

1 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-RDPEGFX]:
Remote Desktop Protocol:
Graphics Pipeline Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

12/16/2011 1.0 New Released new document.

03/30/2012 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 2.0 Major Significantly changed the technical content.

10/25/2012 3.0 Major Significantly changed the technical content.

01/31/2013 4.0 Major Significantly changed the technical content.

08/08/2013 5.0 Major Significantly changed the technical content.

11/14/2013 6.0 Major Significantly changed the technical content.

3 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 9
1.1 Glossary ... 9
1.2 References .. 9

1.2.1 Normative References ... 10
1.2.2 Informative References ... 10

1.3 Overview .. 10
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12

1.5.1 Client Implementation Requirements .. 12
1.5.2 Server Implementation Requirements ... 13

1.6 Applicability Statement ... 14
1.7 Versioning and Capability Negotiation ... 14
1.8 Vendor-Extensible Fields ... 14
1.9 Standards Assignments .. 14

2 Messages.. 15
2.1 Transport .. 15
2.2 Message Syntax .. 15

2.2.1 Common Data Types .. 15
2.2.1.1 RDPGFX_POINT16 .. 15
2.2.1.2 RDPGFX_RECT16 .. 15
2.2.1.3 RDPGFX_COLOR32 ... 16
2.2.1.4 RDPGFX_PIXELFORMAT ... 16
2.2.1.5 RDPGFX_HEADER ... 16
2.2.1.6 RDPGFX_CAPSET .. 18

2.2.2 Graphics Messages ... 19
2.2.2.1 RDPGFX_WIRE_TO_SURFACE_PDU_1 .. 19
2.2.2.2 RDPGFX_WIRE_TO_SURFACE_PDU_2 .. 20
2.2.2.3 RDPGFX_DELETE_ENCODING_CONTEXT_PDU .. 21
2.2.2.4 RDPGFX_SOLIDFILL_PDU .. 22
2.2.2.5 RDPGFX_SURFACE_TO_SURFACE_PDU .. 23
2.2.2.6 RDPGFX_SURFACE_TO_CACHE_PDU ... 23
2.2.2.7 RDPGFX_CACHE_TO_SURFACE_PDU ... 24
2.2.2.8 RDPGFX_EVICT_CACHE_ENTRY_PDU .. 25
2.2.2.9 RDPGFX_CREATE_SURFACE_PDU ... 25
2.2.2.10 RDPGFX_DELETE_SURFACE_PDU .. 26
2.2.2.11 RDPGFX_START_FRAME_PDU ... 26
2.2.2.12 RDPGFX_END_FRAME_PDU .. 27
2.2.2.13 RDPGFX_FRAME_ACKNOWLEDGE_PDU .. 28
2.2.2.14 RDPGFX_RESET_GRAPHICS_PDU .. 29
2.2.2.15 RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU .. 30
2.2.2.16 RDPGFX_CACHE_IMPORT_OFFER_PDU .. 30

2.2.2.16.1 RDPGFX_CACHE_ENTRY_METADATA .. 31
2.2.2.17 RDPGFX_CACHE_IMPORT_REPLY_PDU ... 31
2.2.2.18 RDPGFX_CAPS_ADVERTISE_PDU .. 32
2.2.2.19 RDPGFX_CAPS_CONFIRM_PDU ... 32
2.2.2.20 RDPGFX_MAP_SURFACE_TO_WINDOW_PDU .. 33

2.2.3 Capability Sets ... 34
2.2.3.1 RDPGFX_CAPSET_VERSION8 ... 34
2.2.3.2 RDPGFX_CAPSET_VERSION81 .. 34

4 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4 Bitmap Compression ... 35
2.2.4.1 CLEARCODEC_BITMAP_STREAM ... 35

2.2.4.1.1 CLEARCODEC_COMPOSITE_PAYLOAD .. 37
2.2.4.1.1.1 CLEARCODEC_RESIDUAL_DATA .. 37

2.2.4.1.1.1.1 CLEARCODEC_RGB_RUN_SEGMENT ... 38
2.2.4.1.1.2 CLEARCODEC_BANDS_DATA ... 39

2.2.4.1.1.2.1 CLEARCODEC_BAND ... 39
2.2.4.1.1.2.1.1 CLEARCODEC_VBAR ... 40

2.2.4.1.1.2.1.1.1 VBAR_CACHE_HIT... 40
2.2.4.1.1.2.1.1.2 SHORT_VBAR_CACHE_HIT ... 41
2.2.4.1.1.2.1.1.3 SHORT_VBAR_CACHE_MISS ... 42

2.2.4.1.1.3 CLEARCODEC_SUBCODECS_DATA ... 42
2.2.4.1.1.3.1 CLEARCODEC_SUBCODEC ... 43

2.2.4.1.1.3.1.1 CLEARCODEC_SUBCODEC_RLEX .. 44
2.2.4.1.1.3.1.1.1 RLEX_RGB_TRIPLET .. 44
2.2.4.1.1.3.1.1.2 CLEARCODEC_SUBCODEC_RLEX_SEGMENT 45

2.2.4.2 RFX_PROGRESSIVE_BITMAP_STREAM ... 46
2.2.4.2.1 RFX_PROGRESSIVE_DATABLOCK .. 46

2.2.4.2.1.1 RFX_PROGRESSIVE_SYNC .. 47
2.2.4.2.1.2 RFX_PROGRESSIVE_FRAME_BEGIN ... 48
2.2.4.2.1.3 RFX_PROGRESSIVE_FRAME_END .. 49
2.2.4.2.1.4 RFX_PROGRESSIVE_CONTEXT .. 49
2.2.4.2.1.5 RFX_PROGRESSIVE_REGION .. 50

2.2.4.2.1.5.1 RFX_PROGRESSIVE_CODEC_QUANT... 52
2.2.4.2.1.5.2 RFX_COMPONENT_CODEC_QUANT ... 52
2.2.4.2.1.5.3 RFX_PROGRESSIVE_TILE_SIMPLE .. 53
2.2.4.2.1.5.4 RFX_PROGRESSIVE_TILE_FIRST .. 55
2.2.4.2.1.5.5 RFX_PROGRESSIVE_TILE_UPGRADE ... 57

2.2.4.3 RFX_PROGRESSIVE_V2_BITMAP_STREAM ... 59
2.2.4.3.1 RFX_PROGRESSIVE_V2_DATABLOCK ... 60

2.2.4.3.1.1 RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE 60
2.2.4.3.1.1.1 RFX_PROGRESSIVE_V2_CODEC_QUANT 62

2.2.4.3.1.2 RFX_PROGRESSIVE_V2_NEW_CONTEXT ... 63
2.2.4.3.1.2.1 RFX_PROGRESSIVE_V2_DWT_CONTEXT_INFO 64

2.2.4.3.1.3 RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT 64
2.2.4.3.1.4 RFX_PROGRESSIVE_V2_CONTEXT_DATA_NEW 65
2.2.4.3.1.5 RFX_PROGRESSIVE_V2_ CONTEXT_DATA_UPGRADE 66
2.2.4.3.1.6 RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY 68

2.2.4.3.1.6.1 RFX_PROGRESSIVE_V2_MOVING_PART 69
2.2.4.4 ALPHACODEC_BITMAP_STREAM ... 69

2.2.4.4.1 CLEARCODEC_ALPHA_RLE_SEGMENT .. 70
2.2.4.5 RFX_H264_BITMAP_STREAM .. 71

2.2.4.5.1 RFX_H264_METABLOCK ... 71
2.2.4.5.2 RDPGFX_H264_QUANT_QUALITY .. 72

2.2.5 Data Packaging .. 72
2.2.5.1 RDP_SEGMENTED_DATA ... 72
2.2.5.2 RDP_DATA_SEGMENT ... 73
2.2.5.3 RDP8_BULK_ENCODED_DATA .. 74

2.3 Directory Service Schema Elements ... 74

3 Protocol Details .. 75
3.1 Common Details .. 75

3.1.1 Abstract Data Model ... 75

5 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.2 Timers .. 75
3.1.3 Initialization .. 75
3.1.4 Higher-Layer Triggered Events ... 75
3.1.5 Message Processing Events and Sequencing Rules .. 75

3.1.5.1 Processing a Graphics Message .. 75
3.1.6 Timer Events ... 75
3.1.7 Other Local Events ... 75
3.1.8 Bitmap Compression ... 75

3.1.8.1 RemoteFX Progressive Codec Compression .. 75
3.1.8.1.1 General Terms and Concepts .. 76
3.1.8.1.2 Sub-Band Diffing ... 76
3.1.8.1.3 Extra Quantization .. 76
3.1.8.1.4 State Tracking .. 77
3.1.8.1.5 Simplified Run-Length (SRL) ... 77

3.1.8.1.5.1 Zero Run-Length Encoding .. 77
3.1.8.1.5.2 Unary Encoding ... 78

3.1.8.1.6 Summary of Terms .. 78
3.1.8.2 RemoteFX Progressive v.2 Codec Compression ... 79

3.1.8.2.1 General Terms and Concepts .. 79
3.1.8.2.2 Extra Quantization .. 79
3.1.8.2.3 Simplified Run-Length (SRL) ... 80
3.1.8.2.4 Summary of Terms .. 80

3.1.9 Bulk Data Compression ... 81
3.1.9.1 RDP 8.0 ... 81

3.1.9.1.1 Overview ... 81
3.1.9.1.2 Detailed Description .. 81

3.1.9.1.2.1 De-Blocking .. 82
3.1.9.1.2.2 Compressed Segment Header ... 82
3.1.9.1.2.3 Compressed Segment Bit Stream .. 82
3.1.9.1.2.4 Compressed Segment Trailer .. 82
3.1.9.1.2.5 Bit Stream Encoding Examples .. 85

3.2 Server Details ... 86
3.2.1 Abstract Data Model ... 86

3.2.1.1 Bitmap Cache Map .. 86
3.2.1.2 Unacknowledged Frames ... 86

3.2.2 Timers .. 86
3.2.3 Initialization .. 86
3.2.4 Higher-Layer Triggered Events ... 86
3.2.5 Message Processing Events and Sequencing Rules .. 86

3.2.5.1 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_1 message 86
3.2.5.2 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_2 message 87
3.2.5.3 Sending an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message 87
3.2.5.4 Sending an RDPGFX_SOLIDFILL_PDU message .. 87
3.2.5.5 Sending an RDPGFX_SURFACE_TO_SURFACE_PDU message 87
3.2.5.6 Sending an RDPGFX_SURFACE_TO_CACHE_PDU message 87
3.2.5.7 Sending an RDPGFX_CACHE_TO_SURFACE_PDU message 87
3.2.5.8 Sending an RDPGFX_EVICT_CACHE_ENTRY_PDU message 88
3.2.5.9 Sending an RDPGFX_CREATE_SURFACE_PDU message 88
3.2.5.10 Sending an RDPGFX_DELETE_SURFACE_PDU message 88
3.2.5.11 Sending an RDPGFX_START_FRAME_PDU message 88
3.2.5.12 Sending an RDPGFX_END_FRAME_PDU message .. 88
3.2.5.13 Processing an RDPGFX_FRAME_ACKNOWLEDGE_PDU message..................... 88
3.2.5.14 Sending an RDPGFX_RESET_GRAPHICS_PDU message 89

6 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.5.15 Sending an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message 89
3.2.5.16 Processing an RDPGFX_CACHE_IMPORT_OFFER_PDU message 89
3.2.5.17 Sending an RDPGFX_CACHE_IMPORT_REPLY_PDU message 89
3.2.5.18 Processing an RDPGFX_CAPS_ADVERTISE_PDU message 89
3.2.5.19 Sending an RDPGFX_CAPS_CONFIRM_PDU message 89
3.2.5.20 Sending an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message 90

3.2.6 Timer Events ... 90
3.2.7 Other Local Events ... 90
3.2.8 Bitmap Compression ... 90

3.2.8.1 RemoteFX Progressive Codec Compression .. 90
3.2.8.1.1 Color Conversion (RGB to YCbCr) .. 90
3.2.8.1.2 DWT .. 90

3.2.8.1.2.1 Original Method ... 91
3.2.8.1.2.2 Reduce-Extrapolate Method .. 91

3.2.8.1.3 Quantization and Linearization .. 93
3.2.8.1.4 Sub-Band Diffing ... 93
3.2.8.1.5 Progressive Entropy Encoding ... 94

3.2.8.1.5.1 Performing the First Progressive Pass ... 95
3.2.8.1.5.2 Performing Upgrade Progressive Passes ... 96

3.2.8.1.5.2.1 Sending Raw Bits ... 96
3.2.8.1.5.3 Maintaining the Decoder Reference .. 96

3.2.8.2 RemoteFX Progressive v.2 Codec Compression ... 97
3.2.8.2.1 Color Conversion (RGB to YCbCr) .. 97
3.2.8.2.2 DWT .. 97

3.2.8.2.2.1 Original Method Applied to Odd Sizes ... 97
3.2.8.2.2.2 Reduce-Extrapolate Method on even sizes .. 98
3.2.8.2.2.3 DWT passes .. 98

3.2.8.2.3 Quantization and Linearization .. 99
3.2.8.2.4 Progressive Entropy Encoding ... 99

3.2.8.2.4.1 Performing the First Progressive Pass .. 100
3.2.8.2.4.2 Performing Upgrade Progressive Passes .. 100

3.2.8.2.4.2.1 Sending Raw Bits .. 101
3.3 Client Details .. 101

3.3.1 Abstract Data Model .. 101
3.3.1.1 Codec Contexts ... 101
3.3.1.2 Progressive Tile Contexts .. 102
3.3.1.3 Sub-Band Diffing Tile Contexts .. 102
3.3.1.4 Bitmap Cache .. 102
3.3.1.5 Persistent Bitmap Cache ... 102
3.3.1.6 Offscreen Surface .. 102
3.3.1.7 Graphics Output Buffer ... 102
3.3.1.8 Surface to Output Mapping ... 103
3.3.1.9 Decompressor Glyph Storage .. 103
3.3.1.10 V-Bar Storage ... 103
3.3.1.11 V-Bar Storage Cursor ... 103
3.3.1.12 Short-V-Bar Storage .. 103
3.3.1.13 Short V-Bar Storage Cursor ... 103
3.3.1.14 Confirmed Graphics Capabilities ... 103
3.3.1.15 Surface to Window Mapping .. 103

3.3.2 Timers ... 103
3.3.3 Initialization ... 104
3.3.4 Higher-Layer Triggered Events .. 104
3.3.5 Message Processing Events and Sequencing Rules ... 104

7 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.3.5.1 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_1 message 104
3.3.5.2 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_2 message 104
3.3.5.3 Processing an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message 105
3.3.5.4 Processing an RDPGFX_SOLIDFILL_PDU message .. 105
3.3.5.5 Processing an RDPGFX_SURFACE_TO_SURFACE_PDU message 105
3.3.5.6 Processing an RDPGFX_SURFACE_TO_CACHE_PDU message 105
3.3.5.7 Processing an RDPGFX_CACHE_TO_SURFACE_PDU message 105
3.3.5.8 Processing an RDPGFX_EVICT_CACHE_ENTRY_PDU message 105
3.3.5.9 Processing an RDPGFX_CREATE_SURFACE_PDU message 106
3.3.5.10 Processing an RDPGFX_DELETE_SURFACE_PDU message 106
3.3.5.11 Processing an RDPGFX_START_FRAME_PDU message 106
3.3.5.12 Processing an RDPGFX_END_FRAME_PDU message 106
3.3.5.13 Sending an RDPGFX_FRAME_ACKNOWLEDGE_PDU message 106
3.3.5.14 Processing an RDPGFX_RESET_GRAPHICS_PDU message 106
3.3.5.15 Processing an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message 106
3.3.5.16 Sending an RDPGFX_CACHE_IMPORT_OFFER_PDU message 107
3.3.5.17 Processing an RDPGFX_CACHE_IMPORT_REPLY_PDU message 107
3.3.5.18 Sending an RDPGFX_CAPS_ADVERTISE_PDU message 107
3.3.5.19 Processing an RDPGFX_CAPS_CONFIRM_PDU message............................... 107
3.3.5.20 Processing an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message 107

3.3.6 Timer Events .. 107
3.3.7 Other Local Events .. 107
3.3.8 Bitmap Compression .. 108

3.3.8.1 ClearCodec Compression .. 108
3.3.8.1.1 ClearCodec Run-Length Encoding ... 108
3.3.8.1.2 Decompressing a Bitmap ... 108

3.3.8.2 RemoteFX Progressive Codec Compression ... 109
3.3.8.2.1 Progressive Entropy Decode .. 110

3.3.8.2.1.1 Performing the First Progressive Pass .. 110
3.3.8.2.1.2 Performing the Upgrade Progressive Passes 111

3.3.8.2.2 Inverse DWT ... 112
3.3.8.2.3 Color Conversion .. 112

3.3.8.3 RemoteFX Progressive v.2 Codec Compression .. 112
3.3.8.3.1 Progressive Entropy Decode .. 113

3.3.8.3.1.1 Performing the First Progressive Pass .. 113
3.3.8.3.1.2 Performing the Upgrade Progressive Passes 114

3.3.8.3.2 Inverse DWT ... 114
3.3.8.3.3 Color Conversion .. 116

4 Protocol Examples .. 117
4.1 Bitmap Compression ... 117

4.1.1 ClearCodec Compression .. 117
4.1.1.1 Example 1 .. 117
4.1.1.2 Example 2 .. 117
4.1.1.3 Example 3 .. 119
4.1.1.4 Example 4 .. 121
4.1.1.5 Example 5 .. 123

4.2 Bulk Data Compression ... 124
4.2.1 RDP 8.0 ... 124

4.2.1.1 Compression Samples .. 124
4.2.1.1.1 Example 1 ... 124
4.2.1.1.2 Example 2 ... 125
4.2.1.1.3 Example 3 ... 125

8 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4.2.1.1.4 Example 4 ... 126
4.2.1.1.5 Example 5 ... 127

4.2.1.2 Sample Code... 128

5 Security .. 135
5.1 Security Considerations for Implementers .. 135
5.2 Index of Security Parameters ... 135

6 Appendix A: Product Behavior .. 136

7 Change Tracking... 137

8 Index ... 139

9 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

The Remote Desktop Protocol: Graphics Pipeline Extension applies to the Remote Desktop Protocol:
Basic Connectivity and Graphics Remoting, as specified in [MS-RDPBCGR] sections 1 to 5. The
graphics protocol specified in section 2.2 is used to efficiently encode graphics display data
generated in a session associated with a remote user on a terminal server so that the data can be
sent on the wire, received, decoded, and rendered by a compatible client. The net effect is that a
desktop or application running on a remote terminal server will appear to a user as if it is running
locally.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

little-endian
UTC (Coordinated Universal Time)

The following terms are specific to this document:

ANSI character: An 8-bit Windows-1252 character set unit.

ARGB: A color space wherein each color is represented as a quadruple (A, R, G, B), where A

represents the alpha (transparency) component, R represents the red component, G
represents the green component, and B represents the blue component.

discrete wavelet transform (DWT): A mathematical procedure that can be used to derive a

discrete representation of a signal.

inverse discrete wavelet transform (IDWT): A mathematical procedure that can be used to
reconstruct a signal without loss of information.

terminal server: The server to which the client initiated the remote desktop connection.

XRGB: A color space wherein each color is represented as a quadruple (X, R, G, B), where X is
unused, R represents the red component, G represents the green component, and B
represents the blue component. XRGB effectively has the same color range as RGB.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

10 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation

details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[ITU-H.264-201201] ITU-T, "Advanced video coding for generic audiovisual services",

Recommendation H.264, January 2012, http://www.itu.int/rec/T-REC-H.264-201201-S/en

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)

Acceleration Extensions".

[MS-RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS-RDPNSC] Microsoft Corporation, "Remote Desktop Protocol: NSCodec Extension".

[MS-RDPRFX] Microsoft Corporation, "Remote Desktop Protocol: RemoteFX Codec Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[SAYOOD] Sayood, K., "Lossless Compression Handbook, First Edition", Academic Press, August
2002, ISBN: 0126208611.

1.3 Overview

The graphics commands specified in section 2.2 are used to efficiently encode graphics display data
generated in the session associated with a remote user and can be separated into five categories.

1. Cache management commands are used to evict entries from a bitmap cache and to notify the
server of cache entries stored in an optional client-side persistent bitmap cache.

RDPGFX_EVICT_CACHE_ENTRY_PDU (section 2.2.2.8)

RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16)

RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17)

http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=324623
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPERP%5d.pdf
%5bMS-RDPERP%5d.pdf
%5bMS-RDPNSC%5d.pdf
%5bMS-RDPRFX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf

11 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. Surface management commands are used to manage the lifetime of offscreen surfaces, to map
offscreen surfaces to the graphics output buffer, and to adjust the dimensions of the graphics

output buffer.

RDPGFX_CREATE_SURFACE_PDU (section 2.2.2.9)

RDPGFX_DELETE_SURFACE_PDU (section 2.2.2.10)

RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

3. Framing commands are used to group graphics commands into logical frames and to indicate to
the server that a frame has been decoded.

RDPGFX_START_FRAME_PDU (section 2.2.2.11)

RDPGFX_END_FRAME_PDU (section 2.2.2.12)

RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

4. Capability exchange commands are used to exchange capability sets (section 2.2.1.4).

RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18)

RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)

5. Blit commands are used to transfer bitmaps from the server to an offscreen surface on the client,
transfer bitmaps between offscreen surfaces, transfer bitmaps between offscreen surfaces and a
bitmap cache, and to fill a rectangular region on an offscreen surface with a predefined color.

RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)

RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

RDPGFX_SURFACE_TO_SURFACE_PDU (section 2.2.2.5)

RDPGFX_SURFACE_TO_CACHE_PDU (section 2.2.2.6)

RDPGFX_CACHE_TO_SURFACE_PDU (section 2.2.2.7)

12 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 1: Overview of the blit commands

For more details regarding the graphics protocol behavior, sequencing, and processing rules, see
section 3.

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: Graphics Pipeline Extension is embedded in a dynamic virtual channel

transport, as specified in [MS-RDPEDYC] sections 1 through 3.

1.5 Prerequisites/Preconditions

The Remote Desktop Protocol: Graphics Pipeline Extension operates only after the dynamic virtual
channel transport is fully established. If the dynamic virtual channel transport is terminated, the
Remote Desktop Protocol: Graphics Virtual Channel Extension is also terminated. The protocol is

terminated by closing the underlying virtual channel. For details about closing the dynamic virtual
channel, refer to [MS-RDPEDYC] section 3.3.5.2.

1.5.1 Client Implementation Requirements

Clients implementing the Remote Desktop Protocol: Graphics Pipeline Extension must set the
RNS_UD_CS_SUPPORT_DYNVC_GFX_PROTOCOL (0x0100) flag in the earlyCapabilityFlags field of
the Client Core Data ([MS-RDPBCGR] section 2.2.1.3.2) to indicate support for the protocol.

Furthermore, the client must be capable of processing the following messages:

RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)

RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPBCGR%5d.pdf

13 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

RDPGFX_SURFACE_TO_SURFACE_PDU (section 2.2.2.5)

RDPGFX_SURFACE_TO_CACHE_PDU (section 2.2.2.6)

RDPGFX_CACHE_TO_SURFACE_PDU (section 2.2.2.7)

RDPGFX_EVICT_CACHE_ENTRY_PDU (section 2.2.2.8)

RDPGFX_CREATE_SURFACE_PDU (section 2.2.2.9)

RDPGFX_DELETE_SURFACE_PDU (section 2.2.2.10)

RDPGFX_START_FRAME_PDU (section 2.2.2.11)

RDPGFX_END_FRAME_PDU (section 2.2.2.12)

RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)

Furthermore, clients implementing the Remote Desktop Protocol: Graphics Pipeline Extension must

be capable of sending the following messages:

RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18)

Clients that implement optional persistent bitmap caching must be capable of sending the
RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16) message and processing the

RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17) message.

Clients that implement Hi-Def RAIL ([MS-RDPERP] section 1.3.3) must be capable of processing the
RDPGFX_MAP_SURFACE_TO_WINDOW_PDU (section 2.2.2.20) message.

1.5.2 Server Implementation Requirements

Servers implementing the Remote Desktop Protocol: Graphics Pipeline Extension must be capable of
sending the following messages:

RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)

RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

RDPGFX_SURFACE_TO_SURFACE_PDU (section 2.2.2.5)

RDPGFX_SURFACE_TO_CACHE_PDU (section 2.2.2.6)

RDPGFX_CACHE_TO_SURFACE_PDU (section 2.2.2.7)

RDPGFX_EVICT_CACHE_ENTRY_PDU (section 2.2.2.8)

RDPGFX_CREATE_SURFACE_PDU (section 2.2.2.9)

%5bMS-RDPERP%5d.pdf

14 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

RDPGFX_DELETE_SURFACE_PDU (section 2.2.2.10)

RDPGFX_START_FRAME_PDU (section 2.2.2.11)

RDPGFX_END_FRAME_PDU (section 2.2.2.12)

RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17)

RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)

Furthermore, servers implementing the Remote Desktop Protocol: Graphics Pipeline Extension must
be capable of processing the following messages:

RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16)

RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18)

1.6 Applicability Statement

The Remote Desktop Protocol: Graphics Pipeline Extension is applicable in scenarios where the
efficient transfer of server-side graphics display data is required from a terminal server to a terminal
server client.

1.7 Versioning and Capability Negotiation

Capability exchange using the RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) and
RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) messages takes place before any graphics
messages flow on the wire. The client advertises supported capability sets from section 2.2.2 in an

RDPGFX_CAPS_ADVERTISE_PDU message. In response, the server selects one of these sets and
then sends an RDPGFX_CAPS_CONFIRM_PDU message to the client containing the selected set.

Implementers of the Remote Desktop Protocol: Graphics Pipeline Extension must support all of the
graphics messages and codecs referenced in section 2.2.3. The only exceptions are the RemoteFX

Codec ([MS-RDPRFX] sections 2.2.2 and 3.1.8) and the RemoteFX Progressive Codec (sections
2.2.4.2, 3.1.8.1, 3.2.8.1, and 3.3.8.1). The usage of these two codecs is based on the flags
exchanged in the RDPGFX_CAPSET_VERSION structure (section 2.2.3.1), which is encapsulated
in the RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) and
RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) messages. Furthermore, any data exchanged
in the Bitmap Codecs Capability Set ([MS-RDPBCGR] section 2.2.7.2.10) does not influence the
choice of codecs used by the Remote Desktop Protocol: Graphics Pipeline Extension.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf
%5bMS-RDPBCGR%5d.pdf

15 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Messages

2.1 Transport

The Remote Desktop Protocol: Graphics Pipeline Extension is designed to operate over a non-lossy
dynamic virtual channel, as specified in [MS-RDPEDYC] sections 1 through 3. The dynamic virtual
channel name is the null-terminated ANSI character string "Microsoft::Windows::RDS::Graphics".
The usage of channel names in the context of opening a dynamic virtual channel is specified in [MS-
RDPEDYC] section 2.2.2.1.

All server-to-client graphics messages are encapsulated within an RDP_SEGMENTED_DATA
structure (section 2.2.5.1) when sent on the "Microsoft::Windows::RDS::Graphics" dynamic virtual
channel. Decoding one RDP_SEGMENTED_DATA structure yields one or more graphics messages.
Graphics messages are not spanned across multiple RDP_SEGMENTED_DATA structures, but can
be broken into multiple RDP_DATA_SEGMENT frames (section 2.2.5.2).

Client-to-server graphics messages are not encapsulated within any external structure when sent on

the "Microsoft::Windows::RDS::Graphics" dynamic virtual channel.

2.2 Message Syntax

The following sections specify the Remote Desktop Protocol: Graphics Pipeline Extension message
syntax. All multiple-byte fields within a message MUST be marshaled in little-endian byte order,
unless otherwise specified.

2.2.1 Common Data Types

2.2.1.1 RDPGFX_POINT16

The RDPGFX_POINT16 structure specifies a point relative to the origin of a target surface.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

x y

x (2 bytes): A 16-bit signed integer that specifies the x-coordinate of the point.

y (2 bytes): A 16-bit signed integer that specifies the y-coordinate of the point.

2.2.1.2 RDPGFX_RECT16

The RDPGFX_RECT16 structure specifies a rectangle relative to the origin of a target surface using
exclusive coordinates (the right and bottom bounds are not included in the rectangle).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

left top

right bottom

%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-RDPEDYC%5d.pdf
%5bMS-GLOS%5d.pdf

16 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

left (2 bytes): A 16-bit unsigned integer that specifies the leftmost bound of the rectangle.

top (2 bytes): A 16-bit unsigned integer that specifies the upper bound of the rectangle.

right (2 bytes): A 16-bit unsigned integer that specifies the rightmost bound of the rectangle.

bottom (2 bytes): A 16-bit unsigned integer that specifies the lower bound of the rectangle.

2.2.1.3 RDPGFX_COLOR32

The RDPGFX_COLOR32 structure specifies a 32bpp ARGB or XRGB color value.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

B G R XA

B (1 byte): An 8-bit unsigned integer that specifies the blue ARGB or XRGB color component.

G (1 byte): An 8-bit unsigned integer that specifies the green ARGB or XRGB color component.

R (1 byte): An 8-bit unsigned integer that specifies the red ARGB or XRGB color component.

XA (1 byte): An 8-bit unsigned integer that in the case of ARGB specifies the alpha color
component or in the case of XRGB MUST be ignored.

2.2.1.4 RDPGFX_PIXELFORMAT

The RDPGFX_PIXELFORMAT structure specifies the color component layout in a pixel.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

format

format (1 byte): An 8-bit unsigned integer that specifies the pixel format.

Value Meaning

PIXEL_FORMAT_XRGB_8888

0x20

32bpp with no valid alpha (XRGB).

PIXEL_FORMAT_ARGB_8888

0x21

32bpp with valid alpha (ARGB).

2.2.1.5 RDPGFX_HEADER

The RDPGFX_HEADER structure is included in all graphics command PDUs and specifies the

graphics command type, the transport flags, and the length of the PDU.

17 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cmdId flags

pduLength

cmdId (2 bytes): A 16-bit unsigned integer that identifies the type of the graphics command
PDU.

Value Meaning

RDPGFX_CMDID_WIRETOSURFACE_1

0x0001

RDPGFX_WIRE_TO_SURFACE_PDU_1 (section

2.2.2.1)

RDPGFX_CMDID_WIRETOSURFACE_2

0x0002

RDPGFX_WIRE_TO_SURFACE_PDU_2 (section

2.2.2.2)

RDPGFX_CMDID_DELETEENCODINGCONTEXT

0x0003

RDPGFX_DELETE_ENCODING_CONTEXT_PDU

(section 2.2.2.3)

RDPGFX_CMDID_SOLIDFILL

0x0004

RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

RDPGFX_CMDID_SURFACETOSURFACE

0x0005

RDPGFX_SURFACE_TO_SURFACE_PDU (section

2.2.2.5)

RDPGFX_CMDID_SURFACETOCACHE

0x0006

RDPGFX_SURFACE_TO_CACHE_PDU (section

2.2.2.6)

RDPGFX_CMDID_CACHETOSURFACE

0x0007

RDPGFX_CACHE_TO_SURFACE_PDU (section

2.2.2.7)

RDPGFX_CMDID_EVICTCACHEENTRY

0x0008

RDPGFX_EVICT_CACHE_ENTRY_PDU (section

2.2.2.8)

RDPGFX_CMDID_CREATESURFACE

0x0009

RDPGFX_CREATE_SURFACE_PDU (section

2.2.2.9)

RDPGFX_CMDID_DELETESURFACE

0x000A

RDPGFX_DELETE_SURFACE_PDU (section

2.2.2.10)

RDPGFX_CMDID_STARTFRAME

0x000B

RDPGFX_START_FRAME_PDU (section

2.2.2.11)

RDPGFX_CMDID_ENDFRAME

0x000C

RDPGFX_END_FRAME_PDU (section 2.2.2.12)

RDPGFX_CMDID_FRAMEACKNOWLEDGE

0x000D

RDPGFX_FRAME_ACKNOWLEDGE_PDU

(section 2.2.2.13)

RDPGFX_CMDID_RESETGRAPHICS

0x000E

RDPGFX_RESET_GRAPHICS_PDU (section

2.2.2.14)

18 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

RDPGFX_CMDID_MAPSURFACETOOUTPUT

0x000F

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU

(section 2.2.2.15)

RDPGFX_CMDID_CACHEIMPORTOFFER

0x0010

RDPGFX_CACHE_IMPORT_OFFER_PDU

(section 2.2.2.16)

RDPGFX_CMDID_CACHEIMPORTREPLY

0x0011

RDPGFX_CACHE_IMPORT_REPLY_PDU

(section 2.2.2.17)

RDPGFX_CMDID_CAPSADVERTISE

0x0012

RDPGFX_CAPS_ADVERTISE_PDU (section

2.2.2.18)

RDPGFX_CMDID_CAPSCONFIRM

0x0013

RDP_CAPS_CONFIRM_PDU (section 2.2.2.19)

RDPGFX_CMDID_ MAPSURFACETOWINDOW

0x0015

RDPGFX_MAP_SURFACE_TO_WINDOW_PDU

(section 2.2.2.20)

flags (2 bytes): A 16-bit unsigned integer that contains graphics command flags common to all
PDUs. No common graphics command flags are specified; therefore, this field MUST be set to
zero.

pduLength (4 bytes): A 32-bit unsigned integer that specifies the length of the graphics
command PDU, in bytes. This value MUST include the length of the RDPGFX_HEADER (8

bytes).

2.2.1.6 RDPGFX_CAPSET

The RDPGFX_CAPSET structure specifies the layout of a capability set sent in the
RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) message. All of the capability sets specified

in section 2.2.3 conform to this basic structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

version

capsDataLength

capsData (variable)

...

version (4 bytes): A 32-bit unsigned integer that specifies the version of the capability set.

Value Meaning

RDPGFX_CAPVERSION_8

0x00080004

RDPGFX_CAPSET_VERSION8 (section 2.2.3.1)

19 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

RDPGFX_CAPVERSION_81

0x00080105

RDPGFX_CAPSET_VERSION81 (section 2.2.3.2)

The format of the data in the capsData field and the length specified in the capsDataLength
field are both determined by the version of the capability set.

capsDataLength (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
capability set data present in the capsData field.

capsData (variable): A variable-length array of bytes that contains data specific to the

capability set. The number of bytes in this array is specified by the capsDataLength field.

2.2.2 Graphics Messages

2.2.2.1 RDPGFX_WIRE_TO_SURFACE_PDU_1

The RDPGFX_WIRE_TO_SURFACE_PDU_1 message is used to transfer encoded bitmap data
from the server to a client-side destination surface.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceId codecId

pixelFormat destRect

...

... bitmapDataLength

... bitmapData (variable)

...

header (8 bytes): An RDPGFX_HEADER structure (section 2.2.1.5). The cmdId field MUST be
set to RDPGFX_CMDID_WIRETOSURFACE_1 (0x0001), while the flags field MUST be set to
zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the destination surface.

codecId (2 bytes): A 16-bit unsigned integer that specifies the codec that was used to encode
the bitmap data encapsulated in the bitmapData field.

20 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

RDPGFX_CODECID_UNCOMPRESSED

0x0000

The bitmap data encapsulated in the bitmapData field is

uncompressed.

RDPGFX_CODECID_CAVIDEO

0x0003

The bitmap data encapsulated in the bitmapData field is

compressed using the RemoteFX Codec ([MS-RDPRFX]

sections 2.2.1 and 3.1.8). Note that the TS_RFX_RECT

([MS-RDPRFX] section 2.2.2.1.6) structures encapsulated in

the bitmapData field MUST all be relative to the top-left

corner of the rectangle defined by the destRect field.

RDPGFX_CODECID_CLEARCODEC

0x0008

The bitmap data encapsulated in the bitmapData field is

compressed using the ClearCodec Codec (sections 2.2.4.1

and 3.3.8.1).

RDPGFX_CODECID_PLANAR

0x000A

The bitmap data encapsulated in the bitmapData field is

compressed using the Planar Codec ([MS-RDPEGDI]

sections 2.2.2.5.1 and 3.1.9).

RDPGFX_CODECID_H264

0x000B

The bitmap data encapsulated in the bitmapData field is

compressed using the H.264 Codec (section 2.2.4.5).

RDPGFX_CODECID_ALPHA

0x000C

The bitmap data encapsulated in the bitmapData field is

compressed using the Alpha Codec (section 2.2.4.4).

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies
the pixel format of the decoded bitmap data encapsulated in the bitmapData field.

destRect (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the target
point on the destination surface to which to copy the decoded bitmap and the dimensions
(width and height) of the bitmap data encapsulated in the bitmapData field.

bitmapDataLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of

the bitmapData field.

bitmapData (variable): A variable-length array of bytes containing bitmap data encoded using
the codec identified by the ID in the codecId field.

2.2.2.2 RDPGFX_WIRE_TO_SURFACE_PDU_2

The RDPGFX_WIRE_TO_SURFACE_PDU_2 message is used to transfer encoded bitmap data

progressively from the server to a client-side destination surface by leveraging a compression
context that persists on the server and the client until the transfer of the bitmap data is complete.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceId codecId

%5bMS-RDPRFX%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf

21 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

codecContextId

pixelFormat bitmapDataLength

... bitmapData (variable)

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_WIRETOSURFACE_2 (0x0002), while the flags field MUST be set to
zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the destination surface.

codecId (2 bytes): A 16-bit unsigned integer that specifies the codec that was used to encode

the bitmap data encapsulated in the bitmapData field.

Value Meaning

RDPGFX_CODECID_CAPROGRESSIVE

0x0009

The bitmap data encapsulated in the bitmapData

field is compressed using the RemoteFX Progressive

Codec (sections 2.2.4.2, 3.1.8.1, 3.2.8.1, and

3.3.8.2).

RDPGFX_CODECID_CAPROGRESSIVE_V2

0x000D

The bitmap data encapsulated in the bitmapData

field is compressed using the RemoteFX Progressive

v.2 Codec (sections 2.2.4.3, 3.1.8.2, 3.2.8.2,

3.3.8.3).

codecContextId (4 byte): A 32-bit unsigned integer that identifies the compression context
associated with the bitmap data encapsulated in the bitmapData field.

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies
the pixel format of the decoded bitmap data encapsulated in the bitmapData field.

bitmapDataLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of
the bitmapData field.

bitmapData (variable): A variable-length array of bytes containing bitmap data encoded using
the codec identified by the ID in the codecId field.

2.2.2.3 RDPGFX_DELETE_ENCODING_CONTEXT_PDU

The RDPGFX_DELETE_ENCODING_CONTEXT_PDU message is sent by the server to instruct the
client to delete a compression context that was used by a collection of
RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) messages to progressively transfer
bitmap data.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

22 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

surfaceId codecContextId

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_DELETEENCODINGCONTEXT (0x0003), while the flags field MUST be
set to zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the surface associated
with the compression context ID specified in the codecContextId field.

codecContextId (4 byte): A 32-bit unsigned integer that specifies the ID of the compression

context to delete.

2.2.2.4 RDPGFX_SOLIDFILL_PDU

The RDPGFX_SOLIDFILL_PDU message is used to instruct the client to fill a collection of
rectangles on a destination surface with a solid color.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceId fillPixel

... fillRectCount

fillRects (variable)

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_SOLIDFILL (0x0004), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the destination surface.

fillPixel (4 bytes): An RDPGFX_COLOR32 (section 2.2.1.3) structure that specifies the color
that MUST be used to fill the destination rectangles specified in the fillRects field.

fillRectCount (2 bytes): A 16-bit unsigned integer that specifies the number of
RDPGFX_RECT16 (section 2.2.1.2) structures in the fillRects field.

fillRects (variable): A variable-length array of RDPGFX_RECT16 structures that specifies
rectangles on the destination surface to be filled. The number of structures in this array is

specified by the fillRectCount field.

23 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.2.5 RDPGFX_SURFACE_TO_SURFACE_PDU

The RDPGFX_SURFACE_TO_SURFACE_PDU message is used to instruct the client to copy bitmap
data from a source surface to a destination surface or to replicate bitmap data within the same

surface.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceIdSrc surfaceIdDest

rectSrc

...

destPtsCount destPts (variable)

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_SURFACETOSURFACE (0x0005), while the flags field MUST be set to

zero.

surfaceIdSrc (2 bytes): A 16-bit unsigned integer that specifies the ID of the surface
containing the source bitmap.

surfaceIdDest (2 bytes): A 16-bit unsigned integer that specifies the ID of the destination
surface.

rectSrc (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the rectangle
that bounds the source bitmap.

destPtsCount (2 bytes): A 16-bit unsigned integer that specifies the number of
RDPGFX_POINT16 (section 2.2.1.1) structures in the destPts field.

destPts (variable): A variable-length array of RDPGFX_POINT16 structures that specifies
target points on the destination surface to which to copy the source bitmap. The number of
structures in this array is specified by the destPtsCount field.

2.2.2.6 RDPGFX_SURFACE_TO_CACHE_PDU

The RDPGFX_SURFACE_TO_CACHE_PDU message is used to instruct the client to copy bitmap

data from a source surface to the bitmap cache.

24 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceId cacheKey

...

... cacheSlot

rectSrc

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_SURFACETOCACHE (0x0006), while the flags field MUST be set to
zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the surface containing
the source bitmap.

cacheKey (8 bytes): A 64-bit unsigned integer that specifies a key to associate with the bitmap
cache entry that will store the bitmap.

cacheSlot (2 bytes): A 16-bit unsigned integer that specifies the index of the bitmap cache
entry in which the source bitmap data MUST be stored. The value of this field is constrained as
specified in section 3.3.1.4.

rectSrc (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the rectangle
that bounds the source bitmap.

2.2.2.7 RDPGFX_CACHE_TO_SURFACE_PDU

The RDPGFX_CACHE_TO_SURFACE_PDU message is used to instruct the client to copy bitmap
data from the bitmap cache to a destination surface.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

cacheSlot surfaceId

destPtsCount destPts (variable)

25 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_CACHETOSURFACE (0x0007), while the flags field MUST be set to
zero.

cacheSlot (2 bytes): A 16-bit unsigned integer that specifies the index of the bitmap cache
entry that contains the source bitmap. The value of this field is constrained as specified in
section 3.3.1.4.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the destination surface.

destPtsCount (2 bytes): A 16-bit unsigned integer that specifies the number of
RDPGFX_POINT16 (section 2.2.1.1) structures in the destPts field.

destPts (variable): A variable-length array of RDPGFX_POINT16 structures that specifies
target points on the destination surface to which to copy the source bitmap. The number of

structures in this array is specified by the destPtsCount field.

2.2.2.8 RDPGFX_EVICT_CACHE_ENTRY_PDU

The RDPGFX_EVICT_CACHE_ENTRY_PDU message is used to instruct the client to delete an
entry from the bitmap cache.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

cacheSlot

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_EVICTCACHEENTRY (0x0008), while the flags field MUST be set to
zero.

cacheSlot (2 bytes): A 16-bit unsigned integer that specifies the index of the bitmap cache
entry to delete from the bitmap cache. The value of this field is constrained as specified in
section 3.3.1.4.

2.2.2.9 RDPGFX_CREATE_SURFACE_PDU

The RDPGFX_CREATE_SURFACE_PDU message is used to instruct the client to create a surface
of a given width, height, and pixel format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

26 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

surfaceId width

height pixelFormat

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_CREATESURFACE (0x0009), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID that MUST be assigned to
the surface once it has been created.

width (2 bytes): A 16-bit unsigned integer that specifies the width of the surface to create.

height (2 bytes): A 16-bit unsigned integer that specifies the height of the surface to create.

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies
the pixel format of the surface to create.

2.2.2.10 RDPGFX_DELETE_SURFACE_PDU

The RDPGFX_DELETE_SURFACE_PDU message is used to instruct the client to delete a surface.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceId

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_DELETESURFACE (0x000A), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the surface to delete.

2.2.2.11 RDPGFX_START_FRAME_PDU

The RDPGFX_START_FRAME_PDU message is sent by the server to specify the start of a logical
frame, enabling related graphics commands to be grouped together.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

timestamp

27 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

frameId

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_STARTFRAME (0x000B), while the flags field MUST be set to zero.

timestamp (4 bytes): A 32-bit unsigned integer that contains a UTC timestamp assigned to the
frame. If no timestamp is available, this field MUST be set to zero.

The format of the timestamp field is described by the following bitmask diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

milliseconds seconds minutes hours

milliseconds (10 bits): A 10-bit, unsigned integer that contains the millisecond value of the
timestamp. This field MUST be greater than or equal to 0, and less than or equal to 999.

seconds (6 bits): A 6-bit, unsigned integer that contains the second value of the
timestamp. This field MUST be greater than or equal to 0, and less than or equal to 59.

minutes (6 bits): A 6-bit, unsigned integer that contains the minute value of the
timestamp. This field MUST be greater than or equal to 0, and less than or equal to 59.

hours (10 bits): A 10-bit, unsigned integer that contains the hour value of the timestamp.
This field MUST be greater than or equal to 0, and less than or equal to 23.

frameId (4 bytes): A 32-bit unsigned integer that specifies a unique ID assigned to the frame.

2.2.2.12 RDPGFX_END_FRAME_PDU

The RDPGFX_END_FRAME_PDU message is sent by the server to specify the end of a logical
frame.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

frameId

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_ENDFRAME (0x000C), while the flags field MUST be set to zero.

frameId (4 bytes): A 32-bit unsigned integer that contains the ID assigned to the frame in the
RDPGFX_START_FRAME_PDU (section 2.2.2.11) message.

%5bMS-GLOS%5d.pdf

28 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.2.13 RDPGFX_FRAME_ACKNOWLEDGE_PDU

The RDPGFX_FRAME_ACKNOWLEDGE_PDU message is sent by the client to indicate to the
server that a logical frame of graphics commands has been successfully decoded. This message

MUST be sent in response to an RDPGFX_END_FRAME_PDU (section 2.2.2.12) message, unless
the client has opted out of this behavior.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

queueDepth

frameId

totalFramesDecoded

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be

set to RDPGFX_CMDID_FRAMEACKNOWLEDGE (0x000D), while the flags field MUST be set to
zero.

queueDepth (4 bytes): A 32-bit unsigned integer that either specifies the number of
unprocessed bytes buffered at the client, or indicates to the server that the client will no
longer be transmitting RDPGFX_FRAME_ACKNOWLEDGE_PDU messages.

Value Meaning

QUEUE_DEPTH_UNAVAILABLE

0x00000000

Specifies that no information is available regarding the

size, in bytes, of the graphics messages that have been

buffered at the client and not yet processed.

0x00000001 – 0xFFFFFFFE Specifies the size, in bytes, of the graphics messages

that have been buffered at the client and not yet

processed.

SUSPEND_FRAME_ACKNOWLEDGEMENT

0xFFFFFFFF

Indicates to the server that the client will no longer be

transmitting RDPGFX_FRAME_ACKNOWLEDGE_PDU

messages. The client can opt back into sending these

messages by sending an

RDPGFX_FRAME_ACKNOWLEDGE_PDU message with

the queueDepth field set to a value in the range

0x00000000 to 0xFFFFFFFE (inclusive) in response to an

RDPGFX_END_FRAME_PDU message.

frameId (4 bytes): A 32-bit unsigned integer that contains the ID of the frame being
acknowledged. The ID of a frame is specified in the RDPGFX_START_FRAME_PDU (section
2.2.2.11) and RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages.

totalFramesDecoded (4 bytes): A 32-bit unsigned integer that specifies the number of frames
that have been decoded by the client since the connection was initiated.

29 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.2.14 RDPGFX_RESET_GRAPHICS_PDU

The RDPGFX_RESET_GRAPHICS_PDU message is sent by the server to instruct the client to
change the width and height of the graphics output buffer (section 3.3.1.5), and to update the

monitor layout. Note that this message MUST be 340 bytes in size.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

width

height

monitorCount

monitorDefArray (variable)

...

pad (variable)

…

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_RESETGRAPHICS (0x000E), the flags field MUST be set to zero, and

the pduLength field MUST be set to 340 bytes.

width (4 bytes): A 32-bit unsigned integer that specifies the new width of the graphics output
buffer (the maximum allowed width is 32766 pixels).

height (4 bytes): A 32-bit unsigned integer that specifies the new height of the graphics output
buffer (the maximum allowed height is 32766 pixels).

monitorCount (4 bytes): A 32-bit unsigned integer that specifies the number of display
monitor definitions in the monitorDefArray field. This value MUST be less than or equal to

16.

monitorDefArray (variable): A variable-length array containing a series of
TS_MONITOR_DEF ([MS-RDPBCGR] section 2.2.1.3.6.1) structures that specify the display
monitor layout of the session on the remote server. The number of TS_MONITOR_DEF
structures is specified by the monitorCount field.

pad (variable): A variable-length byte array that is used for padding. The number of bytes in
this array is calculated by subtracting the combined size of the header, width, height,

monitorCount, and monitorDefArray fields from the total size of the PDU (which is
specified by the pduLength field embedded in the header field). The contents of the pad
field MUST be ignored.

%5bMS-RDPBCGR%5d.pdf

30 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.2.15 RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU

The RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message is sent by the server to instruct the
client to map a surface to a rectangular area of the graphics output buffer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceId reserved

outputOriginX

outputOriginY

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_MAPSURFACETOOUTPUT (0x000F), while the flags field MUST be set
to zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the surface to be
associated with the output-to-surface mapping.

reserved (2 bytes): A 16-bit unsigned integer that is reserved for future use. This field MUST
be set to zero.

outputOriginX (4 bytes): A 32-bit unsigned integer that specifies the x-coordinate of the point,
relative to the origin of the graphics output buffer (section 3.3.1.5), at which to map the top-
left corner of the surface.

outputOriginY (4 bytes): A 32-bit unsigned integer that specifies the y-coordinate of the point,
relative to the origin of the graphics output buffer, at which to map the upper-left corner of
the surface.

2.2.2.16 RDPGFX_CACHE_IMPORT_OFFER_PDU

The RDPGFX_CACHE_IMPORT_OFFER_PDU message is sent by the client to inform the server of
bitmap data that is present in an optional client-side persistent bitmap cache.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

cacheEntriesCount cacheEntries (variable)

...

31 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_CACHEIMPORTOFFER (0x0010), while the flags field MUST be set to

zero.

cacheEntriesCount (2 bytes): A 16-bit unsigned integer that specifies the number of

RDPGFX_CACHE_ENTRY_METADATA (section 2.2.2.16.1) structures in the cacheEntries
field. This value MUST be less than 5462 (0x1556).

cacheEntries (variable): A variable-length array of RDPGFX_CACHE_ENTRY_METADATA
structures that identifies a collection of bitmap cache entries present on the client. The
number of structures in this array is specified by the cacheEntriesCount field.

2.2.2.16.1 RDPGFX_CACHE_ENTRY_METADATA

The RDPGFX_CACHE_ENTRY_METADATA structure specifies attributes of a bitmap cache entry
stored on the client.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cacheKey

...

bitmapLength

cacheKey (8 bytes): A 64-bit unsigned integer that specifies a unique key associated with the

bitmap cache entry.

bitmapLength (4 bytes): A 32-bit unsigned integer that specifies the size of the bitmap cache
entry, in bytes.

2.2.2.17 RDPGFX_CACHE_IMPORT_REPLY_PDU

The RDPGFX_CACHE_IMPORT_REPLY_PDU message is sent by the server to indicate that
persistent bitmap cache metadata advertised in the RDPGFX_CACHE_IMPORT_OFFER_PDU

(section 2.2.2.16) message has been transferred to the bitmap cache.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

importedEntriesCount cacheSlots (variable)

...

32 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_CACHEIMPORTREPLY (0x0011), while the flags field MUST be set to

zero.

importedEntriesCount (2 bytes): A 16-bit unsigned integer that specifies the number of

entries that were imported into the server-side Bitmap Cache Map (section 3.2.1.1) ADM
element from the most recent RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16)
message. A value of N implies that the first N entries were imported into the bitmap cache
from the most recent RDPGFX_CACHE_IMPORT_OFFER_PDU message.

cacheSlots (variable): An array of 16-bit unsigned integers. The number of integers in this
array is specified by the importedEntriesCount field. Each integer in the array identifies the
cache slot that an imported entry has been assigned. For example, an

importedEntriesCount field value of 0x0003 and a cacheSlots field that contains the
elements [0x0006, 0x0009, 0x0002] together imply that the first imported entry was
associated with cache slot 6, the second imported entry was associated with cache slot 9, and
the third imported entry was associated with cache slot 2. Each of the cache slot values
contained in this field is constrained as specified in section 3.3.1.4.

2.2.2.18 RDPGFX_CAPS_ADVERTISE_PDU

The RDPGFX_CAPS_ADVERTISE_PDU message is sent by the client to advertise supported
capabilities.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

capsSetCount capsSets (variable)

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_CAPSADVERTISE (0x0012), while the flags field MUST be set to zero.

capsSetCount (2 bytes): A 16-bit unsigned integer that specifies the number of
RDPGFX_CAPSET (section 2.2.1.6) structures in the capsSets field.

capsSets (variable): A variable-length array of RDPGFX_CAPSET structures. The number of
elements in this array is specified by the capsSetCount field.

2.2.2.19 RDPGFX_CAPS_CONFIRM_PDU

The RDPGFX_CAPS_CONFIRM_PDU message is sent by the server to confirm capabilities for the
connection.

33 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

capsSet (variable)

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_CAPSCONFIRM (0x0013), while the flags field MUST be set to zero.

capsSet (variable): A variable-length RDPGFX_CAPSET (section 2.2.1.6) structure that

contains the capability set selected by the server from the

RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) message sent by the client.

2.2.2.20 RDPGFX_MAP_SURFACE_TO_WINDOW_PDU

The RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message is sent by the server to instruct the
client to map a surface to a RAIL window ([MS-RDPERP] section 1.1) on the client.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

...

surfaceId windowId

...

... mappedWidth

... mappedHeight

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be
set to RDPGFX_CMDID_MAPSURFACETOWINDOW (0x0015), while the flags field MUST be set
to zero.

surfaceId (2 bytes): A 16-bit unsigned integer that specifies the ID of the surface to be
associated with the surface-to-window mapping.

windowId (8 bytes): A 64-bit unsigned integer that specifies the ID of the RAIL window to be
associated with the surface-to-window mapping. RAIL windows are created via the New or
Existing Window Order ([MS-RDPERP] section 2.2.1.3.1.2.1). The WindowId field of the

%5bMS-RDPERP%5d.pdf

34 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Common Header ([MS-RDPERP] section 2.2.1.3.1.1), embedded within the order, contains the
window ID.

mappedWidth (4 bytes): A 32-bit unsigned integer that specifies the width of the rectangular
region on the surface to which the window is mapped.

mappedHeight (4 bytes): A 32-bit unsigned integer that specifies the height of the rectangular
region on the surface to which the window is mapped.

2.2.3 Capability Sets

2.2.3.1 RDPGFX_CAPSET_VERSION8

The RDPGFX_CAPSET_VERSION8 structure specifies an RDP version 8.0 Graphics Capability Set

and conforms to the capability set layout specified in section 2.2.1.6.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

version

capsDataLength

flags

version (4 bytes): A 32-bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_8 (0x00080004).

capsDataLength (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32-bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_THINCLIENT

0x00000001

Indicates that the bitmap cache MUST be constrained to 16

MB in size (if it is used) and that the RemoteFX Codec

([MS-RDPRFX] section 1 to 3) MUST be used in place of the

RemoteFX Progressive Codec (section 2.2.4.2).

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

Indicates that the bitmap cache MUST be constrained to 16

MB in size (if it is used).

The RDPGFX_CAPS_FLAG_THINCLIENT and RDPGFX_CAPS_FLAG_SMALL_CACHE capability
flags SHOULD NOT be specified together. If neither the RDPGFX_CAPS_FLAG_THINCLIENT nor
the RDPGFX_CAPS_FLAG_SMALL_CACHE capability flag is specified, then the bitmap cache
size is assumed to be 100 MB in size, if it is used.

2.2.3.2 RDPGFX_CAPSET_VERSION81

The RDPGFX_CAPSET_VERSION81 structure specifies an RDP version 8.1 Graphics Capability Set

and conforms to the capability set layout specified in section 2.2.1.6.

%5bMS-RDPRFX%5d.pdf

35 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32-bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_81 (0x00080105).

capsDataLength (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32-bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_THINCLIENT

0x00000001

See the definition of the RDPGFX_CAPS_FLAG_THINCLIENT

(0x00000001) flag in section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

See the definition of the

RDPGFX_CAPS_FLAG_SMALL_CACHE (0x00000002) flag in

section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_H264ENABLED

0x00000010

Indicates that the encapsulation of H.264 encoded bitmap

data in the RDPGFX_WIRE_TO_SURFACE_PDU_1

(section 2.2.2.1) message is supported.

If this field is nonzero, it SHOULD contain one of the following combinations of the capability

flags and SHOULD NOT contain any other combination:

THINCLIENT

SMALL_CACHE

SMALL_CACHE | H264ENABLED

SMALL_CACHE | H264ENABLED | THINCLIENT

If neither the RDPGFX_CAPS_FLAG_THINCLIENT nor the RDPGFX_CAPS_FLAG_SMALL_CACHE
capability flag is specified, the bitmap cache size is assumed to be 100 MB in size, if it is used.

2.2.4 Bitmap Compression

2.2.4.1 CLEARCODEC_BITMAP_STREAM

The CLEARCODEC_BITMAP_STREAM structure encapsulates metadata and a stream of bitmap
data encoded using ClearCodec compression techniques. Bitmaps with widths larger than 65,535
pixels and heights larger than 65,535 pixels MUST NOT be encoded using ClearCodec. ClearCodec-
compressed bitmap data is transported in the bitmapData field of the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1) message.

36 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

flags seqNumber glyphIndex (optional)

compositePayload (variable)

...

flags (1 byte): An 8-bit unsigned integer that specifies glyph and control flags.

Flag Meaning

CLEARCODEC_FLAG_GLYPH_INDEX

0x01

Indicates that the glyphIndex field is present. This flag

MUST NOT be used in conjunction with a bitmap that has an

area larger than 1024 square pixels.

CLEARCODEC_FLAG_GLYPH_HIT

0x02

Indicates the source of the glyph data. This flag MUST NOT

be present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01)

flag is not present.

If the CLEARCODEC_FLAG_GLYPH_HIT flag is not present,

the glyph data is present in the compositePayload field.

The decompressed payload MUST be placed in the

Decompressor Glyph Storage (section 3.3.1.9) ADM

element at the index specified by the glyphIndex field.

If the CLEARCODEC_FLAG_GLYPH_HIT flag is present, the

glyph data is already present in the Decompressor Glyph

Storage ADM element at the index specified by the

glyphIndex field. In this case, the compositePayload field

MUST NOT be present.

CLEARCODEC_FLAG_CACHE_RESET

0x04

Indicates that both the V-Bar Storage Cursor (section

3.3.1.11) ADM element and Short V-Bar Storage Cursor

(section 3.3.1.13) ADM element MUST be reset to 0 before

decoding the stream.

seqNumber (1 byte): An 8-bit unsigned integer that specifies the sequencing of the stream. For
the first ClearCodec message in the remote session, this value MUST be 0x00. In subsequent
messages, the value of the seqNumber field MUST be equal to the value of the seqNumber

field in the previous ClearCodec message plus one. The sequence number counter wraps
around the value 0xFF, with 0x00 following message 0xFF.

glyphIndex (2 bytes, optional): An optional 16-bit unsigned integer that specifies the position
in the Decompressor Glyph Storage ADM element for the current glyph. This field MUST
NOT be present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag is not present in the
flags field. If this field is present, its value MUST be in the range 0 (0x0000) to 3,999
(0x0F9F), inclusive.

compositePayload (variable): An optional variable-length
CLEARCODEC_COMPOSITE_PAYLOAD (section 2.2.4.1.1) structure. This field MUST NOT
be present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag and the
CLEARCODEC_FLAG_GLYPH_HIT (0x02) flag are both present in the flags field.

37 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.1.1 CLEARCODEC_COMPOSITE_PAYLOAD

The CLEARCODEC_COMPOSITE_PAYLOAD structure contains bitmap data encoded using
ClearCodec compression techniques.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

residualByteCount

bandsByteCount

subcodecByteCount

residualData (variable)

...

bandsData (variable)

...

subcodecData (variable)

...

residualByteCount (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in
the residualData field.

bandsByteCount (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the

bandsData field.

subcodecByteCount (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in
the subcodecData field.

residualData (variable): An optional variable-length CLEARCODEC_RESIDUAL_DATA
(section 2.2.4.1.1.1) structure that contains the compressed data for the first layer of the
image. If the residualByteCount field is zero, this field MUST NOT be present.

bandsData (variable): An optional variable-length CLEARCODEC_BANDS_DATA (section

2.2.4.1.1.2) structure that contains the compressed data for the second layer of the image. If
the bandsByteCount field is zero, this field MUST NOT be present.

subcodecData (variable): An optional variable-length CLEARCODEC_SUBCODECS_DATA
(section 2.2.4.1.1.3) structure that contains the compressed data for the third layer of the

image. If the subcodecByteCount field is zero, this field MUST NOT be present.

2.2.4.1.1.1 CLEARCODEC_RESIDUAL_DATA

The CLEARCODEC_RESIDUAL_DATA structure contains the first layer of pixels in an encoded
image. The number of pixels encoded by this structure MUST be less than or equal to the number of
pixels in the original image. The pixels are ordered from left to right and then top to bottom, and

38 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

are stored as a succession of CLEARCODEC_RGB_RUN_SEGMENT (section 2.2.4.1.1.1.1)
structures.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

runSegments (variable)

...

runSegments (variable): A variable-length array of CLEARCODEC_RGB_RUN_SEGMENT
structures.

2.2.4.1.1.1.1 CLEARCODEC_RGB_RUN_SEGMENT

The CLEARCODEC_RGB_RUN_SEGMENT structure encodes a single RGB run segment.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blueValue greenValue redValue runLengthFactor1

runLengthFactor2 (optional) runLengthFactor3 (optional)

...

blueValue (1 byte): An 8-bit unsigned integer that specifies the blue value of the current pixel.

greenValue (1 byte): An 8-bit unsigned integer that specifies the green value of the current
pixel.

redValue (1 byte): An 8-bit unsigned integer that specifies the red value of the current pixel.

runLengthFactor1 (1 byte): An 8-bit unsigned integer. If this value is less than 255 (0xFF),
the runLengthFactor2 and runLengthFactor3 fields MUST NOT be present, and the current
pixel MUST be repeated for the next runLengthFactor1 positions. If the runLengthFactor1

field equals 255 (0xFF), the runLengthFactor2 field MUST be present, and the run length is
calculated from the runLengthFactor2 field. The value of runLengthFactor1 MUST be
greater than zero.

runLengthFactor2 (2 bytes, optional): An optional 16-bit unsigned integer. If this value is
less than 65,535 (0xFFFF), the runLengthFactor3 field MUST NOT be present, and the
current pixel MUST be repeated for the next runLengthFactor2 positions. If the
runLengthFactor2 field equals 65,535 (0xFFFF), the runLengthFactor3 field MUST be

present (and nonzero), and the run length is calculated from the runLengthFactor3 field. If
present, the value of runLengthFactor2 MUST be greater than zero.

runLengthFactor3 (4 bytes, optional): An optional 32-bit unsigned integer. If this field is
present, it contains the run length, and the current pixel MUST be repeated for the next
runLengthFactor3 positions. This field SHOULD NOT be used if the run length is smaller than
65,535 (0xFFFF). If present, the value of runLengthFactor3 MUST be greater than zero.

39 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.1.1.2 CLEARCODEC_BANDS_DATA

The CLEARCODEC_BANDS_DATA structure contains the second layer of pixels in an encoded
image. This layer MUST be decoded on top of the first layer, in some cases overwriting pixels in the

first layer. The data consists of a succession of CLEARCODEC_BAND (section 2.2.4.1.1.2.1)
structures.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bands (variable)

...

bands (variable): A variable-length array of CLEARCODEC_BAND structures.

2.2.4.1.1.2.1 CLEARCODEC_BAND

The CLEARCODEC_BAND structure specifies a horizontal band that is composed of columns of
pixels. Each of these columns is referred to as a "V-Bar". The maximum height of a band is 52

pixels.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

xStart xEnd

yStart yEnd

blueBkg greenBkg redBkg vBars (variable)

...

xStart (2 bytes): A 16-bit unsigned integer that specifies the horizontal position (relative to the
left edge of the bitmap) where the band starts.

xEnd (2 bytes): A 16-bit unsigned integer that specifies the horizontal position (relative to the
left edge of the bitmap) where the band ends. This is an inclusive coordinate.

yStart (2 bytes): A 16-bit unsigned integer that specifies the vertical position (relative to the

top edge of the bitmap) where the band starts.

yEnd (2 bytes): A 16-bit unsigned integer that specifies the vertical position (relative to the top
edge of the bitmap) where the band ends. This is an inclusive coordinate.

blueBkg (1 byte): An 8-bit unsigned integer that specifies the blue value of the background for
this band.

greenBkg (1 byte): An 8-bit unsigned integer that specifies the green value of the background
for this band.

40 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

redBkg (1 byte): An 8-bit unsigned integer that specifies the red value of the background for
this band.

vBars (variable): A variable-length array of CLEARCODEC_VBAR (section 2.2.4.1.1.2.1.1)
structures. The total count of CLEARCODEC_VBAR structures MUST be equal to (xEnd -

xStart + 1), one per x-coordinate in the band. The V-Bars are encoded from left to right, with
the first V-Bar corresponding to the xStart field and the last corresponding to the xEnd field.

2.2.4.1.1.2.1.1 CLEARCODEC_VBAR

The CLEARCODEC_VBAR structure is used to encode a single column of pixels (referred to as a "V-
Bar") and is encapsulated inside a CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structure. The
xStart, xEnd, yStart and yEnd fields of the CLEARCODEC_BAND structure specify the area

within which the V-Bar is contained.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

vBarHeader (variable)

...

shortVBarPixels (variable)

…

vBarHeader (variable): A VBAR_CACHE_HIT (section 2.2.4.1.1.2.1.1.1) structure,
SHORT_VBAR_CACHE_HIT (section 2.2.4.1.1.2.1.1.2) structure, or
SHORT_VBAR_CACHE_MISS (section 2.2.4.1.1.2.1.1.3) structure.

shortVBarPixels (variable): An optional variable-length array of bytes that MUST be present

only if the vBarHeader field contains a SHORT_VBAR_CACHE_MISS structure. If this field

is present, the number of bytes in the field MUST be equal to 3 * (shortVBarYOff -
shortVBarYOn): one RGB triplet per pixel where shortVBarYOff and shortVBarYOn are
specified in the SHORT_VBAR_CACHE_MISS structure. This field contains raw pixels in top-
to-bottom order. The pixels are encoded in little-endian byte order (blue in the first byte,
green in the second byte, and red in the third byte).

Each pixel in the V-Bar MUST be placed at position (xPos, yPos) in the image (relative to the
top-left corner), where xPos and yPos are calculated as follows:

xPos = xStart + position of the V-Bar in the vBars field of the CLEARCODEC_BAND
structure

yPos = yStart + position of the pixel in the V-Bar Storage ADM element

2.2.4.1.1.2.1.1.1 VBAR_CACHE_HIT

The VBAR_CACHE_HIT structure is used to specify a V-Bar cache hit.

The use of this structure implies that the necessary V-Bar data is already present in the V-Bar

Storage (section 3.3.1.10) ADM element at the index specified by the vBarIndex field. In this
case, the shortVBarPixels field of the encapsulating CLEARCODEC_VBAR (section
2.2.4.1.1.2.1.1) structure MUST NOT be present, and the size of the data in the V-Bar Storage

41 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

ADM element MUST be equal to 3 * (yEnd - yStart + 1) bytes, where yEnd and yStart are
specified in the encapsulating CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vBarIndex x

vBarIndex (15 bits): A 15-bit unsigned integer that specifies the position in the V-Bar
Storage ADM element for the current V-Bar.

x (1 bit): A 1-bit field that MUST be set to 0x1.

2.2.4.1.1.2.1.1.2 SHORT_VBAR_CACHE_HIT

The SHORT_VBAR_CACHE_HIT structure is used to specify a Short V-Bar cache hit.

The use of this structure implies that the necessary Short V-Bar data is already present in the Short
V-Bar Storage (section 3.3.1.12) ADM element at the index specified by the shortVBarIndex
field. In this case, the shortVBarPixels field of the encapsulating CLEARCODEC_VBAR (section
2.2.4.1.1.2.1.1) structure MUST NOT be present, and the size of the data in the Short V-Bar
Storage ADM element MUST NOT exceed 3 * (yEnd - yStart + 1 - shortVBarYOn) bytes, where
yEnd and yStart are specified in the encapsulating CLEARCODEC_BAND (section 2.2.4.1.1.2.1)

structure.

As part of processing this header, each pixel position in the V-Bar Storage ADM element at the V-
Bar Storage Cursor (section 3.3.1.11) ADM element MUST be updated using the data in the Short
V-Bar Storage ADM element. The number of pixels placed into the V-Bar Storage ADM element
MUST equal yEnd – yStart + 1. For each position y within the V-Bar, the pixels must be updated as
follows:

If y < shortVBarYOn, then use the blueBkg, greenBKg, and redBkg values specified in the

encapsulating CLEARCODEC_BAND structure

If y >= shortVBarYOn and y < shortVBarYOn + Short V-Bar pixel count, then use the color

found in the Short V-Bar Storage ADM element at pixel position y – shortVBarYOn

If y >= shortVBarYOn + Short V-Bar pixel count, then use the blueBkg, greenBKg, and

redBkg values specified in the encapsulating CLEARCODEC_BAND structure

The V-Bar Storage Cursor (section 3.3.1.11) ADM element MUST be incremented by 1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shortVBarIndex x shortVBarYOn

shortVBarIndex (14 bits): A 14-bit unsigned integer that specifies the position in the Short V-
Bar Storage ADM element for the current Short V-Bar.

x (2 bits): A 2-bit unsigned integer that MUST be set to 0x1.

shortVBarYOn (8 bits): An 8-bit unsigned integer that specifies where the Short V-Bar begins,
expressed as an offset from the top of the V-Bar.

42 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.1.1.2.1.1.3 SHORT_VBAR_CACHE_MISS

The SHORT_VBAR_CACHE_MISS structure is used to specify a Short V-Bar cache miss.

As part of processing this header, each pixel position in the Short V-Bar Storage (section

3.3.1.12) ADM element at the Short V-Bar Storage Cursor (section 3.3.1.13) ADM element MUST
be updated using the data in the shortVBarPixels field of the encapsulating CLEARCODEC_VBAR
(section 2.2.4.1.1.2.1.1) structure. The number of pixels placed into the Short V-Bar Storage ADM
element MUST equal shortVBarYOff - shortVBarYOn (shortVBarYOff MUST be larger than or
equal to shortVBarYOn).

The Short V-Bar Storage Cursor ADM element MUST be incremented by 1.

In addition to updating the Short V-Bar Storage ADM element, each pixel position in the V-Bar

Storage (section 3.3.1.10) ADM element and the V-Bar Storage Cursor (section 3.3.1.11) ADM
element MUST be updated using the data in the Short V-Bar Storage ADM element. The number of
pixels placed into the V-Bar Storage ADM element MUST equal yEnd – yStart + 1. For each
position y within the V-Bar, the pixels must be updated as follows:

If y < shortVBarYOn, then use the blueBkg, greenBKg, and redBkg values specified in the

encapsulating CLEARCODEC_BAND structure

If y >= shortVBarYOn and y < shortVBarYOn + Short V-Bar pixel count, then use the color

found in the Short V-Bar Storage ADM element at pixel position y – shortVBarYOn

If y >= shortVBarYOn + Short V-Bar pixel count, then use the blueBkg, greenBKg, and

redBkg values specified in the encapsulating CLEARCODEC_BAND structure

The V-Bar Storage Cursor (section 3.3.1.11) ADM element MUST be incremented by 1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shortVBarYOn shortVBarYOff x

shortVBarOn (8 bits): An 8-bit unsigned integer that specifies where the Short V-Bar begins,
expressed as an offset from the top of the V-Bar.

shortVBarOff (6 bits): A 6-bit unsigned integer that specifies where the Short V-Bar ends,
expressed as an offset from the top of the V-Bar.

x (2 bits): A 2-bit unsigned integer that MUST be set to 0x0.

2.2.4.1.1.3 CLEARCODEC_SUBCODECS_DATA

The CLEARCODEC_SUBCODECS_DATA structure contains the third layer of pixels in an encoded
image. This layer MUST be decoded on top of the second layer, in some cases overwriting pixels in
the first and second layers. The data consists of a succession of CLEARCODEC_SUBCODEC

(section 2.2.4.1.1.3.1) structures.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

subcodecs (variable)

43 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

subcodecs (variable): A variable-length array of CLEARCODEC_SUBCODEC structures.

2.2.4.1.1.3.1 CLEARCODEC_SUBCODEC

The CLEARCODEC_SUBCODEC structure encapsulates an uncompressed bitmap or a bitmap
encoded with the NSCodec Codec ([MS-RDPNSC] sections 1 through 3) or the RLEX scheme as
specified in section 2.2.4.1.1.3.1.1.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

xStart yStart

width height

bitmapDataByteCount

subCodecId bitmapData (variable)

...

xStart (2 bytes): A 16-bit unsigned integer that specifies the horizontal position (relative to the
left edge of the bitmap) where the subcodec-encoded bitmap should be placed once it has
been decoded.

yStart (2 bytes): A 16-bit unsigned integer that specifies the vertical position (relative to the

top edge of the bitmap) where the subcodec-encoded bitmap should be placed once it has

been decoded.

width (2 bytes): A 16-bit unsigned integer that specifies the width of the subcodec-encoded
bitmap.

height (2 bytes): A 16-bit unsigned integer that specifies the height of the subcodec-encoded
bitmap.

bitmapDataByteCount (4 bytes): A 32-bit unsigned integer that specifies the number of bytes
in the bitmapData field. This field MUST be used to determine whether the bitmap in the
bitmapData field is in compressed or uncompressed format. The value in the
bitmapDataByteCount field MUST NOT exceed (3 * width * height).

subCodecId (1 byte): An 8-bit unsigned integer that identifies the encoding scheme used to
encode the data in the bitmapData field.

bitmapData (variable): A variable-length array of bytes that contains bitmap data.

If the subCodecId field equals 0x00, the bitmapData field contains the raw pixels of the
bitmap in little-endian byte order (blue in the first byte, green in the second byte, and red in
the third byte). The pixels are ordered from left to right and then top to bottom.

%5bMS-RDPNSC%5d.pdf
%5bMS-RDPNSC%5d.pdf
%5bMS-RDPNSC%5d.pdf

44 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the subCodecId field equals 0x01, the bitmapData field contains a bitmap encoded with
the NSCodec Codec ([MS-RDPNSC] section 1, 2 and 3).

If the subCodecId field equals 0x02, the bitmapData field contains a
CLEARCODEC_SUBCODEC_RLEX (section 2.2.4.1.1.3.1.1) structure.

2.2.4.1.1.3.1.1 CLEARCODEC_SUBCODEC_RLEX

The CLEARCODEC_SUBCODEC_RLEX structure contains a palette and segments that contain
encoded indexes that reference colors in the palette.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

paletteCount paletteEntries (variable)

...

segments (variable)

...

paletteCount (1 byte): An 8-bit unsigned integer that specifies the number of
RLEX_RGB_TRIPLET (section 2.2.4.1.1.3.1.1.1) structures in the paletteEntries field. This
value MUST be less than or equal to 0x7F. The number of bits in the stopIndex field of each

CLEARCODEC_SUBCODEC_RLEX_SEGMENT (section 2.2.4.1.1.3.1.1.2) structure
embedded in the segments field is given by floor(log2(paletteCount – 1)) + 1.

paletteEntries (variable): A variable-length array of RLEX_RGB_TRIPLET structures. The
number of elements in this array is specified by the paletteCount field.

segments (variable): A variable-length array of CLEARCODEC_SUBCODEC_RLEX_SEGMENT
structures.

2.2.4.1.1.3.1.1.1 RLEX_RGB_TRIPLET

The RLEX_RGB_TRIPLET structure is used to express the red, green, and blue components
necessary to reproduce a color in the additive RGB space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blue green red

blue (1 byte): An 8-bit unsigned integer that specifies the blue RGB color component.

green (1 byte): An 8-bit unsigned integer that specifies the green RGB color component.

red (1 byte): An 8-bit unsigned integer that specifies the red RGB color component.

%5bMS-RDPNSC%5d.pdf
%5bMS-RDPNSC%5d.pdf
%5bMS-RDPNSC%5d.pdf

45 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.1.1.3.1.1.2 CLEARCODEC_SUBCODEC_RLEX_SEGMENT

The CLEARCODEC_SUBCODEC_RLEX_SEGMENT structure contains a collection of encoded
palette indexes. This encoding exploits the fact that a collection of palette indexes can consist of the

following:

Repeated values

Sequences of values that monotonically increase by 1

A palette index that repeats N times is called a "run of length N" (for example, 0x03, 0x03 is a run
of length 2), while a sequence of palette indexes that monotonically increase by 1 is called a "suite"
(0x04, 0x05, 0x06 is a suite with a stopping value of 0x06 and a depth of 3). In the specification for

the CLEARCODEC_SUBCODEC_RLEX_SEGMENT structure, the run length factor fields
(runLengthFactor1, runLengthFactor2, and runLengthFactor3) represent the number of times
a starting color (defined by the stopIndex and suiteDepth fields) repeats before a suite (also
defined by the stopIndex and suiteDepth fields) begins.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

stopIndex (variable)

...

suiteDepth (variable)

...

runLengthFactor1 runLengthFactor2 (optional) runLengthFactor3

(optional)

...

stopIndex (variable): A variable number of bits (maximum 7 bits) that defines an unsigned
integer. The number of bits is determined by the paletteCount field of the encapsulating
CLEARCODEC_SUBCODEC_RLEX (section 2.2.4.1.1.3.1.1) structure and the sum of the
number of bits in this field and the suiteDepth field MUST equal 8 (the bits in the stopIndex
field are present in the least significant bits of the containing byte). The stopIndex field
specifies the position of an RLEX_RGB_TRIPLET (section 2.2.4.1.1.3.1.1.1) structure in the
paletteEntries field of the encapsulating CLEARCODEC_SUBCODEC_RLEX structure. This

RLEX_RGB_TRIPLET structure is referred to as stopColor.

suiteDepth (variable): A variable number of bits (maximum 8 bits) that defines an unsigned
integer. The sum of the number of bits in this field and the stopIndex field MUST equal 8,
and the bits in the suiteDepth field are present in the most significant bits of the containing

byte. The suiteDepth field specifies the number of consecutive indexes encoded in the
current suite. Each index represents one pixel preceding the stopIndex and starting from

stopIndex – suiteDepth (referred to as startIndex). The startIndex value specifies the
position of an RLEX_RGB_TRIPLET structure (referred to as startColor) in the
paletteEntries field of the encapsulating CLEARCODEC_SUBCODEC_RLEX structure.

46 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

runLengthFactor1 (1 byte): An 8-bit unsigned integer. If the value of the runLengthFactor1
field is less than 255 (0xFF), the runLengthFactor2 and runLengthFactor3 fields MUST

NOT be present and the startColor value MUST be applied to the next runLengthFactor1
pixels. If the value of the runLengthFactor1 field equals 255 (0xFF), the runLengthFactor2

field MUST be present, and the run length is calculated from the runLengthFactor2 field.

runLengthFactor2 (2 bytes, optional): An optional 16-bit unsigned integer. If the value of the
runLengthFactor2 field is less than 65,535 (0xFFFF), the runLengthFactor3 field MUST
NOT be present, and the startColor value MUST be applied to the next runLengthFactor2
pixels. If the value of the runLengthFactor2 field equals 65,535 (0xFFFF), the
runLengthFactor3 field MUST be present, and the run length is calculated from the
runLengthFactor3 field.

runLengthFactor3 (4 bytes, optional): An optional 32-bit unsigned integer. If this field is
present, it contains the run length. The startColor value MUST be applied to the next
runLengthFactor3 pixels. This field SHOULD NOT be used if the run length is smaller than
65,535 (0xFFFF).

2.2.4.2 RFX_PROGRESSIVE_BITMAP_STREAM

The RFX_PROGRESSIVE_BITMAP_STREAM structure encapsulates regions of a graphics frame
compressed using discrete wavelet transforms (DWTs), sub-band diffing, and progressive
compression techniques. The data compressed using these techniques is transported in the
bitmapData field of the RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

progressiveDataBlocks (variable)

...

progressiveDataBlocks (variable): A variable-length array of
RFX_PROGRESSIVE_DATABLOCK (section 2.2.4.2.1) structures.

2.2.4.2.1 RFX_PROGRESSIVE_DATABLOCK

The RFX_PROGRESSIVE_DATABLOCK structure is used to wrap data sent from the server to the
client. All RemoteFX Progressive data blocks conform to this basic structure and are specified in
sections 2.2.4.2.1.1 through 2.2.4.2.1.5.5.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... blockData (variable)

...

47 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to one of the following values. If this field is not set to one of the specified values, the

decoder SHOULD ignore the contents of the blockLen and blockData fields.

Value Meaning

WBT_SYNC

0xCCC0

RFX_PROGRESSIVE_SYNC (section 2.2.4.2.1.1)

WBT_FRAME_BEGIN

0xCCC1

RFX_PROGRESSIVE_FRAME_BEGIN (section

2.2.4.2.1.2)

WBT_FRAME_END

0xCCC2

RFX_PROGRESSIVE_FRAME_END (section 2.2.4.2.1.3)

WBT_CONTEXT

0xCCC3

RFX_PROGRESSIVE_CONTEXT (section 2.2.4.2.1.4)

WBT_REGION

0xCCC4

RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5)

WBT_TILE_SIMPLE

0xCCC5

RFX_PROGRESSIVE_TILE_SIMPLE (section

2.2.4.2.1.5.3)

WBT_TILE_PROGRESSIVE_FIRST

0xCCC6

RFX_PROGRESSIVE_TILE_FIRST (section 2.2.4.2.1.5.4)

WBT_TILE_PROGRESSIVE_UPGRADE

0xCCC7

RFX_PROGRESSIVE_TILE_UPGRADE (section

2.2.4.2.1.5.5)

blockLen (4 bytes): A 32-bit unsigned integer that specifies the combined size, in bytes, of the
blockType, blockLen and blockData fields.

blockData (variable): A variable-length field that contains data that conforms to the structure
of the type specified by the blockType field.

2.2.4.2.1.1 RFX_PROGRESSIVE_SYNC

The RFX_PROGRESSIVE_SYNC structure is used to transport codec version information. It is
optional and SHOULD appear only once as the first block in the progressiveDataBlocks field of the
encapsulating RFX_PROGRESSIVE_BITMAP_STREAM (section 2.2.4.2) structure. If this block

appears out of sequence, the decoder SHOULD ignore it.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... magic

... version

48 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_SYNC (0xCCC0).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_SYNC block. This field MUST be set to 12 (0x0000000C).

magic (4 bytes): A 32-bit unsigned integer that SHOULD be set to 0xCACCACCA. The decoder
SHOULD ignore this value.

version (2 bytes): A 16-bit unsigned integer that specifies the version of the codec. The upper
8 bits indicate the major version number, while the lower 8 bits indicate the minor version
number. The current version of the wire format is 1.0 (encoded as 0x0100). The decoder
SHOULD ignore this value.

2.2.4.2.1.2 RFX_PROGRESSIVE_FRAME_BEGIN

The RFX_PROGRESSIVE_FRAME_BEGIN structure marks the beginning of the frame in the codec
payload. This block MUST appear only once, before any RFX_PROGRESSIVE_REGION (section

2.2.4.2.1.5) blocks but after the RFX_PROGRESSIVE_CONTEXT (section 2.2.4.2.1.4) block.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... frameIndex

... regionCount

regions (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_FRAME_BEGIN (0xCCC1).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_FRAME_BEGIN block, excluding the size of the regions field. This
field MUST be set to 12 (0x0000000C).

frameIndex (4 bytes): A 32-bit unsigned integer that specifies the frame index. This value

SHOULD be ignored by the decoder.

regionCount (2 bytes): A 16-bit unsigned integer that specifies the number of
RFX_PROGRESSIVE_REGION blocks that follow this RFX_PROGRESSIVE_FRAME_BEGIN
block.

regions (variable): An array of RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) blocks.
The number of elements in this array is specified by the regionCount field. If the number of

elements specified by the regionCount field is larger than the actual number of elements in
the regions field, the decoder SHOULD ignore this inconsistency.

49 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.2.1.3 RFX_PROGRESSIVE_FRAME_END

The RFX_PROGRESSIVE_FRAME_END structure marks the end of the frame in the codec
payload. This block SHOULD appear only once, after the final RFX_PROGRESSIVE_REGION

(section 2.2.4.2.1.5) block. If this block appears more than once, the decoder SHOULD ignore the
other occurrences.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_FRAME_END (0xCCC2).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_FRAME_END block. This field MUST be set to 0x00000006.

2.2.4.2.1.4 RFX_PROGRESSIVE_CONTEXT

The RFX_PROGRESSIVE_CONTEXT structure provides information about the compressed data. It
is optional and SHOULD appear before the RFX_PROGRESSIVE_FRAME_BEGIN (section
2.2.4.2.1.2) block. If the block appears after the RFX_PROGRESSIVE_FRAME_BEGIN block, the
decoder SHOULD process it.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... ctxId tileSize

... flags

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_CONTEXT (0xCCC3).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_CONTEXT block. This field MUST be set to 10 (0x0000000A).

ctxId (1 byte): An 8-bit unsigned integer that specifies the context ID. This field SHOULD be set

to 0x00. The decoder SHOULD ignore this value.

tileSize (2 bytes): A 16-bit unsigned integer that indicates the width and height of a square

tile. This field MUST be set to 0x0040.

flags (1 byte): An 8-bit unsigned integer that contains context flags.

50 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Flag Meaning

RFX_SUBBAND_DIFFING

0x01

Indicates that sub-band diffing is enabled.

2.2.4.2.1.5 RFX_PROGRESSIVE_REGION

The RFX_PROGRESSIVE_REGION structure contains the compressed data for a set of tiles from
the frame. All RFX_PROGRESSIVE_REGION blocks SHOULD be present between the
RFX_PROGRESSIVE_FRAME_BEGIN (section 2.2.4.2.1.2) and

RFX_PROGRESSIVE_FRAME_END (section 2.2.4.2.1.3) blocks. If a block is not present between
the RFX_PROGRESSIVE_FRAME_BEGIN and RFX_PROGRESSIVE_FRAME_END blocks, the
decoder SHOULD ignore it.

Note that RFX_PROGRESSIVE_REGION entries that are part of the same frame can share the
tiles defined in the tiles field of each entry. In this scenario, tiles are not repeated in successive
RFX_PROGRESSIVE_REGION entries. Across all of the RFX_PROGRESSIVE_REGION entries of

a frame, the rectangles (defined in the rects field of each entry) MUST be distinct, and the region

defined by these rectangles MUST be completely covered by all of the tiles defined in the
RFX_PROGRESSIVE_REGION entries of the frames.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... tileSize numRects

... numQuant numProgQuant flags

numTiles tileDataSize

... rects (variable)

...

quantVals (variable)

...

quantProgVals (variable)

...

tiles (variable)

...

51 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_REGION (0xCCC4).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the variable-
length RFX_PROGRESSIVE_REGION block.

tileSize (1 byte): An 8-bit unsigned integer that indicates the width and height of a square tile.
This field MUST be set to 0x40.

numRects (2 bytes): A 16-bit unsigned integer that specifies the number of TS_RFX_RECT
([MS-RDPRFX] section 2.2.2.1.6) structures in the rects field. The value of this field MUST be
greater than zero.

numQuant (1 byte): An 8-bit unsigned integer that specifies the number of
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) structures in the quantVals

field. The value of this field MUST be in the range 0 to 7 (inclusive).

numProgQuant (1 byte): An 8-bit unsigned integer that specifies the number of

RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) structures in the
quantProgVals field.

flags (1 byte): An 8-bit unsigned integer that contains region flags.

Flag Meaning

RFX_DWT_REDUCE_EXTRAPOLATE

0x01

Indicates that the discrete wavelet transform (DWT) uses the

"Reduce-Extrapolate" method.

numTiles (2 bytes): A 16-bit unsigned integer that specifies the number of elements in the
tiles field.

tileDataSize (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the tiles
field.

rects (variable): A variable-length array of TS_RFX_RECT structures that specifies the
encoded region (the number of rectangles in this field is specified by the numRects field).
This region MUST be completely covered by the tiles enumerated in the tiles field of this
RFX_PROGRESSIVE_REGION entry and by tiles that were specified in
RFX_PROGRESSIVE_REGION entries that previously appeared within the current frame.

Note that because regions are not necessarily tile-aligned, it is valid for tiles to carry
compressed information for pixels outside of the region.

quantVals (variable): A variable-length array of RFX_COMPONENT_CODEC_QUANT
structures (the number of quantization tables in this field is specified by the numQuant field).

quantProgVals (variable): A variable-length array of RFX_PROGRESSIVE_CODEC_QUANT
structures (the number of quantization tables in this field is specified by the numProgQuant
field).

tiles (variable): A variable-length array of RFX_PROGRESSIVE_DATABLOCK (section
2.2.4.2.1) structures. The value of the blockType field of each block present in the array
MUST be WBT_TILE_SIMPLE (0xCCC5), WBT_TILE_PROGRESSIVE_FIRST (0xCCC6), or
WBT_TILE_PROGRESSIVE_UPGRADE (0xCCC7).

%5bMS-RDPRFX%5d.pdf

52 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.2.1.5.1 RFX_PROGRESSIVE_CODEC_QUANT

The RFX_PROGRESSIVE_CODEC_QUANT structure specifies a progressive quantization table for
compressing a tile.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

quality yQuantValues

... cbQuantValues

... crQuantValues

...

quality (1 byte): An 8-bit unsigned integer that specifies the quality associated with the
progressive stage as a value between 0 (0x00) and 100 (0x64), where 100 (0x64) indicates
that the tile will reach its final target quality. This value SHOULD be ignored by the decoder.

yQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2)
structure that contains the progressive quantization table for the Luma (Y) component.

cbQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT structure that contains the
progressive quantization table for the Chroma Blue (Cb) component.

crQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT structure that contains the
progressive quantization table for the Chroma Red (Cr) component.

2.2.4.2.1.5.2 RFX_COMPONENT_CODEC_QUANT

The RFX_COMPONENT_CODEC_QUANT structure stores information regarding the scalar
quantization values for the ten sub-bands in the three-level discrete wavelet transform (DWT)

decomposition.

When embedded within the quantVals field of the RFX_PROGRESSIVE_REGION (section
2.2.4.2.1.5) structure, the RFX_COMPONENT_CODEC_QUANT structure contains the scalar
quantization values. Each field in this structure MUST have a value in the range of 0 to 15
(inclusive).

When embedded within the yQuantValues, cbQuantValues, and crQuantValues fields of the
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) structure, the

RFX_COMPONENT_CODEC_QUANT structure contains values to be added to the quantization
values specified in the quantVals field of the RFX_PROGRESSIVE_REGION structure. Each field
in this structure MUST have a value in the range of 0 to 8 (inclusive).

Note that the RFX_COMPONENT_CODEC_QUANT structure differs from the

TS_RFX_CODEC_QUANT ([MS-RDPRFX] section 2.2.2.1.5) structure with respect to the order of
the bands.

%5bMS-RDPRFX%5d.pdf

53 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LL3 HL3 LH3 HH3 HL2 LH2 HH2 HL1

LH1 HH1

LL3 (4 bits): A 4-bit, unsigned integer. The LL quantization factor for the level-3 DWT sub-band.

HL3 (4 bits): A 4-bit, unsigned integer. The HL quantization factors for the level-3 DWT sub-
band.

LH3 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level-3 DWT sub-

band.

HH3 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level-3 DWT sub-

band.

HL2 (4 bits): A 4-bit, unsigned integer. The HL quantization factor for the level-2 DWT sub-
band.

LH2 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level-2 DWT sub-
band.

HH2 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level-2 DWT sub-
band.

HL1 (4 bits): A 4-bit, unsigned integer. The HL quantization factor for the level-1 DWT sub-
band.

LH1 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level-1 DWT sub-
band.

HH1 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level-1 DWT sub-
band.

2.2.4.2.1.5.3 RFX_PROGRESSIVE_TILE_SIMPLE

The RFX_PROGRESSIVE_TILE_SIMPLE structure specifies a tile that has been compressed
without progressive techniques.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... quantIdxY quantIdxCb

quantIdxCr xIdx yIdx

... flags yLen

54 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

cbLen crLen

tailLen yData (variable)

...

cbData (variable)

...

crData (variable)

...

tailData (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_TILE_SIMPLE (0xCCC5).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the variable-
length RFX_PROGRESSIVE_TILE_SIMPLE block.

quantIdxY (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of

the containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified
quantization table MUST be used for de-quantization of the sub-bands for the Luma (Y)
component.

quantIdxCb (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de-
quantization of the sub-bands for the Chroma Blue (Cb) component.

quantIdxCr (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de-
quantization of the sub-bands for the Chroma Red (Cr) component.

xIdx (2 bytes): A 16-bit unsigned integer that specifies the x-index of the encoded tile in the
screen tile grid. The pixel x-coordinate is obtained by multiplying the x-index by the size of

the tile.

yIdx (2 bytes): A 16-bit unsigned integer that specifies the y-index of the encoded tile in the

screen tile grid. The pixel y-coordinate is obtained by multiplying the y-index by the size of
the tile.

flags (1 byte): An 8-bit unsigned integer that contains tile flags.

55 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Flag Meaning

RFX_TILE_DIFFERENCE

0x01

Indicates that the tile contains the compressed difference of the DWT

coefficients for the same tile between the current frame and the previous

frame.

yLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the yData field.

cbLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the cbData field.

crLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the crData field.

tailLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the tailData
field. This field SHOULD<1> be set to zero.

yData (variable): A variable-length array of bytes that contains the compressed data for the
Luma (Y) component of the tile using, a discrete wavelet transform (DWT), sub-band diffing if
enabled, and quantization and entropy encoded using the RLGR1 method. The size of this

field, in bytes, is specified by the yLen field.

cbData (variable): A variable-length array of bytes that contains the compressed data for the
Chroma Blue (Cb) component of the tile using the same methods as the yData field. The size
of this field, in bytes, is specified by the cbLen field.

crData (variable): A variable-length array of bytes that contains the compressed data for the
Chroma Red (Cr) component of the tile using the same methods as the yData field. The size
of this field, in bytes, is specified by the crLen field.

tailData (variable): A variable-length array of bytes that contains data that SHOULD<2> be

ignored. The size of this field, in bytes, is specified by the tailLen field.

2.2.4.2.1.5.4 RFX_PROGRESSIVE_TILE_FIRST

The RFX_PROGRESSIVE_TILE_FIRST structure specifies the first-pass compression of a tile with
progressive techniques. Subsequent passes, which improve the quality of the tile, are specified
using the RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5) block.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... quantIdxY quantIdxCb

quantIdxCr xIdx yIdx

... flags progressiveQuality yLen

... cbLen crLen

... tailLen yData (variable)

56 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

cbData (variable)

...

crData (variable)

...

tailData (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_TILE_PROGRESSIVE_FIRST (0xCCC6).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the variable-
length RFX_PROGRESSIVE_TILE_FIRST block.

quantIdxY (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of

the containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified
quantization table MUST be used for de-quantization of the sub-bands for the Luma (Y)
component.

quantIdxCb (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de-
quantization of the sub-bands for the Chroma Blue (Cb) component.

quantIdxCr (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de-
quantization of the sub-bands for the Chroma Red (Cr) component.

xIdx (2 bytes): A 16-bit unsigned integer that specifies the x-index of the encoded tile in the
screen tile grid. The pixel x-coordinate is obtained by multiplying the x-index by the size of

the tile.

yIdx (2 bytes): A 16-bit unsigned integer that specifies the y-index of the encoded tile in the
screen tile grid. The pixel y-coordinate is obtained by multiplying the y-index by the size of
the tile.

flags (1 byte): An 8-bit unsigned integer that contains a single tile flag.

Flag Meaning

RFX_TILE_DIFFERENCE

0x01

Indicates that the tile contains the compressed difference of the DWT

coefficients for the same tile between the current frame and the previous

frame.

57 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The seven high bits of the flags field MAY be set to zero by the encoder and MUST be ignored
by the decoder.

progressiveQuality (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) array (the progQuantVals

field) of the containing RFX_PROGRESSIVE_REGION block. A value of 255 (0xFF) indicates
a full progressive quality table (the quality is 100%, and all the coefficients are zero).

yLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the yData field.

cbLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the cbData field.

crLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the crData field.

tailLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the tailData
field. This field SHOULD<3> be set to zero.

yData (variable): A variable-length array of bytes that contains the compressed data for the

Luma (Y) component of the tile using a discrete wavelet transform (DWT), sub-band diffing if
enabled, quantization and entropy encoded using the RLGR1 method. The size of this field, in
bytes, is specified by the yLen field.

cbData (variable): A variable-length array of bytes that contains the compressed data for the
Chroma Blue (Cb) component of the tile using the same methods as the yData field. The size

of this field, in bytes, is specified by the cbLen field.

crData (variable): A variable-length array of bytes that contains the compressed data for the
Chroma Red (Cr) component of the tile using the same methods as the yData field. The size
of this field, in bytes, is specified by the crLen field.

tailData (variable): A variable-length array of bytes that contains data that SHOULD<4> be
ignored. The size of this field, in bytes, is specified by the tailLen field.

2.2.4.2.1.5.5 RFX_PROGRESSIVE_TILE_UPGRADE

The RFX_PROGRESSIVE_TILE_UPGRADE structure contains data required for an upgrade pass of
a tile using progressive techniques. The block contains information that MUST be added to the
information currently stored by the decoder in order to increase the quality of the tile.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... quantIdxY quantIdxCb

quantIdxCr xIdx yIdx

... progressiveQuality ySrlLen

yRawLen cbSrlLen

cbRawLen crSrlLen

58 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

crRawLen ySrlData (variable)

...

yRawData (variable)

...

cbSrlData (variable)

...

cbRawData (variable)

...

crSrlData (variable)

...

crRawData (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_TILE_PROGRESSIVE_UPGRADE (0xCCC7).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the variable-

length RFX_PROGRESSIVE_TILE_UPGRADE block.

quantIdxY (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of
the containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified
quantization table MUST be used for de-quantization of the sub-bands for the Luma (Y)
component.

quantIdxCb (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de-
quantization of the sub-bands for the Chroma Blue (Cb) component.

quantIdxCr (1 byte): An 8-bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de-

quantization of the sub-bands for the Chroma Red (Cr) component.

xIdx (2 bytes): A 16-bit unsigned integer that specifies the x-index of the encoded tile in the
screen tile grid. The pixel x-coordinate is obtained by multiplying the x-index by the size of
the tile.

59 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

yIdx (2 bytes): A 16-bit unsigned integer that specifies the y-index of the encoded tile in the
screen tile grid. The pixel y-coordinate is obtained by multiplying the y-index by the size of

the tile.

progressiveQuality (1 byte): An 8-bit unsigned integer that specifies an index into the

RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) array (the progQuantVals
field) of the containing RFX_PROGRESSIVE_REGION block. A value of 255 (0xFF) indicates
a full progressive quality table (the quality is 100%, and all the coefficients are zero).

ySrlLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the ySrlData
field.

yRawLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the
yRawData field.

cbSrlLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the cbSrlData
field.

cbRawLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the
cbRawData field.

crSrlLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the crSrlData
field.

crRawLen (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the
crRawData field.

ySrlData (variable): A variable-length array of bytes that contains bits for the Luma (Y)
component compressed using the Simplified-RL method.

yRawData (variable): A variable-length array of bytes that contains raw bits for the Luma (Y)
component.

cbSrlData (variable): A variable-length array of bytes that contains bits for the Chroma Blue

(Cb) component compressed using the Simplified-RL method.

cbRawData (variable): A variable-length array of bytes that contains raw bits for the Chroma
Blue (Cb) component.

crSrlData (variable): A variable-length array of bytes that contains bits for the Chroma Red
(Cr) component compressed using the Simplified-RL method.

crRawData (variable): A variable-length array of bytes that contains raw bits for the Chroma
Red (Cr) component.

2.2.4.3 RFX_PROGRESSIVE_V2_BITMAP_STREAM

The RFX_PROGRESSIVE_V2_BITMAP_STREAM structure encapsulates regions of a graphics
frame compressed using discrete wavelet transforms (DWTs) and progressive compression
techniques. The data compressed using these techniques is transported in the bitmapData field of

the RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

progressiveDataBlocks (variable)

60 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

progressiveDataBlocks (variable): A variable-length array of section
RFX_PROGRESSIVE_V2_DATABLOCK (section 2.2.4.3.1) structures.

2.2.4.3.1 RFX_PROGRESSIVE_V2_DATABLOCK

The RFX_PROGRESSIVE_V2_DATABLOCK structure is used to wrap data sent from the server to
the client. All RemoteFX Progressive v.2 data blocks conform to this basic structure and are specified

in sections 2.2.4.3.1.1 through section 2.2.4.3.1.6.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... blockData (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to one of the following values.

Value Meaning

WBT_UPDATE_QUALITY_TABLE

0xCCC1

RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE (section

2.2.4.3.1.1)

WBT_NEW_CTX

0xCCC2

RFX_PROGRESSIVE_V2_NEW_CONTEXT (section

2.2.4.3.1.2)

WBT_UPGRADE_CTX

0xCCC3

RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT (section

2.2.4.3.1.3)

WBT_DWT_CTX_DATA

0xCCC4

RFX_PROGRESSIVE_V2_ CONTEXT_DATA_NEW (section

2.2.4.3.1.4) or

RFX_PROGRESSIVE_V2_CONTEXT_DATA_UPGRADE

(section 2.2.4.3.1.5)

WBT_CHANGE_CTX_GEOMETRY

0xCCC5

RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY

(section 2.2.4.3.1.6)

blockLen (4 bytes): A 32-bit unsigned integer that specifies the combined size, in bytes, of the
blockType, blockLen, and blockData fields.

blockData (variable): A variable-length field that contains data that conforms to the structure
of the type specified by the blockType field.

2.2.4.3.1.1 RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE

The RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE structure specifies a progressive
quantization table for compressing a rectangle context. The decoder MUST store these quality

61 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

tables. When performing the de-quantization of the DWT coefficients, the decoder MUST reference
the quality table corresponding to the specified progressive quality level of the DWT context being

decoded. The regular quality level is only suggestive and MUST NOT be used to identify the quality
table.

If a quality table for the specified progressive quality value already exists, then it MUST be updated
using the values specified by the yQuantValues, cbQuantValues, and crQuantValues fields.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... regularQualityLevel progressiveQualityLevel

yQuantValues

... cbQuantValues

...

... crQuantValues

...

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_UPDATE_QUALITY_TABLE (0xCCC1).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE block. This field MUST be set to
0x0000001D.

regularQualityLevel (1 byte): An 8-bit unsigned integer that is suggestive of the quality level
to which the table specified by the yQuantValues, cbQuantValues, and crQuantValues
fields corresponds.

Value Meaning

RFX_QUALITY_LOSSLESS

0x00

No quality loss

RFX_QUALITY_HIGH

0x01

High quality

RFX_QUALITY_MEDIUM

0x02

Medium quality

RFX_QUALITY_LOW

0x03

Low quality

62 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The value specified in this field SHOULD NOT be used by the decoder.

progressiveQualityLevel (1 byte): An 8-bit unsigned integer that specifies the progressive
quality level to which the table specified by the yQuantValues, cbQuantValues, and
crQuantValues fields corresponds. This value MUST be between 1 and 100 (inclusive) and is

used to identify the quality table.

yQuantValues (7 bytes): An RFX_PROGRESSIVE_V2_CODEC_QUANT (section
2.2.4.3.1.1.1) structure that contains the quantization table for the Luma (Y) component.

cbQuantValues (7 bytes): An RFX_PROGRESSIVE_V2_CODEC_QUANT structure that
contains the quantization table for the Chroma Blue (Cb) component.

crQuantValues (7 bytes): An RFX_PROGRESSIVE_V2_CODEC_QUANT structure that
contains the quantization table for the Chroma Red (Cr) component.

2.2.4.3.1.1.1 RFX_PROGRESSIVE_V2_CODEC_QUANT

The RFX_PROGRESSIVE_V2_CODEC_QUANT structure stores information regarding the scalar
quantization values for the 13 sub-bands in the four-level DWT decomposition.

This structure is embedded within the yQuantValues, cbQuantValues, and crQuantValues fields
of the RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE (section 2.2.4.3.1.1) structure, and

contains the scalar quantization values for a given progressive quality value. Each field in this
structure MUST have a value in the range of 0 to 15 (inclusive) and is four bits wide. Hence, each
byte of this structure contains two entries. LL4, for example, is stored in the low four bits of the first
byte, while HL4 is stored in the high four bits of the first byte.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LL4 HL4 LH4 HH4 HL3 LH3 HH3 HL2

LH2 HH2 HL1 LH1 HH1 Pad

LL4 (4 bits): A 4-bit, unsigned integer. The LL quantization factor for the level-4 DWT sub-band.

HL4 (4 bits): A 4-bit, unsigned integer. The HL quantization factor for the level-4 DWT sub-
band.

LH4 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level-4 DWT sub-
band.

HH4 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level-4 DWT sub-
band.

HL3 (4 bits): A 4-bit, unsigned integer. The HL quantization factor for the level-3 DWT sub-
band.

LH3 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level-3 DWT sub-

band.

HH3 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level-3 DWT sub-
band.

63 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

HL2 (4 bits): A 4-bit, unsigned integer. The HL quantization factor for the level-2 DWT sub-
band.

LH2 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level-2 DWT sub-
band.

HH2 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level-2 DWT sub-
band.

HL1 (4 bits): A 4-bit, unsigned integer. The HL quantization factor for the level-1 DWT sub-
band.

LH1 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level-1 DWT sub-
band.

HH1 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level-1 DWT sub-

band.

Pad : (4 bits): A 4-bit, unsigned integer. Padding. The encoder MAY set this field to zero, and the
decoder MUST ignore it.

2.2.4.3.1.2 RFX_PROGRESSIVE_V2_NEW_CONTEXT

The RFX_PROGRESSIVE_V2_NEW_CONTEXT structure defines a new progressive context. It

MUST NOT appear more than once in an RFX_PROGRESSIVE_V2_BITMAP_STREAM (section
2.2.4.3) structure. Furthermore, the RFX_PROGRESSIVE_V2_NEW_CONTEXT structure and the
RFX_PROGRESSIVE_V2_UPGRADE_ CONTEXT (section 2.2.4.3.1.3) structure MUST NOT appear
in the same encapsulating RFX_PROGRESSIVE_V2_BITMAP_STREAM structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... progressiveQuality maxLevels

cDwtContext dwtContextInfo (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_NEW_CTX (0xCCC2).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the variable-

length RFX_PROGRESSIVE_V2_NEW_CONTEXT block.

progressiveQuality (1 byte): An 8-bit unsigned integer that specifies the initial progressive

quality value for the progressive context. This value MUST be between 1 and 100 (inclusive)
and is used to identify the quality table to employ when performing de-quantization. An
RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE (section 2.2.4.3.1.1) structure
associated with the progressive quality level specified by the progressiveQuality field MUST
appear before this structure in the encapsulating

RFX_PROGRESSIVE_V2_BITMAP_STREAM (section 2.2.4.3) structure, or in another
RFX_PROGRESSIVE_V2_BITMAP_STREAM structure transmitted in a prior payload.

64 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

maxLevels (1 byte): An 8-bit unsigned integer that specifies the maximum number of DWT
transform levels. This value MUST be between 1 and 4 (inclusive).

cDwtContext (2 bytes): A 16-bit unsigned integer that specifies the number of DWT contexts
contained within the dwtContextInfo field.

dwtContextInfo (variable): A variable-length array of
RFX_PROGRESSIVE_V2_DWT_CONTEXT_INFO (section 2.2.4.3.1.2.1) structures. The
number of elements in this array is specified by the cDwtContext field.

2.2.4.3.1.2.1 RFX_PROGRESSIVE_V2_DWT_CONTEXT_INFO

The RFX_PROGRESSIVE_V2_DWT_CONTEXT_INFO structure specifies the position of a DWT
context within a frame.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

x y

width height

x (2 bytes): A 16-bit unsigned integer that specifies the x-coordinate of the DWT context.

y (2 bytes): A 16-bit unsigned integer that specifies the y-coordinate of the DWT context.

width (2 bytes): A 16-bit unsigned integer that specifies the width of the DWT context.

height (2 bytes): A 16-bit unsigned integer that specifies the height of the DWT context.

2.2.4.3.1.3 RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT

The RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT structure is used to upgrade the progressive
quality of a progressive context. The progressive context is identified by the codecContextId field
of the encapsulating RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) structure. An
RFX_PROGRESSIVE_V2_NEW_PROGRESSIVE_CONTEXT structure for that same progressive
context MUST have been transmitted in a previous RDPGFX_WIRE_TO_SURFACE_PDU_2
structure.

An RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT structure MUST NOT appear more than once in

a RFX_PROGRESSIVE_V2_BITMAP_STREAM (section 2.2.4.3) structure. Furthermore, the
RFX_PROGRESSIVE_V2_UPGRADE_ CONTEXT structure and the
RFX_PROGRESSIVE_V2_NEW_CONTEXT (section 2.2.4.3.1.2) structure MUST NOT appear in the
same encapsulating RFX_PROGRESSIVE_V2_BITMAP_STREAM structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... progressiveQuality

65 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_UPGRADE_CTX (0xCCC3).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT block. This field MUST be set to

0x00000007.

progressiveQuality (1 byte): An 8-bit unsigned integer that specifies the new progressive
quality value for the progressive context. This value MUST be between 1 and 100 (inclusive)
and MUST be strictly greater than the previous progressive quality level. This value is used to
identify the quality table to use for performing the de-quantization. An
RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE (section 2.2.4.3.1.1) structure
associated with the progressive quality level specified by the progressiveQuality field MUST

appear before this structure in the encapsulating
RFX_PROGRESSIVE_V2_BITMAP_STREAM (section 2.2.4.3) structure, or in another
RFX_PROGRESSIVE_V2_BITMAP_STREAM structure transmitted in a prior payload.

2.2.4.3.1.4 RFX_PROGRESSIVE_V2_CONTEXT_DATA_NEW

The RFX_PROGRESSIVE_V2_CONTEXT_DATA_NEW structure contains encoded data associated

with a DWT context.

The RFX_PROGRESSIVE_V2_CONTEXT_DATA_NEW structure MUST appear after an
RFX_PROGRESSIVE_V2_NEW_CONTEXT (section 2.2.4.3.1.2) structure. Furthermore, there
MUST be N instances of this structure, where N is specified by the cDWTContext field of the
RFX_PROGRESSIVE_V2_NEW_CONTEXT structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... ctxId

... yLen

... cbLen

... crLen

... yData (variable)

...

cbData (variable)

...

crData (variable)

...

66 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_DWT_CTX_DATA (0xCCC4).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the variable-
length RFX_PROGRESSIVE_V2_CONTEXT_DATA_NEW block.

ctxId (4 bytes): A 32-bit unsigned integer that specifies the ID of the DWT context.

yLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the yData field.

cbLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the cbData field.

crLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the crData field.

yData (variable): A variable-length array of bytes that contains the compressed data for the
Luma (Y) component of the DWT context using a discrete wavelet transform (DWT),
quantization, and entropy encoded using the RLGR1 method. The size of this field, in bytes, is

specified by the yLen field.

cbData (variable): A variable-length array of bytes that contains the compressed data for the
Chroma Blue (Cb) component of the DWT context using the same methods as the yData field.
The size of this field, in bytes, is specified by the cbLen field.

crData (variable): A variable-length array of bytes that contains the compressed data for the
Chroma Red (Cr) component of the DWT context using the same methods as the yData field.

The size of this field, in bytes, is specified by the crLen field.

2.2.4.3.1.5 RFX_PROGRESSIVE_V2_ CONTEXT_DATA_UPGRADE

The RFX_PROGRESSIVE_V2_CONTEXT_DATA_UPGRADE structure contains encoded data
associated with a DWT context.

The RFX_PROGRESSIVE_V2_CONTEXT_DATA_UPGRADE structure MUST appear after an
RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT (section 2.2.4.3.1.3) structure. Furthermore,

there MUST be N instances of this structure, where N is initially specified by the cDWTContext field
of the RFX_PROGRESSIVE_V2_NEW_CONTEXT (section 2.2.4.3.1.2) structure and is reduced
over time by changes in geometry specified by the
RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY structure (section 2.2.4.3.1.6).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... ctxId

... ySrlLen

... yRawLen

... cbSrlLen

... cbRawLen

67 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

... crSrlLen

... crRawLen

... ySrlData (variable)

...

yRawData (variable)

...

cbSrlData (variable)

...

cbRawData (variable)

...

crSrlData (variable)

...

crRawData (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_CONTEXT (0xCCC4).

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the

RFX_PROGRESSIVE_V2_CONTEXT_DATA_UPGRADE block.

ctxId (4 bytes): A 32-bit unsigned integer that specifies the ID of the DWT context.

ySrlLen (4 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the ySrlData
field.

yRawLen (4 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the
yRawData field.

cbSrlLen (4 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the cbSrlData

field.

cbRawLen (4 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the
cbRawData field.

crSrlLen (4 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the crSrlData
field.

68 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

crRawLen (4 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the
crRawData field.

ySrlData (variable): A variable-length array of bytes that contains bits for the Luma (Y)
component compressed using the Simplified-RL method. The size of this field, in bytes, is

specified by the ySrlLen field.

yRawData (variable): A variable-length array of bytes that contains raw bits for the Luma (Y)
component. The size of this field, in bytes, is specified by the yRawLen field.

cbSrlData (variable): A variable-length array of bytes that contains bits for the Chroma Blue
(Cb) component compressed using the Simplified-RL method. The size of this field, in bytes, is
specified by the cbSrlLen field.

cbRawData (variable): A variable-length array of bytes that contains raw bits for the Chroma

Blue (Cb) component. The size of this field, in bytes, is specified by the cbRawLen field.

crSrlData (variable): A variable-length array of bytes that contains bits for the Chroma Red

(Cr) component compressed using the Simplified-RL method. The size of this field, in bytes, is
specified by the crSrlLen field.

crRawData (variable): A variable-length array of bytes that contains raw bits for the Chroma
Red (Cr) component. The size of this field, in bytes, is specified by the crRawLen field.

2.2.4.3.1.6 RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY

The RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY structure specifies changes in the
geometry of a DWT context by indicating which parts of the DWT context are visible and where each
part is rendered in a frame.

A DWT context contains information to produce a rectangular image. Each DWT context contains
"moving part" information that indicates where each portion of this rectangular image appears in a

frame. When initially constructed, the DWT context contains one moving part that indicates where
the entire rectangular image appears at a specific position in a frame. The

RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY structure updates this list of moving
parts.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blockType blockLen

... ctxId

... cMovingParts

movingParts (variable)

...

blockType (2 bytes): A 16-bit unsigned integer that specifies the block type. This field MUST be
set to WBT_CHANGE_CTX_GEOMETRY (0xCCC5).

69 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

blockLen (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the variable-
length RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY block.

ctxId (4 bytes): A 16-bit unsigned integer that specifies the context ID associated with the
RFX_PROGRESSIVE_V2_MOVING_PART (section 2.2.4.3.1.6.1) structures contained

within the movingParts field.

cMovingParts (2 bytes): A 16-bit unsigned integer that specifies the number of elements in the
movingParts field. If this field is set to zero, then the corresponding DWT context has no
visible parts and MUST be deleted.

movingParts (variable): A variable-length array of RFX_PROGRESSIVE_V2_MOVING_PART
structures that specifies the frame coordinates and the DWT coordinate of the corresponding
sub-rectangle. The number of elements in this field is specified by the nMovingParts field.

2.2.4.3.1.6.1 RFX_PROGRESSIVE_V2_MOVING_PART

The RFX_PROGRESSIVE_V2_MOVING_PART structure specifies position and size information for

a moving part of a DWT context.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

frameX frameY

partWidth partHeight

dwtX dwtY

frameX (2 bytes): A 16-bit unsigned integer that specifies the x-coordinate of the moving part
relative to the top-left corner of the frame.

frameY (2 bytes): A 16-bit unsigned integer that specifies the y-coordinate of the moving part
relative to the top-left corner of the frame.

partWidth (2 bytes): A 16-bit unsigned integer that specifies the width of the moving part.

partHeight (2 bytes): A 16-bit unsigned integer that specifies the height of the moving part.

dwtX (2 bytes): A 16-bit unsigned integer that specifies the x-coordinate of the moving part
relative to the top-left corner of the DWT context rectangle.

dwtY (2 bytes): A 16-bit unsigned integer that specifies the y-coordinate of the moving part
relative to the top-left corner of the DWT context rectangle.

2.2.4.4 ALPHACODEC_BITMAP_STREAM

The ALPHACODEC_BITMAP_STREAM structure specifies the opacity of each pixel in the encoded

bitmap. The number of pixels encoded in the segments field MUST equal the area of the original
image when decoded.

70 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

alphaSig compressed

segments (variable)

...

alphaSig (2 bytes): A 16-bit unsigned integer. This field MUST contain the value 16,716
(0x414C).

compressed (2 bytes): A 16-bit unsigned integer. If this field equals 0x0000, the segments
field contains the alpha channel values, encoded in raw format, one after the other, in top-left
to bottom-right order. If this field is nonzero, the segments field contains one or more
CLEARCODEC_ALPHA_RLE_SEGMENT (section 2.2.4.4.1) structures.

segments (variable): An optional variable-length array of bytes or

CLEARCODEC_ALPHA_RLE_SEGMENT structures, depending on the value of the
compressed field.

2.2.4.4.1 CLEARCODEC_ALPHA_RLE_SEGMENT

The CLEARCODEC_ALPHA_RLE_SEGMENT structure encodes a single alpha channel run segment.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

runValue runLengthFactor1 runLengthFactor2 (optional)

runLengthFactor3 (optional)

runValue (1 byte): An 8-bit unsigned integer that specifies the alpha value of the current pixel.

runLengthFactor1 (1 byte): An 8-bit unsigned integer. If the value of the runLengthFactor1

field is less than 255 (0xFF), the runLengthFactor2 and runLengthFactor3 fields MUST
NOT be present, and the current alpha value MUST be applied to the next runLengthFactor1
pixels. If the value of the runLengthFactor1 field equals 255 (0xFF), the runLengthFactor2
field MUST be present, and the run length is calculated from the runLengthFactor2 field.

runLengthFactor2 (2 bytes, optional): An optional 16-bit unsigned integer. If the value of the
runLengthFactor2 field is less than 65,535 (0xFFFF), the runLengthFactor3 field MUST
NOT be present, and the current alpha value MUST be applied to the next runLengthFactor2

pixels. If the value of the runLengthFactor2 field equals 65,535 (0xFFFF), the
runLengthFactor3 field MUST be present, and the run length is calculated from the

runLengthFactor3 field.

runLengthFactor3 (4 bytes, optional): An optional 32-bit unsigned integer. If this field is
present, it contains the run length. The current alpha value MUST be applied to the next
runLengthFactor3 pixels. This field SHOULD NOT be used if the run length is smaller than

65,535 (0xFFFF).

71 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.5 RFX_H264_BITMAP_STREAM

The RFX_H264_BITMAP_STREAM structure encapsulates regions of a graphics frame compressed
using H.264 compression techniques [ITU-H.264-201201]. The data compressed using these

techniques is transported in the bitmapData field of the RDPGFX_WIRE_TO_SURFACE_PDU_1
(section 2.2.2.2) message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

h264MetaData (variable)

...

h264EncodedBitstream (variable)

...

h264MetaData (variable): A variable-length RFX_H264_METABLOCK (section 2.2.4.5.1)
structure.

h264EncodedBitstream (variable): An array of bytes that represents a single frame encoded
using the H.264 codec.

2.2.4.5.1 RFX_H264_METABLOCK

The RFX_H264_METABLOCK structure describes metadata associated with H.264 encoded data
sent from the server to the client.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

numRegionRects

regionRects (variable)

...

quantQualityVals (variable)

...

numRegionRects (4 bytes): A 32-bit unsigned integer that specifies the total number of
elements in the regionRects field. The quantQualityVals field MUST contain the same

number of elements as the regionRects field.

regionRects (variable): A variable-length array of RDPGFX_RECT16 (section 2.2.1.2)
structures that specifies the region mask to apply to the H.264 encoded data. The total
number of elements in this field is specified by the numRegionRects field.

http://go.microsoft.com/fwlink/?LinkId=324623

72 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

quantQualityVals (variable): A variable-length array of RDPGFX_H264_QUANT_QUALITY
(section 2.2.4.5.2) structures that describes the quantization parameter and quality level

associated with each rectangle in the regionRects field. The total number of elements in this
field is specified by the numRegionRects field.

2.2.4.5.2 RDPGFX_H264_QUANT_QUALITY

The RDPGFX_H264_QUANT_QUALITY structure describes the quantization parameter and quality
level associated with a rectangular region.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

qpVal qualityVal

qpVal (1 byte): An 8-bit unsigned integer that specifies the progressive indicator and

quantization parameter associated with a rectangular region. The format of the qpVal field is
described by the following bitmask diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

qp r p

qp (6 bits): A 6-bit, unsigned integer that that specifies the quantization parameter
associated with a rectangular region. This value MUST be in the range required by [ITU-
H.264-201201] sections 7.4.2.1.1 and 7.4.3 for high profiles ([ITU-H.264-201201] section
A.2.4).

r (1 bit): A 1-bit field that is reserved for future use. This field SHOULD be set to zero.

p (1 bit): A 1-bit field that indicates whether a rectangular region is progressively encoded. A

value of 0x1 indicates that the region is progressively encoded.

qualityVal (1 byte): An 8-bit unsigned integer that specifies the quality level associated with a
rectangular region. This value MUST be in the range 0 to 100 inclusive.

2.2.5 Data Packaging

2.2.5.1 RDP_SEGMENTED_DATA

The RDP_SEGMENTED_DATA structure is used to wrap one or more RDP_DATA_SEGMENT
(section 2.2.5.2) structures. Each segment contains data that has been encoded using RDP 8.0 Bulk
Compression techniques (section 3.1.9.1).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

descriptor segmentCount (optional) uncompressedSize

(optional)

http://go.microsoft.com/fwlink/?LinkId=324623
http://go.microsoft.com/fwlink/?LinkId=324623
http://go.microsoft.com/fwlink/?LinkId=324623

73 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

... bulkData (variable)

...

segmentArray (variable)

...

descriptor (1 byte): An 8-bit unsigned integer that specifies whether the
RDP_SEGMENTED_DATA structure wraps a single segment or multiple segments.

Value Meaning

SINGLE

0xE0

The segmentCount, uncompressedSize, and segmentArray fields MUST NOT be

present, and the bulkData field MUST be present.

MULTIPART

0xE1

The segmentCount, uncompressedSize, and segmentArray fields MUST be

present, and the bulkData field MUST NOT be present.

segmentCount (2 bytes, optional): An optional 16-bit unsigned integer that specifies the
number of elements in the segmentArray field.

uncompressedSize (4 bytes, optional): An optional 32-bit unsigned integer that specifies the
size, in bytes, of the data present in the segmentArray field once it has been reassembled
and decompressed.

bulkData (variable): An optional variable-length RDP8_BULK_ENCODED_DATA structure
(section 2.2.5.3).

segmentArray (variable): An optional variable-length array of RDP_DATA_SEGMENT

structures. The number of elements in this array is specified by the segmentCount field.

2.2.5.2 RDP_DATA_SEGMENT

The RDP_DATA_SEGMENT structure contains data that has been encoded using RDP 8.0 Bulk
Compression techniques (section 3.1.9.1).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

size

bulkData (variable)

...

size (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the bulkData field.

bulkData (variable): A variable-length RDP8_BULK_ENCODED_DATA structure (section
2.2.5.3).

74 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.5.3 RDP8_BULK_ENCODED_DATA

The RDP8_BULK_ENCODED_DATA structure contains a header byte and data that has been
encoded using RDP 8.0 Bulk Compression techniques (section 3.1.9.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header data (variable)

...

header (1 byte): An 8-bit, unsigned integer that specifies the compression type and flags.

Flag Meaning

CompressionTypeMask

0x0F

Indicates the package which was used for compression. See the following

table for a list of compression packages.

PACKET_COMPRESSED

0x20

The payload data in the data field is compressed.

Possible compression types are as follows.

Value Meaning

PACKET_COMPR_TYPE_RDP8

0x4

RDP 8.0 bulk compression (see section 3.1.9.1).

data (variable): A variable-length array of bytes that contains data encoded using RDP 8.0 Bulk

Compression techniques. If the PACKET_COMPRESSED (0x20) flag is specified in the header
field, then the data is compressed.

2.3 Directory Service Schema Elements

None.

75 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Processing a Graphics Message

All graphics messages are prefaced by the RDPGFX_HEADER (section 2.2.1.5) structure.

During processing of a graphics message, the cmdId field in the header MUST first be examined to
determine if the message is within the subset of expected messages. If the message is not

expected, it SHOULD be ignored.

If the message is in the correct sequence, the pduLength field MUST be examined to make sure
that it is consistent with the amount of data read from the "Microsoft::Windows::RDS::Graphics"

dynamic virtual channel (section 2.1). If this is not the case, the connection SHOULD be dropped.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.1.8 Bitmap Compression

3.1.8.1 RemoteFX Progressive Codec Compression

The RemoteFX Progressive Codec extends the RemoteFX Codec described in [MS-RDPRFX] section

3.1.8 by adding sub-band diffing and the ability to progressively encode an image. Sub-band diffing
is a compression technique that entails transmitting the differences between the DWT coefficients of
consecutive frames, while progressive encoding involves the transmission of low-quality images that
are gradually refined and improved in quality.

%5bMS-RDPRFX%5d.pdf

76 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.8.1.1 General Terms and Concepts

Assume that F1, F2, F3, ... are the frames being encoded. Further, for simplicity, assume that
every frame contains only one tile and the same component from the YCbCr color-space.

DwtQ represents a tile after DWT transformation and quantization, and DwtQn corresponds to Fn.

DwtQ is composed of 10 bands: LL3, LH3, HL3, HH3, LH2, HL2, HH2, LH1, HL1, and HH1 ([MS-
RDPRFX] section 2.2.2.1.5). The LL3 band is designated as DwtQ-LL, and the remaining 9 bands as
DwtQ-NonLL.

3.1.8.1.2 Sub-Band Diffing

Sub-band diffing is used to determine whether a difference tile or an original tile is sent to the RLGR

Entropy Encoder ([MS-RDPRFX] section 3.1.8.1.7).

The sending of an original tile entails dispatching the nine non-LL3 bands and the deltas of the LL3
band to the RLGR Entropy Encoder. An LL3 delta is defined as the difference between a given LL3

element and the previous element within the same tile. The first LL3 element is transmitted without
modification. The differences in the LL3 band are denoted as DwtQ-LL-Deltas.

Sending an original tile to the RLGR Entropy Encoder is represented as:

DwtQ-NonLL, DwtQ-LL-Deltas -> RLGR Entropy Encoder

A difference tile is defined as the difference between the DwtQ elements of two consecutive frames
Fm and Fn (where m > n):

Diffm = DwtQm - DwtQn

Diff is composed of Diff-LL and Diff-NonLL. All the bands of a diff tile are sent to the RLGR
Entropy Encoder:

Diff-NonLL, Diff-LL -> RLGR Entropy Encoder

3.1.8.1.3 Extra Quantization

When performing progressive encoding, an extra quantization step is performed on the data
resulting from the Sub-Band Diffing Stage. Quantization is expressed in terms of the number of bits
that are shifted. The number of bits is a function of:

The regular quality (low, medium-low, medium-high, high)

The color component (Y, Cb or Cr)

The band (HH1 to LL3)

The progressive chunk (0% to 100%)

Assume the following:

BitPos(quality, component, band, 0%) = 15

BitPos(quality, component, band, 100%) = 0

0 <= BitPos(quality, component, band, chunk) < 15; where (chunk > 0%)

%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf

77 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If SB is the result of the sub-band diffing decision engine, the progressive quantized value is
calculated as follows:

if (SB >= 0) then ProgQ(chunk) = SB >> BitPos(chunk)

if (SB < 0) then ProgQ(chunk) = -((-SB) >> BitPos(chunk))

This can also be expressed as:

ProgQ(chunk) = SB/PQF(chunk); division MUST round the result toward zero

Where PQF(chunk) is the Progressive Quantization Factor:

PQF(chunk) = 1 << BitPos(chunk)

However, the progressive quantized value of the LL3 band is calculated differently. The quantization
of the elements is performed toward negative infinity, resulting in the following formula:

ProgQ-LL(chunk) = SB >> BitPos(chunk)

3.1.8.1.4 State Tracking

To correctly perform sub-band diffing and progressive encoding, the decoder's state MUST be
tracked, specifically the following:

The current DWT/quantized bits (in non-progressive mode, this matches the encoder's DwtQ).

The current progressive chunk.

The current DWT/quantized bits of the decoder are referred to as the "reference bits" (Ref).
Whenever the encoder sends a difference, it MUST be based on Ref, not on the DwtQ of the
previous frame, because the decoder might not have received all of the associated progressive
chunks. Maintaining Ref is specified in section 3.2.8.1.5.2.1.

3.1.8.1.5 Simplified Run-Length (SRL)

The Simplified Run-Length (SRL) Encoder uses the same zero run-length engine as the RLGR
entropy encoder ([MS-RDPRFX] section 3.1.8.1.7). However, it differs when encoding nonzero
elements, because these elements are unary-encoded (there is no Golomb-Rice coding).

3.1.8.1.5.1 Zero Run-Length Encoding

Runs of zeros are encoded using the same techniques as RLGR. The KP state value defines the
likelihood of encountering long runs of zeros.

The initial value of KP is 8.

K is defined as KP / 8 (rounded down) and indicates the number of bits that MUST be used to

encode the number of zeros (nz).

If nz >= (1 << K) then:

One "0" bit is written

nz = nz - (1 << K)

KP = KP + 4; if KP > 80 then KP = 80

%5bMS-RDPRFX%5d.pdf

78 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

K = KP / 8

Repeat until nz < (1 << K)

Otherwise,

One "1" bit is written

The count of zeros is written using K bits

KP = KP - 6; if KP < 0 then KP = 0

K = KP / 8

Note that, contrary to RLGR, it is possible to encode a run of zeros with K = 0. If the length of the
run is zero, a single "1" bit is written.

3.1.8.1.5.2 Unary Encoding

Unary encoding is based on the number of bits of magnitude that the current upgrade pass (section
3.2.8.1.5.2) is encoding. The value to encode MUST be nonzero, positive or negative, and the
magnitude (absolute value) MUST NOT exceed (1 << nBits) - 1, where nBits is the number of bits

of magnitude that the upgrade pass is encoding.

First, the sign is written as a single bit.

Next, a sequence of "magnitude - 1" zeros is written.

Finally, a "1" bit terminates the sequence, except if the magnitude equals (1 << nBits) - 1.

Once this value has been encoded, the encoder returns to encoding a zero run-length. If the next

value is nonzero, a zero run of length zero is encoded, and the next value is unary encoded.

Consider the case where nBits = 3. In this scenario, the magnitude MUST be between 1 and 7
(inclusive). After writing the sign, the following encodings are used for the seven possible

magnitudes:

1 is encoded as "1"

2 is encoded as "01"

3 is encoded as "001"

4 is encoded as "0001"

5 is encoded as "00001"

6 is encoded as "000001"

7 is encoded as "000000"

In the case where nBits = 1, only the sign would be written, because the magnitude cannot exceed
1.

3.1.8.1.6 Summary of Terms

DwtQ: A tile after DWT transformation and quantization.

79 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DwtQ-LL: The LL3 band of DwtQ.

DwtQ-NonLL: The non-LL3 bands of DwtQ.

DwtQ-LL-Deltas: The difference between two consecutive LL3 elements from DwtQ.

Ref: The reference tile, which reflects the current DWT/quantized bits of the decoder.

Diff, Diff-LL, Diff-NonLL: The difference between Ref and DwtQ of the current tile.

SB: The result of the sub-band diffing decision engine.

BitPos: A function that returns a bit position used for progressive encoding.

PQF: The Progressive Quantization Factor, defined as (1 << BitPos).

ProgQ: Data from SB that has been "extra quantized" using PQF.

3.1.8.2 RemoteFX Progressive v.2 Codec Compression

The RemoteFX Progressive v.2 Codec encodes portions of the screen using a Discreet Wavelet
Transform (DWT), and entropy encodes the result using techniques that facilitate progressive
reconstruction of the image. This codec differs from the RemoteFX Progressive Codec described in
section 3.1.8.1:

Any size rectangle can be encoded, not just 64x64 tiles.

A given rectangle is DWT transformed using a variable number of levels (up to four).

Furthermore, the horizontal and vertical transforms are independent.

Parts of the decoded rectangle can be copied to various locations in the frame buffer.

There is no sub-band diffing.

3.1.8.2.1 General Terms and Concepts

A Progressive Context is a collection of DWT Contexts that are encoded to the same progressive
quality level. An RFX_PROGRESSIVE_V2_BITMAP_STREAM (section 2.2.4.3) contains
information pertinent to only one Progressive Context. Either it contains the information for a new
progressive context (used to encode new images showing on screen), or the information for an
existing progressive context (used to upgrade the quality of an existing image).

A DWT Context is a rectangular-shaped encoded image that is part of a Progressive Context.
The encoded image is not necessarily part of the current frame, since only fragments of the image

could belong to the frame (fragments might not be present if they have been removed from the
frame).

A DWT Context contains one or more Moving Parts. Each moving part identifies a portion of the
DWT Context and the position in the frame where this portion MUST be rendered. Parts of the DWT
Context image might not be covered by any moving part simply because portions of the image are

obscured over time.

3.1.8.2.2 Extra Quantization

When performing progressive encoding, an extra quantization step is performed on the quantized
DWT data. Quantization is expressed in terms of the number of bits that are shifted. The number of
bits is a function of:

80 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The regular quality (low, medium-low, medium-high, high)

The color component (Y, Cb, or Cr)

The band (HH1 to LL4)

The progressive chunk (0% to 100%)

Assume the following:

BitPos(quality, component, band, 0%) = 15

BitPos(quality, component, band, 100%) = 0

0 <= BitPos(quality, component, band, chunk) < 15; where (chunk > 0%)

If DwtQ is the quantized DWT coefficient, the progressive quantized value is calculated as follows:

if (DwtQ >= 0) then ProgQ(chunk) = DwtQ >> BitPos(chunk)

if (DwtQ < 0) then ProgQ(chunk) = -((-DwtQ) >> BitPos(chunk))

This can also be expressed as:

ProgQ(chunk) = DwtQ/PQF(chunk); division MUST round the result toward zero

Where PQF(chunk) is the Progressive Quantization Factor:

PQF(chunk) = 1 << BitPos(chunk)

However, the progressive quantized value of the LL4 band is calculated differently. The quantization
of the elements is performed toward negative infinity, resulting in the following formula:

ProgQ-LL(chunk) = DwtQ >> BitPos(chunk)

3.1.8.2.3 Simplified Run-Length (SRL)

The Simplified Run-Length (SRL) encoding is the same as that used in the RemoteFX Progressive
Codec (section 3.1.8.1.5).

3.1.8.2.4 Summary of Terms

DwtQ: A tile after DWT transformation and quantization.

DwtQ-LL: The LL4 band of DwtQ.

DwtQ-NonLL: The non-LL4 bands of DwtQ.

DwtQ-LL-Deltas: The difference between two consecutive LL4 elements from DwtQ.

Ref: The reference tile, which reflects the current DWT/quantized bits of the decoder.

Diff, Diff-LL, Diff-NonLL: The difference between Ref and DwtQ of the current tile.

BitPos: A function that returns a bit position used for progressive encoding.

PQF: The Progressive Quantization Factor, defined as (1 << BitPos).

ProgQ: Data from DwtQ that has been "extra quantized" using PQF.

81 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.9 Bulk Data Compression

3.1.9.1 RDP 8.0

RDP 8.0 lossless compression is a specialization of the Lempel-Ziv ("LZ77") technique ([SAYOOD]
section 6.2.3.2.2) paired with static Huffman encoding ([SAYOOD] sections 4.1 to 4.7). It is most-
easily explained by detailing the operation of a decompressor. A compliant data compressor MUST
encode input data, and a compliant data decompressor MUST decode compressed data, according to
the format defined in section 3.1.9.1.2 and its subsections.

Any given input data could have many valid but different compressed representations. Whether the
"compressed" representation is actually smaller than the original is dependent on the characteristics

of the input data and on the compressor implementation. A compliant decompressor MUST accept
any conforming compressed encoding and produce output that exactly matches the original input to
the compressor. This document specifies at least one way to decode RDP 8.0 compressed data,
although numerous implementation approaches are possible.

3.1.9.1.1 Overview

The essential elements of a decompressor include de-blocking, Huffman decoding, and maintaining a

history of recent output.

To accommodate input blocks of an arbitrary size, multiple segments can be used. The de-blocking
header from compressed input indicates whether that input is to be decoded in a single pass or in
multiple passes, with the output from each segment concatenated to recover the original input data.

Each frame of compressed input data, with de-blocking headers excluded, is passed through a
Huffman decoder using a static model to translate multibit sequences into tokens. The decoder

MUST identify each variable-length token, which represents either a "literal" or a "match". The value
of a literal token is presented as the next byte of output. The value of a match token conveys the
match "distance", indicating how far back to reach into the output history to locate the required
bytes. A match token is followed by an encoded length, indicating the number of bytes to output.

As decompressed data is presented, it MUST be stored into a "history" buffer, which tracks the
most-recent bytes of output, which could be referenced by a subsequent match token.

3.1.9.1.2 Detailed Description

This section describes a method to accept a compressed stream of data of a given length and to
output the decompressed bytes and a byte count.

Any compressor can encounter input data that cannot be reduced further. There are two different
paths that allow input data to be passed "raw" or with minimal encoding overhead. All output bytes
MUST be recorded in the history buffer, even bytes from unencoded segments or runs, because a
match operation could subsequently appear and reference these bytes.

RDP 8.0 compressor limits:

Maximum number of uncompressed bytes in a single segment: 65,535.

Maximum match distance / minimum history size: 2,500,000 bytes.

Maximum number of segments: 65,535.

Maximum expansion of a segment (when compressed size exceeds uncompressed): 1,000 bytes.

82 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Minimum match length: 3 bytes.

The compression type code to identify RDP 8.0 compressed data is PACKET_COMPR_TYPE_RDP8
(0x04).

3.1.9.1.2.1 De-Blocking

Each compressed stream MUST begin with an RDP_SEGMENTED_DATA (section 2.2.5.1)
structure. A descriptor field value of SINGLE (0xE0) indicates that the original input was processed
as one segment. The segmentCount and uncompressedSize fields are omitted, and the entire
remainder of the input is passed as one segment to the decoder.

If the value of the descriptor field is MULTIPART (0xE1), the input was possibly too large to be

represented in a single segment, typically because the uncompressed byte count exceeds 65,535 or
a smaller count due to compressor implementation limits. The 16-bit segmentCount field indicates
the number of segments whose decompressed output will be concatenated to reconstruct the entire
output. The 32-bit uncompressedSize field MUST equal the total number of decompressed bytes
(the sum of the decompressed size of all segments). The value in the uncompressedSize field can

be used by the decompressor to allocate a reassembly buffer.

Each segment of compressed data appears in an RDP_DATA_SEGMENT (section 2.2.5.2)

structure. When the value of the descriptor field is MULTIPART (0xE1), the size field of the
RDP_DATA_SEGMENT structure indicates the number of encoded bytes to be decoded. When the
descriptor field value is SINGLE (0xE0), the size field is omitted, and the number of encoded bytes
can be derived from the total size of the provided RDP_SEGMENTED_DATA structure (the total
input size minus the size of the 1-byte descriptor field).

3.1.9.1.2.2 Compressed Segment Header

The PACKET_COMPRESSED bit (0x20) in the header field of each RDP8_BULK_ENCODED_DATA
(section 2.2.5.3) structure indicates that the stream of bytes that follows in the data field is a bit
stream to be Huffman-decoded. If this bit is not set, the bytes are not Huffman-encoded and are
copied directly to the output. The four low-order bits of the header field contain the compression

type identifier, which is always four (0x04) for the format described in this document. The remaining
bits in the header field are reserved.

3.1.9.1.2.3 Compressed Segment Bit Stream

Huffman decoding views the input bytes as a stream of bits. The input bits are examined until a
token is recognized. The first bit to decode is the most-significant bit of the first byte, followed by
the next most-significant bit, and so on. In Huffman decoding, the number of bits in each token is
not known until the leading bits in that token are examined. A decoder typically reads one to several
bits at a time, until the next token is recognized.

3.1.9.1.2.4 Compressed Segment Trailer

The bit stream can end with some number of unused bits (0-7) in the last byte, which MUST NOT be
decoded. (Attempting to decode can overrun input and produce too many bytes of output). The

value of the last byte in the compressed segment indicates the number of unused bits in the final
byte (some value between 0 and 7, inclusive). The five high-order bits in the last byte of the
compressed segment are reserved.

For example, if the encoding of a stream produces 217 bits, the stream is 29 bytes in length. The
first 27 bytes plus the most-significant bit of the 28th byte comprise the bit stream. The 29th byte

83 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

has the value 7, indicating that 7 bits (of the 28th byte) are to be ignored. The total length of a
segment's bit stream is:

NumberOfBitsToDecode = ((NumberOfBytesToDecode - 1) * 8) - ValueOfLastByte.

There is no "end of block" token or other marker. The decoder MUST stop when this number of bits

has been decoded.

Huffman symbols or "tokens" are defined for:

A literal (a single byte to be output).

A match, including the distance back into the history from which to copy.

An unencoded sequence, introducing some number of bytes to copy directly from input.

Most literals are encoded with a "0" prefix, followed by 8 bits containing the byte to output, most-
significant bit first. Some selected literals MUST be represented using a shorter token varying

between 5 and 8 bits, all beginning with a "11" prefix. The nine-bit encodings that would otherwise
represent these literals are reserved and MUST NOT be used to encode these literal values.

A match token is followed by some number of bits indicating the number of bytes output since the
needed bytes or the "distance" backward. Each token has been assigned a different base distance
and number of additional value bits to be added to compute the full distance. Additional value bits

are presented most-significant bit first. A match length prefix follows the token and indicates how
many additional bits will be needed to get the full length (the number of bytes to be copied). Most of
the match length prefixes have been defined so that a decoder can simply count the number of "1"
bits until a "0" bit appears to determine how many value bits follow.

The distance is not a buffer offset, but instead indicates the number of bytes that have been output
since the first of the bytes to be copied. A linear buffer is often used to record recent history, with a

"cursor" indicating the buffer offset where the next byte will be placed, wrapped around to the
beginning of the buffer when the end is reached (also known as a "ring buffer"). With this approach,
the distance can be subtracted from the cursor offset, while compensating for any buffer wrap-

around, if applicable, which might have occurred since the needed bytes were decoded.

A match distance of zero is a special case, which indicates that an unencoded run of bytes follows.
The count of bytes is encoded as a 15-bit value, most significant bit first. After decoding this count,
any bits remaining in the current input byte are ignored, and the unencoded run will begin on a

whole-byte boundary. The ignored bits, plus 8 bits for each unencoded byte, are also considered
part of the total number of bits in the input stream. If any bits remain after an unencoded run of
bytes, decoding continues with the most-significant bit of the first byte following the run.

The following table contains all the defined tokens. Any token or bit sequence that is not defined in
this table is reserved.

Bit

Prefix Decimal

Value

Bits Purpose

0 0 8 Literal xxxxxxxx (excluding those literals with shorter codes

described in this table for which their 9-bit representation is

reserved)

10001 17 5 Unencoded literal sequence (10001 00000), or

Match distance 1...31 (10001 xxxxx)

10010 18 7 Match distance 32...159

84 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Bit

Prefix Decimal

Value

Bits Purpose

10011 19 9 Match distance 160...671

10100 20 10 Match distance 672...1695

10101 21 12 Match distance 1696...5791

101100 44 14 Match distance 5792...22175

101101 45 15 Match distance 22176...54943

1011100 92 18 Match distance 54944...317087

1011101 93 20 Match distance 317088...1365663

10111100 188 20 Match distance 1365664...2414239

10111101 189 21 Match distance 2414240...2500000

11000 24 Literal 0x00 (000000000 is reserved)

11001 25 Literal 0x01 (000000001 is reserved)

110100 52 Literal 0x02 (000000010 is reserved)

110101 53 Literal 0x03 (000000011 is reserved)

110110 54 Literal 0xFF (011111111 is reserved)

1101110 110 Literal 0x04 (000000100 is reserved)

1101111 111 Literal 0x05 (000000101 is reserved)

1110000 112 Literal 0x06 (000000110 is reserved)

1110001 113 Literal 0x07 (000000111 is reserved)

1110010 114 Literal 0x08 (000001000 is reserved)

1110011 115 Literal 0x09 (000001001 is reserved)

1110100 116 Literal 0x0A (000001010 is reserved)

1110101 117 Literal 0x0B (000001011 is reserved)

1110110 118 Literal 0x3A (000111010 is reserved)

1110111 119 Literal 0x3B (000111011 is reserved)

1111000 120 Literal 0x3C (000111100 is reserved)

1111001 121 Literal 0x3D (000111101 is reserved)

1111010 122 Literal 0x3E (000111110 is reserved)

1111011 123 Literal 0x3F (000111111 is reserved)

1111100 124 Literal 0x40 (001000000 is reserved)

85 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Bit

Prefix Decimal

Value

Bits Purpose

1111101 125 Literal 0x80 (010000000 is reserved)

11111100 252 Literal 0x0C (000001100 is reserved)

11111101 253 Literal 0x38 (000111000 is reserved)

11111110 254 Literal 0x39 (000111001 is reserved)

11111111 255 Literal 0x66 (001100110 is reserved)

Match tokens are followed by a length token:

Bit Prefix Value Bits Definition

0 Length 3

10 2 Length 4...7

110 3 Length 8...15

1110 4 Length 16...31

11110 5 Length 32...63

111110 6 Length 64...127

1111110 7 Length 128...255

11111110 8 Length 256...511

111111110 9 Length 512...1023

1111111110 10 Length 1024...2047

11111111110 11 Length 2048...4095

111111111110 12 Length 4096...8191

1111111111110 13 Length 8192...16383

11111111111110 14 Length 16384...32767

111111111111110 15 Length 32768...65535

A single compressed segment MUST NOT translate to more than 65,535 uncompressed bytes.

3.1.9.1.2.5 Bit Stream Encoding Examples

The following example bit streams contain spaces added for clarity:

0 0100 1001 is the encoding for a single byte 0x49.

10010 0001100 is a match with a distance of 44 (base value of 32 + 7 bits with a value of 12). This
would be followed by a length prefix such as 110 (which indicates a base value of 8), followed by 3
bits with a value of 101, resulting in a length of 13.

86 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0 0100 1001 10001 00001 110 001 decodes to ten bytes of 0x49 (one byte 0x49, followed by a
match with distance = 1 and length = 8 + 1 = 9, which replicates the first 0x49 nine more times).

3.2 Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

3.2.1.1 Bitmap Cache Map

The Bitmap Cache Map abstract data model (ADM) element stores a list of keys and slot indices.
Each key uniquely identifies a bitmap stored in the client-side bitmap cache in an assigned slot

(identified by a slot index). The specific slot in which a bitmap is stored is determined by the server.

3.2.1.2 Unacknowledged Frames

The Unacknowledged Frames ADM element contains a list of logical frames (each represented by
a frame ID) that have been sent to the client but that have not yet been acknowledged by the
RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13) message. Logical frames are

delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_1 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_1 message are specified in
section 2.2.2.1. The command fields MUST be populated in accordance with this description.
Furthermore, the RDPGFX_WIRE_TO_SURFACE_PDU_1 message MUST be part of a logical
frame delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the target surface identified in the
surfaceId field MUST exist on the client.

87 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.5.2 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_2 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_2 message are specified in
section 2.2.2.2. The command fields MUST be populated in accordance with this description.

Furthermore, the RDPGFX_WIRE_TO_SURFACE_PDU_2 message MUST be part of a logical
frame (delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages), and the target surface identified in the
surfaceId field MUST exist on the client. The codecContextId field MUST also contain a valid ID
that is associated with a bitmap that is being progressively transferred to the client.

3.2.5.3 Sending an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message

The structure and fields of the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message are
specified in section 2.2.2.3. The command fields MUST be populated in accordance with this
description. Both the codec context specified in the codecContextId and the surface identified in
the surfaceId field MUST exist on the client.

3.2.5.4 Sending an RDPGFX_SOLIDFILL_PDU message

The structure and fields of the RDPGFX_SOLIDFILL_PDU message are specified in section

2.2.2.4. The command fields MUST be populated in accordance with this description. Furthermore,
the RDPGFX_SOLIDFILL_PDU message MUST be part of a logical frame delineated by the
RDPGFX_START_FRAME_PDU (section 2.2.2.11) and RDPGFX_END_FRAME_PDU (section
2.2.2.12) messages, and the target surface identified in the surfaceId field MUST exist on the
client. The format of the data in the fillPixel field MUST match the pixel format of the target
surface.

3.2.5.5 Sending an RDPGFX_SURFACE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_SURFACE_PDU message are specified in
section 2.2.2.5. The command fields MUST be populated in accordance with this description.
Furthermore, the RDPGFX_SURFACE_TO_SURFACE_PDU message MUST be part of a logical

frame delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the source and target surfaces

identified in the surfaceIdSrc and surfaceIdDest fields, respectively, MUST exist on the client.

3.2.5.6 Sending an RDPGFX_SURFACE_TO_CACHE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_CACHE_PDU message are specified in
section 2.2.2.6. The command fields MUST be populated in accordance with this description.
Furthermore, the RDPGFX_SURFACE_TO_CACHE_PDU message MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and

RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the source surface identified in the
surfaceId field MUST exist on the client. Once the RDPGFX_SURFACE_TO_CACHE_PDU
message has been sent to the client, the Bitmap Cache Map (section 3.2.1.1) ADM element MUST
be updated with the key (cacheKey field) and slot index (cacheSlot field) that were transmitted to
the client.

3.2.5.7 Sending an RDPGFX_CACHE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_CACHE_TO_SURFACE_PDU message are specified in
section 2.2.2.7. The command fields MUST be populated in accordance with this description.
Furthermore, the RDPGFX_CACHE_TO_SURFACE_PDU message MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages. Additionally, the target surface

88 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

identified in the surfaceId field MUST exist on the client, and the bitmap cache slot identified by the
cacheSlot field MUST contain a valid bitmap entry on the client.

3.2.5.8 Sending an RDPGFX_EVICT_CACHE_ENTRY_PDU message

The structure and fields of the RDPGFX_EVICT_CACHE_ENTRY_PDU message are specified in
section 2.2.2.8. The command fields MUST be populated in accordance with this description.
Furthermore, the bitmap cache slot identified by the cacheSlot field MUST contain a valid bitmap
entry on the client. Once the RDPGFX_EVICT_CACHE_ENTRY_PDU message has been sent to
the client, the key and slot index associated with the bitmap MUST be removed from the Bitmap
Cache Map (section 3.2.1.1) ADM element.

3.2.5.9 Sending an RDPGFX_CREATE_SURFACE_PDU message

The structure and fields of the RDPGFX_CREATE_SURFACE_PDU message are specified in section
2.2.2.9. The command fields MUST be populated in accordance with this description. Furthermore,
the value specified in the surfaceId field MUST NOT collide with an ID assigned to an existing

surface on the client.

3.2.5.10 Sending an RDPGFX_DELETE_SURFACE_PDU message

The structure and fields of the RDPGFX_DELETE_SURFACE_PDU message are specified in section
2.2.2.10. The command fields MUST be populated in accordance with this description. Furthermore,
the surfaceId field MUST identify a surface that exists on the client.

3.2.5.11 Sending an RDPGFX_START_FRAME_PDU message

The structure and fields of the RDPGFX_START_FRAME_PDU message are specified in section

2.2.2.11. The command fields MUST be populated in accordance with this description. Logical
frames SHOULD NOT be nested within each other.

3.2.5.12 Sending an RDPGFX_END_FRAME_PDU message

The structure and fields of the RDPGFX_END_FRAME_PDU message are specified in section
2.2.2.12. The command fields MUST be populated in accordance with this description. The frameId
field SHOULD be identical to the frame ID that was transmitted in the most recently transmitted

RDPGFX_START_FRAME_PDU (section 2.2.2.11) message. Once the
RDPGFX_END_FRAME_PDU message has been sent to the client, the frame ID MUST be added to
the Unacknowledged Frames (section 3.2.1.2) ADM element.

3.2.5.13 Processing an RDPGFX_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_FRAME_ACKNOWLEDGE_PDU message are specified in
section 2.2.2.13. The header field MUST be processed as specified in section 3.2.5.1. Once the

RDPGFX_FRAME_ACKNOWLEDGE_PDU message has been successfully processed, the frame ID
specified in the frameId field MUST be removed from the Unacknowledged Frames (section
3.2.1.2) ADM element.

If the queueDepth field is less than 0xFFFFFFFF, the server MUST expect that
RDPGFX_FRAME_ACKNOWLEDGE_PDU messages will continue to be sent by the client.
Furthermore, if the queueDepth field is in the range 0x00000001 to 0xFFFFFFFE the server
SHOULD use this value to determine how far the client is lagging in terms of graphics decoding and

then attempt to throttle the graphics frame rate accordingly.

89 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the queueDepth field is set to SUSPEND_FRAME_ACKNOWLEDGEMENT (0xFFFFFFFF), the server
MUST clear the Unacknowledged Frames (section 3.2.1.2) ADM element and MUST NOT expect

any further RDPGFX_FRAME_ACKNOWLEDGE_PDU messages from the client. In this mode, the
server MUST NOT wait or block on unacknowledged frames (as the

RDPGFX_FRAME_ACKNOWLEDGE_PDU message is not sent by the client) and MUST assume
that the client is able to decode graphics data at a rate faster than it is receiving frames.

3.2.5.14 Sending an RDPGFX_RESET_GRAPHICS_PDU message

The structure and fields of the RDPGFX_RESET_GRAPHICS_PDU message are specified in section
2.2.2.14. The command fields MUST be populated in accordance with this description.

3.2.5.15 Sending an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message are
specified in section 2.2.2.15. The command fields MUST be populated in accordance with this
description. Furthermore, the surface identified in the surfaceId field MUST exist on the client.

3.2.5.16 Processing an RDPGFX_CACHE_IMPORT_OFFER_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_OFFER_PDU message are specified in

section 2.2.2.16. The header field MUST be processed as specified in section 3.1.5.1. If the
message is valid, then the cache keys specified in the cacheEntries field and the cache slot
assigned by the server to each entry SHOULD be added to the Bitmap Cache Map (section 3.2.1.1)
ADM element. Once the RDPGFX_CACHE_IMPORT_OFFER_PDU message has been processed,
the server MUST respond by sending the RDPGFX_CACHE_IMPORT_REPLY_PDU (section
2.2.2.17) message to the client (section 3.2.5.17).

3.2.5.17 Sending an RDPGFX_CACHE_IMPORT_REPLY_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_REPLY_PDU message are specified in
section 2.2.2.17. The command fields MUST be populated in accordance with this description. The

importedEntriesCount field MUST be initialized with the number of entries that were imported into
the Bitmap Cache Map (section 3.2.1.1) ADM element while processing the most recent
RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16) message, as specified in section

3.2.5.16. Furthermore, the cache slot assigned to each entry imported by the server MUST be
enumerated in the cacheSlots field.

3.2.5.18 Processing an RDPGFX_CAPS_ADVERTISE_PDU message

The structure and fields of the RDPGFX_CAPS_ADVERTISE_PDU message are specified in section
2.2.2.18. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_CAPS_ADVERTISE_PDU message has been successfully processed, the server MUST

respond by sending the RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) message to the client,
as specified in section 3.2.5.19.

3.2.5.19 Sending an RDPGFX_CAPS_CONFIRM_PDU message

The structure and fields of the RDPGFX_CAPS_CONFIRM_PDU message are specified in section
2.2.2.19. The command fields MUST be populated in accordance with this description. The server
MUST populate the capsSet field with a single instance of a correctly initialized

RDPGFX_CAPSET_VERSION8 (section 2.2.3.1) or RDPGFX_CAPSET_VERSION81 (section
2.2.3.2) structure.

90 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.5.20 Sending an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message are
specified in section 2.2.2.20. The command fields MUST be populated in accordance with this

description. Furthermore, the surface identified in the surfaceId field MUST exist on the client.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.2.8 Bitmap Compression

3.2.8.1 RemoteFX Progressive Codec Compression

The functional stages involved in the encoding path are illustrated in the following figure. Each of
these stages is described in the following subsections.

Figure 2: RemoteFX Progressive Codec encoding stages

When this encoding path is compared to [MS-RDPRFX] section 3.1.8.1, differencing has been
removed, sub-band diffing has been added, and progressive encoding has been incorporated into
the entropy encoder.

3.2.8.1.1 Color Conversion (RGB to YCbCr)

Color conversion is identical to the technique specified in [MS-RDPRFX] section 3.1.8.1.3.

3.2.8.1.2 DWT

The discrete wavelet transform (DWT) is performed as specified in [MS-RDPRFX] section 3.1.8.1.4
with one exception. To improve the quality around tile edges, a variation has been added to the
transform, which modifies the behavior on pixel boundaries and changes the size of the bands.

%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf

91 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.8.1.2.1 Original Method

DWT results are calculated using an input coefficient and the surrounding coefficients. Tile
boundaries are handled by mirroring the input coefficients. The coefficients to the right of the

leftmost input coefficient are mirrored on the left side. For example, if there are eight input
coefficients:

[0, 1, 2, 3, 4, 5, 6, 7]

After mirroring, the coefficients are logically extended as follows:

[..., 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, ...]

This technique is also used on the right edges and for vertical transforms.

The first pass for a given direction (horizontal or vertical) takes an input of 64 coefficients and

produces 32 low-frequency results and 32 high-frequency results.

3.2.8.1.2.2 Reduce-Extrapolate Method

The Original Method (section 3.2.8.1.2.1) for dealing with boundaries when encoding tiles introduces
tile artifacts. The result is that users can perceive where the tile boundaries are in a decoded image.
The Reduce-Extrapolate method removes this artifact.

The first pass for a given direction (horizontal or vertical) takes an input of 64 coefficients and
produces 33 low-frequency results and 31 high-frequency results.

A 65th input coefficient is introduced by extrapolating the last two input coefficients.

The first-pass DWT is performed on the 65 coefficients, mirroring around the first and the sixty-fifth
boundary elements. As a result, 33 low-frequency and 32 high-frequency results are obtained. The
final frequency result is zero and is dropped.

92 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The second-pass DWT takes the 33 low-frequency results from the first pass and performs a DWT
with normal mirroring, producing in turn 17 low-frequency elements and 16 high-frequency
elements.

Finally, the third-pass DWT takes the 17 low-frequency results and produces (using the same
techniques as the previous pass) 9 low-frequency elements and 8 high-frequency elements.

The resulting bands and the sizes are illustrated in the following figure.

93 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 3: Bands resulting from the Reduce-Extrapolate DWT Method

3.2.8.1.3 Quantization and Linearization

Quantization is performed as specified in [MS-RDPRFX] section 3.1.8.1.5, while linearization is
performed as specified in [MS-RDPRFX] section 3.1.8.1.6. Ordering of the bands is identical to the
ordering specified in [MS-RDPRFX] section 3.1.8.1.6.

3.2.8.1.4 Sub-Band Diffing

Sub-band diffing enables increased compression without any further quality loss by sending the
differences of the quantized values between frames.

To compress each tile in a surface, the encoder stores the quantized DWT coefficients that the
decoder most likely possesses. These coefficients differ slightly from the quantized coefficients of
the previous frame due to the progressive entropy encoder and are known as the reference bits. See
section 3.1.8.1.4 and the figure captioned "RemoteFX Progressive Codec encoding stages" in section

3.2.8.1.

The first phase of the Sub-Band Diffing Stage decides between sending the quantized DWT
coefficients that have been calculated (section 3.2.8.1.3) or sending the differences with respect to
the reference bits. This decision is made for each tile being encoded. If the quantized DWT
coefficients of the tile are to be sent, then the tile is called an "original tile"; otherwise, it is referred
to as a "difference tile".

%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf

94 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

A tile that is being encoded for the first time is always sent as an original tile.

The calculation to determine the difference is performed on all three color components. Each of the
1024 coefficients from the tile contained in the reference bits are subtracted from each of the 1024
coefficients from the most recently calculated tile. This data is used to construct the difference tile.

In the preceding formula, "QC" stands for "Quantized Coefficient", "DT" for "Difference Tile", "OT"
for "Original Tile", and "RB" for "Reference Bits".

Zeros are counted in both the difference tile and the original tile in the Luma (Y) component and in
all of the bands except for the LL3 band. The tile with the most number of zeros is selected to be

sent to the RLGR Entropy Encoder. In the case of a tie, the original tile is preferred. If an original tile
is selected over a difference tile, the reference bits MUST be cleared and filled with zeros.

3.2.8.1.5 Progressive Entropy Encoding

The progressive encoder either can send a complete tile or can transmit multiple versions of the
same tile over a period of time, with each subsequent version becoming more refined and improving
in quality. The input to the Progressive Entropy Encoding Stage is generated by the Sub-Band

Diffing engine (section 3.2.8.1.4) and is either an original tile or a difference tile.

If a tile is to be transmitted in its entirety, then the tile data is dispatched to the RLGR1 Entropy
Encoder ([MS-RDPRFX] section 3.1.8.1.7.2), and the output forms the payload to be sent to the
decoder.

If a tile is to be transmitted progressively, the Progressive Entropy Encoding Stage is exercised
numerous times with the same input tile to generate multiple payloads that are consumed by the

decoder to re-create the tile in its entirety. Sending a tile progressively is accomplished by executing
a First Progressive Pass (section 3.2.8.1.5.1) followed by subsequent Upgrade Progressive Passes

(section 3.2.8.1.5.2).

SB represents the data output from the Sub-Band Diffing Stage. This data is sent through multiple
progressive stages.

Where D1, D2, D3, ..., Dn is the data that is transmitted via n progressive passes.

When a progressive pass is performed, DAS ("Data Already Sent") represents the cumulated data

that has been transmitted through the previous passes, DTS ("Data To Send") represents the data
to be transmitted in the current pass, and DRS ("Data Remaining to be Sent") represents the data
that remains to be sent after the current pass.

When performing pass i:

%5bMS-RDPRFX%5d.pdf

95 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Each time a progressive pass is performed, DRS is reduced by the current DTS, and DAS is
increased by the current DTS for the next pass.

3.2.8.1.5.1 Performing the First Progressive Pass

The first progressive pass for a tile occurs when the encoder receives new pixels to encode and send
to the decoder.

The encoder first performs the DWT (section 3.2.8.1.2), Quantization and Linearization (section

3.2.8.1.3) stages to obtain DwtQ. At this point, the Sub-Band Diffing (section 3.2.8.1.4) stage
determines whether to send DwtQ or the difference (Diff). Diff is computed based on the
"reference bits" (Ref) specified in section 3.1.8.1.4.

Diff = DwtQ - Ref

SB = DwtQ or Diff

The progressive encoder performs extra quantization as specified in section 3.1.8.1.3:

ProgQ = SB / PQF

Each LL3 element is quantized toward negative infinity, and the result is subtracted from the next
quantized LL3 element. Note that even if the data is a difference tile, each quantized LL3 element,
which is the result of a difference, is subtracted from the next element. All of the bands are then
sent to the RLGR encoder:

ProgQ-NonLL, ProgQ-LL-Deltas -> RLGR Entropy Encoder

Note that all ten bands are entropy-encoded as one block without reset. The RLGR engine is started

with the state K = 1 and KR = 1.

If the chunk is 100%, then PQF = 1, and the bits being encoded are DwtQ-NonLL, DwtQ-LL-
Deltas for an original tile, or Diff-NonLL, Diff-LL for a difference tile.

Multiplying ProgQ by PQF yields DTS, the de-quantized progressive data. On the first pass, DAS is
zero, and DRS = SB - DTS.

96 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The data generated by the first pass is written to an RFX_PROGRESSIVE_TILE_FIRST (section
2.2.4.2.1.5.4) structure.

3.2.8.1.5.2 Performing Upgrade Progressive Passes

To upgrade a tile, the encoder uses the previously calculated DRS, quantizes the data, and then (a)
sends it to the Simplified Run-Length (SRL) Encoder (section 3.1.8.1.5) or (b) transmits the raw bits
of each element using the scheme in section 3.2.8.1.5.2.1.

The SRL Encoder is an entropy encoder that is more suited to the upgrade pass than RLGR and is
based on the fact that the maximum magnitude of any element to be sent is known.

The progressive chunk that the decoder is being driven toward is referred to as the "target chunk"
("TargetC" for brevity), while the most recent progressive chunk that the decoder has processed is

referred to as the "previous chunk" ("PrevC" for brevity).

UpgradeQ(PrevC, TargetC) = DRS / PQF(TargetC)

DTS = UpgradeQ(PrevC, TargetC) * PQF(TargetC)

For a given element in DTS, the decision to send raw bits or SRL-encoded data depends on what the
client has already decoded. If the corresponding element in DAS is zero, then UpgradeQ(PrevC,
TargetC) is SRL encoded. Otherwise, if the corresponding element in DAS is nonzero, the absolute

value of the corresponding UpgradeQ(PrevC, TargetC) element is sent raw. For an LL3 element in
an original tile, the UpgradeQ element, which is always positive, is always sent raw.

If the corresponding element in DAS is strictly positive (nonzero), the UpgradeQ element lies
between zero and PQF(PrevC) / PQF(TargetC) - 1. Simplifying further:

PQF(PrevC) / PQF(TargetC) - 1

= (1 << BitPos(PrevC)) / (1 << BitPos(TargetC)) - 1

= (1 << (BitPos(PrevC) - BitPos(TargetC))) - 1

For a given tile, the data that has been generated by the SRL encoder is packaged in the ySrlData
(Luma), cbSrlData (Chroma Blue) and crSrlData (Chroma Red) fields of the
RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5) structure. All of the data that was
written as raw bits is packaged in the yRawData (Luma), cbRawData (Chroma Blue), and
crRawData (Chroma Red) fields of the RFX_PROGRESSIVE_TILE_UPGRADE structure.

3.2.8.1.5.2.1 Sending Raw Bits

Raw bits are sent as a simple bit stream. The following sequence of bits "abc", "defg", "hijkl", when
written, would produce the bytes "abcdefgh" and "ijkl0000".

3.2.8.1.5.3 Maintaining the Decoder Reference

After each progressive pass, the data that has been sent is added to the reference bits:

Ref = Ref + DTS

The reference bits are specified in section 3.1.8.1.4.

97 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.8.2 RemoteFX Progressive v.2 Codec Compression

The functional stages involved in the encoding path are illustrated in the following figure. Each of
these stages is described in the following subsections.

Figure 4: RemoteFX Progressive Codec v.2 encoding stages

When compared to the figure in section 3.2.8.1, the sub-band diffing stage has been removed.

3.2.8.2.1 Color Conversion (RGB to YCbCr)

Color conversion is identical to the technique specified in [MS-RDPRFX] section 3.1.8.1.3 except that
the input is not a fixed-size tile, but rather an arbitrarily-sized rectangular portion of the frame.

3.2.8.2.2 DWT

The discrete wavelet transform (DWT) is performed as specified in section 3.2.8.1.2 except that it

operates on an input of arbitrary size. The number of DWT levels is also variable, based on the size
of the input, with a maximum of four levels.

The Reduce-Extrapolate method (described in section 3.2.8.2.2.2) is still used, but due to the
variability of the input size it can be applied on any level of DWT transform, independently on the X-
axis or Y-axis.

3.2.8.2.2.1 Original Method Applied to Odd Sizes

DWT results are calculated using an input coefficient and the surrounding coefficients. Rectangle
boundaries of odd sizes are handled by mirroring the input coefficients. The coefficients to the right
of the leftmost input coefficient are mirrored on the left side. For example, if there are nine input
coefficients:

[0, 1, 2, 3, 4, 5, 6, 7, 8]

After mirroring, the coefficients are logically extended as follows:

[..., 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0,...]

This technique is also used on the right edges and for vertical transforms.

A DWT pass for a given direction (horizontal or vertical) that takes an input of 2n + 1 coefficients
will produce n+1 low-frequency results and n high-frequency results.

%5bMS-RDPRFX%5d.pdf

98 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.8.2.2.2 Reduce-Extrapolate Method on even sizes

The Original Method for dealing with boundaries when encoding rectangles of even sizes introduces
artifacts at the boundaries of the rectangles. The result is that users can perceive how the image

was split up into rectangles in a decoded image. The Reduce-Extrapolate method removes this
artifact.

A DWT pass for a given direction (horizontal or vertical) that takes an input of 2n coefficients will
produce n+1 low-frequency results and n-1 high-frequency results.

A (2n+1)th input coefficient is introduced by extrapolating the last two input coefficients. For
example, when the input size is 64:

The first-pass DWT is performed on the 2n+1 coefficients, mirroring around the first and the last
boundary elements. As a result, n+1 low-frequency and n high-frequency results are obtained. The
final frequency result is zero and is dropped.

3.2.8.2.2.3 DWT passes

The encoder performs up to four passes for both the horizontal and vertical directions. The pass for
each direction performs the Original Method (section 3.2.8.2.2.1) or the Reduce-Extrapolate method
(section 3.2.8.2.2.2) based on whether the size of the input, in the particular direction, is odd or
even.

If the input size is odd in a particular direction, for three or fewer elements, then the Original
Method is used. If the input size is even in a particular direction, for four or fewer elements, then
the Reduce-Extrapolate Method is used. If the input size is 1 or 2 in a particular direction, then no
transformation is performed.

99 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

For the purpose of quantization and progressive entropy encoding, the input is considered to be the
low-frequency output of the pass, and the high frequency output is empty.

Each direction is treated independently. A given pass can perform the Original Method horizontally
and the Reduce-Extrapolate method vertically. Furthermore, the DWT is performed in only one

direction if the size in the other direction is 2 or less. For example, an input image part that is only
two pixels high will be DWT transformed four times in the horizontal direction (if size permits), but
not transformed in the vertical direction. In this case, the bands LH1, HH1, LH2, HH2, LH3, HH3,
LH4, and HH4 are considered empty.

The final LL band is always referred to in this documentation as LL4, even if the DWT transformation
did not exceed three levels. If only three levels are performed, the upper bands are LL4, HL3, LH3,
and HH3, where HL4, LH4, and HH4 are considered empty.

3.2.8.2.3 Quantization and Linearization

Quantization is performed as specified in [MS-RDPRFX] section 3.1.8.1.5, while linearization is
performed as specified in [MS-RDPRFX] section 3.1.8.1.6. Ordering of the bands is identical to the

ordering specified in [MS-RDPRFX] section 3.1.8.1.6.

3.2.8.2.4 Progressive Entropy Encoding

The progressive encoder either can send a complete DWT context or transmit multiple versions of
the same DWT context over a period of time, with each subsequent version becoming more refined
and improving in quality. The input to the Progressive Entropy Encoding Stage is the quantized DWT
coefficients, as there is no sub-band diffing stage.

If a DWT context is to be transmitted in its entirety, then the DWT context data is dispatched to the
RLGR1 Entropy Encoder ([MS-RDPRFX] section 3.1.8.1.7.2), and the output forms the payload to be

sent to the decoder.

If a DWT context is to be transmitted progressively, then the Progressive Entropy Encoding Stage is
exercised numerous times with the same input DWT context to generate multiple payloads that are

consumed by the decoder to re-create the DWT context in its entirety. Sending a DWT context
progressively is accomplished by executing a First Progressive Pass (section 3.3.8.2.1.1) followed by
subsequent Upgrade Progressive Passes (section 3.3.8.2.1.2).

DwtQ represents the DWT context data composed of quantized DWT coefficients. This data is sent

through multiple progressive stages.

Where D1, D2, D3, ..., Dn is the data that is transmitted via n progressive passes.

When a progressive pass is performed, DAS ("Data Already Sent") represents the cumulated data
that has been transmitted through the previous passes, DTS ("Data To Send") represents the data
to be transmitted in the current pass, and DRS ("Data Remaining to be Sent") represents the data
that remains to be sent after the current pass.

When performing pass i:

%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf

100 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Each time a progressive pass is performed, DRS is reduced by the current DTS, and DAS is
increased by the current DTS for the next pass.

3.2.8.2.4.1 Performing the First Progressive Pass

The first progressive pass for an image part occurs when the encoder receives new pixels to encode
and send to the decoder.

The encoder first performs the DWT (section 3.2.8.1.2) and Quantization and Linearization (section

3.2.8.1.3) stages to obtain DwtQ.

The progressive encoder then performs extra quantization as specified in section 3.1.8.1.3:

ProgQ = DwtQ / PQF

Each LL4 element is quantized toward negative infinity, and the result is subtracted from the next
quantized LL4 element. All of the bands are then sent to the RLGR encoder:

ProgQ-NonLL, ProgQ-LL-Deltas -> RLGR Entropy Encoder

Note that all thirteen bands are entropy-encoded as one block without reset. The RLGR engine is
started with the state K = 1 and KR = 1.

If the chunk is 100%, then PQF = 1, and the bits being encoded are DwtQ-NonLL, DwtQ-LL-
Deltas.

Multiplying ProgQ by PQF yields DTS, the de-quantized progressive data. On the first pass, DAS is
zero, and DRS = SB - DTS.

The data generated by the first pass is written to an

RFX_PROGRESSIVE_V2_CONTEXT_DATA_NEW (section 2.2.4.3.1.4) structure.

3.2.8.2.4.2 Performing Upgrade Progressive Passes

To upgrade a DWT context, the encoder uses the previously calculated DRS, quantizes the data, and
then (a) sends it to the Simplified Run-Length (SRL) Encoder (section 3.1.8.2.3) or (b) transmits the
raw bits of each element using the scheme in section 3.2.8.1.5.2.1.

101 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The SRL Encoder is an entropy encoder that is more suited to the upgrade pass than RLGR and is
based on the fact that the maximum magnitude of any element to be sent is known.

The progressive chunk that the decoder is being driven toward is referred to as the "target chunk"
("TargetC" for brevity), while the most recent progressive chunk that the decoder has processed is

referred to as the "previous chunk" ("PrevC" for brevity).

UpgradeQ(PrevC, TargetC) = DRS / PQF(TargetC)

DTS = UpgradeQ(PrevC, TargetC) * PQF(TargetC)

For a given element in DTS, the decision to send raw bits or SRL-encoded data depends on what the
client has already decoded. If the corresponding element in DAS is zero, then UpgradeQ(PrevC,
TargetC) is SRL encoded. Otherwise, if the corresponding element in DAS is nonzero, the absolute
value of the corresponding UpgradeQ(PrevC, TargetC) element is sent raw. For an LL4 element, the

UpgradeQ element, which is always positive, is always sent raw.

If the corresponding element in DAS is strictly positive (nonzero), the UpgradeQ element lies

between zero and PQF(PrevC) / PQF(TargetC) - 1. Simplifying further:

PQF(PrevC) / PQF(TargetC) - 1

= (1 << BitPos(PrevC)) / (1 << BitPos(TargetC)) - 1

= (1 << (BitPos(PrevC) - BitPos(TargetC))) - 1

For a given DWT context, the data that has been generated by the SRL encoder is packaged in the
ySrlData (Luma), cbSrlData (Chroma Blue), and crSrlData (Chroma Red) fields of the
RFX_PROGRESSIVE_V2_CONTEXT_DATA_UPGRADE (section 2.2.4.3.1.5) structure. All of the
data that was written as raw bits is packaged in the yRawData (Luma), cbRawData (Chroma
Blue), and crRawData (Chroma Red) fields of the
RFX_PROGRESSIVE_V2_CONTEXT_DATA_UPGRADE structure.

3.2.8.2.4.2.1 Sending Raw Bits

Raw bits are sent as a simple bit stream. The following sequence of bits "abc", "defg", "hijkl", when
written, would produce the bytes "abcdefgh" and "ijkl0000".

3.3 Client Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as

long as the implementation produces external behavior that is consistent with that described in this

document.

3.3.1.1 Codec Contexts

The Codec Contexts ADM element contains a list of codec contexts. Each codec context is
associated with an offscreen surface and a bitmap that is being progressively rendered to the

102 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

surface. The context is used to store state information that is used to iteratively construct the
bitmap. Once the bitmap has been fully rendered, the associated context is no longer required.

Furthermore, if the server determines that a specific context will no longer be used, then the
RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3) message is sent to the client.

3.3.1.2 Progressive Tile Contexts

The Progressive Tile Contexts ADM element contains a list of progressive tile contexts. Each
progressive tile context is associated with a tile in an off-screen surface and one or more codec
contexts stored in the Codec Contexts (section 3.3.1.1) ADM element. The progressive tile context
contains the sign state of each coefficient (described as Sign in section 3.3.8.2.1.1) and the bit
position for each band (described as BitPos in section 3.3.8.2.1.2).

A progressive tile context can be discarded once all of the codec contexts with which it is associated
have been deleted.

3.3.1.3 Sub-Band Diffing Tile Contexts

The Sub-Band Diffing Tile Contexts ADM element contains a list of sub-band diffing tile contexts.
Each sub-band diffing tile context is associated with a tile in an off-screen surface. This context

contains the DWT coefficient data for the tile (described as DecDwtQ in section 3.3.8.2.1.1).

Each sub-band diffing tile context MUST be preserved for the duration of the RDP connection or until
the off-screen surface with which it is associated has been deleted.

3.3.1.4 Bitmap Cache

The Bitmap Cache ADM element is used to store bitmaps of arbitrary dimensions. Each bitmap is
associated with a key and is stored in a variable-length slot (identified by a slot index). The size of

the bitmap cache is capped at 100 MB or 16 MB, depending on whether the
RDPGFX_CAPS_FLAG_THINCLIENT (0x00000001) flag or RDPGFX_CAPS_FLAG_SMALL_CACHE
(0x00000002) flag is specified in the flags field of an RDPGFX_CAPSET_VERSION8 (section
2.2.3.1) or an RDPGFX_CAPSET_VERSION81 (section 2.2.3.2) structure, which is encapsulated

in the server-to-client RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) message. The maximum
possible number of variable-length slots is 25,600 in the case of a 100 MB cache and 4,096 in the
case of a 16 MB cache. The size of the bitmap data stored across all of the in-use variable-length

slots at any point in time MUST NOT exceed the total size of the cache.

3.3.1.5 Persistent Bitmap Cache

The Persistent Bitmap Cache ADM element is optional offline storage that is used to selectively
persist bitmaps and any associated metadata that has been cached in the Bitmap Cache (section
3.3.1.4) ADM element.

3.3.1.6 Offscreen Surface

The Offscreen Surface ADM element contains a collection of bitmaps, each bitmap representing an
offscreen surface.

3.3.1.7 Graphics Output Buffer

The Graphics Output Buffer ADM element is the end-user visible output bitmap.

103 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.3.1.8 Surface to Output Mapping

The Surface to Output Mapping ADM element contains a list of where offscreen surfaces in the
Offscreen Surface (section 3.3.1.6) ADM element are mapped to the Graphics Output Buffer

(section 3.3.1.7) ADM element.

3.3.1.9 Decompressor Glyph Storage

The Decompressor Glyph Storage ADM element is used to cache bitmaps decompressed using
ClearCodec decompression techniques (section 3.3.8.1). It contains 4,000 storage slots, each of
which can hold a bitmap image no larger than 1,024 square pixels.

3.3.1.10 V-Bar Storage

The V-Bar Storage ADM element is used to cache decompressed pixel columns from
CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structures. These pixel columns (which are the same
height as the containing band) are referred to as "V-Bars". Encoded V-Bars are encapsulated in the

CLEARCODEC_BANDS_DATA (section 2.2.4.1.1.2) structure. The maximum number of V-Bars
that can be stored in the cache is 32,768.

3.3.1.11 V-Bar Storage Cursor

The V-Bar Storage Cursor ADM element is used to specify the position in the V-Bar Storage
(section 3.3.1.10) where the next V-Bar MUST be inserted. This element MUST be initialized to zero.

3.3.1.12 Short-V-Bar Storage

The Short-V-Bar Storage ADM element is used to cache decompressed pixel columns from
CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structures. These pixel columns (which are the same

or shorter than the height of the containing band) are referred to as "Short-V-Bars". Encoded Short-
V-Bars are encapsulated in the CLEARCODEC_BANDS_DATA (section 2.2.4.1.1.2) structure. The
maximum number of Short-V-Bars that can be stored in the cache is 16,384.

3.3.1.13 Short V-Bar Storage Cursor

The Short V-Bar Storage Cursor ADM element is used to specify the position in the Short V-Bar

Storage (section 3.3.1.12) ADM element where the next Short V-Bar MUST be inserted. This
element MUST be initialized to zero.

3.3.1.14 Confirmed Graphics Capabilities

The Confirmed Graphics Capabilities ADM element is used to store the set of graphics
capabilities specified by the server in the RDPGFX_CAPS_CONFIRM_PDU (section 3.3.5.19)
message.

3.3.1.15 Surface to Window Mapping

The Surface to Window Mapping ADM element contains a list of surfaces and the RAIL window

([MS-RDPERP] section 1.1) and rectangular region to which each of these surfaces is mapped.

3.3.2 Timers

None.

%5bMS-RDPERP%5d.pdf

104 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

None.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_1 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_1 message are specified in

section 2.2.2.1. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM
element, and the size of the bitmap data specified in the bitmapDataLength field MUST be
consistent with the amount of data read from the "Microsoft::Windows::RDS::Graphics" dynamic

virtual channel (section 2.1). Once the data in the bitmapData field has been decoded as specified
by the encoding type enumerated in the codecId field, the bitmap MUST be copied to the target
surface.

If the encoding type enumerated in the codecId field is not RDPGFX_CODECID_ALPHA (0x000C):

If the target surface is listed in the Surface to Window Mapping (section 3.3.1.15) ADM

element, then the alpha channel of the bitmap (if present) MUST be ignored when copying to the
target surface, while the red, green, and blue channels MUST all be copied to the target surface
without modification.

If the target surface is not listed in the Surface to Window Mapping ADM element, then only

the red, green, and blue channels SHOULD be copied to the target surface.

If the encoding type enumerated in the codecId field is RDPGFX_CODECID_ALPHA:

Only the alpha channel of the target surface MUST be updated with the contents of the source

bitmap (the red, green, and blue channels of the target surface MUST NOT be changed).

3.3.5.2 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_2 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_2 message are specified in
section 2.2.2.2. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM
element, and the size of the bitmap data specified in the bitmapDataLength field MUST be
consistent with the amount of data read from the "Microsoft::Windows::RDS::Graphics" dynamic
virtual channel (section 2.1). If there is no codec context identified by the codecContextId field in

the Codec Contexts (section 3.3.1.1) ADM element, the client MUST create a new context, place it
into the Codec Contexts ADM element, and begin the process of progressively rendering a bitmap
from the data in the bitmapData field, as specified by the encoding type enumerated value in the
codecId field, using the context to store intermediate state. The bitmap SHOULD be copied to the

target surface using a SRCCOPY ROP3 operation ([MS-RDPEGDI] section 2.2.2.2.1.1.1.7) once
enough data has been decoded to render a discernible image and SHOULD then continue to be
updated as subsequent RDPGFX_WIRE_TO_SURFACE_PDU_2 messages are processed.

%5bMS-RDPEGDI%5d.pdf

105 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.3.5.3 Processing an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message

The structure and fields of the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message are
specified in section 2.2.2.3. The header field MUST be processed as specified in section 3.1.5.1.

Once the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message has been successfully
decoded, the codec context identified by the codecContextId field (which is associated with the
surface identified by the surfaceId field) MUST be removed from the Codec Contexts (section
3.3.1.1) ADM element.

3.3.5.4 Processing an RDPGFX_SOLIDFILL_PDU message

The structure and fields of the RDPGFX_SOLIDFILL_PDU message are specified in section

2.2.2.4. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId field
MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element.
Once the RDPGFX_SOLIDFILL_PDU message has been successfully decoded, the rectangles
specified in the fillRects field MUST be filled with the 32-bpp color specified by the fillPixel field
using an R2_COPYPEN ROP2 operation ([MS-RDPEGDI] section 2.2.2.2.1.1.1.6).

3.3.5.5 Processing an RDPGFX_SURFACE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_SURFACE_PDU message are specified in
section 2.2.2.5. The header field MUST be processed as specified in section 3.1.5.1. The
surfaceIdSrc and surfaceIdDest fields MUST both identify valid offscreen surfaces in the
Offscreen Surface (section 3.3.1.6) ADM element. Once the
RDPGFX_SURFACE_TO_SURFACE_PDU message has been successfully decoded, the pixels in the
source rectangle on the source surface (specified in the rectSrc field) MUST be copied to the target

surface at each of the points specified in the destPts field using a SRCCOPY ROP3 operation ([MS-
RDPEGDI] section 2.2.2.2.1.1.1.7).

3.3.5.6 Processing an RDPGFX_SURFACE_TO_CACHE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_CACHE_PDU message are specified in

section 2.2.2.6. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM

element. Once the RDPGFX_SURFACE_TO_CACHE_PDU message has been successfully decoded,
the pixels in the source rectangle on the source surface (specified in the rectSrc field) MUST be
copied to the slot in the Bitmap Cache (section 3.3.1.4) ADM element identified by the cacheSlot
field using a SRCCOPY ROP3 operation ([MS-RDPEGDI] section 2.2.2.2.1.1.1.7) and tagged with the
key specified in the cacheKey field.

3.3.5.7 Processing an RDPGFX_CACHE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_CACHE_TO_SURFACE_PDU message are specified in
section 2.2.2.7. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM
element, and the cacheSlot field MUST contain a valid entry in the Bitmap Cache (section 3.3.1.4)
ADM element. Once the RDPGFX_CACHE_TO_SURFACE_PDU message has been successfully
decoded, the bitmap retrieved from the cache MUST be copied to the target surface at each of the

points specified in the destPts field using a SRCCOPY ROP3 operation ([MS-RDPEGDI] section

2.2.2.2.1.1.1.7).

3.3.5.8 Processing an RDPGFX_EVICT_CACHE_ENTRY_PDU message

The structure and fields of the RDPGFX_EVICT_CACHE_ENTRY_PDU message are specified in
section 2.2.2.8. The header field MUST be processed as specified in section 3.1.5.1. Once the

%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf

106 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

RDPGFX_EVICT_CACHE_ENTRY_PDU message has been successfully decoded, the entry in the
Bitmap Cache (section 3.3.1.4) ADM element present in the slot identified by the cacheSlot field

MUST be removed from the cache.

3.3.5.9 Processing an RDPGFX_CREATE_SURFACE_PDU message

The structure and fields of the RDPGFX_CREATE_SURFACE_PDU message are specified in section
2.2.2.9. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_CREATE_SURFACE_PDU message has been successfully decoded, a bitmap MUST be
created with the appropriate width, height, and pixel format and MUST be placed into the Offscreen
Surface (section 3.3.1.6) ADM element. The entry MUST be tagged with the ID specified in the
surfaceId field.

3.3.5.10 Processing an RDPGFX_DELETE_SURFACE_PDU message

The structure and fields of the RDPGFX_DELETE_SURFACE_PDU message are specified in section
2.2.2.10. The header field MUST be processed as specified in section 3.1.5.1. Once the

RDPGFX_DELETE_SURFACE_PDU message has been successfully decoded, the surface identified
by the surfaceId field MUST be deleted from the Offscreen Surface (section 3.3.1.6) ADM

element.

3.3.5.11 Processing an RDPGFX_START_FRAME_PDU message

The structure and fields of the RDPGFX_START_FRAME_PDU message are specified in section
2.2.2.11. The header field MUST be processed as specified in section 3.1.5.1.

3.3.5.12 Processing an RDPGFX_END_FRAME_PDU message

The structure and fields of the RDPGFX_END_FRAME_PDU message are specified in section
2.2.2.12. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_END_FRAME_PDU message has been successfully decoded, the client MUST copy the
contents of every updated off-screen surface that is present in the Surface to Output Mapping

(section 3.3.1.8) ADM element to the Graphics Output Buffer (section 3.3.1.7) ADM element.
Once the copy is complete, the client MUST send the RDPGFX_FRAME_ACKNOWLEDGE_PDU
(section 2.2.2.13) message to the server, as specified in section 3.3.5.13.

3.3.5.13 Sending an RDPGFX_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_FRAME_ACKNOWLEDGE_PDU message are specified in
section 2.2.2.13. The command fields MUST be populated in accordance with this description. The
client MUST populate the frameId field with the ID of the most recently processed logical frame, as
specified in section 3.2.5.12.

3.3.5.14 Processing an RDPGFX_RESET_GRAPHICS_PDU message

The structure and fields of the RDPGFX_RESET_GRAPHICS_PDU message are specified in section
2.2.2.14. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_RESET_GRAPHICS_PDU message has been successfully decoded, the client MUST

resize the Graphics Output Buffer (section 3.3.1.7) ADM element.

3.3.5.15 Processing an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message are
specified in section 2.2.2.15. The header field MUST be processed as specified in section 3.1.5.1.

107 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Once the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message has been successfully decoded,
the surface-to-output mapping in the Surface to Output Mapping (section 3.3.1.8) ADM element

MUST be updated by mapping the surface identified by the surfaceId field to the point on the
Graphics Output Buffer (section 3.3.1.7) ADM element specified by the outputOriginX and

outputOriginY fields.

3.3.5.16 Sending an RDPGFX_CACHE_IMPORT_OFFER_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_OFFER_PDU message are specified in
section 2.2.2.16. The command fields MUST be populated in accordance with this description. The
client MUST populate the cacheEntries field by enumerating the bitmaps stored in the Persistent
Bitmap Cache (section 3.3.1.5) ADM element.

3.3.5.17 Processing an RDPGFX_CACHE_IMPORT_REPLY_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_REPLY_PDU message are specified in
section 2.2.2.17. The header field MUST be processed as specified in section 3.1.5.1. Once the

RDPGFX_CACHE_IMPORT_REPLY_PDU message has been successfully decoded, the client MUST
copy the number of entries specified in the entriesToImport field from the Persistent Bitmap

Cache (section 3.3.1.5) ADM element to the assigned slots in the Bitmap Cache (section 3.3.1.4)
ADM element.

3.3.5.18 Sending an RDPGFX_CAPS_ADVERTISE_PDU message

The structure and fields of the RDPGFX_CAPS_ADVERTISE_PDU message are specified in section
2.2.2.18. The command fields MUST be populated in accordance with this description. The client
MUST correctly populate the capsSet field with one or more of the capability sets specified in

section 2.2.3. Each capability set type MUST NOT appear more than once.

3.3.5.19 Processing an RDPGFX_CAPS_CONFIRM_PDU message

The structure and fields of the RDPGFX_CAPS_CONFIRM_PDU message are specified in section

2.2.2.19. The header field MUST be processed as specified in section 3.1.5.1. The graphics
capabilities specified by the server SHOULD be stored in the Confirmed Graphics Capabilities
(section 3.3.1.14) ADM element and MUST be adhered to by the client.

3.3.5.20 Processing an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message are
specified in section 2.2.2.20. The header field MUST be processed as specified in section 3.1.5.1.
Once the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message has been successfully decoded,
the surface-to-window mapping in the Surface to Window Mapping (section 3.3.1.15) ADM
element MUST be updated by associating the rectangular region (specified by the mappedWidth

and mappedHeight fields) on the surface identified by the surfaceId field to the RAIL window
([MS-RDPERP] section 1.1) specified by the windowId field.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

%5bMS-RDPERP%5d.pdf

108 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.3.8 Bitmap Compression

3.3.8.1 ClearCodec Compression

The ClearCodec Codec is used to encode bitmaps sent in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1) message. The encoded bitmap data
MUST be transported in the bitmapData field of the RDPGFX_WIRE_TO_SURFACE_PDU_1
message, and the codecId field MUST be set to RDPGFX_CODECID_CLEARCODEC (0x0008).

The ClearCodec bitmap stream is described in section 2.2.4.1 and is composed of a maximum of
three layers. Each layer is optional and is encoded using different techniques.

The residual layer (section 2.2.4.1.1.1)

The bands layer (section 2.2.4.1.1.2)

The subcodec layer (section 2.2.4.1.1.3)

3.3.8.1.1 ClearCodec Run-Length Encoding

ClearCodec run-length encoding uses a standard RLE compression scheme that parses a pixel

stream and encodes run lengths.

For example, an initial stream containing the following 12 ANSI characters:

AAAABBCCCCCD

would be transformed after encoding into the following stream:

A4B2C5D1

Note that in the real case, each ANSI character is a pixel represented by 3 bytes (R, G, B
components). This type of encoding is suitable for the content in the residual layer (section

2.2.4.1.1.1).

3.3.8.1.2 Decompressing a Bitmap

The following flowchart shows how to decompress a bitmap that is compressed using ClearCodec
compression techniques.

109 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 5: Decompressing a bitmap using ClearCodec Bitmap Compression

3.3.8.2 RemoteFX Progressive Codec Compression

The functional stages involved in the decoding path are illustrated in the following figure. Compared
to the encoding stages, the decoding stage operations are the operations of the encoding stage in
reverse order.

110 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 6: RemoteFX Progressive Codec decoding stages

When compared to [MS-RDPRFX] section 3.1.8.2, the codec now maintains state. "Current frame"
contains the DWT coefficients of the tiles, and "Persistent progressive state" is used to maintain

information pertinent to tiles that have been received in progressive chunks.

3.3.8.2.1 Progressive Entropy Decode

The first stage of decoding aims to reconstruct the DWT data of a tile.

The decoder MUST maintain a copy of the unquantized DWT data ("Current frame" in the figure
captioned "RemoteFX Progressive Codec decoding stages" in section 3.3.8.2) as well as a tri-state
value for each element in a tile that has not yet been fully upgraded ("Persistent progressive state"

in the same figure). The tri-state value records whether the data that has been received for an
element sums up to a positive value, a negative value, or zero.

A coefficient either is encoded with the SRL encoder, or its absolute value is written as raw bits
(section 3.2.8.1.5). The decoder MUST determine which of these two methods was used and what
sign to apply to the decoded element. The sign can be determined by using the tri-state value
associated with each element.

If the input data is for the first progressive chunk of a tile (or it contains all of the data for a tile),
then the Persistent progressive state MUST be cleared. Furthermore, if the tile is an original tile (not
a difference tile), then the tile MUST be zeroed out in the current frame. The result of the entropy
decode operation MUST be added to the current frame.

3.3.8.2.1.1 Performing the First Progressive Pass

For the first pass, the data received is sent to the RLGR entropy decoder to produce the

progressively quantized coefficients DecProgQ.

%5bMS-RDPRFX%5d.pdf

111 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

For each element being decoded, except elements in the LL band, the sign is recorded (positive,
negative, or zero). This tri-state (referred to as Sign) is used for successive upgrade passes.

Sign = -1 if DecProgQ-NonLL < 0

Sign = 0 if DecProgQ-NonLL = 0

Sign = 1 if DecProgQ-NonLL > 0

The LL3 deltas MUST be summed up to produce the LL3 elements, even if the tile is not an original
tile (section 3.1.8.1.2).

DecProgQ-LL[0] = DecProgQ-LL-Deltas[0]

DecProgQ-LL[idx+1] = DecProgQ-LL[idx] + DecProgQ-LL-Deltas[idx+1]

Elements in all the bands are dequantized.

DecDwtQ-NonLL, DecDwtQ-LL = DecProgQ * PQF

DecDwtQ is the data that MUST be de-quantized and inverse DWT transformed to produce the
image pixels.

If the tile is a difference tile (section 3.1.8.1.2), then the progressively quantized coefficients are
simply added to the DecDwtQ elements:

DecDwtQ = DecDwtQ + DecProgQ * PQF

3.3.8.2.1.2 Performing the Upgrade Progressive Passes

Except in the case of an LL3 element, the Sign state is used to determine how to decode the next
element (referred to as input).

If Sign > 0, input is read from the raw buffer (the tile header and previous history are used to
determine how many bits MUST be read), progressively de-quantized, and added to the current

frame:

DecDwtQ-NonLL = DecDwtQ-NonLL + (input * PQF)

If Sign < 0, input is read from the raw buffer, progressively de-quantized, and subtracted from the
current frame:

DecDwtQ-NonLL = DecDwtQ-NonLL - (input * PQF)

If Sign = 0, input (a signed value) is read from the SRL encoded buffer (by decoding one element),
progressively de-quantized, and added to the current frame:

DecDwtQ-NonLL = DecDwtQ-NonLL + (input * PQF)

The Sign state for a non-LL element MUST be updated according to the value of input:

Sign = -1 if input < 0

Sign = 0 if input = 0

Sign = 1 if input > 0

112 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

When an LL3 element is decoded, input is always read from the raw buffer and added to
DecDwtQ:

DecDwtQ-LL = DecDwtQ-LL + (input * PQF)

To determine the number of bits to read from the raw buffer, the decoder MUST have recorded the

value of BitPos from the previous pass and MUST read the difference from the current BitPos as a
number of bits.

Note that a band in a given pass might not have any bits to read. In this case, the decoder MUST
skip the band, and the DecDwtQ elements are left unchanged.

3.3.8.2.2 Inverse DWT

The inverse discrete wavelet transform (IDWT) is based on the equations specified in [MS-

RDPRFX] section 3.1.8.2.4. However, as described in section 3.2.8.1.2, the associated forward
transform uses the Reduce-Extrapolate Method (section 3.2.8.1.2.2) to remove boundary artifacts.
The structure of the resultant tile (with its ten bands) is illustrated in the figure captioned "Bands

resulting from the Reduce-Extrapolate DWT Method" in section 3.2.8.1.2.2.

Each tile component undergoes three levels of inverse 2D discrete wavelet transformation.

The two first passes each take as input N low-frequency elements (where N is odd) and (N - 1) high-

frequency elements. Using normal mirroring, an odd number of elements are calculated, and they
become the input for the next pass.

The final pass takes as input 33 low-frequency elements and 31 high-frequency elements. Adding a
zero as the 32nd high-frequency element allows the final pass to be performed in the same manner
as the first two passes and produces 65 coefficients. The 65th element is an extrapolation of the
previous two elements and is not used; therefore, it is dropped.

3.3.8.2.3 Color Conversion

Color conversion is identical to the technique specified in [MS-RDPRFX] section 3.1.8.2.5.

3.3.8.3 RemoteFX Progressive v.2 Codec Compression

The functional stages involved in the decoding path are illustrated in the following figure. Compared
to the encoding stages, the decoding stage operations are the operations of the encoding stage in
reverse order.

%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf
%5bMS-RDPRFX%5d.pdf

113 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 7: RemoteFX Progressive Codec v.2 decoding stages

When compared to the figure in section 3.3.8.2, the "Current frame" state is replaced with "DWT
context", and the input data is arbitrarily-sized rectangular images. The "DWT context" state is only
used to perform progressive upgrades and is not used to implement sub-band diffing.

3.3.8.3.1 Progressive Entropy Decode

The first stage of decoding aims to reconstruct the DWT data of a DWT context.

The decoder MUST maintain a copy of the unquantized DWT data ("DWT context" in the figure
captioned "RemoteFX Progressive Codec v.2 decoding stages" in section 3.3.8.3) until the image
region is fully upgraded, or the codec is informed that the context is no longer required.

If the input data is for the first progressive chunk of a DWT context (or it contains all of the data for
a DWT context), then all of the coefficients are encoded using the RLGR encoder. This is simpler
than RemoteFX Progressive Codec decoding (specified in section 3.3.8.2.1) due to the absence of
sub-band diffing. The data is not a difference and there is no need to maintain a tri-state value as

described in section 3.3.8.2.1 because the state can be determined directly from the value of the
corresponding coefficient currently stored in the DWT context.

3.3.8.3.1.1 Performing the First Progressive Pass

For the first pass, the data received is sent to the RLGR entropy decoder to produce the
progressively quantized coefficients DecProgQ.

The LL4 deltas MUST be summed in order to produce the LL4 elements.

DecProgQ-LL[0] = DecProgQ-LL-Deltas[0]

DecProgQ-LL[idx+1] = DecProgQ-LL[idx] + DecProgQ-LL-Deltas[idx+1]

Elements in all the bands are dequantized.

114 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DecDwtQ-NonLL, DecDwtQ-LL = DecProgQ * PQF

DecDwtQ is the data that MUST be de-quantized and inverse DWT transformed to produce the
image pixels.

3.3.8.3.1.2 Performing the Upgrade Progressive Passes

Except in the case of an LL4 element, the value of the corresponding coefficient stored in the DWT
context (referred to as DecDwtQ-NonLL) is used to determine how to decode the next element
(referred to as input).

If DecDwtQ-NonLL > 0, input is read from the raw buffer (the DWT context header and previous
history are used to determine how many bits MUST be read), progressively de-quantized, and added
to the current frame:

DecDwtQ-NonLL = DecDwtQ-NonLL + (input * PQF)

If DecDwtQ-NonLL < 0, input is read from the raw buffer, progressively de-quantized, and

subtracted from the current frame:

DecDwtQ-NonLL= DecDwtQ-NonLL - (input * PQF)

If DecDwtQ-NonLL = 0, input (a signed value) is read from the SRL encoded buffer (by decoding
one element), progressively de-quantized, and added to the current frame:

DecDwtQ-NonLL = input * PQF

In effect, if the stored DWT coefficient is currently zero, the new value is read from the SRL encoded
buffer, otherwise, the dequantized value read from the raw buffer is added to the magnitude of the
stored coefficient.

When an LL4 element is decoded, input is always read from the raw buffer and added to
DecDwtQ:

DecDwtQ-LL = DecDwtQ-LL + (input * PQF)

To determine the number of bits to read from the raw buffer, the decoder MUST have recorded the
value of BitPos from the previous pass and MUST read the difference from the current BitPos as a
number of bits.

Note that a band in a given pass might not have any bits to read. In this case, the decoder MUST
skip the band, and the DecDwtQ elements are left unchanged.

3.3.8.3.2 Inverse DWT

The inverse discrete wavelet transform (IDWT) is based on the equations specified in [MS-RDPRFX]
section 3.1.8.2.4. The encoder performs up to four DWT passes for both the horizontal and vertical
directions (the maximum number of passes is specified in the maxLevels field of the
RFX_PROGRESSIVE_V2_NEW_CONTEXT structure specified in section 2.2.4.3.1.2). The pass for
each direction performs the Original Method (section 3.2.8.2.2.1) or the Reduce-Extrapolate method

(section 3.2.8.2.2.2) based on whether the size of the input in the particular direction is odd or

even.

The size of the bands at each DWT level for the Progressive Codec are fixed (section 3.2.8.1.2) and
figure 3 indicates the dimensions of each band. However, the Progressive v.2 Codec does not
impose a fixed size on any of the resulting bands when the forward DWT is applied.

%5bMS-RDPRFX%5d.pdf

115 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 8: Bands resulting from a four-level DWT applied to arbitrary rectangles

When performing the IDWT, the following formulae are used to compute the size of a band for an
arbitrarily-sized DWT context:

L(D, Level) = ((D + (1 << Level) - 2) >> Level) + 1

H(D, Level) = (D + (1<<(Level - 1)) - 2) >> Level

Where:

L = Low-pass band dimension

H = High-pass band dimension

D = Width or height of the DWT context

Level = Decomposition level (1, 2, 3 or 4)

116 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Each DWT context component undergoes up to four levels of 2D inverse discrete wavelet
transformation. As in the case of the RemoteFX Progressive Codec Inverse DWT (section 3.3.8.2.2),

the output of one pass of the IDWT becomes the LL input band of the next pass.

For each level, a horizontal and vertical pass is performed, in any order (the horizontally and vertical

passes are fully independent of each other). The method that was used by the encoder (Original or
Reduce-Extrapolate) is determined based on the size of the band.

If the size of the output band is even, then the Reduce-Extrapolate Method was used. This means

that a final pixel was linearly extrapolated, with the result that the final H was zero and not
encoded.

If the size of the output band in the direction of the transformation is odd, then the Original

Method was used. This means that no pixel was extrapolated and all of the L and H terms were
sent.

If the size of the high frequency input band is zero, then no transform was performed in that

direction and hence the low frequency input band is simply copied to the output band. This case

is only hit if the output band is of size 1 or 2.

In effect, the IDWT for the RemoteFX Progressive v.2 Codec is fundamentally identical to the

RemoteFX Progressive Codec Inverse DWT, though generalized to handle arbitrarily-sized DWT
contexts. If the size of the DWT context is 64 by 64, then the IDWTs are identical.

3.3.8.3.3 Color Conversion

Color conversion is identical to the technique specified in [MS-RDPRFX] section 3.1.8.2.5.

%5bMS-RDPRFX%5d.pdf

117 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Protocol Examples

4.1 Bitmap Compression

4.1.1 ClearCodec Compression

4.1.1.1 Example 1

The following example shows a network dump of an image compressed using ClearCodec. The width

of the bitmap is 8, and the height is 9. ClearCodec returned 4 bytes after compressing this image.

COMPRESSED BITMAP DATA (4 bytes):

00000000 03 c3 11 00

03 -> CLEARCODEC_BITMAP_STREAM::flags = 0x03

= 0x01 | 0x02

= CLEARCODEC_FLAG_GLYPH_INDEX (0x01) | CLEARCODEC_FLAG_GLYPH_HIT (0x02)

c3 -> CLEARCODEC_BITMAP_STREAM::seqNumber = 195

11 00 -> CLEARCODEC_BITMAP_STREAM::glyphIndex = 17

The sequence number is validated and incremented. The pixels for this image can be found in the

Decompressor Glyph Storage (section 3.3.1.9) ADM element at position 17, ordered from left to
right and then top to bottom.

4.1.1.2 Example 2

The following example shows a network dump of an image compressed using ClearCodec. The width
of the bitmap is 78, and the height is 17. ClearCodec returned 144 bytes after compressing this
image.

COMPRESSED BITMAP DATA (144 bytes):

00000000 00 0d 00 00 00 00 00 00 00 00 82 00 00 00 00 00

00000010 00 00 4e 00 11 00 75 00 00 00 02 0e ff ff ff 00 ..N...u.........

00000020 00 00 db ff ff 00 3a 90 ff b6 66 66 b6 ff b6 66 :...ff...f

00000030 00 90 db ff 00 00 3a db 90 3a 3a 90 db 66 00 00 :..::..f..

00000040 ff ff b6 64 64 64 11 04 11 4c 11 4c 11 4c 11 4c ...ddd...L.L.L.L

00000050 11 4c 00 47 13 00 01 01 04 00 01 00 00 47 16 00 .L.G.........G..

00000060 11 02 00 47 29 00 11 01 00 49 0a 00 01 00 04 00 ...G)....I......

00000070 01 00 00 4a 0a 00 09 00 01 00 00 47 05 00 01 01 ...J.......G....

00000080 1c 00 01 00 11 4c 11 4c 11 4c 00 47 0d 4d 00 4d L.L.L.G.M.M

Decoding the CLEARCODEC_BITMAP_STREAM header:

00 -> CLEARCODEC_BITMAP_STREAM::flags = 0

0d -> CLEARCODEC_BITMAP_STREAM::seqNumber = 13

Decoding the CLEARCODEC_COMPOSITE_PAYLOAD header:

00 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::residualByteCount = 0

00 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::bandsByteCount = 0

82 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::subcodecByteCount = 130 bytes

SUBCODEC DATA (130 bytes):

00000000 00 00 00 00 4e 00 11 00 75 00 00 00 02 0e ff ff N...u.......

00000010 ff 00 00 00 db ff ff 00 3a 90 ff b6 66 66 b6 ff :...ff..

00000020 b6 66 00 90 db ff 00 00 3a db 90 3a 3a 90 db 66 .f......:..::..f

118 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

00000030 00 00 ff ff b6 64 64 64 11 04 11 4c 11 4c 11 4c ddd...L.L.L

00000040 11 4c 11 4c 00 47 13 00 01 01 04 00 01 00 00 47 .L.L.G.........G

00000050 16 00 11 02 00 47 29 00 11 01 00 49 0a 00 01 00 G)....I....

00000060 04 00 01 00 00 4a 0a 00 09 00 01 00 00 47 05 00 J.......G..

00000070 01 01 1c 00 01 00 11 4c 11 4c 11 4c 00 47 0d 4d L.L.L.G.M

00000080 00 4d .M

Decoding the first subcodec header:

00 00 -> CLEARCODEC_SUBCODEC::xStart = 0

00 00 -> CLEARCODEC_SUBCODEC::yStart = 0

4e 00 -> CLEARCODEC_SUBCODEC::width = 78

11 00 -> CLEARCODEC_SUBCODEC::height = 17

75 00 00 00 -> CLEARCODEC_SUBCODEC::bitmapDataByteCount = 117

02 -> CLEARCODEC_SUBCODEC::subCodecId = CLEARCODEC_SUBCODEC_RLEX(0x02)

SUBCODEC_RLEX DATA (117 bytes):

00000000 0e ff ff ff 00 00 00 db ff ff 00 3a 90 ff b6 66 :...f

00000010 66 b6 ff b6 66 00 90 db ff 00 00 3a db 90 3a 3a f...f......:..::

00000020 90 db 66 00 00 ff ff b6 64 64 64 11 04 11 4c 11 ..f.....ddd...L.

00000030 4c 11 4c 11 4c 11 4c 00 47 13 00 01 01 04 00 01 L.L.L.L.G.......

00000040 00 00 47 16 00 11 02 00 47 29 00 11 01 00 49 0a ..G.....G)....I.

00000050 00 01 00 04 00 01 00 00 4a 0a 00 09 00 01 00 00 J.......

00000060 47 05 00 01 01 1c 00 01 00 11 4c 11 4c 11 4c 00 G.........L.L.L.

00000070 47 0d 4d 00 4d G.M.M

0e -> CLEARCODEC_SUBCODEC_RLEX::paletteCount = 14

ff ff ff -> paletteEntries[0] = (blue = 0xff, green = 0xff, red = 0xff)

00 00 00 -> paletteEntries[1] = (blue = 0x00, green = 0x00, red = 0x00)

db ff ff -> paletteEntries[2] = (blue = 0xdb, green = 0xff, red = 0xff)

00 3a 90 -> paletteEntries[3] = (blue = 0x00, green = 0x3a, red = 0x90)

ff b6 66 -> paletteEntries[4] = (blue = 0xff, green = 0xb6, red = 0x66)

66 b6 ff -> paletteEntries[5] = (blue = 0x66, green = 0xb6, red = 0xff)

b6 66 00 -> paletteEntries[6] = (blue = 0xb6, green = 0x66, red = 0x00)

90 db ff -> paletteEntries[7] = (blue = 0x90, green = 0xdb, red = 0xff)

00 00 3a -> paletteEntries[8] = (blue = 0x00, green = 0x00, red = 0x3a)

db 90 3a -> paletteEntries[9] = (blue = 0xdb, green = 0x90, red = 0x3a)

3a 90 db -> paletteEntries[10] = (blue = 0x3a, green = 0x90, red = 0xdb)

66 00 00 -> paletteEntries[11] = (blue = 0x66, green = 0x00, red = 0x00)

ff ff b6 -> paletteEntries[12] = (blue = 0xff, green = 0xff, red = 0xb6)

64 64 64 -> paletteEntries[13] = (blue = 0x64, green = 0x64, red = 0x64)

The minimum number of bits required to represent the largest palette index (indexes range from 0

to 13 in this case) is floor(log2(13)) + 1 = 4. This means that all indexes are represented using 4
bits, and the remaining 4 bits in the byte are used for the suite depth.

Decoding the first SUBCODEC_RLEX_SEGMENT:

11 -> Encoded stop index (least significant 4 bits) and suite depth (most significant 4 bits)

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::stopIndex = 0x01

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::suiteDepth = 0x01

04 -> CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor1 = 4

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor2 is not present

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor3 is not present

Using the above values, the following sequence of palette indexes is decoded:

0x00, 0x00, 0x00, 0x00, 0x00, 0x01

119 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Using the palette entries, the sequence of palette indexes is translated into the following

pixel sequence (RGB format):

ffffff, ffffff, ffffff, ffffff, ffffff, 000000

The decoded pixels are written into the target image starting in the top-left corner and progressing

from left to right and then top to bottom.

Decoding the second RLEX_SEGMENT:

11 -> Encoded stop index (least significant 4 bits) and suite depth (most significant 4 bits)

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::stopIndex = 0x01

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::suiteDepth = 0x01

4c -> CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor1 = 76

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor2 is not present

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor3 is not present

Using the above values, the following sequence of palette indexes is decoded:

0x00, 0x00, ... [76 total], 0x00, 0x01

In a similar fashion, the next thirteen SUBCODEC_RLEX_SEGMENT structures are processed.

Finally, decoding the sixteenth RLEX_SEGMENT:

29 -> Encoded stop index (least significant 4 bits) and suite depth (most significant 4 bits)

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::stopIndex = 0x09

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::suiteDepth = 0x02

4c -> CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor1 = 0

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor2 is not present

CLEARCODEC_SUBCODEC_RLEX_SEGMENT::runLengthFactor3 is not present

Using the above values, the following sequence of palette indexes is decoded:

0x07, 0x08, 0x09

Using the palette entries, the sequence of palette indexes is translated into the following

pixel sequence (RGB format):

ffdb90, 3a0000, 3a90db

In a similar fashion, the remaining SUBCODEC_RLEX_SEGMENTS in the packet are decoded until

there is no more data left in the SUBCODEC_RLEX DATA payload, at which point subcodec decoding
is complete.

4.1.1.3 Example 3

The following example shows a network dump of an image compressed using ClearCodec. The width
of the bitmap is 64, and the height is 24. ClearCodec returned 167 bytes after compressing this
image.

COMPRESSED BITMAP DATA (167 bytes):

00000000 00 df 0e 00 00 00 8b 00 00 00 00 00 00 00 fe fe

00000010 fe ff 80 05 ff ff ff 40 fe fe fe 40 00 00 3f 00 @...@..?.

00000020 03 00 0b 00 fe fe fe c5 d0 c6 d0 c7 d0 68 d4 69 h.i

00000030 d4 6a d4 6b d4 6c d4 6d d4 1a d4 1a d4 a6 d0 6e .j.k.l.m.......n

00000040 d4 6f d4 70 d4 71 d4 72 d4 73 d4 74 d4 21 d4 22 .o.p.q.r.s.t.!."

00000050 d4 23 d4 24 d4 25 d4 d9 d0 da d0 db d0 c5 d0 c5 .#.$.%..........

00000060 d0 dc d0 c2 d0 21 d4 22 d4 23 d4 24 d4 25 d4 c9 !.".#.$.%..

00000070 d0 ca d0 5a d4 2b d1 28 d1 2c d1 75 d4 27 d4 28 ...Z.+.(.,.u.'.(

120 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

00000080 d4 29 d4 2a d4 1a d4 1a d4 1a d4 b7 d0 b8 d0 b9 .).*............

00000090 d0 ba d0 bb d0 bc d0 bd d0 be d0 bf d0 c0 d0 c1

000000a0 d0 c2 d0 c3 d0 c4 d0

Decoding the CLEARCODEC_BITMAP_STREAM header:

00 -> CLEARCODEC_BITMAP_STREAM::flags = 0

df -> CLEARCODEC_BITMAP_STREAM::seqNumber = 223

Decoding the CLEARCODEC_COMPOSITE_PAYLOAD header:

0e 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::residualByteCount = 14

8b 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::bandsByteCount = 139

00 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::subcodecByteCount = 0

RESIDUAL DATA (14 bytes):

00000000 fe fe fe ff 80 05 ff ff ff 40 fe fe fe 40 @...@

Decoding the first residual segment:

fe -> CLEARCODEC_RGB_RUN_SEGMENT::blueValue = 254

fe -> CLEARCODEC_RGB_RUN_SEGMENT::greenValue = 254

fe -> CLEARCODEC_RGB_RUN_SEGMENT::redValue = 254

ff -> CLEARCODEC_RGB_RUN_SEGMENT::runLengthFactor1 = 255

CLEARCODEC_RGB_RUN_SEGMENT::runLengthFactor2 is present.

80 05 -> CLEARCODEC_RGB_RUN_SEGMENT::runLengthFactor2 = 1408

CLEARCODEC_RGB_RUN_SEGMENT::runLengthFactor3 is not present.

The white pixel (254, 254, 254) must be replicated 1408 times (starting in the top-left corner and

progressing from left to right and then top to bottom).

Decoding the second residual segment:

ff -> CLEARCODEC_RGB_RUN_SEGMENT::blueValue = 255

ff -> CLEARCODEC_RGB_RUN_SEGMENT::greenValue = 255

ff -> CLEARCODEC_RGB_RUN_SEGMENT::redValue = 255

40 -> CLEARCODEC_RGB_RUN_SEGMENT::runLengthFactor1 = 64

CLEARCODEC_RGB_RUN_SEGMENT::runLengthFactor2 is not present.

CLEARCODEC_RGB_RUN_SEGMENT::runLengthFactor3 is not present.

The fully white pixel (255, 255, 255) must be replicated 64 times starting from the next position

where the first residual segment ended.

Repeat the above procedure for the last residual segment (0xfe, 0xfe, 0xfe, 0x40). Because there is
no more data left in the residual payload (and all pixels were covered), residual decoding is
complete. The pixels decoded will be the first layer drawn on the target image buffer.

BANDS DATA (139 bytes):

00000000 00 00 3f 00 03 00 0b 00 fe fe fe c5 d0 c6 d0 c7 ..?.............

00000010 d0 68 d4 69 d4 6a d4 6b d4 6c d4 6d d4 1a d4 1a .h.i.j.k.l.m....

00000020 d4 a6 d0 6e d4 6f d4 70 d4 71 d4 72 d4 73 d4 74 ...n.o.p.q.r.s.t

00000030 d4 21 d4 22 d4 23 d4 24 d4 25 d4 d9 d0 da d0 db .!.".#.$.%......

00000040 d0 c5 d0 c5 d0 dc d0 c2 d0 21 d4 22 d4 23 d4 24 !.".#.$

00000050 d4 25 d4 c9 d0 ca d0 5a d4 2b d1 28 d1 2c d1 75 .%.....Z.+.(.,.u

00000060 d4 27 d4 28 d4 29 d4 2a d4 1a d4 1a d4 1a d4 b7 .'.(.).*........

00000070 d0 b8 d0 b9 d0 ba d0 bb d0 bc d0 bd d0 be d0 bf

00000080 d0 c0 d0 c1 d0 c2 d0 c3 d0 c4 d0

121 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Decoding the first CLEARCODEC_BAND header:

00 00 -> CLEARCODEC_BAND::xStart = 0

3f 00 -> CLEARCODEC_BAND::xEnd = 63

03 00 -> CLEARCODEC_BAND::yStart = 3

0b 00 -> CLEARCODEC_BAND::yEnd = 11

fe -> CLEARCODEC_BAND::blueBkg = 254

fe -> CLEARCODEC_BAND::greenBkg = 254

fe -> CLEARCODEC_BAND::redBkg = 254

This implies that 64 V-Bars (xEnd – xStart + 1) follow after the header. Each V-Bar is either

present in the V-Bar Storage (section 3.3.1.10) ADM element or the packet.

Decoding the first V-Bar:

c5 d0 -> CLEARCODEC_VBAR::vBarHeader = 0xd0c5

CLEARCODEC_VBAR::vBarHeader::x = 0x1

CLEARCODEC_VBAR::vBarHeader::vBarIndex = 0x50c5

Because this is a V-Bar hit, the pixels are not present in the packet. The data for this V-Bar must be

accessed at V-Bar Storage position 0x50c5 and then placed on the screen starting at position (0, 3)
and extending up to and including (0, 11). The V-Bar Storage position 0x50c5 has been initialized
by a previous packet with 9 pixels.

All remaining 63 V-Bars in this band are cache hits and are processed in the same fashion.

Since there is no more data remaining in the bands payload, it follows that there are no more bands

remaining and that bands decoding is complete.

Since there is no more data in the payload, it follows that decoding is complete.

4.1.1.4 Example 4

The following example shows a network dump of an image compressed using ClearCodec. The width
of the bitmap is 7, and the height is 15. ClearCodec returned 86 bytes after compressing this image.

COMPRESSED BITMAP DATA (86 bytes):

00000000 01 0b 78 00 00 00 00 00 46 00 00 00 00 00 00 00 ..x.....F.......

00000010 00 00 06 00 00 00 0e 00 00 00 00 00 0f ff ff ff

00000020 ff ff ff ff ff ff b6 ff ff ff ff ff ff ff ff ff

00000030 b6 66 ff ff ff ff ff ff ff b6 66 db 90 3a ff ff .f........f..:..

00000040 b6 ff ff ff ff ff ff ff ff ff 46 91 47 91 48 91 F.G.H.

00000050 49 91 4a 91 1b 91 I.J...

Decoding the CLEARCODEC_BITMAP_STREAM header:

01 -> CLEARCODEC_BITMAP_STREAM::flags = CLEARCODEC_FLAG_GLYPH_INDEX (0x01)

0b -> CLEARCODEC_BITMAP_STREAM::seqNumber = 11

78 00 -> CLEARCODEC_BITMAP_STREAM::glyphIndex = 120

Decoding the CLEARCODEC_COMPOSITE_PAYLOAD header:

00 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::residualByteCount = 0

46 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::bandsByteCount = 70

00 00 00 00 -> CLEARCODEC_COMPOSITE_PAYLOAD::subcodecByteCount = 0

BANDS DATA (70 bytes):

00000000 00 00 06 00 00 00 0e 00 00 00 00 00 0f ff ff ff

122 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

00000010 ff ff ff ff ff ff b6 ff ff ff ff ff ff ff ff ff

00000020 b6 66 ff ff ff ff ff ff ff b6 66 db 90 3a ff ff .f........f..:..

00000030 b6 ff ff ff ff ff ff ff ff ff 46 91 47 91 48 91 F.G.H.

00000040 49 91 4a 91 1b 91

Decoding the first CLEARCODEC_BAND header:

00 00 -> CLEARCODEC_BAND::xStart = 0

06 00 -> CLEARCODEC_BAND::xEnd = 6

00 00 -> CLEARCODEC_BAND::yStart = 0

0e 00 -> CLEARCODEC_BAND::yEnd = 14

00 -> CLEARCODEC_BAND::blueBkg = 0

00 -> CLEARCODEC_BAND::greenBkg = 0

00 -> CLEARCODEC_BAND::redBkg = 0

This implies that 7 V-Bars (xEnd – xStart + 1) follow after the header. Each V-Bar is either present

in the V-Bar Storage (section 3.3.1.10) ADM element or the packet.

Decoding the first V-Bar:

00 0f -> CLEARCODEC_VBAR::vBarHeader = 0x0f00

CLEARCODEC_VBAR::vBarHeader::x = 0x0 (implies this is a SHORT_VBAR_CACHE_MISS structure)

SHORT_VBAR_CACHE_MISS::vBarHeader::shortVBarYOn = 0x00

SHORT_VBAR_CACHE_MISS::vBarHeader::shortVBarYOff = 0x0f

Since this is a SHORT_VBAR_CACHE_MISS (section 2.2.4.1.1.2.1.1.3) structure, the 15 pixels

(shortVBarYOff – shortVBarYOn) that follow are the V-Bar. Note that shortVBarYOn is
exclusive, while CLEARCODEC_BAND::yEnd is inclusive; this is mainly because a Short V-Bar of
height of zero is legal, while a band of height zero is not legal.

ff ff ff -> First pixel at position (0, 0) = (blue = 0xff, green = 0xff, red = 0xff)

ff ff ff -> Second pixel at position (0, 1) = (blue = 0xff, green = 0xff, red = 0xff)

...

db 90 3a -> 11th pixel at position (0, 10) = (blue = 0xdb, green = 0x90, red = 0x3a)

...

ff ff ff -> 15th pixel at position (0, 14) = (blue = 0xff, green = 0xff, red = 0xff)

The Short V-Bar Storage (section 3.3.1.12) ADM element at the Short V-Bar Storage Cursor

(section 3.3.1.13) ADM element must be updated with the decoded pixels. Following this operation,
the Short V-Bar Storage Cursor ADM element must be incremented modulo 0x4000 by 1,
mathematically:

vbarShortCursor = (vbarShortCursor + 1) mod 0x4000

The V-Bar Storage ADM element at the V-Bar Storage Cursor (section 3.3.1.11) ADM element

must also be updated with the same pixels (in this case the two have the same height of 15).
Following this operation, the V-Bar Storage Cursor ADM element must be incremented modulo
0x8000 by 1.

Decoding the second V-Bar:

46 91 -> CLEARCODEC_VBAR::vBarHeader = 0x9146

CLEARCODEC_VBAR::vBarHeader::x = 0x1 (implies this is a VBAR_CACHE_HIT structure)

VBAR_CACHE_HIT::vBarIndex = 0x1146

123 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Because this is a V-Bar hit, the pixels are not present in the packet. The data for this V-Bar must be

accessed at V-Bar Storage position 0x1146 and then placed on the screen starting at position (1, 0)

and extending up to and including (1, 14).

All remaining 5 V-Bars in this band are cache hits and are processed in the same fashion.

Since there is no more data remaining in the bands payload, it follows that there are no more bands
remaining and that bands decoding is complete.

Since there is no more data in the payload, it follows that decoding is complete.

Since the glyphIndex field was present in the CLEARCODEC_BITMAP_STREAM header of this
packet, the Decompressor Glyph Storage (section 3.3.1.9) ADM element at position 120 must be
updated with the decoded bitmap.

4.1.1.5 Example 5

In order to instruct a client to render a glyph and then insert the glyph into the Decompressor

Glyph Storage (section 3.3.1.9) ADM element, the server encapsulates an encoded representation
of the glyph within a CLEARCODEC_BITMAP_STREAM (section 2.2.4.1) structure. This structure
is embedded within an RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1) message, which
is transmitted to the client. Within the CLEARCODEC_BITMAP_STREAM structure, the

CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag is present in the flags field, while the
CLEARCODEC_FLAG_GLYPH_HIT (0x02) flag is absent. The glyph bitmap is present in the
compositePayload field. Once decoded, the glyph is effectively a linear stream of pixels, as shown
in the following diagram.

Figure 9: Sixteen glyph pixels stored in a linear stream with no implied dimensions

The width and height of the glyph is determined by the rectangle defined in the destRect field of
the encapsulating RDPGFX_WIRE_TO_SURFACE_PDU_1 message. For example, assuming that

the width is 2 pixels and the height is 8 pixels, the following image would be rendered by the client.

Figure 10: A 2 x 8 glyph

The decoded linear stream of pixels is stored within the Decompressor Glyph Storage ADM
element in the slot specified by the glyphIndex field of the encapsulating

124 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

CLEARCODEC_BITMAP_STREAM structure. The pixels are stored with no implied dimensions. For
the sake of this example, assume that the assigned slot is Slot 4.

If the server detects a cache hit and determines that the glyph stored by the client in Slot 4 of the
Decompressor Glyph Storage ADM element must be rendered, the client will be sent a

CLEARCODEC_BITMAP_STREAM structure (encapsulated within a
RDPGFX_WIRE_TO_SURFACE_PDU_1 message) with the flags field containing both the
CLEARCODEC_FLAG_GLYPH_INDEX and CLEARCODEC_FLAG_GLYPH_HIT flags. The optional
compositePayload field will not be present. Note that in this case, the dimensions of the rectangle
specified by the container RDPGFX_WIRE_TO_SURFACE_PDU_1 message (in the destRect
field) can be any width and height that yields an effective area of 16 pixels2. For example, a possible
configuration could be the following 4-pixel-by-4-pixel glyph.

Figure 11: A 4 x 4 glyph

Another possible configuration is the following 8-pixel-by-2-pixel glyph.

Figure 12: An 8 x 2 glyph

In effect, a linear stream of pixels stored in a slot in the Decompressor Glyph Storage ADM

element can be blitted into a number of rectangular configurations, as long as all of the pixels are
used in the configuration. The ultimate configuration is determined by cache hits encountered by the

server encoder.

4.2 Bulk Data Compression

4.2.1 RDP 8.0

4.2.1.1 Compression Samples

These contrived samples are encoded as shown for expositive clarity, although most are so small
that the output is larger than the input.

4.2.1.1.1 Example 1

Uncompressed input:

01 02 FF 65 65 65 65 65

Compressed output:

125 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

E0 24 CE 9B 19 62 18 00

E0 = DEBLOCK_SINGLE

24 = PACKET_COMPRESSED + compression format 4

CE 9B 19 62 18 = binary 11001110 10011011 00011001 01100010 00011000

00 = 0 unused bits in 0x18 byte (all bits significant)

Decoded binary stream:

11001 = literal 0x01

110100 = literal 0x02

110110 = literal 0xFF

0 01100101 = literal 0x65

10001 00001 10 00 = match, distance 1, length 4 + 0

4.2.1.1.2 Example 2

Uncompressed input:

54 68 65 20 71 75 69 63 6B 20 62 72 6F 77 6E 20 The quick brown

66 6F 78 20 6A 75 6D 70 73 20 6F 76 65 72 20 74 fox jumps over t

68 65 20 6C 61 7A 79 20 64 6F 67 he lazy dog

Compressed output:

The first byte is DEBLOCK_SINGLE, so the remainder is to be decoded. The second byte contains the
compression type (4) but does not have the PACKET_COMPRESSED (0x20) bit set, so the remainder
of the data is unencoded. Compression did not reduce the size, because there is little repetition in
the source.

E0 04 54 68 65 20 71 75 69 63 6B 20 62 72 6F 77 ..The quick brow

6E 20 66 6F 78 20 6A 75 6D 70 73 20 6F 76 65 72 n fox jumps over

20 74 68 65 20 6C 61 7A 79 20 64 6F 67 the lazy dog

E0 = DEBLOCK_SINGLE

04 = compression type 4 (not PACKET_COMPRESSED)

remainder = unencoded input

4.2.1.1.3 Example 3

Uncompressed input:

The pattern "ABC" is repeated 20 times.

41 42 43 41 42 43 41 42 43 41 42 43 41 42 43 41 ABCABCABCABCABCA

42 43 41 42 43 41 42 43 41 42 43 41 42 43 41 42 BCABCABCABCABCAB

43 41 42 43 41 42 43 41 42 43 41 42 43 41 42 43 CABCABCABCABCABC

41 42 43 41 42 43 41 42 43 41 42 43 ABCABCABCABC

Compressed output:

The first byte is SINGLE, so the other fields of the RDP_SEGMENTED_DATA (section 2.2.5.1)
structure are omitted. The second begins the compressed segment. The first byte of that segment

126 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

includes PACKET_COMPRESSED, so the remainder is encoded. The final byte 0x01 indicates that
only one bit is unused, so the encoded data is 47 bits in length. Note that an overlapping match

intentionally causes replication.

E0 24 20 90 88 71 1F B2 01

E0 = DEBLOCK_SINGLE

24 = PACKET_COMPRESSED + type 4

20 = binary 0 0100000

90 = binary 1 0 010000

88 = binary 10 0 01000

71 = binary 011 10001

1F = binary 00011 111

B2 = binary 10 11001 (0)

01 = one bit (least-significant) ignored from 0xB2 byte.

Decoded binary stream:

0 01000001 = literal 65 = "A"

0 01000010 = literal 66 = "B"

0 01000011 = literal 67 = "C"

10001 00011 = match distance = 3

11110 11001 = match length = 32 + 25 = 57

(0) ignored

4.2.1.1.4 Example 4

Uncompressed input:

54 68 65 20 71 75 69 63 6B 20 62 72 6F 77 6E 20 The quick brown

66 6F 78 20 6A 75 6D 70 73 20 6F 76 65 72 20 74 fox jumps over t

68 65 20 6C 61 7A 79 20 64 6F 67 he lazy dog

Compressed output:

This is a contrived example of DEBLOCK_MULTIPART. (Input this small would normally encode more
efficiently.) The input was separated into three segments. The first two segments are unencoded,
and the third is encoded.

E1 03 00 2B 00 00 00 11 00 00 00 04 54 68 65 20 ...+........The

71 75 69 63 6B 20 62 72 6F 77 6E 20 0E 00 00 00 quick brown

04 66 6F 78 20 6A 75 6D 70 73 20 6F 76 65 10 00 .fox jumps ove..

00 00 24 39 08 0E 91 F8 D8 61 3D 1E 44 06 43 79 ..$9.....a=.D.Cy

9C 02

E1 = DEBLOCK_MULTIPART

03 00 = 3 segments

2B 00 00 00 = 0x0000002B total bytes uncompressed

11 00 00 00 = first segment is the next 17 bytes:

127 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 04 = type 4, not PACKET_COMPRESSED

 54 68 65 20 71 75 69 63 6b 20 62 72 6F 77 6E 20 = "The quick brown "

0E 00 00 00 = second segment is the next 14 bytes:

 04 = type 4, not PACKET_COMPRESSED

 66 6F 78 20 6A 75 6D 70 73 20 6F 76 65 = "fox jumps ove"

10 00 00 00 = third segment is the next 16 bytes:

 24 = type 4 + PACKET_COMPRESSED

 39 08 0E 91 F8-D8 61 3D 1E 44 06 43 79 9C

 02 = ignore last two bits of 0x9C byte

Decoded binary stream:

0 01110010 = literal 0x72 = "r"

0 00100000 = literal 0x20 = " "

0 01110100 = literal 0x74 = "t"

10001 11111 0 = match, distance = 31, length = 3 "he "

0 01101100 = literal 0x6C = "l"

0 01100001 = literal 0x61 = "a"

0 01111010 = literal 0x7A = "z"

0 01111001 = literal 0x79 = "y"

0 00100000 = literal 0x20 = " "

0 01100100 = literal 0x64 = "d"

0 01101111 = literal 0x6F = "o"

0 01100111 = literal 0x67 = "g"

(00) = ignored

4.2.1.1.5 Example 5

Uncompressed input consists of 1,002 random bytes, beginning as in Example 4 (section 4.2.1.1.4).

Uncompressed input:

54 68 65 20 71 75 69 63 6B 20 62 72 6F 77 6E 20 The quick brown

66 6F 78 20 6A 75 6D 70 73 20 6F 76 65 72 20 74 fox jumps over t

68 65 20 6C 61 7A 79 20 64 6F 67 BA AD C0 DE F1 he lazy dog.....

(954 bytes omitted)

Compressed output:

This is a contrived example of an unencoded sequence.

E0 24 88 01 F4 00 54 68 65 20 71 75 69 63 6B 20 The quick

62 72 6F 77 6E 20 66 6F 78 20 6A 75 6D 70 73 20 brown fox jumps

6F 76 65 72 20 74 68 65 20 6C 61 7A 79 20 64 6F over the lazy do

(960 bytes omitted)

00 .

E0 = DEBLOCK_SINGLE

24 = PACKET_COMPRESSED + type 4

128 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

88 = binary 10001 000

01 = binary 00 000001

F4 = binary 11110100

00 = binary 0 0000000

54 = first unencoded byte "T"

(1001 bytes omitted)

00 = no bits unused

Decoded binary stream:

10001 00000 = match, distance = 0 (unencoded)

0000011111010000 (15 bits) = 1,000 bytes follow

0000000 = reserved (pad to byte boundary)

01010100 = first unencoded byte "T"

(1001 bytes omitted)

00000000 = no bits unused

4.2.1.2 Sample Code

The following C++ code implements a sample decompressor for RDP 8.0 Bulk Compression. Error
handling has been omitted for clarity.

#include <memory.h> // for memcpy()

// RDP8 definitions

typedef unsigned __int8 byte;

typedef unsigned __int16 uint16;

typedef unsigned __int32 uint32;

#pragma pack(push, 1)

typedef struct

{

 byte descriptor;

 uint16 segmentCount;

 uint32 uncompressedSize;

// RDP_DATA_SEGMENT first;

} RDP_SEGMENTED_DATA;

// descriptor values

#define SEGMENTED_SINGLE (0xE0)

#define SEGMENTED_MULTIPART (0xE1)

typedef struct

{

 uint32 size;

// byte data[size];

} RDP_DATA_SEGMENT;

#pragma pack(pop)

#define PACKET_COMPRESSED (0x20)

#define PACKET_COMPR_TYPE_RDP8 (0x04)

129 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

// token assignments from the spec, sorted by prefixLength

typedef struct

{

 int prefixLength; // number of bits in the prefix

 int prefixCode; // bit pattern of this prefix

 int valueBits; // number of value bits to read

 int tokenType; // 0=literal, 1=match

 uint32 valueBase; // added to the value bits

} Token;

const Token tokenTable[] =

{

 // len code vbits type vbase

 { 1, 0, 8, 0, 0 }, // 0

 { 5, 17, 5, 1, 0 }, // 10001

 { 5, 18, 7, 1, 32 }, // 10010

 { 5, 19, 9, 1, 160 }, // 10011

 { 5, 20, 10, 1, 672 }, // 10100

 { 5, 21, 12, 1, 1696 }, // 10101

 { 5, 24, 0, 0, 0x00 }, // 11000

 { 5, 25, 0, 0, 0x01 }, // 11001

 { 6, 44, 14, 1, 5792 }, // 101100

 { 6, 45, 15, 1, 22176 }, // 101101

 { 6, 52, 0, 0, 0x02 }, // 110100

 { 6, 53, 0, 0, 0x03 }, // 110101

 { 6, 54, 0, 0, 0xFF }, // 110110

 { 7, 92, 18, 1, 54944 }, // 1011100

 { 7, 93, 20, 1, 317088 }, // 1011101

 { 7, 110, 0, 0, 0x04 }, // 1101110

 { 7, 111, 0, 0, 0x05 }, // 1101111

 { 7, 112, 0, 0, 0x06 }, // 1110000

 { 7, 113, 0, 0, 0x07 }, // 1110001

 { 7, 114, 0, 0, 0x08 }, // 1110010

 { 7, 115, 0, 0, 0x09 }, // 1110011

 { 7, 116, 0, 0, 0x0A }, // 1110100

 { 7, 117, 0, 0, 0x0B }, // 1110101

 { 7, 118, 0, 0, 0x3A }, // 1110110

 { 7, 119, 0, 0, 0x3B }, // 1110111

 { 7, 120, 0, 0, 0x3C }, // 1111000

 { 7, 121, 0, 0, 0x3D }, // 1111001

 { 7, 122, 0, 0, 0x3E }, // 1111010

 { 7, 123, 0, 0, 0x3F }, // 1111011

 { 7, 124, 0, 0, 0x40 }, // 1111100

 { 7, 125, 0, 0, 0x80 }, // 1111101

 { 8, 188, 20, 1, 1365664 }, // 10111100

 { 8, 189, 21, 1, 2414240 }, // 10111101

 { 8, 252, 0, 0, 0x0C }, // 11111100

 { 8, 253, 0, 0, 0x38 }, // 11111101

 { 8, 254, 0, 0, 0x39 }, // 11111110

 { 8, 255, 0, 0, 0x66 }, // 11111111

 { 9, 380, 22, 1, 4511392 }, // 101111100

 { 9, 381, 23, 1, 8705696 }, // 101111101

 { 9, 382, 24, 1, 17094304 }, // 101111110

 { 0 }

};

130 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

class Rdp8Decompressor

{

public:

 Rdp8Decompressor()

 {

 m_historyIndex = 0;

 }

 // input buffer

 byte * m_pbInputCurrent; // ptr into input bytes

 byte * m_pbInputEnd; // ptr past end of input

 // input bit stream

 uint32 m_cBitsRemaining; // # bits input remaining

 uint32 m_BitsCurrent; // remainder of most-recent byte

 uint32 m_cBitsCurrent; // number of bits in m_BitsCurrent

 // decompressed output

 byte m_outputBuffer[65536]; // most-recent Decompress result

 uint32 m_outputCount; // length in m_outputBuffer

 // decompression history

 byte m_historyBuffer[2500000]; // last N bytes of output

 uint32 m_historyIndex; // index for next byte out

 // decompress, return data in an allocated buffer

 void Decompress(

 byte * pbInput,

 int cbInput,

 byte ** ppbOutput,

 int * pcbOutput

)

 {

 RDP_SEGMENTED_DATA * pSegmentedData = (RDP_SEGMENTED_DATA *) pbInput;

 if (pSegmentedData->descriptor == SEGMENTED_SINGLE)

 {

 OutputFromSegment(pbInput + 1, cbInput - 1);

 *ppbOutput = new byte[m_outputCount];

 *pcbOutput = m_outputCount;

 memcpy(*ppbOutput, m_outputBuffer, m_outputCount);

 }

 else if (pSegmentedData->descriptor == SEGMENTED_MULTIPART)

 {

 uint32 segmentOffset = sizeof(RDP_SEGMENTED_DATA);

 byte * pConcatenated = new byte[pSegmentedData->uncompressedSize];

 *ppbOutput = pConcatenated;

 *pcbOutput = pSegmentedData->uncompressedSize;

 for (uint16 segmentNumber = 0;

 segmentNumber < pSegmentedData->segmentCount;

 segmentNumber++)

 {

 RDP_DATA_SEGMENT * pSegment =

 (RDP_DATA_SEGMENT *) (pbInput + segmentOffset);

131 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 OutputFromSegment(

 pbInput + segmentOffset + sizeof(RDP_DATA_SEGMENT),

 pSegment->size);

 segmentOffset += sizeof(RDP_DATA_SEGMENT) + pSegment->size;

 memcpy(pConcatenated, m_outputBuffer, m_outputCount);

 pConcatenated += m_outputCount;

 }

 }

 }

 // decompress one segment into m_outputBuffer

 void OutputFromSegment(

 byte * pbSegment,

 int cbSegment

)

 {

 if (pbSegment[0] & PACKET_COMPRESSED)

 {

 OutputFromCompressed(pbSegment + 1, cbSegment - 1);

 }

 else

 {

 OutputFromNotCompressed(pbSegment + 1, cbSegment - 1);

 }

 }

 // decompress an unencoded segment into m_outputBuffer

 void OutputFromNotCompressed(

 byte * pbRaw,

 int cbRaw

)

 {

 m_outputCount = 0;

 for (int iRaw = 0; iRaw < cbRaw; iRaw++)

 {

 byte c = pbRaw[iRaw];

 m_historyBuffer[m_historyIndex++] = c;

 if (m_historyIndex == sizeof(m_historyBuffer))

 {

 m_historyIndex = 0;

 }

 m_outputBuffer[m_outputCount++] = c;

 }

 }

 // decompress a Huffman-encoded segment into m_outputBuffer

 void OutputFromCompressed(

 byte * pbEncoded,

 int cbEncoded

)

 {

132 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 m_outputCount = 0;

 m_pbInputCurrent = pbEncoded;

 m_pbInputEnd = pbEncoded + cbEncoded - 1;

 m_cBitsRemaining = 8 * (cbEncoded - 1) - *m_pbInputEnd;

 m_cBitsCurrent = 0;

 m_BitsCurrent = 0;

 while (m_cBitsRemaining)

 {

 int haveBits = 0;

 int inPrefix = 0;

 byte c;

 uint32 count;

 uint32 distance;

 // Scan the token table, considering more bits as needed,

 // until the resulting token is found.

 for (int opIndex = 0;

 tokenTable[opIndex].prefixLength != 0;

 opIndex++)

 {

 // get more bits if needed

 while (haveBits < tokenTable[opIndex].prefixLength)

 {

 inPrefix = (inPrefix << 1) + GetBits(1);

 haveBits++;

 }

 if (inPrefix == tokenTable[opIndex].prefixCode)

 {

 if (tokenTable[opIndex].tokenType == 0)

 {

 c = (byte)(tokenTable[opIndex].valueBase +

 GetBits(tokenTable[opIndex].valueBits));

 goto output_literal;

 }

 else

 {

 distance = tokenTable[opIndex].valueBase +

 GetBits(tokenTable[opIndex].valueBits);

 if (distance != 0)

 {

 if (GetBits(1) == 0)

 {

 count = 3;

 }

 else

 {

 count = 4;

 int extra = 2;

 while (GetBits(1) == 1)

 {

 count *= 2;

 extra++;

 }

133 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 count += GetBits(extra);

 }

 goto output_match;

 }

 else // match distance == 0 is special case

 {

 count = GetBits(15);

 // discard remaining bits

 m_cBitsRemaining -= m_cBitsCurrent;

 m_cBitsCurrent = 0;

 m_BitsCurrent = 0;

 goto output_unencoded;

 }

 }

 }

 }

 break;

 output_literal:

 // Add one byte 'c' to output and history

 m_historyBuffer[m_historyIndex] = c;

 if (++m_historyIndex == sizeof(m_historyBuffer))

 {

 m_historyIndex = 0;

 }

 m_outputBuffer[m_outputCount++] = c;

 continue;

 output_match:

 // Add 'count' bytes from 'distance' back in history.

 // Output these bytes again, and add to history again.

 uint32 prevIndex =

 m_historyIndex + sizeof(m_historyBuffer) - distance;

 prevIndex = prevIndex % sizeof(m_historyBuffer);

 // n.b. memcpy or movsd, for example, will not work here.

 // Overlapping matches must replicate. movsb might work.

 while (count--)

 {

 c = m_historyBuffer[prevIndex];

 if (++prevIndex == sizeof(m_historyBuffer))

 {

 prevIndex = 0;

 }

 m_historyBuffer[m_historyIndex] = c;

 if (++m_historyIndex == sizeof(m_historyBuffer))

 {

 m_historyIndex = 0;

 }

 m_outputBuffer[m_outputCount] = c;

 ++m_outputCount;

 }

 continue;

134 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 output_unencoded:

 // Copy 'count' bytes from stream input to output

 // and add to history.

 while (count--)

 {

 c = *m_pbInputCurrent++;

 m_cBitsRemaining -= 8;

 m_historyBuffer[m_historyIndex] = c;

 if (++m_historyIndex == sizeof(m_historyBuffer))

 {

 m_historyIndex = 0;

 }

 m_outputBuffer[m_outputCount] = c;

 ++m_outputCount;

 }

 continue;

 }

 }

 // Return the value of the next 'bitCount' bits as unsigned.

 uint32 GetBits(

 uint32 bitCount

)

 {

 while (m_cBitsCurrent < bitCount)

 {

 m_BitsCurrent <<= 8;

 if (m_pbInputCurrent < m_pbInputEnd)

 {

 m_BitsCurrent += *m_pbInputCurrent++;

 }

 m_cBitsCurrent += 8;

 }

 m_cBitsRemaining -= bitCount;

 m_cBitsCurrent -= bitCount;

 uint32 result = m_BitsCurrent >> m_cBitsCurrent;

 m_BitsCurrent &= ((1 << m_cBitsCurrent) - 1);

 return result;

 }

};

135 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

136 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.2.4.2.1.5.3: In some scenarios, Microsoft RDP 8.0 servers set the value of the
tailLen field to 0x0008.

<2> Section 2.2.4.2.1.5.3: In some scenarios, Microsoft RDP 8.0 servers initialize the tailData field
with the following sequence of eight bytes: 0x4C 0x41 0x01 0x00 0xFF 0xFF 0x00 0x10. This data

has no effect on the final image rendered by the Microsoft RDP 8.0 client-side decoder. However, if
any other non-zero sequence of bytes is encountered by the decoder, it will fail to decode the
RFX_PROGRESSIVE_TILE_SIMPLE structure.

<3> Section 2.2.4.2.1.5.4: In some scenarios Microsoft RDP 8.0 servers set the value of the tailLen
field to 0x0008.

<4> Section 2.2.4.2.1.5.4: In some scenarios Microsoft RDP 8.0 servers initialize the tailData field
with the following sequence of eight bytes: 0x4C 0x41 0x01 0x00 0xFF 0xFF 0x00 0x10. This data

has no effect on the final image rendered by the client-side decoder. However, if any other non-zero
sequence of bytes is encountered by the Microsoft RDP 8.0 decoder, it will fail to decode the
RFX_PROGRESSIVE_TILE_FIRST structure.

137 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Change Tracking

This section identifies changes that were made to the [MS-RDPEGFX] protocol document between
the August 2013 and November 2013 releases. Changes are classified as New, Major, Minor,
Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

138 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change type

2.2.2.1

RDPGFX_WIRE_TO_SURFACE_PDU_1

69190

Updated link.

N Content

updated.

2.2.2.11

RDPGFX_START_FRAME_PDU

69190

Re-ordered fields in timestamp.

Y Content

updated.

2.2.4.5

RFX_H264_BITMAP_STREAM

69190

Added section.

Y New content

added.

2.2.4.5.1

RFX_H264_METABLOCK

69190

Added section.

Y New content

added.

2.2.4.5.2

RDPGFX_H264_QUANT_QUALITY

69190

Added section.

Y New content

added.

3.2.8.1.5.1

Performing the First Progressive Pass

70723

Changed state KP to KR for initial

condition of RLGR engine.

N Content

updated.

3.2.8.2.4.1

Performing the First Progressive Pass

70723

Changed state KP to KR for initial

condition of RLGR engine.

N Content

updated.

mailto:protocol@microsoft.com

139 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

8 Index

A

Abstract data model
client (section 3.1.1 75, section 3.3.1 101)
server (section 3.1.1 75, section 3.2.1 86)

Applicability 14

C

Capability negotiation 14
Change tracking 137
Client

abstract data model (section 3.1.1 75, section
3.3.1 101)

higher-layer triggered events (section 3.1.4 75,
section 3.3.4 104)

initialization (section 3.1.3 75, section 3.3.3 104)
local events 75
message processing

graphics message 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message - sending 107
RDPGFX_CACHE_IMPORT_REPLY_PDU message

107
RDPGFX_CACHE_TO_SURFACE_PDU message

105
RDPGFX_CAPS_ADVERTISE_PDU message 107
RDPGFX_CAPS_ADVERTISE_PDU message -

sending 107
RDPGFX_CREATE_SURFACE_PDU message 106
RDPGFX_DELETE_ENCODING_CONTEXT_PDU

message 105
RDPGFX_DELETE_SURFACE_PDU message 106
RDPGFX_END_FRAME_PDU message 106
RDPGFX_EVICT_CACHE_ENTRY_PDU message

105

RDPGFX_FRAME_ACKNOWLEDGE_PDU
message - sending 106

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
message 106

RDPGFX_RESET_GRAPHICS message 106
RDPGFX_SOLIDFILL_PDU message 105
RDPGFX_START_FRAME_PDU message 106
RDPGFX_SURFACE_TO_CACHE_PDU message

105
RDPGFX_SURFACE_TO_SURFACE_PDU

message 105
RDPGFX_WIRE_TO_SURFACE_PDU_1 message

104
RDPGFX_WIRE_TO_SURFACE_PDU_2 message

104
other local events 107
sequencing rules

graphics message - processing 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message - sending 107
RDPGFX_CACHE_IMPORT_REPLY_PDU message

- processing 107

RDPGFX_CACHE_TO_SURFACE_PDU message -
processing 105

RDPGFX_CAPS_ADVERTISE_PDU message -
processing 107

RDPGFX_CAPS_ADVERTISE_PDU message -
sending 107

RDPGFX_CREATE_SURFACE_PDU message -
processing 106

RDPGFX_DELETE_ENCODING_CONTEXT_PDU
message - processing 105

RDPGFX_DELETE_SURFACE_PDU message -
processing 106

RDPGFX_END_FRAME_PDU message -
processing 106

RDPGFX_EVICT_CACHE_ENTRY_PDU message -
processing 105

RDPGFX_FRAME_ACKNOWLEDGE_PDU
message - sending 106

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
message - processing 106

RDPGFX_RESET_GRAPHICS message -
processing 106

RDPGFX_SOLIDFILL_PDU message - processing
105

RDPGFX_START_FRAME_PDU message -
processing 106

RDPGFX_SURFACE_TO_CACHE_PDU message -
processing 105

RDPGFX_SURFACE_TO_SURFACE_PDU
message - processing 105

RDPGFX_WIRE_TO_SURFACE_PDU_1 message
- processing 104

RDPGFX_WIRE_TO_SURFACE_PDU_2 message
- processing 104

timer events (section 3.1.6 75, section 3.3.6
107)

timers (section 3.1.2 75, section 3.3.2 103)

D

Data model - abstract
client (section 3.1.1 75, section 3.3.1 101)
server (section 3.1.1 75, section 3.2.1 86)

Directory service schema elements 74

E

Elements - directory service schema 74

F

Fields - vendor-extensible 14

G

Glossary 9

H

140 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Higher-layer triggered events
client (section 3.1.4 75, section 3.3.4 104)
server (section 3.1.4 75, section 3.2.4 86)

I

Implementer - security considerations 135
Index of security parameters 135
Informative references 10
Initialization

client (section 3.1.3 75, section 3.3.3 104)
server (section 3.1.3 75, section 3.2.3 86)

Introduction 9

L

Local events
client 75
server 75

M

Message processing
client

graphics message 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message - sending 107
RDPGFX_CACHE_IMPORT_REPLY_PDU message

107
RDPGFX_CACHE_TO_SURFACE_PDU message

105
RDPGFX_CAPS_ADVERTISE_PDU message 107
RDPGFX_CAPS_ADVERTISE_PDU message -

sending 107
RDPGFX_CREATE_SURFACE_PDU message 106
RDPGFX_DELETE_ENCODING_CONTEXT_PDU

message 105
RDPGFX_DELETE_SURFACE_PDU message 106
RDPGFX_END_FRAME_PDU message 106
RDPGFX_EVICT_CACHE_ENTRY_PDU message

105
RDPGFX_FRAME_ACKNOWLEDGE_PDU

message - sending 106
RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU

message 106
RDPGFX_RESET_GRAPHICS message 106
RDPGFX_SOLIDFILL_PDU message 105
RDPGFX_START_FRAME_PDU message 106
RDPGFX_SURFACE_TO_CACHE_PDU message

105
RDPGFX_SURFACE_TO_SURFACE_PDU

message 105
RDPGFX_WIRE_TO_SURFACE_PDU_1 message

104
RDPGFX_WIRE_TO_SURFACE_PDU_2 message

104
server

graphics message 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message 89
RDPGFX_CACHE_IMPORT_REPLY_PDU message

- sending 89

RDPGFX_CACHE_TO_SURFACE_PDU message -
sending 87

RDPGFX_CAPS_ADVERTISE_PDU message 89
RDPGFX_CAPS_ADVERTISE_PDU message -

sending 89
RDPGFX_CREATE_SURFACE_PDU message -

sending 88
RDPGFX_DELETE_ENCODING_CONTEXT_PDU

message - sending 87
RDPGFX_DELETE_SURFACE_PDU message -

sending 88
RDPGFX_END_FRAME_PDU message - sending

88
RDPGFX_EVICT_CACHE_ENTRY_PDU message -

sending 88
RDPGFX_FRAME_ACKNOWLEDGE_PDU

message 88
RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU

message - sending 89
RDPGFX_RESET_GRAPHICS message - sending

89
RDPGFX_SOLIDFILL_PDU message - sending

87

RDPGFX_START_FRAME_PDU message -
sending 88

RDPGFX_SURFACE_TO_CACHE_PDU message -
sending 87

RDPGFX_SURFACE_TO_SURFACE_PDU
message - sending 87

RDPGFX_WIRE_TO_SURFACE_PDU_1 message
- sending 86

RDPGFX_WIRE_TO_SURFACE_PDU_2 message
- sending 87

Messages
syntax 15
transport 15

N

Normative references 10

O

Other local events
client 107
server 90

Overview (synopsis) 10

P

Parameters - security index 135
Preconditions 12
Prerequisites 12
Product behavior 136

R

References
informative 10
normative 10

Relationship to other protocols 12

141 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

S

Schema elements - directory service 74
Security

implementer considerations 135
parameter index 135

Sequencing rules
client

graphics message - processing 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message - sending 107
RDPGFX_CACHE_IMPORT_REPLY_PDU message

- processing 107
RDPGFX_CACHE_TO_SURFACE_PDU message -

processing 105
RDPGFX_CAPS_ADVERTISE_PDU message -

processing 107
RDPGFX_CAPS_ADVERTISE_PDU message -

sending 107
RDPGFX_CREATE_SURFACE_PDU message -

processing 106
RDPGFX_DELETE_ENCODING_CONTEXT_PDU

message - processing 105
RDPGFX_DELETE_SURFACE_PDU message -

processing 106
RDPGFX_END_FRAME_PDU message -

processing 106
RDPGFX_EVICT_CACHE_ENTRY_PDU message -

processing 105
RDPGFX_FRAME_ACKNOWLEDGE_PDU

message - sending 106
RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU -

processing 106
RDPGFX_RESET_GRAPHICS message -

processing 106
RDPGFX_SOLIDFILL_PDU message - processing

105
RDPGFX_START_FRAME_PDU message -

processing 106
RDPGFX_SURFACE_TO_CACHE_PDU message -

processing 105
RDPGFX_SURFACE_TO_SURFACE_PDU

message - processing 105
RDPGFX_WIRE_TO_SURFACE_PDU_1 message

- processing 104
RDPGFX_WIRE_TO_SURFACE_PDU_2 message

- processing 104
server

graphics message - processing 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message - processing 89
RDPGFX_CACHE_IMPORT_REPLY_PDU message

- sending 89
RDPGFX_CACHE_TO_SURFACE_PDU message -

sending 87
RDPGFX_CAPS_ADVERTISE_PDU message -

processing 89
RDPGFX_CAPS_ADVERTISE_PDU message -

sending 89
RDPGFX_CREATE_SURFACE_PDU message -

sending 88

RDPGFX_DELETE_ENCODING_CONTEXT_PDU
message - sending 87

RDPGFX_DELETE_SURFACE_PDU message -
sending 88

RDPGFX_END_FRAME_PDU message - sending
88

RDPGFX_EVICT_CACHE_ENTRY_PDU message -
sending 88

RDPGFX_FRAME_ACKNOWLEDGE_PDU
message - processing 88

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
message - sending 89

RDPGFX_RESET_GRAPHICS message - sending
89

RDPGFX_SOLIDFILL_PDU message - sending
87

RDPGFX_START_FRAME_PDU message -
sending 88

RDPGFX_SURFACE_TO_CACHE_PDU message -
sending 87

RDPGFX_SURFACE_TO_SURFACE_PDU
message - sending 87

RDPGFX_WIRE_TO_SURFACE_PDU_1 message

- sending 86
RDPGFX_WIRE_TO_SURFACE_PDU_2 message

- sending 87
Server

abstract data model (section 3.1.1 75, section
3.2.1 86)

higher-layer triggered events (section 3.1.4 75,
section 3.2.4 86)

initialization (section 3.1.3 75, section 3.2.3 86)
local events 75
message processing

graphics message 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message 89
RDPGFX_CACHE_IMPORT_REPLY_PDU message

- sending 89
RDPGFX_CACHE_TO_SURFACE_PDU message -

sending 87
RDPGFX_CAPS_ADVERTISE_PDU message 89
RDPGFX_CAPS_ADVERTISE_PDU message -

sending 89
RDPGFX_CREATE_SURFACE_PDU message -

sending 88
RDPGFX_DELETE_ENCODING_CONTEXT_PDU

message - sending 87
RDPGFX_DELETE_SURFACE_PDU message -

sending 88
RDPGFX_END_FRAME_PDU message - sending

88
RDPGFX_EVICT_CACHE_ENTRY_PDU message -

sending 88
RDPGFX_FRAME_ACKNOWLEDGE_PDU 88
RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU

message - sending 89
RDPGFX_RESET_GRAPHICS message - sending

89
RDPGFX_SOLIDFILL_PDU message - sending

87

142 / 142

[MS-RDPEGFX] — v20131025
 Remote Desktop Protocol: Graphics Pipeline Extension

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

RDPGFX_START_FRAME_PDU message -
sending 88

RDPGFX_SURFACE_TO_CACHE_PDU message -
sending 87

RDPGFX_SURFACE_TO_SURFACE_PDU
message - sending 87

RDPGFX_WIRE_TO_SURFACE_PDU_1 message
- sending 86

RDPGFX_WIRE_TO_SURFACE_PDU_2 message
- sending 87

other local events 90
sequencing rules

graphics message - processing 75
RDPGFX_CACHE_IMPORT_OFFER_PDU

message - processing 89
RDPGFX_CACHE_IMPORT_REPLY_PDU message

- sending 89
RDPGFX_CACHE_TO_SURFACE_PDU message -

sending 87
RDPGFX_CAPS_ADVERTISE_PDU message -

processing 89
RDPGFX_CAPS_ADVERTISE_PDU message -

sending 89

RDPGFX_CREATE_SURFACE_PDU message -
sending 88

RDPGFX_DELETE_ENCODING_CONTEXT_PDU
message - sending 87

RDPGFX_DELETE_SURFACE_PDU message -
sending 88

RDPGFX_END_FRAME_PDU message - sending
88

RDPGFX_EVICT_CACHE_ENTRY_PDU message -
sending 88

RDPGFX_FRAME_ACKNOWLEDGE_PDU
message - processing 88

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
message - sending 89

RDPGFX_RESET_GRAPHICS message - sending
89

RDPGFX_SOLIDFILL_PDU message - sending
87

RDPGFX_START_FRAME_PDU message -
sending 88

RDPGFX_SURFACE_TO_CACHE_PDU message -
sending 87

RDPGFX_SURFACE_TO_SURFACE_PDU
message - sending 87

RDPGFX_WIRE_TO_SURFACE_PDU_1 message
- sending 86

RDPGFX_WIRE_TO_SURFACE_PDU_2 message
- sending 87

timer events (section 3.1.6 75, section 3.2.6 90)
timers (section 3.1.2 75, section 3.2.2 86)

Standards assignments 14
Syntax 15

T

Timer events
client (section 3.1.6 75, section 3.3.6 107)
server (section 3.1.6 75, section 3.2.6 90)

Timers

client (section 3.1.2 75, section 3.3.2 103)
server (section 3.1.2 75, section 3.2.2 86)

Tracking changes 137
Transport 15
Triggered events - higher-layer

client (section 3.1.4 75, section 3.3.4 104)
server (section 3.1.4 75, section 3.2.4 86)

V

Vendor-extensible fields 14
Versioning 14

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.5.1 Client Implementation Requirements
	1.5.2 Server Implementation Requirements

	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 RDPGFX_POINT16
	2.2.1.2 RDPGFX_RECT16
	2.2.1.3 RDPGFX_COLOR32
	2.2.1.4 RDPGFX_PIXELFORMAT
	2.2.1.5 RDPGFX_HEADER
	2.2.1.6 RDPGFX_CAPSET

	2.2.2 Graphics Messages
	2.2.2.1 RDPGFX_WIRE_TO_SURFACE_PDU_1
	2.2.2.2 RDPGFX_WIRE_TO_SURFACE_PDU_2
	2.2.2.3 RDPGFX_DELETE_ENCODING_CONTEXT_PDU
	2.2.2.4 RDPGFX_SOLIDFILL_PDU
	2.2.2.5 RDPGFX_SURFACE_TO_SURFACE_PDU
	2.2.2.6 RDPGFX_SURFACE_TO_CACHE_PDU
	2.2.2.7 RDPGFX_CACHE_TO_SURFACE_PDU
	2.2.2.8 RDPGFX_EVICT_CACHE_ENTRY_PDU
	2.2.2.9 RDPGFX_CREATE_SURFACE_PDU
	2.2.2.10 RDPGFX_DELETE_SURFACE_PDU
	2.2.2.11 RDPGFX_START_FRAME_PDU
	2.2.2.12 RDPGFX_END_FRAME_PDU
	2.2.2.13 RDPGFX_FRAME_ACKNOWLEDGE_PDU
	2.2.2.14 RDPGFX_RESET_GRAPHICS_PDU
	2.2.2.15 RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
	2.2.2.16 RDPGFX_CACHE_IMPORT_OFFER_PDU
	2.2.2.16.1 RDPGFX_CACHE_ENTRY_METADATA

	2.2.2.17 RDPGFX_CACHE_IMPORT_REPLY_PDU
	2.2.2.18 RDPGFX_CAPS_ADVERTISE_PDU
	2.2.2.19 RDPGFX_CAPS_CONFIRM_PDU
	2.2.2.20 RDPGFX_MAP_SURFACE_TO_WINDOW_PDU

	2.2.3 Capability Sets
	2.2.3.1 RDPGFX_CAPSET_VERSION8
	2.2.3.2 RDPGFX_CAPSET_VERSION81

	2.2.4 Bitmap Compression
	2.2.4.1 CLEARCODEC_BITMAP_STREAM
	2.2.4.1.1 CLEARCODEC_COMPOSITE_PAYLOAD
	2.2.4.1.1.1 CLEARCODEC_RESIDUAL_DATA
	2.2.4.1.1.1.1 CLEARCODEC_RGB_RUN_SEGMENT

	2.2.4.1.1.2 CLEARCODEC_BANDS_DATA
	2.2.4.1.1.2.1 CLEARCODEC_BAND
	2.2.4.1.1.2.1.1 CLEARCODEC_VBAR
	2.2.4.1.1.2.1.1.1 VBAR_CACHE_HIT
	2.2.4.1.1.2.1.1.2 SHORT_VBAR_CACHE_HIT
	2.2.4.1.1.2.1.1.3 SHORT_VBAR_CACHE_MISS

	2.2.4.1.1.3 CLEARCODEC_SUBCODECS_DATA
	2.2.4.1.1.3.1 CLEARCODEC_SUBCODEC
	2.2.4.1.1.3.1.1 CLEARCODEC_SUBCODEC_RLEX
	2.2.4.1.1.3.1.1.1 RLEX_RGB_TRIPLET
	2.2.4.1.1.3.1.1.2 CLEARCODEC_SUBCODEC_RLEX_SEGMENT

	2.2.4.2 RFX_PROGRESSIVE_BITMAP_STREAM
	2.2.4.2.1 RFX_PROGRESSIVE_DATABLOCK
	2.2.4.2.1.1 RFX_PROGRESSIVE_SYNC
	2.2.4.2.1.2 RFX_PROGRESSIVE_FRAME_BEGIN
	2.2.4.2.1.3 RFX_PROGRESSIVE_FRAME_END
	2.2.4.2.1.4 RFX_PROGRESSIVE_CONTEXT
	2.2.4.2.1.5 RFX_PROGRESSIVE_REGION
	2.2.4.2.1.5.1 RFX_PROGRESSIVE_CODEC_QUANT
	2.2.4.2.1.5.2 RFX_COMPONENT_CODEC_QUANT
	2.2.4.2.1.5.3 RFX_PROGRESSIVE_TILE_SIMPLE
	2.2.4.2.1.5.4 RFX_PROGRESSIVE_TILE_FIRST
	2.2.4.2.1.5.5 RFX_PROGRESSIVE_TILE_UPGRADE

	2.2.4.3 RFX_PROGRESSIVE_V2_BITMAP_STREAM
	2.2.4.3.1 RFX_PROGRESSIVE_V2_DATABLOCK
	2.2.4.3.1.1 RFX_PROGRESSIVE_V2_UPDATE_QUALITY_TABLE
	2.2.4.3.1.1.1 RFX_PROGRESSIVE_V2_CODEC_QUANT

	2.2.4.3.1.2 RFX_PROGRESSIVE_V2_NEW_CONTEXT
	2.2.4.3.1.2.1 RFX_PROGRESSIVE_V2_DWT_CONTEXT_INFO

	2.2.4.3.1.3 RFX_PROGRESSIVE_V2_UPGRADE_CONTEXT
	2.2.4.3.1.4 RFX_PROGRESSIVE_V2_CONTEXT_DATA_NEW
	2.2.4.3.1.5 RFX_PROGRESSIVE_V2_ CONTEXT_DATA_UPGRADE
	2.2.4.3.1.6 RFX_PROGRESSIVE_V2_CHANGE_CONTEXT_GEOMETRY
	2.2.4.3.1.6.1 RFX_PROGRESSIVE_V2_MOVING_PART

	2.2.4.4 ALPHACODEC_BITMAP_STREAM
	2.2.4.4.1 CLEARCODEC_ALPHA_RLE_SEGMENT

	2.2.4.5 RFX_H264_BITMAP_STREAM
	2.2.4.5.1 RFX_H264_METABLOCK
	2.2.4.5.2 RDPGFX_H264_QUANT_QUALITY

	2.2.5 Data Packaging
	2.2.5.1 RDP_SEGMENTED_DATA
	2.2.5.2 RDP_DATA_SEGMENT
	2.2.5.3 RDP8_BULK_ENCODED_DATA

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Processing a Graphics Message

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.8 Bitmap Compression
	3.1.8.1 RemoteFX Progressive Codec Compression
	3.1.8.1.1 General Terms and Concepts
	3.1.8.1.2 Sub-Band Diffing
	3.1.8.1.3 Extra Quantization
	3.1.8.1.4 State Tracking
	3.1.8.1.5 Simplified Run-Length (SRL)
	3.1.8.1.5.1 Zero Run-Length Encoding
	3.1.8.1.5.2 Unary Encoding

	3.1.8.1.6 Summary of Terms

	3.1.8.2 RemoteFX Progressive v.2 Codec Compression
	3.1.8.2.1 General Terms and Concepts
	3.1.8.2.2 Extra Quantization
	3.1.8.2.3 Simplified Run-Length (SRL)
	3.1.8.2.4 Summary of Terms

	3.1.9 Bulk Data Compression
	3.1.9.1 RDP 8.0
	3.1.9.1.1 Overview
	3.1.9.1.2 Detailed Description
	3.1.9.1.2.1 De-Blocking
	3.1.9.1.2.2 Compressed Segment Header
	3.1.9.1.2.3 Compressed Segment Bit Stream
	3.1.9.1.2.4 Compressed Segment Trailer
	3.1.9.1.2.5 Bit Stream Encoding Examples

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.1.1 Bitmap Cache Map
	3.2.1.2 Unacknowledged Frames

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_1 message
	3.2.5.2 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_2 message
	3.2.5.3 Sending an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message
	3.2.5.4 Sending an RDPGFX_SOLIDFILL_PDU message
	3.2.5.5 Sending an RDPGFX_SURFACE_TO_SURFACE_PDU message
	3.2.5.6 Sending an RDPGFX_SURFACE_TO_CACHE_PDU message
	3.2.5.7 Sending an RDPGFX_CACHE_TO_SURFACE_PDU message
	3.2.5.8 Sending an RDPGFX_EVICT_CACHE_ENTRY_PDU message
	3.2.5.9 Sending an RDPGFX_CREATE_SURFACE_PDU message
	3.2.5.10 Sending an RDPGFX_DELETE_SURFACE_PDU message
	3.2.5.11 Sending an RDPGFX_START_FRAME_PDU message
	3.2.5.12 Sending an RDPGFX_END_FRAME_PDU message
	3.2.5.13 Processing an RDPGFX_FRAME_ACKNOWLEDGE_PDU message
	3.2.5.14 Sending an RDPGFX_RESET_GRAPHICS_PDU message
	3.2.5.15 Sending an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message
	3.2.5.16 Processing an RDPGFX_CACHE_IMPORT_OFFER_PDU message
	3.2.5.17 Sending an RDPGFX_CACHE_IMPORT_REPLY_PDU message
	3.2.5.18 Processing an RDPGFX_CAPS_ADVERTISE_PDU message
	3.2.5.19 Sending an RDPGFX_CAPS_CONFIRM_PDU message
	3.2.5.20 Sending an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message

	3.2.6 Timer Events
	3.2.7 Other Local Events
	3.2.8 Bitmap Compression
	3.2.8.1 RemoteFX Progressive Codec Compression
	3.2.8.1.1 Color Conversion (RGB to YCbCr)
	3.2.8.1.2 DWT
	3.2.8.1.2.1 Original Method
	3.2.8.1.2.2 Reduce-Extrapolate Method

	3.2.8.1.3 Quantization and Linearization
	3.2.8.1.4 Sub-Band Diffing
	3.2.8.1.5 Progressive Entropy Encoding
	3.2.8.1.5.1 Performing the First Progressive Pass
	3.2.8.1.5.2 Performing Upgrade Progressive Passes
	3.2.8.1.5.2.1 Sending Raw Bits

	3.2.8.1.5.3 Maintaining the Decoder Reference

	3.2.8.2 RemoteFX Progressive v.2 Codec Compression
	3.2.8.2.1 Color Conversion (RGB to YCbCr)
	3.2.8.2.2 DWT
	3.2.8.2.2.1 Original Method Applied to Odd Sizes
	3.2.8.2.2.2 Reduce-Extrapolate Method on even sizes
	3.2.8.2.2.3 DWT passes

	3.2.8.2.3 Quantization and Linearization
	3.2.8.2.4 Progressive Entropy Encoding
	3.2.8.2.4.1 Performing the First Progressive Pass
	3.2.8.2.4.2 Performing Upgrade Progressive Passes
	3.2.8.2.4.2.1 Sending Raw Bits

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.1.1 Codec Contexts
	3.3.1.2 Progressive Tile Contexts
	3.3.1.3 Sub-Band Diffing Tile Contexts
	3.3.1.4 Bitmap Cache
	3.3.1.5 Persistent Bitmap Cache
	3.3.1.6 Offscreen Surface
	3.3.1.7 Graphics Output Buffer
	3.3.1.8 Surface to Output Mapping
	3.3.1.9 Decompressor Glyph Storage
	3.3.1.10 V-Bar Storage
	3.3.1.11 V-Bar Storage Cursor
	3.3.1.12 Short-V-Bar Storage
	3.3.1.13 Short V-Bar Storage Cursor
	3.3.1.14 Confirmed Graphics Capabilities
	3.3.1.15 Surface to Window Mapping

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_1 message
	3.3.5.2 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_2 message
	3.3.5.3 Processing an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message
	3.3.5.4 Processing an RDPGFX_SOLIDFILL_PDU message
	3.3.5.5 Processing an RDPGFX_SURFACE_TO_SURFACE_PDU message
	3.3.5.6 Processing an RDPGFX_SURFACE_TO_CACHE_PDU message
	3.3.5.7 Processing an RDPGFX_CACHE_TO_SURFACE_PDU message
	3.3.5.8 Processing an RDPGFX_EVICT_CACHE_ENTRY_PDU message
	3.3.5.9 Processing an RDPGFX_CREATE_SURFACE_PDU message
	3.3.5.10 Processing an RDPGFX_DELETE_SURFACE_PDU message
	3.3.5.11 Processing an RDPGFX_START_FRAME_PDU message
	3.3.5.12 Processing an RDPGFX_END_FRAME_PDU message
	3.3.5.13 Sending an RDPGFX_FRAME_ACKNOWLEDGE_PDU message
	3.3.5.14 Processing an RDPGFX_RESET_GRAPHICS_PDU message
	3.3.5.15 Processing an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message
	3.3.5.16 Sending an RDPGFX_CACHE_IMPORT_OFFER_PDU message
	3.3.5.17 Processing an RDPGFX_CACHE_IMPORT_REPLY_PDU message
	3.3.5.18 Sending an RDPGFX_CAPS_ADVERTISE_PDU message
	3.3.5.19 Processing an RDPGFX_CAPS_CONFIRM_PDU message
	3.3.5.20 Processing an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message

	3.3.6 Timer Events
	3.3.7 Other Local Events
	3.3.8 Bitmap Compression
	3.3.8.1 ClearCodec Compression
	3.3.8.1.1 ClearCodec Run-Length Encoding
	3.3.8.1.2 Decompressing a Bitmap

	3.3.8.2 RemoteFX Progressive Codec Compression
	3.3.8.2.1 Progressive Entropy Decode
	3.3.8.2.1.1 Performing the First Progressive Pass
	3.3.8.2.1.2 Performing the Upgrade Progressive Passes

	3.3.8.2.2 Inverse DWT
	3.3.8.2.3 Color Conversion

	3.3.8.3 RemoteFX Progressive v.2 Codec Compression
	3.3.8.3.1 Progressive Entropy Decode
	3.3.8.3.1.1 Performing the First Progressive Pass
	3.3.8.3.1.2 Performing the Upgrade Progressive Passes

	3.3.8.3.2 Inverse DWT
	3.3.8.3.3 Color Conversion

	4 Protocol Examples
	4.1 Bitmap Compression
	4.1.1 ClearCodec Compression
	4.1.1.1 Example 1
	4.1.1.2 Example 2
	4.1.1.3 Example 3
	4.1.1.4 Example 4
	4.1.1.5 Example 5

	4.2 Bulk Data Compression
	4.2.1 RDP 8.0
	4.2.1.1 Compression Samples
	4.2.1.1.1 Example 1
	4.2.1.1.2 Example 2
	4.2.1.1.3 Example 3
	4.2.1.1.4 Example 4
	4.2.1.1.5 Example 5

	4.2.1.2 Sample Code

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

