
1 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-RDPEUDP]:

Remote Desktop Protocol: UDP Transport Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

12/16/2011 1.0 New Released new document.

3/30/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 2.0 Major Significantly changed the technical content.

10/25/2012 3.0 Major Significantly changed the technical content.

1/31/2013 4.0 Major Significantly changed the technical content.

8/8/2013 5.0 Major Significantly changed the technical content.

11/14/2013 6.0 Major Significantly changed the technical content.

2/13/2014 7.0 Major Significantly changed the technical content.

5/15/2014 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 8.0 Major Significantly changed the technical content.

10/16/2015 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/2/2016 9.0 Major Significantly changed the technical content.

7/14/2016 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 7
1.3.1 RDP-UDP Protocol ... 7
1.3.2 Message Flows ... 8

1.3.2.1 UDP Connection Initialization .. 8
1.3.2.2 UDP Data Transfer .. 9

1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments ... 10

2 Messages ... 11
2.1 Transport .. 11
2.2 Message Syntax ... 11

2.2.1 Enumerations ... 11
2.2.1.1 VECTOR_ELEMENT_STATE Enumeration ... 11

2.2.2 Structures ... 11
2.2.2.1 RDPUDP_FEC_HEADER Structure .. 11
2.2.2.2 RDPUDP_FEC_PAYLOAD_HEADER Structure ... 13
2.2.2.3 RDPUDP_PAYLOAD_PREFIX Structure .. 13
2.2.2.4 RDPUDP_SOURCE_PAYLOAD_HEADER Structure 13
2.2.2.5 RDPUDP_SYNDATA_PAYLOAD Structure ... 14
2.2.2.6 RDPUDP_ACK_OF_ACKVECTOR_HEADER Structure 14
2.2.2.7 RDPUDP_ACK_VECTOR_HEADER Structure ... 14
2.2.2.8 RDPUDP_CORRELATION_ID_PAYLOAD Structure 15
2.2.2.9 RDPUDP_SYNDATAEX_PAYLOAD Structure ... 16

2.2.3 Vectors .. 16
2.2.3.1 ACK Vector ... 16

3 Protocol Details ... 18
3.1 Common Details .. 18

3.1.1 Abstract Data Model .. 18
3.1.1.1 Transport Modes ... 18
3.1.1.2 Sequence Numbers ... 18
3.1.1.3 MTU Negotiation ... 19
3.1.1.4 Acknowledgments ... 19

3.1.1.4.1 Lost Datagrams ... 19
3.1.1.5 Retransmits .. 20
3.1.1.6 FEC Computations ... 20

3.1.1.6.1 Finite Field Arithmetic .. 20
3.1.1.6.1.1 Addition and Subtraction ... 20
3.1.1.6.1.2 Multiplication and Division ... 21
3.1.1.6.1.3 Logarithms and Exponents .. 22

3.1.1.6.2 FEC Encoding .. 22
3.1.1.6.3 FEC Decoding .. 24
3.1.1.6.4 Selecting the Coefficients Matrix .. 25
3.1.1.6.5 Structure of Source Packets used for FEC Encoding 26

3.1.1.7 Flow Control ... 26
3.1.1.8 Congestion Control .. 26

4 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.1.9 Keepalives ... 27
3.1.2 Timers .. 27
3.1.3 Initialization ... 27
3.1.4 Higher-Layer Triggered Events ... 28

3.1.4.1 Initializing a Connection ... 28
3.1.4.2 Sending a Datagram.. 28
3.1.4.3 Receiving a Datagram ... 28
3.1.4.4 Terminating a Connection .. 28

3.1.5 Message Processing Events and Sequencing Rules .. 28
3.1.5.1 Constructing Messages .. 30

3.1.5.1.1 SYN Datagrams ... 30
3.1.5.1.2 ACK Datagrams ... 31
3.1.5.1.3 SYN and ACK Datagrams .. 31
3.1.5.1.4 ACK and Source Packets Data ... 31
3.1.5.1.5 ACK and FEC Packets Data ... 32

3.1.5.2 Connection Sequence .. 32
3.1.5.3 Data Transfer Phase .. 33

3.1.5.3.1 Sender Receives Data .. 33
3.1.5.3.2 Sender Sends Data .. 33

3.1.5.3.2.1 Source Packet ... 33
3.1.5.3.2.2 FEC Packet .. 34

3.1.5.3.3 Receiver Receives Data .. 34
3.1.5.3.4 User Consumes Data.. 34

3.1.5.4 Termination .. 34
3.1.5.4.1 Retransmit Limit .. 34
3.1.5.4.2 Keepalive Timer Fires ... 34

3.1.6 Timer Events .. 34
3.1.6.1 Retransmit Timer .. 34
3.1.6.2 Keepalive Timer on the Sender ... 35
3.1.6.3 Delayed ACK Timer ... 35

3.1.7 Other Local Events .. 35

4 Protocol Examples ... 36
4.1 UDP Connection Initialization Packets ... 36

4.1.1 SYN Packet .. 36
4.1.2 SYN and ACK Packet ... 36

4.2 UDP Data Transfer Packets .. 37
4.2.1 Source Packet .. 37
4.2.2 FEC Packet... 38

4.2.2.1 Payload of an FEC Packet ... 39
4.2.3 ACK Packet .. 39

5 Security ... 41
5.1 Security Considerations for Implementers ... 41

5.1.1 Using Sequence Numbers .. 41
5.1.2 RDP-UDP Datagram Validation.. 41
5.1.3 Congestion Notifications .. 41

5.2 Index of Security Parameters .. 41

6 Appendix A: Product Behavior ... 42

7 Change Tracking .. 43

8 Index ... 44

5 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Remote Desktop Protocol: UDP Transport Extension specifies extensions to the transport
mechanisms in the Remote Desktop Protocol (RDP). This document specifies network connectivity
between the user's machine and a remote computer system over the User Datagram Protocol
(UDP).

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

acknowledgment (ACK): A signal passed between communicating processes or computers to
signify successful receipt of a transmission as part of a communications protocol.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

Coded Packet: A Source Packet or an FEC Packet.

FEC block: An FEC Packet that is added to the data stream after a group of Source Packets have
been processed. In case one of the Source Packets in the group is lost, the redundant
information that is contained in the FEC Packet can be used for recovery.

FEC Packet: A packet that encapsulates the payload after running an FEC logic.

forward error correction (FEC): A process in which a sender uses redundancy to enable a
receiver to recover from packet loss.

Internet Protocol version 4 (IPv4): An Internet protocol that has 32-bit source and destination
addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128-bit IP address size, expanded

routing capabilities, and support for authentication (2) and privacy.

maximum transmission unit (MTU): The size, in bytes, of the largest packet that a given layer
of a communications protocol can pass onward.

network address translation (NAT): The process of converting between IP addresses used
within an intranet, or other private network, and Internet IP addresses.

network byte order: The order in which the bytes of a multiple-byte number are transmitted on a

network, most significant byte first (in big-endian storage). This may or may not match the
order in which numbers are normally stored in memory for a particular processor.

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and

server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

round-trip time (RTT): The time that it takes a packet to be sent to a remote partner and for
that partner's acknowledgment to arrive at the original sender. This is a measurement of latency
between partners.

run-length encoding (RLE): A form of data compression in which repeated values are
represented by a count and a single instance of the value.

6 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Source Packet: A packet that encapsulates data that was generated by the user.

terminal client: The client that initiated the remote desktop connection.

terminal server: A computer on which terminal services is running.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send

data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks", RFC 1948, May 1996,
http://tools.ietf.org/html/rfc1948.txt

[RFC3782] Floyd, S., Henderson, T., and Gurtov, A., "The NewReno Modification to TCP's Fast
Recovery Algorithm", RFC 3782, April 2004, http://tools.ietf.org/html/rfc3782.txt

[RFC4340] Kohler, E., Handley, M., and Floyd, S., "Datagram Congestion Control Protocol (DCCP)",
RFC 4340, March 2006, http://www.ietf.org/rfc/rfc4340.txt

[RFC4341] Floyd, S., and Kohler, E., "Profile for Datagram Congestion Control Protocol (DCCP)
Congestion Control ID 2: TCP-like Congestion Control", RFC 4341, March 2006,
http://tools.ietf.org/html/rfc4341.txt

[RFC5681] Allman, M., Paxson, V., and Blanton, E., "TCP Congestion Control", RFC 5681, September
2009, http://tools.ietf.org/html/rfc5681.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=225732
http://go.microsoft.com/fwlink/?LinkId=225733
http://go.microsoft.com/fwlink/?LinkId=90473
http://go.microsoft.com/fwlink/?LinkId=225734
http://go.microsoft.com/fwlink/?LinkId=225735
http://go.microsoft.com/fwlink/?LinkId=150872

7 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.3 Overview

The Remote Desktop Protocol: UDP Transport Extension Protocol has been designed to improve the
performance of the network connectivity compared to a corresponding RDP-TCP connection, especially

on wide area networks (WANs) or wireless networks.

It has the following two primary goals:

 Gain a higher network share while reducing the variation in packet transit delays.

 Share network resources with other users.

To achieve these goals, the protocol has two modes of operation. The first mode is a reliable mode
where data is transferred reliably through persistent retransmits. The second mode is an unreliable
mode, where no guarantees are made about reliability and the timeliness of data is preserved by

avoiding retransmits. In addition, the Remote Desktop Protocol: UDP Transport Extension Protocol
includes a forward error correction (FEC) logic that can be used to recover from random packet
losses.

The protocol’s two communicating parties, the endpoints of the UDP connection, are peers and use the
same protocol. The connection between the two endpoints is bidirectional – data and
acknowledgments (section 3.1.1.4) can be transmitted in both directions simultaneously. Logically,

each single connection can be viewed as two unidirectional connections, as shown in the following
figure. Both of these unidirectional connections are symmetrical and each endpoint has both a Sender
and a Receiver entity. In this specification, the initiating endpoint A is referred to as the terminal
client and endpoint B is referred to as the terminal server.

Figure 1: The UDP bidirectional endpoints connection

1.3.1 RDP-UDP Protocol

The Remote Desktop Protocol: UDP Transport Extension Protocol has two distinct phases of operation.
The initial phase, UDP Connection Initialization (section 1.3.2.1), occurs when a UDP connection is

initialized between the terminal client and the terminal server. Data pertaining to the connection is
exchanged and the UDP connection is set up. Once this phase is completed successfully, the protocol
enters the UDP Data Transfer (section 1.3.2.2) phase, where Coded Packets are exchanged.

The protocol can operate in one of two modes. The operational mode is determined during the UDP
Connection Initialization phase. These modes are as follows:

8 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 RDP-UDP-R or "Reliable" Mode: In this mode, the endpoint retransmits datagrams that have been
lost by the underlying network fabric.

 RDP-UDP-L or "Best-Efforts" Mode: In this mode, the reliable delivery of datagrams is not
guaranteed, and the endpoint does not retransmit datagrams.

The connection between the endpoints is terminated when either the terminal client or terminal server
terminates the connection. No protocol-specific messages are exchanged to communicate that the
endpoint is no longer present.

1.3.2 Message Flows

The two endpoints, the terminal client and the terminal server, first set up a connection, and then
transfer the data as shown in the following figure.

Figure 2: The UDP connection initialization and UDP data transfer message flow

The following sections describe the two phases of the communication and the detailed data transfer.

1.3.2.1 UDP Connection Initialization

In this phase, both endpoints are initialized with mutually agreeable parameters for the connection.

The terminal client initiates the connection by sending a SYN datagram. The terminal client also

determines the mode of operation, RDP-UDP-R or RDP-UDP-L, as described in section 1.3.1. The
terminal server responds with a datagram with the SYN flag set, along with an ACK flag, to
acknowledge the receipt of the SYN datagram. The terminal client acknowledges the SYN datagram by
sending an ACK. The terminal client can append the Coded Packets along with the ACK datagram. This
datagram indicates that a connection has been set up and data can be exchanged.

All datagrams in this phase – the SYN, SYN+ACK, and ACK – are delivered reliably by using persistent
retransmits, irrespective of the mode that the transport is operating in.

9 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.3.2.2 UDP Data Transfer

In this phase, which follows the UDP Connection Initialization (section 1.3.2.1) phase, the data
generated by the users of this protocol is exchanged. This phase ends when either the connection is

terminated by the user, or when an endpoint determines that the remote endpoint is no longer
present.

The terminal server (sender) and terminal client (receiver) exchange Coded Packets in this phase. A
schematic diagram of the FEC engine is shown in the following diagram.

Figure 3: FEC engine

The Remote Desktop Protocol: UDP Transport Extension Protocol uses the FEC mechanism for
recovery from packet losses. An FEC Packet is added to the data stream after processing a block of m
Source Packets. Each FEC Packet carries redundant information regarding these Source Packets. This

information can be used in case one of the m Source Packets is lost and needs to be recovered. A
generic equation for generating an FEC Packet is listed as follows.

Figure 4: Generic equation for an FEC Packet

The FEC Packets require no acknowledgments (section 3.1.1.4), and they are not retransmitted. The
sender can either set the FEC block size to any value up to 255 or to not send any FEC Packets in the
stream. Likewise, the receiver, upon a receipt of an FEC Packet, can ignore the FEC Packet and not
use it for any decoding operations.

Upon receiving notification of a packet loss, the sender retransmits the lost datagram. The

implementation of the FEC mechanism in the RDP-UDP protocol is only used for recovery from packet

losses.

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: UDP Transport Extension Protocol works on top of the User Datagram
Protocol (UDP).

10 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.5 Prerequisites/Preconditions

The protocol endpoints require UDP connectivity to be established. The network path between the
endpoints allows the transfer of UDP datagrams in both directions.

The prerequisites for this protocol are identical to those for the UDP protocol.

1.6 Applicability Statement

This protocol can be used in place of any Transmission Control Protocol (TCP) transport for the
Remote Desktop Protocol (RDP) protocol. The protocol's two modes of operation are required to be

considered. The RDP-UDP-R mode is used when a stream-based, reliable transport, akin to TCP, is
required. The RDP-UDP-L mode is used when a datagram/message-based, best-efforts transport, akin
to UDP, is required.

1.7 Versioning and Capability Negotiation

The version of the Remote Desktop Protocol: UDP Transport Extension is negotiated in the SYN
request and the SYN + ACK response between the two endpoints. The first endpoint optionally
indicates the maximum protocol version it supports in the SYN datagram, and the second endpoint
optionally indicates the maximum protocol version supported by both endpoints in the SYN + ACK
datagram. The highest version supported by both endpoints is used, and if either endpoint does not
indicate a protocol version, version 1 is used by both.

 Version 1: The first version of the protocol has a minimum retransmit time-out of 500 ms (section
3.1.6.1), and a minimum delayed ACK time-out of 200 ms (section 3.1.6.3).

 Version 2: The second version improves performance on low-latency networks by reducing the
minimum retransmit time-out to 300 ms (section 3.1.6.1), and the minimum delayed ACK time-
out to 50 ms (section 3.1.6.3).

Implementations can support either version 1 or both version 1 and version 2 of the protocol. The
negotiation of the protocol version between the two endpoints is described in section 3.1.5.1.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

11 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

The RDP protocol packets are encapsulated in the User Datagram Protocol (UDP). The UDP datagrams

MUST be encapsulated in the Internet Protocol version 4 (IPv4) or the Internet Protocol
version 6 (IPv6).

The default port for incoming UDP connection requests on the terminal server is port 3389. All of the
RDP traffic over UDP is handled by this single port on the terminal server.

The terminal client MUST open a unique UDP socket for each instance of this transport. Each socket is
bound to a different port.

2.2 Message Syntax

All of the messages written to the network or read from the network MUST be in network byte
order, as described in [RFC4340] section 11.

The protocol references commonly used data types as defined in [MS-DTYP].

2.2.1 Enumerations

2.2.1.1 VECTOR_ELEMENT_STATE Enumeration

The VECTOR_ELEMENT_STATE enumeration is sent along with every ACK vector (section 2.2.3.1) that
acknowledges the receipt of a continuous array of datagrams.

Field/Value Description

DATAGRAM_RECEIVED

0

A datagram was received.

DATAGRAM_RESERVED_1

1

Not used.

DATAGRAM_RESERVED_2

2

Not used.

DATAGRAM_NOT_YET_RECEIVED

3

A datagram has not been received yet.

2.2.2 Structures

2.2.2.1 RDPUDP_FEC_HEADER Structure

The RDPUDP_FEC_HEADER structure forms the basic header for every datagram sent or received by
the endpoint.

http://go.microsoft.com/fwlink/?LinkId=90473
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

12 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

snSourceAck

uReceiveWindowSize uFlags

snSourceAck (4 bytes): A 32-bit unsigned value that specifies the highest sequence number for a
Source Packet detected by the remote endpoint. This value wraps around; for more information
about the sequence numbers range, see [RFC793] section 3.3.

uReceiveWindowSize (2 bytes): A 16-bit unsigned value that specifies the size of the receiver's
buffer.

uFlags (2 bytes): A 16-bit unsigned integer that indicates supported options, or additional headers.

The following table describes the meaning of each flag.

Flags Meaning

RDPUDP_FLAG_SYN

0x0001

Corresponds to the SYN flag, for initializing connection.

RDPUDP_FLAG_FIN

0x0002

Corresponds to the FIN flag. Currently unused.

RDPUDP_FLAG_ACK

0x0004

Specifies that the RDPUDP_ACK_VECTOR_HEADER Structure (section
2.2.2.7) is present.

RDPUDP_FLAG_DATA

0x0008

Specifies that the RDPUDP_SOURCE_PAYLOAD_HEADER Structure
(section 2.2.2.4) or the RDPUDP_FEC_PAYLOAD_HEADER Structure
(section 2.2.2.2) is present. This flag specifies that the datagram has
additional data beyond the UDP ACK headers.

RDPUDP_FLAG_FEC

0x0010

Specifies that the RDPUDP_FEC_PAYLOAD_HEADER Structure (section
2.2.2.2) is present.

RDPUDP_FLAG_CN

0x0020

Congestion Notification flag (section 3.1.1), the receiver reports
missing datagrams.

RDPUDP_FLAG_CWR

0x0040

Congestion Window Reset flag (section 3.1.1), the sender has
reduced the congestion window, and informs the receiver to stop adding
the RDPUDP_FLAG_CN.

RDPUDP_FLAG_SACK_OPTION
0x0080

Not used.

RDPUDP_FLAG_ACK_OF_ACKS
0x0100

Specifies that the RDPUDP_ACK_OF_ACKVECTOR_HEADER Structure
(section 2.2.2.6) is present.

RDPUDP_FLAG_SYNLOSSY 0x0200 Specifies that the connection does not require persistent retransmits.

RDPUDP_FLAG_ACKDELAYED

0x0400

Specifies that the receiver delayed generating the ACK for the source
sequence numbers received. The sender is not to use this ACK for
estimating the network RTT.

RDPUDP_FLAG_CORRELATION_ID

0x0800

Specifies that the optional RDPUDP_CORRELATION_ID_PAYLOAD
Structure (section 2.2.2.8) is present.

RDPUDP_FLAG_SYNEX Specifies that the optional RDPUDP_SYNDATAEX_PAYLOAD Structure

http://go.microsoft.com/fwlink/?LinkId=150872

13 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Flags Meaning

0x1000 (section 2.2.2.9) is present.

2.2.2.2 RDPUDP_FEC_PAYLOAD_HEADER Structure

The RDPUDP_FEC_PAYLOAD_HEADER structure accompanies every datagram that contains an FEC
payload.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

snCoded

snSourceStart

uRange uFecIndex uPadding

snCoded (4 bytes): A 32-bit unsigned value that contains the sequence number for a Coded Packet.

snSourceStart (4 bytes): A 32-bit unsigned value that specifies the first sequence number of a
Source Packet that is contained in the FEC payload.

uRange (1 byte): An unsigned 8-bit value that, when added to snSourceStart, yields the range of
packets that are contained in the FEC payload.

uFecIndex (1 byte): An 8-bit unsigned value. This value is generated by the FEC engine.

uPadding (2 bytes): An array of UINT8 ([MS-DTYP] section 2.2.47).

2.2.2.3 RDPUDP_PAYLOAD_PREFIX Structure

The RDPUDP_PAYLOAD_PREFIX structure specifies the length of a data payload. This header is
used for generating an FEC Packet or for decoding an FEC Packet. Once a datagram is decoded by
using FEC, this field specifies the size of the recovered datagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbPayloadSize

cbPayloadSize (2 bytes): An unsigned 16-bit value that specifies the size of the data payload.

2.2.2.4 RDPUDP_SOURCE_PAYLOAD_HEADER Structure

The RDPUDP_SOURCE_PAYLOAD_HEADER structure specifies the metadata of a data payload.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

snCoded

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

14 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

snSourceStart

snCoded (4 bytes): An unsigned 32-bit value that specifies the sequence number for the current
Coded Packet.

snSourceStart (4 bytes): An unsigned 32-bit value that specifies the sequence number for the

current Source Packet.

2.2.2.5 RDPUDP_SYNDATA_PAYLOAD Structure

The RDPUDP_SYNDATA_PAYLOAD structure specifies the parameters that are used to initialize the

UDP connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

snInitialSequenceNumber

uUpStreamMtu uDownStreamMtu

snInitialSequenceNumber (4 bytes): A 32-bit unsigned value that specifies the starting value for
sequence numbers for Source Packets and Coded Packets.

uUpStreamMtu (2 bytes): A 16-bit unsigned value that specifies the maximum size for a datagram
that can be generated by the endpoint. This value MUST be greater than or equal to 1132 and less
than or equal to 1232.

uDownStreamMtu (2 bytes): A 16-bit unsigned value that specifies the maximum size of the
maximum transmission unit (MTU) that the endpoint can accept. This value MUST be greater
than or equal to 1132 and less than or equal to 1232.

2.2.2.6 RDPUDP_ACK_OF_ACKVECTOR_HEADER Structure

The RDPUDP_ACK_OF_ACKVECTOR_HEADER structure resets the start position of an ACK vector
(section 2.2.3.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

snAckOfAcksSeqNum

snAckOfAcksSeqNum (4 bytes): This value specifies the new sequence number from which the ACK
vector starts encoding the state of the receiver queue. The receiver generates the ACK Vector for
sequence numbers greater than the snAckOfAcksSeqNum. The minimum ACK Vector sequence

number is to be greater of the snAckOfAcksSeqNum and the lowest sequence number the

receiver expects (current window).

The sender sets the AckOfAck sequence number with the greatest cumulative ACK it has received
and processed. The sender SHOULD send AckOfAck every 20 packets.

2.2.2.7 RDPUDP_ACK_VECTOR_HEADER Structure

The RDPUDP_ACK_VECTOR_HEADER structure contains the ACK vector (section 2.2.3.1) that
specifies the states of the datagram in the receiver’s queue. This vector is a variable-size array. The
states are encoded by using run-length encoding (RLE) and are stored in this array.

15 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

uAckVectorSize AckVectorElement (variable)

...

...

Padding (variable)

...

...

uAckVectorSize (2 bytes): A 16-bit unsigned value that contains the size of the
AckVectorElement array. The maximum size of the ACK Vector is 2048 bytes.

AckVectorElement (variable): An array of ACK Vector elements. Each element is composed of a

state, and the number of contiguous datagrams that share the same state.

Padding (variable): A variable-sized array, of length zero or more, such that this structure ends on
a DWORD ([MS-DTYP] section 2.2.9) boundary.

2.2.2.8 RDPUDP_CORRELATION_ID_PAYLOAD Structure

The RDPUDP_CORRELATION_ID_PAYLOAD structure allows a terminal client to specify the
correlation identifier for the connection, which can appear in some of the terminal server's event logs.
Otherwise, the terminal server can generate a random identifier.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

uCorrelationId (16 bytes)

...

...

uReserved (16 bytes)

...

...

uCorrelationId (16 bytes): DTYP.GUID. An array of 16 8-bit, unsigned integers that specifies a
unique identifier to associate with the connection. The value MUST be transmitted in big-endian

byte order. The most-significant byte SHOULD NOT have a value of 0x00 or 0xF4. The value 0x0D
SHOULD NOT be used in any of the bytes. The value of this field SHOULD be the same as the
value provided in the RDP_NEG_CORRELATION_INFO structure ([MS-RDPBCGR] section
2.2.1.1.2).

uReserved (16 bytes): 16 8-bit values, all set to 0x00.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

16 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.9 RDPUDP_SYNDATAEX_PAYLOAD Structure

The RDPUDP_SYNDATAEX_PAYLOAD structure specifies extended parameters that are used to
configure the UDP connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

uSynExFlags uUdpVer

uSynExFlags (2 bytes): A 16-bit unsigned integer that indicates supported options. The following
table describes the meaning of each flag.

Flags Meaning

RDPUDP_VERSION_INFO_VALID

0x0001

The uUdpVer field indicates a supported version of the RDP-UDP protocol.

uUdpVer (2 bytes): A 16-bit unsigned value. When the RDPUDP_VERSION_INFO_VALID flag is
present, this specifies a supported version of the UDP Transport Extension, used to negotiate with
the other endpoint.

Flags Meaning

RDPUDP_PROTOCOL_VERSION_1

0x0001

The minimum retransmit time-out is 500 ms (section 3.1.6.1), and the
minimum delayed ACK time-out is 200 ms (section 3.1.6.3).<1>

RDPUDP_PROTOCOL_VERSION_2

0x0002

The minimum retransmit time-out is 300 ms (section 3.1.6.1), and the
minimum delayed ACK time-out is 50 ms (section 3.1.6.3).<2>

2.2.3 Vectors

2.2.3.1 ACK Vector

The ACK vector captures the state of the queue of Source Packets at the receiver endpoint.

Each position in the queue can have two values that indicate whether a Source Packet is present in the
queue, or not. The run-length encoding (RLE) compression is used for encoding the states of Source
Packets in the array.

An ACK Vector comprises a number of elements, as specified by the uAckVectorSize field in the
RDPUDP_ACK_VECTOR_HEADER structure (section 2.2.2.7). Each element is 8 bits long.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

uAckVectorSize S S L L L L L L AckVec Element[2]

The two most significant bits of each element compose the VECTOR_ELEMENT_STATE enumeration
(section 2.2.1.1). The next 6 bits are the length of a continuous sequence of datagrams that share the
same state.

The ACK vectors form a binary large object (BLOB), and are padded so that they are aligned to
WORD ([MS-DTYP] section 2.2.61) boundaries.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

17 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This is similar to the description of ACK vectors in the Datagram Congestion Control Protocol (DCCP),
as described in [RFC4341].

http://go.microsoft.com/fwlink/?LinkId=225734

18 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate an
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Initial Sequence Number: Each endpoint advertises the first sequence number that will be used
when sending the datagrams. The Coded sequence number (section 3.1.1.2) and the Source
sequence number (section 3.1.1.2) for the first datagram sent will be equal to this value.

Congestion Control: Each endpoint MUST notify the remote endpoint of congestion events.
Congestion events are characterized by lost or missing datagrams.

Congestion Notification: The RDPUDP_FLAG_CN flag (section 2.2.2.1) indicates that the remote
endpoint has detected congestion events.

Congestion Window Reset: The RDPUDP_FLAG_CWR flag (section 2.2.2.1) indicates that the
endpoint has reacted to the congestion notification message, and that the remote endpoint MUST
stop sending Congestion Notifications.

3.1.1.1 Transport Modes

When the connection is initialized in the RDP-UDP-R mode, as described in section 1.3.1, persistent
retransmits ensure that all datagrams written to the sender will be read respectively at the receiver.

When the connection is initialized in the RDP-UDP-L mode with the RDPUDP_FLAG_SYNLOSSY flag

(section 2.2.2.1), the sender does not retransmit any datagrams. In this mode, not all datagrams

generated by the user on the sender side are received by the user on the receiver side. However, the
ordering of datagrams MUST be preserved and datagrams MUST be read at the receiver in the same
order in which they were written by the sender.

In RDP-UDP-L, the receiver SHOULD maintain a timer for out-of-order packets. This timer SHOULD be
enabled when the first out-of-order packet is received and disabled when all missing datagrams have
been received. When this timer fires, the receiver SHOULD stop the timer and process datagrams it
has received. The receiver SHOULD process any out-of-order packet that is in the right edge of the

receiver window. This ensures new packets are not dropped.

The order of the datagrams is determined according to their sequence numbers, as specified in section
3.1.1.2.

3.1.1.2 Sequence Numbers

All Coded Packets and Source Packets have a sequence number that identifies their sending order. The
sequence numbers for the Coded Packets and the Source Packets are independent of each other.

The Initial Sequence Number abstract data model (ADM) element for both Coded Packets and
Source Packets is initialized as follows:

Initial Sequence Number = snInitialSequenceNumber in the RPDUDP_SYNDATA_PAYLOAD
Structure (section 2.2.2.5).

19 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This initial value is a true random number. This field is similar to the initial sequence number (ISN)
field used in the TCP transport protocol; for more information about the ISN field, see [RFC1948].

The Coded Packet sequence number is referred to as the Coded sequence number. The Coded
sequence number uniquely identifies each datagram sent by the sender. The Coded sequence number

value is increased by one for each Coded Packet that was sent. Retransmitted Source Packets can
have different Coded sequence numbers.

The Source Packet sequence number is referred to as the Source sequence number. Each Source
Packet encapsulates a data payload. The Source sequence number uniquely identifies this data
payload. The Source sequence number value is increased by one for each data payload that was sent.

The sequence numbers wrap around due to space limitations. Implementations MUST handle this
wrap-around scenario. For more information about the sequence numbers range, see [RFC793]

section 3.3.

3.1.1.3 MTU Negotiation

The largest data payload that can be transferred over this protocol is negotiated during the 3-way UDP

handshake process, called MTU negotiation. The size of the Internet Protocol (IP) or MAC layer
headers and other underlying network headers is not a part of this negotiation.

The RDP-client advertises the largest payload it can send (uUpStreamMtu) and the largest payload it
can receive (uDownStreamMtu) as a part of the SYN datagram, as specified in section 2.2.2.5. The
minimum of these values and the data payload sizes the server can send or receive determines the
negotiated MTU, as shown in the following equation.

Negotiated uUpStreamMtu = minimum (Advertised uUpStreamMtu, Received uDownStreamMtu,

1232) + Maximum size of the RDPUDP_ACK_OF_ACKVECTOR_HEADER Structure (section 2.2.2.6)

Negotiated uDownStreamMtu = minimum (Advertised uDownstreamMtu, Received
uUpStreamMtu, 1232) + Maximum size of the RDPUDP_ACK_OF_ACKVECTOR_HEADER Structure
(section 2.2.2.6)

The server sends these values to the client as a part of the SYN+ACK packet (section 3.1.5.1.3); this
is the final negotiated MTU size. The client MUST NOT send a data payload larger than the value

specified in uUpStreamMtu, and the server MUST NOT send data larger than uDownStreamMtu.
Values that do not fall within this range are unacceptable. If such oversized payloads are detected,
either endpoint MUST ignore such UDP datagrams. This could possibly lead to a connection
termination, initiated by any layer in the RDP stack, because some part of the data was lost.

The range of uUpStreamMtu and uDownStreamMtu is in the closed interval [1132, 1232]. The
advertised MTU MUST NOT be smaller than 1132 or larger than 1232.

3.1.1.4 Acknowledgments

An acknowledgment (ACK) is sent from the receiver to the sender, informing the sender about the
receipt of a Source Packet. An acknowledgment MUST be generated for every Source Packet received.
However, because acknowledgments are cumulative, the number of Source Packets for which a

receiver generates an acknowledgment is implementation-specific.<3> Only Source Packets MUST be

acknowledged by the receiver; FEC Packets MUST NOT be acknowledged by the receiver.

Each acknowledgment contains an ACK Vector (section 2.2.3.1).

3.1.1.4.1 Lost Datagrams

Lost datagrams notification is a part of the Congestion Control ADM element implementation. It is
used to control the rate of the data that is transferred between the endpoints as described in section
5.1.3.

http://go.microsoft.com/fwlink/?LinkId=225732
http://go.microsoft.com/fwlink/?LinkId=150872

20 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The receiver marks a datagram as lost only when it receives three other datagrams after its original
transmission, with sequence numbers greater than the original datagram. Similarly, the sender marks

a packet as lost only when it receives an acknowledgment (section 3.1.1.4) for any three packets that
have a sequence number greater than the lost packet.

3.1.1.5 Retransmits

The Remote Desktop Protocol: UDP Transport Extension does not specify a retransmit mechanism. An
implementation can choose any retransmit method; for example, the Fast Retransmit method, as

described in [RFC5681].

When the sender detects that the receiver did not receive a specific Source Packet (section 3.1.1.4.1),
the sender retransmits that Source Packet. Only Source Packets MUST be retransmitted.

3.1.1.6 FEC Computations

This section explains the operations involved in generating an FEC Packet. An FEC Packet is generated

by a linear combination of a number of Source Packets, as described in section 1.3.2.2, over a Galois
Field, as specified in [Bewersdorff]. A brief introduction on finite field arithmetic is given in section
3.1.1.6.1. The coefficients of the equation are described in section 3.1.1.6.4. The actual FEC encoding
and decoding are described in section 3.1.1.6.2 and section 3.1.1.6.3, respectively.

3.1.1.6.1 Finite Field Arithmetic

A finite field is a finite set of numbers. All arithmetic operations performed on this field will yield a
result that belongs to the same finite field. For example, a finite field of size 256 with numbers from 0
to 255 is defined. All the arithmetic operations (addition, subtraction, multiplication, and division) on
this field will yield a result in the range of 0 to 255, thus belonging to the original finite field itself.
Conventional arithmetic differs from finite field arithmetic as it operates on an infinite set of real
numbers. For more details on finite fields, see [Lidl].

All binary numbers belonging to a finite field (also known as a Galois field, GF(pn)), where p is a prime

number and n is a positive integer, can be represented in a polynomial form and in a finite field with

binary numbers (for example in GF(256)=GF(28)), where a is the coefficient of this equation with a
value equal to zero or 1.

Figure 5: Galois field and binary representation example

3.1.1.6.1.1 Addition and Subtraction

Adding or subtracting two polynomials is done by grouping coefficients of the same order, similar to
regular algebra. However, since this operation is performed in GF(28), the result is brought into the
finite field by performing a modulo 2 operation on each of the coefficients in the polynomial
representation.

The addition operation over the finite field is logically equivalent to a XOR operation. Thus, adding or
subtracting two polynomials means XORing them together, as described in the following figure.

http://go.microsoft.com/fwlink/?LinkId=225735

21 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 6: Addition and subtraction example

In a finite field of GF(2n), such as GF(256), addition and subtraction are equivalent operations.

Pseudo-code example:

 BYTE Add(const BYTE x, const BYTE y)
 {
 return (x ^ y);
 }

 BYTE Sub(const BYTE x, const BYTE y)
 {
 return (x ^ y);
 }

3.1.1.6.1.2 Multiplication and Division

Multiplication in the finite field can be performed in one of the following two ways:

 Using logarithms

 Multiplying the two polynomials and reducing the result with an irreducible polynomial to bring it
back in the finite field

It is simpler to perform multiplications and divisions using logarithms, as it involves a table lookup for
the log function, followed by an addition of the polynomials, followed by an exponent function.

Figure 7: Multiplication equation

Division is performed similarly using logarithms and exponentiation.

Figure 8: Division equation

Since the discrete logarithm of an element in the finite field is a regular integer, the addition in the
exponent is a regular addition modulo 2n.

Pseudo-code example:

 BYTE Div(const int x, const int y)
 {
 if (y==0) return 0;
 if (x==0) return 0;

 return (BYTE)(m_ffExp2Poly[m_ffPoly2Exp[x] - m_ffPoly2Exp[y] + (MAX_FIELD_SIZE-1)]);
 }

22 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BYTE Mul(const int x, const int y)
 {
 if (((x-1) | (y-1)) < 0)
 return (0);

 return (BYTE)(m_ffExp2Poly[m_ffPoly2Exp[x] + m_ffPoly2Exp[y]]);
 }

Where m_ffExp2Poly and m_ffPoly2Exp are exponent and log tables respectively.

3.1.1.6.1.3 Logarithms and Exponents

Exponents can be calculated by repeatedly multiplying the same number, and then using a modulo
operation to ensure that the result stays in the finite field.

Pseudo-code example:

 reduction = 0x1d;
 m_ffExp2Poly[0] = 0x01;
 for (i = 1; i < m_fieldSize - 1; i++)
 {
 temp = m_ffExp2Poly[i - 1] << 1;
 if (temp & m_fieldSize)
 {
 m_ffExp2Poly[i] = (temp & ~m_fieldSize) ^ reduction;
 }
 else
 {
 m_ffExp2Poly[i] = (byte)temp;
 }
 }

Where m_fieldSize is 256 for GF(28)

Logarithms are the inverse of exponents, and can be easily calculated by reversing the previous
operation as shown in the following pseudo-code example:

 m_ffPoly2Exp[0] = 2 * m_fieldSize; // no exponential representation, doesn't exist
 for (i = 0; i < m_fieldSize - 1; i++)
 {
 m_ffPoly2Exp[m_ffExp2Poly[i]] = (byte)i;
 }

Logarithms and exponents can be obtained by using the methods described previously to generate
logarithms and exponent lookup tables.

3.1.1.6.2 FEC Encoding

As described in section 1.3.2.2, an FEC Packet is added to the data stream after processing a block of

Source Packets. The size of the FEC Packet is equal to the size of the largest Source Packet in the
group. In the following representation, each Source Packet Sn contains at most k bytes. All the Source
Packets with a size smaller than k are padded with bytes containing zero.

Figure 9: Source Packet and FEC Packet representation

23 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The FEC Packet is generated with the following equation.

Figure 10: FEC encoding

The product of these two matrices will give us a row matrix, which is the FEC Packet of size 1 * k. The
method in which the coefficients are generated is explained in the following pseudo-code example and
in the following sections.

Pseudo-code example:

 //
 // Generate the log and exponent tables.
 //
 PrepareExpLogArrays();

 //
 // Generate a set of packets. Fill them with random data for this example.
 //
 Packet S1, S2, S3, S4, S5, F15;
 S1.GeneratePacketData(10);
 S2.GeneratePacketData(20);
 S3.GeneratePacketData(15);
 S4.GeneratePacketData(15);
 S5.GeneratePacketData(20);

 //
 // Print the packets out for verification.
 //
 S1.PrintPacketData();
 S2.PrintPacketData();
 S3.PrintPacketData();
 S4.PrintPacketData();
 S5.PrintPacketData();

 //
 // The coefficient arrays and the fecIndex generated from FEC calculations
 //
 BYTE fecIndex = 0;
 BYTE CoEfficientArray[5] = {0, 0, 0, 0, 0};

 GenerateCoeffArray(CoEfficientArray, 5, 1, 5, &fecIndex);
 printf("CoEff Array [%d %d %d %d %d]\n", CoEfficientArray[0],
 CoEfficientArray[1],
 CoEfficientArray[2],
 CoEfficientArray[3],
 CoEfficientArray[4]);

 //
 // Generating a matrix of source packets
 //

24 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BYTE* FECGeneratorArray[5] = {S1.m_pbPacket,
 S2.m_pbPacket,
 S3.m_pbPacket,
 S4.m_pbPacket,
 S5.m_pbPacket
 };
 //
 // Generate the FEC packet.
 //
 MatrixMultiply(F15.m_pbPacket, CoEfficientArray, 5, FECGeneratorArray, 5, 22);

 //
 // Print the FEC packet for verification.
 //
 F15.PrintFECData(22);

 void MatrixMultiply(BYTE *fecArr, BYTE* CoEffArray, int cbCoEffArrayCount, BYTE**
FECGeneratorArray, int cbRowCount, int cbColumnCount)

 {
 for (int i = 0; i < cbColumnCount; i++)
 {
 fecArr[i] = 0;
 for (int j = 0; j < cbCoEffArrayCount; j++)
 {
 fecArr[i] = Mul(CoEffArray[j],FECGeneratorArray[j][i]) ^ fecArr[i];
 }
 }
 }

3.1.1.6.3 FEC Decoding

An FEC decoding operation is the reverse of the FEC encoding (section 3.1.1.6.2) operation. The FEC
decoding operation solves the linear equation that is used to recover the lost Source Packets. Each
FEC Packet can be used to recover only one Source Packet in the range covered by that FEC Packet.

To decode, or recover a missing datagram using FEC, the following matrix is constructed where packet

F1 is the FEC block for Source Packets S1 – Sn.

For simplicity, assume n=5. If packet S4 is missing, it can be recovered by using the following matrix
operation.

Figure 11: Matrix operation for FEC decoding

Here, matrix S’ contains an unknown term (S4) that needs to be computed. This can be done by

converting Cd to an identity matrix using the Gauss-Jordan elimination. For more details on the
Gauss-Jordan elimination, see [Press].

Not all matrices have an inverse, and in some cases, Cd’ doesn’t exist. For such operations, the FEC
Packet cannot be used to recover from that particular Source Packet. Thus, not all FEC operations are
reversible, and not being able to decode a FEC Packet is not fatal. The missing Source Packet is always
retransmitted in RDP-UDP-R mode (section 3.1.1.7), and can be ignored for RDP-UDP-L mode (section
3.1.1.7).

Pseudo-code example:

25 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // Regenerate Coefficient array from fecIndex.
 //
 RegenerateCoeffArrayFromFecIndex(CoEfficientArray, 5, fecIndex, 1, 5);

 //
 // Compute the missing packet (S3) by inverting the matrix.
 // This is the algebraic equivalent
 // of a matrix inverse.
 //
 for (int i = 0; i < 22; i++)
 {
 printf("%d ", Div(Mul(CoEfficientArray[0], S1.m_pbPacket[i]) ^
 Mul(CoEfficientArray[1], S2.m_pbPacket[i]) ^
 Mul(CoEfficientArray[3], S4.m_pbPacket[i]) ^
 Mul(CoEfficientArray[4], S5.m_pbPacket[i]) ^
 F15.m_pbPacket[i],CoEfficientArray[2]));
 }
 printf("\n");

3.1.1.6.4 Selecting the Coefficients Matrix

If the Source sequence numbers (section 3.1.1.2) for packets S1, S2, S3 … Sn are s1, s2, s3 … sn, the
coefficient matrix is calculated as follows.

Figure 12: Matrix coefficient calculation

The division uses finite field division as described in section 3.1.1.6.1.2. Note that since all the packets
in an FEC Packet are sequential, s2=s1+1, s3=s1+2, …, sn=s1+(n-1).

Only the last byte of the Source sequence number is used in calculating the coefficient. The fecIndex
field described in the following pseudo-code example is equivalent to the uFecIndex field, as

specified in section 2.2.2.2. The value of the fecIndex field is updated using the following code prior
to every call for encoding an FEC Packet:

 if ((sn&0xf) >= (s1 &0xf) && ((fecIndex >= (s1 &0xf)) && (fecIndex <= (sn&0xf))) ||
 (sn&0xf) < (s1 &0xf) && ((fecIndex >= (s1 &0xf)) || (fecIndex <= (sn&0xf))))
 fecIndex = (sn+1) & 0xf;

Pseudo-code example:

 void GenerateCoeffArray(BYTE *pbCoEfficientArray,
 int cLength,
 USHORT ucOrigStart,
 USHORT ucOrigEnd,
 __out BYTE *pucFecIndex)
 {
 if ((ucOrigEnd >= ucOrigStart) &&
 ((*pucFecIndex >= ucOrigStart) && (*pucFecIndex <= ucOrigEnd)))
 *pucFecIndex = (BYTE)(ucOrigEnd+1);
 if ((ucOrigEnd < ucOrigStart) &&
 ((*pucFecIndex >= ucOrigStart) || (*pucFecIndex <= ucOrigEnd)))
 *pucFecIndex = (BYTE)(ucOrigEnd+1);

 for (int i=0; i < cLength; i++, ucOrigStart++)
 {

26 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BYTE e = Div(1, (*pucFecIndex)^ucOrigStart);
 pbCoEfficientArray[i] = (BYTE)m_ffPoly2Exp[e];
 }
 }

 void RegenerateCoeffArrayFromFecIndex(BYTE *pbCoefficientArray,
 int cLength,
 BYTE fecIndex,
 USHORT ucOrigStart,
 USHORT ucOrigEnd)
 {

 for (int i=0; i < cLength; i++, ucOrigStart++)
 {
 BYTE e = Div(1, fecIndex^ucOrigStart);
 pbCoefficientArray[i] = (BYTE)m_ffPoly2Exp[e];
 }

 }

3.1.1.6.5 Structure of Source Packets used for FEC Encoding

Only for the FEC Encoding operations, Source Packets are prepended with a 2 byte
RDPUDP_PAYLOAD_PREFIX (section 2.2.2.3) header. This header is used only for the FEC encoding
and decoding operations, and is not transmitted to the terminal client. This field contains the size of

each Source Packet, specified in the network byte order. When a datagram is recovered using FEC, the
first 2 bytes constitute of this header, and specify the size of the recovered datagram to the decoder.

3.1.1.7 Flow Control

The Flow Control feature is similar to the TCP transport protocol Flow Control, as specified in
[RFC793].

The main objective of Flow Control is to prevent a fast sender from sending too many datagrams to a
slow receiver and congesting it. The receiver advertises the number of datagrams it can accommodate

at any given time. The sender MUST NOT send more datagrams than the advertised number of
datagrams. The receiver SHOULD discard all datagrams that fall outside the advertised window.

The Flow Control algorithm allows the sender to transmit packets in the following range:

(CumAcked + 1) to (CumAcked + uReceiveWindowSize)

CumAcked: An internal state variable of the sender.

 For an RDP-UDP-R sender (section 1.3.1), this is the highest sequence number where all
datagrams with a smaller sequence number have already been received by the receiver.

 For an RDP-UDP-L sender (section 1.3.1), this is the highest sequence number where all
datagrams with a smaller sequence number have been either received or marked as lost by
the receiver.

uReceiveWindowSize: The receiver advertised window defined in the RDPUDP_FEC_HEADER
structure, as specified in section 2.2.2.1.

3.1.1.8 Congestion Control

The Congestion Control abstract data model (ADM) element is used to limit the rate at which the
sender sends Source Packets. Controlling the network throughput enables sharing the network
resources with other users and avoiding network congestion. The sender MUST implement some form

http://go.microsoft.com/fwlink/?LinkId=150872

27 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

of Congestion Control logic. Any NewReno variant implementation can be an acceptable option. For
more information about NewReno variants, see [RFC3782].

When the sender receives the RDPUDP_FLAG_CN flag (section 2.2.2.1), which notifies of a
datagram loss, the sender MUST immediately react and reduce its network throughput. The next

Source Packet sent by the sender MUST have an RDPUDP_FLAG_CWR flag (section 2.2.2.1) to
indicate that the sender has reacted to the Congestion Notification ADM element. The sender will
remember the source packet that carries the RDPUDP_FLAG_CWR. The receiver will stop setting the
RDPUDP_FLAG_CN on acknowledgment once it receives the RDPUDP_FLAG_CWR. On the other
side, the sender will then ignore the set RDPUDP_FLAG_CN flags on subsequent acknowledgments
from any receiver that has an snSourceAck ADM in the acknowledgment that is less than the
previously remembered sequence number.

Additionally, the sender SHOULD set the RDPUDP_FLAG_CWR flag whenever a retransmit occurs
due to the Retransmit Timer (section 3.1.6.1) firing to indicate that a datagram loss was detected,
even if the RDPUDP_FLAG_CN flag was not set by the receiver. If the receiver is not setting the
RDPUDP_FLAG_CN flag, no action is needed on receipt of the RDPUDP_FLAG_CWR flag.

The sender reacts to losses that take place every round-trip time (RTT) only. There could be
multiple losses in an RTT, and the sender MUST NOT react to those events. This behavior is similar to

the NewReno variants behavior, as described in [RFC3782].

3.1.1.9 Keepalives

As the underlying transport is based on UDP and is connectionless, each pair of endpoints MUST
constantly send data to make sure that the other endpoint is present and is responding to network

events. If there is no data to send, each endpoint MUST periodically acknowledge the last received
datagram. Otherwise, the network address translation (NAT) en route between the peers can
block the UDP connection.

If the sender does not receive any datagram from the receiver after 65 seconds, it is determined that
the remote endpoint has entered the Closed state (section 3.1.5), and that the connection has been
terminated.

Because the delivery of acknowledgments (section 3.1.1.4) is not guaranteed, the receiver SHOULD
send one or more keepalive datagrams in implementation-specific<4> time intervals smaller or equal
to 65 seconds. If the sender does not receive at least one keep-alive datagram every 65 seconds, it
terminates the connection.

3.1.2 Timers

The following timers are used by the Remote Desktop Protocol: UDP Transport Extension and MUST be
implemented:

Retransmit: This timer is used for indicating that no acknowledgment (section 3.1.1.4) has been
received for a datagram that was transmitted earlier.

Keepalive at the sender: This timer is used for maintaining an active connection between the
endpoints.

Delayed ACK: This timer is used for indicating the receipt of a Source Packet that was not
acknowledged yet and has no acknowledgment scheduled for it.

3.1.3 Initialization

Before the protocol operation can commence, UDP network connectivity has to be established between
the endpoints: the terminal client and the terminal server.

http://go.microsoft.com/fwlink/?LinkId=225733

28 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The terminal server MUST open a UDP socket, and bind it to the default RDP port 3389, as specified in
section 2.1. The terminal server listens on this socket for incoming connections.

The terminal client MUST open a UDP socket to the terminal server. The terminal client MUST connect
to the port that the terminal server is listening on. If there are multiple connections, each connection

MUST have a unique port number on the terminal client.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Initializing a Connection

The user of this protocol MUST initialize a UDP connection between the endpoints as described in
section 1.3.2.1.

3.1.4.2 Sending a Datagram

The user of this protocol can send data from one endpoint to another using this protocol. The protocol
MUST send the data across only if the two endpoints are in the Established state.

3.1.4.3 Receiving a Datagram

The user of this protocol MUST be notified on receipt of a datagram when one endpoint receives data
sent by the remote endpoint. The endpoints MUST be in the Established state.

3.1.4.4 Terminating a Connection

The user of this protocol can terminate a connection at any point in time. Datagrams SHOULD NOT be
sent by the transport after the user has terminated the connection. All of the datagrams received after
the connection termination MUST be ignored.

3.1.5 Message Processing Events and Sequencing Rules

The states of the protocol, divided into the terminal server states and the terminal client states, are
illustrated in the following figure.

29 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 13: State diagram for the terminal server and terminal client states

The states are described as follows:

Closed state: Both the terminal server sender and the terminal client receiver can be in the Closed
state. The endpoint in a Closed state MUST NOT respond to any networking events, and MUST NOT
generate or process any datagrams. The endpoint enters the Closed state when the Retransmit timer

or the Keepalive timer is fired, as specified in section 3.1.5.4.

Listen state: Only the terminal server sender can enter this state. The terminal server listens on the
port for incoming UDP connections, as specified in section 3.1.3.

SYN_SENT: Only the terminal client receiver can enter this state, after sending a SYN packet and thus
initiating the connection.

SYN_RECEIVED: Only the terminal server sender can enter this state, after receiving a SYN packet
from the terminal client receiver.

Established: This state indicates that a connection has been established, and datagrams are
exchanged between the two endpoints.

Duplicate messages are ignored and discarded by either endpoint. The exchanged messages are
specified in the following sections.

30 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.1 Constructing Messages

3.1.5.1.1 SYN Datagrams

The following steps specify the creation of a SYN datagram:

1. An RDPUDP_FEC_HEADER structure (section 2.2.2.1) MUST be appended to the UDP datagram.

 The snSourceAck variable MUST be set to -1.

 The uReceiveWindowSize variable MUST be set to the size of the receive buffer. The receive
buffer is the number of packets the receiver specified it can buffer.

 The uFlags variable MUST be set as follows:

 The RDPUDP_FLAG_SYN flag MUST be set.

 The RDPUDP_FLAG_SYNLOSSY flag MUST be set only when neither endpoint requires
retransmission of lost datagrams.

 The RDPUDP_FLAG_CORRELATION_ID flag MUST be set only when the
RDPUDP_CORRELATION_ID_PAYLOAD structure (section 2.2.2.8) is included.

 The RDPUDP_FLAG_SYNEX flag MUST be set only when the
RDPUDP_SYNDATAEX_PAYLOAD structure (section 2.2.2.9) is included.

2. The RDPUDP_SYNDATA_PAYLOAD structure (section 2.2.2.5) MUST be appended to the UDP
datagram.

 The snInitialSequenceNumber variable MUST be set to a 32-bit number generated by using
a truly random function.

 The uUpStreamMtu field MUST be set to a value in the range of 1132 to 1232.

 The uDownStreamMtu field MTU MUST be set to a value in the range of 1132 to 1232.

3. The RDPUDP_CORRELATION_ID_PAYLOAD structure (section 2.2.2.8) MUST be appended to the

UDP datagram if the RDPUDP_FLAG_CORRELATION_ID flag is set in uFlags.

 The uCorrelationId variable MUST be filled with 8-bit numbers generated by using a truly
random function, except that: The value MUST be transmitted in big-endian byte order. The
most-significant byte is not to have a value of 0x00 or 0xF4. None of the bytes are to have the
value 0x0D. This value is to be the same as provided in the RDP_NEG_CORRELATION_INFO
structure ([MS-RDPBCGR] section 2.2.1.1.2).

 The uReserved variable MUST be filled with 16 8-bit numbers, all with value 0x00.

4. The RDPUDP_SYNEX_PAYLOAD structure (section 2.2.2.9) MUST be appended to the UDP
datagram if the RDPUDP_FLAG_SYNEX flag is set in uFlags. Not appending this structure implies
that RDPUDP_PROTOCOL_VERSION_1 is the highest protocol version supported. This structure
SHOULD NOT be appended if this datagram is in response to a SYN from the other endpoint where

the RDP_FLAG_SYNEX flag was not specified. The uSynExFlags field MUST be set as follows:

 The RDPUDP_VERSION_INFO_VALID flag MUST be set only if the structure contains a valid

RDP-UDP protocol version.

 If the RDPUDP_VERSION_INFO_VALID flag is present, the uUdpVer field MUST be set to the
highest RDP-UDP protocol version supported by the endpoint, or if the other endpoint has
already sent a SYN, the highest version supported by both endpoints.

5. This datagram MUST be zero-padded to increase the size of this datagram to 1232 bytes.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

31 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.1.2 ACK Datagrams

The following steps specify the creation of an ACK datagram:

1. An RDPUDP_FEC_HEADER structure (section 2.2.2.1) MUST be appended to the UDP datagram.

 The snSourceAck variable MUST be set to the largest sequence number the receiver has seen
so far. Sequence numbers will wrap over after overflow, and the receiver MUST handle this
case.

 The uReceiveWindowSize variable MUST be set to the size of the receive buffer. The receive
buffer is the number of packets the receiver specified it can buffer.

 The uFlags flag MUST be set as follows:

 The RDPUDP_FLAG_ACK flag MUST be set.

 The RDPUDP_FLAG_CN flag SHOULD be set only if the receiver has detected a lost
datagram and has not received a datagram with the RDPUDP_FLAG_CWR flag

corresponding to that RDPUDP_FLAG_CN flag.

 The RDPUDP_FLAG_ACK_OF_ACKS flag SHOULD be set only if the sender sends an
ACK for the section ACK Vector (section 2.2.3.1).

2. An RDPUDP_ACK_VECTOR_HEADER structure (section 2.2.2.7) header MUST be appended as

follows:

 The uAckVectorSize variable MUST be set to the number of elements in the array.

 An array of elements, that captures the receiver’s queue by using run-length encoding (RLE),
as specified in section 3.1.1.4.1.

3. An RDPUDP_ACK_OF_ACKVECTOR_HEADER structure (section 2.2.2.6) SHOULD be appended by
the sender if both of the following occur:

 The RDPUDP_FLAG_ACK_OF_ACKS flag is set.

 The snAckOfAcksSeqNum variable was set as the new start position of the ACK Vector.

3.1.5.1.3 SYN and ACK Datagrams

A SYN datagram is generated, as specified in section 3.1.5.1.1, with the following fields set as follows:

 The snSourceAck field in the RDPUDP_FEC_HEADER structure (section 2.2.2.1) MUST be set to
the snInitialSequenceNumber value received in the SYN packet (section 3.1.5.1.1).

 The RDPUDP_FLAG_ACK flag MUST be set in the RDPUDP_FEC_HEADER structure (section

2.2.2.1).

 The uUpStreamMtu and uDownStreamMtu in the RDPUDP_SYNDATA_PAYLOAD structure
(section 2.2.2.5) MUST be set as specified in the algorithm described in section 3.1.1.3. The

values of these fields MUST be in the range of 1132 to 1232 bytes.

 The RDPUDP_SYNEX_PAYLOAD structure (section 2.2.2.9) SHOULD only be present if it is also
present in the received SYN packet. The uUdpVer field MUST be set to the highest RDP-UDP

protocol version supported by both endpoints. The highest version supported by both endpoints,
which is RDPUDP_PROTOCOL_VERSION_1 if either this packet or the SYN packet does not specify
a version, is the version that MUST be used by both endpoints.

3.1.5.1.4 ACK and Source Packets Data

32 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following steps specify the creation of an ACK and Source Packet datagram:

1. An ACK datagram is generated, as specified in section 3.1.5.1.2.

 The RDPUDP_FLAG_DATA flag MUST be set.

 The RDPUDP_FLAG_CWR flag SHOULD be set for the first RDPUDP_FLAG_CN flag seen in

an RTT.

2. An RDPUDP_SOURCE_PAYLOAD structure (section 2.2.2.4) header MUST be appended.

 The snCoded variable value MUST be set to the previously transmitted datagram’s snCoded
value plus 1. If this is the first datagram, this value is the advertised Initial Sequence
Number ADM element plus 1.

 The snSourceStart variable MUST be set. It is incremented for each chunk of data written to
the transport. The initial value is the advertised Initial Sequence Number ADM element plus

1.

3. The data payload protocol data MUST be appended.

3.1.5.1.5 ACK and FEC Packets Data

The following steps specify the creation of an ACK and FEC Packet datagram.

1. An ACK datagram is generated, as specified in section 3.1.5.1.2.

 The RDPUDP_FLAG_DATA flag MUST be set.

 The RDPUDP_FLAG_FEC flag MUST be set.

2. An RDPUDP_FEC_PAYLOAD_HEADER structure (section 2.2.2.2) MUST be appended.

 The snCoded variable's value MUST be set to the previously transmitted datagram's snCoded
value plus 1. If this is the first datagram, this value is the advertised Initial Sequence

Number ADM element.

 The snSourceStart variable MUST be set to the Source sequence number of the first

datagram included in this FEC operation.

 The uRange variable MUST be set to the number of datagrams included in this FEC operation.

 The uPadding variable MUST be set to zero and ignored by the receiver.

3. The FEC payload data MUST be appended.

3.1.5.2 Connection Sequence

The protocol's connection sequence is illustrated in the figure in section 3.1.5. The following list
describes the states that the terminal server and terminal client enter:

1. Listen/- : The terminal server enters the Listen state:

1. The terminal server binds to a UDP socket, and is ready to accept incoming connections.

2. Connect/SYN-:

1. The terminal client establishes a UDP socket connection with the terminal server.

2. The terminal client constructs and sends a SYN datagram, as specified in section 3.1.5.1.1.

33 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3. SYN/SYN+ACK:

1. The terminal server receives the SYN datagram.

2. The terminal server constructs and sends a SYN+ACK datagram, as specified in section
3.1.5.1.3.

4. SYN+ACK/ACK(+DATA):

1. The terminal client receives a SYN+ACK datagram. If the terminal client does not receive a
response for a SYN datagram that was retransmitted at least three and no more than five
times, the endpoint will enter the Closed state.<5>

2. The terminal client generates an ACK for the SYN+ACK datagram.

3. The terminal client can append Source Packets to the ACK datagram.

5. ACK/-:

1. The server receives an ACK for the SYN+ACK datagram sent. If the terminal server does not
receive a response for a SYN + ACK datagram that was retransmitted at least three and no
more than five times, the endpoint will enter the Closed state.<6>

2. The server enters the Established state.

3.1.5.3 Data Transfer Phase

3.1.5.3.1 Sender Receives Data

Each Source Packet is identified by a unique Source sequence number, as specified in section 3.1.1.2.
The sender assigns a Source sequence number to each datagram. This number is increased by one for
each datagram. The initial value is the Initial Sequence Number advertised by the Sender.

The size of the data a user can write to the sender is limited to the negotiated MTU for the RDP-UDP

transport, obtained through the MTU negotiation process, as specified in section 3.1.1.3.

An RDP-UDP-R sender (section 1.3.1) is similar to the TCP protocol, and operates like a stream-based
transport. Data of any arbitrary size can be handed to the RDP-UDP-R sender. The sender fragments
this block of data into MTU-sized chunks before transmitting it.

An RDP-UDP-L sender (section 1.3.1) is similar to the UDP protocol, and operates like a pure
datagram-based transport. Each block of data the RDP-UDP-L sender can send is no more than the

MTU size negotiated in section 3.1.1.3. Blocks of data larger than the negotiated MTU are not
transferred by this protocol.

3.1.5.3.2 Sender Sends Data

Each Coded Packet is identified by a Coded sequence number, as specified in section 3.1.1.2. The
sender MUST implement a form of Congestion Control, and generate applicable messages, as

specified in section 3.1.1.8.

3.1.5.3.2.1 Source Packet

A Source Packet is generated as specified in section 3.1.5.1.4. A Source Packet is sent only if one of
the following occurs:

 A datagram has been marked as a lost datagram (section 3.1.1.4.1), and it has not been
retransmitted.

34 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 There is space in the receiver-advertised window for this datagram and the Congestion Control
logic permits transmission of a datagram.

3.1.5.3.2.2 FEC Packet

An FEC Packet is generated, as specified in section 3.1.5.1.5. An FEC Packet is generated when the
sender has sent one or more data packets and the receiver has not acknowledged one or more of
these data packets.

3.1.5.3.3 Receiver Receives Data

The receiver MUST accept all of the datagrams with Source sequence numbers (section 3.1.1.2) that
fall within the range of the receiver-advertised window. All other datagrams MUST be ignored and

discarded. If the datagram has already been received, the received datagram is a duplicate, and MUST
be ignored. Acknowledgments (section 3.1.1.4) are generated for datagrams that were not discarded
by the receiver.

The receiver MUST generate an acknowledgment for received Source Packets, as specified in section

3.1.5.1.2. The receiver MUST generate Congestion Notification messages, as specified in section
3.1.1.8.

3.1.5.3.4 User Consumes Data

The receiver-advertised window MUST increase by 1 for every datagram read by the user from the
receiver.

3.1.5.4 Termination

3.1.5.4.1 Retransmit Limit

If a datagram has been retransmitted at least three and no more than five times without a response,
the sender terminates the connection. The endpoint is terminated and enters the Closed state.<7>

3.1.5.4.2 Keepalive Timer Fires

If the sender does not receive any ACK from the receiver after 65 seconds, the connection is
terminated and the endpoint enters the Closed state.

3.1.6 Timer Events

3.1.6.1 Retransmit Timer

This timer fires if no acknowledgment (section 3.1.1.4) has been received for a datagram that was
transmitted earlier. This timer MUST fire at the minimum retransmit time-out or twice the RTT,
whichever is longer, after the datagram is first transmitted. The minimum retransmit time-out

depends on the negotiated protocol version (section 3.1.5.1) as follows:

 RDPUDP_PROTOCOL_VERSION_1: the minimum retransmit time-out is 500 ms.

 RDPUDP_PROTOCOL_VERSION_2: the minimum retransmit time-out is 300 ms.

When a datagram is scheduled for retransmission, a Source Packet is generated, as specified in
section 3.1.5.1.4. The timer MUST continue to fire with a time-out of at least the same length for
multiple retransmissions of the same datagram.<8> If the same datagram has already been
retransmitted at least three and no more than five times, the endpoints move to the Closed state, and

the connection is terminated.

35 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.6.2 Keepalive Timer on the Sender

This timer fires when the sender has not received any datagram from the receiver within 65 seconds,
as specified in section 3.1.1.9. This indicates that the receiver is no longer present or has

disconnected. The upper layers are notified of this event, the endpoints move to the Closed state, and
the connection is terminated.

3.1.6.3 Delayed ACK Timer

This timer fires on the receiver at the delayed ACK time-out after the receipt of a Source Packet if no

acknowledgment (section 3.1.1.4) has been scheduled for that Source Packet. The delayed ACK time-
out depends on the negotiated protocol version (section 3.1.5.1) as follows:

 RDPUDP_PROTOCOL_VERSION_1: the delayed ACK time-out is 200 ms.

 RDPUDP_PROTOCOL_VERSION_2: the delayed ACK time-out is 50 ms or half the RTT, whichever
is longer, up to a maximum of 200 ms.

Once the timer is fired, an acknowledgment for that Source Packet MUST be generated and sent. The

receiver MUST set the RDPUDP_FLAG_ACKDELAYED flag in the uFlags field of the
RDPUDP_FEC_HEADER structure.

This timer is needed only when the receiver generates one cumulative acknowledgment for a number
of Source Packets, as specified in section 3.1.1.4. In this case, this timer indicates that there is at
least one Source Packet at the receiver for which an acknowledgment has not been generated and
sent.

3.1.7 Other Local Events

None.

36 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 UDP Connection Initialization Packets

The following sections describe examples for packets that are created during the UDP Connection

Initialization (section 1.3.2.1) phase.

For readability, the network captures headers have been divided with the "/" delimiter and additional
information is provided in the field and value tables.

4.1.1 SYN Packet

This packet is used in the reliable, best-effort mode, as described in section 1.3.1. The following is an
example of a network capture of a SYN packet as described in section 3.1.5.1.1.

 ff ff ff ff 04 00 0A 01 00 00 00 42 04 D0 04 D0 00 00 00
 D2 35 AC 43 89 41 42 DA B1 0E DD 68 87 F7 F9 FB

The following table describes the fields and values for each header structure.

Field Value

RDPUDP_FEC_HEADER ff ff ff ff 04 00 0A 01

snSourceAck 0xff ff ff ff

uReceiveWindowSize 0x04 00 = 1024 (decimal)

uFlags 0x0A 01 =

RDPUDP_FLAG_CORRELATION_ID | RDPUDP_FLAG_SYNLOSSY |
RDPUDP_FLAG_SYN

RDPUDP_SYNDATA_PAYLOAD 00 00 00 42 04 D0 04 D0

snInitialSequenceNumber 0x00 00 00 42

uUpStreamMtu 0x04 D0 = 1232 (decimal)

uDownStreamMtu 0x04 D0 = 1232 (decimal)

RDPUDP_CORRELATION_ID_PAYLOAD 0xD2 35 AC 43 89 41 42 DA B1 0E DD 68 87 F7 F9 FB

0x00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

uCorrelationId 0xD2 35 AC 43 89 41 42 DA B1 0E DD 68 87 F7 F9 FB

uReserved 0x00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 (zero padded to 1232 bytes)

4.1.2 SYN and ACK Packet

The following is an example of a network capture of a SYN and ACK packet as described in section
3.1.5.1.3.

37 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00 00 00 42 04 00 00 05 00 00 00 42 04 D0 04 D0 00 00 00

The following table describes the fields and values for each header structure.

Field Value

RDPUDP_FEC_HEADER 00 00 00 42 04 00 02 01

snSourceAck 0x00 00 00 42

uReceiveWindowSize 0x04 00 = 1024 (decimal)

uFlags 0x 00 05 =

RDPUDP_FLAG_SYN | RDPUDP_FLAG_ACK

RDPUDP_SYNDATA_PAYLOAD 00 00 00 42 04 D0 04 D0

snInitialSequenceNumber 0x00 00 00 42

uUpStreamMtu 0x04 D0 = 1232 (decimal)

uDownStreamMtu 0x04 D0 = 1232 (decimal)

 00 00 00 (zero padded to 1232 bytes)

4.2 UDP Data Transfer Packets

The following sections describe examples for packets that are created during the section UDP Data
Transfer (section 1.3.2.2) phase.

For readability, the network captures headers have been divided with the "/" delimiter and additional

information is provided in the field and value tables.

4.2.1 Source Packet

The following is an example of a network capture of a Source Packet, as described in section

3.1.5.3.2.1.

 d6 cf 0a b8 04 00 00 0c 00 01 04 00 ec 47 1a e4 ec 47 1a e4 17 03 03 00 40 bb…

The following table describes the fields and values for each header structure.

Field Value

RDPUDP_FEC_HEADER d6 cf 0a b8 04 00 00 0c

snSourceAck 0xd6 cf 0a b8 = -691074376 (decimal)

uReceiveWindowSize 0x0400 = 1024 (decimal)

uFlags 0x000c = RDPUDP_FLAG_DATA | RDPUDP_FLAG_ACK

Ack Vector 04 00

Size 0x00 01 = 1

38 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value

Element 1 0x04

State 0x0 (2 bits) DATAGRAM_RECEIVED

State 0x04

length of the vector, 4 datagrams received

RDPUDP_SOURCE_PAYLOAD_HEADER ec 47 1a e4 ec 47 1a e4

snCoded 0xec 47 1a e4 = -330884380

snSourceStart 0xec 47 1a e4 = -330884380

Payload data 17 03 03 00 40 bb …

4.2.2 FEC Packet

The following is an example of a network capture of an FEC Packet, as described in section
3.1.5.3.2.2.

 d6 cf 0a cb 04 00 00 1c 00 01 04 00 ec 47 1a fd ec 47 1a fd 10 01 00 00 40 25 04 f1 …

The following table describes the fields and values for each header structure.

Field Value

RDPUDP_FEC_HEADER d6 cf 0a b8 04 00 00 0c

snSourceAck 0xd6 cf 0a b8 = -691074376 (decimal)

uReceiveWindowSize 0x0400 = 1024 (decimal)

uFlags 0x001c

= 0x0010 | 0x0008 | 0x0004

= RDPUDP_FLAG_FEC | RDPUDP_FLAG_DATA | RDPUDP_FLAG_ACK

Ack Vector 04 00

Size 0x00 01 = 1

Element 1 0x04

State 0x0 (2 bits) DATAGRAM_RECEIVED

State 0x04

length of the vector, 4 datagrams received

RDPUDP_FEC_PAYLOAD_HEADER ec 47 1a fd ec 47 1a fd 10 01 00 00

snCoded 0xec 47 1a e4 = -330884380

snSourceStart 0xec 47 1a e4 = -330884380

uRange 0x10 = 16

uFecIndex 0x01 = 1

39 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value

uPadding 0x0000

Payload data 40 25 04 f1 …

4.2.2.1 Payload of an FEC Packet

The following is an example of an FEC Packet network payload.

Sequence
number Size Value

RDP Payload S1 10 155 110 240 230 64 115 74 226 112 181

RDP Payload S2 20 72 219 238 65 213 222 36 36 219 1 93 208 17 236 52 194 21 152 76 98

RDP Payload S3 15 186 87 66 43 163 21 224 11 17 221 148 13 249 159 32

RDP Payload S4 15 53 90 48 146 171 205 146 119 29 94 118 76 94 154 255

RDP Payload S5 20 53 83 233 201 242 15 30 42 14 61 77 183 89 190 220 10 153 148 221 195

FEC Payload 0 66 208 168 239 37 29 238 180 193 24 58 66 252 233 126 172 211 135 31 206
27

The following are FEC encoding internals; these packets are not transferred on the wire:

 CoEff Array [0 254 230 253 205]

 RDPUDP_FEC_PAYLOAD_HEADER:: uFecIndex = 0

 RDPUDP_FEC_PAYLOAD_HEADER:: snSourceStart = 1

 RDPUDP_FEC_PAYLOAD_HEADER:: uRange = 5

 If RDP Payload S3 is lost, it will be recovered as

0 15 186 87 66 43 163 21 224 11 17 221 148 13 249 159 32 0 0 0 0 0

The first 2 bytes (0, 15) form the RDPUDP_PAYLOAD_PREFIX header (section 2.2.2.3), which gives
the length of packet S3.

4.2.3 ACK Packet

The following is an example of a network capture of an ACK Packet, with the option ACK of ACKS, as
described in section 3.1.5.1.2.

 d6 cf 0a b8 04 00 01 0c 00 01 04 00 d6 cf 0a b8 ec 47 1a e4 ec 47 1a e4 17 03 03 00

The following table describes the fields and values for each header structure.

Field Value

RDPUDP_FEC_HEADER d6 cf 0a b8 04 00 01 0c

40 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value

snSourceAck 0xd6 cf 0a b8 = -691074376 (decimal)

uReceiveWindowSize 0x0400 = 1024 (decimal)

uFlags 0x010c

= 0x0100 | 0x0008 | 0x0004

= RDPUDP_FLAG_ACK_OF_ACKS | RDPUDP_FLAG_DATA |
RDPUDP_FLAG_ACK

Ack Vector 04 00

Size 0x00 01 = 1

Element 1 0x04

State 0x0 (2 bits) DATAGRAM_RECEIVED

State 0x04

length of the vector, 4 datagrams received

Ack of Acks d6 cf 0a b8

RDPUDP_SOURCE_PAYLOAD_HEADER ec 47 1a e4 ec 47 1a e4

snCoded 0xec 47 1a e4 = -330884380

snSourceStart 0xec 47 1a e4 = -330884380

Payload data 17 03 03 00 …

41 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

The Remote Desktop Protocol: UDP Transport Extension Protocol shares a number of security

considerations with the TCP protocol. The following sections describe these security considerations.

5.1.1 Using Sequence Numbers

The two communicating endpoints exchange the range of sequence numbers they will be generating

and/or are willing to accept through the Initial Sequence Number and acknowledgments (section
3.1.1.4). All of the datagrams that arrive at the receiver with sequence numbers that fall outside the
advertised window are considered malicious, and are not processed.

Similarly, the sender maintains a range of sequence numbers that are valid and can be acknowledged.
All of the acknowledgments with sequence numbers that fall outside this range are ignored. These

datagrams can be a consequence of packet reordering or packet duplication in the network and do not
result in a connection termination.

5.1.2 RDP-UDP Datagram Validation

All headers require validation. The size of the headers and data payload in the datagram tally with the
size of the UDP datagram and is within the ranges specified by the sender.

When decoding ACK vectors (section 2.2.3.1), some state changes are considered illegal. For example,

a datagram that has been marked as received cannot arrive with the state unknown in the subsequent
datagrams. Such acknowledgments can be ignored, as they can either be delayed or invalid.

5.1.3 Congestion Notifications

The receiver generates congestion notifications for lost datagrams. The sender reduces the rate at

which data is written to the wire. Failure to do so increases congestion on the network, and drives the
network towards congestion collapse, which impacts all users.

5.2 Index of Security Parameters

None.

42 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears

with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.2.2.9: Windows 8 and Windows Server 2012 support version 1 of the RDP-UDP
protocol.

<2> Section 2.2.2.9: Windows 8.1 and Windows Server 2012 R2 support version 1 and version 2 of
the RDP-UDP protocol, and are the first product versions to send the RDPUDP_SYNDATAEX_PAYLOAD
structure.

<3> Section 3.1.1.4: The Remote Desktop Protocol: UDP Transport Extension generates one ACK for
every two Source Packets received from the sender.

<4> Section 3.1.1.9: The Remote Desktop Protocol: UDP Transport Extension generates four keep-
alive datagrams every 65 seconds when the transport is quiescent.

<5> Section 3.1.5.2: The Remote Desktop Protocol: UDP Transport Extension retransmits SYN and
SYN+ACK packets three times, with a time-out of 800 ms, before terminating the connection.

<6> Section 3.1.5.2: The Remote Desktop Protocol: UDP Transport Extension retransmits SYN and
SYN+ACK packets three times, with a time-out of 800 ms, before terminating the connection.

<7> Section 3.1.5.4.1: The Remote Desktop Protocol: UDP Transport Extension retransmits
datagrams five times before terminating the connection.

<8> Section 3.1.6.1: The Remote Desktop Protocol: UDP Transport Extension doubles the retransmit

time-out each time the same packet is retransmitted, up to 120 seconds.

43 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

44 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model
 client 18
 server 18
Applicability 10

C

Capability negotiation 10
Change tracking 43
Client
 abstract data model 18
 higher-layer triggered events
 initializing connection 28
 receiving datagram 28
 sending datagram 28
 terminating connection 28

 initialization 27
 message processing 28
 sequencing rules 28
 timer events
 Delayed ACK timer 35
 Keepalive timer on sender 35
 Retransmit timer 34
 timers 27

D

Data model - abstract
 client 18
 server 18

F

Fields - vendor-extensible 10

G

Glossary 5

H

Higher-layer triggered events
 client
 initializing connection 28
 receiving datagram 28
 sending datagram 28
 terminating connection 28
 server
 initializing connection 28
 receiving datagram 28
 sending datagram 28
 terminating connection 28

I

Implementer - security considerations 41
Index of security parameters 41
Informative references 6
Initialization
 client 27

 server 27
Introduction 5

M

Message processing
 client 28
 server 28
Messages
 syntax 11
 transport 11

N

Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 41
Preconditions 10
Prerequisites 10
Product behavior 42

R

References 6
 informative 6
 normative 6
Relationship to other protocols 9

S

Security
 implementer considerations 41
 parameter index 41
Sequencing rules

 client 28
 server 28
Server
 abstract data model 18
 higher-layer triggered events
 initializing connection 28
 receiving datagram 28
 sending datagram 28
 terminating connection 28
 initialization 27
 message processing 28
 sequencing rules 28
 timer events
 Delayed ACK timer 35
 Keepalive timer on sender 35
 Retransmit timer 34
 timers 27
Standards assignments 10
Syntax 11

T

45 / 45

[MS-RDPEUDP] - v20160714
Remote Desktop Protocol: UDP Transport Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Timer events
 client
 Delayed ACK timer 35
 Keepalive timer on sender 35
 Retransmit timer 34
 server
 Delayed ACK timer 35
 Keepalive timer on sender 35
 Retransmit timer 34
Timers
 client 27
 server 27
Tracking changes 43
Transport 11
Triggered events
 client
 initializing connection 28
 receiving datagram 28
 sending datagram 28
 terminating connection 28
 server
 initializing connection 28
 receiving datagram 28

 sending datagram 28
 terminating connection 28

V

Vendor-extensible fields 10
Versioning 10

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 RDP-UDP Protocol
	1.3.2 Message Flows
	1.3.2.1 UDP Connection Initialization
	1.3.2.2 UDP Data Transfer

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Enumerations
	2.2.1.1 VECTOR_ELEMENT_STATE Enumeration

	2.2.2 Structures
	2.2.2.1 RDPUDP_FEC_HEADER Structure
	2.2.2.2 RDPUDP_FEC_PAYLOAD_HEADER Structure
	2.2.2.3 RDPUDP_PAYLOAD_PREFIX Structure
	2.2.2.4 RDPUDP_SOURCE_PAYLOAD_HEADER Structure
	2.2.2.5 RDPUDP_SYNDATA_PAYLOAD Structure
	2.2.2.6 RDPUDP_ACK_OF_ACKVECTOR_HEADER Structure
	2.2.2.7 RDPUDP_ACK_VECTOR_HEADER Structure
	2.2.2.8 RDPUDP_CORRELATION_ID_PAYLOAD Structure
	2.2.2.9 RDPUDP_SYNDATAEX_PAYLOAD Structure

	2.2.3 Vectors
	2.2.3.1 ACK Vector

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Transport Modes
	3.1.1.2 Sequence Numbers
	3.1.1.3 MTU Negotiation
	3.1.1.4 Acknowledgments
	3.1.1.4.1 Lost Datagrams

	3.1.1.5 Retransmits
	3.1.1.6 FEC Computations
	3.1.1.6.1 Finite Field Arithmetic
	3.1.1.6.1.1 Addition and Subtraction
	3.1.1.6.1.2 Multiplication and Division
	3.1.1.6.1.3 Logarithms and Exponents

	3.1.1.6.2 FEC Encoding
	3.1.1.6.3 FEC Decoding
	3.1.1.6.4 Selecting the Coefficients Matrix
	3.1.1.6.5 Structure of Source Packets used for FEC Encoding

	3.1.1.7 Flow Control
	3.1.1.8 Congestion Control
	3.1.1.9 Keepalives

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Initializing a Connection
	3.1.4.2 Sending a Datagram
	3.1.4.3 Receiving a Datagram
	3.1.4.4 Terminating a Connection

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Constructing Messages
	3.1.5.1.1 SYN Datagrams
	3.1.5.1.2 ACK Datagrams
	3.1.5.1.3 SYN and ACK Datagrams
	3.1.5.1.4 ACK and Source Packets Data
	3.1.5.1.5 ACK and FEC Packets Data

	3.1.5.2 Connection Sequence
	3.1.5.3 Data Transfer Phase
	3.1.5.3.1 Sender Receives Data
	3.1.5.3.2 Sender Sends Data
	3.1.5.3.2.1 Source Packet
	3.1.5.3.2.2 FEC Packet

	3.1.5.3.3 Receiver Receives Data
	3.1.5.3.4 User Consumes Data

	3.1.5.4 Termination
	3.1.5.4.1 Retransmit Limit
	3.1.5.4.2 Keepalive Timer Fires

	3.1.6 Timer Events
	3.1.6.1 Retransmit Timer
	3.1.6.2 Keepalive Timer on the Sender
	3.1.6.3 Delayed ACK Timer

	3.1.7 Other Local Events

	4 Protocol Examples
	4.1 UDP Connection Initialization Packets
	4.1.1 SYN Packet
	4.1.2 SYN and ACK Packet

	4.2 UDP Data Transfer Packets
	4.2.1 Source Packet
	4.2.2 FEC Packet
	4.2.2.1 Payload of an FEC Packet

	4.2.3 ACK Packet

	5 Security
	5.1 Security Considerations for Implementers
	5.1.1 Using Sequence Numbers
	5.1.2 RDP-UDP Datagram Validation
	5.1.3 Congestion Notifications

	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

