
[MS-SMB2]: Server Message Block (SMB) Protocol Versions 2 and 3

This topic lists the Errata found in [MS-SMB2] since it was last published. Since
this topic is updated frequently, we recommend that you subscribe to these RSS

or Atom feeds to receive update notifications.

Errata are subject to the same terms as the Open Specifications documentation
referenced.

RSS

Atom

Errata below are for Protocol Document Version V54.0 – 2017/12/01.

Errata Published* Description

2018/02/26 In Section 2.2.9.2, SMB2 TREE_CONNECT_CONTEXT Request Values, the valid values
for ContextType have been changed from:

Value Meaning

SMB2_RESERVED_TREE_CONNECT_CONTEXT_ID

0x00000000

This value is
reserved.

SMB2_REMOTED_IDENTITY_TREE_CONNECT_CONTEXT_ID

0x00000001

The Data field
contains remoted
identity tree
connect context
data as specified in
section 2.2.9.2.1.

Changed to:

Value Meaning

SMB2_RESERVED_TREE_CONNECT_CONTEXT_ID

0x0000

This value is
reserved.

SMB2_REMOTED_IDENTITY_TREE_CONNECT_CONTEXT_ID
0x0001

The Data field
contains remoted
identity tree
connect context
data as specified in
section 2.2.9.2.1.

2018/02/26 In Section 3.3.5.2.9, Verifying the Session, the following has been changed from:

If Connection.Dialect belongs to the SMB 3.x dialect family, and Session.EncryptData
is TRUE, the server MUST locate the Request in Connection.RequestList for which
Request.MessageId matches the MessageId value in the SMB2 header of the request.
If Request.IsEncrypted is FALSE, the server MUST fail the request with
STATUS_ACCESS_DENIED.

Changed to:

If Connection.Dialect belongs to the SMB 3.x dialect family, and Session.EncryptData
is TRUE, the server MUST do the following:

http://blogs.msdn.com/b/protocol_content_errata/rss.aspx
http://blogs.msdn.com/b/protocol_content_errata/atom.aspx
https://msdn.microsoft.com/en-us/library/cc246482.aspx

Errata Published* Description

If the server supports the 3.1.1 dialect, locate the Request in Connection.RequestList
for which Request.MessageId matches the MessageId value in the SMB2 header of
the request.

Otherwise, if the server supports 3.0 or 3.0.2 dialect, and RejectUnencryptedAccess is
TRUE, locate the Request in Connection.RequestList for which Request.MessageId
matches the MessageId value in the SMB2 header of the request.

If Request.IsEncrypted is FALSE, the server MUST fail the request with
STATUS_ACCESS_DENIED.

In Section 3.3.5.2.11, Verifying the Tree Connect, the following has been changed
from:

The server MUST look up the TreeConnect in Session.TreeConnectTable by using the
TreeId in the SMB2 header of the request. If no tree connect is found, the request
MUST be failed with STATUS_NETWORK_NAME_DELETED.

If Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST fail the
request with STATUS_ACCESS_DENIED in the following cases:

TreeConnect.Share.EncryptData is TRUE, Connection.ServerCapabilities includes
SMB2_GLOBAL_CAP_ENCRYPTION, and Request.IsEncrypted is FALSE.

EncryptData or TreeConnect.Share.EncryptData or Request.IsEncrypted is TRUE,
RejectUnencryptedAccess is TRUE, and Connection.ServerCapabilities does not
include SMB2_GLOBAL_CAP_ENCRYPTION.

Changed to:

The server MUST look up the TreeConnect in Session.TreeConnectTable by using the
TreeId in the SMB2 header of the request. If no tree connect is found, the request
MUST be failed with STATUS_NETWORK_NAME_DELETED.

If Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST fail the
request with STATUS_ACCESS_DENIED in the following cases:

If the server supports the 3.1.1 dialect, TreeConnect.Share.EncryptData is TRUE,
Connection.ServerCapabilities includes SMB2_GLOBAL_CAP_ENCRYPTION, and
Request.IsEncrypted is FALSE.

Otherwise, if the server supports 3.0 or 3.0.2 dialect, EncryptData or
TreeConnect.Share.EncryptData is TRUE, Connection.ServerCapabilities includes
SMB2_GLOBAL_CAP_ENCRYPTION, RejectUnencryptedAccess is TRUE, and
Request.IsEncrypted is FALSE.

EncryptData or TreeConnect.Share.EncryptData or Request.IsEncrypted is TRUE,
RejectUnencryptedAccess is TRUE, and Connection.ServerCapabilities does not
include SMB2_GLOBAL_CAP_ENCRYPTION.

2018/02/26 In Section 3.3.1.12, Per Lease, the following has been added:

● Lease.Held: A Boolean, when set to TRUE, indicates that at least one Open is
associated with this lease.

Errata Published* Description

In Section 3.3.4.7, Object Store Indicates a Lease Break, the following has been
changed from:

If a lease entry is found, the server MUST check the state of Open.Connection for all
Opens in Lease.LeaseOpens. If Open.Session.Connection.Dialect belongs to the SMB
3.x dialect family and Open.Connection is NULL, the server MUST select an alternate
connection in Open.Session.ChannelList and update Open.Connection.

...

● Otherwise, the server MUST set Open.Lease.Breaking to FALSE and MUST
complete the lease break call from the underlying object store with "NONE" as the
new lease state.

Changed to:

If a Lease entry is found, the server MUST check the state of Open.Connection for all
Opens in Lease.LeaseOpens. If Open.Session.Connection.Dialect belongs to the SMB
3.x dialect family and Open.Connection is NULL, the server MUST select an alternate
connection in Open.Session.ChannelList and update Open.Connection.

...

● Otherwise, the server MUST set Open.Lease.Breaking to FALSE and MUST
complete the lease break call from the underlying object store with "NONE" as the
new lease state.

In Section 3.3.4.17, Server Application Requests Closing an Open, the following has
been changed from:

● The server MUST then remove the Open from Lease.LeaseOpens.

● If Lease.LeaseOpens is now empty:

● If Lease.Breaking is TRUE, the server MUST complete the lease break to the
underlying object store with NONE as the new lease state. <203>

● The server MUST remove the Lease from the LeaseTable.LeaseList and free the
Lease.

Changed to:

● The server MUST then remove the Open from Open.Lease.LeaseOpens. If this
Open is the last open in Open.Lease.LeaseOpens, the server MUST set
Open.Lease.Held to FALSE.

● If Open.Lease.Held is FALSE:

● If Open.Lease.Breaking is TRUE, the server MUST complete the lease break to the
underlying object store with NONE as the new lease state. <203>

● The server MUST remove the Open.Lease from the LeaseTable.LeaseList and free
the Open.Lease.

In Section 3.3.5.9.8, Handling the SMB2_CREATE_REQUEST_LEASE Create Context,
the following has been changed from:

The server MUST set Open.OplockState to Held, set Open.Lease to a reference to
lease, set Open.OplockLevel to SMB2_OPLOCK_LEVEL_LEASE, and add open to
Lease.LeaseOpens. The remainder of open response construction continues as
described in "Response Construction".

Changed to:

Errata Published* Description

The server MUST set Open.OplockState to Held, set Open.Lease to a reference to
Lease, set Open.OplockLevel to SMB2_OPLOCK_LEVEL_LEASE, and add Open to
Lease.LeaseOpens. If this Open is the first open in Lease.LeaseOpens, the server
MUST set Lease.Held to TRUE. The remainder of open response construction
continues as described in "Response Construction".

In Section 3.3.5.9.11, Handling the SMB2_CREATE_REQUEST_LEASE_V2 Create
Context, the following has been changed from:

The server MUST set Open.OplockState to Held, set Open.Lease to a reference to
lease, set Open.OplockLevel to SMB2_OPLOCK_LEVEL_LEASE, and add open to
Lease.LeaseOpens. The remainder of open response construction continues as
described in the "Response Construction" phase.

Changed to:

The server MUST set Open.OplockState to Held, set Open.Lease to a reference to
Lease, set Open.OplockLevel to SMB2_OPLOCK_LEVEL_LEASE, and add Open to
Lease.LeaseOpens. If this Open is the first open in Lease.LeaseOpens, the server
MUST set Lease.Held to TRUE. The remainder of open response construction
continues as described in the "Response Construction" phase.

2018/02/12 In Section 2.2.1, SMB2 Packet Header, the following has been changed from:

If the SMB2_FLAGS_ASYNC_COMMAND bit is set in Flags, the header takes the form
SMB2 Packet Header – ASYNC (section 2.2.1.1). This header format is used for
responses to requests processed asynchronously by the server, as specified in

sections 3.3.4.2, 3.3.4.3, 3.3.4.4, and 3.2.5.1.5. This header format MAY be used for
any request, and the SMB2 CANCEL Request MUST use this format for canceling
requests that have received an interim response, as specified in sections 3.2.4.24 and
3.3.5.16.

If the SMB2_FLAGS_ASYNC_COMMAND bit is not set in Flags, the header takes the
form SMB2 Packet Header – SYNC (section 2.2.1.2). This format can be used for all
requests and responses.

Changed to:

If the SMB2_FLAGS_ASYNC_COMMAND bit is set in Flags, the header takes the form
SMB2 Packet Header – ASYNC (section 2.2.1.1). This header format is used for
responses to requests processed asynchronously by the server, as specified in
sections 3.3.4.2, 3.3.4.3, 3.3.4.4, and 3.2.5.1.5. The SMB2 CANCEL Request MUST
use this format for canceling requests that have received an interim response, as
specified in sections 3.2.4.24 and 3.3.5.16.

If the SMB2_FLAGS_ASYNC_COMMAND bit is not set in Flags, the header takes the
form SMB2 Packet Header – SYNC (section 2.2.1.2).

2018/02/12 In Section 3.2.4.6, Application Requests Reading from a File or Named Pipe, the
following has been changed from:

● The returned list of SMB_DIRECT_BUFFER_DESCRIPTOR_1 structures MUST be
appended to the SMB2 header.

● The ReadChannelInfoOffset MUST be set to the offset of the appended list from the
beginning of the SMB2 header.

● The ReadChannelInfoLength MUST be set to the length of the appended list.

Errata Published* Description

Changed to:

● The returned list of SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures MUST be
added to the Buffer field of the request.

● The ReadChannelInfoOffset MUST be set to the offset of the added list from the
beginning of the SMB2 header.

● The ReadChannelInfoLength MUST be set to the length of the added list.

Otherwise, the following fields of the request MUST be initialized as follows:

● The Channel field MUST be set to 0.

● The first byte of the Buffer field MUST be set to 0.

● The ReadChannelInfoOffset field MUST be set to 0.

● The ReadChannelInfoLength field MUST be set to 0.

In Section 3.2.4.7, Application Requests Writing to a File or Named Pipe, the following
has been changed from:

● The returned list of SMB_DIRECT_BUFFER_DESCRIPTOR_1 structures MUST be
appended to the SMB2 header.

● The WriteChannelInfoOffset MUST be set to the offset of the appended list from the
beginning of the SMB2 header.

● The WriteChannelInfoLength MUST be set to the length of the appended list.

Changed to:

● The returned list of SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures MUST be
added to the Buffer field of the request.

● The WriteChannelInfoOffset MUST be set to the offset of the added list from the
beginning of the SMB2 header.

● The WriteChannelInfoLength MUST be set to the length of the added list.

2018/01/16 In Section 2.2.41, SMB2 TRANSFORM_HEADER, the first paragraph has been changed
from:

The SMB2 Transform Header is used by the client or server when sending encrypted
messages. The SMB2 TRANSFORM_HEADER is only valid for the SMB 3.x dialect
family.

Changed to:

The SMB2 TRANSFORM_HEADER is used by the client or server when sending
encrypted messages. The SMB2 TRANSFORM_HEADER is only valid for the SMB 3.x
dialect family.

In Section 3.2.5.1.1, Decrypting the Message, the fourth bullet point has been
changed from:

● The client MUST decrypt the message using Session.DecryptionKey. If
Connection.Dialect is "3.1.1", the algorithm specified by Connection.CipherId is used.
Otherwise, the AES-128-CCM algorithm is used. The client passes in the
TRANSFORM_HEADER, excluding the Signature and ProtocolId fields, and the
encrypted SMB2 message as the Optional Authenticated Data input for the algorithm.
If decryption succeeds, the client MUST compare the signature in the transform
header with the signature returned by the decryption algorithm. If signature

Errata Published* Description

verification succeeds, the client MUST then continue processing the decrypted packet,
as specified in subsequent sections. If signature verification fails, the client MUST fail
the application request with an implementation-specific error.

Changed to:

● The client MUST decrypt the message using Session.DecryptionKey. If
Connection.Dialect is "3.1.1", the algorithm specified by Connection.CipherId is used.
Otherwise, the AES-128-CCM algorithm is used. The client passes in the Nonce,
OriginalMessageSize, Flags/EncryptionAlgorithm and SessionId fields of the SMB2
TRANSFORM_HEADER and the encrypted SMB2 message as the Optional
Authenticated Data input for the algorithm. If decryption succeeds, the client MUST
compare the signature in the SMB2 TRANSFORM_HEADER with the signature
returned by the decryption algorithm. If signature verification succeeds, the client
MUST then continue processing the decrypted packet, as specified in subsequent
sections. If signature verification fails, the client MUST fail the application request
with an implementation-specific error.

In Section 3.3.5.2.1, Decrypting the Message, the second bullet point has been
changed from:

● If OriginalMessageSize value received in the TRANSFORM _HEADER is greater than
the implementation-specific limit<210> or if it is less than the size of the SMB2
Header, the server MUST disconnect the connection as specified in section 3.3.7.1.

Changed to:

● If OriginalMessageSize value received in the SMB2 TRANSFORM _HEADER is
greater than the implementation-specific limit<210> or if it is less than the size of
the SMB2 Header, the server MUST disconnect the connection as specified in section
3.3.7.1.

The fifth bullet point has been changed from:

● The server MUST decrypt the message using Session.DecryptionKey. If
Connection.Dialect is less than "3.1.1", then AES-128-CCM MUST be used, as
specified in [RFC4309]. Otherwise, the algorithm specified by the
Connection.CipherId MUST be used. The server passes in the TRANSFORM_HEADER,
excluding the Signature and ProtocolId fields, as the Optional Authenticated Data
input for the algorithm. If decryption succeeds, the server MUST compare the
signature in the transform header with the signature returned by the decryption

algorithm. If the signature verification fails, the server MUST disconnect the
connection as specified in section 3.3.7.1. If the signature verification succeeds, the
server MUST continue processing the decrypted packet, as specified in subsequent
sections.

Changed to:

● The server MUST decrypt the message using Session.DecryptionKey. If
Connection.Dialect is less than "3.1.1", then AES-128-CCM MUST be used, as
specified in [RFC4309]. Otherwise, the algorithm specified by the
Connection.CipherId MUST be used. The server passes in the Nonce,
OriginalMessageSize, Flags/EncryptionAlgorithm and SessionId fields of the SMB2
TRANSFORM_HEADER as the Optional Authenticated Data input for the algorithm. If
decryption succeeds, the server MUST compare the signature in the SMB2
TRANSFORM_HEADER with the signature returned by the decryption algorithm. If the
signature verification fails, the server MUST disconnect the connection as specified in

Errata Published* Description

section 3.3.7.1. If the signature verification succeeds, the server MUST continue
processing the decrypted packet, as specified in subsequent sections.

2018/01/16 In Section 2.2.2.2, ErrorData format, changed from:

The ErrorData MUST be formatted based on the error code being returned.

If the error code in the header of the response is set to
STATUS_STOPPED_ON_SYMLINK, this field MUST contain a Symbolic Link Error
Response as specified in section 2.2.2.2.1.

If the error code in the header of the response is set to
STATUS_BAD_NETWORK_NAME, and the ErrorId in the SMB2 Error Context response
is set to SMB2_ERROR_ID_SHARE_REDIRECT, this field MUST contain a Share
Redirect Error Response as specified in section 2.2.2.2.2.

If the error code in the header of the response is STATUS_BUFFER_TOO_SMALL, this
field MUST be set to a 4-byte value indicating the minimum required buffer length.

Changed to:

The ErrorData MUST be formatted based on the error code being returned in the
Status field of the SMB2 Packet header for the SMB2 Error Response (section 2.2.2).

If the Status field of the header of the response is set to
STATUS_STOPPED_ON_SYMLINK, this field MUST contain a Symbolic Link Error
Response as specified in section 2.2.2.2.1.

If the Status field of the header of the response is set to
STATUS_BAD_NETWORK_NAME, and the ErrorId in the SMB2 Error Context response
is set to SMB2_ERROR_ID_SHARE_REDIRECT, this field MUST contain a Share
Redirect Error Response as specified in section 2.2.2.2.2.

If the Status field of the header of the response is set to
STATUS_BUFFER_TOO_SMALL, this field MUST be set to a 4-byte value indicating the
minimum required buffer length.

2018/01/16 In Section 2.2.9.2.1.4, LUID_ATTR_DATA, the size of the Luid field has been changed
from 4 to 8 bytes and the description changed from:

Luid (4 bytes): LUID is a locally unique identifier, as specified in [MS-DTYP] section
2.3.7.

Changed to:

Luid (8 bytes): Locally unique identifier, as specified in [MS-DTYP] section 2.3.7.

2018/01/16 In Section 3.3.1.12, Per Lease, the description of Lease.Breaking has been changed
from:

● Lease.Breaking: A Boolean that indicates if a lease break is in progress.

Changed to:

● Lease.Breaking: A Boolean, if set to TRUE, indicating a lease break requiring
acknowledgement is in progress.

In Section 3.3.4.7, Object Store Indicates a Lease Break, the following was changed
from:

If Lease.LeaseOpens is not empty, the server MUST do the following:

Errata Published* Description

● If Open.Connection is NULL, Open.IsPersistent is TRUE, and
Open.DurableOpenTimeout is not earlier than the current time, the server MUST set
Open.Lease.Breaking to FALSE, complete the lease break call from the underlying
object store with "NONE" as the new lease state, and take no further action.

● If Open.Connection is NULL, the server MUST set Open.Lease.Breaking to TRUE,
and take no further action.

● Otherwise, construct a Lease Break Notification (section 2.2.23.2) message to send
to the client.

The server MUST set the Command in the SMB2 header to SMB2 OPLOCK_BREAK,
and the MessageId to 0xFFFFFFFFFFFFFFFF. The server MUST set the SessionId and
TreeId in the SMB2 header to 0. If Lease.LeaseState is
SMB2_LEASE_READ_CACHING, the server MUST set the Flags field of the message to
zero and MUST set Open.OplockState to None for all opens in Lease.LeaseOpens. The
server MUST set Lease.Breaking to FALSE, and the LeaseKey field MUST be set to
Lease.LeaseKey. Otherwise the server MUST set the Flags field of the message to
SMB2_NOTIFY_BREAK_LEASE_FLAG_ACK_REQUIRED, indicating to the client that
lease acknowledgment is required. The LeaseKey field MUST be set to
Lease.LeaseKey. The server MUST set Open.OplockState to Breaking for all Opens in
Lease.LeaseOpens. The server MUST set the CurrentLeaseState field of the message
to Lease.LeaseState, set Lease.Breaking to TRUE, set Lease.BreakToLeaseState to
the new lease state indicated by the object store, and set Lease.LeaseBreakTimeout
to the current time plus an implementation-specific default value in
milliseconds.<200> If the server implements the SMB 3.x dialect family and
Lease.Version is 2, the server MUST set NewEpoch to Lease.Epoch + 1. Otherwise,
NewEpoch MUST be set to zero.

The SMB2 Lease Break Notification is sent to the client using the connection specified
in Open.Connection of the first Open in Lease.LeaseOpens. The message SHOULD
NOT be signed. The server MUST start the oplock break acknowledgment timer as
specified in 3.3.2.1. If there was an error in attempting to transmit the message to
the client, the server MUST retry the send using the connection specified in
Open.Connection of the next Open in Lease.LeaseOpens. If the server fails to send
transmit the message on any Open.Connection associated with this lease, the server
MUST complete the lease break call from the underlying object store with "NONE" as
the new lease state.

Changed to:

If Lease.LeaseOpens is not empty, the server MUST construct a Lease Break

Notification (section 2.2.23.2) message to send to the client.

The server MUST set the Command field in the SMB2 header to SMB2
OPLOCK_BREAK, and the MessageId field to 0xFFFFFFFFFFFFFFFF. The server MUST
set the SessionId and TreeId fields in the SMB2 header to 0.

If Lease.LeaseState is SMB2_LEASE_READ_CACHING, the server MUST set the Flags
field of the message to zero and MUST set Open.OplockState to “None” for all opens
in Lease.LeaseOpens. The server MUST set Lease.Breaking to FALSE, and the
LeaseKey field MUST be set to Lease.LeaseKey.

Otherwise, the server MUST set the Flags field of the message to
SMB2_NOTIFY_BREAK_LEASE_FLAG_ACK_REQUIRED, indicating to the client that
lease acknowledgment is required. The LeaseKey field MUST be set to
Lease.LeaseKey. The server MUST set Open.OplockState to “Breaking” for all Opens
in Lease.LeaseOpens. The server MUST set the CurrentLeaseState field of the
message to Lease.LeaseState, set Lease.Breaking to TRUE, set
Lease.BreakToLeaseState to the new lease state indicated by the object store, and

Errata Published* Description

set Lease.LeaseBreakTimeout to the current time plus an implementation-
specific<200> default value in milliseconds.

If the server implements the SMB 3.x dialect family and Lease.Version is 2, the server
MUST set NewEpoch to Lease.Epoch + 1. Otherwise, NewEpoch MUST be set to zero.

The SMB2 Lease Break Notification is sent to the client using the connection specified
in Open.Connection of the first Open in Lease.LeaseOpens. The message SHOULD
NOT be signed. If the server fails to send the message to the client, the server MUST
retry the send using the connection specified in Open.Connection of the next Open in
Lease.LeaseOpens.

If the server succeeds in sending the message on any Open.Connection associated
with this Lease, the server MUST start the oplock break acknowledgment timer as
specified in section 3.3.2.1.

Otherwise, the server MUST perform the following steps:

● If Open.IsPersistent is TRUE, and Lease.LeaseState is not
SMB2_LEASE_READ_CACHING, and Open.DurableOpenTimeout is not earlier than the
current time, the server MUST take no further action.

● Otherwise, the server MUST set Open.Lease.Breaking to FALSE and MUST complete
the lease break call from the underlying object store with "NONE" as the new lease
state.

*Date format: YYYY/MM/DD

	[MS-SMB2]: Server Message Block (SMB) Protocol Versions 2 and 3

