

[MS-RDPEUDP]: Remote Desktop Protocol: UDP Transport Extension

This topic lists the Errata found in [MS-RDPEUDP] since it was last published.
Since this topic is updated frequently, we recommend that you subscribe to these
RSS or Atom feeds to receive update notifications.

Errata are subject to the same terms as the Open Specifications documentation
referenced.

RSS

Atom

Errata below are for Protocol Document Version V9.0 – 2016/07/14.

Errata
Published* Description

2016/08/15

In Section 3.1.1.6.1.3, Logarithms and Exponents, clarified the modulo operation and
indented the first line of syntax in the pseudo-code examples

Changed from:

...

Pseudo-code example:

 reduction = 0x1d;

 m_ffExp2Poly[0] = 0x01;

 for (i = 1; i < m_fieldSize - 1; i++)

...

Where m_fieldSize is 256 for GF(28)

Logarithms are the inverse of exponents, and can be easily calculated by reversing the
previous operation as shown in the following pseudo-code example:

 m_ffPoly2Exp[0] = 2 * m_fieldSize; // no exponential representation, doesn't exist

 for (i = 0; i < m_fieldSize - 1; i++)

...

Changed to:

...

Pseudo-code example:

 reduction = 0x1d;

 m_ffExp2Poly[0] = 0x01;

 for (i = 1; i < m_fieldSize - 1; i++)

...

Where m_fieldSize is 256 for GF(28). Note that m_ffExp2Poly is modulo m_fieldSize – 1. In
other words, m_ffExp2Poly[n] = m_ffExp2Poly[n + m_fieldSize – 1]. The

pseudo-code in this document makes the assumption that m_ffExp2Poly is defined for at
least m_fieldSize * 2 elements.

Logarithms are the inverse of exponents, and can be easily calculated by reversing the
previous operation as shown in the following pseudo-code example:

 m_ffPoly2Exp[0] = 2 * m_fieldSize; // no exponential representation, doesn't exist

http://blogs.msdn.com/b/protocol_content_errata/rss.aspx
http://blogs.msdn.com/b/protocol_content_errata/atom.aspx
http://go.microsoft.com/fwlink/?LinkId=512056

Errata
Published* Description

 for (i = 0; i < m_fieldSize - 1; i++)

...

In Section 3.1.1.6.4, Selecting the Coefficients Matrix, replaced the source sequence number
0xf with 0xff in the Matrix coefficient calculation figure and in the pseudo-code.

Changed from:

If the Source sequence numbers (section 3.1.1.2) for packets S1, S2, S3 … Sn are s1, s2, s3
… sn, the coefficient matrix is calculated as follows.

….

Figure 12: Matrix coefficient calculation

...

Only the last byte of the Source sequence number is used in calculating the coefficient. The
fecIndex field described in the following pseudo-code example is

equivalent to the uFecIndex field, as specified in section 2.2.2.2. The value of the fecIndex
field is updated using the following code prior to every call for

encoding an FEC Packet:

 if ((sn&0xf) >= (s1 &0xf) && ((fecIndex >= (s1 &0xf)) && (fecIndex <= (sn&0xf))) ||

 (sn&0xf) < (s1 &0xf) && ((fecIndex >= (s1 &0xf)) || (fecIndex <= (sn&0xf))))

 fecIndex = (sn+1) & 0xf;

Pseudo-code example:

...

 for (int i=0; i < cLength; i++, ucOrigStart++)

 {

 BYTE e = Div(1, (*pucFecIndex)^ucOrigStart);

 pbCoEfficientArray[i] = (BYTE)m_ffPoly2Exp[e];

 }

...

 for (int i=0; i < cLength; i++, ucOrigStart++)

 {

 BYTE e = Div(1, fecIndex^ucOrigStart);

 pbCoefficientArray[i] = (BYTE)m_ffPoly2Exp[e];

 }

...

Changed to:

If the Source sequence numbers (section 3.1.1.2) for packets S1, S2, S3 … Sn are s1, s2, s3
… sn, the coefficient matrix is calculated as follows.

…

Figure 12: Matrix coefficient calculation

...

Only the last byte of the Source sequence number is used in calculating the coefficient. The
fecIndex field described in the following pseudo-code example is

equivalent to the uFecIndex field, as specified in section 2.2.2.2. The value of the fecIndex
field is updated using the following code prior to every call for

encoding an FEC Packet:

Errata
Published* Description

 if ((sn & 0xff) >= (s1 & 0xff) && ((fecIndex >= (s1 & 0xff)) && (fecIndex <= (sn & 0xff)))
||

 (sn & 0xff) < (s1 & 0xff) && ((fecIndex >= (s1 & 0xff)) || (fecIndex <= (sn & 0xff))))

 fecIndex = (sn + 1) & 0xff;

Pseudo-code example:

...

 for (int i=0; i < cLength; i++, ucOrigStart++)

 {

 pbCoEfficientArray[i] = (BYTE)Div(1, (*pucFecIndex)^(ucOrigStart & 0xff));

 }

...

 for (int i=0; i < cLength; i++, ucOrigStart++)

 {

 pbCoefficientArray[i] = (BYTE)Div(1, fecIndex^(ucOrigStart & 0xff));

 }

...

In Section 4.2.2.1, Payload of an FEC Packet, updated the FEC Payload table values and the
CoEff Array packet value.

Changed from:

The following is an example of an FEC Packet network payload.

Sequence number Size Value

...

FEC Payload 0 66 208 168 239 37 29 238 180 193 24 58 66 252 233 126 172
211 135 31 206 27

The following are FEC encoding internals; these packets are not transferred on the wire:

§ CoEff Array [0 254 230 253 205]

...

Changed to:

The following is an example of an FEC Packet network payload.

Sequence number Size Value

...

FEC Payload 0 203 146 55 209 198 69 147 95 141 120 66 86 91 174 141
153 99 169

The following are FEC encoding internals; these packets are not transferred on the wire:

§ CoEff Array [1 142 244 71 167]

...

*Date format: YYYY/MM/DD

