[MS-RPCH]:

Remote Procedure Call over HTTP Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.
Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
10/22/2006 | 0.01 New Version 0.01 release
1/19/2007 1.0 Major Version 1.0 release
3/2/2007 1.1 Minor Version 1.1 release
4/3/2007 1.2 Minor Version 1.2 release
5/11/2007 1.3 Minor Version 1.3 release
6/1/2007 1.3.1 Editorial Changed language and formatting in the technical content.
7/3/2007 1.3.2 Editorial Changed language and formatting in the technical content.
7/20/2007 1.3.3 Editorial Changed language and formatting in the technical content.
8/10/2007 1.3.4 Editorial Changed language and formatting in the technical content.
9/28/2007 1.3.5 Editorial Changed language and formatting in the technical content.
10/23/2007 | 1.3.6 Editorial Changed language and formatting in the technical content.
11/30/2007 | 1.3.7 Editorial Changed language and formatting in the technical content.
1/25/2008 1.3.8 Editorial Changed language and formatting in the technical content.
3/14/2008 1.3.9 Editorial Changed language and formatting in the technical content.
5/16/2008 1.3.10 Editorial Changed language and formatting in the technical content.
6/20/2008 1.3.11 Editorial Changed language and formatting in the technical content.
7/25/2008 1.3.12 Editorial Changed language and formatting in the technical content.
8/29/2008 1.3.13 Editorial Changed language and formatting in the technical content.
10/24/2008 | 2.0 Major Updated and revised the technical content.
12/5/2008 3.0 Major Updated and revised the technical content.
1/16/2009 4.0 Major Updated and revised the technical content.
2/27/2009 5.0 Major Updated and revised the technical content.
4/10/2009 6.0 Major Updated and revised the technical content.
5/22/2009 6.0.1 Editorial Changed language and formatting in the technical content.
7/2/2009 6.0.2 Editorial Changed language and formatting in the technical content.
8/14/2009 6.1 Minor Clarified the meaning of the technical content.
9/25/2009 7.0 Major Updated and revised the technical content.
11/6/2009 8.0 Major Updated and revised the technical content.
12/18/2009 | 8.1 Minor Clarified the meaning of the technical content.
1/29/2010 8.2 Minor Clarified the meaning of the technical content.

[MS-RPCH] - v20240729
Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation

Release: July 29, 2024

2/ 154

Revision Revision

Date History Class Comments

3/12/2010 8.2.1 Editorial Changed language and formatting in the technical content.

4/23/2010 8.2.2 Editorial Changed language and formatting in the technical content.

6/4/2010 8.2.3 Editorial Changed language and formatting in the technical content.

7/16/2010 8.2.3 None No ch_anges to the meaning, language, or formatting of the
technical content.

8/27/2010 8.2.3 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0 Major Updated and revised the technical content.

11/19/2010 | 10.0 Major Updated and revised the technical content.

1/7/2011 10.1 Minor Clarified the meaning of the technical content.

2/11/2011 11.0 Major Updated and revised the technical content.

3/25/2011 12.0 Major Updated and revised the technical content.
No changes to the meaning, language, or formatting of the

5/6/2011 12.0 None technical content.

6/17/2011 12.1 Minor Clarified the meaning of the technical content.

9/23/2011 121 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/16/2011 | 13.0 Major Updated and revised the technical content.

3/30/2012 13.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/12/2012 13.1 Minor Clarified the meaning of the technical content.

10/25/2012 | 13.1 None No chgnges to the meaning, language, or formatting of the
technical content.

1/31/2013 13.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 | 14.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/13/2014 14.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/15/2014 14.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/30/2015 15.0 Major Significantly changed the technical content.

10/16/2015 | 15.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/14/2016 15.0 None No changes to the meaning, language, or formatting of the

technical content.

[MS-RPCH] - v20240729
Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation

Release: July 29, 2024

3/ 154

Revision Revision

Date History Class Comments

6/1/2017 15.0 None It\le%ro]::;r;iq(e;:?e:]r;.e meaning, language, or formatting of the
9/15/2017 16.0 Major Significantly changed the technical content.

12/1/2017 16.0 None Lﬂec;r?:;g?izrfgem.e meaning, language, or formatting of the
9/12/2018 17.0 Major Significantly changed the technical content.

4/7/2021 18.0 Major Significantly changed the technical content.

6/25/2021 19.0 Major Significantly changed the technical content.

4/23/2024 20.0 Major Significantly changed the technical content.

7/8/2024 21.0 Major Significantly changed the technical content.

7/29/2024 22.0 Major Significantly changed the technical content.

[MS-RPCH] - v20240729
Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation

Release: July 29, 2024

4/ 154

Table of Contents

B N 15 o T L1 T ot f ' 1 4 S 11
1.1 (C [0 T1== 1 PPN 11
1.2] =T =] g Lol PP 14

1.2.1 NOrMative RefEIENCES . oviiiii i e r e e e eaes 15
1.2.2 INfOrmative REfEIENCES .. vttt e aans 16
1.3 L Y] YT 16
1.3.1 Extensions to HTTP Functionalityc.ccviiiiiiiiiii e e 16
1.3.2 (0] L1381 [B B T =T P 16
1.3.3 [I o e)4 V2 © £ = P 18
1.3.4 High-Level OVEIVIEW ...t et e e e 18
1.4 Relationship to Other ProtoCoIS ..uouiirii i e e e 19
1.5 Prerequisites/Preconditionsoveiiiiiiiii e 20
1.6 Applicability StatemMENt ... s 21
1.7 Versioning and Capability Negotiationcccciiiiiiiiiiiiii e 21
1.8 Vendor-EXtensible Fields ... e e e 21
1.9 1S =T ale b= e A=) [[o Vo g 1<) 01 o= PP 21

7 =TT T« 22

2.1 I r= 1 117 oo] o o PP 22
2.1.1 RPC over HTTP V1 TranSPOrt ...t e e n e s ae e e ees 22
2.1.1.1 Client to Mixed ProxXy TraffiCveieiiiiiiiiiee e e e e e e 22
2.1.1.1.1 RPC Connect ReqUEST ...ttt i a e 22
2.1.1.1.2 RPC CONNECE RESPONSE. .. vttt e e e eaes 23
2.1.1.1.3 INbouNd PDU SErEam ..cviiiiiiii i r e e e a e ee e e 23
2.1.1.1.4 OUutbouNd PDU Stream ..uiviieiieiiiie it sierneraeeaeesass e e sesnesnnsnnennsanennens 24
2.1.1.2 Mixed Proxy to Server TraffiC...c.ociiiiiiiiic i e 24
2.1.1.2.1 Legacy Server RESPONSE. ... ittt itit ettt e e e e eaeaes 24
2.1.2 RPC over HTTP V2 TranSPOrt ...t e s r e e e ees 24
2.1.2.1 Client to Inbound or Outbound ProXyccociiiiiiiiiii e 25
2.1.2.1.1 IN Channel REQUESTc.uiiii e e e 25
2.1.2.1.2 OUT Channel REGUESE ...ttt eas 26
2.1.2.1.3 IN Channel RESPONSEuuuiiiiiieiieii e e e eaes 27
2.1.2.1.4 OUT Channel RESPONSE .i.uiiiiiiiiii ittt aaeaaens 28
2.1.2.1.5 EChO REQUEST ... e e 28
2.1.2.1.6 ECNO RESPONSE ...t e 29
2.1.2.1.7 INboUNd PDU SErEam ..viviiiiiie et r e e e e e e e es 29
2.1.2.1.8 (18] usTo 18] ole I =B 10 IS} o Y-] o o PP 30
2.1.2.2 Inbound or Outbound Proxy t0 SErverciciiiiiiiii e 31
2.1.2.2.1 Legacy Server RESPONSEi ittt ettt e e eae s 31
2.2 LT ST= T T =)P 31
2.2.1 (00] ag] 0T I @le] £ 1V7=T o1 [o] 1= 31
2.2.2 L8] 2 R =] Tl Y I o Ve PP 31
2.2.3 Common Data StrUCTUIES ... e 32
2.2.3.1 g IR e o) = PP 32
2.2.3.2 (O 11T o1 ¥ o [=T PP 33
2.2.3.2.1 Client AdAress - IPVA ...t e 33
2.2.3.2.2 Client ADAress = IPV6 ..oiviiiiii i e e e e 33
2.2.3.3 FOrward Destinations......o.veieiiiii i e 34
2.2.3.4 Flow Control Acknowledgmento 34
2.2.3.5 RTS COMMAaNAS .ottt et et e e e e e e e e e e nenes 35
2.2.3.5.1 ReCEIVEWINAOWSIZE .ouiiiiiiiii et e e ne s 35
2.2.3.5.2 FIOWECONTIOIACK «.etiiite et e e e es 36
2.2.3.5.3 (©o] o] aT=Toiu[o] I I 1 2 1=To LU | o 36
2.2.3.5.4 CO0KI 1ttt ettt ettt 37
2.2.3.5.5 ChannelLifetime ..o 37
5/154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.3.5.6 ClientKEEPAlIVE ... e 37
2.2.3.5.7 Y= =] o o 38
2.2.3.5.8 =0 0T 0 38
2.2.3.5.9 PaddiNg . ueieiii i 38
2.2.3.5.10 NegaltiVEANCEttt 39
2.2.3.5.11 ANCE ittt 39
2.2.3.5.12 CleNtAAIrESS. e vttt 39
2.2.3.5.13 AssOCIiatioNGrouUPId.....c.cciuiiiiiiiiiiiiir e 39
2.2.3.5.14 DeStiNation ...uivieiiiiiiii 40
2.2.3.5.15 PingTrafficSeNtNOLIfY ..o e 40
2.2.3.6 RTS PDU SErUCEUNE 1. uvieiiiiiiiis e e e e 41
2.2.3.6.1 RTS PDU HEAAEN ..uiviiiiiiiiiiiin e e 41
2.2.3.6.2 L ST o B N =T o | 43
2.2.4 R ST o 0L 43
2.2.4.1 RTS PDUs Naming and Document Conventionsccvvvviiiiniiiiniiiinneneeen 43
2.2.4.2 CONN/ATL RTS PDU ..ttt s n e e e s as e 44
2.2.4.3 CONN/A2 RTS PDU ..eiiiiiieieieie et et ettt e e e e e e e e r e e e e e e n e nenenenes 45
2.2.4.4 CONN/AS RTS PDU .. eiiiiiieiieie et e et e e e s e e n e e e e e e e n e e r e n s n e nenenenes 46
2.2.4.5 (00 1\ N = 2 IS o U N 47
2.2.4.6 CONN/B2 RTS PDU .. uiiiiiieieie et et e e s e ae e e e e e e e n e e r e ra s nenenenenes 48
2.2.4.7 CONN/B3 RTS PDU ..uiiiiiiiiiiiiieian st s s s s n e e e s as e 49
2.2.4.8 CONN/CL RTS PDU . .uiuiiiieieieee e e e eea e e e s e e e s e e e e e re e re e e s nenenenenen 50
2.2.4.9 CONN/C2 RTS PDU .. uiiiiiiiiiieieiaiais st s s is s s e s e e e e r e s sasaeas 51
2.2.4.10 IN_RI/AL RTS PDU ..iiiieieieiniiiiie i e e e ee e e e e e e e e e e r e s e eneeee e e e nnenees 52
2.2.4.11 IN_RI/A2 RTS PDU ..iiiiiieieiiiiiie i e e et e e e e e e e e e r e e e e e e e e e e e nenees 53
2.2.4.12 IN_RI/A3 RTS PDU ..ttt e e e s s s a e e 54
2.2.4.13 IN_RI/A4 RTS PDU ..ouiieiiieiiiiiiiie i e et e e e et e e r e e e e e e e e e e e e nenees 55
2.2.4.14 IN_RI/AS RTS PDU ..ttt et e e s s e a e e 56
2.2.4.15 IN_RI/AB RTS PDU ..euieieieieiiii i aee e e et e e e e e e e e e e e e e ene e e eeaen e e nenees 56
2.2.4.16 IN_RI1/B1 RTS PDU ..iiiiiiiiiiiiiiiiii it a e s s s s s e a e e 57
2.2.4.17 IN_RI1/B2 RTS PDU ..iititieieiiiiiiieai e e et e e e e e e e e r e s e raene e e e eaen e e nenees 57
2.2.4.18 IN_R2/AL RTS PDU ..eriitiiiiieiiiiiie i e e et e e e e e e e e r e r e e e e e e eenen e e nnenees 58
2.2.4.19 IN_R2/A2 RTS PDU ..iiiiiiiiiiiiiiiin s e e s s s e e as 59
2.2.4.20 IN_R2/A3 RTS PDU ..iuiieieiiiiiiiii i e e e e e e e e e r e e e e e e e e e e e e e nnnees 59
2.2.4.21 IN_R2/A4 RTS PDU ..iiiiiiiiiiiiiii st e e e s r e e 60
2.2.4.22 IN_R2/AS5 RTS PDU ..eiiitiiiiiiieii i e e e e et e e e r e e e e e e e e e e e aenees 60
2.2.4.23 OUT_R1/AL RTS PDU. ettt et a e e e e e ae s 61
2.2.4.24 OUT_R1/A2 RTS PDU. ettt a e s s s s s e e e e e 61
2.2.4.25 OUT_R1/AB RTS PDU. ettt eee et e e e e e e e e r e r e e e e e e e eaen e e nenees 62
2.2.4.26 OUT_R1/A4 RTS PDU. ettt et e e e e s s s s n e e e e e e 63
2.2.4.27 OUT_R1/AS RTS PDU. ettt e eeee e e e e e e e e s e e aene e e eeaenenennenees 64
2.2.4.28 OUT_R1/AB RTS PDU..cuuiiiiiiiiiiiireie st e e e e as s s s e e e e e ae e 65
2.2.4.29 OUT_R1/A7 RTS PDU. ettt e e e e e e e r e e e e e e e e ee e e e nnnees 66
2.2.4.30 OUT_R1/AB RTS PDU...utitiiiiiiiiiiriseias e e et e e e s s s s s e e e e e anaeas 67
2.2.4.31 OUT_R1/A9 RTS PDU. ...ttt sttt a e e s s s a e e e e 67
2.2.4.32 OUT_R1/AL0 RTS PDU ..cuteieiiiiieiae e e e e e e e et e e e r e e e e e e eeaen e e nenees 68
2.2.4.33 OUT_R1/AL1 RTS PDU ..cieiiiiiiiiiii it e e e e e e e e 68
2.2.4.34 OUT_R2/AL RTS PDU..cutitiiieiiiiiieaiaeee e te e e e e e e r e r e e e e e e eenen e ennenees 68
2.2.4.35 OUT_R2/A2 RTS PDU ..ttt ettt e e e e e ae e e e e e e e aeneas 69
2.2.4.36 OUT_R2/A3 RTS PDU..cutiiitiiiiiiiiiiieee e e e e e re e r e s ae e s s sareaenenenaanaes 69
2.2.4.37 OUT_R2/AA RTS PDU ...ttt et e e e e e e e e e e e nees 71
2.2.4.38 OUT_R2/A5 RTS PDU. .ttt ettt e e e e e ae e e e e e e e e nees 71
2.2.4.39 OUT_R2/A6 RTS PDU..cuuititieiiiiiiniaeeeeaee e e e eeaere e neseeaeaeerasenenennnnenaes 72
2.2.4.40 OUT_R2/A7 RTS PDU. .ttt ettt e e e e e e e e e e e e neas 72
2.2.4.41 OUT_R2/A8 RTS PDU..cuttitiiiiiiiiiiae e ee e eeeeneaesese s asaensssaeeneaenennnnees 73
2.2.4.42 OUT_R2/B1 RTS PDU. ettt et e e e e e e e e e e e e e nees 74
2.2.4.43 OUT_R2/B2 RTS PDU..cutititiiiiiiiiieaeseeae et e e eea e ne e sanaeaeneesasaenenenannanns 74
2.2.4.44 OUT_R2/B3 RTS PDU..cutititiiiiiiiiine e eeee e e e eeaeaeresasaeaensssasenenennenanaes 75
6/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.4.45 OUT_R2/C1 RTS PDU...iuitiiiiniiiiiiiiiiiii it ee e 75

2.2.4.46 Keep-AlIVe RTS PDU . .cuiiiiiiiiiiieii sttt s e e s e s e e s e s e rneaeananenens 76
2.2.4.47 Ping Traffic Sent Notify RTS PDUcociuiiiiiiiiieiiieie e een e e e 76
2.2.4.48 EChO RTS PDU ittt ittt s e s e s ase s e s e s sa s e ra s nanaernaneanane e 77
2.2.4.49 PiNG RTS PDU .ttt ittt st e e e s e s e s e s et s e s e s n e a s e re s e nane e 77
2.2.4.50 FIOWCONTIOIACK RTS PDU...ciuiiiiiieiieiieii et sesesaeeaesaesnesesnsnnennennerneanens 77
2.2.4.51 FlowControlAckWithDestination RTS PDUccciiiiiiiiiiiiiiiinnieiesieeaaeens 78
3 Protocol Details.....ccuvmimimmimmimie i i sassss s s s s s s ssansanssassnssassansansansanssnsnnsnnsnnnsa 79
3.1 RPC over HTTP v1 Protocol Detailsooviriiiiiiiiii i e e e 79
3.1.1 (O 1= o | ol I 7= = 1 PP 79
3.1.1.1 Abstract Data Modelccoiriiiiii e 80
3.1.1.2 I 0= 80
3.1.1.2.1 ConNection SEtUP TIMer ... e 80
3.1.1.3 INItIaliZatioN v e 80
3.1.1.4 Higher-Layer Triggered EVENESccoiiiiiiiiii e 80
3.1.1.4.1 Opening @ CoNNECHION ...iiiiii i e ee e 80
3.1.1.4.2 SeNdiNg @ PDU ..ouiuiiiiiiii e 81
3.1.1.4.3 Closing @ CONNECLION ..ouuiuiiiiiiii i e e ees 81
3.1.1.5 Message Processing Events and Sequencing Rulescocvvviiiiiiiiniennnnns, 81
3.1.1.5.1 ReCEIVING @ PDU ..iuiiiiiiiiiiiiis e s e 81
3.1.1.5.2 Encountering a Connection Errorcooiviiiiiiii i 81
3.1.1.6 B LT V2= o = 81
3.1.1.7 Other LOCal EVENES .oiviiiiiii it e e e ees 81
3.1.2 Mixed ProXy DetailS......couviiriiiiiii i 81
3.1.2.1 Abstract Data Modelcoiiiiiiiii s 82
3.1.2.2 I 1= =P 82
3.1.2.3 TNIEIAliZATION et e 82
3.1.2.4 Higher-Layer Triggered EVENTSccviiiiiiiiiiii i e e 82
3.1.2.5 Message Processing Events and Sequencing Rulescooviiiiiiiiiiinnnnnne, 82
3.1.2.5.1 RPC Connect Request RECEIVEA ...o.iiviiiiiiiiiiiicic e 83
3.1.2.5.2 [B L =T =T V=T PP 83
3.1.2.5.3 Connection Close or Connection Error Encountered.........ccooevivivinnnnnnns 83
3.1.2.6 T Er EVENES et e 83
3.1.2.7 Other LoCal EVENES v e e e ne s 83
3.1.3 SV DAl ittt e 83
3.1.3.1 Abstract Data Modelcoiiiiiiii s 83
3.1.3.2 INItAliZatioN o v e 83
3.1.3.3 Higher-Layer Triggered EVENESccciviiiiiiiiiiii i e 84
3.1.3.3.1 SeNAiNG @ PDU ..o 84
3.1.3.4 Message Processing Events and Sequencing RuUlescocvvviiiiiiiiiiiennnnns, 84
3.1.3.4.1 Establishing @ Connectionccoiiiiiiii e 84
3.1.3.4.2 [T ol AT T = T = 5 O 84
3.1.3.4.3 Encountering @ Connection Error ..o e 84
3.1.3.5 I L= = PP 84
3.1.3.6 TN e EVENES et 84
3.1.3.7 Other LoCal EVENES vt e e e ne s 84
3.2 RPC over HTTP v2 Protocol Details ...o.vviriiiiiiiii i e e en e e 84
3.2.1 ComMMON Details vt e 85
3.2.1.1 Abstract Data Modelocviriiiiiii e 85
3.2.1.1.1 Virtual Connection, Virtual Channel Hierarchy, and Protocol Variables 85
3.2.1.1.2 Virtual Connection Cookie Tableccoovveiiiiiii e 87
3.2.1.1.3 Virtual Connection ADM Elementsccvveiiiiiiiiiiicic e e e 87
3.2.1.1.4 Sending Channel and Receiving Channel ..o 88
3.2.1.1.5 Receiving Channel 89
3.2.1.1.5.1 RECEIVEWINAOW ..ivviiiiiiiiiii e e e s ae e e anens 89
3.2.1.1.5.1.1 ReCeiVEWINAOWSIZE ..ot 89
3.2.1.1.5.1.2 Receiver AvailableWindowciiiiiiiiiiiii e 89

7/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

3.2.1.1.5.1.3 Recipient BytesReceived.c..oviiiiiiiiie e 89
3.2.1.1.5.1.4 AvailableWindowAdvertisedcooviviiiiiii 89
3.2.1.1.6 PiNg Originator. .o 89
3.2.1.1.6.1 ConNectioNTiMEOUL ...oiviiii i e s 90
3.2.1.1.6.2 LastPacketSentTimestamp «.ooviiiiiiii e 90
3.2.1.1.6.3 KeepAlive Interval.....ccooiiiiii e 90
3.2.1.2 I = 90
3.2.1.2.1 PING T i et 90
3.2.1.2.2 Connection TimMeoUt TimMer....uiiiiiiiii s 90
3.2.1.3 TNIEIAliZAtION e e 91
3.2.1.3.1 Flow Control and ReceiveWindow Processing......c.ccuveviiiiiiiiiiiiiinininnenne, 91
3.2.1.3.2 L YA ST Y= | S 91
3.2.1.4 Higher-Layer Triggered EVENEScciiiiiiiiiiii e 91
3.2.1.4.1 Flow Control and ReceiveWindow Higher-Layer Triggered Events........... 91
3.2.1.4.1.1 ConsumMINg RPC PDUSuiiiiiiiiiiiiiiiii e a s ae e e 91
3.2.1.4.1.2 QUEUING RPC PDUS . ettt st s s s s e e s na e s e e e e es 92
3.2.1.4.1.3 Dequeuing RPC PDUSoviiiiiiiiiiii et a e e e e 92
3.2.1.5 Message Processing Events and Sequencing Rulescooviiiiiiiiiiiinnnnnne, 92
3.2.1.5.1 Flow Control and ReceiveWindow ProCessing......c.ccvveviiiiiiiiiiiiiininnnnenne, 92
3.2.1.5.1.1 ReceiVINg RPC PDUSottt e s s e e e 92
3.2.1.5.1.2 FIOWCONETIrOIACK RTS PDU ..uviiiiiiiiiii it e e s n e ene e 93
3.2.1.5.1.3 ReCEIVEWINAOWSIZE . e vttt s e e rneanens 93
3.2.1.5.2 PDU FOrwardiNgoieiieiiiiiiiieie ittt e e st s e st e e st st s e e e e e raeeneeaes 93
3.2.1.5.3 ProtOCOl SEQUENCES.iieiiii e 94
3.2.1.5.3.1 Connection Establishment........cooviiiiiiiiii e 94
3.2.1.5.3.2 IN Channel ReCyCling 1 ..i.ciuiiiiiiiiii i 96
3.2.1.5.3.3 IN Channel ReCYCliNgG 2. e 97
3.2.1.5.3.4 OUT Channel RecyCling 1iiiriiiiiiiiiiii i en e e 98
3.2.1.5.3.5 OUT Channel ReCYCliNg 2cuiiiiiiiiiiiiii e 99
3.2.1.6 T EVENES o e 101
3.2.1.7 (@ a1 il o Yot I = o | 101
3.2.2 (O 1= o | ol 0 7= o= 1 101
3.2.2.1 Abstract Data Model ..o 103
3.2.2.1.1 KeepAlive iNterval... ..o 103
3.2.2.1.2 [0 g0 A T T 103
3.2.2.1.3 Channel Lifetime Sent....ooiiii e 103
3.2.2.1.4 Virtual In Channel Statecviiiiiiii e 103
3.2.2.1.5 Virtual Out Channel State....cvviiiii e 103
3.2.2.1.6 CUrrentKeepAlIVETIMEt aeaeas 103
3.2.2.1.7 CurrentKeepAliveInterval.....coi i e 104
3.2.2.2 L= 104
3.2.2.2.1 Connection TIMe-OUt TIMEr ..o e e aeas 104
3.2.2.2.2 KEEP-AlIVE TiMIEE .ttt et e e e e eas 104
3.2.2.2.3 Proxy Use Determination Timer.....ccoiiiiiiiiiii i e e 104
3.2.2.3 INitialiZatioN o e 104
3.2.2.4 Higher-Layer Triggered EVENESoiviiiiiiii e 105
3.2.2.4.1 Opening @ CoNNECHION .. .viei i e e 105
3.2.24.1.1 Determining HTTP ProXy US€ccvvviiiiiiiiiiiiiiiiiiiine e 105
3.2.2.4.1.2 ConNection OPENING ...civiiieiiiir e 105
3.2.2.4.2 SENAING @ PDU Liiiiiiiiii i e 106
3.2.2.4.3 (@{[o 1= 1 aTo J= 1 @le 3] [=To! o] o K 106
3.2.2.4.4 Setting the KeepAlive interval Protocol Variable.........c.c.cooooiiiiiiiiianenn. 107
3.2.2.5 Message Processing Events and Sequencing Rulesccooeviiiiiiiiieinennnn. 107
3.2.2.5.1 [=ol o T aU=T] o o] o I=] =T 107
3.2.2.5.2 OUT Channel RESPONSEiviiiiiiiiiiie ittt e e e e raanens 107
3.2.2.5.3 CONN/AS3 RTS PDU .tiiiiiiii ittt et e e e et e e e e e e e a e e e e e naanens 108
3.2.2.5.4 CONN/C2 RTS PDU . uiiiiiiieieiteieeeeene e e s e s e e e e rea e e e e e snena e s eenenes 108
3.2.2.5.5 IN_R1/A4 and IN_R2/A4 RTS PDUS.....citiuieiriiiiiiiiiienenenaenaneeenenenes 108
8/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

3.2.2.5.6 OUT_R1/A2 and OUT_R2/A2 RTS PDUS ...cviiiiiiiiiiiiiii e neieeanenaeens 109
3.2.2.5.7 OUT_RI/AB RTS PDU ..ciiiiiiiiiiiii ettt s s e s as e ras e s e naeaeas 109
3.2.2.5.8 OUT_R1/AL0 RTS PDU .tiiiiiiiiieii ittt ettt e e e aa e aaens 110
3.2.2.5.9 OUT_R2/A6 RTS PDU ..ttt ettt e nee s e nas e s e naeaens 110
3.2.2.5.10 OUT_R2/B3 RTS PDU ..ttt s e s e sasasensenesnansennannns 110
3.2.2.5.11 Connection Close, Connection Error, and Protocol Error Encountered110
3.2.2.5.12 IN Channel ReCYCING ..uiiriiiii i e e 111
3.2.2.6 LI Tl V2= o = 112
3.2.2.6.1 Connection Time-0Out Timer EXPiry .ociiiiiiiiiiiie i sieeaanea s 112
3.2.2.6.2 Keep-Alive Timer EXPIry ..o e e s 112
3.2.2.6.3 Proxy Use Determination Timer EXpiry ...cccvvveiiiiiiiiiiiciice e i 112
3.2.2.7 Other LOCal EVENES .oiviiii i e e e e e 112
3.2.3 Inbound ProXy Detailsviuiiiiiii e 112
3.2.3.1 Abstract Data Modelccviuiiiiii 113
3.2.3.1.1 ChannelLifetime ..o e 114
3.2.3.1.2 CurrentClientKeepAliveInterval.......coooiiiiiiiiiiic e 114
3.2.3.1.3 (O 1= g 7N Lo | f <O 114
3.2.3.1.4 KeepAlive interval.. ..o 114
3.2.3.1.5 Resource TYPe UUIDiiiiii i e e rae e nes 114
3.2.3.1.6 Y71 [0 TR 1 O 114
3.2.3.1.7 Default IN Channel ... e e e 114
3.2.3.2 LT 114
3.2.3.2.1 L] o AN FAY L 0 1= PP 114
3.2.3.3 | =] 4= Lo [0 o 115
3.2.3.4 Higher-Layer Triggered EVENEScciviiiiiiiiiii e e 115
3.2.3.5 Message Processing Events and Sequencing Rulesccovvviiiiiiiiiinnnnnnn, 115
3.2.3.5.1 RPC IN Channel Request Receivedcocivviiiiiiiiiiiie e 115
3.2.3.5.2 RPC PDU RECEIVEA ...ttt s e e s e e e e e e e e 116
3.2.3.5.3 CONN/BI1 RTS PDU .tiiiiiiiiiiii et e et st e et e ae et s e e e e e e aaens 116
3.2.3.5.4 CONN/B3 RTS PDU .ttt et se e et s e s s e e s asensenasneananennanens 117
3.2.3.5.5 IN_R1/A1 and IN_R2/A1 RTS PDUS....ciitiiiiiiiiiiiiiiiiieiei e seeanenaaens 117
3.2.3.5.5.1 Virtual Connection Cookie FOuNd........coviviiiiiiiiiiiei e v e 117
3.2.3.5.5.2 Virtual Connection Cookie Not Foundcocvveiiiiiiiiiiiiiiiiiceen, 118
3.2.3.5.6 IN_RI/AS5 RTS PDU ..ttt ettt aeens 118
3.2.3.5.7 IN_RI/B2 RTS PDU ..ttt e iee et e ae e et e e e s e naeneaaanenaanens 118
3.2.3.5.8 IN_R2/AS5 RTS PDU ..ttt e et et e enaeens 119
3.2.3.5.9 EChO REQUESE PDU .. .iiiiiiiiii it e e e e e 119
3.2.3.5.10 Connection Close, Connection Error, and Protocol Error Encountered119
3.2.3.5.11 ProCeSSING ErrOrsS.uiuiiiiiiiii e 120
3.2.3.5.12 Legacy Server RESPONSE. ...ttt e e eeaeans 120
3.2.3.6 LI LT V2= o = 120
3.2.3.7 Other LOCal EVENES .oiviiiiiii it e e e e e e e 120
3.2.4 Outbound ProxXy Detailscouiiiiiii i 120
3.2.4.1 Abstract Data Modeloooiiiiiii 121
3.2.4.1.1 Resource TYpe UUID .. it et e aae s 122
3.2.4.1.2 1Y 7] [0] TR0) 5 PP 122
3.2.4.2 I L= = 122
3.2.4.3 TNIEIAliZATION e e 122
3.2.4.4 Higher-Layer Triggered EVENtsouiviiiiiiii e 122
3.2.4.5 Message Processing Events and Sequencing Rulescccooviiiiiiiiiinnennnn. 122
3.2.4.5.1 RPC OUT Channel Request ReCeIVEdoviiiieiiiiiiiiiiiiiieeneneeaaas 122
3.2.4.5.2 RPC PDU RECEIVEA ...ttt ettt a e e e e 123
3.2.4.5.3 CONN/AL RTS PDU ittt st et e e e e e e et e e aeeas 123
3.2.4.5.4 CONN/CL RTS PDU ittt et e et et e et e ae e e e e s e e e e nnanens 124
3.2.4.5.5 OUT_R1/A1 or OUT_R2/A1 RTS PDUS ..iiiiiiiiiiiiiiii i naaaens 125
3.2.4.5.6 OUT_R1/A3 or OUT_R2/A3 RTS PDUS ..cuiiiiiiiiiiiiiiieiieieieveieeanenaanens 125
3.2.4.5.6.1 Virtual Connection Cookie Found........ccooviiiiiiiiiiiiii e 125
3.2.4.5.6.2 Virtual Connection Cookie Not Found.........c.ccvvviiiiiiiiiiiiii e 125

9/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

3.2.4.5.7 OUT_R1/AS RTS PDU ..ttt et et e e et s e a e e s e aanens 126
3.2.4.5.8 OUT_RI/A9 RTS PDU ..ttt sttt s ne e e s e s e aeaeas 126
3.2.4.5.9 OUT_R1/ALL RTS PDU ittt iee et et e et vt e e et st s e e e e naaens 126
3.2.4.5.10 OUT_R2/B1 RTS PDU ..ttt s ssiesesasensenesnansennannns 127
3.2.4.5.11 OUT_R2/C1L RTS PDU ..ttt as e s e e nsenesnnnsenaanens 128
3.2.4.5.12 OUT_R2/B2 RTS PDU ..ttt eiee et ste it e s s ae e easesaenenraennaens 128
3.2.4.5.13 ECho REQUESE PDUiiiiiiiii i et e aaas 128
3.2.4.5.14 Connection Close, Connection Error, and Protocol Error Encountered128
3.2.4.5.15 Legacy SerVer ReSPONSE. . vttt ittt ettt ie e it e ate s aane e raneraneenes 129
3.2.4.6 LI Tl V2= o = 129
3.2.4.7 Other LOCal EVENES .oiviiii it e e e e 129
3.2.5 SVl Dtails cuiri i e 129
3.2.5.1 Abstract Data MOdelcooviiiiiii e 131
3.2.5.2 I = 131
3.2.5.2.1 Connection SetUP TiMer ..o 131
3.2.5.3 INitialiZation «v e 131
3.2.5.3.1 Virtual Connection Cookie Tablecvieiiiiiiiie e 132
3.2.5.3.2 Server Virtual ConnecCtioN ...o.vii i e 132
3.2.5.4 Higher-Layer Triggered EVENESociviiiiiiiii i 132
3.2.5.4.1 SeNAiNG @ PDU ..oouiiiii i 132
3.2.5.5 Message Processing Events and Sequencing Rulesccovvvviiiiiiiiiinninnnn. 133
3.2.5.5.1 Establishing @ Connectionccvviiiiiiiiii e 133
3.2.5.5.2 Receiving @an RPC PDU.....uiiiiiiiiii i e e ee e rrae e aes 133
3.2.5.5.3 CONN/AZ RTS PDU .ttt et et et e et e e et s e e e e e e raeens 133
3.2.5.5.3.1 Virtual Connection NOt FOUNdcviiviiiiiiii e e 133
3.2.5.5.3.2 Virtual Connection FOUNdccoviiiiiiiii e 134
3.2.5.5.4 CONN/B2 RTS PDU .ttt et st e et e e et s e e e e e e e aaaens 134
3.2.5.5.4.1 Virtual Connection NOt FOUNdocviviiiiiiiiii e 135
3.2.5.5.4.2 Virtual Connection FOUNdcciiviiiiiii e e e 135
3.2.5.5.5 IN_RI/A2 RTS PDU ..ttt it e et e s e e e ee s e s e e e e naanens 136
3.2.5.5.6 IN_RI/AB RTS PDU ..ttt et et e e e e et e e e e aeens 137
3.2.5.5.7 IN_RI/B1 RTS PDU ..ttt et et et e re et s e e e e e e aeens 137
3.2.5.5.8 IN_R2/A2 RTS PDU ..ttt et et e et e e e s e s e e e naaens 137
3.2.5.5.9 OUT_R1/AG RTS PDU ..ttt ettt et e e e aeens 137
3.2.5.5.10 OUT_R1/AB RTS PDU ..ttt ittt seetsiereeneensenaeneassenaanens 138
3.2.5.5.11 OUT_R2/A4 RTS PDU ..ttt st ee st v n e e e a e naaens 138
3.2.5.5.12 OUT_R2/A8 RTS PDU ..ttt s see s e e aeeaaenesaeaaaenaanens 139
3.2.5.5.13 Connection Close, Connection Error, and Protocol Error Encountered139
3.2.5.5.14 Ping Traffic Sent Notify RTS PDU ON Server.......cccoveiiiiiiiiiiiiiniieinenens 139
3.2.5.5.15 OUT Channel RECYCIING ...uiiviiiiiiiiii i e aa e naaaeas 139
3.2.5.6 LI LT V2= o = 140
3.2.5.6.1 Connection Setup Timer EXPiry .oooviiiiiiiii i 140
3.2.5. Other LoCal EVENES vttt e e e e e 140
4 Protocol EXamples ...cciciiiiiiiiiiii i rs s s sr s s ra s s n s s rnrra s nra s rnannnERaRRanEa 141
4.1 Virtual Connection Open EXamPle. ...t ea 141
4.2 Flow Control and Receive Windows EXampleccoiviiiiiiiiiiiii e 142
L = o 1 Y 2 144
5.1 Security Considerations for Implementerscoooiiiiiiiiiii s 144
5.2 Index of Security Parametersouieieiiiiiiii et 144
Appendix A: Product Behavior ...cciccvrimimieismesasmsssasssassassassassasssnsasssnssnssassnnsannas 145
2 1 3 T- 1 T 1= = Tt 13 T« 149
0 e 1= G 150
10/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

1 Introduction

This document specifies the use of HTTP or HTTPS as a transport for the Remote Procedure Call
(RPC) Protocol, as specified in [C706] and extended as specified in [MS-RPCE]. The specification
builds upon and relies heavily upon the [C706] and [MS-RPCE] specifications, and readers need to be
familiar with their terms and concepts.

The Remote Procedure Call (RPC) over HTTP Protocol tunnels RPC network traffic from an RPC client
to an RPC server through a network agent referred to as an RPC over HTTP proxy. The protocol is
applicable to network topologies where the use of an HTTP-based or HTTPS-based transport is
necessary—for example, to traverse an application firewall—and the application or computer systems
communicating over the topology require the use of the RPC Protocol.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF),
commonly used by Internet specifications. ABNF notation balances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more
information, see [RFC5234].

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

binary large object (BLOB): A discrete packet of data that is stored in a database and is treated
as a sequence of uninterpreted bytes.

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.
The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the
issuing certification authority (CA) and can be issued for a user, a computer, or a service. The
most widely accepted format for certificates is defined by the ITU-T X.509 version 3
international standards. For more information about attributes and extensions, see [RFC3280

and [X509] sections 7 and 8.

channel lifetime: The maximum content length of an IN channel or OUT channel (in bytes).

channel recycling: The set of mechanisms involved in closing an open IN or OUT channel N and
opening a new IN or OUT channel N+1. The opening and subsequent closing occur as part of the
sequence of channels forming a virtual IN or OUT channel.

client: A computer on which the remote procedure call (RPC) client is executing.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

echo request: A message sent to an inbound proxy or outbound proxy in order to elicit a
response.

echo response: A message sent by an inbound proxy or outbound proxy in response to an echo
request.

11/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=90487
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90590
https://go.microsoft.com/fwlink/?LinkId=89824

endpoint: A network-specific address of a remote procedure call (RPC) server process for
remote procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a hamed pipe. For more
information, see [C706].

expire: A process in which an object, such as an external data connection, becomes invalid
because its allotted time period has ended.

HTTP client: A program that establishes connections for the purpose of sending requests, as
specified in [REC2616].

HTTP proxy: An intermediary program that acts as both a server and a client for the purpose of
making requests on behalf of other clients. For more information, see [RFC2616].

HTTP server: An application that accepts connections in order to service requests by sending back
responses. For more information, see [RFC2616].

IN channel: An inbound HTTP request or an inbound TCP/IP connection between two network
nodes acting in one of the roles defined by this protocol. An IN channel is independent from the
underlying transport and can be based on an HTTP or HTTPS request or on a TCP connection.

IN channel recycling: The set of mechanisms involved in closing an open IN channel N and
opening a new IN channel N+1. The opening and subsequent closing occur as part of the
sequence of channels forming a virtual IN channel.

inbound: The network traffic flowing from the client to the server.

inbound proxy: A network node that acts as an RPC over HTTP proxy for inbound traffic between
an RPC client and an RPC server.

Internet host name: The name of a host as defined in [RFC1123] section 2.1, with the extensions
described in [MS-HNDS].

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

mixed proxy: A network node that acts as a proxy for both inbound and outbound traffic between
a client and a server.

OUT channel: An outbound HTTP response or an outbound TCP/IP connection between two
network nodes acting in one of the roles defined by a protocol. An OUT channel is independent
from the underlying transport and can be based on an HTTP or HTTPS response or on a TCP
connection.

OUT channel recycling: The set of mechanisms involved in closing an open OUT channel N and
opening a new OUT channel N+1. The opening and subsequent closing occur as part of the
sequence of channels forming a virtual OUT channel.

outbound: Network traffic flowing from the server to the client.

outbound proxy: A network node that acts as an RPC over HTTP proxy for outbound traffic
between an RPC client and an RPC server.

PDU stream: An ordered sequence of RPC and RPC over HTTP protocol data units.

plugged channel mode: A channel mode in which an IN channel or OUT channel instance queues
protocol data units (PDUs) instead of sending them immediately.

12/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90268
%5bMS-HNDS%5d.pdf#Section_eff5b201ad32485dbbed1d07ad069d5c

predecessor channel: In the context of IN channel recycling or OUT channel recycling, the
previous IN channel or OUT channel (-1 where N is the reference point) in the sequence of
channels forming a virtual IN channel or virtual OUT channel.

predecessor inbound proxy: An inbound proxy to which a predecessor channel was established.

predecessor outbound proxy: An outbound proxy to which a predecessor channel was
established.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that can contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

protocol dialect: A protocol version that is distinct and non-interoperable from other protocol
versions from the same group of related protocols.

proxy: A network node that accepts network traffic originating from one network agent and
transmits it to another network agent.

receive window: The amount of memory that a recipient of network traffic has committed to
queuing protocol data units (PDUs) that it cannot process immediately.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

replacement channel: An IN channel or OUT channel other than the first in the sequence of IN
channels or OUT channels that constitute a virtual IN channel or virtual OUT channel.

Request to Send (RTS) cookie: A 16-byte cryptographically strong random number exchanged
between parties in a remote procedure call (RPC) over HTTP protocol sequence. An RTS cookie
has the same uniqueness requirements as a UUID, and implementations can use a UUID as the
RTS cookie. An RTS cookie is used to reference virtual connections, IN channels, OUT channels,
and other protocol entities.

Request to Send (RTS) Protocol Data Unit (PDU): A PDU that is used to control
communication settings on an IN channel or OUT channel, virtual IN channel or virtual OUT
channel, or virtual connection.

RPC client: A computer on the network that sends messages using remote procedure call (RPC) as
its transport, waits for responses, and is the initiator in an RPC exchange.

RPC over HTTP proxy: A mixed proxy, inbound proxy, or outbound proxy.

RPC PDU: A protocol data unit (PDU) originating in the remote procedure call (RPC) runtime. For
more information on RPC PDUs, see [C706] section 12 and [MS-RPCE] section 2.

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RPC server: A computer on the network that waits for messages, processes them when they
arrive, and sends responses using RPC as its transport acts as the responder during a remote
procedure call (RPC) exchange.

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

server: A computer on which the remote procedure call (RPC) server is executing.

13/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

successor channel: In the context of IN channel recycling or OUT channel recycling, the next IN
channel or OUT channel in the sequence of channels forming a virtual IN channel or virtual OUT
channel (N+1 where N represents the reference point in the sequence).

successor inbound proxy: An inbound proxy to which a successor channel is established.
successor outbound proxy: An outbound proxy to which a successor channel is established.

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):
Generic Syntax [RFC3986].

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] has to
be used for generating the UUID.

unplug a channel: To switch a channel from plugged channel mode to unplugged channel mode.

unplugged channel mode: A channel mode in which an IN channel or OUT channel instance
sends protocol data units (PDUs) immediately instead of queuing them. This is the default
mode for channels.

virtual connection: A pair consisting of one virtual IN channel and one virtual OUT channel
between the same remote procedure call (RPC) client and RPC server that provides full-duplex,
reliable, in-order, at-most-once delivery communication capabilities.

virtual IN channel: A communication session between a remote procedure call (RPC) client
and an RPC server that can span multiple IN channels. When the communication session spans
multiple IN channels, the IN channels are sequentially ordered in time with partial overlap in
time between channel N and channel N+1 in the sequence. A virtual IN channel provides half-
duplex, RPC client-to-RPC server, reliable, in-order, at-most-once delivery communication
capabilities.

virtual OUT channel: A communication session between a remote procedure call (RPC) client
and an RPC server that can span multiple OUT channels. When the communication session
spans multiple OUT channels, the OUT channels are sequentially ordered in time with partial
overlap in time between channel N and channel N+1 in the sequence. A virtual OUT channel
provides half-duplex, RPC server-to-RPC client, reliable, in-order, at-most-once delivery
communication capabilities.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

14 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-EERR] Microsoft Corporation, "ExtendedError Remote Data Structure".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NTHT] Microsoft Corporation, "NTLM Over HTTP Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[NETBEUI] IBM Corporation, "LAN Technical Reference: 802.2 and NetBIOS APIs", 1986,
https://www.ardent-tool.com/docs/boo/bk8p7001.boo

Note Requires IBM Softcopy Reader for Windows V4.0 to read the file.

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, https://www.rfc-editor.org/info/rfc1001

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, https://www.rfc-
editor.org/info/rfc1002

[RFC1123] Braden, R., "Requirements for Internet Hosts - Application and Support", RFC 1123,
October 1989, https://www.rfc-editor.org/info/rfc1123

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, https://www.rfc-editor.org/info/rfc2616

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999, https://www.rfc-editor.org/info/rfc2617

[RFC3548] Josefsson, S., Ed., "The Basel6, Base32, and Base64 Data Encodings", RFC 3548, July
2003, https://www.rfc-editor.org/info/rfc3548

[RFC4291] Hinden, R. and Deering, S., "IP Version 6 Addressing Architecture", RFC 4291, February
2006, https://www.rfc-editor.org/info/rfc4291

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data Encodings", RFC 4648, October
2006, https://www.rfc-editor.org/info/rfc4648

[US-ASCII] Injosoft AB, "ASCII Code - The extended ASCII table", https://www.ascii-code.com/

15/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-EERR%5d.pdf#Section_572bb78f911649668f9d4593456da307
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-NTHT%5d.pdf#Section_f09cf6e1529e403ba8a57368ee096a6a
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90224
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261
https://go.microsoft.com/fwlink/?LinkId=90261
https://go.microsoft.com/fwlink/?LinkId=90268
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90373
https://go.microsoft.com/fwlink/?LinkId=90432
https://go.microsoft.com/fwlink/?LinkId=90464
https://go.microsoft.com/fwlink/?LinkId=90487
https://go.microsoft.com/fwlink/?LinkId=90557

1.2.2 Informative References

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[MSDN-RPCHTTPTRCRED] Microsoft Corporation, "RPC_HTTP_TRANSPORT_CREDENTIALS structure",
http://msdn.microsoft.com/en-us/library/aa378624.aspx

[MSDN-RPCSECQOSV2] Microsoft Corporation, "RPC_SECURITY_QOS_V2 structure",
http://msdn.microsoft.com/en-us/library/aa378648.aspx

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000, https://www.rfc-
editor.org/info/rfc2818

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, https://www.rfc-editor.org/info/rfc5234

1.3 Overview

The following three sections present an overview of the following:

= The provisions in the RPC over HTTP Protocol that enable the use of HTTP as a transport.
= The roles and dialects comprising the RPC over HTTP Protocol.

= The encoding of RPC protocol data units (PDUs) within HTTP requests and responses.

1.3.1 Extensions to HTTP Functionality

Each connection-oriented transport must meet the requirements specified in [MS-RPCE] section 2.1.1.
The RPC over HTTP Protocol incorporates the following provisions to meet those requirements using

HTTP [RFC2616]:

= Duplex communications using virtual channels.

= Stream semantics through incrementally sending contents from the message body.

= Unlimited data stream using a sequence of HTTP requests or HTTP responses instead of using
chunked transfer encoding ([RFC2616] section 3.6.1).

1.3.2 Roles and Dialects

The RPC over HTTP Protocol defines the role of an RPC over HTTP proxy that can be deployed to
relay network traffic between a client and a server residing on networks separated by a firewall
through which HTTP or HTTPS traffic is permitted to flow.

RPC over HTTP Protocol has two main protocol dialects: RPC over HTTP v1 and RPC over HTTP v2.
Different roles are defined for each dialect.

RPC over HTTP v1 defines the roles of a client, a server, and an RPC over HTTP proxy, called a mixed
proxy in this specification. The following diagram shows the different roles and their relationships.

Client Mixed Proxy Server

16 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89888
https://go.microsoft.com/fwlink/?LinkId=90078
https://go.microsoft.com/fwlink/?LinkId=90112
https://go.microsoft.com/fwlink/?LinkId=90383
https://go.microsoft.com/fwlink/?LinkId=90383
https://go.microsoft.com/fwlink/?LinkId=123096
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90372

Figure 1: RPC over HTTP v1 roles

RPC over HTTP v2 works in a more complex topology and defines the roles of a client, a server, an
inbound RPC over HTTP proxy, and an outbound RPC over HTTP proxy. RPC over HTTP v2 proxies do
not have fixed roles. They can act as inbound or outbound proxies depending on the protocol
sequence in which they participate. The following diagram shows the different roles and their
interactions.

Inbound Proxy

HTTP TCR/IP

Client Server

HTTP TCR/IP

Qutbound
Prosy

Figure 2: RPC over HTTP v2 roles

The roles defined herein are preserved even when the inbound proxy and outbound proxy roles
run on the same network node. However, this protocol does not assume that the inbound proxy and
outbound proxy reside on the same network node. Load balancing and clustering technologies, among
others, might cause the inbound proxy and outbound proxy to run on different network nodes.<1>

An RPC over HTTP proxy that only supports RPC over HTTP v2 cannot interoperate with an RPC over
HTTP v1 client or an RPC over HTTP v1 server.

The differences between RPC over HTTP v1 and v2 fall into three main categories, based on the
following:

= The RPC over HTTP PDUs and RPC over HTTP PDUs' location
= The proxy roles

= The mapping of RPC and RPC over HTTP PDUs to HTTP requests

17/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Note In the figure above, the arrows indicate direction in which the PDU flow through the various
roles.

1.3.3 HTTP Proxy Use

In certain network topologies, the connection from the client to an RPC over HTTP proxy has to go
through an HTTP proxy. Thus before establishing a connection to the RPC over HTTP proxy, the client
is required to determine whether a HTTP proxy is required to be used.

To do this determination, the client tries sending a message both with and without using an HTTP
proxy. If it gets a response without using an HTTP proxy, then it does not use the HTTP proxy for
subsequent communication. If it gets a response only by using an HTTP proxy, then it uses the HTTP
proxy for subsequent communication.

1.3.4 High-Level Overview

The RPC Protocol transmits RPC PDUs between RPC clients and RPC servers. At a very high level,
this protocol functions as an RPC transport and relays (tunnels) these PDUs to the server using
HTTP (or HTTPS) and TCP/IP as specified in section 1.4.

The RPC over HTTP Protocol takes an RPC PDU that is generated [C706] and extended [MS-RPCE] on
either an RPC client or an RPC server and transfers it to the other side, to the RPC server for the RPC
client and to the RPC client for the RPC server, using a network agent called an RPC over HTTP
proxy. All traffic has to go through an RPC over HTTP proxy.

The most common deployment configuration, even though it is not a requirement for this protocol, is
for the client to be separated from the RPC over HTTP proxy by a wide area network (WAN) such as
the Internet where the network traffic for this protocol travels over HTTP or HTTPS. The RPC over
HTTP proxy and the RPC server are usually connected through a local area network (LAN) where the
network traffic for this protocol travels over TCP/IP.

The RPC PDUs are conceptually viewed by the RPC over HTTP Protocol as an ordered sequence or
stream of PDUs that can travel from RPC client to RPC server or from RPC server to RPC client. This
protocol does not modify or consume RPC PDUs. The only exception to this rule is when using HTTPS
and RPC over HTTP v2. In this case, RPC PDUs will be encrypted at the HTTP client and decrypted at
the inbound or outbound proxy when traveling between an HTTP client and an inbound proxy or
outbound proxy.

The RPC over HTTP Protocol inserts its own PDUs into the RPC PDU stream and routes the resulting
stream of PDUs over HTTP requests and responses or TCP/IP connections as defined throughout this
specification. Using Augmented Backus-Naur Form (ABNF) notation [RFC5234], the definition of
the resulting stream of RPC and RPC over HTTP PDUs outside the protocol sequences specified in
section 3 of this specification is as follows.

1*((1*(RPC over HTTP PDU))*(RPC PDU))

The following diagram illustrates this definition.

RPC/HTTP
FOU 1

RPC/HTTP

RPC FPDU 1 RPC PDU 2 - RPC FDU N POU M

Figure 3: RPC over HTTP PDU stream
An example PDU stream is provided in section 4.1.

In addition to specifying how the PDUs are ordered and mapped to the underlying transport, the RPC
over HTTP v2 dialect of this protocol specifies the following:

18/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=123096

= How an implementation maps an unbounded number of PDUs from a stream onto a number of
HTTP requests and responses, each of which is bounded by its content length. This is done
through a process called channel recycling, specified in section 3.2.

= How an implementation prevents HTTP requests and responses that are used by the RPC over
HTTP Protocol from being timed out as idle by network agents. This is done by sending PDUs in a
process called pinging, as specified in section 3.2. The same pinging process is used to detect
whether the other party is still running and reachable through the network.

1.4 Relationship to Other Protocols

The RPC over HTTP Protocol is used in conjunction with the Remote Procedure Call (RPC) Protocol
Extensions, as specified in [MS-RPCE] and relies on HTTP 1.0 and keep-alive connections from HTTP
1.1 [RFC2616]. It also relies on HTTPS [RFC2818] for data protection services. The following diagram
illustrates the protocol layering for this protocol on the client.

RPC

RPC over HTTP

HTTF or HTTPS

Figure 4: Protocol layering on the client

For RPC over HTTP, the mixed, inbound, and outbound proxies use the protocol layering shown in
the following diagram for their client-facing part.

RPC

RPC over HTTP

HTTF or HTTPS

Figure 5: Protocol layering on client-facing proxy

For the server-facing part of the mixed, inbound, and outbound proxy, the protocol layering is as
shown in the following diagram.

19/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90383

RPC

RPC over HTTP

TCP/IP

Figure 6: Protocol layering on server-facing proxy

The server uses the protocol layering shown in the following diagram.

RPC

RPC over HTTP

TCR/IP

Figure 7: Protocol layering on server

A consequence of this protocol layering is that an RPC client using RPC over TCP (ncacn_ip_tcp)
predecessor RPC protocol sequence cannot interoperate with an RPC server using RPC over HTTP
(ncacn_http) RPC protocol sequence and vice versa.

RPC over HTTP v1 can run on HTTP only. RPC over HTTP v2 can run over either HTTP or HTTPS. The
decision on whether to use HTTP or HTTPS is made by the client based on information provided by
higher-layer protocols.

RPC over HTTP v2 transmits error information encoded using the ExtendedError Remote Data
Structure, as specified in [MS-EERR].

1.5 Prerequisites/Preconditions

If HTTPS transport is used, a certificate is deployed on the inbound and outbound proxies.

The RPC over HTTP Protocol does not define any means for activating a server or proxy, and thus the
server and all proxies are fully initialized and listening before the RPC over HTTP Protocol can start
operating. The server is listening on a well-known or dynamic endpoint. RPC over HTTP proxies
listen in an implementation-specific way on the URIs specified in sections 3.1.2.3 and 3.2.3.3.

20/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

%5bMS-EERR%5d.pdf#Section_572bb78f911649668f9d4593456da307

1.6 Applicability Statement

The RPC over HTTP Protocol is applicable to scenarios where an RPC client needs to communicate
with an RPC server and, due to network constraints (for example, topology, firewalls, protocols, and
so on), an HTTP transport is used.

This protocol is also applicable when data is received from the Internet or other public networks and
additional protection for the RPC server is required. RPC over HTTP is generally not applicable in cases
where a single RPC method call will be executed with little data exchanged by the RPC client and the
RPC server. The reason is that the additional security provisions of this protocol and the additional
synchronization required by inbound and outbound proxies introduce significant overhead on the
initial connection establishment. Once a connection is established, RPC over HTTP is very efficient in
transmitting data between RPC clients and RPC servers.

RPC over HTTP v1 is superseded by RPC over HTTP v2 and cannot be used unless maintaining
backward compatibility with RPC over HTTP v1 is required.<2> RPC over HTTP v1 has weak security
and poor compatibility with existing HTTP infrastructure, and it deviates from RPC connection-oriented
protocol requirements ([MS-RPCE] section 2.1.1). More specifically, RPC over HTTP v1 does not meet
the second requirement in the bulleted list in [MS-RPCE] section 2.1.1 because it fails to maintain a
reliable communication session. RPC over HTTP v1 fails to keep the communication session open if the
network agents deem the communication session idle.

1.7 Versioning and Capability Negotiation

Supported Transports: The RPC over HTTP Protocol can run on top of HTTP 1.0 or HTTPS. RPC over
HTTP v2 requires HTTP 1.1 connection keep-alive support. Details are provided in section 2.1.2.1. For
historical reasons related to how this protocol has evolved, some HTTP requests and HTTP responses
are versioned as 1.0 and some are versioned as 1.1. When not specified explicitly in this specification,
version 1.1 is assumed to be the default.

= Protocol Versions: This protocol supports the following explicit protocol dialects: RPC over
HTTP v1 and RPC over HTTP v2. These protocol dialects are defined in section 1.3.2. RPC over
HTTP v2 supports versioning within RPC over HTTP v2 as defined in section 2.2.3.5.7. RPC over
HTTP v1 has no support for versioning.

= Security and Authentication Methods: This protocol relies on the security provided by HTTPS
and HTTP Basic, or NTLM authentication [MS-NTHT], and acts as a pass-through for the security
provided by RPC. The RPC over HTTP Protocol does not have security and authentication
provisions of its own.

= Capability Negotiation: This protocol negotiates one of its two protocol dialects, RPC over HTTP
vl and RPC over HTTP v2, by trying to first establish a connection using RPC over HTTP v2. If this
connection fails, the protocol falls back to RPC over HTTP v1. The negotiation between RPC over
HTTP v1 and RPC over HTTP v2 is defined in section 3.

1.8 Vendor-Extensible Fields
The RPC over HTTP Protocol does not include vendor-extensible fields. However, this protocol builds

on top of HTTP (or HTTPS), which allows vendors to add new HTTP headers [REC2616]. This protocol
also allows vendors to add HTTP headers, but it ignores all such headers.

1.9 Standards Assighments

Parameter Value Reference

RPC over HTTP endpoint mapper TCP port | 593 As specified in [IANAPORT

21/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-NTHT%5d.pdf#Section_f09cf6e1529e403ba8a57368ee096a6a
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=89888

2 Messages

This section defines how the RPC over HTTP Protocol maps over lower-layer protocols, and it defines
the syntax for the messages used by this protocol.

The message syntax in this specification uses the notation and conventions specified in [RFC2616
section 2. The parsing constructs OCTET, CHAR, UPALPHA, LOALPHA, ALPHA, DIGIT, CTL, CR, LF, SP,
HT, CRLF, LWS, TEXT, and HEX used in this specification are the same as those specified in [RFC2616]
section 2.2.

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

Both RPC over HTTP v1 and RPC over HTTP v2 start their transport mapping process from a stream of
RPC and RPC over HTTP PDUs that need to be mapped to one or more HTTP or HTTPS requests and
TCP/IP connections. Both protocol dialects also share the following characteristics:

= An endpoint mapper with a well-known endpoint of 593.
= An RPC protocol identifier of Ox1F.

= An RPC network address for the RPC server provided by a higher layer that MUST be an IPv4 or
IPv6 address.

= The RPC endpoint for the RPC server MUST be a TCP/IP port number.
= The predecessor RPC protocol sequence is "ncacn_http".
= RPC network options provided by higher layers that:
= MUST contain a valid IPv4 or IPv6 address for the HTTP server.<3>

= MAY contain an HTTP proxy.<4>

2.1.1 RPCover HTTP v1 Transport

The following sections define the mapping of the RPC over HTTP v1 protocol dialect over lower-layer
protocols. From a high-level perspective, this protocol uses a single, custom HTTP request between
the client and the mixed proxy, and all RPC PDUs are mapped as binary large objects (BLOBSs) in
the message body of this request.

2.1.1.1 Client to Mixed Proxy Traffic

RPC over HTTP v1 MUST use HTTP between the client and the mixed proxy. It MUST use a single
HTTP request to map both inbound and outbound traffic to the server. The HTTP request MUST be
initiated from the client and MUST be received by an HTTP server that runs on the mixed proxy. The
address of the HTTP server is provided by a higher-layer protocol as specified in section 2.1. RPC over
HTTP v1 MUST use port 80 for the HTTP traffic.

The syntax of the HTTP requests and HTTP response used by the RPC over HTTP Protocol are defined
in RPC Connect Request (section 2.1.1.1.1) and RPC Connect Response (section 2.1.1.1.2). Inbound
PDU Stream (section 2.1.1.1.3) and Outbound PDU Stream (section 2.1.1.1.4) define how RPC PDUs
are mapped to an HTTP request or an HTTP response.

2.1.1.1.1 RPC Connect Request

22/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

The RPC connect request is an HTTP request that MUST have the following HTTP header fields.
Method: MUST be set to "RPC_CONNECT".

Pragma: MUST be set to the string "No-cache".

Protocol: Clients MUST set this to 1.1. Proxies SHOULD ignore this header field.

URL: The server name and port MUST be encoded in this field as specified in section 2.2.2 of this
specification.

User-Agent: MUST be set to the string "RPC".
Message Body: MUST be composed as specified in section 2.1.1.1.3.

This request MUST not use the Content-Type and Content-Length header fields. It also MUST NOT
use transfer coding or specify a MIME type.

2.1.1.1.2 RPC Connect Response
The RPC connect response is an HTTP response that MUST have the following HTTP header fields.

Status Line: [RFC2616] section 6.1 specifies that the status line be composed of three nonspace
subfields. The three subfields MUST be set to the following values:

= HTTP-Version: MUST be the string "HTTP/1.1"
= Reason-Phrase: MUST be the string "OK"
= Status-Code: MUST be an HTTP status code in the inclusive range 200-299.

Message Body: Must be composed as specified in section 2.1.1.1.4 of this specification.

2.1.1.1.3 Inbound PDU Stream

Inbound PDUs from the PDU stream MUST be encoded as BLOBs in the message body of the RPC
connect request. The first inbound PDU MUST start from the beginning of the message body of the
RPC connect request, and each subsequent PDU from the PDU stream MUST be placed as a BLOB
immediately after the previous PDU in the RPC connect request without any delimiters. The following
diagram defines the layout of the PDUs in the message body of the RPC connect request.

Start of RPC End of RPC
Connect Req. Connect Req. —
Message Body Message Body

POU #1 | POU #2 | POU #3 | PDU #4 | PDU #5 | PDU #6 FOU# | POUS#

.

Figure 8: Inbound connect request PDU stream

Each PDU encoded as a BLOB contains its length inside the PDU as specified in [C706] section 12, RPC
PDU Encodings, and thus no delimiters are necessary between the BLOBs. For RPC over HTTP v1, the
implementation of the underlying HTTP transport MUST be capable of the following:

= Duplex communication.

= Sending a potentially unbounded number of PDUs in the message body of the RPC connect request
while at the same time receiving a potentially unbounded number of PDUs in the message body of

23/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=89824

the RPC connect response. This protocol specifically allows for sending and receiving a potentially
unbounded number of PDUs in the message body of the RPC connect request.

The PDUs are sent in the message body as they are generated for unplugged channel mode. In this
mode, PDU N MUST be sent as soon as it is generated and will not wait for PDU N+1 to be generated.

2.1.1.1.4 Outbound PDU Stream

Outbound PDUs from the PDU stream MUST be encoded as BLOBs in the message body of the RPC
connect response. The first PDU in the RPC connect response MUST start from the beginning of the
message body of the RPC connect response, and each subsequent PDU from the PDU stream MUST be
placed as a BLOB immediately after the previous PDU in the RPC connect response without any
delimiters. The following diagram defines the layout of the PDUs in the message body of the RPC
connect response.

Start of RPC End of RPC
Connect Rsp. Connect Rsp. —
Message Body Message Body

POU #1 | PDU #2 | PDU #3 | PDU #4 | POU #5 | PDU #6 FOUF | POU#

N

Figure 9: Outbound RPC connect response PDU stream

Each PDU encoded as a BLOB contains its length inside the PDU as specified in [C706] section 12, RPC
PDU Encodings, and thus no delimiters are necessary between the BLOBs.

For RPC over HTTP v1, the implementation of the underlying HTTP transport MUST be capable of the
following:

= Duplex communication.

= Sending a potentially unbounded number of PDUs in the message body of the RPC connect
request, while at the same time receiving a potentially unbounded number of PDUs in the message
body of the RPC connect response.

The PDUs are sent in the message body as they are generated for unplugged channel mode. In this
mode, PDU N MUST be sent as soon as it is generated and will not wait for PDU N+1 to be generated.

2.1.1.2 Mixed Proxy to Server Traffic

RPC over HTTP v1 uses TCP/IP between the mixed proxy and the server. The TCP connection MUST
be initiated by the mixed proxy. The server name and port to be used for setting up the TCP
connection MUST be extracted from the URI of the HTTP request as specified in section 2.1.1.1. Once
the connection is established, the mixed proxy and the server MUST use this connection for
transmission of all the PDUs in the PDU stream.

2.1.1.2.1 Legacy Server Response

A server MUST send the ASCII [US-ASCII] string "ncacn_http/1.0" to the mixed proxy as soon as the
TCP connection from the mixed proxy to the server is established. This string literal is called the
legacy server response.

24 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90557

2.1.2 RPCover HTTP v2 Transport

The following sections define the mapping of the RPC over HTTP v2 protocol dialect over lower-layer
protocols. From a high-level perspective, in its steady state this protocol uses a pair of custom HTTP
requests from the client to the inbound proxy and from the client to the outbound proxy. All
inbound RPC PDUs are mapped as BLOBs in the message body of the custom request to the
inbound proxy, and all outbound RPC PDUs are mapped as BLOBs in the message body of the custom
request to the outbound proxy.

2.1.2.1 Client to Inbound or Outbound Proxy

RPC over HTTP v2 MUST operate either on top of HTTP or on top of HTTPS. It requires HTTP 1.0 plus
connection keep-alive support from HTTP 1.1. Mapping to both protocols happens identically. In this
section, mapping is defined only on HTTP, but the same rules apply for HTTPS.<5>

If instructed by a higher-level protocol in an implementation-specific way, implementations of this
protocol MUST require the HTTP implementation on the client to authenticate to the HTTP server
running on the inbound proxy or outbound proxy using basic authentication for HTTP [RFC2617] or
NTLM authentication for HTTP [MS-NTHT].

The higher-level protocol MUST provide, in an implementation-specific way, either credentials in the
form of user name/password or a client-side certificate. Implementations of this protocol MUST NOT
process the credentials or authentication information. Such processing typically happens entirely
inside implementations of lower protocol layers.<6>

The same mapping MUST be applied for both the inbound proxy and the outbound proxy traffic. A
client implementation SHOULD instruct the implementation of the HTTP protocol on which it runs to
use an implementation-specific but reasonable time-out value for all requests.<7>

RPC over HTTP v2 MUST always use a pair of HTTP requests to build a virtual connection (2). The
HTTP requests MUST be initiated by the client and received by the inbound proxy and outbound proxy.

Both HTTP requests have implementation-specific content length as defined in the following sections.
The address of the HTTP server is provided by a higher-layer protocol. RPC over HTTP v2 always uses
port 80 for HTTP traffic and port 443 for HTTPS traffic.

The next few sections describe the HTTP IN channel request (section 2.1.2.1.1) and OUT channel
request (section 2.1.2.1.2), and the IN channel response (section 2.1.2.1.3) and OUT channel
response (section 2.1.2.1.4) used by RPC over HTTP v2 as well as the mapping of the PDU stream on
top of these requests. The general syntax and meaning of each of the HTTP header fields are specified
in [RFC2616]. Sections 2.1.2.1.1 through 2.1.2.1.8 only define the use of a given header field when
this protocol uses the field in a more specific or different meaning than the one specified in
[RFC2616]. RPC over HTTP v2 protocol entirely preserves the syntax and semantics of any HTTP
header field not explicitly mentioned here.

2.1.2.1.1 IN Channel Request

The IN channel request is an HTTP request [RFC2616]. The header fields of that HTTP request are as
follows:

Method: MUST be the "RPC_IN_DATA" string.

Accept: Clients SHOULD set this to "application/rpc" string literal. Inbound proxies MUST ignore
this header field.

Cache-Control: Clients MUST set this to "no-cache". Inbound proxies MUST ignore this header field.

Connection: Clients MUST set this to "Keep-Alive". Inbound proxies MUST ignore this header field.

25/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90373
%5bMS-NTHT%5d.pdf#Section_f09cf6e1529e403ba8a57368ee096a6a
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90372

Content-Length: MUST be in the inclusive range of 128 kilobytes to 2 gigabytes.<8>

Host: Clients MUST set this to the server name of the inbound proxy ([RFC2616] section 14.23
"Host"). Inbound proxies SHOULD ignore this header field.

Pragma Directives:

= Clients MUST add a "No-cache" pragma directive as specified in [RFC2616] section 14.32. Inbound
proxies MUST ignore this directive.

= If the higher-layer protocol or application specified a connectiontimeout, a client MUST add a
pragma directive of the form "Pragma:MinConnTimeout=T", where T is a decimal string
representation of the minimum connection time-out, in seconds, to be used for this IN channel.
The time-out MUST be in the inclusive range of 120 to 14,400 seconds.

= If the higher-layer protocol or application specified a Resource Type UUID, a client MUST add a
pragma directive of the form "Pragma:ResourceTypeUuid=R", where R is a UUID formatted as a
string ([C706]- Section A.3. This pragma specifies the Resource Type UUID for this channel. For
more details on Resource Type UUID, see section 3.2.3.1.5.

= If the higher-layer protocol or application specified a Session UUID, a client MUST add a pragma
directive of the form "Pragma:SessionIld=S", where S is a UUID formatted as a string. This
pragma specifies the Session UUID for this channel. For more details on Session UUID, see section

Protocol: Clients SHOULD set this to 1.0. Inbound proxies SHOULD ignore this header field.

URL: The server name and port MUST be encoded in this field. For details on encoding, see section
2.2.2.

User-Agent: Clients SHOULD set this to the "MSRPC" string literal. Inbound proxies SHOULD ignore
this header field.

Message Body: For details on how the message body of an IN channel request MUST be created, see
section 2.1.2.1.7.

2.1.2.1.2 OUT Channel Request

The OUT channel request is an HTTP request [RFC2616]. The header fields of that HTTP request are
as follows:

Method: MUST be set to the "RPC_OUT_DATA" string.

Accept: Clients SHOULD set this to "application/rpc" string literal. Outbound proxies MUST ignore
this header field.

Cache-Control: Clients MUST set this to "no-cache". Outbound proxies MUST ignore this header
field.

Connection: Clients MUST set this to "Keep-Alive". Outbound proxies MUST ignore this header field.

Content-Length: MUST be set to 76 for nonreplacement OUT channels and set to 120 for
replacement OUT channels.

Host: Clients MUST set this to the server name of the outbound proxy ([RFC2616] section 14.23,
Host). Outbound proxies SHOULD ignore this header field.

Pragma Directives:

= Clients MUST add a "No-cache" pragma directive as specified in [RFC2616] section 14.32.
Outbound proxies MUST ignore this directive.

26/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90372

= Optional pragma directive that, if present, MUST be defined to have the format
"Pragma:MinConnTimeout=T", where T MUST be a decimal string representation of the minimum
connection time-out, in seconds, to be used for this OUT channel. The time-out MUST be in the
inclusive range of 120 to 14,400 seconds.

= Optional pragma directive that, if present, MUST be defined to have the format
"Pragma:ResourceTypeUuid=R", where R MUST be a UUID formatted as a string ([C706
Appendix A, Universal Unique Identifier). This pragma specifies the Resource Type UUID for this
channel. For more details on Resource Type UUID, see section 3.2.3.1.5.

= Optional pragma directive that, if present, MUST be defined to have the format
"Pragma:Sessionld=S", where S MUST be a UUID formatted as a string ([C706] Appendix A,
Universal Unique Identifier). This pragma specifies the session ID for this channel.

Protocol: Clients SHOULD set this to 1.0. Outbound proxies SHOULD ignore this header field.

URL: The server name and port are encoded in this field. For information on how the encoding is
done, see section 2.2.2 of this specification.

User-Agent: Clients SHOULD set this to the "MSRPC" string literal. Outbound proxies SHOULD ignore
this header field.

Message Body: For the definition of how the message body of an OUT channel request MUST be
created, see section 2.1.2.1.8 of this specification.

2.1.2.1.3 IN Channel Response

The IN channel response is an HTTP response [RFC2616]. It is used only in error conditions on the
RPC over HTTP proxy. The HTTP header fields and message body syntax that are different from
[RFC2616] are as follows:

Status Line: [RFC2616] section 6.1 specifies that the status line be composed of three nonspace
subfields:

= HTTP-Version: SHOULD be the character sequence HTTP/1.0.

= Reason-Phrase: MUST be in the following form:

reason-phrase = "RPC Error: " RPC-Error [ee-info]
RPC-Error = 1*HEX
ee-info = ", EEInfo: " EncodedEEInfo

= RPC-Error: MUST be interpreted as a hexadecimal representation of an error code. The error code
MUST be an implementation-specific value between 0x0 and OxFFFFFFFF. The error code MUST
NOT be one of the error codes specified in [MS-RPCE] section 3.3.3.5.1.<9>

ee-info: Is part of the reason-phrase and MUST be present if error information is available to the
inbound proxy. The behavior of the inbound proxy is defined in section 3.2.3.5.11.

EncodedEEInfo: MUST be a base64-encoded BLOB. The base64 encoding MUST be as specified in
RFC4648] section 4. The content of the BLOB is specified in [MS-EERR]. The BLOB MUST continue
until the CRLF delimiter at the end of the status line.

The total length of the reason-phrase line MUST NOT exceed 1,024 bytes.
Status-Code: MUST be the character sequence 503.

MessageBody: MUST be in the following format.

27/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90487
%5bMS-EERR%5d.pdf#Section_572bb78f911649668f9d4593456da307

message-body = ["RPC EEInfo:" EncodedEEInfo]

EncodedEEInfo: MUST be a base64 BLOB. The base64 encoding MUST be as specified in [RFC4648]
section 4. The content of the BLOB is specified in [MS-EERR]. The BLOB MUST continue until the CRLF
delimiter at the end of the message body.

2.1.2.1.4 OUT Channel Response

The OUT channel response is sent in both success and failure cases. In success case, the header
fields of the HTTP response to the OUT channel request are as follows:

Content-Length: MUST be set to an implementation-specific value in the inclusive range of 128
kilobytes to 2 gigabytes.<10>

Content-Type: MUST be set to the string literal "application/rpc".

Status Line: [RFC2616] section 6.1 specifies that the status line be composed of three nonspace
subfields:

= HTTP-Version: MUST be the character sequence HTTP/1.1.
= Status-Code: MUST be the character sequence 200.
= Reason-Phrase: MUST be the character sequence Success.

In a failure case, the format of the OUT channel response is the same as the IN channel response as
defined in section 2.1.2.1.3 of this specification.

2.1.2.1.5 Echo Request

An echo request is used in the proxy discovery protocol sequence. The header fields for an echo
request are as follows:

Method: MUST be set to either the "RPC_IN_DATA" or the "RPC_OUT_DATA" string. Both are valid.
The client SHOULD use "RPC_IN_DATA" when it is sending an echo request as part of a protocol
sequence associated with IN channels and SHOULD use "RPC_OUT_DATA" when it is sending an echo
request as part of a protocol sequence associated with OUT channels. If the client sends
"RPC_IN_DATA" in this field, the proxy MUST act as inbound proxy. If the client sends
"RPC_OUT_DATA" in this field, the proxy MUST act as outbound proxy.

Accept: Clients SHOULD set this to the "application/rpc" string literal. Inbound and outbound proxies
MUST ignore this header field.

Cache-Control: Clients MUST set this to "no-cache". Inbound and outbound proxies MUST ignore this
header field.

Connection: Clients SHOULD set this to Keep-Alive. Inbound and outbound proxies MUST ignore this
header field.

Content-Length: Clients MUST set this header field to a value in the inclusive range of 0 to
0x10.<11>

Host: Clients MUST set this to the server name of the inbound or outbound proxies as specified in
RFC2616] section 14.23, Host. Inbound and outbound proxies SHOULD ignore this header field.

Pragma Directives:

= Clients MUST add a "No-cache" pragma directive as specified in [RFC2616] section 14.32. Inbound
and outbound proxies MUST ignore this directive.

28/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90372

Protocol: Clients SHOULD set this to 1.0. Inbound and outbound proxies SHOULD ignore this header
field.

URL: The server name and port are encoded in this field. For information on how the encoding is
done, see section 2.2.2.

User-Agent: Clients SHOULD set this to the "MSRPC" string literal. Inbound and outbound proxies
SHOULD ignore this header field.

Message Body: Clients MAY set the message body to random content they choose as specified in
[RFC2616].<12> Inbound and outbound proxies MUST ignore the message body.

2.1.2.1.6 Echo Response

An echo response is used in the proxy discovery protocol sequence. This response is sent by an
inbound or outbound proxy as an HTTP response to the echo HTTP request. The same echo
response is sent by both inbound and outbound proxies.

The header fields of the HTTP response are as follows:

Connection: Inbound and outbound proxies SHOULD set this to Keep-Alive. Clients MUST ignore this
header field.

Content-Length: Inbound and outbound proxies MUST set this field to 20. Clients MUST ignore this
header field.

Content-Type: Inbound and outbound proxies MUST set this header field to the string literal
"application/rpc". Clients SHOULD ignore this header field.

Status Line: [RFC2616] section 6.1 specifies that the status line be composed of three nonspace
subfields:

= HTTP-Version: The HTTP protocol version of the HTTP server. This protocol does not require
any particular HTTP version. Any HTTP version that is 1.0 or higher SHOULD be accepted by
implementations of this protocol.

= Reason-Phrase: MUST be Success.
= Status-Code: MUST be 200.

Implementations SHOULD respond with the Status Line as specified above. It is not a requirement of
this protocol for implementations to use the status-code field to indicate errors, though
implementations MAY do so.

Message Body: Inbound and outbound proxies put in the message body the echo response RTS
packet described in section 2.2.4.48 and encoded as a BLOB.

2.1.2.1.7 Inbound PDU Stream

Inbound PDUs from the PDU stream MUST be encoded as BLOBs in the message body of the IN
channel. The first PDU in the IN channel MUST start from the beginning of the message body of the
IN channel, and each subsequent PDU from the PDU stream MUST be placed as a BLOB immediately
after the previous PDU in the IN channel without any delimiters. The following diagram describes the
layout of the PDUs in the message body of the IN channel.

29/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90372

Start of IM End of IM
Channel Msg. Channel Msg. —
Body Bady

POU #1 | PDU #2 | PDU #3 | PDU #4 | POU #5 | PDU #6 FOUF | POU#

N

Figure 10: IN channel message PDU stream

Each PDU is encoded as a variable-sized BLOB containing its length inside the PDU; therefore, no
delimiters are necessary between the BLOBs. The length of the RPC PDUs is specified in [C706

section 12, RPC PDU Encodings. The length of the RTS PDUs is defined in section 2.2.3.6 of this
specification. An IN channel contains a variable number of PDUs, and the PDUs themselves might have
variant sizes. An IN channel MUST NOT contain more PDUs than can fit in its maximum content length
as indicated by the Content-Length header. If there is not enough space on an IN channel for another
PDU from the PDU stream, the IN channel is considered expired and MUST NOT be used by the client
anymore. A successor IN channel MUST be established. For more details on how the client manages
the channel lifetime, see section 3.2.2.

The PDUs MUST be sent in the message body as they are generated: PDU N MUST be sent as soon as
it is generated and MUST NOT wait for PDU N+1 to be generated.

By using the message body of the IN channel to transmit PDUs over HTTP/HTTPS, this protocol obtains
a half-duplex channel for a limited number of bytes that provides reliable, in-order, at-most-once
delivery semantics between a client and inbound proxy.

2.1.2.1.8 Outbound PDU Stream

Outbound PDUs from the PDU stream MUST be encoded as BLOBs in the message body of the OUT
channel. The first PDU in the OUT channel MUST start from the beginning of the message body of the
OUT channel, and each subsequent PDU from the PDU stream MUST be placed as a BLOB immediately
after the previous PDU in the OUT channel without any delimiters. The following diagram describes the
layout of the PDUs in the message body of the OUT channel.

Start of OUT End of OUT
Channel Msg. Channel Msg. —
Baody Body

POU #1 | POU #2 | POU #3 | PDU #4 | PDU #5 | PDU #6 FOU# | POUS#

.

Figure 11: OUT channel message PDU stream

Each PDU encoded as a BLOB contains its length inside the PDU and thus no delimiters are necessary
between the BLOBs. The length of the RPC PDUs is defined in RPC PDU Encodings [C706] section 12.
The length of the RTS PDUs is defined in section 2.2.3.6.

An OUT channel contains a variable number of PDUs and the PDUs themselves might have variable
sizes. An OUT channel MUST NOT contain more PDUs than can fit in its maximum content length as
indicated by the Content-Length header. If there is not enough space on an OUT channel for another
PDU from the PDU stream, the OUT channel is considered expired and MUST NOT be used by the
server anymore. A successor OUT channel MUST be established. How the server manages the
channel lifetime is specified in section 3.2.5.

30/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

The PDUs are sent in the message body as they are generated. PDU N MUST be sent as soon as it is
generated and will not wait for PDU N+1 to be generated.

By using the message body of the OUT channel to transmit PDUs over HTTP/HTTPS, this protocol
obtains a half-duplex channel for a limited number of bytes that provides reliable, in-order, at-most-
once delivery semantics between a client and outbound proxy.

2.1.2.2 Inbound or Outbound Proxy to Server

RPC over HTTP v2 uses TCP/IP between the inbound or outbound proxy and the server. The same
mapping is applied for both the inbound and the outbound proxy.

The TCP connection is initiated by the inbound or outbound proxy. The server name and port to be
used for setting up the TCP connection are extracted from the URL of the HTTP request as specified in
section 2.1.1.1. Once the connection is established, the inbound proxy or outbound proxy and the
server use this connection for transmission of all the PDUs of the PDU stream.

By using a TCP/IP connection between the inbound or outbound proxy and the server,
implementations of this protocol obtain a full-duplex channel for an unlimited number of bytes that
provides reliable, in-order, at-most-once delivery semantics.

2.1.2.2.1 Legacy Server Response

A server SHOULD send the string literal "ncacn_http/1.0" to the inbound or outbound proxy as soon
as the TCP connection from the inbound or outbound proxy to the server is established. This string
literal is called the legacy server response.

2.2 Message Syntax

This section defines the message syntax for the messages and PDUs used by this protocol. First, it
specifies the conventions and some common data structures used in multiple messages. Then it
defines the rules for combining the common data structures, and finally, it defines the PDUs for this
protocol.

2.2.1 Common Conventions

All data structures described in this section share the following common characteristics:
= All numeric fields MUST be encoded using little-endian byte ordering.

= Alignment for all data structures except the URI MUST be 4 bytes.

= All structures in this section except the URI are used for RPC over HTTP v2 only.

2.2.2 URI Encoding

The format of the URI header field of the HTTP request has a special interpretation in this protocol. As
specified in [RFEC2616], the URI is to be of the following form.

http-URL = "http:" "//" host [":" port] [abs-path
["?" query]]

This protocol specifies that abs-path MUST be present for RPC over HTTP v2 and MUST have the
following form.

31/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90372

nocert-path = "/rpc/rpcproxy.dll"
withcert-path = "/rpcwithcert/rpcproxy.dll"

abs-path = nocert-path / withcert-path

The form matching withcert-path MUST be used whenever the client authenticates to the HTTP
server using a client-side certificate. The form matching nocert-path MUST be used in all other
cases.<13>

This protocol specifies that query string MUST be present for RPC over HTTP v2 and MUST be of the
following form.

query = server-name server-port

The inbound proxy or outbound proxy uses the query string to establish a connection to an RPC over
the HTTP server, as specified in sections 3.2.3.5.3 and 3.2.4.5.3.

server-name = DNS-Name / IP-literal-address /
IPv6-literal-address / NetBIOS-Name
server-port = 1*6(DIGIT)

The length of server-name MUST be less than 1,024 characters.

DNS-Name: An Internet host name or IP_literal_address that is the string representation of an IP
literal address, as specified in [RFC1123] section 2.1.

IPv6-literal-address: MUST be the string representation of an IPv6 literal address as specified in

RFC4291] section 2.

NetBIOS-Name: MUST be a NetBIOS name. For more details about NetBIOS, refer to [NETBEUI],
[RFC1001], and [RFC1002].

2.2.3 Common Data Structures

This section defines several common data structures and values used by the RPC over HTTP Protocol.
They are used in multiple PDUs. The PDUs themselves are defined in section 2.2.4. The common
conventions for the messages are defined in section 2.2.1.

2.2.3.1 RTS Cookie

The RTS cookie is a token exchanged between parties in an RPC over HTTP Protocol sequence and is
used to name objects and abstractions as defined throughout this specification. This section defines
the encoding for an RTS cookie.

—
N
w

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6(|7|(8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Cookie (16 bytes)

32/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=90268
https://go.microsoft.com/fwlink/?LinkId=90464
https://go.microsoft.com/fwlink/?LinkId=90224
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261

The value chosen for an RTS cookie SHOULD be a 16-byte cryptographically strong random number. It

has the same uniqueness requirements as a UUID, and implementations MAY use a UUID as the RTS
cookie.<14>

2.2.3.2 Client Address

The client address data structure is used to transmit the IP address of a client to a proxy or a server.
It has two basic formats: IPv4 and IPv6, as described in sections 2.2.3.2.1 and 2.2.3.2.2.

2.2.3.2.1 Client Address - IPv4

The client address data structure is used to transmit the IP address of a client to a proxy or a server.
The encoding of the client address for the IPv4 format is as follows.

=
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

AddressType

ClientAddress

Padding

AddressType (4 bytes): MUST be set to the value 0 to indicate IPv4 format.
ClientAddress (4 bytes): MUST contain the IPv4 address of the client in little-endian byte order.

Padding (12 bytes): Senders SHOULD set all bytes in this field to the value 0x00. Receivers MUST
ignore this field.

2.2.3.2.2 Client Address - IPv6

The client address data structure is used to transmit the IP address of a client to a proxy or a server.
The encoding of the client address for the IPv6 format is as follows.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]|1

AddressType

ClientAddress (16 bytes)

Padding

33/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

AddressType (4 bytes): MUST be set to the value 1 to indicate IPv6 format.

ClientAddress (16 bytes): MUST contain the IPv6 address of the client in little-endian byte order.

Padding (12 bytes): Senders SHOULD set all bytes in this field to the value 0x00. Receivers MUST
ignore this field.

2.2.3.3 Forward Destinations

The forward destination enumeration specifies the target of a forwarded PDU as per the following
table.

Constant/value | Description

FDClient Forward to client
0x00000000

FDInProxy Forward to inbound proxy
0x00000001

FDServer Forward to server
0x00000002

FDOutProxy Forward to outbound proxy
0x00000003

If a PDU is forwarded, the party that originally created the PDU is called the originator of the PDU and
the party that sends the PDU to the next hop in the forwarding chain is called the sender of the PDU.
For a definition of the processing rules related to PDU forwarding, see section 3.2.1.5.2.

2.2.3.4 Flow Control Acknowledgment

The Flow Control Acknowledgment data structure is embedded in a packet performing some sort of
flow control acknowledgment for traffic received. The encoding of this data structure is as follows.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]|1

Bytes Received

Available Window

ChannelCookie (16 bytes)

Bytes Received (4 bytes): The number of bytes received at the time the flow control
acknowledgment was issued. For a definition of the processing rules related to flow control
acknowledgment, see section 3.2.1.1. This value MUST be in the inclusive range of 0 to the
channel lifetime denoted by the channel cookie field.

34/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Available Window (4 bytes): The number of bytes available in the ReceiveWindow of the
originator of this PDU.

ChannelCookie (16 bytes): An RTS cookie that uniquely identifies the channel for which the traffic
received is being acknowledged (see section 2.2.3.1).

2.2.3.5 RTS Commands

The RTS PDUs contain a series of commands. This section defines the valid RTS commands. Section
2.2.3.6 defines how the commands are ordered in a PDU.

The type of each command in an RTS PDU is identified by a numeric value. Each command is used in
one or more RTS PDUs as defined in sections 2.2.4.2 through 2.2.4.50. Section 3.2 defines when each

RTS PDU is used, who sends it, and who receives it. The following table specifies the nhumeric value
and meaning of each command type.

Value

Meaning

ReceiveWindowSize
(0x00000000)

The ReceiveWindowSize command communicates the size of the ReceiveWindow.

FlowControlAck
(0x00000001)

The FlowControlAck command carries acknowledgment for traffic received.

ConnectionTimeout
(0x00000002)

The ConnectionTimeout command specifies the configured connection time-out.

Cookie (0x00000003)

The Cookie command carries an RTS cookie.

ChannelLifetime
(0x00000004)

The ChannellLifetime command specifies the channel lifetime.

ClientKeepalive
(0x00000005)

The ClientKeepalive command carries the desired interval for sending keep-alive
PDUs.

Version (0x00000006)

The Version command carries the RPC over HTTP v2 version number for the sender
of the PDU that contains this command.

Empty (0x00000007)

Empty command.

Padding (0x00000008)

Padding is a variable-size command used to pad the size of an RTS PDU to a desired
size.

NegativeANCE
(0x00000009)

The NegativeANCE command indicates that a successor channel was not
established successfully.

ANCE (0x0000000A)

The ANCE command indicates that a successor channel was established successfully.

ClientAddress
(0x0000000B)

The ClientAddress command carries the client IP address. The IP address is encoded
as specified in section 2.2.3.2. Regardless of who sends this PDU, the address MUST
be interpreted to be the address of the client.

AssociationGrouplId

The AssociationGroupld command carries the client association group ID as specified

(0x0000000C) in section 2.2.3.5.13. Regardless of who sends this PDU, the association group ID
MUST be interpreted to be that of the client.

Destination The Destination command carries the destination to which a PDU MUST be

(0x0000000D) forwarded.

PingTrafficSentNotify
(0x0000000E)

The PingTrafficSentNotify command carries the number of bytes sent by the
outbound proxy to the client as part of ping traffic.

[MS-RPCH] - v20240729

35/ 154

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation

Release: July 29, 2024

2.2.3.5.1 ReceiveWindowsSize

The ReceiveWindowSize command specifies the size of the ReceiveWindow of a party. The party
from which the ReceiveWindow originated is specified in the section for the RTS PDU that contains
this command. The structure of the command is as follows.

=
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

CommandType

ReceiveWindowSize

CommandType (4 bytes): MUST be the value ReceiveWindowSize (0x00000000).

ReceiveWindowsSize (4 bytes): The size of the ReceiveWindow, in bytes. It MUST be in the
inclusive range of 8 kilobytes to 256 kilobytes. The ReceiveWindow MUST be greater than or
equal to the PDU fragment size transmitted in the bind/bind_ack packets at the RPC layer
([C706] section 12.4).<15>

The ReceiveWindowsSize field from this PDU MUST be used to set the ReceiveWindowSize ADM from
section 3.2.1.1.5.1.1.

2.2.3.5.2 FlowControlAck

The FlowControlAck command specifies acknowledgment for traffic received. The structure of the
command is as follows.

—
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

CommandType

Ack (24 bytes)

CommandType (4 bytes): MUST be the value FlowControlAck (0x00000001).

Ack (24 bytes): MUST be a flow control acknowledgment structure as defined in section 2.2.3.4.

2.2.3.5.3 ConnectionTimeout

The ConnectionTimeout command specifies the desired frequency for sending keep-alive PDUs
generated by this protocol as defined in section 3.2. The party from which the connection time-out
originated is specified in the section for the RTS PDU that contains this command.

—
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

CommandType

ConnectionTimeout

36/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89824

CommandType (4 bytes): MUST be the value ConnectionTimeout (0x00000002).

ConnectionTimeout (4 bytes): MUST be the integer value for the client keep-alive that this
connection is configured to use, in milliseconds. The value MUST be in the inclusive range of
120,000 through 14,400,000 milliseconds.

2.2.3.5.4 Cookie

The Cookie command specifies an RTS cookie. The meaning of the RTS cookie is inferred from its
position in the command sequence as specified in section 2.2.4 and the context established by the
protocol sequence as defined in section 3.2.

=
N
w

0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

CommandType

Cookie (16 bytes)

CommandType (4 bytes): MUST be the value Cookie (0x00000003).
Cookie (16 bytes): MUST contain an RTS cookie, which is specified in 2.2.3.1.

2.2.3.5.5 ChannelLifetime

The ChannelLifetime command specifies the channel lifetime. The party from which the channel
lifetime originated is specified in the sections that define the RTS PDU that contains this command.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

CommandType

ChannelLifetime

CommandType (4 bytes): MUST be the value ChannelLifetime (0x00000004).

ChannelLifetime (4 bytes): The channel lifetime, in bytes. This value MUST be in the inclusive
range of 128 kilobytes through 2 gigabytes.<16>

2.2.3.5.6 ClientKeepalive

The ClientKeepalive command carries the desired interval for sending keep-alive PDUs on behalf of
the client whose usage is defined in section 3.2. The party from which the client keep-alive originated
is specified in the sections that define the RTS PDU that contains this command.

—
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

CommandType

37/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ClientKeepalive

CommandType (4 bytes): MUST be the value ClientKeepalive (0x00000005).

ClientKeepalive (4 bytes): An unsigned integer that specifies the keep-alive interval, in
milliseconds, that this connection is configured to use. This value MUST be 0 or in the inclusive
range of 60,000 through 4,294,967,295. If it is 0, it MUST be interpreted as 300,000.

2.2.3.5.7 Version

The Version command specifies an RPC over HTTP v2 version number. This version humber allows
versioning within RPC over HTTP v2. Version information MUST be interpreted to refer to the sender of
the PDU.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

CommandType

Version

CommandType (4 bytes): MUST be the value Version (0x00000006).

Version (4 bytes): An unsigned integer that specifies the version of RPC over HTTP v2 that the
sender of the PDU will use. Implementation of this protocol SHOULD set this to 1 on sending and
MUST ignore it on receiving.

2.2.3.5.8 Empty

The Empty command specifies an empty command with no contents. Its meaning is context-specific
and is defined in section 3.2.

-
N
w

0({1(2|3|4|5|6|7|8|9(0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

CommandType

CommandType (4 bytes): MUST be the value Empty (0x00000007).

2.2.3.5.9 Padding

The Padding command is a variable-size command that can be used to pad the size of an RTS PDU to
a desired size, as specified in section 2.2.4.45.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

CommandType

ConformanceCount

Padding (variable)

38/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

CommandType (4 bytes): MUST be the value Padding (0x00000008).

ConformanceCount (4 bytes): The size of the padding field, in bytes. It MUST be in the inclusive
range of 0 to OxFFFF.

Padding (variable): An array of padding bytes that is ConformanceCount bytes long. Protocol
implementations SHOULD initialize padding bytes to zero on sending and MUST ignore them on
receiving.

2.2.3.5.10 NegativeANCE

The NegativeANCE command specifies that a successor channel was not established successfully.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

CommandType

CommandType (4 bytes): MUST be the value NegativeANCE (0x00000009).

2.2.3.5.11 ANCE

The ANCE command specifies that a successor channel was established successfully.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]|1

CommandType

CommandType (4 bytes): MUST be the value ANCE (0x0000000A).

2.2.3.5.12 ClientAddress

The ClientAddress command specifies the IP address of the client. Regardless of who sends this PDU,
the address MUST be interpreted to be the address of the client.

—
N
w

0(1|/2|3(4|5|6|7|8|9(0(1|2|3(4|5|6(|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

CommandType

ClientAddress (variable)

CommandType (4 bytes): MUST be the value ClientAddress (0x0000000B).

ClientAddress (variable): MUST contain the address of the client and is encoded as defined in
section 2.2.3.2.

2.2.3.5.13 AssociationGroupId

The AssociationGroupId command specifies the client association group ID. The client association
group ID is an RTS cookie that the higher layer protocol MAY use to uniquely identify instances of this
client across multiple virtual connections. Implementations of this protocol MAY use this cookie as part

39/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

of load balancing logic. Regardless of who sends this PDU, the association group ID MUST be
interpreted to be that of the client.

0(1(2|3|4|5|6|7|8|9(0(1|(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

CommandType

AssociationGroupld (16 bytes)

CommandType (4 bytes): MUST be the value AssociationGroupld (0x0000000C).

AssociationGroupld (16 bytes): MUST be encoded as an RTS cookie that the client generated for
this association as explained in this section. It is encoded as defined in section 2.2.3.1.

2.2.3.5.14 Destination

The Destination command specifies the destination to which a PDU that carries this command MUST
be forwarded.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

CommandType

Destination

CommandType (4 bytes): MUST be the value Destination (0x0000000D).

Destination (4 bytes): MUST be one of the values defined in section 2.2.3.3. For more details about
PDU forwarding, see section 3.2.1.5.2.

2.2.3.5.15 PingTrafficSentNotify

The PingTrafficSentNotify command specifies the number of bytes sent by the outbound proxy to the
client as part of ping traffic. It is sent from an outbound proxy to the server and notifies the server
that the outbound proxy has sent the specified number of bytes to the client as part of pinging the
client.

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

CommandType

PingTrafficSent

CommandType (4 bytes): MUST be the value PingTrafficSentNotify (0x0000000E).

PingTrafficSent (4 bytes): MUST be the number of bytes sent by the outbound proxy. Servers
SHOULD impose an implementation-specific reasonable upper bound on this value.<17>

40/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.3.6 RTS PDU Structure

The RTS PDU MUST be composed of exactly one header and zero, one or more RTS commands
defined in section 2.2.3.5 in the RTS PDU body. The following diagram illustrates the structure.

RTS PDU Header

RTS Command 0

RTS Command 1

RTS Command ...

RTS Command N

Figure 12: RTS PDU structure

2.2.3.6.1 RTS PDU Header

The RTS PDU Header has the same layout as the common header of the connection-oriented RPC
PDU as specified in [C706] section 12.6.1, with a few additional requirements around the contents of
the header fields. The additional requirements are as follows:

All fields MUST use little-endian byte order.
Fragmentation MUST NOT occur for an RTS PDU.

PFC_FIRST_FRAG and PFC_LAST_FRAG MUST be present in all RTS PDUs, and all other PFC flags
MUST NOT be present.

The rpc_vers and rpc_vers_minor fields MUST contain version information as described in [MS-
RPCE] section 1.7.

PTYPE MUST be set to a value of 20. This field differentiates RTS packets from other RPC packets.

The packed_drep MUST indicate little-endian integer and floating-pointer byte order, IEEE float-
point format representation, and ASCII character format as specified in [C706] section 12.6.

The auth_length MUST be set to 0.

The frag_length field MUST reflect the size of the header plus the size of all commands, including
the variable portion of variable-sized commands.

41/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

= The call_id MUST be set to 0 by senders and MUST be 0 on receipt.

This protocol adds two more fields to the RTS PDU header that MUST be present immediately after the
common header. The following diagram specifies the header format.

1 2 3}
0(1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

rpc_vers rpc_vers_minor PTYPE pfc_flags

packed_drep

frag_length auth_length

call_id

Flags NumberOfCommands

rpc_vers (1 byte): As specified in [C706] section 12.6.1, with additional requirements specified
earlier in this section.

rpc_vers_minor (1 byte): As specified in [C706] section 12.6.1, with additional requirements
specified earlier in this section.

PTYPE (1 byte): As specified in [C706] section 12.6.1, with additional requirements specified earlier
in this section.

pfc_flags (1 byte): As specified in [C706] section 12.6.1, with additional requirements specified
earlier in this section.

packed_drep (4 bytes): As specified in [C706] section 12.6.1, with additional requirements specified
earlier in this section. packed_drep takes the following form.

2 3
0(1|/2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9(0(1]|2|3|4|5|6[|7|8|9|01

e

drep[0] drep[1] drep[2] drep[3]

frag_length (2 bytes): As specified in [C706] section 12.6.1, with additional requirements specified
earlier in this section.

Value Meaning

RTS_FLAG_NONE No special flags.

0x0000

RTS_FLAG_PING Proves that the sender is still active; can also be used to flush the pipeline
0x0001 by the other party.

RTS_FLAG_OTHER_CMD Indicates that the PDU contains a command that cannot be defined by the
0x0002 other flags in this table.

RTS_FLAG_RECYCLE_CHANNEL | Indicates that the PDU is associated with recycling a channel.

0x0004

42/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

RTS_FLAG_IN_CHANNEL Indicates that the PDU is associated with IN channel communications.
0x0008

RTS_FLAG_OUT_CHANNEL Indicates that the PDU is associated with OUT channel communications.
0x0010

RTS_FLAG_EOF Indicates that this is the last PDU on an IN channel or OUT channel. Not
0x0020 all channels, however, use this to indicate the last PDU.
RTS_FLAG_ECHO Signifies that this PDU is an echo request or response.

0x0040

auth_length (2 bytes): As specified in [C706] section 12.6.1, with additional requirements specified
earlier in this section.

call_id (4 bytes): As specified in [C706] section 12.6.1, with additional requirements specified earlier
in this section.

Flags (2 bytes): MUST contain one or more of the following flags. The valid combination of flags for
each RTS PDU is defined in section 2.2.4 of this specification. The following table is meant to
define numeric values for each flag and as an aid in understanding this specification, and to
convey the general context in which a given flag is used. Precise definition on what flags MUST be
used for each RTS PDU can be obtained from the section for the respective RTS PDU in section
2.2.4. An implementation MUST NOT change the flags in the RTS PDU as defined in the respective
RTS PDU section within section 2.2.4.

NumberOfCommands (2 bytes): An implementation MUST set this field to be equal to the number
of commands in the RTS PDU body.

2.2.3.6.2 RTS PDU Body

The RTS PDU body MUST be composed of zero, one or more RTS commands. The first command
MUST be placed immediately after the RTS PDU header. Each subsequent command MUST be placed
immediately after the previous command without any padding or delimiters until all commands in the
PDU are placed. The order of commands in the RTS PDU body is significant from a protocol
perspective, and implementations MUST follow the rules about command ordering specified in section
2.2.4.

2.2.4 RTS PDUs

This protocol defines specific sequence of PDU commands that are combined into single PDUs. These
PDUs are referred to as RTS PDUs and form the basis of routing and control flow in RPC over HTTP
V2.

This section defines the syntax of the RTS PDUs using the common structure and command definitions
specified earlier in this section.

2.2.4.1 RTS PDUs Naming and Document Conventions

All definitions in this section share some common naming conventions. An RTS PDU can be one of
three types. It can be used by a single protocol sequence only; it can be used in more than one
protocol sequence; or it can be used outside a protocol sequence. If the RTS PDU is specific to a single
protocol sequence, the name of the PDU is created by using a strict convention that allows for an RTS
PDU to be associated quickly with its place in the protocol sequence. The name of the RTS PDU is not
reflected on the network and thus has no protocol significance other than making it easier to find and
understand information in this specification. The name of this type of RTS PDU follows the format
shown here.

43/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

RTS-PDU-name = protocol-sequence-name "/" group-name group-order

protocol-sequence-name = "CONN" / "IN R1" / "IN R2" / "OUT R1" /
"OUT R2"
group-name = "A" / "B"™ / nwen

group-order = 1* (DIGIT)

The names of the protocol sequences are given in sections 3.2.1.5.3.1 through 3.2.1.5.3.5 of this
specification. The group-name is a group of PDUs within the protocol sequence, and the name and
meaning of the group is defined in the section for the respective protocol sequence. The group-order is
a number that starts at 1 and is incremented sequentially for each RTS PDU in the group. For
example, CONN/A1 is the first RTS PDU from group A from protocol sequence CONN.

If an RTS PDU is used in more than one protocol sequence or is used outside a protocol sequence, the
convention defined earlier is not used. Instead, the name of the PDU is descriptive of the meaning of
the PDU and is not associated in any way with the protocol sequences in which it is used.

As defined in section 2.2.3.6, an RTS PDU is composed of an RTS PDU header and one or more RTS
PDU commands.

RTS PDUs are uniquely identified by the combination of the following: the Flags field in the RTS
header, the number of commands, and the command types. However, there are only a small number
of RTS PDUs that are legal on each channel in each state, so while there are a large number of RTS
PDUs, a receiver only has to check a small number of possibilities when an RTS PDU is received on a
given channel in a given state. See the section on each RTS PDU under section 2.2.4 for the channel,
Flags field, number of commands, and the command types for that RTS PDU, and the section on
receiving each RTS PDU under section 3 for the states.

2.2.4.2 CONN/A1 RTS PDU

The CONN/A1 RTS PDU MUST be sent from the client to the outbound proxy on the OUT channel to
initiate the establishment of a virtual connection.

=
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6[|7(8|9(0(1|2|3(4|5|6[|7|8|9|0(1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

OUTChannelCookie (20 bytes)

44/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ReceiveWindowSize

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of RTS Header MUST be the value of
RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 4.

Version (8 bytes): MUST be a Version command indicating the RPC over HTTP v2 protocol Version as
specified in section 2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command identifying the virtual
connection that is being established by this protocol sequence. The Cookie command format is
defined in section 2.2.3.5.4.

OUTChannelCookie (20 bytes): MUST be a Cookie command identifying the OUT channel that this
protocol sequence is trying to establish. The Cookie command format is defined in section
2.2.3.5.4.

ReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command containing the size of the
ReceiveWindow for the client OUT channel. The ReceiveWindowSize command format is defined
in section 2.2.3.5.1

2.2.4.3 CONN/A2 RTS PDU

The CONN/A2 RTS PDU MUST be sent from the outbound proxy to the server on the OUT channel to
initiate the establishment of a virtual connection.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

OUTChannelCookie (20 bytes)

45/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ChannelLifetime

ReceiveWindowSize

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OUT_CHANNEL. The NumberOfCommands field of the RTS Header MUST be
the value 5.

Version (8 bytes): MUST be a Version command containing the lower of the outbound proxy version
and the client version reported in the CONN/A1 RTS PDU. The format for the RPC over HTTP v2
protocol Version command is defined in section 2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command identifying the virtual
connection that this protocol sequence is trying to establish. The Cookie command format is
defined in section 2.2.3.5.4.

OUTChannelCookie (20 bytes): MUST be a Cookie command for the OUT channel that this protocol
sequence is trying to establish. The Cookie command format is defined in section 2.2.3.5.4.

ChannelLifetime (8 bytes): MUST be a ChannelLifetime command containing the lifetime, in bytes,
of the OUT channel from the outbound proxy to the client. The ChannelLifetime command format
is defined in section 2.2.3.5.5.

ReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command containing the size of the
ReceiveWindow for the OUT channel to the proxy. The ReceiveWindowSize command format is
defined in section 2.2.3.5.1.

2.2.4.4 CONN/A3 RTS PDU

The CONN/A3 RTS PDU MUST be sent from the outbound proxy to the client on the OUT channel to
continue the establishment of the virtual connection.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6[|7(8|9(0(1|2|3(4|5|6[|7|8|9|0(1

RTS Header (20 bytes)

ConnectionTimeout

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

46 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command containing the connection
time-out for the OUT channel between the outbound proxy and the client. The ConnectionTimeout
command format is defined in section 2.2.3.5.3.

2.2.4.5 CONN/B1 RTS PDU

The CONN/B1 RTS PDU MUST be sent from the client to the inbound proxy on the IN channel to
initiate the establishment of a virtual connection.

=
N
w

0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

INChannelCookie (20 bytes)

ChannelLifetime

ClientKeepalive

AssociationGroupld (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 6.

47/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Version (8 bytes): MUST be a Version command containing the version of RPC over HTTP v2 that the
client supports, formatted as specified in section 2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command identifying the virtual
connection that this protocol sequence is trying to establish. The Cookie command format is
defined in section 2.2.3.5.4.

INChannelCookie (20 bytes): MUST be a Cookie command identifying the IN channel cookie that
this protocol sequence is trying to establish. The Cookie command format is defined in section
2.2.3.5.4.

ChannelLifetime (8 bytes): MUST be a ChannelLifetime command containing the lifetime in bytes of
the IN channel from the client to the inbound proxy. The ChannelLifetime command format is
defined in 2.2.3.5.5. This field is used for troubleshooting only and has no protocol significance.
Inbound proxies SHOULD ignore the value of this field.

ClientKeepalive (8 bytes): MUST be a ClientKeepalive command containing the keep-alive interval
that the client wants the inbound proxy to use on the IN channel between the inbound proxy and
the server. The ClientKeepalive command format is defined in section 2.2.3.5.6.

AssociationGrouplId (20 bytes): MUST be an AssociationGroupld command containing the
association group ID for the client. The AssociationGroupId command format is defined in section
2.2.3.5.13.

2.2.4.6 CONN/B2 RTS PDU

The CONN/B2 RTS PDU MUST be sent from the inbound proxy to the server on the IN channel to
initiate the establishment of a virtual connection.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

INChannelCookie (20 bytes)

48/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ReceiveWindowSize

ConnectionTimeout

AssociationGroupld (20 bytes)

ClientAddress (variable)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_IN_CHANNEL. The NumberOfCommands field of the RTS Header MUST be the
value 7.

Version (8 bytes): MUST be a Version command containing the lower of the inbound proxy version
and the client version reported in CONN/B1 RTS PDU. The format for the RPC over HTTP v2
protocol Version command is defined in section 2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command for the virtual connection this
protocol sequence is trying to establish. The Cookie command format is defined in section
2.2.3.5.4.

INChannelCookie (20 bytes): MUST be a Cookie command for the IN channel that this protocol
sequence is trying to establish. The Cookie command format is defined in section 2.2.3.5.4.

ReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command containing the size of the
ReceiveWindow for the IN channel to the inbound proxy. The ReceiveWindowSize command
format is defined in section 2.2.3.5.1.

ConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command containing the connection
time-out for the IN channel between the inbound proxy and the client. The ConnectionTimeout
command format is defined in section 2.2.3.5.3.

AssociationGroupld (20 bytes): MUST be an AssociationGroupId command containing the
association group ID for the client. The AssociationGroupld command format is defined in section
2.2.3.5.13.

ClientAddress (variable): MUST be a ClientAddress command containing the IP address of the client
as seen by the inbound proxy. The ClientAddress command format is defined in section
2.2.3.5.12.

2.2.4.7 CONN/B3 RTS PDU

The CONN/B3 RTS PDU MUST be sent from the server to the inbound proxy on the IN channel to
notify it that a virtual connection has been established.

49/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

ReceiveWindowSize

Version

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 2.

ReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command containing the size of the
ReceiveWindow for the server IN channel. The ReceiveWindowSize command format is defined
in section 2.2.3.5.1.

Version (8 bytes): MUST be a Version command containing the lowest of the CONN/B2 RTS PDU
(section 2.2.4.6) version, the CONN/A2 RTS PDU (section 2.2.4.3) version, and the server RPC
over HTTP v2 version. The format for the RPC over HTTP v2 protocol Version command is defined
in section 2.2.3.5.7.

2.2.4.8 CONN/C1 RTS PDU

The CONN/C1 RTS PDU MUST be sent from the server to the outbound proxy on the OUT channel to
notify it that a virtual connection has been established.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

Version

ReceiveWindowSize

ConnectionTimeout

50/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 3.

Version (8 bytes): MUST be a Version command containing the lowest of the CONN/B2 RTS PDU
(section 2.2.4.6) version, the CONN/A2 RTS PDU (section 2.2.4.3) version, and the server RPC
over HTTP v2 version. The format for the RPC over HTTP v2 protocol Version command is defined
in section 2.2.3.5.7.

ReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command containing the size of the
ReceiveWindow for the IN channel to the inbound proxy. The ReceiveWindowSize command
format is defined in section 2.2.3.5.1.

ConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command containing the connection
time-out for the IN channel between the inbound proxy and the client. The ConnectionTimeout
command format is defined in section 2.2.3.5.3.

2.2.4.9 CONN/C2 RTS PDU

The CONN/C2 RTS PDU MUST be sent from the outbound proxy to the client on the OUT channel to
notify it that a virtual connection has been established.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]|1

RTS Header (20 bytes)

Version

ReceiveWindowSize

ConnectionTimeout

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 3.

Version (8 bytes): MUST be a Version command containing the CONN/C1 version. The format of the
RPC over HTTP v2 protocol Version command is defined in section 2.2.3.5.7.

ReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command containing the size of the
ReceiveWindow for the IN channel to the inbound proxy. The ReceiveWindowSize command
format is defined in section 2.2.3.5.1.

51/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command containing the connection
time-out for the IN channel between the inbound proxy and the client. The ConnectionTimeout
command format is defined in section 2.2.3.5.3.

2.2.4.10 IN_R1/A1 RTS PDU

The IN_R1/A1 RTS PDU MUST be sent from the client to the inbound proxy on a successor instance
of an IN channel to initiate the establishment of a successor IN channel.

=
N
w

0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

PredecessorChannelCookie (20 bytes)

SuccessorChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 4.

Version (8 bytes): MUST be a Version command containing the client RPC over HTTP v2 protocol
version. The format of the RPC over HTTP v2 protocol Version command is defined in section
2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command for the virtual connection that
this IN channel belongs to. The Cookie command format is defined in section 2.2.3.5.4.

PredecessorChannelCookie (20 bytes): MUST be a Cookie command that is the cookie of the
predecessor IN channel. The Cookie command format is defined in section 2.2.3.5.4.

52/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor IN
channel. The Cookie command format is defined in section 2.2.3.5.4.

2.2.4.11 IN_R1/A2 RTS PDU

The IN_R1/A2 RTS PDU MUST be sent from the successor inbound proxy to the server on the IN
channel to initiate the establishment of a successor IN channel.

0(1(2|3|4|5|6|7|8|9(0(1|2[3[|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

PredecessorChannelCookie (20 bytes)

SuccessorChannelCookie (20 bytes)

InboundProxyReceiveWindowSize

InboundProxyConnectionTimeout

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the bit-
wise OR of the values "RTS_FLAG_IN_CHANNEL" and "RTS_FLAG_RECYCLE_CHANNEL". The
NumberOfCommands field of the RTS Header MUST be the value 6.

53/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Version (8 bytes): MUST be a Version command containing the lower of the IN_R1/A1 version and
the inbound proxy version. The format of the RPC over HTTP v2 protocol Version command is
defined in section 2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command for the virtual connection this
IN channel belongs to. The Cookie command format is defined in section 2.2.3.5.4.

PredecessorChannelCookie (20 bytes): MUST be a Cookie command for the predecessor IN
channel. The Cookie command format is defined in section 2.2.3.5.4.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor IN
channel. The Cookie command format is defined in section 2.2.3.5.4.

InboundProxyReceiveWindowSize (8 bytes): MUST be a ReceiveWindowSize command containing
the size of the ReceiveWindow for the IN channel to the inbound proxy. The ReceiveWindowSize
command format is defined in section 2.2.3.5.1.

InboundProxyConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command specifying
the connection time-out for the IN channel between the successor inbound proxy and the client.
The ConnectionTimeout command format is defined in section 2.2.3.5.3.

2.2.4.12 IN_R1/A3 RTS PDU

The IN_R1/A3 RTS PDU MUST be sent from the server to the outbound proxy on the OUT channel to
continue the establishment of a successor IN channel.

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

RTS Header (20 bytes)

Destination

Version

InboundProxyReceiveWindowSize

InboundProxyConnectionTimeout

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 4.

54 /154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to value FDClient as specified in section 2.2.3.3. The Destination command
format is defined in section 2.2.3.5.14.

Version (8 bytes): MUST be a Version command specifying the lower of the IN_R1/A2 and the server
version. The format of the RPC over HTTP v2 protocol Version command is defined in section
2.2.3.5.7.

InboundProxyReceiveWindowSize (8 bytes): MUST be a ReceiveWindowSize command specifying
the size of the ReceiveWindow for the successor IN channel to the inbound proxy. The
ReceiveWindowSize command format is defined in section 2.2.3.5.1.

InboundProxyConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command specifying
the connection time-out for the IN channel between the successor inbound proxy and the
client. The ConnectionTimeout command format is defined in section 2.2.3.5.3.

2.2.4.13 IN_R1/A4 RTS PDU

The IN_R1/A4 RTS PDU MUST be sent from the outbound proxy to the client on the OUT channel to
continue the establishment of a successor IN channel as part of the IN_R1 protocol sequence.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Destination

Version

InboundProxyReceiveWindowSize

InboundProxyConnectionTimeout

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 4.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to value FDClient as specified in section 2.2.3.3. The Destination command
format is defined in section 2.2.3.5.14.

55/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Version (8 bytes): MUST be a Version command specifying the lower of the IN_R1/A2 version and
the server version. The format of the RPC over HTTP v2 protocol Version command is defined in
section 2.2.3.5.7.

InboundProxyReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command specifying
the size of the ReceiveWindow for the IN channel to the inbound proxy. The
ReceiveWindowSize command format is defined in section 2.2.3.5.1.

InboundProxyConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command specifying
the connection time-out for the IN channel between the successor inbound proxy and the
client. The ConnectionTimeout command format is defined in section 2.2.3.5.3.

2.2.4.14 IN_R1/A5 RTS PDU

The IN_R1/A5 RTS PDU MUST be sent from the client to the predecessor inbound proxy on the
predecessor instance of the IN channel to continue the establishment of a successor IN channel.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3[(4|5|/6|7|8|9|0|1|2|3|4|5|6([7(8]9|0]|1

RTS Header (20 bytes)

SuccessorINChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

SuccessorINChannelCookie (20 bytes): MUST be a Cookie command identifying the successor IN
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

2.2.4.15 IN_R1/A6 RTS PDU

The IN_R1/A6 RTS PDU MUST be sent from the predecessor inbound proxy to the server on the
predecessor instance of the IN channel to continue the establishment of a successor IN channel.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6[7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

SuccessorINChannelCookie (20 bytes)

56 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

SuccessorINChannelCookie (20 bytes): MUST be a Cookie command identifying the successor IN
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.
2.2.4.16 IN_R1/B1 RTS PDU

The IN_R1/B1 RTS PDU MUST be sent from the predecessor inbound proxy to the server on the
predecessor instance of the IN channel to continue the establishment of a successor IN channel.

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

RTS Header (20 bytes)

Empty

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

Empty (4 bytes): MUST be an Empty command. The format of the Empty command is defined in
section 2.2.3.5.8.

2.2.4.17 IN_R1/B2 RTS PDU

The IN_R1/B2 RTS PDU MUST be sent from the server to the successor inbound proxy on the
successor IN channel to complete the establishment of a successor IN channel.

-
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

RTS Header (20 bytes)

ServerReceiveWindowSize

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

57/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ServerReceiveWindowSize (8 bytes): MUST be a ReceiveWindowSize command specifying the
ReceiveWindow size of the server. The ReceiveWindowSize command format is defined in
section 2.2.3.5.1.

2.2.4.18 IN_R2/A1 RTS PDU

The IN_R2/A1 RTS PDU MUST be sent from the client to the inbound proxy on a successor IN
channel to initiate the establishment of a successor IN channel.

=
N
w

0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

PredecessorChannelCookie (20 bytes)

SuccessorChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 4.

Version (8 bytes): MUST be a Version command specifying the client RPC over HTTP v2 protocol
version. The format of the RPC over HTTP v2 protocol Version command is defined in section
2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command that is the cookie of the virtual
connection to which this IN channel belongs. The Cookie command format is defined in section
2.2.3.5.4.

58/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

PredecessorChannelCookie (20 bytes): MUST be a Cookie command that is the cookie of the
predecessor IN channel. The Cookie command format is defined in section 2.2.3.5.4.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor IN
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.
2.2.4.19 IN_R2/A2 RTS PDU

The IN_R2/A2 RTS PDU MUST be sent from the inbound proxy to the server on the IN channel to
continue the establishment of a successor IN channel.

=
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

RTS Header (20 bytes)

SuccessorChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor IN
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

2.2.4.20 IN_R2/A3 RTS PDU

The IN_R2/A3 RTS PDU MUST be sent from the server to the outbound proxy on the OUT channel to
continue the establishment of a successor IN channel.

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]1

RTS Header (20 bytes)

Destination

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

59/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to value FDClient as specified in section 2.2.3.3. The Destination command
format is defined in section 2.2.3.5.14.

2.2.4.21 IN_R2/A4 RTS PDU

The IN_R2/A4 RTS PDU MUST be sent from the outbound proxy to the client on the OUT channel to
continue the establishment of a successor IN channel.

=
N
w

0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Destination

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to value FDClient as specified in section 2.2.3.3. The Destination command
format is defined in section 2.2.3.5.14.

2.2.4.22 IN_R2/A5 RTS PDU

The IN_R2/A5 RTS PDU MUST be sent from the client to the inbound proxy on the predecessor
instance of the IN channel to continue the establishment of a successor IN channel.

-
N
w

0(1|/2|3(4|5|6|7|8|9(0(1|2|3(4|5|6(|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

SuccessorChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

60/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor IN
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

2.2.4.23 OUT_R1/A1 RTS PDU

The OUT_R1/A1 RTS PDU MUST be sent from the server to the outbound proxy on the OUT channel to
initiate the establishment of a successor OUT channel.

0(1(2|3|4|5|6|7|8|9(0(1|2[3[|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

Destination

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 1.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDClient as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

2.2.4.24 OUT_R1/A2 RTS PDU

The OUT_R1/A2 RTS PDU MUST be sent from the outbound proxy to the client on the OUT channel to
initiate the establishment of a successor OUT channel.

-
N
w

0(1|/2|3(4|5|6|7|8|9(0(1|2|3(4|5|6(|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Destination

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 1.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDClient as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

61/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.4.25 OUT_R1/A3 RTS PDU

The OUT_R1/A3 RTS PDU MUST be sent from the client to the successor outbound proxy on the
successor OUT channel to initiate the establishment of a successor OUT channel.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

PredecessorChannelCookie (20 bytes)

SuccessorChannelCookie (20 bytes)

OutboundProxyReceiveWindowSize

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 5.

Version (8 bytes): MUST be a Version command specifying the client RPC over HTTP v2 protocol
version. The format of the RPC over HTTP v2 protocol Version command is defined in section
2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command that is the cookie of the virtual
connection that this OUT channel belongs to. The Cookie command format is defined in section
2.2.3.5.4.

62/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

PredecessorChannelCookie (20 bytes): MUST be a Cookie command that is the cookie of the
predecessor OUT channel. The Cookie command format is defined in section 2.2.3.5.4.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

OutboundProxyReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command
specifying the size of the ReceiveWindow for the client OUT channel. The ReceiveWindowSize
command format is defined in section 2.2.3.5.1.

2.2.4.26 OUT_R1/A4 RTS PDU

The OUT_R1/A4 RTS PDU MUST be sent from the successor outbound proxy to the server on the
OUT channel to initiate the establishment of a successor OUT channel.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6([7(8]9|0]|1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

PredecessorChannelCookie (20 bytes)

SuccessorChannelCookie (20 bytes)

ChannelLifetime

OutboundProxyReceiveWindowSize

63/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

OutboundProxyConnectionTimeout

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the bit-
wise OR of the values "RTS_FLAG_RECYCLE_CHANNEL" and "RTS_FLAG_OUT_CHANNEL". The
NumberOfCommands field of the RTS Header MUST be the value 7.

Version (8 bytes): MUST be a Version command specifying the lower of the outbound proxy RPC
over HTTP v2 protocol version and OUT R1/A3 protocol version. The format of the RPC over HTTP
v2 protocol Version command is defined in section 2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command that is the cookie of the virtual
connection that this OUT channel belongs to. The Cookie command format is defined in section
2.2.3.5.4.

PredecessorChannelCookie (20 bytes): MUST be a Cookie command that is the cookie of the
predecessor OUT channel. The Cookie command format is defined in section 2.2.3.5.4.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

ChannelLifetime (8 bytes): MUST be a ChannellLifetime command specifying the lifetime in bytes of
the OUT channel from the outbound proxy to the client. The ChannelLifetime command format is
defined in section 2.2.3.5.5.

OutboundProxyReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command
specifying the size of the ReceiveWindow for the successor OUT channel to the outbound proxy.
The ReceiveWindowSize command format is defined in section 2.2.3.5.1.

OutboundProxyConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command
specifying the connection time-out for the OUT channel between the successor outbound proxy
and the client. The ConnectionTimeout command format is defined in section 2.2.3.5.3. This
command is for troubleshooting purposes only and has no protocol significance. The server
SHOULD ignore this value.

2.2.4.27 OUT_R1/A5 RTS PDU

The OUT_R1/A5 RTS PDU MUST be sent from the server to the predecessor outbound proxy on the
predecessor instance of the OUT channel to continue the establishment of a successor OUT channel.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

RTS Header (20 bytes)

Destination

64/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Version

OutboundProxyConnectionTimeout

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OUT_CHANNEL. The NumberOfCommands field of the RTS Header MUST be
the value 3.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDClient as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

Version (8 bytes): MUST be a Version command specifying the lower of the server RPC over HTTP
v2 protocol version and OUT R1/A4 version. The format of the RPC over HTTP v2 protocol Version
command is defined in section 2.2.3.5.7.

OutboundProxyConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command
specifying the connection time-out for the OUT channel between the successor outbound proxy
and the client. The ConnectionTimeout command format is defined in section 2.2.3.5.3. This
command is used for troubleshooting purposes only and has no protocol significance. The
predecessor outbound proxy SHOULD ignore this value.

2.2.4.28 OUT_R1/A6 RTS PDU

The OUT_R1/A6 RTS PDU MUST be sent from the predecessor outbound proxy to the client on the
OUT channel to continue the establishment of a successor OUT channel.

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]1

RTS Header (20 bytes)

Destination

Version

OutboundProxyConnectionTimeout

65/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OUT_CHANNEL. The NumberOfCommands field of the RTS Header MUST be
the value 3.

Destination (8 bytes): MUST be a Destination command. The Destination field of the Destination
command MUST be set to value FDClient as specified in section 2.2.3.3. The Destination command
format is defined in section 2.2.3.5.14.

Version (8 bytes): MUST be a Version command specifying the lower of the server RPC over HTTP
v2 Protocol version and OUT R1/A4 version. The format of the RPC over HTTP v2 protocol Version
command is defined in section 2.2.3.5.7.

OutboundProxyConnectionTimeout (8 bytes): MUST be a ConnectionTimeout command
specifying the connection time-out for the OUT channel between the successor outbound proxy
and the client. The ConnectionTimeout command format is defined in section 2.2.3.5.3. This
command is useful for troubleshooting purposes only and has no protocol significance. The client
SHOULD ignore this value.

2.2.4.29 OUT_R1/A7 RTS PDU

The OUT_R1/A7 RTS PDU MUST be sent from the client to the inbound proxy on the IN channel to
continue the establishment of a successor OUT channel as part of the OUT_R1 protocol sequence
specified in section 3.2.1.5.3.4.

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

RTS Header (20 bytes)

Destination

SuccessorChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OUT_CHANNEL. The NumberOfCommands field of the RTS Header MUST be
the value 2.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDServer, as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

66 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.4.30 OUT_R1/A8 RTS PDU

The OUT_R1/A8 RTS PDU MUST be sent from the inbound proxy to the server on the IN channel to
continue the establishment of a successor OUT channel.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

Destination

SuccessorChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OUT_CHANNEL. The NumberOfCommands field of the RTS Header MUST be
the value 2.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDServer, as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.
2.2.4.31 OUT_R1/A9 RTS PDU

The OUT_R1/A9 RTS PDU MUST be sent from the server to the predecessor outbound proxy to
indicate to it that the successor virtual OUT channel was established successfully.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

ANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

67/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ANCE (4 bytes): MUST be an ANCE command. The format of the ANCE command is defined in
section 2.2.3.5.11.

2.2.4.32 OUT_R1/A10 RTS PDU

The OUT_R1/A10 RTS PDU MUST be sent from the predecessor outbound proxy to the client to
indicate that the successor virtual OUT channel was established successfully.

0(1(2|3|4|5|6|7|8|9(0(1|2[3[|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

ANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

ANCE (4 bytes): MUST be an ANCE command. The format of the ANCE command is defined in
section 2.2.3.5.11.

2.2.4.33 OUT_R1/A11 RTS PDU

The OUT_R1/A11 RTS PDU MUST be sent from the client to the successor outbound proxy to
indicate to it that the successor virtual OUT channel was established successfully.

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

ANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

ANCE (4 bytes): MUST be an ANCE command. The format of the ANCE command is defined in
section 2.2.3.5.11.

2.2.4.34 OUT_R2/A1 RTS PDU

The OUT_R2/A1 RTS PDU MUST be sent from the server to the outbound proxy on the OUT channel to
initiate the establishment of a successor OUT channel.

68/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Destination

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 1.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDClient as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

2.2.4.35 OUT_R2/A2 RTS PDU

The OUT_R2/A2 RTS PDU MUST be sent from the outbound proxy to the client on the OUT channel to
initiate the establishment of a successor OUT channel.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]|1

RTS Header (20 bytes)

Destination

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 1.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDClient as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

2.2.4.36 OUT_R2/A3 RTS PDU

The OUT_R2/A3 RTS PDU MUST be sent from the client to the successor outbound proxy on the
successor OUT channel to continue initiating the establishment of a successor OUT channel.

69/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

Version

VirtualConnectionCookie (20 bytes)

PredecessorChannelCookie (20 bytes)

SuccessorChannelCookie (20 bytes)

ClientReceiveWindowSize

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_RECYCLE_CHANNEL. The NumberOfCommands field of the RTS Header MUST
be the value 5.

Version (8 bytes): MUST be a Version command specifying the client RPC over HTTP v2 protocol
version. The format of the RPC over HTTP v2 protocol Version command is defined in section
2.2.3.5.7.

VirtualConnectionCookie (20 bytes): MUST be a Cookie command that contains the cookie of the
virtual connection that this OUT channel belongs to. The Cookie command format is defined in
section 2.2.3.5.4.

PredecessorChannelCookie (20 bytes): MUST be a Cookie command that contains the cookie of
the predecessor OUT channel. The Cookie command format is defined in section 2.2.3.5.4.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

70/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

ClientReceiveWindowsSize (8 bytes): MUST be a ReceiveWindowSize command specifying the size
of the ReceiveWindow for the client OUT channel. The ReceiveWindowSize command format is
defined in section 2.2.3.5.1.

2.2.4.37 OUT_R2/A4 RTS PDU

The OUT_R2/A4 RTS PDU MUST be sent from the outbound proxy to the server on the OUT channel to
continue the establishment of a successor OUT channel.

=
N
w

0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

SuccessorChannelCookie (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.
2.2.4.38 OUT_R2/A5 RTS PDU

The OUT_R2/A5 RTS PDU MUST be sent from the server to the outbound proxy to indicate to it that
the successor virtual OUT channel was established successfully.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2(3[|4|5|/6|7|8|9|0|1|2|3|4|5|6([7(8]9|0]|1

RTS Header (20 bytes)

Destination

ANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 2.

71/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDClient, as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

ANCE (4 bytes): MUST be an ANCE command. The format of the ANCE command is defined in
section 2.2.3.5.11.
2.2.4.39 OUT_R2/A6 RTS PDU

The OUT_R2/A6 RTS PDU MUST be forwarded by the outbound proxy to the client as requested in the
Destination field. It serves the same purpose as OUT R2/A5.

0(1(2|3|4|5|6|7|8|9(0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

Destination

ANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 2.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDClient, as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

ANCE (4 bytes): MUST be an ANCE command. The format of the ANCE command is defined in
section 2.2.3.5.11.

2.2.4.40 OUT_R2/A7 RTS PDU

The OUT_R2/A7 RTS PDU MUST be sent from the client to the inbound proxy on the IN channel to
continue the establishment of a successor OUT channel.

-
N
w

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]1

RTS Header (20 bytes)

Destination

72/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

SuccessorChannelCookie (20 bytes)

Version

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OUT_CHANNEL. The NumberOfCommands field of the RTS Header MUST be
the value 3.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDServer, as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.

Version (8 bytes): MUST be a Version command indicating the RPC over HTTP v2 protocol version as
specified in section 2.2.3.5.7.

2.2.4.41 OUT_R2/A8 RTS PDU

The OUT_R2/A8 RTS PDU MUST be sent from the inbound proxy to the server on the IN channel to
continue the establishment of a successor OUT channel.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6[|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

RTS Header (20 bytes)

Destination

SuccessorChannelCookie (20 bytes)

73/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OUT_CHANNEL. The NumberOfCommands field of the RTS Header MUST be
the value 2.

Destination (8 bytes): MUST be a Destination command. The Destination field for the Destination
command MUST be set to the value FDServer, as specified in section 2.2.3.3. The Destination
command format is defined in section 2.2.3.5.14.

SuccessorChannelCookie (20 bytes): MUST be a Cookie command identifying the successor OUT
channel cookie. The Cookie command format is defined in section 2.2.3.5.4.
2.2.4.42 OUT_R2/B1 RTS PDU

The OUT_R2/B1 RTS PDU MUST be sent from the server to the outbound proxy to indicate to it that
the successor virtual OUT channel was established successfully.

=
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

RTS Header (20 bytes)

ANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

ANCE (4 bytes): MUST be an ANCE command. The format of the ANCE command is defined in
section 2.2.3.5.11.

2.2.4.43 OUT_R2/B2 RTS PDU

The OUT_R2/B2 RTS PDU MUST be sent from the server to the outbound proxy to indicate to it that
the successor virtual OUT channel was not established successfully.

-
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

RTS Header (20 bytes)

NANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_NONE. The NumberOfCommands field of the RTS Header MUST be the value 1.

NANCE (4 bytes): MUST be a NegativeANCE command. The format of the NegativeANCE command
is defined in section 2.2.3.5.10.

74 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.4.44 OUT_R2/B3 RTS PDU

The OUT_R2/B3 RTS PDU MUST be sent from the outbound proxy to the client to indicate to it that the
successor virtual OUT channel was established successfully.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

ANCE

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_EOF. The NumberOfCommands field of the RTS Header MUST be the value 1.

ANCE (4 bytes): MUST be an ANCE command. The format of the ANCE command is defined in
section 2.2.3.5.11.
2.2.4.45 OUT_R2/C1 RTS PDU

The OUT_R2/C1 RTS PDU MUST be sent from the client to the outbound proxy as part of the OUT_R2
protocol sequence to fill up the predeclared content length for the OUT channel HTTP request defined
in section 2.1.2.1.2.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6(7(8]9|0]|1

RTS Header (20 bytes)

EmptyOrPadding (variable)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_PING. The NumberOfCommands field of the RTS Header MUST be the value 1.

EmptyOrPadding (variable): MUST be an Empty command or a Padding command. This RTS PDU
MUST be exactly the same size as OUT R1/A11. Whichever of the two commands produces the
desired PDU size MUST be used. If the Padding command is used, the value for the
ConformanceCount field MUST be chosen such that PDU has a size equal to the size of
OUT_R1/A11. The Empty command format is defined in section 2.2.3.5.8. The Padding command
format is defined in section 2.2.3.5.9.

75/ 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.4.46 Keep-Alive RTS PDU

The Keep-Alive RTS PDU is used outside a protocol sequence to tell the inbound proxy to modify the
keep-alive settings on the IN channel between the inbound proxy and the server.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

ClientKeepalive

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OTHER_CMD. The NumberOfCommands field of the RTS Header MUST be the
value 1.

ClientKeepalive (8 bytes): MUST be a Clientkeepalive command specifying the keep-alive interval
that the client wants the inbound proxy to use for the IN channel between the inbound proxy and
the server. The ClientKeepalive command format is defined in section 2.2.3.5.6.

2.2.4.47 Ping Traffic Sent Notify RTS PDU

The Ping Traffic Sent Notify RTS PDU SHOULD be sent from the outbound proxy to the server on the
OUT channel from the server to the outbound proxy, informing the server that the outbound proxy has
sent a given number of bytes as ping traffic and the server MUST adjust its OUT channel lifetime. This
RTS PDU is sent outside other protocol sequences.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5(6(|7(8]9|0]|1

RTS Header (20 bytes)

PingTrafficSentNotify

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_OTHER_CMD. The NumberOfCommands field of the RTS Header MUST be the
value 1.

PingTrafficSentNotify (8 bytes): MUST be a PingTrafficSentNotify command specifying the number
of bytes sent by the outbound proxy on the OUT channel between the outbound proxy and the
client. The format of the PingTrafficSentNotify command is defined in section 2.2.3.5.15.

76 / 154

[MS-RPCH] - v20240729

Remote Procedure Call over HTTP Protocol
Copyright © 2024 Microsoft Corporation
Release: July 29, 2024

2.2.4.48 Echo RTS PDU

The Echo RTS PDU SHOULD be sent from the inbound or outbound proxy as the message body of the
echo response message defined in section 2.1.2.1.6.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

RTS Header (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_ECHO. The NumberOfCommands field of the RTS Header MUST be the value 0.

2.2.4.49 Ping RTS PDU

The Ping RTS PDU SHOULD be sent from the client to the inbound proxy and from the outbound
proxy to the client. This PDU is sent outside other protocol sequences.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

RTS Header (20 bytes)

RTS Header (20 bytes): See section 2.2.3.6.1. The Flags field of the RTS Header MUST be the
value RTS_FLAG_PING. The NumberOfCommands field of the RTS Header MUST be the value 0.

2.2.4.50 FlowControlAck RTS PDU

The FlowControlAck RTS PDU MUST be sent from any recipient to its sender, and the forwarding rules
in section 3.2.1.5.2