servers. The structure of registration is as specified in section 3.2.1.2.

WitnessClientVersion: The highest Witness protocol version supported by the Witness client.

The value MUST be one of those listed in section 1.7.

3.2.1.2 Per WitnessRegistration

The client implements the following properties per witness registration.

%5bMS-RPCE%5d.pdf

30 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

WitnessServerName: A null-terminated string that contains the name of the server.

IPAddress: An IP address of a connection target.

RegistrationKey: A unique value assigned by the server for this registration, in the form of

context_handle, as specified in section 2.2.1.1.

RPCHandle: An RPC handle to be used for making requests of the Witness server.

WitnessNotifyRequest: A Boolean indicating whether a WitnessrAsyncNotify request is

outstanding.

If the client implements version 2 (0x00020000) of the Witness protocol, the client implements the

following properties:

ShareName: A null-terminated string that contains the share name.

NetNameNotificationRequired: A Boolean when set; indicates that this registration requires

notifications based on the NetName.

ShareNameNotificationRequired: A Boolean when set; indicates that this registration requires

notifications based on the ShareName.

IPNotificationRequired: A Boolean when set; indicates that this registration requires

notifications based on the IP address changes on the server associated with NetName.

WitnessServerVersion: The Witness protocol version supported by the Witness server for this

registration.

3.2.2 Timers

The client uses non-default behavior for the RPC Call Timeout timer defined in [MS-RPCE] section
3.3.2.2.2. The timer value that the client uses is implementation-specific.<3>

3.2.3 Initialization

The client MUST initialize WitnessRegistrationList to empty.

The client MUST initialize WitnessClientVersion in an <4>implementation-specific manner.

3.2.4 Message Processing Events and Sequencing Rules

After the client is initialized, it is subsequently driven by the higher-layer events triggered by the
applications. The following sections describe events triggered by the higher layer.

3.2.4.1 Application Requests Witness Register

The caller provides the following:

NetName: The name that the application is requesting for notifications, typically the name to

which it has connected.

IpAddress: The IP address for which the application requires receiving asynchronous

notification.

%5bMS-RPCE%5d.pdf

31 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ShareName: A string containing the share name on which the application had requested for

notifications, typically the share name to which it has connected. This parameter is only

applicable for clients implementing Witness protocol version 2.

IsNetNameNotificationRequired: A Boolean when set; indicates that the application is

requesting witness registration for receiving notifications based on the NetName. This parameter
is only applicable for clients implementing Witness protocol version 2.

IsShareNameNotificationRequired: A Boolean when set; indicates that the application is

requesting witness registration for receiving notifications based on the ShareName. This
parameter is only applicable for clients implementing Witness protocol version 2.

IsIPNotificationRequired: A Boolean when set; indicates that the application is requesting

witness registration for receiving notifications based on the IP addresses changes on the server
associated with NetName. This parameter is only applicable for clients implementing Witness
protocol version 2.

The client MUST establish an RPC connection to the Witness Service running on the IPAddress, as

specified in section 2.1. If the connection is not established, the resulting error MUST be returned to

the caller.

The client MUST call the WitnessrGetInterfaceList method, by providing the RPC handle returned
from the previous step as the Handle input parameter, and subsequently close the RPC handle. If
the server returns an error, the client MUST return the same error code to the caller.

If the server returns STATUS_SUCCESS, the client MUST select an Interface returned in the
WITNESS_INTERFACE_LIST where the INTERFACE_WITNESS flag is set in the Flags field and State
is AVAILABLE.

If WitnessClientVersion is 0x00020000, the client MUST create a new WitnessRegistration
entry in WitnessRegistrationList and set WitnessRegistration.WitnessServerVersion to the
Version value returned in the WitnessrGetInterfaceList response and set
WitnessRegistration.IpAddress to the IpAddress.

The client MUST establish an RPC Connection to the Witness Service running on the selected
Interface, as specified in section 2.1. If the IPv4 flag is set, the address in Interface.IPv4
SHOULD be used for the connection. If the IPv6 flag is set, the address in Interface.IPv6 SHOULD

be used for the connection. If the connection is not established, the resulting error MUST be
returned to the caller.

If WitnessClientVersion is 0x00020000, and if IsShareNameNotificationRequired or
IsIPNotificationRequired provided by the application is TRUE, the client MUST call the RPC
WitnessrRegisterEx method on the resulting RPC handle, providing the following values:

WitnessClientVersion for the Version parameter

NetName for the NetName parameter

ShareName for the ShareName parameter

IpAddress for the IpAddress parameter

A name to be used to identify the client<5> for ClientComputerName

If IsIPNotificationRequired is TRUE, 0x00000001 for Flags; otherwise 0x00000000 for Flags.

An implementation-specific time out value for the KeepAliveTimeout parameter.<6>

32 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the server returns an error, the client MUST free the WitnessRegistration entry where
WitnessRegistration.IpAddress matches IpAddress, close the RPC handle and return the same

error code to the caller. If the server returns STATUS_SUCCESS, the client MUST update
WitnessRegistration entry with the following values:

WitnessServerName: This value MUST be set to the NetName parameter.

ShareName: This value MUST be set to ShareName parameter.

RegistrationKey: This value MUST be set to the value in the ppContext parameter.

RPCHandle: This value MUST be set to the RPC handle used in the previous step.

WitnessNotifyRequest: This value MUST be set to FALSE.

NetNameNotificationRequired: This value MUST be set to TRUE.

ShareNameNotificationRequired: This value MUST be set to TRUE if

IsShareNameNotificationRequired is TRUE; otherwise set to FALSE.

IPNotificationRequired: This value MUST be set to TRUE if IsIPNotificationRequired is

TRUE; otherwise set to FALSE.

Otherwise, the client MUST call the RPC WitnessrRegister method on the resulting RPC handle,
providing 0x00010001 for Version, NetName, IpAddress, and a name to be used to identify the
client<7>, as input parameters. If the server returns an error, the client MUST close the RPC handle
and return the same error code to the caller. If the server returns STATUS_SUCCESS, the client
MUST create a new WitnessRegistration entry with the following values, insert the entry in
WitnessRegistrationList, and return success to the caller:

WitnessServerName: This value MUST be set to the NetName parameter.

IPAddress: This value MUST be set to the IpAddress parameter.

RegistrationKey: This value MUST be set to the value in the ppContext parameter.

WitnessNotifyRequest: This value MUST be set to FALSE.

RPCHandle: This value MUST be set to the RPC handle used in the previous step.

If WitnessClientVersion is 0x0000002, ShareName MUST be set to NULL,

NetNameNotificationRequired MUST be set to TRUE, ShareNameNotificationRequired
MUST be set to FALSE, and IPNotificationRequiredRequired MUST be set to FALSE.

The client MUST return success to the caller.

3.2.4.2 Application Requests Witness Event Notification

The caller provides the following:

NetName: The name that the application is requesting for notifications, typically the name to

which it has connected.

IpAddress: The IP address for which the application requires receiving asynchronous

notification.

33 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ShareName: A string containing the share name that the application is requesting for

notifications, typically the share name to which it has connected. This parameter is only

applicable for clients implementing Witness protocol version 2.

IsNetNameNotificationRequired: A Boolean when set; indicates that the application had

requested witness registration for receiving notifications based on the NetName. This parameter
is only applicable for clients implementing Witness protocol version 2.

IsShareNameNotificationRequired: A Boolean when set; indicates that the application had

requested witness registration for receiving notifications based on the ShareName. This
parameter is only applicable for clients implementing Witness protocol version 2.

IsIPNotificationRequired: A Boolean when set; indicates that the application had requested

witness registration for receiving notifications based on the IP addresses changes on the server
associated with NetName. This parameter is only applicable for clients implementing Witness
protocol version 2.

If WitnessClientVersion is 0x00020000, the client MUST locate the WitnessRegistration entry in

the WitnessRegistrationList where WitnessRegistration.WitnessServerName matches

NetName, WitnessRegistration.WitnessShareName matches ShareName,
WitnessRegistration.IPAddress matches IPAddress,
WitnessRegistration.NetNameNotificationRequired matches
IsNetNameNotificationRequired, WitnessRegistration.ShareNameNotificationRequired
matches IsShareNameNotificationRequired, and
WitnessRegistration.IPNotificationRequired matches IsIPNotificationRequired.

If WitnessClientVersion is 0x00010001, the client MUST locate a WitnessRegistration entry in

the WitnessRegistrationList where WitnessRegistration.WitnessServerName matches the
application-provided NetName and WitnessRegistration.IPAddress matches the application-
provided IPAddress.

If no matching entry is found, or if the WitnessRegistration.WitnessNotifyRequest is TRUE, the
client MUST stop processing and return an implementation-defined local error to the caller.

The client MUST set WitnessRegistration.WitnessNotifyRequest to TRUE.

The client MUST call the WitnessrAsyncNotify method, on WitnessRegistration.RPCHandle,

passing WitnessRegistration.RegistrationKey as pContext.

When the server replies, if WitnessClientVersion is 0x00020000 and the status indicates
ERROR_TIMEOUT, the client MUST call the WitnessrAsyncNotify method as specified earlier.

Otherwise, the client MUST set WitnessRegistration.WitnessNotifyRequest to FALSE.

The status and any received RESP_ASYNC_NOTIFY result obtained from the server in the previous
step MUST be returned to the caller.

3.2.4.3 Application Requests Witness UnRegister

The caller provides the following:

NetName: The name that the application is requesting to be unregistered, typically the name to

which it has previously registered.

IpAddress: The IP address on which the application previously registered for receiving

asynchronous notification.

34 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ShareName: A string containing the share name that the application is requesting for

notifications, typically the share name to which it has connected. This parameter is only

applicable for clients implementing Witness protocol version 2.

IsNetNameNotificationRequired: A Boolean when set; indicates that the application had

requested witness registration for receiving notifications based on the NetName. This parameter
is only applicable for clients implementing Witness protocol version 2.

IsShareNameNotificationRequired: A Boolean when set; indicates that the application had

requested witness registration for receiving notifications based on the ShareName. This
parameter is only applicable for clients implementing Witness protocol version 2.

IsIPNotificationRequired: A Boolean when set; indicates that the application had requested

witness registration for receiving notifications based on the IP addresses changes on the server
associated with NetName. This parameter is only applicable for clients implementing Witness
protocol version 2.

If WitnessClientVersion is 0x00020000, the client MUST locate the WitnessRegistration entry in

the WitnessRegistrationList where WitnessRegistration.WitnessServerName matches

NetName, WitnessRegistration.WitnessShareName matches ShareName,
WitnessRegistration.IPAddress matches IPAddress,
WitnessRegistration.NetNameNotificationRequired matches
IsNetNameNotificationRequired, WitnessRegistration.ShareNameNotificationRequired
matches IsShareNameNotificationRequired, and
WitnessRegistration.IPNotificationRequired matches IsIPNotificationRequired.

If WitnessClientVersion is 0x00010001, the client MUST locate a WitnessRegistration entry in

the WitnessRegistrationList where WitnessRegistration.WitnessServerName matches the
application-provided NetName and WitnessRegistration.IPAddress matches the application-
provided IPAddress.

If no matching entry is found, or if the WitnessRegistration.WitnessNotifyRequest is TRUE, the
client MUST stop processing and return an implementation-defined local error to the caller.

The client MUST call the WitnessrUnRegister method, on the WitnessRegistration.RPCHandle,
passing the WitnessRegistration.RegistrationKey as the context.

If the server returns an error, the client MUST return the same error code to the caller. If the server
returns STATUS_SUCCESS, the client MUST close WitnessRegistration.RPCHandle, remove the
WitnessRegistration from WitnessRegistrationList, and return STATUS_SUCCESS to the caller.

3.2.5 Timer Events

Upon the expiration of RPC Call Timeout Timer, as specified in section 3.2.2, the client MUST close

the RPC connection to the server and release the binding handle.

3.2.6 Other Local Events

None.

35 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Protocol Examples

None.

36 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Security

5.1 Security Considerations for Implementers

This protocol allows any user to connect to the server; therefore, any security weakness in the
server implementation could be exploitable. The server implementation should enforce security on
each method.

5.2 Index of Security Parameters

This protocol allows any user to establish a connection to the RPC server as specified in section 2.1.

37 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Appendix A: Full IDL

For ease of implementation the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL
found in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE]
sections 2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required and pointer_default(unique) is assumed.

import "ms-dtyp.idl";

typedef [context_handle] void * PCONTEXT_HANDLE;

typedef [context_handle] PCONTEXT_HANDLE PCONTEXT_HANDLE_SHARED;

typedef [ref] PCONTEXT_HANDLE * PPCONTEXT_HANDLE;

typedef struct _RESOURCE_CHANGE {

 UINT Length;

 UINT32 ChangeType;

 WCHAR ResourceName[];

} RESOURCE_CHANGE, *PRESOURCE_CHANGE;

typedef struct _IPADDR_INFO {

 UINT Flags;

 ULONG IPV4;

 USHORT IPV6[8];

} IPADDR_INFO, *PIPADDR_INFO;

typedef struct _IPADDR_INFO_LIST {

 UINT Length;

 ULONG Reserved;

 ULONG IPAddrInstances;

 IPADDR_INFO IPAddrInfo[];

} IPADDR_INFO_LIST, *PIPADDR_INFO_LIST;

typedef struct _RESP_ASYNC_NOTIFY {

 UINT MessageType;

 UINT Length;

 UINT NumberOfMessages;

 [size_is(Length)] [unique] PBYTE MessageBuffer;

} RESP_ASYNC_NOTIFY, *PRESP_ASYNC_NOTIFY;

typedef struct _WITNESS_INTERFACE_INFO {

 WCHAR InterfaceGroupName[260];

 ULONG Version;

 USHORT State;

 ULONG IPV4;

 USHORT IPV6[8];

 UINT Flags;

} WITNESS_INTERFACE_INFO, *PWITNESS_INTERFACE_INFO;

typedef struct _WITNESS_INTERFACE_LIST {

 UINT NumberOfInterfaces;

 [size_is(NumberOfInterfaces)] [unique] PWITNESS_INTERFACE_INFO InterfaceInfo;

} WITNESS_INTERFACE_LIST, *PWITNESS_INTERFACE_LIST;

[uuid(ccd8c074-d0e5-4a40-92b4-d074faa6ba28)]

[version(1.1)]

[pointer_default(unique)]

interface Witness {

 DWORD WitnessrGetInterfaceList(

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

38 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] handle_t Handle,

 [out] PWITNESS_INTERFACE_LIST * InterfaceList);

 DWORD WitnessrRegister(

 [in] handle_t Handle,

 [out] PPCONTEXT_HANDLE ppContext,

 [in] ULONG Version,

 [in] [string] [unique] LPWSTR NetName,

 [in] [string] [unique] LPWSTR IpAddress,

 [in] [string] [unique] LPWSTR ClientComputerName);

 DWORD WitnessrUnRegister(

 [in] handle_t Handle,

 [in] PCONTEXT_HANDLE pContext);

 DWORD WitnessrAsyncNotify(

 [in] handle_t Handle,

 [in] PCONTEXT_HANDLE_SHARED pContext,

 [out] PRESP_ASYNC_NOTIFY * pResp);

 DWORD WitnessrRegisterEx(

 [in] handle_t Handle,

 [out] PPCONTEXT_HANDLE ppContext,

 [in] ULONG Version,

 [in] [string] [unique] LPWSTR NetName,

 [in] [string] [unique] LPWSTR ShareName,

 [in] [string] [unique] LPWSTR IpAddress,

 [in] [string] [unique] LPWSTR ClientComputerName,

 [in] ULONG Flags,

 [in] ULONG KeepAliveTimeout);

};

39 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 3.1.3: Windows Server 2012 sets this value to 0x00010001. Windows Server 2012 R2
sets this value to 0x00020000.

<2> Section 3.1.5.1: Windows Server 2012 R2 server uses 30 seconds time out.

<3> Section 3.2.2: Windows 8.1 and Windows Server 2012 R2 use a default of 180 seconds.

<4> Section 3.2.3: Windows 8 and Windows Server 2012 clients set WitnessClientVersion to
0x00010001; Windows 8.1 and Windows Server 2012 R2 clients set WitnessClientVersion to
0x00020000.

<5> Section 3.2.4.1: Windows uses the FQDN of the local computer to identify the client.

<6> Section 3.2.4.1: Windows 8.1 and Windows Server 2012 R2 use a default KeepAliveTime
value of 120 seconds.

<7> Section 3.2.4.1: Windows uses the FQDN of the local computer to identify the client.

%5bMS-GLOS%5d.pdf

40 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8 Change Tracking

This section identifies changes that were made to the [MS-SWN] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

41 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if

applicable)

 and description

Major

change

(Y or

N)

Change

type

1.3

Overview

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

1.7

Versioning and Capability Negotiation

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

2.2.2

Structures

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

2.2.2.1

IPADDR_INFO

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

2.2.2.2

IPADDR_INFO_LIST

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

2.2.2.4

RESP_ASYNC_NOTIFY

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.1.1.3

Per WitnessRegistration in

WitnessRegistrationList

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.1.1.6 Added section with content Y New

mailto:protocol@microsoft.com

42 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Section

Tracking number (if

applicable)

 and description

Major

change

(Y or

N)

Change

type

PendingShareMoveNotification for Windows 8.1 and

Windows Server 2012 R2.

content

added.

3.1.1.7

PendingIPNotification

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

3.1.2.1

Unused Registration Timer

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

3.1.2.2

AsyncNotify Pending Timer

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

3.1.3

Initialization

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.1.4

Message Processing Events and Sequencing

Rules

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.1.4.2

WitnessrRegister (Opnum 1)

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.1.4.4

WitnessrAsyncNotify (Opnum 3)

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.1.4.5

WitnessrRegisterEx (Opnum 4)

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

3.1.5.1

Unused Registration Timer Event

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

3.1.5.2

AsyncNotify Pending Timer Event

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

3.1.6

Other Local Events

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.1.6.3

Server Application Notifies of a Change in the

Resource that Owns a Share

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

3.1.6.4

Server Application Notifies of an IP Address

Being Added, Removed, Enabled or Disabled

Added section with content

for Windows 8.1 and

Windows Server 2012 R2.

Y New

content

added.

43 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Section

Tracking number (if

applicable)

 and description

Major

change

(Y or

N)

Change

type

3.2.1.2

Per WitnessRegistration

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.2.2

Timers

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.2.3

Initialization

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.2.4.1

Application Requests Witness Register

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.2.4.2

Application Requests Witness Event

Notification

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.2.4.3

Application Requests Witness UnRegister

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

3.2.5

Timer Events

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

6

Appendix A: Full IDL

Updated content for Windows

8.1 and Windows Server

2012 R2.

Y Content

updated.

7

Appendix B: Product Behavior

Modified this section to

include references to

Windows Server 2012 R2.

Y Content

updated.

44 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

9 Index

A

Abstract data model
client

Witness 29
server

Witness 15
Applicability 7
Application Requests Witness Event Notification

method 32
Application Requests Witness Register method 30
Application Requests Witness UnRegister method 33

C

Capability negotiation 8
Change tracking 40
Client

Witness
abstract data model 29
Application Requests Witness Event Notification

method 32
Application Requests Witness Register method

30
Application Requests Witness UnRegister

method 33
initialization 30
interface 29
local events 34
message processing 30
sequencing rules 30
timer events 34
timers 30

Common data types 9
structures 10

D

Data model - abstract
client

Witness 29
server

Witness 15
Data types

common - overview 9
PCONTEXT_HANDLE 10
PCONTEXT_HANDLE_SHARED 10
PPCONTEXT_HANDLE 10

E

Events
local

client
Witness 34

server
Witness 27

timer

client
Witness 34

Examples
overview 35

F

Fields - vendor extensible 8
Full IDL 37

G

Glossary 5

I

IDL 37
Implementer - security considerations 36
Index of security parameters 36
Informative references 6
Initialization

client
Witness 30

server
Witness 17

Interfaces
client

Witness 29
server

Witness 15
Introduction 5
IPADDR_INFO structure 10
IPADDR_INFO_LIST structure 11

L

Local events
client

Witness 34
server

Witness 27

M

Message processing
client

Witness 30
server

Witness 17
Messages

common data types 9
transport 9

Methods
Application Requests Witness Event Notification

32
Application Requests Witness Register 30
Application Requests Witness UnRegister 33
WitnessrAsyncNotify (Opnum 3) 22

45 / 45

[MS-SWN] — v20130722
 Service Witness Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

WitnessrGetInterfaceList (Opnum 0) 18
WitnessrRegister (Opnum 1) 19
WitnessrRegisterEx (Opnum 4) 25
WitnessrUnRegister (Opnum 2) 21

N

Normative references 5

O

Overview (synopsis) 6

P

Parameters - security index 36
PCONTEXT_HANDLE data type 10
PCONTEXT_HANDLE_SHARED data type 10
PPCONTEXT_HANDLE data type 10
Preconditions 7
Prerequisites 7
Product behavior 39

R

References
informative 6
normative 5

Relationship to other protocols 7
RESOURCE_CHANGE structure 11
RESP_ASYNC_NOTIFY structure 12

S

Security
implementer considerations 36
parameter index 36

Sequencing rules
client

Witness 30
Witness 17

Server
Witness

abstract data model 15
initialization 17
interface 15
local events 27
message processing 17
PendingChangeNotifications 16

PendingMoveNotification 16
Request to Move to a New Resource 28
sequencing rules 17
WitnessrAsyncNotify (Opnum 3) method 22
WitnessrGetInterfaceList (Opnum 0) method 18
WitnessrRegister (Opnum 1) method 19
WitnessrRegisterEx (Opnum 4) method 25
WitnessrUnRegister (Opnum 2) method 21

Standards assignments 8
Structures

IPADDR_INFO 10
IPADDR_INFO_LIST 11
overview 10

RESOURCE_CHANGE 11
RESP_ASYNC_NOTIFY 12
WITNESS_INTERFACE_INFO 13
WITNESS_INTERFACE_LIST 14

T

Timer events
client

Witness 34
Timers

client
Witness 30

Tracking changes 40
Transport 9

V

Vendor extensible fields 8
Versioning 8

W

Witness
client - overview 29
interface

client 29
server 15

server - overview 15
WITNESS_INTERFACE_INFO structure 13
WITNESS_INTERFACE_LIST structure 14
WitnessrAsyncNotify (Opnum 3) method 22
WitnessrGetInterfaceList (Opnum 0) method 18
WitnessrRegister (Opnum 1) method 19
WitnessrRegisterEx (Opnum 4) method 25
WitnessrUnRegister (Opnum 2) method 21

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 PCONTEXT_HANDLE
	2.2.1.2 PPCONTEXT_HANDLE
	2.2.1.3 PCONTEXT_HANDLE_SHARED

	2.2.2 Structures
	2.2.2.1 IPADDR_INFO
	2.2.2.2 IPADDR_INFO_LIST
	2.2.2.3 RESOURCE_CHANGE
	2.2.2.4 RESP_ASYNC_NOTIFY
	2.2.2.5 WITNESS_INTERFACE_INFO
	2.2.2.6 WITNESS_INTERFACE_LIST

	3 Protocol Details
	3.1 Witness Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global
	3.1.1.2 Per Interface in InterfaceList
	3.1.1.3 Per WitnessRegistration in WitnessRegistrationList
	3.1.1.4 Per Notification in PendingChangeNotifications
	3.1.1.5 PendingMoveNotification
	3.1.1.6 PendingShareMoveNotification
	3.1.1.7 PendingIPNotification

	3.1.2 Timers
	3.1.2.1 Unused Registration Timer
	3.1.2.2 AsyncNotify Pending Timer

	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 WitnessrGetInterfaceList (Opnum 0)
	3.1.4.2 WitnessrRegister (Opnum 1)
	3.1.4.3 WitnessrUnRegister (Opnum 2)
	3.1.4.4 WitnessrAsyncNotify (Opnum 3)
	3.1.4.5 WitnessrRegisterEx (Opnum 4)

	3.1.5 Timer Events
	3.1.5.1 Unused Registration Timer Event
	3.1.5.2 AsyncNotify Pending Timer Event

	3.1.6 Other Local Events
	3.1.6.1 Server Application Notifies of an Interface Being Enabled or Disabled
	3.1.6.2 Server Application Notifies of a Request to Move to a New Resource
	3.1.6.3 Server Application Notifies of a Change in the Resource that Owns a Share
	3.1.6.4 Server Application Notifies of an IP Address Being Added, Removed, Enabled or Disabled
	3.1.6.5 Transport Connection Shutdown

	3.2 Witness Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Global
	3.2.1.2 Per WitnessRegistration

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Application Requests Witness Register
	3.2.4.2 Application Requests Witness Event Notification
	3.2.4.3 Application Requests Witness UnRegister

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

