
1 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-RRP]:

Windows Remote Registry Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 Major Updated and revised the technical content.

4/3/2007 1.1 Minor Clarified the meaning of the technical content.

5/11/2007 2.0 Major New format; Added content; Updated technical content

6/1/2007 2.0.1 Editorial Changed language and formatting in the technical content.

7/3/2007 3.0 Major Updated and revised the technical content.

8/10/2007 3.1 Minor Clarified the meaning of the technical content.

9/28/2007 3.2 Minor Clarified the meaning of the technical content.

10/23/2007 3.2.1 Editorial Changed language and formatting in the technical content.

1/25/2008 3.3 Minor Clarified the meaning of the technical content.

3/14/2008 3.3.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 5.0 Major Updated and revised the technical content.

8/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 6.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 10.0 Major Updated and revised the technical content.

5/22/2009 11.0 Major Updated and revised the technical content.

7/2/2009 12.0 Major Updated and revised the technical content.

8/14/2009 13.0 Major Updated and revised the technical content.

9/25/2009 14.0 Major Updated and revised the technical content.

11/6/2009 15.0 Major Updated and revised the technical content.

12/18/2009 16.0 Major Updated and revised the technical content.

1/29/2010 17.0 Major Updated and revised the technical content.

3/12/2010 18.0 Major Updated and revised the technical content.

4/23/2010 18.1 Minor Clarified the meaning of the technical content.

6/4/2010 19.0 Major Updated and revised the technical content.

7/16/2010 20.0 Major Updated and revised the technical content.

8/27/2010 21.0 Major Updated and revised the technical content.

3 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

10/8/2010 22.0 Major Updated and revised the technical content.

11/19/2010 23.0 Major Updated and revised the technical content.

1/7/2011 24.0 Major Updated and revised the technical content.

2/11/2011 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 25.0 Major Updated and revised the technical content.

5/6/2011 26.0 Major Updated and revised the technical content.

6/17/2011 26.1 Minor Clarified the meaning of the technical content.

9/23/2011 26.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 27.0 Major Updated and revised the technical content.

3/30/2012 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 27.1 Minor Clarified the meaning of the technical content.

10/25/2012 28.0 Major Updated and revised the technical content.

1/31/2013 28.1 Minor Clarified the meaning of the technical content.

8/8/2013 29.0 Major Updated and revised the technical content.

11/14/2013 29.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 29.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 29.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 30.0 Major Significantly changed the technical content.

10/16/2015 30.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 30.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 30.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments ... 9

2 Messages ... 11
2.1 Transport .. 11

2.1.1 Server ... 11
2.1.2 Client .. 11

2.2 Common Data Types .. 12
2.2.1 RPC_HKEY ... 12
2.2.2 PREGISTRY_SERVER_NAME ... 12
2.2.3 error_status_t .. 12
2.2.4 REGSAM .. 12
2.2.5 RRP_UNICODE_STRING ... 13
2.2.6 RVALENT ... 13
2.2.7 Common Error Codes .. 14
2.2.8 RPC_SECURITY_ATTRIBUTES ... 15
2.2.9 RPC_SECURITY_DESCRIPTOR .. 15
2.2.10 SECURITY_INFORMATION .. 15

3 Protocol Details ... 17
3.1 Server Details .. 17

3.1.1 Abstract Data Model .. 17
3.1.1.1 Naming .. 17

3.1.1.1.1 Fully Qualified Name .. 18
3.1.1.1.2 Relative Name .. 18
3.1.1.1.3 Object Name ... 19

3.1.1.2 Key Types .. 19
3.1.1.3 Key Properties .. 19
3.1.1.4 32-Bit and 64-Bit Key Namespaces ... 20
3.1.1.5 Values ... 22
3.1.1.6 Key Class ... 23
3.1.1.7 Predefined Keys .. 23
3.1.1.8 Current User Root Key ... 24
3.1.1.9 Handles ... 25
3.1.1.10 Security Descriptor .. 25
3.1.1.11 Symbolic Links.. 25
3.1.1.12 System Shutdown ... 26
3.1.1.13 Identity Token .. 26

3.1.2 Timers .. 26
3.1.3 Initialization ... 26
3.1.4 Higher-Layer Triggered Events ... 26
3.1.5 Message Processing Events and Sequencing Rules .. 26

3.1.5.1 OpenClassesRoot (Opnum 0) .. 30
3.1.5.2 OpenCurrentUser (Opnum 1) .. 31
3.1.5.3 OpenLocalMachine (Opnum 2) .. 32

5 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.4 OpenPerformanceData (Opnum 3) .. 33
3.1.5.5 OpenUsers (Opnum 4) ... 34
3.1.5.6 BaseRegCloseKey (Opnum 5) ... 35
3.1.5.7 BaseRegCreateKey (Opnum 6).. 37
3.1.5.8 BaseRegDeleteKey (Opnum 7) .. 40
3.1.5.9 BaseRegDeleteValue (Opnum 8) ... 41
3.1.5.10 BaseRegEnumKey (Opnum 9) ... 42
3.1.5.11 BaseRegEnumValue (Opnum 10) .. 44
3.1.5.12 BaseRegFlushKey (Opnum 11) .. 46
3.1.5.13 BaseRegGetKeySecurity (Opnum 12) ... 46
3.1.5.14 BaseRegLoadKey (Opnum 13) .. 48
3.1.5.15 BaseRegOpenKey (Opnum 15) .. 49
3.1.5.16 BaseRegQueryInfoKey (Opnum 16) ... 51
3.1.5.17 BaseRegQueryValue (Opnum 17) .. 53
3.1.5.18 BaseRegReplaceKey (Opnum 18) .. 55
3.1.5.19 BaseRegRestoreKey (Opnum 19) .. 57
3.1.5.20 BaseRegSaveKey (Opnum 20) .. 58
3.1.5.21 BaseRegSetKeySecurity (Opnum 21) ... 60
3.1.5.22 BaseRegSetValue (Opnum 22) .. 60
3.1.5.23 BaseRegUnLoadKey (Opnum 23)... 62
3.1.5.24 BaseRegGetVersion (Opnum 26) ... 63
3.1.5.25 OpenCurrentConfig (Opnum 27) ... 64
3.1.5.26 BaseRegQueryMultipleValues (Opnum 29) .. 65
3.1.5.27 BaseRegSaveKeyEx (Opnum 31) ... 67
3.1.5.28 OpenPerformanceText (Opnum 32) ... 68
3.1.5.29 OpenPerformanceNlsText (Opnum 33) ... 69
3.1.5.30 BaseRegQueryMultipleValues2 (Opnum 34) .. 70
3.1.5.31 BaseRegDeleteKeyEx (Opnum 35) ... 71

3.1.6 Timer Events .. 73
3.1.7 Other Local Events .. 73

3.2 Client Details ... 74

4 Protocol Examples ... 75
4.1 Reading a Registry Key and Value .. 75
4.2 Writing a Registry Key and Value ... 75
4.3 Detailed Example ... 75

5 Security ... 77
5.1 Security Considerations for Implementers ... 77
5.2 Index of Security Parameters .. 77

6 Appendix A: Full IDL .. 79

7 Appendix B: Product Behavior ... 84

8 Change Tracking .. 88

9 Index ... 89

6 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The Windows Remote Registry Protocol is a remote procedure call (RPC)–based client/server
protocol that is used for remotely managing a hierarchical Data Store such as the Windows registry.
For more information, see [MSWINREG].

The UUID for the Windows registry interface is "338CD001-2244-31F1-AAAA-900038001003".

The version for this interface is "1.0".

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

class: User-defined binary data that is associated with a key.

execution context: A context that is established when a process or thread is started. Execution
context establishes the identity against which permissions to execute statements or perform
actions are checked and is represented by a pair of security tokens: a primary token and an
impersonation token.

hive: A logical group of keys, subkeys, and values in the registry that has a set of supporting files
containing backups of the data.

key: In the registry, a node in the logical tree of the data store.

key handle: The remote procedure call (RPC) context handle to a key.

Microsoft Interface Definition Language (MIDL): The Microsoft implementation and extension
of the OSF-DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS-RPCE].

REG_VALUE_TYPE: DWORD values used to indicate the format of the data associated with a
value.

registry: A local system-defined database in which applications and system components store and
retrieve configuration data. It is a hierarchical data store with lightly typed elements that are
logically stored in tree format. Applications use the registry API to retrieve, modify, or delete
registry data. The data stored in the registry varies according to the version of the operating
system.

registry files: The physical representation of a logical tree in the registry.

remote procedure call (RPC): A context-dependent term commonly overloaded with three

meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC

https://go.microsoft.com/fwlink/?LinkId=90221
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

7 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as

described in [C706] and [MS-RPCE].

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

service principal name (SPN): The name a client uses to identify a service for mutual
authentication. (For more information, see [RFC1964] section 2.1.1.) An SPN consists of either
two parts or three parts, each separated by a forward slash ('/'). The first part is the service

class, the second part is the host name, and the third part (if present) is the service name. For
example, "ldap/dc-01.fabrikam.com/fabrikam.com" is a three-part SPN where "ldap" is the
service class name, "dc-01.fabrikam.com" is the host name, and "fabrikam.com" is the service
name. See [SPNNAMES] for more information about SPN format and composing a unique SPN.

subkey: A child node in the logical tree of the hierarchical data store.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must

be used for generating the UUID.

value: A data element associated with a key.

well-known endpoint: A preassigned, network-specific, stable address for a particular

client/server instance. For more information, see [C706].

Windows registry: The Windows implementation of the registry.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-CMRP] Microsoft Corporation, "Failover Cluster: Management API (ClusAPI) Protocol".

https://go.microsoft.com/fwlink/?LinkId=89836
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=90304
https://go.microsoft.com/fwlink/?LinkId=90532
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-CMRP%5d.pdf#Section_ba4117c0530e4e70a0854b4cf5bbf193

8 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[WININTERNALS] Russinovich, M., and Solomon, D., "Microsoft Windows Internals, Fourth Edition",
Microsoft Press, 2005, ISBN: 0735619174.

1.2.2 Informative References

[MSDN-UTE] Microsoft Corporation, "Understanding Transactional Enhancements",
http://msdn.microsoft.com/en-us/library/cc303705.aspx

[MSWINREG] Microsoft Corporation, "Registry", http://msdn.microsoft.com/en-
us/library/ms724871.aspx

[SPNNAMES] Microsoft Corporation, "Name Formats for Unique SPNs", http://msdn.microsoft.com/en-
us/library/ms677601.aspx

1.3 Overview

The Windows Remote Registry Protocol is a client/server protocol that is used for remotely managing a
hierarchical Data Store with lightly typed elements. The layout and specifics of such a store is
specified in section 3.1.1.

A remote registry management session begins with the client initiating the connection request to the
server. If the server grants the request, the connection is established. The client can then make
multiple requests to read or modify the registry on the server by using the same session until the
session is terminated.

A typical remote registry session involves the client connecting to the server and requesting to open a
registry key on the server. If the server accepts the request, it responds with an RPC context handle
that refers to the key. The client uses this RPC context handle to operate on that key. This usually

involves sending another request to the server specifying the type of operation to perform and any
specific parameters that are associated with that operation. If the server accepts this request, it
attempts to change the state of the key based on the request and responds to the client with the
result of the operation. When the client is finished operating on the server keys, it terminates the
protocol by sending a request to close the RPC context handle.

1.4 Relationship to Other Protocols

The Windows Remote Registry Protocol is dependent upon remote procedure call (RPC) [MS-RPCE]
and Server Message Block (SMB) for its transport. This protocol uses RPC over named pipes as
specified in section 2.1. See also [C706]. Named pipes in turn use the SMB protocol [MS-SMB].
Named pipes can use the SMB2 protocol [MS-SMB2] if both the client and the server support SMB2.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=152413
https://go.microsoft.com/fwlink/?LinkId=90221
https://go.microsoft.com/fwlink/?LinkId=90221
https://go.microsoft.com/fwlink/?LinkId=90532
https://go.microsoft.com/fwlink/?LinkId=90532
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

9 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: Protocol relationship diagram

1.5 Prerequisites/Preconditions

This protocol requires that the client and server be able to communicate by means of an RPC
connection, as specified in section 2.1.

1.6 Applicability Statement

This protocol is appropriate for managing a hierarchical Data Store, such as the Windows registry,
on a remote computer.

1.7 Versioning and Capability Negotiation

This document provides versioning information in the following areas:

Supported transports: This protocol uses RPC as its transport protocol (see section 2.1).

Security and authentication methods: The RPC server in this protocol requires
RPC_C_AUTHN_GSS_NEGOTIATE or RPC_C_AUTHN_WINNT authorization. The RPC client MAY use
an authentication level of RPC_C_AUTHN_LEVEL_PKT_PRIVACY (see section 2.1).

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

10 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Parameter Value Reference

RPC Interface UUID {338CD001-2244-31F1-AAAA-900038001003} [C706]

Pipe name \PIPE\winreg [MS-SMB]

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

11 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

The Windows Remote Registry Protocol MUST use RPC as the transport protocol.

2.1.1 Server

The server interface MUST be identified by UUID 338CD001-2244-31F1-AAAA-900038001003,
version 1.0, by using the RPC well-known endpoint \PIPE\winreg. The server MUST specify RPC

over SMB as the RPC protocol sequence to the RPC implementation, as specified in [MS-RPCE]
section 2.1.1.2. The server MUST specify the "Simple and Protected GSS-API Negotiation Mechanism"

(0x9) or "NTLM" (0xA) as the RPC Authentication Service, as specified in [MS-RPCE] section
3.2.1.5.1, or both. Other protocol sequences MAY also be specified.

The Windows Remote Registry Protocol server specifies "ncacn_np" as the RPC protocol to the RPC

implementation, as specified in [MS-RPCE]. Other protocols can be available to the server, depending
on local configuration.

2.1.2 Client

The client uses RPC over SMB, ncacn_np (as specified in [MS-RPCE] section 2.1.1.2) as the RPC
protocol sequence to communicate with the server. Using other protocol sequences MAY<1> work
depending on the configuration and implementation of the server. The client MUST specify either
"Simple and Protected GSS-API Negotiation Mechanism" (0x9) or "NTLM" (0xA), as specified in [MS-

RPCE] section 3.2.1.5.1, as the Authentication Service. When using the "Simple and Protected GSS-
API Negotiation Mechanism" as the Authentication Service, the client SHOULD supply a service
principal name (SPN) (for more information, see [SPNNAMES]) of "host/hostname" where hostname
is the actual name of the server to which the client is connecting, and "host/" is the literal string
"host/".

Windows Remote Registry Protocol clients that are implemented in Windows use one of the following
RPC protocol sequences:

1. ncacn_np

2. ncacn_spx

3. ncacn_ip_tcp

4. ncacn_nb_nb

5. ncacn_nb_tcp

6. ncacn_nb_ipx

The client tries to connect to the server by using the RPC protocol sequences in the same order as
mentioned above until one of them succeeds. For RPC protocol sequences other than ncacn_np, the

client uses the "NTLM" Authentication Service and an authentication level of "Connection".

When using ncacn_np as the RPC protocol sequence, the client MAY use an authentication level of
Packet Privacy to connect to the server; and, if the server does not support this authentication level, it
MAY fall back to Connection. Authentication levels are as specified in [MS-RPCE].

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90532

12 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2 Common Data Types

In addition to the RPC data types that are specified in [MS-RPCE], the sections that follow use the
definitions of BYTE, DWORD, LPDWORD (see DWORD), FILETIME, PFILETIME (see FILETIME),

SECURITY_DESCRIPTOR, WCHAR, PWCHAR (see WCHAR), as specified in [MS-DTYP].

The additional data types in the following sections are defined in the Microsoft Interface Definition
Language (MIDL) specification.

2.2.1 RPC_HKEY

The RPC_HKEY data type defines an RPC context handle, as specified in [MS-RPCE], to a registry
key that is opened on the server, as specified in section 3.1.1.

This type is declared as follows:

 typedef [context_handle] HANDLE RPC_HKEY, *PRPC_HKEY;

2.2.2 PREGISTRY_SERVER_NAME

The PREGISTRY_SERVER_NAME data type defines a pointer to an array of WCHAR elements.

This type is declared as follows:

 typedef [handle] PWCHAR PREGISTRY_SERVER_NAME;

2.2.3 error_status_t

The error_status_t data type defines return error codes.

This type is declared as follows:

 typedef unsigned long error_status_t;

2.2.4 REGSAM

The REGSAM data type defines a bit field that specifies the user rights for a key object.

This type is declared as follows:

 typedef ULONG REGSAM;

The user rights are represented as a bit field. In addition to the standard user rights, as specified in
[MS-DTYP] section 2.4.3, the Windows Remote Registry Protocol SHOULD<2> support the following

user rights.

Value Meaning

KEY_QUERY_VALUE

0x00000001

When set, specifies access to query the values of a registry key.

KEY_SET_VALUE When set, specifies access to create, delete, or set a registry value.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

13 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x00000002

KEY_CREATE_SUB_KEY

0x00000004

When set, specifies access to create a subkey of a registry key. Subkeys directly
underneath the HKEY_LOCAL_MACHINE and HKEY_USERS predefined keys
cannot be created even if this bit is set.

KEY_ENUMERATE_SUB_KEYS

0x00000008

When set, specifies access to enumerate the subkeys of a registry key.

KEY_CREATE_LINK

0x00000020

When set, specifies access to create a symbolic link to another key.

KEY_WOW64_64KEY

0x00000100

When set, indicates that a registry server on a 64-bit operating system operates
on the 64-bit key namespace.

KEY_WOW64_32KEY

0x00000200

When set, indicates that a registry server on a 64-bit operating system operates

on the 32-bit key namespace.

For some Windows Remote Registry Protocol methods, the bits set in the REGSAM field are ignored
when checking access rights to modify registry data. These cases are detailed in the processing rules
for each method.

2.2.5 RRP_UNICODE_STRING

The RRP_UNICODE_STRING structure is the same as the RPC_UNICODE_STRING defined in [MS-
DTYP] with the exception that the RRP_UNICODE_STRING value MUST be NULL-terminated.

This type is declared as follows:

 typedef RPC_UNICODE_STRING RRP_UNICODE_STRING, *PRRP_UNICODE_STRING;

2.2.6 RVALENT

The RVALENT structure is used to store the values and data that are associated with a key, as

specified in section 3.1.5.26. The format of the RVALENT structure is as follows.

 typedef struct value_ent {
 PRPC_UNICODE_STRING ve_valuename;
 DWORD ve_valuelen;
 LPDWORD ve_valueptr;
 DWORD ve_type;
 } RVALENT,
 *PRVALENT;

ve_valuename: A pointer to a RRP_UNICODE_STRING structure that MUST contain the name of the

specified value to be retrieved.

ve_valuelen: The length in bytes of the ve_valueptr buffer.

ve_valueptr: A pointer to the data that is associated with a specified value.

ve_type: The type of the data that is associated with a specified value. For additional specification of
the possible values, see section 3.1.1.5.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

14 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

REG_BINARY

3

Binary data in any form.

REG_DWORD

4

A 32-bit number.

REG_DWORD_LITTLE_ENDIAN

4

A 32-bit number in little-endian format.

REG_DWORD_BIG_ENDIAN

5

A 32-bit number in big-endian format.

REG_EXPAND_SZ

2

A null-terminated string that contains unexpanded references to
environment variables (for example, "%PATH%"). It will be a Unicode or
system code page string, depending on the functions used to manipulate
the string.

REG_LINK

6

A symbolic link.

REG_MULTI_SZ

7

A sequence of null-terminated strings, terminated by an empty string (\0).

For example:

 String1\0String2\0String3\0LastString\0\0

The first \0 terminates the first string, the second to the last \0 terminates
the last string, and the final \0 terminates the sequence. Note that the final

terminator MUST be factored into the length of the string.

REG_NONE

0

No defined value type.

REG_QWORD

11

A 64-bit number.

REG_QWORD_LITTLE_ENDIAN

11

A 64-bit number in little-endian format.

REG_SZ

1

A null-terminated string. This string is either a Unicode or an system code
page string, depending on the functions used to manipulate the string.

2.2.7 Common Error Codes

Unless otherwise specified, the methods of the Windows Remote Registry Protocol MUST return 0 to
indicate success and a nonzero implementation-specific value to indicate failure in the error_status_t

return code of the response. All failure values MUST be treated as equivalent for protocol purposes

and SHOULD simply be passed back to the invoking application.

Any implementation SHOULD return one of the following error codes.

Value Description

ERROR_ACCESS_DENIED

0x00000005 (Decimal: 5)

Access is denied.

15 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Description

 ERROR_INVALID_PARAMETER

0x00000057 (Decimal: 87)

The parameter is incorrect.

 ERROR_CALL_NOT_IMPLEMENTED

0x00000078 (Decimal: 120)

The method is not valid.

 ERROR_KEY_DELETED

0x000003FA (Decimal: 1018)

An illegal operation was attempted on a registry key that is pending delete.

2.2.8 RPC_SECURITY_ATTRIBUTES

The RPC_SECURITY_ATTRIBUTES structure represents security attributes that can be set through the

Remote Procedure Call Protocol Extensions, as specified in [MS-CMRP] section 2.2.3.2.

 typedef struct _RPC_SECURITY_ATTRIBUTES {
 DWORD nLength;
 RPC_SECURITY_DESCRIPTOR RpcSecurityDescriptor;
 BOOLEAN bInheritHandle;
 } RPC_SECURITY_ATTRIBUTES,
 *PRPC_SECURITY_ATTRIBUTES;

nLength: The length in bytes of the security descriptor.

RpcSecurityDescriptor: The security descriptor that MUST be as specified in
RPC_SECURITY_DESCRIPTOR.

bInheritHandle: TRUE if the new process inherits the handle; otherwise, FALSE.

2.2.9 RPC_SECURITY_DESCRIPTOR

The RPC_SECURITY_DESCRIPTOR structure represents the RPC security descriptors.

 typedef struct _RPC_SECURITY_DESCRIPTOR {
 [size_is(cbInSecurityDescriptor), length_is(cbOutSecurityDescriptor)]
 PBYTE lpSecurityDescriptor;
 DWORD cbInSecurityDescriptor;
 DWORD cbOutSecurityDescriptor;
 } RPC_SECURITY_DESCRIPTOR,
 *PRPC_SECURITY_DESCRIPTOR;

lpSecurityDescriptor: A buffer that contains a SECURITY_DESCRIPTOR, as specified in [MS-DTYP]
section 2.4.6.

cbInSecurityDescriptor: The size in bytes of the security descriptor.

cbOutSecurityDescriptor: The size in bytes of the security descriptor.

2.2.10 SECURITY_INFORMATION

The SECURITY_INFORMATION bit flags indicate what components to include in a security descriptor
string that clients and servers can use to specify access types.

%5bMS-CMRP%5d.pdf#Section_ba4117c0530e4e70a0854b4cf5bbf193
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

16 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The most commonly used SECURITY_INFORMATION bit flags are listed in the table below. All
SECURITY_INFORMATION bit flags are enumerated in [MS-DTYP].

Value Meaning

OWNER_SECURITY_INFORMATION

0x00000001

If set, specifies the security identifier (SID) (LSAPR_SID) of the object's
owner.

GROUP_SECURITY_INFORMATION

0x00000002

If set, specifies the security identifier (SID) (LSAPR_SID) of the object's
primary group.

DACL_SECURITY_INFORMATION

0x00000004

If set, the security descriptor MUST include the object's discretionary access
control list (DACL).

SACL_SECURITY_INFORMATION

0x00000008

If set, the security descriptor MUST include the object's system access
control list (SACL).

This type is declared as follows:

 typedef DWORD SECURITY_INFORMATION, *PSECURITY_INFORMATION;

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

17 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

3.1 Server Details

The Windows Remote Registry Protocol server handles client requests for any of the messages that

are specified in section 2 and operates on the registry on the server. For each of those messages, the
behavior of the server is specified in section 3.1.4.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Data Store: The Windows Remote Registry Protocol is used to manage a Data Store that presents a
hierarchical view of the stored data. The protocol server MUST operate on this Data Store and

respond to specific client requests, as specified in section 3.1.4.

This Data Store MUST present data in a tree format. Each node in the tree is called a key.

As described in section 3.1.1.4, the server SHOULD support both a 32-bit and a 64-bit key
namespace in the Data Store. The 32-bit key namespace in the Data Store is named KEYS32.
The 64-bit key namespace in the Data Store is named KEYS64.

HANDLETABLE: As described in section 3.1.1.9, the server MUST use handles to provide a mapping
between a client request and a specific registry key in the 32-bit or 64-bit key namespace. The

server MUST maintain a table of open handles. This table is named HANDLETABLE and does not
have a timer associated with it. The table schema consists of three columns: HANDLE, PATH, and
UPDATECOPY. The HANDLE column is of type RPC_HKEY, and the PATH column is of type string
and stores the Fully Qualified Name (FQN) of the key associated with a given handle. The

UPDATECOPY column is of type boolean and specifies whether subkeys and values under PATH
have been updated and can be copied into the 32-bit or 64-bit namespace when HANDLE is

closed. The UPDATECOPY column value defaults to FALSE. The column value is set by the server
when processing any methods that change registry keys or values that are shared or copied
between the 32-bit and 64-bit key namespaces (3.1.1.4).

Several methods in this protocol require portions of the Data Store to be volatile—changes to the
data are lost when the system reboots, restarts, or shuts down. The registry server MUST support the
marking of individual registry keys as volatile; that is, the key and all associated values are not
persisted in the Data Store across the registry server, and lose context after a restart, reboot, or

shutdown process.

The registry server MUST periodically flush in-memory data to the backing store. The server MUST
configure a timer to initiate this periodic flushing of data to the backing store, as described in section
3.1.2. The server MUST also support the capability of identifying some registry keys and their values
as exempt from automatically being flushed to the backing store; keys exempt from automatic

flushing are identified using the KEYNOPERIODICFLUSH property (see section 3.1.1.3).

3.1.1.1 Naming

Each key MUST have a Base Name that consists of one or more Unicode characters. The Base Name of
a key MUST NOT include the "\" character.

Each key contains zero or more child subkeys. The Base Name of each subkey that has the same

parent key MUST be unique. A key that is a child key, either directly of a given parent key or through

18 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

multiple parent-child key relationships is a subkey of its ancestor keys. A key can have at most one
parent key and no key can be an ancestor of itself.

Each subkey also MUST have an index that is associated with it. Indices MUST be zero-based. If a key
has N subkeys that are associated with it, the subkeys have indices ranging from 0 to (N–1).

However, the ordering of the subkeys and its associated indices is implementation-specific.

3.1.1.1.1 Fully Qualified Name

To uniquely identify a given key within the entire key namespace, its fully qualified name (FQN) is
used. The FQN MUST consist of the Base Name of the key and the name of all of its parent keys all the
way to the root of the tree, using the "\" character as a hierarchy separator. The Base Name of the
first key in the FQN is called a Root Key or Predefined Key. The Root Keys are well-known keys that all

implementations of this protocol MUST support. Section 3.1.1.7 defines the Predefined Keys.

For example, the key MountedDevices is a subkey of HKEY_LOCAL_MACHINE, as shown in the
following example.

 HKEY_LOCAL_MACHINE -> SYSTEM -> MountedDevices

The FQN for MountedDevices is HKEY_LOCAL_MACHINE\SYSTEM\MountedDevices.

The Root Key in the FQN for MountedDevices is HKEY_LOCAL_MACHINE.

The uniqueness of the FQN is relative to the client when the Root Key in the FQN is
HKEY_CURRENT_USER or HKEY_CLASSES_ROOT. The server MUST dynamically map subkeys of
the HKEY_USERS predefined key as the HKEY_CURRENT_USER and HKEY_CLASSES_ROOT root
keys for each client request to operate on the HKEY_CURRENT_USER or HKEY_CLASSES_ROOT
root keys. As a result, when different clients open the HKEY_CURRENT_USER or

HKEY_CLASSES_ROOT root keys, the same FQN will represent different keys (see 3.1.1.7).

None of the methods in the remote registry protocol accept a key FQN as a parameter. All key name
parameters use the Relative Name (section 3.1.1.1.2).

3.1.1.1.2 Relative Name

To uniquely identify a subkey within the set of all subkeys of a given parent key, a relative name (RN)

is used. The RN of a key consists of the Base Name of each subkey in the path between the parent
and the subkey in question, including the Base Name of the subkey concatenated with the "\"
character as a hierarchy separator.

Methods in this protocol that specify subkey names as a Unicode string parameter are interpreted
relative to an ancestor key, typically specified by a handle parameter. For example, the
BaseRegOpenKey method requires both hKey and lpSubKey parameters. lpSubKey refers to a subkey
of the key specified by hKey and can be a direct child of the key specified by hKey or a subkey of the

key specified by hKey through multiple parent-child relationships.

A concrete example follows using the BaseRegOpenKey method. Assume the following FQN to a key

named "Office" and an existing handle opened and referring to the key named "SOFTWARE".

 HKEY_LOCAL_MACHINE -> SOFTWARE -> Microsoft -> Office

A client MAY use the BaseRegOpenKey method to open the "Microsoft" subkey by specifying
"Microsoft" as the value of the lpSubKey parameter. Similarly, a client MAY use the BaseRegOpenKey
method to open the "Office" subkey by specifying "Microsoft\Office" as the value of the lpSubKey
parameter.

19 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

An RN MAY refer to a key that does not exist in the key namespace. Methods in this protocol that
specify subkey names as a Unicode string parameter, with the exception of BaseRegCreateKey, will

return a failure code as described in section 3.1.5 if the RN refers to a key that does not exist in the
key namespace.

3.1.1.1.3 Object Name

For kernel-mode code to uniquely identify a given key within the entire key namespace, its Object
Name is used. In kernel mode, the root for all registry keys is the \Registry object. The global
handles correspond to descendants of the \Registry object.

User-Mode Handle Corresponding Object Name

HKEY_LOCAL_MACHINE \Registry\Machine

HKEY_USERS \Registry\User

3.1.1.2 Key Types

Keys can also be of different types. The type of a key is represented by a DWORD property named
KEYTYPE. The Data Store MUST maintain the KEYTYPE property for all keys in the registry hierarchy

and the Data Store MUST support the following key types.

 Value Meaning

0x00000000 This key is not volatile. The key and all its values MUST be persisted to the backing store and is
preserved when the registry server loses context due to a system restart, reboot, or shut down
process.

0x00000001 This key is volatile. The key with all its subkeys and values MUST NOT be preserved when the
registry server loses context due to a system restart, reboot, or shut down process.

0x00000002 (REG_OPTION_CREATE_LINK) This key is a symbolic link to another key. The server stores the
target of the symbolic link in an implementation-specific format.

3.1.1.3 Key Properties

Keys have properties, and the server MUST support tracking the following properties for each key in
the registry hierarchy. The server initializes the key properties to the defaults specified in the following

table.

Property
Default
Value Meaning

KEYNOPERIODICFLUSH False (0) If set to true, the server MUST NOT periodically flush the key and its
values to the backing store. Instead, key and value data MUST be written
to the backing store on-demand.

KEYISMODIFIED False (0) If set to true, the key or value data has been modified and needs to be
flushed the next time the FLUSH_TIMER expires or a client calls the
BaseRegFlushKey method on the key or a parent key.

20 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.4 32-Bit and 64-Bit Key Namespaces

A remote registry server on a 64-bit system MUST also have separate sets of 32-bit and 64-bit keys.

The 32-bit key namespace in the Data Store is named KEYS32. The 64-bit key namespace in the

Data Store is named KEYS64.

The remote registry server indicates to clients that it supports both 64-bit and 32-bit key namespaces
by setting the value of the lpdwVersion parameter of the BaseRegGetVersion method. If the server
sets the value of lpdwVersion to 6, the server MUST support both 32-bit and 64-bit key namespaces.

The remote registry server MUST support the separate 32-bit and 64-bit key namespace for only a
subset of keys in the complete registry key hierarchy. The 32-bit key namespace MUST be stored as a
subkey within the 64-bit key namespace as specified in the following table.

Subset 32-bit Key Storage Path in 64-bit Key Namespace

HKEY_LOCAL_MACHINE\Software HKEY_LOCAL_MACHINE\Software\Wow6432Node

HKEY_USERS*\Software HKEY_USERS*\Software\Wow6432Node

HKEY_LOCAL_MACHINE\Software\Classes HKEY_LOCAL_MACHINE\Software\Classes\Wow6432Node

HKEY_USERS*\Software\Classes HKEY_USERS*\Software\Classes\Wow6432Node

An * indicates that the server MUST support the 32-bit key namespace for each immediate subkey of
HKEY_USERS.

The server MUST also maintain a symbolic link between
HKEY_LOCAL_MACHINE\Software\Wow6432Node\Classes and
HKEY_LOCAL_MACHINE\Software\Classes\Wow6432node. All server operations (for example,
BaseRegOpenKey, BaseRegCreateKey, and BaseRegSetValue) enacted against
HKEY_LOCAL_MACHINE\Software\Wow6432Node\Classes MUST be redirected to

HKEY_LOCAL_MACHINE\Software\Classes\Wow6432Node.

Remote registry server clients specify on which namespace (32-bit or 64-bit) a method operates by
using the parameter of REGSAM type on methods that operate on registry keys, including:
BaseRegOpenKey, BaseRegCreateKey, and BaseRegDeleteKeyEx.

The following two bit fields in the REGSAM type allow the client to indicate on which namespace (32-
bit or 64-bit) the method operates.

Value Meaning

0x00000100 (KEY_WOW64_64KEY) When set, indicates that the registry method operates on the 64-bit key
namespace.

0x00000200 (KEY_WOW64_32KEY) When set, indicates that the registry method operates on the 32-bit key

namespace.

The server MUST support ignoring client requests to operate on the 32-bit or 64-bit key namespace
and operate only on the 64-bit key namespace for a specific list of FQN registry key paths.

On 64-bit systems, Windows maintains a separate set of keys for 32-bit and 64-bit applications.

Remote registry clients SHOULD<3> specify which key namespace to operate on using the
KEY_WOW64_64KEY and KEY_WOW64_32KEY bit flags in any remote registry method that has a

parameter of type REGSAM.

21 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If neither KEY_WOW64_64KEY or KEY_WOW64_32KEY are set, the server MUST operate on the 64-bit
key namespace. If both KEY_WOW64_64KEY and KEY_WOW64_32KEY are set for any method that

has a samDesired parameter, the server SHOULD<4> fail the method and return
ERROR_INVALID_PARAMETER.

If the server does not support a 64-bit key namespace, any request made with KEY_WOW64_64KEY
set MUST fail and return ERROR_ACCESS_DENIED. Similarly, any request made with both
KEY_WOW64_64KEY and KEY_WOW64_32KEY set on a server that does not support a 64-bit key
namespace MUST fail and return ERROR_ACCESS_DENIED.

Remote registry servers that support both 32-bit and 64-bit key namespaces ignore client requests to
operate on the 32-bit key namespace for any registry keys with the following paths (or subkeys of
these paths). For more information about transactions, see [MSDN-UTE].

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\HCP

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Calais\Current

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Calais\Readers

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Services

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CTF\SystemShared

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CTF\TIP

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DFS

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Driver Signing

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\EnterpriseCertificates

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Non-Driver Signing

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Software\Microsoft\Shared Tools\MSInfo

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SystemCertificates

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\TermServLicensing

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Transaction Server

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontDpi

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontMapper

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Fonts

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontSubstitutes

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\NetworkCards

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Ports

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Print

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList

https://go.microsoft.com/fwlink/?LinkId=152413

22 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Control

Panel\Cursors\Schemes

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup\OC Manager

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Telephony\Locations

HKEY_LOCAL_MACHINE\SOFTWARE\Policies

Remote registry servers that support both 32-bit and 64-bit keys MUST copy updates to any key or
value from the 32-bit key namespace to the 64-bit key namespace for any registry keys with the

following paths (or subkeys of these paths). Similarly, remote registry servers which support both 32-
bit and 64-bit keys MUST copy updates to any key or value from the 64-bit key namespace to the 32-
bit key namespace for any registry keys with the following paths (or subkeys of these paths). The
copy operation SHOULD be performed immediately, but MAY<5> be postponed until the handle to the
key is closed with the BaseRegCloseKey method.

Remote registry servers that support both 32-bit and 64-bit key namespaces SHOULD<6> ignore

client requests to operate on the 32-bit key namespace for the following keys or any subkeys:

HKEY_LOCAL_MACHINE\Software\Classes

HKEY_LOCAL_MACHINE\Software\Microsoft\COM3

HKEY_LOCAL_MACHINE\Software\Microsoft\EventSystem

HKEY_LOCAL_MACHINE\Software\Microsoft\Ole

HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc

Remote registry servers that set the value of the lpdwVersion parameter of the BaseRegGetVersion

method to any value less than 6 MUST NOT support a 64-bit key namespace.

3.1.1.5 Values

Registry values consist of a name and data pair. Zero or more values are associated with each registry

key. The name of each value is a Unicode string and is unique within the set of values associated with
a given key

The data portion of the value has a value type that is associated with it to represent the type of data
being stored. Each value type (REG_VALUE_TYPE) is represented by a DWORD, and the Data Store
MUST support the following value types.

Value Type

0 No defined value type.

1 A Unicode null-terminated string.

2 A Unicode null-terminated string that contains unexpanded references to environment variables (for
example, "%PATH%").

23 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Type

3 Binary data in any form.

4 A 32-bit number in little-endian format.

5 A 32-bit number in big-endian format.

7 A sequence of Unicode null-terminated strings, terminated by an empty string (\0).

The following is an example: String1\0String2\0String3\0LastString\0\0.

The first \0 terminates the first string, the second to the last \0 terminates the last string, and the final
\0 terminates the sequence. Note that the final terminator MUST be factored into the length of the
string.

11 A 64-bit number in little-endian format.

Each value also MUST have an index that is associated with it. Indices MUST be zero-based. If a key

has N values that are associated with it, the values have indices ranging from 0 to (N–1). However,
the ordering of the values and its associated indices is implementation-specific.

If a value name is empty (zero length), the value is referred to as the Default Value of the associated

key. As value names are unique within the set of values associated with a given key, there can be at
most one Default Value for a given key. Any Unicode character can be used in the name of a value.

3.1.1.6 Key Class

Keys also contain optional data (called class) associated with them. The class of a given key MAY be

NULL. Class is defined as a Unicode string for all methods that retrieve or set the class from a remote
registry server. The default class of registry keys is specified to be NULL.

3.1.1.7 Predefined Keys

With the 32-bit and 64-bit key namespaces, the Data Store can have multiple trees. The Data Store
MUST implement a set of standard trees that have a predefined, and therefore, well-known root key
name; and that are used to store a specific type of data, specified as follows.

When using the methods that are specified in section 3.1.5 to operate on these keys, the clients
MUST specify the key name by using one of the corresponding Unicode string names that are specified
in the following table.

Key name Description

"HKEY_CLASSES_ROOT" Registry entries subordinate to this key define types (or classes) of
documents and the properties associated with those types. The subkeys of
the HKEY_CLASSES_ROOT key are a merged view of the following two
subkeys:

HKEY_CURRENT_USER\Software\Classes

HKEY_LOCAL_MACHINE\Software\Classes

"HKEY_CURRENT_CONFIG" This key contains information on the current hardware profile of the local
computer system.

"HKEY_CURRENT_USER" Registry entries subordinate to this key define the preferences of the current
user. These preferences include the settings of environment variables, data
on program groups, colors, printers, network connections, and application
preferences.

The HKEY_CURRENT_USER root key is a subkey of the HKEY_USERS root

24 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Key name Description

key, as described in section 3.1.1.8.

"HKEY_LOCAL_MACHINE" Registry entries subordinate to this key define the physical state of the
computer, including data on the bus type, system memory, and installed
hardware and software.

"HKEY_USERS" Registry entries subordinate to this key define the default user configuration
for new users on the local computer and the user configuration for the
current user.

"HKEY_PERFORMANCE_DATA" Registry entries subordinate to this key allow access to performance data.

"HKEY_PERFORMANCE_TEXT" Registry entries subordinate to this key reference the text strings that
describe counters in U.S. English.

"HKEY_PERFORMANCE_NLSTEXT" Registry entries subordinate to this key reference the text strings that
describe counters in the local language of the area in which the computer
system is running.

A registry file is the physical representation of a logical tree in a registry. Registry files are typically
implemented as disk files and provide a stable backing store for a registry. The disk files SHOULD be
local to the server. In the case of remote files, the server MUST provide access to the remote file in a

manner that is transparent to the user of the protocol and the protocol itself. The actual translation of
the remote file name and accessing the file from the remote location is not addressed in this
specification. The server can also choose to use other implementation formats for the backing store
that is backing the registry.

However, subsets of the registry hierarchy are exposed to remote clients as files. The remote client
can request that the server save a portion of the registry hierarchy as a file (see section 3.1.5.20).

Similarly, the remote client can request that the server add data to the registry hierarchy from a file
(see section 3.1.5.19).

If a server chooses to use a different backing store (for example, a relational database), it MUST
provide a mapping from the logical file (that is exposed to the client) to the true backing store.

3.1.1.8 Current User Root Key

The server MUST support dynamically mapping a subkey of the HKEY_USERS predefined key as the
HKEY_CURRENT_USER root key for each client request to operate on the HKEY_CURRENT_USER
root key.

The server determines which subkey of HKEY_USERS maps to HKEY_CURRENT_USER by first
obtaining the SID in the RPC_SID form of the caller from the value of the element
Token.Sids[Token.UserIndex]. The ADM element Token is initialized by retrieving the identity

token for the current execution context by calling the abstract interface
GetRpcImpersonationAccessToken(NULL) (see section 3.1.5). The value of the Token.Sids array
element indexed at Token.UserIndex is the SID of the caller. The server MUST convert the SID from

the RPC_SID form to a string (see [MS-DTYP] section 2.4.2.1) to determine which subkey of
HKEY_USERS SHOULD be mapped to HKEY_CURRENT_USER. The name of the subkey of
HKEY_USERS which SHOULD be mapped to a particular HKEY_CURRENT_USER client request is

exactly the string representation of the SID of the caller.

Note In other registry documentation and registry utilities outside of this specification, in any user
context, the current user root key is defined as a predefined key with the name
"HKEY_CURRENT_USER".

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

25 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.9 Handles

Handles (HKEY) are used by the client and the server to refer to individual keys within the registry
hierarchy in the HANDLETABLE. The handle value uniquely refers to a single key within the registry

hierarchy on a single registry server instance. The path of the registry key in the registry hierarchy is
stored in the PATH element of the HANDLETABLE.

The server is responsible for tracking the value of a handle and the corresponding key (FQN) in the
registry hierarchy. A handle MUST be created (opened) on the server for each successful client access
to a registry key, and the handle value MUST be unique from all other handles currently tracked on
the server. The handle MUST be destroyed (closed) after the client has closed access to the registry
key using the BaseRegCloseKey method or the server shuts down.

On Remote Registry servers that support the 64-bit key namespace (section 3.1.1.4), the
UPDATECOPY element of the HANDLETABLE is used to track whether changes in either the 32-bit or
the 64-bit key namespace are copied to the 64-bit or 32-bit key namespace, respectively. For the
specific registry paths for which updates are required to be copied across namespaces (section
3.1.1.4), the server sets the UPDATECOPY element in the HANDLETABLE to TRUE any time the key or

values referred to by the HANDLE element are updated. When the HANDLE is closed, the server

checks the value of UPDATECOPY. If UPDATECOPY is set to TRUE, the server copies the updates to the
key or values across namespaces.

3.1.1.10 Security Descriptor

Each registry key MUST have the following element.

Security Descriptor: A Security Descriptor as specified in [MS-DTYP] section 2.4.6. The server is
responsible for initializing, maintaining, and storing the Security Descriptor for each key, as well
as validating client access to the associated registry key when a given key is opened using the
methods described in section 3.1.5: BaseRegCreateKey, OpenClassesRoot, OpenCurrentUser,
OpenLocalMachine, OpenPerformanceData, OpenUsers, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, and OpenPerformanceNlsText. The Security Descriptor is read by the
client by using the BaseRegGetKeySecurity method, and the Security Descriptor is updated by

the client by using the BaseRegSetKeySecurity method. The server MUST create new Security
Descriptors in self-relative format [MS-DTYP] (section 2.4.6).

The server is responsible for validating client access to registry keys as part of the operation of many
of the methods described in section 3.1.5. The server MUST implement service routines to compare
the Security Descriptor for a given registry key to the security context of the client request and
validate access. This implementation is outside the bounds of the registry protocol specification.

3.1.1.11 Symbolic Links

The server MUST support creating and maintaining symbolic links between keys in the registry
hierarchy. Each symbolic link has a source key and a target key. The source key of a symbolic link
contains a single registry string value, which is the path of the target key in the symbolic link.

Symbolic link source keys are created when a client creates a registry key with the registry option
REG_OPTION_CREATE_LINK. After creating the symbolic link source key, a client MUST create a new

value under the source key named "SymbolicLinkValue". The SymbolicLinkValue value contains the
Object Name of the target of the symbolic link, which MUST NOT be NULL-terminated. The type of the
value named SymbolicLinkValue MUST be REG_LINK.

If a client attempts to open the source key of a symbolic link without the REG_OPTION_OPEN_LINK
flag set, the server MUST return a handle to the target of the symbolic link. If a client attempts to

open the source key of a symbolic link with the REG_OPTION_OPEN_LINK flag set, the server MUST
return a handle to the source key of the symbolic link to allow the client to update the target of the
symbolic link by changing the value of SymbolicLinkValue.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

26 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST support recursive symbolic links. If the target of a symbolic link has a KEYTYPE of
symbolic link, then the server MUST follow the symbolic link to the next target key. The server MUST

link the maximum depth of a chain of symbolic links, which is "64".

Registry keys that are the source of a symbolic link MUST NOT have subkeys.

If the client attempts to delete the source key of a symbolic link using the BaseRegDeleteKey or
BaseRegDeleteKeyEx method, the server will return the failure code 2 (ERROR_FILE_NOT_FOUND).

3.1.1.12 System Shutdown

The server MUST support the following ADM element.

SHUTDOWNINPROGRESS: The SHUTDOWNINPROGRESS element is of type Boolean and
indicates whether a server shutdown is in progress. The server MUST initialize this element to
FALSE when the server is initialized. The server MUST invoke the Server Shutdown event of Other
Local Events (section 3.1.7) when a system shutdown begins, which sets this ADM element to
TRUE.

3.1.1.13 Identity Token

Token: An identity token of the type "Token/AuthorizationContext" as specified by [MS-DTYP] section
2.5.2.

3.1.2 Timers

Key and Value Data Flush Timer

The registry server MUST periodically flush in-memory data to the backing store as described in
section 3.1.1. The server MUST initialize FLUSH_TIMER for triggering storage from the data store to
the backing store of value data not marked as volatile, as described in section 3.1.7. Windows remote

registry servers initialize the FLUSH timeout value to 5 seconds. When the FLUSH_TIMER expires, the
FLUSH_TIMER_EVENT is executed. The FLUSH_TIMER_EVENT does not modify the contents of the

HANDLETABLE.

3.1.3 Initialization

The Windows Remote Registry Protocol server MUST be initialized by registering the RPC interface and
listening on the RPC well-known endpoint, as specified in section 2.1. The server MUST then wait
for Windows Remote Registry Protocol clients to establish a connection.

The server MUST perform any implementation-specific operations to connect to the backing store
backing the 32-bit and 64-bit key namespaces (KEYS32 and KEYS64).

The server MUST set the value of the SHUTDOWNINPROGRESS element to FALSE.

The server SHOULD initialize HANDLETABLE without any (quantity zero) handles.

3.1.4 Higher-Layer Triggered Events

The Windows Remote Registry Protocol is invoked explicitly by an application.

3.1.5 Message Processing Events and Sequencing Rules

All Windows Remote Registry Protocol operations begin with the client opening one of the well-known
predefined keys on the server. After this key is opened, an RPC context handle MUST be associated
with this opened key, as specified in [MS-RPCE], and this handle is returned to the client. The client

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

27 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

can then perform operations on this key, such as open or create subkeys, read or set values that are
associated with this key, or even delete subkeys.

The server MUST perform the following processing rules for each invocation of each of the methods
listed below in this section:

 The server ADM element Token MUST be initialized by retrieving the identity token for the current
execution context by invoking the abstract interface
GetRpcImpersonationAccessToken(NULL) as specified in [MS-RPCE] section 3.3.3.4.3.1.

 The server MUST impersonate the client (the security principal of the caller) by invoking the
abstract interface RpcImpersonateClient as specified in [MS-RPCE] section 3.3.3.4.3.2, passing
in NULL as the BindingHandle parameter.

 The server performs the method listed in the following table.

 The server MUST stop impersonating the client prior to returning a status code by invoking the
abstract interface RpcRevertToSelf as specified in [MS-RPCE] section 3.3.3.4.3.3.

When opening a key, the server then opens the key with the user rights that are requested by the
client, provided the client has sufficient permissions for the requested user rights.

Note that the server MUST fail to open a key if the client does not have sufficient permissions for the
requested user rights. Similarly, the server MUST also fail specific operations if the key was not

opened with sufficient user rights, as specified in section 2.2.4.

The remainder of this section describes the server behavior for the RPC methods that are supported
by the Windows Remote Registry Protocol. The protocol clients can invoke the RPC methods that are
specified in this section in any order after a Windows Remote Registry Protocol session is established
with the server. The outcome of the calls depends on the parameters that are passed to each of those
calls.

Methods in RPC Opnum Order

Method Description

OpenClassesRoot Called by the client. In response, the server opens the HKEY_CLASSES_ROOT
predefined key and returns a handle to the HKEY_CLASSES_ROOT key.

Opnum: 0

OpenCurrentUser Called by the client. In response, the server opens the HKEY_CURRENT_USER
predefined key and returns a handle to the HKEY_CURRENT_USER key.

Opnum: 1

OpenLocalMachine Called by the client. In response, the server opens the
HKEY_LOCAL_MACHINE predefined key and returns a handle to the
HKEY_LOCAL_MACHINE key.

Opnum: 2

OpenPerformanceData Called by the client. In response, the server opens the
HKEY_PERFORMANCE_DATA predefined key and returns a handle to the
HKEY_PERFORMANCE_DATA key.

Opnum: 3

OpenUsers Called by the client. In response, the server opens the HKEY_USERS predefined
key and returns a handle to the HKEY_USERS key.

Opnum: 4

BaseRegCloseKey Called by the client. In response, the server releases a handle to the specified
registry key.

28 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Opnum: 5

BaseRegCreateKey Called by the client. In response, the server creates the specified registry key. If
the key already exists in the registry, the function opens it.

Opnum: 6

BaseRegDeleteKey Called by the client. In response, the server deletes the specified subkey.

Opnum: 7

BaseRegDeleteValue Called by the client. In response, the server removes a named value from the
specified registry key.

Opnum: 8

BaseRegEnumKey Called by the client. In response, the server returns the requested subkey.

Opnum: 9

BaseRegEnumValue Called by the client. In response, the server enumerates the values for the
specified open registry key.

Opnum: 10

BaseRegFlushKey Called by the client. In response, the server writes all the attributes of the
specified open registry key into the registry.

Opnum: 11

BaseRegGetKeySecurity Called by the client. In response, the server returns a copy of the security
descriptor that protects the specified open registry key.

Opnum: 12

BaseRegLoadKey Called by the client. In response, the server creates a subkey under
HKEY_USERS or HKEY_LOCAL_MACHINE and stores registration information
from a specified file in that subkey.

Opnum: 13

Opnum14NotImplemented Not implemented.

Opnum: 14

BaseRegOpenKey Called by the client. In response, the server opens the specified key for access,
returning a handle to it.

Opnum: 15

BaseRegQueryInfoKey Called by the client. In response, the server returns relevant information about
the key that corresponds to the specified key handle.

Opnum: 16

BaseRegQueryValue Called by the client. In response, the server returns the data that is associated
with the default value of a specified registry open key.

Opnum: 17

BaseRegReplaceKey Called by the client. In response, the server MUST read the registry information
from the specified file and replace the specified key with the content of the file,
so that when the system is restarted, the key and subkeys have the same values
as those in the specified file.

Opnum: 18

BaseRegRestoreKey Called by the client. In response, the server reads the registry information in a
specified file and copies it over the specified key. The registry information can
take the form of a key and multiple levels of subkeys.

Opnum: 19

29 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

BaseRegSaveKey Called by the client. In response, the server saves the specified key and all its
subkeys and values to a new file.

Opnum: 20

BaseRegSetKeySecurity Called by the client. In response, the server sets the security descriptor that
protects the specified open registry key.

Opnum: 21

BaseRegSetValue Called by the client. In response, the server sets the data for the default value of
a specified registry key. The data MUST be a text string.

Opnum: 22

BaseRegUnLoadKey Called by the client. In response, the server removes the specified discrete body
of keys, subkeys, and values that are rooted at the top of the registry hierarchy.

Opnum: 23

Opnum24NotImplemented Not implemented.

Opnum: 24

Opnum25NotImplemented Not implemented.

Opnum: 25

BaseRegGetVersion Called by the client. In response, the server returns the version to which a
registry key is connected.

Opnum: 26

OpenCurrentConfig Called by the client. In response, the server attempts to open the
HKEY_CURRENT_CONFIG predefined key and returns a handle to the
HKEY_CURRENT_CONFIG key.

Opnum: 27

Opnum28NotImplemented Not implemented.

Opnum: 28

BaseRegQueryMultipleValues Called by the client. In response, the server returns the type and data for a list
of value names that are associated with the specified registry key.

Opnum: 29

Opnum30NotImplemented Not implemented.

Opnum: 30

BaseRegSaveKeyEx Called by the client. In response, the server saves the specified key and all its
subkeys and values to a new file.

Opnum: 31

OpenPerformanceText Called by the client. In response, the server opens the
HKEY_PERFORMANCE_TEXT predefined key and returns a handle to the
HKEY_PERFORMANCE_TEXT key.

Opnum: 32

OpenPerformanceNlsText Called by the client. In response, the server opens the
HKEY_PERFORMANCE_NLSTEXT predefined key and returns a handle to the
HKEY_PERFORMANCE_NLSTEXT key.

Opnum: 33

BaseRegQueryMultipleValues2 Called by the client. In response, the server returns the type and data for a list
of value names that are associated with the specified registry key.

Opnum: 34

30 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

BaseRegDeleteKeyEx Called by the client. In response, the server deletes the specified subkey. This
function differs from BaseRegDeleteKey in that either 32-bit or 64-bit keys can
be deleted, regardless of what kind of application is running.

Opnum: 35

3.1.5.1 OpenClassesRoot (Opnum 0)

The OpenClassesRoot method is called by the client. In response, the server opens the
HKEY_CLASSES_ROOT predefined key.

 error_status_t OpenClassesRoot(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

ServerName: The server name. The ServerName SHOULD be sent as NULL, and MUST be ignored
when it is received because binding to the server is already complete at this stage.

samDesired: A bit field that describes the requested security access for the key. It MUST be
constructed from one or more of the values specified in section 2.2.4.

phKey: A pointer to an RPC context handle for the root key, HKEY_CLASSES_ROOT, as specified in
section 3.1.1. The handle is found in the handle table (HANDLETABLE).

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in [MS-ERREF] section 2.2. The most common error codes are
listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown
has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

The server then determines which key namespace to operate on (KEYS32 or KEYS64) by inspecting
the value of the samDesired parameter.

If server does not support the 64-bit key namespace 3.1.1.4, the server MUST operate on the 32-bit
key namespace (KEYS32).

If the server is a 64-bit registry server and supports both the 32-bit and 64-bit key namespaces, as

defined in section 3.1.1.4, the server MUST first check if both the KEY_WOW64_64KEY and
KEY_WOW64_32KEY bits are set in the samDesired parameter. If both the KEY_WOW64_64KEY and

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

31 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

KEY_WOW64_32KEY are set, the server SHOULD<7> fail the method and return
ERROR_INVALID_PARAMETER.

Next, the server checks if the KEY_WOW64_32KEY is set in the samDesired parameter. If the
KEY_WOW64_32KEY is set in the samDesired parameter, the server MUST open the root key,

HKEY_CLASSES_ROOT, in the 32-bit key namespace (KEYS32). If the KEY_WOW64_32KEY is not
set in the samDesired parameter, the server MUST open the root key, HKEY_CLASSES_ROOT, in the
64-bit key namespace (KEYS64). If the root key is to be opened in the 32-bit key namespace, the
server MUST open the root key in the 32-bit key namespace. The 32-bit key namespace for
HKEY_CLASSES_ROOT is stored as a subkey in the 64-bit key namespace in
HKEY_CLASSES_ROOT\Wow6432Node.

The server MUST validate the value of the samDesired parameter set by the client. If the value of

samDesired includes flags set that are not listed in section 2.2.4, the server MUST return
ERROR_INVALID_PARAMETER.

The server attempts to open the root key, HKEY_CLASSES_ROOT, and return a handle to that key in
the phKey parameter. The server MUST evaluate the security descriptor that is associated with the key

against the requested access that is expressed in the samDesired parameter to determine whether the
caller can open this key.

If the caller is permitted to open the key, the server MUST return 0 to indicate success and create a
new valid context handle. The server MUST store the context handle value in the handle table
(HANDLETABLE) along with a mapping to the HKEY_CLASSES_ROOT key. The server MUST place the
context handle in the phKey parameter. If the caller does not have access, the server MUST return
ERROR_ACCESS_DENIED (5). The server MAY return other values, depending on other failure cases;
other values are implementation-specific.

3.1.5.2 OpenCurrentUser (Opnum 1)

The OpenCurrentUser method is called by the client. In response, the server opens a handle to the
HKEY_CURRENT_USER key. The server MUST determine which subkey of HKEY_USERS is the correct
key to map to HKEY_CURRENT_USER, as explained in section 3.1.1.8.

 error_status_t OpenCurrentUser(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

ServerName: SHOULD be sent as NULL, and MUST be ignored on receipt because the binding to the
server is already complete at this stage.

samDesired: A bit field that describes the wanted security access for the key. It MUST be constructed

from one or more of the values that are specified in section 2.2.4.

phKey: A pointer to an RPC context handle for the root key, HKEY_CURRENT_USER, as specified in
section 3.1.1. The handle is found in the handle table (HANDLETABLE).

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

32 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown
has been initiated (SHUTDOWNINPROGRESS is set to TRUE).

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

The server MUST determine which subkey of the HKEY_USERS predefined key is mapped as the
HKEY_CURRENT_USER key, as defined in section 3.1.1.8.

The server attempts to open the root key, HKEY_CURRENT_USER, and return a handle to that key in
the phKey parameter.

The server MUST evaluate the security descriptor that is associated with the key against the requested
access that is expressed in the samDesired parameter to determine whether the caller can open this
key.

If the caller is permitted to open the key, the server MUST return 0 to indicate success, and create a
new valid context handle. The server MUST store the context handle value in the handle table
(HANDLETABLE) along with a mapping to the HKEY_CURRENT_USER key. The server MUST place the
context handle in the phKey parameter. If the caller does not have access, the server MUST return
ERROR_ACCESS_DENIED (5).

The server MUST validate the value of the samDesired parameter set by the client. If the value of
samDesired includes flags set which are not listed in section 2.2.4, the server MUST return

ERROR_INVALID_PARAMETER.

The server MAY return other values depending on other failure cases; other values are
implementation-specific.

3.1.5.3 OpenLocalMachine (Opnum 2)

The OpenLocalMachine method is called by the client. In response, the server opens a handle to the
HKEY_LOCAL_MACHINE predefined key.

 error_status_t OpenLocalMachine(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

ServerName: SHOULD be sent as NULL and MUST be ignored on receipt because the binding to the
server is already complete at this stage.

samDesired: A bit field that describes the wanted security access for the key. It MUST be constructed
from one or more of the values that are specified in section 2.2.4.

phKey: A pointer to an RPC context handle for the root key, HKEY_LOCAL_MACHINE, as specified
in section 3.1.1. The handle is found in the handle table (HANDLETABLE).

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a

nonzero error code, as specified in the Win32Error Codes in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

33 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown
has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

If the server is a 64-bit registry server and supports both the 32-bit and 64-bit key namespaces, as
defined in section 3.1.1.4, the server MUST first check if both the KEY_WOW64_64KEY and
KEY_WOW64_32KEY bits are set in the samDesired parameter. If both the KEY_WOW64_64KEY and

KEY_WOW64_32KEY are set, the server SHOULD<8> fail the method and return
ERROR_INVALID_PARAMETER.

The server attempts to open the root key, HKEY_LOCAL_MACHINE, and return a handle to that key
in the phKey parameter. The server MUST evaluate the security descriptor that is associated with the
key against the requested access that is expressed in the samDesired parameter to determine if the
caller can open this key.

 If the caller is permitted to open the key, the server MUST return 0 to indicate success and create a
new valid context handle. The server MUST store the context handle value in the handle table

(HANDLETABLE) along with a mapping to the HKEY_LOCAL_MACHINE key. The server MUST place
the handle value (see 3.1.1.9) in the phKey parameter.

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED (5). The server
SHOULD return without modification any other error code encountered in servicing the client request
in accordance with the Win32Error Codes in [MS-ERREF] section 2.2.

The server MUST validate the value of the samDesired parameter set by the client. If the value of
samDesired includes flags set which are not listed in section 2.2.4, the server MUST return

ERROR_INVALID_PARAMETER.

The server MUST disregard the samDesired parameter if the samDesired parameter set by the client
has bit 0x2 set, indicating permission to create a subkey. The server MUST not allow subkey creation
in certain locations of the registry hierarchy. These restrictions are detailed within the Server
Operations section of the BaseRegCreateKey method.

3.1.5.4 OpenPerformanceData (Opnum 3)

The OpenPerformanceData method is called by the client. In response, the server opens a handle to
the HKEY_PERFORMANCE_DATA predefined key. The HKEY_PERFORMANCE_DATA predefined
key is used to retrieve performance information from a registry server using only the

BaseRegQueryInfoKey, BaseRegQueryValue, BaseRegEnumValues and BaseRegCloseKey

methods.

 error_status_t OpenPerformanceData(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

34 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ServerName: SHOULD be sent as NULL and MUST be ignored on receipt because the binding to the
server is already complete at this stage.

samDesired: SHOULD be sent as 0 and MUST be ignored on receipt.

phKey: A pointer to an RPC context handle for the root key, HKEY_PERFORMANCE_DATA, as

specified in section 3.1.1. The handle is found in the handle table (HANDLETABLE).

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The server SHOULD return
without modification any other error code encountered in servicing the client request.

The most common error codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown
has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

The server attempts to open the root key, HKEY_PERFORMANCE_DATA, and return a handle to that
key in the phKey parameter. The server MUST evaluate the security descriptor that is associated with

the key HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS
NT\CURRENTVERSION\PERFLIB against a requested access of MAXIMUM_ALLOWED (see [MS-
DTYP] (section 2.4.3)) to determine whether the caller can open this key.

If the caller is permitted to open the key, the server MUST return 0 to indicate success, and create a
new valid context handle. The server MUST store the context handle value in the handle table
(HANDLETABLE) along with a mapping to the HKEY_PERFORMANCE_DATA key. The server MUST
place the handle value (see 3.1.1.9) in the phKey parameter. If the caller does not have access, the

server MUST return ERROR_ACCESS_DENIED (5).

3.1.5.5 OpenUsers (Opnum 4)

 The OpenUsers method is called by the client. In response, the server opens a handle to the

HKEY_USERS predefined key.

 error_status_t OpenUsers(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

ServerName: SHOULD be sent as NULL and MUST be ignored on receipt because the binding to the
server is already complete at this stage.

samDesired: The bit field that describes the wanted security access for the key. It MUST be
constructed from one or more of the values that are specified in section 2.2.4.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

35 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

phKey: A pointer to an RPC context handle for the root key, HKEY_USERS, as specified in section
3.1.1. The handle is found in the handle table (HANDLETABLE).

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The server SHOULD return

without modification any error code encountered in servicing the client request.

The most common error codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown
has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return

ERROR_WRITE_PROTECT.

The server attempts to open the predefined key HKEY_USERS and return a handle to that key in the
phKey parameter. The server MUST evaluate the security descriptor that is associated with the key
against the access requested in the samDesired parameter.

If the caller is permitted to open the key, the server MUST return 0 to indicate success, and create a
new valid context handle. The server MUST store the context handle value in the handle table

(HANDLETABLE) along with a mapping to the HKEY_USERS key. The server MUST place a handle
value (see 3.1.1.9) in the phKey parameter. If the caller does not have access, the server MUST
return ERROR_ACCESS_DENIED (5). For more information about security descriptors, see 3.1.1.10.

The server MUST validate the value of the samDesired parameter set by the client. If the value of
samDesired includes flags set which are not listed in section 2.2.4, the server MUST return
ERROR_INVALID_PARAMETER.

The server MUST disregard the samDesired parameter if the samDesired parameter set by the client

has bit 0x2 set, indicating permission to create a subkey. The server MUST not allow subkey creation
in certain locations of the registry hierarchy. These restrictions are detailed within the Server
Operations section of the BaseRegCreateKey method.

3.1.5.6 BaseRegCloseKey (Opnum 5)

The BaseRegCloseKey method is called by the client. In response, the server destroys (closes) the
handle to the specified registry key.

 error_status_t BaseRegCloseKey(
 [in, out] PRPC_HKEY hKey
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

36 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error

codes are listed in the following table.

Return value/code Description

0x00000006

ERROR_INVALID_HANDLE

The handle is invalid.

0x000000AA

ERROR_BUSY

The requested resource is in use.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown
has been initiated.

0x00000015

ERROR_NOT_READY

The service is not read. Calls can be repeated at a later time.

0x00000102

WAIT_TIMEOUT

The wait operation timed out.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated, the server MUST return ERROR_WRITE_PROTECT.

If the handle provided in the hKey parameter is not a valid open handle to a registry key, the server
MUST fail the method and return ERROR_INVALID_HANDLE. If the operation was unsuccessful, the

server MUST NOT change the value of the hKey parameter and return the original value to the client.

If the registry server cannot obtain a lock on a registry request, the server MUST return ERROR_BUSY.
The operation SHOULD be repeated.

The server MUST determine if the UPDATECOPY column of the entry for hKey in the HANDLETABLE is
set to true. If UPDATECOPY is set to true, the server MUST copy all subkeys and values of the key
indicated by the hKey parameter from the 32-bit key namespace into the 64-bit key namespace or

from the 64-bit key namespace into the 32-bit key namespace. Any values already in the target
namespace are overwritten as part of the copy operation. Any errors encountered during the copy
operation are not returned to the client, and the result of the copy operation is undefined.

In response to this request from the client, for a successful operation, the server MUST return 0 to
indicate success and close the handle to the key that is specified by the hKey parameter in the client
request. The server MUST also set the value of the hKey parameter to NULL. The server MUST also
remove the entry for hKey in the HANDLETABLE.

The implementation of the handle close operation is server-specific. However, functionally, after a
handle is closed, the server MUST not allow the handle to refer to a given registry key until a new
handle is created and opened for that key using one of the open methods that are specified in section
3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine, OpenPerformanceData, OpenUsers,

BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig, OpenPerformanceText,
OpenPerformanceNlsText.

If the method is unsuccessful, the server MUST return a nonzero error code, as specified in

Win32Error Codes in [MS-ERREF].

The server MUST return ERROR_BUSY if an internal lock cannot be obtained. This would happen under
very high contention rates or if the client is corrupted. The operation SHOULD be repeated.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

37 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MAY return WAIT_TIMEOUT if the server load is high and it is unable to acquire locks on
the registry database.

3.1.5.7 BaseRegCreateKey (Opnum 6)

The BaseRegCreateKey method is called by the client. In response, the server creates the specified
registry key and returns a handle to the newly created key. If the key already exists in the registry, a
handle to the existing key is opened and returned.

 error_status_t BaseRegCreateKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] PRRP_UNICODE_STRING lpClass,
 [in] DWORD dwOptions,
 [in] REGSAM samDesired,
 [in, unique] PRPC_SECURITY_ATTRIBUTES lpSecurityAttributes,
 [out] PRPC_HKEY phkResult,
 [in, out, unique] LPDWORD lpdwDisposition
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: BaseRegCreateKey, OpenClassesRoot, OpenCurrentUser,
OpenLocalMachine, OpenPerformanceData, OpenUsers, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpSubKey: A pointer to a RRP_UNICODE_STRING structure that specifies the name of the key (as
specified in section 3.1.1.1) that this method opens or creates. The name of the key specified is
relative to the key specified by the hkey parameter.

lpClass: A pointer to a PRRP_UNICODE_STRING structure that specifies the class of the key (as
specified in section 3.1.1.6).<9>

dwOptions: Registry key options. MUST be one of the values specified in Key
Types (section 3.1.1.2).

samDesired: A bit field that describes the wanted security access for the handle to the key that is
being created or opened. It MUST be constructed from one or more of the values that are specified

in section 2.2.4.

lpSecurityAttributes: A pointer to an RPC_SECURITY_ATTRIBUTES structure for the new subkey
provided a new subkey is created.

phkResult: A pointer to a variable that receives a handle to the opened or created key.

lpdwDisposition: The disposition of the returned key indicated by phkResult. The value of this
parameter set by the client is ignored by the server. Its value MUST be one of the following.

Value Meaning

REG_CREATED_NEW_KEY

0x00000001

The key did not exist and was created.

REG_OPENED_EXISTING_KEY

0x00000002

The key already existed and was opened without being changed.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

38 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_CREATE_SUB_KEY access rights.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return

ERROR_WRITE_PROTECT.

If the value of the lpSubKey parameter is NULL, the server MUST fail the method and return
ERROR_INVALID_PARAMETER.

If this method fails, and the server returns a failure error code, the lpdwDisposition parameter is
unchanged from the value set by the client.

The server then determines which key namespace to operate on (KEYS32 or KEYS64) by inspecting
the value of the samDesired parameter. If the server does not support the 64-bit key namespace (see

section 3.1.1.4), the server MUST operate on the 32-bit key namespace (KEYS32).

If the server is a 64-bit registry server and supports both the 32-bit and 64-bit key namespaces, as
defined in section 3.1.1.4, the server MUST first check if both the KEY_WOW64_64KEY and
KEY_WOW64_32KEY bits are set in the samDesired parameter. If both KEY_WOW64_64KEY and

KEY_WOW64_32KEY are set, the server SHOULD<10> fail the method and return
ERROR_INVALID_PARAMETER.

The server then checks to see if the key specified by the hKEY parameter is a key that can only be

operated on in the 64-bit key namespace (KEYS64). See section 3.1.1.4.

If the key specified by the hKey parameter is a key only to be operated on in the 64-bit key
namespace (KEYS64), the server MUST ignore the KEY_WOW64_64KEY and KEY_WOW64_32KEY bits
in the samDesired parameter and operate on and create or open the key in the 64-bit namespace
(KEYS64).

Next, the server checks if the KEY_WOW64_32KEY is set in the samDesired parameter. If the
KEY_WOW64_32KEY is set in the samDesired parameter, the server MUST create the key in the 32-bit

key namespace (KEYS32). If the KEY_WOW64_32KEY is not set in the samDesired parameter, the
server MUST create the key in the 64-bit key namespace (KEYS64).

Next, the server determined if the key supports subkey creation. If the key indicated by hKey refers to
the predefined key HKEY_LOCAL_MACHINE or HKEY_USERS and lpSubKey is not specified (the
key is to be created under HKEY_LOCAL_MACHINE or HKEY_USERS in the registry key hierarchy),
the server MUST fail the method and return ERROR_INVALID_PARAMETER.

Then, the server MUST next determine if the key path indicated by hKey and lpSubKey refer to a path
that is within the subset of registry paths that can support both the 64-bit and 32-bit key namespaces
(see section 3.1.1.4). If the key path indicated by hKey and lpSubKey are within the subset of registry
paths that can support both the 64-bit and 32-bit key namespaces, the server MUST open or create
the registry key within the appropriate path in the 64-bit key namespace. For example, if hKey refers

39 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

to HKEY_LOCAL_MACHINE\Software; and the value of the lpSubKey parameter is "TEST_KEY"; and
the server MUST operate on the 32-bit key namespace, then the server MUST open or create the

HKEY_LOCAL_MACHINE\Software\Wow6432Node\TEST_KEY key.

The server MUST determine if the key indicated by lpSubKey already exists within the set of children

keys for the key indicated by hKey. If the key indicated by lpSubKey exists within the set of children
keys for the key indicated by hKey, the server MUST create a new open handle to the key indicated by
lpSubKey and return the handle in the phkResult parameter. The server MUST insert the new open
handle in the handle table (HANDLETABLE). If the key already exists, the dwOptions parameter in the
client request MUST be ignored.

If the key that is specified by the lpSubKey parameter already exists, the key on the server is opened,
the dwOptions parameter in the client request is ignored, and REG_OPENED_EXISTING_KEY

(0x00000002) is returned in the lpdwDisposition parameter.

The server MUST determine whether the client is requesting a non-volatile key to be created as a child
of a volatile key. If the key indicated by hKey is volatile and the value of the dwOptions parameter is
not equal to 0x00000001, the server MUST fail the method and return

ERROR_CHILD_MUST_BE_VOLATILE (0x000003FD).

If the key indicated by lpSubKey does not exist within the set of children keys for the key indicated by

hKey, the server MUST create a new key in the registry Data Store with a name equal to the name
indicated by lpSubKey. If the client has set dwOptions to a value of 0x00000002 and the samDesired
parameter has bit 5 (0x00000020) set (specifies access to create a symbolic link), the server MUST
create the new key with a KEYTYPE of symbolic link.

If the client has set dwOptions to a value of 0x00000002 (specifies access to create a symbolic link)
and the key indicated by hKey has a keytype of VOLATILE, the server MUST fail the method and
return ERROR_ALREADY_EXISTS.

The server MUST open a handle to the newly created key and return the handle in the phkResult
parameter. The server MUST insert the new open handle in the handle table (HANDLETABLE). The
server MUST set the value of the lpdwDisposition parameter to REG_CREATED_NEW_KEY
(0x00000001). If the key that is specified by the lpSubKey parameter already exists, the key on the

server is opened, the dwOptions parameter in the client request is ignored, and 0x00000002 is
returned in the lpdwDisposition parameter.

If the key indicated by lpSubKey exists within the set of registry paths for which keys and values are

copied between the 32-bit and 64-bit key namespaces, the server MUST set the UPDATECOPY column
in the HANDLETABLE to TRUE. The value of the UPDATECOPY column is inspected when the handle is
closed to determine whether keys and values are to be copied between the 32-bit and 64-bit key
namespaces.

If lpClass is not NULL, the server MUST set the class associated with the newly created or opened key
indicated by lpSubKey to the value of the Unicode string indicated by lpClass. The default class of

registry keys is specified to be NULL.

For new keys that are created, the server MUST create the key based on the wanted key type that is
specified in the dwOptions parameter. For key types, see section 3.1.1.2.

For new keys that are created, the server MUST set to TRUE the KEYISMODIFIED property of the new
key.

The server MUST validate that the client has access to create or open the registry key indicated by the
lpSubKey parameter using the security descriptor of the immediate parent key. The server MUST NOT

use the values of the flags in the samDesired parameter when determining whether the client has
access to create or open the key indicated by lpSubKey.

If the client does not have permission (KEY_CREATE_SUB_KEY; see section 2.2.4) to open or create
the key, the server MUST fail the method and return ERROR_ACCESS_DENIED.

40 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the lpSecurityAttributes parameter is NULL and the subkey does not exist, then a created subkey
gets a default security descriptor; the access control list (ACL) ([MS-DTYP] section 2.4.5) in the

default security descriptor for a newly created subkey is inherited from the security descriptor of its
direct parent key.

If the client sets the lpSubKey parameter to the empty string, the server MUST open a new handle to
the key indicated by hKey and return the new handle in the phkResult parameter. For a successful
operation, the server MUST return an open handle to the new key in the phkResult parameter in the
event of success.

3.1.5.8 BaseRegDeleteKey (Opnum 7)

The BaseRegDeleteKey method is called by the client. In response, the server deletes the specified
subkey.

 error_status_t BaseRegDeleteKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,

OpenPerformanceText, OpenPerformanceNlsText.

lpSubKey: A pointer to a RRP_UNICODE_STRING structure that MUST contain the name of the key
(as specified in section 3.1.1) to delete.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000005

ERROR_ACCESS_DENIED

Access is denied. For BaseRegDeleteKey, this error will be returned when
the key indicated by the lpSubKey parameter has subkeys.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

In response to the client request, for a successful operation, the server MUST delete the registry key

specified by the lpSubKey parameter in the client request and MUST return 0 (ERROR_SUCCESS). The

server MUST delete all data associated with the registry key indicated by the lpSubKey parameter,
including the key, any values, and the security descriptor associated with the key.

The server MUST delete the registry key even if the subkey to be deleted is already in use and
initialized in the Data Store before the deletion happens. The delete function will be successful even if
other handles are open to the key. The data inside the hive is revoked at delete key time and is not
deferred until the last handle close operation.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

41 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return

ERROR_WRITE_PROTECT.

The server first validates that the hKey parameter is currently an open handle that MUST have been

opened previously using one of the methods that are specified in section 3.1.5. If the hKey parameter
is not an already open handle, the server MUST return ERROR_INVALID_PARAMETER.

The server then validates that the key specified by the lpSubKey parameter is a subkey of the key
indicated by the hKey parameter. If the key specified by the lpSubKey parameter is not a subkey of
the key indicated by the hKey parameter, the server MUST return ERROR_FILE_NOT_FOUND.

If the value of the lpSubKey parameter is NULL, the server MUST fail the method and return
ERROR_INVALID_PARAMETER.

The server then validates that the key indicated by lpSubKey does not have subkeys of its own. If the
key indicated by the lpSubKey parameter does have subkeys, the server MUST return
ERROR_ACCESS_DENIED.

If both the hKey and lpSubKey parameters are valid and the key indicated by lpSubKey does not have
any subkeys, the server MUST return ERROR_SUCCESS and delete the key indicated by lpSubKey, its
security descriptor, and any values.

3.1.5.9 BaseRegDeleteValue (Opnum 8)

The BaseRegDeleteValue method is called by the client. In response, the server removes a named
value from the specified registry key.

 error_status_t BaseRegDeleteValue(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpValueName
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpValueName: A pointer to a RRP_UNICODE_STRING structure that MUST contain the name of the
value (as specified in section 3.1.1) to remove. If the client sets the lpValueName parameter to
NULL, the server fails this method and return ERROR_INVALID_PARAMETER. <11>

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_SET_VALUE access rights.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

42 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST delete the
named value from the registry key that is specified by the hKey parameter in the client request.

If the lpValueName parameter in the client request is an empty Unicode string, server MUST delete
the data in the default value (as specified in section 3.1.1.5) of the specified key.

The server MUST set to TRUE the KEYISMODIFIED property of the key indicated by hKey.

The caller MUST have KEY_QUERY_VALUE access rights to invoke this method. For more information,
see section 2.2.4.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

3.1.5.10 BaseRegEnumKey (Opnum 9)

The BaseRegEnumKey method is called by the client in order to enumerate a subkey. In response, the
server returns a requested subkey.

 error_status_t BaseRegEnumKey(
 [in] RPC_HKEY hKey,
 [in] DWORD dwIndex,
 [in] PRRP_UNICODE_STRING lpNameIn,
 [out] PRRP_UNICODE_STRING lpNameOut,
 [in, unique] PRRP_UNICODE_STRING lpClassIn,
 [out] PRPC_UNICODE_STRING* lplpClassOut,
 [in, out, unique] PFILETIME lpftLastWriteTime
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

dwIndex: The index of the subkey to retrieve, as specified in section 3.1.1.1.

lpNameIn: A pointer to a RRP_UNICODE_STRING structure that contains the name of the key to

retrieve, as specified in section 3.1.1.

lpNameOut: A pointer to a RRP_UNICODE_STRING structure that receives the name of the retrieved
key, as specified in section 3.1.1.

lpClassIn: A pointer to a RRP_UNICODE_STRING structure that contains the class of this key, as
specified in section 3.1.1.6. This parameter MAY be NULL. This string is optional, is not used by
the registry, is saved, and can be retrieved using BaseRegQueryInfoKey.

lplpClassOut: A pointer to a PRPC_UNICODE_STRING structure that receives the class of the

retrieved key, as specified in section 3.1.1.6. This parameter MAY be NULL.

lpftLastWriteTime: MUST be the time when the value was last written (set or created).

43 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error

codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_ENUMERATE_SUB_KEYS access rights.

0x0000000E

ERROR_OUTOFMEMORY

Not enough storage is available to complete this operation.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000103

ERROR_NO_MORE_ITEMS

No more data is available.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

0x000000EA

ERROR_MORE_DATA

The size of the buffer is not large enough to hold the requested data.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated, the server MUST return ERROR_WRITE_PROTECT.

If the dwIndex parameter is beyond the range of subkeys, the server MUST return
ERROR_NO_MORE_ITEMS to indicate that enumeration is complete.

If the lplpClassOut parameter does not contain enough space for the class name, the server MUST

return ERROR_MORE_DATA.

The server MUST first validate that the hKey parameter is currently an open handle which MUST have
been opened previously using one of the methods specified in section 3.1.5. If the hKey parameter is

not an already opened handle, the server MUST return ERROR_INVALID_PARAMETER.

The lpNameIn parameter specifies (in the MaxmimumLength member of the RRP_UNICODE_STRING
structure) the length of the buffer allocated by the RPC client. This string is transferred as an in
parameter to the server. Its maximum length is used to allocate the output Unicode string
(lpNameOut) that transfers data back to the client.

In response to this request from the client, for a successful operation, the server MUST return the

subkey at the index that is specified by the dwIndex parameter for the key that is specified by the
hKey parameter.

The server MUST copy the name of the retrieved subkey (as specified in section 3.1.1.1), including the

terminating null character, to the buffer that is pointed to by the lpNameOut parameter in the client
request. The server MUST not copy the full key hierarchy to the buffer. If a class is associated with the
key, the server MUST copy this class to the buffer that is pointed to by the lpClassOut parameter. The
server MUST return the time a value was last modified in the lpftLastWriteTime parameter.

The caller MUST have KEY_ENUMERATE_SUB_KEYS access rights to invoke this method. For more
information, see section 2.2.4.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

44 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

3.1.5.11 BaseRegEnumValue (Opnum 10)

The BaseRegEnumValue method is called by the client. In response, the server enumerates the value
at the specified index for the specified registry key.

 error_status_t BaseRegEnumValue(
 [in] RPC_HKEY hKey,
 [in] DWORD dwIndex,
 [in] PRRP_UNICODE_STRING lpValueNameIn,
 [out] PRPC_UNICODE_STRING lpValueNameOut,
 [in, out, unique] LPDWORD lpType,
 [in, out, unique, size_is(lpcbData?*lpcbData:0), length_is(lpcbLen?*lpcbLen:0), range(0,
0x4000000)]

 LPBYTE lpData,
 [in, out, unique] LPDWORD lpcbData,
 [in, out, unique] LPDWORD lpcbLen
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,

OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

dwIndex: MUST be the index of the value to be retrieved, as specified in section 3.1.1.5.

lpValueNameIn: A pointer to a RRP_UNICODE_STRING structure that contains the value name to be
retrieved, as specified in section 3.1.1. This can be used by the server to determine the maximum
length for the output name parameter and to allocate space accordingly. The content is ignored,

and only the maximum length is significant.

lpValueNameOut: A pointer to a RPC_UNICODE_STRING structure that receives the retrieved value
name, as specified in section 3.1.1.

lpType: A pointer to a buffer that receives the REG_VALUE_TYPE of the value. This parameter MAY
be NULL.

lpData: A pointer to a buffer that MUST receive the data of the value entry. This parameter MAY be
NULL.

lpcbData: A pointer to a variable that MUST contain the size of the buffer that is pointed to by lpData.
MUST NOT be NULL if lpData is present.

lpcbLen: MUST specify the number of bytes to transmit to the client.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_QUERY_VALUE access rights.

0x0000000E

ERROR_OUTOFMEMORY

Not enough storage is available to complete this operation.

0x00000057 A parameter is incorrect.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

45 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

ERROR_INVALID_PARAMETER

0x0000007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

0x000000EA

ERROR_MORE_DATA

More data is available.

0x00000103

ERROR_NO_MORE_ITEMS

No more data is available.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

The server MUST first validate that the hKey parameter is currently an open handle which MUST have
been opened previously using one of the methods specified in section 3.1.5. If the hKey parameter is
not an already opened handle, the server MUST return ERROR_INVALID_PARAMETER.

In response to this request from the client, for a successful operation, the server MUST return the

value and data at the index that is specified by the dwIndex parameter for the key that is specified by
the hKey parameter in the client request.

Only the maximum length field of the lpValueNameIn is used to determine the buffer length to be
allocated by the service. Specify a string with a zero length but maximum length set to the largest
buffer size needed to hold the value names.

The server MUST return the value name (as specified in section 3.1.1.5) in the lpValueNameOut

parameter and the type of the value in the lpType parameter. The type of the value MUST be one of
the values that are specified by REG_VALUE_TYPE in section 3.1.1.5.

If the request contains a pointer to a buffer in the lpData parameter, the server MUST return the data
of the value entry, if present. The lpcbData parameter represents the size of this buffer. If the size is
sufficient to hold the data, the server MUST return the number of BYTES that are returned in the
lpData parameter. If the size is insufficient to hold the data of the value entry, the server MUST return
122 (ERROR_INSUFFICIENT_BUFFER) to indicate that the buffer was insufficient.

The caller MUST have KEY_QUERY_VALUE access rights to invoke this method. For more information,
see section 2.2.4.

The server MUST return 0 to indicate success, or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

If the output buffer is too small to contain the value, the server MUST return ERROR_MORE_DATA.
The call SHOULD be repeated with a larger output buffer.

If the input index is beyond the number of values for a key, the server MUST return
ERROR_NO_MORE_ITEMS. This signals the end of enumeration to the caller.

46 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.12 BaseRegFlushKey (Opnum 11)

The BaseRegFlushKey method is called by the client. In response, the server writes all of the subkeys
and values of the key indicated by the hKey parameter to the backing store for registry data.

 error_status_t BaseRegFlushKey(
 [in] RPC_HKEY hKey
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,

OpenPerformanceText, OpenPerformanceNlsText.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF].

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_QUERY_VALUE access rights.

Server Operations

In response to this request from the client, the server MUST identify all the subkeys and values of the
key specified by the hKey parameter that have the KEYISMODIFIED property set to TRUE, and write
them to the backing store for that key.

If the server encounters an error while writing data to the backing store, the server MUST fail the
method and return ERROR_REGISTRY_IO_FAILED.

The caller MUST have KEY_QUERY_VALUE access rights to invoke this method. For more information,
see section 2.2.4.

The server MUST return 0 to indicate success, or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

3.1.5.13 BaseRegGetKeySecurity (Opnum 12)

The BaseRegGetKeySecurity method is called by the client. In response, the server returns a copy of
the security descriptor that protects the specified open registry key.

 error_status_t BaseRegGetKeySecurity(
 [in] RPC_HKEY hKey,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in] PRPC_SECURITY_DESCRIPTOR pRpcSecurityDescriptorIn,
 [out] PRPC_SECURITY_DESCRIPTOR pRpcSecurityDescriptorOut
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

47 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SecurityInformation: The information that is needed to determine the type of security that is
returned in pRpcSecurityDescriptorOut. See SECURITY_INFORMATION (includes a list of possible

values).

pRpcSecurityDescriptorIn: A pointer to a buffer containing a security descriptor. The client MUST

provide a pointer to a RPC_SECURITY_DESCRIPTOR with arbitrary contents. The server uses the
size of this security descriptor to validate the client has the correct amount of memory allocated
for the RPC_SECURITY_DESCRIPTOR pointed to by the pRpcSecurityDescriptorOut parameter

pRpcSecurityDescriptorOut: A pointer to a buffer to which the requested security descriptor MUST
be written.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error

codes are listed in the following table.

Return value/code Description

0x0000000E

ERROR_OUTOFMEMORY

Not enough storage is available to complete this operation.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

If hKey refers to a key that is one of the predefined performance handles
(HKEY_PERFORMANCE_DATA, HKEY_PERFORMANCE_TEXT or HKEY_PERFORMANCE_NLSTEXT) and
the client has set bit 0x8 (SACL_SECURITY_INFORMATION) in the SecurityInformation parameter, the

server MUST fail the method and return ERROR_PRIVILEGE_NOT_HELD.

The server MUST first validate that the hKey parameter is currently an open handle which MUST have
been opened previously using one of the methods specified in section 3.1.5. If the hKey parameter is
not an already opened handle, the server MUST return ERROR_INVALID_PARAMETER.

In response to this request from the client, for a successful operation, the server MUST return a copy
of the SECURITY_DESCRIPTOR that is associated with the registry key that is specified by the hKey
parameter.

The server MUST return the security descriptor in the buffer that is pointed to by the
pRpcSecurityDescriptorOut parameter. The returned values in the pRpcSecurityDescriptorOut
parameter depend on the values that are requested by the client in the SecurityInformation

parameter. See SECURITY_INFORMATION.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the server returns 122 (ERROR_INSUFFICIENT_BUFFER), the size of the output buffer pointed to by

the pRpcSecurityDescriptorOut parameter is not large enough. The required output buffer size is
indicated by the cbInSecurityDescriptor field of the RPC_SECURITY_DESCRIPTOR structure pointed
to by the pRpcSecurityDescriptorOut parameter. The remaining fields of the
RPC_SECURITY_DESCRIPTOR structure MUST be NULL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

48 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.14 BaseRegLoadKey (Opnum 13)

The BaseRegLoadKey method is called by the client. In response, the server loads key, subkey, and
value data from a file and inserts the data into the registry hierarchy.

The BaseRegLoadKey method is designed for use in backup and recovery scenarios where the client
first loads a registry hive from a file on disk using the BaseRegLoadKey method. Then, after reading
or writing key data from the loaded hive, the client uses the BaseRegUnLoadKey method to unload the
hive. For example, a backup application loads another user hive (another user's
HKEY_CURRENT_USER) from a file on disk using the BaseRegLoadKey method. After reading key
and value data, it will unload the hive using the BaseRegUnLoadKey method.

 error_status_t BaseRegLoadKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] PRRP_UNICODE_STRING lpFile
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenUsers and OpenLocalMachine.

Note The other open methods in this protocol cannot be used to obtain the hKey parameter because

the server checks that the key specified by lpSubKey is a descendent of the
HKEY_LOCAL_MACHINE or HKEY_USERS root keys.

lpSubKey: A pointer to a RRP_UNICODE_STRING structure that specifies the name of the key (as
specified in section 3.1.1) that MUST be created under hKey.

lpFile: A pointer to a null-terminated RRP_UNICODE_STRING structure that contains the name of a
file that has registry information. The format of the file name is implementation specific. It is
assumed that this file was created with the BaseRegSaveKey method. If it does not exist, the

server creates a file with the specified name.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a

nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x000003F9

ERROR_NOT_REGISTRY_FILE

The system attempted to load or restore a file into the registry, but the
specified file is not in a registry file format.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

In response to this request from the client, for a successful operation, the server MUST create a
hierarchical structure of a key, subkeys, and values that are based on the layout and information in
the file that is specified by the lpFile parameter. See section 3.1.1. This tree MUST be rooted at the
key that is specified by the lpSubKey parameter.

If the subkey that is specified by the lpSubKey parameter does not exist under the key that is
specified by the hKey parameter, the server creates a subkey under hKey by using the name that is
specified in the lpSubKey parameter and loads the registry information from the file that is specified

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

49 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

by lpFile into this subkey. If the file that is pointed to by lpFile does not exist, the server creates the
file with the specified name. If the file cannot be created, the server fails the operation by using an

appropriate error code, as specified in section 2.2.7.

If the subkey that is specified by the lpSubKey parameter already exists under the key that is

specified by the hKey parameter, the server MUST fail the method and return
ERROR_ACCESS_DENIED.

The top-level key from the file that is specified by the lpFile parameter is a newly created key, and it is
added as a subkey to the key specified by the hKey parameter. If the lpSubKey parameter is NULL,
then the name of the top-level key from the file specified by the lpFile parameter is the name of the
newly created key. If the lpSubKey parameter is not NULL, then the name of the newly created key is
set to be the name specified by the lpSubKey parameter.

If the value of the lpFile parameter is NULL, the server MUST fail the method and return
ERROR_INVALID_PARAMETER.

The file that is pointed to by the lpFile parameter MUST be a valid registry file. If not, the server MUST

return ERROR_NOT_REGISTRY_FILE (1017) to indicate the format of the file was invalid. If the file
pointed to by lpFile cannot be found, the server creates a file with the specified name.

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

3.1.5.15 BaseRegOpenKey (Opnum 15)

The BaseRegOpenKey method is called by the client. In response, the server opens a specified key for
access and returns a handle to it.

 error_status_t BaseRegOpenKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] DWORD dwOptions,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phkResult
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegOpenKey, OpenCurrentConfig, OpenPerformanceText,
OpenPerformanceNlsText.

lpSubKey: A pointer to a RRP_UNICODE_STRING structure that MUST contain the name of a key to
open. This parameter is always relative to the key that is specified by the hKey parameter and is a

pointer to a null-terminated string that contains the name of the subkey to open, as specified in

section 3.1.1. This key MUST be an existing subkey of the key that is identified by the hKey
parameter.

dwOptions: Registry key options. MUST be one of the values specified in Key Types (section 3.1.1.2).

samDesired: A bit field that describes the requested security access for the handle to the key that is
being opened. It MUST be constructed from one or more of the values that are specified in section

2.2.4.

50 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

phkResult: A pointer to the handle of the open key. The server MUST return a NULL for phkResult in
case of failure.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in the server operation details that follow. Server conditions MAY

also result in a nonzero error code as specified in Win32Error Codes in [MS-ERREF].

Server Operations

In response to this request from the client, for a successful operation, the server MUST open the
registry key that is specified by the lpSubKey parameter. In the event of success, the server MUST
create a handle to the new key for this request and return the handle value in the phkResult
parameter.<12>

If hKey is not an open handle to a key on the server, the server MUST fail the method and return

ERROR_INVALID_HANDLE.

The server then determines which key namespace to operate on (KEYS32 or KEYS64) by inspecting
the value of the samDesired parameter. If the server does not support the 64-bit key namespace (see

section 3.1.1.4), the server MUST operate on the 32-bit key namespace (KEYS32).

If the server is a 64-bit registry server and supports both the 32-bit and 64-bit key namespaces, as
defined in section 3.1.1.4, the server MUST first check if both the KEY_WOW64_64KEY and

KEY_WOW64_32KEY bits are set in the samDesired parameter. If both KEY_WOW64_64KEY and
KEY_WOW64_32KEY are set, the server SHOULD<13> fail the method and return
ERROR_INVALID_PARAMETER.

The server then checks to see if the key specified by the hKEY parameter is a key that can only be
operated on in the 64-bit key namespace (KEYS64). See section 3.1.1.4.

If the key specified by the hKey parameter is a key that can only be operated on in the 64-bit key
namespace (KEYS64), the server MUST ignore the KEY_WOW64_64KEY and KEY_WOW64_32KEY bits

in the samDesired parameter and operate on and create or open the key in the 64-bit namespace
(KEYS64).

If the key specified by lpSubKey has a KEYTYPE of symbolic link and the client has not set
REG_OPTION_OPEN_LINK in the dwOptions parameter, the server MUST return a handle to the key
that is the target of the symbolic link (see section 3.1.1.11). The server first checks for a value of the
key indicated by lpSubKey named "SymbolicLinkValue". If a value named SymbolicLinkValue is not
found, the server MUST fail the method and return ERROR_INVALID_PARAMETER. If the target of the

symbolic link does not exist, the server MUST fail the method and return
ERROR_INVALID_PARAMETER.

If the key specified by lpSubKey has a KEYTYPE of symbolic link and the client has set
REG_OPTION_OPEN_LINK in the dwOptions parameter, the server returns a handle to the key that is
the source of the symbolic link.

If the key specified by lpSubKey has a KEYTYPE of not volatile, and the client has not set the

dwOptions parameter to 0x0000000o to indicate not volatile, the server MUST ignore this condition.

If the key specified by lpSubKey has a KEYTYPE of volatile, and the client has not set the dwOptions

parameter to 0x00000001 to indicate volatile, the server MUST ignore this condition.

If the lpSubKey parameter is a pointer to an empty WCHAR array, the method returns a new handle
to the same key indicated by the hKey parameter.

If lpSubKey is set to NULL by the client, the server MUST fail this method and return
ERROR_INVALID_PARAMETER.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

51 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Next, the server checks if the KEY_WOW64_32KEY is set in the samDesired parameter. If the
KEY_WOW64_32KEY is set in the samDesired parameter, the server MUST create the key in the 32-bit

key namespace (KEYS32). If the KEY_WOW64_32KEY is not set in the samDesired parameter, the
server MUST create the key in the 64-bit key namespace (KEYS64).

Next, the server MUST determine if the key path indicated by hKey and lpSubKey refer to a path that
is within the subset of registry paths that can support both 64-bit and 32-bit key namespaces (section
3.1.1.4). If the key path indicated by hKey and lpSubKey are within the subset of registry paths that
can support both 64-bit and 32-bit key namespaces, the server MUST open the registry key within the
appropriate path in the 64-bit key namespace. For example, if hKey refers to
HKEY_LOCAL_MACHINE\Software and the value of the lpSubKey parameter is "TEST_KEY" and the
server MUST operate on the 32-bit key namespace, then the server MUST open the

HKEY_LOCAL_MACHINE\Software\Wow6432Node\TEST_KEY key.

The server MUST first validate that the key specified by lpSubKey is a child key of the key specified by
hKey. If the key specified by lpSubKey is not a subkey of the key specified by hKey, the server MUST
set phkResult to NULL and return ERROR_FILE_NOT_FOUND.

The server MUST validate that the client has access to open the key using the security descriptor of
the immediate parent key of the key indicated by lpSubKey. The server MUST NOT use the

samDesired parameter set by the client to determine access permission. If the value of samDesired
includes flags set that are not listed in section 2.2.4, the server MUST return
ERROR_INVALID_PARAMETER.

If the caller is permitted to open the key, the server MUST return 0 to indicate success, create a new
valid context handle, insert it into the handle table (HANDLETABLE), and place the handle value (see
3.1.1.9) in the phKeyResult parameter. If the caller does not have access, the server MUST return
ERROR_ACCESS_DENIED (5).

The server MUST return 0 to indicate success or an appropriate error code (as specified in Win32Error
Codes in [MS-ERREF] or error codes specified in section 2.2.7) to indicate an error.

3.1.5.16 BaseRegQueryInfoKey (Opnum 16)

The BaseRegQueryInfoKey method is called by the client. In response, the server returns relevant
information on the key that corresponds to the specified key handle.

 error_status_t BaseRegQueryInfoKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpClassIn,
 [out] PRPC_UNICODE_STRING lpClassOut,
 [out] LPDWORD lpcSubKeys,
 [out] LPDWORD lpcbMaxSubKeyLen,
 [out] LPDWORD lpcbMaxClassLen,
 [out] LPDWORD lpcValues,
 [out] LPDWORD lpcbMaxValueNameLen,
 [out] LPDWORD lpcbMaxValueLen,
 [out] LPDWORD lpcbSecurityDescriptor,
 [out] PFILETIME lpftLastWriteTime
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpClassIn: A pointer to a RRP_UNICODE_STRING structure that contains the class of the key to be
retrieved, as specified in section 3.1.1.6. This string is optional; it is saved but is not used by the
registry.

52 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

lpClassOut: A pointer to a RPC_UNICODE_STRING structure that receives the class of this key, as
specified in section 3.1.1.6.

lpcSubKeys: A pointer to a DWORD that MUST receive the count of the subkeys of the specified key.

lpcbMaxSubKeyLen: A pointer to a DWORD that receives the size of the key's subkey with the

longest name, or a greater size, as the number of TCHAR elements.

TCHAR elements are defined as follows.

 #ifdef UNICODE
 #typedef WCHAR TCHAR;
 #endif

lpcbMaxClassLen: A pointer to a DWORD that receives the size of the longest string that specifies a
subkey class, in Unicode characters.

lpcValues: A pointer to a DWORD that receives the number of values that are associated with the
key.

lpcbMaxValueNameLen: A pointer to a DWORD that receives the size of the key's longest value
name, or a greater size, as the number of TCHAR elements.

lpcbMaxValueLen: A pointer to a DWORD that receives the size in bytes of the longest data
component in the key's values.

lpcbSecurityDescriptor: A pointer to a DWORD that receives the size in bytes of the key's
SECURITY_DESCRIPTOR.

lpftLastWriteTime: A pointer to a FILETIME structure that receives the last write time.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error

codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_QUERY_VALUE access rights.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

0x000000EA

ERROR_MORE_DATA

The size of the buffer is not large enough to hold the requested data.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return

ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server returns information
for the specified registry key.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

53 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST return the class that is associated with the key in the lpClassOut parameter. The
key's class can be NULL.

The server MUST return a pointer to the variable that contains the number of subkeys for the specified
key in the lpcSubkeys parameter. If there are no subkeys under the key indicated by hKey, the server

MUST set this value to 0.

The server MUST return a pointer to the variable that contains the number of values associated with
the key in the lpcValues parameter. If there are no values under the key indicated by hKey, the server
MUST set this value to 0.

The server MUST return a pointer to the variable that contains the size (as the number of TCHAR
elements) of the key's longest value name in the lpcbMaxValueNameLen parameter. This size MUST
NOT include the terminating null character. If there are no values under the key indicated by hKey,

the server MUST set this value to 0.

The server MUST return a pointer to the variable that contains the size in bytes of the longest data
component in the key's values in the lpcbMaxValueLen parameter. If there are no subkeys under the

key indicated by hKey, the server MUST set this value to 0.

The server MUST return a pointer to the variable that contains the size in bytes of the key's
SECURITY_DESCRIPTOR in the lpcbSecurityDescriptor parameter.

The server MUST return a pointer to the FILETIME structure that specifies the last modification time of
the key in the lpftLastWriteTime parameter.

The caller MUST have KEY_QUERY_VALUE access rights to invoke this method. For more information,
see section 2.2.4.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the lpClassOut parameter does not contain enough space for the class name, the server MUST

return ERROR_MORE_DATA.

If any one of the parameters lpcSubKeys, lpcbMaxSubKeyLen, lpcValues, lpcbMaxValueNameLen,
lpcbMaxValueLen, or lpftLastWriteTime is NULL the server MUST return ERROR_INVALID_PARAMETER.

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

3.1.5.17 BaseRegQueryValue (Opnum 17)

The BaseRegQueryValue method is called by the client. In response, the server returns the data that
is associated with the named value of a specified registry open key. If a value name is not specified,
the server returns the data that is associated with the default value of the specified registry open
key.

 error_status_t BaseRegQueryValue(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpValueName,
 [in, out, unique] LPDWORD lpType,
 [in, out, unique, size_is(lpcbData ? *lpcbData :0), length_is(lpcbLen ? *lpcbLen :
0), range(0, 0x4000000)]

 LPBYTE lpData,
 [in, out, unique] LPDWORD lpcbData,
 [in, out, unique] LPDWORD lpcbLen
);

hKey: On input, a handle to a key that MUST have been opened previously by using one of the open
methods that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser,

54 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

OpenLocalMachine, OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey,
OpenCurrentConfig, OpenPerformanceText, OpenPerformanceNlsText.

lpValueName: On input, the client sets lpValueName to a pointer to a RRP_UNICODE_STRING
structure that MUST contain the name of the value, as specified in section 3.1.1. If the client sets

lpValueName to NULL, the server MUST fail this method and return ERROR_INVALID_PARAMETER.

lpType: On input, the client sets lpType to a pointer to a variable to receive the type code of a value
entry. On output, the server MUST set this parameter to NULL if the value specified by the
lpValueName parameter is not found. If the client sets lpType to NULL, the server MUST fail this
method and return ERROR_INVALID_PARAMETER.

lpData: On input, the client sets lpData to a pointer to a buffer to receive the data of the value entry.

lpcbData: A pointer to a variable that, on input, contains the size in bytes of the buffer that is pointed

to by the lpData parameter. On output, the variable receives the number of bytes that are
returned in lpData. This length variable MUST be set to 0 by the server if the client provides NULL
for the lpData parameter.

If the client sets lpcbData to NULL, the server MUST fail this method and return
ERROR_INVALID_PARAMETER.

lpcbLen: A pointer to a variable that contains the number of bytes to transmit to the client. On input,

the client MUST allocate the memory for this parameter and the pointer value of this parameter
MUST not be NULL. On output, the server MUST set this parameter to the size (in bytes) of the
buffer pointed to by the lpData parameter. If the client sets lpcbLen to NULL, the server MUST fail
this method and return ERROR_INVALID_PARAMETER.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_QUERY_VALUE access rights.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000002

ERROR_FILE_NOT_FOUND

The value specified by lpValueName was not found. If lpValueName was
not specified, the default value has not been defined.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

0x000000EA

ERROR_MORE_DATA

The data to be returned is larger than the buffer provided.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST return the
data that is associated with the value that is specified by the lpValueName parameter for the key that
is specified by the hKey parameter.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

55 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If, on input, the lpValueName parameter in the client request is an empty string, the server MUST
return the data that is associated with the default value, as specified in section 3.1.1.5.

The server MUST return, on output, a pointer to a variable to specify the value type in the lpType
parameter. The value of lpType MUST be one of the values that is specified by REG_VALUE_TYPES

(as specified in section 3.1.1.5), or it MUST be NULL.

If the client sets the lpValueName parameter to NULL, the server MUST fail the method and return
ERROR_INVALID_PARAMETER.

If the client sets the lpData parameter to NULL on input, the server assumes the client request is to
determine the actual size of the data contained in the value indicated by lpValueName, such that an
adequate-sized buffer can be provided by the client in a subsequent call to BaseRegQueryValue. If the
client sets the lpData parameter to NULL on input, the server MUST return ERROR_SUCCESS and

return the actual size of the data of the value indicated by lpValueName in the lpcbData parameter.

The server MUST return, on output, the data that is associated with the specified value in the buffer
that is pointed to by the lpData parameter. If the size, in bytes, of the data that is associated with the

specified value is too large to fit in the buffer pointed to by the lpData parameter with size specified by
the lpcbData parameter, the server MUST return ERROR_MORE_DATA. The server MUST, on output,
update the value of the variable pointed to by the lpcbData parameter to the actual size of the data

associated with the specified value. This enables the client to determine the correct size of the lpData
parameter in a subsequent call to BaseRegQueryValue.

The server, on output, MUST return (in the value that is pointed to by the lpcbData parameter) the
size in bytes of the data that is returned in the lpData parameter. If the lpData parameter is NULL, the
server SHOULD set the value of the lpcbData parameter to NULL.<14>

If the server operation is not successful, the server MUST set the value of the variable pointed to by
lpcbLen to 0.

The caller MUST have KEY_QUERY_VALUE access rights to invoke this method. For more information,
see section 2.2.4.

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

3.1.5.18 BaseRegReplaceKey (Opnum 18)

The BaseRegReplaceKey method is called by the client. In response, the server MUST read the
registry information from the specified file and replace the specified key with the content of the file.
When the system is started again, the key and subkeys have the same values as those in the specified
file.

 error_status_t BaseRegReplaceKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] PRRP_UNICODE_STRING lpNewFile,
 [in] PRRP_UNICODE_STRING lpOldFile
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods

that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpSubKey: A pointer to a RRP_UNICODE_STRING structure that MUST either contain the name of the
key whose subkeys and values are replaced by this method (as specified in section 3.1.1), or be
NULL.

56 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

lpNewFile: A pointer to a RRP_UNICODE_STRING structure that MUST contain a registry file name
with the registration information, as specified in section 3.1.1. The format of the file name is

implementation-specific, but is in the same format as lpOldFile.<15>

lpOldFile: A pointer to a RRP_UNICODE_STRING structure that MUST contain the registry file name

that receives a backup copy of the replaced registry information. The format of the file name is
implementation-specific, but is in the same format as lpNewFile.<16>

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

0x00000011

ERROR_NOT_SAME_DEVICE

The file indicated by lpOldFile is not on the same physical volume as the
file indicated by lpNewFile.

Server Operations

The server MUST delete the subkeys and values specified by lpSubKey even if the subkeys to be
deleted are already in use and initialized in the Data Store before the deletion happens. The delete
function will be successful even if other handles are open to the key. The data inside the hive is

revoked at delete key time and is not deferred until the last handle close operation.

The file specified by the BaseRegReplaceKey method is used as a registry hive, and its contents are
loaded into the registry, replacing the existing key and subkeys. The top-level key of the file replaces
the key specified in the method.

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return

ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST replace the file
that backs up the specified registry key and all its subkeys with another file.

The key that is specified by lpSubKey in the request MUST be a subkey of the key that is identified by
the hKey parameter. If the specified key is not the root of the tree, the server MUST traverse up the
tree structure until it encounters the root. After the root is found, the server MUST replace the
resulting contents of that traversal (starting at the root) by using the contents of the backing store

that is specified by lpNewFile, which results in the root key specified in lpNewFile becoming the new
root of the hive. (For instance in a hive with Red->White->Blue, if White is the lpSubKey parameter,
and the backing store contains Alpha->Beta->Gamma, the server MUST first traverse up to the root of
the hive Red and then replace that with Alpha->Beta->Gamma).

The lpSubKey parameter MAY be NULL. If lpSubKey is NULL, the server MUST replace the file that is
backing up the hKey parameter.<17>

If the file indicated by lpNewFile does not exist, the server MUST fail the method and return

ERROR_FILE_NOT_FOUND.

If the file that receives the backup copy of the replaced registry information indicated by lpOldFile
already exists, the server MUST fail the method and return ERROR_ALREADY_EXISTS.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

57 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST store a backup copy of the replaced registry information in the file that is pointed to
by the lpOldFile parameter.

The server SHOULD check for a location relationship between the files to protect against malicious or
accidental change while in use, and to ensure ready access.<18>

The server MUST return 0 to indicate success, or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If any of the parameters lpNewFile, lpOldFile, or lpSubKey are NULL or reference a buffer that is NULL,
the server MUST return ERROR_INVALID_PARAMETER.

3.1.5.19 BaseRegRestoreKey (Opnum 19)

The BaseRegRestoreKey method is called by the client. In response, the server reads the registry
information in a specified file and copies it over the specified key. The registry information can take
the form of a key and multiple levels of subkeys.

 error_status_t BaseRegRestoreKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpFile,
 [in] DWORD Flags
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpFile: A pointer to a RRP_UNICODE_STRING structure that contains an existing registry file name.

The format of the file name is implementation-specific.<19>

Flags: An optional flag argument. This parameter MAY be NULL.

Value Meaning

REG_WHOLE_HIVE_VOLATILE

0x00000001

If set, registry keys created in the Data Store from the file indicated by
lpFile MUST be VOLATILE.

REG_REFRESH_HIVE

0x00000002

If set, the location of the subtree that the hKey parameter points to is
restored to its state immediately following the last flush. The subtree
MUST NOT be lazy flushed (by calling RegRestoreKey with
REG_NO_LAZY_FLUSH specified as the value of this parameter); the
caller MUST be a member of the Administrators Group; and the handle
the hKey parameter refers to MUST point to the root of the subtree.

REG_NO_LAZY_FLUSH

0x00000004

If set, the key or subtree that is specified by the hKey parameter does not
automatically flush at regular intervals of time. The server MUST set the
property KEYNOPERIODICFLUSH equal to TRUE for the key specified by
the hKey parameter and all subkeys (see section 3.1.1.3).

REG_FORCE_RESTORE

0x00000008

If set, the restore operation is executed even if open handles exist at (or
beneath) the location in the registry hierarchy to which the hKey
parameter points.<20>

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

58 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

The file specified by the BaseRegRestoreKey method is used as a registry hive, and its contents are

loaded into the registry, replacing the existing key and subkeys. The top-level key of the file replaces
the key specified in the method.

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST read the
registry information from the specified file and copy it over the specified key.

If the HANDLETABLE contains an hKey for the key specified by the hKey parameter or any of its
subkeys, the server MUST fail the method and return ERROR_ACCESS_DENIED.

If the Flags parameter in the request contains the value 0x00000001, the server MUST create a
volatile view (changes are not saved to the backing store) of the registry tree.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the parameter lpFile is NULL or references a buffer that is NULL, then the server MUST return
ERROR_INVALID_PARAMETER.

If the parameter lpFile does not contain a valid file name, then the server MUST return
ERROR_INVALID_PARAMETER. The format of the file name is implementation-specific.<21>

If the parameter lpFile references a registry file that does not exist, the server MUST return
ERROR_FILE_NOT_FOUND.

3.1.5.20 BaseRegSaveKey (Opnum 20)

The BaseRegSaveKey method is called by the client. In response, the server saves the specified key,
subkeys, and values to a new file.

 error_status_t BaseRegSaveKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpFile,
 [in, unique] PRPC_SECURITY_ATTRIBUTES pSecurityAttributes
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpFile: A pointer to a RRP_UNICODE_STRING structure that MUST contain the name of the registry
file in which the specified key and subkeys are to be saved. The format of the file name is
implementation-specific.<22>

59 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pSecurityAttributes: A pointer to an RPC_SECURITY_ATTRIBUTES structure.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a

nonzero error code, as specified in either Win32Error Codes or NTSTATUS Values in [MS-ERREF].
The most common error codes are listed in the following table.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST save the key,

subkeys, and values of the keys that are specified in the hKey parameter to the file that is specified in
the lpFile parameter of the request.

If the key indicated by hKey refers to, or is a subkey of, one of the following predefined keys, the
server MUST fail the method and return ERROR_INVALID_ HANDLE:

 HKEY_PERFORMANCE_DATA

 HKEY_PERFORMANCE_TEXT

 HKEY_PERFORMANCE_NLSTEXT

If the key indicated by hKey refers to one of the following predefined keys, the server MUST fail the

method and return ERROR_ACCESS_DENIED:

 HKEY_USERS

 HKEY_LOCAL_MACHINE

If the file indicated by lpFile already exists, the server MUST fail the method and return
ERROR_ALREADY_EXISTS.

The server MUST set the SECURITY_DESCRIPTOR on this file based on the
RPC_SECURITY_ATTRIBUTES that are specified in the pSecurityAttributes parameter. If this parameter
is NULL, the server MUST use the default SECURITY_DESCRIPTOR.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the parameter lpFile is NULL or references a buffer that is NULL, the server MUST return
ERROR_INVALID_PARAMETER.

If the parameter pSecurityAttributes is not a security descriptor as specified in [MS-DTYP] section
2.4.6, the function MUST return ERROR_INVALID_PARAMETER.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

60 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.21 BaseRegSetKeySecurity (Opnum 21)

The BaseRegSetKeySecurity method is called by the client. In response, the server sets the security
descriptor that protects the specified open registry key.

 error_status_t BaseRegSetKeySecurity(
 [in] RPC_HKEY hKey,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in] PRPC_SECURITY_DESCRIPTOR pRpcSecurityDescriptor
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,

OpenPerformanceText, OpenPerformanceNlsText.

SecurityInformation: The SECURITY_INFORMATION that specifies the content of the
pRpcSecurityDescriptor parameter.

pRpcSecurityDescriptor: A pointer to the RPC_SECURITY_DESCRIPTOR to set for the supplied key.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error

codes are listed in the following table.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

The server MUST first validate that the hKey parameter is currently an open handle which MUST have
been opened previously using one of the methods specified in section 3.1.5. If the hKey parameter is
not an already opened handle, the server MUST return ERROR_INVALID_PARAMETER.

If the pRpcSecurityDescriptor parameter does not specify a valid security descriptor, the server MUST
return ERROR_INVALID_PARAMETER.

In response to this request from the client, for a successful operation, the server MUST set the
SECURITY_DESCRIPTOR that is specified in the pRpcSecurityDescriptor parameter on the key that is

specified in the hKey parameter of the request.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

3.1.5.22 BaseRegSetValue (Opnum 22)

The BaseRegSetValue method is called by the client. In response, the server sets the data for the
specified value of a registry key.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

61 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 error_status_t BaseRegSetValue(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpValueName,
 [in] DWORD dwType,
 [in, size_is(cbData)] LPBYTE lpData,
 [in] DWORD cbData
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpValueName: MUST be a pointer to a RRP_UNICODE_STRING structure that contains the name of
the value (as specified in section 3.1.1) to set.

dwType: The type of data to be stored. MUST be one of the values that are specified by
REG_VALUE_TYPE, as specified in section 3.1.1.

lpData: A pointer to a buffer that contains the data to set for the value entry.

cbData: The length in bytes of the information to be stored.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_SET_VALUE access rights, or the value being
set to a symbolic key is not the literal string "SymbolicLinkValue".

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST set the data
that is associated with the specified value and registry key.

If the lpValueName parameter in the client request is NULL or an empty string, the server MUST set
the data that is associated with the default value of the specified key, as specified in section 3.1.1.5.

If lpValueName is not NULL, the server MUST remove any terminating null characters from the value

name before storing the value name on the server.

If the key specified by hKEY has a KEYTYPE of symbolic link and lpValueName is specified to any string
other than "SymbolicLinkValue", the server MUST fail the method and return
ERROR_ACCESS_DENIED.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

62 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set the type of the information that is stored based on the value that is specified in
the dwType parameter. The value of dwType MUST be one of the values that are specified in

REG_VALUE_TYPE, or NULL.

The server MUST set the data for the value by using the data in the buffer that is pointed to by the

lpData parameter. This MAY be NULL.

The server MUST specify the length, in bytes, to copy from the buffer in the cbData parameter. This
MAY be set to 0 if no data needs to be copied from the lpData parameter.

The server MUST determine if the key path indicated by hKey refers to a path that is within the list of
paths for which updates to either the 32-bit or 64-bit namespaces are copied into the 64-bit or 32-bit
namespace, respectively, as specified in section 3.1.1.4. If the key indicated by hKey is within one of
the paths, the server MUST set the UPDATECOPY column of the HANDLETABLE for the row indicated

by hKEY to TRUE. This indicates that the value is copied between the 32-bit and 64-bit key
namespaces when the handle is closed.

The server MUST set the KEYISMODIFIED property of the key indicated by hKEY to TRUE.

The caller MUST have KEY_SET_VALUE access rights to invoke this method. Otherwise, the server
MUST fail the method and return ERROR_ACCESS_DENIED. For more information, see section 2.2.4.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-

ERREF]) to indicate an error.

If the parameter lpValueName is NULL, the server MUST return ERROR_INVALID_PARAMETER.

If the parameter lpValueName is greater than zero and the buffer is NULL, the server MUST return
ERROR_INVALID_PARAMETER.

3.1.5.23 BaseRegUnLoadKey (Opnum 23)

The BaseRegUnLoadKey method is called by the client. In response, the server removes the specified
discrete body of keys, subkeys, and values that is rooted at the top of the registry hierarchy.

The BaseRegUnLoadKey method is designed for use in backup and recovery scenarios where the client
first loads a registry hive from a file on disk using the BaseRegLoadKey method. Then, after reading
or writing key data from the loaded hive, the client uses the BaseRegUnLoadKey method to unload the

hive. For example, a backup application can load another user hive (another user's
HKEY_CURRENT_USER) from a file on disk using the BaseRegLoadKey method. Then, after reading
key and value data, it will unload the hive using the BaseRegUnLoadKey method.

 error_status_t BaseRegUnLoadKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenCurrentUser and OpenLocalMachine.

lpSubKey: A pointer to a RRP_UNICODE_STRING structure that MUST contain the relative name, as
specified in section 3.1.1.1.2. The lpSubKey parameter points to the name of the key that is to be

unloaded. This parameter MAY be NULL.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

63 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

0x00000002

ERROR_FILE_NOT_FOUND

The key specified by the handle hKey and the lpSubKey parameter does
not exist in the key namespace.

0x00000005

ERROR_ACCESS_DENIED

The key specified by the handle hKey and the lpSubKey parameter is not
a descendent key of the HKEY_LOCAL_MACHINE or HKEY_USERS
root keys.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return

ERROR_WRITE_PROTECT.

In response to this request from the client, the server MUST logically delete the subtree that is
specified by the lpSubKey parameter in the request. If this parameter is NULL, the server MUST
logically delete the subtree that is specified by the hKey parameter. Logically deleting a subtree
removes it from memory but MUST NOT modify the file that backs up the subtree. A subtree consists
of the specified key and all its child keys that are hierarchically below it.

The server MUST validate that the key specified by the handle hKey and the lpSubKey parameter can

be unloaded. Specifically, to be unloaded, the key specified by the handle hKey and the lpSubKey
parameter MUST be a descendent key of the HKEY_LOCAL_MACHINE or HKEY_USERS root keys
and MUST exist in the key namespace. If the key does not exist in the key namespace, the server
MUST return ERROR_FILE_NOT_FOUND.

If the key cannot be unloaded because the key is not a descendent key of the
HKEY_LOCAL_MACHINE or HKEY_USERS root keys, the server MUST return
ERROR_ACCESS_DENIED.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the lpSubKey parameter is greater than zero and the buffer is NULL, the server MUST return
ERROR_INVALID_PARAMETER.

3.1.5.24 BaseRegGetVersion (Opnum 26)

The BaseRegGetVersion method is called by the client. In response, the server returns the version of
the remote registry server. The BaseRegGetVersion method is used by the client and the server to
determine if the remote registry server supports both 32-bit and 64-bit key namespaces.

 error_status_t BaseRegGetVersion(
 [in] RPC_HKEY hKey,
 [out] LPDWORD lpdwVersion
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods

that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,

64 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpdwVersion: A buffer in which the registry version MUST be returned. The registry version is
implementation-specific.<23>

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns
the following nonzero error code.

Return value/code Description

0x000003E6

ERROR_NOACCESS

Invalid access to memory location.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown has
been initiated.

Server Operations

If the parameter lpdwVersion is NULL, the server MUST return ERROR_NOACCESS.

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST return the
implementation-specific version of the format that is used to store the registry data in the backup
copy, by using the buffer that is pointed to by the lpdwVersion parameter.

If the server returns 6, the server MUST support both 64-bit and 32-bit key namespaces as described

in section 3.1.1.4.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-

ERREF]) to indicate an error.

3.1.5.25 OpenCurrentConfig (Opnum 27)

The OpenCurrentConfig method is called by the client. In response, the server attempts to open a
handle to the HKEY_CURRENT_CONFIG predefined key.

 error_status_t OpenCurrentConfig(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

ServerName: This SHOULD be sent as NULL and MUST be ignored on receipt because the binding to
the server is already complete at this stage.

samDesired: A bit field that describes the wanted security access for the key. It MUST be constructed
from one or more of the values that are specified in section 2.2.4.

phKey: A handle to the root key, HKEY_CURRENT_CONFIG, as specified in section 3.1.1.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in [MS-ERREF] section 2.2. The most common error codes are

listed in the following table.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

65 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was dismounted.
The server can no longer service registry requests because server shutdown
has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated, the server MUST return ERROR_WRITE_PROTECT.

The server attempts to open the root key, HKEY_CURRENT_CONFIG, and create a new valid context
handle. The server MUST store the context handle value in the handle table (HANDLETABLE) along
with a mapping to the HKEY_CURRENT_CONFIG key. The server MUST return the handle to that
key in the phKey parameter. The server MUST evaluate the security descriptor that is associated with

the key against the requested access that is expressed in the samDesired parameter to determine
whether the caller has the authority to open this key.

If the caller is permitted to open the key, the server MUST return 0 to indicate success and place a
valid context handle in the phKey parameter. If the caller does not have access, the server MUST
return ERROR_ACCESS_DENIED (5). The server MAY return other values depending on other failure
cases; other values are implementation-specific.

The server validates the value of the samDesired parameter set by the client. If the value of
samDesired includes flags set which are not listed in section 2.2.4, the server MUST return

ERROR_INVALID_PARAMETER.

3.1.5.26 BaseRegQueryMultipleValues (Opnum 29)

The BaseRegQueryMultipleValues method is called by the client. In response, the server returns the

type and data for a client-specified list of value names that are associated with the specified registry

key.

 error_status_t BaseRegQueryMultipleValues(
 [in] RPC_HKEY hKey,
 [in, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listIn,
 [out, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listOut,
 [in] DWORD num_vals,
 [in, out, unique, size_is(*ldwTotsize), length_is(*ldwTotsize)]
 char* lpvalueBuf,
 [in, out, ref] LPDWORD ldwTotsize
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods

that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

val_listIn: A pointer to an array of RVALENT structures, one for each value to be queried. The array
holds the list of value names for which the type and data MUST be returned.

val_listOut: A pointer to an array of RVALENT structures, one for each value to be queried.

num_vals: The size in bytes of the val_list array.

66 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

lpvalueBuf: Returns the data for each value that is specified by the val_listOut parameter.

ldwTotsize: The value that indicates the length in bytes of the lpValueBuf parameter.

If lpValueBuf is not large enough to contain all the data, it returns the size of the lpValueBuf
parameter that is required to return all the requested data.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_QUERY_VALUE access rights.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000078

ERROR_CALL_NOT_IMPLEMENTED

This function is not supported on this system.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests
because server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return

ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST return the
data that is associated with the values that are specified in the RVALENT parameter val_listIn of the

client request for the key that is specified by the hKey parameter.

The server MUST return the data that is associated with the specified values in the buffer pointed to
by the lpValueBuf parameter of the response. For each of the requested values, in the response, the
server MUST include the size, type, and pointer to the lpValueBuf offset of the data that is associated

with that value in the ve_valuelen, ve_type, and ve_valueptr parameters of the RVALENT structure,
respectively.

The server MUST return the size in bytes of the data that is returned in the lpValueBuf parameter in
the ldwTotsize parameter.

The caller MUST have KEY_QUERY_VALUE access rights to invoke this method. For more information,
see section 2.2.4.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-

ERREF]).

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

If any one of the parameters ldwTotsize and valListOut is NULL, the server MUST return
ERROR_INVALID_PARAMETER.

If the parameter num_vals has a value greater than zero and the parameter val_listIn is NULL, then
the server MUST return ERROR_INVALID_PARAMETER.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

67 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For each of the RVALENT structures returned by calling parameter valListIn: if the return value is
greater than zero and the buffer is NULL, the server MUST return ERROR_INVALID_PARAMETER.

3.1.5.27 BaseRegSaveKeyEx (Opnum 31)

The BaseRegSaveKeyEx method is called by the client. In response, the server saves the specified
key, subkeys, and values to a new file. The BaseRegSaveKeyEx method accepts flags that determine
the format for the saved key or and values.

 error_status_t BaseRegSaveKeyEx(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpFile,
 [in, unique] PRPC_SECURITY_ATTRIBUTES pSecurityAttributes,
 [in] DWORD Flags
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods

that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpFile: A pointer to a RRP_UNICODE_STRING structure that MUST contain the name of the file in
which the specified key and subkeys are saved. The format of the file name is implementation-
specific. The format of Windows file names is as specified in [WININTERNALS].

pSecurityAttributes: A pointer to an RPC_SECURITY_ATTRIBUTES structure that specifies a security
descriptor for the new file. If the pSecurityAttributes parameter is NULL, the file receives a default
security descriptor.

Flags: The flags that MUST specify the format for the saved key.

The Flags parameter can be one of the following values, all of which are implementation-
dependent.

Value Meaning

1 The key or subtree is saved in the original format.

2 The key or subtree is saved in the latest format.

4 The key or subtree is saved without compression.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

0x00000005

ERROR_ACCESS_DENIED

The server does not have access permissions to save the file at the
specified location.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

68 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

Cannot create a file when that file already exists.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been
initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST save the key,

subkeys, and values of the keys that are specified in the hKey parameter to the file that is specified in
the lpFile parameter of the request.

If the key indicated by hKey refers to, or is a subkey of one of the following predefined keys, the
server MUST fail the method and return ERROR_INVALID_PARAMETER:

 HKEY_PERFORMANCE_DATA

 HKEY_PERFORMANCE_TEXT

 HKEY_PERFORMNACE_NLTEXT

If the key indicated by hKey refers to one of the following predefined keys, the server MUST fail the
method and return ERROR_ACCESS_DENIED:

 HKEY_USERS

 HKEY_LOCAL_MACHINE

If the server does not have access permissions to save in the location indicated by the lpFile
parameter, the server MUST fail the method and return ERROR_ACCESS_DENIED.

 The server MUST set the SECURITY_DESCRIPTOR on this file based on the

RPC_SECURITY_ATTRIBUTES that are specified in the pSecurityAttributes parameter. If this parameter
is NULL, the server MUST use the default SECURITY_DESCRIPTOR.

The server MUST inspect the value of the Flags parameter to determine the format of the saved
registry file. If the value of the Flags parameter is set to 1, the keys and values MUST be saved in the
server's original file format. If the value of the Flags parameter is set to 2, the keys and values MUST
be saved in the server's latest format. If the value of the Flags parameter is set to 4, the keys and

values MUST be saved in an uncompressed format. Each of these file format types are
implementation-dependent.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-
ERREF]) to indicate an error.

If the parameter lpFile references a file that already exists and for which the specified key and
subkeys are to be saved, the server MUST return ERROR_ALREADY_EXISTS.

3.1.5.28 OpenPerformanceText (Opnum 32)

The OpenPerformanceText method is called by the client. In response, the server opens a handle to
the HKEY_PERFORMANCE_TEXT predefined key. The HKEY_PERFORMANCE_TEXT predefined key
is used to retrieve performance information from a registry server using only the

BaseRegQueryInfoKey, BaseRegQueryValue, BaseRegEnumValues and BaseRegCloseKey
methods.

69 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 error_status_t OpenPerformanceText(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

ServerName: SHOULD be sent as NULL and MUST be ignored on receipt because the binding to the
server is already complete at this stage.

samDesired: SHOULD be sent as 0 and MUST be ignored on receipt.

phKey: A pointer to a variable that receives a handle to the root key HKEY_PERFORMANCE_TEXT.

Return Values: This method MUST always return a 0 (ERROR_SUCCESS), even in case of errors.

Return value/code Description

0

ERROR_SUCCESS

Always returned.

Server Operations

The server attempts to open the root key, HKEY_PERFORMANCE_TEXT, and return a handle to that

key in the phKey parameter.

The server MUST create a new valid context handle. The server MUST store the context handle value
in the handle table (HANDLETABLE) along with a mapping to the HKEY_PERFORMANCE_TEXT key.
The server MUST always return 0, even in case of errors.

3.1.5.29 OpenPerformanceNlsText (Opnum 33)

The OpenPerformanceNlsText method is called by the client. In response, the server opens a handle to
the HKEY_PERFORMANCE_NLSTEXT predefined key. The HKEY_PERFORMANCE_NLSTEXT

predefined key is used to retrieve performance information from a registry server using only the
BaseRegQueryInfoKey, BaseRegQueryValue, BaseRegEnumValues and BaseRegCloseKey
methods.

 error_status_t OpenPerformanceNlsText(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

ServerName: This SHOULD be sent as NULL and MUST be ignored on receipt because the binding to
the server is already complete at this stage.

samDesired: This SHOULD be sent as 0 and MUST be ignored on receipt.

phKey: A pointer to a variable that receives a handle to the root key
HKEY_PERFORMANCE_NLSTEXT, as specified in section 3.1.1.9.

Return Values: This method MUST always return a 0 (ERROR_SUCCESS), even in case of errors.

Return value/code Description

0

ERROR_SUCCESS

Always returned.

70 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Server Operations

The server MUST always return 0, even in case of errors.

3.1.5.30 BaseRegQueryMultipleValues2 (Opnum 34)

The BaseRegQueryMultipleValues2 method is called by the client. In response, the server returns the
type and data for a client-specified list of value names that are associated with the specified registry
key.

 error_status_t BaseRegQueryMultipleValues2(
 [in] RPC_HKEY hKey,
 [in, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listIn,
 [out, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listOut,
 [in] DWORD num_vals,
 [in, out, unique, size_is(*ldwTotsize), length_is(*ldwTotsize)]
 char* lpvalueBuf,
 [in] LPDWORD ldwTotsize,
 [out] LPDWORD ldwRequiredSize
);

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,
OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText. The server SHOULD NOT process requests on

predefined keys.

val_listIn: A pointer to an array of RVALENT structures, one for each value to query. The array holds
the list of value names for which the type and data MUST be returned.

val_listOut: A pointer to an array of RVALENT structures, one for each value to be queried. This
parameter is a placeholder to return the type, size, and data offset for each requested value.

num_vals: The size as the number of RVALENT structures of the val_list array.

lpvalueBuf: The data for each value that is specified by the val_listOut parameter.

ldwTotsize: A value that indicates the size in bytes of lpValueBuf.

ldwRequiredSize: If lpValueBuf is not large enough to contain all the data, this parameter MUST
return the size in bytes that is needed for lpValueBuf to contain all the required data.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a
nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The caller does not have KEY_QUERY_VALUE access rights.

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000078

ERROR_CALL_NOT_IMPLEMENTED

This function is not supported on this system.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

71 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x000000EA

ERROR_MORE_DATA

More data is available.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests
because server shutdown has been initiated.

Server Operations

If the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

In response to this request from the client, for a successful operation, the server MUST return the
data that is associated with the values that are specified in the RVALENT parameter val_listIn of the
client request for the key that is specified by hKey.

The server MUST return the data that is associated with the specified values in the buffer pointed to
by the lpValueBuf parameter of the response. For each of the requested values supplied in the

val_listIn parameter, the server MUST include, in a corresponding structure in the val_listOut
parameter, the size, type, and pointer to the lpValueBuf offset of the data that is associated with that
value in the ve_valuelen, ve_type, and ve_valueptr parameters of the RVALENT structure,
respectively.

If the size of the buffer that is pointed to by lpValueBuf is not large enough, the server MUST return
ERROR_MORE_DATA, and then return the buffer size that is required in the ldwRequiredSize

parameter of the response.

The caller MUST have KEY_QUERY_VALUE access rights to invoke this method. For more information,
see section 2.2.4.

The server MUST return 0 to indicate success or an appropriate error code (as specified in [MS-

ERREF]) to indicate an error.

If the caller does not have access, the server MUST return ERROR_ACCESS_DENIED.

If any one of the parameters ldwTotsize, ldwRequiredSize, and valListOut is NULL, the server MUST

return ERROR_INVALID_PARAMETER.

If the parameter num_vals has a value greater than zero, and if parameter val_listIn is NULL, the
server MUST return ERROR_INVALID_PARAMETER.

For each of the RVALENT structures returned by calling the valListIn parameter: if the return value is
greater than zero and the buffer is NULL, the server MUST return ERROR_INVALID_PARAMETER.

3.1.5.31 BaseRegDeleteKeyEx (Opnum 35)

The BaseRegDeleteKeyEx method is called by the client. In response, the server deletes the specified

registry key.

 error_status_t BaseRegDeleteKeyEx(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] REGSAM AccessMask,
 [in] DWORD Reserved
);

72 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

hKey: A handle to a key that MUST have been opened previously by using one of the open methods
that are specified in section 3.1.5: OpenClassesRoot, OpenCurrentUser, OpenLocalMachine,

OpenPerformanceData, OpenUsers, BaseRegCreateKey, BaseRegOpenKey, OpenCurrentConfig,
OpenPerformanceText, OpenPerformanceNlsText.

lpSubKey: A pointer to a RRP_UNICODE_STRING structure that MUST specify the name of the key
(as specified in section 3.1.1) to delete.

AccessMask: A bit field that describes the wanted security access for the key.

Value Meaning

KEY_WOW64_64KEY

0x00000100

Explicitly delete the key in the 64-bit key namespace.

KEY_WOW64_32KEY

0x00000200

Explicitly delete the key in the 32-bit key namespace.

Reserved: SHOULD be sent as 0 and MUST be ignored on receipt.

Return Values: The method returns 0 (ERROR_SUCCESS) to indicate success; otherwise, it returns a

nonzero error code, as specified in Win32Error Codes in [MS-ERREF]. The most common error
codes are listed in the following table.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

A parameter is incorrect.

0x00000013

ERROR_WRITE_PROTECT

A read or write operation was attempted to a volume after it was
dismounted. The server can no longer service registry requests because
server shutdown has been initiated.

Server Operations

First, if the registry server can no longer service registry requests because server shutdown has been

initiated (SHUTDOWNINPROGRESS is set to TRUE), the server MUST return
ERROR_WRITE_PROTECT.

If the handle provided in the hKey parameter is not a valid open handle to a registry key, the server
MUST then fail the method and return ERROR_INVALID_HANDLE.

The server then determines which key namespace to operate on (KEYS32 or KEYS64) by inspecting
the value of the AccessMask parameter. the server MUST first check if both the KEY_WOW64_64KEY
and KEY_WOW64_32KEY bits are set in the AccessMask parameter. If both KEY_WOW64_64KEY and

KEY_WOW64_32KEY are set, the server MUST fail the method and return
ERROR_INVALID_PARAMETER.

The server MUST then check to see if the key specified by the hKEY parameter is a key that can only
be operated on in the 64-bit key namespace (KEYS64). See section 3.1.1.4.

If the key specified by the hKey parameter is a key that can only be operated on in the 64-bit key
namespace (KEYS64), the server MUST ignore the KEY_WOW64_64KEY and KEY_WOW64_32KEY bits
in the AccessMask parameter and operate on and delete the key in the 64-bit namespace (KEYS64).

Next, the server checks if the KEY_WOW64_32KEY is set in the AccessMask parameter. If the
KEY_WOW64_32KEY is set in the AccessMask parameter, the server MUST operate on and delete the
key in the 32-bit key namespace (KEYS32). If the KEY_WOW64_32KEY is not set in the AccessMask
parameter, the server MUST operate on and delete the key in the 64-bit key namespace (KEYS64).

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

73 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the value of the lpSubKey parameter is NULL, the server MUST fail the method and return
ERROR_INVALID_PARAMETER.

The server MUST then validate that the key indicated by lpSubKey does not have subkeys of its own.
If the key indicated by lpSubKey does have child subkeys, then the server MUST fail the method and

return ERROR_ACCESS_DENIED.

In response to this request from the client, for a successful operation, the server MUST delete the key
specified by the lpSubKey parameter and return 0 to indicate success or an appropriate error code (as
specified in [MS-ERREF]) to indicate an error.

The server MUST delete the registry key even if the subkey to be deleted is already in use and
initialized in the Data Store before the deletion happens. The delete function will be successful even if
other handles are open to the key. The data inside the hive is revoked at delete key time and is not

deferred until the last handle close operation.

3.1.6 Timer Events

FLUSH_TIMER_EVENT

The FLUSH_TIMER_EVENT occurs when the FLUSH_TIMER expires. When the FLUSH_TIMER expires,
all registry keys and value data for keys with the KEYISMODIFIED property set to TRUE are written to
the backing store for registry data, as described in section 3.1.7.

Keys with a KEYTYPE set to 0x00000001 (volatile), as well as keys that have the
KEYNOPERIODICFLUSH property set to TRUE, MUST NOT be written to the backing store for registry
data when the FLUSH_TIMER_EVENT occurs.

3.1.7 Other Local Events

The remote registry server supports access to the registry key namespace (KEYS32 and KEYS64) on
the local server system by using the same interface as used in remote access, except for the remote
server binding. The behavior of local APIs is consistent with locally invoking the Windows Remote

Registry Protocol methods on the server system.

In addition, the remote registry server MUST be notified of the following local system-wide events,
and take the corresponding action as described in the Windows Remote Registry Protocol methods in
the preceding sections.

Startup

The remote registry server is made aware of system startup or initialization and perform any
preliminary processing required to prepare the remote registry server for client requests. Specifically,

the server MUST:

 Set the value of the SHUTDOWNINPROGRESS ADM element to FALSE.

 Initialize the FLUSH_TIMER interval and activate the periodic timer.

 Initialize the HANDLETABLE. The HANDLETABLE SHOULD have no pre-populated data.

Shutdown

The remote registry server is made aware of system shutdown or termination and fail incoming client
requests during system shutdown. Methods in the remote registry protocol will fail and return

ERROR_WRITE_PROTECT when server shutdown has been initiated. The server MUST set the value of
the SHUTDOWNINPROGRESS ADM element to TRUE when a shutdown operation begins.

74 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST process the key and value data flush event as described in Key and Value Data
Flush.

Any keys with a KEYTYPE of volatile (0x00000001) MUST be deleted (see Key
Types (section 3.1.1.2)).

Any keys with a KEYTYPE of nonvolatile (0x00000000) MUST be persisted to the backing store and are
preserved when the registry server loses context due to a system restart, reboot, or shut down
process (see Key Types (section 3.1.1.2)).

If the server host operating system supports a method to stall the system shutdown, this protocol
server MUST stall the system shutdown until all operations in this shutdown event have completed.

Key and Value Data Flush

The flush event occurs due to the expiration of the FLUSH_TIMER as part of the FLUSH_TIMER_EVENT,

and also when system shutdown occurs.

When the FLUSH_TIMER expires, the server MUST write all key and value data from KEYS32 and

KEYS64 to the backing store for each key that does not have the KEYNOPERIODICFLUSH property set.

When system shutdown occurs, keys that have the KEYNOPERIODICFLUSH property set are discarded.

3.2 Client Details

The client side of this protocol is a pass-through. That is, no additional timers or other state is
required on the client side of this protocol. Calls made by the higher-layer protocol or application are
passed directly to the transport, and the results returned by the transport are passed directly back to
the higher-layer protocol or application.

75 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

This section describes a sequence of several operations as used in common scenarios to illustrate the
function of the Windows Remote Registry Protocol.

4.1 Reading a Registry Key and Value

The operations in reading a registry key and value are as follows:

 The client obtains a handle to one of the root keys, for example HKEY_LOCAL_MACHINE, by
using the OpenLocalMachine method.

 The client uses the handle to the root key with the BaseRegOpenKey method to open a subkey.
The BaseRegOpenKey method returns a handle to the subkey.

 The client uses the handle to the subkey to read values under the subkey by using the
BaseRegQueryValue method. The client uses the value for client-specific operations.

 After all required keys and values have been read, the client closes the open handles by using the
BaseRegCloseKey method.

4.2 Writing a Registry Key and Value

The operations in writing a registry key and value are as follows:

 The client obtains a handle to one of the root keys, for example HKEY_LOCAL_MACHINE, by
using the OpenLocalMachine method.

 The client uses the handle to the root key with the BaseRegOpenKey method to open a subkey.
The BaseRegOpenKey method returns a handle to the subkey.

 The client uses the handle to the subkey with the BaseRegCreateKey method to create new

subkeys.

 The client uses the handle to a subkey to write values under the subkey by using the
BaseRegSetValue method. The client uses the value for client-specific operations.

 After all required keys and values have been created and written, the client closes the open
handles by using the BaseRegCloseKey method.

If there are multiple writes to the same registry key or value, the last one wins. No ordering

relationships can be specified.

4.3 Detailed Example

This section provides a more detailed example of reading a registry key and value.

 The client receives a request from an application, such as Regedit.exe, to open the root key

HKEY_LOCAL_MACHINE on the server for reading.

 After establishing a connection to the server, the client sends an OpenLocalMachine method that
has the following values for the parameters.

 ServerName = 0
 samDesired = 0x00000001
 phKey = NULL

76 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 When the server receives this request from the client, the server opens the handle to the root key
HKEY_LOCAL_MACHINE with read access, and returns 0 (ERROR_SUCCESS) and the pointer to

the opened handle in the phKey parameter of the response.

 The client can then use the handle that is returned in phKey to operate on

HKEY_LOCAL_MACHINE. For example, to open a subkey "SYSTEM" for read access, the client
sends a BaseRegOpenKey method that has the following values for the parameters.

 hKey = Handle returned in the phKey parameter
 of the previous server response.
 lpSubKey = "SYSTEM\0"
 dwOptions = 0
 samDesired = 0x00000001
 phkResult = NULL

 When the server receives this request from the client, it opens the handle to the key
HKEY_LOCAL_MACHINE \SYSTEM with read access, and returns 0 (ERROR_SUCCESS) and the
pointer to the opened handle in the phkResult parameter of the response.

 When the client is finished operating on the key HKEY_LOCAL_MACHINE \SYSTEM, it closes the

handle to this key by sending a BaseRegCloseKey method that has the following value for the
parameter.

hkey = Handle returned in the phkResult parameter of the previous server response.

 When the server receives this request from the client, it closes the handle to the key
HKEY_LOCAL_MACHINE \SYSTEM and returns 0 (ERROR_SUCCESS).

77 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

Registry settings can affect remote access to the registry itself.

Remote access is controlled by two keys, winreg and AllowedPaths. The winreg key specifies groups
and users with remote access while the AllowedPaths key allows some users, groups, services, and
machines to bypass the winreg key restrictions for the specified paths. The keys have the following
locations under HKEY_LOCAL_MACHINE.

 \SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg
 \SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg\AllowedPaths

Default remote registry settings are as follows:

 On Windows XP operating system, members of the Administrators Group have remote read
access. On Windows XP Professional operating system, members of the Backup Operators Group
also have remote read access.

 On Windows NT 3.51 operating system, any user has remote read access to the registry.

 On Windows NT 4.0 operating system, Windows 2000 operating system, Windows Server 2003
operating system, Windows Vista operating system, Windows Server 2008 operating system,
Windows 7 operating system, Windows Server 2008 R2 operating system, and Windows Server
2012 operating system, only members of the Administrators Group have remote access to the
registry.

To override the default remote registry settings, the
\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg key has a single value of type

"REG_SZ" named "Description" with value "Registry Server". The security descriptor for the

\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg key configures remote access for
individual users and groups. For example, if the group "Domain Administrators" is allowed remote
access to the registry, then the security descriptor on the
\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg key contains an access control entry
(ACE, [MS-DTYP] section 2.4.4) granting permissions to the "Domain Administrators" group.

The \SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg\AllowedPaths key specifies

registry key paths under the HKEY_LOCAL_MACHINE key to which remote access will be granted,
regardless of security descriptor policies for the
\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg key. FQNs for which access is granted
are specified in a value named "Machine" of type "REG_MULTI_SZ" with value data containing the
name of those paths allowed. For example, to allow access to
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Print\Printers,

"SYSTEM\CurrentControlSet\Control\Print\Printers" is added to the Machine value data.

Note Even if a FQN is specified in the "Machine" value, access will only be granted if the client is

allowed access according to the security descriptor of the accessed key as described in 3.1.1.10.

5.2 Index of Security Parameters

 Security parameter Section

RPC_C_AUTHN_GSS_NEGOTIATE 2.1

RPC_C_AUTHN_WINNT 2.1

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

78 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Security parameter Section

RPC_C_AUTHN_LEVEL_PKT_PRIVACY 2.1

RPC_C_AUTHN_LEVEL_CONNECT 2.1

79 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full IDL

 import "ms-dtyp.idl";

 [
 uuid(338CD001-2244-31F1-AAAA-900038001003),
 pointer_default(unique),
 version(1.0)
]
 interface winreg
 {
 typedef RPC_UNICODE_STRING RRP_UNICODE_STRING, *PRRP_UNICODE_STRING;
 typedef [context_handle] HANDLE RPC_HKEY;
 typedef RPC_HKEY *PRPC_HKEY;

 typedef [handle] PWCHAR PREGISTRY_SERVER_NAME;
 typedef DWORD SECURITY_INFORMATION,
 *PSECURITY_INFORMATION;

 typedef struct value_ent {
 PRPC_UNICODE_STRING ve_valuename;
 DWORD ve_valuelen;
 LPDWORD ve_valueptr;
 DWORD ve_type;
 } RVALENT, *PRVALENT;

 typedef ULONG REGSAM;

 typedef struct _RPC_SECURITY_DESCRIPTOR {
 [size_is(cbInSecurityDescriptor),
 length_is(cbOutSecurityDescriptor)]
 PBYTE lpSecurityDescriptor;
 DWORD cbInSecurityDescriptor;
 DWORD cbOutSecurityDescriptor;
 } RPC_SECURITY_DESCRIPTOR, *PRPC_SECURITY_DESCRIPTOR;

 typedef struct _RPC_SECURITY_ATTRIBUTES {
 DWORD nLength;
 RPC_SECURITY_DESCRIPTOR RpcSecurityDescriptor;
 BOOLEAN bInheritHandle;
 } RPC_SECURITY_ATTRIBUTES, *PRPC_SECURITY_ATTRIBUTES;

 // method declarations

 error_status_t
 OpenClassesRoot(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 error_status_t
 OpenCurrentUser(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 error_status_t
 OpenLocalMachine(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 error_status_t
 OpenPerformanceData(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,

80 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 error_status_t
 OpenUsers(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 error_status_t
 BaseRegCloseKey(
 [in, out] PRPC_HKEY hKey
);

 error_status_t
 BaseRegCreateKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] PRRP_UNICODE_STRING lpClass,
 [in] DWORD dwOptions,
 [in] REGSAM samDesired,
 [in, unique] PRPC_SECURITY_ATTRIBUTES lpSecurityAttributes,
 [out] PRPC_HKEY phkResult,
 [in, out, unique] LPDWORD lpdwDisposition
);

 error_status_t
 BaseRegDeleteKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey
);

 error_status_t
 BaseRegDeleteValue(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpValueName
);

 error_status_t
 BaseRegEnumKey(
 [in] RPC_HKEY hKey,
 [in] DWORD dwIndex,
 [in] PRRP_UNICODE_STRING lpNameIn,
 [out] PRRP_UNICODE_STRING lpNameOut,
 [in, unique] PRRP_UNICODE_STRING lpClassIn,
 [out] PRPC_UNICODE_STRING *lplpClassOut,
 [in, out, unique] PFILETIME lpftLastWriteTime
);

 error_status_t
 BaseRegEnumValue (
 [in] RPC_HKEY hKey,
 [in] DWORD dwIndex,
 [in] PRRP_UNICODE_STRING lpValueNameIn,
 [out] PRPC_UNICODE_STRING lpValueNameOut,
 [in, out, unique] LPDWORD lpType,
 [in, out, unique, size_is(lpcbData ? *lpcbData : 0),
 length_is (lpcbLen ? *lpcbLen : 0),
 range(0, 0x4000000)] LPBYTE lpData,
 [in, out, unique] LPDWORD lpcbData,
 [in, out, unique] LPDWORD lpcbLen
);

 error_status_t
 BaseRegFlushKey(
 [in] RPC_HKEY hKey
);

81 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 error_status_t
 BaseRegGetKeySecurity(
 [in] RPC_HKEY hKey,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in] PRPC_SECURITY_DESCRIPTOR pRpcSecurityDescriptorIn,
 [out] PRPC_SECURITY_DESCRIPTOR pRpcSecurityDescriptorOut
);

 error_status_t
 BaseRegLoadKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] PRRP_UNICODE_STRING lpFile
);

 void Opnum14NotImplemented();

 error_status_t
 BaseRegOpenKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] DWORD dwOptions,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phkResult
);

 error_status_t
 BaseRegQueryInfoKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpClassIn,
 [out] PRPC_UNICODE_STRING lpClassOut,
 [out] LPDWORD lpcSubKeys,
 [out] LPDWORD lpcbMaxSubKeyLen,
 [out] LPDWORD lpcbMaxClassLen,
 [out] LPDWORD lpcValues,
 [out] LPDWORD lpcbMaxValueNameLen,
 [out] LPDWORD lpcbMaxValueLen,
 [out] LPDWORD lpcbSecurityDescriptor,
 [out] PFILETIME lpftLastWriteTime
);

 error_status_t
 BaseRegQueryValue(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpValueName,
 [in, out, unique] LPDWORD lpType,
 [in, out, unique, size_is(lpcbData ? *lpcbData : 0),
 length_is (lpcbLen ? *lpcbLen : 0),
 range(0, 0x4000000)] LPBYTE lpData,
 [in, out, unique] LPDWORD lpcbData,
 [in, out, unique] LPDWORD lpcbLen
);

 error_status_t
 BaseRegReplaceKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] PRRP_UNICODE_STRING lpNewFile,
 [in] PRRP_UNICODE_STRING lpOldFile
);

 error_status_t
 BaseRegRestoreKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpFile,
 [in] DWORD Flags
);

82 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 error_status_t
 BaseRegSaveKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpFile,
 [in, unique] PRPC_SECURITY_ATTRIBUTES pSecurityAttributes
);

 error_status_t
 BaseRegSetKeySecurity(
 [in] RPC_HKEY hKey,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in] PRPC_SECURITY_DESCRIPTOR pRpcSecurityDescriptor
);

 error_status_t
 BaseRegSetValue(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpValueName,
 [in] DWORD dwType,
 [in, size_is(cbData)] LPBYTE lpData,
 [in] DWORD cbData
);

 error_status_t
 BaseRegUnLoadKey(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey
);

 void Opnum24NotImplemented();

 void Opnum25NotImplemented();

 error_status_t
 BaseRegGetVersion(
 [in] RPC_HKEY hKey,
 [out] LPDWORD lpdwVersion
);

 error_status_t
 OpenCurrentConfig(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 void Opnum28NotImplemented();

 error_status_t
 BaseRegQueryMultipleValues(
 [in] RPC_HKEY hKey,
 [in, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listIn,
 [out, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listOut,
 [in] DWORD num_vals,
 [in, out, unique, size_is(*ldwTotsize),
 length_is(*ldwTotsize)] char* lpvalueBuf,
 [in, out, ref] LPDWORD ldwTotsize
);

 void Opnum30NotImplemented();

 error_status_t
 BaseRegSaveKeyEx(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpFile,
 [in, unique] PRPC_SECURITY_ATTRIBUTES pSecurityAttributes,

83 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in] DWORD Flags
);

 error_status_t
 OpenPerformanceText(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 error_status_t
 OpenPerformanceNlsText(
 [in, unique] PREGISTRY_SERVER_NAME ServerName,
 [in] REGSAM samDesired,
 [out] PRPC_HKEY phKey
);

 error_status_t
 BaseRegQueryMultipleValues2(
 [in] RPC_HKEY hKey,
 [in, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listIn,
 [out, size_is(num_vals), length_is(num_vals)]
 PRVALENT val_listOut,
 [in] DWORD num_vals,
 [in, out, unique, size_is(*ldwTotsize), length_is(*ldwTotsize)]
 char * lpvalueBuf,
 [in] LPDWORD ldwTotsize,
 [out] LPDWORD ldwRequiredSize
);

 error_status_t
 BaseRegDeleteKeyEx(
 [in] RPC_HKEY hKey,
 [in] PRRP_UNICODE_STRING lpSubKey,
 [in] REGSAM AccessMask,
 [in] DWORD Reserved
);

 }

84 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 2000 operating system

 Windows XP operating system

 Windows XP Professional x64 Edition operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1.2: Except in Windows 2000, Windows XP, and Windows Server 2003 prior to

Windows Server 2003 operating system with Service Pack 1 (SP1), the following behavior applies:
When using ncacn_np as the RPC protocol sequence, the client first attempts to use an
authentication level of "Packet Privacy" and the Authentication Service "Simple and Protected
GSS-API Negotiation Mechanism". If this fails, the client retries by using an authentication level of
"Connection" and the "Simple and Protected GSS-API Negotiation Mechanism" Authentication Service.

<2> Section 2.2.4: The KEY_WOW64_32KEY and KEY_WOW_64_64KEY rights do not apply to

Windows 2000 and Windows XP (except Windows XP 64-Bit Edition operating system).

<3> Section 3.1.1.4: All 64-bit editions of Windows support both 32-bit and 64-bit key namespaces.

<4> Section 3.1.1.4: The following versions of Windows do not return an error because they assume
that the client is requesting access to a key in the 64-bit key namespace:

 Windows XP

 Windows Server 2003

85 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Windows Vista

 Windows Server 2008

<5> Section 3.1.1.4: The following Windows versions postpone the copy until the handle to the key is
closed.

 Windows 2000

 Windows XP

 Windows Server 2003

 Windows Vista

 Windows Server 2008

<6> Section 3.1.1.4: Remote registry servers running Windows 2000, Windows XP, Windows Server
2003, Windows Vista, and Windows Server 2008 do not ignore client requests to operate on the 32-bit

key namespace for the listed keys.

<7> Section 3.1.5.1: The 64-bit editions of the following versions of Windows do not return
ERROR_INVALID_PARAMETER when both the KEY_WOW64_64KEY and KEY_WOW64_32KEY are set in
the samDesired parameter. These versions of Windows assume the client is requesting access to a key
in the 64-bit key namespace:

 Windows XP

 Windows Server 2003

 Windows Vista

 Windows Server 2008

<8> Section 3.1.5.3: The following versions of Windows do not return ERROR_INVALID_PARAMETER
when both the KEY_WOW64_64KEY and KEY_WOW64_32KEY are set in the samDesired parameter.

These versions of Windows assume the client is requesting access to a key in the 64-bit key
namespace:

 Windows XP

 Windows Server 2003

 Windows Vista

 Windows Server 2008

<9> Section 3.1.5.7: Windows servers check whether lpClass is equal to NULL. Although this situation
is forbidden by the RPC specification and cannot occur through normal operation, Windows servers
check for this condition and return ERROR_INVALID_PARAMETER as a defense against malicious

clients that bypass the RPC infrastructure.

<10> Section 3.1.5.7: The 64-bit editions of the following versions of Windows do not return
ERROR_INVALID_PARAMETER when both the KEY_WOW64_64KEY and KEY_WOW64_32KEY are set in
the samDesired parameter. These versions of Windows assume that the client is requesting access to
a key in the 64-bit key namespace:

 Windows XP

 Windows Server 2003

 Windows Vista

86 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Windows Server 2008

<11> Section 3.1.5.9: Windows servers check whether lpValueName is equal to NULL. Although this

situation is forbidden by the RPC specification and cannot occur through normal operation, Windows
servers check for this condition and return ERROR_INVALID_PARAMETER as a defense against

malicious clients that bypass the RPC infrastructure.

<12> Section 3.1.5.15: A single registry key can be opened only 65,534 times
(18,446,744,073,709,551,615 on Windows Server 2003 operating system with Service Pack 2 (SP2),
Windows Vista, and Windows Server 2008). When attempting the 65535th
(18,446,744,073,709,551,616th on Windows Server 2003 SP2, Windows Vista, and Windows Server
2008) open operation, this function fails with ERROR_NO_SYSTEM_RESOURCES.

<13> Section 3.1.5.15: The following versions of Windows do not return

ERROR_INVALID_PARAMETER when both KEY_WOW64_64KEY and KEY_WOW64_32KEY are set in the
samDesired parameter. These versions of Windows assume the client is requesting access to a key in
the 64-bit key namespace:

 Windows XP

 Windows Server 2003

 Windows Server 2008

 Windows Vista

<14> Section 3.1.5.17: If the lpData buffer size, as indicated by the client in the lpcbData parameter,
is too small for the requested information, Windows Remote Registry Servers will set the lpData
parameter to NULL and return the size of the value, in bytes, in the lpcbData parameter.

<15> Section 3.1.5.18: The format of Windows file names is as specified in Filenames in Chapter 12
of [WININTERNALS]. Windows file names can be up to 255 characters long and for Windows registry
server methods MUST be specified as full file paths relative to the registry server instance. For

example, to specify the "regfile.reg" file in the "C:\testfiles" directory on the C: volume of the registry
server, the file name is specified as "C:\testfiles\regfile.reg".

<16> Section 3.1.5.18: The format of Windows file names is as specified in Filenames in Chapter 12
of [WININTERNALS]. Windows file names can be up to 255 characters long and for Windows registry
server methods are specified as full file paths relative to the registry server instance. For example, to
specify the "regfile.reg" file in the "C:\testfiles" directory on the C: volume of the registry server, the
file name is specified as "C:\testfiles\regfile.reg".

<17> Section 3.1.5.18: Changes to the registry information take effect after restarting the
computer.

<18> Section 3.1.5.18: Windows-based registry servers require the files referred to by lpNewFile and
lpOldFile to be located on the same disk volume as the OS instance hosting the registry server (for
example, "boot disk"). If this condition is not met, the method fails with ERROR_NOT_SAME_DEVICE
(0x11).

<19> Section 3.1.5.19: The format of Windows file names is as specified in "Filenames" in Chapter 12

of [WININTERNALS]. Windows file names can be up to 255 characters long and for Windows registry
server methods MUST be specified as full file paths relative to the registry server instance. For
example, to specify the "regfile.reg" file in the "C:\testfiles" directory on the C: volume of the registry
server, the file name is specified as "C:\testfiles\regfile.reg".

<20> Section 3.1.5.19: For Windows NT operating system, this value is not supported.

<21> Section 3.1.5.19: The format of Windows file names is as specified in "Filenames", chapter 12 of

[WININTERNALS]. Windows file names can be up to 255 characters long, and for Windows registry

87 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

server methods MUST be specified as full file paths relative to the registry server instance. For
example, the name of file "regfile.reg" in the "C:\testfiles" directory on the C: volume of the registry

server is specified as "C:\testfiles\regfile.reg".

<22> Section 3.1.5.20: The format of Windows file names is as specified in "Filenames" in Chapter 12

of [WININTERNALS]. Windows file names can be up to 255 characters long and for Windows registry
server methods MUST be specified as full file paths relative to the registry server instance. For
example, to specify the "regfile.reg" file in the "C:\testfiles" directory on the C: volume of the registry
server, the file name is specified as "C:\testfiles\regfile.reg".

<23> Section 3.1.5.24: Itanium-based and x64-based versions of Windows Server 2003 with SP1,
Windows Vista, and Windows Server 2008 return 6 to denote the 64-bit version of the registry. In
addition, Windows XP 64-Bit Edition also returns 6 to denote the 64-bit version of the registry.

All other x86 and Itanium-based versions of Windows return 5.

88 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

89 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Index

A

Abstract data model 17
 server 17
Applicability 9

B

BaseRegCloseKey (Opnum 5) method 35
BaseRegCloseKey method 35
BaseRegCreateKey (Opnum 6) method 37
BaseRegCreateKey method 37
BaseRegDeleteKey (Opnum 7) method 40
BaseRegDeleteKey method 40
BaseRegDeleteKeyEx (Opnum 35) method 71
BaseRegDeleteKeyEx method 71
BaseRegDeleteValue (Opnum 8) method 41
BaseRegDeleteValue method 41

BaseRegEnumKey (Opnum 9) method 42
BaseRegEnumKey method 42
BaseRegEnumValue (Opnum 10) method 44
BaseRegEnumValue method 44
BaseRegFlushKey (Opnum 11) method 46
BaseRegFlushKey method 46
BaseRegGetKeySecurity (Opnum 12) method 46
BaseRegGetKeySecurity method 46
BaseRegGetVersion (Opnum 26) method 63
BaseRegGetVersion method 63
BaseRegLoadKey (Opnum 13) method 48
BaseRegLoadKey method 48
BaseRegOpenKey (Opnum 15) method 49
BaseRegOpenKey method 49
BaseRegQueryInfoKey (Opnum 16) method 51
BaseRegQueryInfoKey method 51
BaseRegQueryMultipleValues (Opnum 29) method 65
BaseRegQueryMultipleValues method 65
BaseRegQueryMultipleValues2 (Opnum 34) method

70
BaseRegQueryMultipleValues2 method 70
BaseRegQueryValue (Opnum 17) method 53
BaseRegQueryValue method 53
BaseRegReplaceKey (Opnum 18) method 55
BaseRegReplaceKey method 55
BaseRegRestoreKey (Opnum 19) method 57
BaseRegRestoreKey method 57
BaseRegSaveKey (Opnum 20) method 58
BaseRegSaveKey method 58
BaseRegSaveKeyEx (Opnum 31) method 67
BaseRegSaveKeyEx method 67
BaseRegSetKeySecurity (Opnum 21) method 60
BaseRegSetKeySecurity method 60
BaseRegSetValue (Opnum 22) method 60
BaseRegSetValue method 60
BaseRegUnLoadKey (Opnum 23) method 62
BaseRegUnLoadKey method 62

C

Capability negotiation 9
Change tracking 88
Client - message transport 11
Common data types 12

D

Data model - abstract 17
 server 17
Data types 12
 common - overview 12
Detailed example example 75

E

Error codes 14
Events
 local - server 73
 timer - server 73
Examples 75
 detailed example 75
 overview 75

 reading a registry key and value 75
 writing a registry key and value 75

F

Fields - vendor-extensible 9
Full IDL 79

G

Glossary 6

H

Higher-layer triggered events 26

I

IDL 79
Implementer - security considerations 77
Index of security parameters 77
Informative references 8

Initialization 26
 server 26
Introduction 6

L

Local events 73
 server 73

M

Message processing 26
 server 26
Messages
 common data types 12
 transport 11
Messages - transport 11
Methods
 BaseRegCloseKey (Opnum 5) 35
 BaseRegCreateKey (Opnum 6) 37
 BaseRegDeleteKey (Opnum 7) 40
 BaseRegDeleteKeyEx (Opnum 35) 71

90 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 BaseRegDeleteValue (Opnum 8) 41
 BaseRegEnumKey (Opnum 9) 42
 BaseRegEnumValue (Opnum 10) 44
 BaseRegFlushKey (Opnum 11) 46
 BaseRegGetKeySecurity (Opnum 12) 46
 BaseRegGetVersion (Opnum 26) 63
 BaseRegLoadKey (Opnum 13) 48
 BaseRegOpenKey (Opnum 15) 49
 BaseRegQueryInfoKey (Opnum 16) 51
 BaseRegQueryMultipleValues (Opnum 29) 65
 BaseRegQueryMultipleValues2 (Opnum 34) 70
 BaseRegQueryValue (Opnum 17) 53
 BaseRegReplaceKey (Opnum 18) 55
 BaseRegRestoreKey (Opnum 19) 57
 BaseRegSaveKey (Opnum 20) 58
 BaseRegSaveKeyEx (Opnum 31) 67
 BaseRegSetKeySecurity (Opnum 21) 60
 BaseRegSetValue (Opnum 22) 60
 BaseRegUnLoadKey (Opnum 23) 62
 OpenClassesRoot (Opnum 0) 30
 OpenCurrentConfig (Opnum 27) 64
 OpenCurrentUser (Opnum 1) 31
 OpenLocalMachine (Opnum 2) 32

 OpenPerformanceData (Opnum 3) 33
 OpenPerformanceNlsText (Opnum 33) 69
 OpenPerformanceText (Opnum 32) 68
 OpenUsers (Opnum 4) 34

N

Naming keys
 fully qualified name 18
 overview 17
 relative name 18
Normative references 7

O

OpenClassesRoot (Opnum 0) method 30
OpenClassesRoot method 30
OpenCurrentConfig (Opnum 27) method 64
OpenCurrentConfig method 64
OpenCurrentUser (Opnum 1) method 31
OpenCurrentUser method 31
OpenLocalMachine (Opnum 2) method 32
OpenLocalMachine method 32
OpenPerformanceData (Opnum 3) method 33
OpenPerformanceData method 33
OpenPerformanceNlsText (Opnum 33) method 69
OpenPerformanceNlsText method 69
OpenPerformanceText (Opnum 32) method 68
OpenPerformanceText method 68
OpenUsers (Opnum 4) method 34
OpenUsers method 34
Overview (synopsis) 8

P

Parameters - security index 77
Preconditions 9
Pre-defined keys 23
Prerequisites 9
Product behavior 84
PRPC_SECURITY_ATTRIBUTES 15
PRPC_SECURITY_DESCRIPTOR 15

PRVALENT 13

R

Reading a registry key and value example 75
References 7
 informative 8
 normative 7
Relationship to other protocols 8
RPC_SECURITY_ATTRIBUTES 15
RPC_SECURITY_ATTRIBUTES structure 15
RPC_SECURITY_DESCRIPTOR 15
RPC_SECURITY_DESCRIPTOR structure 15
RVALENT 13
RVALENT structure 13

S

Security
 implementer considerations 77
 parameter index 77
Sequencing rules 26
 server 26
Server
 abstract data model 17
 BaseRegCloseKey (Opnum 5) method 35
 BaseRegCreateKey (Opnum 6) method 37
 BaseRegDeleteKey (Opnum 7) method 40
 BaseRegDeleteKeyEx (Opnum 35) method 71
 BaseRegDeleteValue (Opnum 8) method 41
 BaseRegEnumKey (Opnum 9) method 42
 BaseRegEnumValue (Opnum 10) method 44
 BaseRegFlushKey (Opnum 11) method 46
 BaseRegGetKeySecurity (Opnum 12) method 46
 BaseRegGetVersion (Opnum 26) method 63
 BaseRegLoadKey (Opnum 13) method 48
 BaseRegOpenKey (Opnum 15) method 49
 BaseRegQueryInfoKey (Opnum 16) method 51
 BaseRegQueryMultipleValues (Opnum 29) method

65
 BaseRegQueryMultipleValues2 (Opnum 34) method

70
 BaseRegQueryValue (Opnum 17) method 53
 BaseRegReplaceKey (Opnum 18) method 55
 BaseRegRestoreKey (Opnum 19) method 57
 BaseRegSaveKey (Opnum 20) method 58
 BaseRegSaveKeyEx (Opnum 31) method 67
 BaseRegSetKeySecurity (Opnum 21) method 60
 BaseRegSetValue (Opnum 22) method 60
 BaseRegUnLoadKey (Opnum 23) method 62
 initialization 26
 local events 73
 message processing 26
 message transport 11
 OpenClassesRoot (Opnum 0) method 30
 OpenCurrentConfig (Opnum 27) method 64
 OpenCurrentUser (Opnum 1) method 31

 OpenLocalMachine (Opnum 2) method 32
 OpenPerformanceData (Opnum 3) method 33
 OpenPerformanceNlsText (Opnum 33) method 69
 OpenPerformanceText (Opnum 32) method 68
 OpenUsers (Opnum 4) method 34
 overview 17
 sequencing rules 26
 timer events 73

91 / 91

[MS-RRP] - v20170601
Windows Remote Registry Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 timers 26
Standards assignments 9

T

Timer events 73
 server 73
Timers 26
 server 26
Tracking changes 88
Transport 11
Transport - message 11
Triggered events - higher-layer 26
Types - keys 19

V

Values - keys 22
Vendor-extensible fields 9
Versioning 9

W

Well known keys 23
Writing a registry key and value example 75

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Server
	2.1.2 Client

	2.2 Common Data Types
	2.2.1 RPC_HKEY
	2.2.2 PREGISTRY_SERVER_NAME
	2.2.3 error_status_t
	2.2.4 REGSAM
	2.2.5 RRP_UNICODE_STRING
	2.2.6 RVALENT
	2.2.7 Common Error Codes
	2.2.8 RPC_SECURITY_ATTRIBUTES
	2.2.9 RPC_SECURITY_DESCRIPTOR
	2.2.10 SECURITY_INFORMATION

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Naming
	3.1.1.1.1 Fully Qualified Name
	3.1.1.1.2 Relative Name
	3.1.1.1.3 Object Name

	3.1.1.2 Key Types
	3.1.1.3 Key Properties
	3.1.1.4 32-Bit and 64-Bit Key Namespaces
	3.1.1.5 Values
	3.1.1.6 Key Class
	3.1.1.7 Predefined Keys
	3.1.1.8 Current User Root Key
	3.1.1.9 Handles
	3.1.1.10 Security Descriptor
	3.1.1.11 Symbolic Links
	3.1.1.12 System Shutdown
	3.1.1.13 Identity Token

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 OpenClassesRoot (Opnum 0)
	3.1.5.2 OpenCurrentUser (Opnum 1)
	3.1.5.3 OpenLocalMachine (Opnum 2)
	3.1.5.4 OpenPerformanceData (Opnum 3)
	3.1.5.5 OpenUsers (Opnum 4)
	3.1.5.6 BaseRegCloseKey (Opnum 5)
	3.1.5.7 BaseRegCreateKey (Opnum 6)
	3.1.5.8 BaseRegDeleteKey (Opnum 7)
	3.1.5.9 BaseRegDeleteValue (Opnum 8)
	3.1.5.10 BaseRegEnumKey (Opnum 9)
	3.1.5.11 BaseRegEnumValue (Opnum 10)
	3.1.5.12 BaseRegFlushKey (Opnum 11)
	3.1.5.13 BaseRegGetKeySecurity (Opnum 12)
	3.1.5.14 BaseRegLoadKey (Opnum 13)
	3.1.5.15 BaseRegOpenKey (Opnum 15)
	3.1.5.16 BaseRegQueryInfoKey (Opnum 16)
	3.1.5.17 BaseRegQueryValue (Opnum 17)
	3.1.5.18 BaseRegReplaceKey (Opnum 18)
	3.1.5.19 BaseRegRestoreKey (Opnum 19)
	3.1.5.20 BaseRegSaveKey (Opnum 20)
	3.1.5.21 BaseRegSetKeySecurity (Opnum 21)
	3.1.5.22 BaseRegSetValue (Opnum 22)
	3.1.5.23 BaseRegUnLoadKey (Opnum 23)
	3.1.5.24 BaseRegGetVersion (Opnum 26)
	3.1.5.25 OpenCurrentConfig (Opnum 27)
	3.1.5.26 BaseRegQueryMultipleValues (Opnum 29)
	3.1.5.27 BaseRegSaveKeyEx (Opnum 31)
	3.1.5.28 OpenPerformanceText (Opnum 32)
	3.1.5.29 OpenPerformanceNlsText (Opnum 33)
	3.1.5.30 BaseRegQueryMultipleValues2 (Opnum 34)
	3.1.5.31 BaseRegDeleteKeyEx (Opnum 35)

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details

	4 Protocol Examples
	4.1 Reading a Registry Key and Value
	4.2 Writing a Registry Key and Value
	4.3 Detailed Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

