

1 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-RDPEA-Diff]:

Remote Desktop Protocol: Audio Output Virtual Channel
Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,
overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you maycan make copies of it in order to develop implementations of the
technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute
in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code

samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 0.2 Minor Made technical and editorial changes based on feedback.

10/23/2007 0.3 Minor Made technical and editorial changes based on feedback.

11/30/2007 0.4 Minor Made technical and editorial changes based on feedback.

1/25/2008 0.4.1 Editorial Changed language and formatting in the technical content.

3/14/2008 0.4.2 Editorial Changed language and formatting in the technical content.

5/16/2008 0.4.3 Editorial Changed language and formatting in the technical content.

6/20/2008 0.5 Minor Clarified the meaning of the technical content.

7/25/2008 0.6 Minor Clarified the meaning of the technical content.

8/29/2008 0.7 Minor Clarified the meaning of the technical content.

10/24/2008 0.8 Minor Clarified the meaning of the technical content.

12/5/2008 1.0 Major Updated and revised the technical content.

1/16/2009 2.0 Major Updated and revised the technical content.

2/27/2009 2.0.1 Editorial Changed language and formatting in the technical content.

4/10/2009 3.0 Major Updated and revised the technical content.

5/22/2009 3.1 Minor Clarified the meaning of the technical content.

7/2/2009 4.0 Major Updated and revised the technical content.

8/14/2009 4.0.1 Editorial Changed language and formatting in the technical content.

9/25/2009 4.1 Minor Clarified the meaning of the technical content.

11/6/2009 5.0 Major Updated and revised the technical content.

12/18/2009 6.0 Major Updated and revised the technical content.

1/29/2010 7.0 Major Updated and revised the technical content.

3/12/2010 8.0 Major Updated and revised the technical content.

4/23/2010 9.0 Major Updated and revised the technical content.

6/4/2010 9.0.1 Editorial Changed language and formatting in the technical content.

7/16/2010 9.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 9.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

11/19/2010 9.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 9.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 10.0 Major Updated and revised the technical content.

3/25/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 10.1 Minor Clarified the meaning of the technical content.

9/23/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 11.0 Major Updated and revised the technical content.

3/30/2012 12.0 Major Updated and revised the technical content.

7/12/2012 13.0 Major Updated and revised the technical content.

10/25/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 15.0 Major Significantly changed the technical content.

10/16/2015 15.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 Audio Redirection Protocol Transport Options ... 9
1.3.2 Audio Redirection Protocol ... 9

1.3.2.1 Initialization Sequence ... 9
1.3.2.2 Data Transfer Sequences ... 11
1.3.2.3 Audio Setting Transfer Sequences ... 12

1.4 Relationship to Other Protocols .. 13
1.5 Prerequisites/Preconditions ... 13
1.6 Applicability Statement ... 13
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments ... 13

2 Messages ... 14
2.1 Transport .. 14
2.2 Message Syntax ... 14

2.2.1 RDPSND PDU Header (SNDPROLOG) ... 14
2.2.2 Initialization Sequence .. 15

2.2.2.1 Server Audio Formats and Version PDU
(SERVER_AUDIO_VERSION_AND_FORMATS) ... 15

2.2.2.1.1 Audio Format (AUDIO_FORMAT) .. 16
2.2.2.2 Client Audio Formats and Version PDU

(CLIENT_AUDIO_VERSION_AND_FORMATS) .. 17
2.2.2.3 Quality Mode PDU ... 19
2.2.2.4 Crypt Key PDU (SNDCRYPT) ... 20

2.2.3 Data Sequence ... 20
2.2.3.1 Training PDU (SNDTRAINING) .. 20
2.2.3.2 Training Confirm PDU (SNDTRAININGCONFIRM) 21
2.2.3.3 WaveInfo PDU (SNDWAVINFO) ... 21
2.2.3.4 Wave PDU (SNDWAV) .. 22
2.2.3.5 Wave Encrypt PDU (SNDWAVCRYPT) ... 22
2.2.3.6 UDP Wave PDU (SNDUDPWAVE) ... 23

2.2.3.6.1 Audio FragData (AUDIO_FRAGDATA) ... 24
2.2.3.7 UDP Wave Last PDU (SNDUDPWAVELAST) ... 24
2.2.3.8 Wave Confirm PDU (SNDWAV_CONFIRM) ... 25
2.2.3.9 Close PDU (SNDCLOSE) ... 26
2.2.3.10 Wave2 PDU (SNDWAVE2) .. 26

2.2.4 Audio Setting Transfer Sequences ... 27
2.2.4.1 Volume PDU (SNDVOL) .. 27
2.2.4.2 Pitch PDU (SNDPITCH)... 27

3 Protocol Details ... 29
3.1 Common Details .. 29

3.1.1 Abstract Data Model .. 29
3.1.1.1 Protocol Version .. 29
3.1.1.2 Audio Format List and Current Audio Format .. 29
3.1.1.3 Crypt Key... 29
3.1.1.4 Quality Mode Setting ... 29
3.1.1.5 UDP Support .. 29

3.1.2 Timers .. 30

5 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.3 Initialization ... 30
3.1.4 Higher-Layer Triggered Events ... 30

3.1.4.1 Playing Audio ... 30
3.1.5 Message Processing Events and Sequencing Rules .. 31
3.1.6 Timer Events .. 33
3.1.7 Other Local Events .. 33

3.2 Client Details ... 33
3.2.1 Abstract Data Model .. 33
3.2.2 Timers .. 33
3.2.3 Initialization ... 33
3.2.4 Higher-Layer Triggered Events ... 33
3.2.5 Message Processing Events and Sequencing Rules .. 33

3.2.5.1 Initialization Sequence ... 33
3.2.5.1.1 Messages ... 34

3.2.5.1.1.1 Processing a Server Audio Formats and Version PDU 34
3.2.5.1.1.2 Sending a Client Audio Formats and Version PDU 34
3.2.5.1.1.3 Sending a Quality Mode PDU ... 34
3.2.5.1.1.4 Processing a Training PDU ... 34
3.2.5.1.1.5 Sending a Training Confirm PDU .. 34
3.2.5.1.1.6 Processing a Crypt Key PDU .. 35

3.2.5.2 Data Transfer Sequence ... 35
3.2.5.2.1 Messages ... 35

3.2.5.2.1.1 Processing a WaveInfo PDU ... 35
3.2.5.2.1.2 Processing a Wave PDU .. 35
3.2.5.2.1.3 Processing a Wave Encrypt PDU ... 36
3.2.5.2.1.4 Processing a UDP Wave PDU ... 36
3.2.5.2.1.5 Processing a UDP Wave Last PDU ... 36
3.2.5.2.1.6 Sending a Wave Confirm PDU .. 36
3.2.5.2.1.7 Processing a Close PDU .. 37

3.2.5.3 Settings Transfer Sequence .. 37
3.2.5.3.1 Messages ... 37

3.2.5.3.1.1 Processing a Volume PDU ... 37
3.2.5.3.1.2 Processing a Pitch PDU ... 37

3.2.6 Timer Events .. 37
3.2.7 Other Local Events .. 38

3.3 Server Details .. 38
3.3.1 Abstract Data Model .. 38
3.3.2 Timers .. 38
3.3.3 Initialization ... 38
3.3.4 Higher-Layer Triggered Events ... 38
3.3.5 Message Processing Events and Sequencing Rules .. 38

3.3.5.1 Initialization Sequence ... 38
3.3.5.1.1 Messages ... 38

3.3.5.1.1.1 Sending a Server Audio Formats and Version PDU.......................... 38
3.3.5.1.1.2 Processing a Client Audio Formats and Version PDU 38
3.3.5.1.1.3 Processing a Quality Mode PDU .. 39
3.3.5.1.1.4 Sending a Training PDU .. 39
3.3.5.1.1.5 Processing a Training Confirm PDU ... 39
3.3.5.1.1.6 Sending a Crypt Key PDU .. 39

3.3.5.2 Data Transfer Sequence ... 39
3.3.5.2.1 Messages ... 40

3.3.5.2.1.1 Sending a WaveInfo PDU .. 40
3.3.5.2.1.2 Sending a Wave PDU .. 40
3.3.5.2.1.3 Sending a Wave Encrypt PDU .. 40
3.3.5.2.1.4 Sending a UDP Wave PDU ... 41
3.3.5.2.1.5 Sending a UDP Wave Last PDU .. 41
3.3.5.2.1.6 Processing a Wave Confirm PDU .. 42
3.3.5.2.1.7 Sending a Close PDU .. 42

6 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.2.1.8 Sending a Wave2 PDU .. 42
3.3.5.3 Audio Settings Transfer Sequence ... 42

3.3.5.3.1 Messages ... 42
3.3.5.3.1.1 Sending a Volume PDU ... 42
3.3.5.3.1.2 Sending a Pitch PDU ... 43

3.3.6 Timer Events .. 43
3.3.7 Other Local Events .. 43

4 Protocol Examples ... 44
4.1 Annotated Initialization Sequence .. 44

4.1.1 Server Audio Formats and Version PDU ... 44
4.1.2 Client Audio Formats and Version PDU .. 45
4.1.3 Training PDU .. 46
4.1.4 Training Confirm PDU .. 46

4.2 Annotated Virtual Channel Data Transfer Sequence .. 46
4.2.1 WaveInfo PDU .. 47
4.2.2 Wave PDU ... 47
4.2.3 Wave Confirm PDU ... 47
4.2.4 Wave2 PDU .. 47

4.3 Annotated UDP Data Transfer Sequence Using Wave Encrypt PDU 48
4.3.1 Wave Encrypt PDU .. 48
4.3.2 Wave Confirm PDU ... 48

4.4 Annotated UDP Data Transfer Sequence Using UPD Wave PDU 48
4.4.1 UDP Wave PDU ... 48
4.4.2 UDP Wave Last PDU .. 49
4.4.3 Wave Confirm PDU ... 49

5 Security ... 50
5.1 Security Considerations for Implementers ... 50
5.2 Index of Security Parameters .. 50

6 Appendix A: Product Behavior ... 51

7 Change Tracking .. 58

8 Index ... 59

7 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Remote Desktop Protocol: Audio Output Virtual Channel Extension [MS-RDPEA], an extension to
the Remote Desktop Protocol, seamlessly transfers audio data from a server to a client.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

audio format: A data structure that is used to define waveform-audio data. The actual structure of
individual formats is opaque to the underlying transport protocol. For more information, see
[MSDN-AUDIOFORMAT].

client: A computer on which the remote procedure call (RPC) client is executing.

dynamic virtual channel: A transport used for lossless communication between an RDP client and
a server component over a main data connection, as specified in [MS-RDPEDYC].

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a

network and that may contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

RC4: A variable key-length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

server: A computer on which the remote procedure call (RPC) server is executing.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National

Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

virtual channel: A transport used for communication between a client and a server component
over a main data connection, in 1600-byte chunks, as specified in Static Virtual Channels in
[MS-RDPBCGR].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

8 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[FIPS180-2] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180-
2, August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS-RDPEUDP] Microsoft Corporation, "Remote Desktop Protocol: UDP Transport Extension".

[MS-RDPEVOR] Microsoft Corporation, "Remote Desktop Protocol: Video Optimized Remoting Virtual

Channel Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2361] Fleischman, E., "WAVE and AVI Codec Registries", RFC 2361, June 1998,

http://www.ietf.org/rfc/rfc2361.txt

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099., http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

1.2.2 Informative References

[ETSI-GSM] European Telecommunications Standards Organization, "GSM UMTS 3GPP Numbering
Cross Reference", March 2008,
http://webapp.etsi.org/key/key.asp?GSMSpecPart1=06&GSMSpecPart2=10&Search=search

[G711] ITU-T, "Pulse code modulation (PCM) of voice frequencies", Recommendation G.711,
November 1988, http://www.itu.int/rec/T-REC-G.711-198811-I/en

[ISO/IEC-11172-3] International Organization for Standardization, "Information technology - Coding

of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s -- Part 3:
Audio", ISO/IEC 11172-3:1993,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22412

Note There is a charge to download the specification.

[MS-RDPEFS] Microsoft Corporation, "Remote Desktop Protocol: File System Virtual Channel
Extension".

[MSDN-AUDIOFORMAT] Microsoft Corporation, "WAVEFORMATEX", http://msdn.microsoft.com/en-
us/library/ms713497.aspx

[MSDN-getsockname] Microsoft Corporation, "getsockname function", http://msdn.microsoft.com/en-
us/library/ms738543.aspx

1.3 Overview

This section provides a high-level overview of the operation of Remote Desktop Protocol: Audio Output
Virtual Channel Extension. The purpose of the protocol is to transfer audio data from the server to the
client. For example, when the server plays an audio file, this protocol is used by the server to transfer
the audio data to the client. The client maycan then play the audio.

9 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.3.1 Audio Redirection Protocol Transport Options

Remote Desktop Protocol: Audio Output Virtual Channel Extension information maycan be exchanged
between the client and server via two different transport methods:

 Static virtual channels, as specified in [MS-RDPBCGR]

 Dynamic virtual channels, as specified in [MS-RDPEDYC]

 UDP

Static or dynamic virtual channels maycan be used to transmit all information between client and
server and musthave to be used for some sequences. For certain sequences, however, UDP maycan
be used as well. Throughout this document, references are made to sending data over static or
dynamic virtual channels and over UDP.

Throughout this document, the term virtual channel is used if it applies to either dynamic virtual
channels or static virtual channels.

The term dynamic virtual channel is used when either a reliable transport or an unreliable UDP
transport, as specified in [MS-RDPEUDP], is used.

1.3.2 Audio Redirection Protocol

Remote Desktop Protocol: Audio Output Virtual Channel Extension is divided into three distinct
sequences:

 Initialization Sequence (section 1.3.2.1)

The connection is established and capabilities and settings are exchanged.

 Data Transfer Sequences (section 1.3.2.2)

Audio data is transferred.

 Audio Setting Transfer Sequences (section 1.3.2.3)

Changes to audio settings are transferred.

1.3.2.1 Initialization Sequence

The initialization sequence has the following goals:

1. Establish the client and server protocol versions and capabilities.

2. Establish a list of audio formats common to both the client and the server. All audio data
transmits in a format specified in this list.

3. Determine if UDP maycan be used to transmit audio data.

Initially, the server sends a Server Audio Formats and Version PDU, specifying its protocol version and

supported audio formats to the client. In response, the client sends a Client Audio Formats and
Version protocol data unit (PDU). At this point, the server and client have each other's versions, each
other's capabilities, and a synchronized list of supported audio formats.

If both the client and the server are at least version 6, the client musthas to send a Quality Mode PDU
immediately after sending the Client Audio Formats and Version PDU.

If the client wants to accept data over UDP, the client advertises a port to be used for UDP traffic.
Given the client's port, the server attempts to use UDP to send a Training PDU to the client over the

10 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

port. The client in turn attempts to reply with its own Training Confirm PDU. The server then attempts
to send a private key (using a Crypt Key PDU) to the client, using the audio virtual channels. This key

will be used to encrypt some data sent over UDP. If all of the preceding steps succeed, the data
transfer sequences are sent over UDP. If any of the preceding steps fail, the data transfer sequences

are sent over virtual channels.

Figure 1: Initialization sequence using UDP for data transfer

If all data transfer sequences are to be sent over virtual channels, the server and client exchange a

Training PDU and a Training Confirm PDU over virtual channels.

11 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 2: Initialization sequence using virtual channels for data transfer

1.3.2.2 Data Transfer Sequences

The data transfer sequences have the goal of transferring audio data from the server to the client.
Two different protocols exist for the data transfer sequences: one protocol transfers over virtual
channels, and another transfers over UDP.

The data transfer sequence over virtual channels has a very simple protocol. If the client version or
server version is less than 8, the server sends two consecutive packets of audio data: a WaveInfo

PDU (section 2.2.3.3) and a Wave PDU (section 2.2.3.4). Upon consuming the audio data, the client
sends back a Wave Confirm PDU (section 2.2.3.8) to the server to notify the server that it has
consumed the audio data. Consuming the audio data means it was processed, canceled, or dropped by
the client. See section 3.2.5.2.1.6 for details of how the wTimeStamp field of the Wave Confirm PDU is
set.

Figure 3: Data transfer sequence over virtual channels using WaveInfo PDU and Wave PDU

If the client and server versions are both at least 8, the server sends Wave2 PDU (section 2.2.3.10).
On consuming the audio data, the client sends back a Wave Confirm PDU (section 2.2.3.8) to the

server to notify the server that it has consumed the audio data.

Figure 4: Data transfer sequence over virtual channels using Wave2 PDU

The protocol for the data transfer sequence over UDP is a little more involved. Similar to the protocol
over virtual channels, the server sends a chunk of audio data to the client. When the client finishes
consuming the audio data, the client sends back a Wave Confirm PDU to the server. The difference
with the protocol used over virtual channels is how the server sends the audio data.

If either the client or server version is less than 5, the server sends audio data using a Wave Encrypt
PDU (section 2.2.3.5). Upon consumption of the audio data, the client sends a Wave Confirm PDU to
the server.

12 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 5: Data transfer sequence over UDP

If the client and server versions are both at least 5, another method can be used to send audio data
over UDP. This method involves the server sending the audio data in successive PDUs. All PDUs

(except for the final one) are UDP Wave PDUs (section 2.2.3.6). The final PDU is a UDP Wave Last
PDU (section 2.2.3.7). Given these PDUs, the client reconstructs the audio data sample. Upon
consumption of audio data, the client sends a Wave Confirm PDU to the server.

Figure 6: Data transfer sequence over UDP when protocol version is at least 5

During the initialization sequence (section 1.3.2.1), the server uses the Crypt Key
PDU (section 2.2.2.4) to send a 32-byte private key over a virtual channel to the client. Some audio

data is encrypted using this key.

At the end of the audio data transfer, the server notifies the client by sending a Close
PDU (section 2.2.3.9) over a virtual channel.

1.3.2.3 Audio Setting Transfer Sequences

The audio setting transfer sequence has the goal of transferring audio setting changes from the server
to the client. Two different settings maycan be redirected: Volume and Pitch. All audio setting transfer
sequences are sent over virtual channels. The settings are redirected using the Volume
PDU (section 2.2.4.1) and Pitch PDU (section 2.2.4.2), respectively.

13 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: Audio Output Virtual Channel Extension is embedded in a static virtual
channel transport, as specified in [MS-RDPBCGR] section 1.3.3 or a dynamic virtual channel transport,

as specified in [MS-RDPEDYC].

1.5 Prerequisites/Preconditions

The Remote Desktop Protocol: Audio Output Virtual Channel Extension operates only after the static
virtual channel transport (as specified in [MS-RDPBCGR]) or dynamic virtual channel (as specified in

[MS-RDPEDYC]) is fully established. If the static or dynamic virtual channel transport is terminated, no
other communication occurs over the Remote Desktop Protocol: Audio Output Virtual Channel
Extension.

1.6 Applicability Statement

The Remote Desktop Protocol: Audio Output Virtual Channel Extension is designed to be run within the

context of a Remote Desktop Protocol virtual channel established between a client and server. This
protocol is applicable when the client is required to play audio that is playing on the server.

1.7 Versioning and Capability Negotiation

The Remote Desktop Protocol: Audio Output Virtual Channel Extension is capability-based. The client
and the server exchange capabilities during the protocol Initialization Sequence (as specified in section
1.3.2.1).

After the capabilities have been received and stored, the client and the server do not send PDUs or
data formats that cannot be processed by the other.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

14 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

This protocol is designed to operate over three transports:

 A static virtual channel, as specified in [MS-RDPBCGR] section 2.2.6 and 3.1.5.2. The virtual
channel name is "RDPSND".<1> The usage of a channel name when opening a dynamic virtual
channel is specified in [MS-RDPEDYC] section 2.2.2.1. The Remote Desktop Protocol layer
manages the creation, setup, and transmission of data over the virtual channel.

 A dynamic virtual channel, as specified in [MS-RDPEDYC]. The virtual channel name is
AUDIO_PLAYBACK_DVC when a reliable transport is used; or AUDIO_PLAYBACK_LOSSY_DVC

when an unreliable UDP transport, as specified in [MS-RDPEUDP], is used.<2> The Remote
Desktop Protocol layer manages the creation, setup, and transmission of data over the virtual
channel.

 User Datagram Protocol (UDP), where the port is advertised in the Client Audio Formats and
Version PDU (section 2.2.2.2).

Virtual channels MUST be used to establish connections, exchange capabilities, and change settings,
and they MUST also be used to change audio settings. Audio data can be transferred over either UDP

or virtual channels. The sections that follow specify when to send Data Transfer Sequence messages
over UDP and when to send them over virtual channels.

2.2 Message Syntax

The following sections contain Remote Desktop Protocol: Audio Output Virtual Channel Extension

message syntax.

2.2.1 RDPSND PDU Header (SNDPROLOG)

The RDPSND PDU header is present in many audio PDUs. It is used to identify the PDU type, specify

the length of the PDU, and convey message flags.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

msgType bPad BodySize

msgType (1 byte): An 8-bit unsigned integer that specifies the type of audio PDU that follows the
BodySize field.

Value Meaning

SNDC_CLOSE

0x01

Close PDU

SNDC_WAVE

0x02

WaveInfo PDU

SNDC_SETVOLUME

0x03

Volume PDU

SNDC_SETPITCH Pitch PDU

15 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x04

SNDC_WAVECONFIRM

0x05

Wave Confirm PDU

SNDC_TRAINING

0x06

Training PDU or Training Confirm PDU

SNDC_FORMATS

0x07

Server Audio Formats and Version PDU or Client Audio Formats and Version
PDU

SNDC_CRYPTKEY

0x08

Crypt Key PDU

SNDC_WAVEENCRYPT

0x09

Wave Encrypt PDU

SNDC_UDPWAVE

0x0A

UDP Wave PDU

SNDC_UDPWAVELAST

0x0B

UDP Wave Last PDU

SNDC_QUALITYMODE

0x0C

Quality Mode PDU

SNDC_WAVE2

0x0D

Wave2 PDU

bPad (1 byte): An 8-bit unsigned integer. Unused. The value in this field is arbitrary and MUST be
ignored on receipt.

BodySize (2 bytes): A 16-bit unsigned integer. If msgType is not set to 0x02 (SNDC_WAVE), then
this field specifies the size, in bytes, of the data that follows the RDPSND PDU header. If
msgType is set to 0x02 (SNDC_WAVE), then the representation of BodySize is explained in the
Header field in section 2.2.3.3.

2.2.2 Initialization Sequence

The following sections contain Remote Desktop Protocol: Audio Output Virtual Channel Extension
message syntax for the initialization sequence. The initialization sequence is used to accomplish the
following:

 Establish the client and server protocol versions and capabilities.

 Establish a list of audio formats common to both the client and the server. All audio data is

transmitted in a format specified by this list.

 Determine whether UDP maycan be used to transmit audio data.

2.2.2.1 Server Audio Formats and Version PDU

(SERVER_AUDIO_VERSION_AND_FORMATS)

The Server Audio Formats and Version PDU is a PDU used by the server to send version information
and a list of supported audio formats to the client. This PDU MUST be sent using virtual channels.

16 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

dwFlags

dwVolume

dwPitch

wDGramPort wNumberOfFormats

cLastBlockConfirmed wVersion bPad

sndFormats (variable)

...

Header (4 bytes): A RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_FORMATS (0x07).

dwFlags (4 bytes): A 32-bit unsigned integer. This field is unused. The value is arbitrary and MUST

be ignored on receipt.

dwVolume (4 bytes): A 32-bit unsigned integer. This field is unused. The value is arbitrary and
MUST be ignored on receipt.

dwPitch (4 bytes): A 32-bit unsigned integer. This field is unused. The value is arbitrary and MUST
be ignored on receipt.

wDGramPort (2 bytes): A 16-bit unsigned integer. This field is unused. The value is arbitrary and

MUST be ignored on receipt.

wNumberOfFormats (2 bytes): A 16-bit unsigned integer. Number of AUDIO_FORMAT structures
contained in the sndFormats array.

cLastBlockConfirmed (1 byte): An 8-bit unsigned integer specifying the initial value for the
cBlockNo counter used by the WaveInfo PDU, Wave2 PDU, Wave Encrypt PDU, UDP Wave PDU,
and UDP Wave Last PDU. The value sent by the server is arbitrary. See section 3.3.5.2.1.1 for
more information about the cBlockNo counter.

wVersion (2 bytes): A 16-bit unsigned integer that contains the version of the protocol supported by
the server.<3>

bPad (1 byte): An 8-bit unsigned integer. This field is unused. The value is arbitrary and MUST be
ignored on receipt.

sndFormats (variable): A variable-sized array of audio formats supported by the server, each
conforming in structure to the AUDIO_FORMAT structure. The number of formats in the array is
wNumberOfFormats.

2.2.2.1.1 Audio Format (AUDIO_FORMAT)

The AUDIO_FORMAT structure is used to describe a supported audio format.

17 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wFormatTag nChannels

nSamplesPerSec

nAvgBytesPerSec

nBlockAlign wBitsPerSample

cbSize data (variable)

...

wFormatTag (2 bytes): An unsigned 16-bit integer identifying the compression format of the audio
format. It MUST be set to a WAVE form Registration Number listed in [RFC2361]. At a minimum,
clients and servers MUST support WAVE_FORMAT_PCM (0x0001). All compression formats

supported on specific Windows versions along with corresponding wFormatTag field values are
specified by the product behavior note in the data field description of this section.

nChannels (2 bytes): An unsigned 16-bit integer that specifies the number of channels in the audio
format. The number of channels is part of the audio format and is not determined by the Remote
Desktop Protocol: Audio Output Virtual Channel Extension protocol.

nSamplesPerSec (4 bytes): An unsigned 32-bit integer that specifies the number of audio samples

per second in the audio format.

nAvgBytesPerSec (4 bytes): An unsigned 32-bit integer that specifies the average number of bytes
the audio format uses to encode one second of audio data.

nBlockAlign (2 bytes): An unsigned 16-bit integer that specifies the minimum atomic unit of data
needed to process audio of this format. See [MSDN-AUDIOFORMAT] for more information about
block alignment semantics.

wBitsPerSample (2 bytes): An unsigned 16-bit integer that specifies the number of bits needed to

represent a sample.

cbSize (2 bytes): An unsigned 16-bit integer specifying the size of the data field.

data (variable): Extra data specific to the audio format.<4> See [MSDN-AUDIOFORMAT] for
additional details about extra format information. The size of data, in bytes, is cbSize.

2.2.2.2 Client Audio Formats and Version PDU

(CLIENT_AUDIO_VERSION_AND_FORMATS)

The Client Audio Formats and Version PDU is a PDU that is used to send version information,

capabilities, and a list of supported audio formats from the client to the server.<5> After the server
sends its version and a list of supported audio formats to the client, the client sends back a Client

Audio Formats and Version PDU to the server containing its version and a list of formats that both the
client and server support. This PDU MUST be sent by using virtual channels.

18 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

dwFlags

dwVolume

dwPitch

wDGramPort wNumberOfFormats

cLastBlockConfirmed wVersion bPad

sndFormats (variable)

...

Header (4 bytes): An RDPSND PDU header (section 2.2.1). The msgType field of the RDPSND PDU
header MUST be set to SNDC_FORMATS (0x07).

dwFlags (4 bytes): A 32-bit unsigned integer that specifies the general capability flags. The

dwFlags field MUST be one or more of the following flags, combined with a bitwise OR operator.

Value Meaning

TSSNDCAPS_ALIVE

0x00000001

The client is capable of consuming audio data. This flag MUST be set for audio data
to be transferred.

TSSNDCAPS_VOLUME

0x00000002

The client is capable of applying a volume change to all the audio data that is
received.

TSSNDCAPS_PITCH

0x00000004

The client is capable of applying a pitch change to all the audio data that is
received.

dwVolume (4 bytes): A 32-bit unsigned integer. If the TSSNDCAPS_VOLUME flag is not set in the

dwFlags field, the dwVolume field MUST be ignored. If the TSSNDCAPS_VOLUME flag is set in
the dwFlags field, the dwVolume field specifies the initial volume of the audio stream. The low-
order word contains the left-channel volume setting, and the high-order word contains the right-
channel setting. A value of 0xFFFF represents full volume, and a value of 0x0000 is silence.

This value is to be interpreted logarithmically. This means that the perceived increase in volume is
the same when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to
0x5000.

dwPitch (4 bytes): A 32-bit unsigned integer. If the TSSNDCAPS_PITCH flag is not set in the
dwFlags field, the dwPitch field MUST be ignored. If the TSSNDCAPS_PITCH flag is set in the
dwFlags field, the dwPitch field specifies the initial pitch of the audio stream. The pitch is
specified as a fixed-point value. The high-order word contains the signed integer part of the
number, and the low-order word contains the fractional part. A value of 0x8000 in the low-order
word represents one-half, and 0x4000 represents one-quarter. For example, the value

0x00010000 specifies a multiplier of 1.0 (no pitch change), and a value of 0x000F8000 specifies a
multiplier of 15.5.

19 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

wDGramPort (2 bytes): A 16-bit unsigned integer that, if set to a nonzero value, specifies the client
port that the server MUST use to send data over UDP. A zero value means UDP is not supported.

This field MUST be specified by using big-endian byte ordering.

wNumberOfFormats (2 bytes): A 16-bit unsigned integer that specifies the number of

AUDIO_FORMAT structures that are contained in an sndFormats array.

cLastBlockConfirmed (1 byte): An 8-bit unsigned integer. This field is unused. The value is
arbitrary and MUST be ignored on receipt.

wVersion (2 bytes): A 16-bit unsigned integer that specifies the version of the protocol that is
supported by the client.<6>

bPad (1 byte): An 8-bit unsigned integer. This field is unused. The value is arbitrary and MUST be
ignored on receipt.

sndFormats (variable): A variable-sized array of audio formats that are supported by the client and
the server, each conforming in structure to the AUDIO_FORMAT. Each audio format MUST also
appear in the Server Audio Formats and Version PDU list of audio formats just sent by the server.

The number of formats in the array is wNumberOfFormats.

2.2.2.3 Quality Mode PDU

The Quality Mode PDU is a PDU used by the client to select one of three quality modes. If both the
client and server are at least version 6, the client MUST send a Quality Mode PDU immediately after
sending the audio formats. This packet is only used when the client and server versions are both at
least 6.<7> This PDU MUST be sent using virtual channels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

wQualityMode Reserved

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_QUALITYMODE (0x0C).

wQualityMode (2 bytes): A 16-bit unsigned integer. This field specifies the quality setting the client
has requested. The definition of these three modes is implementation-dependent, but SHOULD use
the following guidelines.

Value Meaning

DYNAMIC_QUALITY

0x0000

The server dynamically adjusts the audio format to best match the bandwidth and
latency characteristics of the network.

MEDIUM_QUALITY

0x0001

The server chooses an audio format from the list of formats the client supports that
gives moderate audio quality and requires a moderate amount of bandwidth.

HIGH_QUALITY

0x0002

The server chooses the audio format that provides the best quality audio without
regard to the bandwidth requirements for that format.

Reserved (2 bytes): A 16-bit unsigned integer. This field is unused. The value is arbitrary and MUST
be ignored on receipt.

20 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.4 Crypt Key PDU (SNDCRYPT)

The Crypt Key PDU is a PDU used to send a 32-byte key from the server to the client. The key is used
to encrypt some audio data sent over UDP. This PDU MUST be sent using virtual channels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Reserved

Seed (32 bytes)

...

...

Header (4 bytes): A RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_CRYPTKEY (0x0008).

Reserved (4 bytes): A 32-bit unsigned integer. This field is unused. The value is arbitrary and MUST
be ignored on receipt.

Seed (32 bytes): A 32-byte symmetric key used for encryption and decryption of audio data sent
over UDP. A random number SHOULD be used as the symmetric key. When a Wave Encrypt PDU

is sent, the key MUST be used to encrypt the audio data. When a UDP Wave PDU is sent with a
UDP Wave Last PDU, there is no encrypted audio data and the key MUST be used instead to
generate a signature.

2.2.3 Data Sequence

The following sections contain the Remote Desktop Protocol: Audio Output Virtual Channel Extension
message syntax for the data transfer sequence. The data transfer sequence is used to transfer audio
data from server to client. To receive audio data from the server, the client MUST have set the flag
TSSNDCAPS_ALIVE (0x0000001) in the Client Audio Formats and Version PDU sent during the
initialization sequence described in section 2.2.2.

2.2.3.1 Training PDU (SNDTRAINING)

The Training PDU is a PDU used by the server to request that the client send it a Training Confirm
PDU. In response, the client MUST immediately send a Training Confirm PDU to the server. The server
uses the sending and receiving of these packets for diagnostic purposes. This PDU can be sent using

virtual channels or UDP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

wTimeStamp wPackSize

data (variable)

21 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_TRAINING (0x06).

wTimeStamp (2 bytes): A 16-bit unsigned integer. In the Training PDU this value is arbitrary.

wPackSize (2 bytes): A 16-bit unsigned integer. If the size of data is nonzero, then this field
specifies the size, in bytes, of the entire PDU. If the size of data is 0, then wPackSize MUST be
0.

data (variable): Unused. The value in this field is arbitrary and MUST be ignored on receipt.

2.2.3.2 Training Confirm PDU (SNDTRAININGCONFIRM)

The Training Confirm PDU is a PDU sent by the client to confirm the reception of a Training PDU. This
PDU MUST be sent using virtual channels or UDP. The server MAY use data from this PDU to calculate

how fast the network can transmit data, as described in section 3.3.5.1.1.5.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

wTimeStamp wPackSize

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU

Header MUST be set to SNDC_TRAINING (0x06).

wTimeStamp (2 bytes): A 16-bit unsigned integer. This value MUST be set to the same value as the
wTimeStamp field in the Training PDU received from the server. If the value is not set as

indicated, the result from the server-side calculation (section 3.3.5.1.1.5) will be invalid.

wPackSize (2 bytes): A 16-bit unsigned integer. This value MUST be set to the same value as the
wPackSize field in the Training PDU received from the server. If the value is not set as indicated,
the result from the server-side calculation (section 3.3.5.1.1.5) will be invalid.

2.2.3.3 WaveInfo PDU (SNDWAVINFO)

The WaveInfo PDU is the first of two consecutive PDUs used to transmit audio data over virtual
channels. This packet contains information about the audio data along with the first 4 bytes of the

audio data itself. This PDU MUST be sent using static virtual channels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

wTimeStamp wFormatNo

cBlockNo bPad

Data

22 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_WAVE (0x02). The BodySize field of the RDPSND PDU Header is

the size of the WaveInfo PDU plus the size of the data field of the Wave PDU that immediately
follows this packet minus the size of the Header.

wTimeStamp (2 bytes): A 16-bit unsigned integer representing the time stamp of the audio data. It
SHOULD be set to a time that represents when this PDU is built.<8>

wFormatNo (2 bytes): A 16-bit unsigned integer that represents an index into the list of audio
formats exchanged between the client and server during the initialization phase, as described in
section 3.1.1.2. The format located at that index is the format of the audio data in this PDU and
the Wave PDU that immediately follows this packet.

cBlockNo (1 byte): An 8-bit unsigned integer specifying the block ID of the audio data. When the

client notifies the server that it has consumed the audio data, it sends a Wave Confirm PDU
(section 2.2.3.8) containing this field in its cConfirmedBlockNo field.

bPad (3 bytes): A 24-bit unsigned integer. This field is unused. The value is arbitrary and MUST be

ignored on receipt.

Data (4 bytes): The first four bytes of the audio data. The rest of the audio data arrives in the next
PDU, which MUST be a Wave PDU. The audio data MUST be in the audio format from the list of

formats exchanged during the Initialization Sequence (section 2.2.2); this list is found at the index
specified in the wFormatNo field.

2.2.3.4 Wave PDU (SNDWAV)

The Wave PDU is the second of two consecutive PDUs used to transmit audio data over virtual

channels. This packet contains the rest of the audio data not sent in the WaveInfo PDU. This PDU
MUST be sent using virtual channels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bPad

data (variable)

...

bPad (4 bytes): A 32-bit unsigned integer that MUST be set to 0x00000000.

data (variable): The rest of the audio data. The size of the audio data MUST be equal to the
BodySize field of the RDPSND PDU header of the WaveInfo PDU that immediately preceded this

packet, minus the size of the preceding WaveInfo PDU packet (not including the size of its Header
field). The format of the audio data MUST be the format specified in the list of formats exchanged
during the Initialization Sequence and found at the index specified in the wFormatNo field of the
preceding WaveInfo PDU.

2.2.3.5 Wave Encrypt PDU (SNDWAVCRYPT)

The Wave Encrypt PDU is a PDU used to send audio data from the server to the client. This PDU MUST
be sent over UDP.

23 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

wTimeStamp wFormatNo

cBlockNo bPad

signature (optional)

...

data (variable)

...

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
header MUST be set to SNDC_WAVEENCRYPT (0x09).

wTimeStamp (2 bytes): A 16-bit unsigned integer representing the time stamp of the audio data. It

SHOULD be set to a time that represents when this PDU is built<9>.

wFormatNo (2 bytes): A 16-bit unsigned integer that represents an index into the list of formats
exchanged between the client and server during the initialization phase, as described in section
3.1.1.2.

cBlockNo (1 byte): An 8-bit unsigned integer specifying the block ID of the audio data. When the
client notifies the server that it has consumed the audio data, it sends a Wave Confirm PDU

containing this field in its cConfirmedBlockNo field.

bPad (3 bytes): A 24-bit unsigned integer. This field is unused. The value is arbitrary and MUST be
ignored on receipt.

signature (8 bytes): An 8-byte digital signature. If the protocol version of either the server or the
client is less than 5, then this field MUST NOT exist. If the version of the server and the client are
at least 5, then this field MUST exist. An explanation of how this field is created is specified in
section 3.3.5.2.1.3.

data (variable): Encrypted audio data. The audio data MUST be in the format specified by the
wFormatNo and MUST be encrypted. For an explanation of how the data is encrypted, see
section 3.3.5.2.1.3.

2.2.3.6 UDP Wave PDU (SNDUDPWAVE)

The UDP Wave PDU is a PDU used to send a fragment of audio data from the server to the client. This

packet is only used when the client and server versions are both at least 5. This PDU MUST be sent
over UDP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type cBlockNo cFragNo (variable)

...

24 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Data (variable)

...

Type (1 byte): An 8-bit unsigned integer. This field MUST be set to SNDC_UDPWAVE (0x0A).

cBlockNo (1 byte): An 8-bit unsigned integer specifying the block ID of the audio data. When the
client notifies the server that it has consumed the audio data, it sends a Wave Confirm PDU

containing this field in its cConfirmedBlockNo field.

cFragNo (variable): An 8-bit or 16-bit unsigned integer specifying the order of the audio data
fragment in the overall audio sample. The 0x80 bit of the first byte is used to determine if the field
is one or two bytes in length. If the first byte is less than 0x80, then the field is 1 byte. If the first
byte is greater than or equal to 0x80, then this field is 2 bytes. To calculate the value of the field,
the second byte holds 8 low-order bits, while the first byte holds 7 high-order bits.

Data (variable): A portion of an Audio FragData structure. Several UDP Wave PDUs and a UDP Wave

Last PDU contain pieces of a structure conforming to Audio FragData. This algorithm is specified in
section 3.2.5.2.1.5.

2.2.3.6.1 Audio FragData (AUDIO_FRAGDATA)

The Audio FragData structure is used to describe the data that is fragmented and sent in several UDP
Wave PDUs and a final UDP Wave Last PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Signature

...

Data (variable)

...

Signature (8 bytes): An 8-byte digital signature. The algorithm for creating this field is the same as
creating the signature field of a Wave Encrypt PDU as specified in section 3.3.5.2.1.3.

Data (variable): Audio data. The format of the audio data MUST be the format specified in the
wFormatNo field of the UDP Wave Last PDU that sends the final piece of this structure.

2.2.3.7 UDP Wave Last PDU (SNDUDPWAVELAST)

The UDP Wave Last PDU is a PDU used to send the final fragment of audio data from the server to the
client. This packet is only used when the client and server versions are both at least 5. This PDU MUST

be sent over UDP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type wTotalSize wTimeStamp

... wFormatNo cBlockNo

25 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

bPad Data (variable)

...

Type (1 byte): An 8-bit unsigned integer. This field MUST be set to SNDC_UDPWAVELAST (0x0B).

wTotalSize (2 bytes): A 16-bit unsigned integer that represents the total size of the audio data sent
in successive PDUs. The amount of audio data in previous UDP Wave PDUs plus the amount of

audio data in this PDU MUST be equivalent to wTotalSize.

wTimeStamp (2 bytes): A 16-bit unsigned integer representing the time stamp of the audio data.

wFormatNo (2 bytes): A 16-bit unsigned integer that represents an index into the list of formats
exchanged between the client and server during the initialization phase, as described in section
3.1.1.2.

cBlockNo (1 byte): An 8-bit unsigned integer specifying the block id of the audio data. When the

client notifies the server that it has consumed the audio data, it sends a Wave Confirm PDU
containing this field in its cConfirmedBlockNo field.

bPad (3 bytes): A 24-bit unsigned integer. This field is unused. The value is arbitrary and MUST be
ignored on receipt.

Data (variable): A portion of an Audio FragData. Several UDP Wave PDUs and a UDP Wave Last PDU
MUST contain pieces of a structure conforming to Audio FragData, as specified in section
3.2.5.2.1.5.

2.2.3.8 Wave Confirm PDU (SNDWAV_CONFIRM)

The Wave Confirm PDU is a PDU that MUST be sent by the client to the server immediately after the
following two events occur:

 An audio data sample is received from the server, whether using a WaveInfo PDU and Wave PDU,

a Wave2 PDU, a Wave Encrypt PDU, or several UDP Wave PDUs followed by a UDP Wave Last
PDU.

 The audio data sample is emitted to completion by the client.

This PDU can be sent using static virtual channels or UDP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

wTimeStamp cConfirmedBlockNo bPad

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU

Header MUST be set to SNDC_WAVECONFIRM (0x05).

wTimeStamp (2 bytes): A 16-bit unsigned integer. See section 3.2.5.2.1.6 for details of how this
field is set.

cConfirmedBlockNo (1 byte): An 8-bit unsigned integer that MUST be the same as the cBlockNo
field of the UDP Wave Last PDU (section 2.2.3.7), the Wave Encrypt PDU (section 2.2.3.5) or the
WaveInfo PDU (section 2.2.3.3) just received from the server.

26 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

bPad (1 byte): An unsigned 8-bit integer. This field is unused. The value is arbitrary and MUST be
ignored on receipt.

2.2.3.9 Close PDU (SNDCLOSE)

The Close PDU is a PDU sent by the server to notify the client that audio streaming has stopped. This
PDU MUST be sent using virtual channels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU

Header MUST be set to SNDC_CLOSE (0x01).

2.2.3.10 Wave2 PDU (SNDWAVE2)

The Wave2 PDU is used to transmit audio data over virtual channels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

wTimeStamp wFormatNo

cBlockNo bPad

dwAudioTimeStamp

Data (variable)

...

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_WAVE2 (0x0D). The BodySize field of the RDPSND PDU Header is
the size of this PDU minus the size of the header.

wTimeStamp (2 bytes): A 16-bit unsigned integer representing the time stamp of the audio data. It
SHOULD<10> be set to a time that represents when this PDU is built.

wFormatNo (2 bytes): A 16-bit unsigned integer that represents an index into the list of audio

formats exchanged between the client and server during the initialization phase, as described in
section 3.1.1.2. The format located at that index is the format of the audio data in this PDU and

the Wave PDU that immediately follows this packet.

cBlockNo (1 byte): An 8-bit unsigned integer specifying the block ID of the audio data. When the
client notifies the server that it has consumed the audio data, it sends a Wave Confirm PDU
(section 2.2.3.8) containing this field in its cConfirmedBlockNo field.

bPad (3 bytes): A 24-bit unsigned integer. This field is unused. The value is arbitrary and MUST be

ignored on receipt.

27 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwAudioTimeStamp (4 bytes): A 32-bit unsigned integer representing the timestamp when the
server gets audio data from the audio source. The timestamp is the number of milliseconds that

have elapsed since the system was started. This timestamp SHOULD be used to sync the audio
stream with a video stream remoted using the Remote Desktop Protocol: Video Optimized

Remoting Virtual Channel Extension (see the hnsTimestampOffset and hnsTimestamp fields as
specified in [MS-RDPEVOR] sections 2.2.1.2 and 2.2.1.6, respectively).

Data (variable): Audio data. The format of the audio data MUST be the format specified in the list of
formats exchanged during the initialization sequence and found at the index specified in the
wFormatNo field.

2.2.4 Audio Setting Transfer Sequences

The following sections contain the message syntax for the audio setting transfer sequence. The audio
setting transfer sequence is used to transfer audio setting changes from the server to the client. Two
different settings MAY be redirected: Volume and Pitch. All audio setting transfer sequences are sent
over virtual channels.

2.2.4.1 Volume PDU (SNDVOL)

The Volume PDU is a PDU sent from the server to the client to specify the volume to be set on the
audio stream. For this packet to be sent, the client MUST have set the flag TSSNDCAPS_VOLUME
(0x0000002) in the Client Audio Formats and Version PDU (section 2.2.2.2) that is sent during the

initialization sequence described in section 2.2.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Volume

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_VOLUME (0x03).

Volume (4 bytes): A 32-bit unsigned integer specifying the volume to be set on the audio stream.
See the dwVolume field in section 2.2.2.2 for semantics of the data in this field.

2.2.4.2 Pitch PDU (SNDPITCH)

The Pitch PDU is a PDU sent from the server to the client to specify the pitch to be set on the audio
stream. For this packet to be sent, the client MUST have set the flag TSSNDCAPS_PITCH (0x0000004)
in the Client Audio Formats and Version PDU (section 2.2.2.2) that is sent during the initialization

sequence specified in section 2.2.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Pitch

Header (4 bytes): An RDPSND PDU Header (section 2.2.1). The msgType field of the RDPSND PDU
Header MUST be set to SNDC_PITCH (0x04).

28 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Pitch (4 bytes): A 32-bit unsigned integer. Although the server maycan send this PDU, the client
MUST ignore it.

29 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate an
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

3.1.1.1 Protocol Version

The wVersion field of the Server Audio Formats and Version PDU and Client Audio Formats and

Version PDU indicate the protocol version supported on the server and client, respectively. The
protocol version is used to determine some of the protocol capabilities. For example, the Quality Mode
is supported only if both the client protocol version and server protocol version are at least 6.

3.1.1.2 Audio Format List and Current Audio Format

A list of audio formats is sent by the client to the server in the Client Audio Formats and Version PDU.
This list MUST be maintained throughout the duration of the protocol. The wFormatNo field of the
Wave Info PDU, the Wave Encrypt PDU, and the UDP Wave Last PDU is an index into this list. The
format located at that index is the current audio format. The current audio format MAY change during
protocol operation. The index to the audio format list is zero-based, where the value 0 refers to the
first format in the list.

3.1.1.3 Crypt Key

The Crypt Key is a key used by the client and the server for two purposes:

1. To encrypt and decrypt data in a Wave Encrypt PDU.

2. To create the signature field for an Audio FragData and Wave Encrypt PDU.

A specification for both purposes is specified in section 3.3.5.2.1.3.

3.1.1.4 Quality Mode Setting

If protocol versions of both the client and server are at least version 6, then the client MUST inform

the server of its preferred audio quality setting by sending a Quality Mode PDU to the server. This
setting SHOULD be stored on the server, and it specifies which mode the server uses to tune the audio
quality for the connection.

3.1.1.5 UDP Support

To attempt to have data sent over UDP, the client advertises a port in a Client Audio Formats and
Version PDU. The server attempts to use UDP by sending a Training PDU to the client over the port;
the client in turn attempts to reply with a Training Confirm PDU. The server then attempts to send a
private key to the client using a Crypt Key PDU. If all of the preceding steps succeed, the data transfer
sequences are sent over UDP. If any of the preceding steps fail, the data transfer sequences are sent
over static virtual channels.

30 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.2 Timers

No common timers are used.

3.1.3 Initialization

Before protocol operation can commence, the static or dynamic virtual channel MUST be established
by using the parameters specified in section 2.1.<11> The server and client also need to negotiate the
protocol version, whether to use UDP, and a common list of audio formats, by exchanging a Server
Audio Formats and Version PDU and a Client Audio Formats and Version PDU.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Playing Audio

When audio is played on the server (for example, when the server opens an MP3 file in Windows

Media Player), the server MUST start redirecting the audio data. If the initialization sequence (section
2.2.2) has not transpired, the server MUST start the initialization sequence and then proceed to start
the data transfer sequence (section 2.2.3).

31 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5 Message Processing Events and Sequencing Rules

Figure 7: State transition diagram

The state transition diagram summarizes the message sequencing rules for the Remote Desktop
Protocol: Audio Output Virtual Channel Extension. The following are the descriptions of each of the

arrows:

1. Event: connected from client.

Action: server sends Server Audio Formats and Version PDU.

2. Event: server receives Client Audio Formats and Version PDU.

Action: server enters "Formats and Version Negotiated" state.

3. Event: timeout after waiting for Client Audio Formats and Version PDU.

32 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Action: server terminates the protocol.

4. Event: client version <6 or server version <6.

Action: server enters "Sending Training PDU" state.

5. Event: client version >=6, and server version >=6.

Action: wait for Quality Mode PDU from client.

6. Event: server receives Quality Mode PDU or timeout.

Action: server enters "Sending Training PDU" state.

7. Event: there is a valid UDP port in Client Audio Formats and Version PDU, and server is
attempting to use UDP.

Action: server enters "Sending Training PDU through UDP" state.

8. Event: there is no valid UDP port in Client Audio Formats and Version PDU, or server is not

attempting to use UDP.

Action: server enters "Sending Training PDU through Virtual Channel" state.

9. Event: server sends Training PDU through UDP.

Action: server enters "Waiting for Training Confirm PDU" state.

10. Event: server receives Training Confirm PDU from client.

Action: server sends Crypt Key PDU.

11. Event: timeout after waiting for Training Confirm PDU using UDP.

Action: server enters "Sending Training PDU through Virtual Channel" state.

12. Event: server sends Crypt Key PDU and succeeds.

Action: server enters "Ready to Send Data through UDP" state.

13. Event: failure when sending Crypt Key PDU.

Action: server enters "Sending Training PDU through Virtual Channel" state.

14. Event: data ready.

Action: server sends Wave Encrypt PDU, or UDP Wave PDU and UDP Wave Last PDU.

15. Event: server receives Wave Confirm PDU from client.

Action: server enters "Ready to Send Data through UDP" state.

16. Event: failure when sending data.

Action: server sends Close PDU and terminates the protocol.

17. Event: server sends Training PDU through virtual channel.

Action: server enters "Waiting for Training Confirm PDU" state.

18. Event: server receives Training Confirm PDU from client.

Action: server enters "Ready to Send Data through Virtual Channel" state.

33 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

19. Event: timeout after waiting for Training Confirm PDU through virtual channel.

Action: server terminates the protocol.

20. Event: data ready.

Action: server sends WaveInfo PDU, Wave PDU, or Wave2 PDU.

21. Event: server receives Wave Confirm PDU from client.

Action: server enters "Ready to Send Data through Virtual Channel" state.

22. Event: failure when sending data.

Action: server sends Close PDU and server terminates the protocol.

Unless otherwise specified, malformed, unrecognized, and out-of-sequence packets MUST be ignored
by the server and the client.

3.1.6 Timer Events

No common timer events are used.

3.1.7 Other Local Events

There are no common local events.

3.2 Client Details

3.2.1 Abstract Data Model

The abstract data model is specified in section 3.1.1.

3.2.2 Timers

No timers are used.

3.2.3 Initialization

Initialization is specified in section 3.1.3.

3.2.4 Higher-Layer Triggered Events

No client higher-layer triggered events are used.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Initialization Sequence

Initialization messages exchange the basic information to establish the connection, and to perform
capabilities negotiation. Initialization ensures that the server and client both know which messages are
supported. Future versions of the protocol maymight support new messages that current versions do
not support. As a result, this negotiation is important to ensure that no messages are sent from one
side that the other cannot interpret.

34 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.5.1.1 Messages

3.2.5.1.1.1 Processing a Server Audio Formats and Version PDU

The structure and fields of the Server Audio Formats and Version PDU are specified in section 2.2.2.1.

The Server Audio Formats and Version PDU MUST be the first message received by the client in the
protocol sequence. The client uses the version of the server to discover which messages are supported
by the protocol.

3.2.5.1.1.2 Sending a Client Audio Formats and Version PDU

The structure and fields of the Client Audio Formats and Version PDU are specified in section 2.2.2.2.

The client MUST acknowledge the Server Audio Formats and Version PDU message by sending its own
version and capabilities information, in a Client Audio Formats and Version PDU. The list of formats
sent by the client MUST be a subset of the list of formats that was sent by the server in the preceding
Server Audio Formats and Version PDU. Formats that do not appear in the server list MUST NOT be

sent by the client in this message.

The list of formats sent by the client will be referenced in the data transfer sequence. The
wFormatNo field of the WaveInfo PDU, the Wave2 PDU, the UDP Wave Last PDU, and the Wave

Encrypt PDU messages all represent an index into this list. A value of I refers to the Ith format of this
list and means that the audio data is encoded in the Ith format of the list.

If the client wants to allow the server to send audio data over UDP, as described in the data transfer
sequence, the client MUST set the wDGramPort field to a valid nonzero UDP port on the client
machine. However, setting the wDGramPort field to a valid nonzero UDP port on the client machine
does not guarantee that the server will send audio data over UDP. The server MAY<12> send all audio

data over virtual channels and no data over UDP.

If the client does not want to allow the server to send audio data over UDP, thereby forcing all audio
data to be sent over virtual channels, the client MUST set the wDGramPort field to 0.

3.2.5.1.1.3 Sending a Quality Mode PDU

The structure and fields of the Quality Mode PDU are specified in section 2.2.2.3.

If both the client and server are at least version 6, then the client MUST send a Quality Mode PDU

immediately after sending the audio formats.

3.2.5.1.1.4 Processing a Training PDU

The structure and fields of the Training PDU are specified in section 2.2.3.1.

The Training PDU MAY be sent by the server at any time and during any sequence, not just during the
initialization sequence. The only prerequisite is that version exchange MUST have occurred.

If the client advertises a UDP port during version exchange, the Training PDU MAY<13> be sent over

UDP or over virtual channels. Any subsequent audio data SHOULD be sent over the same transport
method that is used to send the Training PDU by the server.

The client MUST respond with a Training Confirm PDU using the same transport on which the Training
PDU was received.

3.2.5.1.1.5 Sending a Training Confirm PDU

The structure and fields of the Training Confirm PDU are specified in section 2.2.3.2.

35 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A Training Confirm PDU MUST NOT be sent unless the client has just received a Training PDU from the
server. The wTimeStamp and wPackSize field MUST be set to the same value as the wTimeStamp

and wPackSize field of the Training PDU just received.

3.2.5.1.1.6 Processing a Crypt Key PDU

The structure and fields of the Crypt Key PDU are specified in section 2.2.2.4.

A Crypt Key PDU MUST only be received over virtual channels.

The following steps MUST have occurred before a Crypt Key PDU can be sent:

1. The client advertised a local UDP port to be used for the transfer of audio data during version
exchange.

2. The server successfully sent a Training PDU over UDP to the client.

3. The client successfully replied by sending a Training Confirm PDU over UDP to the server.

This key MUST be used to help digitally sign pieces of audio data and to help encrypt pieces of audio
data.

3.2.5.2 Data Transfer Sequence

The data transfer sequence messages are used to send audio data from the server to the client.

3.2.5.2.1 Messages

3.2.5.2.1.1 Processing a WaveInfo PDU

The structure and fields of the WaveInfo PDU are specified in section 2.2.3.3.

A WaveInfo PDU and a Wave PDU, sent consecutively by the server, combine to form an audio
sample. The client reproduces the sample by taking the four bytes of audio data in the data field of

the WaveInfo PDU, and prepending it to what is in the data field of the Wave PDU.

The wFormatNo field of the WaveInfo PDU is an index into the list of formats sent by the client in the
Client Audio Formats and Version PDU. A value of i means the format of the audio data is the ith
format of that list.

After consuming the data, the client MUST respond by sending a Wave Confirm PDU to the server. The

cConfirmedBlockNo field of the Wave Confirm PDU MUST be identical to the cBlockNo field of the
WaveInfo PDU.

If a packet for cBlockNo n is lost and an audio sample is constructed for a cBlockNo that is greater
than n, the client abandons all packets associated with cBlockNo n and quits processing that sample.

This PDU MUST have been sent by the server over virtual channels.

3.2.5.2.1.2 Processing a Wave PDU

The structure and fields of the Wave PDU are specified in section 2.2.3.4.

A WaveInfo PDU and a Wave PDU, sent consecutively by the server, combine to form an audio
sample. The client reproduces the sample by taking the four bytes of audio data in the data field of
the WaveInfo PDU, and prepending it to what is in the data field of the Wave PDU.

This PDU MUST have been sent by the server over virtual channels.

36 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.5.2.1.3 Processing a Wave Encrypt PDU

The structure and fields of the Wave Encrypt PDU are specified in section 2.2.3.5.

Unlike a WaveInfo PDU and Wave PDU, the Wave Encrypt PDU contains the entire audio sample in its

data field.

The wFormatNo field of the Wave Encrypt PDU is an index into the list of formats sent by the client in
the Client Audio Formats and Version PDU. A value of i means the format of the audio data is the ith
format of that list.

The client MUST decrypt the data before consuming it. How the server encrypts the data is specified in
section 3.3.5.2.1.3.

This PDU MUST have been sent by the server over UDP.

3.2.5.2.1.4 Processing a UDP Wave PDU

The structure and fields of the UDP Wave PDU are specified in section 2.2.3.6.

The client MUST receive several UDP Wave PDUs and one UDP Wave Last PDU, each containing the
same value within the cBlockNo field. These PDUs contain the fragments of a sample of audio data.
Once the UDP Wave Last PDU and all of the associated UDP Wave PDUs are received, the client

SHOULD reproduce the entire audio data and consume it. The algorithm for reproducing the sample is
specified in section 3.2.5.2.1.5.

If an entire sequence of UDP Wave PDUs and the UDP Wave Last PDU get consumed by the client, the
client MUST disregard any pending UDP Wave PDUs from previous blocks.

This PDU MUST have been sent over UDP and only if the client's version and the server's version are
both at least 5.

3.2.5.2.1.5 Processing a UDP Wave Last PDU

The structure and fields of the UDP Wave Last PDU are specified in section 2.2.3.7.

The client receives several UDP Wave PDUs and one UDP Wave Last PDU, each containing the same
value within the cBlockNo field. These PDUs contain the fragments of an Audio FragData structure in
the Data field.

The client MUST consume the original audio data sample. The sample is recreated as follows:

The UDP Wave Last PDU holds the final fragment of audio data. As a result, its data field contains

data that belongs at the end of the recreated audio sample.

The cFragNo field determines the order of the fragments in the UDP Wave PDUs. The contents of the
Data field in each of the UDP Wave PDUs MUST be concatenated in the order determined by the
cFragNo field. The UDP Wave PDU whose cFragNo field is 0 represents the start of the audio data,
followed by the PDU whose cFragNo is 1, and so on. The Data field of the UDP Wave Last PDU holds
the audio data that is concatenated as the end of the sample. Concatenating all of these Data fields

yields an AUDIO_FRAGDATA structure that reproduces the original sample.

The wFormatNo field is an index into the list of formats sent by the client in the Client Audio Formats
and Version PDU. A value of i means the format of the audio data is the ith format of that list.

This PDU MUST have been sent over UDP and only if the client's version and the server's version are
both at least 5.

3.2.5.2.1.6 Sending a Wave Confirm PDU

37 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The structure and fields of the Wave Confirm PDU are specified in section 2.2.3.8.

Unless an unreliable UDP transport is used, as specified in [MS-RDPEUDP], the client MUST send a

Wave Confirm PDU in response to any audio sample sent by the server. The client MUST send the PDU
over the same channel used to receive the audio sample. That is, if the client received a WaveInfo

PDU and Wave PDU, then the client MUST send the Wave Confirm PDU over virtual channels. If the
client received a Wave Encrypt PDU, or several UDP Wave PDUs and a UDP Wave Last PDU, then the
client MUST send the Wave Confirm PDU over UDP.

The client MUST send the Wave Confirm PDU immediately after consuming the audio data. The
cConfirmedBlockNo field of the Wave Confirm PDU MUST be identical to the cBlockNo field of the
PDU that sent the audio data, whether it is a WaveInfo PDU, a Wave Encrypt PDU, or a UDP Wave Last
PDU. The wTimeStamp field MUST be set to the same field of the originating WaveInfo PDU, Wave

Encrypt PDU, or UDP Wave Last PDU, plus the time, in milliseconds, between receiving the complete
wave PDU from the network and sending this PDU. This enables the server to calculate the amount of
time it takes for the client to receive the audio data PDU and send the confirmation.

3.2.5.2.1.7 Processing a Close PDU

The structure and fields of the Close PDU are specified in section 2.2.3.9. The Close PDU is sent when

the server intends to stop rendering audio (for example, just before a disconnect).

Upon receiving the Close PDU, the client MUST NOT render any audio received after the Close PDU.
The client finishes any audio that arrived before this PDU and that remains to be rendered. This PDU
signals the end of audio transfer. As a result, the server side MUST NOT send any PDUs except a
Training PDU and a Server Audio Formats and Version PDU (which will restart the entire audio output
redirection protocol).

This packet MUST be received over virtual channels.

3.2.5.3 Settings Transfer Sequence

The Settings Transfer Sequence messages are used to send audio settings changes from the server to

the client. These packets are sent any time after the initialization sequence or any time before the
server sends a Close PDU.

3.2.5.3.1 Messages

3.2.5.3.1.1 Processing a Volume PDU

The structure and fields of the Volume PDU are specified in section 2.2.4.1.

On receiving a Volume PDU, the client MUST adjust the volume to the value specified in the Volume
field.

3.2.5.3.1.2 Processing a Pitch PDU

The structure and fields of the Pitch PDU are specified in section 2.2.4.2.

On receiving a Pitch PDU, the client does nothing.

3.2.6 Timer Events

No client timer events are used.

38 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7 Other Local Events

No additional client events are used.

3.3 Server Details

3.3.1 Abstract Data Model

The abstract data model is specified in section 3.1.1.

3.3.2 Timers

The server MAY use a timeout while waiting for a Client Audio Formats and Version PDU.<14> The

server MAY use a timeout in implementing a retry algorithm for the UDP Training PDU.<15> The
server MAY also use a timeout while waiting for a Quality Mode PDU.<16>

3.3.3 Initialization

Initialization is specified in section 3.1.3.

3.3.4 Higher-Layer Triggered Events

The server MUST play and stream audio. For example, if a user opens an audio file in a media player,
the server initiates this protocol and begins streaming the audio.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Initialization Sequence

3.3.5.1.1 Messages

3.3.5.1.1.1 Sending a Server Audio Formats and Version PDU

The structure and fields of the Server Audio Formats and Version PDU are specified in section 2.2.2.1.

The first message the server sends to the client MUST be a Server Audio Formats and Version PDU.

3.3.5.1.1.2 Processing a Client Audio Formats and Version PDU

The structure and fields of the Client Audio Formats and Version PDU (client PDU) are specified in
section 2.2.2.2. The server MUST receive this message prior to receiving any other message that is
sent by the client. If the client sends this PDU out of sequence (section 3.1.5), for example, before the
server sends the Server Audio Formats and Version PDU (server PDU) to the client, the server maycan
make a best effort to process the client PDU as if it had arrived after the server PDU was sent.<17>

The list of formats that are sent by the client are referenced in the data transfer sequence. The
wFormatNo field of the WaveInfo PDU, the UDP Wave Last PDU, and the Wave Encrypt PDU all
represent an index into this list. A value of I refers to the Ith format of this list, which means that the
audio data is encoded in the Ith format of the list.

The wDGramPort field holds the value of the port that the server MUST use to send data over UDP. If
the value is set to 0, the server MUST use virtual channels for the data transfer sequence. If the field

is not set to 0, the server SHOULD<18> use UDP.

39 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Although the dwPitch field specifies the initial pitch on the client, the server does nothing with this
value.

3.3.5.1.1.3 Processing a Quality Mode PDU

The structure and fields of the Quality Mode PDU are specified in section 2.2.2.3.

If both the client and server are at least version 6, then the server MUST wait and try to receive a
Quality Mode PDU after receiving a Client Audio Formats and Version PDU. The server SHOULD store
the wQualityMode field as specified in section 3.1.1.4. The server SHOULD use the quality mode
DYNAMIC_QUALITY (section 2.2.2.3) if it does not receive the Quality Mode PDU within a specified
amount of time.<19>

3.3.5.1.1.4 Sending a Training PDU

The structure and fields of the Training PDU are specified in section 2.2.3.1.

During the initialization sequence, the server sends a Training PDU and receives a Training Confirm

PDU. The server can also send a Training PDU and receive a Training Confirm PDU for diagnostic
purposes.

The server can send the Training PDU at any time and during any sequence, not just during the

initialization sequence.

If the client advertises a UDP port during version exchange, the server SHOULD<20> choose to send
the Training PDU over UDP but does not have to.

3.3.5.1.1.5 Processing a Training Confirm PDU

The structure and fields of the Training Confirm PDU are specified in section 2.2.3.2.

A Training Confirm PDU is received only if the server sends a Training PDU. The wTimeStamp and

wPackSize fields MUST contain the same value as the corresponding fields in the Training PDU sent
by the server.

The server MAY use the values of the wTimeStamp and wPackSize fields of this PDU to calculate how
fast the network is transmitting data. The result of this calculation MAY then be used to determine the
audio format to use when sending audio data to the client.

If the server sent a Training PDU over UDP and it does not receive a Training Confirm PDU after a
certain amount of time, then the server SHOULD send additional Training PDUs over UDP. If after

several retries the server has not successfully received a Training Confirm PDU, the server SHOULD
use virtual channels for data transfer instead of UDP.<21>

3.3.5.1.1.6 Sending a Crypt Key PDU

The structure and fields of the Crypt Key PDU are specified in section 2.2.2.4.

A Crypt Key PDU MUST only be sent over virtual channels. The server SHOULD send this PDU if it
intends to use UDP for the data transfer sequence.<22> If the server does not intend to use UDP for

the data transfer sequence, the server MUST NOT send a Crypt Key PDU. To use UDP, the client MUST
have advertised a valid port during version exchange, and the server MUST have successfully sent a
Training PDU and received a Training Confirm PDU from the client over UDP.

3.3.5.2 Data Transfer Sequence

The data transfer sequence messages are used to send audio data from the server to the client.

As specified in section 1.3.2.2, there are three distinct sequences for the exchange of audio data:

40 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. The first involves sending a WaveInfo PDU and a Wave PDU, and receiving a Wave Confirm PDU
over virtual channels.

2. The second involves sending a Wave Encrypt PDU and receiving a Wave Confirm PDU over UDP.

3. The third involves sending several UDP Wave PDUs and a UDP Wave Last PDU, and receiving a

Wave Confirm PDU over UDP.

If the client does not advertise a valid port for UDP during version exchange, the first sequence MUST
be used.

If the client does advertise a valid port for UDP and the version of either the client or server is below
5, the first or second sequence SHOULD<23> be used.

If the client does advertise a valid port for UDP and the version of both the client and the server are at
least 5, any of the three sequences SHOULD<24> be used.

For the data transfer sequence to take place, the client MUST have set the TSSNDCAPS_ALIVE
(0x0000001) flag in the Client Audio Formats and Version PDU.

After a particular sequence is selected for use by the server, that sequence SHOULD be used
throughout the protocol. Any malformed packets MUST be ignored.

3.3.5.2.1 Messages

3.3.5.2.1.1 Sending a WaveInfo PDU

The structure and fields of the WaveInfo PDU are specified in section 2.2.3.3.

The data fields of a WaveInfo PDU and a Wave PDU, sent consecutively by the server, combine to
form an audio sample. The audio sample MUST be greater than four bytes. The first four bytes of the
audio sample are placed in the data field of this PDU. The remaining data is sent in the data field of
the Wave PDU that immediately follows this PDU.

The BodySize field of the RDPSND PDU Header of this PDU MUST be set to 8 bytes more than the size
of the entire audio sample.

The cBlockNo field MUST be one more than the cBlockNo field of the last audio sample sent. If the
value of the last cBlockNo was 255, then the value of cBlockNo for this PDU MUST be 0. If this is the
first audio sample sent, then the cBlockNo field MUST be one more than the cLastBlockConfirmed
field of the Server Audio Formats and Version PDU sent by the server to the client.

The wFormatNo field is an index into the list of formats sent by the client in the Client Audio Formats

and Version PDU. A value of i means the format of the audio data is the ith format of that list.

This PDU MUST be sent over virtual channels.

3.3.5.2.1.2 Sending a Wave PDU

The structure and fields of the Wave PDU are specified in section 2.2.3.4.

A WaveInfo PDU and a Wave PDU, sent consecutively by the server, combine to form an audio
sample.

This PDU MUST be sent over virtual channels.

3.3.5.2.1.3 Sending a Wave Encrypt PDU

The structure and fields of the Wave Encrypt PDU are specified in section 2.2.3.5.

41 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Unlike a WaveInfo PDU and Wave PDU, the Wave Encrypt PDU contains the entire audio sample in the
data field.

The cBlockNo field MUST be set as specified in section 3.3.5.2.1.1.

The wFormatNo field is an index into the list of formats sent by the client in the Client Audio Formats

and Version PDU. A value of i means the format of the audio data is the ith format of that list.

The audio data MUST be encrypted. Given:

 The original audio data of the same size

 And given a 36-byte number, where:

 the first 32 bytes are the field Seed, exchanged in the Crypt Key PDU during the initialization
sequence. If the server did not send a Crypt Key PDU, all 32 bytes of the Seed MUST be set to
0x00.

 the thirty-third byte is cBlockNo

 the final three bytes are 0x000000

A SHA-1 hash algorithm (as specified in [FIPS180-2]) is run over this 36-byte number and the field
data to produce a 20-byte hash. The original audio data is encrypted with RC4 (as specified in
[SCHNEIER]) using this 20-byte hash as a key.

If the client and server versions are both at least 5, then the signature field MUST exist. Otherwise,

the field MUST NOT exist. This is how the signature is created. Given:

 A 36-byte number, where:

 the first 32 bytes are the field Seed, exchanged in the Crypt Key PDU during the initialization
sequence. If the server did not send a Crypt Key PDU, all 32 bytes of the Seed MUST be set to
0x00.

 the thirty-third byte is cBlockNo

 and the final three bytes are 0x000000

A SHA-1 hash algorithm is run over this 36-byte number and the field data to produce a 20-byte
hash. The value of this field is set to the first 8 bytes of this hash.

This PDU MUST be sent over UDP<25>.

3.3.5.2.1.4 Sending a UDP Wave PDU

The structure and fields of the UDP Wave PDU are specified in section 2.2.3.6.

If the client and server's versions are both at least 5, the server MAY choose to send an Audio

FragData structure, using several PDUs. All PDUs, except for the final one, MUST be UDP Wave PDUs.
The final PDU MUST be a UDP Wave Last PDU. The cFragNo value of each UDP Wave PDU

corresponds to the order of the fragment Audio FragData structure. The very first fragment at the
beginning of the audio sample MUST have a cFragNo value of 0, and each successive fragment MUST
have a cFragNo value that is 1 more than the preceding fragment.

The cBlockNo field of all UDP Wave PDUs holding fragments of an audio sample MUST be the same.

The cBlockNo field MUST be set as specified in section 3.3.5.2.1.1.

This PDU MUST be sent over UDP and only if the client and server's versions are both at least 5.

3.3.5.2.1.5 Sending a UDP Wave Last PDU

42 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The structure and fields of the UDP Wave Last PDU are specified in section 2.2.3.7.

The cBlockNo field MUST be set as specified in section 3.3.5.2.1.1.

The wFormatNo field is an index into the list of formats sent by the client in the Client Audio Formats
and Version PDU. A value of i means the format of the audio data is the ith format of that list.

This PDU MUST be sent over UDP and only if the client and server's versions are both at least 5.

3.3.5.2.1.6 Processing a Wave Confirm PDU

The structure and fields of the Wave Confirm PDU are specified in section 2.2.3.8.

Upon receiving a Wave Confirm PDU, the server knows that the client consumed the audio sample that
has a cBlockNo value identical to cConfirmedBlockNo.

If the server sent the audio sample using UDP and does not receive a Wave Confirm PDU, then the

server MUST continue normally.

3.3.5.2.1.7 Sending a Close PDU

The structure and fields of the Close PDU are specified in section 2.2.3.9.

To stop sending audio, the server sends this PDU.

This packet MUST be sent over virtual channels.

3.3.5.2.1.8 Sending a Wave2 PDU

The structure and fields of the Wave2 PDU are specified in section 2.2.3.10.

The BodySize field of the RDPSND PDU Header of this PDU MUST be set to the size of the PDU minus
the size of the Header.

The cBlockNo field MUST be one more than the cBlockNo field of the last audio sample sent. If the
value of the last cBlockNo was 255, the value of cBlockNo for this PDU MUST be 0. If this is the first

audio sample sent, the cBlockNo field MUST be one more than the cLastBlockConfirmed field of the
Server Audio Formats and Version PDU sent by the server to the client.

The wFormatNo field is an index into the list of formats sent by the client in the Client Audio Formats
and Version PDU. A value of i means that the format of the audio data is the ith format of that list.

This PDU MUST be sent over virtual channels.

3.3.5.3 Audio Settings Transfer Sequence

The audio settings transfer sequence messages are used to send audio setting changes from the
server to the client.

3.3.5.3.1 Messages

3.3.5.3.1.1 Sending a Volume PDU

The structure and fields of the Volume PDU are specified in section 2.2.4.1.

For the server to send this packet, the client MUST have had the TSSNDCAPS_VOLUME (0x00000002)
flag set in the dwFlags field of the Client Audio Formats and Version PDU sent during the initialization
sequence.

43 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.3.1.2 Sending a Pitch PDU

The structure and fields of the Pitch PDU are specified in section 2.2.4.2.

For the server to send this packet, the client MUST have had the TSSNDCAPS_PITCH (0x00000004)

flag set in the dwFlags field of the Client Audio Formats and Version PDU sent during the initialization
sequence.

3.3.6 Timer Events

No server timer events are used.

3.3.7 Other Local Events

No additional server events are used.

44 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 Annotated Initialization Sequence

The following is an annotated dump of an initialization sequence using virtual channels for data

transfer, as specified in section 1.3.2.1.

4.1.1 Server Audio Formats and Version PDU

The following is an annotated dump of a Server Audio Formats and Version PDU.

 00000000 07 2b 90 00 08 fb 8b 00 e0 f1 09 00 70 27 1f 77 .+..........p'.w
 00000010 00 00 05 00 ff 05 00 00 01 00 02 00 22 56 00 00 "V..
 00000020 88 58 01 00 04 00 10 00 00 00 06 00 02 00 22 56 .X............"V
 00000030 00 00 44 ac 00 00 02 00 08 00 00 00 07 00 02 00 ..D.............
 00000040 22 56 00 00 44 ac 00 00 02 00 08 00 00 00 02 00 "V..D...........
 00000050 02 00 22 56 00 00 27 57 00 00 00 04 04 00 20 00 .."V..'W...... .
 00000060 f4 03 07 00 00 01 00 00 00 02 00 ff 00 00 00 00
 00000070 c0 00 40 00 f0 00 00 00 cc 01 30 ff 88 01 18 ff ..@.......0.....
 00000080 11 00 02 00 22 56 00 00 b9 56 00 00 00 04 04 00 "V...V......
 00000090 02 00 f9 03

 07 -> SNDPROLOG::Type = SNDC_FORMATS (7)
 2b -> SNDPROLOG::bPad = 0x2b
 90 00 -> SNDPROLOG::BodySize = 0x90 = 144 bytes

 08 fb 8b 00 -> SERVER_AUDIO_VERSION_AND_FORMATS::dwFlags = 0x008bfb08
 e0 f1 09 00 -> SERVER_AUDIO_VERSION_AND_FORMATS::dwVolume = 0x0009f1e0
 70 27 1f 77 -> SERVER_AUDIO_VERSION_AND_FORMATS::dwPitch = 0x771f2770
 00 00 -> SERVER_AUDIO_VERSION_AND_FORMATS::wDGramPort = 0
 05 00 -> SERVER_AUDIO_VERSION_AND_FORMATS::wNumberOfFormats = 5
 ff -> SERVER_AUDIO_VERSION_AND_FORMATS::cLastBlockConfirmed = 0xff = 255
 05 00 -> SERVER_AUDIO_VERSION_AND_FORMATS::wVersion = 5
 00 -> SERVER_AUDIO_VERSION_AND_FORMATS::bPad = 0
 01 00 02 00 22 56 00 00 88 58 01 00 04 00 10 00 00 00 -> AUDIO_FORMAT
 01 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_PCM (1)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 88 58 01 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0x15888 = 88200
 04 00 -> AUDIO_FORMAT::nBlockAlign = 0x0004 = 4
 10 00 -> AUDIO_FORMAT::wBitsPerSample = 0x10 = 16
 00 00 -> AUDIO_FORMAT::cbSize = 0
 06 00 02 00 22 56 00 00 44 ac 00 00 02 00 08 00 00 00 -> AUDIO_FORMAT
 06 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_ALAW (6)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 44 ac 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0xac44 = 44100
 02 00 -> AUDIO_FORMAT::nBlockAlign = 2
 08 00 -> AUDIO_FORMAT::wBitsPerSample = 8
 00 00 -> AUDIO_FORMAT::cbSize = 0
 07 00 02 00 22 56 00 00 44 ac 00 00 02 00 08 00 00 00 -> AUDIO_FORMAT
 07 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_MULAW (7)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 44 ac 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0xac44 = 44100
 02 00 -> AUDIO_FORMAT::nBlockAlign = 2
 08 00 -> AUDIO_FORMAT::wBitsPerSample = 8
 00 00 -> AUDIO_FORMAT::cbSize = 0
 02 00 02 00 22 56 00 00 27 57 00 00 00 04 04 00 20 00 f4 03 07 00 00 01
 00 00 00 02 00 ff 00 00 00 00 c0 00 40 00 f0 00 00 00 cc 01 30 ff 88 01
 18 ff -> AUDIO_FORMAT
 02 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_ADPCM (2)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 27 57 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0x5727 = 22311

45 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00 04 -> AUDIO_FORMAT::nBlockAlign = 0x400 = 1024
 04 00 -> AUDIO_FORMAT::wBitsPerSample = 4
 20 00 -> AUDIO_FORMAT::cbSize = 0x20 = 32
 f4 03 07 00 00 01 00 00 00 02 00 ff 00 00 00 00 c0 00 40 00 f0 00 00
 00 cc 01 30 ff 88 01 18 ff -> data
 11 00 02 00 22 56 00 00 b9 56 00 00 00 04 04 00 02 00 f9 03 -> AUDIO_FORMAT
 11 00 -> AUDIO_FORMAT::wFormatTag = 0x11 = WAVE_FORMAT_DVI_ADPCM (17)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 b9 56 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec =0x56b9 = 22201
 00 04 -> AUDIO_FORMAT::nBlockAlign = 0x400 = 1024
 04 00 -> AUDIO_FORMAT::wBitsPerSample = 4
 02 00 -> AUDIO_FORMAT::cbSize = 2
 f9 03 -> AUDIO_FORMAT::data

4.1.2 Client Audio Formats and Version PDU

The following is an annotated dump of a Client Audio Formats and Version PDU.

 00000000 07 00 90 00 03 00 00 00 ff ff ff ff 00 f7 f9 00
 00000010 00 00 05 00 28 05 00 7c 01 00 02 00 22 56 00 00 (..|...."V..
 00000020 88 58 01 00 04 00 10 00 00 00 06 00 02 00 22 56 .X............"V
 00000030 00 00 44 ac 00 00 02 00 08 00 00 00 07 00 02 00 ..D.............
 00000040 22 56 00 00 44 ac 00 00 02 00 08 00 00 00 02 00 "V..D...........
 00000050 02 00 22 56 00 00 27 57 00 00 00 04 04 00 20 00 .."V..'W...... .
 00000060 f4 03 07 00 00 01 00 00 00 02 00 ff 00 00 00 00
 00000070 c0 00 40 00 f0 00 00 00 cc 01 30 ff 88 01 18 ff ..@.......0.....
 00000080 11 00 02 00 22 56 00 00 b9 56 00 00 00 04 04 00 "V...V......
 00000090 02 00 f9 03

 07 -> SNDPROLOG::Type = SNDC_FORMATS (7)
 00 -> SNDPROLOG::bPad = 0
 90 00 -> SNDPROLOG::BodySize = 0x90 = 144 bytes

 03 00 00 00 -> CLIENT_AUDIO_VERSION_AND_FORMATS::dwFlags = 0x00000003
 0x03
 = 0x01 |
 0x02
 = TSSNDCAPS_ALIVE |
 TSSNDCAPS_VOLUME
 ff ff ff ff -> CLIENT_AUDIO_VERSION_AND_FORMATS::dwVolume = 0xffffffff
 00 f7 f9 00 -> CLIENT_AUDIO_VERSION_AND_FORMATS::dwPitch = 0x00f9f700
 00 00 -> CLIENT_AUDIO_VERSION_AND_FORMATS::wDGramPort = 0
 05 00 -> CLIENT_AUDIO_VERSION_AND_FORMATS::wNumberOfFormats = 5
 28 -> CLIENT_AUDIO_VERSION_AND_FORMATS::cLastBlockConfirmed = 0x28
 05 00 -> CLIENT_AUDIO_VERSION_AND_FORMATS::wVersion = 5
 7c -> CLIENT_AUDIO_VERSION_AND_FORMATS::bPad = 0x7c
 01 00 02 00 22 56 00 00 88 58 01 00 04 00 10 00 00 00 -> AUDIO_FORMAT
 01 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_PCM (1)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 88 58 01 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0x15888 = 88200
 04 00 -> AUDIO_FORMAT::nBlockAlign = 0x0004 = 4
 10 00 -> AUDIO_FORMAT::wBitsPerSample = 0x10 = 16
 00 00 -> AUDIO_FORMAT::cbSize = 0
 06 00 02 00 22 56 00 00 44 ac 00 00 02 00 08 00 00 00 -> AUDIO_FORMAT
 06 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_ALAW (6)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 44 ac 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0xac44 = 44100
 02 00 -> AUDIO_FORMAT::nBlockAlign = 2
 08 00 -> AUDIO_FORMAT::wBitsPerSample = 8
 00 00 -> AUDIO_FORMAT::cbSize = 0
 07 00 02 00 22 56 00 00 44 ac 00 00 02 00 08 00 00 00 -> AUDIO_FORMAT
 07 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_MULAW (7)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050

46 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 44 ac 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0xac44 = 44100
 02 00 -> AUDIO_FORMAT::nBlockAlign = 2
 08 00 -> AUDIO_FORMAT::wBitsPerSample = 8
 00 00 -> AUDIO_FORMAT::cbSize = 0
 02 00 02 00 22 56 00 00 27 57 00 00 00 04 04 00 20 00 f4 03 07 00 00 01 00 00 00 02 00 ff 00
00 00 00 c0 00 40 00 f0 00 00 00 cc 01 30 ff 88 01 18 ff -> AUDIO_FORMAT

 02 00 -> AUDIO_FORMAT::wFormatTag = WAVE_FORMAT_ADPCM (2)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 27 57 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec = 0x5727 = 22311
 00 04 -> AUDIO_FORMAT::nBlockAlign = 0x400 = 1024
 04 00 -> AUDIO_FORMAT::wBitsPerSample = 4
 20 00 -> AUDIO_FORMAT::cbSize = 0x20 = 32
 f4 03 07 00 00 01 00 00 00 02 00 ff 00 00 00 00 c0 00 40 00 f0 00 00 00 cc 01 30 ff 88 01
18 ff -> data

 11 00 02 00 22 56 00 00 b9 56 00 00 00 04 04 00 02 00 f9 03 -> AUDIO_FORMAT
 11 00 -> AUDIO_FORMAT::wFormatTag = 0x11 = WAVE_FORMAT_DVI_ADPCM (17)
 02 00 -> AUDIO_FORMAT::nChannels = 2
 22 56 00 00 -> AUDIO_FORMAT::nSamplesPerSec = 0x5622 = 22050
 b9 56 00 00 -> AUDIO_FORMAT::nAvgBytesPerSec =0x56b9 = 22201
 00 04 -> AUDIO_FORMAT::nBlockAlign = 0x400 = 1024
 04 00 -> AUDIO_FORMAT::wBitsPerSample = 4
 02 00 -> AUDIO_FORMAT::cbSize = 2
 f9 03 -> AUDIO_FORMAT::data

4.1.3 Training PDU

The following is an annotated dump of a Training PDU.

 00000000 06 23 fc 03 da 89 00 04 52 90 49 f1 f1 bb e9 eb .#......R.I.....
 00000010 b3 a6 db 3c 87 0c 3e 99 24 5e 0d 1c 06 b7 47 de ...<..>.$^....G.
 00000020 b3 12 4d c8 43 bb 8b a6 1f 03 5a 7d 09 38 25 1f ..M.C.....Z}.8%.
 00000030 5d d4 cb fc 96 f5 45 3b 13 0d 89 0a 1c db ae 32].....E;.......2
 …
 000003d0 20 9a 50 ee 40 78 36 fd 12 49 32 f6 9e 7d 49 dc .P.@x6..I2..}I.
 000003e0 ad 4f 14 f2 44 40 66 d0 6b c4 30 b7 32 3b a1 22 .O..D@f.k.0.2;."
 000003f0 f6 22 91 9d e1 8b 1f da b0 ca 99 02 b9 72 9d 49 ."...........r.I

 06 -> SNDPROLOG::Type = SNDC_TRAINING (6)
 23 -> SNDPROLOG::bPad = 0x23
 fc 03 -> SNDPROLOG::BodySize = 0x3fc
 da 89 -> SNDTRAINING::wTimeStamp = 0x89da
 00 04 -> SNDTRAINING::wPackSize = 0x400 = 1024 bytes
 52 90 49 … 72 9d 49 -> SNDTRAINING::data

4.1.4 Training Confirm PDU

The following is an annotated dump of a Training Confirm PDU.

 00000000 06 55 04 00 da 89 00 04 .#......

 06 -> SNDPROLOG::Type = SNDC_TRAINING (6)
 55 -> SNDPROLOG::bPad = 0x55
 04 00 -> SNDPROLOG::BodySize = 0x4
 da 89 -> SNDTRAINING::wTimeStamp = 0x89da
 00 04 -> SNDTRAINING::wPackSize = 0x400 = 1024 bytes

4.2 Annotated Virtual Channel Data Transfer Sequence

The following is an annotated dump of a data transfer sequence over virtual channels, as specified in
section 1.3.2.2.

47 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.2.1 WaveInfo PDU

The following is an annotated dump of a WaveInfo PDU.

 00000000 02 7e 51 02 d7 ad 0f 00 08 00 00 00 20 48 17 d6 .~Q.........H...

 02 -> SNDPROLOG::Type = SNDC_WAVE (2)
 7e -> SNDPROLOG::bPad = 0x7e
 51 02 -> SNDPROLOG::BodySize = 0x251 = 593 bytes

 d7 ad -> SNDWAVINFO::wTimeStamp = 0xadd7
 0f 00 -> SNDWAVINFO::wFormatNo = 0xf = format #15
 08 -> SNDWAVINFO::cBlockNo = 8
 00 00 00 -> SNDWAVINFO::bPad = 0
 20 48 17 d6 -> SNDWAVINFO::data

4.2.2 Wave PDU

The following is an annotated dump of a Wave PDU.

 00000000 00 00 00 00 84 02 80 24 49 92 24 89 02 80 24 49 $I.$...$I
 00000010 92 24 89 02 80 24 49 92 24 89 02 80 24 49 92 24 .$...$I.$...$I.$
 00000020 09 82 74 61 4d 28 00 48 92 24 49 92 28 00 48 92 ..taM(.H.$I.(.H.
 ...
 00000030 0f 7b de 20 b2 2a 72 74 37 d9 bc dd 5f 4d 0b 58 .{. .*rt7..._M.X
 00000040 a5 05 a9 12 3c 19 40 59 6a 48 aa 4e 11 4c 51 63 <.@YjH.N.LQc
 00000050 55 cd 57 1f f8 91 ba 48 aa U.W....H.

 00 00 00 00 -> SNDWAVE::Type = 0
 84 02 80… ba 48 aa -> SNDWAVE::data

4.2.3 Wave Confirm PDU

The following is an annotated dump of a Wave Confirm PDU.

 00000000 05 39 04 00 b7 5a 08 77 .9...Z.w

 05 -> SNDPROLOG::Type = SNDC_WAVECONFIRM
 39 -> SNDPROLOG::bPad = 0x39
 04 00 -> SNDPROLOG::BodySize = 0x4 = 4 bytes

 b7 5a -> SNDWAV_CONFIRM::wTimeStamp = 0x5ab7
 08 -> SNDWAV_CONFIRM::cConfirmedBlockNo = 8
 77 -> SNDWAV_CONFIRM::bPad = 0x77

4.2.4 Wave2 PDU

The following is an annotated dump of a Wave2 PDU.

 00000000 0d 00 04 01 16 a1 03 00-02 00 00 00 c2 b8 ac 0d
 00000010 27 0c 45 83 04 84 82 20-b0 48 6c 18 0d 84 84 c3 '.E.... .Hl.....
 00000020 41 10 50 2a 11 19 84 42-a1 11 81 44 40 21 08 08 A.P*...B...D@!..
 00000030 4b fe c7 24 3c 1c 9f 07-45 9a 07 0e 13 28 a5 ba K..$<...E....(..
 00000040 60 c4 03 c5 f8 57 1d d6-5a 2b f3 4f 83 9e 5f 04 `....W..Z+.O.._.
 ...
 000000e0 b1 51 00 09 8b 26 04 c1-71 41 71 34 eb bc 01 25 .Q...&..qAq4...%
 000000f0 45 c6 e0 14 2c 0c 20 b1-6b 67 d8 10 5c 48 a8 2e E...,. .kg..\H..
 00000100 b0 dc 44 ba 53 00 55 c0 ..D.S.U.

 0d -> SNDPROLOG::Type = SNDC_WAVE2 (13)

48 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00 -> SNDPROLOG::bPad = 0x00
 04 01 -> SNDPROLOG::BodySize = 0x104 = 260 bytes

 16 a1 -> SNDWAVE2::wTimeStamp = 0xa116
 03 00 -> SNDWAVE2::wFormatNo = 0x3 = format #3
 02 -> SNDWAVE2::cBlockNo = 2
 00 00 00 -> SNDWAVE2::bPad = 0
 c2 b8 ac 0d -> SNDWAVE2::dwAudioTimeStamp = 0xdacb8c2 = 229423298
 27 0c 45 … 00 55 c0 -> SNDWAVE2::data

4.3 Annotated UDP Data Transfer Sequence Using Wave Encrypt PDU

The following is an annotated dump of a data transfer sequence over UDP when the client and server

versions are both less than 5, as specified in section 1.3.2.2.

4.3.1 Wave Encrypt PDU

The following is an annotated dump of a Wave Encrypt PDU.

 00cd7dd0 09 e0 b8 03 b4 d0 2d 00 24 00 00 00 fd 19 07 55
 ...
 00cd8180 a6 ba 89 4c 36 f2 56 89 dd c0 42 78

 09 -> SNDPROLOG::Type = SNDC_WAVEENCRYPT (9)
 e0 -> SNDPROLOG::bPad = 0xe0
 b8 03 -> SNDPROLOG::BodySize = 0x3b8 = 952 bytes
 b4 d0 -> SNDWAVCRYPT::wTimeStamp = 0xd0b4
 2d 00 -> SNDWAVCRYPT::wFormatNo = 0x2d = format #45
 24 -> SNDWAVCRYPT::cBlockNo = 0x24 = 36
 00 00 00 -> SNDWAVCRYPT::bPad
 fd 19 07 55 ... c0 42 78 -> SNDWAVCRYPT::data

4.3.2 Wave Confirm PDU

The following is an annotated dump of a Wave Confirm PDU.

 00000000 05 25 04 00 b7 5a 24 22 .9...Z.w

 05 -> SNDPROLOG::Type = SNDC_WAVECONFIRM
 25 -> SNDPROLOG::bPad = 0x39
 04 00 -> SNDPROLOG::BodySize = 0x4 = 4 bytes

 b7 5a -> SNDWAV_CONFIRM::wTimeStamp = 0x5ab7
 24 -> SNDWAV_CONFIRM::cConfirmedBlockNo = 0x24 = 36
 22 -> SNDWAV_CONFIRM::bPad = 0x22

4.4 Annotated UDP Data Transfer Sequence Using UPD Wave PDU

The following is an annotated dump of a data transfer sequence over UDP when the client and server
versions are both at least 5, as specified in section 1.3.2.2.

4.4.1 UDP Wave PDU

The following is an annotated dump of a UDP Wave PDU.

 00000000 0a 00 00 87 27 b8 77 78 21 b9 e8 00 00 00 00 00
 00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

49 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 0a -> SNDUDPWAVE::Type = SNDC_UDPWAVE (0xa)
 00 -> SNDUDPWAVE::cBlockNo = 0
 00 -> SNDUDPWAVE::cFragNo = 0
 87 27 b8 ... 00 00 00 -> SNDUDPWAVE::data

4.4.2 UDP Wave Last PDU

The following is an annotated dump of a UDP Wave Last PDU.

 00000000 0b 08 20 b9 1a 04 00 00 00 00 00 00 00 00 00 00
 00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0b -> SNDUDPWAVELAST::Type
 08 20 -> SNDUDPWAVELAST::wTotalSize = 0x2008
 b9 1a -> SNDUDPWAVELAST::wTimeStamp = 0x1ab9
 04 00 -> SNDUDPWAVELAST::wFormatNo = 0x4
 00 -> SNDUDPWAVELAST::cBlockNo = 0
 00 00 00 -> SNDUDPWAVELAST::bPad
 00 00 00 ... 00 00 00 -> SNDUDPWAVELAST::data

4.4.3 Wave Confirm PDU

 The following is an annotated dump of a Wave Confirm PDU.

 00000000 05 25 04 00 b7 2a 00 22

 05 -> SNDPROLOG::Type = SNDC_WAVECONFIRM
 25 -> SNDPROLOG::bPad = 0x39
 04 00 -> SNDPROLOG::BodySize = 0x4 = 4 bytes

 b7 2a -> SNDWAV_CONFIRM::wTimeStamp = 0x2ab7
 00 -> SNDWAV_CONFIRM::cConfirmedBlockNo = 0
 22 -> SNDWAV_CONFIRM::bPad = 0x22

50 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

All virtual channel traffic is secured by the underlying core Remote Desktop Protocol. An overview of

the implemented security-related mechanisms is specified in [MS-RDPBCGR] section 5.

There are no security considerations for dynamic virtual channel; see [MS-RDPEDYC] section 5.

 When audio data is sent using UDP Wave PDUs and UDP Wave Last PDUs, the audio is not encrypted
during transmission between the client and the server. However, verification that the audio data has
been transmitted intact is possible since these PDUs are signed. Sending audio data using this UDP
sequence is not recommended because the audio data is not encrypted. Instead, virtual channels

should be usedare recommended.

When audio data is sent using Wave Encrypt PDUs, the audio data is encrypted using RC4 and SHA-1.
When the client or server protocol version is less than 5, verification that the audio data has been

transmitted intact is not possible because these PDUs are not signed. Sending audio data using this
UDP sequence is not recommended because SHA-1 has been proven to be insecure. Instead, virtual
channels should be usedare recommended.

5.2 Index of Security Parameters

None.

51 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

Note: Some of the information in this section is subject to change because it applies to a preliminary
product version, and thus may differ from the final version of the software when released. All behavior
notes that pertain to the preliminary product version contain specific references to it as an aid to the

reader.

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not

follow the prescription.

<1> Section 2.1: In Windows, the client MUST advertiseadvertises the static virtual channel named
"RDPDR", as defined in [MS-RDPEFS]. If that channel is not advertised, the server will not issue any
communication on the "RDPSND" channel. Not supported on Windows XP and Windows Server 2003.

<2> Section 2.1: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016 Technical Preview always use unreliable UDP for dynamic

virtual channel if the following three conditions are true. Otherwise, reliable transport is used.

 An unreliable UDP transport is available.

 The protocol version of both client and server is at least version 8.

 The AAC codec is used to compress data.

<3> Section 2.2.2.1:

52 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Client and
server version Meaning

0x02 Windows XP

0x05 Windows XP operating system Service Pack 1 (SP1), Windows XP operating system Service
Pack 2 (SP2), and Windows XP operating system Service Pack 3 (SP3)

0x05 Windows Server 2003

0x05 Windows Vista

0x05 Windows Server 2008

0x06 Windows 7

0x06 Windows Server 2008 R2 operating system

0x08 Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,
and Windows Server 2016 Technical Preview

<4> Section 2.2.2.1.1: For more information about registering format information, see [RFC2361].

For more information about Pulse-Code Modulation (PCM), see [G711].

For more information about Global System for Mobile communications (GSM), see [ETSI-GSM].

The following tables show codecs and associated format tags that are supported by default on the
different versions of Windows, which support audio redirection. Unless otherwise specified, information
about these codecs maycan be found in [RFC2361].

The following codecs are supported by default on Windows XP and Windows Server 2003:

Codec name Format tag Exceptions

DSP Group, Inc. TrueSpeech WAVE_FORMAT_DSPGROUP_TRUESPEECH

0x0022

ISO/MPEG Layer 3 [ISO/IEC-11172-3] WAVE_FORMAT_MPEGLAYER3

0x0055

Voxware, Inc. AC10 WAVE_FORMAT_VOXWARE_AC10

0x0071

Not supported on
Windows Server 2003

Voxware, Inc. AC16 WAVE_FORMAT_VOXWARE_AC16

0x0072

Not supported on
Windows Server 2003

Voxware, Inc. AC20 WAVE_FORMAT_VOXWARE_AC20

0x0073

Voxware, Inc. AC8 WAVE_FORMAT_VOXWARE_AC8

0x0070

Not supported on
Windows Server 2003

The following codecs are supported by default on Windows:

Codec name Format tag Exceptions

Microsoft PCM WAVE_FORMAT_PCM

53 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Codec name Format tag Exceptions

0x0001

Microsoft
Adaptive PCM

WAVE_FORMAT_ADPCM

0x0002

Microsoft ALAW WAVE_FORMAT_ALAW

0x0006

Microsoft
G.723

WAVE_FORMAT_MSG723

0x0042

Microsoft GSM WAVE_FORMAT_GSM610

0x0031

Microsoft
MULAW

WAVE_FORMAT_MULAW

0x0007

Microsoft AAC WAVE_FORMAT_AAC

0xa106

Not supported on Windows XP, Windows Server 2003, Windows
Vista, Windows Server 2008, Windows 7, and Windows Server 2008
R2

Microsoft Implementations deviate from the GSM standard [ETSI-GSM] while bitpacking coefficients,
as described by the following example:

 ITU-T Standard Implementation of GSM 610
 if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
 LARc[1] = (*c++ & 0xF) << 2; /* 1 */
 LARc[1] |= (*c >> 6) & 0x3;
 LARc[2] = *c++ & 0x3F;
 LARc[3] = (*c >> 3) & 0x1F;
 LARc[4] = (*c++ & 0x7) << 2;
 LARc[4] |= (*c >> 6) & 0x3;
 LARc[5] = (*c >> 2) & 0xF;
 LARc[6] = (*c++ & 0x3) << 2;
 LARc[6] |= (*c >> 6) & 0x3;
 LARc[7] = (*c >> 3) & 0x7;
 LARc[8] = *c++ & 0x7;

 Microsoft Implementaion of GSM 610
 LAR[1] = (ab[0] & 0x3F);
 LAR[2] = ((ab[0] & 0xC0) >> 6) | ((ab[1] & 0x0F) << 2);
 LAR[3] = ((ab[1] & 0xF0) >> 4) | ((ab[2] & 0x01) << 4);
 LAR[4] = ((ab[2] & 0x3E) >> 1);
 LAR[5] = ((ab[2] & 0xC0) >> 6) | ((ab[3] & 0x03) << 2);
 LAR[6] = ((ab[3] & 0x3C) >> 2);
 LAR[7] = ((ab[3] & 0xC0) >> 6) | ((ab[4] & 0x01) << 2);
 LAR[8] = ((ab[4] & 0x0E) >> 1);

The ITU implementation is Most Significant Bit (MSB) to Least Significant Bit (LSB). The Microsoft

Implementation is LSB to MSB. The following coefficients are represented as MSB to LSB. The first line
is the bit position in the actual byte, the second line is the coefficient index, and the third line is the bit
position of the coefficients.

 ITU:

 BYTE 0 BYTE 1 BYTE 2 BYTE 3
 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0
 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 ...

54 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 5 4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 ...

 MS:

 BYTE 3 BYTE 2 BYTE 1 BYTE 0
 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0
 ... 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1
 ... 4 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0

<5> Section 2.2.2.2: AAC is only used if the client includes an AUDIO_FORMAT entry with

wFormatTag equal to Microsoft AAC, and nAvgBytesPerSec equal to 12000 in sndFormats when
sending the Client Audio Formats and Version PDU.

<6> Section 2.2.2.2:

Client and server
version Meaning

0x02 Windows XP

0x05 Windows XP SP1, Windows XP SP2, and Windows XP SP3

0x05 Windows Server 2003

0x05 Windows Vista

0x05 Windows Server 2008

0x06 Windows 7

0x06 Windows Server 2008 R2

0x08 Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,
and Windows Server 2016 Technical Preview

<7> Section 2.2.2.3: If the server version is under 6, the Quality Mode PDU will not be handled on the
server side. If the server version is at least 6, but the client version is under 6, the Quality Mode PDU
will be ignored on the server side.

<8> Section 2.2.3.3: Windows sets this field to the number of milliseconds that have elapsed since
the system was started.

<9> Section 2.2.3.5: Windows sets this field to the number of milliseconds that have elapsed since
the system was started.

<10> Section 2.2.3.10: Windows sets this field to the number of milliseconds that have elapsed since
the system was started.

<11> Section 3.1.3: Windows 8 and Windows Server 2012 will try to create a dynamic virtual channel

first. If that fails, they will try to create a static virtual channel.

<12> Section 3.2.5.1.1.2: Windows XP and Windows Server 2003 clients try to negotiate UDP using
the API function getsockname. If the function is successful, Windows clients advertise a UDP port.
Otherwise, the clients use static virtual channels. For more information about the getsockname

function, see [MSDN-getsockname].

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 always use static
virtual channels, even if the client advertises a UDP port.

55 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Windows 8 and Windows Server 2012 always use virtual channels, even if the client advertises a UDP
port.

Windows XP and Windows XP SP1 servers use UDP.

Windows Server 2003, Windows XP SP2, and Windows XP SP3 use UDP if the client advertises a UDP

port, with the following exception: if the client version is less than 5, and the data size is greater than
the maximum datagram size for the UDP socket, these servers use static virtual channels.

<13> Section 3.2.5.1.1.4: In Windows XP and Windows Server 2003, if a client advertises a UDP port
during version exchange, the Training PDUs are first sent over UDP. Static virtual channels are used
only if the communication over UDP fails.

In Windows Vista, Windows Server 2008 operating system, Windows 7, and Windows Server 2008 R2,
the training PDU is always sent over static virtual channels even if the client has advertised a UDP

port.

In Windows 8 and Windows Server 2012, the training PDU is always sent over virtual channels even if
the client has advertised a UDP port.

<14> Section 3.3.2: A Windows server will wait 10 seconds after sending a Server Audio Formats and
Version PDU. If a Client Audio Formats and Version PDU is not received within this time, the server
terminates the protocol.

<15> Section 3.3.2: Windows XP and Windows Server 2003 servers will wait 1 second after sending a
UDP Training PDU for the Training Confirm PDU. If the Training Confirm PDUs are not received, the
server will retry up to 10 times before falling back on static virtual channels.

<16> Section 3.3.2: Windows 7 and Windows Server 2008 R2 servers will wait 10 seconds after
receiving a Client Audio Formats and Version PDU. If the Quality Mode PDU is not received, the server
uses the DYNAMIC_QUALITY quality mode (section 2.2.2.3).

<17> Section 3.3.5.1.1.2: If a Windows server receives the client PDU before sending the server PDU

to the client, the server processes the client PDU as if it were received in the normal sequence (after
the server sends the server PDU). If the format list that is contained in the client PDU is not a subset

of the format list that is contained in the server PDU, the server handles the format list as if it is a
subset of the formats it sends out. The server picks a format from the list, and if the format is not
supported by the server, the server will close the virtual channel. If the picked format is supported on
the server side, the server will start sending data using that format. Note that even when the server
starts sending data, it can change the format later and subsequently close the virtual channel if the

changed format is not supported on server side.

<18> Section 3.3.5.1.1.2: Windows XP and Windows Server 2003 use UDP.

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 always use virtual
channels.

Windows 8 and Windows Server 2012 always use virtual channels.

<19> Section 3.3.5.1.1.3: Windows 7 and Windows Server 2008 R2 servers will wait 10 seconds after

receiving a Client Audio Formats and Version PDU. If the Quality Mode PDU is not received, the server

uses the DYNAMIC_QUALITY quality mode (section 2.2.2.3).

<20> Section 3.3.5.1.1.4: Windows XP and Windows Server 2003 clients try to negotiate UDP by
using the API function getsockname. If the function is successful, Windows clients advertise a UDP
port. Otherwise, the clients use static virtual channels. For more information about the getsockname
function, see [MSDN-getsockname].

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 always use static

virtual channels, even if the client advertises a UDP port.

56 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Windows 8 and Windows Server 2012 always use virtual channels, even if the client advertises a UDP
port.

Windows Server 2003, Windows XP, Windows XP SP1, Windows XP SP2, and Windows XP SP3 servers
use UDP, provided that the client advertises a UDP port.

<21> Section 3.3.5.1.1.5: Windows XP and Windows Server 2003 servers will wait 1 second after
sending a UDP Training PDU for the Training Confirm PDU. If theTraining Confirm PDUs are not
received, the server will retry up to 10 times before falling back on static virtual channels.

<22> Section 3.3.5.1.1.6: Windows XP and Windows Server 2003 servers will not send a Crypt Key
PDU if the Encryption Level in the RDP Listener settings is set to "Low".

<23> Section 3.3.5.2: Windows XP and Windows Server 2003 clients try to negotiate UDP by using
the API function getsockname. If the function is successful, Windows clients advertise a UDP port.

Otherwise, the clients use static virtual channels. For more information about the getsockname
function, see [MSDN-getsockname].

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 always use static

virtual channels, even if the client advertises a UDP port and the samples will be sent by using a
WaveInfo PDU and a Wave PDU.

Windows 8 and Windows Server 2012 always use virtual channels, even if the client advertises a UDP

port and the samples are sent by using a WaveInfo PDU and a Wave PDU, or a Wave2 PDU.

Windows XP and Windows XP SP1 servers use UDP and samples are sent using a Wave Encrypt PDU.

When the client version is less than 5, Windows Server 2003, Windows XP SP2, and Windows XP SP3
use UDP and samples are sent using a Wave Encrypt PDU. However, if the data size is greater than
the maximum datagram size for the UDP socket, the samples are sent using a static virtual channel
with a WaveInfo PDU and Wave PDU.

<24> Section 3.3.5.2: Windows XP and Windows Server 2003 clients try to negotiate UDP by using

the API function getsockname. If the function is successful, Windows clients advertise a UDP port.
Otherwise, the clients use static virtual channels. For more information about the getsockname

function, see [MSDN-getsockname].

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 always use static
virtual channels, even if the client advertises a UDP port and the samples will be sent by using a
WaveInfo PDU and a Wave PDU.

Windows 8 and Windows Server 2012 always use virtual channels, even if the client advertises a UDP

port and the samples are sent by using a WaveInfo PDU and a Wave PDU, or a Wave2 PDU.

Windows XP and Windows XP SP1 use UDP if the client advertises a UDP port and the samples will be
sent by using a Wave Encrypt PDU.

If the client is less than 5 and the data size is greater than the maximum datagram size for the UDP
socket, Windows Server 2003, Windows XP SP2, and Windows XP SP3 will use a static virtual channel,
otherwise, the samples will be sent by using a Wave Encrypt PDU over UDP.

If the server is Windows Server 2003, Windows XP SP2, or Windows XP SP3, and the client is at least
5, the samples will be sent over UDP. If the data size is greater than the maximum datagram size for
the UDP socket, samples will be sent by using UDP Wave PDUs and a UDP Wave Last PDU;
otherwise, the samples will be sent by using a Wave Encrypt PDU.

The maximum datagram size for the UDP socket depends on system configuration parameters.
Typically, the value is 1460 bytes.

<25> Section 3.3.5.2.1.3: Windows XP and Windows Server 2003 clients try to negotiate UDP by

using the API function getsockname. If this function is successful, these clients advertise a UDP port.

57 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Otherwise, these clients use static virtual channels. For more information about the getsockname
function, see [MSDN-getsockname].

58 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

59 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model
 client (section 3.1.1 29, section 3.2.1 33)
 server (section 3.1.1 29, section 3.3.1 38)
Annotated initialization sequence 44
Annotated UDP data transfer sequence
 using UPD Wave PDU 48
 using Wave Encrypt PDU 48
Annotated virtual channel data transfer sequence 46
Applicability 13
Audio redirection protocol
 overview 9
 transport options 9
Audio setting transfer sequence
 audio redirection 12
 message processing 42
 messages 27
 sequencing rules 42
Audio Setting Transfer Sequences message 27
AUDIO_FORMAT packet 16
AUDIO_FRAGDATA packet 24

C

Capability negotiation 13
Change tracking 58
Client
 abstract data model (section 3.1.1 29, section 3.2.1 33)
 higher-layer triggered events (section 3.1.4 30, section 3.2.4 33)
 initialization (section 3.1.3 30, section 3.2.3 33, section 3.2.5.1 33)
 local events (section 3.1.7 33, section 3.2.7 38)
 message processing (section 3.1.5 31, section 3.2.5 33)
 other local events 38
 sequencing rules (section 3.1.5 31, section 3.2.5 33)
 timer events (section 3.1.6 33, section 3.2.6 37)
 timers (section 3.1.2 30, section 3.2.2 33)
Client Audio Formats and Version PDU
 example 45
 processing 38
 sending 34
CLIENT_AUDIO_VERSION_AND_FORMATS packet 17
Close PDU
 processing 37
 sending 42
Crypt Key 29
Crypt Key PDU
 processing 35
 sending 39

D

Data model - abstract
 client (section 3.1.1 29, section 3.2.1 33)
 server (section 3.1.1 29, section 3.3.1 38)
Data sequence 20
Data Sequence message 20

Data transfer sequence
 audio redirection 11
 message processing
 client 35
 server 39

60 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 sequencing rules
 client 35
 server 39

F

Fields - vendor-extensible 13

G

Glossary 7

H

Higher-layer triggered events
 client (section 3.1.4 30, section 3.2.4 33)
 server (section 3.1.4 30, section 3.3.4 38)

I

Implementer - security considerations 50
Index of security parameters 50
Informative references 8
Initialization
 client (section 3.1.3 30, section 3.2.3 33, section 3.2.5.1 33)
 server (section 3.1.3 30, section 3.3.3 38, section 3.3.5.1 38)
Initialization sequence (section 1.3.2.1 9, section 2.2.2 15)
Initialization Sequence message 15
Introduction 7

L

Local events
 client (section 3.1.7 33, section 3.2.7 38)
 server (section 3.1.7 33, section 3.3.7 43)

M

Message processing
 client (section 3.1.5 31, section 3.2.5 33)
 server (section 3.1.5 31, section 3.3.5 38)
Messages
 audio setting transfer sequence (section 2.2.4 27, section 3.3.5.3.1 42)
 Audio Setting Transfer Sequences 27
 Data Sequence 20
 data transfer sequence (section 3.2.5.2.1 35, section 3.2.5.3.1 37, section 3.3.5.2.1 40)
 Initialization Sequence (section 2.2.2 15, section 3.2.5.1.1 34, section 3.3.5.1.1 38)
 RDPSND PDU Header (SNDPROLOG) 14
 syntax 14
 transport 14

N

Normative references 7

O

Other local events
 client 38
 server 43
Overview 8
Overview (synopsis) 8

P

61 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Parameter index - security 50
Parameters - security index 50
Pitch PDU
 processing 37
 sending 43
Playing audio 30
Preconditions 13
Prerequisites 13
Product behavior 51

Q

Quality Mode PDU
 processing 39
 sending 34

R

RDPSND PDU Header (SNDPROLOG) message 14
References 7
 informative 8
 normative 7
Relationship to other protocols 13

S

Security
 implementer considerations 50
 parameter index 50
Sequencing rules
 client (section 3.1.5 31, section 3.2.5 33)
 server (section 3.1.5 31, section 3.3.5 38)
Server
 abstract data model (section 3.1.1 29, section 3.3.1 38)
 higher-layer triggered events (section 3.1.4 30, section 3.3.4 38)
 initialization (section 3.1.3 30, section 3.3.3 38, section 3.3.5.1 38)
 local events (section 3.1.7 33, section 3.3.7 43)
 message processing (section 3.1.5 31, section 3.3.5 38)
 other local events 43
 sequencing rules (section 3.1.5 31, section 3.3.5 38)
 timer events (section 3.1.6 33, section 3.3.6 43)
 timers (section 3.1.2 30, section 3.3.2 38)
Server Audio Formats and Version PDU
 example 44
 processing 34
 sending 38
SERVER_AUDIO_VERSION_AND_FORMATS packet 15
SNDCLOSE packet 26
SNDCRYPT packet 20
SNDPITCH packet 27

SNDPROLOG packet 14
SNDQUALITYMODE packet 19
SNDTRAINING packet 20
SNDTRAININGCONFIRM packet 21
SNDUDPWAVE packet 23
SNDUDPWAVELAST packet 24
SNDVOL packet 27
SNDWAV packet 22
SNDWAV_CONFIRM packet 25
SNDWAVCRYPT packet 22
SNDWAVE2 packet 26
SNDWAVINFO packet 21
Standards assignments 13
Syntax 14

62 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

T

Timer events
 client (section 3.1.6 33, section 3.2.6 37)
 server (section 3.1.6 33, section 3.3.6 43)
Timers
 client (section 3.1.2 30, section 3.2.2 33)
 server (section 3.1.2 30, section 3.3.2 38)
Tracking changes 58
Training Confirm PDU
 example 46
 processing 39
 sending 34
Training PDU
 example 46
 processing 34

 sending 39
Transfer sequence - settings 37
Transport 14
Triggered events - higher-layer
 client (section 3.1.4 30, section 3.2.4 33)
 server (section 3.1.4 30, section 3.3.4 38)

U

UDP Wave Last PDU
 example 49
 processing 36
 sending 41
UDP Wave PDU
 example 48
 processing 36
 sending 41

V

Vendor-extensible fields 13
Versioning 13
Volume PDU
 processing 37
 sending 42

W

Wave Confirm PDU
 example (section 4.2.3 47, section 4.3.2 48, section 4.4.3 49)
 processing 42
 sending 36
Wave Encrypt PDU
 example 48
 processing 36
 sending 40
Wave PDU
 example 47
 processing 35
 sending 40
Wave2 PDU
 example 47
 sending 42
WaveInfo PDU
 example 47
 processing 35
 sending 40

63 / 63

[MS-RDPEA-Diff] - v20160714
Remote Desktop Protocol: Audio Output Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

