[MS-STOROD]: Storage Services Protocols Overview ## **Intellectual Property Rights Notice for Open Specifications Documentation** - **Technical Documentation.** Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies. - **Copyrights.** This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications. - No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. - Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft Open Specification Promise or the Community Promise. If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting ipla@microsoft.com. - Trademarks. The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks. - **Fictitious Names.** The example companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred. **Reservation of Rights.** All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise. **Tools.** The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it. This document provides an overview of the Storage Services Protocols Overview Protocol Family. It is intended for use in conjunction with the Microsoft Protocol Technical Documents, publicly available standard specifications, network programming art, and Microsoft Windows distributed systems concepts. It assumes that the reader is either familiar with the aforementioned material or has immediate access to it. A Protocol System Document does not require the use of Microsoft programming tools or programming environments in order to implement the Protocols in the System. Developers who have access to Microsoft programming tools and environments are free to take advantage of them. #### Abstract This document provides an overview of the functionality and relationship of the Storage Services protocols, which are specified in [MS-DMRP], [MS-VDS], [MS-SCMP], [MS-FSRVP], [MS-RSMP], and [MS-EFSR]. The Storage Services protocols provide the following services: disk and volume management services, data backup and restore, removable media management, file access control, and file encryption in Windows. This document describes the intended functionality of the Storage Services protocols and how these protocols interact with each other. It provides examples of some common use cases. It does not restate the processing rules and other details that are specific for each protocol. Those details are described in the protocol specifications for each of the protocols and data structures that belong to this protocols group. # **Revision Summary** | Date | Revision
History | Revision
Class | Comments | |------------|---------------------|-------------------|--| | 12/16/2011 | 1.0 | New | Released new document. | | 03/30/2012 | 2.0 | Major | Significantly changed the technical content. | | 07/12/2012 | 3.0 | Major | Significantly changed the technical content. | | 10/25/2012 | 3.0 | No change | No changes to the meaning, language, or formatting of the technical content. | | 01/31/2013 | 3.0 | No change | No changes to the meaning, language, or formatting of the technical content. | | 08/08/2013 | 4.0 | Major | Significantly changed the technical content. | | 11/14/2013 | 4.0 | No change | No changes to the meaning, language, or formatting of the technical content. | | 02/13/2014 | 4.0 | No change | No changes to the meaning, language, or formatting of the technical content. | | 05/15/2014 | 4.0 | No change | No changes to the meaning, language, or formatting of the technical content. | # **Contents** | 1 | | roduction | | |---|------|---|-----| | | | Conceptual Overview | | | | | Glossary | | | | 1.3 | References | . 7 | | _ | _ | | _ | | 2 | | nctional Architecture | | | | | Overview | | | | | .1 System Capabilities | 12 | | | | 1.1.1.1 Managing Disks and Volumes | | | | _ | 2.1.1.2 Backing Up and Restoring Data | | | | | 2.1.1.3 Managing Removable Media | | | | | 2.1.1.4 Providing File Encryption and Access Control | | | | | .2 Protocol Relationship | | | | | Environment | | | | | 3.1 Dependencies on This System | | | | | 2.2 Dependencies on Other Systems | | | | | Assumptions and Preconditions | | | | | Use Cases | | | | | 5.1 Manage Disks and Volumes | | | | | 2.5.1.1 Create and Modify a Volume | | | | | 2.5.1.2 Convert a Basic Disk to a Dynamic Disk | | | | | 2.5.1.3 Make an Offline Disk Online | | | | 2 | .5.1.4 Configure HBA Ports and iSCSI Initiators | 21 | | | | 5.2 Backup and Restore Data | | | | | 2.5.2.1 Create a Shadow Copy Storage Association | | | | 2 | 2.5.2.2 Back Up or Restore an Encrypted File | 24 | | | 2 | 2.5.2.3 Perform Backup of a File Share Remotely | 25 | | | | 3.3 Manage Removable Media | | | | | 2.5.3.1 Create and Delete a Media Pool | | | | | 2.5.3.2 Mount and Dismount Media | | | | | 2.5.3.3 Delete Work Queue Items | | | | 2.5 | .4 Encrypted File Access Control and Encryption | 31 | | | | 2.5.4.1 Provide Cryptographic Access Permissions to an Encrypted File | | | | | 2.5.4.2 Encrypt a File | | | | | 2.5.4.3 Decrypt an Encrypted File | | | | 2.6 | Versioning, Capability Negotiation, and Extensibility | 35 | | | 2.7 | | 36 | | | | Coherency Requirements | | | | | Security | | | | 2.10 | Additional Considerations | 20 | | 3 | Exa | ımples | 38 | | | 3.1 | Example 1: Make a Disk Online | 38 | | | 3.2 | Example 2: Configure an iSCSI Initiator | 39 | | | 3.3 | Example 3: Create a Shadow Copy Storage Association | 40 | | | | Example 4: Create and Delete a Media Pool | | | | 3.5 | Example 5: Encrypt a File | 43 | | | | Example 6: Decrypting an Encrypted File | | | | 3.7 | Example 7: Perform Backup of a File Share Remotely | 45 | | | | | | | 4 | Microsoft Implementations | 49 | |---|---------------------------|----| | | 4.1 Product Behavior | | | 5 | Change Tracking | 51 | | 6 | Index | 52 | # 1 Introduction The Storage Services protocols consist of a set of protocols for configuring and administering storage services operations in the Windows operating system, such as managing **disks** and **volumes**, backing up data, restoring data, managing the Media **library**, and encrypting and decrypting **files**. The member protocols of this system manage the low-level storage services operations and can be used programmatically to enumerate and configure disks, volumes, **host bus adapter (HBA)** ports, and **iSCSI initiators** on remote computers. Before the introduction of Disk Management services <1>, each storage device, such as the hard disk, the peripheral component interconnect (PCI) bus, the **redundant arrays of independent disks (RAID)** adapter, and the storage array system, provided its own installation and management application. The Disk Management services provide a unified interface that simplifies the management of dissimilar storage devices. # 1.1 Conceptual Overview Data that is stored on servers is critically important for the day-to-day activities of any organization. This data must be accessed, stored, and recovered reliably. In response to the expanding requirements for storage in distributed computing environments, the Windows operating system supports different storage technologies for storing, accessing, and managing data on servers. For information about storage technologies, see [MSDN-STC]. This section provides an overview of the following concepts, which are required for understanding this overview: - File systems technologies - File shares - Disks and volumes - Removable storage #### File systems technologies A **file system** is the structure in which files are named, stored, and organized. Examples for file systems are the FAT16, FAT32, and **NTFS** file systems. They can be used in any combination on a hard disk, but each volume on a hard disk can use only one file system. The
NTFS file system provides performance, reliability, and advanced features that are not found in any version of the **FAT** file system. For example, NTFS includes built-in security features such as file and folder permissions and the **Encrypting File System (EFS)**, which is the technology that is used to store encrypted files on NTFS volumes. NTFS also provides support for volumes up to 256 terabytes in size, support for disk quotas and compression, and support for mounted drives. For more information about EFS, see [MSFT-EFS]. #### File shares A file share represents a directory tree and its included files. It is a local resource that is offered by a file server and is consumed by a client application by using the File Access Services protocols, as described in [MS-FASOD]. #### **Disks and volumes** 5 / 53 A disk is a storage device that stores and provides access to large amounts of data. There are two types of disks for storing information: a **basic disk** and a **dynamic disk**. For more information about disk management, see [MSDN-DISKMAN]. A volume is an area on a storage device that is managed by the file system as a discrete logical storage unit. For more information about volume management, see [MSDN-VOLMAN]. # Removable storage Removable storage is an abstract component that is used to track removable storage media such as tapes and optical disks and to manage the hardware libraries that contain them by using changers and jukeboxes. Removable storage components can perform the following operations: - · Label, catalog, and track media - Control library drives, slots, and doors - Perform drive-cleaning operations Removable storage components interact with data management applications such as Backup. Removable storage components enable multiple applications to share storage media resources, which can reduce costs. # 1.2 Glossary The following terms are defined in [MS-GLOS]: basic disk certificate disk dvnamic disk **Encrypting File System (EFS)** file allocation table (FAT) file system host bus adapter (HBA) iSCSI initiator Lightweight Directory Access Protocol (LDAP) Microsoft Management Console (MMC) **NTFS** partition public key redundant arrays of independent disks (RAID) remote procedure call (RPC) removable media shadow copy volume The following terms are defined in [MS-SCMP]: # shadow copy storage association The following terms are specific to this document: Admin Client: A component that uses the Storage Services protocols to configure and query the state of storage entities such as the volume shadow copy, virtual disk, Encrypting File System (EFS), and removable storage. The Admin Client is also used to configure various policies that apply to a storage object such as creating or deleting storage volumes, giving access controls, and getting notifications. **library:** A storage device that contains one or more tape drives, a number of slots to hold tape cartridges, and an automated method for loading tapes. storage server: A server that hosts hard disks, removable media, and files. The following protocol abbreviations are used in this document: **DMRP:** Disk Management Remote Protocol. VDS: Virtual Disk Service (VDS) Protocol. **SCMP:** Shadow Copy Management Protocol. RSMP: Removable Storage Manager (RSM) Remote Protocol. EFSR: Encrypting File System Remote (EFSRPC) Protocol. FSRVP: File Server Remote VSS Protocol. #### 1.3 References References to Microsoft Open Specification documents do not include a publishing year because links are to the latest version of the documents, which are updated frequently. References to other documents include a publishing year when one is available. [MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification". [MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview". [MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol". [MS-DMRP] Microsoft Corporation, "Disk Management Remote Protocol". [MS-EFSR] Microsoft Corporation, "Encrypting File System Remote (EFSRPC) Protocol". [MS-FASOD] Microsoft Corporation, "File Access Services Protocols Overview". [MS-FSRVP] Microsoft Corporation, "File Server Remote VSS Protocol". [MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary". [MS-GPOD] Microsoft Corporation, "Group Policy Protocols Overview". [MS-OAUT] Microsoft Corporation, "OLE Automation Protocol". [MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions". [MS-RSMP] Microsoft Corporation, "Removable Storage Manager (RSM) Remote Protocol". [MS-SCMP] Microsoft Corporation, "Shadow Copy Management Protocol". [MS-VDS] Microsoft Corporation, "Virtual Disk Service (VDS) Protocol". [MS-WCCE] Microsoft Corporation, "Windows Client Certificate Enrollment Protocol". [MSDN-DISKMAN] Microsoft Corporation, "Disk Management", http://msdn.microsoft.com/en-us/library/aa363978.aspx [MSDN-VOLMAN] Microsoft Corporation, "Volume Management", http://msdn.microsoft.com/en-us/library/aa365728.aspx [MSDN-STC] Microsoft Corporation, "Storage Technologies Collection", March 2003, http://technet2.microsoft.com/WindowsServer/en/Library/616e5e77-958b-42f0-a87f-ba229ccd81721033.mspx # 2 Functional Architecture This section provides an overview of the capabilities of the Storage Services protocols, their relationships, and a summary of the Storage Services protocols, system dependencies, use cases, versioning, capability negotiation, error handling, coherency requirements, and security considerations. ## 2.1 Overview The Storage Services protocols provide disk and volume management services, data backup and restore, **removable media** management, encrypted file access control, and file encryption. The Storage Services protocols have four main components: - A Disk Management service that provides disk and volume management services. - A Shadow Copy service that backs up and restores data for volumes and file shares. - A Removable Storage Media Management service (RSMP service) that manages removable storage media. - An Encrypting File System service (EFS service) that encrypts and decrypts files. The following diagram shows the relationship of the main components of the Storage Services protocols with external components. Figure 1: Relationships of Storage Services protocols with external components The main external components that interact with the Storage Services protocols are as follows: **Admin Tool:** A **Microsoft Management Console (MMC)**, which is used by the administrator to configure the storage on the server. **Hard disk:** A peripheral device that provides persistent data storage and does not have removable media. **Volumes:** A group of one or more **partitions** that form a logical region of storage and the basis for a file system. A volume is an area on a storage device that is managed by the file system as a discrete logical storage unit. A partition contains at least one volume, and a volume can exist on one or more partitions. **Removable device:** Any type of storage that is not permanently attached to a computer. A persistent storage device stores its data on media. If the media can be removed from the device, the media is considered removable. For example, a floppy disk drive uses removable media. **Files:** An entity of data in the file system that a user can access and manage. A file has a unique name in its directory. It consists of one or more streams of bytes that hold a set of related data and a set of attributes, also called properties, which describe the file or the data within the file. The creation time of a file is an example of a file attribute. The dotted line in the diagram "Relationships of Storage Services protocols with external components" indicates local communication between the external components, such as the hard disk, the Admin Tool, the volumes, the removable device, and the files, and the Storage Services protocols. This local communication is implementation-specific. The Storage Services protocols are: - The Disk Management Remote Protocol, as described in [MS-DMRP] - The Virtual Disk Service (VDS) Protocol, as described in [MS-VDS] - The Shadow Copy Management Protocol, as described in [MS-SCMP] - The File Server Remote VSS Protocol, as described in [MS-FSRVP] - The Removable Storage Manager (RSM) Remote Protocol, as described in [MS-RSMP] - The Encrypting File System Remote (EFSRPC) Protocol, as described in [MS-EFSR] The following diagram shows the Storage Services system protocols with the external components and includes the specific protocols that are used to implement these relationships. Figure 2: Component-level diagram of Storage Services protocols # 2.1.1 System Capabilities The Storage Services protocols enable the administrator to store and access data reliably, recover stored data, and manage the data on the servers. The overall functionality of the Storage Services protocols includes the following: - Managing disks and volumes (section 2.1.1.1) - Backing up and restoring data (section 2.1.1.2) - Managing removable media (section 2.1.1.3) - Providing file encryption and access control (section 2.1.1.4) # 2.1.1.1 Managing Disks and Volumes The Storage Services protocols provide an interface for managing disks and volumes and provide an end-to-end solution for managing storage hardware and disks and for creating volumes on those disks. This functionality is provided by the Disk Management Remote (DMRP) Protocol, as described in [MS-DMRP],<2> and the Virtual Disk Service (VDS) Protocol, as described in [MS-VDS].<3> # 2.1.1.2 Backing Up and Restoring Data The Shadow Copy Management Protocol, as described in [MS-SCMP], the File Server Remote VSS
Protocol, as described in [MS-FSRVP], and the Encrypting File System Remote (EFSRPC) Protocol, as described in [MS-EFSR], aid in backup and restore functionality. The Shadow Copy Management Protocol is applicable when an application is required to configure **shadow copies** and shadow copy storage on the server remotely, which in turn is used by any snapshot provider to perform data backup-and-restore operations. The Shadow Copy Management Protocol provides a mechanism for remote configuration of shadow copies to implement the following functionalities: - Enumerate the volumes on the server that can be shadow copied or used as shadow copy storage. - Enumerate the shadow copies that are available on the server and that are snapshot copies of a specified original volume. - Create, modify, enumerate, and delete the shadow copy storage association objects, as described in [MS-SCMP], that define the location and size of shadow copy storage for specific original volumes. - Query all the shadow copy storage association objects on the server that provide shadow copy storage for a specified original volume and that are located on a specified shadow copy storage volume. The File Server Remote VSS Protocol enables an application to query, create, or delete shadow copies on a file server. After the shadow copy of the file share is created, a VSS-aware application can use the shadow copy share to back up the application state and data from network shares that are hosted on a file server. This protocol can be integrated with existing volume shadow copy creation utilities. The EFSR protocol is used for backup-and-restore operations of encrypted files when application consistency is not required. For these operations to succeed, the file should not have an open handle while it is backed up; otherwise, the backup-and-restore operations fails. For more information about backup-and-restore operations for encrypted files, see [MS-EFSR] section 4. # 2.1.1.3 Managing Removable Media Managing removable media is a technology that enables multiple applications to share local libraries and tape or disk drives. It is used to configure and track the removable storage media, such as tapes and optical disks, and manage the hardware libraries that contain them, by using changers and tape libraries, also called tape jukeboxes. Removable media management is used to manage standalone storage devices, to manage online media libraries and robotic changers, and to track removable tapes and disks. Standalone devices include CD-ROM, DVD, and tape drives, such as 4 mm, 8 mm, and Digital Linear Tape (DLT) tape drives. This functionality is provided by the Removable Storage Manager Remote Protocol, as described in [MS-RSMP]. # 2.1.1.4 Providing File Encryption and Access Control The encryption functionality provides an additional level of security for files and directories. It provides cryptographic protection of individual files on NTFS file system volumes that use a **public key** system. The Encrypting File System (EFS) checks only whether a file or a directory is marked for encryption and, if so, it protects the file with the **certificate** of the user who is adding the file. Typically, the control for access to file and directory objects, which is provided by the Windows security model, is sufficient to protect unauthorized access to sensitive information. However, if a computer that contains sensitive data is lost or stolen, the security protection of that data may be compromised. Additional access control functionality can be provided by the Encrypting File System and is accessed remotely through the Encrypting File System Remote Protocol, as described in [MS-EFSR]. # 2.1.2 Protocol Relationship The following diagram shows the relationship among the Storage Services protocols. Figure 3: Relationship between the Storage Services protocols The EFSR Protocol uses the interfaces, described in [MS-WCCE], for certificate enrollment, which in turn uses DCOM, as described in [MS-DCOM], as the transport. For all other operations, EFSR directly uses the **remote procedure call (RPC)** extensions, as described in [MS-RPCE]. The DMRP, VDS, and RSMP Protocols use DCOM as the transport. The SCMP Protocol uses the interfaces, described in <a>[MS-OAUT], which in turn uses DCOM as the transport. ## 2.2 Protocol Summary The following table provides a comprehensive list of the Storage Services member protocols. | Protocol name | Description | Short
name | |---|---|---------------| | Disk Management
Remote Protocol | The Disk Management Remote Protocol provides a set of DCOM interfaces for managing storage objects, such as disks and volumes.<4> | [MS-
DMRP] | | Virtual Disk
Service (VDS)
Protocol | The Virtual Disk Service (VDS) Remote Protocol is a set of DCOM interfaces for managing the configuration of disk storage on a computer. The Virtual Disk Service Remote Protocol deals with detailed low-level | [MS-
VDS] | | Protocol name | Description | Short
name | |--|---|----------------| | | operating system and storage concepts. This protocol supersedes the Disk Management Remote Protocol, as described in [MS-DMRP].<5> | | | Shadow Copy
Management
Protocol | The Shadow Copy Management Protocol is used to programmatically enumerate shadow copies and configure shadow copy storage on remote machines. The protocol uses a set of DCOM interfaces to query shadow copies and manage shadow copy storage on a remote machine. <6> | [MS-
SCMP] | | Removable
Storage Manager
(RSM) Remote
Protocol | The Removable Storage Manager (RSM) Remote Protocol provides a mechanism for the remote configuration and management of removable storage devices, such as robotic changers, media libraries, and tape drives. It enables multiple clients to manage removable media within a single-server system and share local robotic media libraries, tape drives, and disk drives. <7> | [MS-
RSMP] | | Encrypting File
System Remote
(EFSRPC) Protocol | The Encrypting File System Remote (EFSRPC) Protocol is used for performing maintenance and management operations on encrypted data that is stored remotely and accessed over a network. | [MS-
EFSR] | | File Server Remote
VSS Protocol | The File Server Remote VSS Protocol is designed to remotely create shadow copies of file shares that are hosted on a file server. This functionality facilitates applications that are hosting their data on a file server to back up and restore their application state. <8> | [MS-
FSRVP] | ## 2.3 Environment The following sections identify the context in which the system exists. The context includes the systems that use the interfaces that are provided by this system of protocols, other systems that depend on this system, and the appropriate communication between the system components within their environment. # 2.3.1 Dependencies on This System None. # 2.3.2 Dependencies on Other Systems The Storage Services protocols depend on the following entities: - The process that is used to enroll an EFS certificate as described in [MS-EFSR] section 3.1.4.1. - The Authentication Services system, as described in [MS-AUTHSOD], for authenticating the Storage Services Admin Client. - The Active Directory domain for **LDAP** search and modify operations that are required by the EFS certificate enrollment algorithm, as described in [MS-ADTS] section 3.1.1.3. - The Group Policy Protocols system, as described in [MS-GPOD], for enabling remote administrative configuration of the Encrypting File System (EFS). # 2.4 Assumptions and Preconditions The following assumptions and preconditions must be satisfied for the Storage Services protocols to operate successfully: - The Storage Services components (disk management service, Shadow Copy service, RSMP service, and the EFS service) must be installed on all the computers involved. - The RPC extensions and DCOM transport protocols are available. - The Admin Client has obtained the name of a server that implements the Storage Services protocols before the protocol is called. The Admin Client also requires sufficient security privileges to configure disks and volumes on the server. - The network services and infrastructure must be functional and configured so that required components such as protocols and ports are remotely accessible. The network access is required to enable system components that are running on different computers to communicate. ## 2.5 Use Cases The following table lists the use cases that span the functionality of the Storage Services protocols. The use cases are grouped into four groups as shown in the first column of the following table. | Use case group | Use cases | | |--|---|--| | Manage Disks and Volumes | Create and Modify a Volume (section 2.5.1.1) Convert a Basic Disk to a Dynamic Disk (section 2.5.1.2) Make an Offline Disk Online (section 2.5.1.3) Configure HBA Port and iSCSI Initiators (section 2.5.1.4) | | | Backup and Restore Data | Create a Shadow Copy Storage Association (section 2.5.2.1) Back
Up or Restore an Encrypted File (section 2.5.2.2) Perform a Backup of a File Share Remotely (section 2.5.2.3) | | | Manage Removable Storage | Create and Delete a Media Pool (section 2.5.3.1) Mount and Dismount Media (section 2.5.3.2) Delete Work Queue Items (section 2.5.3.3) | | | Encrypted File Access Control and Encryption | Provide Cryptographic Access Permissions to an Encrypted File (section 2.5.4.1) Encrypt a File (section 2.5.4.2) Decrypt an Encrypted File (section 2.5.4.3) | | The following sections provide detailed descriptions for each of the use cases in each group. # 2.5.1 Manage Disks and Volumes The Manage Disks and Volumes use case group consists of four use cases that illustrate the functionality for managing disks and volumes: - Create and modify a volume. - Convert a basic disk to a dynamic disk. - Make an offline disk online. - Configure HBA ports and iSCSI initiators. The following use case diagram shows the functionality for managing disks and volumes. Figure 4: Manage Disks and Volumes use case diagram The following sections describe each use case for the Manage Disks and Volumes use case group. ## 2.5.1.1 Create and Modify a Volume ## Goal Create and modify volumes. ## Context of Use The administrator is setting up a storage server. For this process, the administrator is required to create and modify volumes. ## **Actors** - **Admin Tool**: A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. - **Disk Management service:** The Disk Management service is the server-side implementation of the protocols specified in [MS-DMRP] and [MS-VDS]. #### Stakeholders • **Administrator:** The administrator is the person who administers the storage. The administrator is interested in organizing the storage, setting access rights, and enforcing quota-based limits on the storage. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. ## **Preconditions** The administrator has configured the Disk Management service in the storage server and has the appropriate access privileges to configure the disks and volumes. #### Main success scenario - 1. Trigger: The administrator requests to create a volume with a specified drive letter by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the Disk Management service of the Storage Services protocols. - 3. The Admin Client contacts the Disk Management service by using the **IVolumeClient::CreateVolumeAssignAndFormat** method, as described in [MS-DMRP] section 3.2.4.4.1.27, to create a dynamic volume and assign a drive letter. - 4. The Disk Management service creates the requested dynamic volume with the specified drive letter to store configuration information in an implementation-specific manner. - 5. The administrator requests to increase the size of the volume by using the Admin Tool. - 6. The Admin Client uses the Disk Management service by using the **IVolumeClient::GrowVolume** method, as described in [MS-DMRP] section 3.2.4.4.1.30, to increase the size of the volume. - 7. The Disk Management service increases the size of the requested volume. ## **Postcondition** The required actions have finished successfully: the volume is created, a drive letter is assigned, and the size of the volume has been increased. #### **Extensions** If the communication channel for the Disk Management Remote Protocol cannot be established or it becomes disconnected, the Admin Client attempts to establish the connection multiple times, until it fails. Whether the volume creation is finished or not depends on when the connection failed. #### Variation A variation of this use case is to create and modify a volume by using the Virtual Disk Service Protocol. The main success scenario steps of the variation are identical to those in the main use case that are described in this section. # 2.5.1.2 Convert a Basic Disk to a Dynamic Disk #### Goal Convert a basic disk to a dynamic disk. #### **Context of Use** 18 / 53 The administrator is setting up a **storage server**. In this process, the administrator is required to convert a basic disk to a dynamic disk and vice versa. #### **Actors** - Admin Tool: A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. - Disk Management service: The Disk Management service is the server-side implementation of the Disk Management Remote Protocol, as described in [MS-DMRP], and the Virtual Disk Service Protocol, as described in [MS-VDS]. #### **Stakeholders** • **Administrator:** The administrator is the person who administers the storage. The administrator is interested in organizing the storage, setting access rights, and enforcing quota-based limits on the storage. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. #### **Preconditions** The administrator has configured the Disk Management service on the storage server and has the appropriate access privileges to configure the disks and volumes. #### Main success scenario - 1. Trigger: The administrator requests to convert the disk type from basic to dynamic by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the Disk Management service of the Storage Service system. - 3. The Admin Client contacts the Disk Management service to convert a basic disk to a dynamic disk by using the **IVolumeClient::InitializeDisk** method as described in [MS-DMRP] section 3.2.4.4.1.35. - 4. The Disk Management service converts the basic disk to a dynamic disk to store configuration information in an implementation-specific manner. #### **Postcondition** The required conversion from a basic disk to a dynamic disk has finished successfully. #### **Extensions** If the communication channel for , as described in [MS-DMRP], cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. The completion of the disk's conversion depends on when the connection fails. # **Variation** A variation of this use case is to convert a basic disk to a dynamic disk by using the Virtual Disk Service Protocol, as described in [MS-VDS]. The main success scenario steps of the variation are identical to those in the main use case that are described in this section. ## 2.5.1.3 Make an Offline Disk Online ## Goal Make an offline disk into an online disk. #### **Context of Use** The administrator is setting up a storage server, and in this process the administrator is required to make an offline disk to an online disk. #### **Actors** - **Admin Tool**: A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. - **Disk Management service:** The Disk Management service is the server-side implementation of the, described in [MS-DMRP] and [MS-VDS]. #### **Stakeholders** • **Administrator:** The administrator is the person who administers the storage. The administrator is interested in organizing the storage, setting access rights, and enforcing quota-based limits on the storage. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. # **Preconditions** The administrator has configured the Disk Management service on the storage server and has the appropriate access privileges to configure the disks and volumes. ## Main success scenario - 1. Trigger: The administrator requests to convert an offline disk to an online disk by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the Disk Management service of the Storage Services protocols. - 3. The Admin Client contacts the Disk Management service to convert an offline disk to an online disk by using the **IVolumeClient::ReAttachDisk** method, as described in [MS-DMRP] section 3.2.4.4.1.41. - 4. The Disk Management service converts the offline disk to an online disk to store configuration information in an implementation-specific manner. #### **Postcondition** The required conversion from an offline disk to an online disk and vice versa has completed successfully. #### **Extensions** If the communication channel for [MS-DMRP] cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. The completion of the disk's conversion depends on when the connection failed. ## **Variation** A variation of this use case is to convert an offline disk into
an online disk by using the Virtual Disk Service Protocol, as described [MS-VDS]. The main success scenario steps of the variation are identical to those in the main use case as described in this section. # 2.5.1.4 Configure HBA Ports and iSCSI Initiators #### Goal Configure host bus adapter (HBA) ports and iSCSI initiators. #### Context of Use The administrator is setting up a storage server, and in this process, the administrator is required to configure the storage. ## Actors - **Admin Tool**: A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - **Admin Client**: The primary actor. The Admin Client is code running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. - **Disk Management Service:** The Disk Management service is the server-side implementation of the protocols specified in [MS-DMRP] and [MS-VDS]. # Stakeholders • **Administrator:** The administrator is the person who administers the storage. The administrator is interested in organizing the storage, setting access rights, and enforcing quota-based limits on the storage. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. #### **Preconditions** The administrator has configured the Disk Management service on the storage server and has the appropriate access privileges to configure the disks and volumes. ## Main success scenario - 1. Trigger: The administrator requests to set up an iSCSI initiator by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the Disk Management service of the Storage Services protocols. - 3. The Admin Client contacts the Disk Management service to configure the iSCSI initiator by using the **IVdsServiceIscsi:SetInitiatorSharedSecret()** method, as described in [MS-VDS] section 3.4.5.2.8.3. - 4. The Disk Management service configures the requested iSCSI initiator to store configuration information in an implementation-specific manner. - 5. The administrator requests to set up an HBA port by using the Admin Tool. - 6. The Admin Client contacts the Disk Management service to configure HBA ports by using the **IVdsHbaPort::SetAllPathStatuses()** method, as described in [MS-VDS] section 3.4.5.2.11.2. - 7. The Disk Management service configures the requested HBA ports to store configuration information in an implementation-specific manner. The required configuration of an HBA port and an iSCSI initiator has finished successfully. #### **Extensions** If the communication channel for the Virtual Disk Service (VDS) Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. The configuration of the HBA ports and the iSCSI initiators depends on when the connection failed. # 2.5.2 Backup and Restore Data The Backup and Restore Data use case group consists of two use cases that illustrate the functionality for backing up and restoring data: - Copy volume - Back up or restore encrypted file The following use case diagram shows the functionality for backing up or restoring data. Figure 5: Back up or Restore Data use case diagram # 2.5.2.1 Create a Shadow Copy Storage Association ## Goal Create a shadow copy storage association, as defined in [MS-SCMP]. ## **Context of Use** The administrator has to create a backup of a volume, and in this process, the administrator creates a shadow copy. ## Actors - **Admin Tool**: A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - **Admin Client:** The primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. • **Shadow Copy service:** The server-side implementation of [MS-SCMP] and [MS-FSRVP]. #### **Stakeholders** • **Administrator**: The administrator is the person who administers the storage. The administrator is interested in organizing the storage, setting access rights, and enforcing quota-based limits on the storage. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. #### **Preconditions** The administrator has configured the Shadow Copy service on the storage server and has the appropriate access privileges to configure the disks and volumes. #### Main success scenario - 1. Trigger: The administrator requests to copy a volume by using the Admin Tool. - The Admin Tool requests that the Admin Client establish a communication channel to the Shadow Copy service of the Storage Services protocols by using the GetProviderMgmtInterface, QueryVolumesSupportedForDiffAreas, and Next methods. - 3. The Admin Client contacts the Shadow Copy service to create a shadow copy storage area association between two volumes by using the **AddDiffArea** method, as described in [MS-SCMP] section 3.1.4.4.2. - 4. The Shadow Copy Management creates a new shadow copy storage association object between the two specified volumes of the specified size to store configuration information in an implementation-specific manner. #### **Postcondition** The required creation of a shadow copy storage association has finished successfully. ## **Extensions** If the communication channel for the Shadow Copy Management Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. The shadow copy storage association creation depends on when the connection failed. ## 2.5.2.2 Back Up or Restore an Encrypted File ## Goal Back up or restore an encrypted file by using the Encrypting File System Remote Protocol, as described in [MS-EFSR]. #### Context of Use The file owner or the administrator on the file owner's behalf is creating a backup of an encrypted file. # **Actors** 24 / 53 - **Admin Tool:** A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The Admin Client is the primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. - **EFS service:** The Encrypting File System (EFS) is the server-side implementation of the, as described in [MS-EFSR]. #### **Stakeholders** Administrator: The administrator is the person who administers the storage. The administrator is interested in organizing the storage, granting access rights, and enforcing quota-based limits on the storage. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. #### **Preconditions** The administrator has the backup operator permissions and has identified an encrypted file which must be backed up. #### Main success scenario - 1. Trigger: The administrator requests to create a backup of an encrypted file by using the Admin tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the EFS service of the Storage Services protocols. - 3. The Admin Client contacts the EFS service to create or restore the backup by using the methods **EfsRpcOpenFileRaw**, **EfsRpcReadFileRaw**, **EfsRpcWriteFileRaw**, and **EfsRpcCloseFileRaw**, as described in [MS-EFSR] sections 3.1.4.2.1, 3.1.4.2.2, 3.1.4.2.3, and 3.1.4.2.4. - 4. For the backup request, the EFS service responds to the methods as described in [MS-EFSR] to create the backup of the requested file by sending the file to backup storage. For the restore request, the EFS service responds to the methods as described in [MS-EFSR] to restore the requested file by copying it from the backup. ## **Postcondition** The required creation of the backup or restoration of the requested file has finished successfully. ## **Extensions** If the communication channel for the Encrypting File System Remote (EFSRPC) Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. The backup of the encrypted file depends on when the connection failed. # 2.5.2.3 Perform Backup of a File Share Remotely #### Goal To back up a file share remotely by an administrator. #### **Context of Use** 25 / 53 The administrator has to back up a file share remotely, and in this process, the administrator creates a shadow copy. #### **Actors** - **Admin Tool**: A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - **Admin Client:** The primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. - **File Server Shadow Copy Agent Service:** The server-side implementation of this service as described in [MS-FSRVP]. ## **Stakeholders** Administrator: The administrator is the person who administers the
storage. The administrator is interested in organizing the storage, setting access rights, and enforcing quota-based limits on the storage. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. #### **Preconditions** None. #### Main success scenario - 1. Trigger: The administrator requests to perform a backup of a file share by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the File Server Shadow Copy Agent Service of the Storage Services protocols. - 3. The Admin Client contacts the File Server Shadow Copy Agent Service to create a shadow copy set on the server by using the **IsPathSupported**, **GetSupportedVersion**, **SetContext**, **StartShadowCopySet**, **AddToShadowCopySet**, and **PrepareShadowCopySet** methods, as described in [MS-FSRVP], in sequence. - 4. The Admin Client contacts the File Server Shadow Copy Agent Service to commit the shadow copy set on the server by using the **CommitShadowCopySet** method. The method initiates the shadow copy creation sequence on the file server by the Shadow Copy service and is coordinated by the File Server Shadow Copy Agent Service. - The Admin Client contacts the File Server Shadow Copy Agent Service to expose the shadow copy as a share by using the **ExposeShadowCopySet** method, as described in [MS-FSRVP] section 3.1.4.6. - 6. The Admin Client contacts the File Server Shadow Copy Agent Service to get the shadow copy information on a file share on the server by using the **GetShareMapping** method, as described in [MS-FSRVP] section 3.1.4.11. - 7. The Admin Client contacts the File Server Shadow Copy Agent Service to indicate that the shadow copy creation sequence has finished by using the **RecoveryCompleteShadowCopySet** method, as described in [MS-FSRVP] section 3.1.4.7. When this method has finished, the shadow copy share creation has finished. The shadow copy share is available to be used by the administrator to retrieve the data. The backup of the required file share has finished successfully. #### **Extensions** If backup writers are involved, the shadow copy share is initially exposed as a writeable shadow copy to enable the backup writer from the Admin Client machine to adjust the shadow copy. Then the Admin Client calls the **RecoveryCompleteShadowCopySet** method. The File Server Shadow Copy Agent Service then initiates the action to make the shadow copy share read-only, and the shadow copy share creation sequence is finished. # 2.5.3 Manage Removable Media The Manage Removable Media use case group consists of three use cases that illustrate the functionality for managing removable storage: - · Create and delete a media pool - Mount and dismount media - Delete work queue items The following use case diagram shows the functionality for managing removable media. Figure 6: Manage Removable Media use case diagram ## 2.5.3.1 Create and Delete a Media Pool #### Goal Create and delete a media pool. #### **Context of Use** The administrator is setting up a storage server, and in this process, the administrator must create and delete a media pool. #### Actors - **Admin Tool:** A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The Admin Client is the primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. - **RSMP service:** The RSMP service is the server-side implementation of the protocols specified in [MS-RSMP]. #### **Stakeholders** Administrator: The administrator is the person who administers the storage. The administrator is interested in organizing the storage and setting access rights. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. #### **Preconditions** The administrator has configured the RSMP service on the storage server and has the appropriate access privileges to the removable media pool. #### Main success scenario - 1. Trigger: The administrator requests to set up a media library by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the RSMP service of the Storage Services protocols. - The Admin Client contacts the RSMP service to create a media pool by using the INtmsMediaServices1::CreateNtmsMediaPoolW method, as described in [MS-RSMP] section 3.2.5.2.2.10. - 4. The RSMP service creates the requested media pool. - 5. The administrator requests to delete the media library by using the Admin Tool. - 6. The Admin Client contacts the RSMP service to delete a media pool by using the **INtmsMediaServices1::DeleteNtmsMediaPool** method, as described in [MS-RSMP] section 3.2.5.2.2.14. - 7. The RSMP service deletes the requested media pool. The required creation and the deletion of the media pool have finished successfully. #### **Extension** If the communication channel for the Removable Storage Manager (RSM) Remote Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. The media pool creation or deletion depends on when the connection failed. # 2.5.3.2 Mount and Dismount Media ## Goal Mount and dismount media. # Context of Use The administrator is setting up a storage server, and in this process, the administrator has to mount and dismount media. #### Actors - **Admin Tool:** A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. - **RSMP service:** The RSMP service is the server-side implementation of the protocols in the Removable Storage Manager (RSM) Remote Protocol, as described in [MS-RSMP]. #### **Stakeholders** • **Administrator**: The administrator is the person who administers the storage. The administrator is interested in organizing the storage and setting access rights. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. # **Preconditions** The administrator has configured the RSMP service on the storage server and has the appropriate access privileges to configure the removable media. #### Main success scenario - 1. Trigger: The administrator requests to mount a media pool by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the RSMP service of the Storage Service system. - 3. The Admin Client contacts the RSMP service to mount a media pool by using the **INtmsMediaServices1::MountNtmsMedia** method, as described in [MS-RSMP] section 3.2.5.2.2.1. - 4. The RSMP service mounts the requested media pool. - 5. The administrator requests to dismount media pool by using the Admin Tool. - 6. The Admin Client contacts the RSMP service to dismount a media pool by using the **INtmsMediaServices1::DismountNtmsMedia** method, as described in [MS-RSMP] section 3.2.5.2.2.2. - 7. The RSMP service dismounts the requested media pool. The required mounting and the dismounting of media have finished successfully. #### **Extensions** If the communication channel for the Removable Storage Manager (RSM) Remote Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. Whether the media is mounted or not depends on when the connection failed. # 2.5.3.3 Delete Work Queue Items #### Goal Delete work queue items. #### Context of Use The administrator is setting up a storage server, and in this process, the administrator has to delete work queue items. #### **Actors** - **Admin Tool**: A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - **Admin Client**: The primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. - RSMP service: The RSMP service is the server-side implementation of the protocols, as described in [MS-RSMP]. #### **Stakeholders** Administrator: The administrator is the person who administers the storage. The administrator is interested in organizing the storage and setting access rights. The administrator is external to the Storage Services protocols and interacts with the Storage Services protocols through the Admin Client. ## **Preconditions** The administrator has configured the RSMP service in the storage server and has the appropriate access privileges to configure the removable media. #### Main success scenario 30 / 53 - 1. Trigger: The administrator requests to delete the work items in the queue by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the RSMP service of the Storage Services protocols. - The Admin Client contacts the RSMP service to delete the work items in the queue by using the INtmsLibraryControl1::CancelNtmsLibraryRequest method, as described in [MS-RSMP]
section 3.2.5.2.1.7. - 4. The RSMP service deletes the work items in the queue. The required deletion of work queue items has finished successfully. #### **Extensions** If the communication channel for the Removable Storage Manager (RSM) Remote Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. Whether the required work queue items were deleted or not depends on when the connection failed. # 2.5.4 Encrypted File Access Control and Encryption The File Access Control and Encryption use case group consists of three use cases that illustrate the functionality for file access control and encryption: - Provide cryptographic access permissions to an encrypted file. - Encrypt a file. - Decrypt an encrypted file. The following use case diagram shows the functionality for encrypted file access control and encryption. Figure 7: Encrypted file access control and encryption use case diagram # 2.5.4.1 Provide Cryptographic Access Permissions to an Encrypted File ## Goals Grant cryptographic access permissions for a user or Users group by adding a user certificate to a file. # **Context of Use** The file owner is setting access permissions to a file. ## Actors - **Admin Tool:** A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The Admin Client is the primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. - **EFS service:** The Encrypting File System service is the server-side implementation of the protocol described in [MS-EFSR]. ## Stakeholders • **File owner:** The user who as the owner of the file grants access permissions to another user who does not own the file. • **User:** The user to whom the access permission must be granted by the file owner. #### **Preconditions** - The file owner user has identified an encrypted file. - The file owner user has the required EFS certificates. #### Main success scenario Trigger: The file owner requests to grant access permission for a file to a user by using the Admin Tool. The Admin Tool requests that the Admin Client establish a communication channel to an EFS service of the Storage Services protocols. The Admin Client contacts the EFS service to modify the metadata of the encrypted file to enable the user to decrypt the file by using the **EfsRpcAddUsersToFile** method, as described in [MS-EFSR] section 3.1.4.2.10. The EFS service modifies the metadata as requested by the Admin Client to enable the user to decrypt the file. ## **Postcondition** The required access permission for the user for the encrypted file has been granted successfully. #### **Extensions** If the communication channel for the Encrypting File System Remote (EFSRPC) Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. Whether the required access to the encrypted file is obtained or not depends on when the connection failed. # 2.5.4.2 Encrypt a File #### Goals Encrypt a file. #### **Context of Use** The file owner is encrypting a file. ## Actors - **Admin Tool:** A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The Admin Client is the primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. - **EFS service:** The Encrypting File System service is the server-side implementation of the protocol described in [MS-EFSR]. #### **Stakeholders** • **File owner:** The user who is the owner of the file that must be encrypted. ## **Preconditions** - The file owner user has identified the file that must be encrypted. - The file owner user has the required EFS certificates. #### Main success scenario - 1. Trigger: The file owner requests to encrypt a file by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the EFS service of the Storage Services protocols. - The Admin Client contacts the EFS service to query information about the keys that are used to encrypt the file by using the EfsRpcFileKeyInfo method, as described in [MS-EFSR] section 3.1.4.2.12. - 4. The EFS service responds with the required keys information. - 5. The Admin Client contacts the EFS service to encrypt the file by using the **EfsRpcEncryptFileSrv** method, as described in [MS-EFSR] section 3.1.4.2.5. - 6. The EFS service encrypts the requested file. #### **Postcondition** The required encryption of the file has finished successfully. #### **Extensions** If the communication channel for the Encrypting File System Remote (EFSRPC) Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. Whether the required encryption of the file has finished or not depends on when the connection failed. ## 2.5.4.3 Decrypt an Encrypted File #### Goals Decrypt a file. ## **Context of Use** The file owner is decrypting a file. ## **Actors** - **Admin Tool:** A Microsoft Management Console (MMC) component, which is used by the administrator to configure the storage on the server. - Admin Client: The Admin Client is the primary actor. The Admin Client is code that is running on the administrator's computer. The Admin Client implements client-side protocol components and consumes the storage services that are offered by the storage server. The Admin Client's interest is to correctly interpret, execute, and display the results of the commands that are issued by administrator. • **EFS service:** The Encrypting File System service is the server-side implementation of the protocol described in [MS-EFSR]. #### **Stakeholders** • **File owner**: The user who is the owner of the encrypted file that is required to be decrypted. #### **Preconditions** - The file owner user has identified the encrypted file that is required to be decrypted. - The file owner user has the required EFS certificates. ## Main success scenario - 1. Trigger: The file owner requests to decrypt the encrypted file by using the Admin Tool. - 2. The Admin Tool requests that the Admin Client establish a communication channel to the EFS service of the Storage Services protocols. - The Admin Client contacts the EFS service to query information about the keys that are used to encrypt the file by using the EfsRpcFileKeyInfo method, as described in [MS-EFSR] section 3.1.4.2.12. - 4. The EFS service responds with the required keys information. - 5. The Admin Client contacts the EFS service to decrypt the file by using the **EfsRpcDecryptFileSrv** method, as described in [MS-EFSR] section 3.1.4.2.6. - 6. The EFS service decrypts the requested file. ## **Postcondition** The required decryption of the file has finished successfully. #### **Extensions** If the communication channel for the Encrypting File System Remote (EFSRPC) Protocol cannot be established, or it becomes disconnected, the Admin Client attempts to establish a connection multiple times until it fails. Whether the required decryption of the file has finished or not depends on when the connection failed. # 2.6 Versioning, Capability Negotiation, and Extensibility There are ten versions of the Storage Services protocols. The following table provides a summary of different versions and the protocols that are implemented in each version. | Storage Services protocols version | Protocols implemented | Notes | |------------------------------------|------------------------|----------------------------------| | Storage Services protocols 1.0 | RSMP | | | Storage Services protocols 2.0 | RSMP, DMRP, EFSR | | | Storage Services protocols 3.0 | RSMP, DMRP, EFSR, VDS, | VDS is a preferred protocol over | | Storage Services protocols version | Protocols implemented | Notes | |------------------------------------|------------------------|------------------------| | | SCMP | DMRP. <u><9></u> | | Storage Services protocols 4.0 | VDS, SCMP | | | Storage Services protocols 5.0 | RSMP, EFSR, VDS | | | Storage Services protocols 6.0 | EFSR, VDS | | | Storage Services protocols 7.0 | RSMP, EFSR, VDS, SCMP | | | Storage Services protocols 8.0 | EFSR, VDS, SCMP | | | Storage Services protocols 9.0 | EFSR, VDS, FSRVP | | | Storage Services protocols 10.0 | EFSR, VDS, SCMP, FSRVP | | Any deviations from a specific version's implementation of these protocol specifications are documented in the respective protocol documents. Capability negotiations between client and server implementations of these protocols are described in the Versioning and Capability Negotiation sections in the respective protocol specifications. There are no extensions of the Storage Services protocols other than the extensions that are described in the respective protocols. # 2.7 Error Handling The Storage Services protocols do not define any error handling requirements beyond those that are described in the specifications of the protocols that are supported by the Storage Services system, as listed in section 2.2. Various errors can impact one or more of the Storage Services protocols. The error conditions and the resulting protocol semantics are described in the "Protocol Details" section of the corresponding protocol specifications. ## 2.8 Coherency Requirements None. ## 2.9 Security There are no
additional security considerations other than those that are described in <a>[MS-EFSR] section 5. #### 2.10 Additional Considerations The following table lists the remote procedure call (RPC) binding that each member of the Service Storage protocols uses for the RPC transport. | Protocol name | RPC binding | |---------------------------------|--------------| | Disk Management Remote Protocol | ncacn_ip_tcp | | [MS-DMRP] | | | Protocol name | RPC binding | |---|--------------| | Virtual Disk Service (VDS) Protocol [MS-VDS] | ncacn_ip_tcp | | Shadow Copy Management Protocol [MS-SCMP] | ncacn_ip_tcp | | Removable Storage Manager (RSM) Remote Protocol [MS-RSMP] | ncacn_ip_tcp | | Encrypting File System Remote (EFSRPC) Protocol [MS-EFSR] | ncacn_np | | File Server Remote VSS Protocol [MS-FSRVP] | ncacn_np | For more details on RPC bindings, see [MS-RPCE] section 2.1. ## 3 Examples This section provides the following examples that describe the functionality of the Storage Services protocols: - Example 1: Make a Disk Online (section 3.1) - Example 2: Configure an iSCSI Initiator (section 3.2) - Example 3: Create a Shadow Copy Storage Association (section 3.3) - Example 4: Create and Delete a Media Pool (section 3.4) - Example 5: Encrypt a File (section 3.5) - Example 6: Decrypting an Encrypted File (section 3.6) - Example 7: Perform a Backup of a File Share Remotely 3.7 ### 3.1 Example 1: Make a Disk Online This example demonstrates making the disk online as described in section 2.5.1.3 ### **Prerequisites** - The Storage Services protocols should meet all the preconditions that are described in section 2.4. - The disk is connected to the storage server. - The Disk Management Remote Protocol, as described in [MS-DMRP], should be enabled on both the client and server. - The communication channel between the Admin Client and the Disk Management service of the Storage Service system has been established, as described in [MS-DMRP] section 2.1. #### **Initial System State** The disk that is connected to the server is in an offline state. ## **Final System State** The disk that is in an offline state is made online. Figure 8: Example of making an offline disk into an online disk - The Admin Client contacts the Disk Management service by using the IVolumeClient::ReAttachDisk() method, as described in [MS-DMRP] section 3.2.4.4.1.41, to convert an offline disk to an online disk. - 2. The Disk Management service converts the offline disk to an online disk, by storing configuration information in an implementation-specific manner. It responds to the Admin Client and returns zero on success. ## 3.2 Example 2: Configure an iSCSI Initiator This example demonstrates the configuration of an iSCSI initiator, as described in section 2.5.1.4. #### **Prerequisites** - The Storage Services protocols should meet all the preconditions, as described in section 2.4. - The disk is connected to the server. - The Disk Management service, as described in [MS-VDS], should be enabled on both the client and server. - The communication channel between the Admin Client and the Disk Management service of the Storage Services protocols has been established, as described in [MS-VDS] section 2.1. ## **Initial System State** None. ### Final system state The configuration of an iSCSI initiator is finished. Figure 9: Configuring an iSCSI drive - 1. The Admin Client requests the Disk Management service to configure the iSCSI initiator by using the **IVdsServiceIscsi::SetInitiatorSharedSecret()** method, as described in [MS-VDS] section 3.4.5.2.8.3. - 2. The Disk Management service sets the required configuration for the iSCSI initiator and returns zero on success. ## 3.3 Example 3: Create a Shadow Copy Storage Association This example demonstrates the creation of a shadow copy storage association as described in section 2.5.2.1. #### **Prerequisites** - The Storage Services protocols meet all the preconditions as described in section 2.4. - The disk is connected to the server. - The Shadow Copy Management Protocol, as described in <a>[MS-SCMP], is enabled on both the client and server. - The communication channel between the Admin Client and the Shadow Copy service of the Storage Services protocols has been established, as described in [MS-SCMP] section 2.1. #### **Initial System State** None. #### **Final System State** The creation of the shadow copy storage association has finished. Figure 10: Creating a shadow copy - 1. The Admin Client contacts the Shadow Copy service to retrieve the management interface by using the **GetProviderMgmtInterface** method, as described in [MS-SCMP] section 3.1.1.4.1. - 2. The Shadow Copy service returns zero on success. - 3. The Admin Client contacts the Shadow Copy service to retrieve the collection of volumes that can be used as a shadow copy storage volume by using the **QueryVolumesSupportedForDiffAreas** method, as described in [MS-SCMP] section 3.1.4.4.4. - 4. The Shadow Copy service returns zero on success. - 5. The Admin Client contacts the Shadow Copy service to iterate through the enumeration to select a volume on which to host the shadow copy storage by using **Next** method, as described in [MS-SCMP] section 3.1.3.1. - 6. In each iteration, the Shadow Copy service returns the appropriate volume in the collection structure and increments the internal cursor in the collection to the next object until the client discontinues the iteration. - 7. The Admin Client contacts the Shadow Copy service to create a shadow copy storage area association between two volumes by using the **AddDiffArea** method, as described in [MS-SCMP] section 3.1.4.4.2. 8. The Shadow Copy service creates a new shadow copy storage association object between the two specified volumes of the specified size and returns zero on success. ## 3.4 Example 4: Create and Delete a Media Pool This example demonstrates creating and deleting a media pool as described in section 2.5.3.1. #### **Prerequisites** - The Storage Services protocols meets all the preconditions as described in section 2.4. - The RSMP service, as described in [MS-RSMP], is enabled on both the client and server. - The communication channel between the Admin Client and the RSMP service of the Storage Services protocols is established, as described in [MS-RSMP] section 2.1. ## **Initial System State** There is no media pool with the required name. #### **Final System State** The creation and deletion of the media pool has finished successfully. ## **Sequence of Events** Figure 11: Create and delete a media pool - The Admin Client contacts the RSMP service to create a media pool by using the INtmsMediaServices1::CreateNtmsMediaPoolW method, as described in [MS-RSMP] section 3.2.5.2.2.10. - 2. The RSMP service creates a new pool, opens the newly created media pool, and returns zero on success. - 3. The Admin Client contacts the RSMP service to delete the media pool by using the **INtmsMediaServices1::DeleteNtmsMediaPool** method, as described in [MS-RSMP] section 3.2.5.2.2.14. - 4. The RSMP service deletes the requested media pool from the database and returns zero on success. ### 3.5 Example 5: Encrypt a File This example demonstrates encrypting a file as described in section 2.5.4.2. ## **Prerequisites** - The Storage Services protocols meet all the preconditions, as described in section 2.4. - The EFS service, as described in [MS-EFSR], is enabled on both the client and server. - The communication channel between the Admin Client and the EFS service of the Storage Services protocols is established, as described in [MS-EFSR] section 2.1. - The file owner user identified the file that must be encrypted. - The file owner user has the required EFS certificates. ## **Initial System State** None. #### **Final System State** The file is encrypted. #### Sequence of Events Figure 12: Encrypting a file - 1. The Admin Client contacts the EFS service to query information about the keys that are used to encrypt the file by using the **EfsRpcFileKeyInfo** method, as described in [MS-EFSR] section 3.1.4.2.12. - 2. The EFS service returns zero on success. - 3. The Admin Client contacts the EFS service to encrypt the file by using the **EfsRpcEncryptFileSrv** method, as described in [MS-EFSR] section 3.1.4.2.5. - 4. The EFS service encrypts the requested file and returns zero on success. ## 3.6 Example 6: Decrypting an Encrypted File This example demonstrates decrypting an encrypted file as described in section 2.5.4.3. #### **Prerequisites** - The Storage Services protocols meet all the preconditions as described in section 2.4. - The EFS service, as described in [MS-EFSR], is enabled on both the client and server. - The communication channel between the Admin Client and the EFS service of the Storage Services protocols has been established, as described in [MS-EFSR] section 2.1, and the Admin Client receives a success return code from the **EfsRpcFileKeyInfo** message, as described in [MS-EFSR] section 3.1.4.2.12. - The file owner user identified the encrypted file that must be decrypted. - The file owner user has the required EFS certificates. ## **Initial System State** The file is encrypted. #### **Final System State** The encrypted file is decrypted. Figure 13: Decrypting an encrypted file - 1. The Admin Client contacts the EFS service to query information about the keys that are used to decrypt the file by using the **EfsRpcFileKeyInfo** method, as described in [MS-EFSR] section 3.1.4.2.12. - 2. The EFS service responds with the required keys information, as described in [MS-EFSR] section 3.1.4.2.12. - 3. The Admin Client contacts the EFS service to decrypt the file by using the **EfsRpcDecryptFileSrv** method, as described in [MS-EFSR] section 3.1.4.2.6. -
4. The EFS service decrypts the required file and returns zero on success. ## 3.7 Example 7: Perform Backup of a File Share Remotely This example demonstrates backing up a file share remotely as described in section 2.5.2.3. #### **Prerequisites** None. #### **Initial System State** None. ## **Final System State** The backup of the required file share has finished successfully. Figure 14: Perform backup of a file share - 1. The Admin Client contacts the File Server Shadow Copy Agent service to query if the share is supported by the server for shadow copy operations by using the **IsPathSupported** method, as described in [MS-FSRVP] section 3.1.4.9. - 2. The File Server Shadow Copy Agent service processes the method and returns zero on success. - 3. The Admin Client calls the **GetSupportedVersion** method to query the minimum and maximum protocol versions, that are supported by the server, as described in [MS-FSRVP] section 3.1.4. - 4. The File Server Shadow Copy Agent service processes the method and returns zero on success. - 5. The Admin Client calls the **SetContext** method to set the context of subsequent shadow copy operations, as described in [MS-FSRVP] section 3.1.4.2. - 6. The File Server Shadow Copy Agent service processes the method and returns zero on success. - 7. The Admin Client calls the **StartShadowCopySet** method to initiate a new shadow copy set on the server, as described in [MS-FSRVP] section 3.1.4.3. - 8. The File Server Shadow Copy Agent service processes the method and returns zero on success. - 9. The Admin Client calls the **AddToShadowCopySet** method to add a share to the shadow copy set, as described in [MS-FSRVP] section 3.1.4.4. - 10. The File Server Shadow Copy Agent service processes the method and returns zero on success. - 11. The Admin Client calls the **PrepareShadowCopySet** method to ensure that the preparation for creating the shadow copies on the shares has finished. - 12. The File Server Shadow Copy Agent service waits for the volumes that are backing up the shares to complete their shadow copy preparation and returns zero on success. - 13. The Admin Client calls the **CommitShadowCopySet** method to wait synchronously for the completion of the commit process on a shadow copy set, as described in [MS-FSRVP] section 3.1.4. - 14. The File Server Shadow Copy Agent service processes the method and returns zero on success. - 15. The Admin Client contacts the File Server Shadow Copy Agent service to expose the shadow copy as a share by using the **ExposeShadowCopySet** method, as described in [MS-FSRVP] section 3.1.4.6. - 16. The File Server Shadow Copy Agent service triggers the shadow copy to be exposed from the file server as a file share and returns zero on success. - 17. The Admin Client contacts the File Server Shadow Copy Agent service to get the shadow copy information on a file share on the server by using the **GetShareMapping** method, as described in [MS-FSRVP] section 3.1.4.11. - 18. The File Server Shadow Copy Agent service processes the method and returns zero on success. - 19. The Admin Client calls the **RecoveryCompleteShadowCopySet** method to indicate that the shadow copy creation sequence has finished, as described in [MS-FSRVP] section 3.1.4.7. | zero on succ | ess. | to retrieve | e the data | . The File : | server s | nadow (| Johy Age | ent service | e returns | |--------------|------|-------------|------------|--------------|----------|---------|----------|-------------|-----------| 48 , | # 4 Microsoft Implementations The information in this specification is applicable to the following Microsoft products: - Windows NT operating system - Windows 2000 operating system - Windows XP operating system - Windows Server 2003 operating system - Windows Server 2003 R2 operating system - Windows Vista operating system - Windows Server 2008 operating system - Windows 7 operating system - Windows Server 2008 R2 operating system - Windows 8 operating system - Windows Server 2012 operating system - Windows 8.1 operating system - Windows Server 2012 R2 operating system The following table lists the versions of the Storage Services protocols as implemented in specific versions of Windows. | Storage Services protocols version | Operating system version | |------------------------------------|--------------------------| | Storage Services protocols 1.0 | Windows NT | | Storage Services protocols 2.0 | Windows 2000, Windows XP | | Storage Services protocols 3.0 | Windows Server 2003 | | Storage Services protocols 4.0 | Windows Server 2003 R2 | | Storage Services protocols 5.0 | Windows Vista | | Storage Services protocols 6.0 | Windows 7 | | Storage Services protocols 7.0 | Windows Server 2008 | | Storage Services protocols 8.0 | Windows Server 2008 R2 | | Storage Services protocols 9.0 | Windows 8 | | Storage Services protocols 10.0 | Windows Server 2012 | | Storage Services protocols 11.0 | Windows 8.1 | | Storage Services protocols 12.0 | Windows Server 2012 R2 | ## 4.1 Product Behavior - <1> Section 1: The Disk Management services were introduced in Storage Services protocols 2.0 and are implemented in Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2. - <2> Section 2.1.1.1: The Disk Management Remote Protocol (DMRP) is implemented in Windows 2000 Server, Windows Server 2003, and Windows XP. - <3> Section 2.1.1.1: The Virtual Disk Service (VDS) Protocol replaces DMRP starting with Windows Server 2003. It is implemented in Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2. - <4> Section 2.2: The Disk Management Remote (DMRP) Protocol is implemented in Windows 2000 Server, Windows Server 2003 and Windows XP. The Virtual Disk Service (VDS) Protocol replaces DMRP starting with Windows Server 2003. It is implemented in Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2. - <5> Section 2.2: The Virtual Disk Service (VDS) Protocol replaces DMRP starting with Windows Server 2003. It is implemented in Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2. - <6> Section 2.2: The Shadow Copy Management (SCMP) Protocol is implemented in Windows Server 2003, Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2. - <7> Section 2.2: The Removable Storage Manager (RSM) Remote Protocol is implemented in Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008. - <8> Section 2.2: The File Server Remote VSS Protocol is implemented in Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2. - <9> Section 2.6: In Windows Server 2003 VDS is a preferred protocol over DMRP. # **5 Change Tracking** No table of changes is available. The document is either new or has had no changes since its last release. # 6 Index | A | decrypting encrypted file 34 | |---|---| | | encrypting file 33 | | Abstract 5 | overview 31 | | Access control 13 | providing cryptographic access permissions to | | Additional considerations 36 | encrypted file 32 | | Applicable protocols 14 | Encrypting file example 43 | | Architecture 9 | Encryption 13 | | Assumptions 15 | Environment 15 | | | Error handling 36 | | В | Examples | | | configuring iSCSI initiator 39 | | Back Up and Restore Data use case group | creating and deleting media pool 42 | | backing up or restoring encrypted file 24 | creating shadow copy storage association 40 | | <u>creating shadow copy storage association</u> 23 | decrypting encrypted file 44 | | overview 22 | encrypting file 43 | | | making offline disk into online disk 38 | | С | overview 38 | | Canabilities | Extensibility Migrapoft implementations 40 | | Capabilities | Microsoft implementations 49 overview 35 | | backing up and restoring data 12 | External dependencies 15 | | file encryption and access control 13 managing disks and volumes 12 | External dependencies 15 | | managing removable media 13 | F | | overview 12 | F | | Capability negotiation 35 | File encryption 13 | | Change tracking 51 | Functional architecture 9 | | Coherency requirements 36 | Turictional architecture | | Communications 15 | G | | with other systems 15 | • | | within system 15 | Glossary 6 | | Component dependencies 15 | <u> </u> | | Concepts 9 | Н | | Configuring iSCSI initiator example 39 | •• | | Considerations | Handling requirements 36 | | additional 36 | | | security 36 | I | | Creating and deleting media pool example 42 | | | Creating shadow copy storage association example | Implementations - Microsoft 49 | | 40 | <u>Implementer - security considerations</u> 36 | | |
<u>Informative references</u> 7 | | D | Initial state 15 | | | <u>Introduction</u> 5 | | Decrypting encrypted file example 44 | | | Deleting media pool example 42 | M | | Dependencies | | | on other systems 15 | Making offline disk into online disk example 38 | | within system 15 | Manage Disks and Volumes use case group | | Design intent | configuring HBA ports and iSCSI initiators 21 | | Back Up and Restore Data use case group 22 | converting basic disk to dynamic disk 18 | | Encrypted File Access Control and Encryption use | creating and modifying volumes 17 | | case group 31 | making offline disk into online disk 20 | | Manage Disks and Volumes use case group 16 | overview 16 | | Manage Removable Media use case group 27 | Manage Removable Media use case group | | overview 16 | creating and deleting media pool 28 | | _ | deleting work queue items 30 | | E | mounting and dismounting media 29 | | Formulad File Assess Control to 1.5 cm. 11. | overview 27 | | Encrypted File Access Control and Encryption use | Microsoft implementations 49 | | case group | | | | | 52 / 53 ## 0 ``` Overview abstract 5 summary of protocols 14 synopsis 9 Preconditions 15 Product behavior 50 R References 7 Relationship among protocols 13 Requirements coherency 36 error handling 36 overview 9 preconditions 15 Security considerations 36 Table of protocols 14 Tracking changes 51 U Use cases Back Up and Restore Data 22 Encrypted File Access Control and Encryption 31 Manage Disks and Volumes 16 Manage Removable Media 27 overview 16 ٧ Versioning Microsoft implementations 49 overview 35 ```