

1 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-SCMR]:
Service Control Manager Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

05/11/2007 1.0 Major Version 1.0 release

06/01/2007 1.0.1 Editorial Revised and edited the technical content.

07/03/2007 1.0.2 Editorial Revised and edited the technical content.

08/10/2007 1.1 Minor Revised content based on feedback.

09/28/2007 1.2 Minor Revised content based on feedback.

10/23/2007 1.2.1 Editorial Revised and edited the technical content.

01/25/2008 1.2.2 Editorial Revised and edited the technical content.

03/14/2008 2.0 Major Updated and revised the technical content.

06/20/2008 3.0 Major Updated and revised the technical content.

07/25/2008 3.0.1 Editorial Revised and edited the technical content.

08/29/2008 3.1 Minor Updated the technical content.

10/24/2008 3.1.1 Editorial Revised and edited the technical content.

12/05/2008 4.0 Major Updated and revised the technical content.

01/16/2009 5.0 Major Updated and revised the technical content.

02/27/2009 6.0 Major Updated and revised the technical content.

04/10/2009 7.0 Major Updated and revised the technical content.

05/22/2009 8.0 Major Updated and revised the technical content.

07/02/2009 9.0 Major Updated and revised the technical content.

08/14/2009 10.0 Major Updated and revised the technical content.

09/25/2009 11.0 Major Updated and revised the technical content.

11/06/2009 12.0 Major Updated and revised the technical content.

12/18/2009 13.0 Major Updated and revised the technical content.

01/29/2010 13.1 Minor Updated the technical content.

03/12/2010 14.0 Major Updated and revised the technical content.

04/23/2010 15.0 Major Updated and revised the technical content.

06/04/2010 16.0 Major Updated and revised the technical content.

3 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Date

Revision

History

Revision

Class Comments

07/16/2010 17.0 Major Significantly changed the technical content.

08/27/2010 18.0 Major Significantly changed the technical content.

10/08/2010 18.1 Minor Clarified the meaning of the technical content.

11/19/2010 19.0 Major Significantly changed the technical content.

01/07/2011 19.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 20.0 Major Significantly changed the technical content.

03/25/2011 21.0 Major Significantly changed the technical content.

05/06/2011 22.0 Major Significantly changed the technical content.

06/17/2011 22.1 Minor Clarified the meaning of the technical content.

09/23/2011 22.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 23.0 Major Significantly changed the technical content.

03/30/2012 23.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 24.0 Major Significantly changed the technical content.

10/25/2012 24.1 Minor Clarified the meaning of the technical content.

01/31/2013 25.0 Major Significantly changed the technical content.

08/08/2013 26.0 Major Significantly changed the technical content.

11/14/2013 26.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 9
1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments .. 10

2 Messages.. 11
2.1 Transport .. 11

2.1.1 Server .. 11
2.1.2 Client .. 11

2.2 Common Data Types .. 11
2.2.1 SECURITY_INFORMATION ... 12
2.2.2 SVCCTL_HANDLEA ... 12
2.2.3 SVCCTL_HANDLEW ... 12
2.2.4 SC_RPC_HANDLE ... 13
2.2.5 SC_RPC_LOCK ... 13
2.2.6 SC_NOTIFY_RPC_HANDLE ... 13
2.2.7 BOUNDED_DWORD_4K ... 13
2.2.8 BOUNDED_DWORD_8K ... 14
2.2.9 BOUNDED_DWORD_256K ... 14
2.2.10 ENUM_SERVICE_STATUSA ... 14
2.2.11 ENUM_SERVICE_STATUSW .. 15
2.2.12 ENUM_SERVICE_STATUS_PROCESSA .. 15
2.2.13 ENUM_SERVICE_STATUS_PROCESSW ... 16
2.2.14 QUERY_SERVICE_CONFIGA ... 16
2.2.15 QUERY_SERVICE_CONFIGW .. 18
2.2.16 QUERY_SERVICE_LOCK_STATUSA .. 20
2.2.17 QUERY_SERVICE_LOCK_STATUSW ... 20
2.2.18 SC_ACTION_TYPE ... 20
2.2.19 SC_ACTION ... 21
2.2.20 SC_ENUM_TYPE ... 21
2.2.21 SC_RPC_CONFIG_INFOA ... 21
2.2.22 SC_RPC_CONFIG_INFOW .. 23
2.2.23 SC_RPC_NOTIFY_PARAMS ... 24
2.2.24 SC_RPC_NOTIFY_PARAMS_LIST ... 24
2.2.25 SC_RPC_SERVICE_CONTROL_IN_PARAMSA ... 24
2.2.26 SC_RPC_SERVICE_CONTROL_IN_PARAMSW .. 25
2.2.27 SC_RPC_SERVICE_CONTROL_OUT_PARAMSA .. 25
2.2.28 SC_RPC_SERVICE_CONTROL_OUT_PARAMSW ... 25
2.2.29 SC_STATUS_TYPE .. 26
2.2.30 SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA 26
2.2.31 SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW....................................... 28
2.2.32 SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS 31

5 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.33 SERVICE_DELAYED_AUTO_START_INFO ... 31
2.2.34 SERVICE_DESCRIPTIONA .. 32
2.2.35 SERVICE_DESCRIPTIONW ... 32
2.2.36 SERVICE_DESCRIPTION_WOW64 ... 32
2.2.37 SERVICE_FAILURE_ACTIONS_WOW64 .. 32
2.2.38 SERVICE_REQUIRED_PRIVILEGES_INFO_WOW64 .. 33
2.2.39 SERVICE_FAILURE_ACTIONSA ... 33
2.2.40 SERVICE_FAILURE_ACTIONSW .. 34
2.2.41 SERVICE_FAILURE_ACTIONS_FLAG .. 34
2.2.42 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS ... 35
2.2.43 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1 .. 35
2.2.44 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2 .. 36
2.2.45 SERVICE_PRESHUTDOWN_INFO ... 38
2.2.46 SERVICE_SID_INFO .. 38
2.2.47 SERVICE_STATUS ... 39
2.2.48 SERVICE_RPC_REQUIRED_PRIVILEGES_INFO .. 41
2.2.49 SERVICE_STATUS_PROCESS.. 42
2.2.50 STRING_PTRSA .. 44
2.2.51 STRING_PTRSW ... 44
2.2.52 SERVICE_TRIGGER_SPECIFIC_DATA_ITEM .. 44
2.2.53 SERVICE_TRIGGER ... 45
2.2.54 SERVICE_TRIGGER_INFO .. 48
2.2.55 SERVICE_PREFERRED_NODE_INFO... 48
2.2.56 SERVICE_RUNLEVEL_INFO .. 48
2.2.57 SERVICE_MANAGEDACCOUNT_INFO ... 49
2.2.58 svcctl Interface Constants.. 49
2.2.59 Common Error Codes .. 50

3 Protocol Details .. 51
3.1 Server Details ... 51

3.1.1 Abstract Data Model ... 51
3.1.2 Timers .. 61
3.1.3 Initialization .. 61
3.1.4 Message Processing Events and Sequencing Rules .. 61

3.1.4.1 RCloseServiceHandle (Opnum 0) .. 66
3.1.4.2 RControlService (Opnum 1) ... 67
3.1.4.3 RDeleteService (Opnum 2) .. 70
3.1.4.4 RLockServiceDatabase (Opnum 3) .. 71
3.1.4.5 RQueryServiceObjectSecurity (Opnum 4) .. 72
3.1.4.6 RSetServiceObjectSecurity (Opnum 5) .. 73
3.1.4.7 RQueryServiceStatus (Opnum 6) .. 74
3.1.4.8 RSetServiceStatus (Opnum 7) .. 75
3.1.4.9 RUnlockServiceDatabase (Opnum 8) ... 77
3.1.4.10 RNotifyBootConfigStatus (Opnum 9) ... 77
3.1.4.11 RChangeServiceConfigW (Opnum 11) .. 78
3.1.4.12 RCreateServiceW (Opnum 12) .. 82
3.1.4.13 REnumDependentServicesW (Opnum 13) .. 86
3.1.4.14 REnumServicesStatusW (Opnum 14) ... 88
3.1.4.15 ROpenSCManagerW (Opnum 15) .. 90
3.1.4.16 ROpenServiceW (Opnum 16) .. 91
3.1.4.17 RQueryServiceConfigW (Opnum 17) .. 92
3.1.4.18 RQueryServiceLockStatusW (Opnum 18) ... 93
3.1.4.19 RStartServiceW (Opnum 19) .. 94

6 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4.20 RGetServiceDisplayNameW (Opnum 20) .. 96
3.1.4.21 RGetServiceKeyNameW (Opnum 21) ... 97
3.1.4.22 RChangeServiceConfigA (Opnum 23) ... 98
3.1.4.23 RCreateServiceA (Opnum 24) .. 102
3.1.4.24 REnumDependentServicesA (Opnum 25) .. 106
3.1.4.25 REnumServicesStatusA (Opnum 26) ... 107
3.1.4.26 ROpenSCManagerA (Opnum 27) .. 110
3.1.4.27 ROpenServiceA (Opnum 28) .. 111
3.1.4.28 RQueryServiceConfigA (Opnum 29) .. 112
3.1.4.29 RQueryServiceLockStatusA (Opnum 30) ... 113
3.1.4.30 RStartServiceA (Opnum 31) .. 114
3.1.4.31 RGetServiceDisplayNameA (Opnum 32) .. 116
3.1.4.32 RGetServiceKeyNameA (Opnum 33) ... 117
3.1.4.33 REnumServiceGroupW (Opnum 35) .. 118
3.1.4.34 RChangeServiceConfig2A (Opnum 36) .. 120
3.1.4.35 RChangeServiceConfig2W (Opnum 37) ... 121
3.1.4.36 RQueryServiceConfig2A (Opnum 38) .. 122
3.1.4.37 RQueryServiceConfig2W (Opnum 39) ... 124
3.1.4.38 RQueryServiceStatusEx (Opnum 40) .. 126
3.1.4.39 REnumServicesStatusExA (Opnum 41) ... 127
3.1.4.40 REnumServicesStatusExW (Opnum 42) .. 130
3.1.4.41 RCreateServiceWOW64A (Opnum 44)... 133
3.1.4.42 RCreateServiceWOW64W (Opnum 45) .. 136
3.1.4.43 RNotifyServiceStatusChange (Opnum 47) ... 140
3.1.4.44 RGetNotifyResults (Opnum 48) .. 142
3.1.4.45 RCloseNotifyHandle (Opnum 49) .. 143
3.1.4.46 RControlServiceExA (Opnum 50) ... 143
3.1.4.47 RControlServiceExW (Opnum 51) ... 146
3.1.4.48 RQueryServiceConfigEx (Opnum 56) .. 150

3.1.5 Timer Events .. 151
3.1.6 Other Local Events .. 151
3.1.7 Conversion Between ANSI and Unicode String Formats 151

3.2 RPC Runtime Check Notes.. 151

4 Protocol Examples .. 152

5 Security .. 153
5.1 Security Considerations for Implementers .. 153
5.2 Index of Security Parameters ... 153

6 Appendix A: Full IDL ... 154

7 Appendix B: Product Behavior .. 170

8 Change Tracking... 178

9 Index ... 179

7 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

The Service Control Manager Remote Protocol is a remote procedure call (RPC)–based
client/server protocol that is used for remotely managing the Service Control Manager (SCM).
The SCM is an RPC server that enables service configuration and control of service programs. For
more information, see [MSDN-WINSVC].

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

access control entry (ACE)
access control list (ACL)

American National Standards Institute (ANSI) character set
authentication level
Authentication Service (AS)
code page
device interface class
discretionary access control list (DACL)

globally unique identifier (GUID)
Interface Definition Language (IDL)
Microsoft Interface Definition Language (MIDL)
opnum
remote procedure call (RPC)
RPC context handle
RPC protocol sequence

RPC transport
security descriptor
security identifier (SID)
system access control list (SACL)
Server Message Block (SMB)
Unicode
universally unique identifier (UUID)

well-known endpoint

The following terms are specific to this document:

delayed start group: A service group initialized following a delay after the initial system boot
for the purpose of improving system-boot performance.

load-order group: A service group for the purpose of service loading and initialization ordering.

NUMA Node: An arrangement of processors and memory within a system supporting Non-

Uniform Memory Access (NUMA) technology [MSDN-NUMA].

service: A program that is managed by the Service Control Manager (SCM). The execution of
this program is governed by the rules defined by the SCM.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90701
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151239

8 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

service group: A set of services that are grouped together for dependency or load-ordering
purposes.

Service Control Manager (SCM): An RPC server that enables configuration and control of
service programs.

service record: An entry in the SCM database that contains the configuration information
associated with a service.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-AZOD] Microsoft Corporation, "Authorization Protocols Overview".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ADSC%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-UCODEREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-AZOD%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MSDN-CtrlSvc] Microsoft Corporation, "ControlService", http://msdn.microsoft.com/en-
us/library/ms682108(VS.85).asp

[MSDN-CtrlSvcEx] Microsoft Corporation, "ControlServiceEx", http://msdn.microsoft.com/en-
us/library/ms682110(VS.85).aspx

[MSDN-MIDL] Microsoft Corporation, "Microsoft Interface Definition Language (MIDL)",
http://msdn.microsoft.com/en-us/library/ms950375.aspx

[MSDN-NUMA] Microsoft Corporation, "NUMA Support", http://msdn.microsoft.com/en-
us/library/aa363804(VS.85).aspx

[MSDN-SetSvcStatus] Microsoft Corporation, "SetServiceStatus", http://msdn.microsoft.com/en-
us/library/ms686241(VS.85).aspx

[MSDN-STARTSERVICE] Microsoft Corporation, "StartService", http://msdn.microsoft.com/en-

us/library/ms686321.aspx

[MSDN-WinDriverKit] Microsoft Corporation, "Windows Driver Kit Introduction",
http://msdn.microsoft.com/en-us/library/ff556636(VS.85).aspx

[MSDN-WINSVC] Microsoft Corporation, "Services", http://msdn.microsoft.com/en-
us/library/ms685141.aspx

[SPNNAMES] Microsoft Corporation, "Name Formats for Unique SPNs",

http://msdn.microsoft.com/en-us/library/ms677601.aspx

1.3 Overview

The Service Control Manager Remote Protocol is a client/server protocol used for configuring and
controlling service programs running on a remote computer. A remote service management session
begins with the client initiating the connection request to the server. If the server grants the
request, the connection is established. The client may then make multiple requests to modify, query

the configuration, or start and stop services on the server by using the same session until the

session is terminated.

A typical Service Control Manager Remote Protocol session involves the client connecting to the
server and requesting to open the SCM on the server. If the server accepts the request, it responds
with an RPC context handle to the client. The client uses this RPC context handle to operate on
the server. This usually involves sending another request to the server and specifying the type of
operation to perform and any specific parameters associated with that operation. If the server

accepts this request, it attempts to perform the specified operation and responds to the client with
the result of the operation. After the client is finished operating on the server, it terminates the
protocol by sending a request to close the RPC context handle.

The Service Control Manager Remote Protocol maintains an internal database to store service
program configurations and state. The Service Control Manager Protocol has exclusive access to this
internal database. On one operating system instance there is only one SCM and one corresponding

SCM database. Any updates to this internal database are made only through the Service Control
Manager Remote Protocol. SCM takes care of serializing all concurrent accesses to the SCM

database. The SCM database is resident in memory; it is recreated every time the SCM restarts
(after each reboot). Part of the SCM database is retrieved from persistent storage (all information
regarding registered services) and partially nonpersistent (current active state of the services). The
persistent information is modified by the SCM when a service is added, configured, or deleted. Any
attempt to directly modify the persistent part of the database directly in the persistent storage is not

http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=90041
http://go.microsoft.com/fwlink/?LinkId=151239
http://go.microsoft.com/fwlink/?LinkId=151239
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=90137
http://go.microsoft.com/fwlink/?LinkId=90137
http://go.microsoft.com/fwlink/?LinkId=151330
http://go.microsoft.com/fwlink/?LinkId=90701
http://go.microsoft.com/fwlink/?LinkId=90701
http://go.microsoft.com/fwlink/?LinkId=90532
%5bMS-GLOS%5d.pdf

10 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

a supported scenario and will result in possible inconsistencies. Finally, if SCM were to be forcefully
terminated, the operating system will shut down and restart.

1.4 Relationship to Other Protocols

The Service Control Manager Remote Protocol uses RPC as its transport protocol.

1.5 Prerequisites/Preconditions

This protocol requires that the client and server be able to communicate via an RPC connection, as
specified in section 2.1.

1.6 Applicability Statement

This protocol is appropriate for managing a service management agent, such as an SCM, on a
remote computer.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: This protocol uses multiple RPC protocol sequences, as specified in

section 2.1.

Security and Authentication Methods: The RPC server in this protocol requires

RPC_C_AUTHN_GSS_NEGOTIATE or RPC_C_AUTHN_WINNT authorization. This is discussed in
section 2.1.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

The Service Control Manager Remote Protocol has no standards assignments, only private
assignments made by Microsoft using allocation procedures specified in other protocols.

Microsoft has allocated to this protocol an RPC interface universally unique identifier (UUID)
(using the procedure specified in [C706]) and a named pipe (as specified in [MS-SMB]). The

assignments are as follows.

Parameter Value

RPC interface UUID {367ABB81-9844-35F1-AD32-98F038001003}

Named pipe \PIPE\svcctl

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
%5bMS-SMB%5d.pdf

11 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Messages

The following sections specify how Service Control Manager Remote Protocol messages are
transported and specify common data types.

2.1 Transport

The Service Control Manager Remote Protocol MUST use RPC as the transport protocol.

2.1.1 Server

The server interface is identified by UUID 367ABB81-9844-35F1-AD32-98F038001003, version 2.0,
using the RPC well-known endpoint "\PIPE\svcctl". The server MUST use RPC over SMB,
ncacn_np or RPC over TCP, or ncacn_ip_tcp as the RPC protocol sequence to the RPC
implementation, as specified in [MS-RPCE]. The server MUST specify the Simple and Protected GSS-
API Negotiation Mechanism (SPNEGO) (0x9) or NT LAN Manager (NTLM) (0xA), or both, as the RPC

Authentication Service (as specified in [MS-RPCE]). See [MS-RPCE] section 3.3.1.5.2.2 and
[C706] section 13.

2.1.2 Client

The client MUST use RPC over SMB, ncacn_np (as specified in [MS-RPCE]) or RPC over TCP,
ncacn_ip_tcp (as specified in [MS-RPCE]) as the RPC protocol sequence to communicate with the
server. The client MUST specify either "Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO)" (0x9) or "NT LAN Manager (NTLM)" (0xA), as specified in [MS-RPCE], as the
Authentication Service. When using "SPNEGO" as the Authentication Service, the client SHOULD

supply a service principal name (SPN) of "host/hostname" where hostname is the actual name of the
server to which the client is connecting and host is the literal string "host/" (for more information,
see [SPNNAMES]).

The RPC client MAY use an authentication level of RPC_C_AUTHN_LEVEL_PKT_PRIVACY.<1>

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], the following

sections use these definitions, as specified in [MS-DTYP]. Unless specified, all characters are
accepted for the strings described in each section.

BOOL

BYTE

CHAR

DWORD

LPCSTR

LPCWSTR

LPWSTR

PSTR

UCHAR

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90532
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

12 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

VOID

WCHAR

The additional data types given in the following sections are defined in the MIDL specification of this

RPC interface.

2.2.1 SECURITY_INFORMATION

The following bit flags indicate which components to include in a SECURITY_DESCRIPTOR
structure that clients and servers can use to specify access types.

Value Meaning

DACL_SECURITY_INFORMATION

0x00000004

If set, the security descriptor MUST include the object's

discretionary access control list (DACL). DACL information is

specified in [MS-AZOD] section 1.1.1.3.

GROUP_SECURITY_INFORMATION

0x00000002

If set, specifies the security identifier (SID), as defined in [MS-

DTYP] section 2.4.2, (LSAPR_SID) of the object's primary group.

Primary group information is specified in [MS-DTYP].

OWNER_SECURITY_INFORMATION

0x00000001

If set, specifies the security identifier (SID) (LSAPR_SID) of the

object's owner.

SACL_SECURITY_INFORMATION

0x00000008

If set, the security descriptor MUST include the object's system

access control list (SACL). SACL information is specified in [MS-

AZOD] section 1.1.1.3.

This type is declared as follows:

typedef unsigned long SECURITY_INFORMATION;

2.2.2 SVCCTL_HANDLEA

An RPC binding handle to the server, represented as an American National Standards Institute
(ANSI) character set string. This ANSI string and all ANSI references in the rest of this document
use the ANSI code page specified by the operating system.

This type is declared as follows:

typedef [handle] LPSTR SVCCTL_HANDLEA;

2.2.3 SVCCTL_HANDLEW

An RPC binding handle represented as a Unicode string.

This type is declared as follows:

typedef [handle] wchar_t* SVCCTL_HANDLEW;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-AZOD%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-AZOD%5d.pdf
%5bMS-AZOD%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4 SC_RPC_HANDLE

Defines an RPC context handle to the SCM or a service on the server.

typedef [context_handle] PVOID SC_RPC_HANDLE;

typedef SC_RPC_HANDLE* LPSC_RPC_HANDLE;

2.2.5 SC_RPC_LOCK

Defines an RPC context handle to a locked SCM database on the server.

typedef [context_handle] PVOID SC_RPC_LOCK;

typedef SC_RPC_LOCK* LPSC_RPC_LOCK;

2.2.6 SC_NOTIFY_RPC_HANDLE

Defines an RPC context handle used to monitor changes on a service on the server.

typedef [context_handle] PVOID SC_NOTIFY_RPC_HANDLE;

typedef SC_NOTIFY_RPC_HANDLE* LPSC_NOTIFY_RPC_HANDLE;

2.2.7 BOUNDED_DWORD_4K

A 4-kilobyte ranged DWORD data type used for the size given by reference in an in/out parameter.

typedef [range(0, 1024 * 4)] DWORD BOUNDED_DWORD_4K;

typedef BOUNDED_DWORD_4K* LPBOUNDED_DWORD_4K;

BOUNDED_DWORD_4K

A 4-kilobyte ranged DWORD used for size given by reference in an in/out parameter.

LPBOUNDED_DWORD_4K

Pointer to a BOUNDED_DWORD_4K.

14 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.8 BOUNDED_DWORD_8K

An 8-kilobyte ranged DWORD data type used for the size given by reference in an in/out
parameter.

typedef [range(0, 1024 * 8)] DWORD BOUNDED_DWORD_8K;

typedef BOUNDED_DWORD_8K* LPBOUNDED_DWORD_8K;

BOUNDED_DWORD_8K

An 8-kilobyte ranged DWORD used for size given by reference in an in/out parameter.

LPBOUNDED_DWORD_8K

Pointer to a BOUNDED_DWORD_8K.

2.2.9 BOUNDED_DWORD_256K

A 256-kilobyte ranged DWORD data type used for the size given by reference in an in/out

parameter.

typedef [range(0, 1024 * 256)] DWORD BOUNDED_DWORD_256K;

typedef BOUNDED_DWORD_256K* LPBOUNDED_DWORD_256K;

BOUNDED_DWORD_256K

A 256-kilobyte ranged DWORD used for size given by reference in an in/out parameter.

LPBOUNDED_DWORD_256K

Pointer to a BOUNDED_DWORD_256K.

2.2.10 ENUM_SERVICE_STATUSA

The ENUM_SERVICE_STATUSA structure defines the name and status of a service in an SCM
database and returns information about the service. String values are stored in ANSI.

typedef struct _ENUM_SERVICE_STATUSA {

 LPSTR lpServiceName;

 LPSTR lpDisplayName;

 SERVICE_STATUS ServiceStatus;

} ENUM_SERVICE_STATUSA,

 *LPENUM_SERVICE_STATUSA;

lpServiceName: A pointer to a null-terminated string that names a service in an SCM database.

The forward slash, back slash, comma, and space characters are illegal in service names.

15 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

lpDisplayName: A pointer to a null-terminated string that user interface programs use to
identify the service.

ServiceStatus: A SERVICE_STATUS (section 2.2.47) structure that contains status
information.

2.2.11 ENUM_SERVICE_STATUSW

The ENUM_SERVICE_STATUSW structure defines the name and status of a service in an SCM
database and returns information about the service. String values are stored in Unicode.

typedef struct _ENUM_SERVICE_STATUSW {

 LPWSTR lpServiceName;

 LPWSTR lpDisplayName;

 SERVICE_STATUS ServiceStatus;

} ENUM_SERVICE_STATUSW,

 *LPENUM_SERVICE_STATUSW;

lpServiceName: A pointer to a null-terminated string that names a service in an SCM database.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a null-terminated string that user interface programs use to
identify the service.

ServiceStatus: A SERVICE_STATUS (section 2.2.47) structure that contains status

information.

2.2.12 ENUM_SERVICE_STATUS_PROCESSA

The ENUM_SERVICE_STATUS_PROCESSA structure contains information used by the
REnumServicesStatusExA method to return the name of a service in an SCM database. The

structure also returns information about the service. String values are stored in ANSI.

typedef struct _ENUM_SERVICE_STATUS_PROCESSA {

 LPSTR lpServiceName;

 LPSTR lpDisplayName;

 SERVICE_STATUS_PROCESS ServiceStatusProcess;

} ENUM_SERVICE_STATUS_PROCESSA,

 *LPENUM_SERVICE_STATUS_PROCESSA;

lpServiceName: A pointer to a null-terminated string that names a service in an SCM database.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a null-terminated string that contains the display name of the

service.

ServiceStatusProcess: A SERVICE_STATUS_PROCESS (section 2.2.49) structure that
contains status information for the lpServiceName service.

16 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.13 ENUM_SERVICE_STATUS_PROCESSW

The ENUM_SERVICE_STATUS_PROCESSW structure contains information used by the
REnumServicesStatusExW method to return the name of a service in an SCM database. The

structure also returns information about the service. String values are stored in Unicode.

typedef struct _ENUM_SERVICE_STATUS_PROCESSW {

 LPWSTR lpServiceName;

 LPWSTR lpDisplayName;

 SERVICE_STATUS_PROCESS ServiceStatusProcess;

} ENUM_SERVICE_STATUS_PROCESSW,

 *LPENUM_SERVICE_STATUS_PROCESSW;

lpServiceName: A pointer to a null-terminated string that names a service in an SCM database.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a null-terminated string that contains the display name of the
service.

ServiceStatusProcess: A SERVICE_STATUS_PROCESS (section 2.2.49) structure that
contains status information for the lpServiceName service.

2.2.14 QUERY_SERVICE_CONFIGA

The QUERY_SERVICE_CONFIGA structure defines configuration information about an installed
service. String values are stored in ANSI.

typedef struct _QUERY_SERVICE_CONFIGA {

 DWORD dwServiceType;

 DWORD dwStartType;

 DWORD dwErrorControl;

 LPSTR lpBinaryPathName;

 LPSTR lpLoadOrderGroup;

 DWORD dwTagId;

 LPSTR lpDependencies;

 LPSTR lpServiceStartName;

 LPSTR lpDisplayName;

} QUERY_SERVICE_CONFIGA,

 *LPQUERY_SERVICE_CONFIGA;

dwServiceType: The type of service. This member MUST be one of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

A service that runs in its own process.

17 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_WIN32_SHARE_PROCESS

0x00000020

A service that shares a process with other services.

dwStartType: Defines when to start the service. This member MUST be one of the following
values.

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START

0x00000002

A service started automatically by the SCM during system startup.

SERVICE_DEMAND_START

0x00000003

Starts the service when a client requests the SCM to start the service.

SERVICE_DISABLED

0x00000004

A service that cannot be started. Attempts to start the service result

in the error code ERROR_SERVICE_DISABLED.

dwErrorControl: The severity of the error if this service fails to start during startup, and the
action that the SCM should take if failure occurs.

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error in the event log and continues the startup

operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error in the event log. If the last-known good

configuration is being started, the startup operation continues.

Otherwise, the system is restarted with the last-known good

configuration.

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error in the event log if possible. If the

last-known good configuration is being started, the startup operation

fails. Otherwise, the system is restarted with the last-known good

configuration.

lpBinaryPathName: A pointer to a null-terminated string that contains the fully qualified path

to the service binary file. The path MAY include arguments. If the path contains a space, it
MUST be quoted so that it is correctly interpreted. For example, "d:\\my
share\\myservice.exe" should be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A pointer to a null-terminated string that names the service group for

load-ordering of which this service is a member. If the pointer is NULL or if it points to an
empty string, the service does not belong to a group.

18 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

dwTagId: A unique tag value for this service within the service group specified by the
lpLoadOrderGroup parameter. A value of 0 indicates that the service has not been assigned a

tag.

lpDependencies: A pointer to an array of null-separated names of services or names of service

groups that MUST start before this service. The array is doubly null-terminated. Service group
names are prefixed with a "+" character (to distinguish them from service names). If the
pointer is NULL or if it points to an empty string, the service has no dependencies. Cyclic
dependency between services is not allowed. The character set is ANSI. Dependency on a
service means that this service can only run if the service it depends on is running.
Dependency on a group means that this service can run if at least one member of the group is
running after an attempt to start all members of the group.

lpServiceStartName: A pointer to a null-terminated string that contains the service name.

lpDisplayName: A pointer to a null-terminated string that contains the service display name.

2.2.15 QUERY_SERVICE_CONFIGW

The QUERY_SERVICE_CONFIGW structure defines configuration information about an installed
service. String values are stored in Unicode.

typedef struct _QUERY_SERVICE_CONFIGW {

 DWORD dwServiceType;

 DWORD dwStartType;

 DWORD dwErrorControl;

 LPWSTR lpBinaryPathName;

 LPWSTR lpLoadOrderGroup;

 DWORD dwTagId;

 LPWSTR lpDependencies;

 LPWSTR lpServiceStartName;

 LPWSTR lpDisplayName;

} QUERY_SERVICE_CONFIGW,

 *LPQUERY_SERVICE_CONFIGW;

dwServiceType: The type of service. This member MUST be one of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

A service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

A service that shares a process with other services.

dwStartType: Defines when to start the service. This member MUST be one of the following
values.

19 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START

0x00000002

A service started automatically by the SCM during system startup.

SERVICE_DEMAND_START

0x00000003

Starts the service when a client requests the SCM to start the service.

SERVICE_DISABLED

0x00000004

A service that cannot be started. Attempts to start the service result

in the error code ERROR_SERVICE_DISABLED.

dwErrorControl: The severity of the error if this service fails to start during startup and the
action the SCM should take if failure occurs.

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error in the event log and continues the startup

operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error in the event log. If the last-known good

configuration is being started, the startup operation continues.

Otherwise, the system is restarted with the last-known good

configuration.

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error in the event log if possible. If the

last-known good configuration is being started, the startup operation

fails. Otherwise, the system is restarted with the last-known good

configuration.

lpBinaryPathName: A pointer to a null-terminated string that contains the fully qualified path
to the service binary file. The path MAY include arguments. If the path contains a space, it
MUST be quoted so that it is correctly interpreted. For example, "d:\\my

share\\myservice.exe" should be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A pointer to a null-terminated string that names the service group for load
ordering of which this service is a member. If the pointer is NULL or if it points to an empty
string, the service does not belong to a group.

dwTagId: A unique tag value for this service in the service group. A value of 0 indicates that

the service has not been assigned a tag.

lpDependencies: A pointer to an array of null-separated names of services or service groups

that MUST start before this service. The array is doubly null-terminated. Service group names
are prefixed with a "+" character (to distinguish them from service names). If the pointer is
NULL or if it points to an empty string, the service has no dependencies. Cyclic dependency
between services is not allowed. The character set is Unicode. Dependency on a service means

20 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

that this service can only run if the service it depends on is running. Dependency on a group
means that this service can run if at least one member of the group is running after an

attempt to start all members of the group.

lpServiceStartName: A pointer to a null-terminated string that contains the service start (key)

name.

lpDisplayName: A pointer to a null-terminated string that contains the service display name.

2.2.16 QUERY_SERVICE_LOCK_STATUSA

The QUERY_SERVICE_LOCK_STATUSA structure defines information about the lock status of an
SCM database. String values are stored in ANSI.

typedef struct {

 DWORD fIsLocked;

 char* lpLockOwner;

 DWORD dwLockDuration;

} QUERY_SERVICE_LOCK_STATUSA,

 *LPQUERY_SERVICE_LOCK_STATUSA;

fIsLocked: The lock status of the database. If this member is nonzero, the database is locked.

If it is 0, the database is unlocked.

lpLockOwner: A pointer to a null-terminated string that contains the name of the user that

acquired the lock.

dwLockDuration: The elapsed time, in seconds, since the lock was first acquired.

2.2.17 QUERY_SERVICE_LOCK_STATUSW

The QUERY_SERVICE_LOCK_STATUSW structure defines information about the lock status of an

SCM database. String values are stored in Unicode.

typedef struct _QUERY_SERVICE_LOCK_STATUSW {

 DWORD fIsLocked;

 LPWSTR lpLockOwner;

 DWORD dwLockDuration;

} QUERY_SERVICE_LOCK_STATUSW,

 *LPQUERY_SERVICE_LOCK_STATUSW;

fIsLocked: The lock status of the database. If this member is nonzero, the database is locked.

If it is 0, the database is unlocked.

lpLockOwner: A pointer to a null-terminated string that contains the name of the user that

acquired the lock.

dwLockDuration: The elapsed time, in seconds, since the lock was first acquired.

2.2.18 SC_ACTION_TYPE

The SC_ACTION_TYPE enumeration specifies action levels for the Type member of the
SC_ACTION structure.

21 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef [v1_enum] enum _SC_ACTION_TYPE

{

 SC_ACTION_NONE = 0,

 SC_ACTION_RESTART = 1,

 SC_ACTION_REBOOT = 2,

 SC_ACTION_RUN_COMMAND = 3

} SC_ACTION_TYPE;

SC_ACTION_NONE: No action.

SC_ACTION_RESTART: Restart the service.

SC_ACTION_REBOOT: Reboot the computer.

SC_ACTION_RUN_COMMAND: Run a command.

2.2.19 SC_ACTION

The SC_ACTION structure defines an action that the SCM can perform.

typedef struct {

 SC_ACTION_TYPE Type;

 DWORD Delay;

} SC_ACTION,

 *LPSC_ACTION;

Type: The action to be performed. This member MUST be one of the values from the

SC_ACTION_TYPE (section 2.2.18) enumeration.

Delay: The time, in milliseconds, to wait before performing the specified action.

2.2.20 SC_ENUM_TYPE

The SC_ENUM_TYPE enumeration specifies information levels for the REnumServicesStatusExA
and REnumServicesStatusExW methods.

typedef [v1_enum] enum

{

 SC_ENUM_PROCESS_INFO = 0

} SC_ENUM_TYPE;

SC_ENUM_PROCESS_INFO: Information level

2.2.21 SC_RPC_CONFIG_INFOA

The SC_RPC_CONFIG_INFOA structure defines the service configuration based on a supplied

level. String values are stored in ANSI.

typedef struct _SC_RPC_CONFIG_INFOA {

 DWORD dwInfoLevel;

 [switch_is(dwInfoLevel)] union {

 [case(1)]

 LPSERVICE_DESCRIPTIONA psd;

22 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [case(2)]

 LPSERVICE_FAILURE_ACTIONSA psfa;

 [case(3)]

 LPSERVICE_DELAYED_AUTO_START_INFO psda;

 [case(4)]

 LPSERVICE_FAILURE_ACTIONS_FLAG psfaf;

 [case(5)]

 LPSERVICE_SID_INFO pssid;

 [case(6)]

 LPSERVICE_RPC_REQUIRED_PRIVILEGES_INFO psrp;

 [case(7)]

 LPSERVICE_PRESHUTDOWN_INFO psps;

 [case(8)]

 PSERVICE_TRIGGER_INFO psti;

 [case(9)]

 LPSERVICE_PREFERRED_NODE_INFO pspn;

 [case(10)]

 PSERVICE_RUNLEVEL psri;

 [case(11)]

 PSERVICE_MANAGEDACCOUNT_INFO psma;

 };

} SC_RPC_CONFIG_INFOA;

dwInfoLevel: A DWORD value that indicates the type of configuration information in the
included data.

psd: A structure that contains a description of the service, as specified in section 2.2.34.

psfa: A structure that contains a list of failure actions, as specified in section 2.2.39.<2>

psda: A structure that defines whether or not the service is part of the delayed start group, as
specified in section 2.2.33.<3>

psfaf: A structure that defines if failure actions are queued when the service exits with a
nonzero error code, as specified in section 2.2.41.<4>

pssid: A structure that defines the type of service SID, as specified in section 2.2.46.<5>

psrp: A structure that defines the privileges required by the service, as specified in section
2.2.48.<6>

psps: A structure that defines the pre-shutdown settings for the service, as specified in section
2.2.45.<7>

psti: A structure that defines the trigger settings for the service, as specified in section
2.2.54.<8>

pspn: A structure that defines the preferred node information for the service, as specified in
section 2.2.55.<9>

psri: A structure that defines the lowest run-level information for a service, as specified in
section 2.2.56.<10>

psma: A structure that defines whether a service should use a managed service account, as
specified in section 2.2.57.<11>

%5bMS-DTYP%5d.pdf

23 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.22 SC_RPC_CONFIG_INFOW

The SC_RPC_CONFIG_INFOW structure<12> defines, based on a supplied level, either the
service configuration or a list of failure actions. String values are stored as Unicode.

typedef struct _SC_RPC_CONFIG_INFOW {

 DWORD dwInfoLevel;

 [switch_is(dwInfoLevel)] union {

 [case(1)]

 LPSERVICE_DESCRIPTIONW psd;

 [case(2)]

 LPSERVICE_FAILURE_ACTIONSW psfa;

 [case(3)]

 LPSERVICE_DELAYED_AUTO_START_INFO psda;

 [case(4)]

 LPSERVICE_FAILURE_ACTIONS_FLAG psfaf;

 [case(5)]

 LPSERVICE_SID_INFO pssid;

 [case(6)]

 LPSERVICE_RPC_REQUIRED_PRIVILEGES_INFO psrp;

 [case(7)]

 LPSERVICE_PRESHUTDOWN_INFO psps;

 [case(8)]

 PSERVICE_TRIGGER_INFO psti;

 [case(9)]

 LPSERVICE_PREFERRED_NODE_INFO pspn;

 [case(10)]

 PSERVICE_RUNLEVEL psri;

 [case(11)]

 PSERVICE_MANAGEDACCOUNT_INFO psma;

 };

} SC_RPC_CONFIG_INFOW;

dwInfoLevel: A value that indicates the type of configuration information in the included data.

psd: A structure that contains a description of the service, as specified in section 2.2.35.

psfa: A structure that contains a list of failure actions, as specified in section 2.2.40.

psda: A structure that specifies whether the service is part of the delayed start group, as
specified in section 2.2.33.

psfaf: A structure that specifies whether failure actions are queued when the service exits with a
nonzero error code, as specified in section 2.2.41.

pssid: A structure that defines the type of service SID, as specified in section 2.2.46.

psrp: A structure that defines the privileges required by the service, as specified in section

2.2.48.

psps: A structure that defines the pre-shutdown settings for the service, as specified in section
2.2.45.

psti: A structure that defines the trigger settings for the service, as specified in section
2.2.54.<13>

24 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

pspn: A structure that defines the preferred node information for the service, as specified in
section 2.2.55.<14>

psri: A structure that defines the lowest run-level information for a service, as specified in
section 2.2.56.<15>

psma: A structure that defines whether a service should use a managed service account, as
specified in section 2.2.57.<16>

2.2.23 SC_RPC_NOTIFY_PARAMS

The SC_RPC_NOTIFY_PARAMS structure<17> contains the parameters associated with the
notification information of the service status.

typedef struct _SC_RPC_NOTIFY_PARAMS {

 DWORD dwInfoLevel;

 [switch_is(dwInfoLevel)] union {

 [case(1)]

 PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1 pStatusChangeParam1;

 [case(2)]

 PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2 pStatusChangeParams;

 };

} SC_RPC_NOTIFY_PARAMS;

dwInfoLevel: A value that indicates the version of the notification structure being used.

pStatusChangeParam1: A SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1 (section
2.2.43) structure that contains the service status notification information.

pStatusChangeParams: A PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2 (section
2.2.44) structure that contains the service status notification information.

2.2.24 SC_RPC_NOTIFY_PARAMS_LIST

The SC_RPC_NOTIFY_PARAMS_LIST structure<18> defines an array of service state change
parameters.

typedef struct _SC_RPC_NOTIFY_PARAMS_LIST {

 BOUNDED_DWORD_4K cElements;

 [size_is(cElements)] SC_RPC_NOTIFY_PARAMS NotifyParamsArray[];

} SC_RPC_NOTIFY_PARAMS_LIST,

 *PSC_RPC_NOTIFY_PARAMS_LIST;

cElements: The number of elements in the array.

NotifyParamsArray: An array of SC_RPC_NOTIFY_PARAMS (section 2.2.23) structures.

2.2.25 SC_RPC_SERVICE_CONTROL_IN_PARAMSA

The SC_RPC_SERVICE_CONTROL_IN_PARAMSA union contains information associated with the

service control parameters. String values are in ANSI.

typedef

25 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_IN_PARAMSA {

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSA psrInParams;

} SC_RPC_SERVICE_CONTROL_IN_PARAMSA,

 *PSC_RPC_SERVICE_CONTROL_IN_PARAMSA;

psrInParams: A structure that contains the service control parameter associated with a control

as specified in section 2.2.30.

2.2.26 SC_RPC_SERVICE_CONTROL_IN_PARAMSW

The SC_RPC_SERVICE_CONTROL_IN_PARAMSW union contains information associated with the

service control parameters. String values are in Unicode.

typedef

[switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_IN_PARAMSW {

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSW psrInParams;

} SC_RPC_SERVICE_CONTROL_IN_PARAMSW,

 *PSC_RPC_SERVICE_CONTROL_IN_PARAMSW;

psrInParams: A structure that contains the service control parameter associated with a control
as specified in section 2.2.31.

2.2.27 SC_RPC_SERVICE_CONTROL_OUT_PARAMSA

The SC_RPC_SERVICE_CONTROL_OUT_PARAMSA union contains resulting status information
associated with the service control parameters. String values are in ANSI.

typedef

[switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_OUT_PARAMSA {

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_OUT_PARAMS psrOutParams;

} SC_RPC_SERVICE_CONTROL_OUT_PARAMSA,

 *PSC_RPC_SERVICE_CONTROL_OUT_PARAMSA;

psrOutParams: A structure that contains the resulting status information associated with the

service control parameter associated with a control as specified in section 2.2.32.

2.2.28 SC_RPC_SERVICE_CONTROL_OUT_PARAMSW

The SC_RPC_SERVICE_CONTROL_OUT_PARAMSW union contains resulting status information

associated with the service control parameters. String values are in Unicode.

typedef

[switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_OUT_PARAMSW {

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_OUT_PARAMS psrOutParams;

} SC_RPC_SERVICE_CONTROL_OUT_PARAMSW,

26 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 *PSC_RPC_SERVICE_CONTROL_OUT_PARAMSW;

psrOutParams: A structure that contains the resulting status information associated with the

service control parameter associated with a control as specified in section 2.2.32.

2.2.29 SC_STATUS_TYPE

The SC_STATUS_TYPE enumeration specifies the information level for the
RQueryServiceStatusEx method.

typedef [v1_enum] enum

{

 SC_STATUS_PROCESS_INFO = 0

} SC_STATUS_TYPE;

SC_STATUS_PROCESS_INFO: The information level

2.2.30 SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA

The SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA structure<19> contains the reason
associated with the SERVICE_CONTROL_STOP control. String values are in ANSI.

typedef struct _SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA {

 DWORD dwReason;

 [string, range(0, SC_MAX_COMMENT_LENGTH)]

 LPSTR pszComment;

} SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA,

 *PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSA;

dwReason: The reason associated with the SERVICE_CONTROL_STOP control. This member

MUST be set to a combination of one general reason code, one major reason code, and one
minor reason code.

The following are the general reason codes.

Value Meaning

SERVICE_STOP_CUSTOM

0x20000000

The reason code is defined by the user. If this flag is not present,

the reason code is defined by the system. If this flag is specified

with a system reason code, the function call fails.

Users can create custom major reason codes in the range

SERVICE_STOP_REASON_MAJOR_MIN_CUSTOM (0x00400000)

through SERVICE_STOP_REASON_MAJOR_MAX_CUSTOM

(0x00ff0000) and minor reason codes in the range

SERVICE_STOP_REASON_MINOR_MIN_CUSTOM (0x00000100)

through SERVICE_STOP_REASON_MINOR_MAX_CUSTOM

(0x0000FFFF).

27 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_STOP_PLANNED

0x40000000

The service stop was planned.

SERVICE_STOP_UNPLANNED

0x10000000

The service stop was not planned.

The following are the major reason codes.

Value Meaning

SERVICE_STOP_REASON_MAJOR_APPLICATION

0x00050000

Application issue

SERVICE_STOP_REASON_MAJOR_HARDWARE

0x00020000

Hardware issue

SERVICE_STOP_REASON_MAJOR_NONE

0x00060000

No major reason

SERVICE_STOP_REASON_MAJOR_OPERATINGSYSTEM

0x00030000

Operating system issue

SERVICE_STOP_REASON_MAJOR_OTHER

0x00010000

Other issue

SERVICE_STOP_REASON_MAJOR_SOFTWARE

0x00040000

Software issue

The following are the minor reason codes.

Value Meaning

SERVICE_STOP_REASON_MINOR_DISK

0x00000008

Disk

SERVICE_STOP_REASON_MINOR_ENVIRONMENT

0x0000000a

Environment

SERVICE_STOP_REASON_MINOR_HARDWARE_DRIVER

0x0000000b

Driver

SERVICE_STOP_REASON_MINOR_HUNG

0x00000006

Unresponsive

SERVICE_STOP_REASON_MINOR_INSTALLATION

0x00000003

Installation

SERVICE_STOP_REASON_MINOR_MAINTENANCE

0x00000002

Maintenance

SERVICE_STOP_REASON_MINOR_MMC

0x00000016

MMC issue

SERVICE_STOP_REASON_MINOR_NETWORK_CONNECTIVITY

0x00000011

Network connectivity

28 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_STOP_REASON_MINOR_NETWORKCARD

0x00000009

Network card

SERVICE_STOP_REASON_MINOR_NONE

0x00000017

No minor reason

SERVICE_STOP_REASON_MINOR_OTHER

0x00000001

Other issue

SERVICE_STOP_REASON_MINOR_OTHERDRIVER

0x0000000c

Other driver event

SERVICE_STOP_REASON_MINOR_RECONFIG

0x00000005

Reconfigure

SERVICE_STOP_REASON_MINOR_SECURITY

0x00000010

Security issue

SERVICE_STOP_REASON_MINOR_SECURITYFIX

0x0000000f

Security update

SERVICE_STOP_REASON_MINOR_SECURITYFIX_UNINSTALL

0x00000015

Security update uninstall

SERVICE_STOP_REASON_MINOR_SERVICEPACK

0x0000000d

Service pack

SERVICE_STOP_REASON_MINOR_SERVICEPACK_UNINSTALL

0x00000013

Service pack uninstall

SERVICE_STOP_REASON_MINOR_SOFTWARE_UPDATE

0x0000000e

Software update

SERVICE_STOP_REASON_MINOR_SOFTWARE_UPDATE_UNINSTALL

0x00000014

Software update uninstall

SERVICE_STOP_REASON_MINOR_UNSTABLE

0x00000007

Unstable

SERVICE_STOP_REASON_MINOR_UPGRADE

0x00000004

Installation of software

SERVICE_STOP_REASON_MINOR_WMI

0x00000012

WMI issue

pszComment: A pointer to a string that specifies a comment associated with the dwReason
parameter. String values are in ANSI.

2.2.31 SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW

The SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW structure<20> contains the reason
associated with the SERVICE_CONTROL_STOP. String values are in Unicode.

typedef struct _SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW {

 DWORD dwReason;

 [string, range(0, SC_MAX_COMMENT_LENGTH)]

29 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 LPWSTR pszComment;

} SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW,

 *PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSW;

dwReason: The reason associated with the SERVICE_CONTROL_STOP control. This member

MUST be set to a combination of one general reason code, one major reason code, and one
minor reason code.

The following are the general reason codes.

Value Meaning

SERVICE_STOP_CUSTOM

0x20000000

The reason code is defined by the user. If this flag is not present,

the reason code is defined by the system. If this flag is specified

with a system reason code, the function call fails.

Users can create custom major reason codes in the range

SERVICE_STOP_REASON_MAJOR_MIN_CUSTOM (0x00400000)

through SERVICE_STOP_REASON_MAJOR_MAX_CUSTOM

(0x00ff0000) and minor reason codes in the range

SERVICE_STOP_REASON_MINOR_MIN_CUSTOM (0x00000100)

through SERVICE_STOP_REASON_MINOR_MAX_CUSTOM

(0x0000FFFF).

SERVICE_STOP_PLANNED

0x40000000

The service stop was planned.

SERVICE_STOP_UNPLANNED

0x10000000

The service stop was not planned.

The following are the major reason codes.

Value Meaning

SERVICE_STOP_REASON_MAJOR_APPLICATION

0x00050000

Application issue

SERVICE_STOP_REASON_MAJOR_HARDWARE

0x00020000

Hardware issue

SERVICE_STOP_REASON_MAJOR_NONE

0x00060000

No major reason

SERVICE_STOP_REASON_MAJOR_OPERATINGSYSTEM

0x00030000

Operating system issue

SERVICE_STOP_REASON_MAJOR_OTHER

0x00010000

Other issue

SERVICE_STOP_REASON_MAJOR_SOFTWARE Software issue

30 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00040000

The following are the minor reason codes.

Value Meaning

SERVICE_STOP_REASON_MINOR_DISK

0x00000008

Disk

SERVICE_STOP_REASON_MINOR_ENVIRONMENT

0x0000000a

Environment

SERVICE_STOP_REASON_MINOR_HARDWARE_DRIVER

0x0000000b

Driver

SERVICE_STOP_REASON_MINOR_HUNG

0x00000006

Unresponsive

SERVICE_STOP_REASON_MINOR_INSTALLATION

0x00000003

Installation

SERVICE_STOP_REASON_MINOR_MAINTENANCE

0x00000002

Maintenance

SERVICE_STOP_REASON_MINOR_MMC

0x00000016

MMC issue

SERVICE_STOP_REASON_MINOR_NETWORK_CONNECTIVITY

0x00000011

Network connectivity

SERVICE_STOP_REASON_MINOR_NETWORKCARD

0x00000009

Network card

SERVICE_STOP_REASON_MINOR_NONE

0x00000017

No minor reason

SERVICE_STOP_REASON_MINOR_OTHER

0x00000001

Other issue

SERVICE_STOP_REASON_MINOR_OTHERDRIVER

0x0000000c

Other driver event

SERVICE_STOP_REASON_MINOR_RECONFIG

0x00000005

Reconfigure

SERVICE_STOP_REASON_MINOR_SECURITY

0x00000010

Security issue

SERVICE_STOP_REASON_MINOR_SECURITYFIX

0x0000000f

Security update

SERVICE_STOP_REASON_MINOR_SECURITYFIX_UNINSTALL

0x00000015

Security update uninstall

SERVICE_STOP_REASON_MINOR_SERVICEPACK

0x0000000d

Service pack

31 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_STOP_REASON_MINOR_SERVICEPACK_UNINSTALL

0x00000013

Service pack uninstall

SERVICE_STOP_REASON_MINOR_SOFTWARE_UPDATE

0x0000000e

Software update

SERVICE_STOP_REASON_MINOR_SOFTWARE_UPDATE_UNINSTALL

0x00000014

Software update uninstall

SERVICE_STOP_REASON_MINOR_UNSTABLE

0x00000007

Unstable

SERVICE_STOP_REASON_MINOR_UPGRADE

0x00000004

Installation of software

SERVICE_STOP_REASON_MINOR_WMI

0x00000012

WMI issue

pszComment: A pointer to a string that specifies a comment associated with the dwReason
parameter. String values are in Unicode.

2.2.32 SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS

The SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS structure<21> contains the status
of the service.

typedef struct _SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS {

 SERVICE_STATUS_PROCESS ServiceStatus;

} SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS,

 *PSERVICE_CONTROL_STATUS_REASON_OUT_PARAMS;

ServiceStatus: A SERVICE_STATUS_PROCESS (section 2.2.49) structure that contains the

current status of the service.

2.2.33 SERVICE_DELAYED_AUTO_START_INFO

The SERVICE_DELAYED_AUTO_START_INFO structure<22> defines the delayed autostart
setting of an autostart service.

typedef struct _SERVICE_DELAYED_AUTO_START_INFO {

 BOOL fDelayedAutostart;

} SERVICE_DELAYED_AUTO_START_INFO,

 *LPSERVICE_DELAYED_AUTO_START_INFO;

fDelayedAutostart: A Boolean value that specifies whether or not the start of the service

should be delayed. If this value is TRUE, the service is started after other autostart services
are started plus a short delay of approximately two minutes. Otherwise, the service is started
during the system boot. This setting is ignored unless the service is an autostart service.

If the service has other services that it is dependent on, as specified via the lpDependencies

member of the QUERY_SERVICE_CONFIGA structure (section 2.2.14) and the

32 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

QUERY_SERVICE_CONFIGW structure (section 2.2.15), then those services are started before this
service.

2.2.34 SERVICE_DESCRIPTIONA

The SERVICE_DESCRIPTIONA structure contains the description of the service. String values are
in ANSI.

typedef struct _SERVICE_DESCRIPTIONA {

 [string, range(0, 8 * 1024)] LPSTR lpDescription;

} SERVICE_DESCRIPTIONA,

 *LPSERVICE_DESCRIPTIONA;

lpDescription: A pointer to a string that contains the description of the service in ANSI.

2.2.35 SERVICE_DESCRIPTIONW

The SERVICE_DESCRIPTIONW structure contains the description of the service. String values are
in Unicode.

typedef struct _SERVICE_DESCRIPTIONW {

 [string, range(0, 8 * 1024)] LPWSTR lpDescription;

} SERVICE_DESCRIPTIONW,

 *LPSERVICE_DESCRIPTIONW;

lpDescription: A pointer to a string that contains the description of the service in Unicode.

2.2.36 SERVICE_DESCRIPTION_WOW64

The SERVICE_DESCRIPTION_WOW64 structure defines the offset at which SERVICE_DESRIPTIONW
is present.

typedef struct {

 DWORD dwDescriptionOffset;

} SERVICE_DESCRIPTION_WOW64;

dwDescriptionOffset: A pointer to the offset for the SERVICE_DESCRIPTIONW (section 2.2.35)
structure, which contains the service description in Unicode.

2.2.37 SERVICE_FAILURE_ACTIONS_WOW64

The SERVICE_FAILURE_ACTIONS_WOW64 structure defines the action that the service
controller takes on each failure of a service.

typedef struct {

 DWORD dwResetPeriod;

 DWORD dwRebootMsgOffset;

 DWORD dwCommandOffset;

 DWORD cActions;

 DWORD dwsaActionsOffset;

33 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

} SERVICE_FAILURE_ACTIONS_WOW64;

dwResetPeriod: The time, in seconds, after which to reset the failure count to zero if there are

no failures.

dwRebootMsgOffset: The offset for the buffer containing the message that is broadcast in
response to the SC_ACTION_REBOOT service controller action (section 2.2.18) to all server
users prior to a server reboot.

dwCommandOffset: The offset for the buffer that contains the Unicode command line of the
process that the process creation function executes in response to the
SC_ACTION_RUN_COMMAND service controller action (section 2.2.18).

cActions: The number of SC_ACTION (section 2.2.19) structures in the array that is offset by
the value of dwsaActionsOffset.

dwsaActionsOffset: The offset for the buffer that contains an array of SC_ACTION structures.

2.2.38 SERVICE_REQUIRED_PRIVILEGES_INFO_WOW64

The SERVICE_REQUIRED_PRIVILEGES_INFO_WOW64 structure defines the offset at which the
SERVICE_RPC_REQUIRED_PRIVILEGES_INFO (section 2.2.48) structure is present.

typedef struct {

 DWORD dwRequiredPrivilegesOffset;

} SERVICE_REQUIRED_PRIVILEGES_INFO_WOW64;

dwRequiredPrivilegesOffset: Offset of the SERVICE_RPC_REQUIRED_PRIVILEGES_INFO

structure.

2.2.39 SERVICE_FAILURE_ACTIONSA

The SERVICE_FAILURE_ACTIONSA structure defines the action that the service controller should
take on each failure of a service. String values are stored in ANSI.

typedef struct _SERVICE_FAILURE_ACTIONSA {

 DWORD dwResetPeriod;

 [string, range(0, 8 * 1024)] LPSTR lpRebootMsg;

 [string, range(0, 8 * 1024)] LPSTR lpCommand;

 [range(0, 1024)] DWORD cActions;

 [size_is(cActions)] SC_ACTION* lpsaActions;

} SERVICE_FAILURE_ACTIONSA,

 *LPSERVICE_FAILURE_ACTIONSA;

dwResetPeriod: The time, in seconds, after which to reset the failure count to zero if there are

no failures.

lpRebootMsg: The buffer that contains the message to be broadcast to server users before
rebooting in response to the SC_ACTION_REBOOT service controller action.

34 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

lpCommand: The buffer that contains the command line of the process for the process creation
function to execute in response to the SC_ACTION_RUN_COMMAND service controller action.

cActions: The number of elements in the lpsaActions array.

lpsaActions: A pointer to an array of SC_ACTION (section 2.2.19) structures.

The service controller counts the number of times each service has failed since the system
booted. The count is reset to 0 if the service has not failed for dwResetPeriod seconds.
When the service fails for the Nth time, the service controller performs the action specified in
element [N-1] of the lpsaActions array. If N is greater than cActions, the service controller
repeats the last action in the array.

2.2.40 SERVICE_FAILURE_ACTIONSW

The SERVICE_FAILURE_ACTIONSW structure defines the action that the service controller should
take on each failure of a service. String values are stored in Unicode.

typedef struct _SERVICE_FAILURE_ACTIONSW {

 DWORD dwResetPeriod;

 [string, range(0, 8 * 1024)] LPWSTR lpRebootMsg;

 [string, range(0, 8 * 1024)] LPWSTR lpCommand;

 [range(0, 1024)] DWORD cActions;

 [size_is(cActions)] SC_ACTION* lpsaActions;

} SERVICE_FAILURE_ACTIONSW,

 *LPSERVICE_FAILURE_ACTIONSW;

dwResetPeriod: The time, in seconds, after which to reset the failure count to zero if there are
no failures.

lpRebootMsg: The buffer that contains the message to be broadcast to server users before
rebooting in response to the SC_ACTION_REBOOT service controller action.

lpCommand: The buffer that contains the command line of the process for the process creation
function to execute in response to the SC_ACTION_RUN_COMMAND service controller action.

cActions: The number of elements in the lpsaActions array.

lpsaActions: A pointer to an array of SC_ACTION (section 2.2.19) structures.

The service controller counts the number of times each service has failed since the system

booted. The count is reset to 0 if the service has not failed for dwResetPeriod seconds.
When the service fails for the Nth time, the service controller performs the action specified in
element [N-1] of the lpsaActions array. If N is greater than cActions, the service controller
repeats the last action in the array.

2.2.41 SERVICE_FAILURE_ACTIONS_FLAG

The SERVICE_FAILURE_ACTIONS_FLAG structure<23> defines the failure action setting of a
service. This setting determines when failure actions are to be executed.

typedef struct _SERVICE_FAILURE_ACTIONS_FLAG {

 BOOL fFailureActionsOnNonCrashFailures;

} SERVICE_FAILURE_ACTIONS_FLAG,

 *LPSERVICE_FAILURE_ACTIONS_FLAG;

35 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

fFailureActionsOnNonCrashFailures: If this member is TRUE and the service has configured

failure actions, the failure actions are queued if the service process terminates without
reporting a status of SERVICE_STOPPED or if it enters the SERVICE_STOPPED state but the
dwWin32ExitCode member of the SERVICE_STATUS (section 2.2.47) structure is not
ERROR_SUCCESS.

If this member is FALSE and the service has configured failure actions, the failure actions are
queued only if the service terminates without reporting a status of SERVICE_STOPPED.

This setting is ignored unless the service has configured failure actions.

2.2.42 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS

The latest supported version of the service notification status structure.<24>

This type is declared as follows:

typedef SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS,

*PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS;

2.2.43 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1

The SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1 structure defines the service status
notification information. If a client uses this structure, the server copies data from this structure to

the newer structure specified in 2.2.44, and uses the newer structure.

typedef struct _SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1 {

 ULONGLONG ullThreadId;

 DWORD dwNotifyMask;

 UCHAR CallbackAddressArray[16];

 UCHAR CallbackParamAddressArray[16];

 SERVICE_STATUS_PROCESS ServiceStatus;

 DWORD dwNotificationStatus;

 DWORD dwSequence;

} SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1,

 *PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1;

ullThreadId: Not used.

dwNotifyMask: A value that specifies the status changes in which the client is interested. It
MUST be one or more of the following values.

Value Meaning

SERVICE_NOTIFY_CREATED

0x00000080

Report when the service has been created.

SERVICE_NOTIFY_CONTINUE_PENDING Report when the service is about to continue.

36 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000010

SERVICE_NOTIFY_DELETE_PENDING

0x00000200

Report when an application has specified the service to

delete.

SERVICE_NOTIFY_DELETED

0x00000100

Report when the service has been deleted.

SERVICE_NOTIFY_PAUSE_PENDING

0x00000020

Report when the service is pausing.

SERVICE_NOTIFY_PAUSED

0x00000040

Report when the service has paused.

SERVICE_NOTIFY_RUNNING

0x00000008

Report when the service is running.

SERVICE_NOTIFY_START_PENDING

0x00000002

Report when the service is starting.

SERVICE_NOTIFY_STOP_PENDING

0x00000004

Report when the service is stopping.

SERVICE_NOTIFY_STOPPED

0x00000001

Report when the service has stopped.

CallbackAddressArray: Not used.

CallbackParamAddressArray: Not used.

ServiceStatus: A SERVICE_STATUS_PROCESS (section 2.2.49) structure that contains
information about the service.

dwNotificationStatus: A value that indicates the notification status. If this member is
ERROR_SUCCESS, the notification has succeeded and the server adds valid information to the
ServiceStatus, dwNotificationTriggered, and pszServiceNames members. If this
member is ERROR_REQUEST_ABORTED or ERROR_SERVICE_MARKED_FOR_DELETE, the

notification has failed.

dwSequence: Not used.

2.2.44 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2

The SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2 structure<25> defines the service status
notification information.

typedef struct _SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2 {

 ULONGLONG ullThreadId;

 DWORD dwNotifyMask;

 UCHAR CallbackAddressArray[16];

 UCHAR CallbackParamAddressArray[16];

 SERVICE_STATUS_PROCESS ServiceStatus;

 DWORD dwNotificationStatus;

 DWORD dwSequence;

 DWORD dwNotificationTriggered;

 [string, range(0, 64*1024)] PWSTR pszServiceNames;

37 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

} SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2,

 *PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2;

ullThreadId: Not used.

dwNotifyMask: A value that specifies the status changes in which the client is interested. It

MUST be one or more of the following values.

Value Meaning

SERVICE_NOTIFY_CREATED

0x00000080

Report when the service has been created.

SERVICE_NOTIFY_CONTINUE_PENDING

0x00000010

Report when the service is about to continue.

SERVICE_NOTIFY_DELETE_PENDING

0x00000200

Report when an application has specified the service to

delete.

SERVICE_NOTIFY_DELETED

0x00000100

Report when the service has been deleted.

SERVICE_NOTIFY_PAUSE_PENDING

0x00000020

Report when the service is pausing.

SERVICE_NOTIFY_PAUSED

0x00000040

Report when the service has paused.

SERVICE_NOTIFY_RUNNING

0x00000008

Report when the service is running.

SERVICE_NOTIFY_START_PENDING

0x00000002

Report when the service is starting.

SERVICE_NOTIFY_STOP_PENDING

0x00000004

Report when the service is stopping.

SERVICE_NOTIFY_STOPPED

0x00000001

Report when the service has stopped.

CallbackAddressArray: Not used.

CallbackParamAddressArray: Not used.

ServiceStatus: A SERVICE_STATUS_PROCESS (section 2.2.49) structure that contains
information about the service.

dwNotificationStatus: A value that indicates the notification status. If this member is
ERROR_SUCCESS, the notification has succeeded and the server adds valid information to the

ServiceStatus, dwNotificationTriggered, and pszServiceNames members. If this

member is ERROR_REQUEST_ABORTED or ERROR_SERVICE_MARKED_FOR_DELETE, the
notification has failed.

dwSequence: Not used.

38 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

dwNotificationTriggered: The value that specifies the specific status change event that
triggered the notification to the client. This MUST be one or more of the values specified in the

dwNotifyMask parameter.

pszServiceNames: A pointer to a sequence of null-terminated strings, terminated by an empty

string (\0) that contains the name of the service that was created or deleted.

The forward slash, back slash, comma, and space characters are illegal in service names.

The names of the created services are prefixed by "/" to distinguish them from the names of
the deleted services.

2.2.45 SERVICE_PRESHUTDOWN_INFO

The SERVICE_PRESHUTDOWN_INFO structure<26> defines the time-out value in milliseconds.

typedef struct _SERVICE_PRESHUTDOWN_INFO {

 DWORD dwPreshutdownTimeout;

} SERVICE_PRESHUTDOWN_INFO,

 *LPSERVICE_PRESHUTDOWN_INFO;

dwPreshutdownTimeout: Time, in milliseconds, that the SCM waits for the service to enter

the SERVICE_STOPPED state after sending the SERVICE_CONTROL_PRESHUTDOWN message.

2.2.46 SERVICE_SID_INFO

The SERVICE_SID_INFO structure<27> defines the type of service security identifier (SID)
associated with a service.

typedef struct _SERVICE_SID_INFO {

 DWORD dwServiceSidType;

} SERVICE_SID_INFO,

 *LPSERVICE_SID_INFO;

dwServiceSidType: The type of service SID. This MUST be one of the following values.

Value Meaning

SERVICE_SID_TYPE_NONE

0x00000000

No service SID.

SERVICE_SID_TYPE_RESTRICTED

0x00000003

This type includes SERVICE_SID_TYPE_UNRESTRICTED.

The service SID is also added to the restricted SID list of

the process token. Three additional SIDs are added to the

restricted SID list:

1. World SID S-1-1-0.

2. Service logon SID.

3. One access control entry (ACE) that allows

GENERIC_ALL access for the service logon SID is also

added to the service process token object.

If multiple services are hosted in the same process and one

service has SERVICE_SID_TYPE_RESTRICTED, all services

%5bMS-GLOS%5d.pdf

39 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

MUST have SERVICE_SID_TYPE_RESTRICTED.

SERVICE_SID_TYPE_UNRESTRICTED

0x00000001

When the service process is created, the service SID is

added to the service process token with the following

attributes: SE_GROUP_ENABLED_BY_DEFAULT |

SE_GROUP_OWNER.

2.2.47 SERVICE_STATUS

The SERVICE_STATUS structure defines information about a service.

typedef struct {

 DWORD dwServiceType;

 DWORD dwCurrentState;

 DWORD dwControlsAccepted;

 DWORD dwWin32ExitCode;

 DWORD dwServiceSpecificExitCode;

 DWORD dwCheckPoint;

 DWORD dwWaitHint;

} SERVICE_STATUS,

 *LPSERVICE_STATUS;

dwServiceType: The type of service.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

A service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

A service that shares a process with other services.

SERVICE_INTERACTIVE_PROCESS

0x00000100

The service can interact with the desktop.

Only SERVICE_WIN32_OWN_PROCESS and SERVICE_INTERACTIVE_PROCESS OR

SERVICE_WIN32_SHARE_PROCESS and SERVICE_INTERACTIVE_PROCESS can be combined.

dwCurrentState: The current state of the service.

Value Meaning

0x00000005 SERVICE_CONTINUE_PENDING

0x00000006 SERVICE_PAUSE_PENDING

40 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000007 SERVICE_PAUSED

0x00000004 SERVICE_RUNNING

0x00000002 SERVICE_START_PENDING

0x00000003 SERVICE_STOP_PENDING

0x00000001 SERVICE_STOPPED

dwControlsAccepted: The control codes that the service accepts and processes in its handler
function. One or more of the following values may be set. By default, all services accept the

SERVICE_CONTROL_INTERROGATE value. A value of zero indicates that no controls are
accepted.

Value Meaning

0x00000008 SERVICE_ACCEPT_PARAMCHANGE

Service can reread its startup parameters without being stopped and restarted.

This control code allows the service to receive SERVICE_CONTROL_PARAMCHANGE

notifications.

0x00000002 SERVICE_ACCEPT_PAUSE_CONTINUE

Service can be paused and continued.

This control code allows the service to receive SERVICE_CONTROL_PAUSE and

SERVICE_CONTROL_CONTINUE notifications.

0x00000004 SERVICE_ACCEPT_SHUTDOWN

Service is notified when system shutdown occurs.

This control code enables the service to receive SERVICE_CONTROL_SHUTDOWN

notifications from the server.

0x00000001 SERVICE_ACCEPT_STOP

Service can be stopped.

This control code allows the service to receive SERVICE_CONTROL_STOP

notifications.

0x00000020 SERVICE_ACCEPT_HARDWAREPROFILECHANGE

Service is notified when the computer's hardware profile changes.

0x00000040 SERVICE_ACCEPT_POWEREVENT

Service is notified when the computer's power status changes.

0x00000080 SERVICE_ACCEPT_SESSIONCHANGE

Service is notified when the computer's session status changes.

0x00000100 SERVICE_ACCEPT_PRESHUTDOWN<28>

The service can perform preshutdown tasks.

SERVICE_ACCEPT_PRESHUTDOWN is sent before sending

SERVICE_CONTROL_SHUTDOWN to give more time to services that need extra time

before shutdown occurs.

41 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000200 SERVICE_ACCEPT_TIMECHANGE<29>

Service is notified when the system time changes.

0x00000400 SERVICE_ACCEPT_TRIGGEREVENT<30>

Service is notified when an event for which the service has registered occurs.

dwWin32ExitCode: An error code that the service uses to report an error that occurs when it is

starting or stopping. To return an error code specific to the service, the service MUST set this
value to ERROR_SERVICE_SPECIFIC_ERROR to indicate that the dwServiceSpecificExitCode
member contains the error code. The service should set this value to NO_ERROR when it is
running and on normal termination.

dwServiceSpecificExitCode: A service-specific error code that the service returns when an
error occurs while it is starting or stopping. The client should ignore this value unless the

dwWin32ExitCode member is set to ERROR_SERVICE_SPECIFIC_ERROR.<31>

dwCheckPoint: A value that the service increments periodically to report its progress during a
lengthy start, stop, pause, or continue operation. This value is zero when the service state is
SERVICE_PAUSED, SERVICE_RUNNING, or SERVICE_STOPPED.

dwWaitHint: An estimate of the amount of time, in milliseconds, that the service expects a
pending start, stop, pause, or continue operation to take before the service makes its next
status update. Before the specified amount of time has elapsed, the service should make its

next call to the SetServiceStatus function with either an incremented dwCheckPoint value or
a change in dwCurrentState. If the amount of time specified by dwWaitHint passes, and
dwCheckPoint has not been incremented or dwCurrentState has not changed, the server
can assume that an error has occurred and the service should be stopped. However, if the
service shares a process with other services, the server cannot terminate the service
application because it would have to terminate the other services sharing the process as well.

2.2.48 SERVICE_RPC_REQUIRED_PRIVILEGES_INFO

The SERVICE_RPC_REQUIRED_PRIVILEGES_INFO structure<32> defines the required
privileges for a service.

typedef struct _SERVICE_RPC_REQUIRED_PRIVILEGES_INFO {

 [range(0, 1024 * 4)] DWORD cbRequiredPrivileges;

 [size_is(cbRequiredPrivileges)]

 PBYTE pRequiredPrivileges;

} SERVICE_RPC_REQUIRED_PRIVILEGES_INFO,

 *LPSERVICE_RPC_REQUIRED_PRIVILEGES_INFO;

cbRequiredPrivileges: Size, in bytes, of the pRequiredPrivileges buffer.

pRequiredPrivileges: Buffer that contains the required privileges of a service in the format of a
sequence of null-terminated strings, terminated by an empty string (\0). The privilege
constants are detailed in [MS-LSAD] section 3.1.1.2.1.

%5bMS-LSAD%5d.pdf

42 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.49 SERVICE_STATUS_PROCESS

The SERVICE_STATUS_PROCESS structure contains information about a service that is used by
the RQueryServiceStatusEx method.

typedef struct {

 DWORD dwServiceType;

 DWORD dwCurrentState;

 DWORD dwControlsAccepted;

 DWORD dwWin32ExitCode;

 DWORD dwServiceSpecificExitCode;

 DWORD dwCheckPoint;

 DWORD dwWaitHint;

 DWORD dwProcessId;

 DWORD dwServiceFlags;

} SERVICE_STATUS_PROCESS,

 *LPSERVICE_STATUS_PROCESS;

dwServiceType: The type of service. This MUST be one of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

A service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

A service that shares a process with other services.

SERVICE_INTERACTIVE_PROCESS

0x00000100

The service can interact with the desktop.

Only SERVICE_WIN32_OWN_PROCESS and SERVICE_INTERACTIVE_PROCESS or

SERVICE_WIN32_SHARE_PROCESS and SERVICE_INTERACTIVE_PROCESS can be combined.

dwCurrentState: The current state of the service. This MUST be one of the following values.

Value Meaning

0x00000005 SERVICE_CONTINUE_PENDING

0x00000006 SERVICE_PAUSE_PENDING

0x00000007 SERVICE_PAUSED

0x00000004 SERVICE_RUNNING

0x00000002 SERVICE_START_PENDING

0x00000003 SERVICE_STOP_PENDING

43 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000001 SERVICE_STOPPED

dwControlsAccepted: The control codes that the service accepts and processes in its handler
function. This bit mask MUST be set to zero or more of the following values. The value of
dwControlsAccepted is 0x00000000 if the service type is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

Value Meaning

0x00000008 SERVICE_ACCEPT_PARAMCHANGE

Service can reread its startup parameters without being stopped and restarted.

0x00000002 SERVICE_ACCEPT_PAUSE_CONTINUE

Service can be paused and continued.

0x00000004 SERVICE_ACCEPT_SHUTDOWN

Service is notified when system shutdown occurs.

0x00000001 SERVICE_ACCEPT_STOP

Service can be stopped.

0x00000020 SERVICE_ACCEPT_HARDWAREPROFILECHANGE

Service is notified when the computer hardware profile changes.

0x00000040 SERVICE_ACCEPT_POWEREVENT

Service is notified when the computer power status changes.

0x00000080 SERVICE_ACCEPT_SESSIONCHANGE

Service is notified when the computer session status changes.

0x00000100 SERVICE_ACCEPT_PRESHUTDOWN<33>

The service can perform preshutdown tasks.

SERVICE_ACCEPT_PRESHUTDOWN is sent before sending

SERVICE_CONTROL_SHUTDOWN to give more time to services that need extra time

before shutdown occurs.

0x00000200 SERVICE_ACCEPT_TIMECHANGE<34>

Service is notified when the system time changes.

0x00000400 SERVICE_ACCEPT_TRIGGEREVENT<35>

Service is notified when an event for which the service has registered occurs.

dwWin32ExitCode: An error code that the service uses to report an error that occurs when it is

starting or stopping.

dwServiceSpecificExitCode: A service-specific error code that the service returns when an
error occurs while it is starting or stopping.

dwCheckPoint: A value that the service increments periodically to report its progress during a
lengthy start, stop, pause, or continue operation.

44 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

dwWaitHint: An estimate of the amount of time, in milliseconds, that the service expects a
pending start, stop, pause, or continue operation to take before the service makes its next

status update.

dwProcessId: A process identifier of the service. A value of 0 indicates that the service is not

started.

dwServiceFlags: The bit flags that describe the process in which the service is running. This
MUST be one of the following values.

Value Meaning

0x00000000 Service is either running in a process that is not a system process, or the service is

not running at all. In a nonsystem process, dwProcessId is nonzero. If the service

is not running, dwProcessId is 0.

0x00000001 Service runs in a system process that MUST always be running.

2.2.50 STRING_PTRSA

The STRING_PTRSA structure defines a pointer to an ANSI character string.

typedef struct _STRING_PTRSA {

 [string, range(0, SC_MAX_ARGUMENT_LENGTH)]

 LPSTR StringPtr;

} STRING_PTRSA,

 *PSTRING_PTRSA,

 *LPSTRING_PTRSA;

StringPtr: Pointer to an ANSI character string.

2.2.51 STRING_PTRSW

The STRING_PTRSW structure defines a pointer to a Unicode character string.

typedef struct _STRING_PTRSW {

 [string, range(0, SC_MAX_ARGUMENT_LENGTH)]

 wchar_t* StringPtr;

} STRING_PTRSW,

 *PSTRING_PTRSW,

 *LPSTRING_PTRSW;

StringPtr: A pointer to a Unicode character string.

2.2.52 SERVICE_TRIGGER_SPECIFIC_DATA_ITEM

The SERVICE_TRIGGER_SPECIFIC_DATA_ITEM<36> structure contains information about one
trigger data item of a service.

typedef struct _SERVICE_TRIGGER_SPECIFIC_DATA_ITEM {

 DWORD dwDataType;

 [range(0, 1024)] DWORD cbData;

45 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [size_is(cbData)] PBYTE pData;

} SERVICE_TRIGGER_SPECIFIC_DATA_ITEM,

 *PSERVICE_TRIGGER_SPECIFIC_DATA_ITEM;

dwDataType: The type of trigger data. This MUST be one of the following values.

Value Meaning

0x00000001 SERVICE_TRIGGER_DATA_TYPE_BINARY

0x00000002 SERVICE_TRIGGER_DATA_TYPE_STRING

cbData: Size in bytes of the data in pData.

pData: Trigger data. When dwDataType is set equal to 0x00000002

(SERVICE_TRIGGER_DATA_TYPE_STRING), the encoding is Unicode string and includes a

terminating null character. This string can contain data in the format of a sequence of null-
terminated strings, terminated by an empty string (\0).

2.2.53 SERVICE_TRIGGER

The SERVICE_TRIGGER<37> structure contains information about one trigger of a service.

typedef struct _SERVICE_TRIGGER {

 DWORD dwTriggerType;

 DWORD dwAction;

 GUID* pTriggerSubtype;

 [range(0, 64)] DWORD cDataItems;

 [size_is(cDataItems)] PSERVICE_TRIGGER_SPECIFIC_DATA_ITEM pDataItems;

} SERVICE_TRIGGER,

 *PSERVICE_TRIGGER;

dwTriggerType: The type of trigger. This MUST be one of the following values.

Value Meaning

0x00000001 SERVICE_TRIGGER_TYPE_DEVICE_INTERFACE_ARRIVAL

The event is triggered when a device of the specified device interface class

arrives or is present when the system starts. This trigger event is commonly used to

start a service.

Interface arrival occurs when a device belonging to a device interface class has

been inserted.

The pTriggerSubtype member specifies the device interface class GUID, as

defined in [MS-DTYP] section 2.3.4. These GUIDs are defined in device-specific

header files provided with the Windows Driver Kit (WDK) [MSDN-WinDriverKit].

The pDataItems member specifies one or more hardware ID and compatible ID

strings for the device interface class. Strings MUST be Unicode. If more than one

string is specified, the event is triggered if any one of the strings matches. For

example, the Wpdbusenum service is started when a device of device interface class

GUID_DEVINTERFACE_DISK {53f56307-b6bf-11d0-94f2-00a0c91efb8b} and a

hardware ID string of "USBSTOR\GenDisk" arrives.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151330

46 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000002 SERVICE_TRIGGER_TYPE_IP_ADDRESS_AVAILABILITY

The event is triggered when the first IP address on the TCP/IP networking stack

becomes available or the last IP address on the stack becomes unavailable. This

trigger event can be used to start or stop a service.

The pTriggerSubtype member specifies

NETWORK_MANAGER_FIRST_IP_ADDRESS_ARRIVAL_GUID or

NETWORK_MANAGER_LAST_IP_ADDRESS_REMOVAL_GUID.

The pDataItems member is not used.

0x00000003 SERVICE_TRIGGER_TYPE_DOMAIN_JOIN

The event is triggered when the computer joins or leaves a domain. This trigger

event can be used to start or stop a service.

The pTriggerSubtype member specifies DOMAIN_JOIN_GUID or

DOMAIN_LEAVE_GUID.

The pDataItems member is not used.

0x00000004 SERVICE_TRIGGER_TYPE_FIREWALL_PORT_EVENT

The event is triggered when a firewall port is opened or approximately 60 seconds

after the firewall port is closed. This trigger event can be used to start or stop a

service.

The pTriggerSubtype member specifies FIREWALL_PORT_OPEN_GUID or

FIREWALL_PORT_CLOSE_GUID.

The pDataItems member specifies the port, the protocol, and optionally the

executable path and user information (SID string or name) of the service listening

on the event. The "RPC" token can be used in place of the port to specify any

listening socket used by RPC. The "system" token can be used in place of the

executable path to specify ports created by and listened on by the Windows kernel.

The event is triggered only if all strings match. For example, if MyService hosted

inside Svchost.exe is to be trigger-started when port UDP 5001 opens, the trigger-

specific data would be the Unicode representation of

"5001\0UDP\0%systemroot%\system32\svchost.exe\0MyService\0\0".

0x00000005 SERVICE_TRIGGER_TYPE_GROUP_POLICY

The event is triggered when a machine policy or user policy change occurs. This

trigger event is commonly used to start a service.

The pTriggerSubtype member specifies MACHINE_POLICY_PRESENT_GUID or

USER_POLICY_PRESENT_GUID.

The pDataItems member is not used.

0x00000020 SERVICE_TRIGGER_TYPE_CUSTOM

The event is a custom event generated by an Event Tracing for Windows (ETW)

provider. This trigger event can be used to start or stop a service.

The pTriggerSubtype member specifies the event provider's GUID.

The pDataItems member specifies trigger-specific data defined by the provider.

dwAction: The type of action to be taken on the trigger arrival. This MUST be one of the
following values.

Value Meaning

0x00000001 SERVICE_TRIGGER_ACTION_SERVICE_START

47 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000002 SERVICE_TRIGGER_ACTION_SERVICE_STOP

pTriggerSubtype: Points to a GUID that identifies the trigger event subtype. The value of this
member depends on the value of the dwTriggerType member.

If dwTriggerType is SERVICE_TRIGGER_TYPE_CUSTOM, pTriggerSubtype is the GUID that
identifies the custom event provider.

If dwTriggerType is SERVICE_TRIGGER_TYPE_DEVICE_INTERFACE_ARRIVAL,
pTriggerSubtype is the GUID that identifies the device interface class.

For other trigger event types, pTriggerSubtype can be one of the following values.

Value Meaning

DOMAIN_JOIN_GUID

1ce20aba-9851-4421-9430-1ddeb766e809

The event is triggered when the computer joins

a domain. The dwTriggerType member MUST

be SERVICE_TRIGGER_TYPE_DOMAIN_JOIN.

DOMAIN_LEAVE_GUID

ddaf516e-58c2-4866-9574-c3b615d42ea1

The event is triggered when the computer

leaves a domain. The dwTriggerType member

MUST be

SERVICE_TRIGGER_TYPE_DOMAIN_JOIN.

FIREWALL_PORT_OPEN_GUID

b7569e07-8421-4ee0-ad10-86915afdad09

The event is triggered when the specified

firewall port is opened. The dwTriggerType

member MUST be

SERVICE_TRIGGER_TYPE_FIREWALL_PORT_EVE

NT.

FIREWALL_PORT_CLOSE_GUID

a144ed38-8e12-4de4-9d96-e64740b1a524

The event is triggered approximately 60 seconds

after the specified firewall port is closed. The

dwTriggerType member MUST be

SERVICE_TRIGGER_TYPE_FIREWALL_PORT_EVE

NT.

MACHINE_POLICY_PRESENT_GUID

659FCAE6-5BDB-4DA9-B1FF-CA2A178D46E0

The event is triggered when the machine policy

has changed. The dwTriggerType member

MUST be

SERVICE_TRIGGER_TYPE_GROUP_POLICY.

NETWORK_MANAGER_FIRST_IP_ADDRESS_ARRIVA

L_GUID

4f27f2de-14e2-430b-a549-7cd48cbc8245

The event is triggered when the first IP address

on the TCP/IP networking stack becomes

available. The dwTriggerType member MUST

be

SERVICE_TRIGGER_TYPE_IP_ADDRESS_AVAILA

BILITY.

NETWORK_MANAGER_LAST_IP_ADDRESS_REMOVA

L_GUID

cc4ba62a-162e-4648-847a-b6bdf993e335

The event is triggered when the last IP address

on the TCP/IP networking stack becomes

unavailable. The dwTriggerType member

MUST be

SERVICE_TRIGGER_TYPE_IP_ADDRESS_AVAILA

BILITY.

USER_POLICY_PRESENT_GUID The event is triggered when the user policy has

48 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

54FB46C8-F089-464C-B1FD-59D1B62C3B50 changed. The dwTriggerType member MUST

be SERVICE_TRIGGER_TYPE_GROUP_POLICY.

cDataItems: Number of data items in the pDataItems array.

pDataItems: Array of SERVICE_TRIGGER_SPECIFIC_DATA_ITEM structures.

2.2.54 SERVICE_TRIGGER_INFO

The SERVICE_TRIGGER_INFO<38> structure contains trigger information about a service.

typedef struct _SERVICE_TRIGGER_INFO {

 [range(0, 64)] DWORD cTriggers;

 [size_is(cTriggers)] PSERVICE_TRIGGER pTriggers;

 PBYTE pReserved;

} SERVICE_TRIGGER_INFO,

 *PSERVICE_TRIGGER_INFO;

cTriggers: Number of items in the pTriggers array.

pTriggers: Array of triggers each element of type SERVICE_TRIGGER.

pReserved: Reserved, MUST be NULL.

2.2.55 SERVICE_PREFERRED_NODE_INFO

The server MUST support initializing and executing a given service within a specified node when the

server is running on a system supporting Non-Uniform Memory Access (NUMA) technology [MSDN-
NUMA]. The SERVICE_PREFERRED_NODE_INFO<39> structure defines the preferred node of a

service.

typedef struct _SERVICE_PREFERRED_NODE_INFO {

 USHORT usPreferredNode;

 BOOLEAN fDelete;

} SERVICE_PREFERRED_NODE_INFO,

 *LPSERVICE_PREFERRED_NODE_INFO;

usPreferredNode: The preferred node number.

fDelete: If the preferred NUMA node information of the service should be deleted, set to 1;
otherwise set to 0.

2.2.56 SERVICE_RUNLEVEL_INFO

The SERVICE_RUNLEVEL_INFO structure is used to set the lowest priority (run level) at which a
service can execute. The notion of run level is currently not exposed by any API, so setting the run
level for a service has no practical use.

typedef struct _SERVICE_RUNLEVEL_INFO {

 DWORD eLowestRunLevel;

http://go.microsoft.com/fwlink/?LinkId=151239
http://go.microsoft.com/fwlink/?LinkId=151239

49 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

} SERVICE_RUNLEVEL_INFO,

 *PSERVICE_RUNLEVEL_INFO;

eLowestRunLevel: The lowest priority (run level) at which a service can execute.

2.2.57 SERVICE_MANAGEDACCOUNT_INFO

The SERVICE_MANAGEDACCOUNT_INFO structure is used to set whether the account used to
run the service is a managed service account. Managed service accounts are defined in [MS-ADSC]
section 2.138.

typedef struct _SERVICE_MANAGEDACCOUNT_INFO {

 BOOLEAN fIsManagedAccount;

} SERVICE_MANAGEDACCOUNT_INFO,

 *PSERVICE_MANAGEDACCOUNT_INFO;

fIsManagedAccount: If the account used for the service is managed, set to 1. Otherwise set to

0.

2.2.58 svcctl Interface Constants

The following are constants that are used by the svcctl interface.

Constant/value Description

MAX_SERVICE_NAME_LENGTH

256

This constant is the maximum length of a service name. It is

defined as an unsigned short. The length does not include the

terminating null character.

SC_MAX_ACCOUNT_NAME_LENGTH

2048

This constant is the maximum size of the account name strings. It

is defined as an unsigned short. The length includes the

terminating null character.

SC_MAX_ARGUMENT_LENGTH

1024

This constant is the maximum size of the argument strings. It is

defined as an unsigned short. The length includes the

terminating null character.

SC_MAX_ARGUMENTS

1024

This constant is the maximum length of the argc parameter of the

RStartServiceA (section 3.1.4.30) and RStartServiceW

(section 3.1.4.19) RPCs. It is defined as an unsigned short.

SC_MAX_COMMENT_LENGTH

128

This constant is the maximum size of the comment strings. It is

defined as an unsigned short. The length includes the

terminating null character.

SC_MAX_COMPUTER_NAME_LENGTH

1024

This constant is the maximum size of the computer name strings.

It is defined as an unsigned short. The length includes the

terminating null character.

SC_MAX_DEPEND_SIZE

4096

This constant is the maximum size in bytes of the dependency

strings, which describe the set of startup order dependencies for a

service. It is defined as an unsigned short. The length includes

two terminating null characters.

%5bMS-ADSC%5d.pdf
%5bMS-DTYP%5d.pdf

50 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Constant/value Description

SC_MAX_NAME_LENGTH

257

This constant is the maximum size in bytes of the name strings. It

is defined as an unsigned short. The length includes the

terminating null character.

SC_MAX_PATH_LENGTH

32768

This constant is the maximum size of the path strings. It is defined

as an unsigned short. The length includes the terminating null

character.

SC_MAX_PWD_SIZE

514

This constant is the maximum size of the password strings. It is

defined as an unsigned short. The length includes the

terminating null character.

2.2.59 Common Error Codes

Unless specified explicitly, the methods in the svcctl interface return 0 on success and a nonzero
implementation-specific value on failure in the return code of the response. All failure values MUST

be treated as equivalent for protocol purposes and SHOULD be simply passed back to the invoking

application.

51 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Protocol Details

The following sections specify details of the Service Control Manager Remote Protocol, including
abstract data models, interface method syntax, and message processing rules.

The client side of this protocol is simply a pass-through. That is, no additional timers or other state
is required on the client side of this protocol. Calls made by the higher-layer protocol or application
are passed directly to the transport, and the results returned by the transport are passed directly
back to the higher-layer protocol or application.

3.1 Server Details

The Service Control Manager Remote Protocol server handles client requests for any of the
messages specified in section 3.1.4 and operates on services on the server. For each of those
messages, the behavior of the server is specified in section 3.1.4.

3.1.1 Abstract Data Model

Services are programs that execute on a machine whose life cycle and execution properties are

governed by the rules defined by the SCM. The state diagram that models these rules follows.

Figure 1: State Diagram whose life cycle and execution properties are governed by the
rules defined by the SCM

52 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

From state To state Cause

SERVICE_STOPPED SERVICE_RUNNING
The client calls the StartService

function to start the service. For
more information, see [MSDN-
STARTSERVICE].

The server started the service at

system start.

SERVICE_STOPPED SERVICE_START_PENDING
The client calls the StartService

function to start the service. For
more information, see [MSDN-
STARTSERVICE].

The service asks the server to

change its service status to
SERVICE_START_PENDING status
using the SetServiceStatus
function if it requires more time to
initialize before it can handle
requests. For more information,
see [MSDN-SetSvcStatus].

SERVICE_START_PENDING SERVICE_RUNNING
The service asks the server to set

its service status to
SERVICE_RUNNING using the
SetServiceStatus function when
it is ready to handle requests. For
more information, see [MSDN-
SetSvcStatus].

SERVICE_START_PENDING SERVICE_STOP_PENDING
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOP_PENDING using
the SetServiceStatus function
when it receives a stop request
during initialization and requires
time to stop. For more
information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_START_PENDING SERVICE_STOPPED
A client calls the ControlService

http://go.microsoft.com/fwlink/?LinkId=90137
http://go.microsoft.com/fwlink/?LinkId=90137
http://go.microsoft.com/fwlink/?LinkId=90137
http://go.microsoft.com/fwlink/?LinkId=90137
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504

53 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

From state To state Cause

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOPPED using the
SetServiceStatus function if it
receives a stop request during
initialization and is ready to stop.
For more information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_STOP_PENDING SERVICE_STOPPED
The service asks the server to set

its service status to
SERVICE_STOPPED using the
SetServiceStatus function when
it is ready to stop. For more
information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_RUNNING SERVICE_PAUSED
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_PAUSE
to pause the service. The server
sets the service's status to
SERVICE_PAUSED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_PAUSED using the
SetServiceStatus function if it is
ready to pause. Otherwise, the
service asks the server to set its
service status to
SERVICE_PAUSE_PENDING. For
more information, see [MSDN-
SetSvcStatus].

SERVICE_RUNNING SERVICE_PAUSE_PENDING
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_PAUSE
to pause the service. The server
sets the service's status to

http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504

54 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

From state To state Cause

SERVICE_PAUSED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_PAUSE_PENDING using
the SetServiceStatus function if
it receives a pause request and
requires more time to pause. For
more information, see [MSDN-
SetSvcStatus].

SERVICE_RUNNING SERVICE_STOPPED
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOPPED using the
SetServiceStatus function if it
receives a stop request and is
ready to stop. For more
information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_RUNNING SERVICE_STOP_PENDING
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its status to
SERVICE_STOP_PENDING using
the SetServiceStatus function if
it receives a stop request and
requires more time to stop. For
more information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_PAUSE_PENDING SERVICE_PAUSED
The service asks the server to set

http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504

55 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

From state To state Cause

its service status to
SERVICE_PAUSED using the
SetServiceStatus function if it is
ready to pause. For more
information, see [MSDN-
SetSvcStatus].

SERVICE_PAUSE_PENDING SERVICE_STOP_PENDING
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOP_PENDING using
the SetServiceStatus function if
it receives a stop request while it
is preparing to pause and requires
more time to stop. For more
information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_PAUSE_PENDING SERVICE_STOPPED
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOPPED using the
SetServiceStatus function when
it is ready to stop. For more

information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_PAUSED SERVICE_RUNNING
A client calls the ControlService

or ControlServiceEx functions
with
SERVICE_CONTROL_CONTINUE to
resume a paused service. The
server sets the service's status to
SERVICE_RUNNING. For more

http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504

56 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

From state To state Cause

information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_CONTINUE_PENDING
using the SetServiceStatus
function. For more information,
see [MSDN-SetSvcStatus].

SERVICE_PAUSED SERVICE_CONTINUE_PENDING
A client calls the ControlService

or ControlServiceEx functions
with
SERVICE_CONTROL_CONTINUE to
resume a paused service. The
server sets the service's status to
SERVICE_RUNNING. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_CONTINUE_PENDING
using the SetServiceStatus
function if it receives a continue
request while it is paused and
requires more time to resume. For
more information, see [MSDN-
SetSvcStatus].

SERVICE_PAUSED SERVICE_STOP_PENDING
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOP_PENDING using
the SetServiceStatus function if

it receives a stop request while it
is paused and requires more time
to stop. For more information, see
[MSDN-SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_PAUSED SERVICE_STOPPED
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to

http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504

57 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

From state To state Cause

SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOPPED using the
SetServiceStatus function if it
receives a stop request while it is
paused and is ready to stop. For
more information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_CONTINUE_PENDING SERVICE_RUNNING
The service asks the server to set

its service status to
SERVICE_RUNNING using the
SetServiceStatus function if it is
ready to resume. For more
information, see [MSDN-
SetSvcStatus].

SERVICE_CONTINUE_PENDING SERVICE_STOP_PENDING
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

its service status to
SERVICE_STOP_PENDING using
the SetServiceStatus function if
it receives a stop request while it
is resuming and requires more
time to stop. For more
information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

SERVICE_CONTINUE_PENDING SERVICE_STOPPED
A client calls the ControlService

or ControlServiceEx functions
with SERVICE_CONTROL_STOP to
stop the service. The server sets
the service's status to
SERVICE_STOPPED. For more
information, see [MSDN-CtrlSvc]
and [MSDN-CtrlSvcEx].

The service asks the server to set

http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157503
http://go.microsoft.com/fwlink/?LinkId=157502

58 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

From state To state Cause

its service status to
SERVICE_STOPPED using the
SetServiceStatus function if it
receives a stop request while it is
resuming and is ready to stop. For
more information, see [MSDN-
SetSvcStatus].

The server stops a service at

system shutdown.

The Service Control Manager Remote Protocol is used to manage these services on a remote
machine by operating on the SCM on that machine.

The Service Control Manager maintains the following ADM elements.

Value Meaning

SCM database A collection of service records.

SecurityDescriptor A security descriptor, as specified in [MS-AZOD] section 1.1.1.3, that is used to

control an access to the SCM database.

GroupList An ordered list of strings that services may specify as a ServiceGroup.

BootAccepted A flag indicating whether a successful call to RNotifyBootConfigStatus has already

been made to the server.

This element is not accessible via any method and is internal to the protocol

implementation.

The SCM database is used by the Service Control Manager to add, modify, or configure services.
Updates to the database are atomic. In the database there is a unique record, known as the service

record, used to represent each installed service. A unique service name is used as the key for each
service record.

The Service Record maintains the following ADM elements.

Value Meaning

ServiceName A unique name for the service.

Used as the key for the service record in the SCM database.

The string has a maximum length of

SC_MAX_NAME_LENGTH.

Null and empty strings are not permitted.

The string is null terminated.

The forward slash, back slash, comma, and space characters

are illegal in service names.

The case of the characters is preserved in the SCM database;

however, service name comparisons are always case

http://go.microsoft.com/fwlink/?LinkId=157504
http://go.microsoft.com/fwlink/?LinkId=157504
%5bMS-GLOS%5d.pdf
%5bMS-AZOD%5d.pdf

59 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

insensitive.

DisplayName Service display name.

ANSI and Unicode character sets are supported.

This string has a maximum length of

SC_MAX_NAME_LENGTH.

Null and empty strings are permitted. When not null, the

string has to be null terminated.

The name is case-preserved in the Service Control Manager.

Display name comparisons are always case-insensitive.

Can specify a localized string using the following format:<40>

@[path\]dllname,-strID

The string with identifier strID is loaded from dllname; the

path is optional.

The DisplayName cannot match any other DisplayName or

another ServiceName. The DisplayName can match the

ServiceName if it they both refer to the same service.

Description Description of the service.

ANSI and Unicode character sets are supported.

This string has a maximum length of 8192 characters.

Null and empty strings are permitted. When not null, the

string has to be null terminated.

DependOnService Service that starts before this service.

ANSI and Unicode character sets are supported.

This string has a maximum length of the size of

SC_MAX_DEPEND_SIZE.

Null and empty strings are permitted. When not null, the

string has to be double null terminated.

Multiple service names are separated by a null.

Direct or indirect circular dependencies on the same service

are not allowed.

ErrorControl Severity of the error if this service fails to start during startup.

For the supported values, see dwErrorControl in section 3.1.4.11.

FailureActions Actions that the service controller should take on each failure of

the service.

These actions are queried and set using

SERVICE_FAILURE_ACTIONSA (section 2.2.39) and

SERVICE_FAILURE_ACTIONSW (section 2.2.40) via the

60 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

RQueryServiceConfig2A (section 3.1.4.36),

RQueryServiceConfig2W (section 3.1.4.37),

RChangeServiceConfig2A (section 3.1.4.34), and

RChangeServiceConfig2W (section 3.1.4.35) server

methods.

ServiceGroup Name of the service group the service belongs to for the

purposes of load ordering. Each service can optionally specify

only one group name.

ImagePath Full qualified path to the service binary file.

ObjectName If the service is a user-mode program, the name of the account

under which the service should execute. If the service is a driver,

the name of the driver object that IO manager creates for the

driver in the ObjectManager namespace.

Password Password associated with the account specified in ObjectName.

RequiredPrivileges Required privileges for the service. Privileges determine the type

of system operations that can be performed. The privilege

constants are detailed in [MS-LSAD] Privilege Data Model

(section 3.1.1.2.1).

ServiceSidType Type of service security identifier (SID).

FailureActionsOnNonCrashFailures Failure action setting of a service that determines when

FailureActions are to be executed.

DependOnGroup Service groups that MUST be started before this service.

Start Defines when to start the service.

Type Type of service.

TriggerInfo Trigger setting of the service.<41>

PreferredNode Preferred node setting of the service.<42>

Tag A number that is unique within the Group. Refer to the definition

of Group as defined previously in this table.

For driver services that have SERVICE_BOOT_START or

SERVICE_SYSTEM_START start types [see dwStartType in

RChangeServiceConfigW (section 3.1.4.11), RCreateServiceW

(section 3.1.4.12), RChangeServiceConfigA (section 3.1.4.22),

RCreateServiceA (section 3.1.4.23), and

RCreateServiceWOW64A (section 3.1.4.41)], the server starts

each service based on its Tag's position within the Group.

SecurityDescriptor A security descriptor, as specified in [MS-AZOD] section 1.1.1.3,

that describes the client access rights for changing service

configuration.

ServiceStatus The server maintains a SERVICE_STATUS (section 2.2.47) to

keep track of the service runtime information.

HandleCount Counter for the number of RPC context handles currently created

for this service record.

%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-AZOD%5d.pdf

61 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

This element is not accessible via any method and is internal to

the protocol implementation.

Deleted The flag that is set when the service record has been marked for

deletion.

This element is not accessible via any method and is internal to

the protocol implementation.

3.1.2 Timers

None.

3.1.3 Initialization

The Service Control Manager Remote Protocol server is initialized by registering the RPC interface

and listening on the RPC well-known endpoint, as specified in section 2.1. The server MUST then

wait for Service Control Manager Remote Protocol clients to establish a connection.

3.1.4 Message Processing Events and Sequencing Rules

All Service Control Manager Remote Protocol operations begin with the client connection to the
remote SCM and the client request to open the SCM database. After this database is opened, an RPC
context handle is associated with this opened database, and this handle is returned to the client.
The client can then perform operations on this database; for example, enumerate a list of existing

services, open existing services, or install new services using this handle.

To operate on a service, the client MUST first request that the service be opened. After this service
is opened, an RPC context handle is associated with this opened service and this handle is returned
to the client. The client can then perform operations on the service; for example, change
configuration, start, or stop.

When opening the database or a service, the server MUST open it with the access rights requested
by the client if the client has sufficient permissions for the requested operation.

Note that the server SHOULD not open if the client does not have sufficient access rights for the
requested operation. Similarly, the server MUST fail specific operations if the database or the service
was not opened with sufficient access rights.

The access rights are represented as a bit field, and in addition to the standard access rights, as
specified in ACCESS_MASK of [MS-DTYP], the Service Control Manager Remote Protocol MUST
support the following access rights.

Value Meaning

SERVICE_ALL_ACCESS

0x000F01FF

In addition to all access rights in this table, SERVICE_ALL_ACCESS

includes Delete (DE), Read Control (RC), Write DACL (WD), and

Write Owner (WO) access, as specified in ACCESS_MASK (section

2.4.3) of [MS-DTYP].

SERVICE_CHANGE_CONFIG

0x00000002

Required to change the configuration of a service.

SERVICE_ENUMERATE_DEPENDENTS Required to enumerate the services installed on the server.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

62 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000008

SERVICE_INTERROGATE

0x00000080

Required to request immediate status from the service.

SERVICE_PAUSE_CONTINUE

0x00000040

Required to pause or continue the service.

SERVICE_QUERY_CONFIG

0x00000001

Required to query the service configuration.

SERVICE_QUERY_STATUS

0x00000004

Required to request the service status.

SERVICE_START

0x00000010

Required to start the service.

SERVICE_STOP

0x00000020

Required to stop the service.

SERVICE_USER_DEFINED_CONTROL

0x00000100

Required to specify a user-defined control code.

SERVICE_SET_STATUS

0x00008000

Required for a service to set its status.

Specific access types for Service Control Manager object:

Value Meaning

SC_MANAGER_LOCK

0x00000008

Required to lock the SCM database.

SC_MANAGER_CREATE_SERVICE

0x00000002

Required for a service to be created.

SC_MANAGER_ENUMERATE_SERVICE

0x00000004

Required to enumerate a service.

SC_MANAGER_CONNECT

0x00000001

Required to connect to the SCM.

SC_MANAGER_QUERY_LOCK_STATUS

0x00000010

Required to query the lock status of the SCM database.

SC_MANAGER_MODIFY_BOOT_CONFIG

0x0020

Required to call the RNotifyBootConfigStatus method.

The remainder of this section describes the server behavior for the RPC methods supported by the

Service Control Manager Remote Protocol. The protocol clients can invoke the RPC methods
specified in this section in any order after a Service Control Manager Remote Protocol session is
established with the server. The outcome of the calls depends on the parameters passed to each of

63 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

those calls. Clients and servers SHOULD<43> support multiplexed connections, as specified in [MS-
RPCE] section 3.3.1.5.8.

Methods in RPC Opnum Order

Method Description

RCloseServiceHandle Closes handles to the SCM and any other associated services.

Opnum: 0

RControlService Receives a control code for a specific service handle, as specified by

the client.

Opnum: 1

RDeleteService Marks the specified service for deletion from the SCM database.

Opnum: 2

RLockServiceDatabase Acquires a lock on a service database.

Opnum: 3

RQueryServiceObjectSecurity Returns a copy of the security descriptor associated with a service.

Opnum: 4

RSetServiceObjectSecurity Sets the security descriptor associated with a service.

Opnum: 5

RQueryServiceStatus Returns the current status of the specified service.

Opnum: 6

RSetServiceStatus Updates the SCM status information for the calling service.

Opnum: 7

RUnlockServiceDatabase Releases a lock on a service database.

Opnum: 8

RNotifyBootConfigStatus Reports the boot status to the SCM.

Opnum: 9

Opnum10NotUsedOnWire Reserved for local use.

Opnum: 10

RChangeServiceConfigW Changes the configuration parameters of a service.

Opnum: 11

RCreateServiceW Creates a service and adds it to the specified SCM database.

Opnum: 12

REnumDependentServicesW Returns the name and status of each service that depends on the

specified service.

Opnum: 13

REnumServicesStatusW Enumerates services in the specified SCM database.

Opnum: 14

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

64 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Method Description

ROpenSCManagerW Establishes a connection to the SCM on the specified computer and

opens the specified SCM database.

Opnum: 15

ROpenServiceW Opens a handle to an existing service.

Opnum: 16

RQueryServiceConfigW Returns the configuration parameters of the specified service.

Opnum: 17

RQueryServiceLockStatusW Returns the lock status of the specified SCM database.

Opnum: 18

RStartServiceW Starts a specified service.

Opnum: 19

RGetServiceDisplayNameW Returns the display name of the specified service.

Opnum: 20

RGetServiceKeyNameW Returns the key name of the specified service.

Opnum: 21

Opnum22NotUsedOnWire Reserved for local use.

Opnum: 22

RChangeServiceConfigA Changes the configuration parameters of a service.

Opnum: 23

RCreateServiceA Creates a service object and adds it to the specified SCM database.

Opnum: 24

REnumDependentServicesA Returns the name and status of each service that depends on the

specified service.

Opnum: 25

REnumServicesStatusA Enumerates services in the specified SCM database.

Opnum: 26

ROpenSCManagerA Opens a connection to the SCM from the client and opens the specified

SCM database.

Opnum: 27

ROpenServiceA Opens a handle to an existing service.

Opnum: 28

RQueryServiceConfigA Returns the configuration parameters of the specified service.

Opnum: 29

RQueryServiceLockStatusA Returns the lock status of the specified SCM database.

Opnum: 30

RStartServiceA Starts a specified service.

65 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Method Description

Opnum: 31

RGetServiceDisplayNameA Returns the display name of the specified service.

Opnum: 32

RGetServiceKeyNameA Returns the key name of the specified service.

Opnum: 33

Opnum34NotUsedOnWire Reserved for local use.

Opnum: 34

REnumServiceGroupW Returns the members of a service group.

Opnum: 35

RChangeServiceConfig2A Changes the optional configuration parameters of a service.

Opnum: 36

RChangeServiceConfig2W Changes the optional configuration parameters of a service.

Opnum: 37

RQueryServiceConfig2A Returns the optional configuration parameters of the specified service.

Opnum: 38

RQueryServiceConfig2W Returns the optional configuration parameters of the specified service.

Opnum: 39

RQueryServiceStatusEx Returns the current status of the specified service, based on the

specified information level.

Opnum: 40

REnumServicesStatusExA Enumerates services in the specified SCM database, based on the

specified information level.

Opnum: 41

REnumServicesStatusExW Enumerates services in the specified SCM database, based on the

specified information level.

Opnum: 42

Opnum43NotUsedOnWire Reserved for local use.

Opnum: 43

RCreateServiceWOW64A Creates a 32-bit service in a 64-bit memory frame with the path to the

file image automatically adjusted to point to the

"%windir%\syswow64" area of the system drive. This method accepts

ANSI strings, converting them to Unicode strings where required.

Opnum: 44

RCreateServiceWOW64W Creates a 32-bit service in a 64-bit memory frame with the path to the

file image automatically adjusted to point to the

"%windir%\syswow64" area of the system drive. This method directly

supports Unicode string values.

Opnum: 45

66 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Method Description

Opnum46NotUsedOnWire Reserved for local use.

Opnum: 46

RNotifyServiceStatusChange Allows the client to receive a notification when the specified service is

created or deleted or when its status changes.

Opnum: 47

RGetNotifyResults Returns notification information whenever the specified status change

occurs on a specified service.

Opnum: 48

RCloseNotifyHandle Unregisters the client from receiving future notifications from the

server for specified status changes on a specified service.

Opnum: 49

RControlServiceExA Receives a control code for a specific service.

Opnum: 50

RControlServiceExW Receives a control code for a specific service.

Opnum: 51

Opnum52NotUsedOnWire Reserved for local use.

Opnum: 52

Opnum53NotUsedOnWire Reserved for local use.

Opnum: 53

Opnum54NotUsedOnWire Reserved for local use.

Opnum: 54

Opnum55NotUsedOnWire Reserved for local use.

Opnum: 55

RQueryServiceConfigEx Returns the optional configuration parameters of the specified

service.<44>

Opnum: 56

All methods MUST NOT throw exceptions.

Note that gaps in the opnum numbering sequence represent opnums that MUST NOT<45> be used

over the wire.

3.1.4.1 RCloseServiceHandle (Opnum 0)

The RCloseServiceHandle method is called by the client. In response, the server releases the

handle to the specified service or the SCM database.

DWORD RCloseServiceHandle(

 [in, out] LPSC_RPC_HANDLE hSCObject

);

%5bMS-GLOS%5d.pdf

67 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

hSCObject: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to a

service record or to the SCM database that MUST have been created previously using one of

the open methods specified in section 3.1.4.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns the following error code.

Return value/code Description

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

0xFFFF75FD

The operation completed successfully. Additionally, the passed handle

was the last one created for the associated service record that was

previously used in a successful call to the

RNotifyServiceStatusChange (section 3.1.4.43) method.

0xFFFF75FE

The operation completed successfully. Additionally, the passed handle

was previously used in a successful call to the

RNotifyServiceStatusChange method.

In response to this request from the client, for a successful operation, the server MUST close the

handle to the service record or the SCM database specified by the hSCObject parameter specified in
the client request.

If hSCObject is the RPC control handle that has been created for the service record, the server
MUST decrement the HandleCount field of the service record. If the Deleted field of the service
record indicates that RDeleteService has been successfully called with the RPC control handle
created for the same service record, and HandleCount indicates that hSCObject is the last RPC
control handle created for this service record, the server MUST delete the service record.

3.1.4.2 RControlService (Opnum 1)

The RControlService method receives a control code for a specific service handle, as specified by
the client.

DWORD RControlService(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwControl,

 [out] LPSERVICE_STATUS lpServiceStatus

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously using one of the open methods
specified in section 3.1.4.

dwControl: Requested control code. MUST be one of the following values.

Value Meaning

SERVICE_CONTROL_CONTINUE

0x00000003

Notifies a paused service that it SHOULD resume. The

SERVICE_PAUSE_CONTINUE access right MUST have

been granted to the caller when the RPC control handle to

the service record was created. The service record MUST

have the SERVICE_ACCEPT_PAUSE_CONTINUE bit set in

68 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

the ServiceStatus.dwControlsAccepted field of the

service record.

SERVICE_CONTROL_INTERROGATE

0x00000004

Notifies a service that it SHOULD report its current status

information to the SCM. The SERVICE_INTERROGATE

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

SERVICE_CONTROL_NETBINDADD

0x00000007

Notifies a service that there is a new component for

binding. The SERVICE_PAUSE_CONTINUE access right

MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDDISABLE

0x0000000A

Notifies a network service that one of its bindings has

been disabled. The SERVICE_PAUSE_CONTINUE access

right MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDENABLE

0x00000009

Notifies a network service that a disabled binding has

been enabled. The SERVICE_PAUSE_CONTINUE access

right MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDREMOVE

0x00000008

Notifies a network service that a component for binding

has been removed. The SERVICE_PAUSE_CONTINUE

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

The service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_PARAMCHANGE

0x00000006

Notifies a service that its startup parameters have

changed. The SERVICE_PAUSE_CONTINUE access right

MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_PARAMCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_PAUSE

0x00000002

Notifies a service that it SHOULD pause. The

SERVICE_PAUSE_CONTINUE access right MUST have

been granted to the caller when the RPC control handle to

the service record was created. The service record MUST

69 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

have the SERVICE_ACCEPT_PAUSE_CONTINUE bit set in

the ServiceStatus.dwControlsAccepted field of the

service record.

SERVICE_CONTROL_STOP

0x00000001

Notifies a service that it SHOULD stop. The

SERVICE_STOP access right MUST have been granted to

the caller when the RPC control handle to the service

record was created. The service record MUST have the

SERVICE_ACCEPT_STOP bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

Services can define their own codes in the range 128-255.

lpServiceStatus: Pointer to a SERVICE_STATUS (section 2.2.47) structure that receives the
latest service status information. The returned information reflects the most recent status that

the service reported to the SCM.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The required access right had not been granted to the

caller when the RPC context handle to the service

record was created.

1051

ERROR_DEPENDENT_SERVICES_RUNNING

The service cannot be stopped because other running

services are dependent on it.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

The requested control code is undefined

1052

ERROR_INVALID_SERVICE_CONTROL

The requested control code is not valid, or it is

unacceptable to the service.

1053

ERROR_SERVICE_REQUEST_TIMEOUT

The process for the service was started, but it did not

respond within an implementation-specific time-

out.<46>

1061

ERROR_SERVICE_CANNOT_ACCEPT_CTRL

The requested control code cannot be sent to the

service because the ServiceStatus.dwCurrentState in

the service record is SERVICE_START_PENDING or

SERVICE_STOP_PENDING.

1062

ERROR_SERVICE_NOT_ACTIVE

The service has not been started, or the

ServiceStatus.dwCurrentState in the service record is

SERVICE_STOPPED.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

70 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

In response to this request from the client, for a successful operation, the SCM MUST send the
control specified in the dwControl parameter to the service created for the service record identified

by the hService parameter of the client request if the type of the service record is
SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS.

If the type of the service record is SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER,
and dwControl parameter is not SERVICE_CONTROL_INTERROGATE or SERVICE_CONTROL_STOP,
the SCM MUST fail the request with ERROR_INVALID_SERVICE_CONTROL.

If the type of the service record is SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER,
the SCM MUST query the current status of the driver from the IO manager and set the
ServiceStatus.dwCurrentState of the service record to SERVICE_RUNNING if driver is loaded and
SERVICE_STOPPED if it is not.

If the dwControl is not SERVICE_CONTROL_INTERROGATE and type of the service record is
SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER and the driver is managed by the PnP
subsystem, the SCM MUST fail the request with ERROR_INVALID_SERVICE_CONTROL.

If the ServiceStatus.dwControlsAccepted field of the service record does not have a required
SERVICE_ACCEPT_xxx bit set, the SCM MUST fail the request with
ERROR_INVALID_SERVICE_CONTROL.

In response to this request from the client, for a successful operation the server MUST set the
ServiceStatus from the service record identified by the hService parameter of the request in the
lpServiceStatus parameter.

The server SHOULD fill in the lpServiceStatus structure only when RControlService returns one of
the following error codes: NO_ERROR, ERROR_INVALID_SERVICE_CONTROL,
ERROR_SERVICE_CANNOT_ACCEPT_CTRL, ERROR_DEPENDENT_SERVICES_RUNNING, or
ERROR_SERVICE_NOT_ACTIVE.

3.1.4.3 RDeleteService (Opnum 2)

The RDeleteService method marks the specified service for deletion from the SCM database.

DWORD RDeleteService(

 [in] SC_RPC_HANDLE hService

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the service
record that MUST have been created previously, using one of the open methods specified in

section 3.1.4. The DELETE access right MUST have been granted to the caller when the RPC
context handle to the service record was created.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The DELETE access right had not been granted to the

caller when the RPC context handle to the service

record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

71 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService has already been called for the

service record identified by the hService parameter.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

The server MUST change the Start in the service record to SERVICE_DISABLED.

The server MUST set the Deleted field to true in the service record to indicate that the deletion is
pending.

The server MUST delete the service record when the last RPC context handle created for the service
has been closed by a call to the RCloseServiceHandle (section 3.1.4.1) function.

3.1.4.4 RLockServiceDatabase (Opnum 3)

The RLockServiceDatabase method acquires a lock on an SCM database.

DWORD RLockServiceDatabase(

 [in] SC_RPC_HANDLE hSCManager,

 [out] LPSC_RPC_LOCK lpLock

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created using one of the open methods specified in section 3.1.4. The
SC_MANAGER_LOCK access right must have been granted to the caller when the RPC context
handle was created.

lpLock: An LPSC_RPC_LOCK (section 2.2.5) data type that defines the handle to the resulting

database lock.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_LOCK access rights had not been

granted to the caller when the RPC context handle was

created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

1055

ERROR_SERVICE_DATABASE_LOCKED

The service database is locked.

In response to this request from the client, for a successful operation, the server SHOULD lock the
SCM database identified by the hSCManager parameter of the client request.<47>

After the database is locked, the server MUST respond with error code
ERROR_SERVICE_DATABASE_LOCKED (1055) for future RLockServiceDatabase,

RStartServiceW, and RStartServiceA RPCs. All other methods are unaffected.<48>

72 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the client holding the lock crashes or does not cleanly shut down, then an RPC context handle
rundown callback executes on the server to release the lock. See [MS-RPCE] section 3.3.3.2.1

Connection Time-out.

3.1.4.5 RQueryServiceObjectSecurity (Opnum 4)

The RQueryServiceObjectSecurity method returns a copy of the SECURITY_DESCRIPTOR
structure associated with a service object.

DWORD RQueryServiceObjectSecurity(

 [in] SC_RPC_HANDLE hService,

 [in] SECURITY_INFORMATION dwSecurityInformation,

 [out, size_is(cbBufSize)] LPBYTE lpSecurityDescriptor,

 [in, range(0, 1024*256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to a service

record or to the SCM database that MUST have been created previously using one of the open
methods specified in section 3.1.4.

dwSecurityInformation: A SECURITY_INFORMATION (section 2.2.1) type definition that
specifies the security information being requested.

lpSecurityDescriptor: A pointer to a buffer that contains a copy of the

SECURITY_DESCRIPTOR structure (as specified in [MS-DTYP] section 2.4.6) for the
specified service object.

cbBufSize: Size, in bytes, of the buffer to which the lpSecurityDescriptor parameter points.

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to return all the requested SECURITY_DESCRIPTOR
information if the method fails.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The required access rights had not been granted to the caller

when the RPC context handle was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

The client MAY provide a combination of one or more SECURITY_INFORMATION bit flags for
dwSecurityInformation.

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

73 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If SACL_SECURITY_INFORMATION is specified for the dwSecurityInformation parameter, then an
ACCESS_SYSTEM_SECURITY right MUST have been granted to the caller when hService was

created. (See AS in ACCESS_MASK in [MS-DTYP] 2.4.3.)

If DACL_SECURITY_INFORMATION, LABEL_SECURITY_INFORMATION,

OWNER_SECURITY_INFORMATION, or GROUP_SECURITY_INFORMATION is specified for the
dwSecurityInformation parameter, then a READ_CONTROL right MUST have been granted to the
caller when hService was created. (See RC in ACCESS_MASK in [MS-DTYP] 2.4.3.)

In response to this request from the client, for a successful operation the server MUST return a copy
of the SECURITY_DESCRIPTOR structure containing requested information obtained from the
SecurityDescriptor for the service record or the SCM database identified by the hService.

The server MUST return SECURITY_DESCRIPTOR in the buffer pointed to by the

lpSecurityDescriptor parameter. The information returned depends on the values requested by the
client in the dwSecurityInformation parameter.

The server MUST set the required buffer size, in bytes, in the pcbBytesNeeded parameter. If the

buffer pointed to by lpSecurityDescriptor is insufficient to hold all the configuration data, the server
MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122).

The server MUST return ERROR_INVALID_PARAMETER (87) if dwSecurityInformation contains

bits not defined for SECURITY_INFORMATION (section 2.2.1).

3.1.4.6 RSetServiceObjectSecurity (Opnum 5)

The RSetServiceObjectSecurity method sets the SECURITY_DESCRIPTOR structure associated
with a service object.

DWORD RSetServiceObjectSecurity(

 [in] SC_RPC_HANDLE hService,

 [in] SECURITY_INFORMATION dwSecurityInformation,

 [in, size_is(cbBufSize)] LPBYTE lpSecurityDescriptor,

 [in] DWORD cbBufSize

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to a service

record or to the SCM database that MUST have been created previously using one of the open
methods specified in section 3.1.4.

dwSecurityInformation: A SECURITY_INFORMATION (section 2.2.1) type definition that
specifies the security information being set.

lpSecurityDescriptor: A pointer to a buffer of bytes that contains the new security information.

cbBufSize: Size, in bytes, of the buffer pointed to by the lpSecurityDescriptor parameter.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The required access rights had not been granted to the

caller when the RPC context handle was created.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

74 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService method has been called with an

RPC context handle identifying the same service record

as the hService parameter for this call.

The client MAY provide a combination of one or more SECURITY_INFORMATION bit flags for
dwSecurityInformation.

If SACL_SECURITY_INFORMATION is specified via dwSecurityInformation, then an
ACCESS_SYSTEM_SECURITY right MUST have been granted to the caller when hService was

created. (See WD in ACCESS_MASK in [MS-DTYP] 2.4.3.

If LABEL_SECURITY_INFORMATION or OWNER_SECURITY_INFORMATION or
GROUP_SECURITY_INFORMATION is specified via dwSecurityInformation, then a WRITE_OWNER
right MUST have been granted to the caller when hService was created. (See WO in ACCESS_MASK
in [MS-DTYP] 2.4.3.)

If DACL_SECURITY_INFORMATION is specified via dwSecurityInformation, then a WRITE_DAC right
MUST have been granted to the caller when hService was created. (See WD in ACCESS_MASK in

[MS-DTYP] 2.4.3.)

In response to this request from the client, for a successful operation the server MUST apply the
information from the SECURITY_DESCRIPTOR structure specified in the lpSecurityDescriptor
parameter to the SecurityDescriptor associated with the SCM or the service record identified by the
hService parameter of the request.

3.1.4.7 RQueryServiceStatus (Opnum 6)

The RQueryServiceStatus method returns the current status of the specified service.

DWORD RQueryServiceStatus(

 [in] SC_RPC_HANDLE hService,

 [out] LPSERVICE_STATUS lpServiceStatus

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the service

record that MUST have been created previously using one of the open methods specified in
section 3.1.4. The SERVICE_QUERY_STATUS access right MUST have been granted to the
caller when the RPC context handle was created.

lpServiceStatus: Pointer to a SERVICE_STATUS (section 2.2.47) structure that contains the

status information for the service.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

75 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_QUERY_STATUS access right had not been

granted to the caller when the RPC context handle was

created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

3

ERROR_PATH_NOT_FOUND

The ImagePath of the service record identified by the

hService parameter does not exist.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

If the type of the service record is SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER,
the SCM must query the current status of the driver from the operating system and set the
ServiceStatus.dwCurrentState of the service record to SERVICE_RUNNING if driver is loaded and to

SERVICE_STOPPED if it is not.

In response to this request from the client, for a successful operation, the server MUST set the
ServiceStatus from the service record identified by the hService parameter of the request in the
lpServiceStatus parameter.

If no attempts to start the service for the service record identified by the hService parameter have
been made since the last boot, the server MUST set the dwWin32ExitCode member of the

lpServiceStatus parameter to 1077 ERROR_SERVICE_NEVER_STARTED.

3.1.4.8 RSetServiceStatus (Opnum 7)

The RSetServiceStatus method updates the SCM status information for the calling service.

DWORD RSetServiceStatus(

 [in] SC_RPC_HANDLE hServiceStatus,

 [in] LPSERVICE_STATUS lpServiceStatus

);

hServiceStatus: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
service record that MUST have been created previously using one of the open methods
specified in section 3.1.4. The SERVICE_SET_STATUS access right MUST have been granted to

the caller when the RPC context handle was created.

lpServiceStatus: Pointer to the SERVICE_STATUS (section 2.2.47) structure that contains the
latest status information for the service.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

6

ERROR_INVALID_HANDLE

Either the handle is no longer valid or the SERVICE_SET_STATUS

access rights had not been granted to the caller when the RPC context

handle was created.

13 The data provided in the lpServiceStatus parameter is invalid.

76 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_INVALID_DATA

The server MUST return ERROR_INVALID_DATA (13) if the following conditions are not true:

lpServiceStatus->dwCurrentState MUST be one of the following values:

SERVICE_STOPPED

SERVICE_START_PENDING

SERVICE_STOP_PENDING

SERVICE_RUNNING

SERVICE_CONTINUE_PENDING

SERVICE_PAUSE_PENDING

SERVICE_PAUSED

Only one of the following bits can be set if the SERVICE_INTERACTIVE_PROCESS bit is set in

lpServiceStatus->dwServiceType:

SERVICE_WIN32_OWN_PROCESS

SERVICE_WIN32_SHARE_PROCESS

SERVICE_WIN32

Only one of the following bits can be set if the SERVICE_INTERACTIVE_PROCESS bit is not set in

lpServiceStatus->dwServiceType:

SERVICE_DRIVER

SERVICE_WIN32

SERVICE_WIN32_OWN_PROCESS

SERVICE_WIN32_SHARE_PROCESS

If any bits other than these are set in lpServiceStatus->dwControlsAccepted:

SERVICE_ACCEPT_STOP

SERVICE_ACCEPT_PAUSE_CONTINUE

SERVICE_ACCEPT_SHUTDOWN

SERVICE_ACCEPT_PRESHUTDOWN

SERVICE_ACCEPT_PARAMCHANGE

SERVICE_ACCEPT_HARDWAREPROFILECHANGE

SERVICE_ACCEPT_NETBINDCHANGE

SERVICE_ACCEPT_POWEREVENT

77 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

SERVICE_ACCEPT_SESSIONCHANGE

In response to this request from the service, for a successful operation the server MUST update the
ServiceStatus with the status specified by the service in the lpServiceStatus parameter in the

service record identified by the hServiceStatus parameter of the client request.

In response to this request from the service, for a successful operation the server MUST transition
the service for the service record identified by the hService parameter to a new state if the current
value of ServiceStatus.dwCurrentState in the service record ServiceState is different from
lpServiceStatus->dwCurrentState (section 3.1.1).

3.1.4.9 RUnlockServiceDatabase (Opnum 8)

The RUnlockServiceDatabase method releases a lock on a service database.

DWORD RUnlockServiceDatabase(

 [in, out] LPSC_RPC_LOCK Lock

);

Lock: An LPSC_RPC_LOCK (section 2.2.5) data type that defines the database lock context

handle created by a previous call to the RLockServiceDatabase method.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns the following error code.

Return value/code Description

1071

ERROR_INVALID_SERVICE_LOCK

The specified RPC context handle is invalid.

In response to this request from the client, for a successful operation the server MUST unlock the
SCM database for the lock specified in the Lock parameter of the client request. Once the database

is unlocked, the server MUST stop responding with error code ERROR_SERVICE_DATABASE_LOCKED
(1055) for future RLockServiceDatabase, RStartServiceW, and RStartServiceA RPCs until the
database is locked again. All other methods are unaffected.<49>

3.1.4.10 RNotifyBootConfigStatus (Opnum 9)

The RNotifyBootConfigStatus method reports the boot status to the SCM.

DWORD RNotifyBootConfigStatus(

 [in, string, unique, range(0, SC_MAX_COMPUTER_NAME_LENGTH)]

 SVCCTL_HANDLEW lpMachineName,

 [in] DWORD BootAcceptable

);

lpMachineName: An SVCCTL_HANDLEW (section 2.2.3) data type that defines the handle that

contains the UNICODE string name of the server to be notified.

BootAcceptable: A value that specifies whether the configuration used when booting the system
is acceptable. MUST be one of the following values.

78 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000000 <

value

Server saves the configuration as the last-known good configuration.

0x00000000 Server immediately reboots, using the previously saved last-known good

configuration.

Return Values: The method returns ERROR_SUCCESS (0x00000000) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The caller does not have the

SC_MANAGER_MODIFY_BOOT_CONFIG access rights

granted in the SCM Security Descriptor.

1074

ERROR_ALREADY_RUNNING_LKG

The system is currently running with the last-known-good

configuration.

1076

ERROR_BOOT_ALREADY_ACCEPTED

The BootAccepted field of the SCM on the target machine

indicated that a successful call to RNotifyBootConfigStatus

has already been made.

In response to this request from the client, for a successful operation the server MUST either save
the current configuration as the last-known good configuration or MUST reboot the server by using
the previously saved last-known good configuration based on the value specified in the

BootAcceptable parameter of the client request.

In response to this request from the client, the server MUST set the BootAccepted field of the SCM
to true to indicate that a boot has been accepted. If the BootAccepted field of the SCM already
indicates that a boot has been accepted, the server MUST fail the request with
ERROR_BOOT_ALREADY_ACCEPTED.

If the BootAcceptable parameter is 0x00000000, the method does not return.

3.1.4.11 RChangeServiceConfigW (Opnum 11)

The RChangeServiceConfigW method changes a service's configuration parameters in the SCM
database.

DWORD RChangeServiceConfigW(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in, string, unique, range(0, SC_MAX_PATH_LENGTH)]

 wchar_t* lpBinaryPathName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpLoadOrderGroup,

 [in, out, unique] LPDWORD lpdwTagId,

 [in, unique, size_is(dwDependSize)]

 LPBYTE lpDependencies,

 [in, range(0, SC_MAX_DEPEND_SIZE)]

 DWORD dwDependSize,

 [in, string, unique, range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

79 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 wchar_t* lpServiceStartName,

 [in, unique, size_is(dwPwSize)]

 LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)]

 DWORD dwPwSize,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpDisplayName

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the service

record that MUST have been created previously, using one of the open methods specified in
section 3.1.4. The SERVICE_CHANGE_CONFIG access right MUST have been granted to the
caller when the RPC context handle to the service record was created.

dwServiceType: A Type value for the service record (section 3.1.1) that specifies the type of
service. This MUST be one of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

SERVICE_NO_CHANGE

0xFFFFFFFF

Service type does not change.

The following flag can also be combined with the value passed in dwServiceStartType:

Value Meaning

SERVICE_INTERACTIVE_PROCESS

0x00000100

The service can interact with the desktop.

dwStartType: A Start value for the service record (section 3.1.1) that specifies when to start
the service. This MUST be one of the following values.

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START Starts the service automatically during system startup.

80 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000002

SERVICE_DEMAND_START

0x00000003

Starts the service when a client requests the SCM to start the service.

SERVICE_DISABLED

0x00000004

Service cannot be started.

SERVICE_NO_CHANGE

0xFFFFFFFF

Service start type does not change.

dwErrorControl: An ErrorControl value for the service record (section 3.1.1) that specifies the

severity of the error if the service fails to start and determines the action that the SCM takes.
MUST be one of the following values.

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error and displays a message box, but continues

the startup operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error. If the last-known good configuration is being

started, the startup operation continues. Otherwise, the system is

restarted with the last-known good configuration.

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error if possible. If the last-known good

configuration is being started, the startup operation fails. Otherwise,

the system is restarted with the last-known good configuration.

SERVICE_NO_CHANGE

0xFFFFFFFF

Service error control type does not change.

lpBinaryPathName: An ImagePath value for the service record (section 3.1.1) as a pointer to a
null-terminated UNICODE string name. The pointer contains the fully qualified path to the
service binary file. The path MAY include arguments. If the path contains a space, it MUST be
quoted so that it is correctly interpreted. For example, "d:\\my share\\myservice.exe" should
be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A Group value for the service record (section 3.1.1) as a pointer to a null-

terminated UNICODE string that names the load-ordering group of which this service is a
member.

Specify NULL or an empty string if the service does not belong to a load-ordering group.

lpdwTagId: A Tag value for the service record (section 3.1.1) as a pointer to a variable that
receives a tag value. The value is unique to the group specified in the lpLoadOrderGroup

parameter.

lpDependencies: DependOnService and DependOnGroup values for the service record (section

3.1.1) as a pointer to an array of null-separated names of services or load ordering groups
that MUST start before this service. The array is doubly null-terminated. Load ordering group
names are prefixed with a "+" character (to distinguish them from service names). If the
pointer is NULL or if it points to an empty string, the service has no dependencies. Cyclic

81 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

dependency between services is not allowed. The character set is Unicode. Dependency on a
service means that this service can only run if the service it depends on is running.

Dependency on a group means that this service can run if at least one member of the group is
running after an attempt to start all members of the group.

dwDependSize: The size, in bytes, of the string specified by the lpDependencies parameter.

lpServiceStartName: An ObjectName value for the service record (section 3.1.1) as a pointer to
a null-terminated UNICODE string that specifies the name of the account under which the
service should run.

lpPassword: A Password value for the service record (section 3.1.1) as a pointer to a null-
terminated UNICODE string that contains the password of the account whose name was
specified by the lpServiceStartName parameter.

dwPwSize: The size, in bytes, of the password specified by the lpPassword parameter.

lpDisplayName: A DisplayName value for the service record (section 3.1.1) as a pointer to a

null-terminated UNICODE string that contains the display name that applications can use to
identify the service for its users.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_CHANGE_CONFIG access right had not

been granted to the caller when the RPC context handle

to the service record was created.

6

ERROR_INVALID_HANDLE

The handle specified is invalid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

1057

ERROR_INVALID_SERVICE_ACCOUNT

The user account name specified in the

lpServiceStartName parameter does not exist.

1059

ERROR_CIRCULAR_DEPENDENCY

A circular service dependency was specified.

1078

ERROR_DUPLICATE_SERVICE_NAME

The lpDisplayName matches either the ServiceName or

the DisplayName of another service record in the

service control manager database.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService has been called for the service

record identified by the hService parameter.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST use the
values from the appropriate parameters of the client request to update the service record identified
by the hService parameter in the SCM database:

If the client passes NULL for lpBinaryPathName, the server MUST keep the existing ImagePath

value.

82 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the client passes NULL for lpLoadOrderGroup, the server MUST keep the existing ServiceGroup

value.

If the client passes NULL for lpdwTagId, the server MUST keep the existing Tag value.

If the client passes NULL for lpDependencies, the server MUST keep the existing

DependOnService and DependOnGroup values.

If the client passes NULL for lpServiceStartName, the server MUST keep the existing ObjectName

value.

If the client passes NULL for lpPassword, the server MUST keep the existing Password value.

If the client passes NULL for lpDisplayName, the server MUST keep the existing DisplayName

value.

If the original service type is SERVICE_WIN32_OWN_PROCESS or
SERVICE_WIN32_SHARE_PROCESS, the server MUST fail the call if dwServiceType is set to

SERVICE_FILE_SYSTEM_DRIVER or SERVICE_KERNEL_DRIVER.<50>

If dwServiceType is set to SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS

and is combined with the SERVICE_INTERACTIVE_PROCESS bit, and the ObjectName field of the
service record is not equal to "LocalSystem", the server MUST fail the request with
ERROR_INVALID_PARAMETER.

If the service has a PreferredNode setting and the client requested a change in service type other
than SERVICE_WIN32_OWN_PROCESS, the server MUST fail the call with
ERROR_INVALID_PARAMETER (87).

If the service is a member of a load-order group has a start type of delayed autostart (see section

2.2.33), then the server MUST fail the call with ERROR_INVALID_PARAMETER (87).

If lpdwTagId has a valid value and lpLoadOrderGroup is either NULL or an empty string, then the
server MUST return ERROR_INVALID_PARAMETER.

For service record changes to apply to the running service, the service MUST be stopped and started
back up, except in the case of lpDisplayName. Changes to lpDisplayName take effect immediately.

If lpBinaryPathName contains arguments, the server MUST pass these arguments to the service
entry point.

3.1.4.12 RCreateServiceW (Opnum 12)

The RCreateServiceW method creates the service record in the SCM database.

DWORD RCreateServiceW(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpServiceName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in, string, range(0, SC_MAX_PATH_LENGTH)]

 wchar_t* lpBinaryPathName,

83 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpLoadOrderGroup,

 [in, out, unique] LPDWORD lpdwTagId,

 [in, unique, size_is(dwDependSize)]

 LPBYTE lpDependencies,

 [in, range(0, SC_MAX_DEPEND_SIZE)]

 DWORD dwDependSize,

 [in, string, unique, range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 wchar_t* lpServiceStartName,

 [in, unique, size_is(dwPwSize)]

 LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)]

 DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created using one of the open methods specified in section 3.1.4. The
SC_MANAGER_CREATE_SERVICE access right MUST have been granted to the caller when the
RPC context handle was created.

lpServiceName: A pointer to a null-terminated UNICODE string that specifies the name of the
service to install. This MUST not be null.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a null-terminated UNICODE string that contains the display name
by which user interface programs identify the service.

dwDesiredAccess: A value that specifies the access to the service. This MUST be one of the
values as specified in section 3.1.4.

dwServiceType: A value that specifies the type of service. This MUST be one or a combination

of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

SERVICE_INTERACTIVE_PROCESS

0x00000100

The service can interact with the desktop.

dwStartType: A value that specifies when to start the service. This MUST be one of the following

values.

84 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START

0x00000002

Starts the service automatically during system startup.

SERVICE_DEMAND_START

0x00000003

Starts the service when a client requests the SCM to start the service.

SERVICE_DISABLED

0x00000004

Service cannot be started.

dwErrorControl: A value that specifies the severity of the error if the service fails to start and
determines the action that the SCM takes. This MUST be one of the following values.

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error, but continues the startup operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error. If the last-known good configuration is being

started, the startup operation continues. Otherwise, the system is

restarted with the last-known good configuration.

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error if possible. If the last-known good

configuration is being started, the startup operation fails. Otherwise,

the system is restarted with the last-known good configuration.

lpBinaryPathName: A pointer to a null-terminated UNICODE string that contains the fully

qualified path to the service binary file. The path MAY include arguments. If the path contains
a space, it MUST be quoted so that it is correctly interpreted. For example, "d:\\my
share\\myservice.exe" should be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A pointer to a null-terminated UNICODE string that names the load-
ordering group of which this service is a member.

Specify NULL or an empty string if the service does not belong to a load-ordering group.

lpdwTagId: A pointer to a variable that receives a tag value. The value is unique to the group
specified in the lpLoadOrderGroup parameter.

lpDependencies: A pointer to an array of null-separated names of services or load ordering
groups that MUST start before this service. The array is doubly null-terminated. Load ordering
group names are prefixed with a "+" character (to distinguish them from service names). If
the pointer is NULL or if it points to an empty string, the service has no dependencies. Cyclic
dependency between services is not allowed. The character set is Unicode. Dependency on a

service means that this service can only run if the service it depends on is running.

85 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Dependency on a group means that this service can run if at least one member of the group is
running after an attempt to start all members of the group.

dwDependSize: The size, in bytes, of the string specified by the lpDependencies parameter.

lpServiceStartName: A pointer to a null-terminated UNICODE string that specifies the name of

the account under which the service SHOULD run.

lpPassword: A pointer to a null-terminated UNICODE string that contains the password of the
account whose name was specified by the lpServiceStartName parameter.

dwPwSize: The size, in bytes, of the password specified by the lpPassword parameter.

lpServiceHandle: An LPSC_RPC_HANDLE (section 2.2.4) data type that defines the handle to
the newly created service record.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_CREATE_SERVICE access right had

not been granted to the caller when the RPC context

handle was created.

6

ERROR_INVALID_HANDLE

The handle specified is invalid.

13

ERROR_INVALID_DATA

The data is invalid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1057

ERROR_INVALID_SERVICE_ACCOUNT

The user account name specified in the

lpServiceStartName parameter does not exist.

1059

ERROR_CIRCULAR_DEPENDENCY

A circular service dependency was specified.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The service record with a specified name already exists

and RDeleteService has been called for it.

1073

ERROR_SERVICE_EXISTS

The service record with the ServiceName matching the

specified lpServiceName already exists.

1078

ERROR_DUPLICATE_SERVICE_NAME

The service record with the same DisplayName or the

same ServiceName as the passed in lpDisplayName

already exists in the service control manager database.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST use the

service name specified in the lpServiceName parameter to create a new service record in the SCM

86 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

database and use the values from the appropriate parameters of the client request to update the
attributes of this newly created service record.

The server MUST treat the lpPassword as a clear-text password if the client is using RPC over TCP,
ncacn_ip_tcp (as specified in [MS-RPCE]). See section 2.1.2 Client.

The server MUST treat the lpPassword as encrypted and decrypt it, if the client is using a RPC over
NP, ncacn_np (as specified in [MS-RPCE]). The server MUST first retrieve a session key as
specified in [MS-CIFS] (section 3.5.4.4). An RPC server application requests the session key of a
client and then uses the routine as specified in [MS-LSAD] (section 5.1.2) to decrypt the password.

If the service is created successfully, the server MUST return a handle to the service in the
lpServiceHandle parameter with the access rights associated with this handle as specified in the
dwDesiredAccess parameter of the client request.

If the service is created successfully, the server MUST increment the HandleCount field of the
service record.

The only valid combinations of values for dwServiceType are SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_SHARE_PROCESS. If the value of dwServiceType has more than one bit set and
the combination of bits is not equal to SERVICE_INTERACTIVE_PROCESS and

SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_SHARE_PROCESS, the server MUST fail the method and return the error
ERROR_INVALID_PARAMETER.

If lpBinaryPathName contains arguments, the server MUST pass these arguments to the service
entry point.

lpdwTagId tags MUST be evaluated by the server for driver services that have
SERVICE_BOOT_START or SERVICE_BOOT_SYSTEM_START start types.

3.1.4.13 REnumDependentServicesW (Opnum 13)

The REnumDependentServicesW method returns the ServiceName, DisplayName, and
ServiceStatus values of service records that are listed as dependents of a specified service.

DWORD REnumDependentServicesW(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpServices,

 [in, range(0, 1024*256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned

);

hService: An SC_RPC_HANDLE data type that defines the handle to the service record that

MUST have been created previously, using one of the open methods specified in section 3.1.4.
The SERVICE_ENUMERATE_DEPENDENT access right MUST have been granted to the caller

when the RPC context handle to the service record was created.

dwServiceState: A value that specifies the service records to enumerate based on the value of
their ServiceStatus.dwCurrentState. This MUST be one of the following values.

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf

87 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_ACTIVE

0x00000001

Enumerates service records that have a ServiceStatus.dwCurrentState

equal to one of the following: SERVICE_START_PENDING,

SERVICE_STOP_PENDING, SERVICE_RUNNING,

SERVICE_CONTINUE_PENDING, SERVICE_PAUSE_PENDING, and

SERVICE_PAUSED.

SERVICE_INACTIVE

0x00000002

Enumerates service records that have a ServiceStatus.dwCurrentState

equal to SERVICE_STOPPED.

SERVICE_STATE_ALL

0x00000003

Enumerates service records that have a ServiceStatus.dwCurrentState

equal to one of the following: SERVICE_START_PENDING,

SERVICE_STOP_PENDING, SERVICE_RUNNING,

SERVICE_CONTINUE_PENDING, SERVICE_PAUSE_PENDING,

SERVICE_PAUSED, and SERVICE_STOPPED.

lpServices: A pointer to an array of ENUM_SERVICE_STATUSW (section 2.2.11) structures

that contain the name and service status information for each dependent service in the
database.

cbBufSize: The size, in bytes, of the array pointed to by lpServices.

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to store the array of service entries.

lpServicesReturned: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable
that contains the number of service entries returned.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_ENUMERATE_DEPENDENT access right had not

been granted to the caller when the RPC context handle to

the service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

234

ERROR_MORE_DATA

More data is available.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST determine

the list of service records that depend on the service record identified by the hService parameter of
the client request. The server MUST return this list by setting the ServiceName, DisplayName, and
ServiceStatus.dwCurrentState of each service record in this list in the array of
ENUM_SERVICE_STATUSW (section 2.2.11) structures pointed to by the lpServices parameter
and MUST set the number of services returned in the lpServicesReturned parameter.

88 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the size of the lpServices array is insufficient for the list of services returned, the server MUST fail
the call with ERROR_MORE_DATA (234) and return the size in bytes required in the pcbBytesNeeded

parameter. If the size is sufficient for data returned, the server also returns the required size, in
bytes.

If the size of the lpServices array is sufficient for the list of services returned, the enumerated data
MAY be in the buffer in a non-contiguous manner, and portions of the lpServices array MAY be
empty (filled with 0x00).

The server MUST use the process described in section 3.1.7, "Conversion Between ANSI and
Unicode String Formats", to convert a string to the appropriate format.

The server MUST return the services in reverse sequence of the start order of the services.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceState

contains undefined values.

3.1.4.14 REnumServicesStatusW (Opnum 14)

The REnumServicesStatusW method enumerates service records in the specified SCM database.

DWORD REnumServicesStatusW(

 [in] SC_RPC_HANDLE hSCManager,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in, out, unique] LPBOUNDED_DWORD_256K lpResumeIndex

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SC_MANAGER_ENUMERATE_SERVICE access right MUST have
been granted to the caller when the RPC context handle to the service record was created.

dwServiceType: A value that specifies what types of service records to enumerate. This MUST
be one or a combination of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

dwServiceState: A value that specifies the service records to enumerate based on the value of
their ServiceStatus.dwCurrentState. This MUST be one of the following values.

89 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_ACTIVE

0x00000001

Enumerates service records that have ServiceStatus.dwCurrentState

equal to one of the following: SERVICE_START_PENDING,

SERVICE_STOP_PENDING, SERVICE_RUNNING,

SERVICE_CONTINUE_PENDING, SERVICE_PAUSE_PENDING, and

SERVICE_PAUSED.

SERVICE_INACTIVE

0x00000002

Enumerates service records that have ServiceStatus.dwCurrentState

equal to SERVICE_STOPPED.

SERVICE_STATE_ALL

0x00000003

Enumerates service records that have ServiceStatus.dwCurrentState

equal to one of the following: SERVICE_START_PENDING,

SERVICE_STOP_PENDING, SERVICE_RUNNING,

SERVICE_CONTINUE_PENDING, SERVICE_PAUSE_PENDING,

SERVICE_PAUSED, and SERVICE_STOPPED.

lpBuffer: A pointer to an array of ENUM_SERVICE_STATUSW (section 2.2.11) structures

that contain the name and service status information for each service in the database.

cbBufSize: The size, in bytes, of the array pointed to by the lpBuffer parameter.

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to store the array of service entries.

lpServicesReturned: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable

that contains the number of service entries returned.

lpResumeIndex: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
specifies the current position in the status enumeration. The server MUST assign a unique
number to each service for the boot session, in increasing order, and increment that number
by one for each service addition. The value of the lpResumeIndex parameter is one of these
numbers, which the server can use to determine the resumption point for the enumeration.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SM_MANAGER_ENUMERATE_SERVICE access right had not

been granted to the caller when the RPC context handle to the

service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

234

ERROR_MORE_DATA

More data is available.

In response to this request from the client, for a successful operation the server MUST determine
the list of service records in the SCM database identified by the hSCManager parameter with the
current value of the ServiceStatus.dwCurrentState equal to the state specified by dwServiceState
parameter and Type equal to the dwServiceType parameter of the client request. The server MUST

return this list by setting the ServiceName, DisplayName, and ServiceStatus of each service in this

90 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

list in the array of ENUM_SERVICE_STATUSW (section 2.2.11) structures pointed to by the
lpBuffer parameter and MUST set the number of services returned in the lpServicesReturned

parameter.

If the lpResumeIndex value is not zero, the server MUST use that as the offset to the list of services

and return only services starting at this offset. If the lpResumeIndex value is zero, the server MUST
return all services. The server MUST set this parameter to zero if the operation is successful. If the
lpResumeIndex value is set by the client to any nonzero number not returned by the server, the
behavior is not defined.

If the size of the lpBuffer array is insufficient for the list of service records returned, the server
MUST fail the call with ERROR_MORE_DATA (234) and return the size in bytes required in the
pcbBytesNeeded parameter. If the size is sufficient for data returned, the server also returns the

required size, in bytes. The required size is dependent on the actual number of matching service
records on the system.

If the size of the lpBuffer array is sufficient for the list of service records returned, the enumerated
data MAY be in the buffer in a non-contiguous manner, and portions of the lpBuffer array MAY be

empty (filled with 0x00).

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in the

dwServiceState parameter is zero or contains undefined values.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in the
dwServiceType parameter is zero or contains undefined values.

3.1.4.15 ROpenSCManagerW (Opnum 15)

The ROpenSCManagerW method establishes a connection to server and opens the SCM database
on the specified server.

DWORD ROpenSCManagerW(

 [in, string, unique, range(0, SC_MAX_COMPUTER_NAME_LENGTH)]

 SVCCTL_HANDLEW lpMachineName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpDatabaseName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpScHandle

);

lpMachineName: An SVCCTL_HANDLEW (section 2.2.3) data type that defines the pointer to a

null-terminated UNICODE string that specifies the server's machine name.

lpDatabaseName: A pointer to a null-terminated UNICODE string that specifies the name of

the SCM database to open. The parameter MUST be set to NULL, "ServicesActive", or
"ServicesFailed".

dwDesiredAccess: A value that specifies the access to the database. This MUST be one of the
values as specified in section 3.1.4.

The client MUST also have the SC_MANAGER_CONNECT access right.

lpScHandle: An LPSC_RPC_HANDLE data type that defines the handle to the newly opened
SCM database.

91 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The client does not have the required access rights to

open the SCM database on the server or the desired

access is not granted to it in the SCM SecurityDescriptor.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1065

ERROR_DATABASE_DOES_NOT_EXIST

The database specified does not exist.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST create an

RPC context handle to the SCM database and grant subsequent access specified in the
dwDesiredAccess parameter of the client request to clients using this handle after evaluating the
client security context against SCM SecurityDescriptor. The server MUST return this handle by
setting the lpScHandle parameter of the client request.

If the caller cannot be granted permission requested in the dwDesiredAccess parameter, the server
MUST fail the call.<51>

The server MUST return ERROR_INVALID_NAME (123) if lpDatabaseName is not NULL and not
ServicesActive or ServicesFailed.

The server MUST return ERROR_DATABASE_DOES_NOT_EXIST (1065) if lpDatabaseName is
ServicesFailed.

3.1.4.16 ROpenServiceW (Opnum 16)

The ROpenServiceW method creates an RPC context handle to an existing service record.

DWORD ROpenServiceW(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpServiceName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
SCM database, created using one of the open methods specified in section 3.1.4.

lpServiceName: A pointer to a null-terminated UNICODE string that specifies the ServiceName

of the service record.

The forward slash, back slash, comma, and space characters are illegal in service names.

dwDesiredAccess: A value that specifies the access right. This MUST be one of the values as
specified in section 3.1.4.

92 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

lpServiceHandle: An LPSC_RPC_HANDLE (section 2.2.4) data type that defines the handle to
the found service record.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The access specified by the dwDesiredAccess parameter

cannot be granted to the caller.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1060

ERROR_SERVICE_DOES_NOT_EXIST

The service record with a specified DisplayName does not

exist in the SCM database.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST create an
RPC context handle to the service record identified by the lpServiceName parameter in the SCM
database identified by the hSCManager parameter of the client request after evaluating the
SecurityDescriptor found in the service record against the caller's security context for the requested
access. The server MUST increment the HandleCount field of the service record and return this
handle by setting the lpScHandle parameter.

3.1.4.17 RQueryServiceConfigW (Opnum 17)

The RQueryServiceConfigW method returns the configuration parameters of the specified service.

DWORD RQueryServiceConfigW(

 [in] SC_RPC_HANDLE hService,

 [out] LPQUERY_SERVICE_CONFIGW lpServiceConfig,

 [in, range(0, 1024*8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_QUERY_CONFIG access right MUST have been
granted to the caller when the RPC context handle was created.

lpServiceConfig: A pointer to a buffer that contains the QUERY_SERVICE_CONFIGW
(section 2.2.15) structure.

cbBufSize: The size, in bytes, of the lpServiceConfig parameter.

pcbBytesNeeded: An LPBOUNDED_DWORD_8K (section 2.2.8) data type that defines the
pointer to a variable that contains the number of bytes needed to return all the configuration
information if the method fails.

93 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_QUERY_CONFIG access right had not been

granted to the caller when the RPC context handle was

created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST query the

configuration information stored in the SCM database in the service record identified by the hService
parameter of the client request. The server MUST return this configuration data by setting the
lpServiceConfig parameter as specified in 2.2.15.

The server MUST set the required buffer size, in bytes, in the pcbBytesNeeded parameter. If the
buffer pointed to by lpServiceConfig is insufficient to hold all the configuration data, the server
MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122).

3.1.4.18 RQueryServiceLockStatusW (Opnum 18)

The RQueryServiceLockStatusW method returns the lock status of the specified SCM database.

DWORD RQueryServiceLockStatusW(

 [in] SC_RPC_HANDLE hSCManager,

 [out] LPQUERY_SERVICE_LOCK_STATUSW lpLockStatus,

 [in, range(0, 1024*4)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_4K pcbBytesNeeded

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created using one of the open methods specified in section 3.1.4. The
SC_MANAGER_QUERY_LOCK_STATUS access right MUST have been granted to the caller
when the RPC context handle was created.

lpLockStatus: A pointer to a buffer that contains QUERY_SERVICE_LOCK_STATUSW
(section 2.2.17) structures.

cbBufSize: The size, in bytes, of the lpLockStatus buffer.

pcbBytesNeeded: An LPBOUNDED_DWORD_4K (section 2.2.7) data type that defines the

pointer to a variable that receives the number of bytes needed to return all the lock status
information if the method fails.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

94 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_QUERY_LOCK_STATUS access right had not

been granted to the caller when the RPC context handle was

created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

In response to this request from the client, for a successful operation the server MUST query the
lock status of the SCM database identified by the hSCManager parameter of the client request. The
server MUST return this lock status by setting the lpLockStatus parameter as specified in 2.2.17.

If the buffer pointed to by lpLockStatus is insufficient to hold all the lock status data, the server

MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122) and set the required buffer size in the

pcbBytesNeeded parameter. If the size is sufficient for data returned, the server also returns the
required size, in bytes.

3.1.4.19 RStartServiceW (Opnum 19)

The RStartServiceW method starts a specified service.

DWORD RStartServiceW(

 [in] SC_RPC_HANDLE hService,

 [in, range(0, SC_MAX_ARGUMENTS)]

 DWORD argc,

 [in, unique, size_is(argc)] LPSTRING_PTRSW argv

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
service record that MUST have been created previously using one of the open methods

specified in section 3.1.4. The SERVICE_START access right MUST have been granted to the
caller when the RPC context handle to the service record was created.

argc: The number of argument strings in the argv array. If argv is NULL, this parameter MAY be
0.

argv: A pointer to a buffer that contains an array of pointers to null-terminated UNICODE
strings that are passed as arguments to the service.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.<52>

Return value/code Description

2

ERROR_FILE_NOT_FOUND

The system cannot find the file specified.

3

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

5 The SERVICE_START access right had not been

95 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_ACCESS_DENIED granted to the caller when the RPC context handle to

the service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

1053

ERROR_SERVICE_REQUEST_TIMEOUT

The process for the service was started, but it did not

respond within an implementation-specific time-

out.<53>

1054

ERROR_SERVICE_NO_THREAD

A thread could not be created for the service.

1055

ERROR_SERVICE_DATABASE_LOCKED

The service database is locked by the call to the

BlockServiceDatabase method.<54>

1056

ERROR_SERVICE_ALREADY_RUNNING

The ServiceStatus.dwCurrentState in the service

record is not set to SERVICE_STOPPED.

1058

ERROR_SERVICE_DISABLED

The service cannot be started because the Start field

in the service record is set to SERVICE_DISABLED.

1068

ERROR_SERVICE_DEPENDENCY_FAIL

The specified service depends on another service that

has failed to start.

1069

ERROR_SERVICE_LOGON_FAILED

The service did not start due to a logon failure.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService method has been called for the

service record identified by the hService parameter.

1075

ERROR_SERVICE_DEPENDENCY_DELETED

The specified service depends on a service that does

not exist or has been marked for deletion.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST start the
service using the information from the service record identified by the hService parameter and pass
the arguments specified in the argv parameter as part of the service launch command.

If argv is not NULL, the client SHOULD set the first element in argv to the name of the service.

The server MUST ignore argv for service records with Type equal to SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

The server MUST set the ServiceStatus.dwCurrentState in the service record, as specified in
SERVICE_STATUS (section 2.2.47), to SERVICE_START_PENDING.

The server MUST set the ServiceStatus.dwControlsAccepted in the service record, as specified in
SERVICE_STATUS, to none (zero).

The server MUST set the ServiceStatus.dwCheckPoint in the service record, as specified in
SERVICE_STATUS, to zero.

96 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST set the ServiceStatus.dwWaitHint in the service record, as specified in
SERVICE_STATUS, to 2 seconds.

The server MUST return ERROR_SERVICE_NO_THREAD if it is unable to create a new thread for the
service process.

If argv does not contain as many non-NULL pointers as indicated by argc, the server MUST fail the
call with ERROR_INVALID_PARAMETER (87).

3.1.4.20 RGetServiceDisplayNameW (Opnum 20)

The RGetServiceDisplayNameW method returns the display name of the specified service.

DWORD RGetServiceDisplayNameW(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpServiceName,

 [out, string, range(1, 4*1024+1), size_is(*

 lpcchBuffer +1)]

 wchar_t* lpDisplayName,

 [in, out] DWORD* lpcchBuffer

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database, created using one of the open methods specified in section 3.1.4.

lpServiceName: A pointer to a null-terminated UNICODE string that specifies the service name.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a buffer that will receive the null-terminated UNICODE string that
contains the service display name.

lpcchBuffer: A DWORD data type that defines the pointer to a variable that specifies the size,
in wchar_ts, of the buffer. On output, this variable receives the size of the service's display
name, excluding the terminating null character.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

122

ERROR_INSUFFICIENT_BUFFER

The display name does not fit in the buffer.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1060

ERROR_SERVICE_DOES_NOT_EXIST

The service record with the specified ServiceName does not

exist in the SCM database identified by the hSCManager

parameter.

In response to this request from the client, for a successful operation the server MUST look up the
service record with the ServiceName matching the specified lpServiceName in the SCM database

identified by the hSCManager parameter. The server MUST return the DisplayName from the found

%5bMS-DTYP%5d.pdf

97 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

service record in the lpDisplayName parameter and set the size in wchar_ts of the display name
excluding the terminating null character in lpcchBuffer.

If the lpDisplayName buffer is insufficient to hold the complete display name of the service, the
server MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122) and set the size in wchar_ts of

the display name excluding the terminating null character in lpcchBuffer. If the size is sufficient for
data returned, the server also returns the required size, in bytes.

3.1.4.21 RGetServiceKeyNameW (Opnum 21)

The RGetServiceKeyNameW method returns the ServiceName of the service record with the
specified DisplayName.

DWORD RGetServiceKeyNameW(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpDisplayName,

 [out, string, range(1, 4*1024+1), size_is(*lpcchBuffer+1)]

 wchar_t* lpServiceName,

 [in, out] DWORD* lpcchBuffer

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created using one of the open methods specified in section 3.1.4.

lpDisplayName: A pointer to a null-terminated UNICODE string that specifies the service
display name.

lpServiceName: A pointer to a buffer that will receive the null-terminated UNICODE string that
contains the service name.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpcchBuffer: A DWORD data type that defines the pointer to a variable that specifies the size,
in wchar_ts, of the buffer. On output, this variable receives the size of the service name,
excluding the terminating null character.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

123

ERROR_INVALID_NAME

The name specified in the lpDisplayName parameter is

invalid or set to NULL.

1060

ERROR_SERVICE_DOES_NOT_EXIST

The service record with the DisplayName matching the

value specified in the lpDisplayName parameter does not

exist in the SCM database identified by the hSCManager

parameter.

In response to this request from the client, for a successful operation the server MUST look up the
service record with DisplayName matching the display name specified by the lpDisplayName
parameter in the SCM database identified by hSCManager.

%5bMS-DTYP%5d.pdf

98 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST return the ServiceName from the found service record in the lpServiceName
parameter and set the size in wchar_ts of the service name excluding the terminating null

character in the lpcchBuffer parameter.

If the lpServiceName buffer is insufficient to hold the complete service name of the service, the

server MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122) and set the size in wchar_ts of
the service name excluding the terminating null character in the lpcchBuffer parameter. If the size is
sufficient for data returned, the server also returns the required size, in bytes.

3.1.4.22 RChangeServiceConfigA (Opnum 23)

The RChangeServiceConfigA method changes a service's configuration parameters in the SCM
database.

DWORD RChangeServiceConfigA(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in, string, unique, range(0, SC_MAX_PATH_LENGTH)]

 LPSTR lpBinaryPathName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpLoadOrderGroup,

 [in, out, unique] LPDWORD lpdwTagId,

 [in, unique, size_is(dwDependSize)]

 LPBYTE lpDependencies,

 [in, range(0, SC_MAX_DEPEND_SIZE)]

 DWORD dwDependSize,

 [in, string, unique, range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 LPSTR lpServiceStartName,

 [in, unique, size_is(dwPwSize)]

 LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)]

 DWORD dwPwSize,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDisplayName

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_CHANGE_CONFIG access right MUST have been
granted to the caller when the RPC context handle to the service record was created.

dwServiceType: A Type value for the service record (section 3.1.1) that specifies the type of
service. This MUST be one of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs in its own process.

99 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

SERVICE_NO_CHANGE

0xFFFFFFFF

Service type does not change.

The following flag can also be combined with the value passed in dwServiceType.

Value Meaning

SERVICE_INTERACTIVE_PROCESS

0x00000100

The service can interact with the desktop.

dwStartType: A Start value for the service record (section 3.1.1) that specifies when to start
the service. This MUST be one of the following values.

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START

0x00000002

Starts the service automatically during system startup.

SERVICE_DEMAND_START

0x00000003

Starts the service when a client requests the SCM to start the service.

SERVICE_DISABLED

0x00000004

Service cannot be started.

SERVICE_NO_CHANGE

0xFFFFFFFF

Service start type does not change.

dwErrorControl: An ErrorControl value for the service record (section 3.1.1) that specifies the
severity of the error if the service fails to start and determines the action that the SCM takes.
This MUST be one of the following values.

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error, but continues the startup operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error. If the last-known good configuration is being

started, the startup operation continues. Otherwise, the system is

restarted with the last-known good configuration.

100 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error if possible. If the last-known good

configuration is being started, the startup operation fails. Otherwise,

the system is restarted with the last-known good configuration.

SERVICE_NO_CHANGE

0xFFFFFFFF

Service error control type does not change.

lpBinaryPathName: An ImagePath value for the service record (section 3.1.1) as a pointer to a
null-terminated ANSI string that contains the fully qualified path to the service binary file. The
path MAY include arguments. If the path contains a space, it MUST be quoted so that it is
correctly interpreted. For example, "d:\\my share\\myservice.exe" should be specified as
"\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A Group value for the service record (section 3.1.1) as a pointer to a null-
terminated ANSI string that names the load ordering group of which this service is a member.

Specify NULL or an empty string if the service does not belong to a load-ordering group.

lpdwTagId: A Tag value for the service record (section 3.1.1) as a pointer to a variable that
receives a tag value. The value is unique to the group specified in the lpLoadOrderGroup
parameter.

lpDependencies: DependOnSize and DependOnGroup values for the service record (section

3.1.1) as a pointer to an array of null-separated names of services or load ordering groups
that MUST start before this service. The array is doubly null-terminated. Load ordering group
names are prefixed with a "+" character (to distinguish them from service names). If the
pointer is NULL or if it points to an empty string, the service has no dependencies. Cyclic
dependency between services is not allowed. The character set is ANSI. Dependency on a
service means that this service can only run if the service it depends on is running.

Dependency on a group means that this service can run if at least one member of the group is
running after an attempt to start all members of the group.

dwDependSize: The size, in bytes, of the string specified by the lpDependencies parameter.

lpServiceStartName: An ObjectName value for the service record (section 3.1.1) as a pointer to
a null-terminated ANSI string that specifies the name of the account under which the service
should run.

lpPassword: A Password value for the service record (section 3.1.1) as a pointer to a null-

terminated ANSI string that contains the password of the account whose name was specified
by the lpServiceStartName parameter.

dwPwSize: The size, in bytes, of the password specified by the lpPassword parameter.

lpDisplayName: A DisplayName value for the service record (section 3.1.1) as a pointer to a
null-terminated ANSI string that contains the display name that applications can use to
identify the service for its users.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

5 The SERVICE_CHANGE_CONFIG access right had not

101 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_ACCESS_DENIED been granted to the caller when the RPC context handle

to the service record was created.

6

ERROR_INVALID_HANDLE

The handle specified is invalid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

1057

ERROR_INVALID_SERVICE_ACCOUNT

The user account name specified in the

lpServiceStartName parameter does not exist.

1059

ERROR_CIRCULAR_DEPENDENCY

A circular service dependency was specified.

1078

ERROR_DUPLICATE_SERVICE_NAME

The lpDisplayName matches either the ServiceName or

the DisplayName of another service record in the

service control manager database.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService has been called for the service

record identified by the hService parameter.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST update, using
the values from the appropriate parameters of the client request, the service record identified by the
hService parameter in the SCM database:

If the client passes NULL for lpBinaryPathName, the server MUST keep the existing ImagePath

value.

If the client passes NULL for lpLoadOrderGroup, the server MUST keep the existing ServiceGroup

value.

If the client passes NULL for lpdwTagId, the server MUST keep the existing Tag value.

If the client passes NULL for lpDependencies, the server MUST keep the existing

DependOnService and DependOnGroup values.

If the client passes NULL for lpServiceStartName, the server MUST keep the existing ObjectName

value.

If the client passes NULL for lpPassword, the server MUST keep the existing Password value.

If the client passes NULL for lpDisplayName, the server MUST keep the existing DisplayName

value.

If the original service type is SERVICE_WIN32_OWN_PROCESS or

SERVICE_WIN32_SHARE_PROCESS, the server MUST fail the call if dwServiceType is set to
SERVICE_FILE_SYSTEM_DRIVER or SERVICE_KERNEL_DRIVER.<55>

If dwServiceType is set to SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS
combined with the SERVICE_INTERACTIVE_PROCESS bit and the ObjectName field of the service
record is not equal to LocalSystem, the server MUST fail the request with
ERROR_INVALID_PARAMETER.

102 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the service has a PreferredNode setting and the client requested a change in service type other
than SERVICE_WIN32_OWN_PROCESS, the server MUST fail the call with

ERROR_INVALID_PARAMETER (87).

If the service is a member of a load-order group and has a start type of delayed autostart (see

section 2.2.33), then the server MUST fail the call with ERROR_INVALID_PARAMETER (87).

If lpdwTagId has a valid value and lpLoadOrderGroup is either NULL or an empty string, then the
server MUST return ERROR_INVALID_PARAMETER.

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

For service record changes to apply to the running service, the service MUST be stopped and started
back up, except in the case of lpDisplayName. Changes to lpDisplayName take effect immediately.

If lpBinaryPathName contains arguments, the server MUST pass these arguments to the service
entry point.

3.1.4.23 RCreateServiceA (Opnum 24)

The RCreateServiceA method creates the service record in the SCM database.

DWORD RCreateServiceA(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpServiceName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in, string, range(0, SC_MAX_PATH_LENGTH)]

 LPSTR lpBinaryPathName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpLoadOrderGroup,

 [in, out, unique] LPDWORD lpdwTagId,

 [in, unique, size_is(dwDependSize)]

 LPBYTE lpDependencies,

 [in, range(0, SC_MAX_DEPEND_SIZE)]

 DWORD dwDependSize,

 [in, string, unique, range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 LPSTR lpServiceStartName,

 [in, unique, size_is(dwPwSize)]

 LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)]

 DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created using one of the open methods specified in section 3.1.4. The
SC_MANAGER_CREATE_SERVICE access right MUST have been granted to the caller when the

RPC context handle was created.

103 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

lpServiceName: A pointer to a null-terminated ANSI string that specifies the name of the
service to install. This MUST not be null.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a null-terminated ANSI string that contains the display name by

which user interface programs identify the service.

dwDesiredAccess: A value that specifies the access to the service. This MUST be one of the
values specified in section 3.1.4.

The following generic access types also can be specified.

dwServiceType: A value that specifies the type of service. This MUST be one or a combination
of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

SERVICE_INTERACTIVE_PROCESS

0x00000100

The service can interact with the desktop.

dwStartType: A value that specifies when to start the service. This MUST be one of the following

values.

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START

0x00000002

Starts the service automatically during system startup.

SERVICE_DEMAND_START

0x00000003

The SCM starts the service when a process calls the StartService

function. For more information, see [MSDN-STARTSERVICE].

SERVICE_DISABLED

0x00000004

Service cannot be started.

dwErrorControl: A value that specifies the severity of the error if the service fails to start and

determines the action that the SCM takes. This MUST be one of the following values.

http://go.microsoft.com/fwlink/?LinkId=90137

104 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error, but continues the startup operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error. If the last-known good configuration is being

started, the startup operation continues. Otherwise, the system is

restarted with the last-known good configuration.

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error if possible. If the last-known good

configuration is being started, the startup operation fails. Otherwise,

the system is restarted with the last-known good configuration.

lpBinaryPathName: A pointer to a null-terminated ANSI string that contains the fully qualified

path to the service binary file. The path MAY include arguments. If the path contains a space,

it MUST be quoted so that it is correctly interpreted. For example, "d:\\my
share\\myservice.exe" should be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A pointer to a null-terminated ANSI string that names the load-ordering
group of which this service is a member.

Specify NULL or an empty string if the service does not belong to a load-ordering group.

lpdwTagId: A pointer to a variable that receives a tag value. The value is unique to the group
specified in the lpLoadOrderGroup parameter.

lpDependencies: A pointer to an array of null-separated names of services or load ordering
groups that MUST start before this service. The array is doubly null-terminated. Load ordering
group names are prefixed with a "+" character (to distinguish them from service names). If
the pointer is NULL or if it points to an empty string, the service has no dependencies. Cyclic
dependency between services is not allowed. The character set is ANSI. Dependency on a

service means that this service can only run if the service it depends on is running.
Dependency on a group means that this service can run if at least one member of the group is
running after an attempt to start all members of the group.

dwDependSize: The size, in bytes, of the string specified by the lpDependencies parameter.

lpServiceStartName: A pointer to a null-terminated ANSI string that specifies the name of the
account under which the service should run.

lpPassword: A pointer to a null-terminated ANSI string that contains the password of the

account whose name was specified by the lpServiceStartName parameter.

dwPwSize: The size, in bytes, of the password specified by the lpPassword parameter.

lpServiceHandle: An LPSC_RPC_HANDLE (section 2.2.4) data type that defines the handle to
the newly created service record.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5 The SC_MANAGER_CREATE_SERVICE access right had

105 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_ACCESS_DENIED not been granted to the caller when the RPC context

handle was created.

6

ERROR_INVALID_HANDLE

The handle specified is invalid.

13

ERROR_INVALID_DATA

The data is invalid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1057

ERROR_INVALID_SERVICE_ACCOUNT

The user account name specified in the

lpServiceStartName parameter does not exist.

1059

ERROR_CIRCULAR_DEPENDENCY

A circular service dependency was specified.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The service record with a specified name already exists,

and RDeleteService has been called for it.

1073

ERROR_SERVICE_EXISTS

The service record with the ServiceName matching the

specified lpServiceName already exists.

1078

ERROR_DUPLICATE_SERVICE_NAME

The service record with the same DisplayName or the

same ServiceName as the passed-in lpDisplayName

already exists in the service control manager database.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST use the
service name specified in the lpServiceName parameter to create a new service record in the SCM

database and use the values from the appropriate parameters of the client request to update the
attributes of this newly created service record.

The server MUST treat the lpPassword as a clear-text password if the client is using RPC over TCP,
ncacn_ip_tcp (as specified in [MS-RPCE]). See section 2.1.2 Client.

The server MUST treat the lpPassword as encrypted and decrypt it, if the client is using a RPC over
NP, ncacn_np (as specified in [MS-RPCE]). The server MUST first retrieve a session key as specified

in [MS-CIFS] (section 3.5.4.4). An RPC server application requests the session key of a client and
then uses the routine as specified in [MS-LSAD] (section 5.1.2) to decrypt the password.

If the service is created successfully, the server MUST return a handle to the service in the
lpServiceHandle parameter with the access rights associated with this handle as specified in the

dwDesiredAccess parameter of the client request.

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

If the service is created successfully, the server MUST increment the HandleCount field of the
service record.

%5bMS-RPCE%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf

106 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The only valid combinations of values for dwServiceType are SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and

SERVICE_WIN32_SHARE_PROCESS. If the value of dwServiceType has more than one bit set and
the combination of bits is not equal to SERVICE_INTERACTIVE_PROCESS and

SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_SHARE_PROCESS, the server MUST fail the method and return the error
ERROR_INVALID_PARAMETER.

If lpBinaryPathName contains arguments, the server MUST pass these arguments to the service
entry point.

If lpdwTagId has a valid value and lpLoadOrderGroup is either NULL or an empty string, then the
server MUST return ERROR_INVALID_PARAMETER.

3.1.4.24 REnumDependentServicesA (Opnum 25)

The REnumDependentServicesA method returns the ServiceName, DisplayName, and
ServiceStatus of each service record that depends on the specified service.

DWORD REnumDependentServicesA(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpServices,

 [in, range(0, 1024*256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_ENUMERATE_DEPENDENT access right MUST have
been granted to the caller when the RPC context handle to the service record was created.

dwServiceState: A value that specifies the service records to enumerate based on the value of
their ServiceStatus.dwCurrentState. This MUST be one of the following values.

Value Meaning

SERVICE_ACTIVE

0x00000001

Enumerates service records that have ServiceStatus.dwCurrentState equal

to one of the following: SERVICE_START_PENDING,

SERVICE_STOP_PENDING, SERVICE_RUNNING,

SERVICE_CONTINUE_PENDING, SERVICE_PAUSE_PENDING, and

SERVICE_PAUSED.

SERVICE_INACTIVE

0x00000002

Enumerates service records that have ServiceStatus.dwCurrentState equal

to SERVICE_STOPPED.

SERVICE_STATE_ALL

0x00000003

Enumerates services that have ServiceStatus.dwCurrentState equal to one

of the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, SERVICE_PAUSED, and SERVICE_STOPPED.

lpServices: A pointer to an array of ENUM_SERVICE_STATUSA (section 2.2.10) structures
that contain the name and service status information for each dependent service record in the
database.

107 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

cbBufSize: The size, in bytes, of the array pointed to by lpServices.

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to store the array of service entries.

lpServicesReturned: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable

that contains the number of service entries returned.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_ENUMERATE_DEPENDENT access right had not

been granted to the caller when the RPC context handle to

the service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

234

ERROR_MORE_DATA

More data is available.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation, the server MUST determine

the list of service records that depend on the service record identified by the hService parameter of
the client request. The server MUST return this list by setting the ServiceName, DisplayName, and
ServiceStatus of each service record in this list in the array of ENUM_SERVICE_STATUSA (section
2.2.10) structures pointed to by the lpServices parameter and MUST set the number of services

returned in the lpServicesReturned parameter.

If the size of the lpServices array is insufficient for the list of services returned, the server MUST fail
the call with ERROR_MORE_DATA (234) and return the size in bytes required in the pcbBytesNeeded

parameter. If the size is sufficient for data returned, the server also returns the required size, in
bytes.

If the size of the lpServices array is sufficient for the list of services returned, the enumerated data
MAY be in the buffer in a non-contiguous manner, and portions of the lpServices array MAY be
empty (filled with 0x00).

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

The server MUST return the services in reverse sequence of the start order of the services.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceState
contains undefined values.

3.1.4.25 REnumServicesStatusA (Opnum 26)

The REnumServicesStatusA method enumerates service records in the specified SCM database.

108 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DWORD REnumServicesStatusA(

 [in] SC_RPC_HANDLE hSCManager,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024*256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in, out, unique] LPBOUNDED_DWORD_256K lpResumeIndex

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
SCM database that MUST have been created previously, using one of the open methods

specified in section 3.1.4. The SC_MANAGER_ENUMERATE_SERVICE access right MUST have
been granted to the caller when the RPC context handle to the service record was created.

dwServiceType: A value that specifies the service records to enumerate based on the Type

value. This MUST be one or a combination of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

dwServiceState: A value that specifies the service records to enumerate based on their
ServiceStatus.dwCurrentState. This MUST be one of the following values.

Value Meaning

SERVICE_ACTIVE

0x00000001

Enumerates service records that have ServiceStatus.dwCurrentState equal

to one of the following: SERVICE_START_PENDING,

SERVICE_STOP_PENDING, SERVICE_RUNNING,

SERVICE_CONTINUE_PENDING, SERVICE_PAUSE_PENDING, and

SERVICE_PAUSED.

SERVICE_INACTIVE

0x00000002

Enumerates services that have ServiceStatus.dwCurrentState equal to

SERVICE_STOPPED.

SERVICE_STATE_ALL

0x00000003

Enumerates services that have ServiceStatus.dwCurrentState equal to one

of the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, SERVICE_PAUSED, and SERVICE_STOPPED.

lpBuffer: A pointer to an array of ENUM_SERVICE_STATUSA (section 2.2.10) structures that
contain the name and service status information for each dependent service in the database.

cbBufSize: The size, in bytes, of the array pointed to by lpBuffer.

109 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to store the array of service entries.

lpServicesReturned: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable
that contains the number of service entries returned.

lpResumeIndex: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
specifies the current position in the status enumeration. The server MUST assign a unique
number to each service for the boot session, in increasing order, and increment that number
by one for each service addition. The value of the lpResumeIndex parameter is one of these
numbers, which the server can use to determine the resumption point for the enumeration.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_ENUMERATE_SERVICE access right had not

been granted to the caller when the RPC context handle to the

service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

234

ERROR_MORE_DATA

More data is available.

In response to this request from the client, for a successful operation the server MUST determine
the list of service records in the SCM database identified by the hSCManager parameter with the
current value of ServiceStatus.dwCurrentState equal to the state specified by the dwServiceState
parameter and Type equal to the dwServiceType of the client request. The server MUST return this

list by setting the ServiceName, DisplayName, and ServiceStatus of each service in this list in the

array of ENUM_SERVICE_STATUSA (section 2.2.10) structures pointed to by the lpServices
parameter and MUST set the number of services returned in the lpServicesReturned parameter.

If the lpResumeIndex value is not zero, the server MUST use that as the offset to the service list and
return only services starting at this offset. If the lpResumeIndex value is zero, the server MUST
return all services. The server MUST set this parameter to zero if the operation succeeds. If the
lpResumeIndex value is set by the client to any nonzero number not returned by the server, the
behavior is not defined.

If the size of the lpServices array is insufficient for the list of services returned, the server MUST fail
the call with ERROR_MORE_DATA (234) and return the size in bytes required in the pcbBytesNeeded
parameter. If the size is sufficient for data returned, the server also returns the required size, in
bytes.

If the size of the lpServices array is sufficient for the list of services returned, the enumerated data
MAY be in the buffer in a non-contiguous manner, and portions of the lpServices array MAY be

empty (filled with 0x00).

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

110 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceState
is zero or contains undefined values.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceType
is zero or contains undefined values.

3.1.4.26 ROpenSCManagerA (Opnum 27)

The ROpenSCManagerA method opens a connection to the SCM from the client and then opens the
specified SCM database.

DWORD ROpenSCManagerA(

 [in, string, unique, range(0, SC_MAX_COMPUTER_NAME_LENGTH)]

 SVCCTL_HANDLEA lpMachineName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDatabaseName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpScHandle

);

lpMachineName: An SVCCTL_HANDLEA (section 2.2.2) data type that defines the pointer to

a null-terminated ANSI string that specifies the server's machine name.

lpDatabaseName: A pointer to a null-terminated ANSI string that specifies the name of the SCM
database to open. The parameter MUST be set to NULL, "ServicesActive", or "ServicesFailed".

dwDesiredAccess: A value that specifies the access to the database. This MUST be one of the
values specified in section 3.1.4.

The client MUST also have the SC_MANAGER_CONNECT access right.

lpScHandle: An LPSC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
newly opened SCM connection.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_CONNECT access right or the desired

access is not granted to the caller in the SCM

SecurityDescriptor.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1065

ERROR_DATABASE_DOES_NOT_EXIST

The database specified does not exist.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST create an

RPC context handle to the SCM database and grant subsequent access specified in the
dwDesiredAccess parameter of the client request after evaluating the client security context against

111 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

the SCM SecurityDescriptor. The server MUST return this handle by setting the lpScHandle
parameter of the client request.

If the caller cannot be granted permission requested in the dwDesiredAccess parameter, the server
MUST fail the call.<56>

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

The server MUST return ERROR_INVALID_NAME (123) if lpDatabaseName is not NULL and is not
ServicesActive or ServicesFailed.

The server MUST return ERROR_DATABASE_DOES_NOT_EXIST (1065) if lpDatabaseName is
ServicesFailed.

3.1.4.27 ROpenServiceA (Opnum 28)

The ROpenServiceA method creates an RPC context handle to an existing service record.

DWORD ROpenServiceA(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpServiceName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database, created using one of the open methods specified in section 3.1.4.

lpServiceName: A pointer to a null-terminated ANSI string that specifies the ServiceName of
the service record to open.

The forward slash, back slash, comma, and space characters are illegal in service names.

dwDesiredAccess: A value that specifies the access right. This MUST be one of the values
specified in section 3.1.4.

lpServiceHandle: An LPSC_RPC_HANDLE (section 2.2.4) data type that defines the handle to
the found service record.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The access specified by the dwDesiredAccess parameter

cannot be granted to the caller.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1060 The service record with a specified DisplayName does not

112 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_SERVICE_DOES_NOT_EXIST exist in the SCM database.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST create an
RPC context handle to the service record identified by the lpServiceName parameter in the SCM
database specified by the hSCManager parameter of the client request after evaluating the

SecurityDescriptor found in the service record against the caller's security context for the requested
access. The server MUST increment the HandleCount field of the service record and return this
handle by setting the lpScHandle parameter.

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

3.1.4.28 RQueryServiceConfigA (Opnum 29)

The RQueryServiceConfigA method returns the configuration parameters of the specified service.

DWORD RQueryServiceConfigA(

 [in] SC_RPC_HANDLE hService,

 [out] LPQUERY_SERVICE_CONFIGA lpServiceConfig,

 [in, range(0, 1024*8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_QUERY_CONFIG access right MUST have been
granted to the caller when the RPC context handle was created.

lpServiceConfig: A pointer to a buffer that contains the QUERY_SERVICE_CONFIGA
structure.

cbBufSize: The size, in bytes, of the lpServiceConfig parameter.

pcbBytesNeeded: An LPBOUNDED_DWORD_8K (section 2.2.8) data type that defines the
pointer to a variable that contains the number of bytes needed to return all the configuration
information if the function fails.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_QUERY_CONFIG access right had not been

granted to the caller when the RPC context handle was

created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

122 The data area passed to a system call is too small.

113 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_INSUFFICIENT_BUFFER

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST query the
configuration information stored in the SCM database in the service record identified by the hService
parameter of the client request. The server MUST return this configuration data by setting the

lpServiceConfig parameter as specified in 2.2.14.

The server MUST set the required buffer size, in bytes, in the pcbBytesNeeded parameter. If the
buffer pointed to by lpServiceConfig is insufficient to hold all the configuration data, the server
MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122).

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

3.1.4.29 RQueryServiceLockStatusA (Opnum 30)

The RQueryServiceLockStatusA method returns the lock status of the specified SCM database.

DWORD RQueryServiceLockStatusA(

 [in] SC_RPC_HANDLE hSCManager,

 [out] LPQUERY_SERVICE_LOCK_STATUSA lpLockStatus,

 [in, range(0, 1024*4)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_4K pcbBytesNeeded

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created previously, using one of the open methods specified in section 3.1.4.

The SC_MANAGER_QUERY_LOCK_STATUS access right MUST have been granted to the caller
when the RPC context handle was created.

lpLockStatus: A pointer to a buffer that contains the QUERY_SERVICE_LOCK_STATUSA
(section 2.2.16) structures.

cbBufSize: The size, in bytes, of the lpLockStatus buffer.

pcbBytesNeeded: An LPBOUNDED_DWORD_4K (section 2.2.7) data type that defines the
pointer to a variable that receives the number of bytes needed to return all the lock status.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_QUERY_LOCK_STATUS access right had not

been granted to the caller when the RPC context handle was

created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

114 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

In response to this request from the client, for a successful operation the server MUST query the
lock status of the SCM database identified by the hSCManager parameter of the client request. The

server MUST return this lock status by setting the lpLockStatus parameter as specified in section
2.2.16.

If the buffer pointed to by lpLockStatus is insufficient to hold all the lock status data, the server
MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122) and set the required buffer size in the
pcbBytesNeeded parameter. If the size is sufficient for data returned, the server also returns the
required size, in bytes.

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

3.1.4.30 RStartServiceA (Opnum 31)

The RStartServiceA method starts a specified service.

DWORD RStartServiceA(

 [in] SC_RPC_HANDLE hService,

 [in, range(0, SC_MAX_ARGUMENTS)]

 DWORD argc,

 [in, unique, size_is(argc)] LPSTRING_PTRSA argv

);

hService: An SC_RPC_HANDLE (section 2.2.4) that defines the handle to the service record

that MUST have been created previously, using one of the open methods specified in section
3.1.4. The SERVICE_START access right MUST have been granted to the caller when the RPC

context handle was created.

argc: The number of argument strings in the argv array. If argv is NULL, this parameter MAY be
zero.

argv: A pointer to a buffer that contains an array of pointers to null-terminated ANSI strings that
are passed as arguments to the service.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.<57>

Return value/code Description

2

ERROR_FILE_NOT_FOUND

The system cannot find the file specified.

3

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

5

ERROR_ACCESS_DENIED

The SERVICE_START access right had not been

granted to the caller when the RPC context handle to

the service was created.

115 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

1053

ERROR_SERVICE_REQUEST_TIMEOUT

The process for the service was started, but it did not

respond within an implementation-specific time-

out.<58>

1054

ERROR_SERVICE_NO_THREAD

A thread could not be created for the service.

1055

ERROR_SERVICE_DATABASE_LOCKED

The service database is locked by the call to the

RLockServiceDatabase (section 3.1.4.4)

method.<59>

1056

ERROR_SERVICE_ALREADY_RUNNING

The ServiceStatus.dwCurrentState in the service

record is not set to SERVICE_STOPPED.

1058

ERROR_SERVICE_DISABLED

The service cannot be started because the Start field

in the service record is set to SERVICE_DISABLED.

1068

ERROR_SERVICE_DEPENDENCY_FAIL

The specified service depends on another service that

has failed to start.

1069

ERROR_SERVICE_LOGON_FAILED

The service did not start due to a logon failure.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService method has been called for the

service record identified by the hService parameter.

1075

ERROR_SERVICE_DEPENDENCY_DELETED

The specified service depends on a service that does

not exist or has been marked for deletion.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST start the
service using the information from the service record identified by the hService parameter and pass
the arguments specified in the argv parameter as part of the service launch command.

If argv is not NULL, the client SHOULD set the first element in argv to the name of the service.

The server MUST ignore argv for service records with Type equal to SERVICE_KERNEL_DRIVER or

SERVICE_FILE_SYSTEM_DRIVER.

The server MUST set the ServiceStatus.dwCurrentState in the service record, as specified in
SERVICE_STATUS (section 2.2.47), to SERVICE_START_PENDING.

The server MUST set the ServiceStatus.dwControlsAccepted in the service record, as specified in
SERVICE_STATUS, to none (zero).

The server MUST set the ServiceStatus.dwCheckPoint in the service record, as specified in
SERVICE_STATUS, to zero.

116 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST set the ServiceStatus.dwWaitHint in the service record, as specified in
SERVICE_STATUS, to 2 seconds.

The server MUST return ERROR_SERVICE_NO_THREAD if it is unable to create a new thread for the
service process.

If argv does not contain as many non-NULL pointers as indicated by argc, the server MUST fail the
call with ERROR_INVALID_PARAMETER (87).

3.1.4.31 RGetServiceDisplayNameA (Opnum 32)

The RGetServiceDisplayNameA method returns the display name of the specified service.

DWORD RGetServiceDisplayNameA(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpServiceName,

 [out, string, size_is(*lpcchBuffer)]

 LPSTR lpDisplayName,

 [in, out] LPBOUNDED_DWORD_4K lpcchBuffer

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created previously, using one of the open methods specified in section 3.1.4.

lpServiceName: A pointer to a null-terminated ANSI string that specifies the service name.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a buffer that will receive the null-terminated ANSI string that

contains the service display name.

lpcchBuffer: An LPBOUNDED_DWORD_4K (section 2.2.7) data type that defines the pointer

to a variable that specifies the size, in chars, of the buffer. On output, this variable receives
the size of the service's display name, excluding the terminating null character.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

122

ERROR_INSUFFICIENT_BUFFER

The display name does not fit in the buffer.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1060

ERROR_SERVICE_DOES_NOT_EXIST

The service record with the specified ServiceName does not

exist in the SCM database identified by the hSCManager

parameter.

In response to this request from the client, for a successful operation the server MUST look up the

service record with the ServiceName matching the specified lpServiceName in the SCM database
identified by the hSCManager parameter. The server MUST return the DisplayName from the found
service record in the lpDisplayName parameter and set the size in chars of the display name
excluding the terminating null character in lpcchBuffer.

%5bMS-DTYP%5d.pdf

117 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the lpDisplayName buffer is insufficient to hold the complete display name of the service, the
server MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122) and set the required size in

chars of the display name excluding the terminating null character in lpcchBuffer.<60> If the size is
sufficient for data returned, the server also returns the size that was set in lpcchBuffer.

If a service is created with a Unicode-encoded display name using the RCreateServiceW method,
then the server MUST convert the display name to an ANSI string before returning it. The
conversion process is specified in [MS-UCODEREF] section 3.1.5.1.1.2, Pseudocode for Mapping a
UTF-16 String to an ANSI Codepage.

3.1.4.32 RGetServiceKeyNameA (Opnum 33)

The RGetServiceKeyNameA method returns the ServiceName of the service record with the

specified DisplayName.

DWORD RGetServiceKeyNameA(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDisplayName,

 [out, string, size_is(*lpcchBuffer)]

 LPSTR lpKeyName,

 [in, out] LPBOUNDED_DWORD_4K lpcchBuffer

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
SCM database created previously, using one of the open methods specified in section 3.1.4.

lpDisplayName: A pointer to a null-terminated ANSI string that specifies the service display
name.

lpKeyName: A pointer to a buffer that will receive the null-terminated ANSI string that contains
the service name.

lpcchBuffer: An LPBOUNDED_DWORD_4K (section 2.2.7) data type that defines the pointer
to a variable that specifies the size, in chars, of the buffer. On output, this variable receives
the size of the service name, excluding the terminating null character.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

123

ERROR_INVALID_NAME

The name specified in lpDisplayName is invalid or set to

NULL.

1060

ERROR_SERVICE_DOES_NOT_EXIST

The service record with the DisplayName matching the

specified lpDisplayName does not exist in the SCM database

identified by the hSCManager parameter.

In response to this request from the client, for a successful operation the server MUST look up the
service record with DisplayName matching the display name specified by the lpDisplayName
parameter in the SCM database identified by hSCManager.

%5bMS-UCODEREF%5d.pdf
%5bMS-DTYP%5d.pdf

118 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST return the ServiceName from the found service record in the lpKeyName
parameter and set the size in chars of the service name excluding the terminating null character in

lpcchBuffer.

If the lpKeyName buffer is insufficient to hold the complete service name of the service, the server

MUST fail the call with ERROR_INSUFFICIENT_BUFFER (122) and set the required size in chars of
the service name excluding the terminating null character in lpcchBuffer.<61> If the size is
sufficient for data returned, the server also returns the size that was set in lpcchBuffer.

If a service record is created with a Unicode-encoded display name using the RCreateServiceW
method, then the server MUST convert the service name to an ANSI string before returning it. The
conversion process is specified in [MS-UCODEREF] section 3.1.5.1.1.2, Pseudocode for Mapping a
UTF-16 String to an ANSI Codepage.

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

3.1.4.33 REnumServiceGroupW (Opnum 35)

The REnumServiceGroupW method returns the members of a service group.

DWORD REnumServiceGroupW(

 [in] SC_RPC_HANDLE hSCManager,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024*256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in, out, unique] LPBOUNDED_DWORD_256K lpResumeIndex,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPCWSTR pszGroupName

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
SCM created using one of the open methods specified in section 3.1.4. The

SC_MANAGER_ENUMERATE_SERVICE access right MUST have been granted to the caller when
the RPC context handle was created.

dwServiceType: A value that specifies the service records to enumerate based on their Type.
This MUST be one or a combination of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

%5bMS-UCODEREF%5d.pdf

119 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

dwServiceState: A value that specifies the service records to enumerate based on their
ServiceStatus.dwCurrentState. This MUST be one of the following values.

Value Meaning

SERVICE_ACTIVE

0x00000001

Enumerates service records with ServiceStatus.dwCurrentState values from

the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, and SERVICE_PAUSED.

SERVICE_INACTIVE

0x00000002

Enumerates service records with the ServiceStatus.dwCurrentState value

SERVICE_STOPPED.

SERVICE_STATE_ALL

0x00000003

Enumerates service records with ServiceStatus.dwCurrentState values from

the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, SERVICE_PAUSED, and SERVICE_STOPPED.

lpBuffer: A pointer to an array of ENUM_SERVICE_STATUSW (section 2.2.11) structures that
contain the name and service status information for each dependent service in the database.

cbBufSize: The size, in bytes, of the array pointed to by lpBuffer.

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to store the array of service entries.

lpServicesReturned: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable
that contains the number of service entries returned.

lpResumeIndex: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
specifies the current position in the status enumeration. The server MUST assign a unique

number to each service for the boot session, in increasing order, and increment that number
by one for each service addition. The value of the lpResumeIndex parameter is one of these
numbers, which the server can use to determine the resumption point for the enumeration.

pszGroupName: A pointer to a string that specifies service records to enumerate based on their
ServiceGroup value.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_ENUMERATE_SERVICE access right had

not been granted to the caller when the RPC context handle

was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

234

ERROR_MORE_DATA

More data is available.

1060 The group specified by pszGroupName does not exist in the

120 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_SERVICE_DOES_NOT_EXIST SCM GroupList.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST determine
the list of service records in the SCM database identified by the hSCManager parameter with a
ServiceGroup value matching the pszGroupName parameter, determine that their

ServiceStatus.dwCurrentState is equal to the state specified by dwServiceParameter, and determine
that their Type value is equal to the dwServiceType parameter of the client request. The server
MUST return this list by setting the service name and state of each service in this list in the array of
ENUM_SERVICE_STATUSW (section 2.2.11) structures pointed to by the lpBuffer parameter and
MUST set number of services returned in the lpServicesReturned parameter.

The client MUST set lpResumeIndex to 0 on the first call. If the server fails the call with

ERROR_MORE_DATA (234), then the server MUST return a non-zero value in lpResumeIndex that
the client MUST then specify in the subsequent calls. The server MUST set this parameter to zero if
the operation succeeds. If the lpResumeIndex value is set by the client to any non-zero number not
returned by the server, the behavior is not defined.

If the size of the lpServices array is insufficient for the list of services returned, the server MUST fail
the call with ERROR_MORE_DATA (234) and return the size, in bytes, required in the
pcbBytesNeeded parameter. If the size is sufficient for data returned, the server also returns the

required size, in bytes.

If the size of the lpServices array is sufficient for the list of services returned, the enumerated data
MAY be in the buffer in a non-contiguous manner, and portions of the lpServices array MAY be
empty (filled with 0x00).

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceState
is zero or contains undefined values.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceType

is zero or contains undefined values.

3.1.4.34 RChangeServiceConfig2A (Opnum 36)

The RChangeServiceConfig2A<62> method changes the optional configuration parameters of a
service.

DWORD RChangeServiceConfig2A(

 [in] SC_RPC_HANDLE hService,

 [in] SC_RPC_CONFIG_INFOA Info

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_CHANGE_CONFIG access right MUST have been
granted to the caller when the RPC context handle to the service record was created.

Info: An SC_RPC_CONFIG_INFOA (section 2.2.21) structure that contains optional
configuration information.

121 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise it
returns one of the following error codes.<63>

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_CHANGE_CONFIG access right had

not been granted to the caller when the RPC context

handle to the service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService has been called for the service

record identified by the hService parameter.

1080

ERROR_CANNOT_DETECT_DRIVER_FAILURE

SERVICE_CONFIG_FAILURE_ACTIONS cannot be

used as a dwInfoLevel in the Info parameter for

service records with a Type value defined for

drivers.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST update the

specific attributes of the service record identified by hService, using the information level and the
corresponding values associated with that information level as specified in the Info parameter of the
client request.

If the service has a PreferredNode setting and the client requested a change of a service record with
a Type other than SERVICE_WIN32_OWN_PROCESS, the server MUST fail the call with
ERROR_INVALID_PARAMETER (87).

If the service record ServiceGroup value is set and the client specifies a start type of delayed
autostart (see section 2.2.33), the server MUST fail the call with ERROR_INVALID_PARAMETER (87).

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

3.1.4.35 RChangeServiceConfig2W (Opnum 37)

The RChangeServiceConfig2W<64> method changes the optional configuration parameters of a

service.

DWORD RChangeServiceConfig2W(

 [in] SC_RPC_HANDLE hService,

 [in] SC_RPC_CONFIG_INFOW Info

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_CHANGE_CONFIG access right MUST have been
granted to the caller when the RPC context handle to the service record was created.

122 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Info: An SC_RPC_CONFIG_INFOW (section 2.2.22) structure that contains optional
configuration information.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise it
returns one of the following error codes.<65>

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_CHANGE_CONFIG access right had

not been granted to the caller when the RPC context

handle to the service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService has been called for the service

record identified by the hService parameter.

1080

ERROR_CANNOT_DETECT_DRIVER_FAILURE

SERVICE_CONFIG_FAILURE_ACTIONS cannot be

used as a dwInfoLevel in the Info parameter for

service records with a Type value defined for

drivers.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST update the
specific attributes of the service record identified by hService, using the information level and the
corresponding values associated with that information level as specified in the Info parameter of the
client request.

If the service has a PreferredNode setting and the client requested a change of a service record with

a Type value other than SERVICE_WIN32_OWN_PROCESS, the server MUST fail the call with
ERROR_INVALID_PARAMETER (87).

If the service record ServiceGroup value is set and the client specifies a start type of delayed
autostart (see section 2.2.33), the server MUST fail the call with ERROR_INVALID_PARAMETER (87).

3.1.4.36 RQueryServiceConfig2A (Opnum 38)

The RQueryServiceConfig2A<66> method returns the optional configuration parameters of the

specified service based on the specified information level.

DWORD RQueryServiceConfig2A(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwInfoLevel,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024*8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the
service record that MUST have been created previously, using one of the open methods

123 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

specified in section 3.1.4. The SERVICE_QUERY_CONFIG access right MUST have been
granted to the caller when the RPC context handle to the service record was created.

dwInfoLevel: A value that specifies the configuration information to query. This MUST be one of
the following values.

Value Meaning

SERVICE_CONFIG_DESCRIPTION

0x00000001

The lpBuffer parameter is a pointer to a

SERVICE_DESCRIPTIONA structure.

SERVICE_CONFIG_FAILURE_ACTIONS

0x00000002

The lpBuffer parameter is a pointer to a

SERVICE_FAILURE_ACTIONSA structure.

SERVICE_CONFIG_DELAYED_AUTO_START_INFO

0x00000003<67>

The lpBuffer parameter is a pointer to a

SERVICE_DELAYED_AUTO_START_INFO

structure.

SERVICE_CONFIG_FAILURE_ACTIONS_FLAG

0x00000004<68>

The lpBuffer parameter is a pointer to a

SERVICE_FAILURE_ACTIONS_FLAG structure.

SERVICE_CONFIG_SERVICE_SID_INFO

0x00000005<69>

The lpBuffer parameter is a pointer to a

SERVICE_SID_INFO structure.

SERVICE_CONFIG_REQUIRED_PRIVILEGES_INFO

0x00000006<70>

The lpBuffer parameter is a pointer to a

SERVICE_RPC_REQUIRED_PRIVILEGES_INFO

structure.

SERVICE_CONFIG_PRESHUTDOWN_INFO

0x00000007<71>

The lpBuffer parameter is a pointer to a

SERVICE_PRESHUTDOWN_INFO structure.

SERVICE_CONFIG_PREFERRED_NODE

0x00000009<72>

The lpBuffer parameter is a pointer to a

SERVICE_PREFERRED_NODE_INFO

structure.<73>

SERVICE_CONFIG_RUNLEVEL_INFO

0x0000000A<74>

The lpBuffer parameter is a pointer to a

SERVICE_RUNLEVEL_INFO structure.

lpBuffer: A pointer to the buffer that contains the service configuration information. The format
of this data depends on the value of the dwInfoLevel parameter.

cbBufSize: The size, in bytes, of the lpBuffer parameter.

pcbBytesNeeded: An LPBOUNDED_DWORD_8K (section 2.2.8) data type that defines the
pointer to a variable that contains the number of bytes needed to return the configuration
information.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_QUERY_CONFIG access right had not been

granted to the caller when the RPC context handle to the

service record was created.

6 The handle is no longer valid.

124 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_INVALID_HANDLE

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

124

ERROR_INVALID_LEVEL

The dwInfoLevel parameter contains an unsupported value.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST query the
specific configuration information stored in the SCM database associated with the service record

identified by the hService parameter, using the information level and the corresponding values
associated with that information level as specified in the dwInfoLevel parameter of the client
request. The server MUST return this configuration data by setting the lpBuffer parameter with the
appropriate structure filled with the configuration data based on dwInfoLevel.

The server MUST set the required buffer size in the pcbBytesNeeded parameter.

If the buffer pointed to by lpBuffer is insufficient to hold all the configuration data, the server MUST
fail the call with ERROR_INSUFFICIENT_BUFFER (122).

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

The server MUST return ERROR_INVALID_PARAMETER (87) if either or both lpBuffer and
pcbBytesNeeded are NULL.<75>

3.1.4.37 RQueryServiceConfig2W (Opnum 39)

The RQueryServiceConfig2W<76> method returns the optional configuration parameters of the
specified service based on the specified information level.

DWORD RQueryServiceConfig2W(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwInfoLevel,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024*8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods

specified in section 3.1.4. The SERVICE_QUERY_CONFIG access right MUST have been
granted to the caller when the RPC context handle to the service record was created.

dwInfoLevel: A value that specifies the configuration information to query. This MUST be one of

the following values.

125 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SERVICE_CONFIG_DESCRIPTION

0x00000001

The lpBuffer parameter is a pointer to a

SERVICE_DESCRIPTION_WOW64 (section

2.2.36) structure.

SERVICE_CONFIG_FAILURE_ACTIONS

0x00000002

The lpBuffer parameter is a pointer to a

SERVICE_FAILURE_ACTIONS_WOW64 (section

2.2.37) structure.

SERVICE_CONFIG_DELAYED_AUTO_START_IN

FO

0x00000003<77>

The lpBuffer parameter is a pointer to a

SERVICE_DELAYED_AUTO_START_INFO

structure.

SERVICE_CONFIG_FAILURE_ACTIONS_FLAG

0x00000004<78>

The lpBuffer parameter is a pointer to a

SERVICE_FAILURE_ACTIONS_FLAG structure.

SERVICE_CONFIG_SERVICE_SID_INFO

0x00000005<79>

The lpBuffer parameter is a pointer to a

SERVICE_SID_INFO structure.

SERVICE_CONFIG_REQUIRED_PRIVILEGES_IN

FO

0x00000006<80>

The lpBuffer parameter is a pointer to a

SERVICE_REQUIRED_PRIVILEGES_INFO_WOW

64 (section 2.2.38) structure.

SERVICE_CONFIG_PRESHUTDOWN_INFO

0x00000007<81>

The lpBuffer parameter is a pointer to a

SERVICE_PRESHUTDOWN_INFO structure.

SERVICE_CONFIG_PREFERRED_NODE

0x00000009<82>

The lpInfo parameter is a pointer to a

SERVICE_PREFERRED_NODE_INFO

structure.<83>

SERVICE_CONFIG_RUNLEVEL_INFO

0x0000000A<84>

The lpBuffer parameter is a pointer to a

SERVICE_RUNLEVEL_INFO structure.

lpBuffer: A pointer to the buffer that contains the service configuration information. The format

of this data depends on the value of the dwInfoLevel parameter.

When dwInfoLevel is SERVICE_CONFIG_DESCRIPTION, or
SERVICE_CONFIG_FAILURE_ACTIONS or SERVICE_CONFIG_REQUIRED_PRIVILEGES_INFO,
the server returns an lpBuffer parameter that has the requested data and the offset to the
start of the data from the top of the buffer. The API converts the offset into pointers that it
returns to the caller by means of the lpBuffer parameter.

cbBufSize: The size, in bytes, of the lpBuffer parameter.

pcbBytesNeeded: An LPBOUNDED_DWORD_8K (section 2.2.8) data type that defines the
pointer to a variable that receives the number of bytes needed to return the configuration
information.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The SERVICE_QUERY_CONFIG access right had not been

granted to the caller when the RPC context handle to the

service record was created.

126 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x00000006

ERROR_INVALID_HANDLE

The handle is no longer valid.

0x00000087

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

0x00000122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

0x00000124

ERROR_INVALID_LEVEL

The dwInfoLevel parameter contains an unsupported value.

0x00001115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST query the

specific configuration information stored in the SCM database associated with the service record
identified by the hService parameter, using the information level and the corresponding values
associated with that information level as specified in the dwInfoLevel parameter of the client

request. The server MUST return this configuration data by setting the lpBuffer parameter with the
appropriate structure filled with the configuration data based on dwInfoLevel.

The server MUST set the required buffer size in the pcbBytesNeeded parameter.

If the buffer pointed to by lpBuffer is insufficient to hold all the configuration data, the server MUST
fail the call with ERROR_INSUFFICIENT_BUFFER (122).

The server MUST return ERROR_INVALID_PARAMETER (87) if either or both lpBuffer and
pcbBytesNeeded are NULL.<85>

3.1.4.38 RQueryServiceStatusEx (Opnum 40)

The RQueryServiceStatusEx method returns the current status of the specified service, based on
the specified information level.

DWORD RQueryServiceStatusEx(

 [in] SC_RPC_HANDLE hService,

 [in] SC_STATUS_TYPE InfoLevel,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024*8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_QUERY_STATUS access right MUST have been
granted to the caller when the RPC context handle to the service record was created.

InfoLevel: An enumerated value from SC_STATUS_TYPE (section 2.2.29) that specifies

which service attributes will be returned. MUST be SC_STATUS_PROCESS_INFO.

lpBuffer: A pointer to the buffer that contains the status information in the form of a
SERVICE_STATUS_PROCESS (section 2.2.49) structure.

127 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

cbBufSize: The size, in bytes, of the lpBuffer parameter.

pcbBytesNeeded: An LPBOUNDED_DWORD_8K (section 2.2.8) data type that defines the
pointer to a variable that contains the number of bytes needed to return the configuration
information.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_QUERY_STATUS access right had not been

granted to the caller when the RPC context handle to the

service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

122

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

124

ERROR_INVALID_LEVEL

The InfoLevel parameter contains an unsupported value.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST query the

configuration information as specified and stored in the SCM database associated with the service
record identified by the hService parameter. The server MUST return this configuration data by
setting the lpBuffer parameter with the SERVICE_STATUS_PROCESS structure filled with the

configuration data as specified in section 2.2.49.

If the buffer pointed to by lpBuffer is insufficient to hold all the configuration data, the server MUST
fail the call with ERROR_INSUFFICIENT_BUFFER (122) and set the required buffer size in the
pcbBytesNeeded parameter.

3.1.4.39 REnumServicesStatusExA (Opnum 41)

The REnumServicesStatusExA method enumerates services in the specified SCM database, based
on the specified information level.

DWORD REnumServicesStatusExA(

 [in] SC_RPC_HANDLE hSCManager,

 [in] SC_ENUM_TYPE InfoLevel,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in, out, unique] LPBOUNDED_DWORD_256K lpResumeIndex,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPCSTR pszGroupName

128 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SC_MANAGER_ENUMERATE_SERVICE access right MUST have
been granted to the caller when the RPC context handle to the SCM was created.

InfoLevel: An SC_ENUM_TYPE (section 2.2.20) structure that specifies which service
attributes to return. MUST be SC_ENUM_PROCESS_INFO.

dwServiceType: A value that specifies what type of service records to enumerate. This MUST be

one or a combination of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x0000000F

Enumerates services of type SERVICE_KERNEL_DRIVER.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

Enumerates services of type

SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Enumerates services of type

SERVICE_WIN32_OWN_PROCESS.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Enumerates services of type

SERVICE_WIN32_SHARE_PROCESS.

dwServiceState: Value that specifies the service records to enumerate based on their
ServiceStatus.dwCurrentState. This MUST be one of the following values.

Value Meaning

SERVICE_ACTIVE

0x00000001

Enumerates service records with ServiceStatus.dwCurrentState values

from the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, and SERVICE_PAUSED.

SERVICE_INACTIVE

0x00000002

Enumerates service records with the ServiceStatus.dwCurrentState

value SERVICE_STOPPED.

SERVICE_STATE_ALL

0x00000003

Enumerates service records with ServiceStatus.dwCurrentState values

from the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, SERVICE_PAUSED, and SERVICE_STOPPED.

lpBuffer: A pointer to the buffer that contains the status information in the form of an array of
ENUM_SERVICE_STATUS_PROCESSA (section 2.2.12) structures.

cbBufSize: The size, in bytes, of the buffer pointed to by lpBuffer.

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to return the configuration information.

lpServicesReturned: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable
that contains the number of service entries returned.

129 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

lpResumeIndex: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the current index in the enumerated list of service entries. The server MUST assign a

unique number to each service for the boot session, in increasing order, and increment that
number by one for each service addition. The value of the lpResumeIndex parameter is one of

these numbers, which the server can use to determine the resumption point for the
enumeration.

pszGroupName: A pointer to a string that specifies service records to enumerate based on their
ServiceGroup values.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_ENUMERATE_SERVICE access right had

not been granted to the caller when the RPC context handle

to the SCM was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

124

ERROR_INVALID_LEVEL

The InfoLevel parameter contains an unsupported value.

234

ERROR_MORE_DATA

More data is available.

1060

ERROR_SERVICE_DOES_NOT_EXIST

The group specified by the pszGroupName parameter does

not exist in the SCM GroupList.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST determine
the list of service records in the SCM database identified by the hSCManager parameter with the
ServiceGroup value matching the pszGroupName parameter, the ServiceStatus.dwCurrentState

equal to the state specified by dwServiceState, and the Type equal to dwServiceType of the client
request. The server MUST return this list by setting the service name, display name, and
appropriate configuration data for each of the services in the list in the array of
ENUM_SERVICE_STATUS_PROCESSA (section 2.2.12) structures pointed to by the lpBuffer
parameter and MUST set the number of services returned in the lpServicesReturned parameter.

If the lpResumeIndex value is not zero, the server MUST use that as the offset to the service list and

return only services starting at this offset. If the lpResumeIndex value is zero, the server MUST
return all services. The server MUST set this parameter to zero if the operation succeeds. If the
lpResumeIndex value is set by the client to any nonzero number not returned by the server, the

behavior is not defined.

If the pszGroupName parameter is a nonempty or non-NULL string, the server MUST enumerate
only the services that belong to the group whose name is specified by the pszGroupName
parameter. If the pszGroupName parameter is an empty string, the server MUST enumerate only

the services that do not belong to any group. If the pszGroupName parameter is NULL, the server
MUST ignore the group membership and enumerate all services.

130 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the size of the lpBuffer array is insufficient for the list of services returned, the server MUST fail
the call with ERROR_MORE_DATA (234) and return the size in bytes required in the pcbBytesNeeded

parameter. If the size is sufficient for data returned, the server also returns the required size, in
bytes.

If the size of the lpBuffer array is sufficient for the list of services returned, the enumerated data
MAY be in the buffer in a non-contiguous manner, and portions of the lpBuffer array MAY be empty.

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceState
is zero or contains undefined values.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceType

is zero or contains undefined values.

3.1.4.40 REnumServicesStatusExW (Opnum 42)

The REnumServicesStatusExW method enumerates services in the specified SCM database, based
on the specified information level.

DWORD REnumServicesStatusExW(

 [in] SC_RPC_HANDLE hSCManager,

 [in] SC_ENUM_TYPE InfoLevel,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024*256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in, out, unique] LPBOUNDED_DWORD_256K lpResumeIndex,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPCWSTR pszGroupName

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SC_MANAGER_ENUMERATE_SERVICE access right MUST have

been granted to the caller when the RPC context handle to the SCM was created.

InfoLevel: An SC_ENUM_TYPE (section 2.2.20) structure that specifies which service
attributes will be returned. This MUST be SC_ENUM_PROCESS_INFO.

dwServiceType: A value that specifies the service records to enumerate based on their Type.
This MUST be one or a combination of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

Enumerates services of type SERVICE_KERNEL_DRIVER.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

Enumerates services of type

SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_WIN32_OWN_PROCESS Enumerates services of type

131 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000010 SERVICE_WIN32_OWN_PROCESS.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Enumerates services of type

SERVICE_WIN32_SHARE_PROCESS.

dwServiceState: A value that specifies the service records to enumerate based on their
ServiceStatus.dwCurrentState. This MUST be one of the following values.

Value Meaning

SERVICE_ACTIVE

0x00000001

Enumerates service records with ServiceStatus.dwCurrentState values

from the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, and SERVICE_PAUSED.

SERVICE_INACTIVE

0x00000002

Enumerates service records with the ServiceStatus.dwCurrentState

value SERVICE_STOPPED.

SERVICE_STATE_ALL

0x00000003

Enumerates service records with ServiceStatus.dwCurrentState values

from the following: SERVICE_START_PENDING, SERVICE_STOP_PENDING,

SERVICE_RUNNING, SERVICE_CONTINUE_PENDING,

SERVICE_PAUSE_PENDING, SERVICE_PAUSED, and SERVICE_STOPPED.

lpBuffer: A pointer to the buffer that contains the status information in the form of an array of

ENUM_SERVICE_STATUS_PROCESSW (section 2.2.13) structures.

cbBufSize: The size, in bytes, of the buffer pointed to by lpBuffer.

pcbBytesNeeded: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the number of bytes needed to return the configuration information if the method
fails.

lpServicesReturned: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable

that contains the number of service entries returned.

lpResumeIndex: An LPBOUNDED_DWORD_256K (section 2.2.9) pointer to a variable that
contains the current index in the enumerated list of service entries. The server MUST assign a
unique number to each service for the boot session, in increasing order, and increment that
number by one for each service addition. The value of the lpResumeIndex parameter is one of
these numbers, which the server can use to determine the resumption point for the
enumeration.

pszGroupName: A pointer to a string that specifies service records to enumerate based on their
ServiceGroup values.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) (ERROR_SUCCESS) on
success; otherwise, it returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_ENUMERATE_SERVICE access right had

not been granted to the caller when the RPC context handle

to the SCM was created.

132 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

124

ERROR_INVALID_LEVEL

The InfoLevel parameter contains an unsupported value.

234

ERROR_MORE_DATA

More data is available.

1060

ERROR_SERVICE_DOES_NOT_EXIST

The group specified by the pszGroupName parameter does

not exist in the SCM GroupList.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST determine
the list of service records in the SCM database identified by the hSCManager parameter with a
ServiceGroup value matching the pszGroupName parameter, ServiceStatus.dwCurrentState

equal to the state specified by dwServiceState, and Type equal to dwServiceType of the client
request. The server MUST return this list by setting the service name, display name, and the
appropriate configuration data for each of the services in the list in the array of
ENUM_SERVICE_STATUS_PROCESSW (section 2.2.13) structures pointed to by the lpBuffer
parameter and MUST set the number of services returned in the lpServicesReturned parameter.

If the lpResumeIndex value is not zero, the server MUST use that as the offset to the service list and

return only services starting at this offset. If the lpResumeIndex value is zero, the server MUST
return all services. The server MUST set this parameter to zero if the operation succeeds. If the
lpResumeIndex value is set by the client to any nonzero number not returned by the server, the
behavior is not defined.

If the pszGroupName parameter is a nonempty or non-NULL string, the server MUST enumerate
only the services that belong to the group whose name is specified by the pszGroupName
parameter. If the pszGroupName parameter is an empty string, the server MUST enumerate only

the services that do not belong to any group. If the pszGroupName parameter is NULL, the server
MUST ignore the group membership and enumerate all services.

If the size of the lpBuffer array is insufficient for the list of services returned, the server MUST fail
the call with ERROR_MORE_DATA (234) and return the size in bytes required in the pcbBytesNeeded
parameter. If the size is sufficient for data returned, the server also returns the required size, in
bytes.

If the size of the lpBuffer array is sufficient for the list of services returned, the enumerated data

MAY be in the buffer in a non-contiguous manner, and portions of the lpBuffer array MAY be empty.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceState

is zero or contains undefined values.

The server MUST return ERROR_INVALID_PARAMETER (87) if a bitmask specified in dwServiceType
is zero or contains undefined values.

133 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4.41 RCreateServiceWOW64A (Opnum 44)

The RCreateServiceWOW64A method creates the service record for a 32-bit service on a 64-bit
system with the path to the file image automatically adjusted to point to a 32-bit file location on the

system.

DWORD RCreateServiceWOW64A(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpServiceName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in, string, range(0, SC_MAX_PATH_LENGTH)]

 LPSTR lpBinaryPathName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpLoadOrderGroup,

 [in, out, unique] LPDWORD lpdwTagId,

 [in, unique, size_is(dwDependSize)]

 LPBYTE lpDependencies,

 [in, range(0, SC_MAX_DEPEND_SIZE)]

 DWORD dwDependSize,

 [in, string, unique, range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 LPSTR lpServiceStartName,

 [in, unique, size_is(dwPwSize)]

 LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)]

 DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SC_MANAGER_CREATE_SERVICE access right MUST have been
granted to the caller when the RPC context handle to the SCM was created.

lpServiceName: A pointer to a null-terminated ANSI string that specifies the name of the
service to install. This MUST not be null.

lpDisplayName: A pointer to a null-terminated ANSI string that contains the display name by

which user interface programs identify the service.

dwDesiredAccess: A value that specifies the access to the service. This MUST be one of the
values as specified in section 3.1.4.

dwServiceType: A value that specifies the type of service. This MUST be one or a combination
of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER A file system driver service. These are services that manage

134 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000002 file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs within its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares an execution process with other services.

SERVICE_INTERACTIVE_PROCESS

0x00000100

The service can interact with the desktop.

dwStartType: A value that specifies when to start the service. This MUST be one of the following

values.

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START

0x00000002

Starts the service automatically during system startup.

SERVICE_DEMAND_START

0x00000003

Starts the service when a client requests the SCM to start the service.

SERVICE_DISABLED

0x00000004

Service cannot be started.

dwErrorControl: A value that specifies the severity of the error if the service fails to start and

determines the action that the SCM takes. This MUST be one of the following values.

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error, but continues the startup operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error. If the last-known good configuration is being

started, the startup operation continues. Otherwise, the system is

restarted with the last-known good configuration.

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error if possible. If the last-known good

configuration is being started, the startup operation fails. Otherwise,

the system is restarted with the last-known good configuration.

lpBinaryPathName: A pointer to a null-terminated ANSI string that contains the fully qualified
path to the service binary file. The path MAY include arguments. If the path contains a space,

135 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

it MUST be quoted so that it is correctly interpreted. For example, "d:\\my
share\\myservice.exe" should be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A pointer to a null-terminated ANSI string that names the load-ordering
group of which this service is a member.

Specify NULL or an empty string if the service does not belong to a load-ordering group.

lpdwTagId: A pointer to a variable that receives a tag value. The value is unique to the group
specified in the lpLoadOrderGroup parameter.

lpDependencies: A pointer to an array of null-separated names of services or load ordering
groups that MUST start before this service. The array is doubly null-terminated. Load ordering
group names are prefixed with a "+" character (to distinguish them from service names). If
the pointer is NULL or if it points to an empty string, the service has no dependencies. Cyclic

dependency between services is not allowed. The character set is ANSI. Dependency on a
service means that this service can only run if the service it depends on is running.
Dependency on a group means that this service can run if at least one member of the group is

running after an attempt to start all members of the group.

dwDependSize: The size, in bytes, of the string specified by the dwDependSize parameter.

lpServiceStartName: A pointer to a null-terminated ANSI that specifies the name of the

account under which the service should run.

lpPassword: A pointer to a null-terminated ANSI string that contains the password of the
account whose name was specified by the lpServiceStartName parameter.

dwPwSize: The size, in bytes, of the password specified by the lpPassword parameter.

lpServiceHandle: An LPSC_RPC_HANDLE (section 2.2.4) data type that defines the handle to
the newly created service record.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise,

one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_CREATE_SERVICE access right had

not been granted to the caller when the RPC context

handle to the SCM was created.

6

ERROR_INVALID_HANDLE

The handle specified is invalid.

13

ERROR_INVALID_DATA

The data is invalid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1057

ERROR_INVALID_SERVICE_ACCOUNT

The user account name specified in the

lpServiceStartName parameter does not exist.

1059 A circular service dependency was specified.

136 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_CIRCULAR_DEPENDENCY

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The service record with a specified name already exists

and RDeleteService has been called for it.

1073

ERROR_SERVICE_EXISTS

The service record with the ServiceName matching the

specified lpServiceName already exists.

1078

ERROR_DUPLICATE_SERVICE_NAME

The service record with the same DisplayName or the

same ServiceName as the passed-in lpDisplayName

already exists in the SCM database.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST use the

service name specified in the lpServiceName parameter to create a new service record in the SCM
database and use the values from the appropriate parameters of the client request to update the
attributes of this newly created service record.

The only valid combinations of values for dwServiceType are SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_SHARE_PROCESS. If the value of dwServiceType has more than one bit set and
the combination of bits is not equal to SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_SHARE_PROCESS, the server MUST fail the method and return the error
ERROR_INVALID_PARAMETER.

The server MUST convert the location specified in the lpBinaryPathName parameter to point to the
32-bit location on a 64-bit system.<86>

If the service is created successfully, the server MUST return a handle to the service in the

lpServiceHandle parameter with the access rights associated with this handle as specified in the
dwDesiredAccess parameter of the client request.

The server MUST use the process described in Conversion Between ANSI and Unicode String

Formats (section 3.1.7) to convert a string to the appropriate format.

If lpBinaryPathName contains arguments, the server MUST pass these arguments to the service
entry point.

If lpdwTagId has a valid value and lpLoadOrderGroup is either NULL or an empty string, then the
server MUST return ERROR_INVALID_PARAMETER.

3.1.4.42 RCreateServiceWOW64W (Opnum 45)

The RCreateServiceWOW64W method creates the service record for a 32-bit service on a 64-bit
system with the path to the file image automatically adjusted to point to a 32-bit file location on the

system.

DWORD RCreateServiceWOW64W(

 [in] SC_RPC_HANDLE hSCManager,

 [in, string, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpServiceName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

137 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 wchar_t* lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in, string, range(0, SC_MAX_PATH_LENGTH)]

 wchar_t* lpBinaryPathName,

 [in, string, unique, range(0, SC_MAX_NAME_LENGTH)]

 wchar_t* lpLoadOrderGroup,

 [in, out, unique] LPDWORD lpdwTagId,

 [in, unique, size_is(dwDependSize)]

 LPBYTE lpDependencies,

 [in, range(0, SC_MAX_DEPEND_SIZE)]

 DWORD dwDependSize,

 [in, string, unique, range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 wchar_t* lpServiceStartName,

 [in, unique, size_is(dwPwSize)]

 LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)]

 DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

hSCManager: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

SCM database created using one of the open methods specified in section 3.1.4. The
SC_MANAGER_CREATE_SERVICE access right MUST have been granted to the caller when the
RPC context handle to the SCM was created.

lpServiceName: A pointer to a null-terminated UNICODE string that specifies the name of the
service to install. This MUST NOT be NULL.

The forward slash, back slash, comma, and space characters are illegal in service names.

lpDisplayName: A pointer to a null-terminated UNICODE string that contains the display name

by which user interface programs identify the service.

dwDesiredAccess: A value that specifies the access to the service. This MUST be one of the
values as specified in section 3.1.4.

dwServiceType: A value that specifies the type of service. This MUST be one or a combination
of the following values.

Value Meaning

SERVICE_KERNEL_DRIVER

0x00000001

A driver service. These are services that manage devices on

the system.

SERVICE_FILE_SYSTEM_DRIVER

0x00000002

A file system driver service. These are services that manage

file systems on the system.

SERVICE_WIN32_OWN_PROCESS

0x00000010

Service that runs within its own process.

SERVICE_WIN32_SHARE_PROCESS

0x00000020

Service that shares a process with other services.

SERVICE_INTERACTIVE_PROCESS The service can interact with the desktop.

138 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000100

dwStartType: A value that specifies when to start the service. This MUST be one of the following
values.

Value Meaning

SERVICE_BOOT_START

0x00000000

Starts the driver service when the system boots up. This value is valid

only for driver services.

SERVICE_SYSTEM_START

0x00000001

Starts the driver service when the system boots up. This value is valid

only for driver services. The services marked

SERVICE_SYSTEM_START are started after all SERVICE_BOOT_START

services have been started.

SERVICE_AUTO_START

0x00000002

Starts the service automatically during system startup.

SERVICE_DEMAND_START

0x00000003

Starts the service when a client requests the SCM to start the service.

SERVICE_DISABLED

0x00000004

Service cannot be started.

dwErrorControl: A value that specifies the severity of the error if the service fails to start and
determines the action that the SCM takes. This MUST be one of the following values.

Value Meaning

SERVICE_ERROR_IGNORE

0x00000000

The SCM ignores the error and continues the startup operation.

SERVICE_ERROR_NORMAL

0x00000001

The SCM logs the error, but continues the startup operation.

SERVICE_ERROR_SEVERE

0x00000002

The SCM logs the error. If the last-known good configuration is being

started, the startup operation continues. Otherwise, the system is

restarted with the last-known good configuration.

SERVICE_ERROR_CRITICAL

0x00000003

The SCM SHOULD log the error if possible. If the last-known good

configuration is being started, the startup operation fails. Otherwise,

the system is restarted with the last-known good configuration.

lpBinaryPathName: A pointer to a null-terminated UNICODE string that contains the fully
qualified path to the service binary file. The path MAY include arguments. If the path contains
a space, it MUST be quoted so that it is correctly interpreted. For example, "d:\\my
share\\myservice.exe" should be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup: A pointer to a null-terminated UNICODE string that names the load-

ordering group of which this service is a member.

Specify NULL or an empty string if the service does not belong to a load-ordering group.

139 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

lpdwTagId: A pointer to a variable that receives a tag value. The value is unique to the group
specified in the lpLoadOrderGroup parameter.

lpDependencies: A pointer to an array of null-separated names of services or load ordering
groups that MUST start before this service. The array is doubly null-terminated. Load ordering

group names are prefixed with a "+" character (to distinguish them from service names). If
the pointer is NULL or if it points to an empty string, the service has no dependencies. Cyclic
dependency between services is not allowed. The character set is Unicode. Dependency on a
service means that this service can only run if the service it depends on is running.
Dependency on a group means that this service can run if at least one member of the group is
running after an attempt to start all members of the group.

dwDependSize: The size, in bytes, of the string specified by the dwDependSize parameter.

lpServiceStartName: A pointer to a null-terminated UNICODE string that specifies the name of
the account under which the service should run.

lpPassword: A pointer to a null-terminated UNICODE string that contains the password of the

account whose name was specified by the lpServiceStartName parameter.

dwPwSize: The size, in bytes, of the password specified by the lpPassword parameter.

lpServiceHandle: An LPSC_RPC_HANDLE (section 2.2.4) data type that defines the handle to

the newly created service record.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_CREATE_SERVICE access right had

not been granted to the caller when the RPC context

handle to the SCM was created.

6

ERROR_INVALID_HANDLE

The handle specified is invalid.

13

ERROR_INVALID_DATA

The data is invalid.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

123

ERROR_INVALID_NAME

The specified service name is invalid.

1057

ERROR_INVALID_SERVICE_ACCOUNT

The user account name specified in the

lpServiceStartName parameter does not exist.

1059

ERROR_CIRCULAR_DEPENDENCY

A circular service dependency was specified.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The service record with a specified name already exists,

and RDeleteService has been called for it.

1073

ERROR_SERVICE_EXISTS

The service record with the ServiceName matching the

specified lpServiceName already exists.

140 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

1078

ERROR_DUPLICATE_SERVICE_NAME

The service record with the same DisplayName or the

same ServiceName as the passed-in lpDisplayName

already exists in the service control manager database.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST use the
service name specified in the lpServiceName parameter to create a new service record in the SCM
database and use the values from the appropriate parameters of the client request to update the
attributes of this newly created service record.

The server MUST convert the location specified in the lpBinaryPathName parameter to point to the

32-bit location on a 64-bit system.

If the service is created successfully, the server MUST return a handle to the service in the
lpServiceHandle parameter with the access rights associated with this handle as specified in the
dwDesiredAccess parameter of the client request.

The only valid combinations of values for dwServiceType are SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_SHARE_PROCESS. If the value of dwServiceType has more than one bit set and

the combination of bits is not equal to SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_OWN_PROCESS or SERVICE_INTERACTIVE_PROCESS and
SERVICE_WIN32_SHARE_PROCESS, the server MUST fail the method and return the error
ERROR_INVALID_PARAMETER.

If lpBinaryPathName contains arguments, the server MUST pass these arguments to the service
entry point.

If lpdwTagId has a valid value and lpLoadOrderGroup is either NULL or an empty string, then the

server MUST return ERROR_INVALID_PARAMETER.

3.1.4.43 RNotifyServiceStatusChange (Opnum 47)

The RNotifyServiceStatusChange method<87> allows the client to register for notifications and
check, via RGetNotifyResults (section 3.1.4.44), when the specified service of type
SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS is created or deleted or

when its status changes.

DWORD RNotifyServiceStatusChange(

 [in] SC_RPC_HANDLE hService,

 [in] SC_RPC_NOTIFY_PARAMS NotifyParams,

 [in] GUID* pClientProcessGuid,

 [out] GUID* pSCMProcessGuid,

 [out] PBOOL pfCreateRemoteQueue,

 [out] LPSC_NOTIFY_RPC_HANDLE phNotify

);

hService: An SC_RPC_HANDLE data type that defines the handle to the SCM for
SERVICE_NOTIFY_CREATED and SERVICE_NOTIFY_DELETED notifications or to the service

record for all other notification types that MUST have been created previously, using one of
the open methods specified in section 3.1.4. The SC_MANAGER_ENUMERATE_SERVICE access

141 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

right MUST have been granted to the caller when the RPC context handle to the SCM was
created, or the SERVICE_QUERY_STATUS access right MUST have been granted to the caller

when the RPC context handle to the service record was created.

NotifyParams: An SC_RPC_NOTIFY_PARAMS (section 2.2.23) data type that defines the

service status notification information.

pClientProcessGuid: Not used. This MUST be ignored.

pSCMProcessGuid: Not used. This MUST be ignored.

pfCreateRemoteQueue: Not used. This MUST be ignored.

phNotify: An LPSC_NOTIFY_RPC_HANDLE (section 2.2.6) data type that defines a handle to
the notification status associated with the client for the specified service.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it

returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SC_MANAGER_ENUMERATE_SERVICE access

right had not been granted to the caller when the

RPC context handle to the SCM was created, or the

SERVICE_QUERY_STATUS access right had not

been granted to the caller when the RPC context

handle to the service record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid or is not supported for

the specified notification.

50

ERROR_NOT_SUPPORTED

The request is not supported.

87

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

124

ERROR_INVALID_LEVEL

The system call level is not correct.

1072

ERROR_SERVICE_MARKED_FOR_DELETE

The RDeleteService has been called for the service

record identified by the hService parameter.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

1242

ERROR_ALREADY_REGISTERED

A notification status handle has already been

created for the service handle passed in the

hService parameter.

1294

ERROR_SERVICE_NOTIFY_CLIENT_LAGGING

The service notification client is lagging too far

behind the current state of services in the machine.

In response to this request from the client, for a successful operation, the server MUST associate
NOTIFY_RPC_HANDLE for the caller to check for status changes using RGetNotifyResults for the
service record identified by the hService parameter.

The server MUST ignore any value set in the ullThreadId parameter in NotifyParams.

142 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST fail the call and return ERROR_INVALID_PARAMETER if dwNotifyMask contains
masks for both create/delete events and service status events.

Client may set the value of pClientProcessGuid, pSCMProcessGuid, and pfCreatRemoteQueue to any
value, such as 0, and the server MUST ignore these.

The server MUST return ERROR_NOT_SUPPORTED (50) if the value of dwInfoLevel is greater than
SERVICE_NOTIFY_STATUS_CHANGE.

The server MUST return ERROR_INVALID_LEVEL (124) if the value of dwInfoLevel is not
SERVICE_NOTIFY_STATUS_CHANGE (0x2) or SERVICE_NOTIFY_STATUS_CHANGE_1 (0x1).

3.1.4.44 RGetNotifyResults (Opnum 48)

The RGetNotifyResults method<88> returns notification information when the specified status

change that was previously requested by the client via RNotifyServiceStatusChange (section
3.1.4.43) occurs on a specified service.

The client MUST make one call to RGetNotifyResults for each call to
RNotifyServiceStatusChange.

error_status_t RGetNotifyResults(

 [in] SC_NOTIFY_RPC_HANDLE hNotify,

 [out] PSC_RPC_NOTIFY_PARAMS_LIST* ppNotifyParams

);

hNotify: An SC_NOTIFY_RPC_HANDLE (section 2.2.6) data type that defines a handle to the
notification status associated with the client. This is the handle returned by an

RNotifyServiceStatusChange call.

ppNotifyParams: A pointer to a buffer that receives an SC_RPC_NOTIFY_PARAMS_LIST
(section 2.2.24) data type.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

1235

ERROR_REQUEST_ABORTED

The request was aborted.

In response to this request, the server MUST wait until the service state in the service record

changes to one of the values specified in the SC_RPC_NOTIFY_PARAMS (section 2.2.23)
structure passed to the RNotifyServiceStatusChange method that returned the hNotify
parameter. When the service changes state to one of the values specified in the

SC_RPC_NOTIFY_PARAMS structure associated with the hNotify parameter, the server MUST
update the client by setting the appropriate values in the ppNotifyParams parameter and returning
the call.<89>

143 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The client MUST ignore any value set in the ullThreadId parameter in ppNotifyParams.

3.1.4.45 RCloseNotifyHandle (Opnum 49)

The RCloseNotifyHandle method<90> unregisters the client from receiving future notifications via

the RGetNotifyResults (section 3.1.4.44) method from the server for specified status changes
on a specified service.

DWORD RCloseNotifyHandle(

 [in, out] LPSC_NOTIFY_RPC_HANDLE phNotify,

 [out] PBOOL pfApcFired

);

phNotify: An SC_NOTIFY_RPC_HANDLE (section 2.2.6) data type that defines a handle to

the notification status associated with the client. This is the handle returned by an
RNotifyServiceStatusChange call.

pfApcFired: Not used.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns the following error code.

Return value/code Description

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

In response to this request from the client, for a successful operation the server MUST close the
handle specified in the phNotify parameter and stop notifying the client about status changes for the
service record associated with the handle.

3.1.4.46 RControlServiceExA (Opnum 50)

The RControlServiceExA method<91> receives a control code for a specific service.

DWORD RControlServiceExA(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwControl,

 [in] DWORD dwInfoLevel,

 [in, switch_is(dwInfoLevel)] PSC_RPC_SERVICE_CONTROL_IN_PARAMSA pControlInParams,

 [out, switch_is(dwInfoLevel)] PSC_RPC_SERVICE_CONTROL_OUT_PARAMSA pControlOutParams

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4.

dwControl: Requested control code. This MUST be one of the following values.

Value Meaning

SERVICE_CONTROL_STOP

0x00000001

Notifies a service that it should stop. The SERVICE_STOP

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

144 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

The service record MUST have the

SERVICE_ACCEPT_STOP bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_PAUSE

0x00000002

Notifies a service that it should pause. The

SERVICE_PAUSE_CONTINUE access right MUST have

been granted to the caller when the RPC control handle to

the service record was created. The service record MUST

have the SERVICE_ACCEPT_PAUSE_CONTINUE bit set in

the ServiceStatus.dwControlsAccepted field of the

service record.

SERVICE_CONTROL_CONTINUE

0x00000003

Notifies a paused service that it should resume. The

SERVICE_PAUSE_CONTINUE access right MUST have

been granted to the caller when the RPC control handle to

the service record was created. The service record MUST

have the SERVICE_ACCEPT_PAUSE_CONTINUE bit set in

the ServiceStatus.dwControlsAccepted field of the

service record.

SERVICE_CONTROL_INTERROGATE

0x00000004

Notifies a service that it should report its current status

information to the SCM. The SERVICE_INTERROGATE

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

SERVICE_CONTROL_PARAMCHANGE

0x00000006

Notifies a service that its startup parameters have

changed. The SERVICE_PAUSE_CONTINUE access right

MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_PARAMCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDADD

0x00000007

Notifies a service that there is a new component for

binding. The SERVICE_PAUSE_CONTINUE access right

MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDREMOVE

0x00000008

Notifies a network service that a component for binding

has been removed. The SERVICE_PAUSE_CONTINUE

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

The service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDENABLE

0x00000009

Notifies a network service that a disabled binding has

been enabled. The SERVICE_PAUSE_CONTINUE access

right MUST have been granted to the caller when the RPC

control handle to the service record was created. The

145 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDDISABLE

0x0000000A

Notifies a network service that one of its bindings has

been disabled. The SERVICE_PAUSE_CONTINUE access

right MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

Services can define their own codes in the range 128-255.

dwInfoLevel: The information level for the service control parameters. This MUST be set to
0x00000001.

pControlInParams: A pointer to a SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA
(section 2.2.30) structure that contains the reason associated with the
SERVICE_CONTROL_STOP control.

pControlOutParams: A pointer to a buffer that contains a
SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS (section 2.2.32) structure to
receive the current status on the service.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The required access right had not been granted to the

caller when the RPC context handle to the service

record was created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

87

ERROR_INVALID_PARAMETER

The requested control code is undefined.

124

ERROR_INVALID_LEVEL

The dwInfoLevel parameter contains an unsupported

value.

1051

ERROR_DEPENDENT_SERVICES_RUNNING

The service cannot be stopped because other running

services are dependent on it.

1052

ERROR_INVALID_SERVICE_CONTROL

The requested control code is not valid, or it is

unacceptable to the service.

1053

ERROR_SERVICE_REQUEST_TIMEOUT

The process for the service was started, but it did not

respond within an implementation-specific time-

out.<92>

1061 The requested control code cannot be sent to the

146 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

ERROR_SERVICE_CANNOT_ACCEPT_CTRL service because the state of the service is

SERVICE_START_PENDING or

SERVICE_STOP_PENDING.

1062

ERROR_SERVICE_NOT_ACTIVE

The service has not been started, or the

ServiceStatus.dwCurrentState in the service

record is SERVICE_STOPPED.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the SCM MUST send the
control specified in the dwControl parameter to the service created for the service record identified

by the hService parameter of the client request if the type of the service record is
SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS.

If the type of the service record is SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER,
and dwControl parameter is not SERVICE_CONTROL_INTERROGATE or SERVICE_CONTROL_STOP,
the SCM MUST fail the request with ERROR_INVALID_SERVICE_CONTROL.

If the type of the service record is SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER,

the SCM MUST query the current status of the driver from the operating system and set the
ServiceStatus.dwCurrentState of the service record to SERVICE_RUNNING if driver is loaded and
to SERVICE_STOPPED if it is not.

If the dwControl is not SERVICE_CONTROL_INTERROGATE and the type of the service record is
SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER and the driver is managed by the PnP
subsystem, the SCM MUST fail the request with ERROR_INVALID_SERVICE_CONTROL. In response
to this request from the client, for a successful operation the SCM MUST return the current status of

the service by setting pControlOutParams after the operation.

If the ServiceStatus.dwControlsAccepted field of the service record does not have a required

SERVICE_ACCEPT_xxx bit set, the SCM MUST fail the request with
ERROR_INVALID_SERVICE_CONTROL.

If the dwInfoLevel parameter of the client request is set to 0x00000001, the server MUST provide
information in pControlOutParams.

The server MUST return the services last known state if dwControl is

SERVICE_CONTROL_INTERROGATE and the service is in START_PENDING state.

If dwControl is not equal to SERVICE_CONTROL_STOP, pControlInParams->pszComment MUST be
NULL. If not, the server MUST fail the call and return ERROR_INVALID_PARAMETER (87).

The server MUST use the process described in Conversion Between ANSI and Unicode String
Formats (section 3.1.7) to convert a string to the appropriate format.

3.1.4.47 RControlServiceExW (Opnum 51)

The RControlServiceExW method<93> receives a control code for a specific service.

DWORD RControlServiceExW(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwControl,

147 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in] DWORD dwInfoLevel,

 [in, switch_is(dwInfoLevel)] PSC_RPC_SERVICE_CONTROL_IN_PARAMSW pControlInParams,

 [out, switch_is(dwInfoLevel)] PSC_RPC_SERVICE_CONTROL_OUT_PARAMSW pControlOutParams

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4.

dwControl: Requested control code. MUST be one of the following values.

Value Meaning

SERVICE_CONTROL_STOP

0x00000001

Notifies a service that it should stop. The SERVICE_STOP

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

The service record MUST have the

SERVICE_ACCEPT_STOP bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_PAUSE

0x00000002

Notifies a service that it should pause. The

SERVICE_PAUSE_CONTINUE access right MUST have

been granted to the caller when the RPC control handle to

the service record was created. The service record MUST

have the SERVICE_ACCEPT_PAUSE_CONTINUE bit set in

the ServiceStatus.dwControlsAccepted field of the

service record.

SERVICE_CONTROL_CONTINUE

0x00000003

Notifies a paused service that it should resume. The

SERVICE_PAUSE_CONTINUE access right MUST have

been granted to the caller when the RPC control handle to

the service record was created. The service record MUST

have the SERVICE_ACCEPT_PAUSE_CONTINUE bit set in

the ServiceStatus.dwControlsAccepted field of the

service record.

SERVICE_CONTROL_INTERROGATE

0x00000004

Notifies a service that it should report its current status

information to the SCM. The SERVICE_INTERROGATE

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

SERVICE_CONTROL_PARAMCHANGE

0x00000006

Notifies a service that its startup parameters have

changed. The SERVICE_PAUSE_CONTINUE access right

MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_PARAMCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDADD

0x00000007

Notifies a service that there is a new component for

binding. The SERVICE_PAUSE_CONTINUE access right

MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

148 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

record.

SERVICE_CONTROL_NETBINDREMOVE

0x00000008

Notifies a network service that a component for binding

has been removed. The SERVICE_PAUSE_CONTINUE

access right MUST have been granted to the caller when

the RPC control handle to the service record was created.

The service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDENABLE

0x00000009

Notifies a network service that a disabled binding has

been enabled. The SERVICE_PAUSE_CONTINUE access

right MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

SERVICE_CONTROL_NETBINDDISABLE

0x0000000A

Notifies a network service that one of its bindings has

been disabled. The SERVICE_PAUSE_CONTINUE access

right MUST have been granted to the caller when the RPC

control handle to the service record was created. The

service record MUST have the

SERVICE_ACCEPT_NETBINDCHANGE bit set in the

ServiceStatus.dwControlsAccepted field of the service

record.

Services can define their own codes in the range 128-255.

dwInfoLevel: The information level for the service control parameters. This MUST be set to
0x00000001.

pControlInParams: A pointer to a SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW
(section 2.2.31) structure that contains the reason associated with the
SERVICE_CONTROL_STOP control.

pControlOutParams: A pointer to a buffer that contains a

SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS (section 2.2.32) structure to
receive the current status on the service.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The required access right had not been granted to the

caller when the RPC context handle to the service

record was created.

0x00000006

ERROR_INVALID_HANDLE

The handle is no longer valid.

0x00000087

ERROR_INVALID_PARAMETER

The requested control code is undefined.

149 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x00000124

ERROR_INVALID_LEVEL

The dwInfoLevel parameter contains an unsupported

level.

0x00001051

ERROR_DEPENDENT_SERVICES_RUNNING

The service cannot be stopped because other running

services are dependent on it.

0x00001052

ERROR_INVALID_SERVICE_CONTROL

The requested control code is not valid, or it is

unacceptable to the service.

0x00001053

ERROR_SERVICE_REQUEST_TIMEOUT

The process for the service was started, but it did not

respond within an implementation-specific

timeout.<94>

0x00001061

ERROR_SERVICE_CANNOT_ACCEPT_CTRL

The requested control code cannot be sent to the

service because the state of the service is

SERVICE_START_PENDING or

SERVICE_STOP_PENDING.

0x00001062

ERROR_SERVICE_NOT_ACTIVE

The service has not been started, or the

ServiceStatus.dwCurrentState in the service

record is SERVICE_STOPPED.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the SCM MUST send the
control specified in the dwControl parameter to the service created for the service record identified
by the hService parameter of the client request if the type of the service record is
SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS.

If the type of the service record is SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER,
and dwControl parameter is not SERVICE_CONTROL_INTERROGATE or SERVICE_CONTROL_STOP,

the SCM MUST fail the request with ERROR_INVALID_SERVICE_CONTROL.

If the type of the service record is SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER,
the SCM MUST query the current status of the driver from the Operating System and set the
ServiceStatus.dwCurrentState of the service record to SERVICE_RUNNING if driver is loaded and
SERVICE_STOPPED if it is not.

If the dwControl is not SERVICE_CONTROL_INTERROGATE and type of the service record is
SERVICE_KERNEL_DRIVER or SERVICE_FILESYSTEM_DRIVER and the driver is managed by the PnP

subsystem, the SCM MUST fail the request with ERROR_INVALID_SERVICE_CONTROL.

If the ServiceStatus.dwControlsAccepted field of the service record does not have a required
SERVICE_ACCEPT_xxx bit set, the SCM MUST fail the request with
ERROR_INVALID_SERVICE_CONTROL.

In response to this request from the client, for a successful operation the SCM MUST return the

current status of the service by setting pControlOutParams after the operation.

The server MUST return the services last known state if dwControl is
SERVICE_CONTROL_INTERROGATE and the service is in START_PENDING state.

The server MUST provide information in pControlOutParams.

150 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If dwControl is not equal to SERVICE_CONTROL_STOP, pControlInParams->pszComment MUST be
NULL. If not, the server MUST fail the call and return ERROR_INVALID_PARAMETER (87).

3.1.4.48 RQueryServiceConfigEx (Opnum 56)

The RQueryServiceConfigEx<95> method queries the optional configuration parameters of a
service.

DWORD RQueryServiceConfigEx(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwInfoLevel,

 [out] SC_RPC_CONFIG_INFOW* pInfo

);

hService: An SC_RPC_HANDLE (section 2.2.4) data type that defines the handle to the

service record that MUST have been created previously, using one of the open methods
specified in section 3.1.4. The SERVICE_QUERY_CONFIG access right MUST have been

granted to the caller when the RPC context handle was created.

dwInfoLevel: The information level for the service configuration parameters. This MUST be set

to 0x00000008 which corresponds to the service's trigger information.

pInfo: A pointer to an SC_RPC_CONFIG_INFOW (section 2.2.22) structure that contains
optional configuration information.

Return Values: The method returns 0x00000000 (ERROR_SUCCESS) on success; otherwise, it
returns one of the following error codes.

Return value/code Description

5

ERROR_ACCESS_DENIED

The SERVICE_QUERY_CONFIG access right had not been

granted to the caller when the RPC context handle was

created.

6

ERROR_INVALID_HANDLE

The handle is no longer valid.

124

ERROR_INVALID_LEVEL

The dwInfoLevel parameter contains an unsupported value.

1115

ERROR_SHUTDOWN_IN_PROGRESS

The system is shutting down.

In response to this request from the client, for a successful operation the server MUST query the

specific configuration information stored in the SCM database in the service record identified by the
hService parameter, using the information level and the corresponding values associated with that
information level as specified in the dwInfoLevel parameter of the client request. The server MUST
return this configuration data by setting the pInfo parameter with the appropriate structure filled

with the configuration data based on dwInfoLevel.

The server MUST return a service's trigger information by returning a SERVICE_TRIGGER_INFO

structure.

151 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.1.7 Conversion Between ANSI and Unicode String Formats

For all methods that require conversion, the server utilizes the conversion process specified in [MS-
UCODEREF] section 3.1.5.1.1.2.

3.2 RPC Runtime Check Notes

The behavior of the client when methods are executed can be affected by the RPC protocol runtime
checks and MIDL compiler options used when generating stubs. For example, this often concerns

error codes when passing the NULL value in parameters with the [string] IDL attribute. In these
cases, the IDL method does not return the expected error code. Instead, an RPC exception is raised.

For more information about generating RPC stubs from IDL definitions, see the topic "Using the
MIDL Compiler" in [MSDN-MIDL].

%5bMS-UCODEREF%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90041

152 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Protocol Examples

The client receives a request from an application such as Services.msc to open the SCM database on
the server for reading. After establishing a connection to the server, the client sends an
ROpenSCManagerW call with the following values for the parameters.

lpMachineName = "Name of the Server"

lpDatabaseName = "ServicesActive"

dwDesiredAccess = 0x00000001

lpScHandle = NULL

Upon receiving this request from the client, the server opens the handle to the SCM database with

read access, the method returns an error code of 0, and the pointer is set to the opened handle in
the lpScHandle parameter of the response.

The client can then use the handle returned in lpScHandle to operate on SCM database. For

instance, to query the display name associated with a service, the client sends an
RGetServiceDisplayNameW call with the following values for the parameters.

hSCManager = Handle returned in the lpScHandle parameter of the

 previous server response.

lpServiceName = "GenericService\0"

lpDisplayName = Pointer to buffer that will receive the display name

lpcchBuffer = Size of the buffer pointed to by the lpDisplayName

 parameter

Upon receiving this request from the client, the server queries the display name associated with the

service "GenericService", the method returns an error code of 0, and then the server fills the display
name in the buffer pointed to by the lpDisplayName parameter of the response.

When it is finished operating on the SCM database, the client closes the handle to this database by

sending an RCloseServiceHandle with the following values for the parameters.

hSCObject = Handle returned in the lpScHandle parameter of the server

 response to the ROpenSCManagerW call.

Upon receiving this request from the client, the server closes the handle to the open SCM database,

and the method returns an error code of 0.

153 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Security

The following sections specify security considerations for implementers of the Service Control
Manager Remote Protocol.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

Security parameter Section

RPC_C_AUTHN_GSS_NEGOTIATE 2.1

RPC_C_AUTHN_WINNT 2.1

RPC_C_AUTHN_LEVEL_PKT_PRIVACY 2.1

RPC_C_AUTHN_LEVEL_CONNECT 2.1

154 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Appendix A: Full IDL

For ease of implementation, the full Interface Definition Language (IDL) is provided as follows,
where "ms-dtyp.idl" is the IDL found in [MS-DTYP] Appendix A.<96>

import "ms-dtyp.idl";

[

 uuid(367ABB81-9844-35F1-AD32-98F038001003),

 version(2.0),

 ms_union,

 pointer_default(unique)

]

interface svcctl{

const unsigned int MAX_SERVICE_NAME_LENGTH = 256;

const unsigned short SC_MAX_DEPEND_SIZE = 4 * 1024;

const unsigned short SC_MAX_NAME_LENGTH = MAX_SERVICE_NAME_LENGTH + 1;

const unsigned short SC_MAX_PATH_LENGTH = 32 * 1024;

const unsigned short SC_MAX_PWD_SIZE = 514;

const unsigned short SC_MAX_COMPUTER_NAME_LENGTH = 1024;

const unsigned short SC_MAX_ACCOUNT_NAME_LENGTH = 2 * 1024;

const unsigned short SC_MAX_COMMENT_LENGTH = 128;

const unsigned short SC_MAX_ARGUMENT_LENGTH = 1024;

const unsigned short SC_MAX_ARGUMENTS = 1024;

typedef [handle]

 wchar_t* SVCCTL_HANDLEW;

typedef [handle]

 LPSTR SVCCTL_HANDLEA;

typedef [context_handle] PVOID SC_RPC_HANDLE;

typedef [context_handle] PVOID SC_RPC_LOCK;

typedef [context_handle] PVOID SC_NOTIFY_RPC_HANDLE;

typedef SC_RPC_HANDLE * LPSC_RPC_HANDLE;

typedef SC_RPC_LOCK * LPSC_RPC_LOCK;

typedef SC_NOTIFY_RPC_HANDLE * LPSC_NOTIFY_RPC_HANDLE;

typedef struct _STRING_PTRSA {

 [string, range(0, SC_MAX_ARGUMENT_LENGTH)] LPSTR StringPtr;

} STRING_PTRSA, *PSTRING_PTRSA, *LPSTRING_PTRSA;

typedef struct _STRING_PTRSW {

 [string, range(0, SC_MAX_ARGUMENT_LENGTH)] wchar_t* StringPtr;

} STRING_PTRSW, *PSTRING_PTRSW, *LPSTRING_PTRSW;

typedef [range(0, 1024 * 4)] DWORD BOUNDED_DWORD_4K;

typedef BOUNDED_DWORD_4K * LPBOUNDED_DWORD_4K;

typedef [range(0, 1024 * 8)] DWORD BOUNDED_DWORD_8K;

typedef BOUNDED_DWORD_8K * LPBOUNDED_DWORD_8K;

typedef [range(0, 1024 * 256)] DWORD BOUNDED_DWORD_256K;

typedef BOUNDED_DWORD_256K * LPBOUNDED_DWORD_256K;

typedef struct {

 DWORD dwServiceType;

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

155 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 DWORD dwCurrentState;

 DWORD dwControlsAccepted;

 DWORD dwWin32ExitCode;

 DWORD dwServiceSpecificExitCode;

 DWORD dwCheckPoint;

 DWORD dwWaitHint;

} SERVICE_STATUS,

 *LPSERVICE_STATUS;

typedef struct {

 DWORD dwServiceType;

 DWORD dwCurrentState;

 DWORD dwControlsAccepted;

 DWORD dwWin32ExitCode;

 DWORD dwServiceSpecificExitCode;

 DWORD dwCheckPoint;

 DWORD dwWaitHint;

 DWORD dwProcessId;

 DWORD dwServiceFlags;

} SERVICE_STATUS_PROCESS,

 *LPSERVICE_STATUS_PROCESS;

typedef struct _QUERY_SERVICE_CONFIGW {

 DWORD dwServiceType;

 DWORD dwStartType;

 DWORD dwErrorControl;

 [string,range(0, 8 * 1024)] LPWSTR lpBinaryPathName;

 [string,range(0, 8 * 1024)] LPWSTR lpLoadOrderGroup;

 DWORD dwTagId;

 [string,range(0, 8 * 1024)] LPWSTR lpDependencies;

 [string,range(0, 8 * 1024)] LPWSTR lpServiceStartName;

 [string,range(0, 8 * 1024)] LPWSTR lpDisplayName;

} QUERY_SERVICE_CONFIGW,

 *LPQUERY_SERVICE_CONFIGW;

typedef struct _QUERY_SERVICE_LOCK_STATUSW {

 DWORD fIsLocked;

 [string,range(0, 8 * 1024)] LPWSTR lpLockOwner;

 DWORD dwLockDuration;

} QUERY_SERVICE_LOCK_STATUSW,

 *LPQUERY_SERVICE_LOCK_STATUSW;

typedef struct _QUERY_SERVICE_CONFIGA {

 DWORD dwServiceType;

 DWORD dwStartType;

 DWORD dwErrorControl;

 [string,range(0, 8 * 1024)] LPSTR lpBinaryPathName;

 [string,range(0, 8 * 1024)] LPSTR lpLoadOrderGroup;

 DWORD dwTagId;

 [string,range(0, 8 * 1024)] LPSTR lpDependencies;

 [string,range(0, 8 * 1024)] LPSTR lpServiceStartName;

 [string,range(0, 8 * 1024)] LPSTR lpDisplayName;

} QUERY_SERVICE_CONFIGA,

 *LPQUERY_SERVICE_CONFIGA;

typedef struct {

 DWORD fIsLocked;

 [string,range(0, 8 * 1024)] char* lpLockOwner;

 DWORD dwLockDuration;

156 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

} QUERY_SERVICE_LOCK_STATUSA,

 *LPQUERY_SERVICE_LOCK_STATUSA;

typedef struct _SERVICE_DESCRIPTIONA {

 [string,range(0, 8 * 1024)] LPSTR lpDescription;

} SERVICE_DESCRIPTIONA,

 *LPSERVICE_DESCRIPTIONA;

typedef [v1_enum] enum _SC_ACTION_TYPE {

 SC_ACTION_NONE = 0,

 SC_ACTION_RESTART = 1,

 SC_ACTION_REBOOT = 2,

 SC_ACTION_RUN_COMMAND = 3

} SC_ACTION_TYPE;

typedef struct {

 SC_ACTION_TYPE Type;

 DWORD Delay;

} SC_ACTION,

 *LPSC_ACTION;

typedef struct _SERVICE_FAILURE_ACTIONSA {

 DWORD dwResetPeriod;

 [string,range(0, 8 * 1024)] LPSTR lpRebootMsg;

 [string,range(0, 8 * 1024)] LPSTR lpCommand;

 [range(0, 1024)] DWORD cActions;

 [size_is(cActions)] SC_ACTION * lpsaActions;

} SERVICE_FAILURE_ACTIONSA,

 *LPSERVICE_FAILURE_ACTIONSA;

typedef struct _SERVICE_DELAYED_AUTO_START_INFO {

 BOOL fDelayedAutostart;

} SERVICE_DELAYED_AUTO_START_INFO,

 *LPSERVICE_DELAYED_AUTO_START_INFO;

typedef struct _SERVICE_FAILURE_ACTIONS_FLAG {

 BOOL fFailureActionsOnNonCrashFailures;

} SERVICE_FAILURE_ACTIONS_FLAG,

 *LPSERVICE_FAILURE_ACTIONS_FLAG;

typedef struct _SERVICE_SID_INFO {

 DWORD dwServiceSidType;

} SERVICE_SID_INFO,

 *LPSERVICE_SID_INFO;

typedef struct _SERVICE_PRESHUTDOWN_INFO {

 DWORD dwPreshutdownTimeout;

} SERVICE_PRESHUTDOWN_INFO,

 *LPSERVICE_PRESHUTDOWN_INFO;

typedef struct _SERVICE_DESCRIPTIONW {

 [string,range(0, 8 * 1024)] LPWSTR lpDescription;

} SERVICE_DESCRIPTIONW,

 *LPSERVICE_DESCRIPTIONW;

typedef struct _SERVICE_FAILURE_ACTIONSW {

 DWORD dwResetPeriod;

 [string,range(0, 8 * 1024)] LPWSTR lpRebootMsg;

 [string,range(0, 8 * 1024)] LPWSTR lpCommand;

157 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [range(0, 1024)] DWORD cActions;

 [size_is(cActions)] SC_ACTION * lpsaActions;

} SERVICE_FAILURE_ACTIONSW,

 *LPSERVICE_FAILURE_ACTIONSW;

typedef [v1_enum] enum

{

 SC_STATUS_PROCESS_INFO = 0

} SC_STATUS_TYPE;

typedef [v1_enum] enum

{

 SC_ENUM_PROCESS_INFO = 0

} SC_ENUM_TYPE;

typedef struct _SERVICE_PREFERRED_NODE_INFO {

 USHORT usPreferredNode;

 BOOLEAN fDelete;

} SERVICE_PREFERRED_NODE_INFO, *LPSERVICE_PREFERRED_NODE_INFO;

typedef struct _SERVICE_TRIGGER_SPECIFIC_DATA_ITEM {

 DWORD dwDataType;

 [range(0, 1024)]

 DWORD cbData;

 [size_is(cbData)]

 PBYTE pData;

} SERVICE_TRIGGER_SPECIFIC_DATA_ITEM, *PSERVICE_TRIGGER_SPECIFIC_DATA_ITEM;

typedef struct _SERVICE_TRIGGER {

 DWORD dwTriggerType;

 DWORD dwAction;

 GUID * pTriggerSubtype;

 [range(0, 64)]

 DWORD cDataItems;

 [size_is(cDataItems)]

 PSERVICE_TRIGGER_SPECIFIC_DATA_ITEM pDataItems;

} SERVICE_TRIGGER, *PSERVICE_TRIGGER;

typedef struct _SERVICE_TRIGGER_INFO {

 [range(0, 64)] DWORD cTriggers;

 [size_is(cTriggers)]

 PSERVICE_TRIGGER pTriggers;

 PBYTE pReserved;

} SERVICE_TRIGGER_INFO, *PSERVICE_TRIGGER_INFO;

DWORD

RCloseServiceHandle(

 [in,out] LPSC_RPC_HANDLE hSCObject

);

DWORD

RControlService(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwControl,

 [out] LPSERVICE_STATUS lpServiceStatus

);

DWORD

158 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

RDeleteService(

 [in] SC_RPC_HANDLE hService

);

DWORD

RLockServiceDatabase(

 [in] SC_RPC_HANDLE hSCManager,

 [out] LPSC_RPC_LOCK lpLock

);

DWORD

RQueryServiceObjectSecurity(

 [in] SC_RPC_HANDLE hService,

 [in] SECURITY_INFORMATION dwSecurityInformation,

 [out, size_is(cbBufSize)] LPBYTE lpSecurityDescriptor,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded

);

DWORD

RSetServiceObjectSecurity(

 [in] SC_RPC_HANDLE hService,

 [in] SECURITY_INFORMATION dwSecurityInformation,

 [in,size_is(cbBufSize)] LPBYTE lpSecurityDescriptor,

 [in] DWORD cbBufSize

);

DWORD

RQueryServiceStatus(

 [in] SC_RPC_HANDLE hService,

 [out] LPSERVICE_STATUS lpServiceStatus

);

DWORD

RSetServiceStatus(

 [in] SC_RPC_HANDLE hServiceStatus,

 [in] LPSERVICE_STATUS lpServiceStatus

);

DWORD

RUnlockServiceDatabase(

 [in,out] LPSC_RPC_LOCK Lock

);

DWORD

RNotifyBootConfigStatus(

 [in,string,unique,range(0, SC_MAX_COMPUTER_NAME_LENGTH)]

 SVCCTL_HANDLEW lpMachineName,

 [in] DWORD BootAcceptable

);

void Opnum10NotUsedOnWire(void);

DWORD

RChangeServiceConfigW(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

159 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in] DWORD dwErrorControl,

 [in,string,unique,range(0, SC_MAX_PATH_LENGTH)]

 wchar_t * lpBinaryPathName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpLoadOrderGroup,

 [in,out,unique] LPDWORD lpdwTagId,

 [in,unique,size_is(dwDependSize)] LPBYTE lpDependencies,

 [in, range (0, SC_MAX_DEPEND_SIZE)] DWORD dwDependSize,

 [in,string,unique,range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 wchar_t * lpServiceStartName,

 [in,unique,size_is(dwPwSize)] LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)] DWORD dwPwSize,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpDisplayName

);

DWORD

RCreateServiceW(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpServiceName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in,string, range(0, SC_MAX_PATH_LENGTH)]

 wchar_t * lpBinaryPathName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpLoadOrderGroup,

 [in,out,unique] LPDWORD lpdwTagId,

 [in,unique,size_is(dwDependSize)] LPBYTE lpDependencies,

 [in, range (0, SC_MAX_DEPEND_SIZE)] DWORD dwDependSize,

 [in,string,unique,range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 wchar_t * lpServiceStartName,

 [in,unique,size_is(dwPwSize)] LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)] DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

DWORD

REnumDependentServicesW(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpServices,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned

);

DWORD

REnumServicesStatusW(

 [in] SC_RPC_HANDLE hSCManager,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

160 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in,out,unique] LPBOUNDED_DWORD_256K lpResumeIndex

);

DWORD

ROpenSCManagerW(

 [in,string,unique,range(0, SC_MAX_COMPUTER_NAME_LENGTH)]

 SVCCTL_HANDLEW lpMachineName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpDatabaseName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpScHandle

);

DWORD

ROpenServiceW(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpServiceName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

DWORD

RQueryServiceConfigW(

 [in] SC_RPC_HANDLE hService,

 [out] LPQUERY_SERVICE_CONFIGW lpServiceConfig,

 [in, range(0, 1024 * 8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

DWORD

RQueryServiceLockStatusW(

 [in] SC_RPC_HANDLE hSCManager,

 [out] LPQUERY_SERVICE_LOCK_STATUSW lpLockStatus,

 [in, range(0, 1024 * 4)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_4K pcbBytesNeeded

);

DWORD

RStartServiceW(

 [in] SC_RPC_HANDLE hService,

 [in, range(0, SC_MAX_ARGUMENTS)] DWORD argc,

 [in,unique,size_is(argc)] LPSTRING_PTRSW argv

);

DWORD

RGetServiceDisplayNameW(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpServiceName,

 [out,string, range(1, 4*1024+1), size_is(*lpcchBuffer+1)]

 wchar_t * lpDisplayName,

 [in,out] DWORD * lpcchBuffer

);

DWORD

RGetServiceKeyNameW(

 [in] SC_RPC_HANDLE hSCManager,

161 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpDisplayName,

 [out,string, range(1, 4*1024+1), size_is(*lpcchBuffer+1)]

 wchar_t * lpServiceName,

 [in,out] DWORD * lpcchBuffer

);

void Opnum22NotUsedOnWire(void);

DWORD

RChangeServiceConfigA(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in,string,unique,range(0, SC_MAX_PATH_LENGTH)]

 LPSTR lpBinaryPathName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpLoadOrderGroup,

 [in,out,unique] LPDWORD lpdwTagId,

 [in,unique,size_is(dwDependSize)] LPBYTE lpDependencies,

 [in, range (0, SC_MAX_DEPEND_SIZE)] DWORD dwDependSize,

 [in,string,unique,range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 LPSTR lpServiceStartName,

 [in,unique,size_is(dwPwSize)] LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)] DWORD dwPwSize,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDisplayName

);

DWORD

RCreateServiceA(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpServiceName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in,string, range(0, SC_MAX_PATH_LENGTH)]

 LPSTR lpBinaryPathName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpLoadOrderGroup,

 [in,out,unique] LPDWORD lpdwTagId,

 [in,unique,size_is(dwDependSize)] LPBYTE lpDependencies,

 [in, range (0, SC_MAX_DEPEND_SIZE)] DWORD dwDependSize,

 [in,string,unique,range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 LPSTR lpServiceStartName,

 [in,unique,size_is(dwPwSize)] LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)] DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

DWORD

REnumDependentServicesA(

162 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpServices,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned

);

DWORD

REnumServicesStatusA(

 [in] SC_RPC_HANDLE hSCManager,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in,out,unique] LPBOUNDED_DWORD_256K lpResumeIndex

);

DWORD

ROpenSCManagerA(

 [in,string,unique,range(0, SC_MAX_COMPUTER_NAME_LENGTH)]

 SVCCTL_HANDLEA lpMachineName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpDatabaseName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpScHandle

);

DWORD

ROpenServiceA(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpServiceName,

 [in] DWORD dwDesiredAccess,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

DWORD

RQueryServiceConfigA(

 [in] SC_RPC_HANDLE hService,

 [out] LPQUERY_SERVICE_CONFIGA lpServiceConfig,

 [in, range(0, 1024 * 8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

DWORD

RQueryServiceLockStatusA(

 [in] SC_RPC_HANDLE hSCManager,

 [out] LPQUERY_SERVICE_LOCK_STATUSA lpLockStatus,

 [in, range(0, 1024 * 4)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_4K pcbBytesNeeded

);

DWORD

RStartServiceA(

 [in] SC_RPC_HANDLE hService,

 [in, range(0, SC_MAX_ARGUMENTS)] DWORD argc,

163 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in,unique,size_is(argc)] LPSTRING_PTRSA argv

);

DWORD

RGetServiceDisplayNameA(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)] LPSTR lpServiceName,

 [out,string, size_is(*lpcchBuffer)] LPSTR lpDisplayName,

 [in,out] LPBOUNDED_DWORD_4K lpcchBuffer

);

DWORD

RGetServiceKeyNameA(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)] LPSTR lpDisplayName,

 [out,string, size_is(*lpcchBuffer)] LPSTR lpKeyName,

 [in,out] LPBOUNDED_DWORD_4K lpcchBuffer

);

void Opnum34NotUsedOnWire(void);

DWORD

REnumServiceGroupW(

 [in] SC_RPC_HANDLE hSCManager,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in,out,unique] LPBOUNDED_DWORD_256K lpResumeIndex,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPCWSTR pszGroupName

);

typedef struct _SERVICE_RPC_REQUIRED_PRIVILEGES_INFO

{

 [range(0, 1024 * 4)] DWORD cbRequiredPrivileges;

 [size_is(cbRequiredPrivileges)] PBYTE pRequiredPrivileges;

} SERVICE_RPC_REQUIRED_PRIVILEGES_INFO,

 *LPSERVICE_RPC_REQUIRED_PRIVILEGES_INFO;

typedef struct _SC_RPC_CONFIG_INFOA

{

 DWORD dwInfoLevel;

 [switch_is(dwInfoLevel)] union

 {

 [case(1)]

 LPSERVICE_DESCRIPTIONA psd;

 [case(2)]

 LPSERVICE_FAILURE_ACTIONSA psfa;

 [case(3)]

 LPSERVICE_DELAYED_AUTO_START_INFO psda;

 [case(4)]

 LPSERVICE_FAILURE_ACTIONS_FLAG psfaf;

164 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [case(5)]

 LPSERVICE_SID_INFO pssid;

 [case(6)]

 LPSERVICE_RPC_REQUIRED_PRIVILEGES_INFO psrp;

 [case(7)]

 LPSERVICE_PRESHUTDOWN_INFO psps;

 [case(8)]

 PSERVICE_TRIGGER_INFO psti;

 [case(9)]

 LPSERVICE_PREFERRED_NODE_INFO pspn;

 };

} SC_RPC_CONFIG_INFOA;

typedef struct _SC_RPC_CONFIG_INFOW

{

 DWORD dwInfoLevel;

 [switch_is(dwInfoLevel)] union

 {

 [case(1)]

 LPSERVICE_DESCRIPTIONW psd;

 [case(2)]

 LPSERVICE_FAILURE_ACTIONSW psfa;

 [case(3)]

 LPSERVICE_DELAYED_AUTO_START_INFO psda;

 [case(4)]

 LPSERVICE_FAILURE_ACTIONS_FLAG psfaf;

 [case(5)]

 LPSERVICE_SID_INFO pssid;

 [case(6)]

 LPSERVICE_RPC_REQUIRED_PRIVILEGES_INFO psrp;

 [case(7)]

 LPSERVICE_PRESHUTDOWN_INFO psps;

 [case(8)]

 PSERVICE_TRIGGER_INFO psti;

 [case(9)]

 LPSERVICE_PREFERRED_NODE_INFO pspn;

 };

} SC_RPC_CONFIG_INFOW;

DWORD

RChangeServiceConfig2A(

 [in] SC_RPC_HANDLE hService,

 [in] SC_RPC_CONFIG_INFOA Info

);

DWORD

RChangeServiceConfig2W(

 [in] SC_RPC_HANDLE hService,

 [in] SC_RPC_CONFIG_INFOW Info

);

DWORD

RQueryServiceConfig2A(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwInfoLevel,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

165 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DWORD

RQueryServiceConfig2W(

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwInfoLevel,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

DWORD

RQueryServiceStatusEx(

 [in] SC_RPC_HANDLE hService,

 [in] SC_STATUS_TYPE InfoLevel,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 8)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_8K pcbBytesNeeded

);

DWORD

REnumServicesStatusExA (

 [in] SC_RPC_HANDLE hSCManager,

 [in] SC_ENUM_TYPE InfoLevel,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in,out,unique] LPBOUNDED_DWORD_256K lpResumeIndex,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPCSTR pszGroupName

);

DWORD

REnumServicesStatusExW (

 [in] SC_RPC_HANDLE hSCManager,

 [in] SC_ENUM_TYPE InfoLevel,

 [in] DWORD dwServiceType,

 [in] DWORD dwServiceState,

 [out, size_is(cbBufSize)] LPBYTE lpBuffer,

 [in, range(0, 1024 * 256)] DWORD cbBufSize,

 [out] LPBOUNDED_DWORD_256K pcbBytesNeeded,

 [out] LPBOUNDED_DWORD_256K lpServicesReturned,

 [in,out,unique] LPBOUNDED_DWORD_256K lpResumeIndex,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPCWSTR pszGroupName

);

void Opnum43NotUsedOnWire(void);

DWORD

RCreateServiceWOW64A(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpServiceName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

166 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 LPSTR lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in,string, range(0, SC_MAX_PATH_LENGTH)]

 LPSTR lpBinaryPathName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 LPSTR lpLoadOrderGroup,

 [in,out,unique] LPDWORD lpdwTagId,

 [in,unique,size_is(dwDependSize)] LPBYTE lpDependencies,

 [in, range (0, SC_MAX_DEPEND_SIZE)] DWORD dwDependSize,

 [in,string,unique,range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 LPSTR lpServiceStartName,

 [in,unique,size_is(dwPwSize)] LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)] DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

DWORD

RCreateServiceWOW64W(

 [in] SC_RPC_HANDLE hSCManager,

 [in,string,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpServiceName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpDisplayName,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwServiceType,

 [in] DWORD dwStartType,

 [in] DWORD dwErrorControl,

 [in,string,range(0, SC_MAX_PATH_LENGTH)]

 wchar_t * lpBinaryPathName,

 [in,string,unique,range(0, SC_MAX_NAME_LENGTH)]

 wchar_t * lpLoadOrderGroup,

 [in,out,unique] LPDWORD lpdwTagId,

 [in,unique,size_is(dwDependSize)] LPBYTE lpDependencies,

 [in, range (0, SC_MAX_DEPEND_SIZE)] DWORD dwDependSize,

 [in,string,unique,range(0, SC_MAX_ACCOUNT_NAME_LENGTH)]

 wchar_t * lpServiceStartName,

 [in,unique,size_is(dwPwSize)] LPBYTE lpPassword,

 [in, range(0, SC_MAX_PWD_SIZE)] DWORD dwPwSize,

 [out] LPSC_RPC_HANDLE lpServiceHandle

);

void Opnum46NotUsedOnWire(void);

typedef struct _SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1

{

 ULONGLONG ullThreadId;

 DWORD dwNotifyMask;

 UCHAR CallbackAddressArray [16];

 UCHAR CallbackParamAddressArray [16];

 SERVICE_STATUS_PROCESS ServiceStatus;

 DWORD dwNotificationStatus;

 DWORD dwSequence;

} SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1,

 *PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1;

167 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef struct _SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2

{

 ULONGLONG ullThreadId;

 DWORD dwNotifyMask;

 UCHAR CallbackAddressArray [16];

 UCHAR CallbackParamAddressArray [16];

 SERVICE_STATUS_PROCESS ServiceStatus;

 DWORD dwNotificationStatus;

 DWORD dwSequence;

 DWORD dwNotificationTriggered;

 [string, range(0, 64*1024)] PWSTR pszServiceNames;

} SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2,

 *PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2;

typedef SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2

 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS,

 *PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS;

typedef struct _SC_RPC_NOTIFY_PARAMS

{

 DWORD dwInfoLevel;

 [switch_is (dwInfoLevel)]

 union

 {

 [case(1)]

 PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1 pStatusChangeParam1;

 [case(2)]

 PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2 pStatusChangeParams;

 };

} SC_RPC_NOTIFY_PARAMS;

typedef struct _SC_RPC_NOTIFY_PARAMS_LIST

{

 BOUNDED_DWORD_4K cElements;

 [size_is(cElements)] SC_RPC_NOTIFY_PARAMS NotifyParamsArray [*];

} SC_RPC_NOTIFY_PARAMS_LIST, *PSC_RPC_NOTIFY_PARAMS_LIST;

DWORD

RNotifyServiceStatusChange(

 [in] SC_RPC_HANDLE hService,

 [in] SC_RPC_NOTIFY_PARAMS NotifyParams,

 [in] GUID * pClientProcessGuid,

 [out] GUID * pSCMProcessGuid,

 [out] PBOOL pfCreateRemoteQueue,

 [out] LPSC_NOTIFY_RPC_HANDLE phNotify

);

error_status_t

RGetNotifyResults(

 [in] SC_NOTIFY_RPC_HANDLE hNotify,

 [out] PSC_RPC_NOTIFY_PARAMS_LIST *ppNotifyParams

);

DWORD

RCloseNotifyHandle(

168 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in, out] LPSC_NOTIFY_RPC_HANDLE phNotify,

 [out] PBOOL pfApcFired

);

typedef struct _SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA

{

 DWORD dwReason;

 [string,range(0, SC_MAX_COMMENT_LENGTH)] LPSTR pszComment;

} SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA,

 *PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSA;

typedef struct _SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS

{

 SERVICE_STATUS_PROCESS ServiceStatus;

} SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS,

 *PSERVICE_CONTROL_STATUS_REASON_OUT_PARAMS;

typedef [switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_IN_PARAMSA

{

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSA psrInParams;

} SC_RPC_SERVICE_CONTROL_IN_PARAMSA,

 *PSC_RPC_SERVICE_CONTROL_IN_PARAMSA;

typedef [switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_OUT_PARAMSA

{

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_OUT_PARAMS psrOutParams;

} SC_RPC_SERVICE_CONTROL_OUT_PARAMSA,

 *PSC_RPC_SERVICE_CONTROL_OUT_PARAMSA;

DWORD

RControlServiceExA (

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwControl,

 [in] DWORD dwInfoLevel,

 [in, switch_is(dwInfoLevel)]

 PSC_RPC_SERVICE_CONTROL_IN_PARAMSA pControlInParams,

 [out, switch_is(dwInfoLevel)]

 PSC_RPC_SERVICE_CONTROL_OUT_PARAMSA pControlOutParams

);

typedef struct _SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW

{

 DWORD dwReason;

 [string,range(0, SC_MAX_COMMENT_LENGTH)] LPWSTR pszComment;

} SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW,

 *PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSW;

typedef [switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_IN_PARAMSW

{

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_IN_PARAMSW psrInParams;

} SC_RPC_SERVICE_CONTROL_IN_PARAMSW,

 *PSC_RPC_SERVICE_CONTROL_IN_PARAMSW;

169 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef [switch_type(DWORD)]

 union _SC_RPC_SERVICE_CONTROL_OUT_PARAMSW

{

 [case(1)]

 PSERVICE_CONTROL_STATUS_REASON_OUT_PARAMS psrOutParams;

} SC_RPC_SERVICE_CONTROL_OUT_PARAMSW,

 *PSC_RPC_SERVICE_CONTROL_OUT_PARAMSW;

DWORD

RControlServiceExW (

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwControl,

 [in] DWORD dwInfoLevel,

 [in, switch_is(dwInfoLevel)]

 PSC_RPC_SERVICE_CONTROL_IN_PARAMSW pControlInParams,

 [out, switch_is(dwInfoLevel)]

 PSC_RPC_SERVICE_CONTROL_OUT_PARAMSW pControlOutParams

);

void Opnum52NotUsedOnWire(void);

void Opnum53NotUsedOnWire(void);

void Opnum54NotUsedOnWire(void);

void Opnum55NotUsedOnWire(void);

DWORD

RQueryServiceConfigEx (

 [in] SC_RPC_HANDLE hService,

 [in] DWORD dwInfoLevel,

 [out] SC_RPC_CONFIG_INFOW * pInfo

);

}

170 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT operating system

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Vista operating system

Windows Server 2003 R2 operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.1.2: Windows uses an authentication level of RPC_C_AUTHN_LEVEL_PKT_PRIVACY
only in Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<2> Section 2.2.21: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<3> Section 2.2.21: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<4> Section 2.2.21: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 operating systems.

<5> Section 2.2.21: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

171 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<6> Section 2.2.21: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<7> Section 2.2.21: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<8> Section 2.2.21: Available in Windows 7 and Windows Server 2008 R2 operating systems.

<9> Section 2.2.21: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<10> Section 2.2.21: Available in Windows 8, Windows Server 2012, Windows 8.1, and Windows
Server 2012 R2.

<11> Section 2.2.21: Available in Windows 8, Windows Server 2012, Windows 8.1, and Windows
Server 2012 R2.

<12> Section 2.2.22: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 operating systems.

<13> Section 2.2.22: Available in Windows 7 and Windows Server 2008 R2.

<14> Section 2.2.22: Available in Windows 7 and Windows Server 2008 R2.

<15> Section 2.2.22: Available in Windows 8, Windows Server 2012, Windows 8.1, and Windows
Server 2012 R2.

<16> Section 2.2.22: Available in Windows 8, Windows Server 2012, Windows 8.1, and Windows
Server 2012 R2.

<17> Section 2.2.23: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<18> Section 2.2.24: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<19> Section 2.2.30: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 operating systems.

<20> Section 2.2.31: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<21> Section 2.2.32: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<22> Section 2.2.33: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<23> Section 2.2.41: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<24> Section 2.2.42: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<25> Section 2.2.44: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

172 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<26> Section 2.2.45: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<27> Section 2.2.46: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<28> Section 2.2.47: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2.

<29> Section 2.2.47: Available in Windows 7 and Windows Server 2008 R2.

<30> Section 2.2.47: Available in Windows 7 and Windows Server 2008 R2.

<31> Section 2.2.47: Windows services indicate service-specific error codes by setting
dwWin32ExitCode to ERROR_SERVICE_SPECIFIC_ERROR (1066) and setting the specific error in
the dwServiceSpecificExitCode member.

<32> Section 2.2.48: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 operating systems.

<33> Section 2.2.49: Available in Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 operating systems.

<34> Section 2.2.49: Available in Windows 7 and Windows Server 2008 R2.

<35> Section 2.2.49: Available in Windows 7 and Windows Server 2008 R2.

<36> Section 2.2.52: Available in Windows 7 and Windows Server 2008 R2.

<37> Section 2.2.53: Available in Windows 7 and Windows Server 2008 R2.

<38> Section 2.2.54: Available in Windows 7 and Windows Server 2008 R2.

<39> Section 2.2.55: Available in Windows 7 and Windows Server 2008 R2.

<40> Section 3.1.1: In Windows 2000, Windows XP, Windows Server 2003, and Windows
Server 2008 R2, localized strings are not supported.

<41> Section 3.1.1: Available in Windows 7 and Windows Server 2008 R2.

<42> Section 3.1.1: Available in Windows 7 and Windows Server 2008 R2.

<43> Section 3.1.4: Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 clients use multiplexed RPC connections for RGetNotifyResults on request if the
server supports them, and they fall back to non-multiplexed connections if the server doesn't
support multiplexed connections.

<44> Section 3.1.4: Available in Windows 7 and Windows Server 2008 R2.

<45> Section 3.1.4: Gaps in the opnum numbering sequence apply to Windows as follows.

Opnum Description

10 Only used locally by Windows, never remotely.

22 Only used locally by Windows, never remotely.

34 Only used locally by Windows, never remotely.

173 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Opnum Description

43 Only used locally by Windows, never remotely.

46 Only used locally by Windows, never remotely.

52 Only used locally by Windows, never remotely.

53 Only used locally by Windows, never remotely.

54 Only used locally by Windows, never remotely.

55 Only used locally by Windows, never remotely.

<46> Section 3.1.4.2: Windows waits 30 seconds for the service to respond.

<47> Section 3.1.4.4: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, and
Windows Server 2003 R2, after the database is locked, the server must not allow further client

operations on the database until it is unlocked. In Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2, the server must ignore the database lock.

In Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows 2000 Server, Windows
Server 2003, Windows Server 2003 R2, and Windows XP, the server responds with the error code
ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA (section 3.1.4.30) and
RStartServiceW (section 3.1.4.19) RPCs if the database has been locked using
RLockServiceDatabase (section 3.1.4.4).

In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the server does
not respond with error code ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA

(section 3.1.4.30) and RStartServiceW (section 3.1.4.19) RPCs after the database is locked
using RLockServiceDatabase (section 3.1.4.4).

<48> Section 3.1.4.4: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, and
Windows Server 2003 R2, after the database is locked, the server must not allow further client

operations on the database until it is unlocked. In Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2, the server must ignore the database lock.

In Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows 2000 Server, Windows
Server 2003, Windows Server 2003 R2, and Windows XP, the server responds with the error code
ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA (section 3.1.4.30) and
RStartServiceW (section 3.1.4.19) RPCs if the database has been locked using
RLockServiceDatabase (section 3.1.4.4).

In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the server does
not respond with error code ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA

(section 3.1.4.30) and RStartServiceW (section 3.1.4.19) RPCs after the database is locked
using RLockServiceDatabase (section 3.1.4.4).

<49> Section 3.1.4.9: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, and
Windows Server 2003 R2, after the database is locked, the server must not allow further client

operations on the database until it is unlocked. In Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2, the server must ignore the database lock.

In Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows 2000 Server, Windows

Server 2003, Windows Server 2003 R2, and Windows XP, the server responds with the error code
ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA (section 3.1.4.30) and

174 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

RStartServiceW (section 3.1.4.19) RPCs if the database has been locked using
RLockServiceDatabase (section 3.1.4.4).

In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the server does
not respond with error code ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA

(section 3.1.4.30) and RStartServiceW (section 3.1.4.19) RPCs after the database is locked
using RLockServiceDatabase (section 3.1.4.4).

<50> Section 3.1.4.11: Windows fails the request with ERROR_INVALID_PARAMETER (87) if the
client tries to change the dwServiceType to SERVICE_FILE_SYSTEM_DRIVER or
SERVICE_KERNEL_DRIVER.

<51> Section 3.1.4.15: Windows fails the request with ERROR_ACCESS_DENIED (5) if the client
does not have sufficient access rights or for operations that do not match the granted access right.

<52> Section 3.1.4.19: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, and
Windows Server 2003 R2, after the database is locked, the server must not allow further client
operations on the database until it is unlocked. In Windows Vista, Windows Server 2008,

Windows 7, and Windows Server 2008 R2, the server must ignore the database lock.

In Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows 2000 Server, Windows XP, Windows
Server 2003, and Windows Server 2003 R2, the server responds with the error code

ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA (section 3.1.4.30) and
RStartServiceW (section 3.1.4.19) RPCs if the database has been locked using
RLockServiceDatabase (section 3.1.4.4).

In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the server does
not respond with error code ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA
(section 3.1.4.30) and RStartServiceW (section 3.1.4.19) RPCs after the database is locked
using RLockServiceDatabase (section 3.1.4.4).

<53> Section 3.1.4.19: Windows waits 30 seconds for the service to respond.

<54> Section 3.1.4.19: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, and

Windows Server 2003 R2, after the database is locked, the server must not allow further client
operations on the database until it is unlocked. In Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2, the server must ignore the database lock.

In Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows 2000 Server, Windows XP, Windows
Server 2003, and Windows Server 2003 R2, the server responds with the error code

ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA (section 3.1.4.30) and
RStartServiceW (section 3.1.4.19) RPCs if the database has been locked using
RLockServiceDatabase (section 3.1.4.4).

In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the server does
not respond with error code ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA
(section 3.1.4.30) and RStartServiceW (section 3.1.4.19) RPCs after the database is locked

using RLockServiceDatabase (section 3.1.4.4).

<55> Section 3.1.4.22: Windows fails the request with ERROR_INVALID_PARAMETER (87) if the

client tries to change dwServiceType to SERVICE_FILE_SYSTEM_DRIVER or
SERVICE_KERNEL_DRIVER.

<56> Section 3.1.4.26: Windows fails the request with ERROR_ACCESS_DENIED (5) if the client
does not have sufficient access rights or for operations that do not match the granted access right.

175 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<57> Section 3.1.4.30: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, and
Windows Server 2003 R2, after the database is locked, the server must not allow further client

operations on the database until it is unlocked. In Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2, the server must ignore the database lock.

In Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows 2000 Server, Windows XP, Windows
Server 2003, and Windows Server 2003 R2, the server responds with error code
ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA (section 3.1.4.30) and
RStartServiceW (section 3.1.4.19) RPCs if the database has been locked using
RLockServiceDatabase (section 3.1.4.4).

In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the server does
not respond with error code ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA

(section 3.1.4.30) and RStartServiceW (section 3.1.4.19) RPCs after the database is locked
using RLockServiceDatabase (section 3.1.4.4).

<58> Section 3.1.4.30: Windows waits 30 seconds for the service to respond.

<59> Section 3.1.4.30: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, and
Windows Server 2003 R2, after the database is locked, the server must not allow further client
operations on the database until it is unlocked. In Windows Vista, Windows Server 2008,

Windows 7, and Windows Server 2008 R2, the server must ignore the database lock.

In Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows 2000 Server, Windows XP, Windows
Server 2003, and Windows Server 2003 R2, the server responds with the error code
ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA (section 3.1.4.30) and
RStartServiceW (section 3.1.4.19) RPCs if the database has been locked using
RLockServiceDatabase (section 3.1.4.4).

In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the server does

not respond with error code ERROR_SERVICE_DATABASE_LOCKED (1055) for RStartServiceA
(section 3.1.4.30) and RStartServiceW (section 3.1.4.19) RPCs after the database is locked
using RLockServiceDatabase (section 3.1.4.4).

<60> Section 3.1.4.31: If the lpDisplayName buffer is insufficient to hold the complete display
name of the service, Windows fails the call and sets double of the size in chars of the display name
excluding the terminating null character in lpcchBuffer.

<61> Section 3.1.4.32: If the lpKeyName buffer is insufficient to hold the complete service name of

the service, Windows fails the call and sets double of the size in chars of the service name excluding
the terminating null character in lpcchBuffer.

<62> Section 3.1.4.34: Windows returns ERROR_CALL_NOT_IMPLEMENTED (120) for Windows NT.

<63> Section 3.1.4.34: Windows 2000, Windows XP, Windows Server 2003, Windows Server 2003
R2, and Windows Vista return ERROR_INVALID_LEVEL if psti or pspn (see section 2.2.21) is
specified in the Info parameter.

<64> Section 3.1.4.35: Windows returns ERROR_CALL_NOT_IMPLEMENTED (120) for Windows NT.

<65> Section 3.1.4.35: Windows 2000, Windows XP, Windows Server 2003, Windows Server 2003
R2, and Windows Vista return ERROR_INVALID_LEVEL if psti or pspn (section 2.2.21) is specified in
the Info parameter.

<66> Section 3.1.4.36: Windows returns ERROR_CALL_NOT_IMPLEMENTED (120) for Windows NT.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

176 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<67> Section 3.1.4.36: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<68> Section 3.1.4.36: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<69> Section 3.1.4.36: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<70> Section 3.1.4.36: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<71> Section 3.1.4.36: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<72> Section 3.1.4.36: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,

Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<73> Section 3.1.4.36: Available in Windows 7 and Windows Server 2008 R2.

<74> Section 3.1.4.36: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<75> Section 3.1.4.36: Note When the server is passing an invalid value for these parameters,
behavior can change based on the RPC runtime check. See RPC Runtime Check Notes (section 3.2).

<76> Section 3.1.4.37: Windows returns ERROR_CALL_NOT_IMPLEMENTED (120) for Windows NT.

<77> Section 3.1.4.37: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<78> Section 3.1.4.37: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<79> Section 3.1.4.37: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,

Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<80> Section 3.1.4.37: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<81> Section 3.1.4.37: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<82> Section 3.1.4.37: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<83> Section 3.1.4.37: Available in Windows 7 and Windows Server 2008 R2.

<84> Section 3.1.4.37: Windows returns ERROR_INVALID_PARAMETER (87) for Windows 2000,
Windows XP, Windows Server 2003, and Windows Server 2003 R2.

<85> Section 3.1.4.37: Note When the server is passing an invalid value for these parameters,
behavior can change based on the RPC runtime check. See RPC Runtime Check Notes (section 3.2).

<86> Section 3.1.4.41: If the lpBinaryPathName has the "%windir%\System32" folder specified
within the path, which is the 64-bit location on 64-bit Windows, Windows automatically replaces that

folder with "%windir%\SysWow64", which is the 32-bit location on 64-bit Windows.

177 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<87> Section 3.1.4.43: Available in Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2 operating systems.

<88> Section 3.1.4.44: Available in Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2 operating systems.

<89> Section 3.1.4.44: Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 clients use multiplexed RPC connections for RGetNotifyResults on request if the
server supports them, and they fall back to non-multiplexed connections if the server doesn't
support multiplexed connections.

<90> Section 3.1.4.45: Available in Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2 operating systems.

<91> Section 3.1.4.46: Available in Windows Vista, Windows Server 2008, Windows 7, and

Windows Server 2008 R2 operating systems.

<92> Section 3.1.4.46: Windows waits 30 seconds for the service to respond.

<93> Section 3.1.4.47: Available in Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2 operating systems.

<94> Section 3.1.4.47: Windows waits 30 seconds for the service to respond.

<95> Section 3.1.4.48: This method exists only in Windows 7.

<96> Section 6: Windows XP does not support [range] on strings.

178 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

179 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

9 Index

A

Abstract data model 51
ANSI and Unicode string formats - conversion 151
Applicability 10

C

Capability negotiation 10
Change tracking 178
Client - transport 11
Common data types 11
Common error codes 50
Conversion between ANSI and Unicode string

formats 151

D

Data model - abstract 51
Data types 11

E

ENUM_SERVICE_STATUS_PROCESSA structure 15
ENUM_SERVICE_STATUS_PROCESSW structure 16
ENUM_SERVICE_STATUSA structure 14
ENUM_SERVICE_STATUSW structure 15
Error codes 50

Examples 152

F

Fields - vendor-extensible 10
Full IDL 154

G

Glossary 7

I

IDL 154
Implementer - security considerations 153
Index of security parameters 153
Informative references 8
Initialization 61
Introduction 7

L

Local events 151
LPENUM_SERVICE_STATUS_PROCESSA 15
LPENUM_SERVICE_STATUS_PROCESSW 16
LPENUM_SERVICE_STATUSA 14
LPENUM_SERVICE_STATUSW 15
LPQUERY_SERVICE_CONFIGA 16
LPQUERY_SERVICE_CONFIGW 18
LPQUERY_SERVICE_LOCK_STATUSA 20

LPQUERY_SERVICE_LOCK_STATUSW 20

LPSC_ACTION 21
LPSERVICE_DELAYED_AUTO_START_INFO 31
LPSERVICE_DESCRIPTIONA 32
LPSERVICE_DESCRIPTIONW 32
LPSERVICE_FAILURE_ACTIONS_FLAG 34
LPSERVICE_FAILURE_ACTIONSA 33
LPSERVICE_FAILURE_ACTIONSW 34
LPSERVICE_PREFERRED_NODE_INFO 48
LPSERVICE_PRESHUTDOWN_INFO 38
LPSERVICE_RPC_REQUIRED_PRIVILEGES_INFO 41
LPSERVICE_SID_INFO 38
LPSERVICE_STATUS 39
LPSERVICE_STATUS_PROCESS 42
LPSTRING_PTRSA 44
LPSTRING_PTRSW 44

M

MAX_SERVICE_NAME_LENGTH 49
Message processing 61
Messages

data types 11
overview 11
transport

client 11
overview 11
server 11

N

Normative references 8

O

Overview (synopsis) 9

P

Parameters - security index 153
Preconditions 10
Prerequisites 10
Product behavior 170
PSC_RPC_NOTIFY_PARAMS_LIST 24
PSERVICE_CONTROL_STATUS_REASON_IN_PARAM

SA 26
PSERVICE_CONTROL_STATUS_REASON_IN_PARAM

SW 28
PSERVICE_CONTROL_STATUS_REASON_OUT_PARA

MS 31
PSERVICE_MANAGEDACCOUNT_INFO 49
PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1

35
PSERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2

36
PSERVICE_RUNLEVEL_INFO 48
PSERVICE_TRIGGER 45
PSERVICE_TRIGGER_INFO 48
PSERVICE_TRIGGER_SPECIFIC_DATA_ITEM 44
PSTRING_PTRSA 44

180 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PSTRING_PTRSW 44

Q

QUERY_SERVICE_CONFIGA structure 16
QUERY_SERVICE_CONFIGW structure 18
QUERY_SERVICE_LOCK_STATUSA structure 20
QUERY_SERVICE_LOCK_STATUSW structure 20

R

RChangeServiceConfig2A method 120
RChangeServiceConfig2W method 121
RChangeServiceConfigA method 98
RChangeServiceConfigW method 78
RCloseNotifyHandle method 143

RCloseServiceHandle method 66
RControlService method 67
RControlServiceExA method 143
RControlServiceExW method 146
RCreateServiceA method 102
RCreateServiceW method 82
RCreateServiceWOW64A method 133
RCreateServiceWOW64W method 136
RDeleteService method 70
References

informative 8
normative 8

Relationship to other protocols 10
REnumDependentServicesA method 106
REnumDependentServicesW method 86
REnumServiceGroupW method 118
REnumServicesStatusA method 107
REnumServicesStatusExA method 127
REnumServicesStatusExW method 130
REnumServicesStatusW method 88
RGetNotifyResults method 142
RGetServiceDisplayNameA method 116
RGetServiceDisplayNameW method 96
RGetServiceKeyNameA method 117
RGetServiceKeyNameW method 97
RLockServiceDatabase method 71
RNotifyBootConfigStatus method 77
RNotifyServiceStatusChange method 140
ROpenSCManagerA method 110
ROpenSCManagerW method 90
ROpenServiceA method 111
ROpenServiceW method 91
RPC runtime check notes 151
RQueryServiceConfig2A method 122
RQueryServiceConfig2W method 124
RQueryServiceConfigA method 112
RQueryServiceConfigEx method 150
RQueryServiceConfigW method 92
RQueryServiceLockStatusA method 113
RQueryServiceLockStatusW method 93
RQueryServiceObjectSecurity method 72
RQueryServiceStatus method 74
RQueryServiceStatusEx method 126
RSetServiceObjectSecurity method 73
RSetServiceStatus method 75

RStartServiceA method 114

RStartServiceW method 94
RUnlockServiceDatabase method 77

S

SC_ACTION structure 21
SC_ACTION_TYPE enumeration 20
SC_ENUM_TYPE enumeration 21
SC_MAX_ACCOUNT_NAME_LENGTH 49
SC_MAX_ARGUMENT_LENGTH 49
SC_MAX_ARGUMENTS 49
SC_MAX_COMMENT_LENGTH 49
SC_MAX_COMPUTER_NAME_LENGTH 49
SC_MAX_DEPEND_SIZE 49
SC_MAX_NAME_LENGTH 49
SC_MAX_PATH_LENGTH 49
SC_MAX_PWD_SIZE 49
SC_RPC_CONFIG_INFOA structure 21
SC_RPC_CONFIG_INFOW [Protocol] 23

SC_RPC_CONFIG_INFOW structure 23
SC_RPC_NOTIFY_PARAMS structure 24
SC_RPC_NOTIFY_PARAMS_LIST structure 24
SC_STATUS_TYPE enumeration 26
Security

implementer considerations 153
overview 153
parameter index 153

Sequencing rules 61
Server - overview 11
SERVICE_CONTROL_STATUS_REASON_IN_PARAMS

A structure 26
SERVICE_CONTROL_STATUS_REASON_IN_PARAMS

W structure 28
SERVICE_CONTROL_STATUS_REASON_OUT_PARAM

S structure 31
SERVICE_DELAYED_AUTO_START_INFO structure

31
SERVICE_DESCRIPTION_WOW64 structure 32
SERVICE_DESCRIPTIONA structure 32
SERVICE_DESCRIPTIONW structure 32
SERVICE_FAILURE_ACTIONS_FLAG structure 34
SERVICE_FAILURE_ACTIONS_WOW64 structure 32
SERVICE_FAILURE_ACTIONSA structure 33
SERVICE_FAILURE_ACTIONSW structure 34
SERVICE_MANAGEDACCOUNT_INFO structure 49
SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1

structure 35
SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2

structure 36
SERVICE_PREFERRED_NODE_INFO structure 48
SERVICE_PRESHUTDOWN_INFO structure 38
SERVICE_REQUIRED_PRIVILEGES_INFO_WOW64

structure 33
SERVICE_RPC_REQUIRED_PRIVILEGES_INFO

structure 41
SERVICE_RUNLEVEL_INFO structure 48
SERVICE_SID_INFO structure 38
SERVICE_STATUS structure 39
SERVICE_STATUS_PROCESS structure 42
SERVICE_TRIGGER structure 45
SERVICE_TRIGGER_INFO structure 48

181 / 181

[MS-SCMR] — v20131025
 Service Control Manager Remote Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

SERVICE_TRIGGER_SPECIFIC_DATA_ITEM
structure 44

Standards assignments 10
STRING_PTRSA structure 44
STRING_PTRSW structure 44

T

Timer events 151
Timers 61
Tracking changes 178
Transport

client 11
overview 11
server 11

U

Unicode string formats and ANSI - conversion 151

V

Vendor-extensible fields 10
Versioning 10

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Server
	2.1.2 Client

	2.2 Common Data Types
	2.2.1 SECURITY_INFORMATION
	2.2.2 SVCCTL_HANDLEA
	2.2.3 SVCCTL_HANDLEW
	2.2.4 SC_RPC_HANDLE
	2.2.5 SC_RPC_LOCK
	2.2.6 SC_NOTIFY_RPC_HANDLE
	2.2.7 BOUNDED_DWORD_4K
	2.2.8 BOUNDED_DWORD_8K
	2.2.9 BOUNDED_DWORD_256K
	2.2.10 ENUM_SERVICE_STATUSA
	2.2.11 ENUM_SERVICE_STATUSW
	2.2.12 ENUM_SERVICE_STATUS_PROCESSA
	2.2.13 ENUM_SERVICE_STATUS_PROCESSW
	2.2.14 QUERY_SERVICE_CONFIGA
	2.2.15 QUERY_SERVICE_CONFIGW
	2.2.16 QUERY_SERVICE_LOCK_STATUSA
	2.2.17 QUERY_SERVICE_LOCK_STATUSW
	2.2.18 SC_ACTION_TYPE
	2.2.19 SC_ACTION
	2.2.20 SC_ENUM_TYPE
	2.2.21 SC_RPC_CONFIG_INFOA
	2.2.22 SC_RPC_CONFIG_INFOW
	2.2.23 SC_RPC_NOTIFY_PARAMS
	2.2.24 SC_RPC_NOTIFY_PARAMS_LIST
	2.2.25 SC_RPC_SERVICE_CONTROL_IN_PARAMSA
	2.2.26 SC_RPC_SERVICE_CONTROL_IN_PARAMSW
	2.2.27 SC_RPC_SERVICE_CONTROL_OUT_PARAMSA
	2.2.28 SC_RPC_SERVICE_CONTROL_OUT_PARAMSW
	2.2.29 SC_STATUS_TYPE
	2.2.30 SERVICE_CONTROL_STATUS_REASON_IN_PARAMSA
	2.2.31 SERVICE_CONTROL_STATUS_REASON_IN_PARAMSW
	2.2.32 SERVICE_CONTROL_STATUS_REASON_OUT_PARAMS
	2.2.33 SERVICE_DELAYED_AUTO_START_INFO
	2.2.34 SERVICE_DESCRIPTIONA
	2.2.35 SERVICE_DESCRIPTIONW
	2.2.36 SERVICE_DESCRIPTION_WOW64
	2.2.37 SERVICE_FAILURE_ACTIONS_WOW64
	2.2.38 SERVICE_REQUIRED_PRIVILEGES_INFO_WOW64
	2.2.39 SERVICE_FAILURE_ACTIONSA
	2.2.40 SERVICE_FAILURE_ACTIONSW
	2.2.41 SERVICE_FAILURE_ACTIONS_FLAG
	2.2.42 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS
	2.2.43 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_1
	2.2.44 SERVICE_NOTIFY_STATUS_CHANGE_PARAMS_2
	2.2.45 SERVICE_PRESHUTDOWN_INFO
	2.2.46 SERVICE_SID_INFO
	2.2.47 SERVICE_STATUS
	2.2.48 SERVICE_RPC_REQUIRED_PRIVILEGES_INFO
	2.2.49 SERVICE_STATUS_PROCESS
	2.2.50 STRING_PTRSA
	2.2.51 STRING_PTRSW
	2.2.52 SERVICE_TRIGGER_SPECIFIC_DATA_ITEM
	2.2.53 SERVICE_TRIGGER
	2.2.54 SERVICE_TRIGGER_INFO
	2.2.55 SERVICE_PREFERRED_NODE_INFO
	2.2.56 SERVICE_RUNLEVEL_INFO
	2.2.57 SERVICE_MANAGEDACCOUNT_INFO
	2.2.58 svcctl Interface Constants
	2.2.59 Common Error Codes

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 RCloseServiceHandle (Opnum 0)
	3.1.4.2 RControlService (Opnum 1)
	3.1.4.3 RDeleteService (Opnum 2)
	3.1.4.4 RLockServiceDatabase (Opnum 3)
	3.1.4.5 RQueryServiceObjectSecurity (Opnum 4)
	3.1.4.6 RSetServiceObjectSecurity (Opnum 5)
	3.1.4.7 RQueryServiceStatus (Opnum 6)
	3.1.4.8 RSetServiceStatus (Opnum 7)
	3.1.4.9 RUnlockServiceDatabase (Opnum 8)
	3.1.4.10 RNotifyBootConfigStatus (Opnum 9)
	3.1.4.11 RChangeServiceConfigW (Opnum 11)
	3.1.4.12 RCreateServiceW (Opnum 12)
	3.1.4.13 REnumDependentServicesW (Opnum 13)
	3.1.4.14 REnumServicesStatusW (Opnum 14)
	3.1.4.15 ROpenSCManagerW (Opnum 15)
	3.1.4.16 ROpenServiceW (Opnum 16)
	3.1.4.17 RQueryServiceConfigW (Opnum 17)
	3.1.4.18 RQueryServiceLockStatusW (Opnum 18)
	3.1.4.19 RStartServiceW (Opnum 19)
	3.1.4.20 RGetServiceDisplayNameW (Opnum 20)
	3.1.4.21 RGetServiceKeyNameW (Opnum 21)
	3.1.4.22 RChangeServiceConfigA (Opnum 23)
	3.1.4.23 RCreateServiceA (Opnum 24)
	3.1.4.24 REnumDependentServicesA (Opnum 25)
	3.1.4.25 REnumServicesStatusA (Opnum 26)
	3.1.4.26 ROpenSCManagerA (Opnum 27)
	3.1.4.27 ROpenServiceA (Opnum 28)
	3.1.4.28 RQueryServiceConfigA (Opnum 29)
	3.1.4.29 RQueryServiceLockStatusA (Opnum 30)
	3.1.4.30 RStartServiceA (Opnum 31)
	3.1.4.31 RGetServiceDisplayNameA (Opnum 32)
	3.1.4.32 RGetServiceKeyNameA (Opnum 33)
	3.1.4.33 REnumServiceGroupW (Opnum 35)
	3.1.4.34 RChangeServiceConfig2A (Opnum 36)
	3.1.4.35 RChangeServiceConfig2W (Opnum 37)
	3.1.4.36 RQueryServiceConfig2A (Opnum 38)
	3.1.4.37 RQueryServiceConfig2W (Opnum 39)
	3.1.4.38 RQueryServiceStatusEx (Opnum 40)
	3.1.4.39 REnumServicesStatusExA (Opnum 41)
	3.1.4.40 REnumServicesStatusExW (Opnum 42)
	3.1.4.41 RCreateServiceWOW64A (Opnum 44)
	3.1.4.42 RCreateServiceWOW64W (Opnum 45)
	3.1.4.43 RNotifyServiceStatusChange (Opnum 47)
	3.1.4.44 RGetNotifyResults (Opnum 48)
	3.1.4.45 RCloseNotifyHandle (Opnum 49)
	3.1.4.46 RControlServiceExA (Opnum 50)
	3.1.4.47 RControlServiceExW (Opnum 51)
	3.1.4.48 RQueryServiceConfigEx (Opnum 56)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.7 Conversion Between ANSI and Unicode String Formats

	3.2 RPC Runtime Check Notes

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

