[MS-RDPEGDI]:
Remote Desktop Protocol:
Graphics Device Interface (GDI) Acceleration Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

= Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

= Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

= No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

= Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

= Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

= Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

1/284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

Revision Summary

Revision Revision
Date History Class Comments
02/22/2007 | 0.01 MCPP Milestone 3 Initial Availability
06/01/2007 1.0 Major Updated and revised the technical content.
07/03/2007 1.1 Minor Minor technical content updates.
07/20/2007 1.1.1 Editorial Revised and edited the technical content.
08/10/2007 1.2 Minor Updated content based on feedback.
09/28/2007 1.3 Minor Made technical and editorial changes based on
feedback.
10/23/2007 | 1.3.1 Editorial Revised and edited the technical content.
11/30/2007 1.4 Minor Made technical and editorial changes based on
feedback.
01/25/2008 2.0 Major Updated and revised the technical content.
03/14/2008 3.0 Major Updated and revised the technical content.
05/16/2008 3.0.1 Editorial Revised and edited the technical content.
06/20/2008 3.1 Minor Updated the technical content.
07/25/2008 3.2 Minor Updated the technical content.
08/29/2008 3.3 Minor Updated the technical content.
10/24/2008 | 3.3.1 Editorial Revised and edited the technical content.
12/05/2008 | 4.0 Major Updated and revised the technical content.
01/16/2009 5.0 Major Updated and revised the technical content.
02/27/2009 | 5.0.1 Editorial Revised and edited the technical content.
04/10/2009 | 5.0.2 Editorial Revised and edited the technical content.
05/22/2009 6.0 Major Updated and revised the technical content.
07/02/2009 7.0 Major Updated and revised the technical content.
08/14/2009 8.0 Major Updated and revised the technical content.
09/25/2009 8.1 Minor Updated the technical content.
11/06/2009 9.0 Major Updated and revised the technical content.
12/18/2009 10.0 Major Updated and revised the technical content.

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2/284

Revision Revision

Date History Class Comments
01/29/2010 11.0 Major Updated and revised the technical content.
03/12/2010 12.0 Major Updated and revised the technical content.
04/23/2010 12.0.1 Editorial Revised and edited the technical content.
06/04/2010 13.0 Major Updated and revised the technical content.
07/16/2010 14.0 Major Significantly changed the technical content.
08/27/2010 15.0 Major Significantly changed the technical content.
10/08/2010 16.0 Major Significantly changed the technical content.
11/19/2010 17.0 Major Significantly changed the technical content.
01/07/2011 18.0 Major Significantly changed the technical content.
02/11/2011 19.0 Major Significantly changed the technical content.
03/25/2011 20.0 Major Significantly changed the technical content.
05/06/2011 20.0 No change No changes to the meaning, language, or formatting of
the technical content.
06/17/2011 | 21.0 Major Significantly changed the technical content.
09/23/2011 | 22.0 Major Significantly changed the technical content.
12/16/2011 | 23.0 Major Significantly changed the technical content.
03/30/2012 24.0 Major Significantly changed the technical content.
07/12/2012 25.0 Major Significantly changed the technical content.
10/25/2012 26.0 Major Significantly changed the technical content.
01/31/2013 26.1 Minor Clarified the meaning of the technical content.
08/08/2013 27.0 Major Significantly changed the technical content.
11/14/2013 27.0 No change No changes to the meaning, language, or formatting of

the technical content.

3/284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Contents

N 1 3 o oo Y LT ot o'oY o 12
3 A €] [0 111 oV PP 12
B U= =1 o <] o Lol PP 13

1.2.1 NOIrmMative Ref@rENCES . vttt e s s e e e aeanes 13
1.2.2 INformative RefEIrENCES .. vttt et a e 14
G O O 1 7= T 1 15
1.3.1 Accelerated GraphiCs .iuiiiiiiii i e e 15

3 G 0 5= o = 15
1.3.1.2 Drawing OIS c vttt iitiiii it ettt e et a ettt a e et e e e e e e aneaaeaaeans 16
1.3.1.2.1 Primary Drawing Ordersoceieiiiiiiiiiiiiiiiii e s a s a e e 17
1.3.1.2.2 Secondary Drawing Orders ...cuiiiiiiiiiiiiiiii et are e aeeeas 17
1.3.1.2.3 Alternate Secondary Drawing Orderscoceiuiiiiiiiiiiiiiniiiinreneseeeaes 18

BINC J INC J 'o Y ol @] o o 1 o] o | PP 18
1.3.2 BUlK Data ComPreSSiON (vt ittt it e et et a ettt ettt e r e ne e e aaeanes 18
1.3.2.1 R 5.0ttt 18

G T U] T R PP 19
1.4 Relationship to Other ProtoCoIS.o e 19
1.5 Prerequisites/PreconditionNs .. .o 19
1.6 Applicability Statement.o 19
1.7 Versioning and Capability Negotiation..........covuiiiiiiiii e 19
1.8 Vendor-Extensible Fields......viiiiiiii i e 19
1.9 Standards ASSIGNMENTES ... e 19

B =TT T = 20
20 R I =1 1= o To] o P 20
A A =TTt Lo TSI VA 11 =) P 20

2.2.1 Capabilify SeES .ttt 20
2.2.1.1 Color Table Cache Capability Set (TS_COLORTABLE_CAPABILITYSET) 20
2.2.1.2 DrawNineGrid Cache Capability Set (TS_DRAW_NINEGRID_CAPABILITYSET) ..
2.2.1.3 Draw GDI+ Capability Set (TS_DRAW_GDIPLUS_CAPABILITYSET) ...c.vvvvvvnnenn. 21

2.2.1.3.1 GDI+ Cache Entries (TS_GDIPLUS_CACHE_ENTRIES)......ccoovitiiiiiinieinnnens 23
2.2.1.3.2 GDI+ Cache Chunk Size (TS_GDIPLUS_CACHE_CHUNK_SIZE).........ccvvuuens 24
2.2.1.3.3 GDI+ Image Cache Properties

(TS_GDIPLUS_IMAGE_CACHE_PROPERTIES) ..uvitiiiiiiieiiiiieiiieieieesaienaaens 24

2.2.2 Accelerated GraphiCs ..iiiiiiiii i e 25

2.2.2.1 Orders Update (TS_UPDATE_ORDERS_PDU_DATA) ...ttt aen 25
2.2.2.1.1 Drawing Order (DRAWING_ORDER)iceitiitiiiieiiiiiatiieineieaanerasneasanereanens 26
2.2.2.2 Fast-Path Orders Update (TS_FP_UPDATE_ORDERS).....ccccviviiiiiiiiiiiiiienieen, 26
2.2.2.2.1 Drawing Order (DRAWING_ORDER)ictitiiiitiieiiiiiaiiieieieaenesaeneasaneseanens 26
2.2.2.2.1.1 Primary Drawing Ordersccouiiiieiiiiiiiiiiiae ettt e e eees 27
2.2.2.2.1.1.1 CommON Data TYPES ..uuuiieiiiiiiiie it 27
2.2.2.2.1.1.1.1 Coord Field (COORD_FIELD)citiiiitiiiiniiiiieieieieeeneeenenneees 27
2.2.2.2.1.1.1.2 One-Byte Header Variable Field (VARIABLE1_FIELD)............... 28
2.2.2.2.1.1.1.3 Two-Byte Header Variable Field (VARIABLE2_FIELD) 28
2.2.2.2.1.1.1.4 Delta-Encoded Points (DELTA_PTS_FIELD)coccvvviiiiieinnnnnn. 28
2.2.2.2.1.1.1.5 Delta-Encoded Rectangles (DELTA_RECTS_FIELD).................. 29
2.2.2.2.1.1.1.6 Binary Raster Operation (ROP2_OPERATION)cccvvvvvveinnnnnn. 30
2.2.2.2.1.1.1.7 Ternary Raster Operation Index (ROP3_OPERATION_INDEX) ... 32
2.2.2.2.1.1.1.8 Generic Color (TS_COLOR) ...ttt 47
2.2.2.2.1.1.1.9 Fill Mode (FILL_MODE) ...ctiitiiiiiiiiiiii s e e 48

4/284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.2.2.1.1.2 Primary Drawing Order (PRIMARY_DRAWING_ORDER) 48
2.2.2.2.1.1.2.1 DstBIt (DSTBLT_ORDER) ...ttt 52
2.2.2.2.1.1.2.2 MultiDstBIt (MULTI_DSTBLT_ORDER)cuiiiiiieieieieieieinenenenn 53
2.2.2.2.1.1.2.3 PatBlt (PATBLT_ORDER) ...ttt 54
2.2.2.2.1.1.2.4 MultiPatBlt (MULTI_PATBLT_ORDER)......coiviuiininiiniiiniiininenn, 58
2.2.2.2.1.1.2.5 OpaqueRect (OPAQUERECT_ORDER).......ccciiiiieeieieieieininanannn. 59
2.2.2.2.1.1.2.6 MultiOpaqueRect (MULTI_OPAQUERECT_ORDER)cevvvuvnnn. 60
2.2.2.2.1.1.2.7 ScrBIt (SCRBLT_ORDER) ..ot e 61
2.2.2.2.1.1.2.8 MultiScrBlt (MULTI_SCRBLT_ORDER)vviviiinininiiiininiainnnnan, 62
2.2.2.2.1.1.2.9 MemBIlt (MEMBLT_ORDER) ...ccitiiiiiiiiiiiieieere e eenen 63
2.2.2.2.1.1.2.10 Mem3BIt (MEM3BLT_ORDER)ccciviiiiiiiiiiiiiinniiannaneaeann 65
2.2.2.2.1.1.2.11 LineTo (LINETO_ORDER)ccciviiiiiiiiiiiiiiiiiiinniiana e 67
2.2.2.2.1.1.2.12 SaveBitmap (SAVEBITMAP_ORDER)c.ccciiiiiieieieieieininenenen, 68
2.2.2.2.1.1.2.13 GlyphIndex (GLYPHINDEX_ORDER)......cccoiviiiiiiniiniiininiinnn, 70
2.2.2.2.1.1.2.14 FastIndex (FASTINDEX_ORDER)ccivuiiiiiiiiieinieeeieeenenenn 73
2.2.2.2.1.1.2.15 FastGlyph (FASTGLYPH_ORDER).......cccviviuiiininiinininiinnean, 75
2.2.2.2.1.1.2.16 PolygonSC (POLYGON_SC_ORDER)cccviiiieiiieieieieeeenanenens 77
2.2.2.2.1.1.2.17 PolygonCB (POLYGON_CB_ORDER)ccciiiiiieieieieieieinenenenen, 78
2.2.2.2.1.1.2.18 Polyline (POLYLINE_ORDER)cccvviiiiiiiiiiiiiininiiinnaneeaenn 79
2.2.2.2.1.1.2.19 EllipseSC (ELLIPSE_SC_ORDER)iiiiiiiiiiiiie e 80
2.2.2.2.1.1.2.20 EllipseCB (ELLIPSE_CB_ORDER)ciciiiiiiiiiiiiinn e, 81
2.2.2.2.1.1.2.21 DrawNineGrid (DRAWNINEGRID_ORDER)cccoevuierernrnnnnnn. 82
2.2.2.2.1.1.2.22 MultiDrawNineGrid (MULTI_DRAWNINEGRID_ORDER) 83

2.2.2.2.1.2 Secondary Drawing OFdEersScciuviiiiiiiiiiiii i eraeeseees 84
2.2.2.2.1.2.1 CommON Data TYPES ..uuuiieiiiiiiieiiiitiiei st e s 84
2.2.2.2.1.2.1.1 Secondary Drawing Order Header
(SECONDARY_DRAWING_ORDER_HEADER)ccivvveiinenenene. 84
2.2.2.2.1.2.1.2 Two-Byte Unsigned Encoding
(TWO_BYTE_UNSIGNED_ENCODING) ..uvuvueneererernnnnnananenenenss 85
2.2.2.2.1.2.1.3 Two-Byte Signed Encoding (TWO_BYTE_SIGNED_ENCODING) . 86
2.2.2.2.1.2.1.4 Four-Byte Unsigned Encoding
(FOUR_BYTE_UNSIGNED_ENCODING) +.euvuieenereinnnnnananenenenes 87

2.2.2.2.1.2.2 Cache Bitmap - Revision 1 (CACHE_BITMAP_ORDER)c.cceuuvuns 87

2.2.2.2.1.2.3 Cache Bitmap - Revision 2 (CACHE_BITMAP_REV2_ORDER).......... 89

2.2.2.2.1.2.4 Cache Color Table (CACHE_COLOR_TABLE_ORDER)cccccveuannns 92
2.2.2.2.1.2.4.1 Color Quad (TS_COLOR_QUAD) ..cuviiiriiiiiniieeeneaerereeeenenenens 92

2.2.2.2.1.2.5 Cache Glyph - Revision 1 (CACHE_GLYPH_ORDER)..........cccveveranns 93
2.2.2.2.1.2.5.1 Cache Glyph Data (TS_CACHE_GLYPH_DATA)cccvvveiviiininnnn. 94

2.2.2.2.1.2.6 Cache Glyph - Revision 2 (CACHE_GLYPH_REV2_ORDER) 94
2.2.2.2.1.2.6.1 Cache Glyph Data - Revision 2

(TS_CACHE_GLYPH_DATA_REV2) ettt eeeens 96

2.2.2.2.1.2.7 Cache Brush (CACHE_BRUSH_ORDER)ccciviiiiiiiiiiiiiiiinineieaans 97
2.2.2.2.1.2.7.1 Compressed Color Brush (COMPRESSED_COLOR_BRUSH) 98

2.2.2.2.1.2.8 Cache Bitmap - Revision 3 (CACHE_BITMAP_REV3_ORDER)......... 103

2.2.2.2.1.3 Alternate Secondary Drawing Orders........c.oevieieiiieieniiiiiiennineneanens 105

2.2.2.2.1.3.1 CommON Data TYPES ..uciriiieiiiiii i aa 105

2.2.2.2.1.3.1.1 Alternate Secondary Drawing Order Header
(ALTSEC_DRAWING_ORDER_HEADER).....ccvtitiiiiiiiiinieenenens 105

2.2.2.2.1.3.2 Create Offscreen Bitmap (CREATE_OFFSCR_BITMAP_ORDER) 106
2.2.2.2.1.3.2.1 Offscreen Cache Delete List (OFFSCR_DELETE_LIST) 107

2.2.2.2.1.3.3 Switch Surface (SWITCH_SURFACE_ORDER)cecvvviiiiiieininennnn 107

2.2.2.2.1.3.4 Create NineGrid Bitmap (CREATE_NINEGRID_BITMAP_ORDER)108
2.2.2.2.1.3.4.1 NineGrid Bitmap Information (NINEGRID_BITMAP_INFO) 109

5/284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.2.2.1.3.4.1.1 Color Reference (TS_COLORREF)cccoeieiiiiiiiiiiiiiiieenans 110
2.2.2.2.1.3.5 Stream Bitmap Ordersciciiiiiiiiiiii e 110
2.2.2.2.1.3.5.1 Stream Bitmap First (STREAM_BITMAP_FIRST_ORDER) 111
2.2.2.2.1.3.5.2 Stream Bitmap Next (STREAM_BITMAP_NEXT_ORDER).......... 112
2.2.2.2.1.3.6 GDI4 OFdeIS uiuiiriiiniiitiitiei ettt s e s s aaneraeaeanenerens 113
2.2.2.2.1.3.6.1 CommON Data TyPeS.....uiiiuiiiiiiiiiiiiiiiir e 113
2.2.2.2.1.3.6.1.1 GDI+ Cache Type (DRAW_GDIPLUS_CACHE_TYPE).......... 113
2.2.2.2.1.3.6.2 Draw GDI+ Cache First
(DRAW_GDIPLUS_CACHE_FIRST_ORDER)ccicvvviiiieiienennn, 114
2.2.2.2.1.3.6.3 Draw GDI+ Cache Next
(DRAW_GDIPLUS_CACHE_NEXT_ORDER)cccvvviiiiiiiinenennen 115
2.2.2.2.1.3.6.4 Draw GDI+ Cache End
(DRAW_GDIPLUS_CACHE_END_ORDER) ...cvvviiiiiiiiieiieieean 115
2.2.2.2.1.3.6.5 Draw GDI+ First (DRAW_GDIPLUS_FIRST_ORDER) 116
2.2.2.2.1.3.6.6 Draw GDI+ Next (DRAW_GDIPLUS_NEXT_ORDER)................ 117
2.2.2.2.1.3.6.7 Draw GDI+ End (DRAW_GDIPLUS_END_ORDER)cevvvens 118
2.2.2.2.1.3.7 Frame MarKerciiiiiiiii s e e e e 119
2020 G T =1 o o ol ©(e T 11 (o] 1= 119
2.2.2.3.1 Client Bitmap Cache Error PDUccoiiiiiiiiiiiiiiciiii i 119
2.2.2.3.1.1 Bitmap Cache Error PDU Data (TS_BITMAP_CACHE_ERROR_PDU)...... 120
2.2.2.3.1.1.1 Bitmap Cache Error Info (TS_BITMAP_CACHE_ERROR_INFO) 121
2.2.2.3.2 Client Offscreen Bitmap Cache Error PDUcccoiiiiiiiiiiiiiininieieieieeneens 122
2.2.2.3.2.1 Offscreen Bitmap Cache Error PDU Data
(TS_OFFSCRCACHE_ERROR_PDU) c.tuiiiiiiiiiiiiiiiene s st a e ees 123
2.2.2.3.3 Client DrawNineGrid Cache Error PDUcciieiiiiiiiiiiiiiiie i rieriesneenennennens 124
2.2.2.3.3.1 DrawNineGrid Cache Error PDU Data
(TS_DRAWNINEGRID_ERROR_PDU)...iititiiiiiiiiiiieiiiiiiieneeienaaenanenes 125
2.2.2.3.4 Client GDI4 Error PDU ...ovieiiiiiii ettt e e e s e nnsaeenaeneas 126
2.2.2.3.4.1 GDI+ Error PDU Data (TS_DRAWGDIPLUS_ERROR_PDU)cccveunens 127
2.2.2.4 Bulk Data CompPrasSSiON vttt a e 128
2.2.2.4.1 RDP 6.1 Compressed Data (RDP61_COMPRESSED_DATA) ...cccvvvvvviiininennns 128
2.2.2.4.1.1 RDP 6.1 Match Details (RDP61_MATCH_DETAILS) ...ccovvvviiiiiiiiiiennns 129
2.2.2.5 Bitmap CoOmMPIrESSION (i eiiiit it iir e r e e 129
2.2.2.5.1 RDP 6.0 Bitmap Compressed Bitmap Stream (RDP6_BITMAP_STREAM)129
2.2.2.5.1.1 RDP 6.0 RLE Segments (RDP6_RLE_SEGMENTS)ccovvvviiiiiiniininennnns 131
2.2.2.5.1.2 RDP 6.0 RLE Segment (RDP6_RLE_SEGMENT)cccvvviiiiiiiiiiieininennns 132
3 Protocol Details . ..cicciiiirieriarirmassassassa s s s s sanssassassassansasssnsanssnssnnsannansansnnnnnnn 134
3.1 COMMON DETaAIIS 1ttt e 134
3.1.1 Abstract Data Modelcciriiiiiiii e 134
T O O A 7= T 1= PP 134
3.1.1.1.1 BitmMap CaChes . ittt e 134
3.1.1.1.2 Glyph and Fragment Cach@sccouiiiiiiiiiiii e e 136
3.1.1.1.3 Color Table Cacheouiiiiiiiii e e a e e 136
3.1.1.1.4 Brush Calhes. . .ciiiiiiiiiii it 136
3.1.1.1.5 Offscreen Bitmap Cach@o.iiiiiiiiiiiii e 137
3.1.1.1.6 NineGrid Bitmap Cacheouiiiiiii e 137
3.1.1.1.7 GDI4 CaAChES e ittt ittt e 137
0 0 I 0 1= o= 137
3.1.3 INItAliZation .ooveiii e 137
3.1.4 Higher-Layer Triggered EVENESouiiiiiiii e 137
3.1.5 Processing Events and Sequencing RUIES.........ccoviiiiiiiiiiiiiii e 138
0 T I 0 g =Tl Y =T 1 S 138
6 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3.1.7 Other LoCal EVENTS .. .ciuiiiii i et e 138
3.1.8 Bulk Data ComPrasSSioN cuuiui ittt e 138
0 2 O 2 7 T 0 PP 138
3.1.8.1.1 Abstract Data Modeloiiiiiiiii e 138
3.1.8.1.2 Compressing Datacccviiiiiiiiiiiii i s e 138
3.1.8.1.3 Decompressing Data......c.cooeiiiiiiiiiiii e 139
3.1.8.1.4 Wire FOrmMat oo e 139
3.1.8.1.4.1 Literal, EOS, and Copy-Offset Tables........cccoiiiiiiiiiiieieens 139
3.1.8.1.4.2 Length-of-Match Tables.....ccoiiiiiiii e 144
3.1.8.1.4.3 Encoding the Logically Compressed Streamcccovviiiiiiiiiiniiinennnns 146
3.1.8.1.4.3.1 Encoding the Copy-Offsel.....cccciiiiiiiiiiiiii e 147
3.1.8.1.4.3.1.1 Examples of Copy-Offset ENncoding........ccceviviiiiiiiiiiiiiininennens 147
3.1.8.1.4.3.2 Encoding the Length-of-Match ... 147
3.1.8.1.4.3.2.1 Examples of Length-of-Match Encodingc.ccoceviiiivinnnnens 148
3.1.8.1.4.4 Decoding a Compressed Streamcocvieiiiiiiiniiiiree e 148
3.1.8.1.4.4.1 Decoding the Copy-Offselcccciiiiiiiiiiiiiic e 149
3.1.8.1.4.4.1.1 Examples of Copy-Offset Decodingcccvivirieieinieieininnnnnenes 150
3.1.8.1.4.4.2 Decoding the Length-of-Match ... 150
3.1.8.1.4.4.2.1 Examples of Length-of-Match Decoding..........c.ccvvviiiiiiinnnnnns 150
0 0 o 7 Y P 151
3.1.8.2.1 Abstract Data Modeloviiiiiiiiii i 151
3.1.8.2.2 Compressing Dataccociuiiiiiiiiiiiii e 154
3.1.8.2.2.1 Data Compression EXample ..o 155
3.1.8.2.2.2 Setting Compression and Extended Compression Flags................c.vus 157
3.1.8.2.3 Decompressing Data......c..cooeiiiiiiiiiiii e 158
3.1.8.2.3.1 Data Decompression EXamplecooiiiiiiiiiiiiiiiii i 159
3.1.9 RDP 6.0 Bitmap COmMPreSSiONcuiutieie ittt ret ittt ae st raaerasaeaaaeress 161
3.1.9.1 Bitmap Compression TEChNIQUESc.iiiiiiiiiii i i i reas 162
3.1.9.1.1 Splitting and Combining Color Planes.........cooiiiiiiiiiiiii e 162
3.1.9.1.2 Color SPace CONVEISION .uuiiuiitiitiiteiti ettt et eate et aeaaaeateaneanens 162
3.1.9.1.3 Chroma Subsampling and Super-Samplingcccooeiiiiiiiiiiiiiieeees 163
3.1.9.1.4 Color LoSS REAUCKION ...uiiiiiieiiiiii it ae e e 165
3.1.9.2 RUN-Length ENCOAING ..uviviiiiiiiii i s e e e e e e e aans 166
3.1.9.2.1 Encoding Run-Length SEqUENCES........civiiiiiiiiiiiiii e 167
3.1.9.2.2 Extra Long RUN SEQUENCESviuiiiiiiiiiieiiiitiitiiteatestse e saesaesaeannesneanens 169
3.1.9.2.3 Decoding Run-Length SEQUENCEScciviiiiiiiiiiiiiiii e 170
3.1.9.3 Compressing @ Bitmap ..o s 172
3.1.9.4 Decompressing @ Bitmapccooeiiiiiiiii s 173
T A O 1= o | T = | =P 174
3.2.1 Abstract Data Modelciriiiiiiiii e 174
3.2.1.1 Primary Drawing Order HiStOry ..o e 175
3.2.1.2 SaAVE BilmMaD ciiiiiiii i e 175
3.2.1.3 Bitmap Cache ... e 175
3.2.1.4 Persistent Bitmap Cacheciiiiiiiiiiiii 175
3.2.1.5 Persisted Bitmap KeYS ..iiiiiiiiiii i e 175
T2 I o 1= o= 175
3.2.3 INtialiZation .o e 175
3.2.4 Higher-Layer Triggered EVENESot e e e 176
3.2.5 Processing Events and Sequencing Rules...........c.ooiiiiiiiiiii e 176
3.2.5.1 Drawing OrdersS ...uiueieieitiit ittt et et et e et et e e e re e e e e anans 176
3.2.5.1.1 Primary Drawing Orders.......c.iuiuiiiiieiiie it eeeeens 176
3.2.5.1.1.1 Processing Primary Drawing Orderscccoiiiiiiiiniiiieiniiiiieeneeans 176
3.2.5.1.1.1.1 Processing Of DStBIt........oiiiuiiiiii e 177

7/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3.2.5.1.1.1.2 Processing of MUltiDStBIt..........cccooiiiiiiiiiii e,
3.2.5.1.1.1.3 Processing of PatBIt..........cociiiiiiiiiiiiii e
3.2.5.1.1.1.4 Processing of MultiPatBItccooiiiiiiiiiii e,
3.2.5.1.1.1.5 Processing of OpaqueREeCtccceviviiiiiiiiiiiiiic e
3.2.5.1.1.1.6 Processing of MultiOpaqueRectcceviiiiiiiiiiiiiiinnnnn,
3.2.5.1.1.1.7 Processing of SCrBIt........ccoiiiiiiiiiiiii e
3.2.5.1.1.1.8 Processing of MUltiSCrBIt.........cocoviiiiiiiiiiiiiiicc e
3.2.5.1.1.1.9 Processing of MemBIt.........cccoiiiiiiiiiiiii e,
3.2.5.1.1.1.10 Processing of Mem3BIt.......cccciiiiiiiiiiiii
3.2.5.1.1.1.11 Processing of LINETOcciiiiieieiniiiiiieieieie e
3.2.5.1.1.1.12 Processing of SaveBitmapcccoviiiiiiiiiiii
3.2.5.1.1.1.13 Processing of GlyphIndeXccoviiiiiiiiiiiiiiiiiiiieea
3.2.5.1.1.1.14 Processing of FastINdexcccooviiiiiiiiiiiiiniiieeenen,
3.2.5.1.1.1.15 Processing of FastGlyphccocoiiiiiiiiiiiii e
3.2.5.1.1.1.16 Processing of POlygonSCcccoiiiiiiiiiiiie e,
3.2.5.1.1.1.17 Processing of PolygonCBccoiiiiiiiiiiiiiiiiieiieee e
3.2.5.1.1.1.18 Processing of POlyliNe......ccoeviiiiiiiiiiiiii e,
3.2.5.1.1.1.19 Processing of EIlipSeSCcccvviiiiiiiiiiiii e,
3.2.5.1.1.1.20 Processing of EHIipSECBcccvviiiiiiiiiiiiiiiiiiieieneenn
3.2.5.1.1.1.21 Processing of DrawNineGrid..........cocovvieiiiiiiiiiennn.
3.2.5.1.1.1.22 Processing of MultiDrawNineGridccoevvvviieinnnnnn.
3.2.5.1.2 Secondary Drawing Orderscooeiuiiiiiiiiieiiiiiiiee e ees
3.2.5.1.2.1 Processing Secondary Drawing Orders.........c.ccvvveviiinineinnnnns
3.2.5.1.2.1.1 Processing of Cache Bitmap (Revision 1)...........covvrnnnnn.
3.2.5.1.2.1.2 Processing of Cache Bitmap (Revision 2)...........covvnnnne.
3.2.5.1.2.1.3 Processing of Cache Color Table..........ccoevieiiiiiiiinninnn,
3.2.5.1.2.1.4 Processing of Cache Glyph (Revision 1).......c.cocvvvvinnnnnn.
3.2.5.1.2.1.5 Processing of Cache Glyph (Revision 2).........cccvevieininnnn.
3.2.5.1.2.1.6 Processing of Cache Brushccooiiiiiiiiiiiiiiinn,
3.2.5.1.2.1.7 Processing of Cache Bitmap (Revision 3)........ccocvvevvinnne.
3.2.5.1.3 Alternate Secondary Drawing Ordersccooviiiiiiiiiniinnennnnenn.
3.2.5.1.3.1 Processing Alternate Secondary Drawing Orders..................
3.2.5.1.3.1.1 Processing of Create Offscreen Bitmap............c.coevvvnene.
3.2.5.1.3.1.2 Processing of Switch Surfacecoooviiiiiiiiiiicinien,
3.2.5.1.3.1.3 Processing of Create NineGrid Bitmap...........cccvevievninnnn.
3.2.5.1.3.1.4 Processing of Stream Bitmap Orders..........c.coovvvieininenn.
3.2.5.1.3.1.5 GDI+ OFrdersociuiuiuiiiiiiiieinre e e
3.2.5.1.3.1.5.1 Processing of Draw GDI+ Cache Orders...................
3.2.5.1.3.1.5.2 Processing of Draw GDI+ Orders..........cocvvevvveinnnnns

3.2.5.2 Error ConditioNs ...uiuiiiiiiiii i
3.2.5.2.1 Sending of Bitmap Cache Error PDUc.ccoiiiiiiiiiiiiiiiieen,
3.2.5.2.2 Sending of the Offscreen Bitmap Cache Error PDU.....................
3.2.5.2.3 Sending of the DrawNineGrid Cache Error PDU...........ccccvvvvnennen.
3.2.5.2.4 Sending of the GDI+ Error PDU.......ccoiiiiiiiiiiiiiini e
3.2.6 TimMeEr EVENES 1uiuiiiiii i
3.2.7 Other LoCal EVENTS ...viuiiii i ettt
3.3 Server Details ..o
3.3.1 Abstract Data Modelooiiiiiiiii e
3.3.1.1 Cached Bitmap KEYS ...c.ciiiiiieiiiiii e e e
3.3.1.2 Primary Drawing Order Historycooviiiiiiiiiie e
3.3.1.3 Bitmap Cache Wait LiSt.......ocouiniiiiiiii e
20 07 I 0 =T =
3.3.3 Intialization .o

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3.3.4 Higher-Layer Triggered EVENESoiiiiiiiii i 188
3.3.5 Processing Events and Sequencing RUIES.......ccviiiiiiiiiiiiiii e 188
3.3.5.1 Drawing OrdersScuuiuiiiiiii it e e e e 188
3.3.5.1.1 Primary Drawing OrdersS....cccuiiiiiiiiiiiii i e e e st aae e eneanens 189
3.3.5.1.1.1 Construction of a Primary Drawing Order..........ccccoeviiiiiiiiiiiiieicenen 189
3.3.5.1.1.1.1 Construction of DStBIt.......ccoiiiiriiiiiiii 189
3.3.5.1.1.1.2 Construction of MUltiDSEBIt.........ccooviiiiiiiii e 189
3.3.5.1.1.1.3 Construction of PatBIt.........cccoiiiiiiiii 190
3.3.5.1.1.1.4 Construction of MUltiPatBItcocoiiiiiiiii e 190
3.3.5.1.1.1.5 Construction of OpaqUERECEccoiiiiiiiii e 190
3.3.5.1.1.1.6 Construction of MultiOpaqUeRECL.........cciviiiiiiiiiiiii e 190
3.3.5.1.1.1.7 Construction of SCrBIt......ccoiiiiiiii e 190
3.3.5.1.1.1.8 Construction of MUItiSCrBILovtiriiiiiiiic e 191
3.3.5.1.1.1.9 Construction of MemBIt.......cccciiiiiiiii e 191
3.3.5.1.1.1.10 Construction of MEM3BItccoviiiiiiiiii e 192
3.3.5.1.1.1.11 Construction of LINETO ..icviviiiiiiiiiiiiiiiieieee e s e neeneeeas 192
3.3.5.1.1.1.12 Construction of SaveBitmap........cccoiiiiiii e 192
3.3.5.1.1.1.13 Construction of GlyphINdeXccoiiiiiiiiiiiiiiiiieere e 192
3.3.5.1.1.1.14 Construction of FastINdeX.....c.cvvtiiiiiiiiiiiiiiiiiiiei i eaeeas 193
3.3.5.1.1.1.15 Construction of FastGlyph.......cccooiiiiiiiii e 193
3.3.5.1.1.1.16 Construction of PolygonSC........cicoiiiiiiiiiiiiiicici e 193
3.3.5.1.1.1.17 Construction of POIYGONCB.........ciuiiiiieieieieie e eeeeneeeeees 193
3.3.5.1.1.1.18 Construction of PolyLINEciciiiiiiiiiiiii e 194
3.3.5.1.1.1.19 Construction of EIIPSESC.......ciiiiiiiiii e 194
3.3.5.1.1.1.20 Construction of EINPSECB.......c.viuiiiiiiiii e ees 194
3.3.5.1.1.1.21 Construction of DrawNineGridccoiviiiiiiiiiiiiiiene e 194
3.3.5.1.1.1.22 Construction of MultiDrawNineGridccoiviiiiiiiiiiiiiiieeenes 194
3.3.5.1.2 Secondary Drawing OrdersSccuuiiiieiiiiiiiiiine st ieaeereneseneeanerneneananeaess 195
3.3.5.1.2.1 Construction of Secondary Drawing Orderscccocverereirrnnnnnnenenenens 195
3.3.5.1.2.1.1 Construction of Cache Bitmap (Revision 1)cccviiiiiiiiiiiiiinnnnne. 195
3.3.5.1.2.1.2 Construction of Cache Bitmap (RevVision 2)cccoeviviiiiiiiinenennnnne. 195
3.3.5.1.2.1.3 Construction of Cache Color Tableccooviiiiiiiiiiiii e 196
3.3.5.1.2.1.4 Construction of Cache Glyph (Revision 1).......ccocciiiiiiiiiiiiiiinnnnn.. 196
3.3.5.1.2.1.5 Construction of Cache Glyph (Revision 2)........cccoiviiiiiiiiiinnnnnn. 196
3.3.5.1.2.1.6 Construction of Cache Brush..........coooiiiiiiiiiiiiiiic e 197
3.3.5.1.2.1.7 Construction of Cache Bitmap (Revision 3)cocoviiiiiiiiiinnnnnnn. 197
3.3.5.1.3 Alternate Secondary Drawing Ordersccocvieiiiiiiiniiiiiien e reeneeaneens 198
3.3.5.1.3.1 Construction of Alternate Secondary Drawing Orderscccvvvennns 198
3.3.5.1.3.1.1 Construction of Create Offscreen Bitmapcocoveiiiiiiiiiinennn. 198
3.3.5.1.3.1.2 Construction of Switch Surfacecooviiiiiiiiiiiii 198
3.3.5.1.3.1.3 Construction of Create NineGrid Bitmapc.coccviviiiiiiiiniennn. 199
3.3.5.1.3.1.4 Construction of Stream Bitmap Orders.........ccccviiiiiiiiiiiiiiiinennn, 199
3.3.5.1.3.1.5 GDI4 OFdEIS ettt e e e e 199
3.3.5.1.3.1.5.1 Construction of Draw GDI+ Cache Orders..........cccvvvvvininennnns 199
3.3.5.1.3.1.5.2 Construction of Draw GDI+ Orderscvvviviiiiieinenninnnnnnnns 200

CTC TR0V =l o o] ol ©e] o T 11 o 1= PP 200
3.3.5.2.1 Processing of Bitmap Cache Error PDUccoiiiiiiiiiiiiiiiiie e 200
3.3.5.2.2 Processing of the Offscreen Bitmap Cache Error PDUcoovievviieininenen. 200
3.3.5.2.3 Processing of the DrawNineGrid Cache Error PDUcccovviiiiiiiiiiiiienennns 200
3.3.5.2.4 Processing of the GDI+ Error PDUcccevviiiiiiiiiiiiiii e 201
3.3.6 TimMeEr EVENES v s 201
3.3.7 Other LoCal EVENTS .iviiiiiiiiiie e e et eeas 201

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

9/ 284

4 Protocol EXamples.....ciciierirmimsasimm s s s s s s s s s s a s nas 202
4.1 Annotated Primary Drawing Orders ...uieiieiiiiii it re e ee ettt e e e aaeeaeas 202
L T R I T o = 1 | PRSPPI 202
L R\ [0 7= =) PR 202
L G TR - | o = 1 o PP 203
4.1.4 MUIIPAEBIE. ..t 204
L I T @ T Y- Ta [1= 2o P 205
4.1.6 MUItIOPAQUERECEttt 206
L R Y o] o =] PR 207
L S\ [0 o 1Y o = | PR PR 208
L R T\ =Y o] = PP 210
L N O T =0 01 71 o TP 211
L R A 15 1= I PR PR 212
41,12 SAVEBIMAD oot s 213
L N G T 1 Vo) g e = 214
4. 1.13. 1 EXAMPIE L e 214
4.1.13.2 EXAMPIE 2. e 215
L T = 1= ol 1 o =GP 216
O T o A -] o] [P 216
4.1.14.2 EXAMPIE 2. e 217
4. 1.1 FasStGl Y PN i e 218
4.1.16 POIYGONSC ...t 220
L I A =0 17 [o] o L1 RPN 223
41,18 POl ING e 224
L T e T 170 1= <] o PSRRI 226
L I O T 17 1= =T G = RPN 227
L T R B = Y] 1 1= o o P 229
4.1.22 MUILiDraWwNINEGIIA . vttt et e e e e et e e e e e e e e raaanarans 230
4.2 Annotated Secondary Drawing OFdersc.vieieiiiiiiiiiiiiiei e e e 231
4.2.1 Cache Bitmap (REVISION 1) tuiiiiiiiiiiiiiii it e et ae e eanens 231
4.2.2 Cache Bitmap (REVISION 2) .i.uiiieiiiiiiiii ittt e e e e e e ans 231
4.2.3 Cache Color Table .o e e e 235
4.2.4 Cache Glyph (ReVISION 1) ittt i e e e aeas 241
4.2.5 Cache Glyph (REVISION 2) .uiiiiiiiiiiiii et e e e nans 242
4.2.6 CaChe BrUSK .ouiiiii it 243
4.2.7 Cache Bitmap (REVISION 3) ..uiuiiiiiiiiiiii ittt s e e s e e eeeaans 243
4.3 Annotated Alternate Secondary Drawing Orderso.vevveieiiiiieieniiiiiseneeieneneneeenes 244
4.3.1 Create OffSCreeN BitmMap viveiiiii i e e eaaens 244
4.3.2 SWItCR SUMACE .ttt e e 245
4.3.3 Create NiNeGrid Bitmap .cioiiiiiii i et e aaeas 245
4.3.4 Stream Bitmap First ..o 246
4.3.5 Stream Bitmap NeXt .o i s 247
4.3.6 Draw GDI4 Cache First .iuuiiiiiiiiiii i e e r e v e e e sar e an e anenaerneanens 247
4.3.6.1 EXAMIPIE 1 oot i e 247
4.3.6.2 EXAMIDIE 2 ittt e 252
4.3.7 Draw GDI4 Cache NeXE..uiiiiiiiiiiiiiiiiaer st sa s aare e e e ranaaneanereanens 252
4.3.8 Draw GDI4 Cache ENd ...c.iiiiiiiiiiiiiiiii i et e e s e e e e e e e eaneaaans 257
L TR I B T =)Y € I e =] o 258
4.3.10 Draw GDI4 NeXE .ouiiiiiiiiiiiii e e er e e e e 263
4.3.11 Draw GDI+ ENd et s 267
4.4 NINEGIIA EXamMIPIES. .o et e 268
4.5 Save Bitmap EXample ... 270
4.6 GlYph ImMage Data......coeiiiiiii i et 272
10/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

L T R o R @ o = o= T =] P

4.6.2 P CRaraCler .. i e
4.7 RDP 6.1 Bulk Compression EXample.....c.coviiiiiiiiiiii e
L S I = o o] gl @] o o [o 1=
Bitmap Cache Error PDU. ... e e e ea s
Offscreen Bitmap Cache Error PDUoviuiiiiiiiii e ee
DrawNineGrid Cache Error PDUciviiiiiiiiiiiieieis i e e nnea s
(D I = o /o]l = 5 S

ADDD
ARwWNR

8.
.8.
8.
.8.

L =T ol
5.1 Security Considerations for Implementers.......ccccviiiiiiiiiiiiiiii e
5.2 Index of Security Parameterscocoeieieiiiiiiiie e e

6 Appendix A: Product Behavior......cicciimmimieism s s ssssssssssssasssssasssssansnnnas
7 Change TracKiNg..iicciocierimimiemiemmasmasmssmssmsassassassansassassssssnsssssassansansansnnsnnnss
2 N 1 1 T =) Y

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

11 /284

1 Introduction

The Remote Desktop Protocol: Graphics Devices Interfaces (GDI) Acceleration Extension is an
extension to the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting (as specified
in [MS-RDPBCGRY]). The aim of the Remote Desktop Protocol: GDI Acceleration Extension is to
reduce the bandwidth associated with graphics remoting by encoding the drawing operations that
produce an image instead of encoding the actual image.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

client

protocol data unit (PDU)
server

Unicode

Unicode character

The following terms are specific to this document:
ANSI character: An 8-bit Windows-1252 character set unit.

ARGB: A color space wherein each color is represented as a quad (A, R, G, B), where A
represents the alpha (transparency) component, R represents the red component, G
represents the green component, and B represents the blue component.

ASN.1: Abstract Syntax Notation One. ASN.1 is used to describe a protocol as a sequence of
components, sent in messages. ASN.1 is described in the following specifications: [ITUX660
for general procedures; [ITUX680] for syntax specification; [ITUX690] for the Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules
(DER) encoding rules; and [ITUX691] for the Packed Encoding Rules (PER). Further
background information on ASN.1 is also available in [DUBUISSON].

AYCoCg: A color space wherein each color is represented as a quad (A, Y, Co, Cg), where A
represents the alpha (transparency) component, Y represents the luma (intensity) component,
and Co and Cg represent the two chrominance (color) components orange and green,
respectively.

Basic Encoding Rules (BER): A set of encoding rules for ASN.1 notation, specified in
ITUX690]. These rules enable the identification, extraction, and decoding of data structures.

brush: An 8-by-8-pixel bitmap that is repeated horizontally and vertically to fill an area.

color plane: A two-dimensional surface containing a collection of values that represent a single
component of the ARGB or AYCoCg color space.

color space: Any method of representing colors for printing or electronic display.

12 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89922
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89924
http://go.microsoft.com/fwlink/?LinkId=192078
http://go.microsoft.com/fwlink/?LinkId=89924

Packed Encoding Rules (PER): A set of encoding rules for ASN.1 notation, specified in
ITUX691]. These rules enable the identification, extraction, and decoding of data structures.

Reverse Polish Notation: A mathematical notation wherein every operator follows all of its
operands. Also known as Postfix notation.

RGB: A color space wherein each color is represented as a triple (R, G, B), where R represents
the red component, G represents the green component, and B represents the blue component.

screen tearing: A phenomenon in video rendering where a newly rendered frame partially
overlaps with a previously rendered frame, creating a torn look as graphical objects do not
line up.

YCoCg: A color space wherein each color is represented as a triple (Y, Co, Cg), where Y
represents the luma (intensity) component, and Co and Cg represent the two chrominance
(color) components orange and green, respectively.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [REC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[ITUX660] ITU-T, "Open Systems Interconnection - Procedures for the Operation of OSI Registration
Authorities: General Procedures and Top Arcs of the ASN.1 Object Identifier Tree", Recommendation
X.660, August 2004, http://www.itu.int/ITU-T/studygroups/com17/0id/X.660-E.pdf

[ITUX680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation",
Recommendation X.680, July 2002, http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-
0207.pdf

[ITUX690] ITU-T, "ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation X.690, July 2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

[ITUX691] ITU-T, "ASN.1 Encoding Rules: Specification of Packed Encoding Rules (PER)",
Recommendation X.691, July 2002, http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-
0207.pdf

[MS-EMFPLUS] Microsoft Corporation, "Enhanced Metafile Format Plus Extensions".

13 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=192078
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89922
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89924
http://go.microsoft.com/fwlink/?LinkId=192078
http://go.microsoft.com/fwlink/?LinkId=192078
%5bMS-EMFPLUS%5d.pdf

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEDC] Microsoft Corporation, "Remote Desktop Protocol: Desktop Composition Virtual
Channel Extension".

[MS-RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[PETZOLD] Petzold, C., "Programming Windows, Fifth Edition", Microsoft Press, 1998, ISBN:
157231995X.

If you have any trouble finding [PETZOLD], please check here.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[T123] ITU-T, "Network-Specific Data Protocol Stacks for Multimedia Conferencing",
Recommendation T.123, May 1999, http://www.itu.int/rec/T-REC-T.123/en

Note There is a charge to download the specification.

[T125] ITU-T, "Multipoint Communication Service Protocol Specification", Recommendation T.125,
February 1998, http://www.itu.int/rec/T-REC-T.125-199802-1/en

Note There is a charge to download the specification.

[T128] ITU-T, "Multipoint Application Sharing", Recommendation T.128, February 1998,
http://www.itu.int/rec/T-REC-T.128-199802-S/en

Note There is a charge to download the specification.

[YUAN] Yuan, F., "Windows Graphics Programming - Win32 GDI and DirectDraw", Prentice Hall PTR,
2000, ISBN: 0130869856.

If you have any trouble finding [YUAN], please check here.

[X224] ITU-T, "Information technology - Open Systems Interconnection - Protocol for Providing the
Connection-Mode Transport Service", Recommendation X.224, November 1995,
http://www.itu.int/rec/T-REC-X.224-199511-I/en

Note There is a charge to download the specification.

.2.2 Informative References

[DUBUISSON] Dubuisson, 0., "ASN.1 Communication between Heterogeneous Systems", Morgan
Kaufmann, October 2000, ISBN: 0126333610.

[HUFFCODE] Usher, M. 1., and Guy, C. G., "Information and Communication for Engineers",
MacMillan Education Ltd., December 1997, ISBN: 0333615271.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MSDN-AlphaBlend] Microsoft Corporation, "AlphaBlend Function", http://msdn2.microsoft.com/en-
us/library/ms532324.aspx

[MSDN-BitBIt] Microsoft Corporation, "BitBIt function", http://msdn.microsoft.com/en-
us/library/dd183370.aspx

14 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPEDC%5d.pdf
%5bMS-RDPEDC%5d.pdf
%5bMS-RDPERP%5d.pdf
%5bMS-RDPERP%5d.pdf
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90544
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90588
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89948
http://go.microsoft.com/fwlink/?LinkId=89948
http://go.microsoft.com/fwlink/?LinkId=89958
http://go.microsoft.com/fwlink/?LinkId=89958

[MSDN-CW] Microsoft Corporation, "Character Widths", http://msdn.microsoft.com/en-
us/library/dd183418.aspx

[MSDN-SWH] Microsoft Corporation, "String Widths and Heights", http://msdn.microsoft.com/en-
us/library/dd145122.aspx

[MSDN-TransparentBlt] Microsoft Corporation, "TransparentBIt function",
http://msdn.microsoft.com/en-us/library/dd145141.aspx

[NINEGRID] Microsoft Corporation, "Using Nine-Grid Rendering"”, http://msdn.microsoft.com/en-
us/library/bb189722.aspx

[SAYOOD] Sayood, K., "Lossless Compression Handbook, First Edition", Academic Press, August
2002, ISBN: 0126208611.

1.3 Overview

The Remote Desktop Protocol: GDI Acceleration Extension reduces the bandwidth associated with
graphics remoting. The following sections provide an overview of the major components of this
protocol and how bandwidth reduction is achieved.

1.3.1 Accelerated Graphics

The remoting of graphics images (see [MS-RDPBCGR] sections 2.2.9.1.1.3.1.2 and 2.2.9.1.2.1.2) is
accomplished by continuously sending updated bitmap images from server to client. Even though
these bitmaps may be compressed, it is still not a bandwidth-efficient mechanism to employ,
especially when dealing with graphics-intensive applications that refresh regularly.

The Remote Desktop Protocol: GDI Acceleration Extension aims to reduce the bandwidth associated
with graphics remoting by encoding the drawing operations that produce an image instead of
encoding the actual image.

For example, instead of sending the bitmap image of a filled rectangle from server to client, an
order to render a rectangle at coordinate (X, Y) with a given width, height, and fill color is sent to
the client. The client then executes the drawing order to produce the intended graphics result.

In addition to defining how to encode common drawing operations, the Remote Desktop Protocol:
GDI Acceleration Extension also facilitates the use of caches to store drawing primitives such as
bitmaps, color tables, and characters. The effective use of caching techniques helps to reduce wire
traffic by ensuring that items used in multiple drawing operations are sent only once from server to
client (retransmission of these items for use in conjunction with future drawing operations is not
required after the item has been cached on the client).

1.3.1.1 Caches

The Remote Desktop Protocol: GDI Acceleration Extension defines a number of caches that may be
leveraged by clients and servers:

= Bitmap Cache: Stores bitmap images.

= Color Table Cache: Stores color palettes.

= Glyph Cache: Stores character images.

= Fragment Cache: Stores collections of glyphs.

= Brush Cache: Stores 8-by-8-pixel bitmaps used to fill regions.

15/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=196874
http://go.microsoft.com/fwlink/?LinkId=196874
http://go.microsoft.com/fwlink/?LinkId=196875
http://go.microsoft.com/fwlink/?LinkId=196875
http://go.microsoft.com/fwlink/?LinkId=90146
http://go.microsoft.com/fwlink/?LinkId=90233
http://go.microsoft.com/fwlink/?LinkId=90233
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

All of the caches (except the bitmap cache) are memory-based and are not persisted across
connections. The use of caches is optional and is specified through the use of capability sets.

Offscreen Bitmap Cache: Stores writable bitmaps.
GDI+ Caches: Used to cache GDI+ 1.1 primitives:
= Graphics Cache

= Brush Cache

* Pen Cache

» Image Attributes Cache

= Image Cache

NineGrid Bitmap Cache: Stores NineGrid-compliant bitmaps. For more information about nine-

grid bitmaps, see [NINEGRID].

Encoded drawing operations that use cached items refer to these items by specifying the cache

entry in which the item is stored (if there are multiple caches, the cache ID also needs to be

specified). This implies that an item must first be cached (by the server and client) before any
drawing operations that reference it can be sent.

For example, a server may instruct a client to cache a particular brush pattern in the Brush Cache,
for example, at index location 23. Then, in a subsequent drawing operation that involves a brush
pattern, the server may instruct the client to use the brush pattern stored in the Brush Cache at
index location 23.

Entries can be evicted from a cache if room needs to be made for new items. The server determines
what entries should be evicted and then instructs the client to perform the eviction. In this way, the
client and server caches remain in sync.

1.3.1.2 Drawing Orders

Drawing orders are used to perform the following operations:

Transport bitmap data

Encode graphics rendering primitives

Manipulate data caches

Manage rendering surfaces

Support application remoting ([MS-RDPERP] section 1.3)
Support desktop composition ([MS-RDPEDC] section 1.3)

There are three classes of drawing orders:

Primary
Secondary

Alternate secondary

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

16 / 284

http://go.microsoft.com/fwlink/?LinkId=90233
%5bMS-RDPERP%5d.pdf
%5bMS-RDPEDC%5d.pdf

These three classes of drawing orders are described in sections 1.3.1.2.1 through to 1.3.1.2.3.

1.3.1.2.1 Primary Drawing Orders

Primary orders are mainly used to encode drawing operations. Each primary order is organized into
a set of fields to which field-compression algorithms are applied. These algorithms are designed to

eliminate sending a field if it has not changed since the last time the order was sent and to reduce

the size of the field encoding for certain field types when they can be represented by smaller sized

data.

The following are the broad categories of drawing operations that primary orders encode.
= Combining bitmap patterns using raster operations (called a "blit").
= Drawing graphic objects:

= Rectangles

= Lines
= Polygons
= Ellipses

= Displaying text fragments

» Transferring portions of the screen area from one point to another
= Temporarily saving obscured regions of the screen

= Rendering cached bitmaps

» Rendering cached NineGrid bitmaps

A subset of the primary drawing operations requires rendering data to be present in a specific cache.
For example, to render a NineGrid bitmap, it must be present in the NineGrid cache. This implies
that some of the primary drawing orders have a dependency on the secondary orders to first
transmit the data necessary to complete a drawing operation to the client.

If a given primary drawing order cannot be constructed, the server must send screen bitmap data in
a Bitmap Update (see [MS-RDPBCGR] sections 2.2.9.1.1.3.1.2 and 2.2.9.1.2.1.2) for the screen
area affected by the primary drawing order. The use of the primary drawing orders is specified by
using capability sets.

1.3.1.2.2 Secondary Drawing Orders

Secondary drawing orders are primarily used to manage the addition and removal of items from the
following four caches:

»= Bitmap Cache
= Color Table Cache
= Glyph Cache

= Brush Cache

17/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

Use of the secondary orders is specified through capabilities. If the existence of one of the previous
four caches is specified, the secondary orders associated with that cache are presumed to be
supported.

1.3.1.2.3 Alternate Secondary Drawing Orders

Alternate secondary drawing orders are used to extend the existing set of Primary and Secondary
RDP drawing orders. The alternate secondary drawing orders described in this document are used to
manage the Offscreen and NineGrid Bitmap Caches and to transport opaque EMF+ records that
contain GDI+ 1.1 primitives (as specified in [MS-EMFPLUS] section 2.3.1).

Using these orders, a bitmap can be created in the Offscreen Bitmap Cache, and then set as the
target drawing surface on the client. Alternate secondary drawing orders also enable the creation
and efficient population of NineGrid bitmaps in the NineGrid bitmap cache. Besides creating and
updating entries in these two caches, the alternate secondary orders also support deletion of
entries.

GDI+ 1.1 remoting is enabled through the use of alternate secondary drawing orders. In this
scenario, the orders are used to transport opaque GDI+ 1.1 records between endpoints, in addition
to caching instructions to store GDI+ 1.1 primitives.

Other alternate secondary drawing orders added by RDP extensions are used to support remoting
applications ([MS-RDPERP] section 2.2.1.3) and desktop composition ([MS-RDPEDC] section 2.2).

Use of the alternate secondary orders is specified through capabilities.

1.3.1.3 Error Conditions

The Remote Desktop Protocol: GDI Acceleration Extension enables the client to inform the server of
errors in the following areas:

» Bitmap caching

= Offscreen bitmap caching
» NineGrid caching

= GDI+ 1.1 remoting

If a client encounters an error in any one of these areas, it can send an appropriate protocol data
unit (PDU) to the server to notify it of this issue and ensure that appropriate action is taken, such
as disabling features within the area.

1.3.2 Bulk Data Compression

1.3.2.1 RDP 6.0

The Remote Desktop Protocol: GDI Acceleration Extension builds on the bulk data compression
mechanisms described in [MS-RDPBCGR] section 3.1.8 to create a compressor that employs
Huffman encoding algorithms [HUFFCODE]. This new bulk compression technique (known as "RDP
6.0 Bulk Compression") produces higher compression ratios, and as a result, improves the overall
bandwidth consumption of server-to-client traffic (it is not used for client-to-server traffic).

18/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf
%5bMS-RDPERP%5d.pdf
%5bMS-RDPEDC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RDPBCGR%5d.pdf

1.3.2.2 RDP 6.1

Remote Desktop Protocol: GDI Acceleration Extension supports an efficient large history bulk data
(pre)compressor that is serially chained with the pre-existing bit-level RDP 5.0 bulk compressor
(described in [MS-RDPBCGR] section 3.1.8). The RDP 6.1 bulk compression technique produces
better compression ratios than the RDP 6.0 bulk compressor, but also consumes significantly more
memory, which may affect scalability of multi-user servers. This compressor is only used for server-
to-client traffic (it is not used for client-to-server traffic).

1.4 Relationship to Other Protocols

This protocol extends the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting (as
specified in [MS-RDPBCGR]) by adding advanced drawing order capabilities and compression
techniques.

1.5 Prerequisites/Preconditions

All the packets defined by this protocol are tunneled within the RDP transport ([MS-RDPBCGR
section 2.1). Hence, this protocol only operates after the RDP transport has been fully established.

1.6 Applicability Statement
This protocol is applicable in situations in which it is necessary to optimize the bandwidth required
for graphics remoting. The advanced drawing orders specified in this document enable drawing

operations to be sent using compact representations, eliminating the need to send bitmaps in many
common drawing operations.

1.7 Versioning and Capability Negotiation
This protocol builds on the basic Remote Desktop Protocol. The features provided by this extension
are selected during the Capabilities Exchange Phase of the RDP Connection Sequence (see [MS-

RDPBCGR] section 1.3.1.1). In effect, this extension merely expands the set of capabilities used by
the base RDP. (RDP versioning and capability exchange is described in [MS-RDPBCGR] section 1.7.)

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

19/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

2 Messages

2.1 Transport

This protocol is an extension to the Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting, and all packets are tunneled within the RDP transport ([MS-RDPBCGR] section 2.1).

2.2 Message Syntax

All multiple-byte fields within a message MUST be marshaled in little-endian byte order, unless
otherwise specified.

Version 2 MCS Encoding Rules (defined in [T125] section 9) are used in encoding MCS structures
defined in [T125].

2.2.1 Capability Sets

2.2.1.1 Color Table Cache Capability Set (TS_COLORTABLE_CAPABILITYSET)

The TS_COLORTABLE_CAPABILITYSET structure is an unused capability set that advertises the size
of the color table cache used in conjunction with the Cache Color Table Secondary Drawing Order
(see section 2.2.2.2.1.2.4) and is based on the capability set in [T128] section 8.2.8. This capability
is sent by both client and server.

Instead of being specified by the Color Table Cache Capability Set, the existence of color table
caching is tied to support for the MemBIt (section 2.2.2.2.1.1.2.9) and Mem3BIt (section
2.2.2.2.1.1.2.10) Primary Drawing orders. If support for these orders is advertised in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3), the existence of a color table cache with
entries for six palettes is implied when palettized color is being used.

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|(5|6|7(8|9(0]1

capabilitySetType lengthCapability

colorTableCacheSize pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_COLORCACHE (0x000A).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length, in bytes, of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

colorTableCacheSize (2 bytes): A 16-bit, unsigned integer. The number of entries in the color
table cache (each entry stores a color table). This value MUST be ignored during capability
exchange and is assumed to be 0x0006.

pad2octets (2 bytes): A 16-bit, unsigned integer used as padding. Values in this field are
arbitrary and MUST be ignored.

20/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPBCGR%5d.pdf

2.2.1.2 DrawNineGrid Cache Capability Set
(TS_DRAW_NINEGRID_CAPABILITYSET)

The TS_DRAW_NINEGRID_CAPABILITYSET structure is used to advertise support for NineGrid
bitmap caching and rendering (see sections 2.2.2.2.1.1.2.21,2.2.2.2.1.1.2.22, and 2.2.2.2.1.3.4).
This capability set is sent only from client to server.

1 2 3}
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

capabilitySetType lengthCapability

drawNineGridSupportLevel

drawNineGridCacheSize drawNineGridCacheEntries

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_DRAWNINEGRIDCACHE (0x0015).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length, in bytes, of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

drawNineGridSupportLevel (4 bytes): A 32-bit, unsigned integer. The level of support for
NineGrid drawing. This field MUST be set to one of the following values.

Value Meaning

DRAW_NINEGRID_NO_SUPPORT NineGrid bitmap caching and rendering is not supported.
0x00000000

DRAW_NINEGRID_SUPPORTED Revision 1 NineGrid bitmap caching and rendering is
0x00000001 supported. The Revision 1 versions of the stream bitmap

alternate secondary orders (see section 2.2.2.2.1.3.5)
MUST be used to send the NineGrid bitmap from server to
client.

DRAW_NINEGRID_SUPPORTED_REV2 Revision 2 NineGrid bitmap caching and rendering is
0x00000002 supported. The Revision 2 versions of the stream bitmap
alternate secondary orders (see section 2.2.2.2.1.3.5)
MUST be used to send the NineGrid bitmap from server to
client.

drawNineGridCacheSize (2 bytes): A 16-bit, unsigned integer. The maximum size of the
NineGrid Bitmap Cache. The largest size allowed by current RDP servers is 2,560 kilobytes.

drawNineGridCacheEntries (2 bytes): A 16-bit, unsigned integer. The maximum number of
entries allowed in the NineGrid Bitmap Cache. The maximum number of entries allowed by
current RDP servers is 256.

2.2.1.3 Draw GDI+ Capability Set (TS_DRAW_GDIPLUS_CAPABILITYSET)

The TS_DRAW_GDIPLUS_CAPABILITYSET structure is used to advertise the level of GDI+ 1.1
rendering and caching support and the GDI+ cache configuration. This capability is sent by both
client and server. However, only the client initializes the GdipVersion, GdipCacheEntries,

21/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

GdipCacheChunkSize, and GdipImageCacheProperties fields. The server uses this capability set
only to advertise its level of GDI+ 1.1 rendering and caching support.

1 2 3
0|1|{2(3(4|5|6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

capabilitySetType lengthCapability

drawGDIPlusSupportLevel

GdipVersion

drawGdiplusCachelLevel

GdipCacheEntries

GdipCacheChunkSize

GdipImageCacheProperties

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_DRAWGDIPLUS (0x0016).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length, in bytes, of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

drawGDIPlusSupportLevel (4 bytes): A 32-bit, unsigned integer. The level of support for
GDI+ 1.1 remoting. This field MUST be set to one of the following values.

Value Meaning
TS_DRAW_GDIPLUS_DEFAULT GDI+ 1.1 is not supported.
0x00000000

TS_DRAW_GDIPLUS_SUPPORTED GDI+ 1.1 is supported.
0x00000001

GdipVersion (4 bytes): A 32-bit, unsigned integer. The build number of the underlying GDI+
1.1 subsystem. Only the client-to-server instance of the GDI+ Capability Set MUST contain a
valid value for this field.

drawGdiplusCachelevel (4 bytes): A 32-bit, unsigned integer. The level of support for the
caching of GDI+ 1.1 rendering primitives. This field MUST be set to one of the following
values.

22 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Value Meaning

TS_DRAW_GDIPLUS_CACHE_LEVEL_DEFAULT | Caching of GDI+ 1.1 rendering primitives is not

0x00000000 supported.
TS_DRAW_GDIPLUS_CACHE_LEVEL_ONE Caching of GDI+ 1.1 rendering primitives is
0x00000001 supported.

GdipCacheEntries (10 bytes): A GDI+ Cache Entries (section 2.2.1.3.1) structure that
specifies the total number of entries within the GDI+ Graphics, Pen, Brush, Image, and Image
Attributes caches. Only the client-to-server instance of the GDI+ Capability Set MUST contain
a valid value for this field.

GdipCacheChunkSize (8 bytes): A GDI+ Cache Chunk Size structure that specifies the size of
individual entries in the GDI+ Graphics, Brush, Pen, and Image Attributes caches. Only the
client-to-server instance of the GDI+ Capability Set MUST contain a valid value for this field.

GdipImageCacheProperties (6 bytes): A GDI+ Image Cache Properties structure that
contains sizing information for the GDI+ Image cache. Only the client-to-server instance of
the GDI+ Capability Set MUST contain a valid value for this field.

2.2.1.3.1 GDI+ Cache Entries (TS_GDIPLUS_CACHE_ENTRIES)

The TS_GDIPLUS_CACHE_ENTRIES structure specifies the total number of cache entries for the
GDI+ Graphics, Brush, Pen, Image, and Image Attributes caches.

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|(5|6|7(8|9(0]1

GdipGraphicsCacheEntries GdipBrushCacheEntries

GdipPenCacheEntries GdipImageCacheEntries

GdipImageAttributesCacheEntries

GdipGraphicsCacheEntries (2 bytes): A 16-bit, unsigned integer. The total nhumber of entries
allowed in the GDI+ Graphics cache. The maximum allowed value is 10 entries.

GdipBrushCacheEntries (2 bytes): A 16-bit, unsigned integer. The total number of entries
allowed in the GDI+ Brush cache. The maximum allowed value is 5 entries.

GdipPenCacheEntries (2 bytes): A 16-bit, unsigned integer. The total number of entries
allowed in the GDI+ Pen cache. The maximum allowed value is 5 entries.

GdipImageCacheEntries (2 bytes): A 16-bit, unsigned integer. The total number of entries
allowed in the GDI+ Image cache. The maximum allowed value is 10 entries.

GdipImageAttributesCacheEntries (2 bytes): A 16-bit, unsigned integer. The total humber
of entries allowed in the GDI+ Image Attributes cache. The maximum allowed value is 2
entries.

23/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.1.3.2 GDI+ Cache Chunk Size (TS_GDIPLUS_CACHE_CHUNK_SIZE)

The TS_GDIPLUS_CACHE_CHUNK_SIZE structure specifies the maximum size of individual entries in
the GDI+ Graphics, Brush, Pen, and Image Attributes caches.

1 2 3}
0|1|{2({3(4|5|6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

GdipGraphicsCacheChunkSize GdipObjectBrushCacheChunkSize

GdipObjectPenCacheChunkSize GdipObjectImageAttributesCacheChunkSize

GdipGraphicsCacheChunkSize (2 bytes): A 16-bit, unsigned integer. The maximum size in
bytes of a GDI+ Graphics cache entry. The maximum allowed value is 512 bytes.

GdipObjectBrushCacheChunkSize (2 bytes): A 16-bit, unsigned integer. The maximum size
in bytes of a GDI+ Brush cache entry. The maximum allowed value is 2,048 bytes.

GdipObjectPenCacheChunkSize (2 bytes): A 16-bit, unsigned integer. The maximum size in
bytes of a GDI+ Pen cache entry. The maximum allowed value is 1,024 bytes.

GdipObjectImageAttributesCacheChunkSize (2 bytes): A 16-bit, unsigned integer. The
maximum size in bytes of a GDI+ Image Attributes cache entry. The maximum allowed value
is 64 bytes.

2.2.1.3.3 GDI+ Image Cache Properties
(TS_GDIPLUS_IMAGE_CACHE_PROPERTIES)

The TS_GDIPLUS_IMAGE_CACHE_PROPERTIES structure contains sizing information for the GDI+
Image cache.

1 2 3
0(1/2(3|4(5|6|7(8|9(0{1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

GdipObjectimageCacheChunkSize GdipObjectImageCacheTotalSize

GdipObjectImageCacheMaxSize

GdipObjectImageCacheChunkSize (2 bytes): A 16-bit, unsigned integer. The maximum size
in bytes of a chunk in the GDI+ Image cache. The maximum allowed value is 4,096 bytes.

GdipObjectImageCacheTotalSize (2 bytes): A 16-bit, unsigned integer. The total humber of
chunks in the GDI+ Image cache. The maximum allowed value is 256 chunks.

GdipObjectImageCacheMaxSize (2 bytes): A 16-bit, unsigned integer. The total number of
chunks that can be used by an entry in the GDI+ Image cache. The maximum allowed value is
128 chunks.

24 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.2 Accelerated Graphics

2.2.2.1 Orders Update (TS_UPDATE_ORDERS_PDU_DATA)

The TS_UPDATE_ORDERS_PDU_DATA structure contains primary, secondary, and alternate
secondary drawing orders aligned on byte boundaries. This structure conforms to the layout of a
Slow Path Graphics Update (see [MS-RDPBCGR] section 2.2.9.1.1.3.1) and is encapsulated within a
Graphics Update PDU (see [MS-RDPBCGR] section 2.2.9.1.1.3.1.1).

1 2 3
0(1/2(3|4(5|6|7|8|9|0(1|2|3|4|5|6|7|8|9(0|1|2(3|4|5|6|7(8|9(0]1
shareDataHeader

updateType
pad20ctetsA numberQOrders
pad20ctetsB orderData (variable)

shareDataHeader (18 bytes): Share Data Header (see [MS-RDPBCGR], section 2.2.8.1.1.1.2)
containing information about the packet. The type subfield of the pduType field of the Share
Control Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2
field of the Share Data Header MUST be set to PDUTYPE2_UPDATE (2).

updateType (2 bytes): A 16-bit, unsigned integer. The field contains the graphics update type.
This field MUST be set to UPDATETYPE_ORDERS (0x0000).

pad20ctetsA (2 bytes): A 16-bit, unsigned integer used as a padding field. Values in this field
are arbitrary and MUST be ignored.

numberOrders (2 bytes): A 16-bit, unsigned integer. The number of Drawing Order (section
2.2.2.1.1) structures contained in the orderData field.

pad20ctetsB (2 bytes): A 16-bit, unsigned integer used as a padding field. Values in this field
are arbitrary and MUST be ignored.

orderData (variable): A variable-sized array of Drawing Order (section 2.2.2.1.1) structures
packed on byte boundaries. Each structure contains a primary, secondary, or alternate
secondary drawing order. The controlFlags field of the Drawing Order identifies the type of
drawing order.

25/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

2.2.2.1.1 Drawing Order (DRAWING_ORDER)

The DRAWING_ORDER structure encapsulated by the Orders Update (section 2.2.2.1) is identical to
the DRAWING_ORDER structure used in conjunction with the Fast-Path Orders Update (section
2.2.2.2).

2.2.2.2 Fast-Path Orders Update (TS_FP_UPDATE_ORDERS)

The TS_FP_UPDATE_ORDERS structure contains primary, secondary, and alternate secondary
drawing orders aligned on byte boundaries. This structure conforms to the layout of a Fast-Path
Update (see [MS-RDPBCGR] section 2.2.9.1.2.1) and is encapsulated within a Fast-Path Update PDU
(see [MS-RDPBCGR] section 2.2.9.1.2.1.1).

1 2 3
0|1|2|3|4|5|6|7(8|9|0|1|2|3|4|5|6|7|8|9|0(1(2|3|4|5|6(|7|8|9|0(1
updateHeader compressionFlags size
(optional)
numberOrders orderData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field described in the Fast-Path Update structure (see [MS-RDPBCGR
section 2.2.9.1.2.1). The updateCode bitfield (4 bits in size) MUST be set to
FASTPATH_UPDATETYPE_ORDERS (0x0).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as
well as the possible values) is the same as the compressionFlags field described in the Fast-
Path Update structure specified in [MS-RDPBCGR] section 2.2.9.1.2.1.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible
values) is the same as the size field described in the Fast-Path Update structure specified in
MS-RDPBCGR] section 2.2.9.1.2.1.

numberOrders (2 bytes): A 16-bit, unsigned integer. The number of Drawing Order (section
2.2.2.1.1) structures contained in the orderData field.

orderData (variable): A variable-sized array of Drawing Order (section 2.2.2.1.1) structures
packed on byte boundaries. Each structure contains a primary, secondary, or alternate
secondary drawing order. The controlFlags field of the Drawing Order identifies the type of
drawing order.

2.2.2.2.1 Drawing Order (DRAWING_ORDER)

The DRAWING_ORDER structure is used to describe and encapsulate a single primary, secondary, or
alternate secondary drawing order sent from server to client. All drawing orders conform to this

26 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

controlFlags orderSpecificData (variable)

controlFlags (1 byte): An 8-bit, unsigned integer. A control byte that identifies the class of the
drawing order.

If the TS_STANDARD (0x01) flag is set, the order is a primary drawing order. If both the
TS_STANDARD (0x01) and TS_SECONDARY (0x02) flags are set, the order is a secondary

drawing order. Finally, if only the TS_SECONDARY (0x02) flag is set, the order is an alternate
secondary drawing order.

More flags MAY be present, depending on the drawing order class. The flags listed are
common to all three classes of drawing orders.

Name Value
TS_STANDARD 0x01
TS_SECONDARY 0x02

orderSpecificData (variable): Variable-length data specific to the drawing order class and the
drawing order itself.

2.2.2.2.1.1 Primary Drawing Orders
2.2.2.2.1.1.1 Common Data Types

2.2.2.2.1.1.1.1 Coord Field (COORD_FIELD)

The COORD_FIELD structure is used to describe a value in the range -32768 to 32767.

1 2 3
0|1{2(3(4|5|/6|7(8|9|/0|1|2(|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

signedValue (variable)

signedValue (variable): A signed, 1-byte or 2-byte value that describes a coordinate in the
range -32768 to 32767.

When the controlFlags field (see section 2.2.2.2.1.1.2) of the primary drawing order that
contains the COORD_FIELD structure has the TS_DELTA_COORDINATES flag (0x10) set, the
signedValue field MUST contain a signed 1-byte value. If the TS_DELTA_COORDINATES flag
is not set, the signedValue field MUST contain a 2-byte signed value.

The 1-byte format contains a signed delta from the previous value of the Coord field. To
obtain the new value of the field, the decoder MUST increment the previous value of the field
by the signed delta to produce the current value. The 2-byte format is simply the full value of
the field that MUST replace the previous value.

27/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2,2.2,1.1.1.2 One-Byte Header Variable Field (VARIABLE1_FIELD)

TheVARIABLE1_FIELD structure is used to encode a variable-length byte-stream that will hold a
maximum of 255 bytes. This structure is always situated at the end of an order.

=

2 3}
0|1|{2({3(4|5|6|7(8|9|0|1|2|3(4|5|6|7[8|9|0|1|2(3|4|5|6|7

cbData

rgbData (variable)

cbData (1 byte): An 8-bit, unsigned integer. The number of bytes present in the rgbData field.

rgbData (variable): Variable-length, binary data. The size of this data, in bytes, is given by the
cbData field.

2.2.2.2,1.1.1.3 Two-Byte Header Variable Field (VARIABLE2_FIELD)

The VARIABLE2_FIELD structure is used to encode a variable-length byte-stream that holds a
maximum of 32,767 bytes. This structure is always situated at the end of an order.

—
N
w

0({1(2(3|4|5|6|7|8|9(0|1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7|8]|9

cbData rgbData (variable)

cbData (2 bytes): A 16-bit, unsigned integer. The number of bytes present in the rgbData
field.

rgbData (variable): Variable-length, binary data. The size of this data, in bytes, is given by the
cbData field.

2.2.2.2.1.1.1.4 Delta-Encoded Points (DELTA_PTS_FIELD)

The DELTA_PTS_FIELD structure is used to encode a series of points. Each point is expressed as an
X and Y delta from the previous point in the series (the first X and Y deltas are relative to a base
point that MUST be included in the order that contains the DELTA_PTS_FIELD structure). The
number of points is order-dependent and is not specified by any field within the DELTA_PTS_FIELD
structure. Instead, a separate field within the order that contains the DELTA_PTS_FIELD structure

MUST be used to specify the humber of points (this field SHOULD<1> be placed immediately before
the DELTA_PTS_FIELD structure in the order encoding).

1 2 3
0|1|{2|3|4|5|6|7(8|9|0|1|2|3|4|5|6[|7|8|9|0(1(2|3|4|5|6(|7|8|9|0(1
zeroBits (variable)

28 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

deltaEncodedPoints (variable)

zeroBits (variable): A variable-length byte field. The zeroBits field is used to indicate the
absence of an X or Y delta value for a specific point in the series. The size in bytes of the
zeroBits field is given by ceil(NumPoints / 4) where NumPoints is the number of points being
encoded. Each point in the series requires two zero-bits (four points per byte) to indicate
whether an X or Y delta value is zero (and not present), starting with the most significant bits,

so that for the first point the X-zero flag is set at (zeroBits[0] & 0x80), and the Y-zero flag is
set at (zeroBits[0] & 0x40).

deltaEncodedPoints (variable): A variable-length byte field. The deltaEncodedPoints field
contains a series of (X, Y) pairs, each pair specifying the delta from the previous pair in the
series (the first pair in the series contains a delta from a pre-established coordinate).

The presence of the X and Y delta values for a given pair in the series is dictated by the
individual bits of the zeroBits field. If the zero bit is set for a given X or Y component, its
value is unchanged from the previous X or Y component in the series (a delta of zero), and no
data is provided. If the zero bit is not set for a given X or Y component, the delta value it
represents is encoded in a packed signed format:

= If the high bit (0x80) is not set in the first encoding byte, the field is 1 byte long and is
encoded as a signed delta in the lower 7 bits of the byte.

= If the high bit of the first encoding byte is set, the lower 7 bits of the first byte and the 8
bits of the next byte are concatenated (the first byte containing the high-order bits) to
create a 15-bit signed delta value.

2.2.2.2.1.1.1.5 Delta-Encoded Rectangles (DELTA_RECTS_FIELD)

The DELTA_RECTS_FIELD structure is used to encode a series of rectangles. Each rectangle is
encoded as a (left, top, width, height) quadruple with the left and top components of each
quadruple containing the delta from the left and top components of the previous rectangle; the first
rectangle in the series is implicitly assumed to be (0, 0, 0, 0). The number of rectangles is order-
dependent and not specified by any field within the DELTA_RECTS_FIELD structure. Instead, a
separate field within the order that contains the DELTA_RECTS_FIELD structure MUST be used to
specify the number of rectangles (this field SHOULD be placed immediately before the

DELTA_RECTS_FIELD structure in the order encoding). The maximum number of rectangles that can
be encoded by this structure is 45.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

zeroBits (variable)

deltaEncodedRectangles (variable)

29/ 284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

zeroBits (variable): A variable-length byte field. The zeroBits field is used to indicate the
absence of a left, top, width, or height component. The size, in bytes, of the zeroBits field is
given by ceil(NumRects / 2) where NumRects is the number of rectangles being encoded. Each
rectangle in the series requires four zero-bits (two rectangles per byte) to indicate whether a
left, top, width, or height component is zero (and not present), starting with the most
significant bits, so that for the first rectangle the left-zero flag is set at (zeroBits[0] & 0x80),
the top-zero flag is set at (zeroBits[0] & 0x40), the width-zero flag is set at (zeroBits[0] &
0x20), and the height-zero flag is set at (zeroBits[0] & 0x10).

deltaEncodedRectangles (variable): A variable-length byte field. The
deltaEncodedRectangles field contains a series of (left, top, width, height) quadruples with
the left and top components in each quadruple specifying the delta from the left and top
components of the previous rectangle in the series; the first rectangle in the series is implicitly
assumed to be (0, 0, 0, 0).

Assume there are two rectangles specified in (left, top, right, bottom) quadruples:

1: (L1, T1, R1, Bl)
2: (L2, T2, R2, B2)

Assuming Rectangle 1 is the first in the series, and by using the (left, top, width, height)
quadruple encoding scheme, these two rectangles would be specified as:

1: (L1, T1, Rl - L1, Bl - T1)
2: (L2 - L1, T2 - T1, R2 - 12, B2 - T2)

The presence of the left, top, width, or height component for a given quadruple is dictated by
the individual bits of the zeroBits field. If the zero bit is set for a given left, top, width, or
height component, its value is unchanged from the previous corresponding left, top, width, or
height value in the series (a delta of zero), and no data is provided. If the zero bit is not set
for a left, right, width, or height component, its value is encoded in a packed signed format:

= If the high bit (0x80) is not set in the first encoding byte, the field is 1 byte long and is
encoded as a signed delta in the lower 7 bits of the byte.

= If the high bit of the first encoding byte is set, the lower 7 bits of the first byte and the 8

bits of the next byte are concatenated (the first byte containing the high order bits) to
create a 15-bit signed delta value.

2.2.2.2.1.1.1.6 Binary Raster Operation (ROP2_OPERATION)

The ROP2_OPERATION structure is used to define how the bits in a destination bitmap and a
selected brush or pen are combined by using Boolean operators.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

rop20peration

rop20peration (1 byte): An 8-bit, unsigned integer. A raster-operation code that describes a
Boolean operation, in Reverse Polish Notation, to perform on the bits in a destination
bitmap (D) and selected brush or pen (P). This operation is a combination of the AND (a), OR
(0), NOT (n), and XOR (x) Boolean operators.

30/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Value Meaning
R2_BLACK 0
0x01

R2_NOTMERGEPEN DPon
0x02

R2_MASKNOTPEN DPna
0x03

R2_NOTCOPYPEN Pn
0x04

R2_MASKPENNOT PDna
0x05

R2_NOT Dn
0x06

R2_XORPEN DPx
0x07

R2_NOTMASKPEN DPan
0x08

R2_MASKPEN DPa
0x09

R2_NOTXORPEN DPxn
Ox0A

R2_NOP D
0x0B

R2_MERGENOTPEN DPno
0x0C

R2_COPYPEN P
0x0D

R2_MERGEPENNOT PDno
OxOE

R2_MERGEPEN PDo
OxO0F

R2_WHITE 1
0x10

For example, by using the previous table, it can be determined that the R2_MERGEPEN (0x0F)
operation replaces the values of the pixels in the destination bitmap with a combination of
pixel values of the destination and pen.

For more information about binary raster operations, see the material on binary raster
operations in [YUAN] section 8.1.

31/284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.2.2.1.1.1.7 Ternary Raster Operation Index (ROP3_OPERATION_INDEX)

The ROP3_OPERATION_INDEX structure is used to define how the bits in a source bitmap,
destination bitmap, and a selected brush or pen are combined by using Boolean operators.

4

=

rop3Index

rop3Index (1 byte): An 8-bit, unsigned integer. This field contains an index of a raster

operation code that describes a Boolean operation, in Reverse Polish Notation, to perform on
the bits in a source bitmap (S), destination bitmap (D), and selected brush or pen (P). This
operation is a combination of the AND (a), OR (0), NOT (n), and XOR (x) Boolean operators.

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation

Value | (RPN)

0x00 ROP: 0x00000042 (BLACKNESS)
RPN: 0

0x01 ROP: 0x00010289
RPN: DPSoon

0x02 ROP: 0x00020C89
RPN: DPSona

0x03 ROP: 0x000300AA
RPN: PSon

0x04 ROP: 0x00040C88
RPN: SDPona

0x05 ROP: 0x000500A9
RPN: DPon

0x06 ROP: 0x00060865
RPN: PDSxnon

0x07 ROP: 0x000702C5
RPN: PDSaon

0x08 ROP: 0x00080F08
RPN: SDPnaa

0x09 ROP: 0x00090245
RPN: PDSxon

0x0A ROP: 0x000A0329
RPN: DPna

0x0B ROP: 0x000B0OB2A
RPN: PSDnaon

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

32 /284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0x0C ROP: 0x000C0324
RPN: SPna
0x0D ROP: 0x000D0B25
RPN: PDSnhaon
OxO0E ROP: 0xO00EO8AS5
RPN: PDSonon
OxO0F ROP: 0x000F0001
RPN: Pn
0x10 ROP: 0x00100C85
RPN: PDSona
Ox11 ROP: 0x001100A6 (NOTSRCERASE)
RPN: DSon
0x12 ROP: 0x00120868
RPN: SDPxnon
0x13 ROP: 0x001302C8
RPN: SDPaon
0x14 ROP: 0x00140869
RPN: DPSxnon
0x15 ROP: 0x001502C9
RPN: DPSaon
0x16 ROP: 0x00165CCA
RPN: PSDPSanaxx
0x17 ROP: 0x00171D54
RPN: SSPxDSxaxn
0x18 ROP: 0x00180D59
RPN: SPxPDxa
0x19 ROP: 0x00191CC8
RPN: SDPSanaxn
Ox1A ROP: 0x001A06C5
RPN: PDSPaox
0x1B ROP: 0x001B0768
RPN: SDPSxaxn
0x1C ROP: 0x001CO06CA
RPN: PSDPaox

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

33/ 284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0x1D ROP: 0x001D0766
RPN: DSPDxaxn
Ox1E ROP: 0x001E01A5
RPN: PDSox
Ox1F ROP: 0x001F0385
RPN: PDSoan
0x20 ROP: 0x00200F09
RPN: DPSnaa
0x21 ROP: 0x00210248
RPN: SDPxon
0x22 ROP: 0x00220326
RPN: DSnha
0x23 ROP: 0x00230B24
RPN: SPDnaon
0x24 ROP: 0x00240D55
RPN: SPxDSxa
0x25 ROP: 0x00251CC5
RPN: PDSPanaxn
0x26 ROP: 0x002606C8
RPN: SDPSaox
0x27 ROP: 0x00271868
RPN: SDPSxnox
0x28 ROP: 0x00280369
RPN: DPSxa
0x29 ROP: 0x002916CA
RPN: PSDPSaoxxn
0x2A ROP: 0x002A0CC9
RPN: DPSana
0x2B ROP: 0x002B1D58
RPN: SSPxPDxaxn
0x2C ROP: 0x002C0784
RPN: SPDSoax
0x2D ROP: 0x002D060A
RPN: PSDnox

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

34 /284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
Ox2E ROP: 0x002E064A
RPN: PSDPxox
Ox2F ROP: 0x002FOE2A
RPN: PSDnoan
0x30 ROP: 0x0030032A
RPN: PSna
0x31 ROP: 0x00310B28
RPN: SDPnaon
0x32 ROP: 0x00320688
RPN: SDPSoo0x
0x33 ROP: 0x00330008 (NOTSRCCOPY)
RPN: Sn
0x34 ROP: 0x003406C4
RPN: SPDSaox
0x35 ROP: 0x00351864
RPN: SPDSxnox
0x36 ROP: 0x003601A8
RPN: SDPox
0x37 ROP: 0x00370388
RPN: SDPoan
0x38 ROP: 0x0038078A
RPN: PSDPoax
0x39 ROP: 0x00390604
RPN: SPDnox
0x3A ROP: 0x003A0644
RPN: SPDSxox
0x3B ROP: 0x003BOE24
RPN: SPDnoan
0x3C ROP: 0x003CO004A
RPN: PSx
0x3D ROP: 0x003D18A4
RPN: SPDSonox
Ox3E ROP: 0x003E1B24
RPN: SPDSnhaox

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

35/284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
Ox3F ROP: 0x003FOOEA
RPN: PSan
0x40 ROP: 0x00400F0A
RPN: PSDnaa
0x41 ROP: 0x00410249
RPN: DPSxon
0x42 ROP: 0x00420D5D
RPN: SDxPDxa
0x43 ROP: 0x00431CC4
RPN: SPDSanaxn
0x44 ROP: 0x00440328 (SRCERASE)
RPN: SDna
0x45 ROP: 0x00450B29
RPN: DPSnhaon
0x46 ROP: 0x004606C6
RPN: DSPDaox
0x47 ROP: 0x0047076A
RPN: PSDPxaxn
0x48 ROP: 0x00480368
RPN: SDPxa
0x49 ROP: 0x004916C5
RPN: PDSPDaoxxn
Ox4A ROP: 0x004A0789
RPN: DPSDoax
0x4B ROP: 0x004B0605
RPN: PDSnox
0x4C ROP: 0x004C0CC8
RPN: SDPana
0x4D ROP: 0x004D1954
RPN: SSPxDSxoxn
Ox4E ROP: 0x004E0645
RPN: PDSPxox
Ox4F ROP: 0x004F0OE25
RPN: PDSnhoan

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

36 /284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation

Value | (RPN)

0x50 ROP: 0x00500325
RPN: PDna

0x51 ROP: 0x00510B26
RPN: DSPnaon

0x52 ROP: 0x005206C9
RPN: DPSDaox

0x53 ROP: 0x00530764
RPN: SPDSxaxn

0x54 ROP: 0x005408A9
RPN: DPSonon

0x55 ROP: 0x00550009 (DSTINVERT)
RPN: Dn

0x56 ROP: 0x005601A9
RPN: DPSox

0x57 ROP: 0x00570389
RPN: DPSoan

0x58 ROP: 0x00580785
RPN: PDSPoax

0x59 ROP: 0x00590609
RPN: DPSnox

Ox5A ROP: 0x005A0049 (PATINVERT)
RPN: DPx

0x5B ROP: 0x005B18A9
RPN: DPSDonox

0x5C ROP: 0x005C0649
RPN: DPSDxox

0x5D ROP: 0x005D0E29
RPN: DPSnoan

Ox5E ROP: 0x005E1B29
RPN: DPSDnaox

Ox5F ROP: 0x005FO0E9
RPN: DPan

0x60 ROP: 0x00600365
RPN: PDSxa

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

37/ 284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0x61 ROP: 0x006116C6
RPN: DSPDSaoxxn
0x62 ROP: 0x00620786
RPN: DSPDoax
0x63 ROP: 0x00630608
RPN: SDPnox
0x64 ROP: 0x00640788
RPN: SDPSoax
0x65 ROP: 0x00650606
RPN: DSPnox
0x66 ROP: 0x00660046 (SRCINVERT)
RPN: DSx
0x67 ROP: 0x006718A8
RPN: SDPSonox
0x68 ROP: 0x006858A6
RPN: DSPDSonoxxn
0x69 ROP: 0x00690145
RPN: PDSxxn
Ox6A ROP: 0x006A01E9
RPN: DPSax
0x6B ROP: 0x006B178A
RPN: PSDPSoaxxn
0x6C ROP: 0x006CO1ES8
RPN: SDPax
0x6D ROP: 0x006D1785
RPN: PDSPDoaxxn
Ox6E ROP: 0x006E1E28
RPN: SDPSnhoax
Ox6F ROP: 0x006F0C65
RPN: PDSxnan
0x70 ROP: 0x00700CC5
RPN: PDSana
0x71 ROP: 0x00711D5C
RPN: SSDxPDxaxn

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

38/ 284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0x72 ROP: 0x00720648
RPN: SDPSxox
0x73 ROP: 0x00730E28
RPN: SDPnoan
0x74 ROP: 0x00740646
RPN: DSPDxox
0x75 ROP: 0x00750E26
RPN: DSPnoan
0x76 ROP: 0x00761B28
RPN: SDPShaox
0x77 ROP: 0x007700E6
RPN: DSan
0x78 ROP: 0x007801E5
RPN: PDSax
0x79 ROP: 0x00791786
RPN: DSPDSoaxxn
Ox7A ROP: 0x007A1E29
RPN: DPSDnoax
0x7B ROP: 0x007B0C68
RPN: SDPxnan
0x7C ROP: 0x007C1E24
RPN: SPDSnhoax
0x7D ROP: 0x007D0C69
RPN: DPSxnan
Ox7E ROP: 0x007EQ955
RPN: SPxDSxo
Ox7F ROP: 0x007F03C9
RPN: DPSaan
0x80 ROP: 0x008003E9
RPN: DPSaa
0x81 ROP: 0x00810975
RPN: SPxDSxon
0x82 ROP: 0x00820C49
RPN: DPSxna

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

39/ 284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0x83 ROP: 0x00831E04
RPN: SPDSnoaxn
0x84 ROP: 0x00840C48
RPN: SDPxna
0x85 ROP: 0x00851E05
RPN: PDSPnoaxn
0x86 ROP: 0x008617A6
RPN: DSPDSoaxx
0x87 ROP: 0x008701C5
RPN: PDSaxn
0x88 ROP: 0x008800C6 (SRCAND)
RPN: DSa
0x89 ROP: 0x00891B08
RPN: SDPSnhaoxn
Ox8A ROP: 0x008A0EQ06
RPN: DSPnoa
0x8B ROP: 0x008B0666
RPN: DSPDxoxn
0x8C ROP: 0x008COEO08
RPN: SDPnoa
0x8D ROP: 0x008D0668
RPN: SDPSxoxn
Ox8E ROP: 0x008E1D7C
RPN: SSDxPDxax
Ox8F ROP: 0x008FOCE5
RPN: PDSanan
0x90 ROP: 0x00900C45
RPN: PDSxna
0x91 ROP: 0x00911E08
RPN: SDPSnoaxn
0x92 ROP: 0x009217A9
RPN: DPSDPoaxx
0x93 ROP: 0x009301C4
RPN: SPDaxn

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

40/ 284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0x94 ROP: 0x009417AA
RPN: PSDPSoaxx
0x95 ROP: 0x009501C9
RPN: DPSaxn
0x96 ROP: 0x00960169
RPN: DPSxx
0x97 ROP: 0x0097588A
RPN: PSDPSonoxx
0x98 ROP: 0x00981888
RPN: SDPSonoxn
0x99 ROP: 0x00990066
RPN: DSxn
0x9A ROP: 0x009A0709
RPN: DPSnax
0x9B ROP: 0x009B07A8
RPN: SDPSoaxn
0x9C ROP: 0x009C0704
RPN: SPDnax
0x9D ROP: 0x009D07A6
RPN: DSPDoaxn
Ox9E ROP: 0x009E16E6
RPN: DSPDSaoxx
Ox9F ROP: 0x009F0345
RPN: PDSxan
0xA0 ROP: 0x00A000C9
RPN: DPa
OxA1 ROP: 0x00A11B05
RPN: PDSPnaoxn
0xA2 ROP: O0x00A20E09
RPN: DPSnoa
OxA3 ROP: 0x00A30669
RPN: DPSDxoxn
0xA4 ROP: 0x00A41885
RPN: PDSPonoxn

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

41 /284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
OxA5 ROP: 0x00A50065
RPN: PDxn
0xA6 ROP: 0x00A60706
RPN: DSPnax
OxA7 ROP: 0x00A707A5
RPN: PDSPoaxn
0xA8 ROP: 0x00A803A9
RPN: DPSoa
0xA9 ROP: 0x00A90189
RPN: DPSoxn
OxAA ROP: 0x00AA0029
RPN: D
OxAB ROP: 0x00AB0889
RPN: DPSono
OxAC ROP: 0x00AC0744
RPN: SPDSxax
OxAD ROP: 0x00ADO6E9
RPN: DPSDaoxn
OXAE ROP: O0xO0AEOBO6
RPN: DSPnao
OXAF ROP: 0x00AF0229
RPN: DPno
0xB0 ROP: 0x00BOOEOS
RPN: PDSnoa
0xB1 ROP: 0x00B10665
RPN: PDSPxoxn
0xB2 ROP: 0x00B21974
RPN: SSPxDSxox
0xB3 ROP: 0x00B30CE8
RPN: SDPanan
0xB4 ROP: 0x00B4070A
RPN: PSDnax
0xB5 ROP: 0x00B507A9
RPN: DPSDoaxn

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

42 /284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0xB6 ROP: 0x00B616E9
RPN: DPSDPaoxx
0xB7 ROP: 0x00B70348
RPN: SDPxan
0xB8 ROP: 0x00B8074A
RPN: PSDPxax
0xB9 ROP: 0x00B906E6
RPN: DSPDaoxn
OxBA ROP: 0x00BAOB0O9
RPN: DPSnao
0xBB ROP: 0x00BB0226 (MERGEPAINT)
RPN: DSno
0xBC ROP: 0x00BC1CE4
RPN: SPDSanax
0xBD ROP: 0x00BDOD7D
RPN: SDxPDxan
OxBE ROP: 0x00BE0269
RPN: DPSxo
OxBF ROP: 0x00BF08C9
RPN: DPSano
0xCO0 ROP: 0x00CO00CA (MERGECOPY)
RPN: PSa
0xC1 ROP: 0x00C11B04
RPN: SPDSnaoxn
0xC2 ROP: 0x00C21884
RPN: SPDSonoxn
0xC3 ROP: 0x00C3006A
RPN: PSxn
0xC4 ROP: 0x00C40E04
RPN: SPDnoa
0xC5 ROP: 0x00C50664
RPN: SPDSxoxn
0xC6 ROP: 0x00C60708
RPN: SDPnax

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

43/ 284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0xC7 ROP: 0x00C707AA
RPN: PSDPoaxn
0xC8 ROP: 0x00C803A8
RPN: SDPoa
0xC9 ROP: 0x00C90184
RPN: SPDoxn
OxCA ROP: 0x00CA0749
RPN: DPSDxax
0xCB ROP: 0x00CBO6E4
RPN: SPDSaoxn
0xCC ROP: 0x00CC0020 (SRCCOPY)
RPN: S
0xCD ROP: 0x00CD0888
RPN: SDPono
OxCE ROP: 0x00CEOBO8
RPN: SDPnao
OxCF ROP: 0x00CF0224
RPN: SPno
0xDO0 ROP: O0xO00DOOEOA
RPN: PSDnoa
0xD1 ROP: 0x00D1066A
RPN: PSDPxoxn
0xD2 ROP: 0x00D20705
RPN: PDSnax
0xD3 ROP: 0x00D307A4
RPN: SPDSoaxn
0xD4 ROP: 0x00D41D78
RPN: SSPxPDxax
0xD5 ROP: 0x00D50CE9
RPN: DPSanan
0xD6 ROP: OxO0OD616EA
RPN: PSDPSaoxx
0xD7 ROP: 0x00D70349
RPN: DPSxan

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

44 /284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)
0xD8 ROP: 0x00D80745
RPN: PDSPxax
0xD9 ROP: 0xO00D906ES8
RPN: SDPSaoxn
OxDA ROP: 0x00DA1CE9
RPN: DPSDanax
0xDB ROP: 0x00DB0OD75
RPN: SPxDSxan
0xDC ROP: 0x00DC0OB04
RPN: SPDnao
0xDD ROP: 0x00DD0228
RPN: SDno
OxDE ROP: 0xO0DE0268
RPN: SDPxo
OxDF ROP: 0xO0DF0O8C8
RPN: SDPano
OxEO ROP: 0xO00EOQ3A5
RPN: PDSoa
OxE1l ROP: 0x00E10185
RPN: PDSoxn
OxE2 ROP: 0x00E20746
RPN: DSPDxax
OxE3 ROP: OXO0E306EA
RPN: PSDPaoxn
OxE4 ROP: 0x00E40748
RPN: SDPSxax
OxE5 ROP: 0x00E506E5
RPN: PDSPaoxn
OXE6 ROP: OxO0E61CES8
RPN: SDPSanax
OxE7 ROP: 0x00E70D79
RPN: SPxPDxan
OxE8 ROP: 0x00E81D74
RPN: SSPxDSxax

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

45 /284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation

Value | (RPN)

OxE9 ROP: 0x00E95CE6
RPN: DSPDSanaxxn

OXEA ROP: 0xO0EAO02E9
RPN: DPSao

OxEB ROP: 0xO0EB0849
RPN: DPSxno

OXEC ROP: 0xO0ECO2ES8
RPN: SDPao

OxED ROP: 0xO00ED0848
RPN: SDPxno

OxEE ROP: O0XO0EE0086 (SRCPAINT)
RPN: DSo

OxEF ROP: OxO0EFOA08
RPN: SDPnoo

OxFO ROP: 0x00F00021 (PATCOPY)
RPN: P

OxF1 ROP: 0x00F10885
RPN: PDSono

OxF2 ROP: 0x00F20B05
RPN: PDSnao

OxF3 ROP: 0x00F3022A
RPN: PSno

OxF4 ROP: 0x00F40B0OA
RPN: PSDnao

OxF5 ROP: 0x00F50225
RPN: PDno

OxF6 ROP: 0x00F60265
RPN: PDSxo

OxF7 ROP: 0x00F708C5
RPN: PDSano

OxF8 ROP: 0x00F802E5
RPN: PDSao

OxF9 ROP: 0x00F90845
RPN: PDSxno

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

46 / 284

Raster-operation Code (ROP) / Boolean Function in Reverse Polish Notation
Value | (RPN)

OxFA ROP: OxO0FA0089
RPN: DPo

OxFB ROP: OxO0FBOAQ9 (PATPAINT)
RPN: DPSnoo

OxFC ROP: 0xO0FCO08A
RPN: PSo

OxFD ROP: OxO0FDOAOA
RPN: PSDnoo

OxFE ROP: OxO0FEQ2A9
RPN: DPSoo

OxFF ROP: Ox0O0FF0062 (WHITENESS)
RPN: 1

For example, by using the previous table, it can be determined that the raster operation at
index OXEE (SRCPAINT) replaces the values of the pixels in the destination bitmap with a
combination of pixel values of the destination and source bitmaps.

For more information about ternary raster operations, see the material on ternary raster
operations in [YUAN] section 11.1.

2.2.2.2.1.1.1.8 Generic Color (TS_COLOR)

The TS_COLOR structure holds a 3-byte RGB color triplet (the red, green, and blue components
necessary to reproduce a color in the additive RGB space) or a 1-byte palette index.

1 2 3
0|1{2({3(4|5|/6|7(8|9|/0|1|2(|3|4|5|6[7(8|9|0(1(2|3|4|5|6(7|8|9|0(1

RedOrPaletteIndex Green Blue

RedOrPaletteIndex (1 byte): An 8-bit, unsigned integer. RedOrPaletteIndex is used as a
palette index for 16-color and 256-color palettized color schemes. If the RGB color scheme is
in effect, this field contains the red RGB component. To determine whether a palettized or
RGB color scheme is in effect, the client MUST examine the preferredBitsPerPixel field of
the Bitmap Capability Set ([MS-RDPBCGR] section 2.2.7.1.2). If preferredBitsPerPixel is
less than or equal to 8, then a palettized color scheme is in effect; otherwise, an RGB color
scheme is in effect.

Green (1 byte): An 8-bit, unsigned integer. Green contains the green RGB color component.

Blue (1 byte): An 8-bit, unsigned integer. Blue contains the blue RGB color component.

47/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

2.2.2.2.1.1.1.9 Fill Mode (FILL_MODE)

The FILL_MODE structure specifies the algorithm used to determine if a given point is contained
within a polygon.

-
N
w

0|1|{2({3(4|5|6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

FillMode

FillMode (1 byte): An 8-bit, unsigned integer that specifies the fill mode. FillMode MUST be
one of the following values.

Value Meaning

ALTERNATE | Alternate fill mode. To test if a point is inside a polygon, a ray is drawn from that
0x01 point parallel to the x-axis to infinity, and the number of intersections between the
ray and the polygon outline is counted. If the number of intersections is odd, the
point is inside the polygon, and, if it is even, the point is outside.

WINDING Winding fill mode. To determine if a point is within a polygon, a ray is drawn from
0x02 that point parallel to the x-axis to infinity, and its intersections with the outline are
examined. A count that starts from 0 is kept for the ray. Each intersection with a
clockwise polygon outline increments the count, and each intersection with a
counterclockwise polygon outline decrements the count. If the final value of the
count is nonzero, the point is inside the polygon; otherwise, it is outside.

For alternate and winding fill modes, see [YUAN] section 9.4 and [PETZOLD] pages 169-171.

2.2.2.2.1.1.2 Primary Drawing Order (PRIMARY_DRAWING_ORDER)

The PRIMARY_DRAWING_ORDER structure encapsulates a primary drawing order. All primary
drawing orders employ special field encoding to reduce the number of bytes sent on the wire. Field
encoding maintains a copy of the most recent field values that were used in each primary drawing
order, in addition to common state information such as the last bounding rectangle used across all
orders and the last order type. Only the fields that have changed are sent on the wire. This implies
that all the fields in a primary drawing order are optional, their presence being denoted by the
controlFlags and fieldFlags fields.

1 2 3
0|1{2(3(4|5|/6|7(8|9|/0|1|2(3|4|5|6[7(8|9|0(1(2|3|4|5|6(7|8|9|0(1

controlFlags orderType (optional) fieldFlags (variable)

bounds (variable)

primaryOrderData (variable)

48/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

controlFlags (1 byte): An 8-bit, unsigned integer. A control byte that identifies the class of the

drawing order and describes the fields that are included in the order and the type of
coordinates being used. This field MUST contain a combination of the following flags.

Value

Meaning

TS_STANDARD

Indicates that the order is a primary drawing order. This flag MUST

0x01 be set.
TS_BOUNDS Indicates that the order has a bounding rectangle.
0x04

TS_TYPE_CHANGE
0x08

Indicates that the order type has changed and that the orderType
field is present.

TS_DELTA_COORDINATES
0x10

Indicates that all of the Coord-type fields in the order (see section
2.2.2.2.1.1.1.1) are specified as 1-byte signed deltas from their
previous values.

TS_ZERO_BOUNDS_DELTAS
0x20

Indicates that the previous bounding rectangle MUST be used, as
the bounds have not changed (this implies that the bounds field is
not present). This flag is only applicable if the TS_BOUNDS (0x04)
flag is set.

TS_ZERO_FIELD_BYTE_BITO
0x40

Used in conjunction with the TS_ZERO_FIELD_BYTE_BIT1 (0x80)
flag to form a 2-bit count (so maximum of 3) of the number of field
flag bytes (present in the fieldFlags field) that are zero and not
present, counted from the end of the set of field flag bytes. This
flag is the least significant bit of the count.

TS_ZERO_FIELD_BYTE_BIT1
0x80

Used in conjunction with the TS_ZERO_FIELD_BYTE_BITO (0x40)
flag to form a 2-bit count (so maximum of 3) of the number of field
flag bytes (present in the fieldFlags field) that are zero and not
present, counted from the end of the set of field flag bytes. This
flag is the most significant bit of the count.

For the use of the TS_ZERO_FIELD_BYTE_BITO (0x40) and TS_ZERO_FIELD_BYTE_BIT1
(0x80) flags, see the fieldFlags field.

orderType (1 byte): An 8-bit, unsigned integer. An optional identifier describing the type of
primary drawing order. The initial value for the orderType agreed on by both the server and

client is TS_ENC_PATBLT_ORDER (0x01) for the PatBIt primary drawing order.

Value

Meaning

TS_ENC_DSTBLT_ORDER
0x00

DstBIt (section 2.2.2.2.1.1.2.1) Primary Drawing
Order.

TS_ENC_PATBLT_ORDER
0x01

PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing
Order.

TS_ENC_SCRBLT_ORDER
0x02

ScrBIt (section 2.2.2.2.1.1.2.7) Primary Drawing
Order.

49 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Value Meaning

TS_ENC_DRAWNINEGRID_ORDER DrawNineGrid (section 2.2.2.2.1.1.2.21) Primary
0x07 Drawing Order.
TS_ENC_MULTI_DRAWNINEGRID_ORDER | MultiDrawNineGrid (section 2.2.2.2.1.1.2.22) Primary
0x08 Drawing Order.

TS_ENC_LINETO_ORDER LineTo (section 2.2.2.2.1.1.2.11) Primary Drawing
0x09 Order.

TS_ENC_OPAQUERECT_ORDER OpaqueRect (section 2.2.2.2.1.1.2.5) Primary Drawing
0x0A Order.

TS_ENC_SAVEBITMAP_ORDER SaveBitmap (section 2.2.2.2.1.1.2.12) Primary

0x0B Drawing Order.

TS_ENC_MEMBLT_ORDER MemBIt (section 2.2.2.2.1.1.2.9) Primary Drawing
0x0D Order.

TS_ENC_MEM3BLT_ORDER Mem3Blt (section 2.2.2.2.1.1.2.10) Primary Drawing
Ox0E Order.

TS_ENC_MULTIDSTBLT_ORDER MultiDstBIt (section 2.2.2.2.1.1.2.2) Primary Drawing
Ox0F Order.

TS_ENC_MULTIPATBLT_ORDER MultiPatBIt (section 2.2.2.2.1.1.2.4) Primary Drawing
0x10 Order.

TS_ENC_MULTISCRBLT_ORDER MultiScrBIt (section 2.2.2.2.1.1.2.8) Primary Drawing
Ox11 Order.

TS_ENC_MULTIOPAQUERECT_ORDER MultiOpaqueRect (section 2.2.2.2.1.1.2.6) Primary
0x12 Drawing Order.

TS_ENC_FAST_INDEX_ORDER FastIndex (section 2.2.2.2.1.1.2.14) Primary Drawing
0x13 Order.

TS_ENC_POLYGON_SC_ORDER PolygonSC (section 2.2.2.2.1.1.2.16) Primary Drawing
0x14 Order.

TS_ENC_POLYGON_CB_ORDER PolygonCB (section 2.2.2.2.1.1.2.17) Primary Drawing
0x15 Order.

TS_ENC_POLYLINE_ORDER Polyline (section 2.2.2.2.1.1.2.18) Primary Drawing
0x16 Order.

TS_ENC_FAST_GLYPH_ORDER FastGlyph (section 2.2.2.2.1.1.2.15) Primary Drawing
0x18 Order.

TS_ENC_ELLIPSE_SC_ORDER EllipseSC (section 2.2.2.2.1.1.2.19) Primary Drawing
0x19 Order.

TS_ENC_ELLIPSE_CB_ORDER EllipseCB (section 2.2.2.2.1.1.2.20) Primary Drawing
Ox1A Order.

TS_ENC_INDEX_ORDER GlyphIndex (section 2.2.2.2.1.1.2.13) Primary Drawing
0x1B Order.

50/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

fieldFlags (variable): A variable-length, 1-byte to 3-byte field. The optional fieldFlags field is

used to indicate the presence of an order field in the encoded fields portion of the packet
(represented by the primaryOrderData field). Each bit in the fieldFlags field functions as a
flag and indicates if a particular order field is present.

The number of bytes used to represent the field flags will vary based on the maximum
number of fields that a primary drawing order can hold. For any given drawing order, the size
(in bytes) of the fieldFlags field MUST be computed with the following formula.

ceil (((numberOfOrderFields) + 1) / 8)

The maximum number of allowed fields is 23, which corresponds to three field flags bytes.
The "+ 1" in the equation indicates that for seven fields there is one field flags byte; however,
for eight fields, there are 2 bytes. (This drives some of the specialized orders in RDP where a
special case may be used to reduce the number of fields below 7 or 15, thereby reducing the
number of field flags bytes sent.)

The individual field flags bytes are arranged in little-endian order; the low order byte is first.
The order of the flags proceeds from 0x01 (the least significant bit), which corresponds to the
first field in the order, 0x02 the second field in the order, 0x04 the third field in the order, and
SO on.

The presence of the fieldFlags field is also governed by the controlFlags field
ZERO_FIELD_BYTE_BITO (0x40) and ZERO_FIELD_BYTE_BIT1 (0x80) flags (known as the
"zero flags"). These flags are used as a 2-bit count of the number of field flags bytes that are
zero and not present, counted from the end of the set of flag bytes.

Zero Flags Actual number of flield flag bytes sent on wire
Bit 1 Bit 0 Orders '.-"\.!ilh 1 field- | Orders with 2 field- | Orders '.-_.'ith 3 field-
encoding byte encoding bytes encoding bytes
0 0 1 2 3
0 1 0 1 2
1 0 M A 0 1
1 1 M8 M8 0

Figure 1: Relationship between zero flags and the number of flag field bytes sent on

the wire

For example, assume that a given order has nine fields. Hence, there can be up to two bytes
in the fieldFlags field. Assume further that the fieldFlags field has the field-encoding bytes
{0x20, 0x00%}. In this case, there is 1 zero byte (counting from the end backward); thus, the
controlFlags field contains the ZERO_FIELD_BYTE_BITO flag (0x40), and the order is sent on
the wire with a fieldFlags value of 0x20.

bounds (variable): A variable-length, 1-byte to 9-byte field. The presence of the optional
bounds field is governed by the TS_BOUNDS (0x04) flag in the controlFlags field, which
indicates that the order MUST have a bounding region applied. If the controlFlags field
TS_ZERO_BOUNDS_DELTAS (0x20) flag is also set, the previous bounding rectangle MUST be
used, as the bounds have not changed (this implies that the bounds field is not present).
Otherwise, the bounds are encoded as an encoding description byte followed by one or more
encoded bounds (written in the order: left, top, right, bottom). The description byte MUST

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

51 /284

contain a TS_BOUND_XXX or TS_BOUND_DELTA_XXX flag to describe each of the encoded
bounds that are present.

Flag Meaning

TS_BOUND_LEFT Indicates that the left bound is present and encoded as a 2-byte,

0x01 little-endian ordered value.

TS_BOUND_TOP Indicates that the top bound is present and encoded as a 2-byte,

0x02 little-endian ordered value.

TS_BOUND_RIGHT Indicates that the right bound is present and encoded as a 2-byte,

0x04 little-endian ordered value.

TS_BOUND_BOTTOM Indicates that the bottom bound is present and encoded as a 2-

0x08 byte, little-endian ordered value.

TS_BOUND_DELTA_LEFT Indicates that the left bound is present and encoded as a 1-byte

0x10 signed value used as an offset (-128 to 127) from the previous
value.

TS_BOUND_DELTA_TOP Indicates that the top bound is present and encoded as a 1-byte

0x20 signed value used as an offset (-128 to 127) from the previous
value.

TS_BOUND_DELTA_RIGHT Indicates that the right bound is present and encoded as a 1-byte,

0x40 signed value used as an offset (-128 to 127) from the previous
value.

TS_BOUND_DELTA_BOTTOM Indicates that the bottom bound is present and encoded as a 1-

0x80 byte, signed value used as an offset (-128 to 127) from the
previous value.

If for a given component a TS_BOUND_XXX or TS_BOUND_DELTA_XXX flag is not present,
the component value is the same as the last one used, and no value is included in the
encoded bounds. If both the TS_BOUND_XXX and TS_BOUND_DELTA_XXX flags are present,
the TS_BOUND_XXX flag is ignored. Hence, to avoid parsing errors, only one flag MUST be
used to describe the format of a given encoded bound.

The initial value for the bounds agreed on by both the server and client is the following zero
rectangle.

(left, top, right, bottom) = (0, 0, 0, 0)

primaryOrderData (variable): A variable-length byte field. The primaryOrderData field
contains the encoded order field values whose presence is governed by the fieldFlags field.
The encoded fields, if present, MUST be encoded in the same order as the order description
(see sections 2.2.2.2.1.1.2.1 through 2.2.2.2.1.1.2.22). If a field is not present, its value is
the same as the last value sent for that order. The initial values for all fields are zero.

2.2,2.2.1.1.2.1 DstBIt (DSTBLT_ORDER)

The DstBIt Primary Drawing Order is used to paint a rectangle by using a destination-only raster
operation.

52 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Encoding order number: 0 (0x00)
Negotiation order number: 0 (0x00)
Number of fields: 5

Number of field encoding bytes: 1
Maximum encoded field length: 9 bytes

1 2 3
0|1|{2(3|4|5|6|7(8|9|0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1
nLeftRect (variable) nTopRect (variable)
nWidth (variable) nHeight (variable)

bRop (optional)

nLeftRect (variable): Left coordinate of the destination rectangle specified using a Coord Field
(section 2.2.2.2.1.1.1.1).

nTopRect (variable): Top coordinate of the destination rectangle specified using a Coord Field
(section 2.2.2.2.1.1.1.1).

nWidth (variable): Width of the destination rectangle specified by using a Coord Field (section
2.2.2.2.1.1.1.1).

nHeight (variable): Height of the destination rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

bRop (1 byte): Index of the ternary raster operation to perform (see section 2.2.2.2.1.1.1.7).
The resultant ROP3 operation MUST only depend on the destination bits (there MUST NOT be
any dependence on source or pattern bits).

2.2.2.2.1.1.2.2 MultiDstBIt (MULTI_DSTBLT_ORDER)

The MultiDstBIt Primary Drawing Order is used to paint multiple rectangles by using a destination-
only raster operation.

Encoding order number: 15 (0x0F)
Negotiation order number: 15 (0xO0F)
Number of fields: 7

Number of field encoding bytes: 1
Maximum encoded field length: 395 bytes

0123456789(1)123456789312345678981
nLeftRect (variable) nTopRect (variable)
nWidth (variable) nHeight (variable)
bRop (optional) nDeltaEntries (optional) CodedDeltalist (variable)

53/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

nLeftRect (variable): A signed, 1-byte or 2-byte field. Left coordinate of the destination
rectangle specified using a Coord Field (section 2.2.2.2.1.1.1.1).

nTopRect (variable): A signed, 1-byte or 2-byte field. Top coordinate of the destination
rectangle specified using a Coord Field (section 2.2.2.2.1.1.1.1).

nWidth (variable): A signed, 1-byte or 2-byte field. Width of the destination rectangle
specified using a Coord Field (section 2.2.2.2.1.1.1.1).

nHeight (variable): A signed, 1-byte or 2-byte field. Height of the destination rectangle
specified using a Coord Field (section 2.2.2.2.1.1.1.1).

bRop (1 byte): Index of the ternary raster operation to perform (see section 2.2.2.2.1.1.1.7).
The resultant ROP3 operation MUST only depend on the destination bits (there MUST NOT be
any dependence on source or pattern bits).

nDeltaEntries (1 byte): An 8-bit, unsigned integer. The number of bounding rectangles
described by the CodedDeltalList field.

CodedDeltalList (variable): A Two-Byte Header Variable Field (section 2.2.2.2.1.1.1.3)
structure that encapsulates a Delta-Encoded Rectangles (section 2.2.2.2.1.1.1.5) structure
that contains bounding rectangles to use when rendering the order. The number of rectangles
described by the Delta-Encoded Rectangles structure is specified by the nDeltaEntries field.

2.2.2.2.1.1.2.3 PatBIt (PATBLT_ORDER)

The PatBIt Primary Drawing Order is used to paint a rectangle by using a specified brush and
way raster operation.

Encoding order number: 1 (0x01)
Negotiation order number: 1 (0x01)
Number of fields: 12

Number of field encoding bytes: 2
Maximum encoded field length: 26 bytes

three-

Note that the negotiation order number for the PatBIt Primary Drawing Order (0x01) is the same as
that for the OpagueRect Primary Drawing Order (section 2.2.2.2.1.1.2.5). Hence support for PatBlt

implies support for OpaqueRect. The converse is also true.

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

01234567898123456789312345678981
nLeftRect (variable) nTopRect (variable)
nWidth (variable) nHeight (variable)
bRop (optional) BackColor (optional)
ForeColor (optional) BrushOrgX (optional)
BrushOrgY (optional) BrushStyle (optional) BrushHatch (optional) BrushExtra
54 /284

nLeftRect (variable): Left coordinate of the destination rectangle specified using a Coord Field
(section 2.2.2.2.1.1.1.1).

nTopRect (variable): Top coordinate of the destination rectangle specified using a Coord Field
(section 2.2.2.2.1.1.1.1).

nWidth (variable): Width of the destination rectangle specified using a Coord Field (section
2.2.2.2.1.1.1.1).

nHeight (variable): Height of the destination rectangle specified using a Coord Field (section
2.2.2.2.1.1.1.1).

bRop (1 byte): Index of the ternary raster operation to perform (see section 2.2.2.2.1.1.1.7).

BackColor (3 bytes): Background color described using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

ForeColor (3 bytes): Foreground color described using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

BrushOrgX (1 byte): An 8-bit, signed integer. The x-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushOrgY (1 byte): An 8-bit, signed integer. The y-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushStyle (1 byte): An 8-bit, unsigned integer. The style of the brush used in the drawing
operation.

If the TS_CACHED_BRUSH (0x80) flag is set in the most significant bit of the BrushStyle field,
a brush that was previously cached using the Cache Bitmap Secondary Order (see section
2.2.2.2.1.2.7) MUST be used. In this case, the BrushHatch field MUST contain the index of the
Brush Cache entry that holds the selected brush to use, and the low nibble of the BrushStyle
field MUST contain an identifier describing the color depth of the cached brush.

Value Meaning
BMF_1BPP 1 bit per pixel
0x1

BMF_8BPP 8 bits per pixel
0x3

BMF_16BPP 15 or 16 bits per pixel
0x4

BMF_24BPP 24 bits per pixel
0x5

BMF_32BPP 32 bits per pixel
0x6

55/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

If the TS_CACHED_BRUSH (0x80) flag is not set in the most significant bit of the BrushStyle
field, an 8-by-8-pixel brush MUST be used, and one of the following style identifiers MUST be
present in the field.

Value Meaning

BS_SOLID Solid color brush. The BrushHatch field SHOULD be set to 0.

0x00

BS_NULL Hollow brush. The BrushHatch field SHOULD be set to 0.

0x01

BS_HATCHED Hatched brush. The hatch pattern MUST be described by the BrushHatch field
0x02 (there are six possible hatch patterns).

BS_PATTERN Pattern brush. The pixel pattern MUST be described by the BrushExtra and
0x03 BrushHatch fields.

BrushHatch (1 byte): An 8-bit, unsigned integer. Holds a brush hatch identifier or a Brush
Cache index, depending on the contents of the BrushStyle field.

If the TS_CACHED_BRUSH (0x80) flag is set in the most significant bit of the BrushStyle field,

the BrushHatch value MUST contain the index of the Brush Cache entry that holds the

selected brush to use.

If the BrushStyle field is set to BS_SOLID (0x00) or BS_NULL (0x01), the BrushHatch field
SHOULD be set to 0.

If the BrushStyle field is set to BS_HATCHED (0x02), the BrushHatch field MUST contain one
of the following hatch constants.

Value Meaning
HS_HORIZONTAL Horizontal hatching as in the following figure.
0x00

Figure 2: Horizontal hatch

0x01

HS_VERTICAL

Vertical hatching as in the following figure.

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

56 /284

Value Meaning

Figure 3: Vertical hatch

HS_FDIAGONAL Diagonal hatching as in the following figure.
0x02

Figure 4: 45-degree downward, left-to-right hatch

HS_BDIAGONAL Diagonal hatching as in the following figure.
0x03

Figure 5: 45-degree upward, left-to-right hatch

HS_CROSS Cross-hatching as in the following figure.
0x04

Figure 6: Horizontal and vertical cross-hatch

HS_DIAGCROSS Cross-hatching as in the following figure.

0x05
B

LRI

525

588

LS8
GRS
SRS

525
et
el
SN
LI

A

e

A

e
it

e
5

Figure 7: 45-degree cross-hatch

If the BrushStyle field is set to BS_PATTERN (0x03), the BrushHatch field MUST encode the
pixel pattern present in the bottom row of the 8x8 pattern brush (the pixel patterns in the top
seven rows MUST be encoded in the BrushExtra field). For example, if the bottom row of the

57/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

pattern brush contains an alternating series of black and white pixels, BrushHatch will

contain either OxAA or 0x55.

BrushExtra (7 bytes): A byte array of length 7. BrushExtra contains an array of bitmap bits
that encodes the pixel pattern present in the top seven rows of the 8x8 pattern brush. The
pixel pattern present in the bottom row is encoded in the BrushHatch field. The BrushExtra
field is only present if the BrushStyle is set to BS_PATTERN (0x03). The rows are encoded in
reverse order, that is, the pixels in the penultimate row are encoded in the first byte, and the
pixels in the top row are encoded in the seventh byte. For example, a 45-degree downward
sloping left-to-right line would be encoded in BrushExtra as { 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80 } with BrushHatch containing the value 0x01 (the bottom row).

2.2.2.2,1.1.2.4 MultiPatBIt (MULTI_PATBLT_ORDER)

The MultiPatBIlt Primary Drawing Order is used to paint multiple rectangles by using a specified

brush and three-way raster operation.

Encoding order number: 16 (0x10)
Negotiation order number: 16 (0x10)
Number of fields: 14

Number of field encoding bytes: 2
Maximum encoded field length: 412 bytes

1

0({1(2(3|4(5|6|7|8|9(0|1|2|3|4|5

6(7|8[(9|0(1]|2]|3

415/6|7|8]9|0(1

nLeftRect (variable)

nTopRect (variable)

nWidth (variable)

nHeight (variable)

bRop (optional)

BackColor (optional)

ForeColor (optional)

BrushOrgX (optional)

BrushOrgY (optional) BrushStyle (optional)

BrushHatch (optional)

BrushExtra (optional)

nDeltaEntries (optional)

CodedDeltalList (variable)

nLeftRect (variable): The left coordinate of the destination rectangle specified by using a

Coord Field (section 2.2.2.2.1.1.1.1).

nTopRect (variable): The top coordinate of the destination rectangle specified by using a

Coord Field (section 2.2.2.2.1.1.1.1).

nWidth (variable): The width of the destination rectangle specified by using a Coord Field

(section 2.2.2.2.1.1.1.1).

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

58/ 284

nHeight (variable): The height of the destination rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

bRop (1 byte): The index of the ternary raster operation to perform (see section
2.2.2.2.1.1.1.7).

BackColor (3 bytes): The background color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

ForeColor (3 bytes): The foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

BrushOrgX (1 byte): An 8-bit, signed integer. The x-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushOrgY (1 byte): An 8-bit, signed integer. The y-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushStyle (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushStyle field of the PatBlt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

BrushHatch (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushHatch field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

BrushExtra (7 bytes): The contents and format of this field are the same as the BrushExtra
field of the PatBlt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

nDeltaEntries (1 byte): An 8-bit, unsigned integer. The number of bounding rectangles
described by the CodedDeltalList field.

CodedDeltalList (variable): A Two-Byte Header Variable Field (section 2.2.2.2.1.1.1.3)
structure that encapsulates a Delta-Encoded Rectangles (section 2.2.2.2.1.1.1.5) structure
that contains bounding rectangles to use when rendering the order. The number of rectangles
described by the Delta-Encoded Rectangles structure is specified by the nDeltaEntries field.

2.2.2.2.1.1.2.5 OpaqueRect (OPAQUERECT_ORDER)

The OpaqueRect Primary Drawing Order is used to paint a rectangle by using an opaque brush.

Encoding order number: 10 (0x0A)
Negotiation order number: 1 (0x01)
Number of fields: 7

Number of field encoding bytes: 1
Maximum encoded field length: 11 bytes

Note that the negotiation order number for the OpaqueRect Primary Drawing Order (0x01) is the
same as that for the PatBIt Primary Drawing Order (section 2.2.2.2.1.1.2.3). Hence support for
OpaqueRect implies support for PatBlt. The converse is also true.

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

nLeftRect (variable) nTopRect (variable)

59/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

nWidth (variable)

nHeight (variable)

RedOrPaletteIndex
(optional)

Green (optional)

Blue (optional)

nLeftRect (variable): The left coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

nTopRect (variable): The top coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

nWidth (variable): The width of the destination rectangle specified by using a Coord Field

(section 2.2.2.2.1.1.1.1).

nHeight (variable): The height of the destination rectangle specified by using a Coord Field

(section 2.2.2.2.1.1.1.1).

RedOrPaletteIndex (1 byte): An 8-bit, unsigned integer. Used as a palette index for 16-color
and 256-color palettized color schemes. If the RGB color scheme is in effect, this field holds

the red RGB component.

Green (1 byte): An 8-bit, unsigned integer. The green RGB color component.

Blue (1 byte): An 8-bit, unsigned integer. The blue RGB color component.

2.2.2.2.1.1.2.6 MultiOpaqueRect (MULTI_OPAQUERECT_ORDER)

The MultiOpaqueRect Primary Drawing Order is used to paint multiple rectangles by using an opaque

brush.

Encoding order number: 18 (0x12)

Negotiation order number: 18 (0x12)

Number of fields: 9
Number of field encoding bytes: 2

Maximum encoded field length: 397 bytes

1
0[{1|2(3|4|5|6|7(8|9|0/1

1/2(3|4|5|6|7[(8|9(0]|1

nLeftRect (variable)

nTopRect (variable)

nWidth (variable)

nHeight (variable)

RedOrPaletteIndex
(optional)

Green (optional)

Blue (optional)

nDeltaEntries (optional)

CodedDeltalList (variable)

[MS-RDPEGDI] — v20131025

60/ 284

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

nLeftRect (variable): The left coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

nTopRect (variable): The top coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

nWidth (variable): The width of the destination rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

nHeight (variable): The height of the destination rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

RedOrPaletteIndex (1 byte): An 8-bit, unsigned integer. Used as a palette index for 16-color
and 256-color palettized color schemes. If the RGB color scheme is in effect, it holds the red
RGB component.

Green (1 byte): An 8-bit, unsigned integer. The green RGB color component.
Blue (1 byte): An 8-bit, unsigned integer. The blue RGB color component.

nDeltaEntries (1 byte): An 8-bit, unsigned integer. The number of bounding rectangles
described by the CodedDeltalList field.

CodedDeltalList (variable): A Two-Byte Header Variable Field (section 2.2.2.2.1.1.1.3)
structure that encapsulates a Delta-Encoded Rectangles (section 2.2.2.2.1.1.1.5) structure
that contains bounding rectangles to use when rendering the order. The number of rectangles
described by the Delta-Encoded Rectangles structure is specified by the nDeltaEntries field.

2.2.2.2.1.1.2.7 ScrBIt (SCRBLT_ORDER)

The ScrBlt Primary Drawing Order is used to perform a bit-block transfer from a source region to a
destination region. The source surface is always the primary drawing surface, while the target
surface is the current target surface—specified by the Switch Surface Alternate Secondary Drawing
Order (section 2.2.2.2.1.3.3).

Encoding order number: 2 (0x02)
Negotiation order number: 2 (0x02)
Number of fields: 7

Number of field encoding bytes: 1
Maximum encoded field length: 13 bytes

1 2 3
0|1{2({3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

nLeftRect (variable) nTopRect (variable)
nWidth (variable) nHeight (variable)
bRop (optional) nXSrc (variable) nYSrc (variable)

61 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

nLeftRect (variable): The left coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

nTopRect (variable): The top coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

nWidth (variable): The width of the destination rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

nHeight (variable): The height of the destination rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

bRop (1 byte): The index of the ternary raster operation to perform (see section
2.2.2.2.1.1.1.7). The resultant ROP3 operation MUST only depend on the destination and
source bits. (There MUST NOT be any dependence on pattern bits.)

nXSrc (variable): The x-coordinate of the source rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

nYSrc (variable): The y-coordinate of the source rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

2.2,2.2.1.1.2.8 MultiScrBlt (MULTI_SCRBLT_ORDER)

The MultiScrBIt Primary Drawing Order is used to perform multiple bit-block transfers from source
regions to destination regions of the screen.

Encoding order number: 17 (0x11)
Negotiation order number: 17 (0x11)
Number of fields: 9

Number of field encoding bytes: 2
Maximum encoded field length: 399 bytes

01234567893123456789312345678981
nLeftRect (variable) nTopRect (variable)
nWidth (variable) nHeight (variable)
bRop (optional) nXSrc (variable) nYSrc (variable)
nDeltaEntries (optional) CodedDeltalList (variable)

nLeftRect (variable): The left coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

nTopRect (variable): The top coordinate of the destination rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

62 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

nWidth (variable): The width of the destination rectangle specified by using a Coord Field (see
section 2.2.2.2.1.1.1.1).

nHeight (variable): The height of the destination rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

bRop (1 byte): The index of the ternary raster operation to perform (see section
2.2.2.2.1.1.1.7). The resultant ROP3 operation MUST only depend on the destination and
source bits. (There MUST NOT be any dependence on pattern bits.)

nXSrc (variable): The x-coordinate of the source rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

nYSrc (variable): The y-coordinate of the source rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

nDeltaEntries (1 byte): An 8-bit, unsigned integer. The number of bounding rectangles
described by the CodedDeltalList field.

CodedDeltalList (variable): A Two-Byte Header Variable Field (section 2.2.2.2.1.1.1.3)
structure that encapsulates a Delta-Encoded Rectangles (section 2.2.2.2.1.1.1.5) structure
that contains bounding rectangles to use when rendering the order. The number of rectangles
described by the Delta-Encoded Rectangles structure is specified by the nDeltaEntries field.

2.2.2.2.1.1.2.9 MemBIt (MEMBLT_ORDER)

The MemBIt Primary Drawing Order is used to render a bitmap stored in the bitmap cache or
offscreen bitmap cache to the screen.

Encoding order number: 13 (0x0D)
Negotiation order number: 3 (0x03)
Number of fields: 9

Number of field encoding bytes: 2
Maximum encoded field length: 17 bytes

01234567893123456789312345678981
cacheld (optional) nLeftRect (variable)
nTopRect (variable) nWidth (variable)
nHeight (variable) bRop (optional) nXSrc (variable)
nYSrc (variable) cachelndex (optional)

cacheld (2 bytes): A 16-bit, unsigned integer. The cacheld field contains the encoded bitmap
cache ID and Color Table Cache entry.

The high byte contains the index of the color table entry to use (cached previously with a
Cache Color Table (section 2.2.2.2.1.2.4) Secondary Drawing Order), and the low byte
contains the ID of the bitmap cache in which the source bitmap is stored (cached previously

63/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

with a Cache Bitmap - Revision 1 (section 2.2.2.2.1.2.2) or Cache Bitmap - Revision 2
(section 2.2.2.2.1.2.3) Secondary Drawing Order).

The color table entry MUST be in the range 0 to 5 (inclusive).

If the client advertised support for the Revision 1 bitmap caches (section 3.1.1.1.1) by
sending the server the Revision 1 Bitmap Cache Capability Set ([MS-RDPBCGR] section
2.2.7.1.4.1), then the cache ID MUST be in the range 0 to 2 (inclusive). However, if the client
advertised support for the Revision 2 bitmap caches (section 3.1.1.1.1) by sending the server
the Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2), then the
cache ID MUST be greater than or equal to 0 and less than the number of bitmap caches
being used for the connection (specified by the NumCellCaches field of the Revision 2
Bitmap Cache Capability Set).

If the bitmap cache ID is set to TS_BITMAPCACHE_SCREEN_ID (0OxFF), the cachelIndex field
MUST contain the index of an entry in the Offscreen Bitmap Cache that contains the source
bitmap.

nLeftRect (variable): Left coordinate of the blit rectangle specified using a Coord Field (section
2.2.2.2.1.1.1.1).

nTopRect (variable): Top coordinate of the blit rectangle specified using a Coord Field (section
2.2.2.2.1.1.1.1).

nWidth (variable): Width of the blit rectangle specified using a Coord Field (section
2.2.2.2.1.1.1.1).

nHeight (variable): Height of the blit rectangle specified using a Coord Field (section
2.2.2.2.1.1.1.1).

bRop (1 byte): Index of the ternary raster operation to perform (see section 2.2.2.2.1.1.1.7).
The resultant ROP3 operation MUST only depend on the destination and source bits (there
MUST NOT be any dependence on pattern bits).

nXSrc (variable): The x-coordinate of the source rectangle within the source bitmap specified
by using a Coord Field (section 2.2.2.2.1.1.1.1).

nYSrc (variable): The inverted y-coordinate of the source rectangle within the source bitmap
specified by using a Coord Field (section 2.2.2.2.1.1.1.1). The actual value of the y-coordinate
MUST be computed using the following formula.

Actual¥Src = (SourceBitmapHeight - nHeight) - n¥Src

cachelIndex (2 bytes): A 16-bit, unsigned integer. The index of the source bitmap in the
bitmap cache specified by the cacheld field.

If this field is set to BITMAPCACHE_WAITING_LIST_INDEX (32767), the last bitmap cache
entry MUST contain the bitmap data. Otherwise, this field MUST contain a value that is
greater than or equal to 0 and less than the maximum number of entries allowed in the
source bitmap cache. If the client advertised support for the Revision 1 bitmap caches
(section 3.1.1.1.1) by sending the server the Revision 1 Bitmap Cache Capability Set ([MS-
RDPBCGR] section 2.2.7.1.4.1), then the maximum number of entries allowed in each
individual Revision 1 bitmap cache is specified in the Revision 1 Bitmap Cache Capability Set
by the CacheOEntries, CachelEntries, and Cache2Entries fields. If the client advertised
support for the Revision 2 bitmap caches (section 3.1.1.1.1) by sending the server the
Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2), then the

64 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

maximum number of entries allowed in each individual Revision 2 bitmap cache is specified in
the Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2) by the
BitmapCacheOCellInfo, BitmapCachelCellInfo, BitmapCache2CellInfo,
BitmapCache3CellInfo, and BitmapCache4CellInfo fields.

If the bitmap cache ID (specified in the cacheld field) is set to
TS_BITMAPCACHE_SCREEN_ID (0xFF), this field MUST contain the index of an entry in the
Offscreen Bitmap Cache that contains the source bitmap.

2.2,2.2,1.1.2,10 Mem3BIt (MEM3BLT_ORDER)

The Mem3BIt Primary Drawing Order is used to render a bitmap stored in the bitmap cache or
offscreen bitmap cache to the screen by using a specified brush and three-way raster operation.

Encoding order number: 14 (0x0E)
Negotiation order number: 4 (0x04)
Number of fields: 16

Number of field encoding bytes: 3
Maximum encoded field length: 34 bytes

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4|5|6|7(8|9(0]1

cacheld (optional) nLeftRect (variable)

nTopRect (variable) nWidth (variable)

nHeight (variable) bRop (optional) nXSrc (variable)
nYSrc (variable) BackColor (optional)

ForeColor (optional)

BrushOrgX (optional) BrushOrgY (optional) BrushStyle (optional)

BrushHatch (optional) BrushExtra (optional)

cachelndex (optional)

cacheld (2 bytes): A 16-bit, unsigned integer. The cacheld field contains the encoded bitmap
cache ID and Color Table Cache entry. The high byte contains the index of the color table
entry to use (cached previously with a Cache Color Table (section 2.2.2.2.1.2.4) Secondary
Drawing Order), and the low byte contains the ID of the bitmap cache in which the source
bitmap is stored (cached previously with a Cache Bitmap - Revision 1 (section 2.2.2.2.1.2.2)
or Cache Bitmap - Revision 2 (section 2.2.2.2.1.2.3) Secondary Drawing Order).

The color table entry MUST be in the range 0 to 5 (inclusive).

65/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

If the client advertised support for the Revision 1 bitmap caches (section 3.1.1.1.1) by
sending the server the Revision 1 Bitmap Cache Capability Set ([MS-RDPBCGR] section
2.2.7.1.4.1), then the cache ID MUST be in the range 0 to 2 (inclusive). However, if the client
advertised support for the Revision 2 bitmap caches (section 3.1.1.1.1) by sending the server
the Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2), then the
cache ID MUST be greater than or equal to 0 and less than the number of bitmap caches
being used for the connection (specified by the NumCellCaches field of the Revision 2
Bitmap Cache Capability Set).

If the bitmap cache ID is set to TS_BITMAPCACHE_SCREEN_ID (0OxFF), the cachelIndex field
MUST contain the index of an entry in the Offscreen Bitmap Cache that contains the source
bitmap.

nLeftRect (variable): The left coordinate of the blit rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

nTopRect (variable): The top coordinate of the blit rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

nWidth (variable): The width of the blit rectangle specified by using a Coord Field (section
2.2.2.2.1.1.1.1).

nHeight (variable): The height of the blit rectangle specified by using a Coord Field (section
2.2.2.2.1.1.1.1).

bRop (1 byte): The index of the ternary raster operation to perform (see section
2.2.2.2.1.1.1.7).

nXSrc (variable): The x-coordinate of the source rectangle within the source bitmap specified
by using a Coord Field (section 2.2.2.2.1.1.1.1).

nYSrc (variable): The inverted y-coordinate of the source rectangle within the source bitmap

specified using a Coord Field (section 2.2.2.2.1.1.1.1). The actual value of the y-coordinate
MUST be computed using the following formula:

Actual¥Src = (SourceBitmapHeight - nHeight) - n¥Src

BackColor (3 bytes): Background color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

ForeColor (3 bytes): Foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

BrushOrgX (1 byte): An 8-bit, signed integer. The x-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushOrgY (1 byte): An 8-bit, signed integer. The y-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushStyle (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushStyle field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

BrushHatch (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushHatch field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

66 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

BrushExtra (7 bytes): The contents and format of this field are the same as the BrushExtra
field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

cachelndex (2 bytes): A 16-bit, unsigned integer. The index of the source bitmap within the
bitmap cache specified by the cacheld field.

If this field is set to BITMAPCACHE_WAITING_LIST_INDEX (32767), the last bitmap cache
entry MUST contain the bitmap data. Otherwise, this field MUST contain a value that is
greater than or equal to 0 and less than the maximum number of entries allowed in the
source bitmap cache. If the client advertised support for the Revision 1 bitmap caches
(section 3.1.1.1.1) by sending the server the Revision 1 Bitmap Cache Capability Set ([MS-
RDPBCGR] section 2.2.7.1.4.1), then the maximum number of entries allowed in each
individual Revision 1 bitmap cache is specified in the Revision 1 Bitmap Cache Capability Set
by the CacheOEntries, CachelEntries and Cache2Entries fields. If the client advertised
support for the Revision 2 bitmap caches (section 3.1.1.1.1) by sending the server the
Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2), then the
maximum number of entries allowed in each individual Revision 2 bitmap cache is specified in
the Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2) by the
BitmapCacheOCellInfo, BitmapCachelCellInfo, BitmapCache2CellInfo,
BitmapCache3CellInfo and BitmapCache4CellInfo fields.

If the bitmap cache ID (specified in the cacheld field) is set to
TS_BITMAPCACHE_SCREEN_ID (0xFF), this field MUST contain the index of an entry in the
Offscreen Bitmap Cache that contains the source bitmap.

2.2.2.2,1.1.2.11 LineTo (LINETO_ORDER)

The LineTo Primary Drawing Order encodes a single line drawing order that is restricted to solid
color lines, one pixel wide.

Encoding order number: 9 (0x09)
Negotiation order number: 8 (0x08)
Number of fields: 10

Number of field encoding bytes: 2
Maximum encoded field length: 19 bytes

01234567898123456789312345678981
BackMode (optional) nXStart (variable)
nYStart (variable) nXEnd (variable)
nYEnd (variable) BackColor (optional)
bRop2 (optional) PenStyle (optional) PenWidth (optional)

PenColor (optional)

BackMode (2 bytes): An unsigned, 16-bit integer. This field contains the background mix
mode and MUST be one of the following values.

67/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

Value Meaning

TRANSPARENT Background remains untouched.
0x0001

OPAQUE Background is filled with the current background color before the pen is drawn.
0x0002

nXStart (variable): The x-coordinate of the starting point of the line specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

nYStart (variable): The y-coordinate of the starting point of the line specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

nXEnd (variable): The x-coordinate of the ending point of the line specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

nYEnd (variable): The y-coordinate of the ending point of the line specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

BackColor (3 bytes): The background color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure. This field MUST be zeroed out.

bRop2 (1 byte): The binary raster operation to perform (see section 2.2.2.2.1.1.1.6).

PenStyle (1 byte): An 8-bit, unsigned integer. The drawing style of the pen. This field MUST be
set to PS_SOLID (0x00).

PenWidth (1 byte): An 8-bit, unsigned integer. The width of the pen. This field MUST be set to
0x01.

PenColor (3 bytes): The foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

2.2.2.2.1.1.2.12 SaveBitmap (SAVEBITMAP_ORDER)

The SaveBitmap Primary Drawing Order encodes a rectangle of the screen image for saving or
restoring by the client.

Encoding order number: 11 (0xO0OB)
Negotiation order number: 11 (0x0B)
Number of fields: 6

Number of field encoding bytes: 1
Maximum encoded field length: 13 bytes

-
N
w

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|5|6|7(8|9(0]1

SavedBitmapPosition (optional)

nLeftRect (variable) nTopRect (variable)

nRightRect (variable) nBottomRect (variable)

68/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Operation (optional)

SavedBitmapPosition (4 bytes): A 32-bit, unsigned integer. Encoded start position of the
rectangle in the Saved Bitmap that will be read from (in the case of a bitmap restore

operation) or written to (in the case of a bitmap save operation), depending on the value of
the Operation field.

The SavedBitmapPosition field is constructed by using the desktopSaveXGranularity and
desktopSaveYGranularity values specified in the Order Capability Set (see [MS-RDPBCGR
section 2.2.7.1.3). The size of the Save Bitmap MUST be 480 x 480 pixels.

Specification [T128] section 8.16.17 shows how to compute the value to insert into the
SavedBitmapPosition field. When performing a save operation, the SavedBitmapPosition
field contains the cumulative area of the virtual desktop rectangles already in the Save Bitmap
(the area of the rectangle being written to the Save Bitmap is excluded). When performing a
restore operation, the SavedBitmapPosition field contains the cumulative area of all the
rectangles that were written to the Save Bitmap before the rectangle being restored was
saved.

The functions used to compute the area by using the specified X and Y granularity are as
follows.

AreaWidthInPixels = [(width + XGranularity - 1) / XGranularity] * XGranularity
AreaHeightInPixels [(height + YGranularity - 1) / YGranularity] * YGranularity
Area = AreaWidthInPixels * AreaHeightInPixels

To determine the X and Y position in the Save Bitmap using the YGranularity and the Save
Bitmap width of 480, the following functions are used.

Y = [SaveBitmapPosition / (480 * YGranularity)] * YGranularity
X = [SaveBitmapPosition - (Y * 480)] / YGranularity

An example of calculations to obtain the X and Y positions from the SavedBitmapPosition
field are defined visually in section 4.5.

nLeftRect (variable): The left coordinate of the virtual desktop rectangle to save specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

nTopRect (variable): The top coordinate of the virtual desktop rectangle to save specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

nRightRect (variable): The right inclusive coordinate of the virtual desktop rectangle to save
specified by using a Coord Field (section 2.2.2.2.1.1.1.1).

nBottomRect (variable): The bottom inclusive coordinate of the virtual desktop rectangle to
save specified by using a Coord Field (section 2.2.2.2.1.1.1.1).

Operation (1 byte): An 8-bit, unsigned integer. The operation to perform that MUST be one of
the following values.

Value Meaning

SV_SAVEBITS Save bitmap operation.

69/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90544

Value

Meaning

0x00

SV_RESTOREBITS
0x01

Restore bitmap operation.

2.2.2.2.1.1.2.13 GlyphIndex (GLYPHINDEX_ORDER)

The GlyphIndex Primary Drawing Order encodes a set of glyph indices at a specified position.

Encoding order number: 27 (0x1B)
Negotiation order number: 27 (0x1B)
Number of fields: 22

Number of field encoding bytes: 3
Maximum encoded field length: 297 bytes

1
0(1(2(3|4|5|6|7[(8|9(0|1|2|3]|4

2 3
5/6|7(8]9|0(1|2|3|4|5(6|7|8|9|0(1

cacheld (optional) flAccel (optional)

ulCharlnc (optional) fOpRedundant (optional)

BackColor (optional) ForeColor (optional)

BkLeft (optional)

BkTop (optional)

BkRight (optional)

BkBottom (optional)

OpLeft (optional)

OpTop (optional)

OpRight (optional)

OpBottom (optional) BrushOrgX (optional) BrushOrgY (optional)
BrushStyle (optional) BrushHatch (optional) BrushExtra (optional)
X (optional) Y (optional)
VariableBytes (variable)

cacheld (1 byte): An 8-bit, unsigned integer. The ID of the glyph cache in which the glyph
data MUST be stored. This value MUST be in the range 0 to 9 (inclusive).

flAccel (1 byte): An 8-bit, unsigned integer. Accelerator flags. For glyph related terminology,
see [YUAN] figures 14-17 and 15-1. For information about string widths and heights, see
MSDN-SWH]. For information about character widths, see [MSDN-CW]. This field MUST
contain a combination of the following flags.

[MS-RDPEGDI] — v20131025

70/ 284

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=196875
http://go.microsoft.com/fwlink/?LinkId=196874

Value

Meaning

0x01

SO_FLAG_DEFAULT_PLACEMENT

This flag MUST be set.

SO_HORIZONTAL
0x02

Text is horizontal, left-to-right or right-to-left, depending on
SO_REVERSED.

SO_VERTICAL
0x04

Text is vertical, top-to-bottom or bottom-to-top, depending on
SO_REVERSED.

SO_REVERSED
0x08

Set if horizontal text is right-to-left or vertical text is bottom-
to-top.

SO_ZERO_BEARINGS
0x10

For a given glyph in the font, the A-width (left-side bearing)
and C-width (right-side bearing) associated with the glyph
have a value of zero.

0x20

SO_CHAR_INC_EQUAL_BM_BASE

For a given glyph in the font, the B-width associated with the
glyph equals the advance width of the glyph.

0x40

SO_MAXEXT_EQUAL_BM_SIDE

The height of the bitmap associated with a given glyph in the
font is always equal to the sum of the ascent and descent. This

implies that the tops and bottoms of all glyph bitmaps lie on
the same line in the direction of writing.

ulCharInc (1 byte): An 8-bit, unsigned integer. Specifies whether or not the font is a fixed-
pitch (monospace) font. If so, this member is equal to the advance width of the glyphs in
pixels (see [YUAN] figures 14-17); if not, this field is set to 0x00. The minimum value for this
field is 0x00 (inclusive), and the maximum value is OXFF (inclusive).

fOpRedundant (1 byte): An 8-bit, unsigned integer. A Boolean value indicating whether or not
the opaque rectangle is redundant. Redundant, in this context, means that the text
background is transparent.

Value Meaning

FALSE Rectangle is not redundant.
0x00

TRUE Rectangle is redundant.
0x01

BackColor (3 bytes): The text color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

ForeColor (3 bytes): Color of the opaque rectangle described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

BkLeft (2 bytes): A 16-bit, signed integer. The left coordinate of the text background
rectangle.

BkTop (2 bytes): A 16-bit, signed integer. The top coordinate of the text background
rectangle.

BkRight (2 bytes): A 16-bit, signed integer. The right coordinate of the text background
rectangle.

71/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

BkBottom (2 bytes): A 16-bit, signed integer. The bottom coordinate of the text background
rectangle.

OplLeft (2 bytes): A 16-bit, signed integer. The left coordinate of the opaque rectangle. This
field MUST be set to 0 if the fOpRedundant flag is set.

OpTop (2 bytes): A 16-bit, signed integer. The top coordinate of the opaque rectangle. This
field MUST be set to 0 if the fOpRedundant flag is set.

OpRight (2 bytes): A 16-bit, signed integer. The right coordinate of the opaque rectangle. This
field MUST be set to 0 if the fOpRedundant flag is set.

OpBottom (2 bytes): A 16-bit, signed integer. The bottom coordinate of the opaque rectangle.
This field MUST be set to 0 if the fOpRedundant flag is set.

BrushOrgX (1 byte): An 8-bit, signed integer. The x-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushOrgY (1 byte): An 8-bit, signed integer. The y-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushStyle (1 byte): An 8-bit, unsigned integer. This field MUST be set to BS_SOLID (0x00),
as the GlyphIndex Primary Drawing Order MUST only use solid color brushes to render the
opaque rectangle.

BrushHatch (1 byte): An 8-bit, unsigned integer. This field MUST be set to 0x00, as the
GlyphIndex Primary Drawing Order MUST only use solid color brushes to render the opaque
rectangle.

BrushExtra (7 bytes): This field is not used, as the GlyphIndex Primary Drawing Order MUST
only use solid color brushes to render the opaque rectangle.

X (2 bytes): A 16-bit, signed integer. The x-coordinate of the point where the origin of the
starting glyph MUST be positioned.

Y (2 bytes): A 16-bit, signed integer. The y-coordinate of the point where the origin of the
starting glyph MUST be positioned.

VariableBytes (variable): A One-Byte Header Variable Field (section 2.2.2.2.1.1.1.2)
structure. This field MUST contain glyph fragments (which are composed of a series of one or
more glyph cache indices) and instructions to use entries previously stored in the glyph
fragment cache. Multiple glyph fragments can be contained in this field. The first byte of each
fragment is either a USE (OxFE) operation byte or a glyph index (0x00 to OxOFD) byte:

= A value of OxFE (USE) indicates that a previously stored fragment MUST be displayed. The
byte following the USE byte is the index in the fragment cache where the fragment is
located. This fragment MUST be read and displayed. If the ulCharInc field is set to 0 and
the flAccel field does not contain the SO_CHAR_INC_EQUAL_BM_BASE (0x20) flag, then
the index byte MUST be followed by a delta byte that indicates the distance between two
consecutive fragments; this distance is measured in pixels from the beginning of the first
fragment to the beginning of the next. If the distance is greater than 127 (0x7F), then the
value 0x80 MUST be used, and the following two bytes will be set to contain the actual
distance formatted as an unsigned integer in little-endian order.

= If not preceded by OxFE, a value of 0x00 to OxFD identifies a glyph stored at the given
index in the glyph cache. Multiple glyphs can be sent at one time. If the ulCharInc field is
set to 0 and the flAccel field does not contain the SO_CHAR_INC_EQUAL_BM_BASE (0x20)

72 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

flag, then the index byte MUST be followed by a delta byte that indicates the distance
between two consecutive glyphs; this distance is measured in pixels from the beginning of
the first glyph to the beginning of the next. If the distance is greater than 127 (0x7F), then
the value 0x80 MUST be used, and the following two bytes will be set to contain the actual
distance formatted as an unsigned integer in little-endian order.

If a series of glyph indices ends with an ADD (0xFF) operation byte, the preceding glyph
information MUST be collected, displayed, and then stored in the fragment cache. The byte
following the ADD byte is the index of the cache where the fragment MUST be stored. A final
byte that indicates the size of the fragment follows the index byte. (The ADD byte, index byte,
and size byte MUST NOT be counted when calculating the value of the size byte.)

All glyph cache indices MUST be greater than or equal to 0, and less than the maximum
number of entries allowed in the glyph cache with the ID specified by the cacheld field. The
maximum number of entries allowed in each of the ten glyph caches is specified in the
GlyphCache field of the Glyph Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.8).

All fragment cache indices MUST be in the range 0 to 255 (inclusive).

2.2.2.2.1.1.2.14 FastIndex (FASTINDEX_ORDER)

The FastIndex Primary Drawing Order encodes a set of glyph indices at a specified position. This
order is an improved version of the GlyphIndex (section 2.2.2.2.1.1.2.13) Primary Drawing Order.
The regular GlyphIndex order contains five brush fields that the FastIndex order does not:
BrushOrgX, BrushOrgY, BrushStyle, BrushHatch, and BrushExtra. These extra fields MUST all
be implicitly assumed to exist and contain default values of zero (implying that a solid color brush
will be used).

Encoding order number: 19 (0x13)
Negotiation order number: 19 (0x13)
Number of fields: 15

Number of field encoding bytes: 2
Maximum encoded field length: 285 bytes

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

cacheld (optional) fDrawing (optional) BackColor (optional)

ForeColor (optional)

BkLeft (variable) BkTop (variable)
BkRight (variable) BkBottom (variable)
OpLeft (variable) OpTop (variable)
OpRight (variable) OpBottom (variable)
X (optional) Y (optional)
73/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

VariableBytes (variable)

cacheld (1 byte): An 8-bit, unsigned integer. The ID of the glyph cache in which the glyph
data MUST be stored. This value MUST be in the range 0 to 9 (inclusive).

fDrawing (2 bytes): A 16-bit, unsigned integer. Combined flAccel and ulCharInc fields from
the GlyphIndex (section 2.2.2.2.1.1.2.13) Primary Drawing Order. The high-order byte
contains the flAccel field, and the low-order byte contains the ulCharInc field.

BackColor (3 bytes): The text color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

ForeColor (3 bytes): Opaque rectangle color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

BkLeft (variable): Left coordinate of the text background rectangle specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

BkTop (variable): Top coordinate of the text background rectangle specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

BkRight (variable): Right coordinate of the text background rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

BkBottom (variable): Bottom coordinate of the text background rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

OpLeft (variable): Left coordinate of the opaque rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1). This field MUST be set to 0 if it is the same as BkLeft.

OpTop (variable): The top coordinate of the opaque rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1).

This field MUST contain opaque rectangle encoding flags if the OpBottom field is set to -
32768. In this case, OpTop holds the encoding flags in the low 4 bits.

Value Meaning

OPRECT_BOTTOM_ABSENT | Bottom coordinate of the opaque rectangle is the same as

0x01 BkBottom.

OPRECT_RIGHT_ABSENT Right coordinate of the opaque rectangle is the same as BkRight.
0x02

OPRECT_TOP_ABSENT Top coordinate of the opaque rectangle is the same as BkTop.
0x04

OPRECT_LEFT_ABSENT Left coordinate of the opaque rectangle is the same as BkLeft.
0x08

The only valid combinations of the encoding flags that are currently supported are as follows:

= OxOF: The left, top, right, and bottom coordinates of the opaque rectangle all match the
background text rectangle and are absent.

74 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

= 0x0D: The left, top, and bottom coordinates of the opaque rectangle all match the
background text rectangle and are absent. The actual value of the right coordinate is
present.

OpRight (variable): The right coordinate of the opaque rectangle specified using a Coord Field
(section 2.2.2.2.1.1.1.1). This field MUST be set to 0 if it is the same as BkRight.

OpBottom (variable): The bottom coordinate of the opaque rectangle specified using a Coord
Field (section 2.2.2.2.1.1.1.1). This field MUST be set to -32768 if OpTop contains opaque
rectangle encoding flags (see the OpTop field).

X (2 bytes): A 16-bit, signed integer. The x-coordinate of the point where the origin of the
starting glyph MUST be positioned specified using a Coord Field (section 2.2.2.2.1.1.1.1). This
field MUST be set to -32768 if it is the same as BkLeft.

Y (2 bytes): A 16-bit, signed integer. The y-coordinate of the point where the origin of the
starting glyph MUST be positioned specified using a Coord Field (section 2.2.2.2.1.1.1.1). This
field MUST be set to -32768 if it is the same as BkTop.

VariableBytes (variable): A One-Byte Header Variable Field (section 2.2.2.2.1.1.1.2)
structure. The contents and format of this field are the same as the VariableBytes field of
the GlyphIndex (section 2.2.2.2.1.1.2.13) Primary Drawing Order.

2.2.2.2.1.1.2.15 FastGlyph (FASTGLYPH_ORDER)

The FastGlyph Primary Drawing Order encodes a single glyph at a specified position. This primary
drawing order is a fast way of outputting a single glyph and bypasses having to send a Cache Glyph
Secondary Drawing Order (see sections 2.2.2.2.1.2.5 and 2.2.2.2.1.2.6) followed by a GlyphIndex
(section 2.2.2.2.1.1.2.13) or Fastindex (section 2.2.2.2.1.1.2.14) Primary Drawing Order.

Encoding order number: 24 (0x18)
Negotiation order number: 24 (0x18)
Number of fields: 15

Number of field encoding bytes: 2
Maximum encoded field length: 285 bytes

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

cacheld (optional) fDrawing (optional) BackColor (optional)

ForeColor (optional)

BkLeft (variable) BkTop (variable)
BkRight (variable) BkBottom (variable)
OpLeft (variable) OpTop (variable)
OpRight (variable) OpBottom (variable)
75/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

X (variable) Y (variable)

VariableBytes (variable)

cacheld (1 byte): An 8-bit, unsigned integer. The ID of the glyph cache in which the glyph
data MUST be stored. This value MUST be in the range 0 to 9 (inclusive).

fDrawing (2 bytes): A 16-bit, unsigned integer. Combined flAccel and ulCharInc fields from
the GlyphIndex (section 2.2.2.2.1.1.2.13) Primary Drawing Order. The high-order byte
contains the flAccel field, and the low-order byte contains the ulCharInc field.

BackColor (3 bytes): Text color described by using a Generic Color (section 2.2.2.2.1.1.1.8)
structure.

ForeColor (3 bytes): The opaque rectangle color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

BkLeft (variable): The left coordinate of the text background rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

BkTop (variable): The top coordinate of the text background rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

BkRight (variable): The right coordinate of the text background rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

BkBottom (variable): The bottom coordinate of the text background rectangle specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

OpLeft (variable): The left coordinate of the opaque rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1). This field MUST be set to O if it is the same as BkLeft.

OpTop (variable): The top coordinate of the opaque rectangle specified by using a Coord Field
(section 2.2.2.2.1.1.1.1). This field MUST contain opaque rectangle encoding flags if the
OpBottom field is set to -32768. For details on the opaque rectangle encoding flags, see the
OpTop field of the FastIndex (section 2.2.2.2.1.1.2.14) Primary Drawing Order.

OpRight (variable): The right coordinate of the opaque rectangle specified by using a Coord
Field (section 2.2.2.2.1.1.1.1). This field MUST be set to 0 if it is the same as BkRight.

OpBottom (variable): The bottom coordinate of the opaque rectangle specified by using a
Coord Field (section 2.2.2.2.1.1.1.1). This field MUST be set to -32768 if OpTop contains
opaque rectangle encoding flags (see the OpTop field).

X (variable): A 16-bit, signed integer. The x-coordinate of the point where the origin of the
starting glyph MUST be positioned, specified by using a Coord Field (section 2.2.2.2.1.1.1.1).
This field MUST be set to -32768 if it is the same as BkLeft.

Y (variable): A 16-bit, signed integer. The y-coordinate of the point where the origin of the
starting glyph MUST be positioned, specified by using a Coord Field (section 2.2.2.2.1.1.1.1).
This field MUST be set to -32768 if it is the same as BkTop.

VariableBytes (variable): A One-Byte Header Variable Field (section 2.2.2.2.1.1.1.2)
structure. If the size of this VariableBytes field is 1 byte, it contains a 1-byte glyph cache
index from which the glyph data MUST be retrieved. However, if the size is larger than 1 byte,
this field contains a Cache Glyph Data - Revision 2 (section 2.2.2.2.1.2.6.1) structure. The

76 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

glyph data MUST be stored in the glyph cache specified by the cacheld field in the entry
indicated by the cachelIndex field of the glyph data. The Cache Glyph Data - Revision 2
structure MUST be followed by 2 bytes of padding that MAY<2> contain a little-endian

encoded Unicode character representing the glyph (this Unicode character MUST NOT be
null-terminated).

All glyph cache indices MUST be greater than or equal to 0, and less than the maximum
number of entries allowed in the glyph cache with the ID specified by the cacheld field. The
maximum number of entries allowed in each of the ten glyph caches is specified in the
GlyphCache field of the Glyph Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.8).

2.2.2.2,1.1.2.16 PolygonSC (POLYGON_SC_ORDER)

The PolygonSC Primary Drawing Order encodes a solid-color polygon consisting of two or more
vertices connected by straight lines.

Encoding order number: 20 (0x14)
Negotiation order number: 20 (0x14)
Number of fields: 7

Number of field encoding bytes: 1
Maximum encoded field length: 249 bytes

01234567898123456789312345678981
xStart (variable) yStart (variable)
bRop2 (optional) FillMode (optional) BrushColor (optional)
NumbDeltaEntries CodedDeltalList (variable)
(optional)

xStart (variable): The x-coordinate of the starting point of the polygon path specified by using
a Coord Field (section 2.2.2.2.1.1.1.1).

yStart (variable): The y-coordinate of the starting point of the polygon path specified by using
a Coord Field (section 2.2.2.2.1.1.1.1).

bRop2 (1 byte): The binary raster operation to perform (see section 2.2.2.2.1.1.1.6).

FillMode (1 byte): The polygon filling algorithm described using a Fill Mode (section
2.2.2.2.1.1.1.9) structure.

BrushColor (3 bytes): Foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

NumbDeltaEntries (1 byte): An 8-bit, unsigned integer. The humber of points along the
polygon path described by the CodedDeltalList field.

CodedDeltalist (variable): A One-Byte Header Variable Field (section 2.2.2.2.1.1.1.2)
structure that encapsulates a Delta-Encoded Points (section 2.2.2.2.1.1.1.4) structure that
contains the points along the polygon path. The number of points described by the Delta-
Encoded Points structure is specified by the NumDeltaEntries field.

77 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-GLOS%5d.pdf
%5bMS-RDPBCGR%5d.pdf

2.2.2.2.1.1.2.17 PolygonCB (POLYGON_CB_ORDER)

The PolygonCB Primary Drawing Order encodes a color brush polygon consisting of two or more
vertices connected by straight lines.

Encoding order number:

21 (0x15)

Negotiation order number: 21 (0x15)

Number of fields: 13

Number of field encoding bytes: 2
Maximum encoded field length: 263 bytes

0|1|2(3(4|5|6]|7

8|19|10(1(2|3|4]|5

6|17|8[9(0|1]|2]|3

4

5|16|7(8|9|0]|1

xStart (variable)

yStart (variable)

bRop2 (optional)

FillMode (optional)

BackColor (optional)

ForeColor (optional)

BrushOrgX (optional)

BrushOrgY (optional)

BrushStyle (optional)

BrushHatch (optional)

BrushExtra (optional)

NumDeltaEntries
(optional)

CodedDeltalist (variable)

xStart (variable): The x-coordinate of the starting point of the polygon path specified using a
Coord Field (section 2.2.2.2.1.1.1.1).

yStart (variable): The y-coordinate of the starting point of the polygon path specified using a
Coord Field (section 2.2.2.2.1.1.1.1).

bRop2 (1 byte): The binary raster operation to perform (see section 2.2.2.2.1.1.1.6). The
ROP2 field for the PolygonCB Primary Drawing Order has two bitfields within it. The low 5 bits
(mask 0x1F) identify the real ROP2 operation. The high bit (mask 0x80) indicates whether the
background drawing mode MUST be set to TRANSPARENT or OPAQUE (see section
2.2.2.2.1.1.2.11). The background drawing mode is only significant if the BrushStyle field
indicates that the brush is a BS_HATCHED (0x02) or BS_PATTERN (0x03) brush.

FillMode (1 byte): The polygon filling algorithm described by using a Fill Mode (section
2.2.2.2.1.1.1.9) structure.

BackColor (3 bytes): The background color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

ForeColor (3 bytes): The foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

78/ 284

BrushOrgX (1 byte): An 8-bit, signed integer. The x-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushOrgY (1 byte): An 8-bit, signed integer. The y-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushStyle (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushStyle field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

BrushHatch (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushHatch field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

BrushExtra (7 bytes): A byte array of length 7. The contents and format of this field are the
same as the BrushExtra field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

NumbDeltaEntries (1 byte): An 8-bit, unsigned integer. The number of points along the
polygon path described by the CodedDeltalList field.

CodedDeltalist (variable): A One-Byte Header Variable Field (section 2.2.2.2.1.1.1.2)
structure that encapsulates a Delta-Encoded Points (section 2.2.2.2.1.1.1.4) structure that
contains the points along the polygon path. The number of points described by the Delta-
Encoded Points structure is specified by the NumDeltaEntries field.

2.2.2.2.1.1.2.18 Polyline (POLYLINE_ORDER)

The Polyline Primary Drawing Order encodes a solid color polyline consisting of two or more vertices
connected by straight lines.

Encoding order number: 22 (0x16)
Negotiation order number: 22 (0x16)
Number of fields: 7

Number of field encoding bytes: 1
Maximum encoded field length: 148 bytes

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

xStart (variable) yStart (variable)
bRop2 (optional) BrushCacheEntry (optional) PenColor (optional)
NumDeltaEntries CodedDeltalist (variable)
(optional)

xStart (variable): The x-coordinate of the starting point of the polygon path specified by using
a Coord Field (section 2.2.2.2.1.1.1.1).

yStart (variable): The y-coordinate of the starting point of the polygon path specified by using
a Coord Field (section 2.2.2.2.1.1.1.1).

bRop2 (1 byte): The binary raster operation to perform (see section 2.2.2.2.1.1.1.6).

79/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

BrushCacheEntry (2 bytes): A 16-bit unsigned integer. The brush cache entry. This field is
unused (as only solid color polylines are drawn) and SHOULD<3> be set to 0x0000.

PenColor (3 bytes): The foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

NumbDeltaEntries (1 byte): An 8-bit, unsigned integer. The number of points along the
polyline path described by the CodedDeltalList field.

CodedDeltalist (variable): A One-Byte Header Variable Field (section 2.2.2.2.1.1.1.2)
structure that encapsulates a Delta-Encoded Points (section 2.2.2.2.1.1.1.4) structure that
contains the points along the polyline path. The number of points described by the Delta-
Encoded Points structure is specified by the NumDeltaEntries field.

2.2.2.2.1.1.2.19 EllipseSC (ELLIPSE_SC_ORDER)

The EllipseSC Primary Drawing Order encodes a single, solid-color ellipse.

Encoding order number: 25 (0x19)
Negotiation order number: 25 (0x19)
Number of fields: 7

Number of field encoding bytes: 1
Maximum encoded field length: 13 bytes

1 2 3
0|1|{2(3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

LeftRect (variable) TopRect (variable)
RightRect (variable) BottomRect (variable)
bRop2 (optional) FillMode (optional) Color (optional)

LeftRect (variable): The left coordinate of the inclusive rectangle for the ellipse specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

TopRect (variable): The top coordinate of the inclusive rectangle for the ellipse specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

RightRect (variable): The right coordinate of the inclusive rectangle for the ellipse specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

BottomRect (variable): The bottom coordinate of the inclusive rectangle for the ellipse
specified by using a Coord Field (section 2.2.2.2.1.1.1.1).

bRop2 (1 byte): The binary raster operation to perform (see section 2.2.2.2.1.1.1.6).

FillMode (1 byte): An 8-bit, unsigned integer that specifies the fill mode. FillMode MUST be
one of the following values.

80/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Value Meaning

NOFILLL A polyline ellipse (that is, a non-filled ellipse) MUST be drawn.
0x00

ALTERNATE See section 2.2.2.2.1.1.1.9 for an explanation of this value.
0x01

WINDING See section 2.2.2.2.1.1.1.9 for an explanation of this value.
0x02

Color (3 bytes): The foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

2.2.2.2.1.1.2.20 EllipseCB (ELLIPSE_CB_ORDER)

The EllipseCB Primary Drawing Order encodes a color brush ellipse.

Encoding order number: 26 (0x1A)
Negotiation order number: 26 (0x1A)
Number of fields: 13

Number of field encoding bytes: 2
Maximum encoded field length: 27 bytes

1 2 3
0|1|{2(3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

LeftRect (variable) TopRect (variable)
RightRect (variable) BottomRect (variable)
bRop2 (optional) FillMode (optional) BackColor (optional)

ForeColor (optional)

BrushOrgX (optional) BrushOrgY (optional) BrushStyle (optional) BrushHatch (optional)

BrushExtra (optional)

LeftRect (variable): The left coordinate of the inclusive rectangle for the ellipse specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

TopRect (variable): The top coordinate of the inclusive rectangle for the ellipse specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

RightRect (variable): The right coordinate of the inclusive rectangle for the ellipse specified by
using a Coord Field (section 2.2.2.2.1.1.1.1).

81 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

BottomRect (variable): The bottom coordinate of the inclusive rectangle for the ellipse
specified by using a Coord Field (section 2.2.2.2.1.1.1.1).

bRop2 (1 byte): The binary raster operation to perform (see section 2.2.2.2.1.1.1.6). The
ROP2 field for the EllipseCB Primary Drawing Order has two bitfields within it. The low 5 bits
(mask 0x1F) identify the real ROP2 operation. The high bit (mask 0x80) indicates whether the
background drawing mode MUST be set to TRANSPARENT or OPAQUE (see section
2.2.2.2.1.1.2.11). The background drawing mode is only significant if the BrushStyle field
indicates that the brush is a BS_HATCHED (0x02) or BS_PATTERN (0x03) brush.

FillMode (1 byte): The ellipse filling algorithm described by using a Fill Mode (section
2.2.2.2.1.1.1.9) structure.

BackColor (3 bytes): The background color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

ForeColor (3 bytes): The foreground color described by using a Generic Color (section
2.2.2.2.1.1.1.8) structure.

BrushOrgX (1 byte): An 8-bit, signed integer. The x-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushOrgY (1 byte): An 8-bit, signed integer. The y-coordinate of the point where the top
leftmost pixel of a brush pattern MUST be anchored.

BrushStyle (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushStyle field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

BrushHatch (1 byte): An 8-bit, unsigned integer. The contents and format of this field are the
same as the BrushHatch field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

BrushExtra (7 bytes): A byte array of length 7. The contents and format of this field are the
same as the BrushExtra field of the PatBIt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

2.2.2.2.1.1.2.21 DrawNineGrid (DRAWNINEGRID_ORDER)

The DrawNineGrid Primary Drawing Order encodes a single NineGrid drawing command with a single
bounding rectangle.

Encoding order number: 7 (0x07)
Negotiation order number: 7 (0x07)
Number of fields: 5

Number of field encoding bytes: 1
Maximum encoded field length: 10 bytes

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

srcLeft (variable) srcTop (variable)
srcRight (variable) srcBottom (variable)
bitmapld

82 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

srcLeft (variable): The left coordinate of the clipping rectangle to be applied to the bitmap
stored at the entry given by the bitmapld field. The coordinate is specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

srcTop (variable): The top coordinate of the clipping rectangle to be applied to the bitmap
stored at the entry given by the bitmapld field. The coordinate is specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

srcRight (variable): The right coordinate of the clipping rectangle to be applied to the bitmap
stored at the entry given by the bitmapld field. The coordinate is specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

srcBottom (variable): The bottom coordinate of the clipping rectangle to be applied to the
bitmap stored at the entry given by the bitmapld field. The coordinate is specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

bitmapId (2 bytes): A 16-bit, unsigned integer. The index of the NineGrid Bitmap Cache entry
wherein the bitmap and NineGrid transformation information are stored. This value MUST be
greater than or equal to 0 and less than the maximum number of entries allowed in the
NineGrid Bitmap Cache as specified by the drawNineGridCacheEntries field of the
DrawNineGrid Cache Capability Set (section 2.2.1.2). The bitmap and transformation
information stored in the cache MUST have already been cached in response to a Create
NineGrid Bitmap (section 2.2.2.2.1.3.4) Alternate Secondary Drawing Order.

2.2.2.2.1.1.2.22 MultiDrawNineGrid (MULTI_DRAWNINEGRID_ORDER)

The MultiDrawNineGrid Primary Drawing Order encodes a single NineGrid drawing command with
multiple clipping rectangles.

Encoding order number: 8 (0x08)
Negotiation order number: 9 (0x09)
Number of fields: 7

Number of field encoding bytes: 1
Maximum encoded field length: 396 bytes

1 2 3
0|1{2(3(4|5|/6|7(8|9|/0|1|2(|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

srcLeft (variable) srcTop (variable)
srcRight (variable) srcBottom (variable)
bitmapld (optional) nDeltaEntries (optional) | CodedDeltalist (variable)

srcLeft (variable): The left coordinate of the clipping rectangle to be applied to the bitmap
stored at the entry given by the bitmaplId field. The coordinate is specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

srcTop (variable): The top coordinate of the clipping rectangle to be applied to the bitmap
stored at the entry given by the bitmaplId field. The coordinate is specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

83 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

srcRight (variable): The right coordinate of the clipping rectangle to be applied to the bitmap
stored at the entry given by the bitmaplId field. The coordinate is specified by using a Coord
Field (section 2.2.2.2.1.1.1.1).

srcBottom (variable): The bottom coordinate of the clipping rectangle to be applied to the
bitmap stored at the entry given by the bitmapld field. The coordinate is specified by using a
Coord Field (section 2.2.2.2.1.1.1.1).

bitmapId (2 bytes): A 16-bit, unsigned integer. The index of the NineGrid Bitmap Cache entry
wherein the bitmap and NineGrid transformation information are stored. This value MUST be
greater than or equal to 0 and less than the maximum number of entries allowed in the
NineGrid Bitmap Cache as specified by the drawNineGridCacheEntries field of the
DrawNineGrid Cache Capability Set (section 2.2.1.2). The bitmap and transformation
information stored in the cache MUST have already been cached in response to a Create
NineGrid Bitmap (section 2.2.2.2.1.3.4) Alternate Secondary Drawing Order.

nDeltaEntries (1 byte): An 8-bit, unsigned integer. The number of bounding rectangles
described by the CodedDeltalList field.

CodedDeltalList (variable): A Two-Byte Header Variable Field (section 2.2.2.2.1.1.1.3)
structure that encapsulates a Delta-Encoded Rectangles (section 2.2.2.2.1.1.1.5) structure
that contains bounding rectangles to use when rendering the order. The number of rectangles
described by the Delta-Encoded Rectangles structure is specified by the nDeltaEntries field.

2.2.2.2.1.2 Secondary Drawing Orders
2.2.2.2.1.2.1 Common Data Types

2.2.2.2.1.2.1.1 Secondary Drawing Order Header
(SECONDARY_DRAWING_ORDER_HEADER)

The SECONDARY_DRAWING_ORDER_HEADER structure is included in all secondary drawing orders.

—
N
w

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|5|6|7(8|9(0]1

controlFlags orderLength extraFlags

orderType

controlFlags (1 byte): An 8-bit, unsigned integer. The control byte that identifies the class of
the drawing order. This field MUST contain the TS_STANDARD (0x01) and TS_SECONDARY
(0x02) flags to indicate that the order is a secondary drawing order (see section 2.2.2.1.1).

orderLength (2 bytes): A 16-bit, signed integer. The encoded length in bytes of the secondary
drawing order, including the size of the header. When constructing the order, the value in the
orderLength field MUST be 13 bytes less than the actual order length. Hence, when decoding
the order, the orderLength field MUST be adjusted by adding 13 bytes. These adjustments
are for historical reasons.

extraFlags (2 bytes): A 16-bit, unsigned integer. Flags specific to each secondary drawing
order.

84 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

orderType (1 byte): An 8-bit, unsigned integer. Identifies the type of secondary drawing order.
MUST be one of the following values.

Value Meaning

TS_CACHE_BITMAP_UNCOMPRESSED Cache Bitmap - Revision 1 (section 2.2.2.2.1.2.2)

0x00 Secondary Drawing Order with an uncompressed
bitmap.

TS_CACHE_COLOR_TABLE Cache Color Table (section 2.2.2.2.1.2.4) Secondary

0x01 Drawing Order.

TS_CACHE_BITMAP_COMPRESSED Cache Bitmap - Revision 1 (section 2.2.2.2.1.2.2)

0x02 Secondary Drawing Order with a compressed
bitmap.

TS_CACHE_GLYPH Cache Glyph - Revision 1 (section 2.2.2.2.1.2.5) or

0x03 Cache Glyph - Revision 2 (section 2.2.2.2.1.2.6)

Secondary Drawing Order. The version is indicated
by the extraFlags field.

TS_CACHE_BITMAP_UNCOMPRESSED_REV2 | Cache Bitmap - Revision 2 (section 2.2.2.2.1.2.3)

0x04 Secondary Drawing Order with an uncompressed
bitmap.
TS_CACHE_BITMAP_COMPRESSED_REV2 Cache Bitmap - Revision 2 (section 2.2.2.2.1.2.3)
0x05 Secondary Drawing Order with a compressed
bitmap.
TS_CACHE_BRUSH Cache Brush (section 2.2.2.2.1.2.7) Secondary
0x07 Drawing Order.
TS_CACHE_BITMAP_COMPRESSED_REV3 Cache Bitmap - Revision 3 (section 2.2.2.2.1.2.8)
0x08 Secondary Drawing Order with a compressed
bitmap.

2.2.2.2.1.2.1.2 Two-Byte Unsigned Encoding
(TWO_BYTE_UNSIGNED_ENCODING)

The TWO_BYTE_UNSIGNED_ENCODING structure is used to encode a value in the range 0x0000 to
Ox7FFF by using a variable number of bytes. For example, 0x1A1B is encoded as { 0x9A, 0x1B }.
The most significant bit of the first byte encodes the number of bytes in the structure.

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

C vall val2 (optional)

c (1 bit): A 1-bit, unsigned integer field that contains an encoded representation of the humber
of bytes in this structure.

Value Meaning

ONE_BYTE_VAL Implies that the optional val2 field is not present. Hence, the structure is 1 byte
0 in size.

85 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Value Meaning

TWO_BYTE_VAL | Implies that the optional val2 field is present. Hence, the structure is 2 bytes in
1 size.

vall (7 bits): A 7-bit, unsigned integer field containing the most significant 7 bits of the value
represented by this structure.

val2 (1 byte): An 8-bit, unsigned integer containing the least significant bits of the value
represented by this structure.

2.2.2.2.1.2.1.3 Two-Byte Sighed Encoding (TWO_BYTE_SIGNED_ENCODING)

The TWO_BYTE_SIGNED_ENCODING structure is used to encode a value in the range -Ox3FFF to
Ox3FFF by using a variable number of bytes. For example, -0x1A1B is encoded as { 0xDA, 0x1B },

and -0x0002 is encoded as { 0x42 }. The most significant bits of the first byte encode the nhumber
of bytes in the structure and the sign.

1 2 3
0|1|{2(3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

c|s vall val2 (optional)

c (1 bit): A 1-bit, unsigned integer field containing an encoded representation of the number of
bytes in this structure.

Value Meaning

ONE_BYTE_VAL Implies that the optional val2 field is not present. Hence, the structure is 1 byte
0 in size.

TWO_BYTE_VAL | Implies that the optional val2 field is present. Hence, the structure is 2 bytes in
1 size.

s (1 bit): A 1-bit, unsigned integer field containing an encoded representation of whether the
value is positive or negative.

Value Meaning

POSITIVE_VAL Implies that the value represented by this structure is positive.
0

NEGATIVE_VAL Implies that the value represented by this structure is negative.
1

vall (6 bits): A 6-bit, unsigned integer field containing the most significant 6 bits of the value
represented by this structure.

val2 (1 byte): An 8-bit, unsigned integer containing the least significant bits of the value
represented by this structure.

86 /284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.2.2.1.2.1.4 Four-Byte Unsigned Encoding
(FOUR_BYTE_UNSIGNED_ENCODING)

The FOUR_BYTE_UNSIGNED_ENCODING structure is used to encode a value in the range
0x00000000 to Ox3FFFFFFF by using a variable number of bytes. For example, 0x001A1B1C is
encoded as { 0x9A, 0x1B, 0x1C }. The two most significant bits of the first byte encode the number
of bytes in the structure.

1 2 3
0|1{2(3(4|5|/6|7(8|9|/0|12(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

[¢ vall val2 (optional) val3 (optional) val4 (optional)

c (2 bits): A 2-bit, unsigned integer field containing an encoded representation of the number
of bytes in this structure.

Value Meaning
ONE_BYTE_VAL Implies that the optional val2, val3, and val4 fields are not present. Hence,
0 the structure is 1 byte in size.

TWO_BYTE_VAL Implies that the optional val2 field is present while the optional val3 and val4
1 fields are not present. Hence, the structure is 2 bytes in size.

THREE_BYTE_VAL | Implies that the optional val2 and val3 fields are present while the optional
2 val4 fields are not present. Hence, the structure is 3 bytes in size.

FOUR_BYTE_VAL Implies that the optional val2, val3, and val4 fields are all present. Hence,
3 the structure is 4 bytes in size.

vall (6 bits): A 6-bit, unsigned integer field containing the most significant 6 bits of the value
represented by this structure.

val2 (1 byte): An 8-bit, unsigned integer containing the second most significant bits of the
value represented by this structure.

val3 (1 byte): An 8-bit, unsigned integer containing the third most significant bits of the value
represented by this structure.

val4 (1 byte): An 8-bit, unsigned integer containing the least significant bits of the value
represented by this structure.

2.2.2.2.1.2.2 Cache Bitmap - Revision 1 (CACHE_BITMAP_ORDER)

The Cache Bitmap - Revision 1 Secondary Drawing Order is used by the server to instruct the client
to store a bitmap in a particular Bitmap Cache entry. This order only supports memory-based
bitmap caching. Support for the Revision 1 bitmap caches (section 3.1.1.1.1) is specified in the
Revision 1 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.1).

header

87/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

cacheld pad1Octet

bitmapWidth

bitmapHeight

bitmapBitsPerPel bitmapLength

cachelndex bitmapComprHdr
(optional)

bitmapDataStream
(variable)

header (6 bytes): The Secondary Drawing Order Header (section 2.2.2.2.1.2.1.1). The
embedded orderType field MUST be set to one of the following values.

Value

Meaning

0x00

TS_CACHE_BITMAP_UNCOMPRESSED

The bitmap data in the bitmapDataStream field is
uncompressed.

0x02

TS_CACHE_BITMAP_COMPRESSED

The bitmap data in the bitmapDataStream field is
compressed.

The embedded extraFlags field MAY contain the following flag.

Value

Meaning

0x0400

NO_BITMAP_COMPRESSION_HDR | Indi

(removed for bandwidth efficiency to save 8 bytes).

cates that the bitmapComprHdr field is not present

cacheld (1 byte): An 8-bit, unsigned integer. The ID of the bitmap cache in which the bitmap
data MUST be stored. This value MUST be in the range 0 to 2 (inclusive).

pad1Octet (1 byte): An 8-bit, unsigned integer. Padding. Values in this field are arbitrary and

MUST be ignored.

bitmapWidth (1 byte): An 8-bit, unsigned integer. The width of the bitmap in pixels.

bitmapHeight (1 byte): An 8-bit, unsigned integer. The height of the bitmap in pixels.

bitmapBitsPerPel (1 byte): An 8-bit, unsigned integer. The color depth of the bitmap data in
bits per pixel. This field MUST be one of the following values.

Value Meaning

0x08 8-bit color depth.
0x10 16-bit color depth.
0x18 24-bit color depth.

[MS-RDPEGDI] — v20131025

88 /284

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Value Meaning

0x20 32-bit color depth.

bitmapLength (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data in the
bitmapComprHdr and bitmapDataStream fields.

cachelndex (2 bytes): A 16-bit, unsigned integer. The index of the target entry in the
destination bitmap cache (specified by the cacheld field) where the bitmap data MUST be
stored. This value MUST be greater than or equal to 0 and less than the maximum number of
entries allowed in the destination bitmap cache. The maximum number of entries allowed in
each individual bitmap cache is specified in the Revision 1 Bitmap Cache Capability Set ([MS-
RDPBCGR] section 2.2.7.1.4.1) by the CacheOEntries, CachelEntries, and Cache2Entries
fields.

bitmapComprHdr (8 bytes): Optional Compressed Data Header structure (see [MS-RDPBCGR
section 2.2.9.1.1.3.1.2.3) describing the bitmap data in the bitmapDataStream. This field
MUST be present if the TS_CACHE_BITMAP_COMPRESSED (0x02) flag is present in the header
field, but the NO_BITMAP_COMPRESSION_HDR (0x0400) flag is not.

bitmapDataStream (variable): A variable-length byte array containing bitmap data (the
format of this data is defined in [MS-RDPBCGR] section 2.2.9.1.1.3.1.2.2).

2.2.2.2.1.2.3 Cache Bitmap - Revision 2 (CACHE_BITMAP_REV2_ORDER)

The Cache Bitmap - Revision 2 Secondary Drawing Order is used by the server to instruct the client
to store a bitmap in a particular Bitmap Cache entry. This order supports persistent disk bitmap
caching and uses a compact encoding format. Support for the Revision 2 bitmap caches (section
3.1.1.1.1) is specified in the Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section
2.2.7.1.4.2).

header

keyl (optional)

key2 (optional)

bitmapWidth (variable)

bitmapHeight (variable)

bitmapLength (variable)

89 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

cachelndex (variable)

bitmapComprHdr (optional)

bitmapDataStream (variable)

header (6 bytes): A Secondary Drawing Order Header (section 2.2.2.2.1.2.1.1). The
embedded orderType field MUST be set to one of the following values.

Value

Meaning

0x04

TS_CACHE_BITMAP_UNCOMPRESSED_REV2

The bitmap data in the bitmapDataStream field is
uncompressed.

0x05

TS_CACHE_BITMAP_COMPRESSED_REV2

The bitmap data in the bitmapDataStream field is
compressed.

The format of the embedded extraFlags field is specified by the following bitmask diagram.

0({1|2|3|4|5]|6

cachel
d

bitsPerPixelld

flags

cacheld (3 bits): A 3-bit, unsigned integer. The ID of the bitmap cache in which the
bitmap data MUST be stored. This value MUST be greater than or equal to 0 and less
than the number of bitmap caches being used for the connection. The number of bitmap
caches being used is specified by the NumCellCaches field of the Revision 2 Bitmap
Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2).

bitsPerPixelld (4 bits): A 4-bit, unsigned integer. The color depth of the bitmap data in
bits per pixel. MUST be one of the following values.

Value Meaning
CBR2_8BPP 8 bits per pixel
0x3

CBR2_16BPP 16 bits per pixel
0x4

CBR2_24BPP 24 bits per pixel
0x5

[MS-RDPEGDI]

—v20131025

90/ 284

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

Value Meaning

CBR2_32BPP 32 bits per pixel
0x6

flags (9 bits): A 9-bit, unsigned integer. Operational flags.

Value Meaning

CBR2_HEIGHT_SAME_AS_WIDTH Implies that the bitmap height is the same as the

0x01 bitmap width. If this flag is set, the
bitmapHeight field MUST NOT be present.

CBR2_PERSISTENT_KEY_PRESENT Implies that the bitmap is intended to be

0x02 persisted, and the key1 and key2 fields MUST be
present.

CBR2_NO_BITMAP_COMPRESSION_HDR | Indicates that the bitmapComprHdr field is not

0x08 present (removed for bandwidth efficiency to save
8 bytes).

CBR2_DO_NOT_CACHE Implies that the cacheIndex field MUST be

0x10 ignored, and the bitmap MUST be placed in the

last entry of the bitmap cache specified by
cacheld field.

keyl (4 bytes): A 32-bit, unsigned integer. The low 32 bits of the 64-bit persistent bitmap
cache key.

key2 (4 bytes): A 32-bit, unsigned integer. The high 32 bits of the 64-bit persistent bitmap
cache key.

bitmapWidth (variable): A Two-Byte Unsigned Encoding (section 2.2.2.2.1.2.1.2) structure.
The width of the bitmap in pixels.

bitmapHeight (variable): A Two-Byte Unsigned Encoding (section 2.2.2.2.1.2.1.2) structure.
The height of the bitmap in pixels.

bitmapLength (variable): A Four-Byte Unsigned Encoding (section 2.2.2.2.1.2.1.4) structure.
The size in bytes of the data in the bitmapComprHdr and bitmapDataStream fields.

cachelndex (variable): A Two-Byte Unsigned Encoding (section 2.2.2.2.1.2.1.2) structure.
The index of the target entry in the destination bitmap cache (specified by the cacheld field)
where the bitmap data MUST be stored. If the CBR2_DO_NOT_CACHE flag is not set in the
header field, the bitmap cache index MUST be greater than or equal to 0 and less than the
maximum number of entries allowed in the destination bitmap cache. The maximum number
of entries allowed in each individual bitmap cache is specified in the Revision 2 Bitmap Cache
Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2) by the BitmapCacheOCellInfo,
BitmapCachelCellInfo, BitmapCache2CellInfo, BitmapCache3CellInfo, and
BitmapCache4CellInfo fields. If the CBR2_DO_NOT_CACHE flag is set, the cacheIndex
MUST be set to BITMAPCACHE_WAITING_LIST_INDEX (32767).

bitmapComprHdr (8 bytes): Optional Compressed Data Header structure (see [MS-RDPBCGR
section 2.2.9.1.1.3.1.2.3) describing the bitmap data in the bitmapDataStream. This field
MUST be present if the TS_CACHE_BITMAP_COMPRESSED_REV2 (0x05) flag is present in the
header field, but the CBR2_NO_BITMAP_COMPRESSION_HDR (0x08) flag is not.

91 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

bitmapDataStream (variable): A variable-length byte array containing bitmap data (the
format of this data is defined in [MS-RDPBCGR] section 2.2.9.1.1.3.1.2.2).

2.2.2.2.1.2.4 Cache Color Table (CACHE_COLOR_TABLE_ORDER)

The Cache Color Table Secondary Drawing Order is used by the server to instruct the client to store
a color table in a particular Color Table Cache entry. Color tables are used in the MemBIt (section
2.2.2.2.1.1.2.9) and Mem3BIt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders.

Support for color table caching is not specified in the Color Table Cache Capability Set (section
2.2.1.1), but is instead implied by support for the MemBIt (section 2.2.2.2.1.1.2.9) and Mem3BlIt
(section 2.2.2.2.1.1.2.10) Primary Drawing Orders. If support for these orders is advertised in the
Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3), the existence of a color table cache
with entries for six palettes is assumed when palettized color is being used, and the Cache Color
Table is used to update these palettes.

header

cachelndex numberColors

colorTable (variable)

header (6 bytes): A Secondary Order Header, as defined in section 2.2.2.2.1.2.1.1. The
embedded orderType field MUST be set to TS_CACHE_COLOR_TABLE (0x01).

cachelIndex (1 byte): An 8-bit, unsigned integer. An entry in the Cache Color Table where the
color table MUST be stored. This value MUST be in the range 0 to 5 (inclusive).

numberColors (2 bytes): A 16-bit, unsigned integer. The number of Color Quad (section
2.2.2.2.1.2.4.1) structures in the colorTable field. This field MUST be set to 256 entries.

colorTable (variable): A Color Table composed of an array of Color Quad (section
2.2.2.2.1.2.4.1) structures. The number of entries in the array is given by the numberColors
field.

2.2.2.2.1.2.4.1 Color Quad (TS_COLOR_QUAD)

The TS_COLOR_QUAD structure is used to express the red, green, and blue components necessary
to reproduce a color in the additive RGB space.

—
N
w

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

blue green red pad1Octet

blue (1 byte): An 8-bit, unsigned integer. The blue RGB color component.

92 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

green (1 byte): An 8-bit, unsigned integer. The green RGB color component.
red (1 byte): An 8-bit, unsigned integer. The red RGB color component.

pad1Octet (1 byte): An 8-bit, unsigned integer. Padding. Values in this field are arbitrary and
MUST be ignored.

2.2.2.2.1.2.5 Cache Glyph - Revision 1 (CACHE_GLYPH_ORDER)

The Cache Glyph - Revision 1 Secondary Drawing Order is used by the server to instruct the client
to store a glyph in a particular glyph cache entry (section 3.1.1.1.2). Support for glyph caching is
specified in the Glyph Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.8).

header

cacheld cGlyphs

glyphData (variable)

unicodeCharacters (variable)

header (6 bytes): A Secondary Order Header, as defined in section 2.2.2.2.1.2.1.1. The
embedded orderType field MUST be set to TS_CACHE_GLYPH (0x03).

The embedded extraFlags field MAY contain the following flags.

Value Meaning
CG_GLYPH_UNICODE_PRESENT Indicates that the unicodeCharacters field is present.
0x0100

cacheld (1 byte): An 8-bit, unsigned integer. The ID of the glyph cache in which the glyph
data MUST be stored. This value MUST be in the range 0 to 9 (inclusive).

cGlyphs (1 byte): An 8-bit, unsigned integer. The number of glyph entries in the glyphData
field.

glyphData (variable): An array of Cache Glyph Data (section 2.2.2.2.1.2.5.1) structures that
describes each of the glyphs contained in this order (the number of glyphs is specified by the
cGlyphs field).

unicodeCharacters (variable): An array of Unicode characters. Contains the Unicode
character representation of each glyph in the glyphData field. The number of bytes in the
field is given by cGlyphs * 2. This field MUST NOT be null-terminated. This string is used for
diagnostic purposes only and is not necessary for successfully decoding and caching the
glyphs in the glyphData field.

93/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

2.2.2.2.1.2.5.1 Cache Glyph Data (TS_CACHE_GLYPH_DATA)

The TS_CACHE_GLYPH_DATA structure contains information describing a single glyph that is to be
stored in a glyph cache (section 3.1.1.1.2). The ID of this destination glyph cache is specified by the
cacheld field of the container Cache Glyph (Revision 1) Order (section 2.2.2.2.1.2.5).

=
N
w

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

cachelndex X
y cx
cy aj (variable)

cachelndex (2 bytes): A 16-bit, unsigned integer. The index of the target entry in the
destination glyph cache where the glyph data MUST be stored. This value MUST be greater
than or equal to 0, and less than the maximum number of entries allowed in the destination
glyph cache. The maximum number of entries allowed in each of the ten glyph caches is

specified in the GlyphCache field of the Glyph Cache Capability Set ([MS-RDPBCGR] section
2.2.7.1.8).

x (2 bytes): A 16-bit, signed integer. The X component of the coordinate that defines the origin
of the character within the glyph bitmap. The top-left corner of the bitmap is (0, 0).

y (2 bytes): A 16-bit, signed integer. The Y component of the coordinate that defines the origin
of the character within the glyph bitmap. The top-left corner of the bitmap is (0, 0).

cx (2 bytes): A 16-bit, unsigned integer. The width of the glyph bitmap in pixels.
cy (2 bytes): A 16-bit, unsigned integer. The height of the glyph bitmap in pixels.

aj (variable): A variable-sized byte array containing a 1-bit-per-pixel bitmap of the glyph. The
individual scan lines are encoded in top-down order, and each scan line MUST be byte-aligned.
Once the array has been populated with bitmap data, it MUST be padded to a double-word
boundary (the size of the structure in bytes MUST be a multiple of 4). For examples of 1-bit-
per-pixel encoded glyph bitmaps, see sections 4.6.1 and 4.6.2.

2.2.2.2.1.2.6 Cache Glyph - Revision 2 (CACHE_GLYPH_REV2_ORDER)

The Cache Glyph - Revision 2 Secondary Drawing Order is used by the server to instruct the client
to store a glyph in a particular Glyph Cache entry. This order is similar to the Cache Glyph - Revision
1 Secondary Drawing Order (section 2.2.2.2.1.2.5) except that it represents glyphs using a more
compact format and moves a number of fields into the extraFlags field of the secondary order

header. Support for glyph caching is specified in the Glyph Cache Capability Set ([MS-RDPBCGR
section 2.2.7.1.8).

94 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

header

glyphDataRev2 (variable)

unicodeCharacters (variable)

header (6 bytes): A Secondary Order Header, as defined in section 2.2.2.2.1.2.1.1. The
embedded orderType field MUST be set to TS_CACHE_GLYPH (0x03).

The format of the embedded extraFlags word is described by the following bitmask diagram.

0(1/2|3(4|5(6|7|8|9|0(1|2|3|4|5|[6|7|8|9|0(1|2|3(4|5|6|7|8|9|0]1

cacheld flags cGlyphs

cacheld (4 bits): A 4-bit unsigned integer. The ID of the glyph cache in which the glyph
data MUST be stored. This value MUST be in the range 0 to 9 (inclusive).

flags (4 bits): A 4-bit, unsigned integer. Various operational flags.

Value Meaning

CG2_GLYPH_UNICODE_PRESENT | Indicates that the unicodeCharacters field is present.

Ox1

GLYPH_ORDER_REV2 Indicates that this is a Cache Glyph - Revision 2 Order;

0x2 the Cache Glyph - Revision 1 (section 2.2.2.2.1.2.5)
extraFlags header field does not contain a flag with this
value.

cGlyphs (1 byte): An 8-bit, unsigned integer. The number of glyph entries in the
glyphData field.

glyphDataRev2 (variable): The specification for each of the glyphs in this order (the number
of glyphs is given by the cGlyphs field embedded in the header field) defined using Cache
Glyph Data - Revision 2 (section 2.2.2.2.1.2.6.1) structures.

unicodeCharacters (variable): An array of Unicode characters. Contains the Unicode
character representation of each glyph in the glyphData field. The number of bytes in the
field is given by cGlyphs * 2 (where cGlyphs is embedded in the header field). This field
MUST NOT be null-terminated. This string is used for diagnostic purposes only and is not
necessary for successfully decoding and caching the glyphs in the glyphData field.

95/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.2.2.1.2.6.1 Cache Glyph Data - Revision 2 (TS_CACHE_GLYPH_DATA_REV2)

The TS_CACHE_GLYPH_DATA_REV?2 structure contains information describing a single glyph that is
to be stored in a glyph cache (section 3.1.1.1.2). The ID of this destination glyph cache is specified
by the cacheld field of the container Cache Glyph (Revision 2) Order (section 2.2.2.2.1.2.6).

e

2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

cachelndex X (variable)

y (variable)

cx (variable)

cy (variable)

aj (variable)

cachelIndex (1 byte): An 8-bit, unsigned integer. The index of the target entry in the
destination glyph cache where the glyph data MUST be stored. This value MUST be greater
than or equal to 0, and less than the maximum number of entries allowed in the destination
glyph cache. The maximum number of entries allowed in each of the ten glyph caches is
specified in the GlyphCache field of the Glyph Cache Capability Set ([MS-RDPBCGR] section
2.2.7.1.8).

x (variable): A Two-Byte Signed Encoding (section 2.2.2.2.1.2.1.3) structure. The X component
of the coordinate that defines the origin of the character within the glyph bitmap. The top-left
corner of the bitmap is (0, 0).

y (variable): A Two-Byte Signed Encoding (section 2.2.2.2.1.2.1.3) structure. The Y component
of the coordinate that defines the origin of the character within the glyph bitmap. The top-left
corner of the bitmap is (0, 0).

cx (variable): A Two-Byte Unsigned Encoding (section 2.2.2.2.1.2.1.2) structure. The width of
the glyph bitmap in pixels.

cy (variable): A Two-Byte Unsigned Encoding (section 2.2.2.2.1.2.1.2) structure. The height of
the glyph bitmap in pixels.

aj (variable): A variable-sized byte array containing a 1-bit-per-pixel bitmap of the glyph.

96 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

The individual scan lines are encoded in top-down order, and each scan line MUST be byte-
aligned. After the array has been populated with bitmap data, it MUST be padded to a double-
word boundary (the size of the structure in bytes MUST be a multiple of 4). The size, in bytes,
of the glyph data is given by the following function.

ROUND UP TO NEAREST MULTIPLE OF 4 (((cx + 7) / 8) * cy)

For examples of 1-bit-per-pixel encoded glyph bitmaps, see sections 4.6.1 and 4.6.2.

2.2.2.2.1.2.7 Cache Brush (CACHE_BRUSH_ORDER)

The Cache Brush Secondary Drawing Order is used by the server to instruct the client to store a
brush in a particular Brush Cache entry. Support for brush caching is specified in the Brush Cache
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.7).

=
N
w

header

cacheEntry iBitmapFormat

cx cy Style iBytes

brushData (variable)

header (6 bytes): Secondary Order Header, as defined in section 2.2.2.2.1.2.1.1. The
embedded orderType field MUST be set to TS_CACHE_BRUSH (0x07).

cacheEntry (1 byte): An 8-bit, unsigned integer. The entry in a specified Brush Cache where
the brush data MUST be stored. This value MUST be in the range 0 to 63 (inclusive).

iBitmapFormat (1 byte): An 8-bit, unsigned integer. The color depth of the brush bitmap data.
This field MUST be one of the following values.

Value Meaning

BMF_1BPP 1 bit per pixel

0x01

BMF_8BPP 8 bits per pixel

0x03

BMF_16BPP 15 or 16 bits per pixel
0x04

BMF_24BPP 24 bits per pixel

0x05

BMF_32BPP 32 bits per pixel

97/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

CX

cy

Value Meaning

0x06

(1 byte): An 8-bit, unsigned integer. The width of the brush bitmap.
(1 byte): An 8-bit, unsigned integer. The height of the brush bitmap.

Style (1 byte): An 8-bit, unsigned integer. This field is not used, and SHOULD<4> be set to

0x00.

iBytes (1 byte): An 8-bit, unsigned integer. The size of the brushData field in bytes.

brushData (variable): A variable-sized byte array containing binary brush data that represents

an 8-by-8-pixel bitmap image. There are 64 pixels in a brush bitmap, and the space used to
represent each pixel depends on the color depth of the brush bitmap and the number of colors
used. The size of the brushData field in bytes is given by the iBytes field.

In general, most brushes only use two colors (mono format), and the majority of the
remaining ones use four colors or fewer.

For mono format brushes (iBitmapFormat is BMF_1BPP), brushData contains 8 bytes of 1-
bit-per-pixel data, each byte corresponding to a row of pixels in the brush. The rows are
encoded in reverse order; that is, the pixels in the bottom row of the brush are encoded in the
first byte of the brushData field, and the pixels in the top row are encoded in the eighth
byte.

For color brushes, a compression algorithm is used. If the data is compressed, the iBytes
field is 20 for 256-color (iBitmapFormat is BMF_8BPP), 24 for 16-bit color (iBitmapFormat
is BMF_16BPP), 28 for 24-bit color (iBitmapFormat is BMF_24BPP), and 32 for 32-bit color
(iBitmapFormat is BMF_32BPP). The compression algorithm reduces brush data size by
storing each brush pixel as a 2-bit index (four possible values) into a translation table
containing four entries. This equates to 2 bytes per brush bitmap line (16 bytes in total)
followed by the translation table contents. This layout for four-color brushes conforms to the
Compressed Color Brush (section 2.2.2.2.1.2.7.1) structure.

For brushes using more than four colors, the data is simply copied uncompressed into the
brushData at the appropriate color depth.

2.2.2.2.1.2.7.1 Compressed Color Brush (COMPRESSED_COLOR_BRUSH)

The COMPRESSED_COLOR_BRUSH structure is used to hold a compressed version of a four-color 8-
by-8-pixel brush.

0123456789(1)123456789312345678981
PL | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | P16
P17 | P18 | P19 | P20 | P21 | P22 | P23 | P24 | P25 | P26 | P27 | P28 | P29 | P30 | P31 | P32
P33 | P34 | P35 | P36 | P37 | P38 | P39 | P40 | P41 | P42 | P43 | P44 | P45 | P46 | P47 | P48
P49 | P50 | P51 | P52 | P53 | P54 | P55 | P56 | P57 | P58 | P59 | P60 | P61 | P62 | P63 | P64

98/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

colorl (variable)

color2 (variable)

color3 (variable)

color4 (variable)

P1 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the first pixel.

Value (2 bits) Meaning

0 Use the first value in the translation table (colorl).

1 Use the second value in the translation table (color2).
2 Use the third value in the translation table (color3).

3 Use the fourth value in the translation table (color4).

P2 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the second pixel. The possible values for this field are identical to those for P1.

P3 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the third pixel. The possible values for this field are identical to those for P1.

P4 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the fourth pixel. The possible values for this field are identical to those for P1.

P5 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the fifth pixel. The possible values for this field are identical to those for P1.

P6 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the sixth pixel. The possible values for this field are identical to those for P1.

P7 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the seventh pixel. The possible values for this field are identical to those for P1.

P8 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the eighth pixel. The possible values for this field are identical to those for P1.

P9 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry to
use for the ninth pixel. The possible values for this field are identical to those for P1.

99/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

P10 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the tenth pixel. The possible values for this field are identical to those for P1.

P11 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 11th pixel. The possible values for this field are identical to those for P1.

P12 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 12th pixel. The possible values for this field are identical to those for P1.

P13 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 13th pixel. The possible values for this field are identical to those for P1.

P14 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 14th pixel. The possible values for this field are identical to those for P1.

P15 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 15th pixel. The possible values for this field are identical to those for P1.

P16 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 16th pixel. The possible values for this field are identical to those for P1.

P17 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 17th pixel. The possible values for this field are identical to those for P1.

P18 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 18th pixel. The possible values for this field are identical to those for P1.

P19 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 19th pixel. The possible values for this field are identical to those for P1.

P20 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 20th pixel. The possible values for this field are identical to those for P1.

P21 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 21st pixel. The possible values for this field are identical to those for P1.

P22 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 22nd pixel. The possible values for this field are identical to those for P1.

P23 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 23rd pixel. The possible values for this field are identical to those for P1.

P24 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 24th pixel. The possible values for this field are identical to those for P1.

P25 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 25th pixel. The possible values for this field are identical to those for P1.

P26 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 26th pixel. The possible values for this field are identical to those for P1.

P27 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 27th pixel. The possible values for this field are identical to those for P1.

P28 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 28th pixel. The possible values for this field are identical to those for P1.

100/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

P29 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 29th pixel. The possible values for this field are identical to those for P1.

P30 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 30th pixel. The possible values for this field are identical to those for P1.

P31 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 31st pixel. The possible values for this field are identical to those for P1.

P32 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 32nd pixel. The possible values for this field are identical to those for P1.

P33 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 33rd pixel. The possible values for this field are identical to those for P1.

P34 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 34th pixel. The possible values for this field are identical to those for P1.

P35 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 35th pixel. The possible values for this field are identical to those for P1.

P36 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 36th pixel. The possible values for this field are identical to those for P1.

P37 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 37th pixel. The possible values for this field are identical to those for P1.

P38 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 38th pixel. The possible values for this field are identical to those for P1.

P39 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 39th pixel. The possible values for this field are identical to those for P1.

P40 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 40th pixel. The possible values for this field are identical to those for P1.

P41 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 41st pixel. The possible values for this field are identical to those for P1.

P42 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 42nd pixel. The possible values for this field are identical to those for P1.

P43 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 43rd pixel. The possible values for this field are identical to those for P1.

P44 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 44th pixel. The possible values for this field are identical to those for P1.

P45 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 45th pixel. The possible values for this field are identical to those for P1.

P46 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 46th pixel. The possible values for this field are identical to those for P1.

P47 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 47th pixel. The possible values for this field are identical to those for P1.

101/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

P48 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 48th pixel. The possible values for this field are identical to those for P1.

P49 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 49th pixel. The possible values for this field are identical to those for P1.

P50 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 50th pixel. The possible values for this field are identical to those for P1.

P51 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 51st pixel. The possible values for this field are identical to those for P1.

P52 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 52nd pixel. The possible values for this field are identical to those for P1.

P53 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 53rd pixel. The possible values for this field are identical to those for P1.

P54 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 54th pixel. The possible values for this field are identical to those for P1.

P55 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 55th pixel. The possible values for this field are identical to those for P1.

P56 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 56th pixel. The possible values for this field are identical to those for P1.

P57 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 57th pixel. The possible values for this field are identical to those for P1.

P58 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 58th pixel. The possible values for this field are identical to those for P1.

P59 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 59th pixel. The possible values for this field are identical to those for P1.

P60 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 60th pixel. The possible values for this field are identical to those for P1.

P61 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 61st pixel. The possible values for this field are identical to those for P1.

P62 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 62nd pixel. The possible values for this field are identical to those for P1.

P63 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 63rd pixel. The possible values for this field are identical to those for P1.

P64 (2 bits): A 2-bit, unsigned integer field. A 2-bit value indicating the translation table entry
to use for the 64th pixel. The possible values for this field are identical to those for P1.

colorl (variable): Translation table entry 1. This entry is an index into the current color palette
or an RGB triplet value; the actual interpretation depends on the color depth of the bitmap
data.

102 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Color Field

depth size Meaning
8 bpp 1 byte Index into the current color palette.
15 bpp 2 bytes RGB color triplet expressed in 5-5-5 format (5 bits for red, 5 bits for

green, and 5 bits for blue).

16 bpp 2 bytes RGB color triplet expressed in 5-6-5 format (5 bits for red, 6 bits for
green, and 5 bits for blue).

24 bpp 3 bytes RGB color triplet (1 byte per component).

color2 (variable): Translation table entry 2. This entry is an index into the current color palette
or an RGB triplet value; the actual interpretation depends on the color depth of the bitmap
data. The possible values for this field are identical to those for colorl.

color3 (variable): Translation table entry 3. This entry is an index into the current color palette
or an RGB triplet value; the actual interpretation depends on the color depth of the bitmap
data. The possible values for this field are identical to those for colorl.

color4 (variable): Translation table entry 4. This entry is an index into the current color palette
or an RGB triplet value; the actual interpretation depends on the color depth of the bitmap
data. The possible values for this field are identical to those for colorl.

2.2.2.2.1.2.8 Cache Bitmap - Revision 3 (CACHE_BITMAP_REV3_ORDER)

The Cache Bitmap - Revision 3 Secondary Drawing Order is used by the server to instruct the client
to store a bitmap in a particular Bitmap Cache entry. This order supports persistent disk bitmap
caching and also enables the use of the bitmap codecs specified in the Bitmap Codec Capability Set
(see [MS-RDPBCGR] section 2.2.7.2.10). Support for the Cache Bitmap - Revision 3 Secondary
Drawing Order is specified in the Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

header

cachelndex

key1l

key?2

bitmapData (variable)

header (6 bytes): A Secondary Drawing Order Header (see section 2.2.2.2.1.2.1.1). The
embedded orderType field MUST be set to TS_CACHE_BITMAP_COMPRESSED_REV3 (8).

The format of the embedded extraFlags field is specified by the following bitmask diagram.

103/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

0(1(2|3|4|5(6(7|8|9(0({1|2|3|4(5|/6|7|8(9|0(|1|2(3|4|5|6(7[8|9|0|1

cachel | bitsPerPixelld flags
d

cacheld (3 bits): A 3-bit, unsigned integer. The ID of the bitmap cache in which bitmap
data MUST be stored. This value MUST be greater than or equal to 0 and less than the
number of bitmap caches being used for the connection. The number of bitmap caches
being used is specified by the NumCellCaches field of the Revision 2 Bitmap Cache
Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2).

bitsPerPixelld (4 bits): A 4-bit, unsigned integer. The color depth of the bitmap data in
bits per pixel. It MUST be one of the following values.

Value Meaning
CBR23_8BPP 8 bits per pixel
0x3

CBR23_16BPP 16 bits per pixel
0x4

CBR23_24BPP 24 bits per pixel
0x5

CBR23_32BPP 32 bits per pixel
0x6

flags (9 bits): A 9-bit, unsigned integer. Operational flags.

Value Meaning

CBR3_IGNORABLE_FLAG | This flag has no meaning and its value is ignored by the client.
0x08

CBR3_DO_NOT_CACHE Implies that the cachelndex field MUST be ignored, and the
0x10 bitmap MUST be placed in the last entry of the bitmap cache
specified by the cacheld field.

cachelndex (2 bytes): A 16-bit unsigned integer. The index of the target entry in the
destination bitmap cache (specified by the cacheld field) where the bitmap data MUST be
stored. If the CBR3_DO_NOT_CACHE flag is not set in the header field, the bitmap cache
index MUST be greater than or equal to 0 and less than the maximum number of entries
allowed in the destination bitmap cache. The maximum number of entries allowed in each
individual bitmap cache is specified in the Revision 2 Bitmap Cache Capability Set ([MS-
RDPBCGR] section 2.2.7.1.4.2) by the BitmapCacheOCellInfo, BitmapCachelCellInfo,
BitmapCache2CellInfo, BitmapCache3CellInfo, and BitmapCache4CellInfo fields. If the
CBR3_DO_NOT_CACHE flag is set, the cacheIndex MUST be set to
BITMAPCACHE_WAITING_LIST_INDEX (32767).

key1l (4 bytes): A 32-bit, unsigned integer. The low 32 bits of the 64-bit persistent bitmap
cache key.

104 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

key2 (4 bytes): A 32-bit, unsigned integer. The high 32 bits of the 64-bit persistent bitmap
cache key.

bitmapData (variable): An Extended Bitmap Data (see [MS-RDPBCGR] section 2.2.9.2.1.1)
structure that contains an encoded bitmap image.

2.2.2.2.1.3 Alternate Secondary Drawing Orders
2.2.2.2.1.3.1 Common Data Types

2.2.2.2.1.3.1.1 Alternate Secondary Drawing Order Header
(ALTSEC_DRAWING_ORDER_HEADER)

The ALTSEC_DRAWING_ORDER_HEADER structure is included in all alternate secondary drawing
orders.

—
N
w

0|1|{2(3(4|5|/6|7(8|9|/0|1|2(|3|4|5|6[7(8|9|0(1(2|3|4|5|6(7|8|9|0(1

controlFlags

controlFlags (1 byte): An 8-bit, unsigned integer. The control byte that identifies the class and
type of the drawing order.

The format of the controlFlags byte is described by the following bitmask diagram.

0(1(2|3|4|5(6|7|8|9(0|1|2|3(4|5|6|7|8|9|0|1(2(3|4|5|6(7|8|9|0(1

class orderType

class (2 bits): A 2-bit, unsigned integer. This field MUST contain only the
TS_SECONDARY (0x02) flag to indicate that the order is an alternate secondary drawing
order (see section 2.2.2.2.1).

orderType (6 bits): A 6-bit, unsigned integer. Identifies the type of alternate secondary
drawing order.

Value Meaning

TS_ALTSEC_SWITCH_SURFACE Switch Surface Alternate Secondary Drawing

0x00 Order (see section 2.2.2.2.1.3.3).

TS_ALTSEC_CREATE_OFFSCR_BITMAP Create Offscreen Bitmap Alternate Secondary

0x01 Drawing Order (see section 2.2.2.2.1.3.2).

TS_ALTSEC_STREAM_BITMAP_FIRST Stream Bitmap First (Revision 1 and 2) Alternate

0x02 Secondary Drawing Order (see section
2.2.2.2.1.3.5.1).

TS_ALTSEC_STREAM_BITMAP_NEXT Stream Bitmap Next Alternate Secondary

0x03 Drawing Order (see section 2.2.2.2.1.3.5.2).

105/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

Value

Meaning

0x04

TS_ALTSEC_CREATE_NINEGRID_BITMAP

Create NineGrid Bitmap Alternate Secondary
Drawing Order (see section 2.2.2.2.1.3.4).

TS_ALTSEC_GDIP_FIRST
0x05

Draw GDI+ First Alternate Secondary Drawing
Order (see section 2.2.2.2.1.3.6.2).

TS_ALTSEC_GDIP_NEXT
0x06

Draw GDI+ Next Alternate Secondary Drawing
Order (see section 2.2.2.2.1.3.6.3).

TS_ALTSEC_GDIP_END
0x07

Draw GDI+ End Alternate Secondary Drawing
Order (see section 2.2.2.2.1.3.6.4).

0x08

TS_ALTSEC_GDIP_CACHE_FIRST

Draw GDI+ First Alternate Secondary Drawing
Order (see section 2.2.2.2.1.3.6.2).

0x09

TS_ALTSEC_GDIP_CACHE_NEXT

Draw GDI+ Cache Next Alternate Secondary
Drawing Order (see section 2.2.2.2.1.3.6.3).

0x0A

TS_ALTSEC_GDIP_CACHE_END

Draw GDI+ Cache End Alternate Secondary
Drawing Order (see section 2.2.2.2.1.3.6.4).

TS_ALTSEC_WINDOW
0x0B

Windowing Alternate Secondary Drawing Order
(see [MS-RDPERP] section 2.2.1.3).

0x0C

TS_ALTSEC_COMPDESK_FIRST

Desktop Composition Alternate Secondary
Drawing Order (see [MS-RDPEDC] section
2.2.1.1).

TS_ALTSEC_FRAME_MARKER
0x0D

Frame Marker Alternate Secondary Drawing
Order (see section 2.2.2.2.1.3.7).

2.2.2.2.1.3.2 Create Offscreen Bitmap (CREATE_OFFSCR_BITMAP_ORDER)

The Create Offscreen Bitmap Alternate Secondary Drawing Order is used by the server to instruct
the client to create a bitmap of a particular width and height in the Offscreen Bitmap Cache. Support
for offscreen bitmap caching is specified in the Offscreen Bitmap Cache Capability Set (see [MS-

RDPBCGR] section 2.2.7.1.9).

-
N

0|1|{2(3|(4|5|6|7(8|9|0|1|2|3|4|5|6|7|8|9|0(1[2]|3

header flags

CX

cy

deleteList (variable)

header (1 byte): Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1. The
embedded orderType field MUST be set to TS_ALTSEC_CREATE_OFFSCR_BITMAP (0x01).

flags (2 bytes): A 16-bit, unsigned integer. Operational flags. The format of the flags field is

described by the following bitmask diagram:

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

106 / 284

%5bMS-RDPERP%5d.pdf
%5bMS-RDPEDC%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

0(1({2|3|4|5(6|7|8|9(0|1|2|3(4|5|6|7(8[9|0|1(2[3|4|5|6(7|8|9|0(1

offscreenBitmapld d

offscreenBitmapld (15 bits): A 15-bit unsigned integer. The index of the Offscreen
Bitmap Cache entry wherein the bitmap MUST be created. This value MUST be greater
than or equal to 0 and less than the maximum number of entries allowed in the
Offscreen Bitmap Cache as specified by the offscreenCacheEntries field of the
Offscreen Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.9).

d (1 bit): A 1-bit field. Indicates that the deleteList field is present.
cx (2 bytes): A 16-bit, unsigned integer. The width in pixels of the offscreen bitmap to create.
cy (2 bytes): A 16-bit, unsigned integer. The height in pixels of the offscreen bitmap to create.

deleteList (variable): A collection of Offscreen Bitmap Cache entries that MUST be deleted,
stored in an Offscreen Cache Delete List (section 2.2.2.2.1.3.2.1) structure.

2.2.2.2.1.3.2.1 Offscreen Cache Delete List (OFFSCR_DELETE_LIST)

The OFFSCR_DELETE_LIST structure is used to encode a collection of Offscreen Bitmap Cache
indices that MUST be deleted.

0|1|{2(3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

cIndices

indices (variable)

cIndices (2 bytes): A 16-bit, unsigned integer. The number of 2-byte indices held in the
indices field.

indices (variable): A collection of offscreen bitmap cache indices that identify cache entries
that MUST be deleted. Each index is a 16-bit unsigned integer and MUST be greater than or
equal to 0, and less than the maximum number of entries allowed in the Offscreen Bitmap
Cache, as specified by the offscreenCacheEntries field of the Offscreen Bitmap Cache
Capability Set ([MS-RDPBCGR] section 2.2.7.1.9). The number of indices in this list is
specified by the cIndices field.

2.2.2.2.1.3.3 Switch Surface (SWITCH_SURFACE_ORDER)

The Switch Surface Alternate Secondary Drawing Order is used by the server to instruct the client to
switch the target drawing surface either to the primary drawing surface (screen desktop) or to an
entry in the Offscreen Bitmap Cache. Support for offscreen bitmap caching is specified in the
Offscreen Bitmap Cache Capability Set (see [MS-RDPBCGR] section 2.2.7.1.9).

107 / 284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

header bitmaplId

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_SWITCH_SURFACE (0x00).

bitmapId (2 bytes): A 16-bit, unsigned integer. The new target drawing surface. If this field
has a value less than SCREEN_BITMAP_SURFACE (OxFFFF), it identifies an entry in the
Offscreen Bitmap Cache which contains a bitmap surface that MUST become the new target
drawing surface. This value MUST be greater than or equal to 0 and less than the maximum
number of entries allowed in the Offscreen Bitmap Cache as specified by the
offscreenCacheEntries field of the Offscreen Bitmap Cache Capability Set ([MS-RDPBCGR
section 2.2.7.1.9). Otherwise, if this field has the value SCREEN_BITMAP_SURFACE, the target
drawing surface MUST be changed to the primary drawing surface (screen desktop).

2.2.2.2.1.3.4 Create NineGrid Bitmap (CREATE_NINEGRID_BITMAP_ORDER)

The Create NineGrid Bitmap Alternate Secondary Drawing Order is used by the server to instruct the
client to create a NineGrid bitmap of a particular width and height in the NineGrid Bitmap Cache (the
color depth MUST be 32 bpp). Support for NineGrid drawing is specified in the DrawNineGrid Cache
Capability Set (section 2.2.1.2).

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|(5|6|7(8|9(0]1

header BitmapBpp BitmapId

cx cy

nineGridInfo

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_CREATE_NINEGRID_BITMAP

(0x04).

BitmapBpp (1 byte): An 8-bit, unsigned integer. The color depth in bits per pixel of the
NineGrid bitmap to create. Currently, all NineGrid bitmaps are sent in 32 bpp, so this field
MUST be set to 0x20.

BitmapId (2 bytes): A 16-bit, unsigned integer. The index of the NineGrid Bitmap Cache entry
wherein the bitmap and NineGrid transformation information MUST be stored. This value
MUST be greater than or equal to 0 and less than the maximum number of entries allowed in

108 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

the NineGrid Bitmap Cache as specified by the drawNineGridCacheEntries field of the
DrawNineGrid Cache Capability Set (section 2.2.1.2).

cx (2 bytes): A 16-bit, unsigned integer. The width in pixels of the NineGrid bitmap to create.
cy (2 bytes): A 16-bit, unsigned integer. The height in pixels of the NineGrid bitmap to create.

nineGridInfo (16 bytes): A NineGrid Bitmap Information (section 2.2.2.2.1.3.4.1) structure
that describes properties of the NineGrid bitmap to be created.

2.2.2.2.1.3.4.1 NineGrid Bitmap Information (NINEGRID_BITMAP_INFO)

The NINEGRID_BITMAP_INFO structure is used to describe a NineGrid source bitmap (see section
4.4). For more information about NineGrid bitmaps, see [NINEGRID].

0123456789(1)1234567893123456789(3)1
fIFlags
ulLeftWidth ulRightWidth
ulTopHeight ulBottomHeight
crTransparent

flIFlags (4 bytes): A 32-bit, unsigned integer. Option flags for the NineGrid bitmap represented
by this structure.

Value Meaning

DSDNG_STRETCH Indicates that the center portion of the source bitmap MUST be

0x00000001 stretched to fill the center of the destination NineGrid.

DSDNG_TILE Indicates that the center portion source bitmap MUST be tiled to fill the

0x00000002 center of the destination NineGrid.

DSDNG_PERPIXELALPHA | Indicates that an AlphaBlend operation MUST be used to compose the

0x00000004 destination NineGrid. The source bitmap is expected to have per-pixel
alpha values. For a description of the AlphaBlend operation, see [MSDN-
AlphaBlend].

DSDNG_TRANSPARENT Indicates that a TransparentBIt operation MUST be used to compose the
0x00000008 destination NineGrid. The crTransparent field MUST contain the
transparent color. For a description of the TransparentBIt operation, see
[MSDN-TransparentBIt].

DSDNG_MUSTFLIP Indicates that the source NineGrid MUST be flipped on a vertical axis.
0x00000010
DSDNG_TRUESIZE Indicates that the source bitmap MUST be transferred without
0x00000020 stretching or tiling.
109 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90233
http://go.microsoft.com/fwlink/?LinkId=89948
http://go.microsoft.com/fwlink/?LinkId=89948
http://go.microsoft.com/fwlink/?LinkId=90146

If the DSDNG_TILE (0x00000002) flag is not set, the DSDNG_STRETCH (0x00000001) flag is
implied. If neither the DSDNG_PERPIXELALPHA (0x00000004) nor DSDNG_TRANSPARENT
(0x00000008) is indicated, a BitBIt operation MUST be applied. For a description of the BitBIt

operation, see [MSDN-BitBIt].

ulLeftWidth (2 bytes): A 16-bit, unsigned integer. The width of the left-side NineGrid border.
For a visual illustration of this field, see section 4.4.

ulRightWidth (2 bytes): A 16-bit, unsigned integer. The width of the right-side NineGrid
border. For a visual illustration of this field, see section 4.4.

ulTopHeight (2 bytes): A 16-bit, unsigned integer. The height of the top NineGrid border. For
a visual illustration of this field, see section 4.4.

ulBottomHeight (2 bytes): A 16-bit, unsigned integer. The height of the bottom NineGrid
border. For a visual illustration of this field, see section 4.4.

crTransparent (4 bytes): The RGB color in the source bitmap to treat as transparent
represented using a Color Reference (section 2.2.2.2.1.3.4.1.1) structure. This field is used if
the DSDNG_TRANSPARENT (0x00000008) flag is set in the flFlags field.

2.2.2.2.1.3.4.1.1 Color Reference (TS_COLORREF)

The TS_COLORREF structure is used to express the red, green, and blue components necessary to
reproduce a color in the additive RGB space.

2 3
0|1|{2(3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7(8|9|0(1(2|3|4|5|6(7|8|9|0(1

=

red green blue zeroPad

red (1 byte): An 8-bit, unsigned integer. The red RGB color component.
green (1 byte): An 8-bit, unsigned integer. The green RGB color component.
blue (1 byte): An 8-bit, unsigned integer. The blue RGB color component.

zeroPad (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.
This field MUST be set to zero.

2.2.2.2.1.3.5 Stream Bitmap Orders

The stream bitmap alternate secondary orders (added in RDP version 5.1) enable bitmaps of
arbitrary size to be broken up into 4,096-byte blocks and streamed from server to client, each block
being sent in a separate stream bitmap order. All of the bitmap blocks MUST be sent in sequence.
The bitmaps can be sent either compressed or uncompressed.

None of the stream bitmap alternate secondary orders include the cache entry in which to store the
streamed bitmap. This is because the server MUST always send a bitmap creation order that
contains the bitmap cache entry data immediately after streaming the bitmap bits to the client.

If support for NineGrid rendering is specified using the DrawNineGrid Cache Capability Set (section
2.2.1.2), the support for bitmap streaming is implicitly assumed to be the case, as the NineGrid
bitmaps are transported using bitmap streaming.

110/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=89958

2.2,2.2,1.3.5.1 Stream Bitmap First (STREAM_BITMAP_FIRST_ORDER)

The Stream Bitmap First Alternate Secondary Drawing Order is used by the server to send the client
the first block in a streamed bitmap and information describing the bitmap (such as color depth,

width, and height).

1
0[{1(2(3|4|(5|6|7|8|9|0|1|2]|3

4|15/6|7(8|9|0(1

415/6(|7|8]9|0(1

header BitmapFlags

BitmapBpp

BitmapType

BitmapWidth

BitmapHeight

BitmapSize (variable)

BitmapBlockSize

BitmapBlock (variable)

header (1 byte): An Alternate Secondary Order Header, as specified in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_STREAM_BITMAP_FIRST (0x02).

BitmapFlags (1 byte): An 8-bit, unsigned integer. Flags describing the order contents and

layout.
Value Meaning
STREAM_BITMAP_END Indicates that the bitmap fits into one stream bitmap block
0x01 (4,096 bytes).
STREAM_BITMAP_COMPRESSED | Indicates that the bitmap data is compressed.
0x02
STREAM_BITMAP_REV2 Indicates that the BitmapSize field is 4 bytes. If this flag is not
0x04 set, the BitmapSize field is 2 bytes.

BitmapBpp (1 byte): An 8-bit, unsigned integer. The color depth in bits per pixel of the

streamed bitmap.

BitmapType (2 bytes): A 16-bit, unsigned integer. The type of the streamed bitmap.

Value

Meaning

TS_DRAW_NINEGRID_BITMAP_CACHE
0x0001

Indicates that the data in the BitmapBlock field is a

NineGrid source bitmap.

BitmapWidth (2 bytes): A 16-bit, unsigned integer. The width in pixels of the streamed

bitmap.

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

111/ 284

BitmapHeight (2 bytes): A 16-bit, unsigned integer. The height in pixels of the streamed
bitmap.

BitmapSize (variable): A variable-length field containing the total size in bytes of the
streamed bitmap. If the STREAM_BITMAP_REV2 (0x04) flag is set in the BitmapFlags field,
this field MUST contain a 32-bit unsigned integer. If the STREAM_BITMAP_REV?2 flag is not
set, this field MUST contain a 16-bit unsigned integer.

BitmapBlockSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the bitmap stream
data block contained in the BitmapBlock field. This value MUST be less than or equal to the
value contained in the BitmapSize field; if the STREAM_BITMAP_END (0x01) flag is set in the
BitmapFlags field, the two values MUST be equal.

BitmapBlock (variable): A variable-length byte array. The first block of the streamed bitmap

(also the last if the STREAM_BITMAP_END (0x01) flag is set in the BitmapFlags field). The
size of this block is given by the BitmapBlockSize field.

2.2.2.2,1.3.5.2 Stream Bitmap Next (STREAM_BITMAP_NEXT_ORDER)

The Stream Bitmap Next Alternate Secondary Drawing Order is used by the server to send the client
intermediate and final blocks in a streamed bitmap.

1 2 3
0|1|{2(3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

header BitmapFlags BitmapType

BitmapBlockSize BitmapBlock (variable)

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_STREAM_BITMAP_NEXT (0x03).

BitmapFlags (1 byte): An 8-bit, unsigned integer. Flags describing the order contents and

layout.
Value Meaning
STREAM_BITMAP_END Indicates that this packet contains the final stream bitmap
0x01 block.

STREAM_BITMAP_COMPRESSED Indicates that the bitmap data is compressed.
0x02

BitmapType (2 bytes): A 16-bit, unsigned integer. The type of the streamed bitmap.

Value Meaning

TS_DRAW_NINEGRID_BITMAP_CACHE Indicates that the data in the BitmapBlock field is a
0x0001 NineGrid source bitmap.

112 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

BitmapBlockSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the bitmap stream
data block contained in the BitmapBlock field.

BitmapBlock (variable): A variable-length byte array. The intermediate or final block of the

streamed bitmap. The size of this block is given by the BitmapBlockSize field.

2.2.2.2.1.3.6 GDI+ Orders

2.2.2.2.1.3.6.1 Common Data Types

2.2.2.2.1.3.6.1.1 GDI+ Cache Type (DRAW_GDIPLUS_CACHE_TYPE)

The DRAW_GDIPLUS_CACHE_TYPE structure stores a GDI+ cache type identifier. The Cache Type is

derived from the Type field of an EMF+ Record (see [MS-EMFPLUS] section 2.3). Only a subset of

these types are cacheable.

e

0(1|2(3|4|5|6|7(8|9(0|1|2|3]|4

cacheType

cacheType (2 bytes): A 16-bit, unsigned integer. The GDI+ cache type MUST be one of the

following values.

Value

Meaning

GDIP_CACHE_GRAPHICS_DATA
0x0001

GDI+ Graphics Cache.

This cache type is associated with EMF+ Records of
type EmfPlusSetTSGraphics (see [MS-EMFPLUS
section 2.3.8.2).

GDIP_CACHE_OBJECT_BRUSH
0x0002

GDI+ Brush Cache.

This cache type is associated with EMF+ Records of
type EmfPlusObject (see [MS-EMFPLUS] section
2.3.5.1) where the object type is ObjectTypeBrush
(see [MS-EMFPLUS] section 2.1.1.22).

GDIP_CACHE_OBJECT_PEN
0x0003

GDI+ Pen Cache.

This cache type is associated with EMF+ Records of

type EmfPlusObject (see [MS-EMFPLUS] section
2.3.5.1) where the object type is ObjectTypePen (see
MS-EMFPLUS] section 2.1.1.22).

GDIP_CACHE_OBIJECT_IMAGE
0x0004

GDI+ Image Cache.

This cache type is associated with EMF+ Records of
type EmfPlusObject (see [MS-EMFPLUS] section
2.3.5.1) where the object type is ObjectTypelmage
(see [MS-EMFPLUS] section 2.1.1.22).

GDIP_CACHE_OBJECT_IMAGEATTRIBUTES
0x0005

GDI+ Image Attributes Cache.

This cache type is associated with EMF+ Records of
type EmfPlusObject (see [MS-EMFPLUS] section
2.3.5.1) where the object type is
ObjectTypelmageAttributes (see [MS-EMFPLUS

[MS-RDPEGDI] — v20131025

113/ 284

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf

Value Meaning

section 2.1.1.22).

2.2.2.2.1.3.6.2 Draw GDI+ Cache First (DRAW_GDIPLUS_CACHE_FIRST_ORDER)

The Draw GDI+ Cache First Alternate Secondary Drawing Order contains the first batch of GDI+ 1.1
cacheable drawing primitives that comprise a rendering update sent by the server to the client.
Support for GDI+ 1.1 rendering and primitive caching is specified in the Draw GDI+ Capability Set
(section 2.2.1.3).

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4|(5|6|7(8|9(0]1

header Flags CacheType

Cachelndex cbSize

cbTotalSize

emfRecords (variable)

header (1 byte): An Alternate Secondary Order Header, as specified in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_GDIP_CACHE_FIRST (0x08).

Flags (1 byte): An 8-bit, unsigned integer. Flags indicating instructions on how to handle
previous cache orders in relation to this one.

Value Meaning

GDIP_REMOVE_CACHEENTRY | Remove the cache entry item at the index specified by
0x01 CachelIndex before caching the one contained in this order.

CacheType (2 bytes): A GDI+ Cache Type (section 2.2.2.2.1.3.6.1.1) structure. GDI+ cache in
which to store the EMF+ Records contained in the emfRecords field.

CachelIndex (2 bytes): A 16-bit, unsigned integer. The index of the cache entry into which to
write the primitive. This value MUST be greater than or equal to 0 and less than the maximum
number of entries allowed in the GDI+ Graphics, Pen, Brush, Image and Image Attributes
caches. The maximum number of entries allowed in each of these caches is specified by the
GdipCacheEntries field of the Draw GDI+ Capability Set (section 2.2.1.3).

cbSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the emfRecords field.
cbTotalSize (4 bytes): A 32-bit, unsigned integer. The cumulative size in bytes of the data in

all of the emfRecords fields in this and subsequent Draw GDI+ Cache Next and Draw GDI+
Cache End Orders.

emfRecords (variable): A collection of EMF+ Records specified in [MS-EMFPLUS] section 2.3.
The size of the emfRecords field is given by the cbSize field.

114 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf

2.2.2.2,1.3.6.3 Draw GDI+ Cache Next (DRAW_GDIPLUS_CACHE_NEXT_ORDER)

The Draw GDI+ Cache Next Alternate Secondary Drawing Order contains the second or subsequent
batch of GDI+ 1.1 cacheable drawing primitives that comprise a rendering update sent by the server
to the client. The first primitive in the sequence MUST have been transmitted with the Draw GDI+
Cache First Alternate Secondary Drawing Order. Support for GDI+ 1.1 rendering and primitive
caching is specified in the Draw GDI+ Capability Set (section 2.2.1.3).

1 2 3
0|1|2|3|4|5|6|7(8|9|0|1|2|3|4|5|6[|7|8|9|0(1(2|3|4|5|6(|7|8|9|0(1
header Flags CacheType
Cachelndex cbSize

emfRecords (variable)

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_GDIP_CACHE_NEXT (0x09).

Flags (1 byte): An 8-bit, unsigned integer. Flags indicating instructions on how to handle
previous cache orders in relation to this one.

Value Meaning

GDIP_REMOVE_CACHEENTRY | Remove the cache entry item at the index specified by
0x01 CachelIndex before caching the one contained in this order.

CacheType (2 bytes): A GDI+ Cache Type (section 2.2.2.2.1.3.6.1.1) structure. GDI+ cache in
which to store the EMF+ Records contained in the emfRecords field.

Cachelndex (2 bytes): A 16-bit, unsigned integer. The index of the cache entry into which to
write the primitive. This value MUST be greater than or equal to 0 and less than the maximum
number of entries allowed in the GDI+ Graphics, Pen, Brush, Image and Image Attributes
caches. The maximum number of entries allowed in each of these caches is specified by the
GdipCacheEntries field of the Draw GDI+ Capability Set (section 2.2.1.3).

cbSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the emfRecords field.

emfRecords (variable): A collection of EMF+ Records specified in [MS-EMFPLUS] section 2.3.
The size of the emfRecords field is given by the cbSize field.

2.2.2.2.1.3.6.4 Draw GDI+ Cache End (DRAW_GDIPLUS_CACHE_END_ORDER)

The Draw GDI+ Cache End Alternate Secondary Drawing Order contains the final batch of GDI+ 1.1
cacheable drawing primitives that comprise a rendering update sent by the server to the client.

Support for GDI+ 1.1 rendering and primitive caching is specified in the Draw GDI+ Capability Set
(section 2.2.1.3).

115/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

header Flags CacheType

Cachelndex cbSize

cbTotalSize

emfRecords (variable)

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_GDIP_CACHE_END (0x0A).

Flags (1 byte): An 8-bit, unsigned integer. Flags indicating instructions on how to handle
previous cache orders in relation to this one.

Value Meaning

GDIP_REMOVE_CACHEENTRY | Remove the cache entry item at the index specified by
0x01 CachelIndex before caching the one contained in this order.

CacheType (2 bytes): A GDI+ Cache Type (section 2.2.2.2.1.3.6.1.1) structure. GDI+ cache in
which to store the EMF+ Records contained in the emfRecords field.

Cachelndex (2 bytes): A 16-bit, unsigned integer. The index of the cache entry into which to
write the primitive. This value MUST be greater than or equal to 0 and less than the maximum
number of entries allowed in the GDI+ Graphics, Pen, Brush, Image and Image Attributes
caches. The maximum number of entries allowed in each of these caches is specified by the
GdipCacheEntries field of the Draw GDI+ Capability Set (section 2.2.1.3).

cbSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the emfRecords field.

cbTotalSize (4 bytes): A 32-bit, unsigned integer. The cumulative size in bytes of the data in
all of the emfRecords fields in this and previous Draw GDI+ Cache Next and Draw GDI+
Cache End Orders.

emfRecords (variable): A collection of EMF+ Records as defined in [MS-EMFPLUS] section 2.3.
The size of the emfRecords field is given by the cbSize field.

2.2.2.2.1.3.6.5 Draw GDI+ First (DRAW_GDIPLUS_FIRST_ORDER)

The Draw GDI+ First Alternate Secondary Drawing Order contains the first batch of GDI+ 1.1
drawing primitives that comprise a rendering update sent by the server to the client. Support for
GDI+ 1.1 rendering is specified in the Draw GDI+ Capability Set (section 2.2.1.3).

116 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

header pad1Octet cbSize

cbTotalSize

cbTotalEmfSize

emfRecords (variable)

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_GDIP_FIRST (0x05).

pad1Octet (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.
cbSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the emfRecords field.

cbTotalSize (4 bytes): A 32-bit, unsigned integer. The cumulative size in bytes of the data in
all of the emfRecords fields in this and subsequent Draw GDI+ Next and Draw GDI+ End
orders.

cbTotalEmfSize (4 bytes): A 32-bit, unsigned integer. The cumulative size, in bytes, of the
EMF+ record data (in this and subsequent Draw GDI+ Next and Draw GDI+ End Orders) that
MUST be passed to the GDI+ subsystem for rendering. Because references to GDI+ primitives
cached with Draw GDI+ Cache Orders (sections 2.2.2.2.1.3.6.2, 2.2.2.2.1.3.6.3, and
2.2.2.2.1.3.6.4) can be contained in the EMF+ Records embedded in the emfRecords field,
the total size of the EMF+ Records passed to the GDI+ subsystem for rendering can be larger
than what was sent on the wire.

emfRecords (variable): A collection of EMF+ Records specified in [MS-EMFPLUS] section 2.3.
The size of the emfRecords field is given by the cbSize field. If the most significant bit of the
Size field of an EMF+ Record is set, the EMF+ Record data contains a 16-bit cache index that
MUST be used to retrieve a cached GDI+ 1.1 primitive from the appropriate GDI+ cache; the
primitive MUST then be embedded in the EMF+ Record stream.

2.2.2.2.1.3.6.6 Draw GDI+ Next (DRAW_GDIPLUS_NEXT_ORDER)

The Draw GDI+ Next Alternate Secondary Drawing Order contains the second or subsequent batch
of GDI+ 1.1 drawing primitives that comprise a rendering update sent by the server to the client.
The first primitive in the sequence MUST have been transmitted with the Draw GDI+ First Alternate
Secondary Drawing Order. Support for GDI+ 1.1 rendering is specified in the Draw GDI+ Capability
Set (section 2.2.1.3).

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|(5|6|7(8|9(0]1

header pad1Octet cbSize

117/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf

emfRecords (variable)

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_GDIP_NEXT (0x06).

pad1Octet (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.
cbSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the emfRecords field.

emfRecords (variable): Collection of EMF+ Records specified in [MS-EMFPLUS] section 2.3.
The size of the emfRecords field is given by the cbSize field. If the most significant bit of the
Size field of an EMF+ Record is set, the EMF+ Record data contains a 16-bit cache index that
MUST be used to retrieve a cached GDI+ 1.1 primitive from the appropriate GDI+ cache; the
primitive MUST then be embedded in the EMF+ Record stream.

2.2.2.2.1.3.6.7 Draw GDI+ End (DRAW_GDIPLUS_END_ORDER)

The Draw GDI+ End Alternate Secondary Drawing Order contains the final batch of GDI+ 1.1
drawing primitives that comprise a rendering update sent by the server to the client. Support for
GDI+ 1.1 rendering is specified in the Draw GDI+ Capability Set (section 2.2.1.3).

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|(5|6|7(8|9(0]1

header pad1Octet cbSize

cbTotalSize

cbTotalEmfSize

emfRecords (variable)

header (1 byte): An Alternate Secondary Order Header, as defined in section 2.2.2.2.1.3.1.1.
The embedded orderType field MUST be set to TS_ALTSEC_GDIP_END (0x07).

pad1Octet (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.
cbSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the emfRecords field.

cbTotalSize (4 bytes): A 32-bit, unsigned integer. The cumulative size in bytes of the data in
all of the emfRecords fields in this and previous Draw GDI+ First and Draw GDI+ Next
Orders.

cbTotalEmfSize (4 bytes): A 32-bit, unsigned integer. The cumulative size, in bytes, of the
EMF+ record data (in this and previous Draw GDI+ First and Draw GDI+ Next Orders) that
MUST be passed to the GDI+ subsystem for rendering. Because references to GDI+ primitives
cached with Draw GDI+ Cache Orders (sections 2.2.2.2.1.3.6.2, 2.2.2.2.1.3.6.3, and
2.2.2.2.1.3.6.4) can be contained in the EMF+ Records embedded in the emfRecords field,

118/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf

the total size of the EMF+ Records passed to the GDI+ subsystem for rendering can be larger
than what was sent on the wire.

emfRecords (variable): A collection of EMF+ Records specified in [MS-EMFPLUS] section 2.3.
The size of the emfRecords field is given by the cbSize field. If the most significant bit of the
Size field of an EMF+ Record is set, the EMF+ Record data contains a 16-bit cache index that
MUST be used to retrieve a cached GDI+ 1.1 primitive from the appropriate GDI+ cache; the
primitive MUST then be embedded in the EMF+ Record stream.

2.2.2.2.1.3.7 Frame Marker

The Frame Marker Alternate Secondary Drawing Order is used by the server to indicate to the client
the beginning and end of a logical frame of graphics data. Breaking graphics data up into logical

frames indicates to the client which orders SHOULD be rendered as a logical unit, hence helping to
prevent screen tearing. Support for frame markers is specified in the Order Capability Set (see
MS-RDPBCGR] section 2.2.7.1.3).

=

2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|(5|6|7(8|9(0]1

header action

header (1 byte): An Alternate Secondary Drawing Order Header, as defined in section

2.2.2.2.1.3.1.1. The embedded orderType field MUST be set to TS_ALTSEC_FRAME_MARKER
(0x0D).

action (4 bytes): A 32-bit, unsigned integer. Indicates the start or end of a logical frame.

Value Meaning

TS_FRAME_START | Start of a logical frame of graphics data. All drawing orders from this point in
0x00000000 the graphics stream are part of the same logical frame and can be rendered
as one cohesive unit to prevent tearing.

TS_FRAME_END End of a logical frame of graphics data.
0x00000001

2.2.2.3 Error Conditions

2.2.2.3.1 Client Bitmap Cache Error PDU

The Bitmap Cache Error PDU is sent by clients that support persistent bitmap caching and encounter

caching errors. RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1 and 7.0 servers honor up to five Bitmap Cache Error
PDUs in a session.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

tpktHeader

119/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-EMFPLUS%5d.pdf
%5bMS-RDPBCGR%5d.pdf

x224Data mcsSDrq (variable)

securityHeader (variable)

bitmapCacheErrorPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length, Packed Encoding Rules encoded (PER-encoded) MCS
Domain PDU (DomainMCSPDU) that encapsulates an MCS Send Data Request structure (SDrq,
choice 25 from DomainMCSPDU), as specified in [T125] section 11.32 (the ASN.1 structure
definitions are specified in [T125] section 7, parts 7 and 10). The userData field of the MCS
Send Data Request PDU contains a Security Header and a Bitmap Cache Error PDU Data
(section 2.2.2.3.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server ([MS-
RDPBCGR] sections 5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is
greater than ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server
is greater than ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the
following headers:

= Non-FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.2) if the Encryption Method
selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

= FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.3) if the Encryption Method
selected by the server is ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the
Encryption Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this
header MUST NOT be included in the PDU.

bitmapCacheErrorPduData (variable): The actual contents of the Bitmap Cache Error PDU,
as specified in section 2.2.2.3.1.1.

2.2.2.3.1.1 Bitmap Cache Error PDU Data (TS_BITMAP_CACHE_ERROR_PDU)

The TS_BITMAP_CACHE_ERROR_PDU structure contains the contents of the Bitmap Cache Error
PDU, which is essentially a Share Data Header (see [MS-RDPBCGR] section 2.2.8.1.1.1.2) and an
array of Bitmap Cache Error Info (section 2.2.2.3.1.1.1) structures.

120/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

1 2 3
0(1(2|3|4|5|6(7|8|9|0|1(2|3|4|5|6(7|8|9|0(1[2[3|4|5(|6(7|8|9|0]1
shareDataHeader

NumInfoBlocks Padi
Pad2 Info (variable)

shareDataHeader (18 bytes): A Share Data Header (as specified in [MS-RDPBCGR] section
2.2.8.1.1.1.2) containing information on the packet. The type subfield of the pduType field of
the Share Control Header within the Share Data Header MUST be set to PDUTYPE_DATAPDU
(7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_BITMAPCACHE_ERROR_PDU (44).

NumInfoBlocks (1 byte): An 8-bit, unsigned integer. The humber of Bitmap Cache Error Info
(section 2.2.2.3.1.1.1) structures in the Info field.

Pad1l (1 byte): An 8-bit, unsigned integer. Padding. Values in this field are arbitrary and MUST
be ignored.

Pad2 (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field are arbitrary and MUST
be ignored.

Info (variable): An array of Bitmap Cache Error Info (section 2.2.2.3.1.1.1) structures, each
structure specifying what actions to take with each of the bitmap caches.

2.2.2.3.1.1.1 Bitmap Cache Error Info (TS_BITMAP_CACHE_ERROR_INFO)

The TS_BITMAP_CACHE_ERROR_INFO structure specifies what actions are to be taken on a
particular bitmap cache when a caching error occurs.

1(2|3|4|5|6|7|8|9/0|1|2|3|4(5|6|7|8|9(0|1|2[3|4|5|6|7|8|9(0]|1

CachelD bBitField Pad

NewNumEntries

CachelD (1 byte): An 8-bit, unsigned integer. ID of the bitmap cache represented by this
block.

bBitField (1 byte): An 8-bit, unsigned integer. A bit field containing several flags.

121/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

Value Meaning

BC_ERR_FLUSH_CACHE Indicates that the contents of the cache MUST be emptied.
0x01

BC_ERR_NEWNUMENTRIES_VALID Indicates that the NewNumEntries field is valid. If the
0x02 BC_ERR_FLUSH_CACHE (0x01) flag is not set, and the
NewNumEntries field specifies a new non-zero size, the
previous cache contents in the initial NewNumEntries cells
MUST be preserved.

Pad (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field are ignored.

NewNumEntries (4 bytes): A 32-bit, unsigned integer. The new number of entries in the
cache. This value MUST be less than or equal to the number of entries specified in the
Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2).

2.2.2.3.2 Client Offscreen Bitmap Cache Error PDU

The Offscreen Bitmap Cache Error PDU is sent by clients that support offscreen bitmap caching and
encounter caching errors.

—
N
w

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|5|6|7(8|9(0]1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

offscreenBitmapCacheErrorPduData

tpktHeader (4 bytes): A TPKT Header as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

122 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU),
as specified in [T125] section 11.32 (the ASN.1 structure definitions are specified in [T125
section 7, parts 7 and 10). The userData field of the MCS Send Data Request PDU contains a
Security Header and an Offscreen Bitmap Cache Error PDU Data (section 2.2.2.3.2.1)
structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server ([MS-
RDPBCGR] sections 5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is
greater than ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server
is greater than ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the
following headers:

= Non-FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.2) if the Encryption Method
selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

= FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.3) if the Encryption Level
selected by the server is ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the
Encryption Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this
header MUST NOT be included in the PDU.

offscreenBitmapCacheErrorPduData (22 bytes): The actual contents of the Offscreen
Bitmap Cache Error PDU, as specified in section 2.2.2.3.2.1.

2.2.2.3.2.1 Offscreen Bitmap Cache Error PDU Data
(TS_OFFSCRCACHE_ERROR_PDU)

The TS_OFFSCRCACHE_ERROR_PDU structure contains the contents of the Offscreen Bitmap Cache

Error PDU, which is essentially a Share Data Header (see [MS-RDPBCGR] section 2.2.8.1.1.1.2) and
a flags field.

0|1{2({3(4|5|/6|7(8|9|/0|1|2(|3|4|5|6[7(8|9|0(1(2|3|4|5|6(7|8|9|0(1

shareDataHeader

flags

shareDataHeader (18 bytes): A Share Data Header (as specified in [MS-RDPBCGR] section
2.2.8.1.1.1.2) containing information on the packet. The type subfield of the pduType field of

123/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

the Share Control Header within the Share Data Header MUST be set to PDUTYPE_DATAPDU

(7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_OFFSCRCACHE_ERROR_PDU (46).

flags (4 bytes): A 32-bit, unsigned integer. Indicates the support for offscreen bitmap caching.
This field MUST be set to OC_ERR_FLUSH_AND_DISABLE_OFFSCREEN (0x00000001),
which specifies that the offscreen cache MUST be flushed and that further offscreen bitmap

caching MUST be disabled.

Name

Value

OC_ERR_FLUSH_AND_DISABLE_OFFSCREEN

0x00000001

2.2.2.3.3 Client DrawNineGrid Cache Error PDU

The DrawNineGrid Cache Error PDU is sent by clients that support NineGrid bitmap caching and

encounter caching errors.

0|1|2(3(4|5|6|7|8|9|0|1]|2[3|4]|5

6

7

tpktHeader

x224Data

mcsSDrq (variable)

securityHeader (variable)

drawNineGridErrorPduData

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU),
as specified in [T125] section 11.32 (the ASN.1 structure definitions are specified in [T125

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

124 / 284

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

section 7, parts 7 and 10). The userData field of the MCS Send Data Request contains a
Security Header and a DrawNineGrid Cache Error PDU Data (section 2.2.2.3.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server ([MS-
RDPBCGR] sections 5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is
greater than ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server
is greater than ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the
following headers:

= Non-FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.2) if the Encryption Method
selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

= FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.3) if the Encryption Method
selected by the server is ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the
Encryption Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this
header MUST NOT be included in the PDU.

drawNineGridErrorPduData (22 bytes): The actual contents of the DrawNineGrid Cache
Error PDU, as specified in section 2.2.2.3.3.1.

2.2.2.3.3.1 DrawNineGrid Cache Error PDU Data
(TS_DRAWNINEGRID_ERROR_PDU)

The TS_DRAWNINEGRID_ERROR_PDU structure contains the contents of the DrawNineGrid Cache
Error PDU, which is essentially a Share Data Header (see [MS-RDPBCGR] section 2.2.8.1.1.1.2) and
a flags field.

0(1/2(3|4(5|6|7(8|9(0{1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

shareDataHeader

flags

shareDataHeader (18 bytes): A Share Data Header (as specified in [MS-RDPBCGR] section
2.2.8.1.1.1.2) containing information on the packet. The type subfield of the pduType field of
the Share Control Header within the Share Data Header MUST be set to PDUTYPE_DATAPDU
(7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_DRAWNINEGRID_ERROR_PDU (48).

125/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

flags (4 bytes): A 32-bit, unsigned integer. Indicates support for NineGrid bitmap caching. This
field MUST be set to DNG_ERR_FLUSH_AND_DISABLE_DRAWNINEGRID (0x00000001), which
means that the NineGrid bitmap cache MUST be flushed and that further NineGrid bitmap
caching MUST be disabled.

Name Value

DNG_ERR_FLUSH_AND_DISABLE_DRAWNINEGRID 0x00000001

2.2.2.3.4 Client GDI+ Error PDU

The GDI+ Error PDU is sent by clients that support GDI+ 1.1 rendering and encounter errors.

-
N
w

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

gdiplusErrorPduData

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU),
as specified in [T125] section 11.32 (the ASN.1 structure definitions are specified in [T125
section 7, parts 7 and 10). The userData field of the MCS Send Data Request contains a
Security Header and a GDI+ Error PDU Data (section 2.2.2.3.4.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server ([MS-

126 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

RDPBCGR] sections 5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is
greater than ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server
is greater than ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the
following headers:

= Non-FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.2) if the Encryption Method
selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

= FIPS Security Header ([MS-RDPBCGR] section 2.2.8.1.1.2.3) if the Encryption Method
selected by the server is ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the
Encryption Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this
header MUST NOT be included in the PDU.

gdiplusErrorPduData (22 bytes): The actual contents of the GDI+ Error PDU, as specified in
section 2.2.2.3.4.1.

2.2.2.3.4.1 GDI+ Error PDU Data (TS_DRAWGDIPLUS_ERROR_PDU)

The TS_DRAWGDIPLUS_ERROR_PDU structure contains the contents of the GDI+ Error PDU, which
is essentially a Share Data Header (see [MS-RDPBCGR] section 2.2.8.1.1.1.2) and a flags field.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|5|6|7(8|9(0]1

shareDataHeader

flags

shareDataHeader (18 bytes): A Share Data Header containing information on the packet (see
MS-RDPBCGR] section 2.2.8.1.1.1.2). The type subfield of the pduType field of the Share
Control Header within the Share Data Header MUST be set to PDUTYPE_DATAPDU (7). The
pduType?2 field of the Share Data Header MUST be set to
PDUTYPE2_DRAWGDIPLUS_ERROR_PDU (49).

flags (4 bytes): A 32-bit, unsigned integer. Indicates support for GDI+ 1.1 rendering. This field
MUST be set to GDIPLUS_ERR_FLUSH_AND_DISABLE_DRAWGDIPLUS (0x00000001), which
means that the GDI+ drawing MUST be flushed and further GDI+ 1.1 rendering primitives
MUST be disabled (implying that future drawings will be sent as bitmaps).

127 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

2.2.2.4 Bulk Data Compression

2.2.2.4.1 RDP 6.1 Compressed Data (RDP61_COMPRESSED_DATA)

The RDP61_COMPRESSED_DATA structure stores chain-compressed data that has been processed
by the RDP 6.1 Level-1 Compression Engine and possibly the RDP 5.0 Level-2 Compression Engine
(see section 3.1.8.2.1 for a description of chained compression and [MS-RDPBCGR] section
3.1.8.4.2 for a description of RDP 5.0 bulk compression).

1 2 3
0|1{2(3(4|5|/6|7(8|9|/0|12(3|4|5|6[7(8|9|0(1({2|3|4|5|6(7|8|9|0(1

LevellComprFlags Level2ComprFlags MatchCount (optional)

MatchDetails (variable)

Literals (variable)

LevelilComprFlags (1 byte): An 8-bit, unsigned integer. Level-1 compressor flags.

Value Meaning

L1_PACKET_AT_FRONT The level-1 history buffer MUST be reinitialized (by filling it with

0x04 zeros).

L1_NO_COMPRESSION No compression was performed. In this case, the MatchCount and

0x02 MatchDetails fields MUST NOT be present. The Literals field MUST be
present.

L1_COMPRESSED Compression with the level-1 compressor was performed and the

0x01 MatchCount and MatchDetails fields MUST be present and contain at
least one match. The Literals field MUST also be present.

L1_INNER_COMPRESSION Indicates that additional level-2 compression has been performed on

0x10 the level-1 compressor output and that the Level2ComprFlags field
contains valid data and MUST be processed.

See sections 3.1.8.2.2.2 and 3.1.8.2.3 for more details regarding these flags.

Level2ComprFlags (1 byte): An 8-bit, unsigned integer. Level-2 compressor flags.

Value Meaning

PACKET_COMPR_TYPE_64K | Indicates that RDP 5.0 bulk compression (see [MS-RDPBCGR] section
0x01 3.1.8.4.2) was used.

PACKET_COMPRESSED The data in the MatchCount, MatchDetails, and Literals fields has
0x20 been compressed with the level-2 compressor.

PACKET_AT_FRONT The decompressed data MUST be placed at the beginning of the
0x40 level-2 history buffer.

128 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

Value Meaning

PACKET_FLUSHED The level-2 history buffer MUST be reinitialized (by filling it with
0x80 zeros).

See [MS-RDPBCGR] sections 3.1.8.2.1 and 3.1.8.3 for more details regarding these flags.

The Level2ComprFlags field MUST be ignored if the L1_INNER_COMPRESSION flag (0x10) is
not set.

MatchCount (2 bytes): A 16-bit, unsigned integer. Contains the number of RDP 6.1 Match
Details structures (see section 2.2.2.4.1.1) present in the MatchDetails field. This field MUST
be present if the L1_COMPRESSED flag (0x01) is set in the LevellComprFlags field.

MatchDetails (variable): A variable-length field. Contains an array of RDP 6.1 Match Details
structures (see section 2.2.2.4.1.1). This field MUST NOT be present if the MatchCount field is
not present. If the MatchCount field is present and contains a value greater than zero, the

MatchDetails field MUST be present, and the number of RDP 6.1 Match Details structures that
it contains is given by the MatchCount field.

Literals (variable): A variable-length field. Contains raw noncompressed literals. The size of

the Literals field is given by the equation, CompressedDataSize - (2 + MatchCountSize +
MatchDetailsSize).

2.2.2.4.1.1 RDP 6.1 Match Details (RDP61_MATCH_DETAILS)

The RDP61_MATCH_DETAILS structure encapsulates all of the details, which describes a

compression match in a history buffer. (See section 3.1.8.2.2 for a description of how matches are
employed within the RDP 6.1 Compression Engine.)

0|1{2(3(4|5|/6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

MatchLength

MatchOutputOffset

MatchHistoryOffset

MatchLength (2 bytes): A 16-bit, unsigned integer. The length in bytes of the match in the
level-1 history buffer.

MatchOutputOffset (2 bytes): A 16-bit, unsigned integer. The relative offset into the output
buffer where the match MUST be copied to from the history buffer.

MatchHistoryOffset (4 bytes): A 32-bit, unsigned integer. The byte offset into the current
level-1 history buffer specifying where the match begins.

2.2.2.5 Bitmap Compression

2.2.2.5.1 RDP 6.0 Bitmap Compressed Bitmap Stream (RDP6_BITMAP_STREAM)

The RDP6_BITMAP_STREAM structure contains a stream of bitmap data compressed using RDP 6.0
Bitmap Compression techniques (section 3.1.9). Depending on the compression techniques

employed, the bitmap data is represented using the AYCoCg or ARGB color space (section
3.1.9.1.2).

129 / 284
[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

Compressed bitmap data is sent encapsulated in a Bitmap Update ([MS-RDPBCGR] section
2.2.9.1.1.3.1.2), Fast-Path Bitmap Update ([MS-RDPBCGR] section 2.2.9.1.2.1.2), Cache Bitmap -
Revision 1 (section 2.2.2.2.1.2.2) Secondary Drawing Orders, or Cache Bitmap - Revision 2 (section
2.2.2.2.1.2.3) Secondary Drawing Orders. In all of these cases, the data is encapsulated inside a
Bitmap Data structure ([MS-RDPBCGR] section 2.2.9.1.1.3.1.2.2).

2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

e

FormatHeader AlphaPlane (variable)

LumaOrRedPlane (variable)

OrangeChromaOrGreenPlane (variable)

GreenChromaOrBluePlane (variable)

Pad (optional)

FormatHeader (1 byte): An 8-bit, unsigned integer. This field contains a 1-byte, bit-packed
update header as follows.

The format of the update header byte is described by the following bitmask diagram.

0({1/2{3| 4 |5| 6|7 (8/9/0(1[2(3|4|5|6(|7|8[|9|0[1|2[3|4|5|/6|7|8|9|0]|1

CLL C | RL | N | Reserve
S E | A d

CLL (3 bits): A 3-bit, unsigned integer field that indicates the Color Loss Level (section
3.1.9.1.4). If CLL is set to 0, the color space used is ARGB. Otherwise, CLL MUST be in
the range 1 to 7 (inclusive), and the color space used is AYCoCg.

CS (1 bit): A 1-bit field that indicates whether chroma subsampling is being used (section
3.1.9.1.3). If CS is equal to 1, chroma subsampling is being used, and the CLL field
MUST be greater than 0, as chroma subsampling applies only to the AYCoCg color space.

RLE (1 bit): A 1-bit field. If RLE is equal to 1, RDP 6.0 RLE is used to compress the color
planes (section 3.1.9.2). If not, RLE is equal to 0, and the color plane is sent
uncompressed.

130/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

NA (1 bit): A 1-bit field. Indicates if an alpha plane is present. If NA is equal to 1, there is
no alpha plane. The values of the alpha plane are then assumed to be OxFF (fully
opaque), and the bitmap data contains only three color planes. If NA is equal to 0, the
alpha plane is sent as the first color plane.

Reserved (2 bits): A 2-bit, unsigned integer field. Reserved for future use.

AlphaPlane (variable): A variable-length field that contains the alpha plane. If the RLE
subfield in the FormatHeader indicates that all of the color planes are RLE compressed (section
3.1.9.2), this field contains an RDP 6.0 RLE Segments (section 2.2.2.5.1.1) structure.
Otherwise, it contains the raw bytes of the color plane.

LumaOrRedPlane (variable): A variable-length field that contains the luma plane (AYCoCg
color space) or the red plane (ARGB color space). If the CLL subfield of the FormatHeader is

greater than 0, the AYCoCg color space MUST be used. Otherwise, the ARGB color space MUST
be used.

If the RLE subfield in the FormatHeader indicates that all of the color planes are RLE
compressed (section 3.1.9.2), this field contains an RDP 6.0 RLE Segments (section
2.2.2.5.1.1) structure. Otherwise, it contains the raw bytes of the color plane.

OrangeChromaOrGreenPlane (variable): A variable-length field that contains the orange
chroma plane (AYCoCg color space) or the green plane (ARGB color space). If the CLL subfield

of the FormatHeader is greater than 0, the AYCoCg color space MUST be used. Otherwise, the
ARGB color space MUST be used.

If the RLE subfield in the FormatHeader indicates that all of the color planes are RLE
compressed (section 3.1.9.2), this field contains an RDP 6.0 RLE Segments (section
2.2.2.5.1.1) structure. Otherwise, it contains the raw bytes of the color plane.

Depending on the values of the CLL and CS subfields of the FormatHeader (in the case of the
AYCoCg color space), the orange chroma plane may have been transformed by color loss
reduction (section 3.1.9.1.4) and chroma subsampling (section 3.1.9.1.3).

GreenChromaOrBluePlane (variable): A variable-length field that contains the green chroma
plane (AYCoCg color space) or the blue plane (ARGB color space). If the CLL subfield of the

FormatHeader is greater than 0, the AYCoCg color space MUST be used. Otherwise, the ARGB
color space MUST be used.

If the RLE subfield in the FormatHeader indicates that all of the color planes are RLE
compressed (section 3.1.9.2), this field contains an RDP 6.0 RLE Segments (section
2.2.2.5.1.1) structure. Otherwise, it contains the raw bytes of the color plane.

Depending on the values of the CLL and CS subfields of the FormatHeader (in the case of the
AYCoCg color space), the green chroma plane may have been transformed by color loss
reduction (section 3.1.9.1.4) and chroma subsampling (section 3.1.9.1.3).

Pad (1 byte): An 8-bit, unsigned integer containing padding values that MUST be ignored. This
optional field is only present if the RLE subfield of the FormatHeader field is zero.

2.2.2.5.1.1 RDP 6.0 RLE Segments (RDP6_RLE_SEGMENTS)

The RDP6_RLE_SEGMENTS structure contains the run-length encoded contents of a color plane and
consists of a collection of RDP6 RLE SEGMENT structures.

131 /284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

segments (variable)

segments (variable): This field contains a variable-length array of RDP 6.0 RLE Segment
(section 2.2.2.5.1.2) structures.

2.2.2.5.1.2 RDP 6.0 RLE Segment (RDP6_RLE_SEGMENT)

The RDP6_RLE_SEGMENT structure encodes an RLE segment that contains a RAW and RUN
component (section 3.1.9.2).

2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|5|6|7(8|9(0]1

e

controlByte rawValues (variable)

controlByte (1 byte): An 8-bit, unsigned integer. Contains the RAW and RUN components of
an RDP 6.0 RLE segment (section 3.1.9.2). The controlByte field MUST contain a nonzero
value.

The format of the controlByte field is described by the following bitmask diagram.

—
N
w

0{1(2(3|4|5|6(7|8|9|0(1|2|3|4|5|6|7|8(9(0|1|2(3[4|5|6|7[8|9|0]|1

nRunLength | cRawBytes

nRunLength (4 bits): A 4-bit, unsigned integer field. The number of times the last RAW
byte in the rawValues field is repeated (known as the run-length).

Because a RUN MUST be a sequence of at least three values (section 3.1.9.2), the
values 1 and 2 are used in the nRunLength field to encode extra long RUN sequences
of more than 16 values:

= If the nRunLength field is set to 1, the actual run-length is 16 plus the value in
cRawBytes. On decode, the nhumber of RAW bytes in the rawValues field is
assumed to be zero. This gives a maximum run-length of 31 values.

= If the nRunLength field is set to 2, the actual run-length is 32 plus the value in
cRawBytes. On decode, the nhumber of RAW bytes in the rawValues field is
assumed to be zero. This gives a maximum run-length of 47 values.

cRawBytes (4 bits): A 4-bit, unsigned integer field. The humber of RAW bytes in the
rawValues field.

132 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

rawValues (variable): A variable-length field that contains the actual RAW bytes representing
a portion of the color plane being encoded. If the bytes belong to the first scan line, they
represent absolute values. Otherwise, the bytes represent delta values (section 3.1.9.2).

133/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3 Protocol Details
3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

3.1.1.1 Caches

All of the RDP caches are managed by the server. The server determines the items to cache and in
what cache entries these items MUST be stored. These items, and the metadata describing the
cache and cache entry, are sent to the client using an appropriate drawing order. The layout of most
of the caches is usually specified by using a suitable capability set.

3.1.1.1.1 Bitmap Caches

Bitmap caches are used by the client and server to store graphic bitmaps. Each bitmap cache holds
bitmaps of a specified size in pixels (known as the "tile size"). If a bitmap does not fit into a single
cache entry, the server uses a tiling algorithm to divide the bitmap into tiles that will fit into the
cache entries so that they can be stored separately into the cache.

The Cache Bitmap - Revision 1 (section 2.2.2.2.1.2.2), Cache Bitmap - Revision 2 (section
2.2.2.2.1.2.3), and Cache Bitmap - Revision 3 (section 2.2.2.2.1.2.8) Secondary Drawing Orders are
used to update the contents of the client-side bitmap cache.

There are two versions of bitmap caches. Revision 1 bitmap caches are used in association with the
Cache Bitmap - Revision 1 Secondary Drawing Order and only support memory-based caching.
Revision 2 bitmap caches are used in association with the both the Cache Bitmap - Revision 2 and
Cache Bitmap - Revision 3 Secondary Drawing Orders and support persistent disk caching (in
addition to memory caching) by associating a 64-bit key (derived from a cryptographic hash of the
bitmap contents) with each bitmap. These 64-bit keys SHOULD be sent to the server on subsequent
connections (using the Persistent Key List PDU specified in [MS-RDPBCGR] section 2.2.1.17.1) to
initialize the persistent disk cache. The server maintains its own cache of bitmap keys that it has
already sent to the client (section 3.3.1.1).

When using the Revision 2 bitmap caches, the client is able to request that the server delays forcing
it to cache a bitmap to disk until the bitmap has been used more than once. This is implemented by
requesting that the server maintain a Bitmap Cache Wait List (see section 3.3.1.3). Once a
particular bitmap has been encountered by the server more than once, it MUST instruct the client to
cache it (see section 2.2.2.2.1.2.3).

Support for the Revision 2 bitmap caches is advertised by the server by using the Bitmap Cache
Host Support Capability Set ([MS-RDPBCGR] section 2.2.7.2.1). Client support for the Revision 1
bitmap caches is advertised by using the Revision 1 Bitmap Cache Capability Set ([MS-RDPBCGR
section 2.2.7.1.4.1) while support for the Revision 2 bitmap caches is advertised by using the
Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.4.2).

134 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

The Revision 1 bitmap cache defaults to 1500 KB of memory cache for 8 bpp, 3000 KB for 16 bpp,
4500 KB for 24 bpp, and 6000 KB for 32 bpp. The Revision 2 bitmap cache defaults to 10 MB of
persistent cache storage for 8 bpp, 20 MB for 16 bpp, 30 MB for 24 bpp, and 40 MB for 32 bpp. The
actual layout of the bitmap caches is specified in the Bitmap Cache Capability Sets ([MS-RDPBCGR
section 2.2.7.1.4).

The following table shows the default Revision 1 bitmap cache layout.

Bitmap cache ID Tile size (in pixels) Cache entry size Number of cache entries

0 16 x 16 256 bytes for 8 bpp 120
512 bytes for 16 bpp
768 bytes for 24 bpp
1024 bytes for 32 bpp

1 32 x 32 1024 bytes for 8 bpp 120
2048 bytes for 16 bpp
3072 bytes for 24 bpp
4096 bytes for 32 bpp

2 64 x 64 4096 bytes for 8 bpp 337
8192 bytes for 16 bpp

12288 bytes for 24 bpp
16384 bytes for 32 bpp

The following table shows the default Revision 2 bitmap cache layout with persistent storage
enabled for cache 2.

Bitmap cache ID Tile size (in pixels) Cache entry size Number of cache entries

0 16 x 16 256 bytes for 8 bpp 120
512 bytes for 16 bpp
768 bytes for 24 bpp
1024 bytes for 32 bpp

1 32 x 32 1024 bytes for 8 bpp 120
2048 bytes for 16 bpp
3072 bytes for 24 bpp
4096 bytes for 32 bpp

2 64 x 64 4096 bytes for 8 bpp 2547 for 8 bpp

8192 bytes for 16 bpp 2553 for 16 bpp
12288 bytes for 24 bpp 2555 for 24 bpp
16384 bytes for 32 bpp 2556 for 32 bpp

If persistent bitmap caching is enabled, the client SHOULD enumerate the entries in its local
persistent bitmap cache to obtain the 64-bit bitmap keys for all of the stored bitmaps, and then
send one or more Persistent Key List PDUs that contains this data to the server ([MS-RDPBCGR
section 2.2.1.17).

Bitmap images stored in the bitmap caches are rendered using the MemBIt (section 2.2.2.2.1.1.2.9)
and Mem3Blt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders.

135/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.1.1.1.2 Glyph and Fragment Caches

Glyph caching supports 10 glyph caches and 1 fragment cache to store bitmaps of font characters in
memory. Glyphs are first cached in the glyph caches before being displayed. A fragment is a set of
glyphs defined in terms of glyph indices.

The Cache Glyph - Revision 1 (section 2.2.2.2.1.2.5) and Cache Glyph - Revision 2 (section
2.2.2.2.1.2.6) Secondary Drawing Orders are used to update the glyph caches. The GlyphIndex
(section 2.2.2.2.1.1.2.13) and Fastindex (section 2.2.2.2.1.1.2.14) Primary Drawing Orders
consume glyphs from the glyph caches and also populate the Fragment Cache. The FastGlyph
(section 2.2.2.2.1.1.2.15) Primary Drawing Order is used to update the glyph caches with a single
glyph and to encode the same glyph at a specified position.

The actual layout of the glyph and fragment caches is specified in the Glyph Cache Capability Set
(see [MS-RDPBCGR] section 2.2.7.1.8).

The following table shows the default Glyph Cache layout.

Glyph cache ID Cache entry size (in bytes) Number of cache entries
0 4 254
1 4 254
2 8 254
3 8 254
4 16 254
5 32 254
6 64 254
7 128 254
8 256 254
9 256 64

There is only one fragment cache, and by default it has 256 entries with 256 bytes as the entry size.

3.1.1.1.3 Color Table Cache

The Color Table Cache is used to reduce bandwidth by caching color palettes. The existence of the
Color Table Cache is implicitly tied to support for the MemBIt (section 2.2.2.2.1.1.2.9) and Mem3BIt
(section 2.2.2.2.1.1.2.10) Primary Drawing Orders. If support for these orders is advertised in the
Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3), the existence of a color table cache
with entries for six palettes is implied when palettized color is being used. Each of the six cached
color tables holds 256 color mappings, initialized by the Cache Color Table (section 2.2.2.2.1.2.4)
Secondary Drawing Order. Cached color tables are used exclusively by the MemBIt (section
2.2.2.2.1.1.2.9) and Mem3BIt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders.

3.1.1.1.4 Brush Caches

There are two brush caches: a mono brush cache and a color brush cache. Each cache can hold 64
brush entries. The size of a mono brush is 16 bytes, and the size of a color brush is 64 bytes for

136 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

8 bpp and 192 bytes for 24 bpp. Support for brush caching is specified by using the Brush Capability
Set (see [MS-RDPBCGR] section 2.2.7.1.7). The Cache Brush (section 2.2.2.2.1.2.7) Secondary
Drawing Order is used to populate the brush caches.

3.1.1.1.5 Offscreen Bitmap Cache

The Offscreen Bitmap Cache is used to store writable offscreen bitmap surfaces. There is only one
cache for all offscreen bitmaps. The bitmap sizes are variable and depend on the dimensions
specified by the Create Offscreen Bitmap (section 2.2.2.2.1.3.2) Alternate Secondary Drawing
Order.

The total cache size and cache entries are capped by the values specified in the Offscreen Bitmap
Cache Capability Set (see [MS-RDPBCGR] section 2.2.7.1.9). The default size of the cache is 2.5 MB
for 8 bpp, 5 MB for 16 bpp, or 7.5 MB for 24 bpp. The default number of allowed cache entries is
100.

The Create Offscreen Bitmap (section 2.2.2.2.1.3.2) and Switch Surface (section 2.2.2.2.1.3.3)
Alternate Secondary Drawing Orders are used to manipulate the offscreen cache. Images stored in
the Offscreen Bitmap Cache are rendered with the MemBIt (section 2.2.2.2.1.1.2.9) and Mem3Blt
(section 2.2.2.2.1.1.2.10) Primary Drawing Orders.

3.1.1.1.6 NineGrid Bitmap Cache

The NineGrid bitmap cache is used to store NineGrid-compliant bitmaps. There is only one cache for
all NineGrid bitmaps. The individual bitmap sizes are variable and depend on the bitmap dimensions.

The total cache size and cache entries are capped by the DrawNineGrid Cache Capability Set
(section 2.2.1.2). The default size of the cache is 2.5 MB for 8 bpp, 5 MB for 16 bpp, or 7.5 MB for
24 bpp. The default number of allowed cache entries is 256.

The Create NineGrid Bitmap (section 2.2.2.2.1.3.4), Stream Bitmap First (section 2.2.2.2.1.3.5.1),
and Stream Bitmap Next (section 2.2.2.2.1.3.5.2) Alternate Secondary Drawing Orders are used to
populate the NineGrid Bitmap Cache. Individual bitmaps within the cache are rendered with the
DrawNineGrid (section 2.2.2.2.1.1.2.21) Primary Drawing Order. This primary drawing order applies
a NineGrid algorithm to the bitmap before rendering it (for an example rendering, see section 4.4).

3.1.1.1.7 GDI+ Caches

The GDI+ caches are used to store Graphics, Brush, Pen, Image, and Image Attributes primitives.
The total cache sizes and cache entries permitted are specified by using the Draw GDI+ Capability
Set (section 2.2.1.3).

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

137/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.1.5 Processing Events and Sequencing Rules

There are no common message processing events or sequencing rules. Specification of message
processing events and rules is deferred to sections 3.2.5 and 3.3.5.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.
3.1.8 Bulk Data Compression

3.1.8.1 RDP 6.0

RDP version 6.0 supports an extension to the compression techniques described in [MS-RDPBCGR
section 3.1.8. This extension is called "RDP 6.0 Bulk Compression" (RDP6.0-BC) and is only
supported for server-to-client traffic.

3.1.8.1.1 Abstract Data Model

The shared state necessary to support the transmission and reception of RDP6.0-BC compressed
data between a client and server requires a history buffer and a current offset into the history buffer
(HistoryOffset). The size of the history buffer is 65,536 bytes. Any data that is being compressed
MUST be smaller in size than the history buffer. The HistoryOffset MUST start initialized to zero,
while the history buffer MUST be filled with zeros. After it has been initialized, the entire history
buffer is immediately regarded as valid.

In addition to the history buffer and HistoryOffset, a small cache MUST also be managed by the
client and server endpoints. This cache is referred to as the OffsetCache and is used to store the last
four unique copy-offsets encountered during data compression (copy-offsets are described in [MS-
RDPBCGR] section 3.1.8.1). This saves on bandwidth in cases where there are many repeated copy-
offsets. Whenever the history buffer is initialized or reinitialized, the OffsetCache MUST be emptied.

When compressing data, the sender MUST first check that the uncompressed data can be inserted
into the history buffer at the position in the history buffer given by the HistoryOffset. If the data will
not fit into the history buffer (the sum of the HistoryOffset and the size of the uncompressed data
exceeds the size of the history buffer), then the history buffer MUST be slid back by half its size and
the HistoryOffset MUST be reset to the middle of the history buffer (offset 32768). If the data will fit
into the history buffer, the sender endpoint inserts the uncompressed data at the position in the
history buffer given by the HistoryOffset, and then advances the HistoryOffset by the amount of
data added.

As the receiver endpoint decompresses the data, it inserts the decompressed data at the position in
the history buffer given by its local copy HistoryOffset. If a slide-back occurs, the sender endpoint
MUST notify the target receiver so it can reset its local state. In this way, the sender and receiver
endpoints maintain an exact replica of the history buffer and HistoryOffset.

3.1.8.1.2 Compressing Data

Compression using RDP6.0-BC is based on the principles outlined in [MS-RDPBCGR] section 3.1.8.2
with literals and copy-tuples being encoded using the scheme described in section 3.1.8.1.4.3. Also,
due to the slide-back behavior outlined in section 3.1.8.1.1, the meaning of the PACKET_AT_FRONT

138/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

flag (0x40) has changed. This flag MUST still be set in conjunction with the PACKET_COMPRESSED
(0x20) flag; however, it is now used to indicate that the history buffer MUST be slid back by half its
size and that the HistoryOffset MUST be reset to the middle of the history buffer.

3.1.8.1.3 Decompressing Data

Decompression using RDP6.0-BC is based on the principles specified in [MS-RDPBCGR] section
3.1.8.3 with the compressed stream being decoded using the scheme described in section
3.1.8.1.4.4. Also, due to the slide-back behavior described in section 3.1.8.1.1, the interpretation of
the PACKET_AT_FRONT flag (0x40) has changed. If this flag is set, the decompressor MUST slide
the history buffer back by half its size and reset the HistoryOffset to the middle of the history buffer.

3.1.8.1.4 Wire Format

The compressed stream consists of a bit-encoded sequence of literals, <copy-offset, length-of-
match> tuples (also known as copy-tuples), and a terminating End-of-Stream (EOS) marker.

Literals, copy-offsets, and EOS marker values are Huffman encoded to produce 293 individual
LiteralOrEosOrCopyOffset variable-length bit-codes (possibly followed by extra bits of information).
Each LiteralOrEosOrCopyOffset code is optionally followed by 1 of 32 possible Huffman encoded
length-of-match codes (LengthOfMatch) that is present, depending on the contents of the previous
LiteralOrEosOrCopyOffset code (the LengthOfMatch code is also possibly followed by extra bits of
information).

The convention used on the stream is that the sender MUST output multi-byte fields in little-endian
byte order with the most significant bit of each byte in the first position. For example:

= OxAABBCC is output on the wire as 0xCC, followed by 0xBB, followed by 0xAA.
= 0x8001 is output on the wire as 0x01, followed by 0x80.
= 0xO01 is output on the wire as 0x01.

For more information on Huffman encoding, see [SAYOOD] sections 4.1 to 4.7.

3.1.8.1.4.1 Literal, EOS, and Copy-Offset Tables

The length, in bits, for each of the 293 Huffman-encoded LiteralOrEosOrCopyOffset codes are listed
in the following table (HuffLengthLEC).

Codes with an index value of 0 to 255 represent a single literal character with that value. Code
index 256 indicates that the end of the encoding has been reached. Index values 257 to 288 must
be translated by subtracting 257 to find the index value 0 to 31 in the CopyOffsetBitsLUT and
CopyOffsetBaselLUT tables, to find the number of bits and base values for a copy operation. Index
values 289 to 292 must be translated by subtracting 289 to find the index value 0 to 3 to identify
one of the four most recently-used offsets.

Code index o 1 2 3 4 5 6 7
0 0x6 0x6 0x6 0x7 0x7 0x7 0x7 0x7
8 0x7 0x7 0x7 0x8 0x8 0x8 0x8 0x8
16 0x8 0x8 0x9 0x8 0x9 0x9 0x9 0x9
24 0x8 0x8 0x9 0x9 0x9 0x9 0x9 0x9
139 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Code index (1} 1 2 3 4 5 6 7

32 0x8 0x9 0x9 Oxa 0x9 0x9 0x9 0x9
40 0x9 0x9 0x9 Oxa 0x9 Oxa Oxa Oxa
48 0x9 0x9 Oxa 0x9 Oxa 0x9 Oxa 0x9
56 0x9 0x9 Oxa Oxa 0x9 Oxa 0x9 0x9
64 0x8 0x9 0x9 0x9 0x9 Oxa Oxa Oxa
72 0x9 0x9 Oxa Oxa Oxa Oxa Oxa Oxa
80 0x9 0x9 Oxa Oxa Oxa Oxa Oxa Oxa
88 Oxa 0x9 Oxa Oxa Oxa Oxa Oxa Oxa
96 0x8 Oxa Oxa Oxa Oxa Oxa Oxa Oxa
104 Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa
112 0x9 Oxa Oxa Oxa Oxa Oxa Oxa Oxa
120 0x9 Oxa Oxa Oxa Oxa Oxa Oxa 0x9
128 0x7 0x9 0x9 Oxa 0x9 Oxa Oxa Oxa
136 0x9 Oxa Oxa Oxa Oxa Oxa Oxa Oxa
144 0x9 Oxa Oxa Oxa Oxa Oxa Oxa Oxa
152 Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa
160 Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa
168 Oxa Oxa Oxa Oxd Oxa Oxa Oxa Oxa
176 Oxa Oxa Oxb Oxa Oxa Oxa Oxa Oxa
184 Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa
192 0x9 Oxa Oxa Oxa Oxa Oxa 0x9 Oxa
200 Oxa Oxa Oxa Oxa 0x9 Oxa Oxa Oxa
208 0x9 Oxa Oxa Oxa Oxa Oxa Oxa Oxa
216 Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa
224 0x9 Oxa Oxa Oxa Oxa Oxa Oxa Oxa
232 Oxa Oxa Oxa Oxa Oxa Oxa 0x9 Oxa
240 0x8 0x9 0x9 Oxa 0x9 Oxa Oxa Oxa
248 0x9 Oxa Oxa Oxa 0x9 0x9 0x8 0x7
256 Oxd Oxd 0x7 0x7 Oxa 0x7 0x7 0x6
264 0x6 0x6 0x6 0x5 0x6 0x6 0x6 0x5

140 / 284

Code index (1} 1 2 3 4 5 6 7
272 0x6 0x5 0x6 0x6 0x6 0x6 0x6 0x6
280 0x6 0x6 0x6 0x6 0x6 0x6 0x6 0x6
288 0x8 0x5 0x6 0x7 0x7

Table 1: Bit lengths for the 293 Huffman-encoded LiteralOrEosOrCopyOffset codes

For example, it can be determined from the previous table that the Oth Huffman-encoded

LiteralOrEosOrCopyOffset code has a length of 6 bits, and the 131st Huffman-encoded
LiteralOrEosOrCopyOffset code has a length of 10 (0x0A) bits.

Using the canonical Huffman algorithm ([SAYOOD] section 4.2.4), the Huffman codebook table
shown in the following table (HuffCodeLEC) can be obtained. The bit lengths in the previous table
MUST be used to isolate the appropriate bits.

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Code index 0 1 2 3 4 5 6 7

0 0x0004 0x0024 0x0014 0x0011 0x0051 0x0031 0x0071 0x0009
8 0x0049 0x0029 0x0069 0x0015 0x0095 0x0055 0x00d5 0x0035
16 0x00b5 0x0075 0x001d 0x00f5 0x011d 0x009d 0x019d 0x005d
24 0x000d 0x008d 0x015d 0x00dd 0x01dd 0x003d 0x013d 0x00bd
32 0x004d 0x01bd 0x007d 0x006b 0x017d 0x00fd 0x01fd 0x0003
40 0x0103 0x0083 0x0183 0x026b 0x0043 0x016b 0x036b 0x00eb
48 0x0143 0x00c3 0x02eb 0x01c3 0x01leb 0x0023 0x03eb 0x0123
56 0x00a3 0x01a3 0x001b 0x021b 0x0063 0x011b 0x0163 0x00e3
64 0x00cd 0x01e3 0x0013 0x0113 0x0093 0x031b 0x009b 0x029b
72 0x0193 0x0053 0x019b 0x039b 0x005b 0x025b 0x015b 0x035b
80 0x0153 0x00d3 0x00db 0x02db 0x01db 0x03db 0x003b 0x023b
88 0x013b 0x01d3 0x033b 0x00bb 0x02bb 0x01bb 0x03bb 0x007b
96 0x002d 0x027b 0x017b 0x037b 0x00fb 0x02fb 0x01fb 0x03fb
104 0x0007 0x0207 0x0107 0x0307 0x0087 0x0287 0x0187 0x0387
112 0x0033 0x0047 0x0247 0x0147 0x0347 0x00c7 0x02c7 0x01c7
120 0x0133 0x03c7 0x0027 0x0227 0x0127 0x0327 0x00a7 0x00b3
128 0x0019 0x01b3 0x0073 0x02a7 0x0173 0x01a7 0x03a7 0x0067
136 0x00f3 0x0267 0x0167 0x0367 0x00e7 0x02e7 0x01e7 0x03e7
144 0x01f3 0x0017 0x0217 0x0117 0x0317 0x0097 0x0297 0x0197
152 0x0397 0x0057 0x0257 0x0157 0x0357 0x00d7 0x02d7 0x01d7

141 / 284

Code index 0 1 2 3 4 5 6 7

160 0x03d7 0x0037 0x0237 0x0137 0x0337 0x00b7 0x02b7 0x01b7
168 0x03b7 0x0077 0x0277 0x07ff 0x0177 0x0377 0x00f7 0x02f7
176 0x01f7 0x03f7 0x03ff 0x000f 0x020f 0x010f 0x030f 0x008f
184 0x028f 0x018f 0x038f 0x004f 0x024f 0x014f 0x034f 0x00cf
192 0x000b 0x02cf 0x01cf 0x03cf 0x002f 0x022f 0x010b 0x012f
200 0x032f 0x00af 0x02af 0x01af 0x008b 0x03af 0x006f 0x026f
208 0x018b 0x016f 0x036f 0x00ef 0x02ef 0x01lef 0x03ef 0x001f
216 0x021f 0x011f 0x031f 0x009f 0x029f 0x019f 0x039f 0x005f
224 0x004b 0x025f 0x015f 0x035f 0x00df 0x02df 0x01df 0x03df
232 0x003f 0x023f 0x013f 0x033f 0x00bf 0x02bf 0x014b 0x01bf
240 0x00ad 0x00cb 0x01cb 0x03bf 0x002b 0x007f 0x027f 0x017f
248 0x012b 0x037f 0x00ff 0x02ff 0x00ab 0x01ab 0x006d 0x0059
256 Ox17ff OxOfff 0x0039 0x0079 0x01ff 0x0005 0x0045 0x0034
264 0x000c 0x002c 0x001c 0x0000 0x003c 0x0002 0x0022 0x0010
272 0x0012 0x0008 0x0032 0x000a 0x002a 0x001a 0x003a 0x0006
280 0x0026 0x0016 0x0036 0x000e 0x002e 0x001e 0x003e 0x0001
288 0x00ed 0x0018 0x0021 0x0025 0x0065

Table 2: Huffman codebook for the 293 Huffman-encoded LiteralOrEosOrCopyOffset codes

For example, it can be determined from the HuffCodeLEC table that the Oth Huffman-encoded
LiteralOrEosOrCopyOffset code has a value of 0x0004. Applying the bit-length information from the
HuffLengthLEC table, it can be determined that the Huffman code MUST be 6 bits in length. Hence
the final code in binary MUST be 000100.

As another example, it can be determined from the HuffCodeLEC table that the 131st Huffman-
encoded LiteralOrEosOrCopyOffset code has a value of 0x02a7. Applying the bit-length information
from the HuffLengthLEC table, it can be determined that the Huffman code MUST be 10 bits in
length. Hence the final code in binary MUST be 1010100111.

The two lookup tables in the following table (CopyOffsetBitsLUT and CopyOffsetBaselLUT) are used
during encoding and decoding of the copy-offset for a given copy-tuple to determine the extra bits
that will follow the LiteralOrEosOrCopyOffset code.

Index CopyOffsetBitsLUT CopyOffsetBaseLUT
0 0 1
1 0 2

142 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Index CopyOffsetBitsLUT CopyOffsetBaseLUT
2 0 3

3 0 4

4 1 5

5 1 7

6 2 9

7 2 13

8 3 17

9 3 25

10 4 33

11 4 49

12 5 65

13 5 97

14 6 129
15 6 193
16 7 257
17 7 385
18 8 513
19 8 769
20 9 1025
21 9 1537
22 10 2049
23 10 3073
24 11 4097
25 11 6145
26 12 8193
27 12 12289
28 13 16385
29 13 24577
30 14 32769
31 14 49153

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

143 / 284

Table 3: Bit count and base value lookup tables to encode and decode copy-offset values

3.1.8.1.4.2 Length-of-Match Tables

The length, in bits, for each of the 0 to 31 Huffman-encoded LengthOfMatch codes are listed in the
following table (HuffLengthL).

LengthOfMatch Code 0 1 2 3 4 5 6 7

0 0x4 0x2 0x3 0x4 0x3 0x4 0x4 0x5
8 0x4 0x5 0x5 0x6 0x6 0x7 0x7 0x8
16 0x7 0x8 0x8 0x9 0x9 0x8 0x9 0x9
24 0x9 0x9 0x9 0x9 0x9 0x9 0x9 0x9

Table 4: Bit lengths for the 32 Huffman-encoded LengthOfMatch codes

For example, it can be determined from the previous table that the 0th Huffman-encoded
LengthOfMatch code has a length of 4 bits while the 21st Huffman-encoded LengthOfMatch code has
a length of 8 bits.

Using the canonical Huffman algorithm ([SAYOOD] section 4.2.4), the Huffman codebook table
shown in the following table (HuffCodel) can be obtained. The bit lengths in the previous table
MUST be used to mask out the appropriate bits.

Code index 0 1 2 3 4 5 6 7

0 0x0001 0x0000 0x0002 0x0009 0x0006 0x0005 0x000d 0x000b
8 0x0003 0x001b 0x0007 0x0017 0x0037 0x000f 0x004f 0x006f
16 0x002f 0x00ef 0x001f 0x005f 0x015f 0x009f 0x00df 0x01df
24 0x003f 0x013f 0x00bf 0x01bf 0x007f 0x017f 0x00ff 0x01ff

Table 5: Huffman codebook for the 32 Huffman-encoded LengthOfMatch codes

For example, it can be determined from the HuffCodel table that the 0th Huffman-encoded
LengthOfMatch code has a value of 0x0001. Applying the bit-length information from the
HuffLengthL table, it can be determined that the Huffman code MUST be 4 bits in length. Hence the
final code in binary MUST be 0001.

As another example, it can be determined from the HuffCodelL table that the 21st Huffman-encoded
LengthOfMatch code has a value of 0x009f. Applying the bit-length information from the
HuffLengthL table, it can be determined that the Huffman code MUST be 8 bits in length. Hence the
final code in binary MUST be 10011111.

The two lookup tables in the following table (LoMBitsLUT and LoMBaselLUT) are used during
encoding and decoding of the length-of-match for a given copy-tuple to determine the extra bits
that will follow the LengthOfMatch code. Note that the minimum match length that can be encoded
is 2, as opposed to RDP 4.0 and 5.0 bulk data compression where the minimum is 3 (see [MS-
RDPBCGR] sections 3.1.8.2 and 3.1.8.4.1.2.2).

144 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

Index LoMBitsLUT LoMBaseLUT
0 0 2

1 0 3

2 0 4

3 0 5

4 0 6

5 0 7

6 0 8

7 0 9

8 1 10
9 1 12
10 1 14
11 1 16
12 2 18
13 2 22
14 2 26
15 2 30
16 3 34
17 3 42
18 3 50
19 3 58
20 4 66
21 4 82
22 4 98
23 4 114
24 6 130
25 6 194
26 8 258
27 8 514
28 14 2
29 14 2

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

145/ 284

Table 6: Bit count and base value lookup tables to encode and decode length-of-match values

3.1.8.1.4.3 Encoding the Logically Compressed Stream

The following flow chart describes how literals and copy-tuples in a logically compressed stream are

encoded.

Start
Literal Encode

Encode Literal using
Huffman Tables

i

Cutput
Encoded
Literal bits

Finished
Literal Encode

Start
Copy-Tuple Encode

[s CopyOffset in
OffsetCache

Ma

Y

Shift all cache
entries back by one
slot
Add CopyOffset to
Head of Cache

v

Encode CopyOffset
using LUT and
Huffrman Tables

(A)

v

Output
Encoded
CopyOffset bits

v

Encode L-o-M using
LUT and
Huffrman Tables

(B)
|

L=y

Swap matched
OffsetCache
entry with head of
OffsetCache

i

Encode
(OffsetCache index
+ 289) using
Huffrman Tables

v

Qutput
encoded
OffsetCache index
bits

v

Cutput
encoded
L-o-M bits

Finished
Copy=Tuple Encode

Figure 8: Encoding a logically compressed stream

Literals are merely encoded using the Huffman Tables HuffCodeLEC (table 2) and HuffLengthLEC
(table 1). Copy-tuples are encoded using the four lookup tables in table 3 and table 6

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

146 / 284

(CopyOffsetBaseLUT, CopyOffsetBitsLUT, LoMBaselLUT, and LoMBitsLUT) and the Huffman Tables
(for the algorithmic details, see sections 3.1.8.1.4.3.1 and 3.1.8.1.4.3.2).

3.1.8.1.4.3.1 Encoding the Copy-Offset

Encoding of the copy-offset is shown in the previous figure by the Action A item. The following
describes the algorithm for encoding the copy-offset.

LUTIndex = IndexOfEqualOrSmallerEntry (CopyOffset + 1, CopyOffsetBaseLUT)
HuffmanIndex = LUTIndex + 257

OutputBits (HuffCodeLEC[HuffmanIndex], HufflLengthLEC[HuffmanIndex])

ExtraBitsLength = CopyOffsetBitsLUT[LUTIndex]
ExtraBits = CopyOffset & ((2 ~ ExtraBitsLen) - 1)
OutputBits (ExtraBits, ExtraBitsLength)

The IndexOfEqualOrSmallerEntry function searches through the specified LUT table and returns the
index of the entry that contains a value of equal or lesser value than the first parameter. The
OutputBits function outputs the bits specified by the first parameter in the appropriate order (the
number of bits to output is given by the second parameter). "A" is the exponentiation operator, and
"&" is the bitwise AND operator.

3.1.8.1.4.3.1.1 Examples of Copy-Offset Encoding
1. Encoding a copy-offset of 8.

LUTIndex = 6
HuffmanIndex = 6 + 257 = 263
OutputBits (0x0034, 6) = bin:110100

ExtraBitsLength 2
ExtraBits = 8 & ((2 ~ 2) - 1) = 8 & 3 = bin:1000 & bin:0011 = 0
OutputBits (0x00, 2) = bin:00

2. Encoding a copy-offset of 11.

LUTIndex = 6
HuffmanIndex = 6 + 257 = 263
OutputBits (0x0034, 6) = bin:110100

ExtraBitsLength = 2
ExtraBits = 11 & ((2 ~ 2) - 1) =11 & 3 = bin:1011 & bin:0011 = 3
OutputBits (0x03, 2) = bin:11

3.1.8.1.4.3.2 Encoding the Length-of-Match

Encoding of the length-of-match is shown in the previous figure by the Action B item. The following
describes the algorithm for encoding the length-of-match.

LUTIndex = IndexOfEqualOrSmallerEntry (LoM, LoMBaseLUT)
OutputBits (HuffCodeL [LUTIndex], HuffLengthL[LUTIndex])

ExtraBitsLength = LoMBitsLUT [LUTIndex]

147 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

ExtraBits = (LoM - 2) & ((2 ~ ExtraBitsLength) - 1)
OutputBits (ExtraBits, ExtraBitsLength)

The definitions of the functions used in this pseudocode are the same as those described in section
3.1.8.1.4.3.1.

3.1.8.1.4.3.2.1 Examples of Length-of-Match Encoding

1. Encoding a length-of-match of 2 bytes.

LUTIndex = 0
HuffmanCode = 0x0001
OutputBits (0x0001, 4) = bin:0001

ExtraBitsLength = 0
No extra bits to output

2. Encoding a length-of-match of 117 bytes.

LUTIndex = 23
HuffmanCode = 0x01df
OutputBits (0x01df, 9) = bin:111011111

ExtraBitsLength = 4

ExtraBits = (117 - 2) & ((2 ~ 4) - 1) = 115 & 15 = bin:1110011 & bin:1111 = 3
OutputBits (0x03, 4) = bin:0011

3.1.8.1.4.4 Decoding a Compressed Stream

The following flow chart describes how the data in a compressed stream is decoded.

148 / 284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Start
Stream Decode

Decode next
Huffman Code
from Compressed
Stream (Value)

Value =
256 {End-
of-Stream)

¥ Finished
Stream Decode

CopyOffset is in
- OifsetCache at
index (Value - 289)

288 =< Value
< 263

Qutput Value Value <

as a literal 256 Examine Value

256 < Value <= 289
[A)

Decode CopyOffset
from
Compressed Stream
using LUT Tables

'

Stare CopyOffset
In OffsetCache

v

Qutput data from
History Buffer at

-
CopyOffset for L-o- [

Decode L-o-M
from
Compressed Stream

(B]

il
-

M bytes using LUT Tables

Figure 9: Decoding a compressed stream

Decoded literals are merely placed on to the output stream. However, decoded values representing
copy-offset and length-of-match items require further processing by using the four lookup tables in
table 3 and table 6 (CopyOffsetBaseLUT, CopyOffsetBitsLUT, LoMBaseLUT, and LoMBitsLUT) (for the
algorithmic details, see sections 3.1.8.1.4.4.1 and 3.1.8.1.4.4.2).

3.1.8.1.4.4.1 Decoding the Copy-Offset

Decoding of the copy-offset is shown in the previous figure by the Action A item. The following
describes the algorithm for decoding a copy-offset.

LUTIndex = DecodedHuffmanCode - 257
BaseLUT = CopyOffsetBaselLUT|[LUTIndex]

149 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

BitsLUT = CopyOffsetBitsLUT[LUTIndex]

StreamBits = ReadBitsFromCompressedStream (BitsLUT)
CopyOffset = BaseLUT + StreamBits - 1

The ReadBitsFromCompressedStream function reads the number of bits specified by the parameter
from the compressed stream.

3.1.8.1.4.4.1.1 Examples of Copy-Offset Decoding

1. Decoding a Huffman code of 0x0034 followed by 2 bits of value 0.

DecodedHuffmanCode = 263
LUTIndex = 263 - 257 = 6
BaseLUT = 9
BitsLUT = 2

StreamBits
CopyOffset

ReadBitsFromCompressedStream(2) = 0x00
9+0-1=238

2. Decoding a Huffman code of 0x0034 followed by 2 bits of value 3.

DecodedHuffmanCode = 263
LUTIndex = 263 - 257 = 6
BaseLUT = 9
BitsLUT = 2

StreamBits = ReadBitsFromCompressedStream(2) = 0x03
CopyOffset = 9 + 3 - 1 =11

3.1.8.1.4.4.2 Decoding the Length-of-Match

Decoding of the length-of-match is shown in the previous figure by the Action B item. The following
describes the algorithm for decoding a length-of-match.

HuffmanCode = ReadNextHuffmanCodeFromCompressedStream /()
LUTIndex = DecodeHuffmanCode (HuffmanCode, HuffmanCodeTable)
BaseLUT = LoMBaseLUT[LUTIndex]

BitsLUT = LoMBitsLUT |[LUTIndex]

StreamBits = ReadBitsFromCompressedStream (BitsLUT)
LoM = BaseLUT + StreamBits

The ReadNextHuffmanCodeFromCompressedStream function reads the next Huffman code from the
compressed stream, and the DecodeHuffmanCode function decodes the Huffman code given by the
first parameter using the Huffman codebook table specified by the second parameter. The

definitions of any remaining functions used in this pseudocode are the same as those described in
section 3.1.8.1.4.4.1.

3.1.8.1.4.4.2.1 Examples of Length-of-Match Decoding

1. Decoding a Huffman code of 0x0001 followed by 0 bits.

150/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

HuffmanCode = 0x0001
LUTIndex = 0

BaseLUT
BitsLUT

Il
o N

StreamBits = ReadBitsFromCompressedStream(0) = 0x00
LoM =2 + 0 = 2

2. Decoding a Huffman code of 0x01df followed by 4 bits of value 3.

HuffmanCode = 0x01df
LUTIndex = 23
BaselLUT = 114
BitsLUT = 4

StreamBits = ReadBitsFromCompressedStream(4) = 0x03
LoM = 114 + 3 = 117

3.1.8.2 RDP 6.1

RDP 6.1 supports an extension to the compression techniques described in [MS-RDPBCGR] section
3.1.8. This extension is called "RDP 6.1 Bulk Compression" (RDP6.1-BC) and is supported only for
server-to-client traffic. The RDP6.1-BC compressor is unique in that it is a chainable compressor,
where the output of the compressor can be passed as input into another compressor to further
compress the data stream. This is possible because RDP6.1-BC is a byte-level stream compressor
and does not perform bit-level compression. The RDP6.1-BC compressor is referred to as the "level-
1" compressor and the chained RDP 5.0 bulk compressor (described in [MS-RDPBCGR] section
3.1.8) is known as the "level-2" compressor.

3.1.8.2.1 Abstract Data Model

The shared state necessary to support the transmission and reception of RDP6.1-BC compressed
data between a client and server requires a level-1 history buffer (HistoryBuffer) and a current
offset into the history buffer (HistoryOffset). The size of the history buffer is fixed at 2,000,000
bytes. Any single block of data that is being compressed by a compliant compressor MUST be
smaller in size than 16,383 bytes. The HistoryOffset MUST start initialized to zero, while the history
buffer MUST be filled with zeros. After it has been initialized, the entire history buffer is immediately
regarded as valid.

The shared state necessary to support the level-2 RDP 5.0 bulk compressor is described in [MS-
RDPBCGR] section 3.1.8.

The level-1 compressor attempts to describe large matches (lengths of up to 16,382 bytes or offsets
of up to 2,000,000 bytes) using RDP61_MATCH_DETAILS (section 2.2.2.4.1.1) structures. The
matches could have been found anywhere in the 2,000,000-byte history buffer, including data
realized earlier within the same block. Any such matches are encoded in the MatchDetails field of
the RDP61_COMPRESSED_DATA (section 2.2.2.4.1) structure, and all remaining data is collapsed
into the Literals field. The match count, details, and literals data are then presented to the level-2
compressor for more granular compression.

When compressing data, the sender MUST first check that the uncompressed data can be inserted
into the level-1 history buffer at the position in the history buffer given by the HistoryOffset. If the
data will not fit into the history buffer (the sum of the HistoryOffset and the size of the
uncompressed data exceeds the size of the history buffer), then the HistoryOffset MUST be reset to

151/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

the start of the history buffer (offset 0). If the data will fit into the history buffer, then the sender
endpoint inserts the uncompressed data at the position in the history buffer given by the
HistoryOffset, and then advances the HistoryOffset by the amount of data added.

If data compression results in an expansion of the data size (that is, the size of the compressed data
plus any additional headers is larger than the original data size), then the original uncompressed
data MUST instead be passed directly to the level-2 compressor (this is known as "compressor
chaining"), and the L1_NO_COMPRESSION flag (see section 3.1.8.2.2.2) MUST be set in the level-1
compression header (see section 2.2.2.4.1).

Level-2 compression could result in an expansion of the data size. In this case, the
PACKET_COMPRESSED flag (see [MS-RDPBCGR] sections 3.1.8.2.1 and 3.1.8.3) MUST NOT be set in
the appropriate level-2 compression header, and the level-2 data is passed unencoded. To ensure
that the history buffers in both compressors remain synchronized, the compression flags of both
compressors (if both compressors are used and the L1_INNER_COMPRESSION flag (0x10) is set)
MUST be sent to the receiving endpoint. If the level-2 compressor state is out of sync with the
decompressor (for example, if compression is attempted but expansion occurs), then the level-2
compressor MUST reset its internal state, and the level-2 compression flags MUST include the
PACKET_FLUSHED flag when the next packet with PACKET_COMPRESSED is sent, in order to cause
the decompressor to reset its internal state.

The receiving endpoint checks the L1_INNER_COMPRESSION flag (0x10), and if this flag is set
decompresses the input packet according to the rules outlined in [MS-RDPBCGR] section 3.1.8 for
RDP 5.0 bulk compression. The output from this decompression phase then becomes the raw data
for the level-1 RDP6.1-BC compressor. As a result, the receiver decompresses the data again using
the level-1 decompressor and inserts the final decompressed data at the position in the level-1
history buffer given by its local copy of HistoryOffset. If a reset of the level-1 or level-2 history
offset occurs, then the sender endpoint MUST notify the target receiver so that it can also reset its
local state. In this way, the sender and receiver endpoints maintain an exact replica of the level-1
(and level-2) history buffer(s) and HistoryOffset(s).

The flowchart in the following figure illustrates the process of compressing data by chaining two
compressors.

152 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

(ﬂ:art Chained CDI'I'II:ITESSiDI‘I)

DatasSize ==
16382 bytes

=
]
s
&
=
ﬂm
03
3%
=
1]
W
a8
N

Yes

DataSize >=

50 bytes No

Yes

v

Compress data with RDP 6.1
bulk compressor

Y

MatchDetailsSize
+ LiteralsSize + 2 >
OriginalDataSize

s

Y

Compress OriginalData
with RDP 5.0 bulk

T COmpressor

Compress CompressedData
with RDP 5.0 bulk
COMPressor

Append header flags with
compression status from je—oo—
both compressors

Finished Chained
Compression

Figure 10: Chained compression with the RDP 6.1 and RDP 5.0 bulk compressors

The flowchart in following figure describes the how the decompressors are chained during
decompression.

153/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Start
Chained
Decomprassion

Process
extended
COMpression
header from
payload

'

Chain
compressed?

T Es ¢

Decomprass

MNo payload using

* ROP 5.0 bulk

decompressor
Decompress
payload using
RDP &.1 bulk
decompressor

Finish
Chained
Decomprassion

Figure 11: Chained decompression with the RDP 6.1 and RDP 5.0 bulk decompressors

3.1.8.2.2 Compressing Data

Compression using RDP6.1-BC is based on the principles outlined in [MS-RDPBCGR] section 3.1.8
with literals and copy-tuples (matches) being encoded using the scheme described in section
2.2.2.4.1. The RDP6.1-BC compressor is stream-based and, as such, is able to include copy-tuples
(referred to as "history matches") that have just been added to the current packet being processed;
that is, as data is appended to the local history buffer, it can immediately be referenced in the next
match. Matches MUST be in stream-order so that a match does not refer to any data not yet
received by the target endpoint. Note that every encoded match incurs an overhead of 8 bytes when
it is described by the RDP 6.1 Match Details (section 2.2.2.4.1.1) structure. For this reason, an RDP
6.1 compliant compressor SHOULD exclude matches that result in expansion.

The following flowchart describes how the RDP6.1-BC compression algorithm operates.

154 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

Does Data fit
into HistoryBuffer at
HistoryOffset?

Moy

Start
RDP 6.1 Compression

Y

HistoryOffset = 0
Yes Add L1_PACKET_AT_FRONT flag

Copy Data to HistoryBuffer at HistoryOffset
SearchOffset = HistoryOffset
Advance HistoryOffset by size of Data

v

Search HistoryBuffer for matches
at SearchOffset, excluding
SearchOffset to HistoryOffset

L]

| Advance SearchOffset |

A

Yes archOffset =

W Mo

'T’es—»l Sort non-overlapping matches in ascending stream order

v

Mo For each match:
Pack any leading non-matched bytes into the LiteralBuffer
Add match information to MatchBuffer

v

Pack any trailing non-matched bytes into the LiteralBuffer

Matches found?

atchBuffer +
LiteralBuffer smaller than
original Data

Set L1_NO_COMPRESSION flag
Return original Data as output

Finished Set L1_COMPRESSED flag
RDP 6.1 Compression Return MatchBuffer + LiteralBuffer as output

Figure 12: The RDP 6.1 bulk compression algorithm

I ————LL)

3.1.8.2.2.1 Data Compression Example
The example in this section is merely illustrative of the RDP 6.1 compression techniques presented

in section 3.1.8.2.2. The minimum recommended match length is ignored and data expansion does
occur when adding the RDP 6.1 Compressed Data (section 2.2.2.4.1) structure.

Consider the following stream data.

abcdefghiij

155 /284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

With an empty history buffer, this data would translate as being all literals. The history buffer would
appear as follows.

0 1 2 3
01234567890123456789012345678290
abcdefghiij

The resultant output data would be as follows.

abcdefghiij

Now, assume that the following data is added to the stream to be compressed.

klmnodefghijklabcdu

The compressor would again append this to its history buffer (or add to the start of the history
buffer if not enough space is available). The history buffer would then appear as follows.

1 2 3
123456789012345678901234567890
bcdefghijklmnodefghijklabcdu

Q O O

The output from the compressor would become as follows.

k1 mno

[MatchHistoryOffset@3, MatchLength=9, MatchOutputOffset@5]
[MatchHistoryOffset@0, MatchLength=4, MatchOutputOffset@l4]
u

The first match includes both literals from the first packet and literals in the beginning of the current
packet. The important condition is that any match can contain only literals that have been sent
previously in the stream and still exist at the time of compression in its history buffer. Note that the
RDP6.1-BC copy-tuple encoding scheme not only specifies where the match begins in the history
buffer (MatchHistoryOffset) and its length in bytes (MatchLength) but also its relative position in the
decompressed output stream. This extra information enables an on-the-wire format that allows the
matches and literals to be grouped independently rather than in line with each other in the
compressed stream.

The following is a simplified version of the RDP6.1-BC wire format (described in section 2.2.2.4.1)
for the compressor output previously described.

[2 matches]
[MatchHistoryOffset@3, MatchLength=9, MatchOutputOffset@5]
[MatchHistoryOffset@0, MatchLength=4, MatchOutputOffset@14]
k1lmnou

Notice that the two matches are grouped together and are not present in line with the literals in the
stream.

156 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3.1.8.2.2.2 Setting Compression and Extended Compression Flags

Once data has been compressed, the RDP6.1-BC compressor (the level-1 compressor) MUST call (or
chain) another compressor (the level-2 compressor) to further compress the compressed output.
The L1_INNER_COMPRESSION flag (0x10) MUST be set in the LevellComprFlags field (see section
2.2.2.4.1) if a level-2 compressor is called.

If the level-1 compressor determines that applying compression will result in an expansion of the
data size, it MAY instead pass the original data that it was asked to compress directly to the level-2
compressor. If the RDP6.1-BC compressor compresses the original data it MUST set the L1
COMPRESSED flag (0x01). If the RDP6.1-BC compressor reverts to the original data (no
compression is possible) it MUST set the L1_NO_COMPRESSION flag (0x02). Either one of these
flags MUST be set if the RDP6.1-BC compressor updates the level-1 history buffer. This ensures that
the receiver is able to update its level-1 history buffer accordingly.

If either the L1_COMPRESSED (0x01) or L1_NO_COMPRESSION (0x02) flags are set (that is, the
RDP6.1-BC compressor has touched its level-1 history buffer), then the PDU which encapsulates the
level-1 output data MUST set the PACKET_COMPRESSED flag (0x20) in the header field appropriate
to the type of data payload, such as Fast-Path output data (see [MS-RDPBCGR] section 2.2.9.1.2.1),
virtual channel data (see [MS-RDPBCGR] section 2.2.6.1), or Slow-Path data (see [MS-RDPBCGR
section 2.2.9.1.1). Hence, it is valid for the PACKET_COMPRESSED flag (0x20) to be set when the
L1_NO_COMPRESSION flag (0x02) is also set.

If there is not enough space in the level-1 history buffer to add the data to be compressed at the
current history offset, then the history buffer offset MUST be reset to the start position (0) before
the data is inserted. If a reset of this type occurs, then the level-1 L1_PACKET_AT_FRONT flag
(0x04) MUST be set to notify the receiver that an update to the level-1 history buffer offset is
required. Unlike RDP6.0-BC, this is a simple reset of the history offset and no sliding window
semantics are involved (see section 3.1.8.1.2 for a description of RDP6.0-BC semantics).

The level-1 compression flags are produced by performing a logical OR operation of one or more of
the following flags.

Compression flag Meaning
L1_PACKET_AT_FRONT The level-1 history buffer MUST be reinitialized (by filling it with zeros). After
0x04 it has been reinitialized, the entire history buffer is immediately regarded as

valid. This flag MUST be set if the data to be compressed will not fit in the
history buffer at the current offset.

L1_NO_COMPRESSION No compression was performed. The output data consists of raw literals, and
0x02 there is no match data. This occurs when the input data has no
corresponding matches available in the history buffer long enough to produce
a reduction in data size by RDP6.1-BC compression. The output data MUST
be appended to the level-1 history buffer.

L1_COMPRESSED Compression with the level-1 compressor was performed. The output data
0x01 MUST contain at least one match. The output data MUST be appended to the
level-1 history buffer.

L1_INNER_COMPRESSION Indicates that additional level-2 compression (using RDP 5.0 bulk

0x10 compression) has been performed on the level-1 compressor output. The
level-2 compression flags MUST contain the result of the chained
compression.

The level-2 compression flags are described in [MS-RDPBCGR] sections 3.1.8.2.1 and 3.1.8.3.

157/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.1.8.2.3 Decompressing Data

Decompression with RDP6.1-BC is based on the principles specified in [MS-RDPBCGR] section
3.1.8.3 with the compressed stream being decoded using the scheme described in section 2.2.2.4.1
under the control of the level-1 and level-2 compression flags. For a general description of how
compression chaining works during decompression, refer to section 3.1.8.1.3.

Compression Flag

Meaning

L1_PACKET_AT_FRONT
0x04

The level-1 history buffer MUST be reinitialized (by filling it with zeros). This
flag indicates that the data to be decompressed will not fit into the local
level-1 history buffer at the current offset.

L1_NO_COMPRESSION
0x02

No compression was performed. The input data consists of raw literals that
MUST be appended to the local level-1 history buffer.

L1_COMPRESSED
0x01

Compression with the level-1 compressor was performed. The input data
MUST contain at least one match. The uncompressed data MUST be
appended to the level-1 history buffer.

L1_INNER_COMPRESSION
0x10

Indicates that additional level-2 compression (using RDP 5.0 bulk
compression) has been performed on the level-1 compressor output. If the
L1_INNER_COMPRESSION flag is set, the data following the
Level2ComprFlags field in the RDP 6.1 Compressed Data structure (see
sections 2.2.2.4.1 and 2.2.2.5.1) MUST first be passed to the chained level-2
RDP 5.0 bulk decompressor. The level-2 decompression MUST be controlled
by the contents of the Level2ComprFlags field. After this decompression
phase the output MUST then be processed by the RDP6.1-BC decompressor
using the LevellComprFlags field to control the decompression.

The following flowchart describes the how the RDP6.1-BC decompression algorithm operates.

[MS-RDPEGDI] — v20131025

158 / 284

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

Start

C RDP 6.1 Decomprassion)

r

HistoryOffset = 0 M

L4

L1 PACKET AT
FRONT flag set?

L1_NO
_COMPRESSION
flag set?

Read MatchCount
QutputOffset = 0
LiteralsOffset = 0

Read match details:
{13 MatchHistoryOffset
(2) MatchLength
(3} MatchOutputOffset

atchQutputOffset =
OutputOffset

¥

Copy (MatchOQutputQffset -
LiteralsQffset) bytes from
LiteralsBuffer at LiteralsOffset to:
(1) QutputBuffer at QutputOffset
{23 HistoryBuffer at HistoryOffset

¥
Copy MatchLength bytes from
HistoryBuffer at
MatchHistoryOffset to:
{ 1) QutputBuffer at
OutputOffset
(2} HistoryBuffer at

HistoryQffset

]

Update HistoryOffset,

Copy any remaining bytes [LiteralsLength
- LiteralsOffset) from LiteralsBuffer at
LiteralsOffset to:

(1) OutputBuffer at QutputOffset
(2} HistoryBuffer at HistoryOffset

v

Update HistoryOffset,
LiteralsOffset and
OutputOffset

Y

Finished
RDP 6.1 Decompression

- LiteralsOffset and
OutputOffset

All matches
processed?

Figure 13: The RDP 6.1 bulk decompression algorithm

3.1.8.2.3.1 Data Decompression Example

To clarify the decompression principles described in section 3.1.8.2.3, consider decompressing the
stream of data that was generated in the compression example in section 3.1.8.2.2.1. Note that in
this example, level-2 decompression has already been applied and the input data is for the level-1

decompressor.

The data arrives in two packets. Input Data A appears as follows.

abcdefghij

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Input Data B appears as follows.

[2 matches]

[MatchHistoryOffset@3, MatchLength=9, MatchOutputOffset@5]
[MatchHistoryOffset@0, MatchLength=4, MatchOutputOffset@l4]
k1l mnou

Input Data A contains the L1_NO_COMPRESSION flag, as it does not contain any matches. The
decompressor adds this data to its local level-1 history buffer, resulting in the following history
buffer (HistoryOffset = 10).

1 2 3
234567890123456789012345678290
cde fghi;j

The output buffer is then updated.

abcde fghiij

Now, Input Data B contains the L1-COMPRESSED flag because it contains history matches (in this
case it contains two matches). To handle this case correctly, the decompressor uses two additional
offsets (in addition to the HistoryOffset). The first is the OutputOffset which is the offset in the
current decompressed output. The second is the LiteralsOffset which points to the current offset in
the literals section of the received data. Both of these offsets are initialized to zero before
processing Input Data B.

Next, the decompressor examines the first match description. This contains MatchOutputOffset@5.
Because the OutputOffset is currently zero (and not 5), this means that this match is preceded by
the difference of the two offsets in raw literals (in this case, 5 literals). Hence, the decompressor
copies 5 literals from the literals section of the received data to the history and output buffers, and
then updates all three offsets by 5. The output buffer appears as follows (OutputOffset = 5).

0 1 2 3
0123456789012345678901234567890
k1 mno

The history buffer appears as follows (HistoryOffset = 15).

1 2 3
1234567890123456789012345678290
bcdefghijklmno

Q O o

Now that the OutputOffset and MatchOutputOffset are the same (both equal to 5), we process the
first match (copy-tuple). The match details instructs the decompressor to copy 9 bytes starting at
history offset 3 to the history and output buffers. This action is followed by updating the
OutputOffset and HistoryOffset. The output buffer appears as follows (OutputOffset = 14).

0 1 2 3
01234567890123456789012345678290
klmnodefghi3jkl

160/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

The history buffer appears as follows (HistoryOffset = 24).

0 1 2 3
01234567890123456789012345678290
abcdefghijklmnodefghiijkl

The next match (MatchHistoryOffset@0, MatchLength=4, MatchOutputOffset@14) has the same
MatchOutputOffset value as the OutputOffset, so there are no raw literals to process, only 4 bytes to
copy to the output and history buffers, and the output and history offsets to update. The output
buffer appears as follows (OutputOffset = 18).

0 1 2 3
01234567890123456789012345678290
klmnodefghijklabcd

The history buffer appears as follows (HistoryOffset = 28).

1 2 3
1234567890123456789012345678290
bcdefghijklmnodefghiijklabcd

O O O

Finally, there are no matches left to process. However, some literal raw data is left in the literal
buffer (the literal length of 6 is greater than the LiteralsOffset value of 5). Hence, the remaining
bytes are copied to the history and output buffers (in this case, it is only 1 byte). The final output
buffer appears as follows (OutputOffset = 19).

0 1 2 3
01234567890123456789012345678290
k1lmnodefghijklabcdu

The final history buffer appears as follows (HistoryOffset = 29).

1 2 3
1234567890123456789012345678290
bcdefghijklmnodefaghiijklabcdu

Q O o

.1.9 RDP 6.0 Bitmap Compression

RDP 6.0 Bitmap Compression is used when the RDP session color depth is 32 bits per pixel (bpp)
and the bitmap of interest is either 24 bpp (RGB with no alpha channel) or 32 bpp (RGB with an
alpha channel). The capability of a server to encode and a client to decode with RDP 6.0 Bitmap
Compression is advertised in the Bitmap Capability Set (see [MS-RDPBCGR] section 2.2.7.1.2).

The main focus of RDP 6.0 Bitmap Compression is not to compress the bitmap as a single opaque
block of binary data. Instead it manipulates each of the color layers as separate planes and
attempts to compress them individually using a collection of compression techniques. These
techniques attempt to leverage any redundancy in the color representation of the bitmaps and can
additionally be followed by a simple scan-line run-length compressor if it can further compress the
planes.

161/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

3.1.9.1 Bitmap Compression Techniques

3.1.9.1.1 Splitting and Combining Color Planes

Planar separation is a bitmap representation in which each color plane in a bitmap is sent as
separate 8-bpp bitmaps. The color schemes used in RDP 6.0 Bitmap Compression are ARGB, RGB,
AYCoCg, and YCoCg. These schemes have the following color planes.

Color scheme Color planes

ARGB Alpha, Red, Green, Blue

RGB Red, Green, Blue

AYCoCg Alpha, Luma, Orange Chroma, Green Chroma
YCoCg Luma, Orange Chroma, Green Chroma

Splitting a bitmap into constituent color planes is a straightforward operation that simply involves
the transfer of data into the correct color plane. For example, the 3-pixel ARGB bitmap (A1R1G1B1;
A2R2G2B2; A3BR3G3B3) can be split into the four color planes (A1A2A3; R1R2R3; G1G2G3;
B1B2B3). In the case of 24-bpp bitmaps (or fully opaque 32-bpp bitmaps), the alpha mask for each
pixel is assumed to be OxFF, and hence, the alpha plane MAY be excluded as it is trivial to
reconstitute (see the DRAW_ALLOW_SKIP_ALPHA flag in [MS-RDPBCGR] section 2.2.7.1.3).

The combination of separate color planes into a single 24-bpp or 32-bpp bitmap is also a trivial
operation and merely involves reconstructing the individual ARGB or AYCoCg pixels from the
constituent color planes so that the component bytes are ordered correctly. For example, the four
AYCoCg planes (A1A2A3; Y1Y2Y3; ColCo2Co3; Cg1Cg2Cg3) can be reconstituted to produce the 3-
pixel (A1Y1Co1Cgl; A2Y2Co02Cg2; A3Y3Co3Cg3) bitmap.

Note that Microsoft RDP servers incorrectly convert 24 bpp RGB bitmaps to the YCoCg color space
when color loss reduction (see the DRAW_ALLOW_DYNAMIC_COLOR_FIDELITY (0x02) flag in [MS-
RDPBCGR] section 2.2.7.1.2) is in effect. This results in an incorrect value for the Co component. To
compensate for this issue, client decoders MUST swap the B and R components after applying the
inverse transformation, which converts from the YCoCg color space to the RGB color space.

3.1.9.1.2 Color Space Conversion

Color channel-based compression does not operate on the ARGB color space but rather a color space
based on Luminosity (Y) and differentials of two color components: Orange (Co) and Green (Cg).
Conversion between the ARGB and AYCoCg color spaces can be performed by using forward and
inverse transformations (represented using matrix multiplication). The Alpha channel (A) is never
converted in either direction.

The forward transformation to convert from ARGB to AYCoCg is as follows.

A=A
Y| | 1/4 1/2 1/4] IR|
[Col = | 1 0 -1 1 * |G|
ICcgl |-1/2 1 -1/2] IB|

The inverse transformation to convert from AYCoCg to ARGB is as follows.

162 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

A = A

IR] 1 1/2 -1/2] Y |
Gl = |1 0 1/21 * |cCol
IBI 11 -1/2 -1/2] ICgl

Note that Microsoft RDP servers incorrectly convert 24 bpp RGB bitmaps to the YCoCg color space
when color loss reduction (see the DRAW_ALLOW_DYNAMIC_COLOR_FIDELITY (0x02) flag in [MS-
RDPBCGR] section 2.2.7.1.2) is in effect. This results in an incorrect value for the Co component. To
compensate for this issue, client decoders MUST swap the B and R components after applying the
inverse transformation, which converts from the YCoCg color space to the RGB color space.

The allowed ranges of the individual color planes and their lengths in bits are as follows.

Color plane Range Type
Alpha (A) 0 (transparent) — 255 (opaque) 8 bits
Red (R) 0 - 255 8 bits
Green (G) 0 - 255 8 bits
Blue (B) 0 - 255 8 bits
Luma (Y) 0 - 255 8 bits
Orange Chroma (Co) -255 - 255 9 bits (two's complement)
Green Chroma (Cg) -255 - 255 9 bits (two's complement)

When performing the color space conversion, the data types used for all calculations MUST be at
least 9 bits long to accommodate the orange and green chroma channels. In the inverse
transformation, after the red, green and blue values have been calculated with 9-bit precision, they
MUST all be converted to 8-bit precision in order to be stored in the decoded image. This calculation
MUST be performed by taking the closest value within the 0 to 255 range (this technique is referred
to as "clamping between 0 and 255"). For example:

-14 clamped = 0

123 clamped = 123
254 clamped = 254
300 clamped = 255
421 clamped = 255

.1.9.1.3 Chroma Subsampling and Super-Sampling

Chroma subsampling is a compression technique that employs a lower resolution for representing
the chroma planes (Co and Cg) while keeping the luminosity plane (Y) at full resolution. This method
relies on the human eye being less sensitive to color than differences in luminosity. Support for
chroma subsampling is advertised in the Bitmap Capability Set (see [MS-RDPBCGR] section
2.2.7.1.3).

The subsampling algorithm used employs a simple averaging of four neighboring pixels in a 2-by-2
grid. This reduces the information needed to be sent by half in each dimension, resulting in a four-
fold decrease for a two-dimensional bitmap per chroma channel. If an odd number of rows or

163/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

columns is present, the subsampling is performed on a 2-by-1 or 1-by-2 grid, or not at all for a
corner when the bitmap has both an odd number of rows and columns.

Super-sampling of a compressed chroma plane simply results in the expansion of a subsampled
pixel into a 2-by-2 grid of pixels. Because this expansion results in an area with the same
dimensions as the original bitmap, odd row and column counts imply that edge pixels will be
expanded into either a 2-by-1, 1-by-2 or 1-by-1 grid of pixels.

The following figure shows averaging (first stage) and final subsampling (second stage) being
applied to a chroma plane of a 3-by-3 bitmap as well as the super-sampling required to reconstruct
the chroma plane.

164 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

A B C Compression - First Stage:)
Average the chroma values for each 2x2 grid.
If an odd numbered row, column or cormer
value use fewer neighbor values to compute
the average.

D E F
& H I
Compression - second Stage:
Reduce width and helght by half.
If odd number of rows or columns do
not reduce last row and/or column.
Avg of A;fg
AB,DE
Ava (" w©n
Avg of (A,B.D.E) of
(G, F)
: Ava of .
(G, H}
Byg of (G, H) i
Decompression (Super-Sampling): A B c
Expansion of each value into a 2x2 grid.
Odd column and row only expand into a 2x1
or 1x2 area, and an odd corner does nat
E}tpand at all, D E F
G H I

Figure 14: Chroma subsampling and super-sampling

3.1.9.1.4 Color Loss Reduction

Color loss reduction is a form of compression that reduces the fidelity of chroma values while
maintaining the overall relative magnitude of possible chroma values and reducing the number of
bits needed to represent each value. The dynamic range of the chroma representation is not
reduced. This compression technique has the side effect of reducing many similar chroma values to
the same reduced value, which has the potential of improving subsequent run-length compression.

165/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

The operation to reduce chroma is simply to bit shift the chroma values toward zero while adding

zeros at the high-order bits. The number of bits shifted is implementation dependent and known as
the Color Loss Level (CLL). The server MUST choose a value between 1 and 7 for the CLL. Usage of
color loss reduction is specified in the Bitmap Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

The reverse operation to recover chroma can be performed by shifting the reduced values back
toward the high-order bit and inserting zeros at the low-order bit location. The client MAY choose to
perform the reverse operation using other schemes, such as a linear gradient curve, as long as the
final chroma values are within the ranges specified in section 3.1.9.1.2.

3.1.9.2 Run-Length Encoding

Each color plane can be individually run-length compressed. The RDP 6.0 Bitmap Compressor uses a
simple scan-line compressor that breaks each scan-line into segments consisting of RAW and RUN
components.

A RAW component is a non-repeating sequence in the segment, and a RUN is a sequence of the last
RAW value repeated run-length times. A RUN in a segment MUST be at least three values long
(shorter sequences are encoded as RAW values). In the majority of cases, a segment will contain
both a RAW and a RUN component. However, depending on the scan-line to be compressed, it is
possible that only a RAW or RUN component is present. In the absence of a RAW component, the
RAW value used to decode the RUN component is assumed to be the value zero.

For example, an initial scan-line containing the following 12 ANSI characters:

AAAABBCCCCCD

Would become the following:

RAW [A]; RUN [3] - Segment 1
RAW [BBC]; RUN [4] - Segment 2 (BB is too short to be a RUN.)
RAW [D]; RUN [0] - Segment 3 (The scan line is completed.)

The encoded RAW and RUN values are either absolute values (this is the case for the first scan-line)
or delta values (this is the case for all other scan-lines). Delta values are relative to the previous
scan-line values. The delta value calculation is performed by subtracting the previous scan-line
value at the current column location from the current scan-line value being encoded.

An example of delta value usage follows (decimal values used for clarity).

10, 20, 30, 40, 50, 60 - First scan-line
5, 15, 25, 35, 45, 55 - Second scan-line
5, 15, 25, 35, 45, 55 - Third scan-line

Converted to delta values:

10, 20, 30, 40, 50, 60 - First scan-line (absolute values)
-5, -5, -5, -5, -5, -5 - Second scan-line (delta values)
o, 0, 0, 0, 0, O - Third scan-line (delta values)

Which, converted to segments, become the following:

166 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

RAW [10,20,30,40,50,60]; RUN [O0]
RAW [-5]; RUN [5]
RAW [<none>]; RUN [6] (Previous base value assumed to be 0.)

Due to the fact that the lengths of RAW and RUN components are limited to 4-bit values (see section
2.2.2.5.1.2), individual segments may be broken up further into subsegments during encoding to
produce RUN sequences consisting of more than 16 values.

3.1.9.2.1 Encoding Run-Length Sequences

Once a run-length encoder has broken up a scan-line into segments, it MUST encode each segment
as one or more subsegments. The structure of segments and subsegments is the same and is
defined in section 2.2.2.5.1.2.

The process of encoding scan-lines using RDP 6.0 RLE is best illustrated with a practical example.
Assume that the following three scan-lines are present in a bitmap.

255, 255, 255, 255, 254, 253 - First scan-line
254, 192, 132, 96, 75, 25 - Second scan-line
253, 140, 62, 14, 135, 193 - Third scan-line

Converted to delta values:

255, 255, 255, 255, 254, 253 - First scan-line (absolute values)
-1, -63, -123, -159, -179, -228 - Second scan-line (delta values)
-1, -52, -70, -82, 60, 168 - Third scan-line (delta values)

Each value MUST be interpreted as a 1-byte two's complement signed value as follows.

-1, -1, -1, -1, -2, -3 - First scan-line (absolute wvalues)
-1, -63, -123, 97, 77, 28 - Second scan-line (delta values)
-1, -52, -70, -82, 60, -88 - Third scan-line (delta values)

The next step is to encode the delta values. If the delta value does not have the most significant bit
set (0 - 127), shift it 1 bit toward the highest bit. If the delta value has the most significant bit set
(-1 to -128), take the 8-bit two's complement of the value (invert the bits and add one or subtract
from 256), bit shift it toward the high bit value (multiply by 2), and decrement by 1. This
transformation results in the following.

-1, -1, -1, -1, -2, -3 - First scan-line (absolute values)
1, 125, 11, -62, -102, 56 - Second scan-line (delta values)
1, 103, -117, -93, 120, -81 - Third scan-line (delta wvalues)

The following represent these signed two's complement values as 8-bit hexadecimal values:

0xFF, OxFF, OxFF, OxFF, OxFE, OxFD - First scan-line
0x01, 0x7D, OxF5, 0xC2, 0x9A, 0x38 - Second scan-line
0x01, 0x67, 0x8B, 0xA3, 0x78, O0xAF - Third scan-line

Which, converted to RLE segments, become the following:

167 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

RAW [O0xFF]; RUN [3] - Segment 1
RAW [OxFE,O0xFD]; RUN [0] - Segment 2
RAW [0x01,0x7D,0xF5,0xC2,0x9A,0x38]; RUN [0] - Segment 3
RAW [0x01,0x67,0x8B,0xA3,0x78,0xAF]; RUN [0] - Segment 4

Using the structure defined in section 2.2.2.5.1.2, the first segment, which uses absolute values

(see section 3.1.9.2), is encoded as follows.
controlByte: (cRawBytes = 1, nRunlLength = 3); rawValues: OxFF
Which yields the following byte stream for the first segment:

0x13, OxFF - Segment 1

Encoding the remaining segments yields the following:

0x20, OxFE, OxFD - Segment 2
0x60, 0x01, O0x7D, OxF5, 0xC2, 0x9A, 0x38 - Segment 3
0x60, 0x01, 0x67, 0x8B, 0xA3, 0x78, O0xAF - Segment 4

The following flow chart illustrates how a given set of RAW values and a RUN (which can be zero) is

encoded using RDP 6.0 RLE.

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

168 / 284

Start
(Encr}de (RAW Count, RUM Length, Data E.uffer])

Y

Set RAWPEr = 0
(Start of Data Buffer)

Make short RUM into
RAW bytes,
RAW Count += 3
RUN Length = 0

Finished Retur_n bytes v
Encode written [
to QUTPUT

RAW Count
=0

Build Control Byte
(15, 2) and add it to
OUTPUT
'[7 RUM Length -= 47
Build Control Byte
(15, 0) and add it to | | RAW Count

OUTPUT =15

Build Control Byte
(RUN Length - 32, 2)
and add it to QUTPUT

Y
Topy 15 bytes of RAW Count = 16

N
Data Buffer at
L RAWPLr to : R Build Control Byte
QUTPUT (RUN Length - 16, 1)
RAW Count -= 15 ik and add it to QUTPUT
RAWPLr += 15

M
Build Contral Byte Build Control Byte
[RAW Count, 15) and (RAW Count, RUN Length)
add it to QUTPUT and add it to QUTPUT
PAWPLF +=
RAW Count Copy RAW Count bytes Copy RAW Count bytes
L RAW Count = O |- of Data Buffer at of Data Buffer at
RUN Length -= RAWPLr ta OUTPUT RAWPEr to QUTPUT
15
Y
Finished Return bytes written
Encode to QUTPUT -

Figure 15: Encoding data using RDP 6.0 Run-Length Encoding (RLE)

3.1.9.2.2 Extra Long RUN Sequences

The lengths of RAW and RUN components are limited to 4-bit values and, as a result, encoding of
run-lengths greater than 15 values requires special casing, as described in section 2.2.2.5.1.2.

Encoding of an extra long RUN sequence is best described with an example. Assume that there is a
pattern consisting of the letter A repeated 100 times. The resulting RLE segments are the following:

RAW [A]; RUN [15] - Segment 1
RAW [<none>]; RUN [47] - Segment 2

169 / 284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

RAW [<none>]; RUN [37] - Segment 3

Using the structure and rules in section 2.2.2.5.1.2, these segments are encoded as the following:

controlByte: (1, 15); rawValues: A
controlByte: (15, 2); rawValues: <none>
controlByte: (5, 2); rawValues: <none>

In hexadecimal, this becomes the following:

O0x1F, O0x41, 0xF2, 0x52

3.1.9.2.3 Decoding Run-Length Sequences

Encoding of run-length sequences ensures that there is at least one subsegment per scan-line. The
control byte described in section 2.2.2.5.1.2 contains all of the information necessary to decode the
sequence bytes.

The process of decoding an encoded sequence of bytes for a color plane using RDP 6.0 RLE is best
illustrated with a practical example. Assume that the following bytes are from a color plane in a
bitmap that is 6 pixels wide by 3 pixels high.

0x13, OxFF, 0x20, OxFE, OxFD, 0x60, 0x01, 0x7D,
OxF5, 0xC2, 0x9A, 0x38, 0x60, 0x01, 0Ox67, 0x8B,
0xA3, 0x78, OxAF

The first byte is the control byte of the first segment from the first scan-line.

0x13 -> Control byte = 1 RAW value, 3-length RUN of the last raw value
0xFF -> Raw value

Hence, decoding the first segment according to the information in the control byte yields the
following:

OxFF, OxFF, OxFF, OxFF

Because these values are from the first scan-line, the values are absolute. Shown in unsigned
decimal, the values are the following:

255, 255, 255, 255

The second segment control byte is the following:

0x20

This implies two raw values and a zero-length run, resulting in the following two unsigned decimal
absolute values.

170/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

OxFE, OxFD

This completes the first scan-line, and all values decoded from this point are deltas and MUST be
specially decoded. Before decoding, the deltas MUST be interpreted as unsigned 1-byte values. If
the encoded delta value is odd, then decrement it by 1, shift it 1 bit toward the lowest bit, and
subtract it from 255. This yields the original absolute value. If the encoded delta value is even, shift
it 1 bit toward the lowest bit. This yields the original absolute value.

Examining the third segment yields six raw values and a zero-length run.

0x01, 0x7D, O0xF5, 0xC2, 0x9A, 0x38
The deltas MUST be decoded. The unsigned decimal representation of the deltas is as follows.
1, 125, 245, 194, 154, 56

Applying the delta transformation to the deltas in the second scan-line yields the following 1-byte
unsigned values.

255, 193, 133, 97, 77, 28

To compute the final absolute values for the second row, the unsigned, 8-bit delta values are added
to the absolute values of the first scan-line using 1-byte arithmetic.

Column 1: 255 + 255 = 254
Column 2: 255 + 193 = 192
Column 3: 255 + 133 = 132
Column 4: 255 + 97 = 096
Column 5: 254 + 77 = 75
Column 6: 253 + 28 = 25

This completes the second scan-line, and the final absolute values are the following:

The third segment has six raw values and a zero-length run.

0x01, 0Ox67, 0x8B, O0xA3, 0x78, OxAF

The decoded unsigned 8-bit unsigned values representing the final deltas are as follows.

255, 204, 186, 174, 60, 168

To compute the final absolute values for the third row, the unsigned 8-bit delta values are added to
the absolute values of the second scan-line using 1-byte arithmetic.

Column 1: 254 + 255 = 253
Column 2: 192 + 204 = 140

171/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Column 3: 132 + 186 = 62
Column 4: 96 + 174 = 14
Column 5 75 + 60 = 135
Column 6 25 + 168 = 193

This completes the second scan-line, and the final absolute values are the following:

253, 140, 62, 14, 135, 193

The fully decoded plane is the following:

255, 255, 255, 255, 254, 253
254, 192, 132, 96, 75, 25
253, 140, 62, 14, 135, 193

3.1.9.3 Compressing a Bitmap

The overall scheme used to compress a bitmap with RDP 6.0 Bitmap Compression is described in the
following figure. This figure effectively shows how the techniques described in section 3.1.9 are
employed. The usage of color reduction and chroma subsampling is specified in the Bitmap
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.2). The color loss level to use (see section
3.1.9.1.4) is not exchanged on the wire and is server implemention-dependent.

172 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

Split ARGE bitmap inta
four color planes

ARGE
Bitrmap | R

If color reduction

required convert to
AYCoCy If no color
color space reduction required
leave in ARGE

3

colar space
i
L
'
If subsampling A
5

Attempt to run length encode each

Apply color
reduction to plane. If resultant encoding is
chroma .
planes Apdplgt_colc;:r shorter then send it else encode
"Eb'-' '“”I 3 each plane sequentially with no
Subsampia additional compression.
chroma
CR
id
A
RLE | RLE | RLE | RLE
A R G B
Attempt to run length encode each plane. If resultant
encoding is shorter then send it else encode each
plane sequentially with no additional compression.
A R G B

RLE | RLE | RLE | RLE

Al Y |co|cg

Figure 16: Compressing a bitmap using RDP 6.0 Bitmap Compression

A ¥ Co Cg

3.1.9.4 Decompressing a Bitmap

The decision-flow used to decompress a bitmap that is compressed with RDP 6.0 Bitmap
Compression is illustrated in the following figure. The flags describing the bitmap data (present in

the compressed data format header) are defined in section 2.2.2.5.1.

173/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

bpp bitmap

planes into single 32 -

Finished
Decompress
Bitmap

Read Start
RLE MNoalpha Compressed
flag set? bit set? Data Format DEéir;press
Header ap
¥ Y
Y L Read RLE Luma
Read RAW Read RLE Alpha Create fully plane
Alpha plane plane opagque Decompress
Decompress Alpha plane Luma plang
Alpha plane ¥ ¢
RLE
flag set? Read RLE Co plane
Decompress Co
plane
N N
" v v
read RAW N RLE Read RAW
ed Plane - - flag set? Luma plane Read RLE Cg plane
Decompress Cg
¢ ¥ Read RAW plane
¥ Co plane
Read RAW Read RLE
Green plane Red plang it =hi
Bit shift all of the
Decompress Fead RAW
$ Red plane Cqg plane - C:a?ﬂss?y%ﬁe
Read RAW GREE*U PILE
Blue Plane reen plane
Decompress Super- s
Green plane sample |- flag set?
Co plane
Read RLE *
Blue plane
Decompress Supear-
Blue plane sample
- I Cqg plang M
! v
Combine Alpha, Red,
Green and Blue Convert Luma,

Coand Cg [
planes to RGE

Figure 17: Decompression of a bitmap compressed with RDP 6.0 Bitmap Compression

3.2 Client Deta

3.2.1 Abstract Data Model

ils

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

174 / 284

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

3.2.1.1 Primary Drawing Order History

The Primary Drawing Order History store holds information on the fields that have been received in
primary drawing orders. There are three pieces of information that MUST be recorded:

= Last primary order type processed.
= Current bounding rectangle.
= Per-order record of the last value received in each field.

These records are updated as each primary drawing order is processed, and are used to efficiently
decode and process primary drawing orders received from the server (see section 3.2.5.1.1.1).

3.2.1.2 Save Bitmap

The Save Bitmap is a 480-by-480-pixel bitmap that is used to temporarily store desktop bitmap
images received in the SaveBitmap Primary Drawing Order (see section 3.2.5.1.1.1.12). Bitmaps
stored in the Save Bitmap are tiled to maximize the number of bitmaps that can be stored (a
graphical representation of how bitmaps are stored is shown in the figure in section 4.5). If support
for the SaveBitmap Primary Drawing Order is not specified in the Order Capability Set (see [MS-
RDPBCGR] section 2.2.7.1.3), the Save Bitmap is not required.

3.2.1.3 Bitmap Cache

A Bitmap Cache is a store that contains bitmap images that were sent to the client by using either
the Cache Bitmap - Revision 1 (section 2.2.2.2.1.2.2), Cache Bitmap - Revision 2 (section
2.2.2.2.1.2.3), or Cache Bitmap - Revision 3 (section 2.2.2.2.1.2.8) Secondary Drawing Order.

3.2.1.4 Persistent Bitmap Cache
A Persistent Bitmap Cache is a store that contains bitmap images that were sent to the client by
using the Cache Bitmap - Revision 2 (section 2.2.2.2.1.2.3) or Cache Bitmap - Revision 3 (section
2.2.2.2.1.2.8) Secondary Drawing Order. Unlike the Bitmap Cache described in section 3.2.1.3, a

Persistent Bitmap Cache is not bound to the lifetime of a given RDP connection and its contents are
persisted even after the RDP connection is closed.

3.2.1.5 Persisted Bitmap Keys
The Persisted Bitmap Keys store holds a collection of 64-bit bitmap keys, each of which uniquely

identifies a bitmap image that is present in a Persistent Bitmap Cache (section 3.2.1.4). The lifetime
of this store is bound to the lifetime of the Persistent Bitmap Caches.

3.2.2 Timers

None.

3.2.3 Initialization

None.

175/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.2.4 Higher-Layer Triggered Events

None.
3.2.5 Processing Events and Sequencing Rules

3.2.5.1 Drawing Orders

All drawing orders are encapsulated in an Orders Update (section 2.2.2.1), which is received as part
of the Graphics Update PDU (see [MS-RDPBCGR] section 2.2.9.1.1.3); or they are encapsulated in a
Fast-Path Orders Update (section 2.2.2.2), which is received as part of the Fast-Path Update PDU
(see [MS-RDPBCGR] section 2.2.9.1.2.1).

There are three classes of drawing orders:

= Primary Drawing Orders (section 2.2.2.2.1.1)

= Secondary Drawing Orders (section 2.2.2.2.1.2)

= Alternate Secondary Drawing Orders (section 2.2.2.2.1.3)

Orders belonging to each of these classes are packed together into an Orders Update structure or a
Fast-Path Orders Update structure, each order being aligned on a byte boundary.

3.2.5.1.1 Primary Drawing Orders

3.2.5.1.1.1 Processing Primary Drawing Orders
All primary drawing orders MUST conform to the structure and rules defined in section 2.2.2.2.1.1.2.

To efficiently decode and process a primary drawing order, the client MUST use a Primary Drawing
Order History (section 3.2.1.1) store. This store holds three pieces of information:

= Last primary order type processed
= Current bounding rectangle
= Per-order record of the last value received for each field

These stored records allow the client to correctly decode a received primary drawing order, as only
fields that have new values are required to be included in orders sent by the server. If a field is
unchanged from the value that it had when the order type was last sent, it SHOULD NOT be
included in the order. The fields that are present in the order MUST be indicated by the fieldFlags
field.

If all of the Coord-type fields (see section 2.2.2.2.1.1.1.1) in an order can be represented as a
signed delta in the range -127 to 128 from the previous field value, all of these fields SHOULD
contain delta-coordinates (see sections 2.2.2.2.1.1.1.1 and 2.2.2.2.1.1.1.2). The presence of delta-
coordinates MUST be indicated by the TS_DELTA_COORDINATES (0x10) flag in the primary drawing
header.

The basic process to decode a primary drawing order begins with reading the controlFlags header
byte (this is common to all drawing classes) to determine the order class. If order is a primary
drawing order, the following sequence of steps SHOULD be used to decode the order:

1. The control flags extract the following information:

176 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

= Whether or not the order type is specified

= The fields that are present in the primary order field data

= Whether or not any components of the bounding rectangle are present

= Whether or not delta-coordinates are used in the primary order Coord-type fields

2. If support for the primary drawing order was not specified in the Order Capability Set (see [MS-
RDPBCGR] section 2.2.7.1.3), the client SHOULD ignore the order, and processing SHOULD
cease.

3. Determine whether or not all of the data required to decode and process the order has been
received in the Orders Update (section 2.2.2.1) structure or the Fast-Path Orders Update (section
2.2.2.2) structure. If the packet does not contain enough data, processing SHOULD cease, and
the order update SHOULD be ignored.

4, Read the order data, and validate the fields to make sure all the field data is consistent with the
order specification (for example, the maximum number of fields and maximum order size MUST
conform to the order specification). If any of the field data for a given order is inconsistent or
refers to non-existent or invalid items (such as a non-existent cache entry or invalid brush
format), processing of the order SHOULD terminate, and it SHOULD also be ignored.

Once the order has been decoded, and all of the information necessary to process it has been
collected, the data MUST be handed off to a graphics rendering module so that the images from the
remote system can be displayed locally on the client system. The client MUST also update the
records in the Primary Drawing Order History (section 3.3.1.2) to ensure that future orders can be
decoded correctly.

3.2.5.1.1.1.1 Processing of DstBIt

The structure and fields of the DstBIt Primary Drawing Order are specified in section 2.2.2.2.1.1.2.1,
and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and process the
order.

3.2.5.1.1.1.2 Processing of MultiDstBIt

The structure and fields of the MultiDstBIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.2, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and
process the order.

3.2.5.1.1.1.3 Processing of PatBIt

The structure and fields of the PatBIt Primary Drawing Order are specified in section 2.2.2.2.1.1.2.3,
and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and process the
order.

If a cached brush is specified in this order, that brush MUST have been received by the client in a
prior Cache Brush Secondary Drawing Order (see section 3.2.5.1.2.1.6). If this is not the case, the
client SHOULD ignore this order. Furthermore, if support for brush caching was not specified in the
Brush Capability Set (see [MS-RDPBCGR] section 2.2.7.1.7), and a cached brush is included in the
PatBlt order, the client SHOULD ignore this order.

177/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.2.5.1.1.1.4 Processing of MultiPatBIt

The structure and fields of the MultiPatBIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.4, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and
process the order.

If a cached brush is specified in this order, that brush MUST have been received by the client in a
prior Cache Brush Secondary Drawing Order (see section 3.2.5.1.2.1.6). If this is not the case, the
client SHOULD ignore this order. Furthermore, if support for brush caching was not specified in the
Brush Capability Set (see [MS-RDPBCGR] section 2.2.7.1.7), and a cached brush is included in the
MultiPatBIt order, the client SHOULD ignore this order.

3.2.5.1.1.1.5 Processing of OpaqueRect

The structure and fields of the OpaqueRect Primary Drawing Order are specified in section
2.2.2.2.1.1.2.5, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and
process the order.

3.2.5.1.1.1.6 Processing of MultiOpaqueRect

The structure and fields of the MultiOpaqueRect Primary Drawing Order are specified in section
2.2.2.2.1.1.2.6, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and
process the order.

3.2.5.1.1.1.7 Processing of ScrBit

The structure and fields of the ScrBIt Primary Drawing Order are specified in section 2.2.2.2.1.1.2.7,
and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and process the
order.

3.2.5.1.1.1.8 Processing of MultiScrBlit

The structure and fields of the MultiScrBIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.8, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and
process the order.

3.2.5.1.1.1.9 Processing of MemBIt

The structure and fields of the MemBIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.9, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and
process the order.

The source bitmap associated with the MemBIt order MUST reside in one of two possible locations:
1. One of the bitmap caches (section 3.1.1.1.1)
2. The Offscreen Bitmap Cache (section 3.1.1.1.5)

If the bitmap cache ID (specified as part of the cacheld field) refers to one of the specified bitmap
caches, the actual bitmap data MUST have been received in a Cache Bitmap Secondary Drawing
Order (sections 3.2.5.1.2.1.1,3.2.5.1.2.1.2, and 3.3.5.1.2.1.7). If the cacheIndex field is set to
BITMAPCACHE_WAITING_LIST_INDEX (32767), the last bitmap cache entry MUST contain the
source bitmap; this implies that the bitmap data was received in a Cache Bitmap (Revision 2) Order,
and the CBR2_DO_NOT_CACHE (0x10) flag was set or it was received in a Cache Bitmap (Revision
3) Order, and the CBR3_DO_NOT_CACHE (0x10) flag was set.

178 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

However, if the bitmap cache ID is set to TS_BITMAPCACHE_SCREEN_ID (0xFF), the source bitmap
resides in the Offscreen Bitmap Cache at the entry location specified by the cacheIndex field. This
entry MUST have been created and initialized in response to the processing of prior Create Offscreen
Bitmap (see section 3.2.5.1.3.1.1) and Switch Surface (see section 3.2.5.1.3.1.2) Alternate
Secondary Drawing Orders; the Create Offscreen Bitmap Order creates the offscreen bitmap while
the Switch Surface Order is used to redirect all drawing operations to the offscreen bitmap.

3.2.5.1.1.1.10 Processing of Mem3BIt

The structure and fields of the Mem3BIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.10, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

The decoding and processing of the Mem3BlIt Order follow the same principles as those outlined for
the MemBIt Order specified in section 3.2.5.1.1.1.9. However, the Mem3BIt Order includes fields to
specify a brush.

If a cached brush is specified in this order, that brush MUST have been received by the client in a
prior Cache Brush Secondary Drawing Order (see section 3.2.5.1.2.1.6). If this is not the case, the
client SHOULD ignore this order. Furthermore, if support for brush caching was not specified in the
Brush Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3), and a cached brush is included in the
Mem3BIt Order, the client SHOULD ignore this order.

3.2.5.1.1.1.11 Processing of LineTo

The structure and fields of the LineTo Primary Drawing Order are specified in section
2.2.2.2.1.1.2.11, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

3.2.5.1.1.1.12 Processing of SaveBitmap

The structure and fields of the SaveBitmap Primary Drawing Order are specified in section
2.2.2.2.1.1.2.12, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order. Bitmap data received in this order MUST be stored in the Save Bitmap (see
section 3.2.1.2).

3.2.5.1.1.1.13 Processing of GlyphIndex

The structure and fields of the GlyphIndex Primary Drawing Order are specified in section
2.2.2.2.1.2.5, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode and
process the order.

If support for glyph caching was not specified in the Glyph Cache Capability Set (see [MS-RDPBCGR
section 2.2.7.1.8), the client SHOULD ignore this order as it requires the existence of the glyph
caches (see section 3.1.1.1.2).

All of the glyphs associated with the glyph cache indices specified in the order MUST have been
received by the client in a prior Revision 1 or 2 Cache Glyph Secondary Drawing Order (see sections
3.2.5.1.2.1.4 and 3.2.5.1.2.1.5), or a FastGlyph Primary Drawing Order (see section
3.2.5.1.1.1.15). If a fragment cache index is specified in a USE clause, that fragment MUST have
been cached while processing an ADD clause in a prior GlyphIndex or FastIndex Order.

If a cached brush is specified in this order, that brush MUST have been received by the client in a
prior Cache Brush Secondary Drawing Order (see section 3.2.5.1.2.1.6). If this is not the case, the
client SHOULD ignore this order. Furthermore, if support for brush caching was not specified in the

179/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

Brush Capability Set (see [MS-RDPBCGR] section 2.2.7.1.7), and a cached brush is included in the
GlyphIndex order, the client SHOULD ignore this order.

3.2.5.1.1.1.14 Processing of FastIndex

The structure and fields of the FastIndex Primary Drawing Order are specified in section
2.2.2.2.1.1.2.14, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

The decoding and processing of the FastIndex Order follow the same principles as those outlined for
the GlyphIndex Order specified in section 3.2.5.1.1.1.13. However, the FastIndex Order does not
use cached brushes and also utilizes a more efficient field encoding.

3.2.5.1.1.1.15 Processing of FastGlyph

The structure and fields of the FastGlyph Primary Drawing Order are specified in section
2.2.2.2.1.1.2.15, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

If support for glyph caching was not specified in the Glyph Cache Capability Set (see [MS-RDPBCGR
section 2.2.7.1.8), the client SHOULD ignore this order because it requires the existence of the
glyph caches (see section 3.1.1.1.2).

All of the glyphs associated with the glyph cache indices specified in the order MUST have been
received by the client in a prior Revision 1 or 2 Cache Glyph Secondary Drawing Order (see sections
3.2.5.1.2.1.4 and 3.2.5.1.2.1.5) or a FastGlyph Primary Drawing Order.

Once the client has completed decoding and processing the FastGlyph order, and the glyph has been
rendered successfully, the glyph data MUST be stored in the specified glyph cache.

3.2.5.1.1.1.16 Processing of PolygonSC

The structure and fields of the PolygonSC Primary Drawing Order are specified in section
2.2.2.2.1.1.2.16, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

3.2.5.1.1.1.17 Processing of PolygonCB

The structure and fields of the PolygonCB Primary Drawing Order are specified in section
2.2.2.2.1.1.2.17, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

If a cached brush is specified in this order, that brush MUST have been received by the client in a
prior Cache Brush Secondary Drawing Order (see section 3.2.5.1.2.1.6). If this is not the case, the
client SHOULD ignore this order. Furthermore, if support for brush caching was not specified in the
Brush Capability Set (see [MS-RDPBCGR] section 2.2.7.1.7), and a cached brush is included in the
PolygonCB order, the client SHOULD ignore this order.

3.2.5.1.1.1.18 Processing of Polyline

The structure and fields of the Polyline Primary Drawing Order are specified in section
2.2.2.2.1.1.2.18, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

180/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.2.5.1.1.1.19 Processing of EllipseSC

The structure and fields of the EllipseSC Primary Drawing Order are specified in section

2.2.2.2.1.1.2.19, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

3.2.5.1.1.1.20 Processing of EllipseCB

The structure and fields of the EllipseCB Primary Drawing Order are specified in section

2.2.2.2.1.1.2.20, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

If a cached brush is specified in this order, that brush MUST have been received by the client in a
prior Cache Brush Secondary Drawing Order (see section 3.2.5.1.2.1.6). If this is not the case, the
client SHOULD ignore this order. Furthermore, if support for brush caching was not specified in the

Brush Capability Set (see [MS-RDPBCGR] section 2.2.7.1.7), and a cached brush is included in the
EllipseCB order, the client SHOULD ignore this order.

3.2.5.1.1.1.21 Processing of DrawNineGrid

The structure and fields of the DrawNineGrid Primary Drawing Order are specified in section

2.2.2.2.1.1.2.21, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

If support for NineGrid bitmap caching was not specified in the DrawNineGrid Cache Capability Set
(see section 2.2.1.2), the client SHOULD ignore the order since the order refers to NineGrid bitmaps
in the NineGrid Bitmap Cache (see section 3.1.1.1.6).

The source bitmap (which resides in the NineGrid Bitmap Cache) MUST have been created and
initialized as a result of processing prior Create NineGrid Bitmap (see section 3.2.5.1.3.1.3) and
Stream Bitmap (see section 3.2.5.1.3.1.4) Alternate Secondary Orders.

3.2.5.1.1.1.22 Processing of MultiDrawNineGrid

The structure and fields of the MultiDrawNineGrid Primary Drawing Order are specified in section

2.2.2.2.1.1.2.22, and the techniques described in section 3.2.5.1.1.1 demonstrate how to decode
and process the order.

The decoding and processing of the MultiDrawNineGrid Order follow the same principles as those
outlined for the DrawNineGrid order specified in section 3.2.5.1.1.1.21. However, the

MultiDrawNineGrid includes multiple clipping rectangles, as opposed to the DrawNineGrid order,
which only includes one clipping rectangle.

3.2.5.1.2 Secondary Drawing Orders

3.2.5.1.2.1 Processing Secondary Drawing Orders

All secondary drawing orders are identified by the Secondary Drawing Order Header (section
2.2.2.2.1.2.1.1) and are used to manipulate the RDP caches (section 3.1.1.1):

» The Cache Bitmap (Revision 1) Secondary Drawing Order (section 3.2.5.1.2.1.1) manages the
Revision 1 Bitmap Caches (section 3.1.1.1.1).

181 / 284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

= The Cache Bitmap (Revision 2) Secondary Drawing Order (section 3.2.5.1.2.1.2) and Cache
Bitmap (Revision 3) Secondary Drawing Order (section 2.2.2.2.1.2.8) manage the Revision 2
Bitmap Caches (section 3.1.1.1.1).

= The Cache Color Table Secondary Drawing Order (section 3.2.5.1.2.1.3) manages the Color Table
Cache (section 3.1.1.1.3).

= The Revision 1 and 2 Cache Glyph Secondary Drawing Orders (sections 3.2.5.1.2.1.4 and
3.2.5.1.2.1.5) manage the Glyph Cache (section 3.1.1.1.2).

= The Cache Brush Secondary Drawing Order (section 3.2.5.1.2.1.6) manages the Brush Cache
(section 3.1.1.1.4).

If the client has not advertised support for a particular cache type, it SHOULD ignore any secondary
and primary drawing orders associated with that cache, if they are sent by the server.

3.2.5.1.2.1.1 Processing of Cache Bitmap (Revision 1)

The structure and fields of the Cache Bitmap (Revision 1) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.2. The order fields MUST be processed in accordance with this description.

If the client does not support the Revision 1 bitmap caches (specified in the Revision 1 Bitmap
Cache Capability Set described in [MS-RDPBCGR] section 2.2.7.1.4.1), or the MemBIt (section
2.2.2.2.1.1.2.9) and Mem3BIt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders, this order
SHOULD be ignored.

3.2.5.1.2.1.2 Processing of Cache Bitmap (Revision 2)

The structure and fields of the Cache Bitmap (Revision 2) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.3. The order fields MUST be processed in accordance with this description.

The destination cache in which to store the bitmap that is encapsulated in the cache order will either
be a Standard Bitmap Cache (section 3.2.1.3) or a Persistent Bitmap Cache (section 3.2.1.4),
depending on the cache structure that was specified using the Revision 2 Bitmap Cache Capability
Set ([MS-RDPBCGR] sections 2.2.7.1.4.2 and 2.2.7.1.4.2.1). If the target cache is persistent, then
the server MUST include a 64-bit key that uniquely identifies the bitmap (indicated by the presence
of the CBR2_PERSISTENT_KEY_PRESENT (0x02) flag). The client MUST save this key in the
Persisted Bitmap Keys store (section 3.2.1.5) so that the Persistent Key List PDUs can be sent as
specified in [MS-RDPBCGR] section 3.2.5.3.17.

If the client does not support the Revision 2 bitmap caches (specified in the Revision 2 Bitmap
Cache Capability Set described in [MS-RDPBCGR] section 2.2.7.1.4.2), or the MemBIt (section
2.2.2.2.1.1.2.9) and Mem3BIt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders, this order
SHOULD be ignored.

3.2.5.1.2.1.3 Processing of Cache Color Table

The structure and fields of the Cache Color Table Secondary Drawing Order are specified in section
2.2.2.2.1.2.4. The order fields MUST be processed in accordance with this description.

If the client does not support the MemBlIt (section 2.2.2.2.1.1.2.9) and Mem3BIt (section
2.2.2.2.1.1.2.10) Primary Drawing Orders, this order SHOULD be ignored. Furthermore, if a client
encounters any inconsistencies or errors when decoding and processing the Cache Color Table
Secondary Drawing Order, the connection SHOULD be dropped.

182 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.2.5.1.2.1.4 Processing of Cache Glyph (Revision 1)

The structure and fields of the Cache Glyph (Revision 1) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.5. The order fields MUST be processed in accordance with this description.

If the client does not support glyph caching (specified in the Glyph Cache Capability Set described in

MS-RDPBCGR] section 2.2.7.1.8) or the GlyphIndex (section 2.2.2.2.1.2.5), Fastindex (section
2.2.2.2.1.1.2.14), and FastGlyph (section 2.2.2.2.1.1.2.15) Primary Drawing Orders, this order
SHOULD be ignored. Furthermore, if a client encounters any inconsistencies or errors when decoding
and processing the Cache Glyph (Revision 1) Secondary Drawing Order, the connection SHOULD be
dropped.

3.2.5.1.2.1.5 Processing of Cache Glyph (Revision 2)

The structure and fields of the Cache Glyph (Revision 2) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.6. The order fields MUST be processed in accordance with this description.

The decoding and processing of the Cache Glyph (Revision 2) order follows the same principles as
those outlined for the Cache Glyph (Revision 1) order specified in section 3.2.5.1.2.1.4. However,
the Revision 2 order utilizes a more efficient field encoding. Furthermore, if a client encounters any
inconsistencies or errors when decoding and processing the Cache Glyph (Revision 2) Secondary
Drawing Order, the connection SHOULD be dropped.

3.2.5.1.2.1.6 Processing of Cache Brush

The structure and fields of the Cache Brush Secondary Drawing Order are specified in section
2.2.2.2.1.2.7. The order fields MUST be processed in accordance with this description.

The primary drawing orders that use cached brushes are:
= PatBIt (see section 3.2.5.1.1.1.3)

= MultiPatBIt (see section 3.2.5.1.1.1.4)

= Mem3BlIt (see section 3.2.5.1.1.1.10)

= GlyphIndex (see section 3.2.5.1.1.1.13)

= PolygonCB (see section 3.2.5.1.1.1.17)

= EllipseCB (see section 3.2.5.1.1.1.20)

If the client does not support brush caching (specified in the Brush Capability Set described in [MS-
RDPBCGR] section 2.2.7.1.7) or any primary drawing orders that use cached brushes, this order
SHOULD be ignored. Furthermore, if a client encounters any inconsistencies or errors when decoding
and processing the Cache Brush Secondary Drawing Order, the connection SHOULD be dropped.

3.2.5.1.2.1.7 Processing of Cache Bitmap (Revision 3)

The structure and fields of the Cache Bitmap (Revision 3) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.8. The order fields MUST be processed in accordance with this description.

The destination cache in which to store the bitmap that is encapsulated in the cache order will either
be a Standard Bitmap Cache (section 3.2.1.3) or a Persistent Bitmap Cache (section 3.2.1.4),
depending on the cache structure that was specified using the Revision 2 Bitmap Cache Capability
Set ([MS-RDPBCGR] sections 2.2.7.1.4.2 and 2.2.7.1.4.2.1). The server MUST include a 64-bit key
that uniquely identifies the bitmap in the Cache Bitmap (Revision 3) Order. If the target cache is

183/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

persistent, the client MUST save this key in the Persisted Bitmap Keys store (section 3.2.1.5) so that
the Persistent Key List PDUs can be sent as specified in [MS-RDPBCGR] section 3.2.5.3.17.

If the client does not support the Cache Bitmap (Revision 3) Order (support is specified by including
the ORDERFLAGS_EX_CACHE_BITMAP_REV3_SUPPORT (0x0002) flag in the orderSupportExFlags
field of the Order Capability Set defined in [MS-RDPBCGR] section 2.2.7.1.3), then this order
SHOULD be ignored. Furthermore, if the client does not support the Revision 2 bitmap caches
(specified in the Revision 2 Bitmap Cache Capability Set described in [MS-RDPBCGR] section
2.2.7.1.4.2), or the MemBIt (section 2.2.2.2.1.1.2.9) and Mem3Blt (section 2.2.2.2.1.1.2.10)
Primary Drawing Orders, this order SHOULD be ignored.

3.2.5.1.3 Alternate Secondary Drawing Orders

3.2.5.1.3.1 Processing Alternate Secondary Drawing Orders

All alternate secondary drawing orders are identified by the Alternate Secondary Drawing Order
Header (section 2.2.2.2.1.3.1.1) and are used to manage offscreen and NineGrid bitmaps and to
transport opaque GDI+ 1.1 records:

*= The Create Offscreen Bitmap (see section 3.2.5.1.3.1.1) and Switch Surface (see section

3.2.5.1.3.1.2) Alternate Secondary Drawing Orders are used to manipulate the bitmaps in the
Offscreen Bitmap Cache (see section 3.1.1.1.5).

= The Create NineGrid Bitmap (see section 3.2.5.1.3.1.3) and Stream Bitmap (see section
3.2.5.1.3.1.4) Alternate Secondary Drawing Orders are used to manipulate the bitmaps in the
NineGrid Bitmap Cache (see section 3.1.1.1.6).

= The GDI+ Alternate Secondary Drawing Orders (see section 2.2.2.2.1.3.6) are used to transport

opaque GDI+ 1.1 records for processing or placement in the GDI+ Caches (see section
3.1.1.1.7).

If the client has not advertised support for a particular cache type or feature, it SHOULD ignore any
alternate secondary and primary drawing orders associated with that cache or feature, if they are
sent by the server.

3.2.5.1.3.1.1 Processing of Create Offscreen Bitmap

The structure and fields of the Create Offscreen Bitmap Alternate Secondary Drawing Order are

specified in section 2.2.2.2.1.3.2. The order fields MUST be processed in accordance with this
description.

If the client does not support offscreen bitmaps (specified in the Offscreen Bitmap Cache Capability
Set described in [MS-RDPBCGR] section 2.2.7.1.9), or the MemBIt (section 2.2.2.2.1.1.2.9) and
Mem3Blt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders, this order SHOULD be ignored.

3.2.5.1.3.1.2 Processing of Switch Surface

The structure and fields of the Switch Surface Alternate Secondary Drawing Order are specified in
section 2.2.2.2.1.3.3. The order fields MUST be processed in accordance with this description.

The Create Offscreen Bitmap Alternate Secondary Drawing Order (see section 3.2.5.1.3.1.1), which
is used to create the offscreen bitmap referenced in this order, MUST have been received by the
client before processing this order.

184 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

If the client does not support offscreen bitmaps (specified in the Offscreen Bitmap Cache Capability
Set described in [MS-RDPBCGR] section 2.2.7.1.9), or the MemBlIt (section 2.2.2.2.1.1.2.9) and
Mem3BIt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders, this order SHOULD be ignored.

The client SHOULD drop the connection if the value in the bitmapId field is less than
SCREEN_BITMAP_SURFACE (0xFFFF) but greater than the maximum number of entries allowed in
the Offscreen Bitmap Cache, as specified by the offscreenCacheEntries field of the Offscreen
Bitmap Cache Capability Set ([MS-RDPBCGR] section 2.2.7.1.9).

3.2.5.1.3.1.3 Processing of Create NineGrid Bitmap

The structure and fields of the Create NineGrid Bitmap Alternate Secondary Drawing Order are
specified in section 2.2.2.2.1.3.4. The order fields MUST be processed in accordance with this
description.

If the client does not support rendering NineGrid bitmaps (specified in the DrawNineGrid Capability
Set described in section 2.2.1.2), or support the DrawNineGrid and MultiDrawNineGrid Primary
Drawing Orders (see sections 3.2.5.1.1.1.21 and 3.2.5.1.1.1.22, respectively), this order SHOULD
be ignored.

3.2.5.1.3.1.4 Processing of Stream Bitmap Orders

The structure and fields of the Stream Bitmap First and Stream Bitmap Next Alternate Secondary
Drawing Orders are specified in sections 2.2.2.2.1.3.5.1 and 2.2.2.2.1.3.5.2, respectively. The order
fields MUST be processed in accordance with this description.

The Stream Bitmap Orders are only used to populate the NineGrid Bitmap Cache (see section
3.1.1.1.6), and MUST follow immediately before the reception of a Create NineGrid Bitmap Alternate
Secondary Drawing Order (see section 3.3.5.1.3.1.3). The NineGrid Bitmap Cache entry to populate
with the streamed bitmap data is implicitly assumed to be the entry specified in the Create NineGrid
Bitmap Order.

If the client does not support rendering NineGrid bitmaps (specified in the DrawNineGrid Capability
Set described in section 2.2.1.2), or support the DrawNineGrid or MultiDrawNineGrid Primary
Drawing Orders (see sections 3.2.5.1.1.1.21 and 3.2.5.1.1.1.22, respectively), these orders
SHOULD be ignored.

3.2.5.1.3.1.5 GDI+ Orders

3.2.5.1.3.1.5.1 Processing of Draw GDI+ Cache Orders

The structure and fields of the Draw GDI+ Cache First, Draw GDI+ Cache Next, and Draw GDI+
Cache End Alternate Secondary Drawing Orders are specified in sections 2.2.2.2.1.3.6.2,

2.2.2.2.1.3.6.3, and 2.2.2.2.1.3.6.4, respectively. The order fields MUST be processed in accordance
with these descriptions.

If the client does not support rendering GDI+ 1.1 primitives (specified in the Draw GDI+ Capability
Set Cache described in section 2.2.1.3), these orders SHOULD be ignored.

3.2.5.1.3.1.5.2 Processing of Draw GDI+ Orders

The structure and fields of the Draw GDI+ First, Draw GDI+ Next, and Draw GDI+ End Alternate
Secondary Drawing Orders are specified in sections 2.2.2.2.1.3.6.5, 2.2.2.2.1.3.6.6, and
2.2.2.2.1.3.6.7, respectively. The order fields MUST be processed in accordance with these
descriptions.

185/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

If the client does not support rendering GDI+ 1.1 primitives (specified in the Draw GDI+ Capability
Set Cache described in section 2.2.1.3), these orders SHOULD be ignored.

3.2.5.2 Error Conditions

3.2.5.2.1 Sending of Bitmap Cache Error PDU

The Bitmap Cache Error PDU SHOULD be sent to a server that has requested the rendering of a
cached bitmap that is not available in the client Bitmap Cache (see section 3.1.1.1.1).

Rendering of items from the bitmap cache is accomplished using the MemBIt (section
2.2.2.2.1.1.2.9) and Mem3BIt (section 2.2.2.2.1.1.2.10) Primary Drawing Orders. If an error occurs
during rendering, the client SHOULD complete the rendering operation by using a black bitmap, and
then send a Bitmap Cache Error PDU to the server.

The structure and fields of the Bitmap Cache Error PDU are specified in section 2.2.2.3.1.1, and the
techniques described in [MS-RDPBCGR] section 3.2.5.1 demonstrate how to initialize the contents of
the PDU. The contents of this PDU MAY be compressed.

3.2.5.2.2 Sending of the Offscreen Bitmap Cache Error PDU

The Offscreen Bitmap Cache Error PDU SHOULD be sent to a server when the creation of an
offscreen bitmap in the Offscreen Bitmap Cache (see section 3.1.1.1.5) cannot be fulfilled due to a
client-side failure (for example, low memory conditions).

Creation of an offscreen bitmap is accomplished by using the Create Offscreen Bitmap (section
2.2.2.2.1.3.2) Alternate Secondary Drawing Order. The client SHOULD send the Offscreen Bitmap
Cache Error PDU to the server to request that it disable offscreen bitmap caching and resend the
drawing updates associated with the affected area. Any further errors related to the offscreen
bitmap caching MUST be ignored by the client.

The structure and fields of the Offscreen Bitmap Cache Error PDU are specified in section 2.2.2.3.2,
and the techniques described in [MS-RDPBCGR] section 3.2.5.1 demonstrate how to initialize the
contents of the PDU. The contents of this PDU MAY be compressed.

3.2.5.2.3 Sending of the DrawNineGrid Cache Error PDU

The DrawNineGrid Cache Error PDU SHOULD be sent to a server when the creation of a NineGrid
bitmap in the NineGrid Bitmap Cache (see section 3.1.1.1.6) cannot be fulfilled due to a client-side
failure (for example, low memory conditions).

Creation of a NineGrid bitmap in the NineGrid Bitmap Cache is accomplished by first using the
Create NineGrid Bitmap (section 2.2.2.2.1.3.4) Alternate Secondary Drawing Order, and then
streaming the bitmap into the cache using the Stream Bitmap First (section 2.2.2.2.1.3.5.1) and
Stream Bitmap Next (section 2.2.2.2.1.3.5.2) Alternate Secondary Drawing Orders. If processing of
any of these orders fails, the client SHOULD send the DrawNineGrid Error PDU to the server to
request that it disable NineGrid bitmap caching and resend the drawing updates associated with the
affected area. Any further errors related to NineGrid bitmap caching MUST be ignored by the client.

The structure and fields of the DrawNineGrid Cache Error PDU are specified in section 2.2.2.3.3, and
the techniques described in [MS-RDPBCGR] section 3.2.5.1 demonstrate how to initialize the
contents of the PDU. The contents of this PDU MAY be compressed.

186 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.2.5.2.4 Sending of the GDI+ Error PDU

The GDI+ Error PDU SHOULD be sent to a server when a GDI+ alternate secondary drawing order
cannot be successfully processed due to a GDI+ rendering error or caching issue.

The client SHOULD send the GDI+ Error PDU to the server to request that it resend all GDI+ content
as bitmaps and not rely on the local client side GDI+ rendering. (The six GDI+ PDUs that are used
to cache and render GDI+ primitives are specified in section 2.2.2.2.1.3.6.) Any further errors
related to GDI+ rendering SHOULD be ignored by the client.

The structure and fields of the GDI+ Error PDU are specified in section 2.2.2.3.4, and the techniques

described in [MS-RDPBCGR] section 3.2.5.1 demonstrate how to initialize the contents of the PDU.
The contents of this PDU MAY be compressed.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.
3.3 Server Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as

long as the implementation produces external behavior that is consistent with that described in this
document.

3.3.1.1 Cached Bitmap Keys

The Cached Bitmap Keys store holds a collection of 64-bit bitmap keys, each of which uniquely
identifies a bitmap image that has been sent to the client by using a Cache Bitmap (Revision 2)
Secondary Drawing Order (section 2.2.2.2.1.2.3), or Cache Bitmap (Revision 3) Secondary Drawing
Order (section 2.2.2.2.1.2.8).

3.3.1.2 Primary Drawing Order History

The Primary Drawing Order History store holds information on the fields that have been sent in
primary drawing orders. There are three pieces of information that MUST be recorded:

= Last primary order type constructed
= Current bounding rectangle

= Per-order record of the last value used in each field

187/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

These records are updated as each primary drawing order is constructed, and are used to efficiently
encode primary drawing orders for transmission on the wire using as few bytes as possible (see
section 3.3.5.1.1.1).

3.3.1.3 Bitmap Cache Wait List

The Bitmap Cache Wait List stores a collection of 64-bit identifiers, each of which identifies a bitmap
that is a candidate for placement in the Bitmap Cache (see section 3.1.1.1.1). The usage of the
Bitmap Cache Wait List is specified using the Revision 2 Bitmap Cache Capability Set (see [MS-
RDPBCGR] section 2.2.7.1.4.2).

Bitmaps are placed into the Bitmap Cache Wait List the first time they are encountered in a server
drawing operation. If any of the bitmaps in the wait list are encountered during a subsequent
drawing operation, they MUST be removed from the wait list and placed into a Bitmap Cache.

Using a wait list in conjunction with persistent bitmap caching ensures that only bitmaps that are
used more than once in rendering operations are written to persistent storage. In effect, it implies
that a bitmap MUST be sent twice to the client before it is actually stored in a valid Bitmap Cache

entry. (The first time it is sent to the client, it is used and not cached. The second time it is sent to
the client, it is cached and then used.)

3.3.2 Timers

None.

3.3.3 Initialization
None.

3.3.4 Higher-Layer Triggered Events

None.
3.3.5 Processing Events and Sequencing Rules

3.3.5.1 Drawing Orders

All drawing orders are encapsulated in an Orders Update (section 2.2.2.1), which is sent as part of

the Graphics Update PDU (see [MS-RDPBCGR] section 2.2.9.1.1.3); or they are encapsulated in a
Fast-Path Orders Update (section 2.2.2.2), which is sent as part of the Fast-Path Update PDU (see
MS-RDPBCGR] section 2.2.9.1.2).

There are three classes of drawing orders:

= Primary Drawing Orders (section 3.2.5.1.1)

= Secondary Drawing Orders (section 2.2.2.2.1.2)

= Alternate Secondary Drawing Orders (section 2.2.2.2.1.3)

Orders belonging to each of these classes are packed together into an Orders Update structure or a
Fast-Path Orders Update structure, each order being aligned on a byte boundary.

188/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.3.5.1.1 Primary Drawing Orders

3.3.5.1.1.1 Construction of a Primary Drawing Order
All primary drawing orders MUST conform to the structure and rules defined in section 2.2.2.2.1.1.2.

To efficiently construct a primary drawing order, the server MUST use a Primary Drawing Order
History (section 3.2.1.1) store. This store holds three pieces of information:

= Last primary order type constructed.
= Current bounding rectangle.
= Per-order record of the last value used in each field.

These stored records allow the server to use the minimum amount of data when constructing an
order; if a field is unchanged from the value that it had when the order type was last sent, it
SHOULD NOT be included in the order being constructed. Hence, only fields that have new values
are required to be sent to the client. The fields that are present in the order MUST be indicated by
the fieldFlags field.

If all of the Coord-type fields (see section 2.2.2.2.1.1.1.1) in an order can be represented as a
signed delta in the range -127 to 128 from the previous field value, the size of the order SHOULD be
optimized by using delta-coordinates (see sections 2.2.2.2.1.1.1.1 and 2.2.2.2.1.1.2). In that case,
all of the fields SHOULD be represented using delta-coordinates, and the TS_DELTA_COORDINATES
(0x10) flag MUST be used in the primary drawing order header to indicate this fact.

Before a given order is sent, the server MUST also ensure that all of the data required to process the
order is accessible to the client. For example, if the order refers to a cached item, that item MUST
be present in the client-side cache when the order is processed. Or, if palettized color is being used,
the correct palette MUST be applied at the client-side.

Once a primary drawing order has been constructed and transmitted to the client, the server MUST
update the records in the Primary Drawing Order History (section 3.3.1.2) to ensure that future
encodings use the minimum fields and data required.

3.3.5.1.1.1.1 Construction of DstBIt

The structure and fields of the DstBlt Primary Drawing Order are specified in section 2.2.2.2.1.1.2.1.
The order fields MUST be populated in accordance with this description and the instructions detailed
in section 3.3.5.1.1.1.

The DstBIt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.2 Construction of MultiDstBIt

The structure and fields of the MultiDstBIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.2. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The MultiDstBIt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

189 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.3.5.1.1.1.3 Construction of PatBIt

The structure and fields of the PatBIt Primary Drawing Order are specified in section 2.2.2.2.1.1.2.3.
The order fields MUST be populated in accordance with this description and the instructions detailed
in section 3.3.5.1.1.1.

If a cached brush is specified in this order, that brush MUST be sent to the client before this order is
dispatched by using a Cache Brush Secondary Drawing Order (see section 3.3.5.1.2.1.6). (The client

specifies support for brush caching using the Brush Capability Set defined in [MS-RDPBCGR] section
2.2.7.1.7.)

The PatBIt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.4 Construction of MultiPatBIt

The structure and fields of the MultiPatBlt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.4. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

If a cached brush is specified in this order, that brush MUST be sent to the client before this order is
dispatched by using a Cache Brush Secondary Drawing Order (see section 3.3.5.1.2.1.6). (The client
specifies support for brush caching using the Brush Capability Set defined in [MS-RDPBCGR] section
2.2.7.1.7.)

The MultiPatBlt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.5 Construction of OpaqueRect

The structure and fields of the OpaqueRect Primary Drawing Order are specified in section
2.2.2.2.1.1.2.5. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The OpaqueRect Order MUST NOT be sent to the client if support for it was not specified in the
Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.6 Construction of MultiOpaqueRect

The structure and fields of the MultiOpaqueRect Primary Drawing Order are specified in section
2.2.2.2.1.1.2.6. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The MultiOpaqueRect Order MUST NOT be sent to the client if support for it was not specified in the
Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.7 Construction of ScrBit

The structure and fields of the ScrBIt Primary Drawing Order are specified in section 2.2.2.2.1.1.2.7.
The order fields MUST be populated in accordance with this description and the instructions detailed
in section 3.3.5.1.1.1.

The ScrBlt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

190 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.3.5.1.1.1.8 Construction of MultiScrBlt

The structure and fields of the MultiScrBIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.8. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The MultiScrBIt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.9 Construction of MemBIt

The structure and fields of the MemBIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.9. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The source bitmap associated with the MemBIt Order MUST originate from one of three possible
locations:

1. One of the bitmap caches (section 3.1.1.1.1)
2. The Offscreen Bitmap Cache (section 3.1.1.1.5)
3. The Bitmap Cache Wait List (section 3.3.1.3)

If the source bitmap associated with the MemBIt Order refers to an item in one of the bitmap
caches, the actual bitmap data MUST be sent to the client before this order is dispatched by using a
Cache Bitmap Secondary Drawing Order (sections 3.3.5.1.2.1.1, 3.3.5.1.2.1.2, and 3.3.5.1.2.1.7).

If the source bitmap associated with the MemBIt Order refers to an item in the Offscreen Bitmap
Cache, the actual entry MUST be created and initialized using the Create Offscreen Bitmap (section
3.3.5.1.3.1.1) and Switch Surface (section 3.3.5.1.3.1.2) Alternate Secondary Drawing Orders; the
Create Offscreen Bitmap Order creates the offscreen bitmap while the Switch Surface Order is used
to redirect all drawing operations to the offscreen bitmap. The cachelndex field of the MemBIt Order
MUST be set to the index of the Offscreen Bitmap Cache entry, and the bitmap cache ID (specified
as part of the cacheld field) MUST be set to TS_BITMAPCACHE_SCREEN_ID (OxFF).

If the source bitmap associated with the MemBIt Order refers to a bitmap in the Bitmap Cache Wait
List, the actual bitmap data MUST be sent to the client before this order is dispatched by using a
Cache Bitmap (Revision 2) Secondary Drawing Order with the CBR2_DO_NOT_CACHE (0x10) flag
set (section 3.3.5.1.2.1.2), or a Cache Bitmap (Revision 3) Secondary Drawing Order with the
CBR3_DO_NOT_CACHE (0x10) flag set (section 3.3.5.1.2.1.7). The cacheIndex field of the MemBIt
Order MUST be set to BITMAPCACHE_WAITING_LIST_INDEX (32767), and the bitmap cache ID
(specified as part of the cacheld field) MUST be set to the ID of the bitmap cache in which the
bitmap will be stored when it is cached.

If palettized color is being used, the color table specified in the MemBIt Order MUST be sent to the
client before this order is dispatched by using a Cache Color Table Secondary Drawing Order
(section 3.3.5.1.2.1.3). This step ensures that the client is able to render the cached bitmap
correctly. Support for a Color Table Cache (section 3.1.1.1.3) is implied by support for the MemBIt
Order.

The MemBIt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set ([MS-RDPBCGR] section 2.2.7.1.3).

191/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.3.5.1.1.1.10 Construction of Mem3BIt

The structure and fields of the Mem3BlIt Primary Drawing Order are specified in section
2.2.2.2.1.1.2.10. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The construction of the Mem3BIt Order follows the same principles as those outlined for the MemBIt
Order specified in section 3.3.5.1.1.1.9. However, the Mem3BIt Order includes fields to specify a
brush.

If a cached brush is specified in this order, that brush MUST be sent to the client before this order is
dispatched by using a Cache Brush Secondary Drawing Order (see section 3.3.5.1.2.1.6). (The client
specifies support for brush caching using the Brush Capability Set defined in [MS-RDPBCGR] section
2.2.7.1.7.)

The Mem3BIt Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.11 Construction of LineTo

The structure and fields of the LineTo Primary Drawing Order are specified in section
2.2.2.2.1.1.2.11. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The LineTo Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.12 Construction of SaveBitmap

The structure and fields of the SaveBitmap Primary Drawing Order are specified in section
2.2.2.2.1.1.2.12. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The SaveBitmap Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.13 Construction of GlyphIndex

The structure and fields of the GlyphIndex Primary Drawing Order are specified in section
2.2.2.2.1.2.5. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

All of the glyphs associated with the glyph cache indices specified in the order MUST be sent to the
client before this order is dispatched by using a Revision 1 or 2 Cache Glyph Secondary Drawing
Order (see sections 3.3.5.1.2.1.1 and 3.3.5.1.2.1.2) or a FastGlyph Primary Drawing Order (see
section 3.3.5.1.1.1.15). The usage of glyph cache indices implies that support for glyph caching
MUST have been specified in the Glyph Cache Capability Set (see [MS-RDPBCGR] section 2.2.7.1.8).
If a fragment cache index is specified in a USE clause, that fragment MUST have been part of an
ADD clause in a prior GlyphIndex or FastIndex order.

If a cached brush is specified in this order, that brush MUST be sent to the client before this order is
dispatched by using a Cache Brush Secondary Drawing Order (see section 3.3.5.1.2.1.6). (The client

specifies support for brush caching using the Brush Capability Set defined in [MS-RDPBCGR] section
2.2.7.1.7.)

192 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

If support for the FastIndex Primary Drawing Order (see section 2.2.2.2.1.1.2.14) was indicated in
the Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3), then the FastIndex Primary
Drawing Order SHOULD be used to send the glyph indices.

3.3.5.1.1.1.14 Construction of FastIndex

The structure and fields of the FastIndex Primary Drawing Order are specified in section
2.2.2.2.1.1.2.14. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The construction of the FastIndex Order follows the same principles as those outlined for the
GlyphIndex Order specified in section 3.3.5.1.1.1.13. However, the Fastindex Order does not use
cached brushes and also utilizes a more efficient field encoding.

The FastIndex Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.15 Construction of FastGlyph

The structure and fields of the FastGlyph Primary Drawing Order are specified in section
2.2.2.2.1.1.2.15. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

All of the glyphs associated with the glyph cache indices specified in the order MUST be sent to the
client before this order is dispatched by using a Revision 1 or 2 Cache Glyph Secondary Drawing
Order (see sections 2.2.2.2.1.2.2 and 2.2.2.2.1.2.3) or a prior FastGlyph Primary Drawing Order.
The usage of glyph cache indices implies that support for glyph caching MUST have been specified in
the Glyph Cache Capability Set (see [MS-RDPBCGR] section 2.2.7.1.8).

The FastGlyph Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.16 Construction of PolygonSC

The structure and fields of the PolygonSC Primary Drawing Order are specified in section
2.2.2.2.1.1.2.16. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The PolygonSC Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.17 Construction of PolygonCB

The structure and fields of the PolygonCB Primary Drawing Order are specified in section
2.2.2.2.1.1.2.17. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

If a cached brush is specified in this order, that brush MUST be sent to the client before this order is
dispatched by using a Cache Brush Secondary Drawing Order (see section 3.3.5.1.2.1.6). (The client
specifies support for brush caching using the Brush Capability Set defined in [MS-RDPBCGR] section
2.2.7.1.7.)

The PolygonCB Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

193/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

3.3.5.1.1.1.18 Construction of PolyLine

The structure and fields of the Polyline Primary Drawing Order are specified in section
2.2.2.2.1.1.2.18. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The Polyline Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.19 Construction of EllipseSC

The structure and fields of the EllipseSC Primary Drawing Order are specified in section
2.2.2.2.1.1.2.19. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The EllipseSC Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.20 Construction of EllipseCB

The structure and fields of the EllipseCB Primary Drawing Order are specified in section
2.2.2.2.1.1.2.20. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

If a cached brush is specified in this order, that brush MUST be sent to the client before this order is
dispatched by using a Cache Brush Secondary Drawing Order (see section 3.3.5.1.2.1.6). (The client

specifies support for brush caching using the Brush Capability Set defined in [MS-RDPBCGR] section
2.2.7.1.7.)

The EllipseCB Order MUST NOT be sent to the client if support for it was not specified in the Order
Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.21 Construction of DrawNineGrid

The structure and fields of the DrawNineGrid Primary Drawing Order are specified in section
2.2.2.2.1.1.2.21. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

Support for the NineGrid Bitmap Cache (see section 3.1.1.1.6) MUST have been specified using the
DrawNineGrid Cache Capability Set (section 2.2.1.2) because the order refers to the ID of a
NineGrid-compatible bitmap in this cache. Furthermore, this bitmap MUST have been created and
initialized before this order is dispatched by using the Create NineGrid Bitmap (see section
3.3.5.1.3.1.3) and Stream Bitmap (see section 3.3.5.1.3.1.4) Alternate Secondary Orders.

The DrawNineGrid Order MUST NOT be sent to the client if support for it was not specified in the
Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.1.1.22 Construction of MultiDrawNineGrid

The structure and fields of the MultiDrawNineGrid Primary Drawing Order are specified in section
2.2.2.2.1.1.2.22. The order fields MUST be populated in accordance with this description and the
instructions detailed in section 3.3.5.1.1.1.

The construction of the MultiDrawNineGrid Order follows the same principles as those outlined for
the DrawNineGrid order specified in section 3.3.5.1.1.1.21. However, the MultiDrawNineGrid

194 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

includes multiple clipping rectangles, as opposed to the DrawNineGrid Order, which only includes
one clipping rectangle.

The MultiDrawNineGrid Order MUST NOT be sent to the client if support for it was not specified in
the Order Capability Set (see [MS-RDPBCGR] section 2.2.7.1.3).

3.3.5.1.2 Secondary Drawing Orders

3.3.5.1.2.1 Construction of Secondary Drawing Orders

All secondary drawing orders are identified by the Secondary Drawing Order Header (section
2.2.2.2.1.2.1.1). Client support for a given secondary order is determined by the capabilities
advertised by the client.

3.3.5.1.2.1.1 Construction of Cache Bitmap (Revision 1)

The structure and fields of the Cache Bitmap (Revision 1) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.2. The order fields MUST be populated in accordance with this description.

The bitmaps that are cached by the Cache Bitmap (Revision 1) Secondary Drawing Order can be
consumed by future MemBIt (see section 3.3.5.1.1.1.9) and Mem3BIt (see section 3.3.5.1.1.1.10)
Primary Drawing Orders.

The bitmap data MUST NOT include a Compressed Data Header structure (see [MS-RDPBCGR
section 2.2.9.1.1.3.1.2.3) if the exclusion of this header was specified in the General Capability Set
(see [MS-RDPBCGR] section 2.2.7.1.1).

The cache ID and cache index to use are selected by the server based on the management policies
that are implemented (for example, an LRU policy might be in effect).

The Cache Bitmap (Revision 1) Order MUST NOT be sent to the client if support for bitmap caching
was not specified using the Revision 1 Bitmap Cache Capability Set (see [MS-RDPBCGR] section
2.2.7.1.4.1). Furthermore, if client-side support for the MemBIt or Mem3BIt Primary Drawing Orders
(specified using the Order Capability Set specified in [MS-RDPBCGR] section 2.2.7.1.3) does not
exist, the Cache Bitmap (Revision 1) Order SHOULD NOT be sent to the client.

3.3.5.1.2.1.2 Construction of Cache Bitmap (Revision 2)

The structure and fields of the Cache Bitmap (Revision 2) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.3. The order fields MUST be populated in accordance with this description.

The bitmaps that are cached by the Cache Bitmap (Revision 2) Secondary Drawing Order can be
consumed by future MemBIt (see section 3.3.5.1.1.1.9) and Mem3BIt (see section 3.3.5.1.1.1.11)
Primary Drawing Orders.

The bitmap data MUST NOT include a Compressed Data Header structure (see [MS-RDPBCGR
section 2.2.9.1.1.3.1.2.3) if the exclusion of this header was specified in the General Capability Set
(see [MS-RDPBCGR] section 2.2.7.1.1).

The cache ID and cache index to use are selected by the server based on the management policies
that are implemented (for example, an LRU policy might be in effect).

If a 64-bit key identifying the bitmap MUST be generated for the bitmap (dictated by the capabilities
for the bitmap cache specified in the Revision 2 Bitmap Cache Capability Set as defined in [MS-
RDPBCGR] section 2.2.7.1.4.2), the server MUST create a unique 64-bit identifier and include it in
the Key1 and Key2 fields of the Cache Bitmap (Revision 2) Order.

195/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

If it is the first time the server is instructing the client to cache the bitmap, and a Bitmap Cache
Wait List (see section 3.3.1.3) is present, the server MUST force the bitmap into the Wait List and
set the CBR2_DO_NOT_CACHE (0x10) flag in the Cache Bitmap (Revision 2) Secondary Drawing
Order. The cacheld field MUST be set to the ID of the bitmap cache in which the bitmap will be
stored if it is encountered again, and the cachelIndex field MUST be set to
BITMAPCACHE_WAITING_LIST (32767). If the bitmap is encountered again, it MUST be removed
from the Wait List and sent to the client without the CBR2_DO_NOT_CACHE flag.

The Cache Bitmap (Revision 2) Order MUST NOT be sent to the client if support for bitmap caching
was not specified using the Revision 2 Bitmap Cache Capability Set (see [MS-RDPBCGR] section
2.2.7.1.4.2). Furthermore, if client-side support for the MemBIt (see section 3.3.5.1.1.1.9) and
Mem3BIt (see section 3.3.5.1.1.1.10) Primary Drawing Orders (specified using the Order Capability
Set specified in [MS-RDPBCGR] section 2.2.7.1.3) does not exist, the Cache Bitmap (Revision 2)
Order SHOULD NOT be sent to the client.

3.3.5.1.2.1.3 Construction of Cache Color Table

The structure and fields of the Cache Color Table Secondary Drawing Order are specified in section
2.2.2.2.1.2.4. The order fields MUST be populated in accordance with this description.

The color tables that are cached by the Cache Color Table Secondary Drawing Order can be
consumed by future MemBIt (see section 3.3.5.1.1.1.9) and Mem3BIt (see section 3.3.5.1.1.1.11)
Primary Drawing Orders.

The cache ID and cache index to use are selected by the server based on the management policies
that are implemented (for example, an LRU policy might be in effect).

The Cache Color Table Order SHOULD NOT be sent to the client if it does not support the MemBIt
and Mem3BIt Primary Drawing Orders (specified using the Order Capability Set specified in [MS-
RDPBCGR] section 2.2.7.1.3).

3.3.5.1.2.1.4 Construction of Cache Glyph (Revision 1)

The structure and fields of the Cache Glyph (Revision 1) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.5. The order fields MUST be populated in accordance with this description.

The glyphs that are cached by the Cache Glyph (Revision 1) Secondary Drawing Order can be
consumed by future GlyphIndex (see section 3.3.5.1.1.1.13), FastIndex (see section
3.3.5.1.1.1.14), and FastGlyph (see section 3.3.5.1.1.1.15) Primary Drawing Orders.

The cache index to use is selected by the server based on the management policies that are
implemented (for example, an LRU policy might be in effect).

The Cache Glyph (Revision 1) Order MUST NOT be sent to the client if support for Revision 1 glyph
caching was not specified using the Glyph Cache Capability Set (see [MS-RDPBCGR] section
2.2.7.1.8). Furthermore, if client-side support for the GlyphIndex, FastIndex, or FastGlyph Primary
Drawing Orders (specified using the Order Capability Set specified in [MS-RDPBCGR] section
2.2.7.1.3) does not exist, the Cache Glyph (Revision 1) Order SHOULD NOT be sent to the client.

3.3.5.1.2.1.5 Construction of Cache Glyph (Revision 2)

The structure and fields of the Cache Glyph (Revision 2) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.6. The order fields MUST be populated in accordance with this description.

196 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

The construction of the Cache Glyph (Revision 2) Order follows the same principles as those outlined
for the Cache Glyph (Revision 1) Order specified in section 3.3.5.1.2.1.4. However, the Cache Glyph
(Revision 2) Order utilizes a more efficient field encoding.

The Cache Glyph (Revision 2) Order MUST NOT be sent to the client if support for Revision 2 glyph
caching was not specified using the Glyph Cache Capability Set (see [MS-RDPBCGR] section
2.2.7.1.8). Furthermore, if client-side support for the GlyphIndex, FastIndex, and FastGlyph Primary
Drawing Orders (specified using the Order Capability Set specified in [MS-RDPBCGR] section
2.2.7.1.3) does not exist, the Cache Glyph (Revision 2) Order SHOULD NOT be sent to the client.

3.3.5.1.2.1.6 Construction of Cache Brush

The structure and fields of the Cache Brush Secondary Drawing Order are specified in section
2.2.2.2.1.2.7. The order fields MUST be populated in accordance with this description.

The brushes that are cached by the Cache Brush Secondary Drawing Order can be consumed by a
number of primary drawing orders:

= PatBlt (see section 3.3.5.1.1.1.3)

= MultiPatBIt (see section 3.3.5.1.1.1.4)

= Mem3BlIt (see section 3.3.5.1.1.1.10)

= GlyphIndex (see section 3.3.5.1.1.1.13)
= PolygonCB (see section 3.3.5.1.1.1.17)
= EllipseCB (see section 3.3.5.1.1.1.20)

The cache index to use is selected by the server based on the management policies that are
implemented (for example, an LRU policy might be in effect).

The Cache Brush Order MUST NOT be sent to the client if support for brush caching was not
specified using the Brush Capability Set (see [MS-RDPBCGR] section 2.2.7.1.7). Furthermore, if the
client does not support any primary drawing orders that use cached brushes, the Cache Brush Order
SHOULD NOT be sent to the client.

3.3.5.1.2.1.7 Construction of Cache Bitmap (Revision 3)

The structure and fields of the Cache Bitmap (Revision 3) Secondary Drawing Order are specified in
section 2.2.2.2.1.2.8. The order fields MUST be populated in accordance with this description.

The bitmaps that are cached by the Cache Bitmap (Revision 3) Secondary Drawing Order can be
consumed by future MemBIt (section 3.3.5.1.1.1.9) and Mem3BIt (section 3.3.5.1.1.1.10) Primary
Drawing Orders.

The cache ID and cache index to use are selected by the server based on the management policies
that are implemented (for example, an LRU policy might be in effect). The server MUST create a
unique 64-bit identifier and include it in the Key1 and Key2 fields of the Cache Bitmap (Revision 3)
Order.

If it is the first time the server is instructing the client to cache the bitmap, and a Bitmap Cache
Wait List (see section 3.3.1.3) is present, the server MUST force the bitmap into the Wait List and
set the CBR3_DO_NOT_CACHE (0x10) flag in the Cache Bitmap (Revision 3) Secondary Drawing
Order. The cacheld field MUST be set to the ID of the bitmap cache in which the bitmap will be
stored if it is encountered again, and the cacheIndex field MUST be set to

197/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

BITMAPCACHE_WAITING_LIST (32767). If the bitmap is encountered again, it MUST be removed
from the Wait List and sent to the client without the CBR3_DO_NOT_CACHE flag.

The client advertises support for the Cache Bitmap (Revision 3) Order by including the
ORDERFLAGS_EX_CACHE_BITMAP_REV3_SUPPORT (0x0002) flag in the orderSupportExFlags
field of the Order Capability Set ([MS-RDPBCGR] section 2.2.7.1.3). If a client does not include this
flag, then the Cache Bitmap (Revision 3) Order MUST NOT be sent to the client.

The Cache Bitmap (Revision 3) Order MUST NOT be sent to the client if support for bitmap caching
was not specified using the Revision 2 Bitmap Cache Capability Set ([MS-RDPBCGR] section
2.2.7.1.4.2). Furthermore, if client-side support for the MemBlIt (section 3.3.5.1.1.1.9) and Mem3Bilt
(section 3.3.5.1.1.1.10) Primary Drawing Orders (specified using the Order Capability Set specified
in [MS-RDPBCGR] section 2.2.7.1.3) does not exist, the Cache Bitmap (Revision 2) Order SHOULD
NOT be sent to the client.

3.3.5.1.3 Alternate Secondary Drawing Orders

3.3.5.1.3.1 Construction of Alternate Secondary Drawing Orders

All alternate secondary drawing orders MUST contain the Alternate Secondary Drawing Order Header
(section 2.2.2.2.1.3.1.1). Client support for a given alternate secondary order is determined by the
capabilities advertised by the client.

3.3.5.1.3.1.1 Construction of Create Offscreen Bitmap

The structure and fields of the Create Offscreen Bitmap Alternate Secondary Drawing Order are
specified in section 2.2.2.2.1.3.2. The order fields MUST be populated in accordance with this
description.

The offscreen bitmaps managed by the Create Offscreen Bitmap Alternate Secondary Drawing Order
are specified in the Switch Surface Alternate Secondary Drawing Order (see section 3.3.5.1.3.1.2).
The Switch Surface Order allows the server to change the default client rendering surface to any one
of the bitmaps created in the Offscreen Bitmap Cache by the Create Offscreen Order. Once drawing
to an offscreen bitmap is complete, the server MUST direct the client to render the bitmap data to
the primary drawing surface by using the MemBIt (see section 3.3.5.1.1.1.9) or Mem3BIt (see
section 3.3.5.1.1.1.10) Primary Drawing Order.

The Create Offscreen Bitmap Order MUST NOT be sent to the client if support for offscreen bitmap
caching was not specified using the Offscreen Bitmap Cache Capability Set (see [MS-RDPBCGR
section 2.2.7.1.9), or if offscreen bitmap caching has been disabled due to the reception of an
Offscreen Bitmap Cache Error PDU (see section 3.3.5.2.2). Furthermore, if client-side support for
the MemBIt and Mem3BIt Primary Drawing Orders does not exist (specified using the Order
Capability Set specified in [MS-RDPBCGR] section 2.2.7.1.3), the Create Offscreen Bitmap Order
SHOULD NOT be sent to the client.

3.3.5.1.3.1.2 Construction of Switch Surface

The structure and fields of the Switch Surface Alternate Secondary Drawing Order are specified in
section 2.2.2.2.1.3.3. The order fields MUST be populated in accordance with this description.

The Create Offscreen Bitmap Alternate Secondary Drawing Order (see section 3.3.5.1.3.1.1), which
is used to create the offscreen bitmap referenced in this order, MUST be sent to the client before
this order is dispatched.

198 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

The Switch Surface Order MUST NOT be sent to the client if support for offscreen bitmap caching
was not specified using the Offscreen Bitmap Cache Capability Set (see [MS-RDPBCGR] section
2.2.7.1.9), or if offscreen bitmap caching has been disabled due to the reception of an Offscreen
Bitmap Cache Error PDU (see section 3.3.5.2.2). Furthermore, if client-side support for the MemBIt
(see section 3.3.5.1.1.1.9) or Mem3BIt (see section 3.3.5.1.1.1.10) Primary Drawing Order does not
exist (specified using the Order Capability Set specified in [MS-RDPBCGR] section 2.2.7.1.3), the
Switch Surface Order SHOULD NOT be sent to the client.

3.3.5.1.3.1.3 Construction of Create NineGrid Bitmap

The structure and fields of the Create NineGrid Alternate Secondary Drawing Order are specified in
section 2.2.2.2.1.3.4. The order fields MUST be populated in accordance with this description.

The NineGrid bitmaps produced by the Create NineGrid Bitmap Alternate Secondary Drawing Order
are initialized by the Stream Bitmap Alternate Secondary Drawing Orders (see section 3.3.5.1.3.1.4)
and consumed by the DrawNineGrid and MultiDrawNineGrid Primary Drawing Orders (see sections
3.3.5.1.1.1.21 and 3.3.5.1.1.1.22).

The Create NineGrid Bitmap Order MUST NOT be sent to the client if support for NineGrid rendering
was not specified using the DrawNineGrid Cache Capability Set (section 2.2.1.2), or if NineGrid
bitmap caching has been disabled due to the reception of a DrawNineGrid Cache Error PDU (see
section 3.3.5.2.3). Furthermore, if client-side support for the DrawNineGrid and MultiDrawNineGrid
Primary Drawing Orders does not exist (specified using the Order Capability Set specified in [MS-
RDPBCGR] section 2.2.7.1.3), the Create NineGrid Bitmap Order SHOULD NOT be sent to the client.

3.3.5.1.3.1.4 Construction of Stream Bitmap Orders

The structure and fields of the Stream Bitmap First and Stream Bitmap Next Alternate Secondary
Drawing Orders are specified in sections 2.2.2.2.1.3.5.1 and 2.2.2.2.1.3.5.2, respectively. The order
fields MUST be populated in accordance with these descriptions.

The Stream Bitmap Orders are only used to populate the NineGrid Bitmap Cache (see section
3.1.1.1.6) and MUST follow immediately after the Create NineGrid Bitmap Alternate Secondary
Drawing Order (see section 3.3.5.1.3.1.3). The NineGrid Bitmap Cache entry to populate with the

streamed bitmap data is implicitly assumed to be the entry specified in the Create NineGrid Bitmap
Order.

Because the Stream Bitmap Orders are only used to populate the NineGrid Bitmap Cache, they
SHOULD NOT be sent to the client if support for NineGrid rendering was not specified using the
DrawNineGrid Cache Capability Set (section 2.2.1.2), or if NineGrid bitmap caching has been
disabled due to the reception of a DrawNineGrid Cache Error PDU (see section 3.3.5.2.3).
Furthermore, if client-side support for the DrawNineGrid and MultiDrawNineGrid Primary Drawing
Orders does not exist (specified using the Order Capability Set specified in [MS-RDPBCGR] section
2.2.7.1.3), the Stream Bitmap Orders SHOULD NOT be sent to the client.

3.3.5.1.3.1.5 GDI+ Orders

3.3.5.1.3.1.5.1 Construction of Draw GDI+ Cache Orders

The structure and fields of the Draw GDI+ Cache First, Draw GDI+ Cache Next, and Draw GDI+
Cache End Alternate Secondary Drawing Orders are specified in sections 2.2.2.2.1.3.6.2,

2.2.2.2.1.3.6.3, and 2.2.2.2.1.3.6.4, respectively. The order fields MUST be populated in accordance
with these descriptions.

199 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

GDI+ 1.1 primitives cached by the Draw GDI+ Cache Orders are consumed by the Draw GDI+
Orders (see section 3.3.5.1.3.1.5.2).

The Draw GDI+ Cache Orders MUST NOT be sent to the client if support for GDI+ 1.1 rendering was
not specified using the Draw GDI+ Capability Set (section 2.2.1.3), or if GDI+ 1.1 rendering has
been disabled due to the reception of a GDI+ Error PDU (see section 3.3.5.2.4).

3.3.5.1.3.1.5.2 Construction of Draw GDI+ Orders

The structure and fields of the Draw GDI+ First, Draw GDI+ Next, and Draw GDI+ End Alternate
Secondary Drawing Orders are specified in sections 2.2.2.2.1.3.6.5, 2.2.2.2.1.3.6.6, and

2.2.2.2.1.3.6.7, respectively. The order fields MUST be populated in accordance with these
descriptions.

The Draw GDI+ Orders MUST NOT be sent to the client if support for GDI+ 1.1 rendering was not
specified using the Draw GDI+ Capability Set (section 2.2.1.3), or if GDI+ 1.1 rendering has been
disabled due to the reception of a GDI+ Error PDU (see section 3.3.5.2.4).

3.3.5.2 Error Conditions

3.3.5.2.1 Processing of Bitmap Cache Error PDU

The structure and fields of the Bitmap Cache Error PDU are specified in section 2.2.2.3.1, and the

techniques described in [MS-RDPBCGR] section 3.3.5.2 demonstrate how to process the contents of
the PDU.

Once this PDU has been processed, the server MUST flush the appropriate Bitmap Cache entries
(see section 3.1.1.1.1) and resend the graphics data associated with the affected area.

The server SHOULD honor up to five Bitmap Cache Error PDUs for a given connection; further error
PDUs SHOULD be ignored for the duration of the connection to reduce the server overhead.

3.3.5.2.2 Processing of the Offscreen Bitmap Cache Error PDU

The structure and fields of the Offscreen Bitmap Cache Error PDU are specified in section 2.2.2.3.2,

and the techniques described in [MS-RDPBCGR] section 3.3.5.2 demonstrate how to process the
contents of the PDU.

Once this PDU has been processed, the server MUST disable offscreen bitmap caching for the
duration of the connection and resend the graphics data associated with the affected area.

Once offscreen bitmap caching has been disabled, the server MUST NOT send the Create Offscreen

Bitmap Alternate Secondary Drawing Order (see section 2.2.2.2.1.3.2) for the duration of the
connection.

3.3.5.2.3 Processing of the DrawNineGrid Cache Error PDU

The structure and fields of the DrawNineGrid Cache Error PDU are specified in section 2.2.2.3.3, and

the techniques described in [MS-RDPBCGR] section 3.3.5.2 demonstrate how to process the
contents of the PDU.

Once this PDU has been processed, the server MUST disable NineGrid bitmap caching for the
duration of the connection and resend the graphics data associated with the affected area.

Once NineGrid bitmap caching has been disabled, the server MUST NOT send the Create NineGrid
Bitmap (section 2.2.2.2.1.3.4) Alternate Secondary Drawing Order, and the Stream Bitmap First

200 / 284
[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

(section 2.2.2.2.1.3.5.1) and Stream Bitmap Next (section 2.2.2.2.1.3.5.2) Alternate Secondary
Drawing Orders for the duration of the connection.

3.3.5.2.4 Processing of the GDI+ Error PDU

The structure and fields of the GDI+ Error PDU are specified in section 2.2.2.3.4, and the techniques
described in [MS-RDPBCGR] section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the server MUST disable GDI+ 1.1 rendering for the duration of
the connection. All future GDI+ content MUST be sent as bitmaps so that local client-side GDI+
rendering is not required.

Once GDI+ 1.1 rendering has been disabled, the six GDI+ PDUs that are used to cache and render

GDI+ primitives (described in section 2.2.2.2.1.3.6) MUST NOT be sent by the server for the
duration of the connection.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

201/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-RDPBCGR%5d.pdf

4 Protocol Examples
4.1 Annotated Primary Drawing Orders

4.1.1 DstBIt

The following is an annotated dump of a DstBIt (section 2.2.2.2.1.1.2.1) Primary Drawing Order.

00000000 09 00 Oc 48 00 37 01 .. HUT.

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09
0x09

= 0x01 |

0x08

TS_STANDARD |

TS_TYPE_CHANGE

00 -> PRIMARY DRAWING ORDER::orderType = TS ENC DSTBLT ORDER
O0c -> PRIMARY DRAWING ORDER::fieldFlags = 0x0c
Binary of 0xOc = 0000 1100

Fields 3, 4 are present

DSTBLT ORDER::nLeftRect not present
DSTBLT_ ORDER::nTopRect not present

48 00 -> DSTBLT_ORDER::nWidth = 0x48 = 72
37 01 -> DSTBLT ORDER::nHeight = 0x0137 = 311

DSTBLT_ ORDER: :bRop not present

4.1.2 MultiDstBIt

The following is an annotated dump of a MultiDstBIt (section 2.2.2.2.1.1.2.2) Primary Drawing
Order.

00000000 09 0f 7f 12 01 2d 01 a0 00 Oc 00 55 02 0d 00 04 U....
00000010 81 12 81 2d 80 58 Oc 80 60 80 40 Oc D SU A

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09
0x09
= 0x01 |
0x08
= TS _STANDARD |
TS_TYPE CHANGE

0f -> PRIMARY DRAWING ORDER::orderType = TS ENC MULTIDSTBLT ORDER

7f -> PRIMARY DRAWING ORDER::fieldFlags = 0x7f
Binary of Ox7f = 0111 1111
Fields 1-7 are present

12 01 -> MULTI DSTBLT ORDER:nLeftRect = 0x0112 = 274
2d 01 -> MULTI DSTBLT ORDER:nTopRect = 0x012d = 301
a0 00 -> MULTI DSTBLT ORDER::nWidth = Oxa0 = 160

202 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Oc 00 -> MULTI DSTBLT ORDER::nHeight = 0x0Oc = 12

55 -> MULTI_ DSTBLT ORDER::bRop = 0x55 = ROP Table Entry #85 = 0x00550009
02 -> MULTI DSTBLT ORDER::nDeltaEntries = 0x2 = 2 entries

0d 00 -> VARIABLEZ FIELD::cbData = 0xd = 13 bytes
04 81 12 81 2d 80 58 Oc 80 60 80 40 Oc -> VARIABLE2_ FIELD::rgbData

04 -> DELTA RECTS FIELD::zeroBits = binary:0000 0100

Rectangle #1:

81 12 -> Delta Left = 0x112 = 274

81 2d -> Delta Top = 0x12d = 301

80 58 -> Delta Width = 0x58 = 88

0Oc -> Delta Height = 0Oxc = 12

Rectangle is (274, 301, 274 + 88 = 362, 301 + 12 = 313)

Rectangle #2:

80 60 -> Delta Left = 0x60 = 96

Delta Top = 0 (zeroBit is 1)

80 40 -> Delta Width = 0x40 = 64

Oc -> Delta Height = 12

Rectangle is (274 + 96 = 370, 301 + 0 = 301, 370 + 64 = 434, 301 + 12 = 313)

4.1.3 PatBIt

The following is an annotated dump of a PatBlt (section 2.2.2.2.1.1.2.3) Primary Drawing Order.

00000000 09 01 7f 02 la 00 c3 01 0d 00 0d 00 fO ff ££f 00
00000010 5b ef 00 81 [...

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09
0x09

= 0x01 |

0x08

TS_STANDARD |

TS_TYPE CHANGE

01 -> PRIMARY DRAWING ORDER::orderType = TS ENC PATBLT ORDER

7f 02 -> PRIMARY DRAWING ORDER::fieldFlags = 0x027f
Binary of 0x7f = 0000 0010 0111 1111
Fields 1-7, 10 are present

la 00 -> PATBLT ORDER::nLeftRect = Oxla = 26
c3 01 -> PATBLT ORDER::nTopRect = 0x01lc3 = 451

0d 00 -> PATBLT_ ORDER::nWidth = 0x0d = 13
0d 00 -> PATBLT ORDER::nHeight = 0x0d = 13

f0 -> PATBLT ORDER::bRop = 0xf0 = ROP Table Entry #240 = 0x00£00021

ff ££f 00 -> PATBLT ORDER::BackColor
TS COLOR: :RedOrPaletteIndex = Oxff
TS COLOR::Green = Oxff
TS_COLOR::Blue = 0x00

203/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

5b ef 00 -> PATBLT ORDER::ForeColor
TS_COLOR: :RedOrPaletteIndex = 0x5b
TS_COLOR: :Green = Oxef

TS_COLOR: :Blue = 0x00

PATBLT ORDER: :BrushOrgX not present
PATBLT ORDER: :BrushOrgY not present

81 —-> PATBLTioRDER::BruShStyle = 0x81
0x81
= 0x01 |
0x80
= BMF_1BPP |
TS_CACHED_BRUSH

PATBLT ORDER: :BrushHatch not present
PATBLT ORDER: :BrushExtra not present

4.1.4 MultiPatBIt

The following is an annotated dump of a MultiPatBIt (section 2.2.2.2.1.1.2.4) Primary Drawing
Order.

00000000 09 10 df 31 e4 00 b7 00 Oe 02 c5 01 5a ff ££ 00 ...1........ Z...
00000010 ae b2 04 19 00 08 40 80 e4 80 b7 82 0Oe 1b 1b 81 G
00000020 07 32 81 39 80 d5 32 fe c7 32 82 0Oe 81 78 .2.9..2..2...%

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09
0x09

= 0x01 |

0x08

TS_STANDARD |

TS_TYPE CHANGE

10 -> PRIMARY DRAWING ORDER::orderType = TS ENC MULTIPATBLT ORDER

df 31 -> PRIMARYiDRAWINGioRDER::fieldFlaqS = 0x31df
Binary of 0x31df = 0011 0001 1101 1111
Fields 1-5, 7-9, 13, 14 are present

e4 00 -> MULTI_PATBLT ORDER::nLeftRect = Oxed = 228
b7 00 -> MULTI_PATBLT ORDER::nTopRect = 0xb7 = 183

O0e 02 -> MULTI_PATBLT ORDER::nWidth = 0x020e = 526
c5 01 -> MULTI_ PATBLT ORDER::nHeight = 0x0lc5 = 453

5a -> MULTI_PATBLT_ ORDER::bRop = 0Ox5a = ROP Table Entry #90 = 0x005a0049
MULTI_PATBLT_ ORDER::BackColor not present

ff ££f 00 -> MULTI PATBLT ORDER::ForeColor

TS COLOR: :RedOrPaletteIndex = Oxff

TS COLOR::Green = Oxff
TS_COLOR::Blue = 0x00

204 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Oxae
0xb2

ae -> MULTI PATBLT ORDER::BrushOrgX
b2 -> MULTI_ PATBLT ORDER::BrushOrgY

MULTI_ PATBLT ORDER:BrushStyle not present
MULTI_ PATBLT ORDER:BrushHatch not present
MULTI_ PATBLT ORDER:BrushExtra not present

04 -> MULTI PATBLT ORDER::nDeltaEntries =

19 00 -> VARIABLE2 FIELD::cbData = 0x19

08 40 80 e4 80 b7 82 Oe 1b 1b 81 07 32 81
d5 32 fe c¢7 32 82 0e 81 78 -> VARIABLE2 FI

08 40 -> DELTA RECTS FIELD::zeroBits = bin

Rectangle #1:

80 e4 -> Delta Left = Oxed = 228
80 b7 -> Delta Top = 0xb7 = 183

82 0e -> Delta Width = 0x20e = 526
1b -> Delta Height = 0xlb = 27
Rectangle is (228, 183, 228 + 526 = 754, 1
Rectangle #2:

Delta Left = 0 (zeroBit is 1)

1b -> Delta Top = 0xlb = 27

81 07 -> Delta Width = 0x107 = 263

32 -> Delta Height = 0x32 = 50

Rectangle is (228 + 0 = 228, 183 + 27 = 21
Rectangle #3

81 39 -> Delta Left = 0x139 = 313

Delta Top = 0 (zeroBit is 1)

80 d5 -> Delta Width = 0xd5 = 213

32 -> Delta Height = 0x32 = 50

Rectangle is (228 + 313 = 541, 210 + 0 = 2
Rectangle #4

fe c¢7 -> Delta Left = Oxfffffec7 = -313

32 -> Delta Top = 0x32 = 50

82 0e -> Delta Width = 0x20e = 526

81 78 -> Delta Height = 0x178 = 376

Rectangle is (541 - 313 = 228, 210 + 50 =

4.1.5 OpaqueRect

= -82

0x04 = 4 entries
25 bytes

39 80
ELD: :rgbData

ary:0000 1000 0100 0000

83 + 27 = 210)

0, 228 + 263 = 491, 210 + 50

10, 541 + 213 = 754, 210 + 50

= 260)

= 260)

260, 228 + 526 = 754, 260 + 376 = 636)

The following is an annotated dump of an OpaqueRect (section 2.2.2.2.1.1.2.5) Primary Drawing

Order.

00000000 09 Oa 3c 00 04 00 03 73 02 06

09 -> PRIMARY DRAWING ORDER::controlFlags
0x09

= 0x01 |

0x08

TS STANDARD |

= 0x09

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

205/ 284

TS TYPE CHANGE

0a -> PRIMARY DRAWING ORDER::orderType = TS ENC OPAQUERECT ORDER

3c -> PRIMARY DRAWING ORDER::fieldFlags = 0x3c
Binary of 0x3c = 0011 1100
Fields 3-6 are present

OPAQUERECT_ORDER: :nLeftRect not present
OPAQUERECT ORDER: :nTopRect not present

00 04 -> OPAQUERECT ORDER::nWidth = 0x0400 = 1024
00 03 -> OPAQUERECT ORDER::nHeight = 0x0300 = 768

74 -> OPAQUERECT_ ORDER::RedOrPaletteIndex = 0x74

02 -> OPAQUERECT_ORDER: :Green = 0x02
06 -> OPAQUERECT ORDER::Blue = 0x06

4.1.6 MultiOpaqueRect

The following is an annotated dump of a MultiOpaqueRect (section 2.2.2.2.1.1.2.6) Primary Drawing

Order.

00000000 09 12 bf 01 87 01 1c 01 f1 00 12 00 5c ef 04 16
00000010 00 08 40 81 87 81 1c 80 f1 01 01 01 10 80 f0O O1

00000020 10 ££f 10 10 80 f1 01

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09

0x09

= 0x01 |

0x08

TS STANDARD |
TS TYPE CHANGE

12 -> PRIMARY DRAWING ORDER::orderType = TS ENC MULTIOPAQUERECT ORDER

bf 01 -> PRIMARY DRAWING ORDER::fieldFlags = 0x0lbf

Binary of 0xOlbf = 0000 0001 1011 1111
Fields 1-6,8-9 are present

87 01 -> MULTI_ OPAQUERECT_ ORDER::nLeftRect = 0x0187
lc 01 -> MULTI_OPAQUERECT_ ORDER::nTopRect = 0x0llc

f1 00 -> MULTI_OPAQUERECT ORDER::nWidth = 0x00f1l
12 00 -> MULTI_OPAQUERECT_ ORDER::nHeight = 0x0012

5c -> MULTI_OPAQUERECT_ ORDER::RedOrPaletteIndex
ef -> MULTI_OPAQUERECT_ORDER::Green = Oxef
MULTI OPAQUERECT ORDER::Blue not present

04 -> MULTI OPAQUERECT ORDER::nDeltaEntries = 0x04

16 00 -> VARIABLEZ FIELD::cbData = 0x16 = 22 bytes

08 40 81 87 81 1c 80 f1 01 01 01 10 80 fO 01 10
ff 10 10 80 f1 01 -> VARIABLEZ FIELD::rgbData

4 entries

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

206 / 284

08 40 -> DELTA RECTS FIELD::zeroBits = binary:0000 1000 0100 0000

Rectangle #1:

81 87 -> Delta Left = 0x187 = 391

81 1lc -> Delta Top = 0xllc = 284

80 f1 -> Delta Width = 0xfl = 241

01 -> Delta Height = 0x1 =1

Rectangle is (391, 284, 391 + 241 = 632, 284 + 1 = 285)

Rectangle #2:

Delta Left = 0 (zeroBit is 1)
01 -> Delta Top =1

01 -> Delta Width = 1

10 -> Delta Height = 0x10 = 16

Rectangle is (391 + 0 = 391, 284 + 1 = 285, 391 + 1 = 392, 285 + 16 =

Rectangle #3:

80 f0 -> Delta Left = 0xf0 = 240
Delta Top = 0 (zeroBit is 1)

01 -> Delta Width = 1

10 -> Delta Height = 0x10 = 16

Rectangle is (391 + 240 = 631, 285 + 0 = 285, 631 + 1 = 632, 285 + 16

Rectangle #4:

ff 10 -> Delta Left = Oxffffffl0 = -240
10 -> Delta Top = 0x10 = 16

80 fl1 -> Delta Width = 0xfl = 241

01 -> Delta Height = 0x1 =1

Rectangle is (631 - 240 = 391, 285 + 16 = 301, 391 + 241 = 632, 301 + 1

4.1.7 ScrBlt

The following is an annotated dump of an ScrBIt (section 2.2.2.2.1.1.2.7) Primary Drawing Order.

00000000 09 02 7d 07 00 al 01 £1 00 cc 2f 01 8e P /..

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09
0x09
= 0x01 |
0x08
= TS _STANDARD |
TS_TYPE CHANGE

02 -> PRIMARY DRAWING ORDER::orderType = TS ENC_SCRBLT ORDER

74 -> PRIMARY_DRAWING_ORDER::fieldFlagS = 0x7d
Binary of 0x7d = 0011 11101
Fields 1, 3-7 are present

07 00 -> SCRBLT_ORDER::nLeftRect = 0x07 = 7
SCRBLT_ORDER: :nTopRect not present

al 01 -> SCRBLT ORDER::nWidth = 0x0lal = 417
f1 00 -> SCRBLT ORDER::nHeight = 0x00fl = 241

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

207 / 284

cc -> SCRBLT ORDER: :bRop O0x

2f 01 -> SCRBLT_ORDER: :nXSrc
8e 00 -> SCRBLT ORDER::n¥YSrc

4.1.8 MultiScrBlt

cc = ROP Table Entry #204 = 0x00cc0020
= 0x012f = 303
= 0x008e = 142

The following is an annotated dump of a MultiScrBIt (section 2.2.2.2.1.1.2.8) Primary Drawing

Order.

00000000
00000010
00000020
00000030
00000040
00000050

09
01
10
Oc
08
04

11
10
01
01
01
01

ff
4a
01
01
01
01

01
00
7f
7f
7f
7f

2d
00
0f
0b
07
03

03
00
01
01
01
01

4e
00
01
01
01
01

09 -> MULTI
0x09
0x01
0x08
TS_STANDARD |
TS_TYPE CHANGE

SCRBLT ORDER: :con

11 -> MULTI_ SCRBLT ORDER::ord

ff 01 -> MULTI_ SCRBLT ORDER::
Binary of OxOlff 0000 0001
Fields 1-9 are present

2d 03
4e 01

->
->

MULTI SCRBLT ORDER:
MULTI SCRBLT ORDER:

10
10

00
00

->
->

MULTI SCRBLT ORDER::
MULTI SCRBLT ORDER:
cc -> MULTI SCRBLT_ORDER: :bRo
2d
05

03
01

-> MULTI SCRBLT ORDER::
-> MULTI SCRBLT ORDER::
10

=> MULTI_SCRBLT_ ORDER::nDe

4a 00 -> VARIABLE2 FIELD::cbD
00
0f
O0b
07

03

00
01
01
01
01

00
01
01
01
01

00
7f
7f
7f
7f

00
Oe
O0a
06
02

00
01
01
01
01

00
01
01
01
01

00
7f
7f
7f
7f

83
0d
09
05
01

2d
01
01
01
01

00 00 00 00 0O 00 00 00 -> DE

Rectangle #1:
83 2d -> Delta
81 5d -> Delta

Left -> 0x32d
Top -> 0x15d =

:nLeftRect
:nTopRect

:nHeight

01
00
7f
7f
7f
7f

10
00
Oe
Oa
06
02

00
00
01
01
01
01

10
00
01
01
01
01

00
00
7f
7f
7f
7f

2d
2d
01
01
01
01

03
81
01
01
01

cc
83
0d
09
05
01

trolFlags 0x09

erType = TS ENC MULTISCRBLT ORDER

0x01ff

fieldFlags
1111 1111

0x032d
0x01l4e

813
334

nWidth 0x10

0x10

16
16

Oxcc ROP Table Entry #204 0x00cc0020

P

0x032d
0x0105

813
261

nXSrc =

nYSrc

ltaEntries 0x10 16 entries

ata Ox4a 74 bytes
81
01
01
01

->

5d
7f
7f£ 08 01 01 7f
7f 04 01 01 7f
VARIABLE2 FIELD::rgbData

10
Oc

01
01

01
01

Tf
Tf

LTA RECTS FIELD::zeroBits 0

813
349

[MS-RDPEGDI] — v20131025

208 / 284

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corpora

Release: Friday, October 25, 2013

tion.

10 -> Delta Width -> 0x10 16
01 -> Delta Height -> 0x1 =1
Rectangle is (813, 349, 813 + 16

Rectangle #2

01 -> Delta Left -> 0x1 =1
7f -> Delta Top -> 0x7f = -1
0f -> Delta Width -> 0xf = 15
01 -> Delta Height -> 0x1 =1

Rectangle is (813 + 1 = 814, 349 - 1

Rectangle #3

01 -> Delta Left -> Ox1 =1
7f -> Delta Top -> 0x7f = -1
0e -> Delta Width -> Oxe = 14
01 -> Delta Height -> 0x1 =1

Rectangle is (815, 347, 829, 348)

Rectangle #4

01 -> Delta Left -> 0x1 =1
7f -> Delta Top -> 0x7f = -1
0d -> Delta Width -> 0xd = 13
01 -> Delta Height -> 0x1 =1

Rectangle is (816, 346, 829, 347)

Rectangle #5

01 -> Delta Left -> 0x1 = 1
7f -> Delta Top -> 0x7f = -1
Oc -> Delta Width -> Oxc = 12
01 -> Delta Height -> 0x1 =1

Rectangle is (817, 345, 829, 346)

Rectangle #6

01 -> Delta Left -> 0x1 =1
7f -> Delta Top -> 0x7f = -1
0Ob -> Delta Width -> 0xb = 11
01 -> Delta Height -> 0x1 =1

Rectangle is (818, 344, 829, 345)

Rectangle #7

01 -> Delta Left -> 0Ox1 1
7f -> Delta Top -> 0x7f = -1
0a -> Delta Width -> Oxa = 10
01 -> Delta Height -> 0x1 = 1

Rectangle is (819, 343, 829, 344)

Rectangle #8

01 -> Delta Left -> 0x1 =1
7f -> Delta Top -> 0x7f = -1
09 -> Delta Width -> 0x9 = 9
01 -> Delta Height -> 0x1 =1

Rectangle is (820, 342, 829, 343)

Rectangle #9

01 -> Delta Left -> 0x1 =1
7f -> Delta Top -> 0x7f = -1
08 -> Delta Width -> 0x8 = 8
01 -> Delta Height -> 0x1 = 1

Rectangle is (821, 341, 829, 342)

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

209 / 284

Rectangle #10

01 -> Delta Left -> 0x1 =
7f -> Delta Top -> 0x7f = -1

07 -> Delta Width -> 0x7 = 7

01 -> Delta Height -> 0x1 =1
Rectangle is (822, 340, 829, 341)

|
=

Rectangle #11

01 -> Delta Left -> 0Ox1 =1

7f -> Delta Top -> 0x7f = -1

06 -> Delta Width -> 0x6 = 6

01 -> Delta Height -> 0x1 =1
Rectangle is (823, 339, 829, 340)

Rectangle #12

01 -> Delta Left -> 0x1 =1

7f -> Delta Top -> 0x7f = -1

05 -> Delta Width -> 0x5 = 5

01 -> Delta Height -> 0x1 =1
Rectangle is (824, 338, 829, 339)

Rectangle #13

01 -> Delta Left -> 0Ox1 =1

7f -> Delta Top -> 0x7f = -1

04 -> Delta Width -> 0x4 = 4

01 -> Delta Height -> 0x1 =1
Rectangle is (825, 337, 829, 338)

Rectangle #14

01 -> Delta Left -> 0x1 =1

7f -> Delta Top -> 0x7f = -1

03 -> Delta Width -> 0x3 = 3

01 -> Delta Height -> 0x1 =1
Rectangle is (826, 336, 829, 337)

Rectangle #15

01 -> Delta Left -> 0x1 =1

7f -> Delta Top -> 0x7f = -1

02 -> Delta Width -> 0x2 = 2

01 -> Delta Height -> 0x1 =1
Rectangle is (827, 335, 829, 336)

Rectangle #16

01 -> Delta Left -> 0x1 =1

7f -> Delta Top -> 0x7f = -1

01 -> Delta Width -> 0x1 =1

01 -> Delta Height -> 0x1 =1
Rectangle is (828, 334, 829, 335)

4.1.9 MemBIlt

The following is an annotated dump of a MemBIt (section 2.2.2.2.1.1.2.9) Primary Drawing Order.

00000000 49 0d 97 £f 00 02 00 06 01 15 00 15 00 N

49 -> PRIMARY DRAWING ORDER::controlFlags = 0x19

210/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

0x49
= 0x01 |
0x08 |
0x40
= TS_STANDARD |
TS_TYPE_CHANGE |
TS ZERO FIELD BYTE BITO

0d -> PRIMARY DRAWING ORDER::orderType = TS ENC MEMBLT R2 ORDER

97 -> PRIMARY DRAWING ORDER::fieldFlags = 0x97
TS_ZERO_FIELD BYTE BITO Indicates that last field byte is not present
PRIMARY DRAWING ORDER::fieldFlags = 0x0097

Binary of 0x0097 = 0000 0000 1001 0111

Fields 1-3, 5, 8 are present

ff 00 -> MEMBLT ORDER::cacheId = 0x00ff

Color Table Cache Index = 0x00

Bitmap Cache ID = Oxff (TS_BITMAPCACHE SCREEN_ID)

02 00 -> MEMBLT ORDER::nLeftRect = 0x0002 = 2
06 01 -> MEMBLT ORDER::nTopRect = 0x0106 = 262

MEMBLT_ ORDER: :nWidth not present
15 00 -> MEMBLT ORDER::nHeight = 0x015 = 21

MEMBLT ORDER::bRop not present

MEMBLT ORDER: :nXSrc not present
15 00 -> MEMBLT ORDER::nYSrc = 0x015 = 21

MEMBLT_ ORDER: :cacheIndex not present

4.1.10 Mem3BIt

The following is an annotated dump of a Mem3BIt (section 2.2.2.2.1.1.2.10) Primary Drawing Order.

00000000 49 Oe 3f 8e 01 00 3c 01 1f 01 40 00 Oc 00 b8 ff I.?...<...Q@.....
00000010 ff 00 3b le ff 7f 03 71 00 21 04 05 40 0d 40 73 ..;....q.!..Q@.@s
00000020 07 20 1c 84 ff ff ff ff ff ff £f £f 00 21 fe 441.D
00000030 e7 38 81 c8 86 00 00 00 00 £f ££f 00 00 f£f £f ff .8..............
00000040 f£f 43 c9 11 00 26 01 fd 43 £7 01 80 fd 54 03 f0 .C...&..C....]..
00000050 01 00 00 81 00 00 00 00 09 00 cO £3 00 c0 03 €0 ..vvvvn.
00000060 01 00 80 70 04 80 03 e0 08 00 cO 84 00 00 00 00 ...pvevuvuvnnnn.
00000070 ff f£f ff f£f 43 cf e0 79 01 26 40 20 3e 00 00 70C..y.&Q >..p

49 -> PRIMARY_DRAWING_ORDER::contrOlFlagS = 0x19
0x49
= 0x01 |
0x08 |
0x40
= TS_STANDARD |
TS TYPE CHANGE |
TS ZERO FIELD BYTE BITO

O0e -> PRIMARY DRAWING ORDER::orderType = TS ENC MEM3BLT R2 ORDER

211 /284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3f 8e -> PRIMARY DRAWING ORDER::fieldFlags = 0x8e3f

TS _ZERO_FIELD BYTE BITO Indicates that last field byte is 0
PRIMARY DRAWING ORDER::fieldFlags = 0x008e3f

Binary of 0x008e3f = 0000 0000 1000 1110 0011 1111

Fields 1-6, 10-12, 16 are present

01 00 -> MEM3BLT_ ORDER::cacheId = 0x0001
Color Table Cache Index = 0x00
Bitmap Cache ID = 0x01

3c 01 -> MEM3BLT ORDER::nLeftRect = 0x013c = 316
1f 01 -> MEM3BLT ORDER::nTopRect = 0x011f = 287

40 00 -> MEM3BLT_ORDER::nWidth = 0x0040
Oc 00 -> MEM3BLT ORDER::nHeight = 0x015

64
12

b8 -> MEM3BLT ORDER::bRop = 0xb8 = ROP Table Entry #184 = 0x00b80666
MEM3BLT ORDER: :nXSrc not present

MEM3BLT_ORDER: :nYSrc not present

MEM3BLT_ORDER: :BackColor not present

ff ££f 00 -> MEM3BLT ORDER::ForeColor

TS_COLOR: :RedOrPalettelIndex = 0xff

TS COLOR::Green = Oxff

TS_COLOR: :Blue = 0x00

3b -> MEM3BLT ORDER::BrushOrgX = 0x3b = 59
le -> MEM3BLT ORDER: :BrushOrgY = Oxle = 30

MEM3BLT ORDER: :BrushStyle not present
MEM3BLT ORDER: :BrushHatch not present
MEM3BLT_ORDER: :BrushExtra not present

ff 7f -> MEM3BLT ORDER::cachelIndex = O0x7fff = 32767

4.1.11 LineTo

The following is an annotated dump of a LineTo (section 2.2.2.2.1.1.2.11) Primary Drawing Order.

00000000 1d 09 1le 02 a5 3d 03 la 4a 03 1b 03 bl 0e a6 5b =..J...... [
00000010 ef 00

1d -> PRIMARY DRAWING ORDER::controlFlags = 0x1d
O0x1d
= 0x01 |
0x04 |
0x08 |
0x10
= TS_STANDARD |
TS_BOUNDS |
TS TYPE CHANGE |
TS DELTA COORDINATES

09 -> PRIMARY DRAWING ORDER::orderType = TS _ENC LINETO ORDER

212 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

le 02 -> PRIMARY DRAWING ORDER::fieldFlags = 0x02le
Binary of 0x02le = 0000 0010 0001 1110

a5 -> PRIMARY DRAWING ORDER: :bounds::flags = 0xab
Oxab
= 0x01 |
0x04 |
0x20 |
0x80
= TS BOUND LEFT |
TS BOUND RIGHT |
TS BOUND DELTA TOP |
TS_BOUND_DELTA BOTTOM

3d 03 -> PRIMARY DRAWING ORDER::bounds::left = 0x033d = 829

la -> PRIMARY DRAWING ORDER::bounds::top (delta) = Oxla = 26 pixels from last top bounds
PRIMARY DRAWING ORDER: :bounds::top = last bounds::top (0xe7) + Oxla = 0x101 = 257

4a 03 -> PRIMARY DRAWING ORDER::bounds::right = 0x034a = 842

1b -> PRIMARY DRAWING ORDER::bounds::bottom (delta) = Oxlb = 27 pixels from last bottom
bounds
PRIMARY DRAWING ORDER::bounds::bottom = last bounds::bottom (0xf3) + 0xlb = 0x10e = 270

LINETO ORDER::BackMode not present

03 -> LINETO ORDER::nXStart (delta) = 0x03 = 3 pixels from last LINETO ORDER::nXStart
LINETO ORDER::nXStart = last LINETO ORDER::nXStart (0x33a) + 0x03 = 0x33d = 829

bl -> LINETO_ORDER::nYStart(delta) = Oxbl = -79 pixels from last LINETO_ORDER::nYStart
LINETO ORDER::n¥YStart = last LINETO ORDER::nYStart (0xl5e) + Oxbl = 0x10f = 271

O0e -> LINETO_ ORDER::nXEnd(delta) = Ox0Oe = 14 pixels from last LINETO ORDER::nXEnd
LINETO ORDER::nXEnd = last LINETO ORDER::nXEnd (0x33d) + OxOe = O0x34b = 843

a6 -> LINETO ORDER::nYEnd(delta) = Oxa6 = -90 pixels from last LINETO ORDER::nYEnd
LINETOioRDER::nYEnd = last LINETOioRDER::nYEnd (0x15b) + 0Oxa6 = 0x101 = 257

LINETO ORDER::BackColor not present
LINETO ORDER::bRop2 not present

LINETO ORDER::PenStyle not present
LINETO ORDER::PenWidth not present

5b ef 00 -> LINETO_ORDER::PenColor
TS_COLOR: :RedOrPalettelIndex = 0x5b
TS_COLOR::Green = Oxef

TS _COLOR::Blue = 0x00

4.1.12 SaveBitmap

The following is an annotated dump of a SaveBitmap (section 2.2.2.2.1.1.2.12) Primary Drawing
Order.

00000000 19 Ob 1b 74 45 00 00 79 70 10 ...tE..yp.

213/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

19 -> PRIMARY DRAWING_ ORDER::controlFlags = 0x09
0x19
= 0x01 |
0x08 |
0x10
= TS_STANDARD |
TS TYPE CHANGE |
TS DELTA COORDINATES

O0b -> PRIMARY DRAWING ORDER::orderType = TS ENC SAVEBITMAP ORDER
1b -> PRIMARY DRAWING ORDER::fieldFlags = 0xlb
Binary of Oxle = 0001 1011

Fields 1-2, 4-5 are present

74 45 00 00 -> SAVEBITMAP_ ORDER::SavedBitmapPosition = 0x4574 = 17780
Y granularity = 20

Y position = (17780 / (480 * 20)) * 20 = (17780 / 9600) * 20 =1 * 20 = 20
X position = (17780 - (20 * 480)) / 20 = (17780 - 9600) / 20 = 8180 / 20 = 409
79 -> SAVEBITMAP ORDER::nLeftRect (delta) = 0x79 = 121

SAVEBITMAP ORDER::nTopRect (delta) not present

70 -> SAVEBITMAP ORDER::nRightRect (delta) = 0x70 = 112
10 -> SAVEBITMAP ORDER::nBottomRect (delta) = 0x10 = 16

SAVEBITMAP ORDER::Operation is not present

4.1.13 GlyphIndex

The following sections provide examples of annotated dumps of GlyphIndex (section
2.2.2.2.1.1.2.13) Primary Drawing Orders.

4.1.13.1 Example 1

The following is the first example of an annotated dump of a GlyphIndex (section 2.2.2.2.1.1.2.13)
Primary Drawing Order.

00000000 19 1b 00 01 20 6a 02 27 38 00 39 07 3a 06 3b 07 J.'8.9.:.;.
00000010 3c 06 3d 06 18 04 1f 06 17 02 14 04 1b 06 19 06 <.=.............
00000020 45 05 18 06 1f 06 1f 02 14 02 46 06 ff 15 24 E..oooooae. F...$

19 -> PRIMARY DRAWING ORDER::controlFlags = 0x19
0x09
= 0x01 |
0x08 |
0x10
= TS STANDARD |
TS TYPE CHANGE |
TS DELTA COORDINATES

1b -> PRIMARY DRAWING ORDER::orderType = Oxlb = TS ENC_ INDEX ORDER
00 01 20 -> PRIMARY DRAWING ORDER::fieldFlags = 0x200100

Binary of 0x200100 = 10 0000 0000 0001 0000 0000
Fields 9, 22 present

214 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

6a 02 -> GLYPHINDEX ORDER::BkRight = 0x026a = 618
27 -> VARIABLEl FIELD::cbData = 0x27 = 39 bytes

38 00 -> Glyph Cache Index = 56, Delta =
39 07 -> Glyph Cache Index = 57, Delta =
3a 06 -> Glyph Cache Index = 58, Delta =
3b 07 -> Glyph Cache Index = 59, Delta =
3c 06 -> Glyph Cache Index = 60, Delta =
3d 06 -> Glyph Cache Index = 61, Delta =
18 04 -> Glyph Cache Index = 24, Delta =
1f 06 -> Glyph Cache Index = 31, Delta =
17 02 -> Glyph Cache Index = 23, Delta =
14 04 -> Glyph Cache Index = 20, Delta =
1b 06 -> Glyph Cache Index = 27, Delta =
19 06 -> Glyph Cache Index = 25, Delta =
45 05 -> Glyph Cache Index = 69, Delta =
18 06 -> Glyph Cache Index = 24, Delta =
1f 06 -> Glyph Cache Index = 31, Delta =
1f 02 -> Glyph Cache Index = 31, Delta =
14 02 -> Glyph Cache Index = 20, Delta =
46 06 -> Glyph Cache Index = 70, Delta =

NN oYY T oy oy DN OB OO IO - O

ff -> ADD Operation
15 -> Fragment Cache Index = 0x15 = 21
24 -> Size of Fragment = 0x24 = 36 bytes

4.1.13.2 Example 2

The following is the second example of an annotated dump of a GlyphIndex (section

2.2.2.2.1.1.2.13) Primary Drawing Order.

00000000 19 1b e8 3f 38 00 ff ff ff Oc 02 6e 01 4d 02 7b ...?8...... n.
00000010 01 09 02 6e 01 £6 02 7b 01 Oc 02 79 01 03 fe 04 ...n...{...y....

00000020 00

19 -> PRIMARY DRAWING ORDER::controlFlags = 0x19
0x09
= 0x01 |
0x08 |
0x10
= TS_STANDARD |
TS_TYPE_CHANGE |
TS_DELTA COORDINATES

1b -> PRIMARY DRAWING ORDER::orderType = Oxlb = TS ENC_INDEX ORDER

e8 3f 38 -> PRIMARY_DRAWING_ORDER::fieldFlagS = 0x383fe8
Binary of 0x383fe8 = 11 1000 0011 1111 1110 1000
Fields 4, 6-14, 20-22 are present

00 -> GLYPHINDEX ORDER::fOpRedundant = 0x00 = FALSE

ff ff ff -> GLYPHINDEX ORDER::ForeColor
TS COLOR: :RedOrPaletteIndex = Oxff

TS _COLOR::Green = Oxff

TS COLOR::Blue = Oxff

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

215/ 284

Oc 02 -> GLYPHINDEX_ ORDER::BkLeft = 0x020c = 524
6e 01 -> GLYPHINDEX ORDER::BkTop = 0x0l6e = 366
4d 02 -> GLYPHINDEX ORDER::BkRight = 0x024d = 589
7b 01 -> GLYPHINDEX ORDER::BkBottom = 0x017b = 379

09 02 -> GLYPHINDEX ORDER::OpLeft = 0x0209 = 521
6e 01 -> GLYPHINDEX ORDER::OpTop = 0x0l6e = 366

f6 02 -> GLYPHINDEX ORDER::OpRight = 0x02f6 = 758
7b 01 -> GLYPHINDEX ORDER::OpBottom = 0x017b = 379

0x020c
0x0179

524
377

Oc 02 -> GLYPHINDEX ORDER::X
79 01 -> GLYPHINDEX ORDER::Y

03 -> VARIABLEl FIELD::cbData = 0x03 = 3 bytes
fe 04 00 -> VARIABLEl FIELD::rgbData
fe -> USE Operation

04 -> Fragment Cache Index = 0x04 = 4
00 -> Delta

4.1.14 FastIndex

The following sections provide examples of annotated dumps of FastIndex (section 2.2.2.2.1.1.2.14)
Primary Drawing Orders.

4.1.14.1 Example 1

The following is the first example of an annotated dump of a FastIndex (section 2.2.2.2.1.1.2.14)
Primary Drawing Order.

00000000 09 13 f£ff 70 07 00 03 ff ff 00 74 3b 00 Oe 00 71 ...p...... t;...q
00000010 00 42 00 7e 00 00 80 7c 00 15 00 00 01 06 02 04 .B.~...|........
00000020 03 08 05 09 06 06 06 06 07 06 08 02 f££f 00 12

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09
0x09

= 0x01 |

0x08

TS_STANDARD |

TS_TYPE_CHANGE

13 -> PRIMARY DRAWING ORDER::orderType = 0x13 = TS ENC FAST INDEX ORDER

ff 70 -> PRIMARY DRAWING ORDER::fieldFlags = O0x70ff
Binary of 0x70ff = 0111 0000 1111 1111
Fields 1-8, 13-15 present

07 -> FASTINDEXioRDER::CaCheId = 0x07

00 03 -> FASTINDEX_ORDER::fDrawing = 0x0300
fAccel = 0x03

ulCharInc = 0x00

ff £ff 00 -> FASTINDEX ORDER::BackColor
TS _COLOR::RedOrPalettelIndex = 0xff
TS COLOR::Green = Oxff

216 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

TS_COLOR::Blue = 0x00

74 3b 00

TS_COLOR:
TS_COLOR:
TS_COLOR:

0e 00 ->
71 00 ->
42 00 ->
7e 00 ->

—-> FASTINDEX ORDER::ForeColor
:RedOrPaletteIndex = 0x74
:Green = 0x3b

:Blue = 0x00

FASTINDEX ORDER::BkLeft = Oxe
FASTINDEX ORDER: :BkTop = 0x71

FASTINDEX ORDER::BkRight = 0x42
FASTINDEX ORDER::BkBottom = 0x7e

FASTINDEX ORDER::OpLeft not present
FASTINDEX ORDER::0pTop not present
FASTINDEX ORDER::0OpRight not present
FASTINDEX ORDER::OpBottom not present

00
Tc

15

00
08

00
01
02
03
05
06
06
07
08

ff
00
12

80
00

->

00
02

00
06
04
08
09
06
06
06
02

->
->
->

->
->

FASTINDEX ORDER::X = 0x8000 =

VARIABLE1l FIELD::cbData = 0x15 =

14
113

= 66

= 126

-32768
FASTINDEX ORDER::Y = 0x7c = 124

21 bytes

N oy o o8 O @ b o O

01 06 02 04 03 08 05 09 06 06 06 06 07 06
ff 00 12 -> VARIABLEl FIELD::rgbData
-> Glyph Cache Index = 0, Delta

-> Glyph Cache Index = 1, Delta

-> Glyph Cache Index = 2, Delta

-> Glyph Cache Index = 3, Delta

-> Glyph Cache Index = 4, Delta

-> Glyph Cache Index = 5, Delta

-> Glyph Cache Index = 6, Delta

-> Glyph Cache Index = 7, Delta

-> Glyph Cache Index = 8, Delta

ADD Operation

Fragment Cache Index = 0

Size of Fragment = 0x12 = 18 bytes

4.1.14.2 Example 2

The following is the second example of an annotated dump of a FastIndex (section 2.2.2.2.1.1.2.14)
Primary Drawing Order.

00000000 19 13 e0 60 e2 d5 e2 e2 03 fe 1lc 00

09 -> PRIMARY DRAWING ORDER::controlFlags

0x

19

0x01
0x08
0x10

TS STANDARD |
TS TYPE CHANGE |
TS DELTA COORDINATES

13 -> PRIMARY DRAWING ORDER::orderType

= 0x09

0x13

TS_ENC_FAST_INDEX ORDER

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

217/ 284

e0 60 -> PRIMARY DRAWING ORDER::fieldFlags = 0x60e0
Binary of 0x60e0 = 0110 0000 1110 0000
Fields 6-8, 14-15 are present

FASTINDEX ORDER::cacheId not present

FASTINDEX ORDER::fDrawing not present
FASTINDEX ORDER::BackColor not present
FASTINDEX ORDER::ForeColor not present

FASTINDEX ORDER::BkLeft not present

e2 -> FASTINDEX ORDER::BkTop (delta) = Oxe2 = -30 pixels from last FASTINDEX ORDER::BkTop
FASTINDEX ORDER::BkTop = last FASTINDEX ORDER::BkTop (0x159) + Oxe2 = 0x13b = 315
d5 -> FASTINDEX ORDER::BkRight (delta) = 0xd5 = -43 pixels from last FASTINDEX ORDER::BkRight

FASTINDEX ORDER::BkRight = last FASTINDEX ORDER::BkRight (0x161) + Oxd5 = 0x136 = 310

e2 -> FASTINDEX ORDER::BkBottom(delta) = Oxe2 = -30 pixels from last
FASTINDEX ORDER::BkBottom
FASTINDEX ORDER::BkBottom = last FASTINDEX ORDER::BkBottom (0x166) +

FASTINDEX ORDER: :OpLeft not present
FASTINDEX ORDER::0pTop not present
FASTINDEX ORDER: :OpRight not present
FASTINDEX ORDER::OpBottom not present

FASTINDEX ORDER::X not present

Oxe2 = 0x148 = 328

e2 -> FASTINDEX ORDER::Y(delta) = Oxe2 = -30 pixels from last FASTINDEX ORDER::Y

FASTINDEX ORDER::Y = last FASTINDEX ORDER::Y (0x164) + Oxe2 = 0x146 =
03 -> VARIABLEl FIELD::cbData = 0x03 = 3 bytes

fe 1c 00 -> VARIABLEl FIELD::rgbData

fe -> USE Operation

lc -> Fragment Cache Index = Oxlc = 28
00 -> Delta

4.1.15 FastGlyph

326

The following is an annotated dump of a FastGlyph (section 2.2.2.2.1.1.2.15) Primary Drawing

Order.

00000000 0d 18 fb 7e 0f 8b 00 bl 00 2c 04 bd 00 06 00 03 ...~..... reo
00000010 £f £f 00 8b 00 bl 00 93 00 be 00 0d 00 fe 7f 00
00000020 80 00 80 bb 00 13 00 01 4a 06 Oa 80 80 80 b8 c4 J...

00000030 84 84 84 84 84 00 00 €8 0O ..., h.

0d -> PRIMARY DRAWING ORDER::controlFlags
0x0d

= 0x80 | 0x04 | 0x01

= TS _TYPE CHANGE | TS BOUNDS | TS STANDARD

18 -> PRIMARY DRAWING ORDER::orderorderType = TS ENC FAST GLYPH ORDER

fb 7e -> PRIMARY DRAWING ORDER::fieldFlags = Ox7efb

(0x18)

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

218/ 284

Binary of Ox7efb = 0111 1110 1111 1011
Fields 1-2, 4-8, 10-15 are present

0f -> PRIMARY DRAWING ORDER::bounds (description flag)
0x0f
= 0x08 |
0x04 |
0x02 |
0x01
= TS BOUND_BOTTOM |
TS BOUND RIGHT |
TS _BOUND TOP |
TS BOUND LEFT

8b 00 -> PRIMARY DRAWING ORDER::bounds::left = 0x008b = 139
bl 00 -> PRIMARY DRAWING ORDER::bounds::top = 0x00bl = 177

2c 04 -> PRIMARY DRAWING ORDER::bounds::right = 0x042c = 1068
bd 00 -> PRIMARY DRAWING ORDER::bounds::bottom = 0x00bd = 189

06 -> FASTGLYPH ORDER::cacheId = 6

00 03 -> FASTGLYPH ORDER::fDrawing = 0x0300

flAccel = 0x03 = (SO HORIZONTAL | SO FLAG DEFAULT PLACEMENT)
ulCharInc = 0

FASTGLYPH_ORDER: :BackColor not present

ff £f 00 -> FASTGLYPH ORDER::ForeColor
TS _COLOR: :RedOrPaletteIndex = Oxff
TS _COLOR: :Green = Oxff

TS_COLOR: :Blue = 0x00

8b 00 -> FASTGLYPH ORDER::BkLeft = 139
bl 00 -> FASTGLYPH ORDER::BkTop = 177

93 00 -> FASTGLYPH ORDER::BkRight = 147
be 00 -> FASTGLYPH ORDER::BkBottom = 190

FASTGLYPH ORDER: :OpLeft not present

0d 00 -> FASTGLYPH ORDER::0OpTop = 13
fe 7f -> FASTGLYPH ORDER::OpRight = Ox7ffe = 32766

00 80 -> FASTGLYPH ORDER::OpBottom = -32768
00 80 -> FASTGLYPH ORDER::X = -32768
bb 00 -> FASTGLYPH ORDER::Y = 187

13 -> VARIABLEl FIELD::cbData = 0x13 = 19 bytes

00 01 4a 06 Oa 80 80 80 b8 c4 84 84 84 84 84 00
00 68 00 -> VARIABLE1l FIELD::rgbData

00 -> TS CACHE GLYPH DATA REV2::cacheIndex = 0
01 -> TS CACHE GLYPH DATA REV2::x = 1

4a -> TS CACHE GLYPH DATA REV2::y = -10

06 -> TS_CACHE GLYPH DATA REV2::cx = 6

0a -> TS_CACHE GLYPH DATA REV2::cy = 10

80 80 80 b8 c4 84 84 84 84 84 00 00 -> TS CACHE GLYPH DATA REV2::aj

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

219/ 284

0x80 ->
0x80 ->
0x80 ->
0xb8 ->
Oxcd ->
0x84 ->
0x84 ->
0x84 ->
0x84 ->
0x84 ->

00 00 -> padding

68 00 -> Unicode

4.1.16 PolygonSC

The following is an annotated dump of a PolygonSC (section 2.2.2.2.1.1.2.16) Primary Drawing

Order.

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000020
000000b0O
000000cO
000000d0
000000e0

0d
ba
00
80
46
be
87
80
80
8e
ff
ff
76
80
81

14
00
00
5d
ff
ff
80
59
c0
80
41
aa
80
45
7d

7f
36
80
ff
8a
3e
8b
80
38
70
ff
ff
To
80
80

43
do
cO
5f
ff
69
ff
b5
80
ff
9d
3f
ff
bc
6f

ae
00
76
33
59
ff
ad
80
c3
6e
ff
53
9a
80

00
00
80
ff
ff
41
80
Te
Oc
80
4f
ff
80
6¢C

b2
00
b5
4c
6b
15
a7
80
80
49
ff
3e
99
80

00
00
4a
08
ff
ff
58
al
bb
ff
Ta
7f
41
ad

5c
00
80
ff
73
51
80
80
60
54
ff
ff
80
80

36
00
9f
3f
ff
80
b9
9d
80
le
65
49
bl
8e

02
00
ff
5c
52
40
03
80
ab
ff
ff
2b
6e
80

0d -> PRIMARY DRAWING ORDER::controlFlags

0x0d

= 0x01 |
0X04 |
0x08

= TS STANDARD
TS BOUNDS
TS TYPE CHANGE

14 -> PRIMARY DRAWING ORDER::orderType

7f -> PRIMARY DRAWING ORDER::fieldFlags
0111 1111

Binary of Ox7f
Fields 1-7 are present

0d
00
al
ff
ff
ff
80
85
ff
44
5d
ff
80
94

0x1

0x

43 -> PRIMARY DRAWING ORDER::bounds::flags =

0x43

= 0x01 |
0x02 |
0x40

= TS BOUND LEFT

03
00
80
3e
96
68
c2
80
b5
71
ff
5b
bf
80

0x0d

4 =

7f

0d
00
81
ff
ff
80
2f
bl
80
ff
83
80
19
a8

01
00
ff
bl
42
69
80
80
91
3d
ff
55
80
80

20
00
7d
ff
ff
ff
cl
60
ff
46
49
ff
c3
73

..C A6
B
J VA }

. 3L\ >
F...Y.k.s.R...B.
>1.A..Q.Q.h.1i.

....... Xoooo/ .

R A
B
p.n.I.T..Dg.=F

TS_ENC_POLYGON_SC_ORDER

0x43

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

220/ 284

TS BOUND TOP |
TS BOUND DELTA RIGHT

ae 00 -> PRIMARY DRAWING ORDER::bounds::left = 0x00ae = 174
b2 00 -> PRIMARY DRAWING ORDER::bounds::top = 0x00b2 = 178

5c -> PRIMARY DRAWING ORDER::bounds::right (delta) = 0x5c = 92 pixels from the last
bounds: :right
PRIMARY DRAWING ORDER::bounds::right = last bounds::right (0x2£f3) + 0x5c = 0x34f = 847

PRIMARY DRAWING ORDER::bounds::bottom not present

36 02 -> POLYGON_SC_ORDER::xStart = 0x0236 = 566
0d 03 -> POLYGON_SC_ORDER::yStart = 0x030d = 781

0d -> POLYGON_SC ORDER::bRop2 = 0x0d = R2Z_COPYPEN
01 -> POLYGON_SC ORDER::FillMode = 0x0l1 = ALTERNATE

20 ba 00 -> POLYGON_SC ORDER::BrushColor
TS_COLOR: :RedOrPalettelIndex = 0x20

TS COLOR: :Green = Oxba

TS_COLOR::Blue = 0x00
36 -> POLYGON SC ORDER::NumDeltaEntries = 0x36 = 54 entries
d0 -> VARIABLE1l FIELD::cbData = 0xd0 = 208 bytes

00 00 00 00 0O OO0 0O OO0 0O 00 0O 00 00 00 80 cO
76 80 b5 4a 80 9f ff al 80 81 ff 7d 80 5d ff 5f
33 ff 4c 08 ff 3f 5c ff 3e ff bl ff 46 ff 8a ff
59 ff eb f£f 73 ff 52 ff 96 ff 42 ff be ff 3e 69
ff 41 15 £f 51 80 40 ff 68 80 69 ff 87 80 8b ff
ad 80 a7 58 80 b9 03 80 c2 2f 80 cl 80 59 80 b5
80 7e 80 al 80 9d 80 85 80 bl 80 60 80 cO 38 80
c3 Oc 80 bb 60 80 ab ff b5 80 91 ff 8e 80 70 ff
6e 80 49 ff 54 le ff 44 71 ff 3d 46 ff 41 ff 9d
ff 4f £ff 7a f£ff 65 ff 5d ff 83 ff 49 ff aa ff 3f
53 ff 3e 7f ff 49 2b ff 5b 80 55 ff 76 80 Tb ff
9a 80 99 41 80 bl 6e 80 bf 19 80 c3 80 45 80 bc
80 6¢c 80 ad 80 8e 80 94 80 a8 80 73 81 7d 80 6f -> VARIABLEl FIELD::rgbData

00 00 00 00 00 00 00 00 00 00 00 00 00 00 -> DELTA PTS FIELD::zeroBits = 0

Point 1: 80 cO0 -> Delta X = 0Oxc0 = 192 76 -> Delta Y = Oxfffffff6 = -10
Point 2: 80 b5 -> Delta X = 0Oxb5 = 181 4a -> Delta Y = Oxffffffca = -54
Point 3: 80 9f -> Delta X = 0x9f = 159 ff al -> Delta Y = Oxffffffal = -95
Point 4: 80 81 -> Delta X = 0x81 = 129 ff 7d -> Delta Y = Oxffffff7d = -131
Point 5: 80 5d -> Delta X = 0x5d = 93 ff 5f -> Delta Y = Oxffffffbf = -161
Point 6: 33 -> Delta X = 0x33 = 51 ff 4c -> Delta Y = Oxffffffd4c = -180
Point 7: 08 -> Delta X = 0x8 = 8 ff 3f -> Delta Y = Oxffffff3f = -193
Point 8: 5c -> Delta X = 0Oxffffffdc = -36 ff 3e -> Delta Y = Oxffffff3e = -194
Point 9: ff bl -> Delta X = Oxffffffbl = -79 ff 46 -> Delta Y = Oxffffffd46 = -186
Point 10: ff 8a -> Delta X = Oxffffff8a = -118 ff 59 -> Delta Y = Oxffffff59 = -167
Point 11: ff 6b -> Delta X = Oxfffffféb = -149 ff 73 -> Delta Y = Oxffffff73 = -141
Point 12: ff 52 -> Delta X = Oxffffff52 = -174 ff 96 -> Delta Y = Oxffffff96 = -106
Point 13: ff 42 -> Delta X = Oxffffff42 = -190 ff be -> Delta Y = Oxffffffbe = -66
Point 14: ff 3e -> Delta X = Oxffffff3e = -194 69 -> Delta Y = Oxffffffe9 = -23
Point 15: ff 41 -> Delta X = Oxffffff4l = -191 15 -> Delta Y = 0x15 = 21

Point 16: ff 51 -> Delta X = Oxffffff51 = -175 80 40 -> Delta Y = 0x40 = 64

221/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Point 17: ff 68 -> Delta X = Oxffffffe8 = -152 80 69 -> Delta Y = 0x69 = 105
Point 18: ff 87 -> Delta X = Oxffffff87 = -121 80 8b -> Delta Y = 0x8b = 139
Point 19: ff ad -> Delta X = Oxffffffad = -83 80 a7 -> Delta Y = Oxa7 = 167
Point 20: 58 -> Delta X = Oxffffffd8 = -40 80 b9 -> Delta Y = 0xb9 = 185
Point 21: 03 -> Delta X = 0x3 = 3 80 c2 -> Delta Y = Oxc2 = 194
Point 22: 2f -> Delta X = 0x2f = 47 80 cl -> Delta Y = Oxcl = 193
Point 23: 80 59 -> Delta X = 0x59 = 89 80 b5 -> Delta Y = 0Oxb5 = 181
Point 24: 80 7e -> Delta X = 0x7e = 126 80 al -> Delta Y = Oxal = 16l
Point 25: 80 9d -> Delta X = 0x9d = 157 80 85 -> Delta Y = 0x85 = 133
Point 26: 80 bl -> Delta X = Oxbl = 177 80 60 -> Delta Y = 0x60 = 96
Point 27: 80 cO0 -> Delta X = Oxc0 = 192 38 -> Delta Y = 0x38 = 56
Point 28: 80 c¢3 -> Delta X = 0Oxc3 = 195 Oc -> Delta Y = Oxc = 12
Point 29: 80 bb -> Delta X = Oxbb = 187 60 -> Delta Y = Oxffffffe0 = -32
Point 30: 80 ab -> Delta X = Oxab = 171 ff b5 -> Delta Y = Oxffffffb5 = -75
Point 31: 80 91 -> Delta X = 0x91 = 145 ff 8e -> Delta Y = Oxffffff8e = -114
Point 32: 80 70 -> Delta X = 0x70 = 112 ff 6e -> Delta Y = Oxffffffée = -146
Point 33: 80 49 -> Delta X = 0x49 = 73 ff 54 -> Delta Y = Oxffffff54 = -172
Point 34: le -> Delta X = Oxle = 30 ff 44 -> Delta Y = Oxffffff44 = -188
Point 35: 71 -> Delta X = Oxfffffffl = -15 ff 3d -> Delta Y = Oxffffff3d = -195
Point 36: 46 -> Delta X = Oxffffffco = -58 ff 41 -> Delta Y = Oxffffff4l = -191
Point 37: ff 9d -> Delta X = Oxffffff9d = -99 ff 4f -> Delta Y = Oxffffffd4f = -177
Point 38: ff 7a -> Delta X = Oxffffff7a = -134 ff 65 -> Delta Y = Oxffffff65 = -155
Point 39: ff 5d -> Delta X = Oxffffff5d = -163 ff 83 -> Delta Y = Oxffffff83 = -125
Point 40: ff 49 -> Delta X = Oxffffff49 = -183 ff aa -> Delta Y = Oxffffffaa = -86
Point 41: ff 3f -> Delta X = Oxffffff3f = -193 53 -> Delta Y = Oxffffffd3 = -45
Point 42: ff 3e -> Delta X = Oxffffff3e = -194 7f -> Delta Y = Oxffffffff = -1
Point 43: ff 49 -> Delta X = Oxffffff49 = -183 2b -> Delta Y = 0x2b = 43
Point 44: ff 5b -> Delta X = Oxffffff5b = -165 80 55 -> Delta Y = 0x55 = 85
Point 45: ff 76 -> Delta X = Oxffffff76 = -138 80 7b -> Delta Y = 0Ox7b = 123
Point 46: ff 9a -> Delta X = Oxffffff9a = -102 80 99 -> Delta Y = 0x99 = 153
Point 47: 41 -> Delta X = Oxffffffcl = -63 80 bl -> Delta Y = 0Oxbl = 177
Point 48: 6e -> Delta X = Oxffffffee = -18 80 bf -> Delta Y = Oxbf = 191
Point 49: 19 -> Delta X = 0x19 = 25 80 c3 -> Delta Y = 0Oxc3 = 195
Point 50: 80 45 -> Delta X = 0x45 = 69 80 bc -> Delta Y = Oxbc = 188
Point 51: 80 6c -> Delta X = Ox6c = 108 80 ad -> Delta Y = Oxad = 173
Point 52: 80 8e -> Delta X = 0x8e = 142 80 94 -> Delta Y = 0x94 = 1438
Point 53: 80 a8 -> Delta X = 0Oxa8 = 168 80 73 -> Delta Y = 0x73 = 115
Point 54: 81 7d -> Delta X = 0x17d = 381 80 6f -> Delta Y = Ox6f = 111
Actual point 1: 758, 771
Actual point 2: 939, 717
Actual point 3: 1098, 622
Actual point 4: 1227, 491
Actual point 5: 1320, 330
Actual point 6: 1371, 150
Actual point 7: 1379, -43
Actual point 8: 1343, -237
Actual point 9: 1264, -423
Actual point 10: 1146, -590
Actual point 11: 997, -731
Actual point 12: 823, -837
Actual point 13: 633, -903
Actual point 14: 439, -926
Actual point 15: 248, -905
Actual point 16: 73, -841
Actual point 17: =79, -736
Actual point 18: -200, -597
Actual point 19: -283, -430
Actual point 20: -323, -245
222 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Actual point 21: -320, -51
Actual point 22: -273, 142
Actual point 23: -184, 323
Actual point 24: -58, 484
Actual point 25: 99, 617
Actual point 26: 276, 713
Actual point 27: 468, 769
Actual point 28: 663, 781
Actual point 29: 850, 749
Actual point 30: 1021, 674
Actual point 31: 1166, 560
Actual point 32: 1278, 414
Actual point 33: 1351, 242
Actual point 34: 1381, 54
Actual point 35: 1366, -141
Actual point 36: 1308, -332
Actual point 37: 1209, -509
Actual point 38: 1075, -664
Actual point 39: 912, -789
Actual point 40: 729, -875
Actual point 41: 536, -920
Actual point 42: 342, -921
Actual point 43: 159, -878
Actual point 44: -6, -793
Actual point 45: -144, -670
Actual point 46: -246, -517
Actual point 47: -309, -340
Actual point 48: -327, -149
Actual point 49: -302, 46
Actual point 50: -233, 234
Actual point 51: -125, 407
Actual point 52: 17, 555
Actual point 53: 185, 670
Actual point 54: 566, 781

4.1.17 PolygonCB

The following is an annotated dump of a PolygonCB (section 2.2.2.2.1.1.2.17) Primary Drawing
Order.

00000000 09 15 ef 1b ea 00 46 01 0d 01 08 00 00 04 03 81 Foooooo..
00000010 08 03 05 88 09 26 O9 77 ..., &.w

09 -> PRIMARY DRAWING ORDER::controlFlags = 0x09
0x09

= 0x01 |

0x08

TS_STANDARD |

TS_TYPE CHANGE

15 -> PRIMARY DRAWING ORDER::orderType = 0x15 = TS ENC POLYGON CB ORDER
ef 1b -> PRIMARYiDRAWINGioRDER::fieldFlaqs = Oxlbef

Binary of Oxlbef = 0001 1011 1110 1111

Fields 1-4, 6-10, 12-13 are present

ea 00 -> POLYGON CB ORDER::xStart = Oxea = 234

223/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

46 01 -> POLYGON CB_ORDER::yStart = 0x146 = 326

0d -> POLYGON_CB_ORDER: :bRop2 = 0x0d = COPYPEN
01 -> POLYGON CB ORDER::FillMode = 0x0l1 = ALTERNATE

POLYGON_CB_ORDER::BackColor not present
08 00 00 -> POLYGON_CB_ORDER: :ForeColor
TS_COLOR: :RedOrPalettelIndex = 0x08

TS COLOR::Green = 0x00

TS COLOR::Blue = 0x00

04 -> POLYGON CB ORDER: :BrushOrgX = 4
03 -> POLYGON_CB_ORDER: :BrushOrgY = 3

81 -> POLYGON_CB_ORDER:BrushStyle = 0x81 = 0x80 | 0x01 = TS_CACHED_BRUSH | BMF_1BPP
08 -> POLYGON CB ORDER:BrushHatch = Brush Cache Index = 0x8

POLYGON_CB_ORDER::BrushExtra not present

03 -> POLYGON_CB_ORDER: :NumDeltaEntries = 0x3 = 3 entries
05 -> VARIABLEl FIELD::cbData = 5 bytes

88 09 26 09 77 -> VARIABLEl FIELD::rgbData

88 -> DELTA PTS FIELD::zeroBits = binary:10 00 10 00

Point 1: Delta X = 0 (zeroBit set) 09 -> Delta Y = 0x9 = 9
Point 2: 26 -> Delta X = 0x26 = 38 09 -> Delta Y = 0x9 = 9
Point 3: Delta X = 0 (zeroBit set) 77 -> Delta Y = OxXfffffff7 = -9

Actual point 1: 234, 335
Actual point 2: 272, 344
Actual point 3: 272, 335

4.1.18 Polyline

The following is an annotated dump of a Polyline (section 2.2.2.2.1.1.2.18) Primary Drawing Order.

00000000 2d 16 73 £8 01 b8 02 00 cO 00 20 6¢c 00 00 00 00 -.s....... 1....
00000010 00 04 00 00 ff 7e 76 ff 41 6c ff 24 62 ff 2b 59 ~v.Al.Sb.+Y
00000020 f££f 55 51 f£f 9c 49 73 43 80 4d ff be 80 99 ff ba .UQ..IsC.M......
00000030 80 cd ff b7 80 de ff b6 80 ca ff b6 80 96 f£ff b7
00000040 80 48 ff ba 6f ff be ff 97 43 ff 52 4a ff 2b 51 .H..o....C.RJ.+Q
00000050 ff 24 59 ff 44 63 ff 81 6¢c 56 76 2f 80 82 Oa 80 .$Y.Dc..lvv/....
00000060 bf 14 80 dd le 80 d4 27 80 ab 2f 80 64 37 0d 3d '../.d7.=
00000070 ff b3 80 42 ff 67 80 46 ...B.g.F

2d -> PRIMARY_DRAWING_ORDER::contrOlFlagS = 0x2d
0x2d
= 0x01 |
0X04 |
0x08 |
0x20
= TS STANDARD |
TS _BOUNDS |

224 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

TS TYPE CHANGE |
TS ZERO BOUNDS DELTAS

16 -> PRIMARY DRAWING ORDER::orderType

73 -> PRIMARY DRAWING ORDER::fieldFlags
Binary of 0x73
Fields 1-2,

= 1110011
5-7 are present

PRIMARY DRAWING ORDER: :bounds

0x16

0x7

= last bounds

3

32 entries

VARIABLEl FIELD::rgbData

£8 01 -> POLYLINE ORDER::xStart = 0x01£8 = 504
b8 02 -> POLYLINE ORDER::yStart = 0x02b8 = 696
POLYLINE ORDER::bRopZ not present

POLYLINE ORDER::BrushCacheEntry not present

00 cO 00 -> POLYLINE ORDER::PenColor::Red = 0x00
TS _COLOR: :RedOrPaletteIndex = 0x00

TS _COLOR: :Green = 0xcO

TS_COLOR::Blue = 0x00

20 -> POLYLINE ORDER::NumDeltaEntries = 0x20 =
6c -> VARIABLE1l FIELD::cbData = Ox6c = 108 bytes
00 00 00 00 00 04 00 00 ff 7e 76 ff 41 6c ff 24
62 ff 2b 59 ff 55 51 ff 9c 49 73 43 80 4d ff be
80 99 ff ba 80 cd ff b7 80 de ff b6 80 ca ff bb
80 96 ff b7 80 48 ff ba 6f ff be ff 97 43 ff 52
4a ff 2b 51 ff 24 59 ff 44 63 ff 81 6c 56 76 2f
80 82 0Oa 80 bf 14 80 dd le 80 d4 27 80 ab 2f 80
64 37 0d 3d ff b3 80 42 ff 67 80 46 ->

00 00 00 00 00 04 00 00 -> DELTA PTS FIELD::zeroBits
Point 1: ff 7e -> Delta X Oxffffff7e = -130
Point 2: ff 41 -> Delta X Oxffffffd4l = -191
Point 3: ff 24 -> Delta X Oxffffff24 = -220
Point 4: ff 2b -> Delta X Oxffffff2b = -213
Point 5: ff 55 -> Delta X Oxfffff£55 = -171
Point 6: ff 9c -> Delta X Oxffffff9c = -100
Point 7: 73 -> Delta X Oxffffff£f3 = -13

Point 8: 80 4d -> Delta X = 0x4d = 77

Point 9: 80 99 -> Delta X 0x99 = 153

Point 10: 80 cd -> Delta X = Oxcd = 205

Point 11: 80 de -> Delta X = Oxde = 222

Point 12: 80 ca -> Delta X = Oxca = 202

Point 13: 80 96 -> Delta X = 0x96 = 150

Point 14: 80 48 -> Delta X = 0x48 = 72

Point 15: 6f -> Delta X = Oxffffffef = -17
Point 16: ff 97 -> Delta X = Oxffffff97 = -105
Point 17: ff 52 -> Delta X = Oxffffff52 = -174
Point 18: ff 2b -> Delta X = Oxffffff2b = -213
Point 19: ff 24 -> Delta X = Oxffffff24 = -220
Point 20: ff 44 -> Delta X = Oxffffff44 = -188
Point 21: ff 81 -> Delta X = Oxffffff8l1 = -127
Point 22: 56 -> Delta X = Oxffffffde = -42
Point 23: 2f -> Delta X = 0x2f = 47

76 —>
6c —>
62 —>
59 ->
51 ->
49 ->
43 ->
ff be
ff ba
ff b7
ff bo
ff bo
ff b7
ff ba
ff be
43 —>
4a —>
51 —>
59 ->
63 —>
6c —>
76 —>
Delta

Delta
Delta
Delta
Delta
Delta
Delta
Delta Y
-> Delta
-> Delta
-> Delta
-> Delta
-> Delta
-> Delta
-> Delta
-> Delta
Delta Y
Delta Y
Delta Y
Delta Y
Delta Y

Y

Y

(

KKK KKK

Delta
Delta
Y =0

KKK KK KKK

TS ENC POLYLINE ORDER

Oxfffffffo
Oxffffffec
Oxffffffe2
Oxffffffdo
Oxffffffdl
Oxffffffc9
Oxffffffc3

= Oxffffffbe
= Oxffffffba
= Oxffffffb7
= Oxffffffbo
= Oxffffffb6
= Oxffffffb7
= Oxffffffba
= Oxffffffbe
Oxffffffc3 =

Oxffffffca
Oxffffffdl
Oxffff££d9
Oxffffffe3
Oxffffffec
Oxfffffffe

-10
-20
-30
-39
-47
-55
-61

-61
-54
-47
-39
-29
-20
-10

-66
=70
=73
=74
=74
=73
=70
-66

due to zeroBit being set)

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

225/ 284

Point 24: 80 82 -> Delta X = 0x82 = 130 0a -> Delta Y = Oxa = 10
Point 25: 80 bf -> Delta X = Oxbf = 191 14 -> Delta Y = 0x14 = 20
Point 26: 80 dd -> Delta X = 0Oxdd = 221 le -> Delta Y = 0Oxle = 30
Point 27: 80 d4 -> Delta X = 0xd4 = 212 27 => Delta Y = 0x27 = 39
Point 28: 80 ab -> Delta X = Oxab = 171 2f -> Delta Y = 0x2f = 47
Point 29: 80 64 -> Delta X = 0x64 = 100 37 -> Delta Y = 0x37 = 55
Point 30: 0d -> Delta X = 0xd = 13 3d -> Delta Y = 0x3d = 61
Point 31: ff b3 -> Delta X = Oxffffffb3 = -77 80 42 -> Delta Y = 0x42 = 66
Point 32: ff 67 -> Delta X = Oxffffffé67 = -153 80 46 -> Delta Y = 0x46 = 70
Actual point 1: 374, 686

Actual point 2: 183, 666

Actual point 3: -37, 636

Actual point 4: -250, 597

Actual point 5: -421, 550

Actual point 6: -521, 495

Actual point 7: -534, 434

Actual point 8: -457, 368

Actual point 9: -304, 298

Actual point 10: -99, 225

Actual point 11: 123, 151

Actual point 12: 325, 77

Actual point 13: 475, 4

Actual point 14: 547, -66

Actual point 15: 530, -132

Actual point 16: 425, -193

Actual point 17: 251, -247

Actual point 18: 38, -294

Actual point 19: -182, -333

Actual point 20: -370, -362

Actual point 21: -497, -382

Actual point 22: -539, -392

Actual point 23: -492, -392

Actual point 24: -362, -382

Actual point 25: -171, -362

Actual point 26: 50, -332

Actual point 27: 262, -293

Actual point 28: 433, -246

Actual point 29: 533, -191

Actual point 30: 546, -130

Actual point 31: 469, -64

Actual point 32: 316, 6

4.1.19 EllipseSC

The following is an annotated dump of an EllipseSC (section 2.2.2.2.1.1.2.19) Primary Drawing
Order.

00000000 0d 19 7f 29 ca 00 fb 3c 02 ca 00 47 01 eb 03 3c ...)...<...G...<
00000010 02 0d 02 cO 21 00 R I

0d -> PRIMARY DRAWING_ ORDER::controlFlags = 0x09
0x0d
= 0x01 |
0x04 |
0x08
= TS STANDARD |

226 / 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

TS_BOUNDS |
TS TYPE CHANGE

19 -> PRIMARY DRAWING ORDER::orderType

T7f —> PRIMARY_DRAWING_ORDER::fieldFlags
Binary of 0x7f = 0111 1111
Fields 1-7 are present

29 -> PRIMARYiDRAWINGioRDER::bOundS::fl
0x29
= 0x01 |
0x08 |
0x20
= TS _BOUND_LEFT |
TS_BOUND_BOTTOM |
TS_BOUND DELTA_TOP

ca 00 -> PRIMARY DRAWING ORDER: :bounds:

fb -> PRIMARY DRAWING ORDER::bounds::top(delta) = Oxfb = -5 pixels from last bounds:
PRIMARY DRAWING ORDER::bounds::top = last bounds::top (0xl4c) + 0xfb

= TS ENC ELLIPSE SC ORDER

= 0x7f

ags = 0x29

:left = Oxca = 202

PRIMARY DRAWING ORDER::bounds::right not present

3c 02 -> PRIMARY DRAWING ORDER: :bounds:

:bottom = 0x023c = 572

ca 00 -> ELLIPSE SC ORDER::LeftRect = 0x00ca = 202
47 01 -> ELLIPSE SC ORDER::TopRect = 0x0147 = 327

eb 03 -> ELLIPSE SC ORDER::RightRect =

0x03eb = 1003

3c 02 -> ELLIPSE SC ORDER::BottomRect = 0x023c = 572

0d -> ELLIPSE SC ORDER::bRop2 = 0x0d =

02 -> ELLIPSE SC ORDER::FillMode = 0x02

c0 21 00 -> ELLIPSE_SC ORDER::Color
TS_COLOR: :RedOrPalettelIndex = 0xcO
TS_COLOR::Green = 0x21

TS _COLOR::Blue = 0x00

4.1.20 EllipseCB

COPYPEN
= WINDING

:top

The following is an annotated dump of an EllipseCB (section 2.2.2.2.1.1.2.20) Primary Drawing

Order.

00000000 0d la ff Oc b0 03 b9 c9 09 00
00000010 0d 01 f£f £f 00 60 30 00 02 05

8e fe 10 01 5e 02 ...

0d -> PRIMARY DRAWING ORDER::controlFlags = 0x09

0x0d
= 0x01 |
0x04 |
0x08
= TS STANDARD |
TS_BOUNDS |
TS TYPE CHANGE

[MS-RDPEGDI] — v20131025

Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

227/ 284

la -> PRIMARY DRAWING ORDER::orderType = TS _ENC ELLIPSE CB_ORDER

ff Oc -> PRIMARY DRAWING ORDER::fieldFlags = 0x0Ocff
Binary of O0xOcff = 0000 1100 1111 1111
Fields 1-8, 11-12 are present

b0 -> PRIMARY DRAWING ORDER::bounds::flags 0x29
0xb0
= 0x10 |
0x20 |
0x80
= TS BOUND DELTA LEFT |
TS_BOUND DELTA TOP |
TS_BOUND DELTA BOTTOM

03 -> PRIMARY DRAWING ORDER::bounds::left(delta) = 0x03 = 3 pixels from last bounds::left

PRIMARY DRAWING ORDER::bounds::left = last bounds::left (0Ox2e) + 0x03

b9 -> PRIMARY DRAWING ORDER::bounds::top(delta) = 0xb9 = -71 pixels from last bounds::top

PRIMARY DRAWING ORDER::bounds::top = last bounds::top (0x89) + 0xb9 =

PRIMARY DRAWING ORDER::bounds::right not present

c9 -> PRIMARY DRAWING ORDER::bounds::bottom(delta) = 0xc9 = -55 pixels from last

bounds: :bottom

PRIMARY DRAWING ORDER: :bounds::bottom = last bounds::bottom (Oxad) + 0xc9

09 00 -> ELLIPSE CB_ORDER::LeftRect = 0x0009 = 9
8e fe -> ELLIPSE CB_ORDER::TopRect = Oxfe8e = -370

272
606

10 01 -> ELLIPSE CB ORDER::RighttRect 0x0110
5e 02 -> ELLIPSE CB ORDER::BottomRect = 0x025e

0d -> ELLIPSE CB ORDER::bRop2 = 0x0d = COPYPEN
01 -> ELLIPSE _CB ORDER::FillMode = 0x01 = ALTERNATE

ff £ff 00 -> ELLIPSE _CB_ORDER::BackColor
TS COLOR: :RedOrPaletteIndex = Oxff

TS COLOR: :Green = Oxff

TS COLOR::Blue = 0x00

60 30 00 -> ELLIPSE CB ORDER::ForeColor::Red = Oxff
TS COLOR: :RedOrPaletteIndex = 0x60

TS COLOR: :Green = 0x30

TS_COLOR::Blue = 0x00

ELLIPSE_CB_ORDER: :BrushOrgX not present
ELLIPSE_CB_ORDER: :BrushOrgY not present

02 -—> ELLIPSE_CB_ORDER::BruShStyle = 0x02 = BMF_4BPP
05 -> ELLIPSE_CB ORDER::BrushHatch = Brush Cache Index = 0x05

ELLIPSE_CB_ORDER::BrushExtra not present

118

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

228/ 284

4.1.21 DrawNineGrid

The following is an annotated dump of a DrawNineGrid (section 2.2.2.2.1.1.2.21) Primary Drawing

Order.

00000000 14 07 1c 87 39 03 86 00 4e 03 7d fb £9 0d e 90 N

1d -> PRIMARY DRAWING ORDER::controlFlags = 0x1d
0x1d
= 0x01 |
0x04 |
0x08 |
0x10
= TS STANDARD |
TS_BOUNDS |
TS_TYPE_CHANGE |
TS_DELTA COORDINATES

07 -> PRIMARY DRAWING ORDER::orderType = 0x07 = TS ENC_ DRAWNINEGRID ORDER

lc -> PRIMARY DRAWING ORDER::fieldFlags = Oxlc
Binary of Oxlc = 0001 1100
Fields 3-5 are present

87 -> PRIMARY DRAWING ORDER::bounds::flags = 0x87
0x87
= 0x01 |
0x02 |
0x04 |
0x80
= TS _BOUND_LEFT |
TS_BOUND TOP |
TS_BOUND RIGHT |
TS_BOUND DELTA BOTTOM

39 03 -> PRIMARY DRAWING ORDER::bounds::left = 0x0393 = 925
86 00 -> PRIMARY DRAWING ORDER::bounds::top = 0x86 = 134

4e 03 -> PRIMARY DRAWING ORDER::bounds::right = 0x034e = 846

7d -> PRIMARY DRAWING ORDER::bounds::bottom(delta) = 0x7d = -131 pixels from the last
bounds: :bottom

PRIMARY DRAWING ORDER::bounds::bottom = last bounds::bottom (0xlle) + 0x7d = 0x9% = 1

DRAWNINEGRID ORDER Order::srcLeft not present
DRAWNINEGRID ORDER Order::srcTop not present

fb -> DRAWNINEGRID ORDER Order::srcRight (delta) = Oxfb = -5 pixels from last srcRigh
DRAWNINEGRID_ORDER_Order::SrcRight = last DRAWNINEGRID_ORDER_Order::SrcRight (0x26) +
0x21

£f9 -> DRAWNINEGRID ORDER Order::srcBottom (delta) = 0xf9 = -7 pixels from last srcBot
DRAWNINEGRID ORDER Order::srcBottom = last DRAWNINEGRID ORDER Order::srcBottom (0x28)
= 0x21

0d -> DRAWNINEGRID ORDER Order::bitmapId = 13

55

t

0xfb =

tom
+ 0xf9

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

229/ 284

4.1.22 MultiDrawNineGrid

The following is an annotated dump of a MultiDrawNineGrid (section 2.2.2.2.1.1.2.22) Primary
Drawing Order.

00000000 1d 08 7c 03 9b 00 7c fe 03 02 a4 00 01 05 00 40 ..l.e.elewennnnn @
00000010 80 9b 05 1la

1d -> PRIMARYiDRAWINGioRDER::controlFlags = 0x1d
0x1d
= 0x01 |
0X04 |
0x08 |
0x10
= TS STANDARD |
TS_BOUNDS |
TS _TYPE_CHANGE |
TS_DELTA COORDINATES

08 -> PRIMARY DRAWING ORDER::orderType = 0x08 = TS ENC MULTI DRAWNINEGRID ORDER

7c -> PRIMARY DRAWING ORDER::fieldFlags = 0x7c
Binary of Ox7c = 1111100
Fields 3-7 are present

03 -> PRIMARY DRAWING ORDER::bounds::flags = 0x3
0x3
= 0x1 |
0x2
= TS _BOUND_LEFT |
TS_BOUND_ TOP

9b 00 -> PRIMARY DRAWING ORDER::bounds::left = 0x9 = 155
7c fe -> PRIMARY DRAWING ORDER::bounds::top = Oxfec7 = -388
PRIMARY DRAWING ORDER::bounds::right not present

PRIMARY DRAWING ORDER::bounds::bottom not present

MULTI_DRAWNINEGRID_ORDER Order::srcLeft not present
MULTI_DRAWNINEGRID_ORDER Order::srcTop not present

03 -> MULTI_DRAWNINEGRID ORDER Order::srcRight (delta) = 0x3 = 3 pixels from last srcRight
MULTI_DRAWNINEGRID ORDER Order::srcRight = last MULTI_ DRAWNINEGRID ORDER Order::srcRight

(0x02) + 0x3 = 5

02 -> MULTI DRAWNINEGRID ORDER Order::srcBottom (delta) = 0x2 = 2 pixels from last srcBottom
MULTI DRAWNINEGRID ORDER Order::srcBottom = last MULTI DRAWNINEGRID ORDER Order::srcBottom
(0x01) + 0x2 = 3

a4 00 -> MULTI_DRAWNINEGRID ORDER Order::bitmapId = Oxa4

01 -> MULTI_DRAWNINEGRID ORDER Order::nDeltaEntries = 0x01 = 1 entry

05 00 -> VARIABLEZ2 FIELD::cbData = 0x0005 = 5 bytes

40 80 9b 05 la-> VARIABLE2 FIELD::rgbData

40 -> DELTA RECTS_FIELD::zeroBits = binary:0100 0000

Rectangle #1:

230/ 284

[MS-RDPEGDI] — v20131025
Remote Desktop Protocol: Graphics Device Interface (GDI) Acceleration Extensions

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

80 9b -> Delta Left = 0x9%> = 155

Delta Top = 0 (zeroBit is set)

05 -> Delta Width = 0x5 = 5

la -> Delta Height = 0xla = 26

Rectangle is (155, 0, 155 + 5 = 160, 0 + 26 = 26)

4.2 Annotated Secondary Drawing Orders

4.2.1 Cache Bitmap (Revision 1)

The following i