
1 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-RDPETXT]:

Remote Desktop Protocol: Text Input Virtual Channel
Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
 Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date Revision History Revision Class Comments

4/23/2024 1.0 New Released new document.

3 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 8
1.3.1 Command PDUs.. 8
1.3.2 Key Replay and Override ... 11

1.3.2.1 Asynchronous Design .. 11
1.3.2.2 Update Collisions .. 11
1.3.2.3 Detecting Collisions ... 11
1.3.2.4 Handling the Collision .. 12
1.3.2.5 Override .. 12

1.3.3 Text Paging .. 13
1.3.3.1 Edit Buffers .. 13
1.3.3.2 Solving the Problem of Large Documents ... 13
1.3.3.3 Page Size ... 13
1.3.3.4 Handling Text Selections .. 14
1.3.3.5 Paging in of Selected Text .. 14
1.3.3.6 PDUs that Support Text Paging ... 15

1.4 Relationship to Other Protocols .. 16
1.5 Prerequisites/Preconditions ... 16
1.6 Applicability Statement ... 16
1.7 Versioning and Capability Negotiation ... 16
1.8 Vendor-Extensible Fields ... 17
1.9 Standards Assignments ... 17

2 Messages ... 18
2.1 Transport .. 18
2.2 Message Syntax ... 18

2.2.1 Namespaces .. 18
2.2.1.1 KeyEventHostInfo ... 18
2.2.1.2 KeyEventAttributes ... 22
2.2.1.3 KeyPressInfo .. 22
2.2.1.4 HotKeyRegistrationData ... 28
2.2.1.5 CompositionClause .. 29
2.2.1.6 CoreInputProfile .. 29
2.2.1.7 CoreInputViewOcclusion .. 32
2.2.1.8 EditControlRange .. 33
2.2.1.9 EditControlInfo ... 33
2.2.1.10 NavigateFocusInfo .. 37
2.2.1.11 NavigateFocusCompleteInfo ... 38
2.2.1.12 NonCUIConfiguration ... 39
2.2.1.13 TextInputRect ... 39
2.2.1.14 TextFormat .. 39
2.2.1.15 TextInputHostSettings ... 41

2.2.2 PDUs ... 41
2.2.2.1 RDPTXT_KEY_EVENT_PDU ... 44
2.2.2.2 RDPTXT_CHARACTER_EVENT_PDU .. 46
2.2.2.3 RDPTXT_FOCUS_NAVIGATING_EVENT_PDU ... 46
2.2.2.4 RDPTXT_FOCUS_DEPART_COMPLETED_PDU .. 47
2.2.2.5 RDPTXT_ENABLE_WINDOW_PDU .. 47
2.2.2.6 RDPTXT_ACTIVATION_STATE_CHANGE_PDU .. 47
2.2.2.7 RDPTXT_NON_COMPONENTUI_CONFIGURATION_CHANGE_PDU 48
2.2.2.8 RDPTXT_KEY_EVENT_PAYLOAD_PDU ... 49

4 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2.9 RDPTXT_UPDATE_TEXT_PDU .. 49
2.2.2.10 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU .. 50
2.2.2.11 RDPTXT_SET_SELECTION_PDU ... 51
2.2.2.12 RDPTXT_UPDATE_FORMAT_PDU ... 52
2.2.2.13 RDPTXT_UPDATE_COMPOSITION_PDU .. 55
2.2.2.14 RDPTXT_SET_COMPOSITION_INFO_PDU ... 56
2.2.2.15 RDPTXT_RECONVERSION_CANDIDATES_PDU ... 57
2.2.2.16 RDPTXT_DO_RECONVERSION_PDU ... 57
2.2.2.17 RDPTXT_UPDATE_INPUT_LOCALE_PDU .. 58
2.2.2.18 RDPTXT_UPDATE_INPUT_PROFILE_PDU ... 58
2.2.2.19 RDPTXT_UPDATE_MODE_PDU .. 59
2.2.2.20 RDPTXT_SET_CONVERSION_MODE_PDU ... 60
2.2.2.21 RDPTXT_ACKNOWLEDGE_OPERATION_PDU ... 62
2.2.2.22 RDPTXT_ACKNOWLEDGE_HOST_OPERATION_PDU 63
2.2.2.23 RDPTXT_ACKNOWLEDGE_UNDO_PENDING_KEY_EVENTS_PDU 64
2.2.2.24 RDPTXT_REGISTER_REMOTE_TEXT_TARGET_PDU 64
2.2.2.25 RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU 64
2.2.2.26 RDPTXT_REGISTER_REMOTE_EDIT_CONTROL_PDU 65
2.2.2.27 RDPTXT_REGISTER_REMOTE_COREINPUTVIEW_PDU 66
2.2.2.28 RDPTXT_UNREGISTER_REMOTE_TEXT_TARGET_PDU 66
2.2.2.29 RDPTXT_UNREGISTER_REMOTE_KEY_TARGET_PDU 66
2.2.2.30 RDPTXT_UNREGISTER_REMOTE_EDIT_CONTROL_PDU 67
2.2.2.31 RDPTXT_UNREGISTER_REMOTE_COREINPUTVIEW_PDU 67
2.2.2.32 RDPTXT_EDIT_CONTROL_FOCUS_PDU .. 67
2.2.2.33 RDPTXT_HOST_FOCUS_PDU... 68
2.2.2.34 RDPTXT_HOST_FOREGROUND_PDU .. 69
2.2.2.35 RDPTXT_SELECTION_CHANGED_PDU .. 69
2.2.2.36 RDPTXT_TEXT_CHANGED_PDU ... 70
2.2.2.37 RDPTXT_CONTROL_CONFIGURATION_UPDATED_PDU 72
2.2.2.38 RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU 72
2.2.2.39 RDPTXT_GEOMETRY_CHANGED_PDU .. 74
2.2.2.40 RDPTXT_SOFTWARE_KEYBOARD_INVOCATION_SIGNALS_PDU 74
2.2.2.41 RDPTXT_ACTIVE_VIEW_CHANGED_PDU .. 75
2.2.2.42 RDPTXT_FOREGROUND_HOST_INFO_UPDATED_PDU 76
2.2.2.43 RDPTXT_NOTIFY_SERVER_VERSION_PDU .. 76
2.2.2.44 RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU 77
2.2.2.45 RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU .. 77
2.2.2.46 RDPTXT_INPUT_PROFILE_CHANGED_PDU .. 78
2.2.2.47 RDPTXT_VIEW_OCCLUSIONS_HANDLED_PDU .. 78
2.2.2.48 RDPTXT_EDIT_CONTROL_TEXT_SEGMENT_PDU 78
2.2.2.49 RDPTXT_COMPOSITION_TERMINATED_PDU ... 79
2.2.2.50 RDPTXT_SOFTWARE_KEYBOARD_POLICY_PDU ... 80
2.2.2.51 RDPTXT_SET_ENABLED_INPUT_PROFILES_PDU .. 80
2.2.2.52 RDPTXT_OCCLUDING_VIEWS_PDU ... 80
2.2.2.53 RDPTXT_NOTIFY_CLIENT_VERSION_PDU ... 81
2.2.2.54 RDPTXT_REPORT_CLIENT_OPTIONS_PDU .. 81
2.2.2.55 RDPTXT_SOFTWARE_KEYBOARD_VISIBILITY_PDU 82
2.2.2.56 RDPTXT_HOTKEY_REGISTRATION_PDU ... 82
2.2.2.57 RDPTXT_REFRESH_CLIENT_PDU ... 83
2.2.2.58 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU ... 83
2.2.2.59 RDPTXT_SEND_KEY_TO_HOST_PDU ... 83
2.2.2.60 RDPTXT_REMOTE_TEXT_TARGET_THREAD_PROPERTIES_PDU 84
2.2.2.61 RDPTXT_REREGISTRATION_REQUEST_PDU.. 84
2.2.2.62 RDPTXT_REMOTE_INTEGRATION_STATUS_PDU .. 84
2.2.2.63 RDPTXT_ERROR_REPORT_PDU ... 85

3 Protocol Details ... 86
3.1 Common Details .. 86

5 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.1 Abstract Data Model .. 86
3.1.2 Timers .. 86
3.1.3 Initialization ... 86
3.1.4 Higher-Layer Triggered Events ... 86
3.1.5 Message Processing Events and Sequencing Rules .. 86

3.1.5.1 Reconversion PDUs ... 86
3.1.5.2 PDUs that require acknowledgement ... 86

3.1.5.2.1 RDPTXT_EDIT_CONTROL_FOCUS_PDU ... 86
3.1.5.2.2 RDPTXT_TEXT_CHANGED_PDU ... 87
3.1.5.2.3 RDPTXT_SELECTION_CHANGED_PDU .. 87
3.1.5.2.4 RDPTXT_COMPOSITION_TERMINATED_PDU 87
3.1.5.2.5 RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU 87
3.1.5.2.6 RDPTXT_HOST_FOCUS_PDU ... 87
3.1.5.2.7 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU 87
3.1.5.2.8 RDPTXT_UPDATE_TEXT_PDU .. 87
3.1.5.2.9 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU 87
3.1.5.2.10 RDPTXT_SET_SELECTION_PDU ... 87
3.1.5.2.11 RDPTXT_UPDATE_FORMAT_PDU .. 88
3.1.5.2.12 RDPTXT_UPDATE_COMPOSITION_PDU ... 88
3.1.5.2.13 RDPTXT_KEY_EVENT_PDU .. 88
3.1.5.2.14 RDPTXT_KEY_EVENT_PAYLOAD_PDU ... 88

3.1.5.3 Input Profile Update Confirmation ... 88
3.1.5.4 CoreInputView Occlusions .. 88

3.1.6 Timer Events .. 89
3.1.7 Other Local Events .. 89

4 Protocol Examples ... 90

5 Security ... 91
5.1 Security Considerations for Implementers ... 91
5.2 Index of Security Parameters .. 91

6 Appendix A: Product Behavior ... 92

7 Change Tracking .. 93

8 Index ... 94

6 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The Remote Desktop Protocol: Text Input Virtual Channel Extension is used to connect various client
machine text input methods that run on a remote server to perform those text editing operations in
the remote edit controls. The extension provides for a user to have the same experience entering and
editing text in a remote application as is experienced in an application running on the local machine.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

ANSI character: An 8-bit Windows-1252 character set unit.

app: A set of instructions that a computer uses to perform a specific task, such as word

processing, accounting, or data management.

asynchronous operation: An operation executed on the server side. The client continues
executing and does not check whether a response is available from the server.

caret: A blinking line, block, or bitmap in the client area of a window. The caret typically indicates
the location at which text or graphics will be inserted.

Dynamic Link Library (DLL): A set of executable routines that typically serve a specific function
and are stored separately as a file with a .dll file name extension. The routines are loaded only
when they are needed by the application that calls them.

dynamic virtual channel: A transport used for lossless communication between an RDP client and
a server component over a main data connection, as specified in [MS-RDPEDYC].

Input Method Editor (IME): An application that is used to enter characters in written Asian

languages by using a standard 101-key keyboard. An IME consists of both an engine that

converts keystrokes into phonetic and ideographic characters and a dictionary of commonly used
ideographic words.

Inter-Process Communication (IPC): A set of techniques used to exchange data among two or
more threads in one or more processes. These processes can also run on one or more
computers connected by a network.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in

the memory location with the lowest address.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that can contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

remote applications integrated locally (RAIL): A software component that enables remoting of

individual windows and notification icons.

Remote Desktop: See Remote Desktop Protocol (RDP).

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

https://go.microsoft.com/fwlink/?LinkId=89824

7 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

synchronous operation: An operation that is executed on the server side while the client is
waiting for the response message.

text services framework (TSF): An application programming interface (API) that provides a
simple and scalable framework for the delivery of advanced text input and natural language

technologies. TSF is device-independent and enables text services for multiple input devices
including keyboard, pen, and microphone. A TSF text service provides multilingual support and
delivers text services such as keyboard processors, handwriting recognition, and speech
recognition. TSF exposes its framework to applications and text services through a set of COM
interfaces.

TextInputClient: A component of TSF that resides in the remote application. Also referred to as a
text target, it manages the registration of edit controls on its thread. All TSF communication

with an edit control passes through the TextInputClient that it is registered with.

virtual channel: A transport used for communication between a client and a server component
over a main data connection, in 1600-byte chunks, as specified in Static Virtual Channels in
[MS-RDPBCGR].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, https://www.rfc-editor.org/info/rfc2119

1.2.2 Informative References

[MSLearn-CoreInputViewKind] Microsoft Corporation, "CoreInputViewKind Enum",

https://learn.microsoft.com/en-

us/uwp/api/windows.ui.viewmanagement.core.coreinputviewkind?view=winrt-19041

[MSLEARN-CoreInputView] Microsoft Corporation, "CoreInputView Class",
https://learn.microsoft.com/en-
us/uwp/api/windows.ui.viewmanagement.core.coreinputview?view=winrt-22621

[MSLEARN-ImeConversionMode] Microsoft Corporation, "InputMethod.ImeConversionMode Property",
https://learn.microsoft.com/en-
us/dotnet/api/system.windows.input.inputmethod.imeconversionmode?view=windowsdesktop-8.0

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=2263361
https://go.microsoft.com/fwlink/?linkid=2263361
https://go.microsoft.com/fwlink/?linkid=2267061
https://go.microsoft.com/fwlink/?linkid=2267061
https://go.microsoft.com/fwlink/?linkid=2263364
https://go.microsoft.com/fwlink/?linkid=2263364

8 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MSLEARN-InputPane] Microsoft Corporation, "InputPane Class", Soft Input Panel (SIP),
https://learn.microsoft.com/en-us/uwp/api/windows.ui.viewmanagement.inputpane?view=winrt-

22621

[MSLEARN-InputScope] Microsoft Corporation, "InputScope enumeration (inputscope.h)",
https://learn.microsoft.com/en-us/windows/win32/api/inputscope/ne-inputscope-inputscope

[MSLearn-InputViewOcclusionKind] Microsoft Corporation, "CoreInputViewOcclusionKind Enum",

https://learn.microsoft.com/en-
us/uwp/api/windows.ui.viewmanagement.core.coreinputviewocclusionkind?view=winrt-19041

[MSLEARN-TSF] Microsoft Corporation, "Text Services Framework (Text Services Framework)",
https://learn.microsoft.com/en-us/windows/win32/tsf/text-services-framework

[MSLEARN-UIElementType] Microsoft Corporation, "UIElementType Enum",
https://learn.microsoft.com/en-us/uwp/api/windows.ui.viewmanagement.uielementtype?view=winrt-
22621

[MSLEARN-UnderlineType] Microsoft Corporation, "UnderlineType Enum",
https://learn.microsoft.com/en-us/uwp/api/windows.ui.text.underlinetype?view=winrt-22621

1.3 Overview

The Remote Desktop Protocol (RDP): Text Input Virtual Channel Extension is used to connect
various client machine text input methods, that includes input method editors (IMEs) to editable
text surfaces such as edit controls, that run on a remote server to perform those text editing
operations in the remote edit controls. The extension provides for a user to have the same experience
entering and editing text in a remote application such as a remote applications integrated locally
(RAIL) window as is experienced in an application running on the local machine.

This feature enables consistent and responsive UI on the local client while enabling rich integration

with remote apps. The Remote Desktop (RD) application (app) requires an extension Dynamic Link
Library (DLL) that will be packaged with the RD client to enable this to work on the client side. On

the server side there is no additional code external to the operating system that is required. The
additional client-side component is required for the implementation. A 3rd party extending this
protocol would build the equivalent of the extension DLL using the public API.

The following sections give overview details of the Text Input Virtual Channel extension.

 Command protocol data units (PDUs) 12-part listing.

 Text input system’s key replay behavior and overrides.

 Text Paging feature and how that feature is manifest in the text input PDUs.

1.3.1 Command PDUs

The commands specified in section 2.2 facilitate communication between input methods (with the

service that controls/enables/activates those methods) and the editable text surfaces such as edit
controls on a remote server. The commands can be organized into the following twelve groups:

1. Commands sent from client to server to provide information about the arrival and processing of
user key events and to help control where the events are delivered.

 RDPTXT_KEY_EVENT_PDU

 RDPTXT_CHARACTER_EVENT_PDU

 RDPTXT_FOCUS_NAVIGATING_EVENT_PDU

https://go.microsoft.com/fwlink/?linkid=2267449
https://go.microsoft.com/fwlink/?linkid=2267449
https://go.microsoft.com/fwlink/?linkid=2263085
https://go.microsoft.com/fwlink/?linkid=2263362
https://go.microsoft.com/fwlink/?linkid=2263362
https://go.microsoft.com/fwlink/?linkid=2263267
https://go.microsoft.com/fwlink/?linkid=2263363
https://go.microsoft.com/fwlink/?linkid=2263363
https://go.microsoft.com/fwlink/?linkid=2263255

9 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 RDPTXT_FOCUS_DEPART_COMPLETED_PDU

 RDPTXT_ENABLE_WINDOW_PDU

 RDPTXT_ACTIVATION_STATE_CHANGE_PDU

 RDPTXT_NON_COMPONENTUI_CONFIGURATION_CHANGE_PDU

 RDPTXT_KEY_EVENT_PAYLOAD_PDU

2. Text input editing commands sent from client to server to update the text, selection, or insertion
point in an edit control or to format text.

 RDPTXT_UPDATE_TEXT_PDU

 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU

 RDPTXT_SET_SELECTION_PDU

 RDPTXT_UPDATE_FORMAT_PDU

 RDPTXT_UPDATE_COMPOSITION_PDU

 RDPTXT_SET_COMPOSITION_INFO_PDU

3. Reconversion commands that assist with the reconversion of a previously composed string. A
reconversion request is sent from server to client and reconversion candidates are then sent from
client to server.

 RDPTXT_RECONVERSION_CANDIDATES_PDU

 RDPTXT_DO_RECONVERSION_PDU

4. Commands sent from a client to a server to update the server’s text input state.

 RDPTXT_UPDATE_INPUT_LOCALE_PDU

 RDPTXT_UPDATE_INPUT_PROFILE_PDU

 RDPTXT_UPDATE_MODE_PDU

 RDPTXT_SET_CONVERSION_MODE_PDU

5. Commands that provide acknowledgements to the server to indicate that a previous command

sent from the server has been received and processed.

 RDPTXT_ACKNOWLEDGE_OPERATION_PDU

 RDPTXT_ACKNOWLEDGE_HOST_OPERATION_PDU

 RDPTXT_ACKNOWLEDGE_UNDO_PENDING_KEY_EVENTS_PDU

6. Commands for registering or unregistering text input entities on the server with the text input
system on the client. The commands are sent from server to client.

 RDPTXT_REGISTER_REMOTE_TEXT_TARGET_PDU

 RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU

 RDPTXT_REGISTER_REMOTE_EDIT_CONTROL_PDU

 RDPTXT_REGISTER_REMOTE_COREINPUTVIEW_PDU

10 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 RDPTXT_UNREGISTER_REMOTE_TEXT_TARGET_PDU

 RDPTXT_UNREGISTER_REMOTE_KEY_TARGET_PDU

 RDPTXT_UNREGISTER_REMOTE_EDIT_CONTROL_PDU

 RDPTXT_UNREGISTER_REMOTE_COREINPUTVIEW_PDU

7. Commands sent from the server to notify the client’s text input system of text input related
events.

 RDPTXT_EDIT_CONTROL_FOCUS_PDU

 RDPTXT_HOST_FOCUS_PDU

 RDPTXT_HOST_FOREGROUND_PDU

 RDPTXT_SELECTION_CHANGED_PDU

 RDPTXT_TEXT_CHANGED_PDU

 RDPTXT_CONTROL_CONFIGURATION_UPDATED_PDU

 RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU

 RDPTXT_GEOMETRY_CHANGED_PDU

 RDPTXT_SOFTWARE_KEYBOARD_INVOCATION_SIGNALS_PDU

 RDPTXT_ACTIVE_VIEW_CHANGED_PDU

 RDPTXT_FOREGROUND_HOST_INFO_UPDATED_PDU

 RDPTXT_NOTIFY_SERVER_VERSION_PDU

8. Commands sent from a server to a client to acknowledge that a prior client command has been

completed.

 RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU

 RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU

 RDPTXT_INPUT_PROFILE_CHANGED_PDU

 RDPTXT_VIEW_OCCLUSIONS_HANDLED_PDU

9. Commands sent from server to client to update the client’s text input state.

 RDPTXT_EDIT_CONTROL_TEXT_SEGMENT_PDU

 RDPTXT_COMPOSITION_TERMINATED_PDU

 RDPTXT_SOFTWARE_KEYBOARD_POLICY_PDU

10. Commands sent from a client that provide notifications to a server about the state of the client.

 RDPTXT_SET_ENABLED_INPUT_PROFILES_PDU

 RDPTXT_OCCLUDING_VIEWS_PDU

 RDPTXT_NOTIFY_CLIENT_VERSION_PDU

 RDPTXT_REPORT_CLIENT_OPTIONS_PDU

11 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

11. Miscellaneous request commands sent from server to client.

 RDPTXT_SOFTWARE_KEYBOARD_VISIBILITY_PDU

 RDPTXT_HOTKEY_REGISTRATION_PDU

 RDPTXT_REFRESH_CLIENT_PDU

 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU

 RDPTXT_SEND_KEY_TO_HOST_PDU

 RDPTXT_REMOTE_TEXT_TARGET_THREAD_PROPERTIES_PDU

12. Miscellaneous request commands sent from client to server.

 RDPTXT_REREGISTRATION_REQUEST_PDU

 RDPTXT_REMOTE_INTEGRATION_STATUS_PDU

 RDPTXT_ERROR_REPORT_PDU

1.3.2 Key Replay and Override

This section provides an overview of the text input system’s key replay behavior. It describes the
system’s notion of overrides, when they are reported, and how they are handled.

1.3.2.1 Asynchronous Design

To ensure optimal performance of the text input system, all Text Services Framework (TSF)
communication between client machine input methods and edit controls that run in a RAIL application
(app) on a remote server are asynchronous operations. This includes updates made by an input

method that are sent from the client machine to the server and notifications of updates to the control

such as pasted text, scripted text updates, selection changes, etc. that are reported from the RAIL app
on the server to the input methods on the client.

1.3.2.2 Update Collisions

The asynchronous operation communication downside is that updates can be initiated on both the
client and server ends at the same time, with neither end knowing about the change happening at the
other. In this situation, one or the other end is operating in an invalid state. In the TSF design, the
app’s state is always considered to be correct, so the input method updates are treated as invalid. This
situation is referred to as an update collision.

1.3.2.3 Detecting Collisions

Many of the text input PDUs include an operationId parameter. When an input method operation is
sent from the client machine, the details of that operation with the operationId are kept in a list of

pending operations. When the remote application has processed the operation, it sends back an
acknowledgement that includes the operationId. When the text input system on the client machine

receives this acknowledgement, it uses the operationId to find and remove the associated operation
from the pending list.

On the other side, in the RAIL server, each time a notification of a state update is reported back to
the client, the app-side code will include an operation ID with the notification and wait for an
acknowledgement from the text input system.

12 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When an update collision takes place, it is detected on both sides. On the client side, an update
notification is received while there are one or more items in the pending operations list. On the server

side, the operation sent from the client arrives while the count of outstanding notifications is greater
than 0.

1.3.2.4 Handling the Collision

Since the remote app’s view of state is the "truth", it is observed that the pending operations on the
client side were performed on an invalid state. As such, they must be undone and then reapplied after

the state has been corrected by applying the server update. Undone actions can be reapplied because
the key presses that generated them are recalled. To reapply the undone actions is simply a matter of
replaying the pending keys that originally generated them. When these keys are replayed, new actions
are generated in the context of the correct state. This process is shown in the following diagram.

Figure 1: Replay of text update due to collision with selection change

In the diagram, there is only one pending action shown, but in practice, there can be multiple actions
pending which can be associated with multiple pending key presses. Details of key event tracking are

omitted. In such a case, all the pending actions would be undone, and then the state would be
updated for a new selection or caret position in the above diagram. Once the new state is applied, the
pending key presses are all replayed and generates new updates and pending actions.

1.3.2.5 Override

In cases where the server-side update in a collision is produced in response to a key event, it is
assumed that this key event would not be replayed but other pending keys would be. For example, an

13 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

app could change focus between edit fields when it receives a tab key. If the user types "[tab]Hello"
and the app switches to a new edit field in response to the tab key, the experience would be that

focus changes to the new control and the text "Hello" is entered in it. Entering the [tab] character is
not done since it already performed another action (switching focus).

If all the keys for "[tab]Hello" are pending at the time the focus change is received (via
RDPTXT_EDIT_CONTROL_FOCUS_PDU (section 2.2.2.32), all the pending actions are to be undone
(which would have placed "[tab]Hello" in the old edit field). Focus then is to be switched to the new
edit field and only the keys that produced "Hello" are to be replayed, meaning that the oldest pending
key ([tab]) is not to be replayed.

How is it known that the server action that caused this collision was made in response to a key event?
It is possible that the user tapped in the new edit field to change focus, in which case they would

expect the [tab] character to be inserted in the new control.

Fortunately, it is easy to tell whether a change was made in response to the oldest pending key event.
It is necessary to only check the override field of the RDPTXT_EDIT_CONTROL_FOCUS_PDU that
delivered the colliding update. If override is TRUE, this shows that the update was made in response

to the oldest pending key event, meaning that key is not to be replayed after the pending actions are
undone.

It is not a problem if the colliding update is not RDPTXT_EDIT_CONTROL_FOCUS_PDU. All the PDUs
that send state updates from server to client and that can result in a collision include an override
field, and override is always be handled the same way to undo all pending actions and replay all but
the oldest pending key.

1.3.3 Text Paging

This section gives an overview of the text input system’s Text Paging feature and how that feature is
manifest in the text input PDUs.

1.3.3.1 Edit Buffers

The text input system creates an internal edit buffer for each registered TSF EditControl in the
system. The primary purpose of this edit buffer is to allow centralized TSF version 3.0 (TSF3) IMEs
running in the dedicated TSF3 IME Host process to interact with a focused edit control as if it were
running in the same process. The edit buffer hides the details of the Inter-Process Communication
(IPC) between the IME and the edit control, in part, by keeping a local copy of the text that is in the
edit control. This allows IMEs to query edit control text quickly and synchronously regardless of the

latency characteristics of the communication path to the actual control.

1.3.3.2 Solving the Problem of Large Documents

In the event that an edit control is created to hold and edit a large text document, the initial transfer
of text to the associated edit buffer would be large and cause a longer than normal initialization time.

It would also result in a large memory allocation, which would hold a copy of essentially identical data
to what is already stored in the edit control. To avoid slowing initialization and wasting memory, only

a window of text is transferred to the edit buffer. The range of text provided is always near the current
insertion point. When the insertion point jumps to a new location, a new range of text is transferred.
This behavior is similar to the paging of data into a processor cache from main memory for faster
access during processing. For this reason, this process is referred to as Text Paging.

1.3.3.3 Page Size

First, a caveat, this section discusses page sizes using concrete values, such as 200 or 10,000
characters. These values are included for illustrative purposes only and do not represent the actual
values used in the text paging solution. The actual values currently differ and can change at any time.

14 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When paging in text, efforts are made to ensure that an IME will have access to all the text on the
screen near where the user is working. It is assumed that the user is working at the insertion point

(i.e., at the caret); therefore, 10,000 characters, for example, are paged in before and 10,000
characters after the insertion point. These values have actually changed and can further change at any

time. This strategy generally ensures all the text on the screen is paged into the edit buffer regardless
of whether the caret is at the top of the screen, the bottom of the screen, or anywhere in between.

1.3.3.4 Handling Text Selections

This notion of paging in 20,000 characters around the insertion point is straightforward, but it
becomes more complicated when the insertion point becomes a range of selected text instead of just
the caret position. When there is a text selection, the next character typed will replace the selection
and that brings the user back to the state of having a simple caret insertion point. The text
immediately before this caret will be the text that was before the start of the selection, and the text
immediately after this caret will be the text that was after the end of the selection. Because of this a
range of selected text is treated as an insertion point, in that 10,000 characters is paged in before the

start of the selection and 10,000 characters is paged in after the end of the selection.

1.3.3.5 Paging in of Selected Text

Another complication is the selected text itself. In some cases, IMEs seek the selected text so
candidates can be generated for updating or replacing the selected text. For this to work, the selected

text is to be paged in as well. Only, it’s not quite that easy. Text selections can be arbitrarily large,
and it is not at all uncommon for them to span an entire document. This means paging in full
selections could defeat the purpose of Text Paging altogether. Fortunately, IMEs do not routinely
generate candidates for large selections, although some context is provided at the start and end of a
large selection in case they tend to produce candidates based on the text in one of those regions.
Though since modified, 200 characters as the amount of text to provide as context at each end of a

selection has been arbitrarily chosen i.e., the first 200 and the last 200 characters in the selection that
the user will page in, in addition to the 10,000 characters before and the 10,000 characters after the
selection.

So, what does that look like? For a selection of 400 or fewer characters, this results in a single,
contiguous block of text starting 10,000 characters before the selection, includes the entire selection,
and ending 10,000 characters after the selection. This, then, provides an upper limit on the size of the
text data that will be paged into an edit buffer of 20,400 characters.

In the case of a selection with more than 400 characters, 20,400 characters will still be paged in, but
the data will be sent in two strings up to 10,200 characters in size. The first string begins 10,000
characters before the start of the selection and ends 200 characters after the start of the selection.
The second string begins, predictably, 200 characters before the end of the selection and ends 10,000
characters after the selection.

The following diagram shows some concrete examples.

15 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 2: Text request for paging in three scenarios

In the figure above, scenario A shows a relatively large selection in a relatively small document (note
that when a text request extends beyond the end of a document, text to the end of the document will
be returned). Scenario B shows the request for a short document when the caret is placed less than
10,000 characters into the document and where the document length is less than 10,000 characters
beyond the end of the selection. Scenario C shows a large selection in the middle of a large document.

1.3.3.6 PDUs that Support Text Paging

The first PDU to support text paging is RDPTXT_TEXT_CHANGED_PDU structure (section 2.2.2.36).
This PDU includes two string fields updatedTextRegion1 and updatedTextRegion2 and two integer
offset fields offset1 and offset2. These fields represent the one or two regions of text to be paged in

following a text change, based on the new selection range. The offset fields tell where the text is to be
populated in the edit buffer, and the updated text region fields contain the text. When there is only
one region of text to be paged in, the value of offset2 will be set to -1.

The following diagram illustrates how the two regions might be constructed when a text insertion is
reported along with a large selection.

16 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 3: Paging in text for a text change notification

Note in the figure above that block A and block D cannot be included in the send regions if they were
previously cached and have not been removed. Blocks B and C will always be provided in the send
regions.

The other PDU that supports text paging is RDPTXT_EDIT_CONTROL_TEXT_SEGMENT_PDU (section
2.2.2.48). This PDU provides a region of text to be paged in. The cpStart field indicates the position
and the textLength field provides the length for the text field string data that is being paged in.

When text is being paged out, the range to be cleared is indicated by the cpStart and cpEnd fields.

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: Text Input Virtual Channel Extension is embedded in dynamic virtual

channel transports, as specified in [MS-RDPEDYC] sections 1 through 3.

1.5 Prerequisites/Preconditions

The Remote Desktop Protocol: Text Input Virtual Channel Extension operates only after its dynamic
virtual channel transports are fully established. If the dynamic virtual channel transports are

terminated, the Remote Desktop Protocol: Text Input Virtual Channel Extension is also terminated.
The protocol is terminated by closing the underlying virtual channels. For details about closing the
dynamic virtual channels, refer to [MS-RDPEDYC] section 3.3.5.2.

1.6 Applicability Statement

The Remote Desktop Protocol: Text Input Virtual Channel Extension is applicable in scenarios where it
is desirable to use client-side input methods to input text in applications running in a terminal server.

1.7 Versioning and Capability Negotiation

On connection of the Text Input Virtualization dynamic virtual channels, the client and server
machines exchange version numbers via RDPTXT_NOTIFY_CLIENT_VERSION_PDU (section 2.2.2.53)
and RDPTXT_NOTIFY_SERVER_VERSION_PDU (section 2.2.2.43) messages. These messages each

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

17 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

carry two 4-byte integer version numbers, a major version number and a minor version number. The
server is to send its version numbers first, on connection, via

RDPTXT_NOTIFY_SERVER_VERSION_PDU. The client is to respond to this message by recording the
server version numbers and then sending its own version numbers back via

RDPTXT_NOTIFY_CLIENT_VERSION_PDU.

The client and server are both responsible for behaving according to the version numbers reported by
their peer. This is not, however, a simple [greater than/less than] comparison. While the major
version numbers are just serial values and can be trivially compared, the minor version numbers
actually represent bitmasks of design updates and bug fixes introduced since the last major version
release.

Having a dedicated bit for each update allows us to deliver or service individual updates or fixes

independent of previous changes, allowing for more surgical updates when needed.

Whenever the protocol’s major version number is increased, that implies that all minor version
updates since the previous major version update are available making the minor version bits available
for new updates.

Under this design, updated behavior is to be gated per individual update for the major version where
it was introduced. An example will make this clearer. For a change introduced as minor version bit 3

(0x00000004) in major version 1, the logic gating the updated code would look something like this.

 if (majorVersion > 1 || (majorVersion == 1 && (minorVersion & 0x00000004) == 0x00000004))
 {
 // execute updated behavior
 }
 else
 {
 // execute original behavior
 }

If this code encounters a peer with version numbers (1, 5), for example, it will execute the new

behavior because the major version is 1 and bit 3 of the minor version is set.

If version numbers (1, 8) are encountered, however, the original code path is to be followed because
even though minor version 8 is greater than 4, it does not set bit 3.

If version numbers (2, 0) are encountered, the new path is to be followed because the major version

is greater than 1, implying all version 1 updates (includes the one for bit 3) are available.

Sometimes updates involve changes to the protocol definition itself such as adding a new PDU, PDU
parameter, structure, or structure member. When this is the case, the major version number and
minor version bit where the change was introduced will be included in the updated protocol
documentation. An example of this is the bcpTag member of the CoreInputProfile structure (section
2.2.1.6).

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

18 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

The Remote Desktop Protocol: Text Input Virtual Channel Extension is designed to operate over non-

lossy dynamic virtual channels, as specified in [MS-RDPEDYC] sections 1 through 3. The dynamic
virtual channel names are the null-terminated ANSI character strings
"TextInput_ServerToClientDVC" for the server to client messages and "TextInput_ClientToServerDVC"
for the client to server messages. The usage of channel names in the context of opening a dynamic
virtual channel (DVC) is specified in [MS-RDPEDYC] section 2.2.2.1.

2.2 Message Syntax

The following sections specify the Remote Desktop Protocol: Text Input Virtual Channel Extension
message syntax. All multiple-byte fields within a message MUST be marshaled in little-endian byte

order, unless otherwise specified. Many data types can be found in [MS-DTYP].

2.2.1 Namespaces

2.2.1.1 KeyEventHostInfo

The KeyEventHostInfo structure provides information about a key event and is included in PDUs
relating directly to key events and in PDUs that reference an antecedent key event such as
RDPTXT_TEXT_CHANGED_PDU. This structure is used in the following PDU messages:

 RDPTXT_KEY_EVENT_PDU

 RDPTXT_CHARACTER_EVENT_PDU

 RDPTXT_KEY_EVENT_PAYLOAD_PDU

 RDPTXT_SELECTION_CHANGED_PDU

 RDPTXT_TEXT_CHANGED_PDU

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ModifierFlags EventFlags

EventFlags2

VirtualKey Character

TranslationFlags DeviceId

...

... RepeatCount

ScanCode IsExtendedKey IsMenuKey

WasKeyDown IsKeyReleased TimestampInMs

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

19 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

... MessageId

... KeyEventAttributes

...

ModifierFlags (2 bytes): A 16-bit WORD bitmask that indicates the state of modifier keys.
Supported values of the RemoteTextModifierKeyStateFlag enumeration are defined in the
following table.

Value Meaning

None
0x0000

No modifiers.

Shift
0x0001

At least one shift key is down.

ShiftLeft
0x0003

Left shift key is down.

ShiftRight
0x0005

Right shift key is down.

ShiftMask
0x0007

All bits related to shift – or both shift keys down.

Control
0x0008

At least one control key is down.

ControlLeft

0x0018

Left control key is down.

ControlRight
0x0028

Right control key is down.

ControlMask
0x0038

All bits related to control – or both control keys down.

Alt
0x0040

At least one alt key is down.

AltLeft
0x00C0

Left alt key is down.

AltRight
0x0140

Right alt key is down.

AltMask
0x01C0

All bits related to alt – or both alt keys down.

Function
0x0200

At least one function key is down.

FunctionLeft

0x0600

Left function key is down.

FunctionRight
0x0A00

Right function key is down.

FunctionMask
0x0E00

All bits related to function – or both function keys down.

20 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

LockShift
0x1000

Caps Lock is on.

LockNum
0x2000

Num Lock is on.

LockFunction
0x4000

Function Lock is on.

LockMask
0xF000

All lock key bits – or all lock keys are on.

EventFlags (2 bytes): A 16-bit WORD bitmask of the InputEventFlag enumeration. Supported
values are defined in the following table.

Value Meaning

None
0x0000

No flags set

Down
0x0001

Indicates a key down event

Move
0x0002

Not applicable

Hold
0x0002

Key already down.

Up
0x0004

Indicates a key up event

InRange/FromISM
0x0008

Not applicable

DownAndUp
0x0005

Indicates a combined down and up key event

FromHWKeyboard
0x0010

Key event source is a hardware keyboard

FromSyntheticHW
0x0020

Not applicable

SkipHotKey
0x0040

Indicates that hotkey processing is to be skipped for this key

FromOverrider
0x0080

Input injected by an overrider (e.g. Narrator)

SuppressAcceleratorKey
0x0100

Suppress accelerator key processing for this key

CharacterFromSoftwareKeyboard
0x0200

This key event was generated by a software keyboard

ScreenReaderEnabled
0x0400

Indicates that screen reader (Narrator) was enabled at time of key
event

AcknowledgementRequired
0x0800

Text input system will acknowledge processing of the key to text
framework components in remote app

21 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

Empty
0x1000

Not applicable

Invalid
0x2000

Not applicable

TestInjection
0x4000

Key generated in test scenario or by a software keyboard

TestSync
0x8000

Not applicable

EventFlags2 (4 bytes): A 32-bit UINT bitmask of the InputEventFlag2 enumeration. Supported
values are defined in the following table.

Value Meaning

None
0x00000000

No flags set

InputServiceInjection
0x00000001

Key event was injected by a system component

RawCustomText
0x00000002

Arbitrary text string is being inserted, typically used with the
VK_CUSTOMTEXT virtual key.

TelemetrySamplePicked
0x00000004

Not applicable

TelemetryVirtualKey
0x00000008

Not applicable

VirtualKey (2 bytes): A 16-bit WORD. The virtual key value of the keyboard.

Character (2 bytes): A 16-bit WORD. The UTF-16 character value the key was translated into.

TranslationFlags (2 bytes): A 16-bit WORD. A bitmask of flags involved in key event translation.
Supported values are defined in the following table.

Value Meaning

None
0x0000

No flags set

AltGr
0x0001

Translation was modified by AltGr (Alt Graph) key

AltNumPad
0x0002

Character was generated from user-supplied codepoint via Alt+Numpad
(on Alt key up).

Ctrl
0x0004

Translation was modified by Control key

DeviceId (8 bytes): A 64-bit ULONGLONG device identifier that indicates the device that produced

the key (if available).

RepeatCount (2 bytes): A 16-bit WORD that contains the repeat count. A value of one means two
events, etc.

ScanCode (2 bytes): The 16-bit WORD that contains the scan code reported by the source keyboard.

22 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

IsExtendedKey (1 byte): A BOOLEAN value. TRUE indicates this is an extended key. For enhanced
101- and 102-key keyboards, extended keys are the right ALT and CTRL keys on the main section

of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters
to the left of the numeric keypad; and the divide (/) and ENTER keys in the numeric keypad.

IsMenuKey (1 byte): A BOOLEAN value. TRUE indicates an alt key is down.

WasKeyDown (1 byte): A BOOLEAN value. TRUE indicates the key being reported was already down
when this report came in.

IsKeyReleased (1 byte): A BOOLEAN value. TRUE indicates the key has been released.

TimestampInMs (4 bytes): A 32-bit UINT that contains the millisecond-resolution timestamp of the
client machine at the time the key was reported.

MessageId (4 bytes): A 32-bit UINT that contains the Message ID of the key event in the

application’s user queue. Used when an acknowledgement is required.

KeyEventAttributes (6 bytes): A 48-bit KeyEventAttributes struct (section 2.2.1.2) that provides
a correlation ID and touch coordinates for a key inserted via a touch keyboard.

2.2.1.2 KeyEventAttributes

The KeyEventAttributes structure stores certain attributes related to a key event. That includes the
touch point on the touch keyboard used to generate the key and an ID that the system can use to
correlate additional attributes with the key event. It is included in the KeyEventHostInfo structure
(section 2.2.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

id touchX

touchY

id (2 bytes): A 16-bit WORD. The ID of the key event.

touchX (2 bytes): A 16-bit SHORT. The x coordinate of the point touched on a touch keyboard used
to generate the key event.

touchY (2 bytes): A 16-bit SHORT. The y coordinate of the point touched on a touch keyboard used
to generate the key event.

2.2.1.3 KeyPressInfo

The KeyPressInfo structure contains extensive information about a key event when sent from server
to client via the RDPTXT_SEND_KEY_TO_HOST_PDU message (section 2.2.2.59). That message and
this structure are not used when predicted key reporting is enabled via the

RDPTXT_REPORT_CLIENT_OPTIONS_PDU message (section 2.2.2.54).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientID

23 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

keyInfo (44 bytes)

...

keyStates (variable)

...

...

...

textLength

text (variable)

...

...

...

touchX touchY

timestamp

isSent keyEventRaised isCharacterEvent handled

hasCharacter isReplayed imeProcessed binaryBlobSize

... binaryBlob (variable)

...

...

...

beginKeyEventPayloadID

keyEventID

lastSeenKeyEventID

editControlID

imeOperationID

pendingState

24 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

deliveryEventId

routingStage

routingCanceled deadChar keyNameTextLength

... keyNameText (variable)

...

...

...

beginTimeOfIS

...

beginTimeOfCicero

...

beginTimeOfApp

...

endTimeOfApp

...

beginTimeOfISOnKeyEvent

...

endTimeOfISOnKeyEvent

...

timeOfISBeginKeyEventPayload

...

beginTimeOfIME

...

endTimeOfIME

25 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

beginTimeOfVirt

...

endTimeOfVirt

...

Profile (82 bytes)

...

isHWKB targetKeyEventBufferID

... inputMethodID

... sendUnhandledKey skipHotKey
beginKeyEventPayload

Acknowledged

endKeyEventPayload
Acknowledged isVirt

isPickedAsSample
Telemetry isVKey

attributesID appReportedKeyEvent liteReceivedKeyEvent

textInputClientID (4 bytes): A 32-bit UINT. The ID of the text input client.

keyInfo (44 bytes): A KeyEventHostInfo structure (section 2.2.1.1) that contains information
about the key event.

keyStates (variable): A byte array. Contains the key state for each reported virtual key. The state
for each key is stored in one byte, represented as a combination of the KEY_STATE_FLAGS bit
flags defined in the following table.

Value Meaning

KeyStateToggledFlag
0x01

The key is toggled.

KeyStateGetAsyncDownFlag
0x02

The key went down since the last GetAsyncKey call.

KeyStatePrevDownFlag
0x40

The key was previously down.

KeyStateDownFlag
0x80

The key is currently down.

textLength (4 bytes): A 32-bit UINT. Length of text string.

text (variable): A STRING. Text associated with the key event.

touchX (2 bytes): A 16-bit SHORT that contains the x-coordinate of touch.

touchY (2 bytes): A 16-bit SHORT that contains the y-coordinate of touch.

26 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

timestamp (4 bytes): A 32-bit UINT. Timestamp of the key event.

isSent (1 byte): A BOOLEAN flag. TRUE indicates the key event has been sent.

keyEventRaised (1 byte): A BOOLEAN flag. TRUE indicates the key event has been raised.

isCharacterEvent (1 byte): A BOOLEAN flag. TRUE indicates the key event is a character event.

handled (1 byte): A BOOLEAN flag. TRUE indicates the key event has been handled.

hasCharacter (1 byte): A BOOLEAN flag. TRUE indicates the key event has an associated character.

isReplayed (1 byte): A BOOLEAN flag. TRUE indicates the key event has been replayed.

imeProcessed (1 byte): A BOOLEAN flag. TRUE indicates the key event has been processed by IME.

binaryBlobSize (4 bytes): A 32-bit SIZE_T. Size of binaryBlob data.

binaryBlob (variable): A pointer to a BYTE array. Binary blob data.

beginKeyEventPayloadID (4 bytes): A 32-bit UINT. ID for the beginning of the key event payload.

endKeyEventPayloadID (4 bytes): A 32-bit UINT. ID for the end of the key event payload.

keyEventID (4 bytes): A 32-bit UINT. ID of the key event.

lastSeenKeyEventID (4 bytes): A 32-bit UINT. ID of the last seen key event.

editControlID (4 bytes): A 32-bit UINT. ID of the edit control.

imeOperationID (4 bytes): A 32-bit UINT. ID of the IME operation.

pendingState (8 bytes): A 64-bit State of pending key press.

Value Meaning

None
0x0000000000000000

Key state not specified.

KeyDown
0x0000000000000001

This KeyPressInfo describes a key down event.

KeyUp
0x0000000000000002

This KeyPressInfo describes a key up event.

deliveryEventId (4 bytes): A 32-bit UINT. ID of the delivery event.

routingStage (4 bytes): A 32-bit UINT. Stage of accelerator key routing. Supported values are in
the following table.

Value Meaning

Tunneling
0x00000000

Key will next be routed to children (if any).

Bubbling
0x00000001

Key will next be routed to parent (if any).

None
0x00000002

Not a routed accelerator key.

Direct Will not route to parent or child.

27 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000003

routingCanceled (1 byte): A BOOLEAN flag. TRUE indicates routing was canceled.

deadChar (2 bytes): A 16-bit wchar_t. Dead character associated with the key event.

keyNameTextLength (4 bytes): A 32-bit UINT. Length of keyNameText as count of UTF-16
characters.

keyNameText (variable): A pointer to STRING. Text associated with the key name.

beginTimeOfIS (8 bytes): A 64-bit ULONGLONG. Performance measurement for the beginning of
Input Service processing of the key event described by this KeyPressInfo structure.

beginTimeOfCicero (8 bytes): A 64-bit ULONGLONG. Begin time of Cicero’s processing of the key
event.

beginTimeOfApp (8 bytes): A 64-bit ULONGLONG. Begin time of the application’s processing of the
key event.

endTimeOfApp (8 bytes): A 64-bit ULONGLONG. End time of the application’s processing of the key
event.

beginTimeOfISOnKeyEvent (8 bytes): A 64-bit ULONGLONG. Begin time of Input Service
processing when key event is received from application.

endTimeOfISOnKeyEvent (8 bytes): A 64-bit ULONGLONG. End time of Input Service processing
when end key event payload is about to be sent.

timeOfISBeginKeyEventPayload (8 bytes): A 64-bit ULONGLONG. Time that Input Service sent

begin key event payload for this key event.

beginTimeOfIME (8 bytes): A 64-bit ULONGLONG. Begin time of IME processing of the key event.

endTimeOfIME (8 bytes): A 64-bit ULONGLONG. End time of IME processing of the key event.

beginTimeOfVirt (8 bytes): A 64-bit ULONGLONG. Time key was sent to RAIL client (non-perf-
optimized design).

endTimeOfVirt (8 bytes): A 64-bit ULONGLONG. Time end key event payload sent for a key that
came from a RAIL server (non-perf-optimized design).

Profile (82 bytes): A CoreInputProfile structure (section 2.2.1.6).

isHWKB (1 byte): A BOOLEAN flag. TRUE indicates a hardware keyboard.

targetKeyEventBufferID (4 bytes): A 32-bit UINT. ID of target key event buffer.

inputMethodID (4 bytes): A 32-bit UINT. ID of the input method.

sendUnhandledKey (1 byte): A BOOLEAN flag. TRUE indicates unhandled key is to be sent.

skipHotKey (1 byte): A BOOLEAN flag. TRUE indicates hot key is to be skipped.

beginKeyEventPayloadAcknowledged (1 byte): A BOOLEAN flag. TRUE indicates begin key event
payload was acknowledged.

endKeyEventPayloadAcknowledged (1 byte): A BOOLEAN flag. TRUE indicates end key event
payload was acknowledged.

28 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

isVirt (1 byte): A BOOLEAN flag. TRUE indicates virtual key.

isPickedAsSampleTelemetry (1 byte): A BOOLEAN flag. TRUE indicates key was picked as sample
telemetry.

isVKey (1 byte): A BOOLEAN flag. TRUE indicates virtual key.

attributesID (2 bytes): A 16-bit ID of the attributes.

appReportedKeyEvent (1 byte): A BOOLEAN flag. TRUE indicates application reported key event.

liteReceivedKeyEvent (1 byte): A BOOLEAN flag. TRUE indicates language-independent intelligence
engine received key event.

2.2.1.4 HotKeyRegistrationData

The HotKeyRegistrationData structure contains information about a hotkey that an application
registers with the system. This structure is used in the RDPTXT_HOTKEY_REGISTRATION_PDU

message (section 2.2.2.56).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

processId

threadId

modifiers virtualKey

processId (4 bytes): A 32-bit UINT. The ID of the process registering the hotkey.

threadId (4 bytes): A 32-bit UINT. The ID of the thread registering the hotkey.

modifiers (2 bytes): A 16-bit bitmask that indicates which modifier keys (like CTRL or ALT) are to be
chorded with the specified virtual key to activate the hotkey. Supported values are in the following
table.

Value Meaning

ALT
0x0001

The specified virtual key is to be chorded with an ALT key to activate the hotkey.

CONTROL
0x0002

The specified virtual key is to be chorded with a CTRL key to activate the hotkey.

SHIFT
0x0004

The specified virtual key is to be chorded with a Shift key to activate the hotkey.

WIN
0x0008

The specified virtual key is to be chorded with a Windows key to activate the hotkey.

virtualKey (2 bytes): A 16-bit UINT. The base virtual key for the hotkey.

2.2.1.5 CompositionClause

The CompositionClause structure contains information about an individual clause in a composition
string. Specifically, where the clause is in the composition string and the original text associated with

29 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

the clause. This structure is used in the RDPTXT_UPDATE_COMPOSITION_PDU message (section
2.2.2.13).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

preConversionStringLen

preConversionString (variable)

...

...

range

...

preConversionStringLen (4 bytes): A 32-bit UINT. Length of preConversionString field as a

count of UTF-16 characters.

preConversionString (variable): A STRING that contains the current text for the segment of the
composition represented by this clause.

range (8 bytes): A 64-bit EditControlRange structure (section 2.2.1.8) that indicates which
characters in the current composition are associated with this clause.

2.2.1.6 CoreInputProfile

The CoreInputProfile structure contains information about an input profile, such as its ID, the

language it supports, and the keyboard layout it uses. This structure is used in the following PDU
messages:

 RD RDPTXT_INPUT_PROFILE_CHANGED_PDU

 PTXT_UPDATE_INPUT_PROFILE_PDU

 RDPTXT_SET_ENABLED_INPUT_PROFILES_PDU

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

langid clsid

...

...

...

... guidProfile

...

30 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

...

... catid

...

...

...

... hkl

... klid

... lcid

... profileType

... uCaps

... uFlags

... bcpTag

...

...

langid (2 bytes): A 16-bit WORD. An LCID that indicates the language of this profile. Transient
LCIDs map through the registry.

clsid (16 bytes): A GUID ([MS-DTYP] section 2.3.4.3). The CLSID of the input method associated

with this profile.

guidProfile (16 bytes): A GUID. The ID of this profile.

catid (16 bytes): A GUID. The ID of this profile’s category.

hkl (4 bytes): A 32-bit UINT. The handle to keyboard layout for the layout associated with this input
profile.

klid (4 bytes): A 32-bit UINT. The keyboard layout identifier for the keyboard layout associated with

this input profile.

lcid (4 bytes): A 32-bit UINT. The language code identifier for the language associated with this input
profile.

profileType (4 bytes): A 32-bit UINT. Indicates what kind of profile this is. Supported values are in
the following table.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

31 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

InputProcessor
0x00000001

This profile is for an input processor sometimes referred to as a text service
(e.g., an IME).

KeyboardLayout
0x00000002

This profile is for a keyboard layout.

uCaps (4 bytes): A 32-bit UINT. Bitmask which identifies certain capabilities of the input method
associated with this profile. Supported values are in the following table.

Value Meaning

None
0x00000000

No indicated capabilities.

DisableOnTransitory
0x00000001

This text service profile is disabled on transitory context.

SecureModeSupport
0x00000002

This text service supports the secure mode. This is categorized in
GUID_TFCAT_TIPCAP_SECUREMODE.

UIElementEnabled
0x00000004

This text service supports the UIElement. This is categorized in
GUID_TFCAT_TIPCAP_UIELEMENTENABLED.

ComlessSupport
0x00000008

This text service can be activated without COM. This is categorized in
GUID_TFCAT_TIPCAP_COMLESS.

Wow16Support
0x00000010

This text service can be activated on 16bit task. This is categorized in
GUID_TFCAT_TIPCAP_WOW16.

InputModeCompartment
0x00000020

Uses an input mode compartment.

ImmersiveSupport
0x00010000

This text service has been tested to run properly in a Windows Store app.

SysTraySupport
0x00020000

This text service supports inclusion in the System Tray. This is used for text
services that do not set the TF_IPP_CAPS_IMMERSIVESUPPORT flag but are
still compatible with the System Tray.

ImmersiveOnly
0x00040000

This text service only runs properly with Windows Store apps.

LocalServer
0x10000000

The text service runs in a local COM server.

LocalServerModern
0x20000000

The text service runs in a modern local server.

Tsf3
0x40000000

The text service is a first-party input method that supports TSF3

DualMode
0x80000000

The text service is a first-party input method that supports TSF1 and TSF3.

uFlags (4 bytes): A 32-bit UINT. Bitmask of flags that indicate the state of the input profile.

Supported values are in the following table.

Value Meaning

None No flags set.

32 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000000

Active
0x00000001

The input profile is now active.

Enabled
0x00000002

The input profile is enabled and eligible to become active.

SubstitutedByInputProcessor
0x00000004

This profile is substituted by a text service.

bcpTag (8 bytes): A 64-bit language identifier that can be converted internally to a BCP-47 language
tag string. Major version introduced=1, minor version bit flag=0x00000002.

2.2.1.7 CoreInputViewOcclusion

The CoreInputViewOcclusion structure contains information about an occluding region reported by
the RDPTXT_OCCLUDING_VIEWS_PDU message (section 2.2.2.52).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventId

occludingRect

...

...

...

occlusionKind

eventId (4 bytes): A 32-bit UINT. Identifier for this event.

occludingRect (16 bytes): An TextInputRect structure (section 2.2.1.13) that indicates the
rectangular region that is occluded by onscreen input UI.

occlusionKind (4 bytes): A 32-bit UINT. A value of CoreInputViewOcclusionKind enum that
describes the kind of occlusion being reported. See [MSLearn-InputViewOcclusionKind]. Supported
values are in the following table.

Value Meaning

Docked
0x00000000

A docked pane, like the touch keyboard when docked.

Floating
0x00000001

An undocked pane, like the floating touch keyboard.

Overlay
0x00000002

Floating panes like inline ink or IME candidate windows.

https://go.microsoft.com/fwlink/?linkid=2263362

33 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.1.8 EditControlRange

The EditControlRange structure represents a range of text. Indicates caret positions which are
conceptually placed before the character at the specified index. For example, a range of 0 (begin) to 1

(end) would be a range of length 1 and would comprise the first character in the buffer or string. This
structure is used in the following PDU messages:

 RDPTXT_UPDATE_COMPOSITION_PDU

 RDPTXT_SET_COMPOSITION_INFO_PDU

 RDPTXT_RECONVERSION_CANDIDATES_PDU

 RDPTXT_UPDATE_MODE_PDU

 RDPTXT_TEXT_CHANGED_PDU

 RDPTXT_GEOMETRY_CHANGED_PDU

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

begin

end

begin (4 bytes): A 32-bit UINT. The caret position of the beginning of the range.

end (4 bytes): A 32-bit UINT. The caret position of the end of the range.

2.2.1.9 EditControlInfo

The EditControlInfo structure contains settings and other information about an edit control. This
structure is used in the following PDU messages:

 RDPTXT_EDIT_CONTROL_FOCUS_PDU (section 2.2.2.32)

 RDPTXT_CONTROL_CONFIGURATION_UPDATED_PDU (section 2.2.2.37)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bufferLength

editSettings

frameworkType

frameworkVersion

id

inputScope

inputSettings

34 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

visualReferenceId

...

bufferLength (4 bytes): A 32-bit UINT. The maximum number of UTF-16 (wchar_t) characters the
edit control can hold. -1 indicates that there is no limit.

editSettings (4 bytes): A 32-bit UINT. A bitmap of setting values in the following table.

Value Meaning

None
0x00000000

No settings specified.

ReadOnly
0x00000001

Control is read-only.

MultiLine
0x00000002

This is a multi-line control.

VerticalWriting
0x00000004

Control is configured for vertical writing.

EmbeddedHandwritingViewEnabled
0x00000040

The embedded handwriting view is enabled.

EmbeddedHandwritingViewVisible
0x00000080

The embedded handwriting view is currently visible.

UILessMode

0x00000100

The application wants to show its own candidate UI.

SystemEditControl
0x10000000

This is a system edit control.

AdaptedImmControl
0x20000000

This is an IMM control that has been adapted to TSF.

AdaptedTSF1Control
0x40000000

This is a TSF1 control that has been adapted to TSF3.

frameworkType (4 bytes): A 32-bit UINT. Indicates the type of application the edit control lives in
on the remote system. Supported values are in the following table.

Value Meaning

Default
0x00000000

No framework specified.

Splash

0x00000001

Deprecated.

Silverlight
0x00000002

Deprecated.

Trident
0x00000003

Deprecated.

Office
0x00000004

An Office custom edit control.

35 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

NativeFx
0x00000005

Deprecated.

Jupiter
0x00000006

Deprecated.

UniversalApp
0x00000007

A UWP app.

EdgeHtml
0x00000008

Spartan Edge (deprecated).

ClassicWin32
0x00000009

A Win32 app.

frameworkVersion (4 bytes): A 32-bit UINT. The text input system assigns version numbers to

some frameworks when their text input behavior changes over time. When frameworks are
assigned a version number, it is provided here.

id (4 bytes): A 32-bit UINT. The ID of the edit control. Only unique in the context of the
TextInputClient that the edit control was registered with.

inputScope (4 bytes): A 32-bit UINT. A value of InputScope enumeration that indicates the

semantic purpose assigned to an edit control by the application (see [MSLEARN-InputScope]).

inputSettings (4 bytes): A 32-bit UINT. A bitmap of additional settings. Supported values are in the
following table.

Value Meaning

None
0x00000000

No specific behavior or feature enabled.

EnableAutoCorrect
0x00000003

Enables automatic correction of spelling errors during input.

DisableAutoCorrect
0x00000002

Disables automatic correction of spelling errors during input.

EnableAutoSuggest
0x0000000C

Enables suggestions for word completion or prediction during
input.

DisableAutoSuggest
0x00000008

Disables suggestions for word completion or prediction during
input.

EnableHaveTrailer
0x00000030

Allows trailing characters (such as punctuation) after input.

DisableHaveTrailer
0x00000020

Disallows trailing characters after input.

EnableSpellCheck
0x000000C0

Activates spell-checking functionality during input.

DisableSpellCheck
0x00000080

Deactivates spell-checking functionality during input.

EnableCandidatesOnDemand
0x00000300

Provides candidate suggestions only when explicitly requested by
the user.

DisableCandidatesOnDemand Provides candidate suggestions automatically without user

https://go.microsoft.com/fwlink/?linkid=2263085

36 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000200 request.

EnableAutoCapitalization
0x00000C00

Automatically capitalizes the first letter of each word during input.

DisableAutoCapitalization
0x00000800

Disables automatic capitalization of the first letter during input.

EnableAutoApostrophe
0x00003000

Inserts an apostrophe automatically (e.g., for contractions) during
input.

DisableAutoApostrophe
0x00002000

Disables automatic insertion of apostrophes during input.

EnableAutoAccent
0x0000C000

Adds accents or diacritics to characters automatically during input.

DisableAutoAccent
0x00008000

Disables automatic addition of accents or diacritics during input.

EnablePeriodShortcut
0x00030000

Allows shortcuts for inserting periods (e.g., double-tapping
spacebar).

DisablePeriodShortcut
0x00020000

Disables shortcuts for inserting periods.

EnablePrivateInputSetting
0x000C0000

Enables private input settings (customized behavior) during input.

DisablePrivateInputSetting
0x00080000

Disables private input settings.

EnableAutoCorrectFirstWordInSentence
0x00300000

Corrects the first word of a sentence automatically.

DisableAutoCorrectFirstWordInSentence
0x00200000

Does not correct the first word of a sentence automatically.

EmojiSipChineseSns
0x00400000

Enables emoji input in the context of Chinese social media (SNS).

EnableAutoCorrectOnSubmit
0x00800000

Corrects input automatically upon submission (e.g., pressing
Enter).

EnableShapeWriting
0x03000000

Enables shape writing (swiping gestures) for input.

DisableShapeWriting
0x02000000

Disables shape writing gestures.

PasswordRevealed
0x0C000000

Reveals password characters during input (e.g., for password
entry).

PasswordObfuscated
0x08000000

Obfuscates password characters (e.g., shows asterisks) during
input.

EnableManualInputPane
0x30000000

Allows manual control over the input pane (e.g., virtual keyboard).

DisableManualInputPane
0x20000000

Disables manual control over the input pane.

37 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

BottomEdgeCandidateWindowAlignment
0x40000000

Aligns the candidate window to the bottom edge of the screen.

visualReferenceId (8 bytes): A 64-bit UINT64. Currently unused. Set to 0.

2.2.1.10 NavigateFocusInfo

The NavigateFocusInfo structure provides information about a move of input focus between views.
This structure is used in the RDPTXT_FOCUS_NAVIGATING_EVENT_PDU message (section 2.2.2.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

navigateFocusReason

origin

...

...

...

startTargetViewId

currentTargetViewId

sequenceNumber

...

...

...

startTimeStamp

...

navigateFocusReason (4 bytes): A 32-bit UINT. A NavigationReason enumeration value that
indicates the kind of action that resulted in the focus navigation. Supported values are defined in

the following table.

Value Meaning

Programmatic
0x00000000

Focus was set programmatically.

Restore
0x00000001

Focus is being restored to a previously focused element.

38 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

AccessKey
0x00000002

Not applicable

Next
0x00000003

Focus set due to user tab-navigating forward through content.

Previous
0x00000004

Focus set due to user shift-tab-navigating backward through content.

NextGroup
0x00000005

User has tab-navigated forward to a control group.

PreviousGroup
0x00000006

User has shift-tab-navigated backward to a control group.

Left

0x00000007

Focus set as user navigates through content using left arrow key.

Up
0x00000008

Focus set as user navigates through content using up arrow key.

Right
0x00000009

Focus set as user navigates through content using right arrow key.

Down
0x0000000A

Focus set as user navigates through content using down arrow key.

origin (16 bytes, optional): A TextInputRect structure (section 2.2.1.13) that indicates the
rectangular (Rect) region where focus navigation began.

startTargetViewId (4 bytes): A 32-bit UINT. ID of any view instance that is losing focus.

currentTargetViewId (4 bytes): A 32-bit UINT. ID of any view instance that is gaining focus.

sequenceNumber (16 bytes): A GUID value to uniquely identify a NavigateFocusInfo structure
(section 2.2.1.10).

startTimeStamp (8 bytes): 64-bit DateTime. Tick count added when NavigateFocusInfo structure
is created and used to help maintain event sequence.

2.2.1.11 NavigateFocusCompleteInfo

The NavigateFocusCompleteInfo structure provides additional focus navigation information. This
structure is used in the RDPTXT_FOCUS_DEPART_COMPLETED_PDU message (section 2.2.2.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

sequenceNumber

...

...

...

takenFocus

39 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sequenceNumber (16 bytes): A GUID value to uniquely identify the focus navigation being
completed.

takenFocus (1 byte): A BOOLEAN. TRUE indicates a new target window was successfully activated.

2.2.1.12 NonCUIConfiguration

The NonCUIConfiguration structure contains information delivered with
RDPTXT_NON_COMPONENTUI_CONFIGURATION_CHANGE_PDU message (section 2.2.2.7).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

enableNonCUIDepartFocus

enableNonCUIDepartFocus (1 byte): A BOOLEAN. TRUE causes a ComponentUI component

window to navigate focus correctly when it is hosted by Win32.

2.2.1.13 TextInputRect

The TextInputRect structure is used to represent rectangular regions that are significant to text
input messages like edit control or text selection boundaries, or regions of the screen occluded by the

touch keyboard. This structure is used in the following PDU messages:

 RDPTXT_EDIT_CONTROL_FOCUS_PDU

 RDPTXT_GEOMETRY_CHANGED_PDU

 RDPTXT_SOFTWARE_KEYBOARD_INVOCATION_SIGNALS_PDU

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

left

top

right

bottom

left (4 bytes): A 32-bit UINT. The x coordinate of the left of the rectangle.

top (4 bytes): A 32-bit UINT. The y coordinate of the top of the rectangle.

right (4 bytes): A 32-bit UINT. The x coordinate of the right of the rectangle.

bottom (4 bytes): A 32-bit UINT. The y coordinate of the bottom of the rectangle.

2.2.1.14 TextFormat

The TextFormat structure contains information that describes how text is to be visually displayed. It
includes explicit formatting and semantic Reason field to describe why the formatting is being
applied. This structure is used in the RDPTXT_UPDATE_FORMAT_PDU message (section 2.2.2.12).

40 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reason

SetBackgroundColor SetTextColor SetUnderlineColor SetUnderlineType

UnderlineType UnderlineColor BackgroundColor TextColor

Reason (4 bytes): A 32-bit UINT. A CoreTextFormatUpdatingReason enumeration value that
provides the reason for this format update. Supported values are in the following table.

Value Meaning

None
0x00000000

No reason provided.

CompositionUnconverted
0x00000001

Showing that previously composed text has been unconverted.

CompositionConverted
0x00000002

Showing that text entered as part of a composition has been
converted.

CompositionTargetUnconverted
0x00000003

Showing that previously composed text has been unconverted in a
selected subphrase.

CompositionTargetConverted
0x00000004

Showing that text entered as part of a composition has been
converted in a selected subphrase.

SetBackgroundColor (1 byte): A BOOLEAN. TRUE indicates this format update will set the
background color.

SetTextColor (1 byte): A BOOLEAN. TRUE indicates this format update will set the text color.

SetUnderlineColor (1 byte): A BOOLEAN. TRUE indicates this format update will set the underline
color.

SetUnderlineType (1 byte): A BOOLEAN. TRUE indicates this format update will set the underline
type.

UnderlineType (1 byte): An UnderlineType enumeration value. See [MSLEARN-UnderlineType].

UnderlineColor (1 byte): One of a subset of values from UIElementType enumeration that can be
used as a text input element color. See [MSLEARN-UIElementType]. Supported values are in the
following table.

Value Meaning

CaptionText
0x04

Element is to be colored as appropriate for text displayed in a caption.

GrayText

0x05

Color of text element is to be gray.

Highlight
0x06

Element is to be colored as appropriate for a highlighted UI element.

HighlightText
0x07

Element is to be colored as appropriate for highlighted text.

https://go.microsoft.com/fwlink/?linkid=2263255
https://go.microsoft.com/fwlink/?linkid=2263363

41 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

BackgroundColor (1 byte): A UIElementType enumeration to define the background color.

TextColor (1 byte): A UIElementType enumeration to define the text color.

2.2.1.15 TextInputHostSettings

The TextInputHostSettings structure contains information about a TextInputHost (key target).
This structure is used in the RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU message (section
2.2.2.25).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

InputEnabledOnWindow
ByApp

IsOwnerWin32 IsOwnerAppFrame

Type (4 bytes): A 32-bit UINT. Indicates the kind of window or window-like object input target the
TextInputHost is attached to. Supported TextInputHostType enumeration values are in the
following table.

Value Meaning

CoreWindow
0x00000000

The base type for UWP windows.

CoreComponentInput
0x00000001

Modern control that takes input without a CoreWindow.

Root
0x00000002

A window owned by the shell that takes default keyboard input
when nothing else is in focus.

Legacy
0x00000003

A traditional Win32 window.

InputSiteWindow
0x00000004

Modern window implementation that uses KeyboardInputWinRT.

InputEnabledOnWindowByApp (1 byte): A BOOLEAN value. TRUE indicates that input is enabled
on the window the TextInputHost is attached to.

IsOwnerWin32 (1 byte): A BOOLEAN value. TRUE indicates that the owning window is a Microsoft
Win32 window.

IsOwnerAppFrame (1 byte): A BOOLEAN value. TRUE indicates the owner is an application frame,
meaning a window that can contain child apps (views). View transitions aren’t notified when this
value is TRUE.

2.2.2 PDUs

Every message sent over the Text Input Virtual Channel Extension conforms to one of the PDUs
documented in this section. Each of these PDUs is preceded by a 6-byte header comprising the
message size and the PDU ID as follows.

42 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

size

pduId

size (4 bytes): A 32-bit UINT. The size of the PDU, excluding size itself.

pduId (2 bytes): A 16-bit USHORT. The PDU identifier. The supported values are defined as follows.

Value Name

0x0100 RDPTXT_KEY_EVENT_PDU

0x0101 RDPTXT_ACKNOWLEDGE_HOST_OPERATION_PDU

0x0102 RDPTXT_CHARACTER_EVENT_PDU

0x0103 RDPTXT_FOCUS_NAVIGATING_EVENT_PDU

0x0104 RDPTXT_FOCUS_DEPART_COMPLETED_PDU

0x0105 RDPTXT_ENABLE_WINDOW_PDU

0x0106 RDPTXT_ACTIVATION_STATE_CHANGE_PDU

0x0107 RDPTXT_NON_COMPONENTUI_CONFIGURATION_CHANGE_PDU

0x0108 RDPTXT_KEY_EVENT_PAYLOAD_PDU

0x0200 RDPTXT_UPDATE_TEXT_PDU

0x0201 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU

0x0202 RDPTXT_SET_SELECTION_PDU

0x0203 RDPTXT_UPDATE_FORMAT_PDU

0x0204 RDPTXT_UPDATE_COMPOSITION_PDU

0x0205 RDPTXT_SET_COMPOSITION_INFO_PDU

0x0206 RDPTXT_RECONVERSION_CANDIDATES_PDU

0x0207 RDPTXT_UPDATE_INPUT_LOCALE_PDU

0x0208 RDPTXT_UPDATE_INPUT_PROFILE_PDU

0x0209 RDPTXT_UPDATE_MODE_PDU

0x020A RDPTXT_SET_CONVERSION_MODE_PDU

0x020B RDPTXT_ACKNOWLEDGE_OPERATION_PDU

0x020C RDPTXT_ERROR_REPORT_PDU

0x0300 RDPTXT_REGISTER_REMOTE_TEXT_TARGET_PDU

0x0301 RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU

0x0302 RDPTXT_REGISTER_REMOTE_EDIT_CONTROL_PDU

43 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Name

0x0303 RDPTXT_REGISTER_REMOTE_COREINPUTVIEW_PDU

0x0304 RDPTXT_UNREGISTER_REMOTE_TEXT_TARGET_PDU

0x0305 RDPTXT_UNREGISTER_REMOTE_KEY_TARGET_PDU

0x0306 RDPTXT_UNREGISTER_REMOTE_EDIT_CONTROL_PDU

0x0307 RDPTXT_UNREGISTER_REMOTE_COREINPUTVIEW_PDU

0x0308 RDPTXT_EDIT_CONTROL_FOCUS_PDU

0x0309 RDPTXT_HOST_FOCUS_PDU

0x030A RDPTXT_HOST_FOREGROUND_PDU

0x030B RDPTXT_SELECTION_CHANGED_PDU

0x030C RDPTXT_TEXT_CHANGED_PDU

0x030D RDPTXT_CONTROL_CONFIGURATION_UPDATED_PDU

0x030E RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU

0x030F RDPTXT_GEOMETRY_CHANGED_PDU

0x0310 RDPTXT_SOFTWARE_KEYBOARD_INVOCATION_SIGNALS_PDU

0x0311 RDPTXT_ACTIVE_VIEW_CHANGED_PDU

0x0312 RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU

0x0313 RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU

0x0314 RDPTXT_INPUT_PROFILE_CHANGED_PDU

0x0315 RDPTXT_VIEW_OCCLUSIONS_HANDLED_PDU

0x0316 RDPTXT_DO_RECONVERSION_PDU

0x0317 RDPTXT_SOFTWARE_KEYBOARD_VISIBILITY_PDU

0x0318 RDPTXT_HOTKEY_REGISTRATION_PDU

0x0319 RDPTXT_EDIT_CONTROL_TEXT_SEGMENT_PDU

0x031A RDPTXT_NOTIFY_SERVER_VERSION_PDU

0x0320 RDPTXT_COMPOSITION_TERMINATED_PDU

0x0321 RDPTXT_SOFTWARE_KEYBOARD_POLICY_PDU

0x0322 RDPTXT_REMOTE_TEXT_TARGET_THREAD_PROPERTIES_PDU

0x0400 RDPTXT_OCCLUDING_VIEWS_PDU

0x0500 RDPTXT_FOREGROUND_HOST_INFO_UPDATED_PDU

0x0501 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU

0x0502 RDPTXT_REFRESH_CLIENT_PDU

0x0503 RDPTXT_SEND_KEY_TO_HOST_PDU

44 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Name

0x0600 RDPTXT_SET_ENABLED_INPUT_PROFILES_PDU

0x0601 RDPTXT_ACKNOWLEDGE_UNDO_PENDING_KEY_EVENTS_PDU

0x0602 RDPTXT_REMOTE_INTEGRATION_STATUS_PDU

0x0603 RDPTXT_REREGISTRATION_REQUEST_PDU

0x0604 RDPTXT_NOTIFY_CLIENT_VERSION_PDU

0x0605 RDPTXT_REPORT_CLIENT_OPTIONS_PDU

2.2.2.1 RDPTXT_KEY_EVENT_PDU

The RDPTXT_KEY_EVENT_PDU message is sent from client to server to deliver a key event or an

accelerator key event. Accelerator keys tunnel down through the Component UI tree<1> from parent
to child then tunnel back up until handled. This gives each layer the option of handling the key before
or after its children.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

keyEventId

routingStage lastSeenKeyEventId

... editControlId

... notifyFramework keyEventInfo (44 bytes)

...

keyStatesSize

keyStates (variable)

... keyTextLength

... keyText (variable)

...

... deadChar

keyNameTextLength

keyNameText (variable)

45 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

textInputHostId (4 bytes): A 32-bit UINT. ID of the TextInputHost associated with the thread or
window tied to the target edit control.

keyEventId (4 bytes): A 32-bit UINT. ID of this key or accelerator key event.

routingStage (1 byte): Indicates whether the key is tunneling down through the Component UI
tree<2> or bubbling back up. A value of "none" indicates that this is a normal key event and not
an accelerator key event.

Value Meaning

Tunneling
0x00

Key will next be routed to children (if any).

Bubbling
0x01

Key will next be routed to parent (if any).

None
0x02

Not a routed accelerator key.

Direct
0x03

Will not route to parent or child.

lastSeenKeyEventId (4 bytes): A 32-bit UINT. The ID of the last key event that was acknowledged
back to the client via RDPTXT_KEY_EVENT_ACKNOWLEDGEMENT_PDU.

editControlId (4 bytes): A 32-bit UINT. ID of the current focused edit control.

notifyFramework (1 byte): A BOOLEAN value. TRUE indicates the key event needs to be delivered
to the app or app framework. It does not typically need to be delivered to apps<3> or during
composition.

keyEventInfo (44 bytes): A KeyEventHostInfo structure (section 2.2.1.1) that contains
information about the key press that this key event is generated for.

keyStatesSize (4 bytes): A 32-bit UINT. The number of keys (typically 256) whose states are
represented in the keyStates field that represents all (256) virtual keys.

keyStates (variable): A byte array. Contains the key state for each reported virtual key. The state
for each key is stored in one byte, represented as a combination of the KEY_STATE_FLAGS bit
flags defined in the following table.

Value Meaning

KeyStateToggledFlag
0x01

The key is toggled.

KeyStateGetAsyncDownFlag
0x02

The key went down since the last GetAsyncKey call.

KeyStatePrevDownFlag
0x40

The key was previously down.

KeyStateDownFlag
0x80

The key is currently down.

46 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

keyTextLength (4 bytes): A 32-bit UINT. The length of the keyText string as a count of UTF-16
characters.

keyText (variable): A STRING. The translated text generated for the current key, based on the
current keyboard layout.

deadChar (2 bytes): A 16-bit UINT16. If the event is for a dead key, this field is to hold the dead
key character. It is not to be filled on the next key event (the one that combines the dead key
with another character). On that next key event, the keyText string field will hold the combined
character.

keyNameTextLength (4 bytes): A 32-bit UINT. The length of the keyNameText string as a count
of UTF-16 characters.

keyNameText (variable): A STRING UCHAR array. The text printed on the physical key that was

pressed (according to the current keyboard layout). The text can hold a description such as TIL for
the Tilde (~) character.

2.2.2.2 RDPTXT_CHARACTER_EVENT_PDU

The RDPTXT_CHARACTER_EVENT_PDU message is sent from client to server to deliver a character
event to the focused edit control in the foreground app.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

keyEventId

editControlId

keyDownEventId

keyEventInfo (44 bytes)

...

textInputHostId (4 bytes): A 32-bit UINT. The ID of the target TextInputHost.

keyEventId (4 bytes): A 32-bit UINT. The ID of this event.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control – unique in the context of
the thread it was registered on.

keyDownEventId (4 bytes): A 32-bit UINT. The ID of the key down event that led to this character
event.

keyEventInfo (44 bytes): A KeyEventHostInfo structure (section 2.2.1.1) contains details of the
key press that this character event is produced for.

2.2.2.3 RDPTXT_FOCUS_NAVIGATING_EVENT_PDU

The RDPTXT_FOCUS_NAVIGATING_EVENT_PDU message is sent from client to server to raise a
FocusNavigating event in the application associated with the target TextInputHost.

47 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

navigateFocusInfo (52 bytes)

...

textInputHostId (4 bytes): A 32-bit UINT. The ID of the target TextInputHost.

navigateFocusInfo (52 bytes): A NavigateFocusInfo structure (section 2.2.1.10) contains
information about this focus change.

2.2.2.4 RDPTXT_FOCUS_DEPART_COMPLETED_PDU

The RDPTXT_FOCUS_DEPART_COMPLETED_PDU message is sent from client to server to inform the
app associated with the specified TextInputHost that the specified focus leave has completed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

navigateFocusCompleteInfo (17 bytes)

...

textInputHostId (4 bytes): A 32-bit UINT. The ID of the target TextInputHost.

navigateFocusCompleteInfo (17 bytes): A NavigateFocusCompleteInfo structure (section
2.2.1.11) that contains information about the completed focus change.

2.2.2.5 RDPTXT_ENABLE_WINDOW_PDU

The RDPTXT_ENABLE_WINDOW_PDU message is sent from client to server to enable or disable text
input in the windows associated with the specified TextInputHost.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

inputEnabled

textInputHostId (4 bytes): A 32-bit UINT. The ID of the target TextInputHost.

inputEnabled (1 byte): A BOOLEAN value. TRUE enables input while FALSE disables input.

2.2.2.6 RDPTXT_ACTIVATION_STATE_CHANGE_PDU

The RDPTXT_ACTIVATION_STATE_CHANGE_PDU message is sent from client to server to update the
activation state of a view.

48 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

activationState

activatedView

textInputHostId (4 bytes): A 32-bit UINT. The ID of the target TextInputHost.

activationState (4 bytes): A 32-bit UINT. A ViewActivationState enumeration value that indicates
the new activation state of the specified view. Values are defined in the following table.

Value Meaning

ViewDeactivated
0x00000000

View’s new state is deactivated.

ViewActivated
0x00000001

View’s new state is activated.

DescendentViewActivated
0x00000002

Used with CompositeAppActivated to indicate that a descendent
view is activated and foreground.

CompositAppActivated
0x00000004

Indicates that a composite app is activated (can have a descendent
with foreground).

NoDescendentViews
0x00000008

Used with CompositeAppActivated to indicate that no descendent
view is foreground.

Unknown
0x00000010

Activation state is not known.

activatedView (4 bytes): A 32-bit UINT. The ID of the view having its activation state changed.

2.2.2.7 RDPTXT_NON_COMPONENTUI_CONFIGURATION_CHANGE_PDU

The RDPTXT_NON_COMPONENTUI_CONFIGURATION_CHANGE_PDU message is sent from client to
server to configure a CoreWindow associated with the specified TextInputHost to handle a non-
ComponentUI host.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

nonCuiConfiguration

textInputHostId (4 bytes): A 32-bit UINT. The ID of the target TextInputHost.

nonCuiConfiguration (1 byte): A NonCUIConfiguration structure (section 2.2.1.12) that contains
configuration information for the non-ComponentUI host scenario.

49 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2.8 RDPTXT_KEY_EVENT_PAYLOAD_PDU

The RDPTXT_KEY_EVENT_PAYLOAD_PDU message is sent from client to server to bookend the actions
(payload) associated with a given key event.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

editControlId

keyEventId

remoteKeyEventId keyEventInfo (44 bytes)

...

beginPayload handled

textInputHostId (4 bytes): A 32-bit UINT. The ID of the target TextInputHost.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control unique in the context of the
thread it was registered on.

keyEventId (4 bytes): A 32-bit UINT. The ID of this bookend event.

remoteKeyEventId (1 byte): Reserved. SHOULD be set to 0.

keyEventInfo (44 bytes): A KeyEventHostInfo structure (section 2.2.1.1) that contains

information about the key event responsible for the actions that are being bookended.

beginPayload (1 byte): A BOOLEAN. If TRUE, indicates that this is the beginning payload bookend
event. If FALSE, this is the end payload bookend event, that means all actions generated for the
associated key event have been sent to the server.

handled (1 byte): A BOOLEAN. When beginPayload is FALSE, this indicates whether the current
active input method handled the key event as follows.

Value Meaning

TRUE Input method handled this key event. Key should not be handled by app or produce character in
focused edit control.

FALSE Input method did not handle this key event.

2.2.2.9 RDPTXT_UPDATE_TEXT_PDU

The RDPTXT_UPDATE_TEXT_PDU message is sent from client to server and includes a text string that
is to replace existing text in the specified replacement range. If the string of new text is empty, the
text in the replacement range is simply deleted. If the replacement range has 0 length, the text is
simply inserted.

50 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

TextInputHostId

operationId

replaceBegin

replaceEnd

newTextLength

newText (variable)

...

textInputClientId (4 bytes): A 32-bit UINT. ID of the TextInputClient that holds the registration
for the target edit control.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control unique in the context of the

TextInputClient that it was registered with.

textInputHostId (4 bytes): A 32-bit UINT. ID of the TextInputHost associated with the edit
control’s window or thread.

operationId (4 bytes): A 32-bit UINT. The serial ID of this operation (see Key Replay and Override
section 1.3.2).

replaceBegin (4 bytes): A 32-bit UINT. The character position that indicates the start of the range

of existing text to remove or replace.

replaceEnd (4 bytes): A signed integer. The character position that indicates the end of the range of
existing text to remove or replace.

newTextLength (4 bytes): A 32-bit UINT. Length of the newText string in UTF-16 characters.

newText (variable): A UTF-16 string. The new text to insert at replaceBegin, after the existing text
from replaceBegin to replaceEnd has been removed.

2.2.2.10 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU

The RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU message is sent from client to server and includes
a text string that is to replace existing text in the specified replacement range. If the string of new
text is empty, the text in the replacement range is simply deleted. If the replacement range has 0
length, the text is simply inserted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

51 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

editControlId

textInputHostId

operationId

replaceBegin

replaceEnd

newTextLength

newText (variable)

...

selectionBegin

selectionEnd

textInputClientId (4 bytes): A 32-bit UINT. ID of the TextInputClient that holds the registration
for the target edit control.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control unique in the context of the

TextInputClient that it was registered with.

textInputHostId (4 bytes): A 32-bit UINT. ID of the TextInputHost associated with the edit
control’s window or thread.

operationId (4 bytes): A 32-bit UINT. The serial ID of this operation (see Key Replay and Override
section 1.3.2).

replaceBegin (4 bytes): A 32-bit UINT. The character position that indicates the start of the range

of existing text to remove or replace.

replaceEnd (4 bytes): A 32-bit UINT. The character position that indicates the end of the range of
existing text to remove or replace.

newTextLength (4 bytes): A 32-bit UINT. Length of the newText string in UTF-16 characters.

newText (variable): A UTF-16 string. The new text to insert at replaceBegin, after the existing text
from replaceBegin to replaceEnd has been removed.

selectionBegin (4 bytes): A 32-bit UINT. The beginning character position of a new selection to be

set after the text replacement is completed.

selectionEnd (4 bytes): A 32-bit UINT. The end character position of a new selection to be set after
the text replacement is completed.

2.2.2.11 RDPTXT_SET_SELECTION_PDU

The RDPTXT_SET_SELECTION_PDU message is sent from client to server to set a range of selected
text in the specified edit control. If the specified range has zero length (selectionBegin and
selectionEnd are the same value) then the caret will be placed at the specified position.

52 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

textInputHostId

operationId

selectionBegin

selectionEnd

bindDirection

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient that holds the
registration for the target edit control.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control unique in the context of the

TextInputClient that it was registered with.

textInputHostId (4 bytes): A 32-bit UINT. The ID of the TextInputHost associated with the edit
control’s window or thread.

operationId (4 bytes): A 32-bit UINT. The serial ID of this operation (see Key Replay and Override
section 1.3.2).

selectionBegin (4 bytes): A 32-bit UINT. The beginning character position of the selection to be set.

selectionEnd (4 bytes): A 32-bit UINT. The end character position of the selection to be set.

bindDirection (4 bytes): A 32-bit UINT. A CaretBindDirection enumeration value. If the new
selection has zero length (therefore specifies a caret position) and if that caret position is at a line
break, this field indicates whether to render the caret before or after the break. Supported values
are defined in the following table.

Value Meaning

Previous
0x00000000

If placed at a line break, the caret should be rendered next to the preceding character
before the break.

Next
0x00000001

If placed at a line break, the caret should be rendered next to the following character
after the break.

Neutral
0x00000002

If the caret is placed at a line break, the control can choose which side of the break to
render it on.

2.2.2.12 RDPTXT_UPDATE_FORMAT_PDU

The RDPTXT_UPDATE_FORMAT_PDU message is sent from client to server to update the format for a
range of text, such as a temporary color or underline.

53 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

textInputHostId

operationId

formatBegin

formatEnd

format

...

...

formatBasic

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient that holds the
registration for the target edit control.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control unique in the context of the

TextInputClient that it was registered with.

textInputHostId (4 bytes): A 32-bit UINT. The ID of the TextInputHost associated with the edit
control’s window or thread.

operationId (4 bytes): A 32-bit UINT. The serial ID of this operation (see Key Replay and Override
section 1.3.2).

formatBegin (4 bytes): A 32-bit UINT. The beginning caret position of the range of text to format.

formatEnd (4 bytes): A 32-bit UINT. The end caret position of the range of text to format.

format (12 bytes): A TextFormat structure (section 2.2.1.14). The format to be applied to the
specified range. Mutually exclusive with the formatBasic field.

formatBasic (4 bytes): A 32-bit bitmask combining the following EditStyle values. Mutually
exclusive with the format field.

Value Meaning

EditStyleUnderline_None
0x00000000

No underline.

EditStyleUnderline_Solid
0x00000001

Include a solid underline.

EditStyleUnderline_SolidBold
0x00000002

Include a solid, bold underline.

54 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

EditStyleUnderline_Dotted
0x00000003

Include a dotted underline.

EditStyleUnderline_Squiggled
0x00000004

Include a wavy underline.

EditStyleUnderline_Mask
0x0000000F

Mask of all supported underline values.

EditStyleUnderlineColor_Default
0x00000000

Use default text color for underline.

EditStyleUnderlineColor_Red
0x00000010

Underline should be red.

EditStyleUnderlineColor_Blue

0x00000020

Underline should be blue.

EditStyleUnderlineColor_Gray
0x00000040

Underline should be gray.

EditStyleUnderlineColor_Black
0x00000050

Underline should be black.

EditStyleUnderlineColor_White
0x00000060

Underline should be white.

EditStyleUnderlineColor_Mask
0x000000F0

Mask of all supported underline colors.

EditStyleBackgroundColor_Default
0x00000000

Use default color for background.

EditStyleBackgroundColor_Red
0x00000100

Background should be red.

EditStyleBackgroundColor_Blue
0x00000200

Background should be blue.

EditStyleBackgroundColor_Green
0x00000300

Background should be green.

EditStyleBackgroundColor_Gray
0x00000400

Background should be gray.

EditStyleBackgroundColor_Highlight
0x00000500

Background should be an application-chosen highlight color.

EditStyleBackgroundColor_Mask
0x00000F00

Mask of all supported background colors.

EditStyleTextColor_Default
0x00000000

Use default color for text.

EditStyleTextColor_Red
0x00001000

Text color should be red.

EditStyleTextColor_Blue
0x00002000

Text color should be blue.

EditStyleTextColor_Green
0x00003000

Text color should be green.

55 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

EditStyleTextColor_Gray
0x00004000

Text color should be gray.

EditStyleTextColor_Highlight
0x00005000

Text color should be an application-chosen highlight color.

EditStyleTextColor_Mask
0x0000F000

Mask of all supported text colors.

2.2.2.13 RDPTXT_UPDATE_COMPOSITION_PDU

The RDPTXT_UPDATE_COMPOSITION_PDU message is sent from client to server and delivers

composition updates to an edit control.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

textInputHostId

operationId

compositionAction clausesCount

... clauses (variable)

...

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient that holds the
registration for the target edit control.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control unique in the context of the
TextInputClient that it was registered with.

textInputHostId (4 bytes): A 32-bit UINT. The ID of the TextInputHost associated with the edit

control’s window or thread.

operationId (4 bytes): A 32-bit UINT. The serial ID of this operation (see Key Replay and Override
section 1.3.2).

compositionAction (1 byte): An 8-bit signed integer value that indicates whether to start,
complete, or update a composition according to the following values.

Value Meaning

EnterComposition
0x01

Starting composition.

LeaveComposition Ending composition.

56 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x02

UpdateComposition
0x03

Updating the current composition.

clausesCount (4 bytes): A 32-bit UINT. The count of CompositionClauses (section 2.2.1.5) in the
clauses field.

clauses (variable): An array of CompositionClause structures (section 2.2.1.5) that contains a list
of composition clauses that are sub-strings with formatting. Each clause is prefixed by a 4-byte
string length in UTF-16 characters and suffixed by an 8-byte EditControlRange structure (section
2.2.1.8).

2.2.2.14 RDPTXT_SET_COMPOSITION_INFO_PDU

The RDPTXT_SET_COMPOSITION_INFO_PDU message is sent from client to server allowing an IME to
specify information about the current composition.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

textInputHostId

operationId

compositionRange

...

determinedTextLength

determinedText (variable)

...

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient that holds the
registration for the target edit control.

editControlId (4 bytes): A 32-bit UINT. The ID of the target edit control unique in the context of the

TextInputClient that it was registered with.

textInputHostId (4 bytes): A 32-bit UINT. The ID of the TextInputHost associated with the edit
control’s window or thread.

operationId (4 bytes): A 32-bit UINT. The serial ID of this operation (see Key Replay and Override
section 1.3.2).

compositionRange (8 bytes): A 64-bit EditControlRange structure (section 2.2.1.8) that indicates

the range of text in composition.

57 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

determinedTextLength (4 bytes): A 32-bit UINT. The length of the determinedText string in UTF-
16 characters.

determinedText (variable): A STRING UCHAR array. Text used to replace the composition text
when composition ends.

2.2.2.15 RDPTXT_RECONVERSION_CANDIDATES_PDU

The RDPTXT_RECONVERSION_CANDIDATES_PDU message is sent from client to server and includes a
list of reconversion candidates to be delivered to the specified edit control.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

candidateListSize

candidateList (variable)

...

editControlId

reconvertRange

...

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient that the edit control
registered with.

candidateListSize (4 bytes): A 32-bit UINT. The total size of candidateList in bytes.

candidateList (variable): A contiguous series of wchar_t strings, each prefixed by a 4-byte length in
characters.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control the reconversion candidates are to

be delivered to.

reconvertRange (8 bytes): A 64-bit EditControlRange structure (section 2.2.1.8) that indicates
the range of text in the document that will be reconverted.

2.2.2.16 RDPTXT_DO_RECONVERSION_PDU

The RDPTXT_DO_RECONVERSION_PDU message is sent from server to client to request the active
IME to perform reconversion in the current context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

58 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

returnCandidates returnRange

textInputClientId (4 bytes): A 32-bit UINT. The ID of the text target associated with the control
where reconversion is being requested.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control where reconversion is being

requested.

returnCandidates (1 byte): A BOOLEAN that indicates a request that the reconversion range and
reconversion candidates be sent back via RDPTXT_RECONVERSION_CANDIDATES_PDU (section
2.2.2.15).

returnRange (1 byte): A BOOLEAN that indicates a request that the reconversion range be sent
back via RDPTXT_RECONVERSION_CANDIDATES_PDU.

2.2.2.17 RDPTXT_UPDATE_INPUT_LOCALE_PDU

The RDPTXT_UPDATE_INPUT_LOCALE_PDU message is sent from client to server to update the input
language/locale. When this PDU is sent during initialization of a thread for text input, only the
textInputClientId and localeId fields will be set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

textInputHostId

editControlId

localeId

operationId

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient associated with the
focused edit control.

textInputHostId (4 bytes): A 32-bit UINT. The ID of the foreground TextInputHost. Value is 0
during initialization.

editControlId (4 bytes): A 32-bit UINT. The ID of the focused edit control. Not used for
initialization.

localeId (4 bytes): A 32-bit UINT. An LCID that indicates the input locale to update to. Not used for
initialization.

operationId (4 bytes): A 32-bit UINT. The ID of the update operation. Not used for initialization.

2.2.2.18 RDPTXT_UPDATE_INPUT_PROFILE_PDU

The RDPTXT_UPDATE_INPUT_PROFILE_PDU message is sent from client to server to update an input
profile. In the case of profile activation (not initializing) the server should do its best to honor the
request, then respond by sending RDPTXT_INPUT_PROFILE_CHANGED_PDU (section 2.2.2.46) back to
the client to indicate the profile that it ultimately activated.

59 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

profile (82 bytes)

...

initializing

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient associated with the
focused edit control.

profile (82 bytes): A CoreInputProfile structure (section 2.2.1.6) that contains the profile. Its

usage is dependent on the value in the initializing field that will be one of the following.

Value Meaning

TRUE Used to initialize the thread associated with the specified TextInputClient.

FALSE Activated for the thread associated with the specified TextInputClient.

initializing (1 byte): A BOOLEAN value set to TRUE when initializing a remote app thread for text
input.

2.2.2.19 RDPTXT_UPDATE_MODE_PDU

The RDPTXT_UPDATE_MODE_PDU message is sent from client to server to adjust the mode of a text
input feature.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

textInputClientId

editControlId

features

enabled customRange

...

... predictionModeTriggerLength

... PredictionModeTriggers (variable)

...

60 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

operationId

textInputHostId (4 bytes): A 32-bit UINT. The ID of the server-side foreground TextInputHost,
ignored for prediction mode update.

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient associated with the

control to update.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control to update, ignored for prediction
mode update.

features (4 bytes): A 32-bit bitmask of the TextInputFeature enumeration that indicates which
text input features to enable or disable. Supported values are defined in the following table.

Value Meaning

PredictionMode
0x00000001

Causes the server to send context information to the client enabling candidate
generation.

VirtualRealityDisplayMode
0x00000002

Tells the server to provide the client with sufficient context to support virtual
reality text input methods.

LayoutChangeTracking
0x00000004

Causes the server to send positional notifications to the client when the
focused edit control moves or is resized (see section 2.2.2.39
RDPTXT_GEOMETRY_CHANGED_PDU).

SelectionTracking
0x00000008

Causes the server to send positional notifications to the client when the
current selection moves (see RDPTXT_GEOMETRY_CHANGED_PDU).

CustomRangeTracking

0x00000010

Causes the server to send positional notifications to the client when the

specified range moves (see RDPTXT_GEOMETRY_CHAGED_PDU).

enabled (1 byte): A BOOLEAN that indicates whether the specified features are turned on TRUE or

off FALSE.

customRange (8 bytes): A 64-bit EditControlRange structure (section 2.2.1.8) that contains the
custom range to track when the specified TextInputFeature has the CustomRangeTracking
value.

predictionModeTriggerLength (4 bytes): A 32-bit UINT. The length of the
predictionModeTriggers string in UTF-16 characters.

predictionModeTriggers (variable): A STRING UCHAR array. A list of Unicode characters that will
turn on prediction mode when they are typed.

operationId (4 bytes): A 32-bit UINT. The ID of the operation. Needs to be reported back to the
client when the update is complete.

2.2.2.20 RDPTXT_SET_CONVERSION_MODE_PDU

The RDPTXT_SET_CONVERSION_MODE_PDU message is sent from client to server to request an
update to the current IME conversion mode.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

61 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

editControlId

Mode

textInputClientId (4 bytes): A 32-bit UINT. The ID of the text component being notified.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control that is to update its conversion
mode.

Mode (4 bytes): A 32-bit ImeConversionMode property ([MSLEARN-ImeConversionMode]) that
contains the new IME conversion mode enumeration values. Supported values are in the following
table.

Value Meaning

Undefined
0xFFFFFFFF

Invalid mode.

AlphanumericHalfWidth
0x00000000

The input method uses half-width alphanumeric characters.

AlphanumericFullWidth
0x00000008

The input method uses full-width alphanumeric characters.

NativeHalfWidth
0x00000001

The input method uses half-width native (e.g. kanji) characters.

NativeFullWidth
0x00000009

The input method uses full-width native (e.g. kanji) characters.

KatakanaHalfWidth
0x00000003

The input method uses half-width katakana characters.

KatakanaFullWidth
0x0000000b

The input method uses full-width katakana characters.

NativeEUDC
0x00000201

The input method uses end-user defined characters.

NativeHalfWidthNativeSymbol
0x00000401

The input method uses half-width native symbols.

NativeFullWidthNativeSymbol
0x00000409

The input method uses full-width native symbols.

NoConversion
0x00001000

The input method will not perform conversion. Translate keys
normally to produce Latin characters.

RequestConversion
0x00002000

IME will select the conversion mode itself.

2.2.2.21 RDPTXT_ACKNOWLEDGE_OPERATION_PDU

The RDPTXT_ACKNOWLEDGE_OPERATION_PDU message is sent from client to server to acknowledge
that a notification previously sent by the server has been received and processed.

https://go.microsoft.com/fwlink/?linkid=2263364

62 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

acknowledgementType

operationId

textInputClientId (4 bytes): A 32-bit UINT. An identifier that uniquely identifies the
TextInputClient on the remote system that sent the notification being acknowledged.

editControlId (4 bytes): A 32-bit UINT. An ID unique to this edit control only in the context of its
TextInputClient.

acknowledgementType (4 bytes): A 32-bit UINT that contains values from the
TextInputAcknowledgementType enumeration that indicates the type of notification being
acknowledged. Supported values are defined in the following table.

Value Meaning

FocusLoss
0x00000000

Acknowledges a focus loss report.

FocusGain
0x00000001

Acknowledges a focus gained report.

TextChange
0x00000002

Acknowledges a text change report.

SelectionChange
0x00000003

Acknowledges a selection change report.

Undo
0x00000004

Acknowledges an undo operation.

StartNavigateFocus
0x00000005

Acknowledges a report that a focus change started.

KeyEventConsumed
0x00000006

Notifies that a key event pending in the application user queue was
handled and consumed by an IME or input method.

KeyEventSkipped
0x00000007

Notifies that a key event pending in the application user queue will
not be processed by an IME or input method.

NavigateFocus
0x00000008

Acknowledges a report that a focus change has completed.

DepartFocus
0x00000009

Acknowledges a report that a control is losing focus.

CompositionTerminated
0x0000000A

Acknowledges a request to terminate the current composition.

ConversionModeChanged Acknowledges a request to update the IME conversion mode.

63 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x0000000B

FocusLeaveCompleted
0x0000000C

Acknowledges a report that a control has lost focus.

operationId (4 bytes): A 32-bit UINT. The ID of the notification as originally provided by the server.

2.2.2.22 RDPTXT_ACKNOWLEDGE_HOST_OPERATION_PDU

The RDPTXT_ACKNOWLEDGE_HOST_OPERATION_PDU message provides an acknowledgement from
client to server of an operation that was requested by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

acknowledgementType

textInputHostId (4 bytes): A 32-bit UINT. ID of the TextInputHost associated with the thread or

window tied to the target edit control.

acknowledgementType (4 bytes): A 32-bit UINT. The kind of request being acknowledged.
Supported values are in the following table.

Value Meaning

FocusLoss
0x00000000

Acknowledges a focus loss report.

FocusGain
0x00000001

Acknowledges a focus gained report.

TextChange
0x00000002

Acknowledges a text change report.

SelectionChange
0x00000003

Acknowledges a selection change report.

Undo
0x00000004

Acknowledges an undo operation.

StartNavigateFocus
0x00000005

Acknowledges a report that a focus change started.

KeyEventConsumed
0x00000006

Notifies that a key event pending in the application user queue was
handled and consumed by an IME or input method.

KeyEventSkipped
0x00000007

Notifies that a key event pending in the application user queue will
not be processed by an IME or input method.

NavigateFocus
0x00000008

Acknowledges a report that a focus change has completed.

DepartFocus
0x00000009

Acknowledges a report that a control is losing focus.

CompositionTerminated Acknowledges a request to terminate the current composition.

64 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x0000000A

ConversionModeChanged
0x0000000B

Acknowledges a request to update the IME conversion mode.

FocusLeaveCompleted
0x0000000C

Acknowledges a report that a control has lost focus.

2.2.2.23 RDPTXT_ACKNOWLEDGE_UNDO_PENDING_KEY_EVENTS_PDU

The RDPTXT_ACKNOWLEDGE_UNDO_PENDING_KEY_EVENTS_PDU message is sent from client to

server to report that a key event undo request was received by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

undoRequestId

undoRequestId (4 bytes): A 32-bit UINT. An identifier for the undo operation that was previously
sent by the server and processed by the client.

2.2.2.24 RDPTXT_REGISTER_REMOTE_TEXT_TARGET_PDU

The RDPTXT_REGISTER_REMOTE_TEXT_TARGET_PDU message is sent from server to client to register
a system text input object TextInputClient created in the remote application process. These objects
represent text input targets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textTargetId

textTargetId (4 bytes): A 32-bit UINT. An identifier to uniquely identify the text target object

TextInputClient on the remote system. The ID can be reused by objects from different
machines.

2.2.2.25 RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU

The RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU message is sent from server to client to register

a system text input object TextInputHost created in the remote application process. These objects
represent keyboard input targets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

objectId

textTargetId

textInputHostSettings

65 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

... viewInstanceId

...

... windowInstanceId

...

...

objectId (4 bytes): A 32-bit UINT. An identifier to uniquely identify the key target TextInputHost.
The ID can be repeated by objects from different machines.

textTargetId (4 bytes): A 32-bit UINT. An identifier to correlate the key target object

TextInputHost on the remote system with the text target TextInputClient on the same thread.

The ID can be repeated by objects from different machines.

textInputHostSettings (7 bytes): A TextInputHostSettings structure (section 2.2.1.15) that
contains the settings for the registering object.

viewInstanceId (8 bytes): A 64-bit UINT. The ID of a view on remote system associated with this
TextInputHost.

windowInstanceId (8 bytes): A 64-bit UINT. The ID of window on remote system associated with
this TextInputHost.

2.2.2.26 RDPTXT_REGISTER_REMOTE_EDIT_CONTROL_PDU

The RDPTXT_REGISTER_REMOTE_EDIT_CONTROL_PDU message is sent from server to client to

register an edit control associated with a TextInputClient object in the remote application.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

appNameLength

appName (variable)

...

editClientOperationId

editControlId

textInputClientId

appNameLength (4 bytes): A 32-bit UINT. The length of the appName string in UTF-16 characters.

appName (variable): A STRING UCHAR array that contains the name of the application the edit
control lives in.

editClientOperationId (4 bytes): A 32-bit UINT. A serial operation ID that MUST be acknowledged
back to the remote TextInputClient.

66 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

editControlId (4 bytes): A 32-bit UINT. An ID unique to this edit control only in the context of its
TextInputClient.

textInputClientId (4 bytes): A 32-bit UINT. An identifier to uniquely identify the TextInputClient
this edit control was registered with on the remote system.

2.2.2.27 RDPTXT_REGISTER_REMOTE_COREINPUTVIEW_PDU

The RDPTXT_REGISTER_REMOTE_COREINPUTVIEW_PDU message is sent from server to client to
register a CoreInputView object ([MSLEARN-CoreInputView]) created by a remote application that

wishes to programmatically show or hide the Soft Input Panel (SIP) ([MSLEARN-InputPane]) or
receive SIP occlusion notifications.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

objectId

objectId (4 bytes): A 32-bit UINT. An ID that uniquely identifies the registering CoreInputView
object on the remote system.

2.2.2.28 RDPTXT_UNREGISTER_REMOTE_TEXT_TARGET_PDU

The RDPTXT_UNREGISTER_REMOTE_TEXT_TARGET_PDU message is sent from server to client to
unregister a remote object that was registered via
RDPTXT_REGISTER_REMOTE_TEXT_TARGET_PDU (section 2.2.2.24).

0 1 2 3 4 5 6 7 8 9 1

0

1 2 3 4 5 6 7 8 9 2

0

1 2 3 4 5 6 7 8 9 3

0

1

objectId

objectId (4 bytes): A 32-bit UINT. The ID of the remote object being unregistered.

2.2.2.29 RDPTXT_UNREGISTER_REMOTE_KEY_TARGET_PDU

The RDPTXT_UNREGISTER_REMOTE_KEY_TARGET_PDU message is sent from server to client to
unregister a remote object that was registered via RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU

(section 2.2.2.25).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

objectId

objectId (4 bytes): A 32-bit UINT. The ID of the remote object being unregistered.

2.2.2.30 RDPTXT_UNREGISTER_REMOTE_EDIT_CONTROL_PDU

The RDPTXT_UNREGISTER_REMOTE_EDIT_CONTROL_PDU message is sent from server to client to
unregister an edit control that was previously registered via
RDPTXT_REGISTER_REMOTE_EDIT_CONTROL_PDU (section 2.2.2.26).

https://go.microsoft.com/fwlink/?linkid=2267061
https://go.microsoft.com/fwlink/?linkid=2267449

67 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

textInputClientId (4 bytes): A 32-bit UINT. The ID of the remote object being unregistered. If
objectType is EditControl, this is the ID of the TextInputClient the edit control was registered
with.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control being unregistered.

2.2.2.31 RDPTXT_UNREGISTER_REMOTE_COREINPUTVIEW_PDU

The RDPTXT_UNREGISTER_REMOTE_EDIT_CONTROL_PDU message is sent from server to client to

unregister a remote object that was registered via
RDPTXT_REGISTER_REMOTE_COREINPUTVIEW_PDU (section 2.2.2.27).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

objectId

objectId (4 bytes): A 32-bit UINT. The ID of the remote object to be unregistered.

2.2.2.32 RDPTXT_EDIT_CONTROL_FOCUS_PDU

The RDPTXT_EDIT_CONTROL_FOCUS_PDU message is sent from the server to the client to notify the
client that an edit control in the remote application has gained or lost focus.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

controlBounds

...

...

...

editInfo (36 bytes)

...

gainingFocus losingFocusControlId

... losingFocusTextInputHostId

68 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

... override

textInputClientId (4 bytes): A 32-bit UINT. An identifier that uniquely identifies the
TextInputClient on the remote system associated with the control that has gained or lost focus.

controlBounds (16 bytes): A TextInputRect structure (section 2.2.1.13) that indicates the position

of the edit control that has gained focus. It is only provided on focus gained.

editInfo (36 bytes): An EditControlInfo structure (section 2.2.1.9) that contains information about
the edit control that gained or lost focus.

gainingFocus (1 byte): A BOOLEAN value. TRUE if the control has gained focus, FALSE if it has lost
focus.

losingFocusControlId (4 bytes): A 32-bit UINT. Only provided on focus gained, this is the ID of the

edit control that lost focus to the newly gained focus control. This is provided to assist with the
focus transition and to ensure that the focus loss is properly acknowledged if focus gained is

reported before focus is lost.

losingFocusTextInputHostId (4 bytes): A 32-bit UINT. Only provided on focus gained and only if
focus is changed to a new TextInputHost, typically in a different window. The ID is provided to
help with the focus transition and to ensure that the focus lost is properly acknowledged if the
TextInputHost focus lost is reported late, or not at all.

override (1 byte): A BOOLEAN value. TRUE indicates that the focus change was triggered in
response to a key event sent to the application. In this case, the oldest unacknowledged key is not
to be replayed (see Key Replay and Override section 1.3.2).

2.2.2.33 RDPTXT_HOST_FOCUS_PDU

The RDPTXT_HOST_FOCUS_PDU message is sent from the server to the client to notify the client that
a TextInputHost in the remote server has gained or lost focus.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

ordinal

gainingFocus override

textInputHostId (4 bytes): A 32-bit UINT. A value to uniquely identify the TextInputHost, scoped
to a single remote server. Remote servers can be distinguished by local DVC thread IDs.

ordinal (4 bytes): A 32-bit UINT. This is a sequential value provided because the focus gained and

lost notifications might come out of sequence. If this value is less than the last ordinal seen for
this TextInputHost, the notification is to be ignored. A value of 0 means the sequence can be
ignored and the notification should be processed.

gainingFocus (1 byte): A BOOLEAN value. If TRUE, the specified TextInputHost has gained focus,
otherwise, FALSE indicates it has lost focus.

override (1 byte): A BOOLEAN value. TRUE indicates that this focus change resulted from a key
press, that means the first pending key press, if there is one, it is not to be replayed (see Key

Replay and Override section 1.3.2).

69 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2.34 RDPTXT_HOST_FOREGROUND_PDU

The RDPTXT_HOST_FOREGROUND_PDU message is sent from the server to the client to notify the
client that a TextInputHost on the remote server has come to the foreground.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

objectId

windowInstanceId

...

objectId (4 bytes): A 32-bit UINT. The ID of the TextInputHost (key target) on the remote
system.

windowInstanceId (8 bytes): A 64-bit UINT. The ID of the window associated with the
TextInputHost that has come to the foreground.

2.2.2.35 RDPTXT_SELECTION_CHANGED_PDU

The RDPTXT_SELECTION_CHANGED_PDU message is sent from the server to the client to notify the
client that the range of selected text in the specified edit control has changed. When selectionBegin
and selectionEnd are the same, this indicates the caret position.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

selectionBegin

selectionEnd

override originKey (44 bytes)

...

textInputClientId (4 bytes): A 32-bit UINT. A value that identifies the source TextInputClient on
the remote system.

editControlId (4 bytes): A 32-bit UINT. A value that identifies the source edit control registered on
the specified TextInputClient.

selectionBegin (4 bytes): A 32-bit UINT. A signed integer. Start of the new selection.

selectionEnd (4 bytes): A 32-bit UINT. A signed integer. End of the new selection.

override (1 byte): A BOOLEAN value. When TRUE, indicates that the app has taken some action in

response to the key event that precipitated this change, other than a basic character insertion or
IME-produced update. When this happens, the IME’s state goes out-of-sync with the edit control.
To restore synchronization, the text input system is to undo pending IME actions and then replay

70 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

all pending key events except for the oldest. The oldest key event is not to be replayed because it
is the key event that precipitated this update and has already been handled (see Key Replay and

Override section 1.3.2).

originKey (44 bytes): A KeyEventHostInfo structure (section 2.2.1.1) that contains information on

the key press that precipitated the selection change being reported, if any.

2.2.2.36 RDPTXT_TEXT_CHANGED_PDU

The RDPTXT_TEXT_CHANGED_PDU message is sent from server to client to notify the client about a

text change in the specified edit control.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

replacedTextRange

...

newSelectionRange

...

operationId

textLength

originKey (44 bytes)

...

override noConflict offset1

... updatedTextRegion1Length

... updatedTextRegion1 (variable)

...

offset2

updatedTextRegion2Length

updatedTextRegion2 (variable)

...

71 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

keyStatesSize

keyStates (variable)

...

textInputClientId (4 bytes): A 32-bit UINT. A value that identifies the TextInputClient on the
remote system.

editControlId (4 bytes): A 32-bit UINT. A value that identifies the source edit control registered on

the specified TextInputClient.

replacedTextRange (8 bytes): A 64-bit EditControlRange structure (section 2.2.1.8) that contains
the range of text that was replaced.

newSelectionRange (8 bytes): A 64-bit EditControlRange structure (section 2.2.1.8) that

contains the range of the new selection.

operationId (4 bytes): A 32-bit UINT. A value to identify this notification to the TextInputClient

that is to be sent back to server in an acknowledgement.

textLength (4 bytes): A 32-bit UINT that contains the length of the new text that was added.

originKey (44 bytes): A KeyEventHostInfo structure (section 2.2.1.1) that contains information on
the key press that caused this text change (if any).

override (1 byte): A BOOLEAN value. When TRUE, indicates that the app has taken some action in
response to the key event that precipitated this change, other than a basic character insertion or
IME-produced update. When this happens, the IME’s state goes out of sync with the edit control.

To restore synchronization, the text input system is to undo pending IME actions and then replay
all pending key events except for the oldest. The oldest key event is not to be replayed because it
is the key event that precipitated this update and has already been handled (see Key Replay and

Override section 1.3.2).

noConflict (1 byte): A BOOLEAN value. If this parameter is TRUE in the case of an override by the
app on remote server (override param is TRUE) the client is not to take the normal override
actions. Pending changes are not to be undone and pending keys are not to be replayed.

offset1 (4 bytes): A 32-bit UINT. A signed integer. Indicates the position where
updatedTextRegion1 should be inserted.

updatedTextRegion1Length (4 bytes): A 32-bit UINT. The length of the updatedTextRegion1
string as a count of UTF-16 characters.

updatedTextRegion1 (variable): A STRING UCHAR array. Contains updated text capped at the
maximum text paging size (see Text Paging section 1.3.3).

offset2 (4 bytes): A 32-bit UINT. A signed integer. Indicates the position where

updatedTextRegion2 should be inserted.

updatedTextRegion2Length (4 bytes): A 32-bit UINT. The length of the updatedTextRegion2
string as a count of UTF-16 characters.

updatedTextRegion2 (variable): A STRING UCHAR array. Contains additional updated text for large
changes (see Text Paging section 1.3.3).

keyStatesSize (4 bytes): A 32-bit UINT. The size of the keyStates array (typically 256).

72 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

keyStates (variable): A byte array. Contains the key state for each reported virtual key. The state
for each key is stored in one byte, represented as a combination of the KEY_STATE_FLAGS bit

flags defined in the following table.

Value Meaning

KeyStateToggledFlag
0x01

The key is toggled.

KeyStateGetAsyncDownFlag
0x02

The key went down since the last GetAsyncKey call.

KeyStatePrevDownFlag
0x40

The key was previously down.

KeyStateDownFlag
0x80

The key is currently down.

2.2.2.37 RDPTXT_CONTROL_CONFIGURATION_UPDATED_PDU

The RDPTXT_CONTROL_CONFIGURATION_UPDATED_PDU message is sent from server to client to
notify the client about a change in settings or conversion mode in a remote edit control.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editInfo (36 bytes)

...

textInputClientId (4 bytes): A 32-bit UINT. A value that identifies the TextInputClient on the
remote system.

editInfo (36 bytes): An EditControlInfo structure (section 2.2.1.9) that contains information about
the edit control whose settings are being updated.

2.2.2.38 RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU

The RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU message is sent from server to client to
notify the client about a settings or conversion mode change in a remote edit control.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

conversionMode

profileID

73 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

...

...

textInputClientId (4 bytes): A 32-bit UINT. A value that identifies the TextInputClient on the
remote system.

editControlId (4 bytes): A 32-bit UINT. A value that identifies the source edit control registered on

the specified TextInputClient.

conversionMode (4 bytes): A 32-bit UINT. An ImeConversionMode ([MSLEARN-
ImeConversionMode]) that contains the new conversion mode. Supported values are in the
following table.

Value Meaning

Undefined
0xFFFFFFFF

Invalid mode.

AlphanumericHalfWidth
0x00000000

The input method uses half-width alphanumeric characters.

AlphanumericFullWidth
0x00000008

The input method uses full-width alphanumeric characters.

NativeHalfWidth
0x00000001

The input method uses half-width native (e.g. kanji) characters.

NativeFullWidth
0x00000009

The input method uses full-width native (e.g. kanji) characters.

KatakanaHalfWidth
0x00000003

The input method uses half-width katakana characters.

KatakanaFullWidth
0x0000000b

The input method uses full-width katakana characters.

NativeEUDC
0x00000201

The input method uses end-user defined characters.

NativeHalfWidthNativeSymbol
0x00000401

The input method uses half-width native symbols.

NativeFullWidthNativeSymbol
0x00000409

The input method uses full-width native symbols.

NoConversion
0x00001000

The input method will not perform conversion. Translate keys normally
to produce Latin characters.

RequestConversion
0x00002000

IME will select the conversion mode itself.

profileId (16 bytes): A GUID that contains the profile ID of the targeted input method. Conversion
mode is only updated if the specified input method is active.

https://go.microsoft.com/fwlink/?linkid=2263364
https://go.microsoft.com/fwlink/?linkid=2263364

74 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2.39 RDPTXT_GEOMETRY_CHANGED_PDU

The RDPTXT_GEOMETRY_CHANGED_PDU message is sent from the server to the client to notify the
client about changes to control bounds or text selection rectangles. Often used by the IME to position

candidate windows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

controlBounds

...

...

...

range

...

rangeBounds

...

...

...

textInputClientId (4 bytes): A 32-bit UINT. The value that identifies the TextInputClient
associated with the edit control that the change is being reported for.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control that the change is being reported
for.

controlBounds (16 bytes): A TextInputRect structure (section 2.2.1.13) that contains the updated

bounds of the edit control.

range (8 bytes): A 64-bit EditControlRange structure (section 2.2.1.8) that contains the updated
selection range.

rangeBounds (16 bytes): A TextInputRect structure (section 2.2.1.13) that defines the bounding
box for the updated selection.

2.2.2.40 RDPTXT_SOFTWARE_KEYBOARD_INVOCATION_SIGNALS_PDU

The RDPTXT_SOFTWARE_KEYBOARD_INVOCATION_SIGNALS_PDU message is sent from server to
client and provides signals related to how an edit control gained focus. These signals are used to
determine whether to raise the Soft Input Panel (SIP) ([MSLEARN-InputPane]) in response to a focus
change and what input method to activate.<4>

https://go.microsoft.com/fwlink/?linkid=2267449

75 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

controlBounds

...

...

...

isFocusInEdit lastTouchInThisControl manualSipInvocation pen

touch

textInputClientId (4 bytes): A 32-bit UINT. A value that identifies the TextInputClient associated
with the edit control that gained focus.

controlBounds (16 bytes): A TextInputRect structure (section 2.2.1.13) that indicates the bounds

of the edit control that gained focus.

isFocusInEdit (1 byte): A BOOLEAN value. TRUE indicates the edit control has keyboard focus.

lastTouchInThisControl (1 byte): A BOOLEAN value. TRUE indicates that the last touch or pen tap
was within the bounds of the edit control.

manualSipInvocation (1 byte): A BOOLEAN value. The manual SIP ([MSLEARN-InputPane])
invocation policy. If TRUE, SIP should not be shown on programmatic focus.

pen (1 byte): A BOOLEAN value. TRUE indicates that the last pointer down in control bounds was by
pen.

touch (1 byte): A BOOLEAN value. TRUE indicates that the last pointer down in control bounds was
by touch.

2.2.2.41 RDPTXT_ACTIVE_VIEW_CHANGED_PDU

The RDPTXT_ACTIVE_VIEW_CHANGED_PDU message is sent from server to client to report when the
active view changes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

processId

threadId

windowId

...

76 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

processId (4 bytes): A 32-bit UINT. The ID of the process on the remote machine that has become
active.

threadId (4 bytes): A 32-bit UINT. The ID of the thread on the remote machine that has become
active.

windowId (8 bytes): A 32-bit UINT. The ID of the window on the remote machine that has been
activated.

2.2.2.42 RDPTXT_FOREGROUND_HOST_INFO_UPDATED_PDU

The RDPTXT_FOREGROUND_HOST_INFO_UPDATED_PDU message is sent from server to client to
provide updated information about the current foreground TextInputHost.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

foregroundHostInfoLength

foregroundHostInfo (variable)

...

foregroundHostInfoLength (4 bytes): A 32-bit UINT. The length of the foregroundHostInfo
string as a count of UTF-16 characters.

foregroundHostInfo (variable): A JSON-formatted string containing information about the
foreground TextInputHost.

2.2.2.43 RDPTXT_NOTIFY_SERVER_VERSION_PDU

The RDPTXT_NOTIFY_SERVER_VERSION_PDU message is sent from server to client to notify the client
of the server’s version of text input virtualization.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

containerId

...

...

...

versionMajor

versionMinor

containerId (16 bytes): A GUID. Reserved, MUST be all zeros. Indicates the ID of the connection.
The server MAY pass an empty ID (all zeros). Clients MAY assign IDs for their connections.

versionMajor (4 bytes): A 32 bit UINT. The major version number. See version negotiation (section
1.7).

77 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

versionMinor (4 bytes): A 32-bit UINT. The minor version number. See version negotiation.

2.2.2.44 RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU

The RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU message is sent from the server to the client
to indicate that an operation requested by the client has been completed. The client is to keep actions
it sends to the server in a pending list until this acknowledgement arrives. See Key Replay and
Override section 1.3.2 for details.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

operationId

errorCode

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient on the remote machine
that was the target of the operation being acknowledged.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control that the operation was applied to.

operationId (4 bytes): A 32-bit UINT. The ID of the operation. This was assigned by the client when
it sent the operation to the server.

errorCode (4 bytes): A 32-bit UINT. A signed integer. If the requested operation failed, then this
field contains the failed HRESULT value. See [MS-ERREF] section 2.1.

2.2.2.45 RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU

The RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU message is sent from the server to the client to
acknowledge a key event.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

keyEventId

acknowledgementType

textInputHostId (4 bytes): A 32-bit UINT. The ID of the TextInputHost that received the key
event being acknowledged.

keyEventId (4 bytes): A 32-bit UINT. The ID of the event being acknowledged.

acknowledgementType (2 bytes): A 16-bit KeyEventAckType that indicates whether the app
completed processing of the key event before this acknowledgement was sent (see
KeyEventAckType). Supported values are in the following table.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

78 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

Completed
0x0001

Key event was processed synchronously by the target app.

Raised
0x0002

Key event was delivered to the target app which is processing it asynchronously.

2.2.2.46 RDPTXT_INPUT_PROFILE_CHANGED_PDU

The RDPTXT_INPUT_PROFILE_CHANGED_PDU message is sent from server to client to confirm an
input profile activation initiated through RDPTXT_UPDATE_INPUT_PROFILE_PDU (section 2.2.2.18).
The active input profile is also sent to the server via this PDU following a reconnect.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

profile (82 bytes)

...

textInputClientId (4 bytes): A 32-bit UINT. ID of the TextInputClient (thread) whose profile has
been updated.

profile (82 bytes): A CoreInputProfile structure (section 2.2.1.6) that contains the activated input
profile.

2.2.2.47 RDPTXT_VIEW_OCCLUSIONS_HANDLED_PDU

The RDPTXT_VIEW_OCCLUSIONS_HANDLED_PDU message is sent from server to client to inform the
client text input system whether the remote application or application framework handled a notified
occlusion change.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventId

handled

eventId (4 bytes): A 32 bit UINT. The ID of the occlusion notification.

handled (1 byte): A BOOLEAN value that indicates whether the remote application or application
framework handled the specified notification.

2.2.2.48 RDPTXT_EDIT_CONTROL_TEXT_SEGMENT_PDU

The RDPTXT_EDIT_CONTROL_TEXT_SEGMENT_PDU message is sent from server to client to populate
or remove a range of text (see Text Paging section 1.3.3).

79 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

populate cpStart

... cpEnd

... textLength

... text (variable)

...

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient text target associated
with the edit control whose text segment is being reported.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control whose text segment is being

reported.

populate (1 byte): A BOOLEAN value. If TRUE, populate with the specified text at the specified
position, otherwise, remove the specified range.

cpStart (4 bytes): A 32-bit UINT. A signed integer. Position where new text should be populated or
start of range where text should be unpopulated.

cpEnd (4 bytes): A 32-bit UINT. A signed integer. End of range where text should be unpopulated.

textLength (4 bytes): A 32-bit UINT. The length of the text string field as a count of UTF-16
characters.

text (variable): A STRING UCHAR array. The text to populate starting at cpStart.

2.2.2.49 RDPTXT_COMPOSITION_TERMINATED_PDU

The RDPTXT_COMPOSITION_TERMINATED_PDU message is sent from server to client to inform the
local text input system that a composition has been terminated on the server side.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

editControlId

override

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient text target associated
with the edit control whose composition has been terminated.

editControlId (4 bytes): A 32-bit UINT. The ID of the edit control whose composition has been
terminated.

80 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

override (1 byte): A BOOLEAN value that indicates that the composition was terminated in response
to a key event, meaning the first (oldest) pending key should not be replayed (see Key Replay and

Override section 1.3.2).

2.2.2.50 RDPTXT_SOFTWARE_KEYBOARD_POLICY_PDU

The RDPTXT_SOFTWARE_KEYBOARD_POLICY_PDU message is sent from server to client to update a
dismissal policy as set by a remote app using the CoreInputView API [MSLEARN-CoreInputView] .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

keepVisibleOnFocusLoss

textInputHostId (4 bytes): A 32-bit UINT. The ID of the TextInputHost (key target) for the
thread where the update was initiated.

keepVisibleOnFocusLoss (1 byte): A BOOLEAN value that indicates whether the software keyboard
should be kept visible on edit control focus loss.

2.2.2.51 RDPTXT_SET_ENABLED_INPUT_PROFILES_PDU

The RDPTXT_SET_ENABLED_INPUT_PROFILES_PDU message is sent from client to server to inform
the remote text input system of which input profiles are enabled on the client machine.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

profilesCount

profiles (variable multiple of 82)

...

profilesCount (4 bytes): A 32-bit UINT. The count of CoreInputProfile structures (section 2.2.1.6)
in profiles.

profiles (variable): An array of CoreInputProfile structures that contains the list of input profiles
that are enabled. Each CoreInputProfile is 82 bytes.

2.2.2.52 RDPTXT_OCCLUDING_VIEWS_PDU

The RDPTXT_OCCLUDING_VIEWS_PDU message is sent from client to server to inform the remote app

of the position of the Soft Input Panel (SIP), onscreen keyboard, or other input UI. This allows the
remote to reflow such that the input UI doesn’t occlude the text insertion point. The notification is only
sent if the app registers for it via the CoreInputView API [MSLEARN-CoreInputView]

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

coreInputViewId

https://go.microsoft.com/fwlink/?linkid=2267061
https://go.microsoft.com/fwlink/?linkid=2267061

81 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

occludingViewsSize

occludingViews (variable)

...

precalculatedOcclusion

coreInputViewId (4 bytes): A 32-bit UINT. The ID of the target CoreInputView instance that
registered for occlusion notifications.

occludingViewsSize (4 bytes): A 32-bit UINT. The total size of occludingViews in bytes.

occludingViews (variable): An array of 24 byte CoreInputViewOcclusion structures (section
2.2.1.7) that contains one or more occluded rectangular regions.

precalculatedOcclusion (1 byte): A BOOLEAN value set by API to request use of precalculated
occlusion regions.

2.2.2.53 RDPTXT_NOTIFY_CLIENT_VERSION_PDU

The RDPTXT_NOTIFY_CLIENT_VERSION_PDU message is sent from client to server in response to
RDPTXT_NOTIFY_SERVER_VERSION_PDU (section 2.2.2.43) to notify the server of the client’s version
of text input virtualization.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

versionMajor

versionMinor

versionMajor (4 bytes): A 32-bit UINT. The major version number. See version negotiation (section

1.7).

versionMinor (4 bytes): A 32-bit UINT. The minor version number. See version negotiation.

2.2.2.54 RDPTXT_REPORT_CLIENT_OPTIONS_PDU

The RDPTXT_REPORT_CLIENT_OPTIONS_PDU message is sent from client to server when the
RemoteDesktop client app requests specific configuration options through its
RemoteTextConnection object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

options

options (4 bytes): A 32-bit UINT. A bitmask of the options requested by the client.

Value Meaning

None
0x00000000

No options requested.

82 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

EnablePredictedKeyReporting
0x00000001

The client app has elected to enhance performance by reporting the keys it
sends to the remote server to the local text input system by calling
ReportPredictedKeyEvent for each key sent. Doing so allows IMEs to
immediately process keys without waiting for them to be reported back
from the server via RDPTXT_SEND_KEY_TO_HOST_PDU (section 2.2.2.59).

2.2.2.55 RDPTXT_SOFTWARE_KEYBOARD_VISIBILITY_PDU

The RDPTXT_SOFTWARE_KEYBOARD_VISIBILITY_PDU message is sent from server to client to
request that the client show or hide its software input panel (SIP). The request is generally made
through the CoreInputView [MSLEARN-CoreInputView] or InputPane [MSLEARN-InputPane] APIs
by the remote app. The request is not guaranteed to be fulfilled.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputHostId

viewType

visible

textInputHostId (4 bytes): A 32-bit UINT. The ID of the TextInputHost (key target) for the

thread where the request originated.

viewType (4 bytes): A 32-bit UINT. A CoreInputViewKind enumeration [MSLearn-
CoreInputViewKind] value used to specify the desired SIP layout type to show. Supports the

following values.

Value Meaning

Default
0x00000000

Default input pane view.

Keyboard
0x00000001

Touch keyboard layout for the current input language.

Handwriting
0x00000002

Handwriting input pane.

Emoji
0x00000003

Emoji picker.

Symbols
0x00000004

Symbol page of touch keyboard.

Clipboard
0x00000005

Clipboard history pane.

visible (1 byte): A BOOLEAN value that indicates TRUE to show or FALSE to hide the SIP.

2.2.2.56 RDPTXT_HOTKEY_REGISTRATION_PDU

The RDPTXT_HOTKEY_REGISTRATION_PDU message is sent from server to client to register a hotkey.

https://go.microsoft.com/fwlink/?linkid=2267061
https://go.microsoft.com/fwlink/?linkid=2267449
https://go.microsoft.com/fwlink/?linkid=2263361
https://go.microsoft.com/fwlink/?linkid=2263361

83 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

registration

...

...

enabled

registration (12 bytes): A HotKeyRegistrationData structure (section 2.2.1.4) that contains data
to define the hotkey.

enabled (1 byte): A BOOLEAN value that specifies whether the hotkey should be enabled.

2.2.2.57 RDPTXT_REFRESH_CLIENT_PDU

The RDPTXT_REFRESH_CLIENT_PDU message is sent from server to client when the various
registrations sent by the remote client need to be purged and refreshed. It is also sent on first connect

and includes the server’s text virtualization version. There are no parameters.

2.2.2.58 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU

The RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU message is sent from server to client when an
inconsistency has been detected between key events and IME actions on the server, and requests

that the client undo and replay its pending keys.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

undoRequestId

undoRequestId (4 bytes): A 32-bit UINT. An identifier for this undo request, which the client should
later acknowledge.

2.2.2.59 RDPTXT_SEND_KEY_TO_HOST_PDU

The RDPTXT_SEND_KEY_TO_HOST_PDU message is sent from server to client to route a key event to
the client machine InputService for IME processing. This PDU is only used with non-performance-
enhanced text input virtualization. It is likely to be deprecated in the future.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

opId

keyPressInfoSize

keyPressInfo (variable)

...

84 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

opId (4 bytes): A 32-bit UINT. An identifier for the key event, which ensures proper ordering of key
events and IME actions (in the absence of performance enhancement).

keyPressInfoSize (4 bytes): A 32-bit UINT. Size of the keyPressInfo blob.

keyPressInfo (variable): A byte array that contains a serialized binary blob that contains a variable-

sized KeyPressInfo. The InputService will convert this blob into a KeyPressInfo structure
(section 2.2.1.3).

2.2.2.60 RDPTXT_REMOTE_TEXT_TARGET_THREAD_PROPERTIES_PDU

The RDPTXT_REMOTE_TEXT_TARGET_THREAD_PROPERTIES_PDU message is sent from server to
client when the first TextInputHost is created for a given thread TextInputClient to tell the client's
InputService whether edit controls registered on that thread should be treated as part of a Win32 app
as opposed to a UWP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

threadProperties

textInputClientId (4 bytes): A 32-bit UINT. The ID of the TextInputClient text target associated
with the thread whose properties are being reported.

threadProperties (4 bytes): A 32-bit UINT. A bitmask that represents the thread’s properties.
Supported values are in the following table.

Value Meaning

None

0x00000000

No properties reported.

IsWin32App
0x00000001

Indicates that the thread associated with this TextInputClient should be treated
as a Win32 app for purposes of keyboard input routing.

2.2.2.61 RDPTXT_REREGISTRATION_REQUEST_PDU

The RDPTXT_REREGISTRATION_REQUEST_PDU message is sent from client to server when the client-
side InputService restarts following a crash. It signals the server-side InputService to reregister its
TextInputHosts and TextInputClients. There are no parameters.

2.2.2.62 RDPTXT_REMOTE_INTEGRATION_STATUS_PDU

The RDPTXT_REMOTE_INTEGRATION_STATUS_PDU message is sent from client to server as a
notification of how remote integration of text input experiences, as facilitated by this DVC and the
RDPTXT PDUs, should be enabled.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

isEnabled

85 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

isEnabled (1 byte): A BOOLEAN value that indicates the desired state. If FALSE, remote text input
integration will be turned off, but the DVC will be kept alive. While the server is in the Disabled

state, it will not send any PDUs across this DVC, and any other PDUs it receives from the client
(besides this one) will be ignored. If TRUE, allows the transmission of PDUs across this DVC, and

adjusts behavior of client and server to support remote integration on the client.

2.2.2.63 RDPTXT_ERROR_REPORT_PDU

The RDPTXT_ERROR_REPORT_PDU message is sent from client to server to report that an invalid

operation was attempted, indicates that the local edit buffer is likely out of sync with the control in the
remote server. When the TextInputClient in the remote app receives this message, it will push its
state back to the client machine to resynchronize.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

textInputClientId

textInputHostId

editControlId

textInputClientId (4 bytes): A 32-bit UINT. An identifier that uniquely identifies the
TextInputClient on the remote system that sent the notification being acknowledged.

textInputHostId (4 bytes): A 32-bit UINT. An identifier for the window or similar key target

associated with the affected control.

editControlId (4 bytes): A 32-bit UINT. An ID unique to this edit control in the context of its
TextInputClient.

86 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

The Text Input Virtual Channel Extension PDUs represent commands and notifications that do not
result in a specific output or response except as described in this section. In most cases where a
response is expected, it is a simple acknowledgement, but there are a few exceptions. All required

responses, simple acknowledgement or otherwise, are described in the following sections.

3.1.5.1 Reconversion PDUs

When a client machine receives an RDPTXT_DO_RECONVERSION_PDU message (section 2.2.2.16), in
response it is to produce reconversion candidates. If the returnCandidates or returnRange fields

are set in the received PDU, then the client sends an RDPTXT_RECONVERSION_CANDIDATES_PDU
message (section 2.2.2.15) to the remote edit control that requested it as follows:

 If the returnCandidates field is set, RDPTXT_RECONVERSION_CANDIDATES_PDU includes a list
of reconversion candidates in its candidateList field, and the range of text to be reconverted is to
be provided in its reconvertRange field.

 If the returnRange field is set and the returnCandidates field is not set, then only the range of

text to be reconverted needs to be provided in the reconvertRange field of
RDPTXT_RECONVERSION_CANDIDATES_PDU.

 The textInputClientId and editControlId fields in the
RDPTXT_RECONVERSION_CANDIDATES_PDU message are to be taken from the corresponding

fields of the RDPTXT_DO_RECONVERSION_PDU message.

3.1.5.2 PDUs that require acknowledgement

The PDUs SHOULD provide acknowledgement messages as indicated in the following sections.

3.1.5.2.1 RDPTXT_EDIT_CONTROL_FOCUS_PDU

When a client receives a RDPTXT_EDIT_CONTROL_FOCUS_PDU message (section 2.2.2.32) with
gainingFocus set to FALSE (0) to acknowledge receipt of the message send an

87 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

RDPTXT_ACKNOWLEDGE_OPERATION_PDU (section 2.2.2.21) with acknowledgementType set to
FocusLoss (0x00000000). Additionally, when a focus loss process has completed, send another

RDPTXT_ACKNOWLEDGE_OPERATION_PDU with acknowledgementType set to
FocusLeaveCompleted (0x0000000C).

3.1.5.2.2 RDPTXT_TEXT_CHANGED_PDU

When a client receives a RDPTXT_TEXT_CHANGED_PDU message (section 2.2.2.36), it SHOULD send
an acknowledgement RDPTXT_ACKNOWLEDGE_OPERATION_PDU (section 2.2.2.21) with
acknowledgementType set to TextChange (0x00000002).

3.1.5.2.3 RDPTXT_SELECTION_CHANGED_PDU

When a client receives a RDPTXT_SELECTION_CHANGED_PDU message (section 2.2.2.35), it SHOULD
send an acknowledgement RDPTXT_ACKNOWLEDGE_OPERATION_PDU (section 2.2.2.21) with
acknowledgementType set to SelectionChange (0x00000003).

3.1.5.2.4 RDPTXT_COMPOSITION_TERMINATED_PDU

When a client receives a RDPTXT_COMPOSITION_TERMINATED_PDU message (section 2.2.2.49), it
SHOULD send an acknowledgement RDPTXT_ACKNOWLEDGE_OPERATION_PDU (section 2.2.2.21)

with acknowledgementType set to CompositionTerminated (0x0000000A).

3.1.5.2.5 RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU

When a client receives a RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU message (section
2.2.2.38), it SHOULD send an acknowledgement RDPTXT_ACKNOWLEDGE_OPERATION_PDU (section
2.2.2.21) with acknowledgementType set to ConversionModeChanged (0x0000000B).

3.1.5.2.6 RDPTXT_HOST_FOCUS_PDU

When a client receives a RDPTXT_HOST_FOCUS_PDU message (section 2.2.2.33) with gainingFocus

set to FALSE (0) it SHOULD send an acknowledgement
RDPTXT_ACKNOWLEDGE_HOST_OPERATION_PDU (section 2.2.2.22) with acknowledgementType
set to FocusLoss (0x00000000).

3.1.5.2.7 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU

When a client receives a RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU message (section 2.2.2.58), it
SHOULD send an acknowledgement RDPTXT_ACKNOWLEDGE_UNDO_PENDING_KEY_EVENTS_PDU
(section 2.2.2.23).

3.1.5.2.8 RDPTXT_UPDATE_TEXT_PDU

When a server receives a RDPTXT_UPDATE_TEXT_PDU message (section 2.2.2.9), it SHOULD respond

with RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU (section 2.2.2.44), that includes the
received PDU’s operationId.

3.1.5.2.9 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU

When a server receives a RDPTXT_UPDATE_TEXT_PDU message (section 2.2.2.9), it SHOULD respond
with RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU (section 2.2.2.44), that includes the
received PDU’s operationId.

3.1.5.2.10 RDPTXT_SET_SELECTION_PDU

88 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When a server receives a RDPTXT_SET_SELECTION_PDU message (section 2.2.2.11), it SHOULD
respond with RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU (section 2.2.2.44), that includes

the received PDU’s operationId.

3.1.5.2.11 RDPTXT_UPDATE_FORMAT_PDU

When a server receives a RDPTXT_UPDATE_FORMAT_PDU message (section 2.2.2.12) and none of the
set fields of the TextFormat structure in the PDU’s format field are TRUE, it SHOULD respond with
RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU that includes the received PDU’s operationId.

3.1.5.2.12 RDPTXT_UPDATE_COMPOSITION_PDU

When a server receives a RDPTXT_UPDATE_FORMAT_PDU message (section 2.2.2.12) and the

compositionAction field is set to EnterComposition (0x01) or LeaveComposition (0x02), it should
respond with RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU (section 2.2.2.44), that includes
the received PDU’s operationId.

3.1.5.2.13 RDPTXT_KEY_EVENT_PDU

When a server receives a RDPTXT_KEY_EVENT_PDU message (section 2.2.2.1) and the routingStage
field is set to None (0x02), it should respond with RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU (section

2.2.2.45), with acknowledgementType set to Completed (0x0001) once the key has been
processed.

If processing of the key event is deferred due to outstanding edit operations,
RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU should be sent back right away with
acknowledgementType set to Raised (0x0002). A second
RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU should still be sent with acknowledgementType set to

Completed (0x0001) once the key event has been processed.

3.1.5.2.14 RDPTXT_KEY_EVENT_PAYLOAD_PDU

When a server receives a RDPTXT_KEY_EVENT_PAYLOAD_PDU message (section 2.2.2.8), it SHOULD

respond with RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU (section 2.2.2.45), with
acknowledgementType set to Completed (0x0001) once the message has been processed.

If processing of the PDU is deferred due to outstanding edit operations,

RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU should be sent back right away with
acknowledgementType set to Raised (0x0002). A second
RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU SHOULD still be sent with acknowledgementType set to
Completed (0x0001) once the original PDU has been processed.

3.1.5.3 Input Profile Update Confirmation

When a client sends a RDPTXT_UPDATE_INPUT_PROFILE_PDU message (section 2.2.2.18) to a server
to activate an input profile, the server should do its best to fulfill the request, then send a response
RDPTXT_INPUT_PROFILE_CHANGED_PDU (section 2.2.2.46) that includes the input profile that was
actually activated in case it was unable to activate the exact input profile requested.

3.1.5.4 CoreInputView Occlusions

When a server receives an RDPTXT_OCCLUDING_VIEWS_PDU message (section 2.2.2.52), it SHOULD
respond with RDPTXT_VIEW_OCCLUSIONS_HANDLED_PDU (section 2.2.2.47) to indicate whether the
remote application or its framework handled the notification.

89 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

90 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

None.

91 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

Security Considerations for Developing with Text Services Framework (TSF)

Digital Signatures. Text service providers should provide digital signatures with their binary
executables. A registered text service has access to system threads and could expose information that
would otherwise not be accessible. To help ensure stable and secure operation, the user should verify
the digital signature of a text service before the text service is allowed to load.

Error Checking. Each method or function call should be checked for success. In the event of failure,
the remaining method or function calls should be skipped.

For more information see [MSLEARN-TSF].

5.2 Index of Security Parameters

None.

https://go.microsoft.com/fwlink/?linkid=2263267

92 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows 11 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base

(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.2.2.1: The Component UI tree is Microsoft-specific.

<2> Section 2.2.2.1: The routingStage field and Component UI tree are Microsoft-specific.

<3> Section 2.2.2.1: Microsoft Win32 applications.

<4> Section 2.2.2.40: The Windows shell uses these signals.

93 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

94 / 94

[MS-RDPETXT] - v20240423
Remote Desktop Protocol: Text Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Index

A

Applicability 16

C

Capability negotiation 16
Change tracking 93

F

Fields - vendor-extensible 17

G

Glossary 6

I

Implementer - security considerations 91
Index of security parameters 91
Informative references 7
Introduction 6

M

Messages
 PDUs 41
 transport 18

N

Normative references 7

O

Overview (synopsis) 8

P

Parameters - security index 91
PDUs message 41
Preconditions 16
Prerequisites 16
Product behavior 92

R

References 7
 informative 7
 normative 7
Relationship to other protocols 16

S

Security

 implementer considerations 91
 parameter index 91
Standards assignments 17

T

Tracking changes 93
Transport 18

V

Vendor-extensible fields 17
Versioning 16

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Command PDUs
	1.3.2 Key Replay and Override
	1.3.2.1 Asynchronous Design
	1.3.2.2 Update Collisions
	1.3.2.3 Detecting Collisions
	1.3.2.4 Handling the Collision
	1.3.2.5 Override

	1.3.3 Text Paging
	1.3.3.1 Edit Buffers
	1.3.3.2 Solving the Problem of Large Documents
	1.3.3.3 Page Size
	1.3.3.4 Handling Text Selections
	1.3.3.5 Paging in of Selected Text
	1.3.3.6 PDUs that Support Text Paging

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Namespaces
	2.2.1.1 KeyEventHostInfo
	2.2.1.2 KeyEventAttributes
	2.2.1.3 KeyPressInfo
	2.2.1.4 HotKeyRegistrationData
	2.2.1.5 CompositionClause
	2.2.1.6 CoreInputProfile
	2.2.1.7 CoreInputViewOcclusion
	2.2.1.8 EditControlRange
	2.2.1.9 EditControlInfo
	2.2.1.10 NavigateFocusInfo
	2.2.1.11 NavigateFocusCompleteInfo
	2.2.1.12 NonCUIConfiguration
	2.2.1.13 TextInputRect
	2.2.1.14 TextFormat
	2.2.1.15 TextInputHostSettings

	2.2.2 PDUs
	2.2.2.1 RDPTXT_KEY_EVENT_PDU
	2.2.2.2 RDPTXT_CHARACTER_EVENT_PDU
	2.2.2.3 RDPTXT_FOCUS_NAVIGATING_EVENT_PDU
	2.2.2.4 RDPTXT_FOCUS_DEPART_COMPLETED_PDU
	2.2.2.5 RDPTXT_ENABLE_WINDOW_PDU
	2.2.2.6 RDPTXT_ACTIVATION_STATE_CHANGE_PDU
	2.2.2.7 RDPTXT_NON_COMPONENTUI_CONFIGURATION_CHANGE_PDU
	2.2.2.8 RDPTXT_KEY_EVENT_PAYLOAD_PDU
	2.2.2.9 RDPTXT_UPDATE_TEXT_PDU
	2.2.2.10 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU
	2.2.2.11 RDPTXT_SET_SELECTION_PDU
	2.2.2.12 RDPTXT_UPDATE_FORMAT_PDU
	2.2.2.13 RDPTXT_UPDATE_COMPOSITION_PDU
	2.2.2.14 RDPTXT_SET_COMPOSITION_INFO_PDU
	2.2.2.15 RDPTXT_RECONVERSION_CANDIDATES_PDU
	2.2.2.16 RDPTXT_DO_RECONVERSION_PDU
	2.2.2.17 RDPTXT_UPDATE_INPUT_LOCALE_PDU
	2.2.2.18 RDPTXT_UPDATE_INPUT_PROFILE_PDU
	2.2.2.19 RDPTXT_UPDATE_MODE_PDU
	2.2.2.20 RDPTXT_SET_CONVERSION_MODE_PDU
	2.2.2.21 RDPTXT_ACKNOWLEDGE_OPERATION_PDU
	2.2.2.22 RDPTXT_ACKNOWLEDGE_HOST_OPERATION_PDU
	2.2.2.23 RDPTXT_ACKNOWLEDGE_UNDO_PENDING_KEY_EVENTS_PDU
	2.2.2.24 RDPTXT_REGISTER_REMOTE_TEXT_TARGET_PDU
	2.2.2.25 RDPTXT_REGISTER_REMOTE_KEY_TARGET_PDU
	2.2.2.26 RDPTXT_REGISTER_REMOTE_EDIT_CONTROL_PDU
	2.2.2.27 RDPTXT_REGISTER_REMOTE_COREINPUTVIEW_PDU
	2.2.2.28 RDPTXT_UNREGISTER_REMOTE_TEXT_TARGET_PDU
	2.2.2.29 RDPTXT_UNREGISTER_REMOTE_KEY_TARGET_PDU
	2.2.2.30 RDPTXT_UNREGISTER_REMOTE_EDIT_CONTROL_PDU
	2.2.2.31 RDPTXT_UNREGISTER_REMOTE_COREINPUTVIEW_PDU
	2.2.2.32 RDPTXT_EDIT_CONTROL_FOCUS_PDU
	2.2.2.33 RDPTXT_HOST_FOCUS_PDU
	2.2.2.34 RDPTXT_HOST_FOREGROUND_PDU
	2.2.2.35 RDPTXT_SELECTION_CHANGED_PDU
	2.2.2.36 RDPTXT_TEXT_CHANGED_PDU
	2.2.2.37 RDPTXT_CONTROL_CONFIGURATION_UPDATED_PDU
	2.2.2.38 RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU
	2.2.2.39 RDPTXT_GEOMETRY_CHANGED_PDU
	2.2.2.40 RDPTXT_SOFTWARE_KEYBOARD_INVOCATION_SIGNALS_PDU
	2.2.2.41 RDPTXT_ACTIVE_VIEW_CHANGED_PDU
	2.2.2.42 RDPTXT_FOREGROUND_HOST_INFO_UPDATED_PDU
	2.2.2.43 RDPTXT_NOTIFY_SERVER_VERSION_PDU
	2.2.2.44 RDPTXT_ACKNOWLEDGE_REMOTE_OPERATION_PDU
	2.2.2.45 RDPTXT_ACKNOWLEDGE_KEY_EVENT_PDU
	2.2.2.46 RDPTXT_INPUT_PROFILE_CHANGED_PDU
	2.2.2.47 RDPTXT_VIEW_OCCLUSIONS_HANDLED_PDU
	2.2.2.48 RDPTXT_EDIT_CONTROL_TEXT_SEGMENT_PDU
	2.2.2.49 RDPTXT_COMPOSITION_TERMINATED_PDU
	2.2.2.50 RDPTXT_SOFTWARE_KEYBOARD_POLICY_PDU
	2.2.2.51 RDPTXT_SET_ENABLED_INPUT_PROFILES_PDU
	2.2.2.52 RDPTXT_OCCLUDING_VIEWS_PDU
	2.2.2.53 RDPTXT_NOTIFY_CLIENT_VERSION_PDU
	2.2.2.54 RDPTXT_REPORT_CLIENT_OPTIONS_PDU
	2.2.2.55 RDPTXT_SOFTWARE_KEYBOARD_VISIBILITY_PDU
	2.2.2.56 RDPTXT_HOTKEY_REGISTRATION_PDU
	2.2.2.57 RDPTXT_REFRESH_CLIENT_PDU
	2.2.2.58 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU
	2.2.2.59 RDPTXT_SEND_KEY_TO_HOST_PDU
	2.2.2.60 RDPTXT_REMOTE_TEXT_TARGET_THREAD_PROPERTIES_PDU
	2.2.2.61 RDPTXT_REREGISTRATION_REQUEST_PDU
	2.2.2.62 RDPTXT_REMOTE_INTEGRATION_STATUS_PDU
	2.2.2.63 RDPTXT_ERROR_REPORT_PDU

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Reconversion PDUs
	3.1.5.2 PDUs that require acknowledgement
	3.1.5.2.1 RDPTXT_EDIT_CONTROL_FOCUS_PDU
	3.1.5.2.2 RDPTXT_TEXT_CHANGED_PDU
	3.1.5.2.3 RDPTXT_SELECTION_CHANGED_PDU
	3.1.5.2.4 RDPTXT_COMPOSITION_TERMINATED_PDU
	3.1.5.2.5 RDPTXT_CONTROL_CONVERSION_MODE_UPDATED_PDU
	3.1.5.2.6 RDPTXT_HOST_FOCUS_PDU
	3.1.5.2.7 RDPTXT_UNDO_PENDING_KEY_EVENTS_PDU
	3.1.5.2.8 RDPTXT_UPDATE_TEXT_PDU
	3.1.5.2.9 RDPTXT_UPDATE_TEXT_AND_SELECTION_PDU
	3.1.5.2.10 RDPTXT_SET_SELECTION_PDU
	3.1.5.2.11 RDPTXT_UPDATE_FORMAT_PDU
	3.1.5.2.12 RDPTXT_UPDATE_COMPOSITION_PDU
	3.1.5.2.13 RDPTXT_KEY_EVENT_PDU
	3.1.5.2.14 RDPTXT_KEY_EVENT_PAYLOAD_PDU

	3.1.5.3 Input Profile Update Confirmation
	3.1.5.4 CoreInputView Occlusions

	3.1.6 Timer Events
	3.1.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

