
1 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-SSTP]:

Secure Socket Tunneling Protocol (SSTP)

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

4/3/2007 0.01 None Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.1 Minor Updated technical content.

7/20/2007 1.1.1 Editorial Changed language and formatting in the technical content.

8/10/2007 1.1.2 Editorial Changed language and formatting in the technical content.

9/28/2007 1.1.3 Editorial Changed language and formatting in the technical content.

10/23/2007 1.1.4 Editorial Changed language and formatting in the technical content.

11/30/2007 1.1.5 Editorial Changed language and formatting in the technical content.

1/25/2008 1.1.6 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0 Major Updated and revised the technical content.

5/16/2008 2.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 2.0.2 Editorial Changed language and formatting in the technical content.

7/25/2008 2.0.3 Editorial Changed language and formatting in the technical content.

8/29/2008 2.0.4 Editorial Changed language and formatting in the technical content.

10/24/2008 2.0.5 Editorial Changed language and formatting in the technical content.

12/5/2008 3.0 Major Updated and revised the technical content.

1/16/2009 3.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 3.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 4.0 Major Updated and revised the technical content.

5/22/2009 5.0 Major Updated and revised the technical content.

7/2/2009 6.0 Major Updated and revised the technical content.

8/14/2009 7.0 Major Updated and revised the technical content.

9/25/2009 8.0 Major Updated and revised the technical content.

11/6/2009 8.0.1 Editorial Changed language and formatting in the technical content.

12/18/2009 8.0.2 Editorial Changed language and formatting in the technical content.

1/29/2010 8.0.3 Editorial Changed language and formatting in the technical content.

3/12/2010 8.0.4 Editorial Changed language and formatting in the technical content.

4/23/2010 8.0.5 Editorial Changed language and formatting in the technical content.

6/4/2010 9.0 Major Updated and revised the technical content.

3 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

7/16/2010 9.1 Minor Clarified the meaning of the technical content.

8/27/2010 10.0 Major Updated and revised the technical content.

10/8/2010 11.0 Major Updated and revised the technical content.

11/19/2010 11.1 Minor Clarified the meaning of the technical content.

1/7/2011 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 11.2 Minor Clarified the meaning of the technical content.

9/23/2011 12.0 Major Updated and revised the technical content.

12/16/2011 13.0 Major Updated and revised the technical content.

3/30/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 14.0 None
No changes to the meaning, language, or formatting of the

technical content.

2/13/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 15.0 Major Significantly changed the technical content.

10/16/2015 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 16.0 Major Significantly changed the technical content.

4 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 10
1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments ... 12

2 Messages ... 13
2.1 Transport .. 13
2.2 Message Syntax ... 13

2.2.1 SSTP Packet ... 13
2.2.2 SSTP Control Packet.. 14
2.2.3 SSTP Data Packet ... 15
2.2.4 SSTP Attributes .. 16
2.2.5 Encapsulated Protocol ID Attribute .. 17
2.2.6 Crypto Binding Request Attribute .. 18
2.2.7 Crypto Binding Attribute .. 19
2.2.8 Status Info Attribute ... 21
2.2.9 Call Connect Request Message (SSTP_MSG_CALL_CONNECT_REQUEST) 24
2.2.10 Call Connect Acknowledge Message (SSTP_MSG_CALL_CONNECT_ACK) 25
2.2.11 Call Connected Message (SSTP_MSG_CALL_CONNECTED) 27
2.2.12 Call Connect Negative Acknowledgment Message

(SSTP_MSG_CALL_CONNECT_NAK) .. 30
2.2.13 Call Abort Message (SSTP_MSG_CALL_ABORT) .. 32
2.2.14 Call Disconnect Message (SSTP_MSG_CALL_DISCONNECT).............................. 34
2.2.15 Call Disconnect Acknowledge (SSTP_MSG_CALL_DISCONNECT_ACK), Echo Request

(SSTP_MSG_ECHO_REQUEST), and Echo Response (SSTP_MSG_ECHO_RESPONSE)
Messages ... 36

3 Protocol Details ... 38
3.1 Common Details .. 38

3.1.1 Abstract Data Model .. 38
3.1.1.1 State Machine... 38

3.1.1.1.1 State Machine Call Disconnect ... 38
3.1.1.1.2 State Machine Call Abort .. 40

3.1.2 Timers .. 41
3.1.2.1 Abort-Related Timers... 41
3.1.2.2 Disconnect-Related Timers ... 41
3.1.2.3 Hello Timer .. 42

3.1.3 Initialization ... 42
3.1.4 Higher-Layer Triggered Events ... 42
3.1.5 Processing Events and Sequencing Rules ... 42

3.1.5.1 Status and Error Handling .. 42
3.1.5.2 SSTP Packet Processing ... 43

3.1.6 Timer Events .. 43
3.1.6.1 Abort Timer Processing .. 43
3.1.6.2 Disconnect Timer Processing .. 43
3.1.6.3 Hello Timer Processing ... 43

3.1.7 Other Local Events .. 43

5 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.7.1 Interface with PPP ... 43
3.1.7.2 Interface with HTTPS ... 44

3.2 Client Details ... 44
3.2.1 Abstract Data Model .. 44

3.2.1.1 State Machine... 46
3.2.1.1.1 Call Establishment ... 46

3.2.2 Timers .. 47
3.2.2.1 Negotiation Timer ... 47

3.2.3 Initialization ... 47
3.2.4 Higher-Layer Triggered Events ... 47

3.2.4.1 Establish SSTP Tunnel Event .. 48
3.2.4.2 Disconnect SSTP Tunnel Event .. 48

3.2.5 Processing Events and Sequencing Rules ... 49
3.2.5.1 Status and Error Handling .. 49
3.2.5.2 Crypto Binding .. 49

3.2.5.2.1 Input Data Used in the Crypto Binding HMAC-SHA1-160 Operation 50
3.2.5.2.2 Key Used in the Crypto Binding HMAC-SHA1-160 Operation 50
3.2.5.2.3 Input Data Used in the Crypto Binding HMAC-SHA256-256 Operation 52
3.2.5.2.4 Key Used in the Crypto Binding HMAC-SHA256-256 Operation 52

3.2.5.3 Packet Processing ... 53
3.2.5.3.1 General Packet Validation ... 53
3.2.5.3.2 Receiving an SSTP_MSG_CALL_CONNECT_ACK Message 53
3.2.5.3.3 Receiving an SSTP_MSG_CALL_CONNECT_NAK Message 54
3.2.5.3.4 Receiving an SSTP_MSG_CALL_ABORT Message 55
3.2.5.3.5 Receiving an SSTP_MSG_CALL_DISCONNECT Message 55
3.2.5.3.6 Receiving an SSTP_MSG_CALL_DISCONNECT_ACK Message 56
3.2.5.3.7 Receiving an SSTP_MSG_ECHO_REQUEST Message 56
3.2.5.3.8 Receiving an SSTP_MSG_ECHO_RESPONSE Message 57

3.2.6 Timer Events .. 57
3.2.6.1 Negotiation Timer Processing .. 57

3.2.7 Other Local Events .. 57
3.2.7.1 Client-Side Interface with PPP ... 57
3.2.7.2 Client-Side Interface with HTTPS... 58

3.3 Server Details .. 58
3.3.1 Abstract Data Model .. 58

3.3.1.1 State Machine... 59
3.3.1.1.1 Call Establishment ... 59

3.3.2 Timers .. 61
3.3.2.1 Negotiation Timer ... 61

3.3.3 Initialization ... 61
3.3.4 Higher-Layer Triggered Events ... 62
3.3.5 Processing Events and Sequencing Rules ... 62

3.3.5.1 Status and Error Handling .. 62
3.3.5.2 Packet Processing ... 62

3.3.5.2.1 General Packet Validation ... 62
3.3.5.2.2 Receiving an SSTP_MSG_CALL_CONNECT_REQUEST Message............... 62
3.3.5.2.3 Receiving an SSTP_MSG_CALL_CONNECTED Message 63
3.3.5.2.4 Receiving an SSTP_MSG_CALL_ABORT Message 65
3.3.5.2.5 Receiving an SSTP_MSG_CALL_DISCONNECT Message 65
3.3.5.2.6 Receiving an SSTP_MSG_CALL_DISCONNECT_ACK Message 66
3.3.5.2.7 Receiving an SSTP_MSG_ECHO_REQUEST Message 66
3.3.5.2.8 Receiving an SSTP_MSG_ECHO_RESPONSE Message 66

3.3.6 Timer Events .. 67
3.3.6.1 Negotiation Timer Processing .. 67

3.3.7 Other Local Events .. 67
3.3.7.1 Server-Side Interface with PPP ... 67
3.3.7.2 Server-Side Interface with HTTPS ... 68
3.3.7.3 Server-Side Interface with Management Layer .. 68

6 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples ... 69
4.1 HTTPS Layer Establishment ... 69
4.2 HTTP Layer Teardown ... 69
4.3 SSTP Layer Establishment ... 70
4.4 SSTP Layer Teardown ... 70
4.5 Handling HTTP Proxies .. 71
4.6 Handling the HTTPS Termination Proxy ... 72
4.7 Crypto Binding ... 72

5 Security ... 77
5.1 Security Considerations for Implementers ... 77
5.2 Index of Security Parameters .. 77
5.3 Attack Scenarios .. 77

5.3.1 Unauthorized Client Connecting to an SSTP Server ... 77
5.3.2 Unauthorized SSTP Server Accepting Connections from a Genuine SSTP Client ... 78
5.3.3 Man in the Middle ... 79

6 Appendix A: Product Behavior ... 82

7 Change Tracking .. 85

8 Index ... 87

7 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document describes the Microsoft Secure Socket Tunneling Protocol (SSTP), a mechanism to
transport data-link layer (L2) frames on a Hypertext Transfer Protocol over Secure Sockets Layer
(HTTPS) connection. The protocol currently supports only the Point-to-Point Protocol (PPP) link layer
(for more information, see [RFC1661]).

This protocol has two main deployment modes:

 The SSTP server directly accepts the HTTPS connection.

In this scenario, the SSTP server accepts the HTTPS connection, which is similar to a virtual
private network (VPN) server positioned on the edge of a network. The Secure Sockets
Layer/Transport Layer Security (SSL/TLS) certificate is deployed on the SSTP server.

 The SSTP server is positioned behind an SSL/TLS load balancer.

In this scenario, the SSTP server is positioned behind an SSL/TLS load balancer that terminates

the SSL/TLS connections (and therefore, the SSL/TLS certificate is installed) and forwards the
decrypted HTTP traffic to the SSTP server. There is an implicit relationship of trust between the
load balancer (or trusted man-in-the-middle) and the SSTP server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

HTTPS termination proxy: A proxy server that accepts incoming HTTPS connections, decrypts
the SSL, and passes on the unencrypted HTTP payload to other servers.

Hypertext Transfer Protocol Secure (HTTPS): An extension of HTTP that securely encrypts and
decrypts web page requests. In some older protocols, "Hypertext Transfer Protocol over Secure

Sockets Layer" is still used (Secure Sockets Layer has been deprecated). For more information,
see [SSL3] and [RFC5246].

Secure Sockets Layer (SSL): A security protocol that supports confidentiality and integrity of
messages in client and server applications that communicate over open networks. SSL uses two
keys to encrypt data-a public key known to everyone and a private or secret key known only to
the recipient of the message. SSL supports server and, optionally, client authentication (2) using
X.509 certificates (2). For more information, see [X509]. The SSL protocol is precursor to

Transport Layer Security (TLS). The TLS version 1.0 specification is based on SSL version 3.0
[SSL3].

SHA1 hash: A hashing algorithm defined in [FIPS180] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

http://go.microsoft.com/fwlink/?LinkId=90283
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=129803
http://go.microsoft.com/fwlink/?LinkId=90590
http://go.microsoft.com/fwlink/?LinkId=89867
http://go.microsoft.com/fwlink/?LinkId=89868

8 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SSL/TLS handshake: The process of negotiating and establishing a connection protected by
Secure Sockets Layer (SSL) or Transport Layer Security (TLS). For more information, see

[SSL3] and [RFC2246].

SSTP client: A computer that implements the Secure Socket Tunneling Protocol (SSTP), and that

initiates an SSTP connection to an SSTP server over TCP port 443.

SSTP far end: An entity that has sent an SSTP message that is currently being processed by an
SSTP peer and to whom the response is sent by the SSTP peer.

SSTP management layer: An entity that manages the SSTP layer on the SSTP client as well as
on the SSTP server.

SSTP peer: An entity that processes an SSTP message.

SSTP server: An entity on a network that implements the SSTP and that listens for SSTP

connections over TCP port 443.

SSTP tunnel: An encrypted tunnel using the SSTP on an HTTPS (SSL/TLS protocol) connection.

state machine: A model of computing behavior composed of a specified number of states,
transitions between those states, and actions to be taken. A state stores information about past
transactions as it reflects input changes from the startup of the system to the present moment.
A transition (such as connecting a network share) indicates a state change and is described by a

condition that would need to be fulfilled to enable the transition. An action is a description of an
activity that is to be performed at a given moment. There are several action types: Entry action:
Performed when entering the state. Exit action: Performed when exiting the state. Input action:
Performed based on the present state and input conditions. Transition action: Performed when
executing a certain state transition.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-PEAP] Microsoft Corporation, "Protected Extensible Authentication Protocol (PEAP)".

[RFC1334] Lloyd, B., and Simpson, W., "PPP Authentication Protocols", RFC 1334, October 1992,
http://www.ietf.org/rfc/rfc1334.txt

[RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994,

http://www.ietf.org/rfc/rfc1661.txt

[RFC1945] Berners-Lee, T., Fielding, R., and Frystyk, H., "Hypertext Transfer Protocol -- HTTP/1.0",
RFC 1945, May 1996, http://www.ietf.org/rfc/rfc1945.txt

http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-PEAP%5d.pdf#Section_5308642b90c94cc4beecfb367325c0f9
http://go.microsoft.com/fwlink/?LinkId=148311
http://go.microsoft.com/fwlink/?LinkId=90283
http://go.microsoft.com/fwlink/?LinkId=90300

9 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[RFC1994] Simpson, W, "PPP Challenge Handshake Authentication Protocol (CHAP)", RFC 1994,
August 1996, http://www.ietf.org/rfc/rfc1994.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editor.org/rfc/rfc2246.txt

[RFC2284] Blunk, L. and Vollbrecht, J., "PPP Extensible Authentication Protocol (EAP)", RFC 2284,
March 1998, http://www.ietf.org/rfc/rfc2284.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

[RFC2716] Aboba, B. and Simon, D., "PPP EAP TLS Authentication Protocol", RFC 2716, October 1999,
http://www.ietf.org/rfc/rfc2716.txt

[RFC2759] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC 2759, January 2000,

http://www.ietf.org/rfc/rfc2759.txt

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000, http://www.rfc-
editor.org/rfc/rfc2818.txt

[RFC2965] Kristol, D. and Montulli, L., "HTTP State Management Mechanism", RFC 2965, October
2000, http://www.ietf.org/rfc/rfc2965.txt

[RFC3079] Zorn, G., "Deriving Keys for Use with Microsoft Point-to-Point Encryption (MPPE)", RFC
3079, March 2001, http://www.ietf.org/rfc/rfc3079.txt

[RFC3174] Eastlake III, D., and Jones, P., "US Secure Hash Algorithm 1 (SHA1)", RFC 3174,

September 2001, http://www.ietf.org/rfc/rfc3174.txt

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and Levkowetz, H., "Extensible
Authentication Protocol (EAP)", RFC 3748, June 2004, http://www.ietf.org/rfc/rfc3748.txt

[RFC5280] Cooper, D., Santesson, S., Farrell, S., et al., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008,

http://www.ietf.org/rfc/rfc5280.txt

[SHA256] National Institute of Standards and Technology, "FIPS 180-2, Secure Hash Standard
(SHS)", August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

[SSL3] Netscape, "SSL 3.0 Specification", http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00

[SSLPROXY] Luotonen, A., "Tunneling SSL Through a WWW Proxy", March 1997,
http://tools.ietf.org/html/draft-luotonen-ssl-tunneling-03

1.2.2 Informative References

[RFC1750] Eastlake III, D., Crocker, S., and Schiller, J., "Randomness Recommendations for
Security", RFC 1750, December 1994, http://www.ietf.org/rfc/rfc1750.txt

[RFC2865] Rigney, C., Willens, S., Rubens, A., and Simpson, W., "Remote Authentication Dial In User
Service (RADIUS)", RFC 2865, June 2000, http://www.ietf.org/rfc/rfc2865.txt

http://go.microsoft.com/fwlink/?LinkId=90305
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90332
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90374
http://go.microsoft.com/fwlink/?LinkId=90379
http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90399
http://go.microsoft.com/fwlink/?LinkId=90405
http://go.microsoft.com/fwlink/?LinkId=90408
http://go.microsoft.com/fwlink/?LinkId=90444
http://go.microsoft.com/fwlink/?LinkId=131034
http://go.microsoft.com/fwlink/?LinkId=90514
http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=90535
http://go.microsoft.com/fwlink/?LinkId=90288
http://go.microsoft.com/fwlink/?LinkId=90392

10 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005,
http://www.ietf.org/rfc/rfc4306.txt

1.3 Overview

This document specifies the Secure Socket Tunneling Protocol (SSTP). SSTP is a mechanism to
encapsulate Point-to-Point Protocol (PPP) traffic over an HTTPS protocol, as specified in [RFC1945],
[RFC2616], and [RFC2818]. This protocol enables users to access a private network by using HTTPS.
The use of HTTPS enables traversal of most firewalls and web proxies.

Many VPN services provide a way for mobile and home users to access the corporate network
remotely by using the Point-to-Point Tunneling Protocol (PPTP) and the Layer Two Tunneling
Protocol/Internet Protocol security (L2TP/IPsec). However, with the popularization of firewalls and web
proxies, many service providers, such as hotels, do not allow the PPTP and L2TP/IPsec traffic. This
results in users not receiving ubiquitous connectivity to their corporate networks. For example, generic
routing encapsulation (GRE) port blocking by many Internet service providers (ISPs) is a common
problem when using PPTP.

This protocol provides an encrypted tunnel (an SSTP tunnel) by means of the SSL/TLS protocol.
When a client establishes an SSTP-based VPN connection, it first establishes a TCP connection to the
SSTP server over TCP port 443. SSL/TLS handshake occurs over this TCP connection.

After the successful negotiation of SSL/TLS, the client sends an HTTP request with content length
encoding and a large content length on the SSL protected connection (see section 3.2.4.1 for more
details). The server sends back an HTTP response with status HTTP_STATUS_OK(200). The specific
request and response details that are discussed earlier can be found in section 4.1. The HTTPS

connection is now established, and the client can send and receive SSTP Control Packets and SSTP
Data Packets on this connection. HTTPS connection establishment when a web proxy is present is
specified in [SSLPROXY].

SSTP performs the following features:

 Allowing delineation of PPP frames from the continuous stream of data that is sent by using

HTTPS. For more information about PPP, see [RFC1661].

 Negotiation of parameters between two entities. See section 1.7 for more details.

 Extensible message format to support new parameters in the future. For more information, see
section 2.2.

 Security operations to prevent a man-in-the-middle attacker from relaying PPP frames
inappropriately over SSTP. SSTP uses keying material generated during PPP authentication for
crypto binding (sections 3.2.5.2 and 3.3.5.2.3).

SSTP Control Packets contain messages to negotiate parameters and to ensure that there is no

untrusted man-in-the-middle. SSTP Data Packets contain PPP frames as payload.

In an SSTP–based VPN, the protocol layer negotiation occurs in the following order:

 The TCP connection is established to an SSTP server over TCP port 443.

 SSL/TLS handshake is completed.

 HTTPS request-response is completed.

 SSTP negotiation begins.

 PPP negotiation is initiated, and PPP authentication is completed or bypassed.

 SSTP negotiation is completed.

http://go.microsoft.com/fwlink/?LinkId=90469
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90535
http://go.microsoft.com/fwlink/?LinkId=90283

11 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 PPP negotiation is completed.

 The connection enters a ready state for transportation of any network layer (for example, IP

packets).

The following encapsulation operations occur on the client:

 Application packets are encapsulated over any transport protocol (for example, TCP and UDP).

 Transport layer packets are encapsulated over a network protocol (for example, IP).

 Network layer packets are encapsulated over a PPP data-link layer.

 PPP packets are encapsulated over SSTP.

 SSTP Packets are encapsulated over SSL/TLS.

 SSL/TLS records are encapsulated over TCP.

 TCP packets are encapsulated over IP.

 IP packets are sent over any data-link layer (such as Ethernet or PPP). For more information about
PPP, see [RFC1661].

On the server side, operations to remove the encapsulation occur in reverse order.

1.4 Relationship to Other Protocols

The following network stack diagram shows the relationship of this protocol to other protocols.

Figure 1: SSTP protocol stack

The Secure Socket Tunneling Protocol (SSTP) allows encapsulation of PPP traffic over HTTPS. As a
result, SSTP uses both PPP and HTTPS for operation. For more information about HTTPS, see
[RFC1945], [RFC2616], and [RFC2818]. For more information about PPP, see [RFC1661].

1.5 Prerequisites/Preconditions

None.

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90283

12 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.6 Applicability Statement

The Secure Socket Tunneling Protocol (SSTP) is useful for establishing VPN connections over public
networks. If this protocol is run in a high-loss environment, then TCP connections might encounter

limited data transfer rates over this protocol.

1.7 Versioning and Capability Negotiation

The Secure Socket Tunneling Protocol (SSTP) contains version fields in all the messages. This
functionality allows a server implementation to support multiple versions of SSTP and to determine

what version is implemented on the client. The server then uses that version of protocol behavior for
SSTP negotiation.

SSTP also allows for negotiation of SHA1 and SHA256 for hashing. The negotiation is as specified in
sections 2.2.7, 2.2.6, 2.2.10, 3.2.5.2, and 3.2.5.3.2.

The server presents the hashing functions that it supports, and the client selects the hashing function
that it also supports from this list. If both the client and server support both SHA1 and SHA256, then

the client prefers SHA256 over SHA1.

1.8 Vendor-Extensible Fields

The Secure Socket Tunneling Protocol (SSTP) has no vendor-extensible fields.

1.9 Standards Assignments

The Secure Socket Tunneling Protocol (SSTP) has not been assigned any standards from any accepted
industry standards body.

13 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

Because SSTP runs by means of an HTTPS connection, SSTP relies entirely on HTTPS for the reliable

delivery of its messages. The SSTP client MUST authenticate the SSTP server by using HTTPS
authentication. The SSTP server MAY<1> authenticate the SSTP client by using HTTPS client
authentication. The SSTP server SHOULD authenticate the SSTP client by using PPP authentication.
Therefore, PPP authentication is required even when the SSTP server authenticates the SSTP client by
using HTTPS authentication. For more information about PPP authentication, see [RFC1661] section
3.5.

2.2 Message Syntax

2.2.1 SSTP Packet

The following diagram shows the format of this packet when is sent on the HTTPS connection.

The fields of the header MUST be transmitted in byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Data (variable)

...

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of

SSTP that is used. The upper 4 bits are the MAJOR version, which MUST be 0x1, and the lower 4

bits are the MINOR version, which MUST be set to 0x0. This means that the 8-bit value of the
Version field MUST be 0x10 and corresponds to Version 1.0.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet (the data packet is used for sending a higher-layer payload). The value is 1 if it
is a control packet and zero if it is a data packet.

Name Value

Data packet 0

Control packet 1

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

http://go.microsoft.com/fwlink/?LinkId=90283

14 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,
in bytes, of this entire packet, including the 4-byte SSTP header (that is, Version, 7-bit

Reserved field, 1-bit C field, 4-bit R field, and 12-bit Length field).

Data (variable): A variable-length field. The length of this field is equal to the value of the field
Length, minus 4. This field contains either the SSTP control message when field C is equal to 1
(see section 2.2.2), or the payload from a higher-layer protocol when field C is equal to zero (see
section 2.2.3). SSTP data packets carry PPP frames as payload (which includes PPP control frames
as well as PPP data frames). For more information, see [RFC1661].

2.2.2 SSTP Control Packet

This packet is a type of SSTP packet that is used by both the client and the server to send control
messages to each other. The following diagram specifies the format that MUST be used for the SSTP
control messages. Because this message is a type of SSTP packet, it follows the format of an SSTP

packet (section 2.2.1).

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Attributes (variable)

...

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of
SSTP that is used. The upper 4 bits are the MAJOR version, which MUST be 0x1, and the lower 4
bits are the MINOR version, which MUST be set to 0x0. This means that the 8-bit value of the
Version field MUST be 0x10 and corresponds to Version 1.0.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet. The value MUST be set to 1 for control packets.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. It MUST be set to zero and ignored on
receipt.

http://go.microsoft.com/fwlink/?LinkId=90283

15 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,
in bytes, of the entire SSTP packet, including the 4-byte SSTP header (that is, Version, 7-bit

Reserved field, 1-bit C field, 4-bit R field, and 12-bit Length field).

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of message. It

MUST be one of the following values.

Name Value

SSTP_MSG_CALL_CONNECT_REQUEST 0x0001

SSTP_MSG_CALL_CONNECT_ACK 0x0002

SSTP_MSG_CALL_CONNECT_NAK 0x0003

SSTP_MSG_CALL_CONNECTED 0x0004

SSTP_MSG_CALL_ABORT 0x0005

SSTP_MSG_CALL_DISCONNECT 0x0006

SSTP_MSG_CALL_DISCONNECT_ACK 0x0007

SSTP_MSG_ECHO_REQUEST 0x0008

SSTP_MSG_ECHO_RESPONSE 0x0009

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of

attributes in the message.

Attributes (variable): An ordered list of variable-sized attributes that compose an SSTP control
message. Each attribute MUST follow the format as specified in section 2.2.4.

2.2.3 SSTP Data Packet

The SSTP data packet is a type of SSTP packet that is used by both the SSTP client and SSTP server to
send a higher-layer payload (that is, a PPP frame) to each other. The following diagram specifies the
format that MUST be used for the SSTP data packet. For more information, see [RFC1661].

The fields of the structure MUST be transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Data (variable)

...

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of

SSTP being used. The upper 4 bits are the MAJOR version, which MUST be 0x1, and the lower 4
bits are the MINOR version, which MUST be set to 0x0. This means that the 8-bit value of the
Version field MUST be 0x10 and corresponds to Version 1.0.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

http://go.microsoft.com/fwlink/?LinkId=90283

16 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet. The value MUST be set to zero to indicate a data packet that carries higher-

layer payloads.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two

fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,
in bytes, of the entire SSTP packet, including the 4-byte SSTP header (that is, Version, 7-bit

Reserved field, 1-bit C field, 4-bit R field, and 12-bit Length field).

Data (variable): A variable-length field that contains the higher-layer payload. SSTP data packets
carry encapsulated protocol frames as payload. The protocol encapsulated in the Data field is
determined from previously received Encapsulated Protocol ID Attribute (section 2.2.5). SSTP
currently supports only PPP [RFC1661] as the encapsulated protocol (see section 2.2.5 for
details). The length of this field is equal to the value of the field Length, minus 4.

2.2.4 SSTP Attributes

The following diagram specifies the format that MUST be used for all SSTP attributes.

The fields of the structure MUST be transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved Attribute ID LengthPacket

Value (variable)

...

Reserved (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and

MUST be ignored on receipt.

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value
MUST be one of the following.

Name Value

SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID 0x01

SSTP_ATTRIB_STATUS_INFO 0x02

 SSTP_ATTRIB_CRYPTO_BINDING 0x03

SSTP_ATTRIB_CRYPTO_BINDING_REQ 0x04

17 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be

ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,
in bytes, of the entire SSTP attribute, including the 4-byte attribute header (that is, 1-byte
Reserved field, 1-byte Attribute ID, 4-bit R field, and 12-bit Length field).

Value (variable): A variable-length field with length equal to field Length minus 4 that contains the
attribute-specific data. The different attribute-specific data are described in sections 2.2.5 to

2.2.8. The fields "Reserved", "Attribute ID", and "LengthPacket" have been repeated in those
sections for complete illustration.

2.2.5 Encapsulated Protocol ID Attribute

The following diagram specifies the format that MUST be used for the Encapsulated Protocol ID

attribute. This attribute is used to negotiate the higher-layer protocols that are supported by the client
and server.

 The client proposes the list of higher-layer protocols that it wants to send on the SSTP connection. If
the server supports the protocols that are specified by the client, then a negative acknowledgment
(NACK) response is not sent. Otherwise, the server sends a NACK response with the list of protocols
that it does not support.

The fields of the structure MUST be transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved Attribute ID LengthPacket

Protocol ID

Reserved (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value
MUST be 0x01 for the Encapsulated Protocol ID attribute.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two

fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use MUST be set to zero when sent and MUST be
ignored on receipt.

18 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length
of the Encapsulated Protocol ID attribute. This field MUST be set to 0x006.

Protocol ID (2 bytes): A 2-byte field in network byte order that contains the following value. Note
that SSTP Version 1 currently supports only PPP frames. For more information, see [RFC1661].

Name Value

 SSTP_ENCAPSULATED_PROTOCOL_PPP 0x0001

2.2.6 Crypto Binding Request Attribute

The following diagram specifies the format that MUST be used for the Crypto Binding Request
attribute. This attribute is used by the SSTP server to communicate the supported hashing methods

and nonce to the SSTP client.

The fields of the structure MUST be transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved Attribute ID LengthPacket

Reserved1 Hash Protocol Bitmask

Nonce (32 bytes)

...

...

Reserved (1 byte): This field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value
MUST be 0x04 for the Crypto Binding Request attribute.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length

of the Crypto Binding Request attribute. Its value MUST be 40 (that is, 0x028).

Reserved1 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

http://go.microsoft.com/fwlink/?LinkId=90283

19 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Hash Protocol Bitmask (1 byte): This 1-byte bitmask field is used (with the
ServerHashProtocolSupported state variable described in section 3.3.1) to specify the hashing

methods allowed by the server that the client uses to compute the Compound MAC in the Crypto
Binding attribute. For more information, see section 3.2.5.2. The following bits are defined.

A 1 MUST be placed in the appropriate bit position to select the supported hash protocol. The
server MUST select at least one hash protocol. If the server selects both the SHA256 and the
SHA1 hash protocols and the client supports both hash protocols (as indicated by the value of the
ClientHashProtocolSupported state variable described in section 3.2.1), then the client MUST
select the SHA256 protocol. For more information about how the client processes the Hash
Protocol Bitmask when it receives a Call Connect Acknowledge message, see section 3.2.5.3.2.

0

1

2

3

4

5

6

7

0 0 0 0 0 0 B A

Where the bits are defined as:

Value Description

A

CERT_HASH_PROTOCOL_SHA1 is enabled when A=1 and is disabled when A=0.

B

CERT_HASH_PROTOCOL_SHA256 is enabled when B=1 and is disabled when B=0.

Nonce (32 bytes): A 256-bit unsigned integer that contains a temporally unique (or random) value.
For more information, see [RFC1750].

2.2.7 Crypto Binding Attribute

The following diagram specifies the format that MUST be used for the Crypto Binding attribute. This
attribute is sent by the SSTP client to the SSTP server and is used to ensure that the SSTP client and
SSTP server participated in SSL negotiation and higher-layer authentication (that is, PPP
authentication). For more information, see [RFC1661].

Note Without the Crypto Binding attribute, an untrusted man-in-the-middle can relay the PPP
packets that are received by the client on another protocol (for example, over wireless) on the SSTP

connection without the knowledge of the SSTP client and SSTP server.

The fields of the structure MUST be transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved Attribute ID LengthPacket

Reserved1 Hash Protocol

Nonce (32 bytes)

...

...

http://go.microsoft.com/fwlink/?LinkId=90288
http://go.microsoft.com/fwlink/?LinkId=90283

20 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Cert Hash (variable)

...

Padding (variable)

...

Compound MAC (variable)

...

Padding1 (variable)

...

Reserved (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value

MUST be 0x03 for the Crypto Binding attribute.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length
of the Crypto Binding attribute. Its value MUST be 104 (that is, 0x068).

Reserved1 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

Hash Protocol (1 byte): A 1-byte field that specifies the Cert Hash type and hash algorithm that is
used for Compound MAC calculation. Its value MUST be one of the following.

Name Value

CERT_HASH_PROTOCOL_SHA1 0x01

CERT_HASH_PROTOCOL_SHA256 0x02

Nonce (32 bytes): A 256-bit unsigned integer that contains a temporally unique (or random) value.
For more information, see [RFC1750]. This value MUST be the same as what is received from the
SSTP server in the Crypto Binding Request attribute.

Cert Hash (variable): A variable-length field in network byte order that contains either the SHA1
hash [RFC3174] or the SHA256 hash [SHA256] of the server certificate. The hash algorithm to be
used is specified by the Hash Protocol field in the message. The server certificate is an X.509

http://go.microsoft.com/fwlink/?LinkId=90288
http://go.microsoft.com/fwlink/?LinkId=90408
http://go.microsoft.com/fwlink/?LinkId=90514

21 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

certificate as described in [RFC5280]; it is available as a part of the SSL/TLS handshake ([SSL3]
section 5.6.2 and [RFC2246] section 7.4.2). The SSL/TLS handshake happens during the HTTPS

session setup. For more details on the SSL/TLS handshake, see [SSL3] section 5.6 and [RFC2246]
section 7.4. The length of this field is either 20 bytes when SHA1 hash is used or 32 bytes when

SHA256 hash is used.

Padding (variable): This field is reserved for future use. MUST be set to zero when sent and MUST
be ignored on receipt. This field is either zero bytes long when the SHA256 Cert Hash is used, or
12 bytes long when the SHA1 Cert Hash is used.

Compound MAC (variable): A variable-length unsigned integer that contains the value that is used
to cryptographically associate the higher-layer authentication (that is, PPP authentication) with the
lower-layer HTTPS connection and therefore ensure that the SSTP client and the SSTP server

participated in both of them. (For more information, see section 3.2.5.2 and also see [RFC1661].)
This field is either 20 bytes long when the SHA1 Hash Protocol is used for Compound MAC
computation, or 32 bytes long when the SHA256 Hash Protocol is used for Compound MAC
computation.

Padding1 (variable): A variable-length field that is reserved for future use. MUST be set to zero
when sent and MUST be ignored on receipt. This field is either zero bytes long when the SHA256

Cert Hash is used, or 12 bytes long when the SHA1 Cert Hash is used.

2.2.8 Status Info Attribute

The following diagram specifies the format that MUST be used for the Status Info attribute. Both the
client and server use this attribute to indicate to each other the reason for failure and the unsupported

attributes. This attribute can be used to indicate the status of only one attribute at a time; that is, if
the server wants to indicate the status of multiple attributes, then it is necessary to respond with
multiple Status Info attributes.

The fields of the structure MUST be transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved Attribute ID LengthPacket

Reserved1 AttribID

Status

AttribValue (variable)

...

Reserved (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and

MUST be ignored on receipt.

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value
MUST be 0x02 for the Status Info attribute.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

http://go.microsoft.com/fwlink/?LinkId=131034
http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=90324

22 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length

of the Status Info attribute. Its value MUST be the length of the AttribValue field plus 12.

Reserved1 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

AttribID (1 byte): A 1-byte field that specifies the attribute ID whose status is given by the Status
Info attribute. Its value MUST be one of the following.

Name Value

SSTP_ATTRIB_NO_ERROR 0x00

SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID 0x01

SSTP_ATTRIB_STATUS_INFO 0x02

SSTP_ATTRIB_CRYPTO_BINDING 0x03

SSTP_ATTRIB_CRYPTO_BINDING_REQ 0x04

For example, if the Encapsulated Protocol ID that is suggested by the client is not acceptable to
the server, then it replies with a Status Info attribute that contains AttribID = 0x01 (that is,
SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID), Status = 0x00000004 (that is,
ATTRIB_STATUS_VALUE_NOT_SUPPORTED), and AttribValue = the value proposed by the client.

Status (4 bytes): A 4-byte field that specifies the reason for the failure. Its value MUST be one of the
following.

Value Meaning

ATTRIB_STATUS_NO_ERROR

0x00000000

This Status value SHOULD be used as part of
the Status Info attribute to indicate the
scenario in which there is no error event to
report. For example, the higher-layer
initiated disconnect is a normal scenario. In
such a case, the SSTP peer can send a
Status Info attribute that has this status
value.

ATTRIB_STATUS_DUPLICATE_ATTRIBUTE

0x00000001

This status value MUST be used to indicate
multiple occurrences of a specific attribute.
The AttribID of the Status Info attribute
denotes the attribute that is occurring more
than one time in the message.

ATTRIB_STATUS_UNRECOGNIZED_ATTRIBUTE

0x00000002

This status value MUST be used to indicate
the presence of an unrecognized attribute
that is received from the far end. The
AttribID field of the Status Info attribute
specifies the attribute that is received from
the far end that is not recognized by the
SSTP peer.

23 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ATTRIB_STATUS_INVALID_ATTRIB_VALUE_LENGTH

0x00000003

This status value MUST be used when the
length of the attribute (specified by AttribID
in the Status Info attribute) that is received
from the SSTP far end differs from the
expected length of the attribute defined in
each attribute id section.

ATTRIB_STATUS_VALUE_NOT_SUPPORTED

0x00000004

This status value MUST be used when the
value of the attribute (specified by AttribID
in the Status Info attribute) that is received
from the SSTP far end is not supported by
this SSTP peer.

ATTRIB_STATUS_UNACCEPTED_FRAME_RECEIVED

0x00000005

This status value MUST be used when the
message type that is received from the far
end is not acceptable for the current state of
the SSTP peer.

ATTRIB_STATUS_RETRY_COUNT_EXCEEDED

0x00000006

This status value MUST be used when the
connection is being aborted because the
retry count is exceeded for an operation. For
example, if the SSTP client failed to provide
the acceptable values for the attributes in
the connect request that are rejected by the
server with a call connect NACK for a
predefined number<2> of consecutive times,
then the server aborts the connection and
uses this status value.

ATTRIB_STATUS_INVALID_FRAME_RECEIVED

0x00000007

This status MUST be used to stop

connections when the message type or the
frame format that is received from the SSTP
far end is not recognized by the SSTP peer.

ATTRIB_STATUS_NEGOTIATION_TIMEOUT

0x00000008

This status MUST be used to abort
connections when the far end has not
responded in a timely manner and a time-
out results. See sections 3.2.2 and 3.1.2 for
timeout value in various scenarios.

ATTRIB_STATUS_ATTRIB_NOT_SUPPORTED_IN_MSG

0x00000009

 This status MUST be used while sending a
SSTP_MSG_CALL_ABORT when the attribute
that is received from the far end is not
supported in the specified message or the
expected attribute is not received in the
specified message. For example:

 The SSTP server receives an

SSTP_MSG_CALL_CONNECTED message
with one of the attributes with attribute
Id equal to SSTP_ATTRIB_STATUS_INFO
and status not equal to
ATTRIB_STATUS_NO_ERROR.

 The SSTP server receives an
SSTP_MSG_CALL_CONNECTED message
not having Crypto Binding attribute.

ATTRIB_STATUS_REQUIRED_ATTRIBUTE_MISSING

0x0000000a

This status MUST be used in the NACK of a
Call Connect Request message when a
mandatory attribute for the message was

24 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

not sent by the far end. The SSTP client
MUST send
SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_I
D as a part of
SSTP_MSG_CALL_CONNECT_REQUEST. If
this value is not present, then the SSTP
server MUST send an
SSTP_MSG_CALL_CONNECT_NAK that has a
status of this value and an AttribID of
SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_I
D.

ATTRIB_STATUS_STATUS_INFO_NOT_SUPPORTED_IN_MSG

0x0000000b

This status MUST be used while sending a
NACK when the SSTP server receives an
SSTP_MSG_CALL_CONNECT_REQUEST
message, and one of the attributes with
attribute ID equal to
SSTP_ATTRIB_STATUS_INFO has status not
equal to ATTRIB_STATUS_NO_ERROR.

AttribValue (variable): A variable-length field in network byte order that specifies the original value
of the attribute that is proposed by the client in the Call Connect Request message that is sent
back by the server in the Call Connect Negative Acknowledgment message. It is not present (that
is, it is of zero length) in the Call Connect Negative Acknowledgment message if the mandatory
attribute is not sent by the client in the Call Connect Request message; or if the attribute that is
sent by the client in the Call Connect Request message is not understood by the server. The
mandatory and optional attributes for a given message are covered in the respective message

description. This field MUST NOT be present (that is, it is of zero length) in any other case where
the Status Info attribute is present. The maximum length of this field MUST be 64 bytes. If the
original attribute is greater than 64 bytes, only the first 64 bytes are sent back.

2.2.9 Call Connect Request Message (SSTP_MSG_CALL_CONNECT_REQUEST)

The following diagram specifies the format that MUST be used for this message. This message MUST
be the first message that is sent by the SSTP client after it establishes an HTTPS connection with the
server. The client uses this message to request the establishment of an SSTP connection with the
server. Note that this message follows the format of an SSTP control packet.

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Reserved1 Attribute ID LengthPacket1

Protocol ID

Version (1 byte): An 8-bit (1-byte) field that communicates and negotiates the version of SSTP. The
upper 4 bits are the MAJOR version, which MUST be 0x1, and the lower 4 bits are the MINOR
version, which MUST be set to 0x0. This means that the 8-bit value of the Version field MUST be
0x10 and corresponds to Version 1.0.

25 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet. The value MUST be 1 for a message that is a control packet.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that contains the value 0x00e

for the length of the entire message.

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of message. It
MUST be 0x0001 (SSTP_MSG_CALL_CONNECT_REQUEST).

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of
attributes in the message. This value MUST be 0x0001 because SSTP Version 1 supports only the
Encapsulated Protocol ID attribute by using a Protocol ID value of PPP. For more information, see
[RFC1661].

Reserved1 (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value
MUST be 0x01 for the Encapsulated Protocol ID attribute.

LengthPacket1 (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R1 Length1

R1 (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST
be ignored on receipt.

Length1 (12 bits): A 12-bit unsigned integer in network byte order that contains the value
0x006 for the Encapsulated Protocol ID attribute length.

Protocol ID (2 bytes): A 2-byte field in network byte order that contains the value 0x0001 (that is,

SSTP_ENCAPSULATED_PROTOCOL_PPP). Note that SSTP Version 1 supports only the transport of

PPP frames. For more information, see [RFC1661].

2.2.10 Call Connect Acknowledge Message (SSTP_MSG_CALL_CONNECT_ACK)

The following diagram specifies the format that MUST be used for this message. The server sends this
message in response to an acceptable Call Connect Request message from a client. Note that this

message follows the format of an SSTP control packet (section 2.2.2).

http://go.microsoft.com/fwlink/?LinkId=90283

26 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Reserved1 Attribute ID LengthPacket1

Reserved2 Hash Protocol Bitmask

Nonce (32 bytes)

...

...

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of
SSTP that is being used. The upper 4 bits are the MAJOR version, which MUST be 0x1, and the

lower 4 bits are the MINOR version, which MUST be set to 0x0. This means that the 8-bit value of
the Version field MUST be 0x10 and corresponds to Version 1.0.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet. The value MUST be 1 for a Call Connect Acknowledge message that is a control

packet.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,

in bytes, of the entire Call Connect Acknowledge message. This field MUST be set to a value of
48 (0x030).

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of message. It
MUST be 0x0002 (that is, SSTP_MSG_CALL_CONNECT_ACK).

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of
attributes in the message. This value MUST be 1 for these messages because they contain the
Crypto Binding Request attribute only.

Reserved1 (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

27 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value
MUST be 0x04 for the Crypto Binding Request attribute.

LengthPacket1 (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R1 Length1

R1 (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST
be ignored on receipt.

Length1 (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length
of the Crypto Binding Request attribute. Its value MUST be 40 bytes, that is, 0x028.

Reserved2 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and

MUST be ignored on receipt.

Hash Protocol Bitmask (1 byte): This 1-byte bitmask field is used (with the
ServerHashProtocolSupported state variable described in section 3.3.1) to specify the hashing
methods allowed by the server that the client uses to compute the Compound MAC in the Crypto
Binding attribute. For more information, see section 3.2.5.2. The following bits are defined.

A 1 MUST be placed in the appropriate bit position to select the supported hash protocol. The
server MUST select at least one hash protocol. If the server selects both the SHA256 and the

SHA1 hash protocols and the client supports both hash protocols (as indicated by the value of the
ClientHashProtocolSupported state variable described in section 3.2.1), then the client MUST
select the SHA256 protocol. For more information about how the client processes the Hash
Protocol Bitmask when it receives a Call Connect Acknowledge message, see section 3.2.5.3.2.

0

1

2

3

4

5

6

7

0 0 0 0 0 0 B A

Where the bits are defined as:

Value Description

A

CERT_HASH_PROTOCOL_SHA1 is enabled when A=1 and is disabled when A=0.

B

CERT_HASH_PROTOCOL_SHA256 is enabled when B=1 and is disabled when B=0.

Nonce (32 bytes): A 256-bit unsigned integer that contains a temporally unique (or random) value.

For more information, see [RFC1750].

2.2.11 Call Connected Message (SSTP_MSG_CALL_CONNECTED)

The following diagram specifies the format that MUST be used for this message. The client sends this

message to the server as a response to the Call Connect Acknowledge message after SSL/TLS
handshake and higher-layer authentication (that is, PPP authentication) are completed. This message
marks the completion of SSTP negotiation. It cryptographically binds the SSL/TLS handshake and PPP
authentication so that a man-in-the-middle attacker cannot relay PPP packets that are received on

http://go.microsoft.com/fwlink/?LinkId=90288

28 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

another medium. For example, wireless packets could be received that are not intended for SSTP
communication during protocol operation and could represent an attack. For more information about

the PPP authentication phase, see section 3.5 of [RFC1661].

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Reserved1 Attribute ID LengthPacket1

Reserved2 Hash Protocol Bitmask

Nonce (32 bytes)

...

...

Cert Hash (variable)

...

Padding (variable)

...

Compound MAC (variable)

...

Padding1 (variable)

...

Version (1 byte): An 8-bit (1-byte) field that communicates and negotiates the version of SSTP that
is being used. The upper 4 bits are the major version, which MUST be 0x1, and the lower 4 bits
are the minor version, which MUST be 0x0. This means that the 8-bit value of the Version field
MUST be 0x10 and correspond to Version 1.0.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and

MUST be ignored on receipt.

C (1 bit): A 1-bit field that specifies whether the packet is an SSTP control packet or an SSTP data
packet. The value MUST be 1 for a Call Connect Request message that is a control packet.

LengthPacket (2 bytes): A 16-bit, unsigned integer in network byte order that packs data for two
fields, which are configured in the following format.

http://go.microsoft.com/fwlink/?LinkId=90283

29 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit, unsigned integer in network byte order that specifies the length of a

Call Connected message. Its value MUST be 112 (that is, 0x070).

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of this
message. It MUST be 0x0004 (that is, SSTP_MSG_CALL_CONNECTED).

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of
attributes in this message. This value MUST be 1 because SSTP supports only the Crypto Binding
attribute in a Call Connected message.

Reserved1 (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

Attribute ID (1 byte): An 8-bit (1-byte) field that is used to specify the type of the attribute. This
value MUST be 0x03 for the Crypto Binding attribute.

LengthPacket1 (2 bytes): A 16-bit, unsigned integer in network byte order that packs data for two
fields, which are configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R1 Length1

R1 (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST

be ignored on receipt.

Length1 (12 bits): A 12-bit, unsigned integer in network byte order that specifies the length of
the Crypto Binding attribute. Its value MUST be 104 (that is, 0x068).

Reserved2 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

Hash Protocol Bitmask (1 byte): A 1-byte field that specifies the Cert Hash Type and hash

algorithm that are used for Compound MAC calculation. Its value MUST be one of the following.

Name Value

CERT_HASH_PROTOCOL_SHA1 0x01

CERT_HASH_PROTOCOL_SHA256 0x02

Nonce (32 bytes): A 256-bit, unsigned integer that contains a temporally unique (or random) value.
(For more information, see [RFC1750].) This value MUST be the same as the value received from
the SSTP server in the Call Connect Acknowledge message (and stored in the ClientNonce state
variable described in section 3.2.1). This behavior ensures that a man-in-the-middle attacker

cannot cause a replay attack.

Cert Hash (variable): A variable-length field in network byte order that contains either the SHA1
hash or the SHA256 hash (as specified by the Hash Protocol Bitmask field in this message) of

http://go.microsoft.com/fwlink/?LinkId=90288

30 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

the server certificate that is obtained during SSL/TLS handshake and stored in the
ClientCertificateHash state variable (described in section 3.2.1). The length of the field is either

20 bytes long when the SHA1 hash is used or 32 bytes long when the SHA256 hash is used.

Padding (variable): A variable-length field that is reserved for future use. MUST be set to zero when

sent and MUST be ignored on receipt. This field is either zero bytes long when the SHA256 Cert
Hash is used or 12 bytes long when the SHA1 Cert Hash is used.

Compound MAC (variable): A variable-length, unsigned integer containing the value that is used to
cryptographically associate the higher-layer authentication (that is, PPP authentication) with a
lower-layer HTTPS connection. This association ensures that the SSTP client and the SSTP server
participated in both PPP authentication and HTTPS connection. (For more information, see section
3.2.5.2 and [RFC1661].) This field is either 20 bytes long when the SHA1 hash protocol is used for

Compound MAC computation or 32 bytes long when the SHA256 hash protocol is used for
Compound MAC computation.

Padding1 (variable): A variable-length field that is reserved for future use MUST be set to zero
when sent and MUST be ignored on receipt. This field is either zero bytes in length when the

SHA256 Hash Protocol is used for Compound MAC computation or 12 bytes in length when the
SHA1 Hash Protocol is used.

2.2.12 Call Connect Negative Acknowledgment Message

(SSTP_MSG_CALL_CONNECT_NAK)

The following diagram specifies the format that MUST be used for this message. This message is sent

by the SSTP server in response to an unacceptable Call Connect Request message that is sent by the
SSTP client. Note that this message follows the format of an SSTP control packet, as specified in
2.2.2. This message MUST have one or more Status Info attributes. This message MUST NOT have
any other attribute.

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Reserved1 AttributeID LengthPacket1

Reserved2 AttribID

Status

AttribValue (variable)

...

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of

SSTP that is being used. The upper 4 bits are MAJOR version, which MUST be 0x1, and the lower 4
bits are MINOR version, which MUST be set to 0x0. Therefore, the 8-bit value of the Version field
MUST be 0x10 and corresponds to Version 1.0.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

31 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet. The value MUST be 1 for a message that is a control packet.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,
in bytes, of this entire message.

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of message. It

MUST be 0x0003 (that is, SSTP_MSG_CALL_CONNECT_NAK).

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of
attributes in the message. This value MUST be greater than or equal to 1 because this message
MUST have at least one Status Info attribute.

Reserved1 (1 byte): This 8-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

AttributeID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value

MUST be 0x02 for the Status Info attribute.

LengthPacket1 (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R1 Length1

R1 (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST
be ignored on receipt.

Length1 (12 bits): A 12-bit unsigned integer in network byte order that contains the value 12

plus the length of the AttribValue field.

Reserved2 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

AttribID (1 byte): A 1-byte field that specifies the attribute ID whose status is given by the Status
Info attribute. Its value MUST be one of the following.

Name Value

SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID 0x01

SSTP_ATTRIB_STATUS_INFO 0x02

SSTP_ATTRIB_CRYPTO_BINDING 0x03

SSTP_ATTRIB_CRYPTO_BINDING_REQ 0x04

32 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For example, if the Encapsulated Protocol ID that is suggested by the client is not acceptable to
the server, then it replies with a Status Info attribute that contains AttribID = 0x01 (that is,

SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID), Status = 0x00000004 (that is,
ATTRIB_STATUS_VALUE_NOT_SUPPORTED), and AttribValue = value proposed by the client.

Status (4 bytes): A 4-byte field that specifies the reason for the failure. Its value MUST be one of the
following values, the description of which is specified in the Status Info attribute (section 2.2.8).

Name Value

 ATTRIB_STATUS_DUPLICATE_ATTRIBUTE 0x00000001

ATTRIB_STATUS_UNRECOGNIZED_ATTRIBUTE 0x00000002

ATTRIB_STATUS_INVALID_ATTRIB_VALUE_LENGTH 0x00000003

ATTRIB_STATUS_VALUE_NOT_SUPPORTED 0x00000004

ATTRIB_STATUS_REQUIRED_ATTRIBUTE_MISSING 0x0000000a

ATTRIB_STATUS_STATUS_INFO_NOT_SUPPORTED_IN_MSG 0x0000000b

AttribValue (variable): A variable-length field, in network byte order, that specifies the original
value of the attribute that is proposed by the client in the Call Connect Request message that is
sent back by the server in this message. This field is not present (that is, it is of zero length) in
this message if the mandatory attribute is not sent by the client in the Call Connect Request
message; or if the attribute that is sent by the client in the Call Connect Request message is not
understood by the server. This field MUST NOT be present (that is, it is of zero length) in any
other case where the Status Info attribute is present. The maximum length of this field is 64

bytes. If the original attribute is greater than 64 bytes, then only the first 64 bytes are sent back.

2.2.13 Call Abort Message (SSTP_MSG_CALL_ABORT)

This is sent by an SSTP peer to the SSTP far end in order to initiate an abnormal disconnection of the

SSTP connection. This behavior occurs when an invalid message is received as specified in the state
transition diagrams in sections 3.1.1.1.1, 3.2.1.1.1, and 3.3.1.1.1. For example, if the server receives
a Call Connected message with an invalid length specified for the attribute, the SSTP server sends a
Call Abort message to the SSTP client.

The following diagram specifies the format that MUST be used for the Call Abort message. This
message follows the format of an SSTP control packet as specified in section 2.2.2. This message
SHOULD have one Status Info attribute.<3> This message MUST NOT have any other attributes.

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Reserved1 AttributeID LengthPacket1

Reserved2 AttribID

Status

33 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of
SSTP that is being used. The upper 4 bits are MAJOR version, which MUST be 0x1, and the lower 4

bits are MINOR version, which MUST be set to 0x0. Therefore, the 8-bit value of the Version field
MUST be 0x10 and corresponds to Version 1.0.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet. The value MUST be 1 for a Call Abort message that is a control packet.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,
in bytes, of the entire Call Abort message.

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of message. It
MUST be 0x0005 (that is, SSTP_MSG_CALL_ABORT).

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of
attributes in the message. This value MUST be set to 1 if a Status Info attribute is being sent
along with this message. If no Status Info attribute is present in this message, this value MUST be
set to 0.

Reserved1 (1 byte): This 8-bit (1-byte) field is reserved for future use. MUST be set to zero when

sent and MUST be ignored on receipt.

AttributeID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value

MUST be 0x02 for the Status Info attribute.

LengthPacket1 (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R1 Length1

R1 (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST
be ignored on receipt.

Length1 (12 bits): A 12-bit unsigned integer in network byte order that contains the value 12
plus the length of the AttribValue field.

Reserved2 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

AttribID (1 byte): A 1-byte field that specifies the attribute ID whose status is given by the Status
Info attribute. Its value MUST be one of the following.

34 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Value

SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID 0x01

SSTP_ATTRIB_STATUS_INFO 0x02

SSTP_ATTRIB_CRYPTO_BINDING 0x03

SSTP_ATTRIB_CRYPTO_BINDING_REQ 0x04

Status (4 bytes): A 4-byte field that specifies the reason for the failure. Its value MUST be one of the
following values, the description of which is specified in the Status Info attribute (section 2.2.8).

Name Value

ATTRIB_STATUS_VALUE_NOT_SUPPORTED 0x00000004

ATTRIB_STATUS_UNACCEPTED_FRAME_RECEIVED 0x00000005

ATTRIB_STATUS_RETRY_COUNT_EXCEEDED 0x00000006

ATTRIB_STATUS_INVALID_FRAME_RECEIVED 0x00000007

ATTRIB_STATUS_NEGOTIATION_TIMEOUT 0x00000008

ATTRIB_STATUS_ATTRIB_NOT_SUPPORTED_IN_MSG 0x00000009

2.2.14 Call Disconnect Message (SSTP_MSG_CALL_DISCONNECT)

This message is sent by an SSTP peer to the SSTP far end in order to initiate the normal disconnection
of the SSTP connection, such as when a user initiates a manual disconnect.

The following diagram specifies the format that MUST be used for this message. This message follows
the format of an SSTP control packet as specified in section 2.2.2. This message SHOULD have one
Status Info attribute.<4> This message MUST NOT have any other attributes.

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Reserved1 AttributeID LengthPacket1

Reserved2 AttribID

Status

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of
SSTP that is being used. The upper 4 bits are MAJOR version, which MUST be 0x1, and the lower 4
bits are MINOR version, which MUST be set to 0x0. Therefore, the 8-bit value of the Version field
MUST be 0x10 and corresponds to Version 1.0.

35 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or an
SSTP data packet. The value MUST be 1 when this message is a control packet.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length,

in bytes, of this entire message.

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of message. It
MUST be 0x0006 (that is, SSTP_MSG_CALL_DISCONNECT).

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of
attributes in the message. This value MUST be set to 1 if a Status Info attribute is being sent
along with this message. If no Status Info attribute is present in this message, this value MUST be
set to 0.

Reserved1 (1 byte): This 8-bit (1-byte) field is reserved for future use. MUST be set to zero when
sent and MUST be ignored on receipt.

AttributeID (1 byte): An 8-bit (1-byte) field that is used to specify the type of attribute; its value
MUST be 0x02 for the Status Info attribute.

LengthPacket1 (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R1 Length1

R1 (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST
be ignored on receipt.

Length1 (12 bits): A 12-bit unsigned integer in network byte order that contains the value 12
plus the length of the AttribValue field.

Reserved2 (3 bytes): This 24-bit field is reserved for future use. MUST be set to zero when sent and

MUST be ignored on receipt.

AttribID (1 byte): A 1-byte field that specifies the attribute ID whose status is given by the Status
Info attribute. Its value MUST be set to SSTP_ATTRIB_NO_ERROR (0x0).

Status (4 bytes): A 4-byte field that specifies the reason for the disconnect. Its value MUST be set to
ATTRIB_STATUS_NO_ERROR (0x0).

36 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.15 Call Disconnect Acknowledge (SSTP_MSG_CALL_DISCONNECT_ACK), Echo

Request (SSTP_MSG_ECHO_REQUEST), and Echo Response

(SSTP_MSG_ECHO_RESPONSE) Messages

These messages are identical in wire format except for the message type field.

A Call Disconnect Acknowledge message can be sent by both the SSTP client and the SSTP server to
each other (that is, to the SSTP far end) in response to a Call Disconnect message that is received
from the SSTP far end.

The Echo Request message is sent by both the SSTP client and the SSTP server when they do not

receive an SSTP packet (either an SSTP control packet or SSTP data packet) in a specified amount of
time. See Hello Timer (section 3.1.2.3) for details.

The Echo Response message is sent by both the SSTP client and the SSTP server to each other in
response to an Echo Request packet that is received from one another.

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Reserved C LengthPacket

Message Type Num Attributes

Version (1 byte): An 8-bit (1-byte) field that is used to communicate and negotiate the version of

SSTP that is used. The upper 4 bits are the MAJOR version, which MUST be 0x1, and the lower 4
bits are the MINOR version, which MUST be set to 0x0. This means that the 8-bit value of the
Version field MUST be 0x10.

Reserved (7 bits): This 7-bit field is reserved for future use. MUST be set to zero when sent and
MUST be ignored on receipt.

C (1 bit): A 1-bit field that is used to indicate whether the packet is an SSTP control packet or SSTP

data packet. The value MUST be set to 1.

LengthPacket (2 bytes): A 16-bit unsigned integer in network byte order that packs data for two
fields, configured in the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

R Length

R (4 bits): This 4-bit field is reserved for future use. MUST be set to zero when sent and MUST be
ignored on receipt.

Length (12 bits): A 12-bit unsigned integer in network byte order that MUST specify the length

of the Call Disconnect Acknowledge, Echo Request, or Echo Response message. This field
MUST be set to 8 (0x008).

Message Type (2 bytes): A 16-bit field in network byte order that specifies the type of message.
This field MUST be one of the following values.

37 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Value

SSTP_MSG_CALL_DISCONNECT_ACK 0x0007

SSTP_MSG_ECHO_REQUEST 0x0008

 SSTP_MSG_ECHO_RESPONSE 0x0009

Num Attributes (2 bytes): A 16-bit field in network byte order that specifies the number of
attributes in the message. This value MUST be zero for these messages because they do not
support any attribute.

38 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

The following sections specify details of this protocol, including client, server, and common abstract
data models, as well as message processing rules.

3.1 Common Details

The following details are common between the SSTP client and the SSTP server.

3.1.1 Abstract Data Model

This section describes a model of possible data organization that an implementation maintains to
participate in this protocol. The described organization is provided to facilitate the explanation of how
the protocol behaves. This document does not mandate that implementations adhere to this model as
long as their external behavior is consistent with what is described in this document.

Both the SSTP client and server maintain the current state for each SSTP connection. The state values
related to Call Abort and Call Disconnect processing that are common to both the SSTP client and
server are as follows:

 Call_Abort_In_Progress_1

 Call_Abort_In_Progress_2

 Call_Abort_Timeout_Pending

 Call_Abort_Pending

 Call_Disconnect_In_Progress_1

 Call_Disconnect_In_Progress_2

 Call_Disconnect_Timeout_Pending

 Call_Disconnect_Ack_Pending

3.1.1.1 State Machine

This section describes the state machine that applies to both the client and server for the Call

Disconnect and Call Abort phases. The state machine for call establishment is different for the client
and server and is as specified in sections 3.2.1.1.1 and 3.3.1.1.1, respectively.

3.1.1.1.1 State Machine Call Disconnect

The following figure shows the state machine when the SSTP connection has to be disconnected.

39 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 2: Common details for call disconnect

To disconnect an SSTP connection, the SSTP client and server state machines have the following
states:

State Name Description

Call_Disconnect_In_Progress_1 This is the state when a disconnect SSTP tunnel event is received from the
higher layer. In this state, the SSTP_MSG_CALL_DISCONNECT message is
sent to the SSTP far end, and CurrentState is changed to
Call_Disconnect_Ack_Pending.

Call_Disconnect_In_Progress_2 This is the state when the SSTP_MSG_CALL_DISCONNECT message is
received from the SSTP far end. In this state, an
SSTP_MSG_CALL_DISCONNECT_ACK is sent to the SSTP far end, and
CurrentState is changed to Call_Disconnect_Timeout_Pending.

Call_Disconnect_Ack_Pending In this state, the SSTP connection waits for the
SSTP_MSG_DISCONNECT_ACK message from the SSTP far end. On receipt
of this message, the Call Disconnect is completed.

Call_Disconnect_Timeout_Pending In this state, the SSTP connection waits for the timer to expire or for the
lower layer to be disconnected. When either of these conditions are met, the
Call Disconnect is completed.

40 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The additional states for the Call Abort transitions are defined in section 3.1.1.1.2.

3.1.1.1.2 State Machine Call Abort

The following figure shows the state machine when a call is aborted.

Figure 3: Common details for call abort

To abort an SSTP connection, the SSTP client and server state machines have the following states:

State Name Description

Call_Abort_In_Progress_1 This is the initial state when the SSTP connection reaches abort-related
conditions, such as the receipt of an invalid message, as described in the client
and server state machines in sections 3.2.1 and 3.3.1. In this state,
SSTP_MSG_CALL_ABORT is sent to the SSTP far end, and CurrentState is
changed to Call_Abort_Pending.

Call_Abort_In_Progress_2 This is the initial state that the SSTP connection transitions to when the
SSTP_MSG_CALL_ABORT message is received from the SSTP far end. In this
state, SSTP_MSG_CALL_ABORT is sent to the SSTP far end, and CurrentState is
changed to Call_Abort_Timeout_Pending.

Call_Abort_Pending In this state, the SSTP connection waits for the SSTP_MSG_CALL_ABORT message
from the SSTP far end. When an SSTP_MSG_CALL_ABORT (section 2.2.13)
message is received, or when a lower layer disconnects or times out, the Call
Abort is completed. Other than SSTP_MSG_CALL_ABORT, any SSTP control

41 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

State Name Description

message received while in this state is silently discarded.

Call_Abort_Timeout_Pending In this state, the SSTP connection waits for the timer to expire or for the lower
layer to be disconnected. When either of these conditions is met, the Call Abort is
completed. Any SSTP control message received while in this state is silently
discarded.

3.1.2 Timers

3.1.2.1 Abort-Related Timers

There are two timers related to abort processing:

 TIMER_VAL_ABORT_STATE_TIMER_1

 TIMER_VAL_ABORT_STATE_TIMER_2

The first timer is started by an SSTP peer when it has initiated an abort procedure by sending the Call
Abort message to an SSTP far end. In this state, all SSTP messages except Call Abort MUST be
ignored. If the initiating SSTP peer receives a Call Abort message from the SSTP far end before the
timer expires, then it MUST cancel the TIMER_VAL_ABORT_STATE_TIMER_1 timer and start the

TIMER_VAL_ABORT_STATE_TIMER_2 timer.

 When the SSTP far end receives a Call Abort message, it responds with a Call Abort message after
starting the second timer (that is, TIMER_VAL_ABORT_STATE_TIMER_2). This timer ensures that the
SSTP peer receives the Call Abort message that is sent by the SSTP far end. This is to address
collision-type situations where the SSTP peer and the SSTP far end initiate the Call Abort message at
the same time (and not in response to the Call Abort message initiated by the SSTP peer). This short
delay ensures that both the SSTP peer and the SSTP far end receive the Call Abort message that is

sent by one another.

 In this state, while waiting for timer to expire, all SSTP messages are ignored. Once this timer
expires, the SSTP far end MUST clear the connection state to clean up the connection.

The first timer SHOULD be set at 3 seconds. The second timer SHOULD be set to 1 second.

3.1.2.2 Disconnect-Related Timers

There are two timers related to disconnect processing:

 TIMER_VAL_DISCONNECT_STATE_TIMER_1

 TIMER_VAL_DISCONNECT_STATE_TIMER_2

The first timer is started by an SSTP peer when it has initiated a disconnect by sending the Call
Disconnect message to the SSTP far end. If the SSTP peer receives a Call Disconnect Acknowledge

message from the SSTP far end before the timer expires, then it MUST cancel the timer and

immediately clear the connection state to clean up the connection.

When the SSTP far end receives a Call Disconnect message, it responds with a Call Disconnect
Acknowledge message and then starts the second timer (that is,
TIMER_VAL_DISCONNECT_STATE_TIMER_2). This timer ensures that the SSTP peer receives the Call
Disconnect Acknowledge message that is sent by the SSTP far end.

The first timer SHOULD be set to 5 seconds. The second timer SHOULD be set to 1 second.

42 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.2.3 Hello Timer

To detect HTTPS connection failures in the absence of any active data transfers, Echo Request and
Echo Response messages are periodically sent by the SSTP peer and SSTP far end, respectively. Both

the SSTP client and SSTP server start a Hello timer after a successful SSTP connection setup. For
example, after a successful Call Connect Request, Call Connect Acknowledge, and Call Connected
message exchange, a Hello timer is initiated. The timer is restarted after receiving an SSTP packet
(both the SSTP control packet and the SSTP data packet).

On expiry of the Hello timer, the SSTP peer MUST send an Echo Request packet. On receipt of Echo
Request packet, the SSTP far end MUST respond with an Echo Response packet. If the SSTP far end
does not respond with an Echo Response (or any SSTP packet) within the next timer interval, then it

MUST abort the connection without sending a Call Abort packet.

The Hello timer SHOULD be set to 60 seconds.

3.1.3 Initialization

See sections 3.2.3 and 3.3.3.

3.1.4 Higher-Layer Triggered Events

The SSTP layer interfaces with the PPP layer using the following events. These events are triggered by
the PPP layer.

Send PPP control frame: This event is used by the PPP layer to send a PPP control payload to the
SSTP layer. The SSTP layer then sends the PPP control payload to the HTTPS layer after
performing the necessary encapsulation (see sections 3.2.7 and 3.3.7).

Send PPP data frame: This event is used by the PPP layer to send a PPP data payload to the SSTP
layer. The SSTP layer then sends the PPP data payload to the HTTPS layer after performing the
necessary encapsulation (see sections 3.2.7 and 3.3.7).

PPP authentication completed: This event is used by the PPP layer to notify the SSTP layer that

PPP authentication has been completed (see sections 3.2.7 and 3.3.7). The PPP layer uses this
event to pass the higher layer authentication key (HLAK) to the SSTP layer. The SSTP layer on the
client will use this attribute to generate and send the crypto binding attribute (section 3.2.5.2) to
the server. The SSTP layer on the server will use this attribute to validate the crypto binding
attribute sent by the client (section 3.3.5.2.3).

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Status and Error Handling

This protocol MUST attempt to delineate the SSTP frames that are contained in the HTTPS stream. If
the delineation fails because of an unsupported or unrecognized packet format, then the connection
MUST be forcefully aborted without sending a message to the SSTP far end. This is done to avoid the

use of unreliable streams.

If an invalid SSTP message is received, the SSTP state machine aborts processing using the following
procedure.

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

43 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. Change CurrentState to Call_Abort_Pending.

For the attribute parameters that are received from the Call Connect Request message, the server

MAY respond with a negative acknowledgment. In the negative acknowledgment message, the server
MUST include the list of attributes that are not acceptable and the reason that they were not accepted.

For a list of status acknowledgments, see section 2.2.8.

3.1.5.2 SSTP Packet Processing

SSTP packet processing for common messages is covered separately for the client state machine and

server state machine, in sections 3.2.5.3 and 3.3.5.2.

3.1.6 Timer Events

3.1.6.1 Abort Timer Processing

When the TIMER_VAL_ABORT_STATE_TIMER_1 expires, the SSTP peer MUST immediately force the
connection state to clear and therefore clean up the connection.

When the TIMER_VAL_ABORT_STATE_TIMER_2 expires, the SSTP peer MUST immediately clear the
connection state to clean up the connection.

3.1.6.2 Disconnect Timer Processing

When the TIMER_VAL_DISCONNECT_STATE_TIMER_1 expires, the SSTP peer MUST immediately
perform forceful cleanup of the connection.

When the TIMER_VAL_DISCONNECT_STATE_TIMER_2 expires, the SSTP peer MUST immediately clean

up the connection.

3.1.6.3 Hello Timer Processing

When the Hello timer expires, an Echo Request packet MUST be sent by the SSTP peer to the SSTP far
end.

3.1.7 Other Local Events

3.1.7.1 Interface with PPP

The SSTP layer interfaces with a local PPP layer on both clients and servers. This interface occurs
using the following events triggered by the SSTP layer.

Check PPP frame type: This event is used by the SSTP layer to check whether a given PPP payload
is a PPP control frame or a PPP data frame.

Receive PPP control frame: This event is used by the SSTP layer to indicate a PPP control frame to

the PPP layer (see section 3.2.7 and 3.3.7).

Receive PPP data frame: This event is used by the SSTP layer to indicate a PPP data frame to the
PPP layer (see section 3.2.7 and 3.3.7).

Lower Link Up: This event is used by the SSTP layer to cause the PPP layer to start the PPP state
machine (see section 4 of [RFC1661]). This event is triggered on the client side when the SSTP
layer receives an SSTP_MSG_CALL_CONNECT_ACK (section 3.2.5.3.2) message. This event is
triggered on the server side when the SSTP layer receives an

http://go.microsoft.com/fwlink/?LinkId=90283

44 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SSTP_MSG_CALL_CONNECT_REQUEST (section 3.3.5.2.2) message. In addition, if
ClientBypassHLAuth is set to TRUE on the client side OR ServerBypassHLAuth is set to TRUE

on the server side, the SSTP layer requests the PPP layer to bypass the authentication phase.

Lower Link Down: This event is used by the SSTP layer to notify the PPP layer about a lower layer

(that is, HTTPS) going down. This event is triggered when the SSTP layer gets an HTTPS
connection disconnected event from the HTTPS layer.

3.1.7.2 Interface with HTTPS

The SSTP layer on both client-side and server-side implementations interfaces with the local HTTPS
layer using the following events.

Open HTTPS connection: This event is used by the SSTP client to initiate an HTTPS connection to
the SSTP server. The SSTP layer specifies the hostname or IP address of the SSTP server when
calling this event. If the HTTPS connection is established successfully, the HTTPS layer returns the
server certificate hash (see section 3.2.4.1).

Accept HTTPS connection: This event is used by the SSTP server to accept a new incoming HTTPS

connection from the SSTP client (section 3.3.7).

Close HTTPS connection: This event is used by an SSTP peer to close the HTTPS connection.

Send HTTPS stream: This event is used by the SSTP client and the SSTP server to send an SSTP
control packet or an SSTP data packet to the local HTTPS layer. The HTTPS layer encrypts the
SSTP packet as a byte stream and sends it to the SSTP peer.

Receive HTTPS stream: This event is used by the HTTPS layer to indicate a stream of bytes to the
local SSTP layer as received from the SSTP far end. The SSTP layer delineates the stream of bytes

into SSTP control packets and SSTP data packets. If delineation fails, the connection is
immediately aborted (section 3.1.5.1) and a lower link down event is sent to the PPP layer. If
delineation succeeds, the SSTP control packets are passed to the SSTP state machine for further
processing (sections 3.2.5.3 and 3.3.5.2). The SSTP data packets, including all PPP control frames
and all PPP data frames, are passed to the PPP layer after further processing as defined in sections

3.2.7 and 3.3.7.

HTTPS connection disconnected: This interface is used by the HTTPS layer to indicate a
disconnection of the HTTPS connection. This disconnection can happen due to events such as
network interface failure, network failure, TCP failure, SSL/TLS failure, lower layer HTTPS session
disconnected, and similar scenarios. In all such scenarios, the SSTP layer MUST immediately clean
up the call-related information without any over-the-wire interaction. The SSTP layer MUST send a
lower-link-down event to the higher layer (PPP). For more information about PPP, see [RFC1661].

3.2 Client Details

The following section gives details of the SSTP client.

3.2.1 Abstract Data Model

This section describes a model of possible data organization that a client-side implementation can
maintain to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that an implementation
adhere to this model as long as the external behavior of the implementation is consistent with what is
described in this specification.

The SSTP client connection establishment phase goes through the state transitions illustrated in the
state machine diagram in section 3.2.1.1.1.

http://go.microsoft.com/fwlink/?LinkId=90283

45 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

CurrentState: An integer variable that the client uses to maintain the current state of the connection.
The CurrentState variable is initialized when the client starts the SSTP connection and remains

valid while the SSTP connection remains active. At any point in time, the CurrentState variable
can have one of the following integer values. Each value represents the current state of the client

state machine.

 Client_Call_Disconnected

 Client_Connect_Request_Sent

 Client_Connect_Ack_Received

 Client_Call_Connected

Additional state values common to both the client and server state machines are defined in section
3.1.1.

ClientCertificateHash: A multi-octet variable that the client uses to store the SHA1 hash or the
SHA256 hash of the server certificate that is obtained during HTTPS negotiation. The client

initializes this variable to the value of the server certificate hash when the HTTPS session is
established (section 3.2.4.1). This variable stores a 20-byte SHA1 hash or a 32-byte SHA256
hash. This variable is used to generate the value of the Crypto Binding attribute (section 2.2.7)
when the client sends an SSTP_MSG_CALL_CONNECTED message (sections 3.2.5.2 and 3.2.7).

ClientBypassHLAuth: In this Boolean variable, the SSTP layer stores a flag that will be used to
indicate higher layer to bypass authentication (3.1.7.1). This variable is initialized by the client
management layer during the establish SSTP tunnel event (3.2.4.1).

ClientHTTPCookie: In this string variable, the SSTP layer stores the HTTP cookie that will be passed
to the HTTPS layer during HTTPS connection establishment (3.2.4.1) if the ClientBypassHLAuth
variable is set to TRUE. This variable is initialized by the client management layer during the
establish SSTP tunnel event (3.2.4.1). This variable stores name-value pairs (section 3.2.2 of

[RFC2965]). The SSTP layer does not interpret the name-value pairs associated with
ClientHTTPCookie.<5>

ClientHashProtocolSupported: A 1-byte variable that the client administrator uses to configure a
bitmask representing the list of hashing methods that can be used to compute the Compound MAC
in the Crypto Binding attribute (section 2.2.7). The format and possible values of this bitmask are
defined under Hash Protocol Bitmask in section 2.2.10.

ClientHashProtocolChosen: A 1-byte variable that the SSTP client machine uses to store the hash

protocol that is used to compute the Compound MAC in the Crypto Binding
attribute (section 2.2.7). The possible values of this variable are defined under Hash Protocol in
section 2.2.7. This variable is initialized when an SSTP client receives a
SSTP_MSG_CALL_CONNECT_ACK message (section 2.2.10).

ClientNonce: A 32-byte variable that the SSTP client uses to store the nonce that is received from
the server in an SSTP_MSG_CALL_CONNECT_ACK message (section 2.2.10). This variable is to

send the nonce value when an SSTP client generates an SSTP_MSG_CALL_CONNECTED message
(section 2.2.11).

ClientVersion: A 1-byte variable that the SSTP client initializes with the supported version of this
protocol. The format of this field is specified in the description of the Version field in section
2.2.1. The client sets this field to the value of the Version field in all SSTP messages that it
sends, and the client validates the value of this field against the Version field in all SSTP
messages that it receives.

http://go.microsoft.com/fwlink/?LinkId=90399

46 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.1 State Machine

3.2.1.1.1 Call Establishment

The following figure shows the state machine when a client establishes the outgoing SSTP tunnel.

Note The following figure refers to the Call Disconnect and Call Abort state machines described in
section 3.1.1.1.

Figure 4: Client Call Establishment

The client state machine has the following states as represented in the CurrentState variable:

State Name Description

Client_Call_Disconnected This is the initial state of the client state machine. In this state, the client waits
for the establish SSTP tunnel event from the higher layer. On receiving this

47 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

State Name Description

event, the client sends HTTPS connection to the SSTP server. On successful
completion of the HTTPS connection, the client sends the
SSTP_MSG_CALL_CONNECT_REQUEST message and the value of CurrentState
is changed to Client_Connect_Request_Sent.

Client_Connect_Request_Sent In this state, the client waits for the SSTP_MSG_CALL_CONNECT_ACK message
from the SSTP server. On receipt of this message, the client informs its higher
layer (that is, PPP) to start the authentication and the value of CurrentState is
changed to Client_Connect_Ack_Received.

Client_Connect_Ack_Received In this state, the client waits for an Inner authentication completion event
(section 3.2.7.1). On receipt of this event from the higher layer regarding
authentication completion, it sends the SSTP_MSG_CALL_CONNECTED message

and the value of CurrentState is changed to Client_Call_Connected.

Client_Call_Connected This state refers to successful establishment of an SSTP client connection. In this
state, the SSTP client continues to send and receive higher layer control and
data payload, in addition to sending periodic SSTP_MSG_ECHO_REQUEST
messages.

The preceding description covers the state transitions for a successful SSTP connection. Failure
transitions are covered in the state machine diagram earlier in this section and are also covered in

sections 3.2.4 and 3.2.5. The additional states for the Call Abort and Call Disconnect transitions are
defined in section 3.1.1.1. The higher level events and messages are explained in sections 3.2.4,
3.2.5, 3.1.4 and 3.1.5.

3.2.2 Timers

For common timers, see section 3.1.2.

3.2.2.1 Negotiation Timer

When establishing an SSTP connection, the SSTP client starts the Negotiation timer after sending a
Call Connect Request message and after receiving a Call Connect Acknowledge message.

The client MAY<6> choose to implement different values of timer after sending the Call Connect
Request message and after receiving the Call Connect Acknowledge message. The timer SHOULD be
set to 60 seconds.

3.2.3 Initialization

Client-side initialization is performed when the user tries to establish an SSTP tunnel to an SSTP
server. This process is specified in section 3.2.4.1.

The client administrator uses the ClientHashProtocolSupported state variable (section 3.2.1) to
initialize the list of hash protocols that the SSTP client supports.

The SSTP client is initialized with the version of the protocol specified by the ClientVersion state

variable (section 3.2.1).

3.2.4 Higher-Layer Triggered Events

The primary trigger events for this protocol are to establish the SSTP tunnel, cancel an SSTP tunnel
under progress, and disconnect an established SSTP tunnel.

48 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.1 Establish SSTP Tunnel Event

When the client establishes an SSTP tunnel to the remote SSTP server, the management layer on the
client initiates the SSTP tunnel request to the SSTP layer. The management layer MAY direct the SSTP

layer to bypass higher-layer authentication by initializing the ClientBypassHLAuth variable as TRUE
and the ClientHTTPCookie variable with a name-value pair. In this scenario, the ClientHTTPCookie
is trusted by the management layer on the SSTP server using an implementation-specific mechanism.
See the Accept New Connection event (section 3.3.7.3) for more details on validating the name-value
pair. The SSTP layer MUST first establish a bidirectional HTTPS session (for example, see section 4.1).
The SSTP layer MUST first establish a bidirectional HTTPS session (for example, see section 4.1). The
bidirectional HTTPS session MUST be established to a Universal Resource Identifier (URI)

/sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/ by using the SSTP_DUPLEX_POST method. The
content-length header field (section 14.13 of [RFC2616]) MUST be specified with the content length of
ULONGLONG_MAX (18446744073709551615). The client SHOULD validate that the common name
or the subject name in the server certificate (received as a part of the SSL/TLS handshake of the
HTTPS session) is the same as the hostname to which the connection is being established. The client
MUST also validate that the server certificate contains either "id-kp-serverAuth" or

"anyExtendedKeyUsage" extended key usage (EKU). See [RFC5280] section 4.2.1.12 for details on

"id-kp-serverAuth" or "anyExtendedKeyUsage".

 Method: SSTP_DUPLEX_POST
 Protocol Version: HTTP/1.1
 SSTPCORRELATIONID: <GUID>

The client MAY also pass an optional query variable (as specified in section 3.2.2 of [RFC2616]) as

part of the URI. The query variable, if set, MUST be named tenantid and SHOULD contain a string
value that would be used by a HTTPS termination proxy in an implementation-specific way to
indicate the tenant and its target SSTP server. A server that does not understand the tenantid query
variable SHOULD ignore it.<7>

If ClientByPassHLAuth is set to TRUE, the client adds an HTTP cookie header (section 3.3.4 of
[RFC2965]) with ClientHTTPCookie as the HTTP cookie.

The SSTP client SHOULD also send SSTPCORRELATIONID as an entity header field with a newly

generated GUID string (for each new SSTP client connection attempt) as its value. The SSTP server
SHOULD use this GUID value to log troubleshooting information specific to the particular SSTP
connection. See [MS-DTYP] section 2.3.4.3 for the format of a GUID string.

If the HTTPS session failed to establish, the client MUST inform the higher layer about failure, and the
SSTP state machine MUST NOT be initiated.

If the HTTPS session established successfully, the SSTP state machine MUST be initiated. The client
then reads the server certificate hash from the HTTPS layer (see section 3.2.7.2) and stores the same

in ClientCertificateHash. The client, which MUST be configured for PPP over SSTP, MUST send a Call
Connect Request message with the Encapsulated Protocol ID that corresponds to PPP. For more
information about PPP, see [RFC1661]. The client then updates CurrentState to
Client_Connect_Request_Sent.

3.2.4.2 Disconnect SSTP Tunnel Event

To bring down the SSTP tunnel, the management layer on the client MUST send a disconnect SSTP
tunnel request to the SSTP layer. This event can be used to bring down the established SSTP tunnel or
a call setup that is in progress.

For an established SSTP tunnel, this request typically comes after the encapsulated protocol has
completed its teardown (in this specific implementation, it is the PPP). After the PPP is torn down,

SSTP is triggered to bring down the SSTP tunnel by sending this event. On receiving this event, the
SSTP peer initiates the disconnection by sending the Call Disconnect message to the SSTP far end.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=131034
http://go.microsoft.com/fwlink/?LinkId=90399
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
http://go.microsoft.com/fwlink/?LinkId=90283

49 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Section 3.1.1.1.1 specifies the protocol state machine details for the disconnect event processing. For
more information about PPP teardown, see [RFC1661] section 3.7.

For a call setup in progress, it is possible for the disconnect event to occur due to cancellation of the
establish SSTP tunnel request. In this case, irrespective of the current state, the SSTP peer changes

CurrentState to Call_Disconnect_In_Progress_1. Upon entering this state, the SSTP peer sends an
SSTP_MSG_CALL_DISCONNECT to the SSTP far end, starts the
TIMER_VAL_DISCONNECT_STATE_TIMER_1 timer and then updates CurrentState to
Call_Disconnect_Ack_Pending. The SSTP far end MUST acknowledge the disconnect request by
sending SSTP_MSG_CALL_DISCONNECT_ACK regardless of the value of CurrentState.

After the SSTP message exchange is completed, the HTTPS layer MUST be notified about this event,
and the HTTPS layer SHOULD eventually be brought down.

After the SSTP disconnect message exchange (sections 3.1.1.1.1 and 4.4) is completed, the SSTP
layer MUST notify the HTTPS layer to disconnect. The HTTPS layer SHOULD be brought down after this
occurs.

3.2.5 Processing Events and Sequencing Rules

3.2.5.1 Status and Error Handling

See section 3.1.5.1.

3.2.5.2 Crypto Binding

During the SSL/TLS handshake, as part of establishing an HTTPS connection, the SSTP client
authenticates the SSTP server. However, it is optional for the SSTP server to authenticate the client.
The client is authenticated by the server during the higher-layer authentication (that is, PPP

authentication). Therefore, it is possible for a man-in-the-middle to establish the HTTPS connection to
the SSTP server and forward the PPP packets that it received from a client for a communication other
than SSTP communications (for example, wireless communications). To prevent such attacks, it is

important to cryptographically bind the two authentications.

This protocol implements cryptographic binding by requiring the client to send a value over the HTTPS
connection as an SSTP message. This value is derived from the key data that is generated during PPP
authentication. The SSTP protocol is agnostic of the mechanism used to generate key data, as long as

SSTP server and client are using the same mechanism. The SSTP protocol neither carries any
information pertaining to the key data generation mechanism nor does it enforce the mechanism to be
the same on the client and server. The only requirement from the SSTP protocol is to have a higher
layer authentication key (HLAK) of size 32 bytes which needs to be derived from the key data
generated by the PPP authentication layer. By using this value, the SSTP client can prove that it is the
entity that was authenticated with the SSTP server and that the PPP authentication was used for SSTP
communications.

Because the client already authenticated the SSTP server during SSL/TLS handshake as part of
establishing an HTTPS connection, the client can also confirm from the SSTP server that there is no
man-in-the-middle or that the entity between the client and server is an entity that the SSTP server

trusts (see section 5). This process, which is termed crypto binding, is used to protect the SSTP
negotiation against man-in-the-middle attacks.

The sequence of steps that occurs is as follows:

1. The TCP connection is established by the SSTP client to the SSTP server over TCP port 443.

2. SSL/TLS handshake is completed over this TCP connection. The SSTP server is authenticated by
the SSTP client. However, the client authentication by the server is only optional.

http://go.microsoft.com/fwlink/?LinkId=90283

50 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3. The HTTPS request-response is completed.

4. SSTP negotiation begins. The SSTP client sends a Call Connect Request message to the SSTP

server. The SSTP server validates the request and sends a Call Connect Acknowledge message
that contains a nonce to be used by the SSTP client in the Call Connected message.

5. PPP negotiation is initiated, and PPP authentication is completed. For more information about PPP,
see [RFC1661].

6. The SSTP client sends the Call Connected message (section 2.2.11), which contains the following
items:

 The nonce that was sent by the SSTP server, that is, the ClientNonce.

 The certificate received during HTTPS negotiation, that is, the ClientCertificateHash.

 The Compound MAC, which is computed by using the key data that is generated during PPP

authentication. If the PPP protocol supports Microsoft Point-to-Point Encryption (MPPE) key
generation as defined in [RFC3079], the key data is used to generate the Higher Layer

Authentication Key (HLAK) as specified in section 3.2.5.2.2 and 3.2.5.2.4.

The SSTP server validates the Call Connected message, and SSTP negotiation is completed.

7. PPP negotiation (that is, a network control protocol such as IP Control Protocol (IPCP) is
negotiated) is completed.

Implementations MUST support the Crypto Binding feature of SSTP.

SSTP Version 1 allows either the SHA1 hash or the SHA256 hash to be used for generating the
Compound MAC field in the Call Connected message.

If the SHA1 hash is used (and specified in the ClientHashProtocolChosen state variable described in
section 3.2.1), then the Compound MAC field in the Crypto Binding packet (section 3.2.5.2) MUST
contain the output of an HMAC-SHA1-160 operation (as specified in [RFC2104] and [RFC3174]), in
which the key is derived from the higher-layer authentication method (that is, the PPP authentication

method in SSTP Version 1). For information about how an implementation generates the data that is
used in the HMAC-SHA1-160 operation for the Crypto Binding packet, see section 3.2.5.2.1. For
information about how an implementation generates the key that is used in the HMAC-SHA1-160
operation for the Crypto Binding packet, see section 3.2.5.2.2.

If SHA256 is used (and specified in the ClientHashProtocolChosen state variable described in
section 3.2.1), then the Compound MAC field in the Crypto Binding packet MUST contain the output of
an HMAC-SHA256-256 operation (as specified in [SHA256]), in which the key is derived from the

higher-layer authentication method (that is, the PPP authentication method in SSTP Version 1). For
information about how an implementation generates the data that is used in the HMAC-SHA256-256
operation for the Crypto Binding packet, see 3.2.5.2.3. For information about how an implementation
generates the key that is used in the HMAC-SHA256-256 operation for the Crypto Binding packet, see
section 3.2.5.2.4.

For information about how the semantics are used by the SSTP client and server when performing the

Crypto Binding exchanges, see sections 3.2.5.3.2 and 3.3.5.2.3.

3.2.5.2.1 Input Data Used in the Crypto Binding HMAC-SHA1-160 Operation

The data that is used as the input to the HMAC-SHA1-160 operation and also used in the creation of
the Compound MAC MUST be constructed from the entire 112 bytes of the Call Connected
message (section 2.2.11). In this case, the Compound MAC field and Padding field MUST be zeroed
out.

3.2.5.2.2 Key Used in the Crypto Binding HMAC-SHA1-160 Operation

http://go.microsoft.com/fwlink/?LinkId=90283
http://go.microsoft.com/fwlink/?LinkId=90405
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90408
http://go.microsoft.com/fwlink/?LinkId=90514

51 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The key that is used as the input to the HMAC-SHA1-160 operation and used in the creation of the
Compound MAC MUST be constructed by following the steps that are specified in the following

sections. These steps produce the following intermediate values, which are defined later in this
section.

 Higher-Layer Authentication Key (HLAK)

First, a 32-byte long string is generated from keys that are provided by the higher-layer PPP
authentication method. This key is sent to the SSTP layer as part of the Inner Authentication
Completed Event.

If the higher-layer PPP authentication method generates Microsoft Point-to-Point Encryption
(MPPE) keys, as specified in [RFC3079], then an implementation MUST obtain the HLAK by using
the following method:

 For MS-CHAPv2, as specified in [RFC2759]:

SSTP Client HLAK = MasterSendKey | MasterReceiveKey, and:

SSTP Server HLAK = MasterReceiveKey | MasterSendKey,

where | indicates concatenation of strings, and MasterSendKey and MasterReceiveKey are as
specified in [RFC3079] section 3.

 For EAP TLS, as specified in [RFC2716]:

SSTP Client HLAK = MasterSendKey | MasterReceiveKey, and:

SSTP Server HLAK = MasterReceiveKey | MasterSendKey,

where | indicates concatenation of strings and MasterSendKey and MasterReceiveKey are as
specified in [RFC3079] section 4.

 For EAP (other than EAP TLS), as specified in [RFC2284]:

SSTP Client HLAK = Client Master Session Key (MSK), as specified in [RFC3748], and:

SSTP Server HLAK = Server Master Session Key (MSK), as specified in [RFC3748].

If the HLAK is more than 32 octets, then the first 32 octets form the HLAK. If the HLAK is less
than 32 octets, then the string is padded with 0x00 at the end to obtain a total length of 32
octets.

If the higher-layer PPP authentication method did not generate any keys, or if PPP
authentication is bypassed (i.e. ClientBypassHLAuth is set to TRUE), then the HLAK MUST be
32 octets of 0x00:

 Compound MAC Key Seed

Next, the seed value is generated. An implementation MUST create a byte array of size 29 bytes
containing the ASCII values for the string "SSTP inner method derived CMK", which will be used

as the Compound MAC Key Seed value.

 Compound MAC Key (CMK)

Finally, the PRF+ operation generates the key to be used to derive the Compound MAC by using
the HMAC-SHA1-160 operation.

To generate the Compound MAC Key (CMK), implementations MUST use the HLAK, MUST use
the PRF+ seed value as the input to a PRF+ operation, and MUST generate 20 bytes:

CMK = First 20 octets of PRF+ (HLAK, CMK Seed, 20);

http://go.microsoft.com/fwlink/?LinkId=90405
http://go.microsoft.com/fwlink/?LinkId=90379
http://go.microsoft.com/fwlink/?LinkId=90374
http://go.microsoft.com/fwlink/?LinkId=90332
http://go.microsoft.com/fwlink/?LinkId=90444

52 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The PRF algorithm is based on PRF+ from IKEv2 (for more information, see [RFC4306] section
2.13) shown in the following ("|" denotes concatenation):

 K = Key, S = Seed, LEN = output length, represented as binary in a single unsigned 16-bit
integer. This integer MUST be encoded in little-endian format.

 PRF (K, S, LEN) = T1 | T2 | T3 | T4 | ... where:

 T1 = HMAC-SHA1 (K, S | LEN | 0x01)

 T2 = HMAC-SHA1 (K, T1 | S | LEN | 0x02)

 T3 = HMAC-SHA1 (K, T2 | S | LEN | 0x03)

 T4 = HMAC-SHA1 (K, T3 | S | LEN | 0x04)

 ...

3.2.5.2.3 Input Data Used in the Crypto Binding HMAC-SHA256-256 Operation

The data that is used as the input to the HMAC-SHA256-256 operation and used in the creation of the
Compound MAC MUST be constructed from the entire 112 bytes of the Call Connected
message (section 2.2.11) with the Compound MAC field and Padding field zeroed out.

3.2.5.2.4 Key Used in the Crypto Binding HMAC-SHA256-256 Operation

The key that is used as the input to the HMAC-SHA256-256 operation and used in the creation of the
Compound MAC MUST be constructed by following the steps that are specified in the following
sections. These steps produce the following intermediate values that are defined later in this section.

1. Higher-Layer Authentication Key (HLAK)

First, a 32-byte long string is generated from keys that are provided by the higher-layer PPP
authentication method. This key is sent to the SSTP layer as part of the Inner Authentication
Completed Event.

If the higher-layer PPP authentication method generates Microsoft Point-to-Point Encryption
(MPPE) keys, as specified in [RFC3079], then an implementation MUST obtain the HLAK using the
following method:

 For MS-CHAPv2, as specified in [RFC2759]:

SSTP Client HLAK = MasterSendKey | MasterReceiveKey and:

SSTP Server HLAK = MasterReceiveKey | MasterSendKey,

where | indicates concatenation of strings and MasterSendKey and MasterReceiveKey are as

specified in [RFC3079] section 3.

 For EAP TLS, as specified in [RFC2716]:

SSTP Client HLAK = MasterSendKey | MasterReceiveKey and:

SSTP Server HLAK = MasterReceiveKey | MasterSendKey,

where MasterSendKey and MasterReceiveKey are as specified in [RFC3079] section 4 and where
| indicates concatenation of strings.

 For EAP, other than EAP TLS, as specified in [RFC2284]:

SSTP Client HLAK = Client Master Session Key (MSK), as specified in [RFC3748] and:

http://go.microsoft.com/fwlink/?LinkId=90469
http://go.microsoft.com/fwlink/?LinkId=90405
http://go.microsoft.com/fwlink/?LinkId=90379
http://go.microsoft.com/fwlink/?LinkId=90374
http://go.microsoft.com/fwlink/?LinkId=90332
http://go.microsoft.com/fwlink/?LinkId=90444

53 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SSTP Server HLAK = Server Master Session Key (MSK), as specified in [RFC3748].

If the HLAK is more than 32 octets, then the first 32 octets form the HLAK. If the HLAK is less

than 32 octets, then the string is padded with 0x00 at the end to obtain a total length of 32
octets.

If the higher-layer PPP authentication method did not generate any keys, or if PPP authentication
is bypassed (i.e. ClientBypassHLAuth is set to TRUE), then the HLAK MUST be 32 octets of
0x00.

2. Compound MAC Key Seed

Next, the seed value is generated. An implementation MUST create a byte array of size 29 bytes
containing the ASCII values for the string "SSTP inner method derived CMK", which will be used as
the Compound MAC Key Seed value.

3. Compound MAC Key (CMK)

Finally, the PRF+ operation generates the key to be used to derive the Compound MAC using the

HMAC-SHA256-256 operation.

To generate the Compound MAC Key (CMK), implementations MUST use the HLAK, MUST use the
PRF+ seed value as the input to a PRF+ operation, and MUST generate 32 bytes.

CMK = First 32 octets of PRF+ (HLAK, CMK Seed, 32);

The PRF algorithm is based on PRF+ from IKEv2 (for more information, see [RFC4306] section
2.13) as follows ("|" denotes concatenation):

 K = Key, S = Seed, LEN = output length, represented as binary in a single unsigned 16-bit
integer. This integer MUST be encoded in little-endian format.

 PRF (K, S, LEN) = T1 | T2 | T3 | T4 | ... where:

 T1 = HMAC-SHA256 (K, S | LEN | 0x01)

 T2 = HMAC-SHA256 (K, T1 | S | LEN | 0x02)

 T3 = HMAC-SHA256 (K, T2 | S | LEN | 0x03)

 T4 = HMAC-SHA256 (K, T3 | S | LEN | 0x04)

 ...

3.2.5.3 Packet Processing

3.2.5.3.1 General Packet Validation

When receiving a packet, the SSTP peer MUST validate that the packet conforms to the syntax as
specified in Message Syntax and its subsections. If an invalid packet is received, see section 3.1.5.1
for error handling.

3.2.5.3.2 Receiving an SSTP_MSG_CALL_CONNECT_ACK Message

If CurrentState is set to Client_Connect_Request_Sent:

1. The client MUST verify the following:

 The Crypto Binding Request Attribute (section 2.2.6) is present.

http://go.microsoft.com/fwlink/?LinkId=90469

54 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 At least one hash protocol is selected by the server in the Hash Protocol Bitmask field.

 At least one of the hash protocols in the Hash Protocol Bitmask field is a hash protocol

supported by the client (as specified in the ClientHashProtocolSupported state variable
described in section 3.2.1). If more than one hash protocol is supported, a stronger one is

chosen (see section 2.2.10). The hash protocol chosen for computing the Crypto Binding
attribute value is stored in the ClientHashProtocolChosen state variable (described in
section 3.2.1) and is referenced when the client generates the Crypto Binding
attribute (section 2.2.7) while sending an SSTP_MSG_CALL_CONNECTED message.

2. If any of the previous conditions are false:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 (section 3.1.2.1) timer).

4. Change CurrentState to Call_Abort_Pending.

3. If all of the conditions are true (the message is valid), the client MUST:

1. Trigger PPP to start PPP state machine.

2. Start relaying PPP control frames to and from the server.

3. Store the nonce received from the SSTP_MSG_CALL_CONNECT_ACK message in the

ClientNonce state variable (described in 3.2.1).

See section 3.1.5.1 for information about invalid message processing.

4. Start the negotiation timer.

5. Change CurrentState to Client_Connect_Ack_Received.

Else if CurrentState is Call_Abort_Timeout_Pending, Call_Abort_Pending,
Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else if CurrentState has any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 (section 3.1.2.1) timer.

4. Update CurrentState to Call_Abort_Pending.

3.2.5.3.3 Receiving an SSTP_MSG_CALL_CONNECT_NAK Message

If CurrentState is set to Client_Connect_Request_Sent:

 The first time this message is received by the client in response to a particular
SSTP_MSG_CALL_CONNECT_REQUEST (section 2.2.9) packet, the client SHOULD retry an
implementation-dependent number of times.<8>

 If the retry count is not exceeded, the SSTP client MUST:

1. Resend the SSTP_MSG_CALL_CONNECT_REQUEST (section 2.2.9) message.

55 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. Restart the Negotiation timer.

 If the retry count is exceeded, the SSTP client MUST:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

Else if CurrentState is set to Call_Abort_Timeout_Pending, Call_Abort_Pending,
Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else if CurrentState is set to any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

3.2.5.3.4 Receiving an SSTP_MSG_CALL_ABORT Message

If CurrentState is set to Call_Abort_Pending:

1. Stop the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

2. Start the TIMER_VAL_ABORT_STATE_TIMER_2 (section 3.1.2.1).

3. Change CurrentState to Call_Abort_Timeout_Pending.

Else if CurrentState is set to Call_Abort_Timeout_Pending, Call_Disconnect_Timeout_Pending, or
Call_Abort_In_Progress_2:

 Ignore the message.

Else:

1. Change CurrentState to Call_Abort_In_Progress_2.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_2 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Timeout_Pending.

3.2.5.3.5 Receiving an SSTP_MSG_CALL_DISCONNECT Message

If CurrentState is set to Call_Abort_Timeout_Pending, Call_Abort_Pending,

Call_Disconnect_Timeout_Pending, or Call_Disconnect_In_Progress_2:

 Ignore the message.

Else if CurrentState is set to Call_Disconnect_Ack_Pending:

1. Stop the TIMER_VAL_DISCONNECT_STATE_TIMER_1 timer (section 3.1.2.2).

56 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. Change CurrentState to Call_Disconnect_In_Progress_2.

3. Send an SSTP_MSG_CALL_DISCONNECT_ACK (section 2.2.15) message.

4. Start the TIMER_VAL_DISCONNECT_STATE_TIMER_2 timer (section 3.1.2.2).

5. Change CurrentState to Call_Disconnect_Timeout_Pending.

Else:

1. Change CurrentState to Call_Disconnect_In_Progress_2.

2. Send an SSTP_MSG_CALL_DISCONNECT_ACK message.

3. Start the TIMER_VAL_DISCONNECT_STATE_TIMER_2 timer (section 3.1.2.2).

4. Change CurrentState to Call_Disconnect_Timeout_Pending.

3.2.5.3.6 Receiving an SSTP_MSG_CALL_DISCONNECT_ACK Message

If CurrentState is set to Call_Disconnect_Ack_Pending, the client MUST:

 Immediately clear the connection state to clean up the connection.

 Change CurrentState to Client_Call_Disconnected.

Else if CurrentState is set to Call_Abort_Pending, Call_Abort_Timeout_Pending, or
Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

3.2.5.3.7 Receiving an SSTP_MSG_ECHO_REQUEST Message

If CurrentState is set to Client_Call_Connected:

 Restart the Hello timer (section 3.1.2.3).

 Send an SSTP_MSG_ECHO_RESPONSE (section 2.2.15) message.

Else if CurrentState is set to Call_Abort_Timeout_Pending, Call_Abort_Pending,
Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else if CurrentState has any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

57 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. Change CurrentState to Call_Abort_Pending.

3.2.5.3.8 Receiving an SSTP_MSG_ECHO_RESPONSE Message

If CurrentState is set to Client_Call_Connected:

 Restart the Hello timer (section 3.1.2.3).

Else if CurrentState is set to Call_Abort_Timeout_Pending, Call_Abort_Pending,
Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else if CurrentState is set to any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

3.2.6 Timer Events

3.2.6.1 Negotiation Timer Processing

Negotiation Timer Expired:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

3.2.7 Other Local Events

For local events common to both client and server, see section 3.1.7.

3.2.7.1 Client-Side Interface with PPP

Inner Authentication Completed Event: This event will be sent by the higher layer when the
authentication (that is, PPP authentication) has been completed successfully or bypassed (that is,

ClientBypassHLAuth is set to TRUE). If the higher-layer authentication has failed, the higher
layer sends the Disconnect Tunnel Event (section 3.2.4.2) to notify the client. When this event is
sent the client MUST:

 Send an SSTP_MSG_CALL_CONNECTED (section 3.3.5.2.3) message that contains the same
nonce value that the server sends in the Call Connect Acknowledge (section 2.2.10) message.
This message MUST contain the Crypto Binding attribute. For information about how to
construct the Crypto Binding attribute, see section 3.2.5.2.

 Update CurrentState to Client_Call_Connected.

When the client receives a PPP control frame from the PPP layer, the client MUST:

58 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If CurrentState is set to Client_Connect_Ack_Received or Client_Call_Connected: Generate
an SSTP data packet (section 2.2.3) with the PPP frame as the higher-layer payload and send

the packet to the HTTPS layer.

 Else, drop the PPP frame.

When the client receives a PPP data frame from the PPP layer, the client MUST:

 If CurrentState is set to Client_Call_Connected: Generate an SSTP data
packet (section 2.2.3) with the PPP frame as the higher-layer payload and send the packet to
the HTTPS layer.

 Else, drop the PPP frame.

3.2.7.2 Client-Side Interface with HTTPS

When the HTTPS layer establishes a successful HTTPS connection, it sends this event to the SSTP
layer along with the hash of the server's certificate. The SSTP client stores the hash in the

ClientCertificateHash state variable (described in section 3.2.1).

When the client receives an SSTP data packet from the HTTPS layer, the client MUST:

 Remove the SSTP data header (section 2.2.3) and extract the data. The extracted data is the
higher-layer payload; that is, the PPP frame.

 Check the PPP frame type (section 3.1.7) and perform the following steps.

 If the PPP frame is a control frame, the client checks if CurrentState is set to
Client_Connect_Ack_Received or Client_Call_Connected. If the condition is true, the client
sends the data to PPP layer. Else, the client drops the SSTP data packet.

 If the PPP frame is a data frame, the client checks if CurrentState is set to

Client_Call_Connected. If the condition is true, the client sends the data to the PPP layer. Else,
the client drops the SSTP data packet.

3.3 Server Details

 The following section provides details of the SSTP server.

3.3.1 Abstract Data Model

This section describes a model of possible data organization that a client-side implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This specification does not mandate that an implementation
adhere to this model as long as the external behavior of the implementation is consistent with what is
described in this specification.

When an SSTP server accepts connections from an SSTP client, the server goes through the state
transitions that are described in the state machine diagram in section 3.2.1.1.1.

The server maintains a table of connections where each row in the table contains the following
variables.

1. CurrentState: This integer variable represents the current state for a specified connection. It is
initialized when a new HTTPS connection arrives and remains valid while the SSTP connection
remains active. At any point in time, the CurrentState variable can have one of the following
integer values. Each value represents a state of the server state machine.

 Server_Call_Disconnected

59 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Server_Connect_Request_Pending

 Server_Call_Connected_Pending

 Server_Call_Connected

Additional state values common to both the client and server state machines are defined in section

3.1.1.

2. ServerBypassHLAuth: In this Boolean variable, the SSTP layer stores a flag that will be used to
request the higher layer to bypass authentication (3.1.7.1) for this connection. This variable is
initialized by the management layer after the HTTPS connection is accepted (3.3.7.3).

3. ServerHTTPCookie: In this string variable, the SSTP layer stores the HTTP cookie that will be
passed to the management layer after the HTTPS connection is accepted (3.3.7.3). This variable is
initialized by the SSTP layer while accepting an HTTPS connection (3.3.7.2). This variable stores

name-value pairs (section 3.2.2 of [RFC2965]) from the HTTP cookie sent by the client. The SSTP
layer does not interpret the name-value pairs associated with ServerHTTPCookie. The SSTP
layer will pass ServerHTTPCookie to the management layer using the abstract interface defined

in section 3.3.7.3 during the Accept New Connection event.<9>

4. ServerHLAKKey: In this multi-octet variable of 32 bytes, the server stores the higher-layer
authentication key that will be used during crypto binding validation (3.3.5.2.3). This variable is

initialized when higher-layer authentication is completed or bypassed (3.3.7.1).

Additionally, the following global variables are maintained by the SSTP server:

ServerCertificateHash: In this multi-octet variable, the server stores the SHA1 hash or the SHA256
hash of the server certificate that is configured by the server administrator. The server
administrator populates this variable with the server certificate hash (see section 3.3.3). This
variable stores a 20-byte SHA1 hash or a 32-byte SHA256 hash. The purpose of this variable is to
validate the Crypto Binding attribute when the server receives an SSTP_MSG_CALL_CONNECTED

message (see section 3.3.5.2.3).

ServerHashProtocolSupported: A 1-byte variable that the server administrator uses to configure a

bitmask representing the list of hashing methods that can be used to validate the Compound MAC
in the Crypto Binding attribute (section 2.2.7). The format of this bitmask is specified in the
description of the Hash Protocol Bitmask field of the Call Connect Acknowledge Message.

ServerVersion: A 1-byte variable that initializes the SSTP server with the version of the SSTP
protocol that is supported. The format of this field is specified in the description of the Version

field in the SSTP packet (section 2.2.1). The SSTP server inserts the value of the ServerVersion
field into the Version field of all SSTP messages that it sends, and it uses the ServerVersion
value to validate the value of the Version field in all SSTP messages that it receives.

ServerBypassHLAuthConfigured: This Boolean variable is a flag that enables the server
administrator to indicate whether bypass of higher-layer authentication is enabled on this server
machine. This variable will be used by the SSTP layer to pass the HTTP cookie that was read while

accepting the HTTP connection to the management layer (see 3.3.7.3).

3.3.1.1 State Machine

3.3.1.1.1 Call Establishment

The following figure shows the state machine when the client establishes the outgoing SSTP tunnel.

Note The following figure refers to the Call Disconnect and Call Abort state machines described in
section 3.1.1.1.

http://go.microsoft.com/fwlink/?LinkId=90399

60 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 5: Server call establishment

The server state machine for each connection has the following states as represented in the
CurrentState variable for the particular connection:

State Name Description

Server_Call_Disconnected This is the initial state of the server state machine for any connection. In this
state, the server waits for a new HTTPS connection event to come in from
the lower HTTPS layer. On receipt of this event, the server changes
CurrentState to Server_Connect_Request_Pending.

Server_Connect_Request_Pending In this state, the server waits for the SSTP_MSG_CALL_CONNECT_REQUEST
message from the SSTP client. On receipt of this message and when the

message is found to be acceptable, the server sends an
SSTP_MSG_CALL_CONNECT_ACK to the SSTP client, informs the higher
layer (that is, PPP) to start the authentication phase, and then changes

61 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

State Name Description

CurrentState to Server_Call_Connected_Pending. An
SSTP_MSG_CALL_CONNECT_REQUEST message from the SSTP client is
considered to be unacceptable if either the Protocol ID field is not
SSTP_ENCAPSULATED_PROTOCOL_PPP or the message contains a Status
Info Attribute (section 2.2.8) and the status field is set to a nonzero value.

Server_Call_Connected_Pending In this state, the server waits for the SSTP_MSG_CALL_CONNECTED
message from the SSTP client and continues to send and receive the higher
layer payload (that is, PPP control frames). On receipt of the
SSTP_MSG_CALL_CONNECTED message, the server validates the crypto
binding attribute. If the attribute is valid, the server changes CurrentState
to Server_Call_Connected.

Server_Call_Connected This state refers to the successful establishment of an SSTP connection from
a given SSTP client. In this state, the server continues to send and receive
higher layer payload (that is, PPP control and data frames), in addition to
sending periodic SSTP_MSG_ECHO_REQUEST messages for the particular
SSTP connection.

The preceding description covers the state transitions for a successful SSTP connection. Failure
transitions are covered in the state machine diagram in this section and are also covered in sections
3.3.4 and 3.3.5. The additional states for the Call Abort and Call Disconnect transitions are defined in
section 3.1.1.1. The higher level events and messages are explained in sections 3.3.4, 3.3.5, 3.1.4
and 3.1.5.

3.3.2 Timers

Common timers are specified in section 3.1.2.

3.3.2.1 Negotiation Timer

When establishing the SSTP connection, the SSTP server starts the negotiation timer.

1. When a New HTTPS Connection Received event is received, the server transitions to the
Server_Connect_Request_Pending state where it waits to receive an acceptable Call Connect
Request message. If this is received before the Negotiation timer expires, the server then sends a

Call Connect Acknowledge message and transitions to the Server_Call_Connected_Pending
state. If the request is not received before the Negotiation timer expires, the server transitions to
the Call Failed state as shown in the server call establishment diagram in section 3.3.1.1.1.

2. After sending the Call Connect Acknowledge message, if the server does not receive a Call
Connected message before the Negotiation timer expires then it MUST send a Call Abort message
and start the process of bringing down (disconnecting) the connection. The server MAY implement
different timer values for the Call Connected message and the Call Connect Request message.

This timer SHOULD be set to 60 seconds.<10>

3.3.3 Initialization

As described in section 1, SSTP supports two deployment modes and requires a machine certificate in

order to establish HTTPS negotiation in both modes. In the first deployment mode, where the SSTP
server directly accepts HTTPS connections, the server administrator MUST install a server certificate in
the machine certificate store on the SSTP server and MUST configure the HTTPS listener on the SSTP
server with the same certificate. In the second deployment mode, where the SSTP server is located
behind an SSL load balancer, the server administrator MUST install a server certificate on the SSL load
balancer. In both deployment modes, the server administrator MUST populate the certificate hash of
the machine certificate in the ServerCertificateHash state variable on the SSTP server.

62 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server administrator initializes the list of possible hash protocols that the SSTP server supports in
the ServerHashProtocolSupported state variable (described in 3.3.1).

The server administrator sets the ServerBypassHLAuthConfigured variable to TRUE if higher-layer
authentication needs to be bypassed.

The server is initialized with the version of the SSTP protocol in the ServerVersion state variable
specified in 3.3.1.

Server initialization MAY<11> be performed when the SSTP server software is started or when the
administrator configures the SSTP server software. When the server is initialized, it MUST start a
listener to listen for HTTPS requests on a predefined URI that will be used by the client,<12> and the
server state machine waits for an incoming HTTPS connection, as shown in the figure, "Server call
establishment", in section 3.3.1.1.1.

3.3.4 Higher-Layer Triggered Events

Events can be triggered from the higher layer on the server to disconnect the SSTP connection.

When the server receives a request to disconnect the SSTP connection from the management layer,

the server MUST start disconnect processing. The management layer can issue disconnection requests
based on an administrator command or any other local policies. <13> Server disconnect processing is
the same as the client-side disconnect processing (section 3.2.4.2).

3.3.5 Processing Events and Sequencing Rules

3.3.5.1 Status and Error Handling

See section 3.1.5.1.

3.3.5.2 Packet Processing

3.3.5.2.1 General Packet Validation

When the SSTP peer receives a packet, it MUST validate that the packet conforms to the syntax as
specified in section 2.2 Message Syntax and its subsections. If an invalid packet is received, then error

handling MUST occur. For more information about error handling see section 3.1.5.1.

3.3.5.2.2 Receiving an SSTP_MSG_CALL_CONNECT_REQUEST Message

If CurrentState is set to Call_Abort_Timeout_Pending, Call_Abort_Pending,
Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

If CurrentState is set to Server_Connect_Request_Pending:

 Process the message as indicated later in this section.

Else if CurrentState has any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

63 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If CurrentState is set to Server_Connect_Request_Pending, the following message processing takes
place.

The SSTP_MSG_CALL_CONNECT_REQUEST message MUST be either the first message that is received
by an SSTP server, or it MUST be received in response to the Call Connect Negative Acknowledgment

message that is sent by the server. The Call Connect Request message MUST contain an Encapsulated
Protocol ID attribute with Protocol ID = PPP. For more information about PPP, see [RFC1661].

If the preceding conditions are true, the server SHOULD:

 Receive the PPP control frames from the client.

 Request the PPP layer to start the FSM.

The server MUST:

1. Start the negotiation timer.

2. Respond with an SSTP_MSG_CALL_CONNECT_ACK (section 2.2.10) message.

3. Change CurrentState to Server_Call_Connected_Pending.

If the message is invalid due to any of the following conditions, an
SSTP_MSG_CALL_CONNECT_NAK (section 2.2.12) message MUST be sent. This message contains the
Status Info attributes (section 2.2.8) for all attributes that are not acceptable to the server.

1. If the message contains an attribute with Attribute ID equal to SSTP_ATTRIB_STATUS_INFO and

status not equal to ATTRIB_STATUS_NO_ERROR, then Attribute ID is set to
SSTP_ATTRIB_STATUS_INFO and the status field is set to
ATTRIB_STATUS_STATUS_INFO_NOT_SUPPORTED_IN_MSG.

2. If the length of an attribute is incorrect, then the Attribute ID with invalid length in the Call
Connect Request message is used for the Attribute ID in this message, with the status field set
to ATTRIB_STATUS_INVALID_ATTRIB_VALUE_LENGTH.

3. If there is a duplicate attribute, then the Attribute ID of the duplicate attribute received in the

Call Connect Request message is used for the Attribute ID in this message, with the status field
set to ATTRIB_STATUS_DUPLICATE_ATTRIBUTE.

4. If the attribute is not recognized on the server side, then the unrecognized Attribute ID received
in the Call Connect Request message is used in the Attribute ID of this message, with the status
field set to ATTRIB_STATUS_UNRECOGNIZED_ATTRIBUTE.

5. If the encapsulated protocol is not supported, then Attribute ID is set to
SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID, and status is set to

ATTRIB_STATUS_VALUE_NOT_SUPPORTED.

6. If the encapsulated protocol Attribute ID is not received in the Call Connect Request message,
then the Attribute ID is set to SSTP_ATTRIB_STATUS_INFO and status is set to
ATTRIB_STATUS_REQUIRED_ATTRIBUTE_MISSING.

The server SHOULD maintain an implementation-dependent retry counter<14> that limits the number
of times it sends a NAK to an unacceptable Call Connect Request message. If this count is exceeded,

then the server MUST send a Call Abort message and start the process of bringing down
(disconnecting) the connection. In this case, the Call Abort message MUST have the following field
values:

1. The Attribute ID is set to SSTP_ATTRIB_STATUS_INFO and the status field is set to
ATTRIB_STATUS_RETRY_COUNT_EXCEEDED.

3.3.5.2.3 Receiving an SSTP_MSG_CALL_CONNECTED Message

http://go.microsoft.com/fwlink/?LinkId=90283

64 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the CurrentState state variable (described in section 3.3.1) is set to Call_Abort_Timeout_Pending,
Call_Abort_Pending, Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

If CurrentState is set to Server_Call_Connected_Pending:

 Process the message as indicated later in this section.

Else if CurrentState has any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1)

4. Change CurrentState to Call_Abort_Pending.

If CurrentState is Server_Call_Connected_Pending, the following message processing takes place.

The SSTP_MSG_CALL_CONNECTED message MUST be received by an SSTP server only in response to
a Call Connect Acknowledge message that is sent by the SSTP server before the negotiation timer
expires.

The server MUST verify the following:

 A Crypto Binding attribute is present.

 The Crypto Binding attribute contains the same nonce that it sent in the Call Connect Acknowledge

message.

 The Crypto Binding attribute contains the hash of the certificate that the server used for
establishing the HTTPS connection, ServerCertificateHash.

 The Crypto Binding attribute contains a hash protocol that is supported by the server and specified

in the ServerHashProtocolSupported state variable described in section 3.3.1 (that is, it uses
one of the hash protocols that it inserted into the Call Connect Acknowledge message).

 The server MUST verify that the binding attribute contains a valid Compound MAC. To accomplish

this, the server computes a new compound MAC (3.2.5.2) using the stored ServerHLAKKey
variable from the connection table and then compares the same against the compound MAC sent
by the client inside SSTP_MSG_CALL_CONNECTED.

If all the preceding checks passed, then the server updates CurrentState to Server_Call_Connected.
The server SHOULD<15> allow the PPP data frames to pass through only if the server has received a
valid Call Connected message from the client in response to its Call Connect Acknowledge message.
Until a valid Call Connected message is received, the server MUST allow only PPP control frames to

flow through, and all PPP data frames will be ignored (or discarded). For more information about PPP,
see [RFC1661].

If any of the preceding checks fail, the server MUST start the abort processing procedure by sending a
Call Abort message. The server starts the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1)
and changes CurrentState to Call_Abort_Pending.

The Call Abort message MUST have the Attribute Id field set to SSTP_ATTRIB_STATUS_INFO and the

status field MUST be set to ATTRIB_STATUS_ATTRIB_NOT_SUPPORTED_IN_MSG under the following
condition: The crypto binding attribute is not present OR an invalid length is given for the attribute OR
the Attribute Id is set to SSTP_ATTRIB_STATUS_INFO and the status is not equal to
ATTRIB_STATUS_NO_ERROR.

http://go.microsoft.com/fwlink/?LinkId=90283

65 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The Call Abort message MUST have the attribute id set to SSTP_ATTRIB_CRYPTO_BINDING and the
status field MUST be set to ATTRIB_STATUS_VALUE_NOT_SUPPORTED under the following condition:

The nonce is not matching OR the certificate does not match OR the hash algorithm does not match
OR the Compound MAC is invalid.

If an unacceptable packet is received, error handling SHOULD occur. For error handling, see section
3.1.5.1. For security considerations, see section 5.

3.3.5.2.4 Receiving an SSTP_MSG_CALL_ABORT Message

If CurrentState is set to Call_Abort_Pending:

1. Stop the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

2. Start the TIMER_VAL_ABORT_STATE_TIMER_2 (section 3.1.2.1) timer.

3. Change CurrentState to Call_Abort_Timeout_Pending.

Else if CurrentState is set to Call_Abort_Timeout_Pending or Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else:

1. Change CurrentState to Call_Abort_In_Progress_2.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_2 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Timeout_Pending.

The HTTPS listener MUST continue to function as it did before the cleanup process. The cleanup of the
connection MUST NOT affect other existing HTTPS connections and MUST NOT affect the ability of the
HTTPS listener to accept new connections.

3.3.5.2.5 Receiving an SSTP_MSG_CALL_DISCONNECT Message

If CurrentState is set to Call_Abort_Timeout_Pending, Call_Abort_Pending, or
Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else if CurrentState is set to Call_Disconnect_Ack_Pending:

1. Stop the TIMER_VAL_DISCONNECT_STATE_TIMER_1 timer (section 3.1.2.2).

2. Change CurrentState to Call_Disconnect_In_Progress_2.

3. Send SSTP_MSG_CALL_DISCONNECT_ACK message.

4. Start the TIMER_VAL_DISCONNECT_STATE_TIMER_2 timer (section 3.1.2.2).

5. Change CurrentState to Call_Disconnect_Timeout_Pending.

Else:

1. Change CurrentState to Call_Disconnect_In_Progress_2.

2. Send an SSTP_MSG_CALL_DISCONNECT_ACK message.

3. Start the TIMER_VAL_DISCONNECT_STATE_TIMER_2 timer (section 3.1.2.2).

66 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. Change CurrentState to Call_Disconnect_Timeout_Pending.

The HTTPS listener MUST continue to function as it did before the cleanup process. The cleanup of the

connection MUST NOT affect other existing HTTPS connections and MUST NOT affect the ability of the
HTTPS listener to accept new connections.

3.3.5.2.6 Receiving an SSTP_MSG_CALL_DISCONNECT_ACK Message

If CurrentState is set to Call_Disconnect_Ack_Pending, the server MUST:

 Immediately clear the connection state to clean up the connection.

 Change CurrentState to Server_Call_Disconnected.

Else if CurrentState is set to Call_Abort_Pending, Call_Abort_Timeout_Pending, or
Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

The HTTPS listener MUST continue to function as it did before the cleanup process. The cleanup of the
connection MUST NOT affect other existing HTTPS connections and MUST NOT affect the ability of the
HTTPS listener to accept new connections.

3.3.5.2.7 Receiving an SSTP_MSG_ECHO_REQUEST Message

If CurrentState is set to Server_Call_Connected:

 Restart the Hello timer (section 3.1.2.3).

 Send an SSTP_MSG_ECHO_RESPONSE (section 2.2.15) message.

Else if CurrentState is Call_Abort_Timeout_Pending, Call_Abort_Pending,
Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else if CurrentState is set to any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

3.3.5.2.8 Receiving an SSTP_MSG_ECHO_RESPONSE Message

If CurrentState is set to Server_Call_Connected:

 Restart the Hello timer (section 3.1.2.3).

67 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Else if CurrentState is set to Call_Abort_Timeout_Pending, Call_Abort_Pending,
Call_Disconnect_Ack_Pending, or Call_Disconnect_Timeout_Pending:

 Ignore the message.

Else if CurrentState is set to any other value:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

3.3.6 Timer Events

3.3.6.1 Negotiation Timer Processing

Negotiation Timer Expired:

1. Change CurrentState to Call_Abort_In_Progress_1.

2. Send an SSTP_MSG_CALL_ABORT (section 2.2.13) message.

3. Start the TIMER_VAL_ABORT_STATE_TIMER_1 timer (section 3.1.2.1).

4. Change CurrentState to Call_Abort_Pending.

3.3.7 Other Local Events

For local events common to both client and server, see section 3.1.7.

3.3.7.1 Server-Side Interface with PPP

Inner Authentication Completed Event: This event will be sent by the higher layer when the
authentication (that is, PPP authentication) has been completed successfully or bypassed. If the
higher-layer authentication has failed, the higher layer sends the Disconnect Tunnel
Event (section 3.2.4.2) to notify the SSTP server. The SSTP server stores the higher-layer
authentication key (HLAK) passed by the PPP layer inside the ServerHLAKKey variable for the
connection entry. This variable will be used to verify the crypto binding attribute when the SSTP
server receives the SSTP_MSG_CALL_CONNECTED (section 3.3.5.2.3) message. If PPP

authentication is bypassed (i.e. ServerBypassHLAuth for this connection table entry is set to
TRUE), ServerHLAKKey is set to zero.

When the server receives a PPP control frame from the PPP layer, the server MUST perform the
following steps:

 If CurrentState is set to Server_Call_Connected_Pending or Server_Call_Connected:

Generate an SSTP data packet (section 2.2.3) with the PPP frame as the higher-layer payload
and send the packet to the HTTPS layer.

 Else, drop the PPP frame.

When the server receives a PPP data frame from the PPP layer, the server MUST perform the
following steps:

68 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If CurrentState is set to Server_Call_Connected: Generate an SSTP data
packet (section 2.2.3) with the PPP frame as the higher-layer payload and send the packet to

the HTTPS layer.

 Else, drop the PPP frame.

3.3.7.2 Server-Side Interface with HTTPS

The SSTP server receives notification of a New HTTPS Connection Received event from the lower
layer when a new, incoming HTTPS connection is established. The SSTP server then creates a new

entry in a connection table and changes CurrentState from Server_Call_Disconnected to
Server_Connect_Request_Pending. It also sets the ServerBypassHLAuth variable inside this entry to
FALSE and ServerHTTPCookie as null. If ServerBypassHLAuthConfigured is set to TRUE, the
SSTP server reads from the HTTPS layer, stores any HTTP cookie that was passed with the HTTPS
connection inside the ServerHTTPCookie variable of this entry in the connection table, and indicates
the same to the server management layer by calling the Accept New Connection interface (3.3.7.3).

When the server receives an SSTP data packet (section 2.2.3) from the HTTPS layer, the server

MUST:

 Remove the SSTP data header (see section 2.2.3) and extract the data. The extracted data is the
higher-layer payload; that is, the PPP frame.

 Check the PPP frame type (section 3.1.7) and perform the following steps.

 If the PPP frame is a control frame, the server checks if CurrentState is set to
Server_Call_Connected_Pending or Server_Call_Connected. If the condition is true, the server
sends the data to the PPP layer. Else, the server drops the SSTP data packet.

 If the PPP frame is a data frame, the server checks if CurrentState is set to
Server_Call_Connected. If the condition is true, the server sends the data to the PPP layer.
Else, the server drops the SSTP data packet.

3.3.7.3 Server-Side Interface with Management Layer

The SSTP layer on the server-side implementation interfaces with the management layer using the
following events:

 Start SSTP Server: This event is used by the management layer to initialize and start the SSTP
server software (see section 3.3.3 for actions performed by the SSTP server during initialization).

 Stop SSTP Server: This event is used by the management layer to stop the SSTP server
software. On receiving this event, the SSTP server will perform cleanup by disconnecting all

existing SSTP connections (section 3.3.4), and stop the HTTPS listener that is waiting for SSTP
connections on an SSTP–specific URI.

 Accept New Connection: This event is used by the SSTP layer on the server side to inform its
management layer about acceptance of a new HTTPS connection with a valid cookie.<16> This
interface is called only if ServerBypassHLAuthConfigured global variable is set to TRUE AND

ServerHTTPCookie for the connection entry is not null. Otherwise this interface is not invoked.
When calling this interface, the SSTP layer passes ServerHTTPCookie variable for the connection

to the management layer. The management layer MUST validate this cookie using its own
implementation-specific mechanism. If the management layer finds the cookie as valid (i.e. it
trusts the cookie to say it is coming from an authenticated client), the management layer MUST
inform SSTP layer to accept the new connection bypassing the higher-layer authentication, and
then SSTP layer will set ServerBypassHLAuth variable for this connection as TRUE. If the
management layer finds the cookie as invalid, the management layer MUST inform SSTP layer to

disconnect the new connection. The SSTP layer MUST close the HTTPS connection and initialize
CurrentState variable for this connection entry to Server_Call_Disconnected.

69 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 HTTPS Layer Establishment

During initialization, the SSTP server configures both the server certificate to use and the URL in which

it is interested. This URL will be a well-known URL between the client and the server. The server can
also support HTTP to allow SSL/TLS terminating edge devices.<17> These devices terminate the
SSL/TLS connection coming from the client, validate the URL, and establish the HTTP connection to
the actual web server behind it.

The request sent to the SSTP server uses the HTTP verb SSTP_DUPLEX_POST with content length
encoding.

The request sent is as follows:

 Method: SSTP_DUPLEX_POST

 URI: /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/

 Protocol Version: HTTP/1.1

 Content-Length: 18446744073709551615 (ULONGLONG_MAX)

 Host: <Server Name>

 SSTPCORRELATIONID: <GUID>

As a part of setting up a bidirectional session with HTTPS, when the HTTP request is being sent, no
entity body message will be sent to the far end. Instead, the client initiates a timer (for 60 seconds)
and sends out the request to the server. A response is expected within 60 seconds. The server will be
listening for the URI /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/. The SSTP server, on
receiving the request, validates the method to be SSTP_DUPLEX_POST and the HTTP version to be
1.1. If this succeeds, and there are sufficient ports on the server to accept the new connection, then

the server sends back an HTTP_STATUS_OK message to the client. Otherwise, the server fails the

request by sending an HTTP error code containing indication this is to be the last data being sent over
the connection.

The response sent is as follows.

 Protocol Version: HTTP/1.1
 Status code: 200
 Content-Length: 18446744073709551615
 Server: Microsoft-HTTPAPI/2.0
 Date: Thu, 09 Nov 2006 00:51:09 GMT

4.2 HTTP Layer Teardown

After the SSTP finite state machine (FSM) is completed, it performs its own teardown. When the

teardown is completed, the SSTP FSM signals the HTTP layer to tear down itself.

The teardown of the HTTP connection layer is done by signaling the request/response completion. The
client closes the request to indicate that no data transfer is expected on it. If the server is initiating
the disconnect, then it indicates the end of the entity body to the HTTP layer. The HTTP layer closes
the TCP connection appropriately.

70 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.3 SSTP Layer Establishment

After the bidirectional HTTPS layer is up, the SSTP finite state machine begins. The server initializes
the FSM by waiting for the SSTP Call Connect Request message to arrive from the client. After the Call

Connect Request message arrives, the server validates the Encapsulated Protocol ID attribute value
for PPP. The SSTP server then responds to the client by using the Call Connect Acknowledge message.
The client sends the Call Connected message to the server to indicate that it is ready to send data
traffic. When the server receives the Call Connected message, it allows bidirectional data transfer on
the SSTP connection.

After the control channel is established, the echo timers continue to send Echo Request messages in
order to keep the channel alive. Echo responses are sent and received to ensure that the connection is

not broken.

Figure 6: SSTP call setup for a non-proxy scenario

4.4 SSTP Layer Teardown

This protocol uses forceful teardown through the Call Abort message in addition to graceful shutdown
through the Call Disconnect message.

The Call Abort message is used in situations in which the SSTP control channel negotiation has
encountered a problem such as a time-out, an invalid message, or other similar problems. The Call
Abort-based shutdown uses short timers for quick cleanup.

Graceful shutdown occurs when the Call Disconnect message is sent to the far end. The far end
responds by sending a Call Disconnect Acknowledge message in order to signal the end of data

transfer.

71 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 7: SSTP graceful shutdown

4.5 Handling HTTP Proxies

In the case that an SSTP tunnel is established through a proxy, the typical CONNECT request is as
follows.

 Method: CONNECT
 Protocol Version: HTTP/1.1
 URI: <Server Name>:443
 Host: <Server Name>:443
 SSTPVERSION: 1.0

The SSTPVERSION field can be used by network administrators through forward proxies to filter the
SSTP-based connection to go out of the network.

The response from the proxy follows. After the response is received, the SSL/TLS traffic is sent in an
encrypted manner to the proxy, and the proxy relays the encrypted traffic between the client and the

server.

 Protocol Version: HTTP/1.1
 Status Code: 200 HTTP_STATUS_OK
 Reason: Connection Established
 Proxy-Connection: Keep-Alive
 Connection: Keep-Alive

72 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 8: SSTP call setup for a proxy scenario

4.6 Handling the HTTPS Termination Proxy

If an SSTP tunnel is established through an HTTPS termination proxy, the HTTPS connection
terminates at the proxy and a new HTTP bidirectional connection to the SSTP server is attempted. The
query variable tenantid (section 3.2.4.1) can be used to select the SSTP server behind the proxy.
After the connection is established, the proxy forwards the data across the two connections.

4.7 Crypto Binding

 The client sends an SSTP_MSG_CALL_CONNECT_REQUEST that encapsulates the PPP protocol. The
actual data bytes are as follows.

73 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 10 01 00 0E 00 01 00 01 00 01 00 06 00 01

 The details for the packet are as follows.

 Version: 0x10 (Major Version: 0x1, Minor Version: 0x0)

 C: 1 (Control Packet)

 Length: 0x00E

 Message Type: 0x0001 (SSTP_MSG_CALL_CONNECT_REQUEST)

 Num Attributes: 0x0001

 Attribute 1:

 Attribute ID: 0x01 (SSTP_ATTRIB_ENCAPSULATED_PROTOCOL_ID)

 Length: 0x006

 Value: 0x0001 (SSTP_ENCAPSULATED_PROTOCOL_PPP)

The server responds to the client with SSTP_MSG_CALL_CONNECT_ACK. In this case, the server
supports only the SHA256 hash algorithm for crypto binding. The actual data bytes are as follows.

 10 01 00 30 00 02 00 01 00 04 00 28 00 00 00 02
 41 2B 48 9A EB D7 EC C7 D0 89 66 F2 6B E7 CD 72
 B2 31 A0 E9 21 0D 7C 91 B3 08 86 2B 03 44 C4 35

The details are as follows.

 Version: 0x10 (Major Version: 0x1, Minor Version: 0x0)

 C: 1 (Control Packet)

 Length: 0x030

 Message Type: 0x0002 (SSTP_MSG_CALL_CONNECT_ACK)

 Num Attributes: 0x0001

 Attribute 1:

 ID: 0x04 (SSTP_ATTRIB_CRYPTO_BINDING_REQ)

 Length: 0x028

 Value:

 Protocol Bitmask: 0x02 (CERT_HASH_PROTOCOL_SHA256)

 Nonce:

 41 2B 48 9A EB D7 EC C7 D0 89 66 F2 6B E7 CD 72
 B2 31 A0 E9 21 0D 7C 91 B3 08 86 2B 03 44 C4 35

74 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The client continues with the PPP negotiation after receiving the preceding message. When PPP
authentication is finished, the client completes the crypto binding by sending an

SSTP_MSG_CALL_CONNECTED message. The data bytes that are transmitted in this scenario are as
follows.

 10 01 00 70 00 04 00 01 00 03 00 68 00 00 00 02
 41 2B 48 9A EB D7 EC C7 D0 89 66 F2 6B E7 CD 72
 B2 31 A0 E9 21 0D 7C 91 B3 08 86 2B 03 44 C4 35
 79 93 EF 31 4C 49 3D AC E9 F0 2D 60 E7 E6 1C 84
 B6 69 0A AF E9 D7 AE EA 92 CB BE 8A D5 99 42 2D
 52 A6 8E FD 8C FF BF 52 77 0B 8F 0F E8 EC 73 71
 65 83 AF 6D 61 1E B6 D1 79 B3 B2 08 40 98 54 49

The computation of Compound MAC is done based on the following.

Higher-Layer Authentication Key (HLAK):

 2A 1B B4 0D 55 AB 0F 5E F3 2F 06 F2 B3 CC 73 C4
 8F D3 FA C4 1D 7A 13 15 A1 92 28 D9 02 4C A1 64

The hash of the certificate that is provided by the server is as follows.

 79 93 EF 31 4C 49 3D AC E9 F0 2D 60 E7 E6 1C 84
 B6 69 0A AF E9 D7 AE EA 92 CB BE 8A D5 99 42 2D

 The details of the packet that is sent are as follows.

 Version: 0x10 (Major Version: 0x1, Minor Version: 0x0)

 C: 1 (Control Packet)

 Length: 0x070

 Message Type: 0x0004 (SSTP_MSG_CALL_CONNECTED)

 Num Attributes: 0x0001

 Attribute 1:

 Attribute ID: 0x03 (SSTP_ATTRIB_CRYPTO_BINDING)

 Length: 0x068

 Value:

 Hash Protocol Bitmask: 0x02 (CERT_HASH_PROTOCOL_SHA256)

 Nonce:

 41 2B 48 9A EB D7 EC C7 D0 89 66 F2 6B E7 CD 72
 B2 31 A0 E9 21 0D 7C 91 B3 08 86 2B 03 44 C4 35

 Certificate Hash:

75 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 79 93 EF 31 4C 49 3D AC E9 F0 2D 60 E7 E6 1C 84
 B6 69 0A AF E9 D7 AE EA 92 CB BE 8A D5 99 42 2D

 Compound MAC:

 52 A6 8E FD 8C FF BF 52 77 0B 8F 0F E8 EC 73 71
 65 83 AF 6D 61 1E B6 D1 79 B3 B2 08 40 98 54 49

 In this example, the server uses a SHA1 hash for crypto binding. The following is a sample
SSTP_MSG_CALL_CONNECT_ACK in this scenario.

 10 01 00 30 00 02 00 01 00 04 00 28 00 00 00 01
 0F 1A 2D 58 D4 A3 E3 00 0F AD 3C E4 90 6E 07 B7
 07 AA 9E 44 1C CE AC 5C BD 7B 2C C1 C9 D8 6C DF

 The details of the packet are as follows.

 Version: 0x10 (Major Version: 0x1, Minor Version: 0x0)

 C: 1 (Control Packet)

 Length: 0x030

 Message Type: 0x0002 (SSTP_MSG_CALL_CONNECT_ACK)

 Num Attributes: 0x0001

 Attribute 1:

 Attribute ID: 0x04 (SSTP_ATTRIB_CRYPTO_BINDING_REQ)

 Length: 0x028

 Value:

 Hash Protocol Bitmask: 0x01 (CERT_HASH_PROTOCOL_SHA1)

 Nonce:

 0F 1A 2D 58 D4 A3 E3 00 0F AD 3C E4 90 6E 07 B7
 07 AA 9E 44 1C CE AC 5C BD 7B 2C C1 C9 D8 6C DF

For this SSTP_MSG_CALL_CONNECT_ACK, the following shows a valid crypto binding completion via

the SSTP_MSG_CALL_CONNECTED message.

 10 01 00 70 00 04 00 01 00 03 00 68 00 00 00 01
 0F 1A 2D 58 D4 A3 E3 00 0F AD 3C E4 90 6E 07 B7
 07 AA 9E 44 1C CE AC 5C BD 7B 2C C1 C9 D8 6C DF
 58 26 B6 29 BD A5 9B 8E 6F D8 DC D2 62 2F D3 4C
 53 48 05 A5 00 00 00 00 00 00 00 00 00 00 00 00
 69 91 5D D5 83 D8 06 2F EF 16 F6 1D B2 F0 32 90
 EC 27 CB 6C 00 00 00 00 00 00 00 00 00 00 00 00

76 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The compound MAC is computed based on the following values for HLAK and certificate hash.

Higher-Layer Authentication Key (HLAK):

 4B 31 28 F4 39 25 D9 00-6E EF B1 C4 E8 65 15 A1
 D8 8E 56 BA B3 CA 2B DF-03 73 B7 F5 A8 A1 3B 19

The hash of the certificate that is provided by the server is as follows.

 58 26 B6 29 BD A5 9B 8E 6F D8 DC D2 62 2F D3 4C
 53 48 05 A5

 The details of the packet are as follows.

 Version: 0x10 (Major Version: 0x1, Minor Version: 0x0)

 C: 1 (Control Packet)

 Length: 0x070

 Message Type: 0x0004 (SSTP_MSG_CALL_CONNECTED)

 Num Attributes: 0x0001

 Attribute 1:

 Attribute ID: 0x03 (SSTP_ATTRIB_CRYPTO_BINDING)

 Length: 0x068

 Value:

 Hash Protocol Bitmask: 0x01 (CERT_HASH_PROTOCOL_SHA1)

 Nonce:

 0F 1A 2D 58 D4 A3 E3 00 0F AD 3C E4 90 6E 07 B7
 07 AA 9E 44 1C CE AC 5C BD 7B 2C C1 C9 D8 6C DF

 Certificate Hash:

 58 26 B6 29 BD A5 9B 8E 6F D8 DC D2 62 2F D3 4C
 53 48 05 A5

 Compound MAC:

 69 91 5D D5 83 D8 06 2F EF 16 F6 1D B2 F0 32 90
 EC 27 CB 6C

77 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

Because SSTP Version 1 supports only transport of PPP frames, there is no need for any negotiation of

parameters in the SSTP Call Connect Request message, Call Connect Acknowledge message, and Call
Connected message exchange. When the server receives a Call Connect Request message, it sends a
Call Connect Acknowledge message and triggers the PPP state machine. When the SSTP client receives
the Call Connect Acknowledge message, it triggers the PPP state machine.

The SSTP server begins forwarding the PPP data frames only after it validates the Crypto Binding
attribute in the Call Connected message from the SSTP client. The server drops any PPP data frames

that are received before the Call Connected message is received. For more information about PPP, see
[RFC1661].

5.2 Index of Security Parameters

Security parameter Section

Authentication 2.1

Hashing algorithms 3.2.5.2

5.3 Attack Scenarios

5.3.1 Unauthorized Client Connecting to an SSTP Server

In this scenario, an unauthorized attacker poses as a valid SSTP client and tries to connect to a valid
SSTP server. The HTTPS connection goes through because the server does not authenticate the client
at the SSL/TLS layer. Make sure the SSTP server terminates the connection at the PPP layer after
determining that the client has no proper user credentials. For more information, see [RFC1661].

http://go.microsoft.com/fwlink/?LinkId=90283
http://go.microsoft.com/fwlink/?LinkId=90283

78 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 9: Unauthorized client connecting to an SSTP server

5.3.2 Unauthorized SSTP Server Accepting Connections from a Genuine SSTP Client

In this scenario, a valid SSTP client is redirected by an attacker to an unauthorized SSTP server (for
example, by DNS poisoning). In this scenario, the connection is terminated by the client at the
SSL/TLS layer when the certificate validation check fails. It is recommended that the SSTP client
validate that the common name and subject name in the server certificate match the host name to
which the client established the connection. Also, it is recommended that the SSTP client validate that

the server certificate contains either the "id-kp-serverAuth" or "anyExtendedKeyUsage" extended key
usage (EKU). See [RFC5280] section 4.2.1.12 for details on "id-kp-serverAuth" and
"anyExtendedKeyUsage".

http://go.microsoft.com/fwlink/?LinkId=131034

79 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 10: Client connecting to an unauthorized SSTP server

5.3.3 Man in the Middle

In this scenario, an attacker poses as a man in the middle (MITM). For example, an MITM could be
using a rogue wireless access point in a wireless-enabled enterprise environment.

The data flow in case of attack (without an SSTP crypto binding solution) looks like this:

1. The MITM establishes an HTTPS connection with the SSTP server.

2. By using some technique (such as a rogue access point (AP) that has a similar name to the
enterprise network), the MITM attacker gets a real client to initiate an EAP authentication (which
can be any EAP method) with an authorized SSTP server. The client cannot determine that the
HTTPS channel has been established to the man-in-the-middle machine; the client attempts to

authenticate to a known authorized server by using EAP authentication, as usual.

3. The MITM passes (or re-routes) the client's EAP-TLS authentication packets that are received over

wireless to the PPP over SSTP (over SSL/TLS) tunnel it has established with the SSTP server. It
does the same thing in reverse for responses to the client.

4. The client and the server successfully complete the EAP authentication. The MITM machine simply
relays the packets back and forth between both SSL/TLS tunnels.

5. The MITM drops the client and continues to use the authenticated SSTP channel established with
the server—without knowing the client's privileges and in an unauthorized manner.

Note The previous attack can happen for any PPP authentication protocol that can be relayed on

another transport. For example, EAP can be relayed on SSTP as well as wireless.

80 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 11: MITM scenario without the SSTP crypto binding solution

To mitigate this attack, the SSTP server expects a Crypto Binding attribute from the SSTP client to be

present in the Call Connected message. This attribute is generated by the client using the keys
generated on the client. By using the inner (or PPP) authentication phase keys, and by tying the inner
(or PPP) authentication to the outer (or SSL/TLS) authentication phase, this technique ensures that

the SSTP client and the SSTP server participated in the inner authentication and terminate at the
expected endpoints.

81 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 12: MITM scenario with SSTP crypto binding solution

Note Protected EAP (PEAP) (for more information, see [MS-PEAP]) can also be used as the
authentication protocol. In this case, the security attack vector and the solution remain the same as

EAP. PEAP has an outer TLS channel between the PEAP client and authenticating server (like radius
server) and does inner EAP authentication. If a PEAP crypto Type-Length-Value (TLV) check is not
enabled on the client, then the PEAP client is susceptible to PEAP MITM attacks. This protocol does not
offer a solution to this attack vector, which is already solved by the PEAP crypto TLV attribute.

%5bMS-PEAP%5d.pdf#Section_5308642b90c94cc4beecfb367325c0f9

82 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows Vista operating system with Service Pack 1 (SP1)

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 do not support HTTPS client authentication.
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
Windows 10, and Windows Server 2016 support client authentication by using MS-CHAPv2 [RFC2759],
EAP-TLS [RFC2716], PEAP-MSCHAPv2, and PEAP-TLS. See [MS-PEAP] for details on how to use PEAP

with inner methods such as MS-CHAPv2 and EAP-TLS.

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2 and
Windows Server 2016 also support client authentication by using Password Authentication Protocol
(PAP), as referenced in [RFC1334], and CHAP [RFC1994], but do not recommend their use for security
reasons.

<2> Section 2.2.8: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows

Server 2012 R2, and Windows Server 2016 allow a retry count of 3.

<3> Section 2.2.13: Windows implementations always send a Status Info attribute in a Call Abort
message.

<4> Section 2.2.14: Windows implementations always send a Status Info attribute in a Call
Disconnect message.

<5> Section 3.2.1: The Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016 implementations

support bypass of PPP authentication. On the client side, this protocol exposes APIs to the
management layer to indicate ClientBypassHLAuth and ClientHTTPCookie. On the server side, this

http://go.microsoft.com/fwlink/?LinkId=90379
http://go.microsoft.com/fwlink/?LinkId=90374
%5bMS-PEAP%5d.pdf#Section_5308642b90c94cc4beecfb367325c0f9
http://go.microsoft.com/fwlink/?LinkId=148311
http://go.microsoft.com/fwlink/?LinkId=90305

83 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

protocol exposes Routing and Remote Access Server APIs to indicate Accept New Connection along
with the cookie to the management layer. However, the Windows implementation of this protocol does

not generate the cookie, nor does it validate one on the server side. It relies totally on the
management layer to do the same in its own implementation-specific way.

<6> Section 3.2.2.1: The Windows-based client starts a timer with a value of 60 seconds after
sending a Call Connected message and starts a timer with a value of 60 seconds after receiving a Call
Connected message.

<7> Section 3.2.4.1: Windows Server 2008 R2 operating system, Windows Server 2012, Windows
Server 2012 R2, and Windows Server 2016 do not support the HTTPS termination proxy.,

<8> Section 3.2.5.3.3: In Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server
2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, Windows

10, and Windows Server 2016 only the Encapsulation Protocol ID is sent by the SSTP client in the
SSTP_MSG_CALL_CONNECT_REQUEST (section 2.2.9) message, and a negative
SSTP_MSG_CALL_CONNECT_NAK (section 2.2.12) will be received by the client only if the SSTP server
does not support transport of PPP frames over SSTP. The Windows client retries 3 times.

<9> Section 3.3.1: The Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2, Windows 10, and Windows Server 2016 implementations

support bypass of PPP authentication. On the client side, SSTP exposes APIs to the management layer
to indicate ClientBypassHLAuth and ClientHTTPCookie. On the server side, SSTP exposes Routing
and Remote Access Server APIs to indicate Accept New Connection along with the cookie to the
management layer. However, the Windows implementation of SSTP does not generate the cookie, nor
does it validate one on the server side. It relies totally on the management layer to do the same in its
own implementation-specific way.

<10> Section 3.3.2.1: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,

Windows Server 2012 R2, and Windows Server 2016 wait 60 seconds for the Call Connected message
and 60 seconds for the Call Connect Request message.

<11> Section 3.3.3: In Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 the Routing and Remote Access Service is used

as the SSTP management layer on the server side. The SSTP server state is initialized when the
Routing and Remote Access Service is started or when SSTP ports are configured within the service.

<12> Section 3.3.3: By default, Windows uses the URI: /sra_{BA195980-CD49-458b-9E23-

C84EE0ADCD75}/.

<13> Section 3.3.4: Windows implementations of the management layer support administrator-
determined disconnection of the SSTP connection. Windows also supports disconnections based on idle
timeout and maximum connection lifetime. These values are retrieved by the management layer from
Remote Authentication Dial-in User Service (RADIUS) attributes, if they are available:

 Maximum connection lifetime is retrieved from the Session-Timeout attribute ([RFC2865] section

5.27).

 Idle timeout is retrieved from the Idle-Timeout attribute ([RFC2865] section 5.28).

Otherwise, disconnections based on the idle timeout or maximum connection lifetime are not applied
by the management layer.

<14> Section 3.3.5.2.2: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 allow a retry count of 3.

<15> Section 3.3.5.2.3: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,

Windows Server 2012 R2, and Windows Server 2016 start allowing PPP control frames from the client
and request the PPP layer to start the FSM. However, neither operating system will allow any data
frames until the PPP negotiation is completed.

http://go.microsoft.com/fwlink/?LinkId=90392

84 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<16> Section 3.3.7.3: The Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016 implementations

support bypass of PPP authentication. On the client side, this protocol exposes APIs to the
management layer to indicate ClientBypassHLAuth and ClientHTTPCookie. On the server side, this

protocol exposes Routing and Remote Access Server APIs to indicate Accept New Connection along
with the cookie to the management layer. However, the Windows implementation of this protocol does
not generate the cookie, nor does it validate one on the server side. It relies totally on the
management layer to do the same in its own implementation-specific way.

<17> Section 4.1: By default, the Windows implementation supports only HTTPS traffic. HTTP can be
enabled via a registry key.

85 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial

changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

86 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and
methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable) and
description

Major
chang
e (Y
or N)

Change
type

2.2.2 SSTP Control Packet 72971 : Updated the Attribute field lengths. Y
Content
update.

2.2.4 SSTP Attributes 72970 : Clarified attribute values. Y
Content
update.

2.2.6 Crypto Binding Request
Attribute

72975 : Clarified how the bits are defined in the
Hash Protocol Bitmask field description.

Y
Content
update.

2.2.8 Status Info Attribute
72973 : Changed the Attribute ID field value
from 0x2 to 0x02.

Y
Content
update.

2.2.9 Call Connect Request Message
(SSTP_MSG_CALL_CONNECT_REQU
EST)

72974 : Specified the length value in the Length
field description.

Y
Content
update.

2.2.12 Call Connect Negative
Acknowledgment Message

(SSTP_MSG_CALL_CONNECT_NAK)

72977 : Removed the
ATTRIB_STATUS_ATTRIB_NOT_SUPPORTED_IN

_MSG value from the Status field table.

Y
Content
remove

d.

2.2.13 Call Abort Message
(SSTP_MSG_CALL_ABORT)

72977 : Removed the
ATTRIB_STATUS_REQUIRED_ATTRIBUTE_MISSI
NG value from the Status field table.

Y
Content
remove
d.

mailto:dochelp@microsoft.com

87 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abort timers (section 3.1.2.1 41, section 3.1.6.1 43)
Abstract data model
 client (section 3.1.1 38, section 3.2.1 44)
 server (section 3.1.1 38, section 3.3.1 58)
Applicability 12
Attack scenarios - security 77

C

Call abort - state machine 40
Call abort message
 client 55
 server 65
Call Abort Message (SSTP_MSG_CALL_ABORT)

message 32
Call Abort packet 32

Call Connect Acknowledge Message
(SSTP_MSG_CALL_CONNECT_ACK) message 25

Call connect acknowledgment message - client 53
Call connect message - server 62
Call connect negative acknowledgment message -

client 54
Call Connect Negative Acknowledgment Message

(SSTP_MSG_CALL_CONNECT_NAK) message 30
Call Connect Request Message

(SSTP_MSG_CALL_CONNECT_REQUEST)
message 24

Call connected message - server 63
Call Connected Message

(SSTP_MSG_CALL_CONNECTED) message 27
Call disconnect - state machine 38
Call Disconnect Acknowledge

(SSTP_MSG_CALL_DISCONNECT_ACK) - Echo
Request (SSTP_MSG_ECHO_REQUEST) - and
Echo Response (SSTP_MSG_ECHO_RESPONSE)
Messages message 36

Call disconnect acknowledgment message
 client 56
 server 66
Call disconnect message
 client 55
 server 65
Call Disconnect Message

(SSTP_MSG_CALL_DISCONNECT) message 34
Call Disconnect packet 34
Call establishment
 client 46
 server 59
Call_Connect_Acknowledge_Message packet 25
Call_Connect_Negative_Acknowledgment_Message

packet 30
Call_Connect_Request_Message packet 24
Call_Connected_Message packet 27
Capability negotiation 12
Change tracking 85
Client
 abstract data model (section 3.1.1 38, section

3.2.1 44)
 call abort message 55

 call connect acknowledgment message 53
 call connect negative acknowledgment message 54
 call disconnect acknowledgment message 56
 call disconnect message 55
 call establishment 46
 crypto binding 49
 Echo Request message 56
 Echo Response message 57
 error handling (section 3.1.5.1 42, section 3.2.5.1

49)
 higher-layer triggered events (section 3.1.4 42,

section 3.2.4 47)
 initialization (section 3.1.3 42, section 3.2.3 47)
 local events (section 3.1.7 43, section 3.2.7 57)
 message processing (section 3.1.5 42, section

3.2.5 49)
 message status (section 3.1.5.1 42, section

3.2.5.1 49)
 negotiation timer (section 3.2.2.1 47, section

3.2.6.1 57)
 other local events 57
 overview (section 3.1 38, section 3.2 44)
 packet processing 53
 packet validation 53
 sequencing rules (section 3.1.5 42, section 3.2.5

49)
 SSTP packet processing 43
 state machine (section 3.1.1.1 38, section 3.2.1.1

46)

 timer events (section 3.1.6 43, section 3.2.6 57)
 timers (section 3.1.2 41, section 3.2.2 47)
Crypto binding
 client 49
 example 72
Crypto Binding Attribute message 19
Crypto Binding Request Attribute message 18
Crypto_Binding_Attribute packet 19
Crypto_Binding_Request_Attribute packet 18

D

Data model - abstract
 client (section 3.1.1 38, section 3.2.1 44)
 server (section 3.1.1 38, section 3.3.1 58)
Disconnect timers (section 3.1.2.2 41, section

3.1.6.2 43)

E

Echo Request message
 client 56
 server 66
Echo Response message
 client 57
 server 66
Encapsulated Protocol ID Attribute message 17
Encapsulated_Protocol_ID_Attribute packet 17
Error handling
 client (section 3.1.5.1 42, section 3.2.5.1 49)
 server (section 3.1.5.1 42, section 3.3.5.1 62)
Examples

88 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 crypto binding 72
 handling HTTP proxies 71
 HTTPS layer establishment 69
 HTTPS layer teardown 69
 SSTP layer establishment 70
 SSTP layer teardown 70

F

Fields - vendor-extensible 12

G

Glossary 7

H

Handling HTTP proxies example 71
Hello timer (section 3.1.2.3 42, section 3.1.6.3 43)
Higher-layer triggered events
 client (section 3.1.4 42, section 3.2.4 47)
 server (section 3.1.4 42, section 3.3.4 62)
HMAC-SHA1-160
 input data 50
 key 50
HMAC-SHA256-256
 input data 52
 key 52
HTTPS layer establishment example 69
HTTPS layer teardown example 69

I

Implementer - security considerations 77
Index of security parameters 77
Informative references 9
Initialization
 client (section 3.1.3 42, section 3.2.3 47)
 server (section 3.1.3 42, section 3.3.3 61)
Input data
 crypto binding HMAC-SHA1-160 50
 crypto binding HMAC-SHA256-256 52
Introduction 7

K

Key
 crypto binding HMAC-SHA1-160 50
 crypto binding HMAC-SHA256-256 52

L

Local events
 client (section 3.1.7 43, section 3.2.7 57)
 server (section 3.1.7 43, section 3.3.7 67)

M

Man in the middle attack - security 79
Message processing
 client (section 3.1.5 42, section 3.2.5 49)
 server (section 3.1.5 42, section 3.3.5 62)
Messages
 Call Abort Message (SSTP_MSG_CALL_ABORT) 32

 Call Connect Acknowledge Message
(SSTP_MSG_CALL_CONNECT_ACK) 25

 Call Connect Negative Acknowledgment Message
(SSTP_MSG_CALL_CONNECT_NAK) 30

 Call Connect Request Message
(SSTP_MSG_CALL_CONNECT_REQUEST) 24

 Call Connected Message
(SSTP_MSG_CALL_CONNECTED) 27

 Call Disconnect Acknowledge
(SSTP_MSG_CALL_DISCONNECT_ACK) - Echo
Request (SSTP_MSG_ECHO_REQUEST) - and
Echo Response (SSTP_MSG_ECHO_RESPONSE)
Messages 36

 Call Disconnect Message
(SSTP_MSG_CALL_DISCONNECT) 34

 Crypto Binding Attribute 19
 Crypto Binding Request Attribute 18
 Encapsulated Protocol ID Attribute 17
 SSTP Attributes 16
 SSTP Control Packet 14
 SSTP Data Packet 15
 SSTP Packet 13
 status - client (section 3.1.5.1 42, section 3.2.5.1

49)
 status - server (section 3.1.5.1 42, section 3.3.5.1

62)
 Status Info Attribute 21
 syntax 13
 transport 13
MITM attack - security 79

N

Negotiation timer
 client (section 3.2.2.1 47, section 3.2.6.1 57)
 server (section 3.3.2.1 61, section 3.3.6.1 67)
Normative references 8

O

Other local events
 client 57
 server 67
Overview (synopsis) 10

P

Packet processing
 client 53
 server 62
Packet validation

 client 53
 server 62
Parameters - security 77
Parameters - security index 77
Preconditions 11
Prerequisites 11
Product behavior 82
Protocol Details
 overview 38

R

References 8
 informative 9

89 / 89

[MS-SSTP] - v20160714
Secure Socket Tunneling Protocol (SSTP)
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 normative 8
Relationship to other protocols 11
Rogue client - security 77
Rogue SSTP server and genuine SSTP client -

security 78

S

Security
 attack scenarios 77
 implementer considerations 77
 MITM attack 79
 parameter index 77
 parameters 77
 rogue client 77
 rogue SSTP server and genuine SSTP client 78
Sequencing rules

 client (section 3.1.5 42, section 3.2.5 49)
 server (section 3.1.5 42, section 3.3.5 62)
Server
 abstract data model (section 3.1.1 38, section

3.3.1 58)
 call abort message 65
 call connect message 62
 call connected message 63
 call disconnect acknowledgment message 66
 call disconnect message 65
 call establishment 59
 Echo Request message 66
 Echo Response message 66
 error handling (section 3.1.5.1 42, section 3.3.5.1

62)
 higher-layer triggered events (section 3.1.4 42,

section 3.3.4 62)
 initialization (section 3.1.3 42, section 3.3.3 61)
 local events (section 3.1.7 43, section 3.3.7 67)
 message processing (section 3.1.5 42, section

3.3.5 62)
 message status (section 3.1.5.1 42, section

3.3.5.1 62)
 negotiation timer (section 3.3.2.1 61, section

3.3.6.1 67)
 other local events 67
 overview (section 3.1 38, section 3.3 58)
 packet processing 62
 packet validation 62
 sequencing rules (section 3.1.5 42, section 3.3.5

62)
 SSTP packet processing 43
 state machine (section 3.1.1.1 38, section 3.3.1.1

59)
 timer events (section 3.1.6 43, section 3.3.6 67)
 timers (section 3.1.2 41, section 3.3.2 61)
SSTP Attributes message 16
SSTP Control Packet message 14
SSTP Data Packet message 15
SSTP layer establishment example 70
SSTP layer teardown example 70
SSTP Packet message 13
SSTP packet processing 43
SSTP_Attributes packet 16
SSTP_Control_Packet packet 14

SSTP_Data_Packet packet 15
SSTP_MSG_CALL_DISCONNECT_OR_SSTP_MSG_CAL

L_DISCONNECT_ACK_OR_SSTP_MSG_ECHO_RE

QUEST_OR_SSTP_MSG_ECHO_RESPONSE
packet 36

SSTP_Packet packet 13
Standards assignments 12
State machine
 client (section 3.1.1.1 38, section 3.2.1.1 46)
 server (section 3.1.1.1 38, section 3.3.1.1 59)
Status - message
 client (section 3.1.5.1 42, section 3.2.5.1 49)
 server (section 3.1.5.1 42, section 3.3.5.1 62)
Status Info Attribute message 21
Status_Info_Attribute packet 21
Syntax 13

T

Timer events

 client (section 3.1.6 43, section 3.2.6 57)
 server (section 3.1.6 43, section 3.3.6 67)
Timers
 client (section 3.1.2 41, section 3.2.2 47)
 server (section 3.1.2 41, section 3.3.2 61)
Tracking changes 85
Transport 13
Triggered events - higher-layer
 client (section 3.1.4 42, section 3.2.4 47)
 server (section 3.1.4 42, section 3.3.4 62)
Tunnel event
 disconnect 48
 establish 48

V

Vendor-extensible fields 12
Versioning 12

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 SSTP Packet
	2.2.2 SSTP Control Packet
	2.2.3 SSTP Data Packet
	2.2.4 SSTP Attributes
	2.2.5 Encapsulated Protocol ID Attribute
	2.2.6 Crypto Binding Request Attribute
	2.2.7 Crypto Binding Attribute
	2.2.8 Status Info Attribute
	2.2.9 Call Connect Request Message (SSTP_MSG_CALL_CONNECT_REQUEST)
	2.2.10 Call Connect Acknowledge Message (SSTP_MSG_CALL_CONNECT_ACK)
	2.2.11 Call Connected Message (SSTP_MSG_CALL_CONNECTED)
	2.2.12 Call Connect Negative Acknowledgment Message (SSTP_MSG_CALL_CONNECT_NAK)
	2.2.13 Call Abort Message (SSTP_MSG_CALL_ABORT)
	2.2.14 Call Disconnect Message (SSTP_MSG_CALL_DISCONNECT)
	2.2.15 Call Disconnect Acknowledge (SSTP_MSG_CALL_DISCONNECT_ACK), Echo Request (SSTP_MSG_ECHO_REQUEST), and Echo Response (SSTP_MSG_ECHO_RESPONSE) Messages

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 State Machine
	3.1.1.1.1 State Machine Call Disconnect
	3.1.1.1.2 State Machine Call Abort

	3.1.2 Timers
	3.1.2.1 Abort-Related Timers
	3.1.2.2 Disconnect-Related Timers
	3.1.2.3 Hello Timer

	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Status and Error Handling
	3.1.5.2 SSTP Packet Processing

	3.1.6 Timer Events
	3.1.6.1 Abort Timer Processing
	3.1.6.2 Disconnect Timer Processing
	3.1.6.3 Hello Timer Processing

	3.1.7 Other Local Events
	3.1.7.1 Interface with PPP
	3.1.7.2 Interface with HTTPS

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 State Machine
	3.2.1.1.1 Call Establishment

	3.2.2 Timers
	3.2.2.1 Negotiation Timer

	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Establish SSTP Tunnel Event
	3.2.4.2 Disconnect SSTP Tunnel Event

	3.2.5 Processing Events and Sequencing Rules
	3.2.5.1 Status and Error Handling
	3.2.5.2 Crypto Binding
	3.2.5.2.1 Input Data Used in the Crypto Binding HMAC-SHA1-160 Operation
	3.2.5.2.2 Key Used in the Crypto Binding HMAC-SHA1-160 Operation
	3.2.5.2.3 Input Data Used in the Crypto Binding HMAC-SHA256-256 Operation
	3.2.5.2.4 Key Used in the Crypto Binding HMAC-SHA256-256 Operation

	3.2.5.3 Packet Processing
	3.2.5.3.1 General Packet Validation
	3.2.5.3.2 Receiving an SSTP_MSG_CALL_CONNECT_ACK Message
	3.2.5.3.3 Receiving an SSTP_MSG_CALL_CONNECT_NAK Message
	3.2.5.3.4 Receiving an SSTP_MSG_CALL_ABORT Message
	3.2.5.3.5 Receiving an SSTP_MSG_CALL_DISCONNECT Message
	3.2.5.3.6 Receiving an SSTP_MSG_CALL_DISCONNECT_ACK Message
	3.2.5.3.7 Receiving an SSTP_MSG_ECHO_REQUEST Message
	3.2.5.3.8 Receiving an SSTP_MSG_ECHO_RESPONSE Message

	3.2.6 Timer Events
	3.2.6.1 Negotiation Timer Processing

	3.2.7 Other Local Events
	3.2.7.1 Client-Side Interface with PPP
	3.2.7.2 Client-Side Interface with HTTPS

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 State Machine
	3.3.1.1.1 Call Establishment

	3.3.2 Timers
	3.3.2.1 Negotiation Timer

	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Processing Events and Sequencing Rules
	3.3.5.1 Status and Error Handling
	3.3.5.2 Packet Processing
	3.3.5.2.1 General Packet Validation
	3.3.5.2.2 Receiving an SSTP_MSG_CALL_CONNECT_REQUEST Message
	3.3.5.2.3 Receiving an SSTP_MSG_CALL_CONNECTED Message
	3.3.5.2.4 Receiving an SSTP_MSG_CALL_ABORT Message
	3.3.5.2.5 Receiving an SSTP_MSG_CALL_DISCONNECT Message
	3.3.5.2.6 Receiving an SSTP_MSG_CALL_DISCONNECT_ACK Message
	3.3.5.2.7 Receiving an SSTP_MSG_ECHO_REQUEST Message
	3.3.5.2.8 Receiving an SSTP_MSG_ECHO_RESPONSE Message

	3.3.6 Timer Events
	3.3.6.1 Negotiation Timer Processing

	3.3.7 Other Local Events
	3.3.7.1 Server-Side Interface with PPP
	3.3.7.2 Server-Side Interface with HTTPS
	3.3.7.3 Server-Side Interface with Management Layer

	4 Protocol Examples
	4.1 HTTPS Layer Establishment
	4.2 HTTP Layer Teardown
	4.3 SSTP Layer Establishment
	4.4 SSTP Layer Teardown
	4.5 Handling HTTP Proxies
	4.6 Handling the HTTPS Termination Proxy
	4.7 Crypto Binding

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters
	5.3 Attack Scenarios
	5.3.1 Unauthorized Client Connecting to an SSTP Server
	5.3.2 Unauthorized SSTP Server Accepting Connections from a Genuine SSTP Client
	5.3.3 Man in the Middle

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

