
1 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-RDPERP]:

Remote Desktop Protocol: Remote Programs Virtual
Channel Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this

documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 0.01 New Version 0.01 release

7/3/2007 1.0 Major MLonghorn+90

7/20/2007 1.0.1 Editorial Changed language and formatting in the technical content.

8/10/2007 1.0.2 Editorial Changed language and formatting in the technical content.

9/28/2007 1.0.3 Editorial Changed language and formatting in the technical content.

10/23/2007 2.0 Major Added new normative references.

11/30/2007 2.1 Minor Corrected some section numbering.

1/25/2008 2.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 4.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 4.0.3 Editorial Changed language and formatting in the technical content.

12/5/2008 5.0 Major Updated and revised the technical content.

1/16/2009 5.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 5.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 5.1 Minor Clarified the meaning of the technical content.

5/22/2009 6.0 Major Updated and revised the technical content.

7/2/2009 6.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 6.0.2 Editorial Changed language and formatting in the technical content.

9/25/2009 6.1 Minor Clarified the meaning of the technical content.

11/6/2009 6.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 7.0 Major Updated and revised the technical content.

1/29/2010 8.0 Major Updated and revised the technical content.

3/12/2010 8.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 9.0 Major Updated and revised the technical content.

6/4/2010 10.0 Major Updated and revised the technical content.

7/16/2010 11.0 Major Updated and revised the technical content.

8/27/2010 11.1 Minor Clarified the meaning of the technical content.

3 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

10/8/2010 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 12.0 Major Updated and revised the technical content.

3/25/2011 13.0 Major Updated and revised the technical content.

5/6/2011 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 13.1 Minor Clarified the meaning of the technical content.

9/23/2011 14.0 Major Updated and revised the technical content.

12/16/2011 15.0 Major Updated and revised the technical content.

3/30/2012 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 16.0 Major Updated and revised the technical content.

11/14/2013 17.0 Major Updated and revised the technical content.

2/13/2014 18.0 Major Updated and revised the technical content.

5/15/2014 18.0 None
No changes to the meaning, language, or formatting of the

technical content.

6/30/2015 19.0 Major Significantly changed the technical content.

10/16/2015 20.0 Major Significantly changed the technical content.

3/2/2016 21.0 Major Significantly changed the technical content.

7/14/2016 22.0 Major Significantly changed the technical content.

6/1/2017 23.0 Major Significantly changed the technical content.

4 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 9
1.1 Glossary ... 9
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.3.1 Relationship to the Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting Specification .. 12
1.3.2 Message Flows ... 12

1.3.2.1 RAIL Session Connection .. 12
1.3.2.2 RAIL Session Disconnection and Reconnection .. 13
1.3.2.3 RAIL Server/Client Synchronization ... 13
1.3.2.4 RAIL Virtual Channel Messages ... 14
1.3.2.5 RAIL Local Move/Resize ... 14

1.3.3 Enhanced RemoteApp ... 15
1.3.4 Window Resize Margins ... 15

1.4 Relationship to Other Protocols .. 16
1.5 Prerequisites/Preconditions ... 16
1.6 Applicability Statement ... 16
1.7 Versioning and Capability Negotiation ... 16
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments ... 16

2 Messages ... 17
2.1 Transport .. 17
2.2 Message Syntax ... 17

2.2.1 Updates to the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Specification .. 17
2.2.1.1 Capability Sets ... 17

2.2.1.1.1 Remote Programs Capability Set ... 17
2.2.1.1.2 Window List Capability Set .. 18

2.2.1.2 Common Structures .. 19
2.2.1.2.1 Unicode String (UNICODE_STRING) ... 19
2.2.1.2.2 Rectangle (TS_RECTANGLE_16) .. 20
2.2.1.2.3 Icon Info (TS_ICON_INFO) ... 20
2.2.1.2.4 Cached Icon Info (TS_CACHED_ICON_INFO) 21

2.2.1.3 Windowing Alternate Secondary Drawing Orders 22
2.2.1.3.1 Window Information .. 22

2.2.1.3.1.1 Common Header (TS_WINDOW_ORDER_HEADER) 22
2.2.1.3.1.2 Orders .. 22

2.2.1.3.1.2.1 New or Existing Window .. 22
2.2.1.3.1.2.2 Window Icon .. 28
2.2.1.3.1.2.3 Cached Icon... 29
2.2.1.3.1.2.4 Deleted Window ... 30

2.2.1.3.2 Notification Icon Information... 30
2.2.1.3.2.1 Common Header (TS_NOTIFYICON_ORDER_HEADER) 30
2.2.1.3.2.2 Orders .. 31

2.2.1.3.2.2.1 New or Existing Notification Icons ... 31
2.2.1.3.2.2.2 Deleted Notification Icons .. 33
2.2.1.3.2.2.3 Notification Icon Balloon Tooltip (TS_NOTIFY_ICON_INFOTIP).... 34

2.2.1.3.3 Desktop Information .. 35
2.2.1.3.3.1 Common Header (TS_DESKTOP_ORDER_HEADER)......................... 35
2.2.1.3.3.2 Orders .. 35

2.2.1.3.3.2.1 Actively Monitored Desktop .. 35
2.2.1.3.3.2.2 Non-Monitored Desktop ... 36

5 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2 Static Virtual Channel Protocol ... 37
2.2.2.1 Common Header (TS_RAIL_PDU_HEADER) .. 37
2.2.2.2 Initialization Messages ... 38

2.2.2.2.1 Handshake PDU (TS_RAIL_ORDER_HANDSHAKE) 38
2.2.2.2.2 Client Information PDU (TS_RAIL_ORDER_CLIENTSTATUS) 39
2.2.2.2.3 HandshakeEx PDU (TS_RAIL_ORDER_HANDSHAKE_EX) 40

2.2.2.3 Program Launching Messages ... 40
2.2.2.3.1 Client Execute PDU (TS_RAIL_ORDER_EXEC) 40
2.2.2.3.2 Server Execute Result PDU (TS_RAIL_ORDER_EXEC_RESULT) 42

2.2.2.4 Local Client System Parameters Update Messages 43
2.2.2.4.1 Client System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM) ... 43
2.2.2.4.2 High Contrast System Information Structure (TS_HIGHCONTRAST) 45

2.2.2.5 Server System Parameters Update Messages ... 45
2.2.2.5.1 Server System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM) . 45

2.2.2.6 Local Client Event Messages ... 46
2.2.2.6.1 Client Activate PDU (TS_RAIL_ORDER_ACTIVATE) 46
2.2.2.6.2 Client System Menu PDU (TS_RAIL_ORDER_SYSMENU) 47
2.2.2.6.3 Client System Command PDU (TS_RAIL_ORDER_SYSCOMMAND) 47
2.2.2.6.4 Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT).................. 48
2.2.2.6.5 Client Get Application ID PDU (TS_RAIL_ORDER_GET_APPID_REQ) 49

2.2.2.7 Window Move Messages ... 50
2.2.2.7.1 Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO) 50
2.2.2.7.2 Server Move/Size Start PDU (TS_RAIL_ORDER_LOCALMOVESIZE)......... 51
2.2.2.7.3 Server Move/Size End PDU (TS_RAIL_ORDER_LOCALMOVESIZE) 53
2.2.2.7.4 Client Window Move PDU (TS_RAIL_ORDER_WINDOWMOVE) 54

2.2.2.8 Server Application ID Response .. 55
2.2.2.8.1 Server Get Application ID Response PDU

(TS_RAIL_ORDER_GET_APPID_RESP) .. 55
2.2.2.9 Language Bar Messages ... 56

2.2.2.9.1 Language Bar Information PDU (TS_RAIL_ORDER_LANGBARINFO) 56
2.2.2.10 Language Sync Messages ... 57

2.2.2.10.1 Language Profile Information PDU (TS_RAIL_ORDER_LANGUAGEIMEINFO)
 ... 57

2.2.2.10.1.1 Globally Unique Identifier (GUID) ... 59
2.2.2.10.2 Compartment Status Information PDU

(TS_RAIL_ORDER_COMPARTMENTINFO_BODY) 60
2.2.2.11 Z-Order Sync Messages ... 62

2.2.2.11.1 Server Z-Order Sync Information PDU (TS_RAIL_ORDER_ZORDER_SYNC)62
2.2.2.12 Window Cloak State Sync Messages .. 62

2.2.2.12.1 Window Cloak State Change PDU (TS_RAIL_ORDER_CLOAK) 62

3 Protocol Details ... 64
3.1 Common Details .. 64

3.1.1 Abstract Data Model .. 64
3.1.1.1 Server State Machine .. 64
3.1.1.2 Icon Cache Support ... 66

3.1.2 Timers .. 66
3.1.3 Initialization ... 66
3.1.4 Higher-Layer Triggered Events ... 66
3.1.5 Message Processing Events and Sequencing Rules .. 66

3.1.5.1 Constructing Handshake PDU ... 66
3.1.5.2 Processing Handshake PDU .. 66

3.1.6 Timer Events .. 66
3.1.7 Other Local Events .. 67

3.2 Client Details ... 67
3.2.1 Abstract Data Model .. 67

3.2.1.1 Windowing Support Level ... 67
3.2.1.2 Marker Window ID .. 67

6 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.2 Timers .. 67
3.2.3 Initialization ... 67
3.2.4 Higher-Layer Triggered Events ... 67
3.2.5 Message Processing Events and Sequencing Rules .. 67

3.2.5.1 Updates to RDP Core Protocol ... 67
3.2.5.1.1 Constructing Client MCS Connect Initial PDU 67
3.2.5.1.2 Processing Server MCS Connect Response PDU 68
3.2.5.1.3 Constructing Client Info PDU ... 68
3.2.5.1.4 Constructing Confirm Active PDU ... 68
3.2.5.1.5 Processing Demand Active PDU ... 68
3.2.5.1.6 Processing Window Information Orders .. 68
3.2.5.1.7 Processing Notification Icon Orders .. 69
3.2.5.1.8 Processing Desktop Information Orders .. 70

3.2.5.2 Static Virtual Channel Protocol .. 70
3.2.5.2.1 Initialization Messages ... 70

3.2.5.2.1.1 Sending Client Information PDU ... 70
3.2.5.2.2 Program Launching Messages ... 70

3.2.5.2.2.1 Sending Execute PDU ... 70
3.2.5.2.2.2 Processing Execute Result PDU .. 70

3.2.5.2.3 Local Client System Parameters Update Messages 71
3.2.5.2.3.1 Sending System Parameters Update PDU 71

3.2.5.2.4 Server System Parameters Update Messages 71
3.2.5.2.4.1 Processing Server System Parameters Update PDU 71

3.2.5.2.5 Local Client Event Messages ... 71
3.2.5.2.5.1 Sending Activate PDU ... 71
3.2.5.2.5.2 Sending System Menu PDU ... 71
3.2.5.2.5.3 Sending System Command PDU .. 71
3.2.5.2.5.4 Sending Notify Event PDU ... 72

3.2.5.2.6 Language Bar Information PDUs .. 72
3.2.5.2.6.1 Sending Language Bar Information PDU 72
3.2.5.2.6.2 Processing Language Bar Information PDU 72

3.2.5.2.7 Window Move Messages ... 72
3.2.5.2.7.1 Processing Min Max Info PDU... 72
3.2.5.2.7.2 Processing Move/Size Start PDU .. 72
3.2.5.2.7.3 Sending Window Move PDU ... 73
3.2.5.2.7.4 Processing Move/Size End PDU .. 73

3.2.5.2.8 Application ID Messages ... 73
3.2.5.2.8.1 Sending Client Get Application ID PDU .. 73
3.2.5.2.8.2 Processing Server Get Application ID Response PDU 73

3.2.5.2.9 Z-Order Sync Messages .. 73
3.2.5.2.9.1 Sending Z-Order Sync Support Flag ... 73
3.2.5.2.9.2 Processing Z-Order Sync Information PDU 73

3.2.5.2.10 Window Cloak State Sync Messages ... 74
3.2.5.2.10.1 Sending Window Cloak State Change PDU 74

3.2.6 Timer Events .. 74
3.2.7 Other Local Events .. 74

3.3 Server Details .. 74
3.3.1 Abstract Data Model .. 74

3.3.1.1 Client Local Move/Size Ability Store ... 74
3.3.1.2 Windowing Support Level ... 75
3.3.1.3 Marker Window ... 75

3.3.2 Timers .. 75
3.3.3 Initialization ... 75
3.3.4 Higher-Layer Triggered Events ... 75
3.3.5 Message Processing Events and Sequencing Rules .. 75

3.3.5.1 Updates to RDP Core Protocol ... 75
3.3.5.1.1 Processing Client MCS Connect Initial PDU .. 75
3.3.5.1.2 Constructing Server MCS Connect Response PDU 75

7 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.5.1.3 Processing Client Info PDU .. 75
3.3.5.1.4 Constructing Demand Active PDU .. 75
3.3.5.1.5 Processing Confirm Active PDU .. 76
3.3.5.1.6 Constructing Window Information Orders ... 76
3.3.5.1.7 Constructing Notification Icon Orders ... 76
3.3.5.1.8 Constructing Desktop Information Orders ... 77

3.3.5.2 Static Virtual Channel Protocol .. 77
3.3.5.2.1 Initialization Messages ... 77

3.3.5.2.1.1 Processing Client Information PDU ... 77
3.3.5.2.2 Program Launching Messages ... 77

3.3.5.2.2.1 Processing Execute PDU .. 77
3.3.5.2.2.2 Sending Execute Result PDU ... 77

3.3.5.2.3 Local Client System Parameters Update Messages 78
3.3.5.2.3.1 Processing System Parameters Update PDU 78

3.3.5.2.4 Server System Parameters Update Messages 78
3.3.5.2.4.1 Sending Server System Parameters Update PDU 78

3.3.5.2.5 Local Client Event Messages ... 78
3.3.5.2.5.1 Processing Activate PDU ... 78
3.3.5.2.5.2 Processing System Menu PDU .. 78
3.3.5.2.5.3 Processing System Command PDU ... 78
3.3.5.2.5.4 Processing Notify Event PDU ... 78
3.3.5.2.5.5 Processing Language Bar Information PDU 78

3.3.5.2.6 Window Move Messages ... 78
3.3.5.2.6.1 Sending Min Max Info PDU .. 79
3.3.5.2.6.2 Sending Move/Size Start PDU .. 79
3.3.5.2.6.3 Processing Window Move PDU ... 79
3.3.5.2.6.4 Sending Move/Size End PDU.. 79

3.3.5.2.7 Application ID Messages ... 79
3.3.5.2.7.1 Processing the Get Application ID PDU .. 79
3.3.5.2.7.2 Sending the Get Application ID Response PDU 79

3.3.5.2.8 Z-Order Sync Messages .. 79
3.3.5.2.8.1 Processing Z-Order Sync Support Flag .. 79
3.3.5.2.8.2 Sending Z-Order Sync Information PDU .. 80

3.3.5.2.9 Window Cloak State Sync Messages ... 80
3.3.5.2.9.1 Processing Windows Cloak State Change PDU 80

3.3.6 Timer Events .. 80
3.3.7 Other Local Events .. 80

3.3.7.1 Sending Language Bar Information PDU... 80
3.3.7.2 Sending Language Profile Information PDU ... 80
3.3.7.3 Sending Compartment Status Information PDU ... 80

4 Protocol Examples ... 81
4.1 Updates to the RDP Core Protocol .. 81

4.1.1 Windowing Alternate Secondary Drawing Orders .. 81
4.1.1.1 New or Existing Windows ... 81
4.1.1.2 Deleted Window .. 81
4.1.1.3 New or Existing Notification Icons ... 82
4.1.1.4 Deleted Notification Icons .. 83
4.1.1.5 Actively Monitored Desktop .. 83
4.1.1.6 Non-monitored Desktop ... 83

4.2 Initialization Messages .. 83
4.2.1 TS_RAIL_ORDER_HANDSHAKE ... 83
4.2.2 TS_RAIL_ORDER_CLIENTSTATUS ... 84

4.3 Launching Messages ... 84
4.3.1 TS_RAIL_ORDER_EXEC ... 84
4.3.2 TS_RAIL_ORDER_EXEC_RESULT ... 85

4.4 Local Client System Parameters Update Messages .. 85
4.4.1 TS_RAIL_ORDER_SYSPARAM ... 85

8 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.5 Local Client Event Messages .. 85
4.5.1 TS_RAIL_ORDER_ACTIVATE ... 85
4.5.2 TS_RAIL_ORDER_SYSMENU ... 85
4.5.3 TS_RAIL_ORDER_SYSCOMMAND .. 86
4.5.4 TS_RAIL_ORDER_NOTIFY_EVENT ... 86
4.5.5 TS_RAIL_ORDER_LANGBARINFO .. 86
4.5.6 TS_RAIL_ORDER_GET_APPID_REQ ... 86
4.5.7 TS_RAIL_ORDER_GET_APPID_RESP .. 87

4.6 Window Move Messages .. 87
4.6.1 TS_RAIL_ORDER_WINDOWMOVE ... 87
4.6.2 TS_RAIL_ORDER_LOCALMOVESIZE ... 87
4.6.3 TS_RAIL_ORDER_MINMAXINFO .. 88

4.7 Z-Order Sync Messages .. 88
4.7.1 TS_RAIL_ORDER_ZORDER_SYNC ... 88

5 Security ... 89
5.1 Security Considerations for Implementers ... 89
5.2 Index of Security Parameters .. 89

6 Appendix A: Product Behavior ... 90

7 Change Tracking .. 92

8 Index ... 93

9 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

Remote Programs, also known as remote applications integrated locally (RAIL), is a Remote
Desktop Protocol (RDP) feature (as specified in the Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting Specification [MS-RDPBCGR]) that presents a remote application (running
remotely on a RAIL server) as a local user application (running on the RAIL client machine). RAIL
extends the core RDP protocol to deliver this seamless windows experience.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Application Desktop Toolbar: A window (anchored to an edge of the screen) that is similar to
the taskbar and that typically contains buttons that give the user quick access to other

applications and windows.

balloon tooltip: A tooltip displayed inside a balloon-shaped window. It usually has an icon, a title,
and the tooltip text.

client area: The area of the desktop that is available for a window or notification icon to paint on.

desktop switch: The act of switching from one user desktop to another, or to the Windows Secure
Desktop.

input method editor (IME): A process that maps keyboard input to phonetic components (or
other language elements) that are specific to a selected language. IMEs are typically used with
languages for which conventional keyboard representation is difficult or impossible. For
example, East Asian languages are made up of thousands of distinct characters, which makes it
impossible to show all of the characters on a single keyboard. To facilitate composition, the IME

converts keystrokes into the characters of the target language (such as Japanese Katakana or

Simplified Chinese).

Input Method Editor (IME): An application that is used to enter characters in written Asian
languages by using a standard 101-key keyboard. An IME consists of both an engine that
converts keystrokes into phonetic and ideographic characters and a dictionary of commonly used
ideographic words.

marker window: A server-side window that is not remoted to the client and is used to manage
the activation of RAIL windows.

notification icon: An icon placed in the notification area.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that may contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

RAIL notification icon: An icon placed in the notification area of the client machine by the

remote applications integrated locally (RAIL) client.

RAIL window: A local client window that mimics a remote application window.

remote application: An application running on a remote server.

remote applications integrated locally (RAIL): A software component that enables remoting of
individual windows and notification icons.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
https://go.microsoft.com/fwlink/?LinkId=89824

10 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

screen coordinates: Coordinates relative to the top-left corner of the screen, which has the
coordinates (0,0).

system command: A message that is sent to a window or notification icon via its system menu, or
via a keyboard shortcut. Common system commands include minimize, maximize, move, and

so on.

System menu: See window menu.

taskbar: A window, anchored to an edge of the screen, that contains the Start button and buttons
for all open programs.

tooltip: A window displaying text that is created when the mouse is moved over a window or
notification icon.

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

window coordinates: Coordinates relative to the top-left corner of the window.

window visible region: The portion of the window that is not obscured by other user interface
elements.

z-order: The rendering order of an object on a z axis.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)

Acceleration Extensions".

[MS-RDPEGFX] Microsoft Corporation, "Remote Desktop Protocol: Graphics Pipeline Extension".

[MSDN-MUI] Microsoft Corporation, "Language Identifier Constants and Strings",
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318693(v=vs.85).aspx

[MSFT-DIL] Microsoft Corporation, "Default Input Locales", http://technet.microsoft.com/en-
us/library/cc766503(WS.10).aspx

https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0
https://go.microsoft.com/fwlink/?LinkId=90048
https://go.microsoft.com/fwlink/?LinkId=202824
https://go.microsoft.com/fwlink/?LinkId=202824

11 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MSDN-CREATEWINEX] Microsoft Corporation, "CreateWindowEx function",
http://msdn.microsoft.com/en-us/library/ms632680.aspx

[MSDN-HIGHCONTRAST] Microsoft Corporation, "HIGHCONTRAST", http://msdn.microsoft.com/en-
us/library/ms695609.aspx

[MSDN-SHELLNOTIFY] Microsoft Corporation, "Shell_NotifyIcon function",
http://msdn.microsoft.com/en-us/library/bb762159.aspx

[MSDN-SysParamsInfo] Microsoft Corporation, "SystemParametersInfo function",
http://msdn.microsoft.com/en-us/library/ms724947(VS.85).aspx

[MSDN-VIRTUALSCR] Microsoft Corporation, "The Virtual Screen", http://msdn.microsoft.com/en-

us/library/dd145136(VS.85).aspx

[MSDN-WINFEATURE] Microsoft Corporation, "Window Features", http://msdn.microsoft.com/en-
us/library/ms632599.aspx

[MSDN-WINSTYLE] Microsoft Corporation, "Window Styles", http://msdn.microsoft.com/en-
us/library/ms632600.aspx

1.3 Overview

Remote Programs, also known as remote applications integrated locally (RAIL), is an RDP
feature (as specified in the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Specification [MS-RDPBCGR]) that presents a remote application (running remotely on a RAIL
server) as a local user application (running on the RAIL client machine). RAIL extends the core RDP
protocol to deliver this seamless experience. Support for RAIL is optional in RDP, and it is negotiated

as part of the capability negotiation process.

The RAIL client, running on the user's local machine, creates one local window or notification icon
for every window or notification icon running on the RAIL server. These local windows/icons, called
RAIL windows/icons, exactly mimic the appearance of their corresponding remote windows/icons,
which are created by remote applications running on the RAIL server. All local user input to the RAIL
windows/icons is captured by the RAIL client and redirected to the server. All display updates to the
remote windows/icons on the RAIL server are captured by the server and redirected to the client

RAIL relies on the core RDP protocol for basic connection establishment, connection security, local

input redirection to server, and drawing order updates from server to client (as specified in the
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification). In addition, RAIL
adds the following extensions to the RDP protocol:

 Extensions to the RDP core protocol to send drawing orders from the server to the client
describing individual windows and notification icons. This enables the RAIL client to mimic their

geometry in RAIL windows/icons.

 Virtual channel messages from client to server containing client information, system parameters

information, and RAIL-specific commands, such as remote program launch.

 Virtual channel updates from server to client containing responses to client messages, server
system parameters information, or information regarding other RAIL-specific features such as local
move/resize (specified in section 1.3.2.5).

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=89982
https://go.microsoft.com/fwlink/?LinkId=90017
https://go.microsoft.com/fwlink/?LinkId=90017
https://go.microsoft.com/fwlink/?LinkId=90132
https://go.microsoft.com/fwlink/?LinkId=187513
https://go.microsoft.com/fwlink/?LinkId=191444
https://go.microsoft.com/fwlink/?LinkId=191444
https://go.microsoft.com/fwlink/?LinkId=90162
https://go.microsoft.com/fwlink/?LinkId=90162
https://go.microsoft.com/fwlink/?LinkId=90166
https://go.microsoft.com/fwlink/?LinkId=90166
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

12 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Certain classes of user input are not directly received by the RAIL window/icon as keyboard or
mouse input. Examples include right-clicking the window's taskbar icon; key combinations to

minimize, maximize, or restore all windows; and all user interactions with notification icons. These
interactions are posted to the RAIL window/icon as non-keyboard or non-mouse messages, and,

hence, cannot be sent over the core RDP channel. The client sends these interactions to the server
as RAIL Virtual Channel messages.

 A virtual channel message from the server to the client that indicates the ID of the server-side
marker window.

1.3.1 Relationship to the Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting Specification

Remote applications integrated locally (RAIL) protocol messages travel over two separate RDP
channels:

 Window information orders from server to client are encapsulated in Alternate Secondary Drawing

Orders (as specified in [MS-RDPEGDI] section 2.2.2.2.1.3.1.1).

 All other RAIL-specific messages travel over a static virtual channel, called the RAIL virtual
channel, that is created by the Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting during connection establishment (as specified in [MS-RDPBCGR] sections 1.3.3 and
2.2.1).

1.3.2 Message Flows

1.3.2.1 RAIL Session Connection

RAIL connection establishment follows the Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting connection establishment sequence (as specified in [MS-RDPBCGR] section 1.3.1.1). RAIL-
specific information during connection establishment is outlined as follows:

 The client creates and initializes a static virtual channel to be used for RAIL protocol messages.
Information regarding this channel is sent to the server in the Client MCS Connect Initial PDU with
GCC Conference Create Request (as specified in [MS-RDPBCGR] section 2.2.1.3).

 The Client Info PDU (as specified in [MS-RDPBCGR] section 2.2.1.11) indicates the client's request

to establish a RAIL connection.

 The Alternate Shell field of the Client Info PDU, as specified in [MS-RDPBCGR] section 2.2.1.11,
is NOT used to communicate the initial application started in the session. Instead, the initial
application information is communicated to the server via the Client Execute PDU.

 If the server supports RAIL, the Demand Active PDU has to contain the Remote Programs
Capability Set and Window List Capability Set to indicate that it supports RAIL.

 The client sends corresponding Remote Programs Capability Set and Window Capability Set in the

Confirm Active PDU.

 If, in the Demand Active PDU, the server does not indicate that it supports RAIL, the client
requests a disconnection according to the Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting ([MS-RDPBCGR] section 1.3.1.4.1). Likewise, if the client does not indicate
that it supports RAIL in the Confirm Active PDU, the server disconnects the client (see [MS-
RDPBCGR] section 1.3.1.4.2).

After the RDP connection is established, a RAIL client and server exchange Handshake PDUs over the
RAIL Virtual Channel to indicate that each is ready for data on the virtual channel.

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

13 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: Handshake PDU

1.3.2.2 RAIL Session Disconnection and Reconnection

RAIL Session Disconnection and RAIL Session Reconnection follow the corresponding Remote Desktop

Protocol: Basic Connectivity and Graphics Remoting sequences, as specified in [MS-RDPBCGR] section

1.3.1.4 (Disconnection Sequences) and [MS-RDPBCGR] section 1.3.1.5 (Automatic Reconnection).

1.3.2.3 RAIL Server/Client Synchronization

A RAIL server synchronizes with the RAIL client over the RDP channel upon connection establishment

or when a desktop switch occurs.

Figure 2: RAIL protocol client synchronization

The synchronization begins with a Desktop Information Order with the
WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN(0x00000008) flag set in the Hdr field (section
2.2.1.3.3.2.2). Upon receipt of this order, the client clears all previously received information from the
server. This order is followed by any number of Windowing Alternate Secondary Drawing Orders
describing windows, notification icons, and desktop. Finally, the server sends a Desktop Information

Order with the WINDOW_ORDER_FIELD_DESKTOP_ARC_COMPLETED (0x00000004) flag set to signal
the end of synchronization data (section 2.2.1.3.3.2.1).

After the initial synchronization, Windowing Alternate Secondary Drawing Orders flow from server to
client whenever a change occurs in a window, notification icon, or desktop state.

If the server is not capable of monitoring the desktop (for example, secure desktop), it sends a
Desktop Information Order with the WINDOW_ORDER_FIELD_DESKTOP_NONE (0x00000001) flag set
in the Hdr field (section 2.2.1.3.3.2.2). Upon receipt of this order, the client clears out all previously

received information from the server.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

14 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.3.2.4 RAIL Virtual Channel Messages

Client/server or server/client messages can flow over the RAIL anytime after the virtual channel
handshake sequence (section 2.2.2.2.1). The client sends the Client Information PDU and the Client

System Parameters Update PDU immediately after the handshake to inform the server of its state and
system parameters. If the client includes the TS_RAIL_CLIENTSTATUS_ZORDER_SYNC (0x00000004)
flag in the Client Information PDU, then the server creates the marker window (section 3.3.1.3) and
sends the ID of this window to the client using the Z-Order Sync Information PDU (section
2.2.2.11.1). If the client includes the
TS_RAIL_CLIENTSTATUS_WINDOW_RESIZE_MARGIN_SUPPORTED (0x00000010) flag in the Client
Information PDU, then the server sends the dimensions of the window resize margins in the Window

Information PDU (section 2.2.1.3.1). If the client includes the
TS_RAIL_CLIENTSTATUS_APPBAR_REMOTING_SUPPORTED (0x00000040) flag in the Client
Information PDU, then the server sends the registration state and edge messages for application
desktop toolbars in the Window Information PDU (section 2.2.1.3.1). The server sends the Server
System Parameters Update PDU immediately after the handshake to inform the client of its system
parameters. All other virtual channel messages are generated in response to events on the client or

server.

1.3.2.5 RAIL Local Move/Resize

Local move/resize features are RAIL options designed to optimize bandwidth in certain situations
where RAIL windows are moved or resized by the user. A RAIL client indicates to the RAIL server

whether it supports local move/resize through the Client Capabilities PDU (section 2.2.2.2.2), sent
after the Virtual Channel handshake sequence. RAIL servers do not have to explicitly report move/size
support to the client.

Figure 3: RAIL local move/resize operation

Local move/resize is based on the following logic:

1. When the server detects that a window is beginning to be moved or resized, it sends a Server Min
Max Info PDU (section 2.2.2.7.1) to the client with the window extents. This is followed by a
Server Move/Size Start PDU (section 2.2.2.7.2).

2. If the client supports local move/resize, it injects a mouse button-down at the position indicated
by the move/size PDU (if the move/size was initiated via mouse) or posts a command to the
window (if the move/size was initiated via keyboard) to initiate move/resize of the window by the
local window manager.

15 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3. At the same time, the client lets the local Window Manager handle all keyboard and mouse events
for the RAIL window, instead of redirecting to the server, to ensure that the move/size is entirely

happening locally.

4. Finally, when the user is done with the move/resize, the local RAIL window receives this

notification and forwards a mouse button-up to the server to end move/size on the server. For
keyboard-based moves and all resize operations, the client also sends a Client Window Move
PDU (section 2.2.2.7.4) to the server to inform the server of the window's new position and size.
(For mouse-based moves, the mouse button-up is sufficient to inform the window's final position).

5. When the server detects that move/size has ended, it sends a Server Move/Size End
PDU (section 2.2.2.7.3) with the final window position and size. The client can adjust its local RAIL
window if necessary using this information.

1.3.3 Enhanced RemoteApp

Enhanced RemoteApp is a graphics presentation mode supported by RDP 8.1 that leverages the
Remote Desktop Protocol: Graphics Pipeline Extension ([MS-RDPEGFX] section 1.3) to remote only the

contents of the windows running in a RAIL session (see [MS-RDPEGFX] section 1.5 for implementation
requirements). This implies that the desktop background is not remoted and a client that supports
Enhanced RemoteApp will always have access to the complete contents of a RAIL window, even if the
window is obscured on the server.

1.3.4 Window Resize Margins

Window resize margins are supported by RDP 10.2. The dimensions of these margins are defined by
the server and are to be used by the client to create a transparent hit-testable region around the
RemoteApp window graphics. Any mouse, pen, or touch input within these margins is to be sent to the
server.

Figure 4: Window Resize Margins

%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0

16 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.4 Relationship to Other Protocols

RAIL extends the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification
[MS-RDPBCGR].

1.5 Prerequisites/Preconditions

The Remote Programs Extensions for Remote Desktop Protocol has the assumption to operate in a
fully operational RDP connection. A fully operational RDP connection is a connection that has passed
the Connection Finalization phase, as specified in [MS-RDPBCGR] section 1.3.1.1.

The RAIL server endpoint expects that the Channel PDU Header ([MS-RDPBCGR] section 2.2.6.1.1) is
visible for all data that flows over the RAIL virtual channel (sections 1.3.1 and 2.2.2). To ensure that
this condition is met, the CHANNEL_FLAG_SHOW_PROTOCOL (0x00000010) flag has to be set in the
flags field of the Channel PDU Header.

1.6 Applicability Statement

The Remote Desktop Protocol: Remote Programs Virtual Channel Extension applies only to RDP 6.0
and later.

1.7 Versioning and Capability Negotiation

Versioning: RAIL is supported in RDP 6.0 and later clients only. The RDP version is negotiated as a
part of the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting (as specified in [MS-
RDPBCGR] section 1.7). Capability: RAIL-specific capabilities for Remote Programs and Window List
are negotiated via the Demand Active and Confirm Active PDUs of the server and client, respectively
(as specified in [MS-RDPBCGR] section 2.2.1.13).

1.8 Vendor-Extensible Fields

This protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse

those values with their indicated meaning. Choosing any other value runs the risk of a collision in the
future.

1.9 Standards Assignments

The Remote Desktop Protocol: Remote Programs Virtual Channel Extension does not use any assigned
standards.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

17 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

The following sections specify how Remote Desktop Protocol: Remote Programs Virtual Channel
Extension messages are transported and Remote Desktop Protocol: Remote Programs Virtual Channel
Extension message syntax.

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

The Remote Desktop Protocol: Remote Programs Virtual Channel Extension messages are passed
between the client and server, embedded within an RDP connection, as described in section 1.3.1 for
an overview.

The protocol uses the TCP connection created by the Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting (as specified in [MS-RDPBCGR] section 2.1) and does not establish any transport
connections.

2.2 Message Syntax

2.2.1 Updates to the Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting Specification

Support for RAIL is indicated by the client and server during the connection establishment phase of

the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting [MS-RDPBCGR], as described
in section 1.3.2.1 for an overview of how the RAIL connection is established.

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting has also been extended to
support windowing-specific drawing orders for RAIL scenarios. These orders, called Windowing
Alternate Secondary Drawing Orders, describe state for windows, notification icons, and desktop-
related information on the server. The following sections outline the capability sets and drawing orders

that make up the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting extensions for
RAIL.

2.2.1.1 Capability Sets

A RAIL server and client indicate support for RAIL by exchanging two capability sets during the

capabilities negotiation phase of RDP connection establishment. These sets are outlined in the
following sections.

2.2.1.1.1 Remote Programs Capability Set

The Remote Programs Capability Set is sent by the server in the Demand Active PDU and by the client
in the Confirm Active PDU, as specified in [MS-RDPBCGR] section 2.2.1.13. It indicates that the client
and server are capable of communicating RAIL PDUs over the RAIL static virtual channel.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CapabilitySetType LengthCapability

RailSupportLevel

CapabilitySetType (2 bytes): An unsigned 16-bit integer. The type of the capability set. This field
MUST be set to 0x0017 (CAPSTYPE_RAIL).

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

18 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

LengthCapability (2 bytes): An unsigned 16-bit integer. The combined length of the
CapabilitySetType, LengthCapability, and RailSupportLevel fields, in bytes.

RailSupportLevel (4 bytes): A 4-byte bit field specifying support for Remote Programs and the
Docked Language Bar for Remote Programs. <1>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S L H I C M K 0

Where the bits are defined as:

Value Description

S

TS_RAIL_LEVEL_SUPPORTED

Set to 1 if the client/server is capable of
supporting Remote Programs; set to 0
otherwise.

L

TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED

Set to 1 if the client/server is capable of
supporting Docked Language Bar for
Remote Programs; set to 0 otherwise. This
flag MUST be set to 0 if
TS_RAIL_LEVEL_SUPPORTED is 0.

H

TS_RAIL_LEVEL_SHELL_INTEGRATION_SUPPORTED

Set to 1 if the client/server is capable of
supporting extended shell integration like
tabbed windows and overlay icons for
Remote Programs; set to 0 otherwise. This
flag MUST be set to 0 if
TS_RAIL_LEVEL_SUPPORTED is 0.

I

TS_RAIL_LEVEL_LANGUAGE_IME_SYNC_SUPPORTED

Set to 1 if the client/server is capable of
supporting syncing language/IME changes
for Remote Programs; set to 0 otherwise.

C

TS_RAIL_LEVEL_SERVER_TO_CLIENT_IME_SYNC_SUPPORTED

Set to 1 if the client/server is capable of
supporting syncing IME changes
originating at the server for Remote
Programs; set to 0 otherwise. This flag
MUST be set to 0 if
TS_RAIL_LEVEL_SUPPORTED is 0.

M

TS_RAIL_LEVEL_HIDE_MINIMIZED_APPS_SUPPORTED

Set to 1 if the client/server supports
hiding minimized windows of Remote
Programs on the server; set to 0
otherwise. This flag MUST be set to 0 if
TS_RAIL_LEVEL_SUPPORTED is 0.

K

TS_RAIL_LEVEL_WINDOW_CLOAKING_SUPPORTED

Set to 1 if the client/server supports
syncing per-window cloak state changes
originating on the client for Remote
Programs; set to 0 otherwise. This flag
MUST be set to 0 if
TS_RAIL_LEVEL_SUPPORTED is 0.

2.2.1.1.2 Window List Capability Set

The Window List Capability Set is sent by the server in the Demand Active PDU and by the client in the
Confirm Active PDU, as specified in [MS-RDPBCGR] section 2.2.1.13. It indicates that the client and

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

19 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

server are capable of communicating Windowing Alternate Secondary Drawing Orders as extensions to
the core RDP protocol drawing orders (see section 2.2.1.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CapabilitySetType LengthCapability

WndSupportLevel

NumIconCaches NumIconCacheEntries

CapabilitySetType (2 bytes): An unsigned 16-bit integer. The type of capability set. This field MUST

be set to 0x0018 (CAPSTYPE_WINDOW).

LengthCapability (2 bytes): An unsigned 16-bit integer. Specifies the combined length of the
CapabilitySetType, LengthCapability, WndSupportLevel, NumIconCaches, and

NumIconCacheEntries fields, in bytes.

WndSupportLevel (4 bytes): An unsigned 32-bit integer. The windowing support level. This field
MUST be set to one of the following values.<2>

Value Meaning

TS_WINDOW_LEVEL_NOT_SUPPORTED

0x00000000

The client or server is not capable of supporting Windowing
Alternate Secondary Drawing Orders.

TS_WINDOW_LEVEL_SUPPORTED

0x00000001

The client or server is capable of supporting Windowing Alternate

Secondary Drawing Orders.

TS_WINDOW_LEVEL_SUPPORTED_EX

0x00000002

The client or server is capable of supporting Windowing Alternate
Secondary Drawing Orders and the following flags:

 WINDOW_ORDER_FIELD_CLIENTAREASIZE

 WINDOW_ORDER_FIELD_RPCONTENT

 WINDOW_ORDER_FIELD_ROOTPARENT

NumIconCaches (1 byte): An unsigned 8-bit integer. The number of icon caches requested by the
server (Demand Active PDU) or supported by the client (Confirm Active PDU).

The server maintains an icon cache and refers to it to avoid sending duplicate icon information
(see section 2.2.1.3.1.2.3). The client also maintains an icon cache and refers to it when the
server sends across a Cached Icon Window Information Order.

NumIconCacheEntries (2 bytes): An unsigned 16-bit integer. The number of entries within each
icon cache requested by the server (Demand Active PDU) or supported by the client (Confirm

Active PDU).

The server maintains an icon cache and refers to it to avoid sending duplicate icon information

(see section 2.2.1.3.1.2.3). The client also maintains an icon cache and refers to it when the
server sends across a Cached Icon Window Information Order.

2.2.1.2 Common Structures

2.2.1.2.1 Unicode String (UNICODE_STRING)

20 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The UNICODE_STRING packet is used to pack a variable-length Unicode string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CbString String (variable)

...

CbString (2 bytes): An unsigned 16-bit integer. The number of bytes in the String field. If CbString
is zero (0), then the String field is absent. The maximum allowed value for CbString depends on

the context in which the string is used.

String (variable): Optional and of variable length. A non-null-terminated Unicode character string.
The number of characters in the string is equal to the value of CbString divided by 2.

2.2.1.2.2 Rectangle (TS_RECTANGLE_16)

The TS_RECTANGLE_16 structure describes a rectangle by using its top-left and bottom-right
coordinates. The units depend on the context in which this structure is used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Left Top

Right Bottom

Left (2 bytes): An unsigned 16-bit integer. The x-coordinate of the rectangle's top-left corner.

Top (2 bytes): An unsigned 16-bit integer. The y-coordinate of the rectangle's top-left corner.

Right (2 bytes): An unsigned 16-bit integer. The x-coordinate of the rectangle's bottom-right corner.

Bottom (2 bytes): An unsigned 16-bit integer. The y-coordinate of the rectangle's bottom-right
corner.

2.2.1.2.3 Icon Info (TS_ICON_INFO)

The TS_ICON_INFO packet describes an icon.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CacheEntry CacheId Bpp

Width Height

CbColorTable (optional) CbBitsMask

CbBitsColor BitsMask (variable)

...

21 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ColorTable (variable)

...

BitsColor (variable)

...

CacheEntry (2 bytes): An unsigned 16-bit integer. The index within an icon cache at which this icon
MUST be stored at the client. The index is unique within a given CacheId (see following
description). The maximum value of CacheEntry is negotiated between server and client through

the NumIconCacheEntries field of the Window List Capability Set during the connection
establishment phase.

CacheId (1 byte): An unsigned 8-bit integer. The index of the icon cache at which this icon MUST be
stored at the client. If the value is 0xFFFF, the icon SHOULD NOT be cached. The CacheId is

unique within a remote session.

The maximum value of CacheId is negotiated between server and client through the

NumIconCaches field of the Window List Capability Set while establishing the connection.

Bpp (1 byte): An unsigned 8-bit integer. The color depth of the icon. Valid values are as follows:

1, 4, 8, 16, 24, 32.

Width (2 bytes): An unsigned 16-bit integer. The width, in pixels, of the icon.

Height (2 bytes): An unsigned 16-bit integer. The height, in pixels, of the icon.

CbColorTable (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the color table data. This
field is ONLY present if the bits per pixel (Bpp) value is 1, 4, or 8.

CbBitsMask (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the icon's one-bit color-
depth mask image.

CbBitsColor (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the icon's color image.

BitsMask (variable): The image data for the 1-bpp bitmap. The length, in bytes, of this field is equal
to the value of CbBitsMask. This field is optional.

ColorTable (variable): The image data for the color bitmap. The length, in bytes, of this field is
equal to the value of CbColorTable. This field is only present if the Bpp value is 1, 4, or 8.

BitsColor (variable): The image data for the icon's color image. The length, in bytes, of this field is
equal to the value of CbBitsColor. This field is optional.

2.2.1.2.4 Cached Icon Info (TS_CACHED_ICON_INFO)

The TS_CACHED_ICON_INFO packet describes a cached icon.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CacheEntry CacheId

CacheEntry (2 bytes): An unsigned 16-bit integer. The index within an icon cache at the client that
refers to the cached icon. This value MUST have been previously specified by the server in the

22 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Icon Info structure (section 2.2.1.2.3) of a Window Information Order (section 2.2.1.3.1) or
Icon structure of a New or Existing Notification Icon (section 2.2.1.3.2.2.1).

CacheId (1 byte): An unsigned 8-bit integer. The index of the icon cache containing the cached icon.
This value MUST have been previously specified by the server in the Icon Info structure of a

Window Information Order or Icon structure of a New or Existing Notification Icon.

2.2.1.3 Windowing Alternate Secondary Drawing Orders

2.2.1.3.1 Window Information

Window Information Orders specify the state of windows on the server.

2.2.1.3.1.1 Common Header (TS_WINDOW_ORDER_HEADER)

The TS_WINDOW_ORDER_HEADER packet contains information common to every Windowing
Alternate Secondary Drawing Order describing a window.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header OrderSize FieldsPresentFlags

... WindowId

...

Header (1 byte): An unsigned 8-bit integer. An Alternate Secondary Order Header, as specified in
[MS-RDPEGDI] section 2.2.2.2.1.3.1.1. The embedded orderType field MUST be set to 0x0B
(TS_ALTSEC_WINDOW).

OrderSize (2 bytes): An unsigned 16-bit integer. The size of the entire packet, in bytes.

FieldsPresentFlags (4 bytes): An unsigned 32-bit integer. The flags indicating which fields are
present in the packet. See Orders.

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window being described in the

drawing order. It is generated by the server and is unique for every window in the session.

2.2.1.3.1.2 Orders

2.2.1.3.1.2.1 New or Existing Window

A Window Information Order is generated by the server whenever a new window is created on the
server or when a property on a new or existing window is updated.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

...

...
OwnerWindowId

(optional)

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

23 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

... Style (optional)

... ExtendedStyle (optional)

... ShowState (optional)

TitleInfo (variable)

...

ClientOffsetX (optional)

ClientOffsetY (optional)

ClientAreaWidth (optional)

ClientAreaHeight (optional)

WindowLeftResizeMargin (optional)

WindowRightResizeMargin (optional)

WindowTopResizeMargin (optional)

WindowBottomResizeMargin (optional)

RPContent (optional) RootParentHandle (optional)

... WindowOffsetX (optional)

... WindowOffsetY (optional)

... WindowClientDeltaX (optional)

... WindowClientDeltaY (optional)

... WindowWidth (optional)

... WindowHeight (optional)

... NumWindowRects (optional) WindowRects (variable)

...

VisibleOffsetX (optional)

VisibleOffsetY (optional)

NumVisibilityRects (optional) VisibilityRects (variable)

24 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

AppBarState (optional) AppBarEdge (optional)

Hdr (11 bytes): Eleven bytes. Common Window AltSec Order header,
TS_WINDOW_ORDER_HEADER. The FieldsPresentFlags field of the header MUST conform to the
values defined as follows.

Value Meaning

0x01000000

WINDOW_ORDER_TYPE_WINDOW

Indicates a Windowing Alternate Secondary Drawing
Order describing a window. This flag MUST be set.

0x10000000

WINDOW_ORDER_STATE_NEW

Indicates that the Windowing Alternate Secondary
Drawing Order contains information for a new window. If
this flag is not set, the order contains information for an
existing window.

0x00000002

WINDOW_ORDER_FIELD_OWNER

Indicates that the OwnerWindowId field is present.

0x00000008

WINDOW_ORDER_FIELD_STYLE

Indicates that the Style and ExtendedStyle fields are
present.

0x00000010

WINDOW_ORDER_FIELD_SHOW

Indicates that the ShowState field is present.

0x00000004

WINDOW_ORDER_FIELD_TITLE

Indicates that the TitleInfo field is present.

0x00004000

WINDOW_ORDER_FIELD_CLIENTAREAOFFSET

Indicates that the ClientOffsetX and ClientOffsetY
fields are present.

0x00010000

WINDOW_ORDER_FIELD_CLIENTAREASIZE

Indicates that the ClientAreaWidth and
ClientAreaHeight fields are present.<3>

0x00000080

WINDOW_ORDER_FIELD_RESIZE_MARGIN_X

Indicates that the WindowLeftResizeMargin and
WindowRightResizeMargin fields are present.

0x08000000

WINDOW_ORDER_FIELD_RESIZE_MARGIN_Y

Indicates that the WindowTopResizeMargin and
WindowBottomResizeMargin fields are present.

0x00020000

WINDOW_ORDER_FIELD_RPCONTENT

Indicates that the RPContent field is present. <4>

0x00040000

WINDOW_ORDER_FIELD_ROOTPARENT

Indicates that the RootParentHandle field is present.
<5>

0x00000800

WINDOW_ORDER_FIELD_WNDOFFSET

Indicates that the WindowOffsetX and WindowOffsetY
fields are present.

0x00008000

WINDOW_ORDER_FIELD_CLIENTDELTA

Indicates that the WindowClientDeltaX and
WindowClientDeltaY fields are present.

0x00000400

WINDOW_ORDER_FIELD_WNDSIZE

Indicates that the WindowWidth and WindowHeight
fields are present.

0x00000100 Indicates that the NumWindowRects and

25 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

WINDOW_ORDER_FIELD_WNDRECTS WindowRects fields are present.

0x00001000

WINDOW_ORDER_FIELD_VISOFFSET

Indicates that the VisibleOffsetX and VisibleOffsetY
fields are present.

0x00000200

WINDOW_ORDER_FIELD_VISIBILITY

Indicates that the NumVisibilityRects and
VisibilityRects fields are present.

0x00000040

WINDOW_ORDER_FIELD_APPBAR_STATE

Indicates that the AppBarState field is present.

0x00000001

WINDOW_ORDER_FIELD_APPBAR_EDGE

Indicates that the AppBarEdge field is present.

OwnerWindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that is

the owner of the window specified in WindowId field of Hdr. For more information on owned

windows, see [MSDN-WINFEATURE]. This field is present if and only if the
WINDOW_ORDER_FIELD_OWNER flag is set in the FieldsPresentFlags field of
TS_WINDOW_ORDER_HEADER.

Style (4 bytes): An unsigned 32-bit integer. Describes the window's current style. Window styles
determine the appearance and behavior of a window. For more information, see [MSDN-
WINSTYLE]. This field is present if and only if the WINDOW_ORDER_FIELD_STYLE flag is set in the

FieldsPresentFlags field of the TS_WINDOW_ORDER_HEADER.

ExtendedStyle (4 bytes): An unsigned 32-bit integer. Extended window style information. For more
information about extended window styles, see [MSDN-CREATEWINEX].

This field is present if and only if the WINDOW_ORDER_FIELD_STYLE flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

ShowState (1 byte): An unsigned 8-bit integer. Describes the show state of the window.

This field is present if and only if the WINDOW_ORDER_FIELD_SHOW flag is set in the

FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

The field MUST be one of the following values.

Value Meaning

0x00 Do not show the window.

0x02 Show the window minimized.

0x03 Show the window maximized.

0x05 Show the window in its current size and position.

TitleInfo (variable): UNICODE_STRING. Variable length. Contains the window's title string. The
maximum value for the CbString field of UNICODE_STRING is 520 bytes. This structure is present
only if the WINDOW_ORDER_FIELD_TITLE flag is set in the FieldsPresentFlags field of
TS_WINDOW_ORDER_HEADER.

ClientOffsetX (4 bytes): A 32-bit signed integer. The X (horizontal) offset from the top-left corner of

the screen to the top-left corner of the window's client area, expressed in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_CLIENTAREAOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

https://go.microsoft.com/fwlink/?LinkId=90162
https://go.microsoft.com/fwlink/?LinkId=90166
https://go.microsoft.com/fwlink/?LinkId=90166
https://go.microsoft.com/fwlink/?LinkId=89982

26 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ClientOffsetY (4 bytes): A 32-bit signed integer. The Y (vertical) offset from the top-left corner of
the screen to the top-left corner of the window's client area, expressed in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_CLIENTAREAOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

ClientAreaWidth (4 bytes): An unsigned 32-bit integer specifying the width of the client area
rectangle of the target window.

This field only appears if the WndSupportLevel field of the Window List Capability Set message is
set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and the
WINDOW_ORDER_FIELD_CLIENTAREASIZE flag is set in the FieldsPresentFlags field of the
TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

ClientAreaHeight (4 bytes): An unsigned 32-bit integer specifying the height of the client area

rectangle of the target window.

This field only appears if the WndSupportLevel field of the Window List Capability Set message is
set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and the Hdr field

has the WINDOW_ORDER_FIELD_CLIENTAREASIZE flag is set in the FieldsPresentFlags field of
the TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

WindowLeftResizeMargin (4 bytes): An unsigned 32-bit integer specifying the width of the

transparent hit-testable margin along the left edge of the window. Any mouse, pen, or touch input
within this margin SHOULD be sent to the server.

This field is present only if the WINDOW_ORDER_FIELD_RESIZE_MARGIN_X flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowRightResizeMargin (4 bytes): An unsigned 32-bit integer specifying the width of the
transparent hit-testable margin along the right edge of the window. Any mouse, pen or touch
input within this margin SHOULD be sent to the server.

This field is present only if the WINDOW_ORDER_FIELD_ RESIZE_MARGIN_X flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowTopResizeMargin (4 bytes): An unsigned 32-bit integer specifying the height of the
transparent hit-testable margin along the top edge of the window. Any mouse, pen or touch input
within this margin SHOULD be sent to the server.

This field is present only if the WINDOW_ORDER_FIELD_ RESIZE_MARGIN_Y flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowBottomResizeMargin (4 bytes): An unsigned 32-bit integer specifying the height of the
transparent hit-testable margin along the bottom edge of the window. Any mouse, pen or touch
input within this margin SHOULD be sent to the server.

This field is present only if the WINDOW_ORDER_FIELD_ RESIZE_MARGIN_Y flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

If the WINDOW_ORDER_FIELD_ RESIZE_MARGIN_X flag is present, then the

WINDOW_ORDER_FIELD_ RESIZE_MARGIN_Y SHOULD be present and vice versa.

RPContent (1 byte): An unsigned BYTE that MUST be set to one of the following possible values.

Value Meaning

0x00 The window is not used by a render plug-in to do client-side rendering.

0x01 The window is used by a render plug-in to do client-side rendering.

27 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This field only appears if the WndSupportLevel field of the Window List Capability Set message is
set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and the Hdr field

has the WINDOW_ORDER_FIELD_RPCONTENT flag is set in the FieldsPresentFlags field of the
TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

RootParentHandle (4 bytes): An unsigned 32-bit integer specifying the server-side target window's
top-level parent window handle. A Top-Level parent window is the window immediately below
"desktop" in the window hierarchy. If the target window is a top-level window, the window handle
of the target window is sent.

This field only appears if the WndSupportLevel field of the Window List Capability Set message is
set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and the Hdr field
has the WINDOW_ORDER_FIELD_ROOTPARENT flag is set in the FieldsPresentFlags field of the

TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

WindowOffsetX (4 bytes): A 32-bit signed integer. The X (horizontal) offset from the top-left corner
of the window to the top-left corner of the window's client area, expressed in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowOffsetY (4 bytes): A 32-bit signed integer. The Y (vertical) offset from the top-left corner of

the window to the top-left corner of the window's client area, expressed in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowClientDeltaX (4 bytes): A 32-bit signed integer. The X (horizontal) delta between the top-
left corner of the window and the window's client area.

This field is present only if the WINDOW_ORDER_FIELD_CLIENTDELTA flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowClientDeltaY (4 bytes): A 32-bit signed integer. The Y (vertical) delta between the top-left
corner of the window and the window's client area.

This field is present only if the WINDOW_ORDER_FIELD_CLIENTDELTA flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowWidth (4 bytes): An unsigned 32-bit integer. The window width, in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDSIZE flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowHeight (4 bytes): An unsigned 32-bit integer. The window height, in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDSIZE flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

NumWindowRects (2 bytes): An unsigned 16-bit integer. A count of rectangles describing the
window geometry.

This field is present only if the WINDOW_ORDER_FIELD_WNDRECTS flag is set in the

FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowRects (variable): An array of TS_RECTANGLE_16 structures, NumWindowRects wide,
describing the window geometry. All coordinates are window coordinates.

This field is present only if the NumWindowRects field is greater than 0 and the
WINDOW_ORDER_FIELD_WNDRECTS flag is set in the FieldsPresentFlags field of
TS_WINDOW_ORDER_HEADER.

28 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VisibleOffsetX (4 bytes): A 32-bit signed integer. The X (horizontal) offset from the top-left corner
of the screen to the top-left corner of the window visible region's bounding rectangle,

expressed in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_VISOFFSET flag is set in the

FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

VisibleOffsetY (4 bytes): A 32-bit signed integer. The Y (vertical) offset from the top-left corner of
the screen to the top-left corner of the window visible region's bounding rectangle, expressed in
screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_VISOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

NumVisibilityRects (2 bytes): An unsigned 16-bit integer. A count of rectangles describing the

window visible region.

This field is present only if the WINDOW_ORDER_FIELD_VISIBILITY flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

VisibilityRects (variable): An array of TS_RECTANGLE_16 structures, NumVisibilityRects wide,
describing the window visible region. All coordinates are window coordinates.

This field is present only if the value of the NumVisibilityRects field is greater than 0 and the

WINDOW_ORDER_FIELD_VISIBILITY flag is set in the FieldsPresentFlags field of
TS_WINDOW_ORDER_HEADER.

AppBarState (1 byte, optional): An 8-bit unsigned integer. If this field is set to 0x01, then the
window SHOULD be registered as an application desktop toolbar. If this field is set to 0x00, then
the application desktop toolbar SHOULD be deregistered.

This field is present only if the WINDOW_ORDER_FIELD_APPBAR_STATE flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

AppBarEdge (1 byte, optional): An 8-bit unsigned integer. The value of this field indicates the edge

to which the application desktop toolbar SHOULD be anchored. This field MUST be set to one of
the following possible values.

Value Meaning

0x00 Anchor to the left edge.

0x01 Anchor to the top edge.

0x02 Anchor to the right edge.

0x03 Anchor to the bottom edge.

This field is present only if the WINDOW_ORDER_FIELD_APPBAR_EDGE flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

2.2.1.3.1.2.2 Window Icon

The Window Icon packet is a Window Information Order generated by the server when a new or
existing window sets or updates its associated icon.

Icons are created by combining two bitmaps of the same size. The mask bitmap is always 1 bpp,
although the color depth of the color bitmap can vary. The color bitmap can have an associated color
table.

29 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

...

... IconInfo (variable)

...

Hdr (11 bytes): Eleven bytes. A TS_WINDOW_ORDER_HEADER structure. The FieldsPresentFlags
field of the header MUST be constructed using the following values.

Value Meaning

0x01000000

WINDOW_ORDER_TYPE_WINDOW

Indicates a Windowing Alternate Secondary Drawing Order that
describes a window. This flag MUST be set.

0x10000000

WINDOW_ORDER_STATE_NEW

Indicates that the Windowing Alternate Secondary Drawing Order
contains information for a new window. If this flag is not set, the
order contains information for an existing window.

0x40000000

WINDOW_ORDER_ICON

Indicates that the order contains icon information for the window. This
flag MUST be set.

0x00002000

WINDOW_ORDER_FIELD_ICON_BIG

Indicates that the large version of the icon is being sent. If this flag is
not present, the icon is a small icon. <6>

IconInfo (variable): Variable length. TS_ICON_INFO structure. Describes the window's icon.

2.2.1.3.1.2.3 Cached Icon

The Cached Icon Window Information Order is generated by the server when a new or existing window
sets or updates the icon in its title bar or in the Alt-Tab dialog box. If the icon information was
transmitted by the server in a previous Window Information Order or Notification Icon Information
Order in the same session, and the icon was cacheable (that is, the server specified a cacheEntry and

cacheId for the icon), the server reports the icon cache entries to avoid sending duplicate information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

...

... CachedIcon

...

Hdr (11 bytes): Eleven bytes. A TS_WINDOW_ORDER_HEADER structure. The FieldsPresentFlags
field of the header MUST conform to the values defined as follows.

30 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Description

WINDOW_ORDER_TYPE_WINDOW

0x01000000

Indicates a Windowing Alternate Secondary Drawing Order that
describes a window. This flag MUST be set.

WINDOW_ORDER_STATE_NEW

0x10000000

Indicates that the Windowing Alternate Secondary Drawing Order
contains information for a new window. If this flag is not set, the
order contains information for an existing window.

WINDOW_ORDER_CACHEDICON

0x80000000

Indicates that the order contains cached icon information for the
window. This flag MUST be set.

WINDOW_ORDER_FIELD_ICON_BIG

0x00002000

Indicates that the large version of the icon is being referred to. If this
flag is not present, the icon is a small icon. <7>

CachedIcon (3 bytes): Three bytes. TS_CACHED ICON_INFO structure. Describes a cached icon on
the client.

2.2.1.3.1.2.4 Deleted Window

The Deleted Window Information Order is generated by the server whenever an existing window is
destroyed on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

...

...

Hdr (11 bytes): Eleven bytes. A TS_WINDOW_ORDER_HEADER structure. The FieldsPresentFlags
field of the header MUST be constructed using the following values.

Value Meaning

0x01000000

WINDOW_ORDER_TYPE_WINDOW

Indicates a Windowing Alternate Secondary Drawing Order describing
a window. This flag MUST be set.

0x20000000

WINDOW_ORDER_STATE_DELETED

Indicates that the window is deleted. If this flag is set, the order MUST
NOT contain any other information.

2.2.1.3.2 Notification Icon Information

Notification Icon Information orders specify the state of the notification icon on the server.

2.2.1.3.2.1 Common Header (TS_NOTIFYICON_ORDER_HEADER)

The TS_NOTIFYICON_ORDER_HEADER packet contains information common to every Windowing
Alternate Secondary Drawing Order specifying a notification icon.

31 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header OrderSize FieldsPresentFlags

... WindowId

... NotifyIconId

...

Header (1 byte): An unsigned 8-bit integer. An Alternate Secondary Order Header, as specified in
[MS-RDPEGDI] section 2.2.2.2.1.3.1.1. The embedded orderType field MUST be set to 0x0B
(TS_ALTSEC_WINDOW).

OrderSize (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the entire packet.

FieldsPresentFlags (4 bytes): An unsigned 32-bit integer. The flags indicating which fields are
present in the packet. See New or Existing Notification Icons.

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window owning the notification icon
specified in the drawing order. The ID is generated by the server and is unique for every window
in the session.

NotifyIconId (4 bytes): An unsigned 32-bit integer. The ID of the notification icon specified in the
drawing order. The ID is generated by the application that owns the notification icon and SHOULD
be unique for every notification icon owned by the application.

2.2.1.3.2.2 Orders

2.2.1.3.2.2.1 New or Existing Notification Icons

The Notification Icon Information Order packet is generated by the server whenever a new
notification icon is created on the server or when an existing notification icon is updated.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr (15 bytes)

...

...

... Version (optional)

... ToolTip (variable)

...

InfoTip (variable)

...

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

32 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

State (optional)

Icon (variable)

...

CachedIcon (optional)

Hdr (15 bytes): A TS_NOTIFYICON_ORDER_HEADER structure. Common AltSec Order header. The
FieldsPresentFlags field of the header MUST conform to the values defined as follows.

Value Meaning

WINDOW_ORDER_TYPE_NOTIFY

0x02000000

Indicates a Windowing Alternate Secondary Drawing Order
specifying a notification icon. This flag MUST be set.

WINDOW_ORDER_STATE_NEW

0x10000000

Indicates that the Windowing Alternate Secondary Drawing
Order contains information for a new notification icon. If this
flag is set, one of the Icon and CachedIcon fields MUST be

present. If this flag is not set, the Windowing Alternate
Secondary Drawing Order contains information for an existing
notification icon.

WINDOW_ORDER_FIELD_NOTIFY_VERSION

0x00000008

Indicates that the Version field is present.

WINDOW_ORDER_FIELD_NOTIFY_TIP

0x00000001

Indicates that the ToolTip field is present.

WINDOW_ORDER_FIELD_NOTIFY_INFO_TIP

0x00000002

Indicates that the InfoTip field is present.

WINDOW_ORDER_FIELD_NOTIFY_STATE

0x00000004

Indicates that the State field is present.

WINDOW_ORDER_ICON

0x40000000

Indicates that the Icon field is present. Either the Icon or the
CachedIcon field SHOULD be present, but not both.

WINDOW_ORDER_CACHED_ICON

0x80000000

Indicates that the CachedIcon field is present. Either the
Icon or the CachedIcon field SHOULD be present, but not
both. <8>

Version (4 bytes): An unsigned 32-bit integer. Specifies the behavior of the notification icons. This
field is present only if the WINDOW_ORDER_FIELD_NOTIFY_VERSION flag is set in the
FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER. This field MUST be set to one of

the following values.

Value Meaning

0 Use this value for applications designed for Windows NT 4.0 operating system.

3 Use the Windows 2000 operating system notification icons behavior. Use this value for applications
designed for Windows 2000 and Windows XP operating system.

4 Use the current behavior. Use this value for applications designed for Windows Vista operating
system and Windows 7 operating system.

For more information about notification icons, see [MSDN-SHELLNOTIFY], the Remarks section.

https://go.microsoft.com/fwlink/?LinkId=90132

33 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ToolTip (variable): Variable length. UNICODE_STRING. Specifies the text of the notification icon
tooltip. This structure is present only if the WINDOW_ORDER_FIELD_NOTIFY_TIP flag is set in the

FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER.

InfoTip (variable): Variable length. A TS_NOTIFY_ICON_INFOTIP structure. Specifies the notification

icon’s balloon tooltip. This field SHOULD NOT be present for icons that follow Windows 95
operating system behavior (Version = 0). This structure is present only if the
WINDOW_ORDER_FIELD_NOTIFY_INFO_TIP flag is set in the FieldsPresentFlags field of
TS_NOTIFYICON_ORDER_HEADER.

State (4 bytes): Unsigned 32-bit integer. Specifies the state of the notification icon. This field
SHOULD NOT be present for icons that follow Windows 95 behavior (Version = 0).

This field is present only if the WINDOW_ORDER_FIELD_NOTIFY_STATE flag is set in the

FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER.

Value Meaning

1 The notification icon is hidden.

Icon (variable): Variable length. A TS_ICON_INFO structure. Specifies the notification icon’s image.
This structure is present only if the WINDOW_ORDER_ICON flag is set in the FieldsPresentFlags
field of TS_NOTIFYICON_ORDER_HEADER.

A Notification Icon Order MUST NOT contain both an Icon field and a CachedIcon field. If the
WINDOW_ORDER_STATE_NEW flag is set, either the Icon field or the CachedIcon field MUST be
present.

CachedIcon (3 bytes): Three bytes. A TS_CACHED_ICON_INFO structure. Specifies the notification
icon as a cached icon on the client.

This structure is present only if the WINDOW_ORDER_CACHEDICON flag is set in the
FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER. Only one of Icon and
CachedIcon fields SHOULD be present in the Notification Icon Order. If the

WINDOW_ORDER_STATE_NEW flag is set, only one of these fields MUST be present.

2.2.1.3.2.2.2 Deleted Notification Icons

The server generates a Notification Icon Information (section 2.2.1.3.2) order packet whenever an
existing notification icon is deleted on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr (15 bytes)

...

...

...

Hdr (15 bytes): A TS_NOTIFYICON_ORDER_HEADER (section 2.2.1.3.2.1) structure. The
FieldsPresentFlags field of the header MUST be constructed using the following values.

34 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x02000000

WINDOW_ORDER_TYPE_NOTIFY

Indicates an order specifying a notification icon. This flag MUST be
set.

0x20000000

WINDOW_ORDER_STATE_DELETED

Indicates that the window is deleted. This flag MUST be set, and the
order MUST NOT contain any other information.

2.2.1.3.2.2.3 Notification Icon Balloon Tooltip (TS_NOTIFY_ICON_INFOTIP)

The TS_NOTIFY_ICON_INFOTIP structure specifies the balloon tooltip of a notification icon.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timeout

InfoFlags

InfoTipText (variable)

...

Title (variable)

...

Timeout (4 bytes): An unsigned 32-bit integer. The timeout in milliseconds for the notification icon’s
balloon tooltip. After the specified timeout, the tooltip SHOULD be destroyed. <9>

InfoFlags (4 bytes): An unsigned 32-bit integer. The flags that can be set to add an icon to a
balloon tooltip. It is placed to the left of the title. If the InfoTipText field length is zero-length,

the icon is not shown.

Value Meaning

NIIF_NONE

0x00000000

Do not show an icon.

NIIF_INFO

0x00000001

Show an informational icon next to the balloon tooltip text.

NIIF_WARNING

0x00000002

Show a warning icon next to the balloon tooltip text.

NIIF_ERROR

0x00000003

Show an error icon next to the balloon tooltip text.

NIIF_NOSOUND

0x00000010

Do not play an associated sound.

NIIF_LARGE_ICON

0x00000020

Show the large version of the icon.

35 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

InfoTipText (variable): Variable length. A UNICODE_STRING specifying the text of the balloon
tooltip. The maximum length of the tooltip text string is 510 bytes.

Title (variable): Variable length. A UNICODE_STRING specifying the title of the balloon tooltip. The
maximum length of the tooltip title string is 126 bytes.

2.2.1.3.3 Desktop Information

Desktop Information Orders specify the state of the desktop on the server.

2.2.1.3.3.1 Common Header (TS_DESKTOP_ORDER_HEADER)

The TS_DESKTOP_ORDER_HEADER packet contains information common to every order specifying the
desktop.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header OrderSize FieldsPresentFlags

...

Header (1 byte): An unsigned 8-bit integer. An Alternate Secondary Order Header, as specified in
[MS-RDPEGDI] section 2.2.2.2.1.3.1.1. The embedded orderType field MUST be set to 0x0B
(TS_ALTSEC_WINDOW).

OrderSize (2 bytes): An unsigned 16-bit integer. The size of the entire packet in bytes.

FieldsPresentFlags (4 bytes): An unsigned 32-bit integer. The flags indicating which fields are

present in the packet. See Actively Monitored Desktop for values and use.

2.2.1.3.3.2 Orders

2.2.1.3.3.2.1 Actively Monitored Desktop

The Actively Monitored Desktop packet contains information about the actively monitored desktop.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

... ActiveWindowId (optional)

... NumWindowIds (optional)

WindowIds (variable)

...

Hdr (7 bytes): Seven bytes. A TS_DESKTOP_ORDER_HEADER header. The FieldsPresentFlags field
of the header MUST be constructed using the following values.

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

36 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x04000000

WINDOW_ORDER_TYPE_DESKTOP

Indicates an order specifying a desktop. This flag
MUST be set.

0x00000002

WINDOW_ORDER_FIELD_DESKTOP_HOOKED

Indicates that the server will be sending
information for the server's current input desktop.

0x00000008

WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN

Indicates that the server is beginning to
synchronize information with the client after the
client has auto-reconnected or the server has just
begun monitoring a new desktop. If this flag is set,
the WINDOW_ORDER_FIELD_DESKTOP_HOOKED
flag MUST also be set.

0x00000004

WINDOW_ORDER_FIELD_DESKTOP_ARC_COMPLETED

Indicates that the server has finished
synchronizing data after the client has auto-
reconnected or the server has just begun
monitoring a new desktop. The client SHOULD
assume that any window or shell notification
icon not received during the synchronization is
discarded. This flag MUST only be combined with
the WINDOW_ORDER_TYPE_DESKTOP flag.

0x00000020

WINDOW_ORDER_FIELD_DESKTOP_ACTIVEWND

Indicates that the ActiveWindowId field is
present.

0x00000010

WINDOW_ORDER_FIELD_DESKTOP_ZORDER

Indicates that the NumWindowIds field is
present. If the NumWindowIds field has a value
greater than 0, the WindowIds field MUST also
be present.

ActiveWindowId (4 bytes): Optional. An unsigned 32-bit integer. The ID of the currently active
window on the server. This field is present if and only if the
WINDOW_ORDER_FIELD_DESKTOP_ACTIVEWND flag is set in the FieldsPresentFlags field of the

TS_DESKTOP_ORDER_HEADER packet (section 2.2.1.3.3.1).

NumWindowIds (1 byte): Optional. An unsigned 8-bit integer. The number of top-level windows on
the server. This field is present if and only if the WINDOW_ORDER_FIELD_DESKTOP_ZORDER flag
is set in the FieldsPresentFlags field of the TS_DESKTOP_ORDER_HEADER packet (section
2.2.1.3.3.1).

WindowIds (variable): Variable length. An array of 4-byte window IDs, corresponding to the IDs of
the top-level windows on the server, ordered by their Z-order on the server. The number of

window IDs in the array is equal to the value of the NumWindowIds field.

This field is present if and only if the NumWindowIds field is greater than 0 and the
WINDOW_ORDER_FIELD_DESKTOP_ZORDER flag is set in the FieldsPresentFlags field of the
TS_DESKTOP_ORDER_HEADER packet (section 2.2.1.3.3.1).

2.2.1.3.3.2.2 Non-Monitored Desktop

The Non-Monitored Desktop packet is generated by the server when it is not actively monitoring the

current desktop on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

37 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

Hdr (7 bytes): Seven bytes. A TS_DESKTOP_ORDER_HEADER header. The FieldsPresentFlags field
of the header MUST be constructed using the following values.

Value Meaning

0x04000000

WINDOW_ORDER_TYPE_DESKTOP

Indicates an order specifying a desktop. This flag MUST be set.

0x00000001

WINDOW_ORDER_FIELD_DESKTOP_NONE

Indicates that the server will not be sending information for the
server's current input desktop. This flag MUST be set.

2.2.2 Static Virtual Channel Protocol

The RAIL Static Virtual Channel (named "RAIL") is responsible for communicating non–RDP specific
data between the RAIL client and server. The following sections outline the messages that are
transmitted over the virtual channel.

2.2.2.1 Common Header (TS_RAIL_PDU_HEADER)

The TS_RAIL_PDU_HEADER packet contains information common to every RAIL Virtual Channel PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

orderType orderLength

orderType (2 bytes): An unsigned 16-bit integer. The type of the Virtual Channel message; MUST be
set to one of the following values.

Value Meaning

TS_RAIL_ORDER_EXEC

0x0001

Indicates a Client Execute PDU from client to server.

TS_RAIL_ORDER_ACTIVATE

0x0002

Indicates a Client Activate PDU from client to server.

TS_RAIL_ORDER_SYSPARAM

0x0003

Indicates a Client System Parameters Update PDU from client to
server or a Server System Parameters Update PDU from server to
client.

TS_RAIL_ORDER_SYSCOMMAND

0x0004

Indicates a Client System Command PDU from client to server.

TS_RAIL_ORDER_HANDSHAKE

0x0005

Indicates a bi-directional Handshake PDU.

TS_RAIL_ORDER_NOTIFY_EVENT

0x0006

Indicates a Client Notify Event PDU from client to server.

TS_RAIL_ORDER_WINDOWMOVE Indicates a Client Window Move PDU from client to server.

38 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x0008

TS_RAIL_ORDER_LOCALMOVESIZE

0x0009

Indicates a Server Move/Size Start PDU and a Server Move/Size
End PDU from server to client.

TS_RAIL_ORDER_MINMAXINFO

0x000a

Indicates a Server Min Max Info PDU from server to client.

TS_RAIL_ORDER_CLIENTSTATUS

0x000b

Indicates a Client Information PDU from client to server.

TS_RAIL_ORDER_SYSMENU

0x000c

Indicates a Client System Menu PDU from client to server.

TS_RAIL_ORDER_LANGBARINFO

0x000d

Indicates a Server Language Bar Information PDU from server to
client, or a Client Language Bar Information PDU from client to

server.

TS_RAIL_ORDER_EXEC_RESULT

0x0080

Indicates a Server Execute Result PDU from server to client.

TS_RAIL_ORDER_GET_APPID_REQ

0x000E

Indicates a Client Get Application ID PDU from client to server.

TS_RAIL_ORDER_GET_APPID_RESP

0x000F

Indicates a Server Get Application ID Response PDU from server to
client.

TS_RAIL_ORDER_LANGUAGEIMEINFO

0x0011

Indicates a Language Profile Information PDU from client to server

TS_RAIL_ORDER_COMPARTMENTINFO

0x0012

Indicates a bi-directional Compartment Status Information PDU.

TS_RAIL_ORDER_HANDSHAKE_EX

0x0013

Indicates a HandshakeEx PDU from server to client.

TS_RAIL_ORDER_ZORDER_SYNC

0x0014

Indicates a Server Z-Order Sync Information PDU from server to
client.

TS_RAIL_ORDER_CLOAK

0x0015

Indicates a Window Cloak State Change PDU from client to server.

orderLength (2 bytes): An unsigned 16-bit integer. The length of the Virtual Channel PDU, in bytes.

2.2.2.2 Initialization Messages

Initialization messages are exchanged between client and server at the start of a RAIL session.

2.2.2.2.1 Handshake PDU (TS_RAIL_ORDER_HANDSHAKE)

The Handshake PDU is exchanged between the server and the client to establish that both endpoints
are ready to begin RAIL mode. The server sends the Handshake PDU and the client responds with the
Handshake PDU.

39 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

buildNumber

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST be
set to 0x0005 (TS_RAIL_ORDER_HANDSHAKE).

buildNumber (4 bytes): An unsigned 32-bit integer. The build or version of the sending party.

2.2.2.2.2 Client Information PDU (TS_RAIL_ORDER_CLIENTSTATUS)

The Client Information PDU is sent from client to server and contains information about RAIL client
state and features supported by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

Flags

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of header MUST be set

to 0x000b (TS_RAIL_ORDER_CLIENTSTATUS).

Flags (4 bytes): An unsigned 32-bit integer. RAIL features that are supported by the client; MUST be
set to one of the following.

Value Meaning

TS_RAIL_CLIENTSTATUS_ALLOWLOCALMOVESIZE

0x00000001

Indicates that the client supports the
local move/size RAIL feature.

TS_RAIL_CLIENTSTATUS_AUTORECONNECT

0x00000002

Indicates that the client is auto-
reconnecting to the server after an
unexpected disconnect of the session.

TS_RAIL_CLIENTSTATUS_ZORDER_SYNC

0x00000004

Indicates that the client supports Z-
order sync using the Z-Order Sync
Information PDU (section 2.2.2.11.1).

TS_RAIL_CLIENTSTATUS_WINDOW_RESIZE_MARGIN_SUPPORTED

0x00000010

Indicates that the client supports resize
margins using the Window Information
PDU (section 2.2.1.3.1).

TS_RAIL_CLIENTSTATUS_APPBAR_REMOTING_SUPPORTED

0x00000040

Indicates that the client supports
application desktop toolbar remoting
using the Window Information PDU
(section 2.2.1.3.1).

2.2.2.2.3 HandshakeEx PDU (TS_RAIL_ORDER_HANDSHAKE_EX)

40 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The HandshakeEx PDU is sent from the server to the client to signal that it is ready to begin Enhanced
RemoteApp mode. The server sends the HandshakeEx PDU, and the client responds with the

Handshake PDU (section 2.2.2.2.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

buildNumber

railHandshakeFlags

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST be
set to 0x0013 (TS_RAIL_ORDER_HANDSHAKE_EX).

buildNumber (4 bytes): An unsigned 32-bit integer. The build or version of the sending party.

railHandshakeFlags (4 bytes): An unsigned 32-bit integer. Flags for setting up RAIL session
parameters.

Flag Meaning

TS_RAIL_ORDER_HANDSHAKEEX_FLAGS_HIDEF

0x00000001

Indicates that Enhanced RemoteApp (section 1.3.3) is
supported. This implies support for the Remote Desktop
Protocol: Graphics Pipeline Extension ([MS-RDPEGFX]
section 1.5), specifically the
RDPGFX_MAP_SURFACE_TO_WINDOW_PDU ([MS-
RDPEGFX] section 2.2.2.20) message.

2.2.2.3 Program Launching Messages

2.2.2.3.1 Client Execute PDU (TS_RAIL_ORDER_EXEC)

The Client Execute PDU is sent from a client to a server to request that a remote application launch

on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

Flags ExeOrFileLength

WorkingDirLength ArgumentsLen

ExeOrFile (variable)

...

WorkingDir (variable)

%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0

41 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

Arguments (variable)

...

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST be
set to 0x0001 (TS_RAIL_ORDER_EXEC).

Flags (2 bytes): An unsigned 16-bit integer. Specifies a bit field of flags that indicate modifications to

the Client Execute PDU fields.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E 0 0 0 0 0 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

TS_RAIL_EXEC_FLAG_EXPAND_WORKINGDIRECTORY

The environment variables in the WorkingDir field
MUST be expanded on the server.

B

TS_RAIL_EXEC_FLAG_TRANSLATE_FILES

The drive letters in the file path MUST be converted
to corresponding mapped drives on the server. This
flag MUST NOT be set if the
TS_RAIL_EXEC_FLAG_FILE (0x0004) flag is not set.

C

TS_RAIL_EXEC_FLAG_FILE

If this flag is set, the ExeOrFile field refers to a file
path. If it is not set, the ExeOrFile field refers to an
executable.

D

TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS

The environment variables in the Arguments field
MUST be expanded on the server.

E

TS_RAIL_EXEC_FLAG_APP_USER_MODEL_ID

If this flag is set, the ExeOrFile field refers to an
application user model ID. If it is not set, the
ExeOrFile field refers to a file path. This flag MUST
be ignored if the TS_RAIL_EXEC_FLAG_FILE
(0x0004) flag is set. An application user model ID is
a string that uniquely identifies an application,
regardless of where the application is installed on
the operating system. The string can be used to
identify Windows Store applications as well as
desktop applications.

ExeOrFileLength (2 bytes): An unsigned 16-bit integer. Specifies the length of the ExeOrFile field

in bytes. The length MUST be nonzero. The maximum length is 520 bytes.

WorkingDirLength (2 bytes): An unsigned 16-bit integer. Specifies the length of the WorkingDir
field, in bytes. The minimum length is 0, and the maximum length is 520 bytes.

ArgumentsLen (2 bytes): An unsigned 16-bit integer. Specifies the length of the Arguments field,
in bytes. The minimum length is 0, and the maximum length is 16,000 bytes.<10>

ExeOrFile (variable): A non-null-terminated string of Unicode characters. Variable length. Specifies

the executable, file path, or application user model ID to be launched on the server. This field

42 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MUST be present. The maximum length of this field, including file path translations (see
TS_RAIL_EXEC_FLAG_TRANSLATE_FILES mask of Flags field), is 520 bytes.

WorkingDir (variable): Optional non-null-terminated string of Unicode characters. Variable length.
Specifies the working directory of the launched ExeOrFile field. If the WorkingDirLength field is

0, this field MUST NOT be present; otherwise, it MUST be present. The maximum length of this
field, including expanded environment variables (see
TS_RAIL_EXEC_FLAG_EXPAND_WORKINGDIRECTORY mask of Flags field), is 520 bytes.

Arguments (variable): Optional non-null-terminated string of Unicode characters. Variable length.
Specifies the arguments to the ExeOrFile field. If the ArgumentsLen field is 0, this field MUST
NOT be present; otherwise, it MUST be present. The maximum length of this field, including
expanded environment variables (see TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS mask of Flags

field), is 16,000 bytes.

2.2.2.3.2 Server Execute Result PDU (TS_RAIL_ORDER_EXEC_RESULT)

The Server Execute Result PDU is sent from server to client in response to a Client Execute PDU

request, and contains the result of the server's attempt to launch the requested executable.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

Flags ExecResult

RawResult

Padding ExeOrFileLength

ExeOrFile (variable)

...

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST be
set to TS_RAIL_ORDER_EXEC_RESULT (0x0080).

Flags (2 bytes): An unsigned 16-bit integer. Identical to the Flags field of the Client Execute PDU.
The server sets this field to enable the client to match the Client Execute PDU with the Server
Execute Result PDU.

ExecResult (2 bytes): An unsigned 16-bit integer. The result of the Client Execute PDU. This field
MUST be set to one of the following values.

Value Meaning

RAIL_EXEC_S_OK

0x0000

The Client Execute request was successful and the requested
application or file has been launched.

RAIL_EXEC_E_HOOK_NOT_LOADED

0x0001

The Client Execute request could not be satisfied because the server is
not monitoring the current input desktop.

RAIL_EXEC_E_DECODE_FAILED

0x0002

The Execute request could not be satisfied because the request PDU
was malformed.

43 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

RAIL_EXEC_E_NOT_IN_ALLOWLIST

0x0003

The Client Execute request could not be satisfied because the
requested application was blocked by policy from being launched on
the server.

RAIL_EXEC_E_FILE_NOT_FOUND

0x0005

The Client Execute request could not be satisfied because the
application or file path could not be found.

RAIL_EXEC_E_FAIL

0x0006

The Client Execute request could not be satisfied because an
unspecified error occurred on the server.

RAIL_EXEC_E_SESSION_LOCKED

0x0007

The Client Execute request could not be satisfied because the remote
session is locked.

RawResult (4 bytes): An unsigned 32-bit integer. Contains an operating system-specific return code
for the result of the Client Execute request.<11>

Padding (2 bytes): An unsigned 16-bit integer. Not used.

ExeOrFileLength (2 bytes): An unsigned 16-bit integer. Specifies the length of the ExeOrFile field
in bytes. The length MUST be nonzero. The maximum length is 520 bytes.

ExeOrFile (variable): The executable or file that was attempted to be launched. This field is copied
from the ExeOrFile field of the Client Execute PDU. The server sets this field to enable the client
to match the Client Execute PDU with the Server Execute Result PDU.

2.2.2.4 Local Client System Parameters Update Messages

2.2.2.4.1 Client System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)

The Client System Parameters Update PDU is sent from the client to the server to synchronize system
parameters on the server with those on the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

SystemParam

Body (variable)

...

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of header MUST be set
to TS_RAIL_ORDER_SYSPARAM(0x0003).

SystemParam (4 bytes): An unsigned 32-bit integer. The type of system parameter being
transmitted. The field MUST be set to one of the following values.

Value Meaning

SPI_SETDRAGFULLWINDOWS

0x00000025

The system parameter for full-window drag.

44 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

SPI_SETKEYBOARDCUES

0x0000100B

The system parameter to determine whether menu access keys are
always underlined.

SPI_SETKEYBOARDPREF

0x00000045

The system parameter specifying a preference for the keyboard instead
of the mouse.

SPI_SETWORKAREA

0x0000002F

The system parameter to set the size of the work area. The work area
is the portion of the screen not obscured by the system taskbar or by
application desktop toolbars.

RAIL_SPI_DISPLAYCHANGE

0x0000F001

The system parameter for display resolution.

SPI_SETMOUSEBUTTONSWAP

0x00000021

The system parameter to swap or restore the meaning of the left and
right mouse buttons.

RAIL_SPI_TASKBARPOS

0x0000F000

The system parameter to indicate the size of the client taskbar.

SPI_SETHIGHCONTRAST
0x00000043

The system parameter to set the parameters of the HighContrast
accessibility feature.

Body (variable): The contents of this field depend on the SystemParam field. The following table
outlines the valid values of the SystemParam field (Value column) and corresponding values of
the Body field (Meaning column).

Value Meaning

SPI_SETDRAGFULLWINDOWS

0x0025

Size of Body field: 1 byte.

0 (FALSE): Full Window Drag is disabled. Nonzero (TRUE): Full Window Drag
is enabled.

SPI_SETKEYBOARDCUES

0x100B

Size of Body field: 1 byte.

0 (FALSE): Menu Access Keys are underlined only when the menu is
activated by the keyboard. Nonzero (TRUE): Menu Access Keys are always
underlined.

SPI_SETKEYBOARDPREF

0x0045

Size of Body field: 1 byte.

0 (FALSE): The user does not prefer the keyboard over mouse. Nonzero
(TRUE): The user prefers the keyboard over mouse. This causes applications
to display keyboard interfaces that would otherwise be hidden.

SPI_SETMOUSEBUTTONSWAP

0x0021

Size of Body field: 1 byte.

0 (FALSE): Restores the meaning of the left and right mouse buttons to

their original meanings. Nonzero (TRUE): Swaps the meaning of the left and
right mouse buttons.

SPI_SETWORKAREA

0x002F

Size of Body field: 8 bytes.

The body is a TS_RECTANGLE_16 structure that defines the work area in
virtual screen coordinates. In a system with multiple display monitors, the
work area is that of the monitor that contains the specified rectangle. For
more information about virtual screen coordinates, see [MSDN-
VIRTUALSCR].

RAIL_SPI_DISPLAYCHANGE

0xF001

Size of Body field: 8 bytes.

The body is a TS_RECTANGLE_16 structure that indicates the new display
resolution in virtual screen coordinates. For more information about virtual
screen coordinates, see [MSDN-VIRTUALSCR].

https://go.microsoft.com/fwlink/?LinkId=191444
https://go.microsoft.com/fwlink/?LinkId=191444

45 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

RAIL_SPI_TASKBARPOS

0xF000

Size of Body field: 8 bytes.

The body is a TS_RECTANGLE_16 structure that indicates the size of the
client taskbar.

SPI_SETHIGHCONTRAST

0x0043

Size of Body field: Variable number of bytes.

The body is a TS_HIGHCONTRAST structure.

2.2.2.4.2 High Contrast System Information Structure (TS_HIGHCONTRAST)

The TS_HIGHCONTRAST packet defines parameters for the high-contrast accessibility feature.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ColorSchemeLength

ColorScheme (variable)

...

Flags (4 bytes): An unsigned 32-bit integer. This field is opaque to RAIL. It is transmitted from the
client to the server and used by the server to set the High Contrast parameters.<12>

ColorSchemeLength (4 bytes): An unsigned 32-bit integer. The length, in bytes, of the
ColorScheme field.

ColorScheme (variable): UNICODE_STRING. Variable length. The Windows-specific name of the
High Contrast Color Scheme, specified as a null-terminated UNICODE_STRING.<13>

2.2.2.5 Server System Parameters Update Messages

2.2.2.5.1 Server System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)

The Server System Parameters Update PDU is sent from the server to client to synchronize system
parameters on the client with those on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

SystemParameter

Body

Header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of header MUST be set
to 0x03 (TS_RAIL_ORDER_SYSPARAM).

46 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SystemParameter (4 bytes): An unsigned 32-bit integer. The type of system parameter being
transmitted. This field MUST be set to one of the following values.

Value Meaning

SPI_SETSCREENSAVEACTIVE

0x00000011

The system parameter indicating whether the screen saver is enabled.

SPI_SETSCREENSAVESECURE

0x00000077

The system parameter indicating whether the desktop is to be locked after
switching out of screen saver mode (that is, after the screen saver starts
due to inactivity, then stops due to activity).<14>

Body (1 byte): The content of this field depends on the SystemParameter field. The following table
outlines the valid values of the SystemParameter field (Value column) and corresponding values of
the Body field (Meaning column).

Value Meaning

SPI_SETSCREENSAVEACTIVE

0x00000011

Size of Body field: 1 byte.

0 (FALSE): Screen saver is not enabled. Nonzero (TRUE): Screen Saver is
enabled.

SPI_SETSCREENSAVESECURE

0x00000077

Size of Body field: 1 byte.

0 (FALSE): Do not lock the desktop when switching out of screen saver
mode. Nonzero (TRUE): Lock the desktop when switching out of screen
saver mode.

2.2.2.6 Local Client Event Messages

These messages are generated by the client whenever a window or notification icon event occurs on
the client side that is not communicated via the RDP channel.

2.2.2.6.1 Client Activate PDU (TS_RAIL_ORDER_ACTIVATE)

The Client Activate PDU is sent from client to server when a local RAIL window on the client is
activated or deactivated.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

Enabled

Hdr (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST be set
to TS_RAIL_ORDER_ACTIVATE (0x0002).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the associated window on the server

that is to be activated or deactivated.

Enabled (1 byte): An unsigned 8-bit integer. Indicates whether the window is to be activated (value
= nonzero) or deactivated (value = 0).

47 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.6.2 Client System Menu PDU (TS_RAIL_ORDER_SYSMENU)

The Client System Menu PDU packet is sent from the client to the server when a local RAIL window
on the client receives a command to display its System menu. This command is forwarded to the

server via the System menu PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

Left Top

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_SYSMENU (0x000C).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that SHOULD
display its System menu.

Left (2 bytes): A 16-bit signed integer. The x-coordinate of the top-left corner at which the System

menu SHOULD be displayed. Specified in screen coordinates.

Top (2 bytes): A 16-bit signed integer. The y-coordinate of the top-left corner at which the System
menu SHOULD be displayed. Specified in screen coordinates.

2.2.2.6.3 Client System Command PDU (TS_RAIL_ORDER_SYSCOMMAND)

The Client System Command PDU packet is sent from the client to the server when a local RAIL

window on the client receives a command to perform an action on the window, such as minimize or
maximize. This command is forwarded to the server via the System Command PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

Command

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_SYSCOMMAND (0x0004).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server to activate or
deactivate.

Command (2 bytes): An unsigned 16-bit integer. Specifies the type of command. The field MUST be
one of the following values.

Value Meaning

SC_SIZE

0xF000

Resize the window.

48 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

SC_MOVE

0xF010

Move the window.

SC_MINIMIZE

0xF020

Minimize the window.

SC_MAXIMIZE

0xF030

Maximize the window.

SC_CLOSE

0xF060

Close the window.

SC_KEYMENU

0xF100

The ALT + SPACE key combination was pressed; display the window's system menu.

SC_RESTORE

0xF120

Restore the window to its original shape and size.

SC_DEFAULT

0xF160

Perform the default action of the window's system menu.

2.2.2.6.4 Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT)

The Client Notify Event PDU packet is sent from a client to a server when a local RAIL Notification
Icon on the client receives a keyboard or mouse message from the user. This notification is forwarded
to the server via the Notify Event PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

NotifyIconId

Message

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_NOTIFY_EVENT (0x0006).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the associated window on the server
that owns the notification icon being specified in the PDU.

NotifyIconId (4 bytes): An unsigned 32-bit integer. The ID of the associated notification icon on the
server that SHOULD receive the keyboard or mouse interaction.

Message (4 bytes): An unsigned 32-bit integer. The message being sent to the notification icon on
the server.

49 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

WM_LBUTTONDOWN

0x00000201

The user pressed the left mouse button in the client area of the notification icon.

WM_LBUTTONUP

0x00000202

The user released the left mouse button while the cursor was in the client area
of the notification icon.

WM_RBUTTONDOWN

0x00000204

The user pressed the right mouse button in the client area of the notification
icon.

WM_RBUTTONUP

0x00000205

The user released the right mouse button while the cursor was in the client area
of the notification icon.

WM_CONTEXTMENU

0x0000007B

The user selected a notification icon’s shortcut menu with the keyboard. This
message is sent only for notification icons that follow Windows 2000 behavior
(see Version field in section 2.2.1.3.2.2.1).

WM_LBUTTONDBLCLK

0x00000203

The user double-clicked the left mouse button in the client area of the
notification icon.

WM_RBUTTONDBLCLK

0x00000206

The user double-clicked the right mouse button in the client area of the
notification icon.

NIN_SELECT

0x00000400

The user selected a notification icon with the mouse and activated it with the
ENTER key. This message is sent only for notification icons that follow Windows
2000 behavior (see Version field in section 2.2.1.3.2.2.1).

NIN_KEYSELECT

0x00000401

The user selected a notification icon with the keyboard and activated it with the
SPACEBAR or ENTER key. This message is sent only for notification icons that
follow Windows 2000 behavior (see Version field in section 2.2.1.3.2.2.1).

NIN_BALLOONSHOW

0x00000402

The user passed the mouse pointer over an icon with which a balloon tooltip is
associated (see InfoTip field in section 2.2.1.3.2.2.1), and the balloon tooltip
was shown. This message is sent only for notification icons that follow Windows
2000 behavior (see Version field in section 2.2.1.3.2.2.1).

NIN_BALLOONHIDE

0x00000403

The icon's balloon tooltip disappeared because, for example, the icon was

deleted. This message is not sent if the balloon is dismissed because of a
timeout or mouse click by the user. This message is sent only for notification
icons that follow Windows 2000 behavior (see Version field in section
2.2.1.3.2.2.1).

NIN_BALLOONTIMEOUT

0x00000404

The icon's balloon tooltip was dismissed because of a timeout. This message is
sent only for notification icons that follow Windows 2000 behavior (see Version
field in section 2.2.1.3.2.2.1).

NIN_BALLOONUSERCLICK

0x00000405

User dismissed the balloon by clicking the mouse. This message is sent only for
notification icons that follow Windows 2000 behavior (see Version field in
section 2.2.1.3.2.2.1).

2.2.2.6.5 Client Get Application ID PDU (TS_RAIL_ORDER_GET_APPID_REQ)

The Client Get Application ID PDU is sent from a client to a server. This PDU requests information from
the server about the Application ID that the window SHOULD<15> have on the client.

The server MAY ignore this PDU.

50 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_GET_APPID_REQ (0x000E).

WindowId (4 bytes): An unsigned 32-bit integer specifying the ID of the associated window on the

server that requires needs an Application ID.

2.2.2.7 Window Move Messages

2.2.2.7.1 Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO)

The Server Min Max Info PDU is sent from a server to a client when a window move or resize on the
server is being initiated. This PDU contains information about the minimum and maximum extents to
which the window can be moved or sized.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

MaxWidth MaxHeight

MaxPosX MaxPosY

MinTrackWidth MinTrackHeight

MaxTrackWidth MaxTrackHeight

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_MINMAXINFO (0x000A).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that is being
moved or resized.

MaxWidth (2 bytes): An unsigned 16-bit integer. The width of the maximized window.

MaxHeight (2 bytes): An unsigned 16-bit integer. The height of the maximized window.

MaxPosX (2 bytes): An unsigned 16-bit integer. The x-coordinate of the top-left corner of the
maximized window.

MaxPosY (2 bytes): An unsigned 16-bit integer. The y-coordinate of the top-left corner of the

maximized window.

MinTrackWidth (2 bytes): An unsigned 16-bit integer. The minimum width to which the window can
be resized.

51 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MinTrackHeight (2 bytes): An unsigned 16-bit integer. The minimum height to which the window
can be resized.

MaxTrackWidth (2 bytes): An unsigned 16-bit integer. The maximum width to which the window
can be resized.

MaxTrackHeight (2 bytes): An unsigned 16-bit integer. The maximum height to which the window
can be resized.

2.2.2.7.2 Server Move/Size Start PDU (TS_RAIL_ORDER_LOCALMOVESIZE)

The Server Move/Size Start PDU packet is sent by the server when a window on the server is
beginning a move or resize. The client uses this information to initiate a local move or resize of the
corresponding local window.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

IsMoveSizeStart MoveSizeType

PosX PosY

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_LOCALMOVESIZE (0x0009).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that is being
moved or resized.

IsMoveSizeStart (2 bytes): An unsigned 16-bit integer. Indicates that the move/size is beginning;

MUST be set to a nonzero value.

MoveSizeType (2 bytes): An unsigned 16-bit integer. Indicates the type of the move/size. This
value determines the meaning of the fields PosX and PosY.

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The left edge of the window is being sized.

RAIL_WMSZ_RIGHT

0x0002

The right edge of the window is being sized.

RAIL_WMSZ_TOP

0x0003

The top edge of the window is being sized.

RAIL_WMSZ_TOPLEFT

0x0004

The top-left corner of the window is being sized.

RAIL_WMSZ_TOPRIGHT

0x0005

The top-right corner of the window is being sized.

RAIL_WMSZ_BOTTOM

0x0006

The bottom edge of the window is being sized.

52 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

RAIL_WMSZ_BOTTOMLEFT

0x0007

The bottom-left corner of the window is being sized.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The bottom-right corner of the window is being sized.

RAIL_WMSZ_MOVE

0x0009

The window is being moved by using the mouse.

RAIL_WMSZ_KEYMOVE

0x000A

The window is being moved by using the keyboard.

RAIL_WMSZ_KEYSIZE

0x000B

The window is being resized by using the keyboard.

PosX (2 bytes): An unsigned 16-bit integer. The meaning of this field depends upon the value of the

MoveSizeType field.

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_RIGHT

0x0002

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_TOP

0x0003

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_TOPLEFT

0x0004

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_TOPRIGHT

0x0005

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOM

0x0006

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMLEFT

0x0007

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_MOVE

0x0009

The horizontal offset between the window's top-left edge and the current
mouse position.

RAIL_WMSZ_KEYMOVE

0x000A

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_KEYSIZE

0x000B

The x-coordinate of the last mouse button-down.

PosY (2 bytes): An unsigned 16-bit integer. The meaning of this field depends on the value of the

MoveSizeType field.

53 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_RIGHT

0x0002

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_TOP

0x0003

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_TOPLEFT

0x0004

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_TOPRIGHT

0x0005

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOM

0x0006

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMLEFT

0x0007

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_MOVE

0x0009

The vertical offset between the window's top-left edge and the current mouse
position.

RAIL_WMSZ_KEYMOVE

0x000A

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_KEYSIZE

0x000B

The y-coordinate of the last mouse button-down.

2.2.2.7.3 Server Move/Size End PDU (TS_RAIL_ORDER_LOCALMOVESIZE)

The Server Move/Size End PDU is sent by the server when a window on the server is completing a
move or resize. The client uses this information to end a local move/resize of the corresponding local
window.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

IsMoveSizeStart MoveSizeType

TopLeftX TopLeftY

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_LOCALMOVESIZE (0x0009).

54 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that is being
moved or resized.

IsMoveSizeStart (2 bytes): An unsigned 16-bit integer. Indicates the move or resize is ending. This
field MUST be set to 0.

MoveSizeType (2 bytes): An unsigned 16-bit integer. Indicates the type of the move/size.

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The left edge of the window is being sized.

RAIL_WMSZ_RIGHT

0x0002

The right edge of the window is being sized.

RAIL_WMSZ_TOP

0x0003

The top edge of the window is being sized.

RAIL_WMSZ_TOPLEFT

0x0004

The top-left corner of the window is being sized.

RAIL_WMSZ_TOPRIGHT

0x0005

The top-right corner of the window is being sized.

RAIL_WMSZ_BOTTOM

0x0006

The bottom edge of the window is being sized.

RAIL_WMSZ_BOTTOMLEFT

0x0007

The bottom-left corner of the window is being sized.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The bottom-right corner of the window is being sized.

RAIL_WMSZ_MOVE

0x0009

The window is being moved by using the mouse.

RAIL_WMSZ_KEYMOVE

0x000A

The window is being moved by using the keyboard.

RAIL_WMSZ_KEYSIZE

0x000B

The window is being resized by using the keyboard.

TopLeftX (2 bytes): An unsigned 16-bit integer. The x-coordinate of the moved or resized window's

top-left corner.

TopLeftY (2 bytes): An unsigned 16-bit integer. The y-coordinate of the moved or resized window's
top-left corner.

2.2.2.7.4 Client Window Move PDU (TS_RAIL_ORDER_WINDOWMOVE)

The Client Window Move PDU packet is sent from the client to the server when a local window is
ending a move or resize. The client communicates the locally moved or resized window's position to

the server by using this packet. The server uses this information to reposition its window.

55 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

Left Top

Right Bottom

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_WINDOWMOVE (0x0008).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server corresponding

to the local window that was moved or resized.

Left (2 bytes): An unsigned 16-bit integer. The x-coordinate of the top-left corner of the window's
new position.

Top (2 bytes): An unsigned 16-bit integer. The y-coordinate of the top-left corner of the window's
new position.

Right (2 bytes): An unsigned 16-bit integer. The x-coordinate of the bottom-right corner of the

window's new position.

Bottom (2 bytes): An unsigned 16-bit integer. The y-coordinate of the bottom-right corner of the
window's new position.

2.2.2.8 Server Application ID Response

2.2.2.8.1 Server Get Application ID Response PDU

(TS_RAIL_ORDER_GET_APPID_RESP)

The Server Get Application ID Response PDU is sent from a server to a client. This PDU MAY be sent to
the client as a response to a Client Get Application ID PDU.

This PDU specifies the Application ID that the specified window SHOULD<16> have on the client. The

client MAY ignore this PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

ApplicationId (512 bytes)

...

...

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_GET_APPID_RESP (0x000F).

56 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

WindowId (4 bytes): An unsigned 32-bit integer specifying the ID of the associated window on the
server whose Application ID is being sent to the client.

ApplicationId (512 bytes): A null-terminated string of Unicode characters specifying the
Application ID that the Client SHOULD associate with its window, if it supports using the

Application ID for identifying and grouping windows.

2.2.2.9 Language Bar Messages

2.2.2.9.1 Language Bar Information PDU (TS_RAIL_ORDER_LANGBARINFO)

The Language Bar Information PDU is used to set the language bar status. It is sent from a client to a
server or a server to a client, but only when both support the Language Bar docking capability
(TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED). This PDU contains information about the
language bar status.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

LanguageBarStatus

Hdr (4 bytes): A TS_RAIL_PDU_HEADER (section 2.2.2.1) header. The orderType field of the

header MUST be set to TS_RAIL_ORDER_LANGBARINFO (0x000D).

LanguageBarStatus (4 bytes): An unsigned 32-bit integer. The possible values are indicated in the
table below. The server sends the LanguageBarStatus it retrieves from the local language bar:

Value Meaning

TF_SFT_SHOWNORMAL

0x00000001

Display the language bar as a floating window. This constant
cannot be combined with the TF_SFT_DOCK, TF_SFT_MINIMIZED,
TF_SFT_HIDDEN, or TF_SFT_DESKBAND constants.

TF_SFT_DOCK

0x00000002

Dock the language bar in its own task pane. This constant cannot
be combined with the TF_SFT_SHOWNORMAL,
TF_SFT_MINIMIZED, TF_SFT_HIDDEN, or TF_SFT_DESKBAND
constants.<17>

TF_SFT_MINIMIZED

0x00000004

Display the language bar as a single icon in the system tray. This
constant cannot be combined with the TF_SFT_SHOWNORMAL,
TF_SFT_DOCK, TF_SFT_HIDDEN, or TF_SFT_DESKBAND constants.

TF_SFT_HIDDEN

0x00000008

Hide the language bar. This constant cannot be combined with the
TF_SFT_SHOWNORMAL, TF_SFT_DOCK, TF_SFT_MINIMIZED, or
TF_SFT_DESKBAND constants.

TF_SFT_NOTRANSPARENCY

0x00000010

Make the language bar opaque.

TF_SFT_LOWTRANSPARENCY

0x00000020

Make the language bar partially transparent.<18>

TF_SFT_HIGHTRANSPARENCY

0x00000040

Make the language bar highly transparent.<19>

TF_SFT_LABELS Display text labels next to language bar icons.

57 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x00000080

TF_SFT_NOLABELS

0x00000100

Hide language bar icon text labels.

TF_SFT_EXTRAICONSONMINIMIZED

0x00000200

Display text service icons on the taskbar when the language bar is
minimized.

TF_SFT_NOEXTRAICONSONMINIMIZED

0x00000400

Hide text service icons on the taskbar when the language bar is
minimized.

TF_SFT_DESKBAND

0x00000800

Dock the language bar in the system task bar. This constant
cannot be combined with the TF_SFT_SHOWNORMAL,
TF_SFT_DOCK, TF_SFT_MINIMIZED, or TF_SFT_HIDDEN
constants.<20>

2.2.2.10 Language Sync Messages

2.2.2.10.1 Language Profile Information PDU

(TS_RAIL_ORDER_LANGUAGEIMEINFO)

The Language Profile Information PDU is used to send the current active language profile of the client
to the server. It is only sent when both client and server support this capability
(TS_RAIL_LEVEL_LANGUAGE_IME_SYNC_SUPPORTED). This PDU contains information about the
current active language profile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

ProfileType

LanguageID LanguageProfileCLSID (16 bytes)

...

...

...

... ProfileGUID (16 bytes)

...

...

...

... KeyboardLayout

58 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_LANGUAGEIMEINFO (0x0011).

ProfileType (4 bytes): An unsigned 4-byte integer that identifies the profile type of the language.

The value SHOULD be either TF_PROFILETYPE_INPUTPROCESSOR (0x0001) or
TF_PROFILETYPE_KEYBOARDLAYOUT (0x0002).

Value Meaning

TF_PROFILETYPE_INPUTPROCESSOR

0x00000001

Indicates that the profile type is an input processor.

TF_PROFILETYPE_KEYBOARDLAYOUT

0x00000002

Indicates that the profile type is a keyboard layout.

LanguageID (2 bytes): An unsigned 2-byte integer. This is the language identifier that identifies
both the language and the country/region. For a list of language identifiers, see [MSDN-MUI].

LanguageProfileCLSID (16 bytes): A globally unique identifier (section 2.2.2.10.1.1) that uniquely

identifies the text service of the client. This field MUST be set to GUID_NULL if the ProfileType
field is set to TF_PROFILETYPE_KEYBOARDLAYOUT (0x0002).

Value Meaning

GUID_NULL

{0x00000000, 0x0000, 0x0000, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00}

Indicates that there is no input
processor.

GUID_MSIME_JPN

{0x03B5835F, 0xF03C, 0x411B, 0x9C, 0xE2, 0xAA, 0x23, 0xE1,
0x17, 0x1E, 0x36}

Indicates that the input processor is
Japanese.

GUID_MSIME_KOR

{0xA028AE76, 0x01B1, 0x46C2, 0x99, 0xC4, 0xAC, 0xD9, 0x85,
0x8A, 0xE0, 0x2}

Indicates that the input processor is
Korean.

GUID_CHSIME

{0x81D4E9C9, 0x1D3B, 0x41BC, 0x9E, 0x6C, 0x4B, 0x40, 0xBF,
0x79, 0xE3, 0x5E}

Indicates that the input processor is
Chinese Simplified.

GUID_CHTIME

{0x531FDEBF, 0x9B4C, 0x4A43, 0xA2, 0xAA, 0x96, 0x0E, 0x8F,
0xCD, 0xC7, 0x32}

Indicates that the input processor is
Chinese (Taiwanese).

ProfileGUID (16 bytes): A globally unique identifier (section 2.2.2.10.1.1) that uniquely identifies

the language profile of the client. This field MUST be set to GUID_NULL if the ProfileType field is

set to TF_PROFILETYPE_KEYBOARDLAYOUT (0x0002).

Value Meaning

GUID_NULL

{0x00000000, 0x0000, 0x0000, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00}

Indicates that there is no profile.

GUID_PROFILE_NEWPHONETIC Indicates that the profile is new

https://go.microsoft.com/fwlink/?LinkId=90048

59 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

{0xB2F9C502, 0x1742, 0x11D4, 0x97, 0x90, 0x00, 0x80, 0xC8,
0x82, 0x68, 0x7E}

phonetic.

GUID_PROFILE_CHANGJIE

{0x4BDF9F03, 0xC7D3, 0x11D4, 0xB2, 0xAB, 0x00, 0x80, 0xC8,
0x82, 0x68, 0x7E}

Indicates that the profile is
ChangJie.

GUID_PROFILE_QUICK

{0x6024B45F, 0x5C54, 0x11D4, 0xB9, 0x21, 0x00, 0x80, 0xC8,
0x82, 0x68, 0x7E}

Indicates that the profile is Quick
type.

GUID_PROFILE_CANTONESE

{0x0AEC109C, 0x7E96, 0x11D4, 0xB2, 0xEF, 0x00, 0x80, 0xC8,
0x82, 0x68, 0x7E}

Indicates that the profile is
Cantonese.

GUID_PROFILE_PINYIN

{0xF3BA9077, 0x6C7E, 0x11D4, 0x97, 0xFA, 0x00, 0x80, 0xC8,
0x82, 0x68, 0x7E}

Indicates that the profile is PinYin.

GUID_PROFILE_SIMPLEFAST

{0xFA550B04, 0x5AD7, 0x411F, 0xA5, 0xAC, 0xCA, 0x03, 0x8E,
0xC5, 0x15, 0xD7}

Indicates that the profile is
SimpleFast.

GUID_GUID_PROFILE_MSIME_JPN

{0xA76C93D9, 0x5523, 0x4E90, 0xAA, 0xFA, 0x4D, 0xB1, 0x12,
0xF9, 0xAC, 0x76}

Indicates that the profile is
Microsoft Japanese IME.

GUID_PROFILE_MSIME_KOR

{0xB5FE1F02, 0xD5F2, 0x4445, 0x9C, 0x03, 0xC5, 0x68, 0xF2,
0x3C, 0x99, 0xA1}

Indicates that the profile is
Microsoft Korean IME.

KeyboardLayout (4 bytes): An unsigned 4-byte integer. The active input locale identifier, also
known as the "HKL" (for example, 0x00010409 identifies a "United States-Dvorak" keyboard

layout, while 0x00020418 is a "Romanian (Programmers)" keyboard layout). For a list of input
locale identifiers, see [MSFT-DIL].

2.2.2.10.1.1 Globally Unique Identifier (GUID)

The GUID structure contains 128 bits that represent a globally unique identifier that can be used to
provide a distinctive reference number, as defined in [MS-DTYP] section 2.3.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

codecGUID1

codecGUID2 codecGUID3

codecGUID4 codecGUID5 codecGUID6 codecGUID7

codecGUID8 codecGUID9 codecGUID10 codecGUID11

codecGUID1 (4 bytes): A 32-bit, unsigned integer. The first GUID component.

codecGUID2 (2 bytes): A 16-bit, unsigned integer. The second GUID component.

https://go.microsoft.com/fwlink/?LinkId=202824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

60 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

codecGUID3 (2 bytes): A 16-bit, unsigned integer. The third GUID component.

codecGUID4 (1 byte): An 8-bit, unsigned integer. The fourth GUID component.

codecGUID5 (1 byte): An 8-bit, unsigned integer. The fifth GUID component.

codecGUID6 (1 byte): An 8-bit, unsigned integer. The sixth GUID component.

codecGUID7 (1 byte): An 8-bit, unsigned integer. The seventh GUID component.

codecGUID8 (1 byte): An 8-bit, unsigned integer. The eighth GUID component.

codecGUID9 (1 byte): An 8-bit, unsigned integer. The ninth GUID component.

codecGUID10 (1 byte): An 8-bit, unsigned integer. The tenth GUID component.

codecGUID11 (1 byte): An 8-bit, unsigned integer. The eleventh GUID component.

2.2.2.10.2 Compartment Status Information PDU

(TS_RAIL_ORDER_COMPARTMENTINFO_BODY)

The Compartment Status Information PDU is used to send the current input method editor (IME)
status information. It is sent from a client to the server, or from a server to the client, but only when
client and server both support this capability (TS_RAIL_LEVEL_LANGUAGE_IME_SYNC_SUPPORTED).
This PDU is used to send the current compartment values of the client or server and is sent only if the

current language profile type is TF_PROFILETYPE_INPUTPROCESSOR (0x0001).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

ImeState

ImeConvMode

ImeSentenceMode

KANAMode

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be set to
TS_RAIL_ORDER_COMPARTMENTINFO (0x0012).

ImeState (4 bytes): A 32-bit, unsigned integer. Indicates the open or closed state of the IME.

Value Meaning

IME_STATE_CLOSED

0x00000000

The IME state is closed.

IME_STATE_OPEN

0x00000001

The IME state is open.

ImeConvMode (4 bytes): A 32-bit, unsigned integer. Indicates the IME conversion mode.

61 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

IME_CMODE_NATIVE

0x00000001

The input mode is native. If not set, the input mode is alphanumeric.

IME_CMODE_KATAKANA

0x00000002

The input mode is Katakana. If not set, the input mode is Hiragana.

IME_CMODE_FULLSHAPE

0x00000008

The input mode is full-width. If not set, the input mode is half-width.

IME_CMODE_ROMAN

0x00000010

The input mode is Roman.

IME_CMODE_CHARCODE

0x00000020

Character-code input is in effect.

IME_CMODE_HANJACONVERT

0x00000040

Hanja conversion mode is in effect.

IME_CMODE_SOFTKBD

0x00000080

A soft (on-screen) keyboard is being used.

IME_CMODE_NOCONVERSION

0x00000100

IME conversion is inactive (that is, the IME is closed).

IME_CMODE_EUDC

0x00000200

End-User Defined Character (EUDC) conversion mode is in effect.

IME_CMODE_SYMBOL

0x00000400

Symbol conversion mode is in effect.

IME_CMODE_FIXED

0x00000800

Fixed conversion mode is in effect.

ImeSentenceMode (4 bytes): An unsigned 4-byte integer that identifies the sentence mode of the
IME.

Flag Meaning

IME_SMODE_NONE

0x00000000

Indicates that the IME uses no information for sentence.

IME_SMODE_PLURALCLAUSE

0x00000001

Indicates that the IME uses plural clause information to carry out
conversion processing.

IME_SMODE_SINGLECONVERT

0x00000002

Indicates that the IME carries out conversion processing in single-character
mode.

IME_SMODE_AUTOMATIC

0x00000004

Indicates that the IME carries conversion processing in automatic mode.

IME_SMODE_PHRASEPREDICT

0x00000008

Indicates that the IME uses phrase information to predict the next
character.

IME_SMODE_CONVERSATION

0x00000010

Indicates that the IME uses conversation mode. This is useful for chat
applications.

62 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

KANAMode (4 bytes): An unsigned 4-byte integer that identifies whether the input mode is Romaji
or KANA for Japanese text processors. The value is 0x0000 for all non-Japanese text processors.

Value Meaning

KANA_MODE_OFF

0x00000000

Indicates that the KANA input mode is off.

KANA_MODE_ON

0x00000001

Indicates that the KANA input mode is activated.

2.2.2.11 Z-Order Sync Messages

2.2.2.11.1 Server Z-Order Sync Information PDU

(TS_RAIL_ORDER_ZORDER_SYNC)

The Z-Order Sync Information PDU is sent from the server to the client if the client has advertised
support for Z-order sync in the Client Information PDU (section 2.2.2.2.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowIdMarker

Hdr (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST be set

to TS_RAIL_ORDER_ZORDER_SYNC (0x0014).

WindowIdMarker (4 bytes): An unsigned 32-bit integer. Indicates the ID of the marker window
(section 3.3.1.3), which is used to manage the activation of RAIL windows as specified in section
3.2.5.2.9.2.

2.2.2.12 Window Cloak State Sync Messages

2.2.2.12.1 Window Cloak State Change PDU (TS_RAIL_ORDER_CLOAK)

The Window Cloak State Change PDU is sent from the client to the server when a RAIL window has
been cloaked or uncloaked on the client. It is only sent when both the client and server support
syncing per-window cloak state (indicated by the TS_RAIL_LEVEL_WINDOW_CLOAKING_SUPPORTED

flag in the Remote Programs Capability Set (section 2.2.1.1.1). The server uses this information to
sync the cloak state to the associated window on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hdr

WindowId

63 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Cloaked

Hdr (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST be set
to TS_RAIL_ORDER_CLOAK (0x0015).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the associated window on the server

that is to be cloaked or uncloaked.

Cloaked (1 byte): An unsigned 8-bit integer that indicates whether the window SHOULD be cloaked
or uncloaked.

Value Meaning

0x00 The window SHOULD be uncloaked.

0x01 The window SHOULD be cloaked.

64 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

3.1.1.1 Server State Machine

Figure 5: Server State Machine Diagram

State Description

Uninitialized This is the initial state of the server. In this state, the server waits for the Remote
Programs Capability Set (section 2.2.1.1.1) and the Window List Capability

65 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

State Description

Set (section 2.2.1.1.2) from the client. On receiving these capability sets, the server
processes them as specified in section 3.3.5.1.5. If the server finds compatible settings,
it transitions to the Initializing state. Otherwise, the connection is terminated (see [MS-
RDPBCGR] section 1.3.1.4.2).

Initializing In this state, the server examines the Handshake PDU (section 2.2.2.2.1) and the Client
Information PDU (section 2.2.2.2.2). On receiving these, the server processes the
Handshake PDU as specified in section 3.1.5.2 and the Client Information PDU as
specified in section 3.3.5.2.1.1, and transitions to the SyncDesktop state. If the server
does not receive the Handshake PDU within a specified time, it can disconnect the
connection (see section 3.1.2).

SyncDesktop In this state, the server syncs its desktop with that of the client. The server transitions

to this state either during the RAIL connection synchronization (see section 1.3.2.3) or
on detection of a desktop switch (see section 3.3.5.1.8). After completion of the desktop
sync (as specified in section 3.3.5.1.8), the server transitions to the WaitForData state.

WaitForData In this state, the server waits for all non-initialization messages received on the static
virtual channel (see section 3.3.5.2).

On receiving a Client Execute PDU (section 2.2.2.3.1), the server transitions to the
ExecuteApp state.

On receiving a Client System Parameters Update PDU (section 2.2.2.4.1), the server
transitions to the UpdateSysParam state.

On receiving a Language Bar Information PDU (section 2.2.2.9.1), the server transitions
to the UpdateLanguageBar state.

On receiving a Client Window Move PDU (section 2.2.2.7.4), the server transitions to the
MoveWindow state.

On receiving a Client Activate PDU (section 2.2.2.6.1), a Client System Menu
PDU (section 2.2.2.6.2), a Client System Command PDU (section 2.2.2.6.3), a Client
Notify Event PDU (section 2.2.2.6.4), or a Client Get Application ID
PDU (section 2.2.2.6.5), the server transitions to the HandleWindowUpdates state.

On detecting a desktop switch, the server transitions to the SyncDesktop state.

ExecuteApp In this state, the server processes the Client Execute PDU, as specified in section
3.3.5.2.2.1, and sends the Server Execute Result PDU (section 2.2.2.3.2), as specified
in section 3.3.5.2.2.2. The server then transitions back to the WaitForData state.

UpdateSysParam In this state, the server processes the Client System Parameters Update PDU, as
specified in section 3.3.5.2.3.1, and transitions back to the WaitForData state.

UpdateLanguageBar In this state, the server processes the Language Bar Information PDU, as specified in
section 3.3.5.2.5.5, and transitions back to the WaitForData state.

MoveWindow In this state, the server processes the Client Window Move PDU, as specified in section
3.3.5.2.6.3. If the window ID is valid, the server transitions to the
HandleWindowUpdates state. Once the window is moved, the server transitions back to
the MoveWindow state. If applicable, the server also sends a Server Move/Size End
PDU (section 2.2.2.7.3) to the client, as specified in section 3.3.5.2.6.4. After all
processing is complete, the server transitions back to the WaitForData state.

HandleWindowUpdates In this state, the server processes local client events relevant to individual windows: the
Client Activate PDU, as specified in section 3.3.5.2.5.1; the Client System Menu PDU, as
specified in section 3.3.5.2.5.2; the Client System Command PDU, as specified in
section 3.3.5.2.5.3; and the Client Notify Event PDU, as specified in section 3.3.5.2.5.4.
The server also processes the Client Get Application ID PDU, as specified in section
3.3.5.2.7.1, and sends the Server Get Application ID Response PDU (section 2.2.2.8.1),
as specified in section 3.3.5.2.7.2. After all processing is complete, the server
transitions back to the WaitForData state.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

66 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.2 Icon Cache Support

If the implementation supports icon caching, then the following state is negotiated between the client
and server as part of the Window List Capability Set order (section 2.2.1.1.2), and thereafter

maintained on both client and server.

NumIconCaches: the number of discrete caches for icons maintained on client and server.

NumIconCacheEntries: the number of entries allocated in each icon cache.

Once an icon cache capability is established, individual entries in the cache are identified by a Cached
Icon Info packet (section 2.2.1.2.4), containing a pair of index values designating the specific icon
cache and the entry within that cache.

3.1.2 Timers

A handshake timer MAY<21> be used by the client and/or server to wait for the Handshake PDU from
the sending party.

3.1.3 Initialization

The static virtual channel between the client and the server MUST be established before protocol
operations can commence (see section 1.3.2.1 for an overview).

The Handshake PDU (as specified in section 2.2.2.2.1) is exchanged between the server and the client
to establish that both endpoints are ready to begin RAIL mode.

The Client Information PDU (as specified in section 2.2.2.2.2) is sent from a client to a server and
contains information about RAIL client state and features supported by the client.

3.1.4 Higher-Layer Triggered Events

No higher-layer triggered events are used.

3.1.5 Message Processing Events and Sequencing Rules

 The following sections describe construction and processing of common messages.

3.1.5.1 Constructing Handshake PDU

The Handshake PDU is constructed during initialization of the remote applications integrated
locally (RAIL) virtual channel. The buildNumber field SHOULD be initialized to the build or version of
the sending party. This PDU MUST be sent before any other PDU on the virtual channel.

3.1.5.2 Processing Handshake PDU

The receiving party SHOULD check the buildNumber field to verify compatibility of the receiver with

the sender.<22>

The receiving party MUST NOT process any other virtual channel PDUs unless the Handshake PDU has

been received.

3.1.6 Timer Events

Upon the expiration of the handshake timer (as specified in section 3.1.2), the receiving party
SHOULD drop the connection.

67 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.7 Other Local Events

No additional events are used.

3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note: It is possible to implement the following conceptual data by using a variety of techniques as

long as the implementation produces external behavior that is consistent with what is described in this
document.

3.2.1.1 Windowing Support Level

The windowing support level determines whether the server is capable of supporting Windowing

Alternate Secondary Drawing Orders and the following flags:
WINDOW_ORDER_FIELD_CLIENTAREASIZE, WINDOW_ORDER_FIELD_RPCONTENT, and
WINDOW_ORDER_FIELD_ROOTPARENT. This is communicated to the client by the WndSupportLevel
field, as part of the Window List Capability Set (section 2.2.1.1.2).

3.2.1.2 Marker Window ID

An ID that uniquely identifies the marker window (section 3.3.1.3) created by the server. The ID of
this window is sent to the client in the Z-Order Sync Information PDU (section 2.2.2.11.1).

3.2.2 Timers

No timers are used.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

There are no higher-layer triggered events.

3.2.5 Message Processing Events and Sequencing Rules

The following sections describe construction and processing of client messages.

3.2.5.1 Updates to RDP Core Protocol

3.2.5.1.1 Constructing Client MCS Connect Initial PDU

The Client MCS Connect Initial PDU is constructed by the client during the connection establishment
phase, as specified in [MS-RDPBCGR] section 3.2.5.3.3.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

68 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For remote applications integrated locally (RAIL) clients, the clientNetworkData field (as
specified in [MS-RDPBCGR] section 2.2.1.3) MUST be present and MUST contain a CHANNEL_DEF

structure in channelDefArray for the RAIL virtual channel. This informs the server that the client wants
to use a static virtual channel for communicating RAIL virtual channel messages.<23>

3.2.5.1.2 Processing Server MCS Connect Response PDU

This PDU is sent by the server in response to the Client MCS Connect Initial PDU. It is processed by
the client, as specified in [MS-RDPBCGR] section 3.2.5.3.4.

3.2.5.1.3 Constructing Client Info PDU

The Client Info PDU (as specified in [MS-RDPBCGR] section 2.2.1.11) is constructed by the client

during the connection establishment phase (as specified in [MS-RDPBCGR] section 3.2.5.3.11).

For remote applications integrated locally (RAIL) clients, the flags field of the Info Packet (as
specified in [MS-RDPBCGR] section 2.2.1.11.1.1) MUST have the INFO_RAIL (0x00008000) flag set.
This informs the server that the client wants to create a RAIL session.

3.2.5.1.4 Constructing Confirm Active PDU

The Confirm Active PDU is constructed by the client in response to the Demand Active PDU, as

specified in [MS-RDPBCGR] section 3.2.5.3.13.2.

Remote applications integrated locally (RAIL) clients MUST populate this PDU with two RAIL-
specific capabilities in the capabilitySets field of the TS_CONFIRM_ACTIVE_PDU structure: the
Remote Programs Capability Set, as specified in section 2.2.1.1.1, and the Window List Capability Set,
as specified in section 2.2.1.1.2.

The NumIconCaches and NumIconCacheEntries of the Window List Capability Set SHOULD be reported

as the minimum of the corresponding values supported by the client, and those reported by the server
in the Demand Active PDU. The values MUST not exceed those reported by the server in the Demand
Active PDU.

3.2.5.1.5 Processing Demand Active PDU

The Demand Active PDU is processed by the client during the connection establishment phase, as
specified in [MS-RDPBCGR] section 3.2.5.3.13.1.

Remote applications integrated locally (RAIL) clients MUST verify that this PDU contains two
RAIL-specific capabilities in the capabilitySets field of the TS_DEMAND_ACTIVE_PDU structure: the
Remote Programs Capability Set, as specified in section 2.2.1.1.1, and the Window List Capability Set,
as specified in section 2.2.1.1.2. If it does not contain these capability sets, or if the RailSupportLevel
of the Remote Programs Capability Set is not set to at least TS_RAIL_LEVEL_SUPPORTED, or the
WndSupportLevel of the Window List Capability Set is TS_WINDOW_LEVEL_NOT_SUPPORTED (0), the
client MUST drop the connection.

The client SHOULD use the NumIconCaches and NumIconCacheEntries of the Window List Capability
Set to determine the values of NumIconCaches and NumIconCacheEntries reported by it in the

Confirm Active PDU, as specified in section 3.2.5.1.4.

3.2.5.1.6 Processing Window Information Orders

Window Information Orders (section 2.2.1.3.1) inform the client of the following types of window
events on the server:

 Creation of a new window.

 Updates on window properties for a new or existing window.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

69 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Updates on icons for a new or existing window.

 Deletion of an existing window.

 Registration of a new or existing window as an application desktop toolbar.

 Deregistration of an existing application desktop toolbar.

 Updates on the edge to which the application desktop toolbar window is anchored.

Upon receipt of a Window Information Order for a new window (the FieldsPresentFlags field of the
Hdr contains the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in section
2.2.1.3.1.2.1), the client SHOULD create a new RAIL window locally. The client SHOULD store an
association of the WindowId reported in the Hdr field with the local RAIL window.

Upon receipt of a Window Information Order for an existing window (the FieldsPresentFlags field of
Hdr does not contain the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in section

2.2.1.3.1.2.1), the client SHOULD locate the local RAIL window that corresponds to the WindowId
reported in the Hdr field and apply the specified updates to the RAIL window. If no such window can

be found, the client SHOULD ignore the order.

Upon receipt of a Window Information Order for an icon or cached icon, as specified in sections
2.2.1.3.1.2.2 and 2.2.1.3.1.2.3, the client SHOULD locate the local RAIL window that corresponds to
the WindowId reported in the Hdr field and apply the icon updates to the RAIL window. If no such

window can be found, the client SHOULD ignore the order.

Upon receipt of a Window Information Order for a deleted window, as specified in section
2.2.1.3.1.2.4, the client SHOULD locate the local RAIL window that corresponds to the WindowId
reported in the Hdr field and destroy it. If no such window can be found, the client SHOULD ignore the
order.

Upon receipt of a Window Information Order for the registration of a window as an application desktop
toolbar, the client SHOULD locate the local RAIL window that corresponds to the WindowId reported

in the Hdr field and register it as an application desktop toolbar. If no such window can be found, the
client SHOULD ignore the order.

Upon receipt of a Window Information Order for the deregistration of an application desktop toolbar
window, the client SHOULD locate the local RAIL window that corresponds to the WindowId reported
in the Hdr field and deregister the application desktop toolbar window. If no such window can be
found, the client SHOULD ignore the order.

Upon receipt of a Window Information Order for the edge of an application desktop toolbar window,

the client SHOULD locate the local RAIL window that corresponds to the WindowId reported in the
Hdr field and update the edge to which the window is anchored. If no such window can be found, the
client SHOULD ignore the order.

3.2.5.1.7 Processing Notification Icon Orders

Notification Icon Information Orders (section 2.2.1.3.2) inform the client of the following types of

notification icon events on the server:

 Creation of a new notification icon.

 Updates on properties for a new or existing notification icon.

 Deletion of an existing notification icon.

Upon receipt of a Notification Icon Order for a new notification icon (the FieldsPresentFlags field of
Hdr contains the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in section
2.2.1.3.2.2.1), the client SHOULD create a new RAIL notification icon locally. The client SHOULD

70 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

store an association of the WindowId and NotifyIconId reported in the Hdr field with the local
notification icon.

Upon receipt of a notification icon Order for an existing notification icon (the FieldsPresentFlags field of
Hdr does not contain the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in section

2.2.1.3.2.2.1), the client SHOULD locate the RAIL notification icon that corresponds to the WindowId
and NotifyIconId reported in the Hdr field, and then apply the specified updates to the RAIL
notification icon. If no such icon can be found, the client SHOULD ignore the Order.

Upon receipt of a notification icon Order for a deleted icon, as specified in section 2.2.1.3.2.2.2, the
client SHOULD locate the local RAIL notify icon that corresponds to the WindowId and NotifyIconId
reported in the Hdr field and destroy it. If no such icon can be found, the client SHOULD ignore the
Order.

3.2.5.1.8 Processing Desktop Information Orders

Desktop Information Orders inform the client of events on the server that are not confined to a single
window or notification icon. Processing of these orders is indicated as follows:

 Upon receipt of a Desktop Information Order, as specified in section 2.2.1.3.3.2.1, with the
WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN (0x00000008) and the

WINDOW_ORDER_FIELD_DESKTOP_HOOKED (0x00000002) flags set in the Hdr field, the client
SHOULD discard all of the existing RAIL windows and Notify Icons and prepare for Window Orders
(see sections 2.2.1.3.1.2.1 and 2.2.1.3.1.2.4) and Notify Icon Orders (see sections
2.2.1.3.1.2.2and 2.2.1.3.1.2.3) from the server.

 Upon receipt of a Desktop Information Order for a non-monitored desktop, as specified in section
2.2.1.3.3.2.2, the client SHOULD discard all of the existing RAIL windows and Notify Icons.

 Upon receipt of a Desktop Information Order with the

WINDOW_ORDER_FIELD_DESKTOP_HOOKED (0x00000002) flag set in the Hdr field, the client
SHOULD prepare for Window and Notify Icon Orders from the server.

 Upon receipt of a Desktop Information Order with the NumWindowIds and WindowIds fields

present, the client SHOULD apply the specified Z-order of the server's windows to its local RAIL
windows.

 Upon receipt of a Desktop Information Order with the ActiveWindowId field present, the client
SHOULD activate the corresponding local RAIL window.

3.2.5.2 Static Virtual Channel Protocol

3.2.5.2.1 Initialization Messages

3.2.5.2.1.1 Sending Client Information PDU

The client information PDU is initialized as specified in section 2.2.2.2.2.

3.2.5.2.2 Program Launching Messages

3.2.5.2.2.1 Sending Execute PDU

As specified in section 2.2.2.3.1, the client SHOULD store the execute request to match execute

requests with Execute Result PDUs from the server. For Server Execute Result PDU, see section
2.2.2.3.2.

3.2.5.2.2.2 Processing Execute Result PDU

71 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The client SHOULD match the Execute Result PDU with a previously sent Execute PDU and report the
results to the user.

3.2.5.2.3 Local Client System Parameters Update Messages

3.2.5.2.3.1 Sending System Parameters Update PDU

Initialized as specified in section 2.2.2.4.1, this PDU SHOULD be sent at the start of every remote
applications integrated locally (RAIL) connection or reconnection and when a system parameter
on the client changes its value.

3.2.5.2.4 Server System Parameters Update Messages

3.2.5.2.4.1 Processing Server System Parameters Update PDU

On receipt of this PDU, the client SHOULD update its system parameters to those reported by the
server. This helps to maintain consistency between local client and remote server settings, which is an

important aspect of the seamless experience.

3.2.5.2.5 Local Client Event Messages

Local Client Event Messages are Virtual Channel PDUs sent from the client to the server specifying
user interactions with RAIL windows and notifications that cannot be captured and sent over the
regular RDP channel.

3.2.5.2.5.1 Sending Activate PDU

The Activate PDU is sent by the client when a RAIL window is activated by a means other than
clicking it, such as by pressing ALT+TAB.

Note Mouse clicks on the RAIL window are forwarded to the server via the RDP core protocol. The
PDU is initialized as specified in section 2.2.2.6.1.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is
associated with the local RAIL window being activated. The RAIL client SHOULD create this
association during processing of the Window Information Order for new windows, as specified in
section 2.2.1.3.1.2.1.

3.2.5.2.5.2 Sending System Menu PDU

The System Menu PDU is sent by the client when a RAIL window receives a command to display its
system menu by a means other than clicking it, such as by right-clicking the taskbar icon for the
window.

Note Mouse clicks in the RAIL window are forwarded to the server via the RDP core protocol. The
PDU is initialized as specified in section 2.2.2.6.2.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is
associated with the local RAIL window. The RAIL client SHOULD create this association during

processing of the Window Information Order for new windows, as specified in section 2.2.1.3.1.2.1.

3.2.5.2.5.3 Sending System Command PDU

The System Command PDU is sent by the client when a RAIL window receives a system command
by a means other than clicking it (for example, by pressing the Windows logo key+M to minimize the

window, by clicking the Show Desktop button in the taskbar, or by selecting the system menu by
pressing ALT+SPACE).

72 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Note Mouse clicks in the RAIL window are forwarded to the server via the RDP core protocol. The
PDU is initialized as specified in section 2.2.2.6.3.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is
associated with the local RAIL window. The RAIL client SHOULD create this association during

processing of the Window Information Order for new windows, as specified in section 2.2.1.3.1.2.1.

3.2.5.2.5.4 Sending Notify Event PDU

The Notify Event PDU is sent by the client when a remote applications integrated locally (RAIL)
notification icon receives any user interaction via the keyboard or mouse. The PDU is initialized as
specified in section 2.2.2.6.4.

The WindowId and NotifyIconId fields SHOULD be initialized to the ID of an existing Window and

notification icon (respectively) on the server and associated with the local RAIL notification icon.
The RAIL client SHOULD create this association during processing of the Notification Icon Information
Order for new notification icons, as specified in section 2.2.1.3.2.2.1.

3.2.5.2.6 Language Bar Information PDUs

3.2.5.2.6.1 Sending Language Bar Information PDU

After initialization (as specified in section 2.2.2.9.1), this PDU SHOULD be sent from a client to a
server just after sending the RAIL handshake (see section 2.2.2.2.1). This enables the server
synchronize its language bar state with the client's.

This PDU MUST NOT be sent if the server does not support the Docked Language Bar RAIL capability
(TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED).

3.2.5.2.6.2 Processing Language Bar Information PDU

Upon receipt of this PDU, the client SHOULD update the status of its language using the Language Bar
Information PDU.

3.2.5.2.7 Window Move Messages

Window Move Messages are generated by the server and client to enable the local move/size feature
of RAIL.

3.2.5.2.7.1 Processing Min Max Info PDU

On receipt of the Min Max Info PDU, if the client supports local move/size, it SHOULD locate the local
RAIL window that corresponds to the WindowId field and apply the specified window extents
(MaxWidth, MaxHeight, MaxPosX, MaxPosY, MinTrackWidth, MinTrackHeight,
MaxTrackWidth, and MaxTrackHeight fields) to it.

If no such RAIL window can be found, the client SHOULD ignore this PDU.

If the client does not support local move/size, it SHOULD ignore this PDU.

3.2.5.2.7.2 Processing Move/Size Start PDU

On receipt of the Move/Size Start PDU, if the client supports local move/size features, it SHOULD
locate the local RAIL window that corresponds to the WindowId field and initiate a move/size of the
local RAIL window by using the local Window Manager based on the MoveSizeType field. The client
SHOULD also suppress forwarding of keyboard/mouse events to the server to maintain a local-only

move/size of the RAIL window.

73 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If no RAIL window can be found corresponding to WindowId, the client SHOULD ignore this PDU.

If the client does not support local move/size, it SHOULD ignore this PDU.

3.2.5.2.7.3 Sending Window Move PDU

If the client supports local move/size, it SHOULD send the Window Move PDU upon receiving a
notification from the local window manager that a local move/size of a RAIL window has ended. The
PDU is sent for keyboard–based moves and all resizes, and it is initialized as specified in section
2.2.2.7.4.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is
associated with the local RAIL window. The RAIL client SHOULD create this association during
processing of the Window Information Order for new windows, as specified in section 2.2.1.3.1.2.1.

If the client suppressed forwarding of keyboard/mouse events to the server during processing of the
Move/Size Start PDU, it MUST resume the forwarding of these events to the server to allow the server
to detect a move/size end of the remote window.

3.2.5.2.7.4 Processing Move/Size End PDU

Upon receipt of the Move/Size End PDU, if the client supports local move/size features, it SHOULD

locate the local RAIL window that corresponds to the WindowId field and move it to the
coordinates specified by the TopLeftX and TopLeftY fields. This ensures synchronization between the
final positions of the corresponding moved/resized windows on the server and client.

If no RAIL window can be found corresponding to WindowId, the client SHOULD ignore this PDU.

If the client does not support local move/size, it SHOULD ignore this PDU.

3.2.5.2.8 Application ID Messages

3.2.5.2.8.1 Sending Client Get Application ID PDU

After being initialized as specified in section 2.2.2.6.5, this PDU MAY be sent from a client to a server
after receiving a Windows Information Order containing the WINDOW_ORDER_STATE_NEW
(0x10000000) flag.

3.2.5.2.8.2 Processing Server Get Application ID Response PDU

Upon receipt of this PDU, the client MAY<24> update the Application ID string of the Window
matching the Windows ID received from the server.

3.2.5.2.9 Z-Order Sync Messages

3.2.5.2.9.1 Sending Z-Order Sync Support Flag

The client advertises support for Z-order sync by including the

TS_RAIL_CLIENTSTATUS_ZORDER_SYNC (0x00000004) flag in the Client Information PDU (section

2.2.2.2.2).

3.2.5.2.9.2 Processing Z-Order Sync Information PDU

When the client receives the Z-Order Sync Information PDU, the ID of the marker window MUST be
stored in the Marker Window ID (section 3.2.1.2) store.

74 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If a client-side window that is not remoted from the server (referred to as "Window A") is activated,
then the client SHOULD instruct the server to activate the marker window by sending the Client

Activate PDU (section 2.2.2.6.1) to the server with the Enabled field set to zero.

Furthermore, if the server instructs the client to activate a RAIL window (referred to as "Window

B"), the client SHOULD check the position of Window B with respect to the marker window in the
WindowIds field of the Actively Monitored Desktop (section 2.2.1.3.3.2.1). Window B SHOULD only
be activated if it appears before the marker window in the WindowIds field of the Actively Monitored
Desktop Order.

3.2.5.2.10 Window Cloak State Sync Messages

3.2.5.2.10.1 Sending Window Cloak State Change PDU

The Window Cloak State Change PDU (section 2.2.2.12.1) SHOULD be sent by the client when a RAIL
window is cloaked or uncloaked on the client (for example, in the case of a virtual desktop feature,
when the user switches desktops). A cloaked window MUST be present on the client, but MUST be
invisible to the user and MUST NOT receive mouse, pen, or touch input. This PDU ensures that cloaked

state is synchronized between client and server.

The PDU is initialized as specified in section 2.2.2.12.1. The WindowId field SHOULD be initialized to
the ID of an existing window on the server that is associated with the local RAIL window. The RAIL
client SHOULD create this association during processing of the Window Information Order for new
windows, as specified in section 2.2.1.3.1.2.1.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Server Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note: It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with what is described in this
document.

3.3.1.1 Client Local Move/Size Ability Store

The Client Local Move/Size Ability store determines whether the client has the ability to support Local
Move/Size in RAIL. This is communicated to the server by the
TS_RAIL_CLIENTSTATUS_ALLOWLOCALMOVESIZE flag as part of Client Information PDU (see section
2.2.2.2.2).

75 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.1.2 Windowing Support Level

The windowing support level determines whether the client is capable of supporting Windowing
Alternate Secondary Drawing Orders and the following flags:

WINDOW_ORDER_FIELD_CLIENTAREASIZE, WINDOW_ORDER_FIELD_RPCONTENT, and
WINDOW_ORDER_FIELD_ROOTPARENT. This is communicated to the server by the
WndSupportLevel field, as part of the Window List Capability Set (section 2.2.1.1.2).

3.3.1.3 Marker Window

The marker window is a server-side window that is not remoted to the client and is used to manage
the activation of RAIL windows. This window is destroyed if the client does not advertise support for
Z-order sync in the Client Information PDU (section 2.2.2.2.2).

3.3.2 Timers

No timers are used.

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

No higher-layer triggered events are used.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Updates to RDP Core Protocol

3.3.5.1.1 Processing Client MCS Connect Initial PDU

The Client MCS Connect Initial PDU is processed by the server during the connection establishment
phase, as specified in [MS-RDPBCGR].

3.3.5.1.2 Constructing Server MCS Connect Response PDU

This PDU is sent by the server in response to the Client MCS Connect Initial PDU, as specified in [MS-

RDPBCGR].

3.3.5.1.3 Processing Client Info PDU

The Client Info PDU is processed by the server during the connection establishment phase, as
specified in [MS-RDPBCGR].

If the flags field of the Info Packet (as specified in [MS-RDPBCGR] section 2.2.1.11.1.1) has the

INFO_RAIL (0x00008000) flag set, it indicates that the client wants to start a remote applications

integrated locally (RAIL) connection. If the server supports RAIL, it SHOULD indicate this by using
the Demand Active PDU (see section 3.3.5.1.4).

3.3.5.1.4 Constructing Demand Active PDU

The Demand Active PDU is constructed by the server during the connection establishment phase, as
specified in [MS-RDPBCGR] section 3.3.5.3.13.1.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

76 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the client has requested support for remote applications integrated locally (RAIL) in the Client
Info PDU (as specified in [MS-RDPBCGR] section 2.2.1.11), and the server supports RAIL, the server

MUST specify two RAIL–specific capabilities in the capabilitySets field of the
TS_DEMAND_ACTIVE_PDU structure: the Remote Programs Capability Set (section 2.2.1.1.1) and the

Window List Capability Set (section 2.2.1.1.2).

The server MUST specify the number of icon caches supported by using the NumIconCaches and
NumIconCacheEntries of the Window List Capability Set.

3.3.5.1.5 Processing Confirm Active PDU

The Confirm Active PDU is processed by the server, as specified in [MS-RDPBCGR] section
3.3.5.3.13.2.

If the client has requested support for remote applications integrated locally (RAIL) in the Client
Info PDU (see section 3.2.5.1.3), and the server has indicated support for RAIL in the Demand Active
PDU (see section 3.3.5.1.4), the server MUST verify that this PDU contains two RAIL-specific
capabilities in the capabilitySets field of the TS_CONFIRM_ACTIVE_PDU structure: the Remote

Programs Capability Set (section 2.2.1.1.1) and the Window List Capability Set (section 2.2.1.1.2). If
it does not contain these capability sets, or the RailSupportLevel of the Remote Programs Capability

Set is not set to at least TS_RAIL_LEVEL_SUPPORTED, or the WndSupportLevel of the Window List
Capability Set is TS_WINDOW_LEVEL_NOT_SUPPORTED (0), the server MUST drop the connection.

The server MUST verify that the NumIconCaches and NumIconCacheEntries of the Window List
Capability Set do not exceed the corresponding entries set by the server in the Demand Active PDU.
<25> The server MUST also update its icon cache limits to those reported in NumIconCaches and
NumIconCacheEntries.

3.3.5.1.6 Constructing Window Information Orders

The server generates Window Information Orders to inform the client of the following types of window
events on the server:

 Creation of a new window.

 Updates on window properties for a new or existing window.

 Updates on icons for a new or existing window.

 Deletion of an existing window.

 Registration of a new or existing window as an application desktop toolbar.

 Deregistration of an existing application desktop toolbar.

The Window Information Orders are constructed as specified in section 2.2.1.3.1.

3.3.5.1.7 Constructing Notification Icon Orders

The server generates Notification Icon Information Orders to inform the client of the following types

of notification icon events on the server.

 Creation of a new notification icon.

 Updates on properties for a new or existing notification icon.

 Deletion of an existing notification icon.

The Notification Icon Orders are constructed as specified in section 2.2.1.3.2.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

77 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.5.1.8 Constructing Desktop Information Orders

Desktop Information Orders are generated by the server to inform the client of events on the server
that are not confined to a single window or notification icon. These events include the following:

 A client connects to the server that is actively monitoring a desktop. The server generates the
following events in order:

1. A Desktop Information Order (see section 2.2.1.3.3.2.1) with the
WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN (0x00000008) and the
WINDOW_ORDER_FIELD_DESKTOP_HOOKED (0x00000002) flags set in the Hdr field to
indicate that the synchronization has begun.

2. After all orders specifying windows, icons, and the desktop are sent, the server generates a

Desktop Information Order with the WINDOW_ORDER_FIELD_DESKTOP_ARC_COMPLETED
(0x00000004) flag set to signal the end of synchronization data.

 A desktop switch occurred on the server causing the server to stop monitoring the current desktop
and (optionally) start monitoring the new desktop. This is indicated by generating the following

events in order.

1. A Desktop Information Order for the non-monitored desktop (see section 2.2.1.3.3.2.2).

2. A Desktop Information Order with the WINDOW_ORDER_FIELD_DESKTOP_HOOKED
(0x00000002) flag set in the Hdr field. If the server is unable to monitor the new desktop, the
server SHOULD NOT send this order.

 The number and/or Z-order of top-level windows on the server changes. This is indicated by
generating a Desktop Information Order with the NumWindowIds and WindowIds fields
present.

 The active window on the server changes. This is indicated by generating a Desktop Information

Order with the ActiveWindowId field present.

3.3.5.2 Static Virtual Channel Protocol

3.3.5.2.1 Initialization Messages

3.3.5.2.1.1 Processing Client Information PDU

If the Flags field of the PDU contains the TS_RAIL_CLIENTSTATUS_ALLOWLOCALMOVESIZE
(0x00000001) flag, the client supports Local Move/Size. If the server also supports Local Move/Size, it
SHOULD record this fact and SHOULD send Move Messages to the client window when appropriate
(see section 2.2.2.7.4).

If the Flags field of the PDU contains the TS_RAIL_CLIENTSTATUS_ZORDER_SYNC (0x00000004)

flag, the client supports Z-order sync. On receiving this flag, the server SHOULD create the marker
window (section 3.3.1.3) and send the ID of this window to the client using the Z-Order Sync
Information PDU (section 2.2.2.11.1).

3.3.5.2.2 Program Launching Messages

3.3.5.2.2.1 Processing Execute PDU

Upon receipt of this PDU, the server MUST start the application specified in the PDU on the server. The
PDU is processed as specified in 2.2.2.3.2.

3.3.5.2.2.2 Sending Execute Result PDU

78 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This PDU is sent in response to an Execute PDU from the client and is initialized as specified in section
2.2.2.3.2.

3.3.5.2.3 Local Client System Parameters Update Messages

3.3.5.2.3.1 Processing System Parameters Update PDU

Upon receipt of this PDU, the server SHOULD set its system parameters to those reported by the
client. This helps applications running remotely to behave consistently with local user settings, which
is an important aspect of the seamless experience.

3.3.5.2.4 Server System Parameters Update Messages

3.3.5.2.4.1 Sending Server System Parameters Update PDU

This PDU is initialized as specified in section 2.2.2.5.1. This PDU SHOULD be sent at the start of every
remote applications integrated locally (RAIL) connection/reconnection, and when a system

parameter on the server changes its value.

3.3.5.2.5 Local Client Event Messages

3.3.5.2.5.1 Processing Activate PDU

Upon receipt of this PDU, the server SHOULD activate or deactivate the remote window whose ID is
specified by WindowId and whose activation state is specified by the Enabled field.

If no such window exists, the server SHOULD ignore the PDU.

3.3.5.2.5.2 Processing System Menu PDU

On receipt of this PDU, the server SHOULD post a command to the remote window whose ID is
specified by WindowId to display its system menu at the coordinates specified by the Left and Top
fields.

If no such window exists, the server SHOULD ignore the PDU.

3.3.5.2.5.3 Processing System Command PDU

Upon receipt of this PDU, the server SHOULD post the system command specified by the Command

field to the remote window whose ID is specified by WindowId.

If no such window exists, the server SHOULD ignore the PDU.

3.3.5.2.5.4 Processing Notify Event PDU

Upon receipt of this PDU, the server SHOULD post the message specified by the Message field to the
remote notification icon specified by the WindowId and NotifyIconId fields.

If no such notify icon exists, the server SHOULD ignore the PDU.

3.3.5.2.5.5 Processing Language Bar Information PDU

Upon receipt of this PDU, the server MUST first send the status of its language bar to the client using
the Language Bar Information PDU. The server MUST then adjust the server-side language bar to
match the client's language bar status by making it either float or be docked.

3.3.5.2.6 Window Move Messages

79 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Window Move messages are generated by the server and client to enable the Local Move/Size
feature of RAIL.

3.3.5.2.6.1 Sending Min Max Info PDU

This PDU is sent by the server when a user attempts to move or resize a local RAIL window and
when the corresponding keyboard input or mouse input forwarded to the server causes the
corresponding remote window to begin to move or resize. It is initialized as specified in section
2.2.2.7.1.

This PDU SHOULD be sent if the client and server both support local move/size features.

3.3.5.2.6.2 Sending Move/Size Start PDU

This PDU is sent by the server when a user attempts to move or resize a local RAIL window (for
example, by dragging the window title with the mouse or resizing the window borders with the
mouse), and the corresponding keyboard input or mouse input forwarded to the server causes the
corresponding remote window to begin the move or resize. It is initialized as specified in section

2.2.2.7.2.

This PDU SHOULD be sent if the client and server both support local move/size features. It SHOULD

be sent immediately after the Min Max Info PDU (see section 2.2.2.7.1).

3.3.5.2.6.3 Processing Window Move PDU

On receipt of the Client Window Move PDU section 2.2.2.7.4, the server SHOULD move the remote
window specified by the WindowId field to the coordinates specified by the Left, Top, Right, and
Bottom fields.

If no such Window exists, the server SHOULD ignore the PDU.

3.3.5.2.6.4 Sending Move/Size End PDU

This PDU is sent by the server when a user completes a move or resize of a local RAIL window (for
example, by releasing the mouse button), and the corresponding keyboard input or mouse input
forwarded to the server causes the corresponding remote window to complete the move or resize. It is
initialized as specified in section 2.2.2.7.3.

This PDU SHOULD be sent if the client and server both support local move/size features.

3.3.5.2.7 Application ID Messages

3.3.5.2.7.1 Processing the Get Application ID PDU

Upon receipt of the Get Application ID PDU, the server MAY<26> retrieve the Application ID of the
window whose window ID is specified in the PDU.

If no such window exists, the server SHOULD ignore the PDU.

3.3.5.2.7.2 Sending the Get Application ID Response PDU

The Get Application ID Response PDU is sent in response to a Get Application ID PDU from the client
and is initialized as specified in section 2.2.2.8.1.

3.3.5.2.8 Z-Order Sync Messages

3.3.5.2.8.1 Processing Z-Order Sync Support Flag

80 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

On processing the TS_RAIL_CLIENTSTATUS_ZORDER_SYNC (0x00000004) flag in the Client
Information PDU (section 2.2.2.2.2), the server SHOULD create the marker window (section 3.3.1.3)

and send the ID of this window to the client in the Z-Order Sync Information PDU (section 2.2.2.11.1).
If the client does not advertise support for Z-order sync, then the server MUST destroy the marker

window, if it exists.

3.3.5.2.8.2 Sending Z-Order Sync Information PDU

The server SHOULD send the ID of the marker window to the client in the Z-Order Sync Information
PDU (section 2.2.2.11.1).

3.3.5.2.9 Window Cloak State Sync Messages

3.3.5.2.9.1 Processing Windows Cloak State Change PDU

Upon receipt of the Windows Cloak State Change PDU (section 2.2.2.12.1), the server SHOULD cloak
or uncloak the remote window whose ID is specified by WindowId as specified by the Cloaked field.

The server SHOULD NOT send a Deleted Window Information Order as a result of processing this PDU.

If no such window exists, the server SHOULD ignore the PDU.

3.3.6 Timer Events

No timer events are used.

3.3.7 Other Local Events

3.3.7.1 Sending Language Bar Information PDU

Upon receiving a notification from the server-side language bar indicating that its status was updated,

the server MUST then send the updated status of its language bar to the client using the Language Bar
Information PDU. This enables the client to stay in sync with the server.

3.3.7.2 Sending Language Profile Information PDU

Upon receiving a notification from the client-side text services framework that the current active
language profile has changed, the client MUST then send the new active language profile information
to the server using the Language Profile Information PDU (section 2.2.2.10.1). This enables the server
to stay in sync with the current active language of the client.

Upon receiving this PDU from the client, the server SHOULD change the current server-side active
language profile, by using the information sent by the client. This ensures that the server uses the
same active language profile as the one being used by the client.

3.3.7.3 Sending Compartment Status Information PDU

Upon receiving a notification from the text services framework that the current input method editor
(IME) compartments has changed, the client MUST then send the new compartment information to
the server using the Compartment Status Information PDU (section 2.2.2.10.2). This enables the

server to stay in sync with the current compartment mode of the client.

Similarly, the server is also to send the compartment values to the client if it receives a notification
from the server's text services framework.

Upon receiving this PDU from the client or server, the IME compartment status is set to the values
passed in the PDU.

81 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Remote Desktop Protocol: Remote Programs Virtual Channel Extension.

4.1 Updates to the RDP Core Protocol

4.1.1 Windowing Alternate Secondary Drawing Orders

4.1.1.1 New or Existing Windows

The following is a network capture of a Window Information Order, sent when a new window is created
on the server or when a property on a new or existing window is updated (as specified in
2.2.1.3.1.2.1).

 00000000 2e 81 00 9e df 08 19 58 01 12 00 00 00 00 00 00X........
 00000010 00 cf 14 00 01 00 00 05 1a 00 46 00 69 00 6c 00F.i.l.
 00000020 65 00 20 00 45 00 78 00 70 00 6c 00 6f 00 72 00 e. .E.x.p.l.o.r.
 00000030 65 00 72 00 1b 01 00 00 34 01 00 00 07 00 00 00 e.r.....4.......
 00000040 07 00 00 00 00 00 00 00 07 00 00 00 8d 00 00 00
 00000050 9a 00 00 00 8e 00 00 00 9a 00 00 00 e6 05 00 00
 00000060 42 03 00 00 01 00 00 00 00 00 e6 05 42 03 8d 00 B...........B...
 00000070 00 00 9a 00 00 00 01 00 00 00 00 00 e6 05 42 03B.

 2e -> TS_WINDOW_ORDER_HEADER::Flags (1 Byte)
 81 00 -> TS_WINDOW_ORDER_HEADER::OrderSize (2 Bytes)
 9e df 08 19 -> TS_WINDOW_ORDER_HEADER::FieldsPresentFlags (4 Bytes)
 58 01 12 00 -> WindowId
 00 00 00 00 -> OwnerWindowId
 00 00 cf 14 -> Style
 00 01 00 00 -> ExtendedStyle
 05 -> ShowState
 1a 00 46 00 69 00 6c 00 65 00 20 00 45 00 78 00 70 00 6c 00 6f 00 72 00
 65 00 72 00 -> TitleInfo (File Explorer)
 1b 01 00 00 -> ClientOffsetX (283)
 34 01 00 00 -> ClientOffsetY (308)
 07 00 00 00 -> WindowLeftResizeMargin (7)
 07 00 00 00 -> WindowRightResizeMargin (7)
 00 00 00 00 -> WindowTopResizeMargin (0)
 07 00 00 00 -> WindowBottomResizeMargin (7)
 8d 00 00 00 -> WindowOffsetX (141)
 9a 00 00 00 -> WindowOffsetY (154)
 8e 00 00 00 -> WindowClientDeltaX (142)
 9a 00 00 00 -> WindowClientDeltaY (154)
 e6 05 00 00 -> WindowWidth (1510)
 42 03 00 00 -> WindowHeight (834)
 01 00 -> NumWindowRects (1)
 00 00 00 00 e6 05 42 03 -> WindowRects (0,0,1510,834)
 8d 00 00 00 -> VisibleOffsetX (141)
 9a 00 00 00 -> VisibleOffsetY (154)
 01 00 -> NumVisibilityRects (1)
 00 00 00 00 e6 05 42 03 -> VisibilityRects (0,0,1510,834)

4.1.1.2 Deleted Window

The following is a network capture of a Window Information Order, sent when an existing window is
destroyed on the server (as specified in 2.2.1.3.1.2.4).

 00000000 2e 0b 00 00 00 00 21 24 00 03 00......!$...

82 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 2e -> TS_WINDOW_ORDER_HEADER::Flags (1 Byte)

 0b 00 -> TS_WINDOW_ORDER_HEADER::OrderSize (2 Bytes)

 00 00 00 21 -> TS_WINDOW_ORDER_HEADER::FieldsPresentFlags (4 Bytes)

 (WINDOW_ORDER_TYPE_WINDOW | WINDOW_ORDER_STATE_DELETED)
 24 00 03 00 -> WindowId (4 Bytes)

4.1.1.3 New or Existing Notification Icons

The following is a network capture of a Notification Icon Information Order, sent when a new
notification icon is created on the server (as specified in 2.2.1.3.2.2.1).

 00000000 2e 9d 04 01 00 00 52 8e 00 01 00 d2 9c 00 00 40R........@
 00000010 00 2a 20 0e 20 43 00 6f 00 6d 00 6d 00 75 00 6e .* . C.o.m.m.u.n
 00000020 00 69 00 63 00 61 00 74 00 6f 00 72 00 20 00 2d .i.c.a.t.o.r. .-
 00000030 00 20 00 4e 00 6f 00 74 00 20 00 73 00 69 00 67 . .N.o.t. .s.i.g
 00000040 00 6e 00 65 00 64 00 20 00 69 00 6e 00 0e 20 2c .n.e.d. .i.n.. ,
 00000050 20 00 00 02 20 10 00 10 00 40 00 00 04 fe 03 00 @......
 00000060 00 fc 01 00 00 fc 01 00 00 c0 01 00 00 80 00 00
 00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00
 00000090 00 80 01 00 00 f0 3f 00 00 f8 7f 00 00 00 00 00?.........
 000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000b0 00 00 00 00 00 00 00 00 00 18 36 80 18 1e 38 7f6...8.
 000000c0 9c 19 35 96 ef 1a 3c b5 fe 1e 3e ad ee 15 34 8c ..5...<...>...4.
 000000d0 8d 14 30 77 1b 00 00 00 00 00 00 00 00 00 00 00 ..0w............
 000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000f0 00 00 00 00 00 1c 38 85 17 1a 34 87 c6 17 31 9d8...4...1.
 00000100 ff 0d 2c af ff 15 39 cd ff 1a 42 e3 ff 22 49 e0 ..,...9...B.."I.
 00000110 fc 17 39 a4 c1 13 30 78 1b 00 00 00 00 00 00 00 ..9...0x........
 ……………………………………………….(more icon data)

 2e -> TS_NOTIFYICON_ORDER_HEADER::Flags(1 Byte)
 9d 04 -> TS_NOTIFYICON_ORDER_HEADER::OrderSize(2 Bytes)
 01 00 00 52 -> TS_NOTIFYICON_ORDER_HEADER::FieldsPresentFlags (4 Bytes)
 WINDOW_ORDER_TYPE_NOTIFY | WINDOW_ORDER_FIELD_NOTIFY_TIP |
 WINDOW_ORDER_STATE_NEW | WINDOW_ORDER_ICON)
 8e 00 01 00 -> TS_NOTIFYICON_ORDER_HEADER::WindowId
 d2 9c 00 00 -> TS_NOTIFYICON_ORDER_HEADER::NotifyIconId
 0000000f 40
 00000010 00 57 00 69 00 6e 00 64 00 6f 00 77 00 73 00 20
 00000020 00 54 00 61 00 73 00 6b 00 20 00 4d 00 61 00 6e
 00000030 00 61 00 67 00 65 00 72 00 00 00 02 10 10 00 10
 00000040 00 6e 00 65 00 64 00 20 00 69 00 6e 00 0e 20 2c -> ToolTip (Communicator - Not
signed in)

 00000050 20 00 00 02 20 10 00 10 00 40 00 00 04 fe 03 00 @......
 00000060 00 fc 01 00 00 fc 01 00 00 c0 01 00 00 80 00 00
 00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00
 00000090 00 80 01 00 00 f0 3f 00 00 f8 7f 00 00 00 00 00?.........
 000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000b0 00 00 00 00 00 00 00 00 00 18 36 80 18 1e 38 7f6...8.
 000000c0 9c 19 35 96 ef 1a 3c b5 fe 1e 3e ad ee 15 34 8c ..5...<...>...4.
 000000d0 8d 14 30 77 1b 00 00 00 00 00 00 00 00 00 00 00 ..0w............
 000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000f0 00 00 00 00 00 1c 38 85 17 1a 34 87 c6 17 31 9d8...4...1.
 00000100 ff 0d 2c af ff 15 39 cd ff 1a 42 e3 ff 22 49 e0 ..,...9...B.."I.
 00000110 fc 17 39 a4 c1 13 30 78 1b 00 00 00 00 00 00 00 ..9...0x........ -> Icon
 ……………………………………………….(more icon data)

83 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Note The icon data is significantly large and accounts for the remainder of the order. For the sake of
brevity, the icon information in the remaining bytes of the orderSize field has been truncated in this

example.

4.1.1.4 Deleted Notification Icons

The following is a network capture of a Notification Icon Information Order, sent when an existing
notification icon is deleted on the server (as specified in 2.2.1.3.2.2.2).

 00000000 2e 0f 00 01 00 00 62 f4 01 03 00 00 00 00 00 .y....B........

 2e -> TS_NOTIFYICON_ORDER_HEADER::Flags(1 Byte)
 0f 00 -> TS_NOTIFYICON_ORDER_HEADER::OrderSize(2 Bytes)
 01 00 00 62 -> TS_NOTIFYICON_ORDER_HEADER::FieldsPresentFlags (4 Bytes)
 WINDOW_ORDER_TYPE_NOTIFY | WINDOW_ORDER_STATE_DELETED |
 WINDOW_ORDER_FIELD_NOTIFY_TIP | WINDOW_ORDER_ICON)
 f4 01 03 00 -> TS_NOTIFYICON_ORDER_HEADER::WindowId
 00 00 00 00 -> TS_NOTIFYICON_ORDER_HEADER::NotifyIconId

4.1.1.5 Actively Monitored Desktop

The following is a network capture of an Actively Monitored Desktop packet (as specified in
2.2.1.3.3.2.1).

 00000000 2e 14 00 30 00 00 04 a0 00 01 00 02 a0 00 01 00 ...0............

 2e -> TS_DESKTOP_ORDER_HEADER::Flags
 14 00 -> TS_DESKTOP_ORDER_HEADER::OrderSize
 30 00 00 04 -> TS_DESKTOP_ORDER_HEADER::FieldsPresentFlags (0x4000030)
 (WINDOW_ORDER_TYPE_DESKTOP | WINDOW_ORDER_FIELD_DESKTOP_ZORDER
 WINDOW_ORDER_FIELD_DESKTOP_ACTIVEWND)
 a0 00 01 00 -> ActiveWindowId
 02 -> NumWindowIds
 66 00 02 00
 a0 00 01 00 -> WindowIds

4.1.1.6 Non-monitored Desktop

The following is a network capture of a Non-Monitored Desktop packet (as specified in 2.2.1.3.3.2.2).

 00000000 2e 07 00 01 00 00 04 @.....

 2e -> TS_DESKTOP_ORDER_HEADER::Flags
 07 00 -> TS_DESKTOP_ORDER_HEADER::OrderSize
 01 00 00 04 -> TS_DESKTOP_ORDER_HEADER::FieldsPresentFlags
 (WINDOW_ORDER_TYPE_DESKTOP | WINDOW_ORDER_FIELD_DESKTOP_NONE)

4.2 Initialization Messages

4.2.1 TS_RAIL_ORDER_HANDSHAKE

The following are network captures of the Filter Updated PDUs (TS_RAIL_ORDER_HANDSHAKE, as

specified in 2.2.2.2.1).

84 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Server to Client

 00000000 05 00 08 00 71 17 00 00 q...

 05 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_HANDSHAKE (5) (2 Bytes)
 08 00 -> TS_RAIL_PDU_HEADER::orderLength = 8 (2 Bytes)
 71 17 00 00 -> buildNumber (4 Bytes)

Client to Server

 00000000 05 00 08 00 71 17 00 00 q...

 05 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_HANDSHAKE (5) (2 Bytes)
 08 00 -> TS_RAIL_PDU_HEADER::orderLength = 8 (2 Bytes)
 71 17 00 00 -> buildNumber (4 Bytes)

4.2.2 TS_RAIL_ORDER_CLIENTSTATUS

The following is a network capture of the Client Caps PDU (TS_RAIL_ORDER_CLIENTSTATUS, as
specified in 2.2.2.2.2).

 00000000 0b 00 08 00 01 00 00 00

 0b 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_CLIENTSTATUS (11) (2 Bytes)
 08 00 -> TS_RAIL_PDU_HEADER::orderLength = 8 (2 Bytes)
 01 00 00 00 ->Flags (4 Bytes)

4.3 Launching Messages

4.3.1 TS_RAIL_ORDER_EXEC

The following is a network capture of the Client Execute PDU (TS_RAIL_ORDER_EXEC, as specified in
2.2.2.3.1).

 00000000 01 00 5e 00 08 00 14 00 26 00 18 00 7c 00 7c 00 ..^.....&...|.|.
 00000010 69 00 65 00 78 00 70 00 6c 00 6f 00 72 00 65 00 i.e.x.p.l.o.r.e.
 00000020 66 00 3a 00 5c 00 77 00 69 00 6e 00 64 00 6f 00 f.:.\.w.i.n.d.o.
 00000030 77 00 73 00 5c 00 73 00 79 00 73 00 74 00 65 00 w.s.\.s.y.s.t.e.
 00000040 6d 00 33 00 32 00 77 00 77 00 77 00 2e 00 62 00 m.3.2.w.w.w...b.
 00000050 69 00 6e 00 67 00 2e 00 63 00 6f 00 6d 00 00 00 i.n.g...c.o.m...

 Header:
 01 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_EXEC (1) (2 Bytes)
 5e 00 -> TS_RAIL_PDU_HEADER::orderLength = 94 (2 Bytes)
 08 00 -> Flags : TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS (2 Bytes)
 14 00 -> ExeOrFileLength : 0x14 (2 Bytes)
 26 00 -> WorkingDirLength : 0x26 (2 Bytes)
 18 00 -> ArgumentsLength : 0x18 (2 Bytes)
 7c 00 7c 00 69 00 65 00 78 00 70 00 6c 00 6f 00 72 00 65 00 -> ExeOrFile : ||iexplore (20
Bytes)

 66 00 3a 00 5c 00 77 00 69 00 6e 00 64 00 6f 00 77 00 73 00 5c 00 73 00 79 00 73 00 74 00 65
00 6d 00 33 00 32 00 -> WorkingDir: f:\windows\system32 (38 bytes)

 77 00 77 00 77 00 2e 00 62 00 69 00 6e 00 67 00 2e 00 63 00 6f 00 6d 00 -> Arguments (24
bytes)

85 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.3.2 TS_RAIL_ORDER_EXEC_RESULT

The following is a network capture of the Server Execute Result PDU
(TS_RAIL_ORDER_EXEC_RESULT, as specified in 2.2.2.3.2).

 00000000 80 00 24 00 08 00 03 00 15 00 00 00 00 00 14 00 ..$.............
 00000010 7c 00 7c 00 57 00 72 00 6f 00 6e 00 67 00 41 00 |.|.W.r.o.n.g.A.
 00000020 70 00 70 00 p.p.

 80 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_EXEC_RESULT(128) (2 Bytes)
 24 00 -> TS_RAIL_PDU_HEADER::orderLength = 36 (2 Bytes)
 08 00 -> Flags : TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS (2 Bytes)
 03 00 -> ExecResult : 3 (2 Bytes)
 15 00 00 00 -> RawResult : 0x15 (4 Bytes)
 00 00 -> Padding : 0 (2 Bytes)
 14 00 -> ExeOrFileLength : 0x14 (2 Bytes)
 7c 00 7c 00 57 00 72 00 6f 00 6e 00 67 00 41 00
 70 00 70 00 : ExeOrFile : ||WrongApp (20 Bytes)

4.4 Local Client System Parameters Update Messages

4.4.1 TS_RAIL_ORDER_SYSPARAM

The following are network captures of the Client System Parameters Update PDU
(TS_RAIL_ORDER_SYSPARAM, as specified in 2.2.2.4.1).

 00000000 03 00 12 00 43 00 00 00 7e 00 00 00 02 00 00 00C...~.......
 00000010 00 00 ..

 03 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_SYSPARAM(3) (2 Bytes)
 12 00 -> TS_RAIL_PDU_HEADER::orderLength = 18 (2 Bytes)
 43 00 00 00 -> SystemParam: SPI_SETHIGHCONTRAST (4 Bytes)
 7e 00 00 00 -> Flags: 0x7e (4 Bytes)
 02 00 00 00 -> ColorSchemeLength: 2 (4 Bytes)
 00 00 -> ColorScheme: 0 (2 Bytes)

4.5 Local Client Event Messages

4.5.1 TS_RAIL_ORDER_ACTIVATE

The following is a network capture of the Client Activate PDU (TS_RAIL_ORDER_ACTIVATE, as
specified in 2.2.2.6.1).

 00000000 02 00 09 00 4e 01 01 00 01 N....

 02 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_ACTIVATE(2) (2 Bytes)
 09 00 -> TS_RAIL_PDU_HEADER::orderLength = 9 (2 Bytes)
 4e 01 01 00 -> WindowId:: 0x1014e (4 Bytes)
 01 -> Enabled (1 Byte)

4.5.2 TS_RAIL_ORDER_SYSMENU

The following is a network capture of the Client System Menu PDU (TS_RAIL_ORDER_SYSMENU, as

specified in 2.2.2.6.2).

86 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 00000000 0c 00 0c 00 22 01 09 00 a4 ff 4a 02 ".....J.

 0c 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_SYSMENU(12) (2 Bytes)
 0c 00 -> TS_RAIL_PDU_HEADER::orderLength = 12 (2 Bytes)
 22 01 09 00 -> WindowId:: 0x90122 (4 Bytes)
 a4 ff -> Left (2 Bytes)
 4a 02 -> Top (2 Bytes)

4.5.3 TS_RAIL_ORDER_SYSCOMMAND

The following is a network capture of the Client System Command PDU
(TS_RAIL_ORDER_SYSCOMMAND, as specified in 2.2.2.6.3).

 00000000 04 00 0a 00 52 00 02 00 20 f0 R... .

 04 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_SYSCOMMAND(4) (2 Bytes)
 0a 00 -> TS_RAIL_PDU_HEADER::orderLength = 10 (2 Bytes)
 52 00 02 00 -> WindowId:: 0x20052 (4 Bytes)
 20 f0 -> Command (2 Bytes)

4.5.4 TS_RAIL_ORDER_NOTIFY_EVENT

The following is a network capture of the Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT,
as specified in 2.2.2.6.4).

 00000000 06 00 10 00 aa 01 02 00 02 00 00 00 04 02 00 00

 06 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_NOTIFY_EVENT(6) (2 Bytes)
 10 00 -> TS_RAIL_PDU_HEADER::orderLength = 16 (2 Bytes)
 aa 01 02 00 -> WindowId (4 Bytes)
 02 00 00 00 -> NotifyIconId (4 Bytes)
 04 02 00 00 -> Message (4 Bytes)

4.5.5 TS_RAIL_ORDER_LANGBARINFO

The following is a network capture of the Language Bar Information PDU

(TS_RAIL_ORDER_LANGBARINFO, as specified in 2.2.2.9.1).

 0D 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_LANGBARINFO (13) (2 Bytes)
 08 00 -> TS_RAIL_PDU_HEADER::orderLength = 8 (2 Bytes)
 01 00 00 00 -> LanguageBarStatus:: 0x00000001 (4 Bytes)

4.5.6 TS_RAIL_ORDER_GET_APPID_REQ

The following is a network capture of the Client Get Application ID PDU
(TS_RAIL_ORDER_GET_APPID_REQ, as specified in section 2.2.2.6.5).

 00000000 0E 00 08 00 52 00 02 00 R...
 0E 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_GET_APPID_REQ (14) (2 Bytes)
 08 00 -> TS_RAIL_PDU_HEADER::orderLength = 8 (2 Bytes)
 52 00 02 00 -> WindowId:: 0x20052 (4 Bytes)

87 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.5.7 TS_RAIL_ORDER_GET_APPID_RESP

The following is a network capture of the Server Get Application ID Response PDU
(TS_RAIL_ORDER_GET_APPID_RESP, as specified in section 2.2.2.8.1).

 00000000 0F 00 08 02 52 00 02 00 6d 00 69 00 63 00 72 00R...m.i.c.r.
 00000010 6f 00 73 00 6f 00 66 00 74 00 2e 00 77 00 69 00 o.s.o.f.t...w.i.
 00000020 6e 00 64 00 6f 00 77 00 73 00 2e 00 6e 00 6f 00 n.d.o.w.s...n.o.
 00000030 74 00 65 00 70 00 61 00 64 00 00 00 00 00 00 00 t.e.p.a.d.......
 00000040 00 ...
 00000200 00 00 00 00 00 00 00 00

 0F 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_GET_APPID_RESP (15) (2 Bytes)
 08 02 -> TS_RAIL_PDU_HEADER::orderLength = 520 (2 Bytes)
 52 00 02 00 -> WindowId:: 0x20052 (4 Bytes)
 6d 00 69 00 63 00 72 00 6f 00 73 00 6f 00 66 00 74 00 2e 00 77 00 69 00 6e 00 64 00
 6f 00 77 00 73 00 2e 00 6e 00 6f 00 74 00 65 00 70 00 61 00 64 00 00 ... -> ApplicationId::
microsoft.windows.notepad (512 Bytes)

4.6 Window Move Messages

4.6.1 TS_RAIL_ORDER_WINDOWMOVE

The following is a network capture of the Client Window Move PDU (TS_RAIL_ORDER_WINDOWMOVE,
as specified in 2.2.2.7.4).

 00000000 08 00 10 00 20 00 02 00 09 03 00 01 db 05 88 01

 08 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_WINDOWMOVE(8) (2 Bytes)
 10 00 -> TS_RAIL_PDU_HEADER::orderLength = 16 (2 Bytes)
 20 00 02 00 -> WindowId (4 Bytes)
 09 03 -> Left(2 Bytes)
 00 01 -> Top(2 Bytes)
 db 05 -> Right(2 Bytes)
 88 01 -> Bottom(2 Bytes)

4.6.2 TS_RAIL_ORDER_LOCALMOVESIZE

The following is a network capture of the Server Move/Size Start PDU
(TS_RAIL_ORDER_LOCALMOVESIZE, as specified in 2.2.2.7.2).

 00000000 09 00 10 00 94 00 01 00 01 00 08 00 2c 05 e9 03,...

 09 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_LOCALMOVESIZE(9) (2 Bytes)
 10 00 -> TS_RAIL_PDU_HEADER::orderLength = 16 (2 Bytes)
 94 00 01 00 -> WindowId (4 Bytes)
 01 00 -> IsMoveSizeStart (2 Bytes)
 08 00 -> MoveSizeType (2 Bytes)
 2c 05 -> PosX (2 Bytes)
 e9 03 -> PosY (2 Bytes)

88 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.6.3 TS_RAIL_ORDER_MINMAXINFO

The following is a network capture of the Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO,
as specified in 2.2.2.7.1).

 *00000000 0a 00 18 00 94 00 01 00 48 06 b8 04 00 00 00 00H.......
 *00000010 70 00 1b 00 4c 06 bc 04 p...L...

 0a 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_MINMAXINFO(10) (2 Bytes)
 18 00 -> TS_RAIL_PDU_HEADER::orderLength = 24 (2 Bytes)
 94 00 01 00 -> WindowId (4 Bytes)
 48 06 -> MaxWidth (2 Bytes)
 b8 04 -> MaxHeight (2 Bytes)
 00 00 -> MaxPosX (2 Bytes)
 00 00 -> MaxPosY (2 Bytes)
 70 00 -> MinTrackWidth (2 Bytes)
 1b 00 -> MinTrackHeight (2 Bytes)
 4c 06 -> MaxTrackWidth (2 Bytes)
 bc 04 -> MaxTrackHeight (2 Bytes)

4.7 Z-Order Sync Messages

4.7.1 TS_RAIL_ORDER_ZORDER_SYNC

The following is a network capture of the Server Z-Order Sync Information PDU
(TS_RAIL_ORDER_ZORDER_SYNC, as specified in section 2.2.2.11.1).

 14 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_ZORDER_SYNC (20) (2 Bytes)
 08 00 -> TS_RAIL_PDU_HEADER::orderLength = 8 (2 Bytes)
 10 05 40 00 -> WindowIdMarker (4 Bytes)

89 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

The following sections specify security considerations for implementers of the Remote Desktop
Protocol: Remote Programs Virtual Channel Extension.

5.1 Security Considerations for Implementers

There are no security considerations for Remote Desktop Protocol: Remote Programs Virtual Channel
Extension messages because all traffic is secured by the underlying Remote Desktop Protocol core
protocol. For an overview of the implemented security-related mechanisms, see [MS-RDPBCGR]
section 5.

5.2 Index of Security Parameters

There are no security parameters in the Remote Desktop Protocol: Remote Programs Virtual Channel
Extension.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.docx#Section_65b65e36b87a4f2eab49492d33f21c8f

90 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.1.1.1: Microsoft implementations set TS_RAIL_LEVEL_SUPPORTED to 1 in the
following versions of Windows: Windows Server 2008, Windows Server 2008 R2 operating system,
Windows Server 2012, Windows 7 Enterprise, Windows 7 Enterprise N, Windows 7 Ultimate, Windows
7 Ultimate N, and Windows 8.

Microsoft implementations set TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED to 1 in the following

versions of Windows: Windows Server 2008 R2, Windows Server 2012, Windows 7 Enterprise,
Windows 7 Enterprise N, Windows 7 Ultimate, Windows 7 Ultimate N, and Windows 8.

Microsoft implementations set TS_RAIL_LEVEL_SUPPORTED to 0 on other versions when that
capability is sent and the server does not support Remote Programs.

<2> Section 2.2.1.1.2: Windows sends the TS_WINDOW_LEVEL_SUPPORTED_EX value to the client;
only Windows Vista and Windows Server 2008 send the TS_WINDOW_LEVEL_SUPPORTED value to the

client.

<3> Section 2.2.1.3.1.2.1: This flag is not set in any Windows server implementation.

<4> Section 2.2.1.3.1.2.1: This flag is not set in any Windows server implementation.

<5> Section 2.2.1.3.1.2.1: This flag is not set in any Windows server implementation.

<6> Section 2.2.1.3.1.2.2: Windows applications display large icons in elements such as the Alt-Tab
dialog box and on the desktop, and place small icons in elements such as the window's title bar and
taskbar buttons.

91 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<7> Section 2.2.1.3.1.2.3: Windows applications display large icons in elements such as the Alt-Tab
dialog box and on the desktop, and place small icons in elements such as the window's title bar and

taskbar buttons.

<8> Section 2.2.1.3.2.2.1: The WINDOW_ORDER_CACHED_ICON flag is not set in Windows 7,

Windows Server 2008 R2, Windows 8, and Windows Server 2012 implementations.

<9> Section 2.2.1.3.2.2.3: Microsoft implementations set minimum value to 10000 (10 seconds) and
the maximum value to 30000 (30 seconds).

<10> Section 2.2.2.3.1: The length of the ArgumentsLen field is set to a maximum of 16,000 bytes,
except in Windows Vista and Windows Server 2008 R2 where the maximum is set to 520 bytes.

<11> Section 2.2.2.3.2: This contains a Win32 error code. For more information, see [MS-ERREF].

<12> Section 2.2.2.4.2: Sets the High-Contrast parameters using the Win32 API. For more

information, see [MSDN-HIGHCONTRAST].

<13> Section 2.2.2.4.2: Uses the Windows–specific name of the color scheme.

<14> Section 2.2.2.5.1: This system parameter is supported in Windows. For more information, see
([MSDN-SysParamsInfo]).

<15> Section 2.2.2.6.5: Only Windows Vista and Windows Server 2008 do not use the Application ID
string to identify and group windows.

<16> Section 2.2.2.8.1: Only Windows Vista and Windows Server 2008 do not use the Application ID
string to identify and group windows.

<17> Section 2.2.2.9.1: This option is not available on Windows Vista and Windows Server 2008.

<18> Section 2.2.2.9.1: This option is not available on Windows Vista and Windows Server 2008.

<19> Section 2.2.2.9.1: This option is available on Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 only.

<20> Section 2.2.2.9.1: This option is available on Windows Server 2008 R2, Windows Server 2012,

Windows Server 2012 R2, and Windows Server 2016 only.

<21> Section 3.1.2: Microsoft implementations use 30 seconds as the time-out value.

<22> Section 3.1.5.2: Windows implementations ignore any incompatibility resulting from checking
the buildNumber field between the sender and the receiver.

<23> Section 3.2.5.1.1: Windows implementations use RAIL as the name of the virtual channel.

<24> Section 3.2.5.2.8.2: Only Windows Vista and Windows Server 2008 do not use the Application
ID string to identify and group windows.

<25> Section 3.3.5.1.5: In Windows implementations the NumIconCaches and NumCacheEntries
fields for each cache are set to 0 if the values in the Windows List Capability Sets exceed the
corresponding entries set in the server cache.

<26> Section 3.3.5.2.7.1: Only Windows Vista and Windows Server 2008 do not use the Application
ID string to identify and group windows.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90017
https://go.microsoft.com/fwlink/?LinkId=187513

92 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

1.5 Prerequisites/Preconditions

6650 : Clarified that the
CHANNEL_FLAG_SHOW_PROTOCOL (0x00000010) flag
has to be set in the flags field Channel PDU Header in
order for it to be visible for all data that flows over the
RAIL virtual channel.

major

2.2.2 Static Virtual Channel
Protocol

6650 : Clarified that the RAIL Static Virtual Channel is
named "RAIL".

minor

3.2.5.1.6 Processing Window
Information Orders

6805 : Clarified how the client will process the server
window events of registration, deregistration, and updates
on the edge of an application desktop toolbar.

major

3.3.5.1.6 Constructing Window
Information Orders

6806 : Added two Window Information Orders to match
the client behavior.

major

3.3.5.1.7 Constructing Notification
Icon Orders

6806 : Removed two Notification Icon Orders to match the
client behavior.

major

4.3.2
TS_RAIL_ORDER_EXEC_RESULT

6804 : Changed RAIL_ORDER_EXEC_RESULT to
TS_RAIL_ORDER_EXEC_RESULT.

major

mailto:dochelp@microsoft.com

93 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Index

A

Abstract data model
 client 67
 icon cache support 66
 overview 67
 server state machine 64
 windowing support level 67
 server 74
 client local move/size ability store 74
 icon cache support 66
 overview 74
 server state machine 64
 windowing support level 75
Activate PDU (section 3.2.5.2.5.1 71, section

3.3.5.2.5.1 78)
Actively_Monitored_Desktop packet 35
Applicability 16

C

Cached_Icon packet 29
Capability negotiation 16
Capability sets 17
Change tracking 92
Client
 abstract data model 67
 icon cache support 66
 overview 67
 server state machine 64
 windowing support level 67
 handshake PDU (section 3.1.5.1 66, section

3.1.5.2 66)
 higher-layer triggered events (section 3.1.4 66,

section 3.2.4 67)
 initialization (section 3.1.3 66, section 3.2.3 67)
 local events (section 3.1.7 67, section 3.2.7 74)
 message processing (section 3.1.5 66, section

3.2.5 67)
 other local events 74
 RDP core 67
 sequencing rules (section 3.1.5 66, section 3.2.5

67)
 Static Virtual Channel 70
 timer events (section 3.1.6 66, section 3.2.6 74)
 timers (section 3.1.2 66, section 3.2.2 67)
Client Info PDU (section 3.2.5.1.3 68, section

3.3.5.1.3 75)
Client Information PDU (section 3.2.5.2.1.1 70,

section 3.3.5.2.1.1 77)
Client MCS Connect Initial PDU (section 3.2.5.1.1 67,

section 3.3.5.1.1 75)
Common structures 19
Confirm Active PDU (section 3.2.5.1.4 68, section

3.3.5.1.5 76)
Construction - handshake PDU 66

D

Data model - abstract
 client 67

 icon cache support 66
 overview 67
 server state machine 64
 windowing support level 67
 server 74
 client local move/size ability store 74
 icon cache support 66
 overview 74
 server state machine 64
 windowing support level 75
Deleted_Notification_Icon packet 33
Deleted_Window packet 30
Demand Active PDU (section 3.2.5.1.5 68, section

3.3.5.1.4 75)
Desktop 35
Desktop Information Orders (section 3.2.5.1.8 70,

section 3.3.5.1.8 77)

E

Enhanced RemoteApp 15
Examples
 initialization messages examples 83

 Launching messages examples 84
 local client event messages examples 85
 local client system parameters update messages

examples 85
 overview 81
 updates to RDP code protocol examples 81
 window move messages examples 87
Execute PDU (section 3.2.5.2.2.1 70, section

3.3.5.2.2.1 77)
Execute Result PDU (section 3.2.5.2.2.2 70, section

3.3.5.2.2.2 77)

F

Fields - vendor-extensible 16

G

Globally Unique Identifier (GUID) packet 59
Glossary 9

H

Handshake PDU
 construction 66
 processing 66
HandshakeEx PDU (TS_RAIL_ORDER_HANDSHAKE)

packet 40

Higher-layer triggered events
 client (section 3.1.4 66, section 3.2.4 67)
 server (section 3.1.4 66, section 3.3.4 75)

I

Implementer - security considerations 89
Implementers - security considerations 89
Index of security parameters 89
Informative references 11

94 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Initialization
 client (section 3.1.3 66, section 3.2.3 67)
 server (section 3.1.3 66, section 3.3.3 75)
Initialization messages (section 2.2.2.2 38, section

3.2.5.2.1 70, section 3.3.5.2.1 77)
Initialization messages examples 83
Introduction 9

L

Launching messages examples 84
Local client event messages (section 2.2.2.6 46,

section 3.2.5.2.5 71, section 3.3.5.2.5 78)
Local client event messages examples 85
Local client system parameters update messages

(section 2.2.2.4 43, section 3.2.5.2.3 71, section
3.3.5.2.3 78)

Local client system parameters update messages
examples 85

Local events
 client (section 3.1.7 67, section 3.2.7 74)
 server (section 3.1.7 67, section 3.3.7 80)

M

Message processing
 client (section 3.1.5 66, section 3.2.5 67)
 server (section 3.1.5 66, section 3.3.5 75)
Messages
 flows (section 1.3.2 12, section 1.3.2.1 12)
 overview 17
 RDP core 17
 Static Virtual Channel 37
 Static Virtual Channel Protocol 37
 syntax 17
 transport 17
 Updates to the Remote Desktop Protocol: Basic

Connectivity and Graphics Remoting
Specification 17

Min Max Info PDU (section 3.2.5.2.7.1 72, section
3.3.5.2.6.1 79)

Move/Size End PDU (section 3.2.5.2.7.4 73, section
3.3.5.2.6.4 79)

Move/Size Start PDU (section 3.2.5.2.7.2 72, section
3.3.5.2.6.2 79)

N

Non_monitored_Desktop packet 36
Normative references 10
Notification icon 30

Notification Icon Orders (section 3.2.5.1.7 69,
section 3.3.5.1.7 76)

Notification_Icon_Information_Order packet 31
Notify Event PDU (section 3.2.5.2.5.4 72, section

3.3.5.2.5.4 78)

O

Other local events
 client 74
Overview (synopsis) 11

P

Parameters - security 89
Parameters - security index 89
Preconditions 16
Prerequisites 16
Processing - handshake PDU 66
Product behavior 90
Program launching messages (section 2.2.2.3 40,

section 2.2.2.3.1 40, section 3.2.5.2.2 70,
section 3.3.5.2.2 77)

R

RAIL local move/size 14
RAIL server-client synchronization 13
RAIL session
 connection 12

 disconnection 13
 logoff 13
 reconnection 13
RAIL virtual channel messages 14
RDP core
 client 67
 messages 17
 server 75
References 10
 informative 11
 normative 10
Relation to RDP core protocol 12
Relationship to other protocols 16
Remote_Programs_Capability_Set packet 17

S

Security 89
 implementer considerations 89
 parameter index 89
Sequencing rules
 client (section 3.1.5 66, section 3.2.5 67)
 server (section 3.1.5 66, section 3.3.5 75)
Server
 abstract data model 74
 client local move/size ability store 74
 icon cache support 66
 overview 74
 server state machine 64
 windowing support level 75
 handshake PDU (section 3.1.5.1 66, section

3.1.5.2 66)
 higher-layer triggered events (section 3.1.4 66,

section 3.3.4 75)
 initialization (section 3.1.3 66, section 3.3.3 75)
 local events (section 3.1.7 67, section 3.3.7 80)
 message processing (section 3.1.5 66, section

3.3.5 75)
 RDP core 75
 sequencing rules (section 3.1.5 66, section 3.3.5

75)
 Static Virtual Channel 77
 timer events (section 3.1.6 66, section 3.3.6 80)
 timers (section 3.1.2 66, section 3.3.2 75)
Server MCS Connect Initial PDU 75
Server MCS Connect Response PDU 68

95 / 95

[MS-RDPERP] - v20170601
Remote Desktop Protocol: Remote Programs Virtual Channel Extension
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Server system parameters update messages (section
2.2.2.5 45, section 2.2.2.5.1 45, section
3.2.5.2.4 71)

Server system parameters update PDU (section
3.2.5.2.4.1 71, section 3.3.5.2.4.1 78)

Server_Move_Size_End_PDU packet 53
Server_Move_Size_Start_PDU packet 51
Server_System_Parameters_Update_PDU packet 45
Standards assignments 16
Static Virtual Channel
 client 70
 messages 37
 server 77
Static Virtual Channel Protocol message 37
Structures 19
Syntax - message 17
System Command PDU (section 3.2.5.2.5.3 71,

section 3.3.5.2.5.3 78)
System Menu PDU (section 3.2.5.2.5.2 71, section

3.3.5.2.5.2 78)
System parameters update messages 78
System parameters update PDU (section 3.2.5.2.3.1

71, section 3.3.5.2.3.1 78)

T

Timer events
 client (section 3.1.6 66, section 3.2.6 74)
 server (section 3.1.6 66, section 3.3.6 80)
Timers
 client (section 3.1.2 66, section 3.2.2 67)
 server (section 3.1.2 66, section 3.3.2 75)
Tracking changes 92
Transport 17
Transport - message 17
Triggered events - higher-layer
 client (section 3.1.4 66, section 3.2.4 67)
 server (section 3.1.4 66, section 3.3.4 75)
TS_CACHED_ICON_INFO packet 21
TS_DESKTOP_ORDER_HEADER packet 35
TS_HIGHCONTRAST packet 45
TS_ICON_INFO packet 20
TS_NOTIFY_ICON_INFOTIP packet 34
TS_NOTIFYICON_ORDER_HEADER packet 30
TS_RAIL_ORDER_ACTIVATE packet 46
TS_RAIL_ORDER_CLIENTSTATUS packet 39
TS_RAIL_ORDER_COMPARTMENTINFO_BODY packet

60
TS_RAIL_ORDER_EXEC packet 40
TS_RAIL_ORDER_EXEC_RESULT packet 42
TS_RAIL_ORDER_GET_APPID_REQ packet 49
TS_RAIL_ORDER_GET_APPID_RESP packet 55
TS_RAIL_ORDER_HANDSHAKE packet 38
TS_RAIL_ORDER_LANGBARINFO packet 56
TS_RAIL_ORDER_LANGUAGEIMEINFO packet 57
TS_RAIL_ORDER_MINMAXINFO packet 50
TS_RAIL_ORDER_NOTIFY_EVENT packet 48
TS_RAIL_ORDER_SYSCOMMAND packet 47
TS_RAIL_ORDER_SYSMENU packet 47
TS_RAIL_ORDER_SYSPARAM packet 43
TS_RAIL_ORDER_WINDOWMOVE packet 54
TS_RAIL_PDU_HEADER packet 37

TS_RECTANGLE_16 packet 20
TS_WINDOW_ORDER_HEADER packet 22

U

UNICODE_STRING packet 19
Updates to RDP code protocol examples 81
Updates to the Remote Desktop Protocol: Basic

Connectivity and Graphics Remoting
Specification message 17

V

Vendor-extensible fields 16
Versioning 16

W

Window information 22
Window Information Orders (section 3.2.5.1.6 68,

section 3.3.5.1.6 76)
Window move messages (section 2.2.2.7 50, section

3.2.5.2.7 72, section 3.3.5.2.6 78)
Window move messages examples 87
Window Move PDU (section 3.2.5.2.7.3 73, section

3.3.5.2.6.3 79)
Window_Icon packet 28
Window_Information_Order packet 22
Window_List_Capability_Set packet 18
Windowing alternate secondary drawing orders 22

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Relationship to the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification
	1.3.2 Message Flows
	1.3.2.1 RAIL Session Connection
	1.3.2.2 RAIL Session Disconnection and Reconnection
	1.3.2.3 RAIL Server/Client Synchronization
	1.3.2.4 RAIL Virtual Channel Messages
	1.3.2.5 RAIL Local Move/Resize

	1.3.3 Enhanced RemoteApp
	1.3.4 Window Resize Margins

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Updates to the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification
	2.2.1.1 Capability Sets
	2.2.1.1.1 Remote Programs Capability Set
	2.2.1.1.2 Window List Capability Set

	2.2.1.2 Common Structures
	2.2.1.2.1 Unicode String (UNICODE_STRING)
	2.2.1.2.2 Rectangle (TS_RECTANGLE_16)
	2.2.1.2.3 Icon Info (TS_ICON_INFO)
	2.2.1.2.4 Cached Icon Info (TS_CACHED_ICON_INFO)

	2.2.1.3 Windowing Alternate Secondary Drawing Orders
	2.2.1.3.1 Window Information
	2.2.1.3.1.1 Common Header (TS_WINDOW_ORDER_HEADER)
	2.2.1.3.1.2 Orders
	2.2.1.3.1.2.1 New or Existing Window
	2.2.1.3.1.2.2 Window Icon
	2.2.1.3.1.2.3 Cached Icon
	2.2.1.3.1.2.4 Deleted Window

	2.2.1.3.2 Notification Icon Information
	2.2.1.3.2.1 Common Header (TS_NOTIFYICON_ORDER_HEADER)
	2.2.1.3.2.2 Orders
	2.2.1.3.2.2.1 New or Existing Notification Icons
	2.2.1.3.2.2.2 Deleted Notification Icons
	2.2.1.3.2.2.3 Notification Icon Balloon Tooltip (TS_NOTIFY_ICON_INFOTIP)

	2.2.1.3.3 Desktop Information
	2.2.1.3.3.1 Common Header (TS_DESKTOP_ORDER_HEADER)
	2.2.1.3.3.2 Orders
	2.2.1.3.3.2.1 Actively Monitored Desktop
	2.2.1.3.3.2.2 Non-Monitored Desktop

	2.2.2 Static Virtual Channel Protocol
	2.2.2.1 Common Header (TS_RAIL_PDU_HEADER)
	2.2.2.2 Initialization Messages
	2.2.2.2.1 Handshake PDU (TS_RAIL_ORDER_HANDSHAKE)
	2.2.2.2.2 Client Information PDU (TS_RAIL_ORDER_CLIENTSTATUS)
	2.2.2.2.3 HandshakeEx PDU (TS_RAIL_ORDER_HANDSHAKE_EX)

	2.2.2.3 Program Launching Messages
	2.2.2.3.1 Client Execute PDU (TS_RAIL_ORDER_EXEC)
	2.2.2.3.2 Server Execute Result PDU (TS_RAIL_ORDER_EXEC_RESULT)

	2.2.2.4 Local Client System Parameters Update Messages
	2.2.2.4.1 Client System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)
	2.2.2.4.2 High Contrast System Information Structure (TS_HIGHCONTRAST)

	2.2.2.5 Server System Parameters Update Messages
	2.2.2.5.1 Server System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)

	2.2.2.6 Local Client Event Messages
	2.2.2.6.1 Client Activate PDU (TS_RAIL_ORDER_ACTIVATE)
	2.2.2.6.2 Client System Menu PDU (TS_RAIL_ORDER_SYSMENU)
	2.2.2.6.3 Client System Command PDU (TS_RAIL_ORDER_SYSCOMMAND)
	2.2.2.6.4 Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT)
	2.2.2.6.5 Client Get Application ID PDU (TS_RAIL_ORDER_GET_APPID_REQ)

	2.2.2.7 Window Move Messages
	2.2.2.7.1 Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO)
	2.2.2.7.2 Server Move/Size Start PDU (TS_RAIL_ORDER_LOCALMOVESIZE)
	2.2.2.7.3 Server Move/Size End PDU (TS_RAIL_ORDER_LOCALMOVESIZE)
	2.2.2.7.4 Client Window Move PDU (TS_RAIL_ORDER_WINDOWMOVE)

	2.2.2.8 Server Application ID Response
	2.2.2.8.1 Server Get Application ID Response PDU (TS_RAIL_ORDER_GET_APPID_RESP)

	2.2.2.9 Language Bar Messages
	2.2.2.9.1 Language Bar Information PDU (TS_RAIL_ORDER_LANGBARINFO)

	2.2.2.10 Language Sync Messages
	2.2.2.10.1 Language Profile Information PDU (TS_RAIL_ORDER_LANGUAGEIMEINFO)
	2.2.2.10.1.1 Globally Unique Identifier (GUID)

	2.2.2.10.2 Compartment Status Information PDU (TS_RAIL_ORDER_COMPARTMENTINFO_BODY)

	2.2.2.11 Z-Order Sync Messages
	2.2.2.11.1 Server Z-Order Sync Information PDU (TS_RAIL_ORDER_ZORDER_SYNC)

	2.2.2.12 Window Cloak State Sync Messages
	2.2.2.12.1 Window Cloak State Change PDU (TS_RAIL_ORDER_CLOAK)

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Server State Machine
	3.1.1.2 Icon Cache Support

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Constructing Handshake PDU
	3.1.5.2 Processing Handshake PDU

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Windowing Support Level
	3.2.1.2 Marker Window ID

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Updates to RDP Core Protocol
	3.2.5.1.1 Constructing Client MCS Connect Initial PDU
	3.2.5.1.2 Processing Server MCS Connect Response PDU
	3.2.5.1.3 Constructing Client Info PDU
	3.2.5.1.4 Constructing Confirm Active PDU
	3.2.5.1.5 Processing Demand Active PDU
	3.2.5.1.6 Processing Window Information Orders
	3.2.5.1.7 Processing Notification Icon Orders
	3.2.5.1.8 Processing Desktop Information Orders

	3.2.5.2 Static Virtual Channel Protocol
	3.2.5.2.1 Initialization Messages
	3.2.5.2.1.1 Sending Client Information PDU

	3.2.5.2.2 Program Launching Messages
	3.2.5.2.2.1 Sending Execute PDU
	3.2.5.2.2.2 Processing Execute Result PDU

	3.2.5.2.3 Local Client System Parameters Update Messages
	3.2.5.2.3.1 Sending System Parameters Update PDU

	3.2.5.2.4 Server System Parameters Update Messages
	3.2.5.2.4.1 Processing Server System Parameters Update PDU

	3.2.5.2.5 Local Client Event Messages
	3.2.5.2.5.1 Sending Activate PDU
	3.2.5.2.5.2 Sending System Menu PDU
	3.2.5.2.5.3 Sending System Command PDU
	3.2.5.2.5.4 Sending Notify Event PDU

	3.2.5.2.6 Language Bar Information PDUs
	3.2.5.2.6.1 Sending Language Bar Information PDU
	3.2.5.2.6.2 Processing Language Bar Information PDU

	3.2.5.2.7 Window Move Messages
	3.2.5.2.7.1 Processing Min Max Info PDU
	3.2.5.2.7.2 Processing Move/Size Start PDU
	3.2.5.2.7.3 Sending Window Move PDU
	3.2.5.2.7.4 Processing Move/Size End PDU

	3.2.5.2.8 Application ID Messages
	3.2.5.2.8.1 Sending Client Get Application ID PDU
	3.2.5.2.8.2 Processing Server Get Application ID Response PDU

	3.2.5.2.9 Z-Order Sync Messages
	3.2.5.2.9.1 Sending Z-Order Sync Support Flag
	3.2.5.2.9.2 Processing Z-Order Sync Information PDU

	3.2.5.2.10 Window Cloak State Sync Messages
	3.2.5.2.10.1 Sending Window Cloak State Change PDU

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 Client Local Move/Size Ability Store
	3.3.1.2 Windowing Support Level
	3.3.1.3 Marker Window

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Updates to RDP Core Protocol
	3.3.5.1.1 Processing Client MCS Connect Initial PDU
	3.3.5.1.2 Constructing Server MCS Connect Response PDU
	3.3.5.1.3 Processing Client Info PDU
	3.3.5.1.4 Constructing Demand Active PDU
	3.3.5.1.5 Processing Confirm Active PDU
	3.3.5.1.6 Constructing Window Information Orders
	3.3.5.1.7 Constructing Notification Icon Orders
	3.3.5.1.8 Constructing Desktop Information Orders

	3.3.5.2 Static Virtual Channel Protocol
	3.3.5.2.1 Initialization Messages
	3.3.5.2.1.1 Processing Client Information PDU

	3.3.5.2.2 Program Launching Messages
	3.3.5.2.2.1 Processing Execute PDU
	3.3.5.2.2.2 Sending Execute Result PDU

	3.3.5.2.3 Local Client System Parameters Update Messages
	3.3.5.2.3.1 Processing System Parameters Update PDU

	3.3.5.2.4 Server System Parameters Update Messages
	3.3.5.2.4.1 Sending Server System Parameters Update PDU

	3.3.5.2.5 Local Client Event Messages
	3.3.5.2.5.1 Processing Activate PDU
	3.3.5.2.5.2 Processing System Menu PDU
	3.3.5.2.5.3 Processing System Command PDU
	3.3.5.2.5.4 Processing Notify Event PDU
	3.3.5.2.5.5 Processing Language Bar Information PDU

	3.3.5.2.6 Window Move Messages
	3.3.5.2.6.1 Sending Min Max Info PDU
	3.3.5.2.6.2 Sending Move/Size Start PDU
	3.3.5.2.6.3 Processing Window Move PDU
	3.3.5.2.6.4 Sending Move/Size End PDU

	3.3.5.2.7 Application ID Messages
	3.3.5.2.7.1 Processing the Get Application ID PDU
	3.3.5.2.7.2 Sending the Get Application ID Response PDU

	3.3.5.2.8 Z-Order Sync Messages
	3.3.5.2.8.1 Processing Z-Order Sync Support Flag
	3.3.5.2.8.2 Sending Z-Order Sync Information PDU

	3.3.5.2.9 Window Cloak State Sync Messages
	3.3.5.2.9.1 Processing Windows Cloak State Change PDU

	3.3.6 Timer Events
	3.3.7 Other Local Events
	3.3.7.1 Sending Language Bar Information PDU
	3.3.7.2 Sending Language Profile Information PDU
	3.3.7.3 Sending Compartment Status Information PDU

	4 Protocol Examples
	4.1 Updates to the RDP Core Protocol
	4.1.1 Windowing Alternate Secondary Drawing Orders
	4.1.1.1 New or Existing Windows
	4.1.1.2 Deleted Window
	4.1.1.3 New or Existing Notification Icons
	4.1.1.4 Deleted Notification Icons
	4.1.1.5 Actively Monitored Desktop
	4.1.1.6 Non-monitored Desktop

	4.2 Initialization Messages
	4.2.1 TS_RAIL_ORDER_HANDSHAKE
	4.2.2 TS_RAIL_ORDER_CLIENTSTATUS

	4.3 Launching Messages
	4.3.1 TS_RAIL_ORDER_EXEC
	4.3.2 TS_RAIL_ORDER_EXEC_RESULT

	4.4 Local Client System Parameters Update Messages
	4.4.1 TS_RAIL_ORDER_SYSPARAM

	4.5 Local Client Event Messages
	4.5.1 TS_RAIL_ORDER_ACTIVATE
	4.5.2 TS_RAIL_ORDER_SYSMENU
	4.5.3 TS_RAIL_ORDER_SYSCOMMAND
	4.5.4 TS_RAIL_ORDER_NOTIFY_EVENT
	4.5.5 TS_RAIL_ORDER_LANGBARINFO
	4.5.6 TS_RAIL_ORDER_GET_APPID_REQ
	4.5.7 TS_RAIL_ORDER_GET_APPID_RESP

	4.6 Window Move Messages
	4.6.1 TS_RAIL_ORDER_WINDOWMOVE
	4.6.2 TS_RAIL_ORDER_LOCALMOVESIZE
	4.6.3 TS_RAIL_ORDER_MINMAXINFO

	4.7 Z-Order Sync Messages
	4.7.1 TS_RAIL_ORDER_ZORDER_SYNC

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

