

1 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

[MS-RDPBCGR-Diff]:

Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
▪ Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Revision Summary

Date Revision History Revision Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.1 Minor Minor technical content changes.

7/20/2007 1.2 Minor Made technical and editorial changes based on feedback.

8/10/2007 1.3 Minor Updated content based on feedback.

9/28/2007 1.4 Minor Made technical and editorial changes based on feedback.

10/23/2007 1.4.1 Editorial Changed language and formatting in the technical content.

11/30/2007 1.5 Minor Made technical and editorial changes based on feedback.

1/25/2008 2.0 Major Updated and revised the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 4.1 Minor Clarified the meaning of the technical content.

8/29/2008 5.0 Major Updated and revised the technical content.

10/24/2008 6.0 Major Updated and revised the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 9.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 10.0 Major Updated and revised the technical content.

7/2/2009 11.0 Major Updated and revised the technical content.

8/14/2009 12.0 Major Updated and revised the technical content.

9/25/2009 13.0 Major Updated and revised the technical content.

11/6/2009 14.0 Major Updated and revised the technical content.

12/18/2009 15.0 Major Updated and revised the technical content.

1/29/2010 16.0 Major Updated and revised the technical content.

3/12/2010 17.0 Major Updated and revised the technical content.

4/23/2010 18.0 Major Updated and revised the technical content.

6/4/2010 19.0 Major Updated and revised the technical content.

7/16/2010 20.0 Major Updated and revised the technical content.

3 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Date Revision History Revision Class Comments

8/27/2010 21.0 Major Updated and revised the technical content.

10/8/2010 22.0 Major Updated and revised the technical content.

11/19/2010 23.0 Major Updated and revised the technical content.

1/7/2011 24.0 Major Updated and revised the technical content.

2/11/2011 25.0 Major Updated and revised the technical content.

3/25/2011 26.0 Major Updated and revised the technical content.

5/6/2011 27.0 Major Updated and revised the technical content.

6/17/2011 28.0 Major Updated and revised the technical content.

9/23/2011 29.0 Major Updated and revised the technical content.

12/16/2011 30.0 Major Updated and revised the technical content.

3/30/2012 31.0 Major Updated and revised the technical content.

7/12/2012 32.0 Major Updated and revised the technical content.

10/25/2012 33.0 Major Updated and revised the technical content.

1/31/2013 34.0 Major Updated and revised the technical content.

8/8/2013 35.0 Major Updated and revised the technical content.

11/14/2013 36.0 Major Updated and revised the technical content.

2/13/2014 37.0 Major Updated and revised the technical content.

5/15/2014 38.0 Major Updated and revised the technical content.

6/30/2015 39.0 Major Significantly changed the technical content.

10/16/2015 40.0 Major Significantly changed the technical content.

3/2/2016 41.0 Major Significantly changed the technical content.

7/14/2016 42.0 Major Significantly changed the technical content.

10/13/2016 43.0 Major Significantly changed the technical content.

3/16/2017 44.0 Major Significantly changed the technical content.

6/1/2017 45.0 Major Significantly changed the technical content.

9/15/2017 46.0 Major Significantly changed the technical content.

12/1/2017 47.0 Major Significantly changed the technical content.

3/16/2018 48.0 Major Significantly changed the technical content.

9/12/2018 49.0 Major Significantly changed the technical content.

3/13/2019 50.0 Major Significantly changed the technical content.

9/23/2019 51.0 Major Significantly changed the technical content.

3/4/2020 52.0 Major Significantly changed the technical content.

4 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Date Revision History Revision Class Comments

8/26/2020 53.0 Major Significantly changed the technical content.

4/7/2021 54.0 Major Significantly changed the technical content.

6/25/2021 55.0 Major Significantly changed the technical content.

4/29/2022 56.0 Major Significantly changed the technical content.

5 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Table of Contents

1 Introduction .. 17
1.1 Glossary ... 17
1.2 References .. 19

1.2.1 (Updated Section) Normative References ... 19
1.2.2 Informative References ... 20

1.3 Overview .. 22
1.3.1 Message Flows ... 22

1.3.1.1 Connection Sequence .. 22
1.3.1.2 Security-Enhanced Connection Sequence ... 27
1.3.1.3 Deactivation-Reactivation Sequence .. 27
1.3.1.4 Disconnection Sequences ... 27

1.3.1.4.1 User-Initiated on Client .. 27
1.3.1.4.2 User-Initiated on Server ... 28
1.3.1.4.3 Administrator-Initiated on Server .. 28

1.3.1.5 Automatic Reconnection ... 28
1.3.2 Server Error Reporting and Status Updates .. 29
1.3.3 Static Virtual Channels .. 29
1.3.4 Data Compression .. 30
1.3.5 Keyboard and Mouse Input .. 30
1.3.6 Basic Server Output .. 30
1.3.7 Controlling Server Graphics Output ... 30
1.3.8 Server Redirection .. 31

1.3.8.1 RDSTLS ... 32
1.3.9 Connect-Time and Continuous Network Characteristics Detection 32
1.3.10 Connection Health Monitoring ... 33

1.4 Relationship to Other Protocols .. 33
1.5 Prerequisites/Preconditions ... 35
1.6 Applicability Statement ... 35
1.7 Versioning and Capability Negotiation ... 35
1.8 Vendor-Extensible Fields ... 36
1.9 Standards Assignments ... 36

2 Messages ... 37
2.1 Transport .. 37
2.2 Message Syntax ... 37

2.2.1 Connection Sequence .. 37
2.2.1.1 Client X.224 Connection Request PDU .. 37

2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ) ... 38
2.2.1.1.2 RDP Correlation Info (RDP_NEG_CORRELATION_INFO) 39

2.2.1.2 Server X.224 Connection Confirm PDU ... 40
2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP) 40
2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE) 42

2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request 43
2.2.1.3.1 User Data Header (TS_UD_HEADER).. 45
2.2.1.3.2 (Updated Section) Client Core Data (TS_UD_CS_CORE) 46
2.2.1.3.3 Client Security Data (TS_UD_CS_SEC) ... 52
2.2.1.3.4 Client Network Data (TS_UD_CS_NET) ... 53

2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF) 54
2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER) ... 55
2.2.1.3.6 Client Monitor Data (TS_UD_CS_MONITOR) .. 56

2.2.1.3.6.1 Monitor Definition (TS_MONITOR_DEF) ... 57
2.2.1.3.7 Client Message Channel Data (TS_UD_CS_MCS_MSGCHANNEL) 57
2.2.1.3.8 Client Multitransport Channel Data (TS_UD_CS_MULTITRANSPORT) 58
2.2.1.3.9 Client Monitor Extended Data (TS_UD_CS_MONITOR_EX) 58

2.2.1.3.9.1 Monitor Attributes (TS_MONITOR_ATTRIBUTES) 59

6 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response . 60
2.2.1.4.1 User Data Header (TS_UD_HEADER).. 62
2.2.1.4.2 (Updated Section) Server Core Data (TS_UD_SC_CORE) 62
2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1) .. 64

2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE) 65
2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)

 66
2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY) 67

2.2.1.4.4 Server Network Data (TS_UD_SC_NET) ... 68
2.2.1.4.5 Server Message Channel Data (TS_UD_SC_MCS_MSGCHANNEL) 68
2.2.1.4.6 Server Multitransport Channel Data (TS_UD_SC_MULTITRANSPORT) 69

2.2.1.5 Client MCS Erect Domain Request PDU .. 69
2.2.1.6 Client MCS Attach User Request PDU ... 70
2.2.1.7 Server MCS Attach User Confirm PDU .. 70
2.2.1.8 Client MCS Channel Join Request PDU ... 71
2.2.1.9 Server MCS Channel Join Confirm PDU .. 71
2.2.1.10 Client Security Exchange PDU ... 72

2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET) 72
2.2.1.11 Client Info PDU ... 73

2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU) .. 73
2.2.1.11.1.1 Info Packet (TS_INFO_PACKET) ... 74

2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET) 78
2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION) 81

2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME) 82
2.2.1.12 Server License Error PDU - Valid Client .. 84

2.2.1.12.1 Valid Client License Data (LICENSE_VALID_CLIENT_DATA) 85
2.2.1.12.1.1 Licensing Preamble (LICENSE_PREAMBLE) 85
2.2.1.12.1.2 Licensing Binary Blob (LICENSE_BINARY_BLOB) 87
2.2.1.12.1.3 Licensing Error Message (LICENSE_ERROR_MESSAGE) 88

2.2.1.13 Mandatory Capability Exchange .. 89
2.2.1.13.1 Server Demand Active PDU ... 89

2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU) 90
2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET) ... 91

2.2.1.13.2 Client Confirm Active PDU .. 93
2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU) 94

2.2.1.14 Client Synchronize PDU.. 95
2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU) 96

2.2.1.15 Client Control PDU - Cooperate ... 96
2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU) .. 97

2.2.1.16 Client Control PDU - Request Control ... 98
2.2.1.17 Client Persistent Key List PDU ... 99

2.2.1.17.1 Persistent Key List PDU Data (TS_BITMAPCACHE_PERSISTENT_LIST_PDU)
 .. 100

2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)102
2.2.1.18 Client Font List PDU .. 103

2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU) ... 104
2.2.1.19 Server Synchronize PDU ... 104
2.2.1.20 Server Control PDU - Cooperate ... 105
2.2.1.21 Server Control PDU - Granted Control ... 107
2.2.1.22 Server Font Map PDU ... 108

2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU) ... 109
2.2.2 Disconnection Sequences .. 110

2.2.2.1 Client Shutdown Request PDU ... 110
2.2.2.1.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU) 111

2.2.2.2 Server Shutdown Request Denied PDU ... 111
2.2.2.2.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU) .. 112

2.2.2.3 MCS Disconnect Provider Ultimatum PDU .. 112
2.2.3 Deactivation-Reactivation Sequence ... 113

7 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.3.1 Server Deactivate All PDU ... 113
2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU) 114

2.2.4 Auto-Reconnect Sequence .. 115
2.2.4.1 Server Auto-Reconnect Status PDU .. 115

2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)116
2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET) 116
2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET) 117

2.2.5 Server Error Reporting and Status Updates ... 118
2.2.5.1 Server Set Error Info PDU ... 118

2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU) 119
2.2.5.2 Server Status Info PDU ... 128

2.2.6 Static Virtual Channels ... 130
2.2.6.1 Virtual Channel PDU ... 130

2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER) 131
2.2.7 Capability Sets .. 133

2.2.7.1 Mandatory Capability Sets ... 133
2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET) 133
2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET) 136
2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET) 137
2.2.7.1.4 Bitmap Cache Capability Set .. 141

2.2.7.1.4.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET) 141
2.2.7.1.4.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2) 143

2.2.7.1.4.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)144
2.2.7.1.5 Pointer Capability Set (TS_POINTER_CAPABILITYSET) 145
2.2.7.1.6 Input Capability Set (TS_INPUT_CAPABILITYSET) 145
2.2.7.1.7 Brush Capability Set (TS_BRUSH_CAPABILITYSET) 147
2.2.7.1.8 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET) 148

2.2.7.1.8.1 Cache Definition (TS_CACHE_DEFINITION) 149
2.2.7.1.9 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)

 .. 149
2.2.7.1.10 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET) 150
2.2.7.1.11 Sound Capability Set (TS_SOUND_CAPABILITYSET) 151

2.2.7.2 Optional Capability Sets .. 151
2.2.7.2.1 Bitmap Cache Host Support Capability Set

(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET) 151
2.2.7.2.2 Control Capability Set (TS_CONTROL_CAPABILITYSET) 152
2.2.7.2.3 Window Activation Capability Set

(TS_WINDOWACTIVATION_CAPABILITYSET) 152
2.2.7.2.4 Share Capability Set (TS_SHARE_CAPABILITYSET) 153
2.2.7.2.5 Font Capability Set (TS_FONT_CAPABILITYSET) 153
2.2.7.2.6 Multifragment Update Capability Set

(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET)................................. 154
2.2.7.2.7 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET) 154
2.2.7.2.8 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET) . 155
2.2.7.2.9 Surface Commands Capability Set (TS_SURFCMDS_CAPABILITYSET) 156
2.2.7.2.10 Bitmap Codecs Capability Set (TS_BITMAPCODECS_CAPABILITYSET) ... 156

2.2.7.2.10.1 Bitmap Codecs (TS_BITMAPCODECS) .. 157
2.2.7.2.10.1.1 Bitmap Codec (TS_BITMAPCODEC) .. 157

2.2.7.2.10.1.1.1 Globally Unique Identifier (GUID)..................................... 158
2.2.8 Keyboard and Mouse Input ... 159

2.2.8.1 Input PDU Packaging .. 159
2.2.8.1.1 Slow-Path (T.128) Formats .. 159

2.2.8.1.1.1 Share Headers .. 159
2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER) 159
2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER) 160

2.2.8.1.1.2 Security Headers .. 163
2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER) ... 163
2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1) 165

8 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2) .. 165
2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU) 166

2.2.8.1.1.3.1 Client Input Event PDU Data (TS_INPUT_PDU_DATA) 167
2.2.8.1.1.3.1.1 Slow-Path Input Event (TS_INPUT_EVENT) 167

2.2.8.1.1.3.1.1.1 Keyboard Event (TS_KEYBOARD_EVENT) 168
2.2.8.1.1.3.1.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)

 ... 169
2.2.8.1.1.3.1.1.3 Mouse Event (TS_POINTER_EVENT) 169
2.2.8.1.1.3.1.1.4 Extended Mouse Event (TS_POINTERX_EVENT) 171
2.2.8.1.1.3.1.1.5 Synchronize Event (TS_SYNC_EVENT) 171
2.2.8.1.1.3.1.1.6 Unused Event (TS_UNUSED_EVENT) 172

2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU) 172
2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO) 174
2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT) 175

2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT) 176
2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event

(TS_FP_UNICODE_KEYBOARD_EVENT) 176
2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT) 177
2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT) ... 177
2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT) 178
2.2.8.1.2.2.6 Fast-Path Quality of Experience (QoE) Timestamp Event

(TS_FP_QOETIMESTAMP_EVENT) .. 178
2.2.8.2 Keyboard Status PDUs .. 179

2.2.8.2.1 Server Set Keyboard Indicators PDU ... 179
2.2.8.2.1.1 Set Keyboard Indicators PDU Data

(TS_SET_KEYBOARD_INDICATORS_PDU) 180
2.2.8.2.2 Server Set Keyboard IME Status PDU .. 181

2.2.8.2.2.1 Set Keyboard IME Status PDU Data
(TS_SET_KEYBOARD_IME_STATUS_PDU) 182

2.2.9 Basic Output ... 183
2.2.9.1 Output PDU Packaging .. 183

2.2.9.1.1 Slow-Path (T.128) Format ... 183
2.2.9.1.1.1 Share Headers .. 183
2.2.9.1.1.2 Security Headers .. 183
2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU) 183

2.2.9.1.1.3.1 Slow-Path Graphics Update (TS_GRAPHICS_UPDATE) 184
2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE) 185

2.2.9.1.1.3.1.1.1 Palette Update Data (TS_UPDATE_PALETTE_DATA) 186
2.2.9.1.1.3.1.1.2 RGB Palette Entry (TS_PALETTE_ENTRY) 186

2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP) 186
2.2.9.1.1.3.1.2.1 Bitmap Update Data (TS_UPDATE_BITMAP_DATA) 187
2.2.9.1.1.3.1.2.2 Bitmap Data (TS_BITMAP_DATA) 187
2.2.9.1.1.3.1.2.3 Compressed Data Header (TS_CD_HEADER)................ 189
2.2.9.1.1.3.1.2.4 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)

 ... 189
2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC) 193

2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU) 194
2.2.9.1.1.4.1 Point (TS_POINT16)... 195
2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE) 196
2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE) 196
2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE) 196
2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE) 197
2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE) 198

2.2.9.1.1.5 Server Play Sound PDU .. 198
2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA) 199

2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU) 199
2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE) ... 201

2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE) 203

9 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP) 204
2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)204
2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)

 204
2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update

(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE) 205
2.2.9.1.2.1.6 Fast-Path System Pointer Default Update

(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE) 205
2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)

 206
2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)..... 206
2.2.9.1.2.1.9 Fast-Path Cached Pointer Update

(TS_FP_CACHEDPOINTERATTRIBUTE) 207
2.2.9.1.2.1.10 Fast-Path Surface Commands Update (TS_FP_SURFCMDS) 207

2.2.9.1.2.1.10.1 Surface Command (TS_SURFCMD) 208
2.2.9.1.2.1.11 Fast-Path Large Pointer Update (TS_FP_LARGEPOINTERATTRIBUTE)

 208
2.2.9.2 Surface Commands .. 210

2.2.9.2.1 Set Surface Bits Command (TS_SURFCMD_SET_SURF_BITS) 210
2.2.9.2.1.1 Extended Bitmap Data (TS_BITMAP_DATA_EX) 210

2.2.9.2.1.1.1 Extended Compressed Bitmap Header
(TS_COMPRESSED_BITMAP_HEADER_EX) 211

2.2.9.2.2 Stream Surface Bits Command (TS_SURFCMD_STREAM_SURF_BITS) ... 212
2.2.9.2.3 Frame Marker Command (TS_FRAME_MARKER) 213

2.2.10 Logon and Authorization Notifications ... 213
2.2.10.1 Server Save Session Info PDU ... 213

2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA) ... 214
2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO) 215
2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2) 216
2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY) ... 217
2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED) 217

2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD) 218
2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO) 219

2.2.10.2 Early User Authorization Result PDU ... 220
2.2.11 Controlling Server Graphics Output .. 220

2.2.11.1 Inclusive Rectangle (TS_RECTANGLE16) ... 220
2.2.11.2 Client Refresh Rect PDU .. 221

2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU) 222
2.2.11.3 Client Suppress Output PDU .. 222

2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU) 223
2.2.12 Display Update Notifications .. 224

2.2.12.1 Monitor Layout PDU .. 224
2.2.13 Server Redirection ... 226

2.2.13.1 Server Redirection Packet (RDP_SERVER_REDIRECTION_PACKET) 226
2.2.13.1.1 Target Net Addresses (TARGET_NET_ADDRESSES) 230

2.2.13.1.1.1 Target Net Address (TARGET_NET_ADDRESS) 230
2.2.13.1.2 Target Certificate Container (TARGET_CERTIFICATE_CONTAINER) 231

2.2.13.1.2.1 Certificate Meta Element (CERTIFICATE_META_ELEMENT) 231
2.2.13.2 Standard RDP Security ... 232

2.2.13.2.1 Standard Security Server Redirection PDU
(TS_STANDARD_SECURITY_SERVER_REDIRECTION) 232

2.2.13.3 Enhanced RDP Security ... 233
2.2.13.3.1 Enhanced Security Server Redirection PDU

(TS_ENHANCED_SECURITY_SERVER_REDIRECTION) 233
2.2.14 Network Characteristics Detection .. 234

2.2.14.1 Server-to-Client Request Messages .. 234
2.2.14.1.1 RTT Measure Request (RDP_RTT_REQUEST) 234
2.2.14.1.2 Bandwidth Measure Start (RDP_BW_START) 234

10 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.14.1.3 Bandwidth Measure Payload (RDP_BW_PAYLOAD) 235
2.2.14.1.4 Bandwidth Measure Stop (RDP_BW_STOP) .. 236
2.2.14.1.5 Network Characteristics Result (RDP_NETCHAR_RESULTS) 237

2.2.14.2 Client-to-Server Response Messages .. 238
2.2.14.2.1 RTT Measure Response (RDP_RTT_RESPONSE) 238
2.2.14.2.2 Bandwidth Measure Results (RDP_BW_RESULTS) 238
2.2.14.2.3 Network Characteristics Sync (RDP_NETCHAR_SYNC) 239

2.2.14.3 Server Auto-Detect Request PDU ... 240
2.2.14.4 Client Auto-Detect Response PDU .. 241

2.2.15 Multitransport Bootstrapping ... 242
2.2.15.1 Server Initiate Multitransport Request PDU.. 242
2.2.15.2 Client Initiate Multitransport Response PDU ... 244

2.2.16 Connection Health Monitoring .. 245
2.2.16.1 Server Heartbeat PDU .. 245

2.2.17 RDSTLS PDUs .. 246
2.2.17.1 RDSTLS Capabilities PDU .. 246
2.2.17.2 RDSTLS Authentication Request PDU with Password Credentials 247
2.2.17.3 RDSTLS Authentication Request PDU with Auto-Reconnect Cookie 248
2.2.17.4 RDSTLS Authentication Response PDU .. 248

3 Protocol Details ... 250
3.1 Common Details ... 250

3.1.1 Abstract Data Model ... 250
3.1.2 Timers ... 250
3.1.3 Initialization .. 250
3.1.4 Higher-Layer Triggered Events .. 250
3.1.5 Message Processing Events and Sequencing Rules ... 250

3.1.5.1 Disconnection Sequences .. 250
3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU 250
3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDU 250

3.1.5.2 Static Virtual Channels ... 251
3.1.5.2.1 Sending of Virtual Channel PDU .. 251
3.1.5.2.2 Processing of Virtual Channel PDU .. 252

3.1.5.2.2.1 Reassembly of Chunked Virtual Channel Data 253
3.1.6 Timer Events ... 253
3.1.7 Other Local Events ... 253
3.1.8 MPPC-Based Bulk Data Compression .. 254

3.1.8.1 Abstract Data Model ... 254
3.1.8.2 Compressing Data .. 254

3.1.8.2.1 Setting the Compression Flags ... 255
3.1.8.2.2 Operation of the Bulk Compressor .. 256
3.1.8.2.3 Data Compression Example ... 257

3.1.8.3 Decompressing Data .. 260
3.1.8.4 Compression Types .. 261

3.1.8.4.1 RDP 4.0 .. 261
3.1.8.4.1.1 Literal Encoding .. 261
3.1.8.4.1.2 Copy-Tuple Encoding ... 261

3.1.8.4.1.2.1 Copy-Offset Encoding... 261
3.1.8.4.1.2.2 Length-of-Match Encoding .. 261

3.1.8.4.2 RDP 5.0 .. 262
3.1.8.4.2.1 Literal Encoding .. 262
3.1.8.4.2.2 Copy-Tuple Encoding ... 262

3.1.8.4.2.2.1 Copy-Offset Encoding... 262
3.1.8.4.2.2.2 Length-of-Match Encoding .. 262

3.1.9 Interleaved RLE-Based Bitmap Compression ... 263
3.2 Client Details .. 277

3.2.1 Abstract Data Model ... 277
3.2.1.1 Received Server Data ... 277

11 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.2.1.2 Static Virtual Channel IDs ... 278
3.2.1.3 I/O Channel ID .. 278
3.2.1.4 Message Channel ID ... 278
3.2.1.5 User Channel ID .. 278
3.2.1.6 Server Channel ID.. 278
3.2.1.7 Server Capabilities ... 278
3.2.1.8 Share ID ... 278
3.2.1.9 Automatic Reconnection Cookie ... 278
3.2.1.10 Server Licensing Encryption Ability ... 278
3.2.1.11 Pointer Image Cache .. 279
3.2.1.12 Session Keys ... 279
3.2.1.13 Bitmap Caches ... 279
3.2.1.14 Persistent Bitmap Caches .. 279
3.2.1.15 Persisted Bitmap Keys .. 279
3.2.1.16 Connection Start Time .. 279
3.2.1.17 Network Characteristics Byte Count .. 279
3.2.1.18 Network Characteristics Sequence Number.. 279

3.2.2 Timers ... 280
3.2.2.1 Connection Sequence Timeout Timer .. 280
3.2.2.2 Network Characteristics Timer ... 280

3.2.3 Initialization .. 280
3.2.4 Higher-Layer Triggered Events .. 280
3.2.5 Message Processing Events and Sequencing Rules ... 280

3.2.5.1 Constructing a Client-to-Server Slow-Path PDU .. 280
3.2.5.2 Processing a Server-to-Client Slow-Path PDU... 281
3.2.5.3 Connection Sequence ... 282

3.2.5.3.1 Sending X.224 Connection Request PDU .. 282
3.2.5.3.2 Processing X.224 Connection Confirm PDU .. 282
3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request 283
3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create

Response .. 284
3.2.5.3.5 Sending MCS Erect Domain Request PDU .. 286
3.2.5.3.6 Sending MCS Attach User Request PDU ... 286
3.2.5.3.7 Processing MCS Attach User Confirm PDU .. 286
3.2.5.3.8 (Updated Section) Sending MCS Channel Join Request PDU(s) 286
3.2.5.3.9 Processing MCS Channel Join Confirm PDU(s) 287
3.2.5.3.10 Sending Security Exchange PDU ... 288
3.2.5.3.11 Sending Client Info PDU .. 288
3.2.5.3.12 Processing License Error PDU - Valid Client .. 289
3.2.5.3.13 Mandatory Capability Exchange .. 289

3.2.5.3.13.1 Processing Demand Active PDU .. 289
3.2.5.3.13.2 Sending Confirm Active PDU ... 290

3.2.5.3.14 Sending Synchronize PDU .. 291
3.2.5.3.15 Sending Control PDU - Cooperate ... 291
3.2.5.3.16 Sending Control PDU - Request Control ... 291
3.2.5.3.17 Sending Persistent Key List PDU(s) ... 291
3.2.5.3.18 Sending Font List PDU ... 291
3.2.5.3.19 Processing Synchronize PDU .. 292
3.2.5.3.20 Processing Control PDU - Cooperate.. 292
3.2.5.3.21 Processing Control PDU - Granted Control ... 292
3.2.5.3.22 Processing Font Map PDU .. 292

3.2.5.4 Disconnection Sequences .. 292
3.2.5.4.1 Sending Shutdown Request PDU .. 292
3.2.5.4.2 Processing Shutdown Request Denied PDU .. 292

3.2.5.5 Deactivation-Reconnection Sequence ... 292
3.2.5.5.1 Processing Deactivate All PDU .. 292

3.2.5.6 Auto-Reconnect Sequence ... 293
3.2.5.6.1 Processing Auto-Reconnect Status PDU ... 293

12 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.2.5.7 Server Error Reporting and Status Updates ... 293
3.2.5.7.1 Processing Set Error Info PDU .. 293
3.2.5.7.2 Processing Status Info PDU .. 293

3.2.5.8 Keyboard and Mouse Input .. 293
3.2.5.8.1 Input Event Notifications ... 293

3.2.5.8.1.1 Sending Input Event PDU ... 293
3.2.5.8.1.2 Sending Fast-Path Input Event PDU .. 294

3.2.5.8.2 Keyboard Status PDUs .. 294
3.2.5.8.2.1 Processing Set Keyboard Indicators PDU 294
3.2.5.8.2.2 Processing Set Keyboard IME Status PDU 295

3.2.5.9 Basic Output ... 295
3.2.5.9.1 Processing Slow-Path Graphics Update PDU 295
3.2.5.9.2 Processing Slow-Path Pointer Update PDU ... 295
3.2.5.9.3 Processing Fast-Path Update PDU ... 296

3.2.5.9.3.1 Processing Fast-Path Update Fragments 297
3.2.5.9.4 Sound ... 298

3.2.5.9.4.1 Processing Play Sound PDU .. 298
3.2.5.10 Logon and Authorization Notifications ... 298

3.2.5.10.1 Processing Save Session Info PDU .. 298
3.2.5.10.2 Processing Early User Authorization Result PDU 298

3.2.5.11 Controlling Server Graphics Output .. 298
3.2.5.11.1 Sending Refresh Rect PDU ... 298
3.2.5.11.2 Sending Suppress Output PDU ... 298

3.2.5.12 Display Update Notifications .. 298
3.2.5.12.1 Processing Monitor Layout PDU .. 298

3.2.5.13 Server Redirection ... 299
3.2.5.13.1 Processing of the Server Redirection PDUs ... 299

3.2.5.14 Network Characteristics Detection .. 299
3.2.5.15 Multitransport Bootstrapping ... 301

3.2.5.15.1 Processing the Initiate Multitransport Request PDU 301
3.2.5.15.2 Sending the Initiate Multitransport Response PDU 301

3.2.6 Timer Events ... 302
3.2.6.1 Client-Side Connection Sequence Timeout ... 302

3.2.7 Other Local Events ... 302
3.2.7.1 Disconnection Due to Network Error ... 302

3.3 Server Details ... 302
3.3.1 Abstract Data Model ... 302

3.3.1.1 Received Client Data .. 302
3.3.1.2 User Channel ID .. 302
3.3.1.3 I/O Channel ID .. 302
3.3.1.4 Message Channel ID ... 303
3.3.1.5 Server Channel ID.. 303
3.3.1.6 Client Licensing Encryption Ability .. 303
3.3.1.7 Client Capabilities .. 303
3.3.1.8 Cached Bitmap Keys ... 303
3.3.1.9 Pointer Image Cache .. 303
3.3.1.10 Session Keys ... 303
3.3.1.11 Automatic Reconnection Cookie ... 303
3.3.1.12 Connection Start Time .. 303
3.3.1.13 RTT Measure Request Data ... 304
3.3.1.14 Multitransport Request Data .. 304

3.3.2 Timers ... 304
3.3.2.1 Connection Sequence Timeout Timer .. 304

3.3.3 Initialization .. 304
3.3.4 Higher-Layer Triggered Events .. 304
3.3.5 Message Processing Events and Sequencing Rules ... 304

3.3.5.1 Constructing a Server-to-Client Slow-Path PDU .. 304
3.3.5.2 Processing a Client-to-Server Slow-Path PDU .. 305

13 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.3.5.3 Connection Sequence ... 306
3.3.5.3.1 Processing X.224 Connection Request PDU .. 306
3.3.5.3.2 Sending X.224 Connection Confirm PDU .. 306
3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request

 .. 307
3.3.5.3.3.1 Handling Errors in the GCC Conference Create Request Data 310

3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response
 .. 311

3.3.5.3.5 Processing MCS Erect Domain Request PDU 311
3.3.5.3.6 Processing MCS Attach User Request PDU ... 312
3.3.5.3.7 Sending MCS Attach User Confirm PDU ... 312
3.3.5.3.8 (Updated Section) Processing MCS Channel Join Request PDU(s) 312
3.3.5.3.9 Sending MCS Channel Join Confirm PDU(s) .. 313
3.3.5.3.10 Processing Security Exchange PDU ... 313
3.3.5.3.11 Processing Client Info PDU ... 314
3.3.5.3.12 Sending License Error PDU - Valid Client ... 315
3.3.5.3.13 Mandatory Capability Exchange .. 315

3.3.5.3.13.1 Sending Demand Active PDU .. 315
3.3.5.3.13.2 Processing Confirm Active PDU ... 316

3.3.5.3.14 Processing Synchronize PDU .. 316
3.3.5.3.15 Processing Control PDU - Cooperate.. 316
3.3.5.3.16 Processing Control PDU - Request Control ... 317
3.3.5.3.17 Processing Persistent Key List PDU(s) ... 317
3.3.5.3.18 Processing Font List PDU ... 317
3.3.5.3.19 Sending Synchronize PDU .. 317
3.3.5.3.20 Sending Control PDU - Cooperate ... 317
3.3.5.3.21 Sending Control PDU - Granted Control ... 317
3.3.5.3.22 Sending Font Map PDU .. 318

3.3.5.4 Disconnection Sequences .. 318
3.3.5.4.1 Processing Shutdown Request PDU ... 318
3.3.5.4.2 Sending Shutdown Request Denied PDU .. 318

3.3.5.5 Deactivation-Reconnection Sequence ... 318
3.3.5.5.1 Sending Deactivate All PDU ... 318

3.3.5.6 Auto-Reconnect Sequence ... 318
3.3.5.6.1 Sending Auto-Reconnect Status PDU ... 318

3.3.5.7 Server Error Reporting and Status Updates ... 319
3.3.5.7.1 Sending Set Error Info PDU ... 319

3.3.5.7.1.1 User Authorization Failures... 319
3.3.5.7.2 Sending Status Info PDU ... 319

3.3.5.8 Keyboard and Mouse Input .. 319
3.3.5.8.1 Input Event Notifications ... 319

3.3.5.8.1.1 Processing Input Event PDU ... 319
3.3.5.8.1.2 Processing Fast-Path Input Event PDU ... 320

3.3.5.8.2 Keyboard Status PDUs .. 321
3.3.5.8.2.1 Sending Set Keyboard Indicators PDU ... 321
3.3.5.8.2.2 Sending Set Keyboard IME Status PDU .. 321

3.3.5.9 Basic Output ... 321
3.3.5.9.1 Sending Slow-Path Graphics Update PDU ... 321
3.3.5.9.2 Sending Slow-Path Pointer Update PDU ... 321
3.3.5.9.3 Sending Fast-Path Update PDU .. 322
3.3.5.9.4 Sound ... 323

3.3.5.9.4.1 Sending Play Sound PDU.. 323
3.3.5.10 Logon and Authorization Notifications ... 323

3.3.5.10.1 Sending Save Session Info PDU .. 323
3.3.5.10.2 Sending Early User Authorization Result PDU 324

3.3.5.11 Controlling Server Graphics Output .. 324
3.3.5.11.1 Processing Refresh Rect PDU ... 324
3.3.5.11.2 Processing Suppress Output PDU .. 324

14 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.3.5.12 Display Update Notifications .. 324
3.3.5.12.1 Sending Monitor Layout PDU .. 324

3.3.5.13 Server Redirection ... 324
3.3.5.13.1 Sending of the Server Redirection PDUs .. 324

3.3.5.14 Network Characteristics Detection .. 325
3.3.5.15 Multitransport Bootstrapping ... 325

3.3.5.15.1 Sending the Initiate Multitransport Request PDU 325
3.3.5.15.2 Processing the Initiate Multitransport Response PDU 325

3.3.6 Timer Events ... 326
3.3.6.1 Server-Side Connection Sequence Timeout ... 326
3.3.6.2 Auto-Reconnect Cookie Update .. 326

3.3.7 Other Local Events ... 326

4 Protocol Examples ... 327
4.1 Annotated Connection Sequence ... 327

4.1.1 Client X.224 Connection Request PDU .. 327
4.1.2 Server X.224 Connection Confirm PDU ... 327
4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request 328
4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response 333
4.1.5 Client MCS Erect Domain Request PDU ... 336
4.1.6 Client MCS Attach User Request PDU.. 337
4.1.7 Server MCS Attach-User Confirm PDU .. 337
4.1.8 MCS Channel Join Request and Confirm PDUs ... 338

4.1.8.1 Channel 1007 .. 338
4.1.8.1.1 Client Join Request PDU for Channel 1007 (User Channel) 338
4.1.8.1.2 Server Join Confirm PDU for Channel 1007 (User Channel) 339

4.1.8.2 Channel 1003 .. 340
4.1.8.2.1 Client Join Request PDU for Channel 1003 (I/O Channel) 340
4.1.8.2.2 Server Join Confirm PDU for Channel 1003 (I/O Channel) 341

4.1.8.3 Channel 1004 .. 341
4.1.8.3.1 Client Join Request PDU for Channel 1004 (rdpdr Channel) 341
4.1.8.3.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel) 341

4.1.8.4 Channel 1005 .. 341
4.1.8.4.1 Client Join Request PDU for Channel 1005 (cliprdr Channel)................. 341
4.1.8.4.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel)................ 341

4.1.8.5 Channel 1006 .. 342
4.1.8.5.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel) 342
4.1.8.5.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel) 342

4.1.9 Client Security Exchange PDU ... 342
4.1.10 Client Info PDU .. 344
4.1.11 Server License Error PDU - Valid Client ... 347
4.1.12 Server Demand Active PDU ... 348
4.1.13 Client Confirm Active PDU ... 354
4.1.14 Client Synchronize PDU .. 362
4.1.15 Client Control PDU - Cooperate .. 362
4.1.16 Client Control PDU - Request Control.. 363
4.1.17 Client Persistent Key List PDU ... 364
4.1.18 Client Font List PDU ... 366
4.1.19 Server Synchronize PDU ... 367
4.1.20 Server Control PDU - Cooperate .. 368
4.1.21 Server Control PDU - Granted Control .. 369
4.1.22 Server Font Map PDU ... 369

4.2 Annotated User-Initiated (on Client) Disconnection Sequence 370
4.2.1 Client Shutdown Request PDU ... 370
4.2.2 Server Shutdown Request Denied PDU ... 371
4.2.3 MCS Disconnect Provider Ultimatum PDU .. 372

4.3 Annotated Save Session Info PDU ... 372
4.3.1 Logon Info Version 2 .. 372

15 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4.3.2 Plain Notify ... 376
4.3.3 Logon Info Extended .. 379

4.4 Annotated Server-to-Client Virtual Channel PDU ... 382
4.5 Annotated Standard Security Server Redirection PDU .. 382
4.6 Annotated Enhanced Security Server Redirection PDU ... 386
4.7 Annotated Fast-Path Input Event PDU .. 388
4.8 Java Code to Encrypt and Decrypt a Sample Client Random 388
4.9 Java Code to Sign a Sample Proprietary Certificate Hash 392
4.10 Specifying the Active Keyboard Layout and Language .. 396

5 Security ... 398
5.1 Security Considerations for Implementers .. 398
5.2 Index of Security Parameters ... 398
5.3 Standard RDP Security... 398

5.3.1 Encryption Levels .. 398
5.3.2 Negotiating the Cryptographic Configuration ... 398

5.3.2.1 Cryptographic Negotiation Failures ... 399
5.3.3 Server Certificates ... 399

5.3.3.1 Proprietary Certificates ... 399
5.3.3.1.1 Terminal Services Signing Key ... 399
5.3.3.1.2 Signing a Proprietary Certificate ... 400
5.3.3.1.3 Validating a Proprietary Certificate .. 402

5.3.3.2 X.509 Certificate Chains .. 402
5.3.4 Client and Server Random Values .. 403

5.3.4.1 Encrypting Client Random ... 403
5.3.4.2 Decrypting Client Random ... 404

5.3.5 Initial Session Key Generation ... 404
5.3.5.1 Non-FIPS .. 404
5.3.5.2 FIPS ... 406

5.3.6 Encrypting and Decrypting the I/O Data Stream .. 408
5.3.6.1 Non-FIPS .. 408

5.3.6.1.1 Salted MAC Generation ... 409
5.3.6.2 FIPS ... 409

5.3.7 Session Key Updates .. 410
5.3.7.1 Non-FIPS .. 410
5.3.7.2 FIPS ... 411

5.3.8 Packet Layout in the I/O Data Stream .. 411
5.4 Enhanced RDP Security .. 412

5.4.1 Encryption Levels .. 412
5.4.2 Security-Enhanced Connection Sequence .. 413

5.4.2.1 Negotiation-Based Approach .. 413
5.4.2.2 Direct Approach ... 414
5.4.2.3 Changes to the Security Commencement Phase 415
5.4.2.4 Disabling Forced Encryption of Licensing Packets 415

5.4.3 Encrypting and Decrypting the I/O Data Stream .. 416
5.4.4 Packet Layout in the I/O Data Stream .. 416
5.4.5 External Security Protocols Used By RDP .. 416

5.4.5.1 Transport Layer Security (TLS) .. 416
5.4.5.2 CredSSP ... 416

5.4.5.2.1 User Authorization Failures .. 417
5.4.5.2.2 TLS Fatal Alerts .. 417

5.4.5.3 RDSTLS Security .. 417
5.4.5.3.1 RDSTLS Connection Sequence .. 418

5.5 Automatic Reconnection ... 419

6 (Updated Section) Appendix A: Product Behavior.. 420

7 Change Tracking .. 425

8 Index ... 426

16 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

17 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

1 Introduction

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting facilitates user interaction
with a remote computer system by transferring graphics display data from the remote computer to the
user and transporting input commands from the user to the remote computer, where the input
commands are replayed on the remote computer. RDP also provides an extensible transport
mechanism which allows specialized communication to take place between components on the user

computer and components running on the remote computer.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

ANSI character: An 8-bit Windows-1252 character set unit.

ASN.1: Abstract Syntax Notation One. ASN.1 is used to describe Kerberos datagrams as a
sequence of components, sent in messages. ASN.1 is described in the following specifications:
[ITUX660] for general procedures; [ITUX680] for syntax specification, and [ITUX690] for the
Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules

(DER) encoding rules.

Basic Encoding Rules (BER): A set of encoding rules for ASN.1 notation. These encoding
schemes allow the identification, extraction, and decoding of data structures. These encoding
rules are defined in [ITUX690].

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

certification authority (CA): A third party that issues public key certificates. Certificates serve to
bind public keys to a user identity. Each user and certification authority (CA) can decide whether

to trust another user or CA for a specific purpose, and whether this trust should be transitive.

For more information, see [RFC3280].

Client Data Block: A collection of related client settings that are encapsulated within the user data
of a Generic Conference Control (GCC) Conference Create Request. Only four Client Data Blocks
exist: Core Data, Security Data, Network Data, and Cluster Data. The set of Client Data Blocks is
designed to remain static.

Connection Broker: A service that allows users to reconnect to their existing sessions, enables
the even distribution of session loads among servers, and provides access to virtual desktops
and remote programs. Further background information about Connection Broker is available in
[Anderson].

desktop scale factor: The scale factor (as a percentage) applied to Windows Desktop
Applications.

device scale factor: The scale factor (as a percentage) applied to Windows Store Apps running on

Windows 8.1. This value must be calculated such that the effective maximum height of a
Windows Store App is always greater than 768 pixels, otherwise the app will not start.

domain name: A domain name or a NetBIOS name that identifies a domain.

Dynamic DST: Dynamic daylight saving time (DST) provides support for time zones whose
boundaries for daylight saving time change from year to year.

Extended Client Data Block: A collection of related client settings that are encapsulated within
the user data of a Generic Conference Control (GCC) Conference Create Request. In contrast to

18 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

the static set of Client Data Blocks, the set of Extended Client Data Blocks is designed to be
expanded over time.

Input Method Editor (IME): An application that is used to enter characters in written Asian
languages by using a standard 101-key keyboard. An IME consists of both an engine that

converts keystrokes into phonetic and ideographic characters and a dictionary of commonly used
ideographic words.

MD5 hash: A hashing algorithm, as described in [RFC1321], that was developed by RSA Data
Security, Inc. An MD5 hash is used by the File Replication Service (FRS) to verify that a file on
each replica member is identical.

Message Authentication Code (MAC): A message authenticator computed through the use of a
symmetric key. A MAC algorithm accepts a secret key and a data buffer, and outputs a MAC.

The data and MAC can then be sent to another party, which can verify the integrity and
authenticity of the data by using the same secret key and the same MAC algorithm.

Multipoint Communication Service (MCS): A data transmission protocol and set of services

defined by the ITU T.120 standard, specifically [T122] and [T125].

Network Level Authentication (NLA): Refers to the usage of CredSSP (as described in [MS-
CSSP]) within the context of an RDP connection to authenticate the identity of a user at the

network layer before the initiation of the RDP handshake. The use of NLA ensures that server
resources are only committed to authenticated users.

Packed Encoding Rules (PER): A set of encoding rules for ASN.1 notation, specified in
[ITUX691]. These rules enable the identification, extraction, and decoding of data structures.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that may contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

Quality of Experience (QoE): A subjective measure of a user's experiences with a media service.

RC4: A variable key-length symmetric encryption algorithm. For more information, see

[SCHNEIER] section 17.1.

Remote Desktop: See Remote Desktop Protocol (RDP).

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the

connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

server authentication: The act of proving the identity of a server to a client, while providing key
material that binds the identity to subsequent communications.

Server Data Block: A collection of related server settings that are encapsulated within the user
data of a Generic Conference Control (GCC) Conference Create Response. Three Server Data

Blocks exist: Core Data, Security Data, and Network Data.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

19 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of
messages in client and server applications communicating over open networks. TLS supports

server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[International] Dr. International, "Developing International Software (2nd Edition)", Microsoft Press,
2003, ISBN: 0735615837.

[ITUX691] ITU-T, "ASN.1 Encoding Rules: Specification of Packed Encoding Rules (PER)",
Recommendation X.691, July 2002, https://www.itu.int/rec/T-REC-X.691-200207-S

[MS-CSSP] Microsoft Corporation, "Credential Security Support Provider (CredSSP) Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RDPEA] Microsoft Corporation, "Remote Desktop Protocol: Audio Output Virtual Channel
Extension".

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)
Acceleration Extensions".

[MS-RDPELE] Microsoft Corporation, "Remote Desktop Protocol: Licensing Extension".

[MS-RDPEMT] Microsoft Corporation, "Remote Desktop Protocol: Multitransport Extension".

[MS-RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS-RDPEUDP] Microsoft Corporation, "Remote Desktop Protocol: UDP Transport Extension".

[MS-RDPNSC] Microsoft Corporation, "Remote Desktop Protocol: NSCodec Extension".

[MS-RDPRFX] Microsoft Corporation, "Remote Desktop Protocol: RemoteFX Codec Extension".

20 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, httphttps://www.rfc-editor.org/rfc/rfc2119.txthtml

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
httphttps://www.rfc-editor.org/rfcinfo/rfc2246.txt

[RFC4346] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.1",
RFC 4346, April 2006, http://www.ietf.org/rfc/rfc4346.txt

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October
2006, http://www.rfc-editor.org/rfc/rfc4648.txt

[RFC5246] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.2",
RFC 5246, August 2008, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc5246.txt

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

[SSL3] Netscape, "SSL 3.0 Specification", November 1996, https://tools.ietf.org/html/draft-ietf-tls-ssl-

version3-00

[T122] ITU-T, "Multipoint communication service - Service definition", Recommendation T.122,
February 1998, http://www.itu.int/rec/T-REC-T.122/en

Note There is a charge to download the specification.

[T123] ITU-T, "Network-Specific Data Protocol Stacks for Multimedia Conferencing", Recommendation
T.123, May 1999, http://www.itu.int/rec/T-REC-T.123/en

Note There is a charge to download the specification.

[T124] ITU-T, "Generic Conference Control", Recommendation T.124, February 1998,
http://www.itu.int/rec/T-REC-T.124/en

Note There is a charge to download the specification.

[T125] ITU-T, "Multipoint Communication Service Protocol Specification", Recommendation T.125,

February 1998, http://www.itu.int/rec/T-REC-T.125-199802-I/en

Note There is a charge to download the specification.

[T128] ITU-T, "Multipoint Application Sharing", Recommendation T.128, February 1998,
http://www.itu.int/rec/T-REC-T.128-199802-S/en

Note There is a charge to download the specification.

[X224] ITU-T, "Information technology - Open Systems Interconnection - Protocol for Providing the

Connection-Mode Transport Service", Recommendation X.224, November 1995,
http://www.itu.int/rec/T-REC-X.224-199511-I/en

Note There is a charge to download the specification.

1.2.2 Informative References

[ERRTRANS] Microsoft Corporation, "How to Translate NTSTATUS Error Codes to Message Strings",
June 2005, http://support.microsoft.com/kb/259693

21 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

[MS-RDPCR2] Microsoft Corporation, "Remote Desktop Protocol: Composited Remoting V2".

[MS-RDPEAI] Microsoft Corporation, "Remote Desktop Protocol: Audio Input Redirection Virtual

Channel Extension".

[MS-RDPECLIP] Microsoft Corporation, "Remote Desktop Protocol: Clipboard Virtual Channel
Extension".

[MS-RDPEDC] Microsoft Corporation, "Remote Desktop Protocol: Desktop Composition Virtual Channel
Extension".

[MS-RDPEDISP] Microsoft Corporation, "Remote Desktop Protocol: Display Update Virtual Channel

Extension".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS-RDPEECO] Microsoft Corporation, "Remote Desktop Protocol: Virtual Channel Echo Extension".

[MS-RDPEFS] Microsoft Corporation, "Remote Desktop Protocol: File System Virtual Channel
Extension".

[MS-RDPEGFX] Microsoft Corporation, "Remote Desktop Protocol: Graphics Pipeline Extension".

[MS-RDPEGT] Microsoft Corporation, "Remote Desktop Protocol: Geometry Tracking Virtual Channel
Protocol Extension".

[MS-RDPEI] Microsoft Corporation, "Remote Desktop Protocol: Input Virtual Channel Extension".

[MS-RDPEMC] Microsoft Corporation, "Remote Desktop Protocol: Multiparty Virtual Channel

Extension".

[MS-RDPEPC] Microsoft Corporation, "Remote Desktop Protocol: Print Virtual Channel Extension".

[MS-RDPEPNP] Microsoft Corporation, "Remote Desktop Protocol: Plug and Play Devices Virtual

Channel Extension".

[MS-RDPEPS] Microsoft Corporation, "Remote Desktop Protocol: Session Selection Extension".

[MS-RDPESC] Microsoft Corporation, "Remote Desktop Protocol: Smart Card Virtual Channel
Extension".

[MS-RDPESP] Microsoft Corporation, "Remote Desktop Protocol: Serial and Parallel Port Virtual
Channel Extension".

[MS-RDPEUSB] Microsoft Corporation, "Remote Desktop Protocol: USB Devices Virtual Channel
Extension".

[MS-RDPEVOR] Microsoft Corporation, "Remote Desktop Protocol: Video Optimized Remoting Virtual

Channel Extension".

[MS-RDPEV] Microsoft Corporation, "Remote Desktop Protocol: Video Redirection Virtual Channel
Extension".

[MS-RDPEXPS] Microsoft Corporation, "Remote Desktop Protocol: XML Paper Specification (XPS) Print
Virtual Channel Extension".

[MS-TSGU] Microsoft Corporation, "Terminal Services Gateway Server Protocol".

22 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

[MSDN-CP] Microsoft Corporation, "Code Page Identifiers", https://docs.microsoft.com/en-
us/windows/desktop/Intl/code-page-identifiers

[MSDN-MUI] Microsoft Corporation, "Language Identifier Constants and Strings",
https://docs.microsoft.com/en-us/windows/win32/intl/language-identifier-constants-and-strings

[MSDN-SCHANNEL] Microsoft Corporation, "Creating a Secure Connection Using Schannel",
http://msdn.microsoft.com/en-us/library/aa374782.aspx

[MSFT-DIL] Microsoft Corporation, "Default Input Locales", https://docs.microsoft.com/en-
us/previous-versions/windows/it-pro/windows-vista/cc766503(v=ws.10)

[MSFT-SDLBTS] Microsoft Corporation, "Session Directory and Load Balancing Using Terminal Server",
September 2002, http://download.microsoft.com/download/8/6/2/8624174c-8587-4a37-8722-
00139613a5bc/TS_Session_Directory.doc

[RFC2118] Pall, G., "Microsoft Point-To-Point Compression (MPPC) Protocol", RFC 2118, March 1997,
http://www.ietf.org/rfc/rfc2118.txt

1.3 Overview

This protocol is designed to facilitate user interaction with a remote computer system by transferring
graphics display information from the remote computer to the user and transporting input commands

from the user to the remote computer, where the input commands are replayed on the remote
computer. This protocol also provides an extensible transport mechanism which allows specialized
communication to take place between components on the user computer and components running on
the remote computer.

The following subsections present overviews of the protocol operation as well as sequencing
information.

1.3.1 Message Flows

1.3.1.1 Connection Sequence

The goal of the RDP Connection Sequence is to exchange client and server settings and to specify
common settings to use for the duration of the connection so that input, graphics, and other data can
be exchanged and processed between client and server. The RDP Connection Sequence is described in
following figure. All of the message exchanges in this diagram are strictly sequential, except where
noted in the text that follows.

23 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Figure 1: Remote Desktop Protocol (RDP) connection sequence

The connection sequence can be broken up into ten distinct phases:

1. Connection Initiation: The client initiates the connection by sending the server a Class 0 X.224

Connection Request PDU (section 2.2.1.1). The server responds with a Class 0 X.224 Connection
Confirm PDU (section 2.2.1.2).

From this point, all subsequent data sent between client and server is wrapped in an X.224 Data
Protocol Data Unit (PDU) (1).

2. Basic Settings Exchange: Basic settings are exchanged between the client and server by using the
MCS Connect Initial PDU (section 2.2.1.3) and MCS Connect Response PDU (section 2.2.1.4). The

24 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Connect Initial PDU contains a Generic Conference Control (GCC) Conference Create Request,
while the Connect Response PDU contains a GCC Conference Create Response.

These two GCC packets contain concatenated blocks of settings data (such as core data, security
data, and network data) which are read by client and server.

Figure 2: MCS Connect Initial PDU

25 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Figure 3: MCS Connect Response PDU

3. Channel Connection: The client sends an MCS Erect Domain Request PDU (section 2.2.1.5),
followed by an MCS Attach User Request PDU (section 2.2.1.6) to attach the primary user identity

to the MCS domain. The server responds with an MCS Attach User Confirm PDU (section 2.2.1.7)
containing the User Channel ID. The client then proceeds to join the user channel, the

input/output (I/O) channel, and all of the static virtual channels (the I/O and static virtual channel
IDs are obtained from the data embedded in the GCC packets) by using multiple MCS Channel Join
Request PDUs (section 2.2.1.8). The server confirms each channel with an MCS Channel Join
Confirm PDU (section 2.2.1.9). (RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 10.2, 10.3, 10.4,
and 10.5 clients send a Channel Join Request to the server only after the Channel Join Confirm for

a previously sent request has been received. RDP 8.1, 10.0, and 10.1 clients send all of the
Channel Join Requests to the server in a single batch to minimize the overall connection sequence
time.)

From this point, all subsequent data sent from the client to the server is wrapped in an MCS Send
Data Request PDU, while data sent from the server to the client is wrapped in an MCS Send Data
Indication PDU. This is in addition to the data being wrapped by an X.224 Data PDU.

4. RDP Security Commencement: If Standard RDP Security mechanisms (section 5.3) are being

employed and encryption is in force (this is determined by examining the data embedded in the

GCC Conference Create Response packet) then the client sends a Security Exchange PDU (section
2.2.1.10) containing an encrypted 32-byte random number to the server. This random number is
encrypted with the public key of the server as described in section 5.3.4.1 (the server's public key,
as well as a 32-byte server-generated random number, are both obtained from the data
embedded in the GCC Conference Create Response packet). The client and server then utilize the

two 32-byte random numbers to generate session keys which are used to encrypt and validate the
integrity of subsequent RDP traffic.

From this point, all subsequent RDP traffic can be encrypted and a security header is included with
the data if encryption is in force. (The Client Info PDU (section 2.2.1.11) and licensing PDUs ([MS-

26 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

RDPELE] section 2.2.2) are an exception in that they always have a security header). The Security
Header follows the X.224 and MCS Headers and indicates whether the attached data is encrypted.

Even if encryption is in force, server-to-client traffic cannot always be encrypted, while client-to-
server traffic will always be encrypted (encryption of licensing PDUs is optional, however).

5. Secure Settings Exchange: Secure client data (such as the username, password, and auto-
reconnect cookie) is sent to the server by using the Client Info PDU (section 2.2.1.11).

6. Optional Connect-Time Auto-Detection: During the Optional Connect-Time Auto-Detection phase,
the goal is to determine characteristics of the network, such as the round-trip latency time and the
bandwidth of the link between the server and client. This is accomplished by exchanging a
collection of PDUs (specified in section 2.2.14) over a predetermined period of time with enough
data to ensure that the results are statistically relevant.

7. Licensing: The goal of the licensing exchange is to transfer a license from the server to the client.
The client stores this license and on subsequent connections sends the license to the server for
validation. However, in some situations the client cannot be issued a license to store. In effect, the
packets exchanged during this phase of the protocol depend on the licensing mechanisms

employed by the server. Within the context of this document, it is assumed that the client will not
be issued a license to store. For details regarding more advanced licensing scenarios that take

place during the Licensing phase, see [MS-RDPELE] section 1.3.

8. Optional Multitransport Bootstrapping: After the connection has been secured and the Licensing
phase has run to completion, the server can choose to initiate multitransport connections ([MS-
RDPEMT] section 1.3). The Initiate Multitransport Request PDU (section 2.2.15.1) is sent by the
server to the client and results in the out-of-band creation of a multitransport connection using
messages from the RDP-UDP, TLS, DTLS, and multitransport protocols ([MS-RDPEMT] section
1.3.1). The client sends the Multitransport Response PDU (section 2.2.15.2) to the server if the

multitransport connection could not be established or if the server indicated support for Soft-Sync
in the Server Multitransport Channel Data (section 2.2.1.4.6)

9. Capabilities Exchange: The server sends the set of capabilities it supports to the client in a
Demand Active PDU (section 2.2.1.13.1). The optional Monitor Layout PDU (section 2.2.12.1) is
sent by the server after the Demand Active PDU. The client responds to the Demand Active PDU

with its capabilities by sending a Confirm Active PDU (section 2.2.1.13.2).

10. Connection Finalization: The client and server exchange PDUs to finalize the connection details.

The client-to-server PDUs sent during this phase have no dependencies on any of the server-to-
client PDUs; they can be sent as a single batch, provided that sequencing is maintained.

▪ The Client Synchronize PDU (section 2.2.1.14) is sent after transmitting the Confirm Active
PDU.

▪ The Client Control (Cooperate) PDU (section 2.2.1.15) is sent after transmitting the Client
Synchronize PDU.

▪ The Client Control (Request Control) PDU (section 2.2.1.16) is sent after transmitting the
Client Control (Cooperate) PDU.

▪ The optional Persistent Key List PDUs (section 2.2.1.17) are sent after transmitting the Client

Control (Request Control) PDU.

▪ The Font List PDU (section 2.2.1.18) is sent after transmitting the Persistent Key List PDUs or,
if the Persistent Key List PDUs were not sent, it is sent after transmitting the Client Control
(Request Control) PDU (section 2.2.1.16).

The server-to-client PDUs sent during the Connection Finalization phase have dependencies on
the client-to-server PDUs.

▪ The Server Synchronize PDU (section 2.2.1.19) is sent in response to the Confirm Active PDU.

27 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ The Server Control (Cooperate) PDU (section 2.2.1.20) is sent after transmitting the Server
Synchronize PDU.

▪ The Server Control (Granted Control) PDU (section 2.2.1.21) is sent in response to the Client
Control (Request Control) PDU.

▪ The Font Map PDU (section 2.2.1.22) is sent in response to the Font List PDU.

Once the client has sent the Confirm Active PDU, it can start sending mouse and keyboard input to
the server, and upon receipt of the Font List PDU the server can start sending graphics output to
the client.

Besides input and graphics data, other data that can be exchanged between client and server after the
connection has been finalized includes connection management information and virtual channel
messages (exchanged between client-side plug-ins and server-side applications).

1.3.1.2 Security-Enhanced Connection Sequence

The RDP Connection Sequence does not provide any mechanisms which ensure that the identity of the
server is authenticated, and as a result it is vulnerable to man-in-the-middle attacks (these attacks

can compromise the confidentiality of the data sent between client and server).

The goal of the Security-Enhanced Connection Sequence is to provide an extensible mechanism within
RDP so that well-known and proven security protocols (such as Secure Socket Layer (SSL) or
Kerberos) can be used to fulfill security objectives and to wrap RDP traffic. There are two variations of
the Security-Enhanced Connection Sequence. The negotiation-based approach aims to provide
backward-compatibility with previous RDP implementations, while the Direct Approach favors more
rigorous security over interoperability.

Negotiation-Based Approach: The client advertises the security packages which it supports (by
appending a negotiation request structure to the X.224 Connection Request PDU) and the server
selects the package to use (by appending a negotiation response structure to the X.224 Connection
Confirm PDU). After the client receives the X.224 Connection Confirm PDU the handshake messages
defined by the negotiated security package are exchanged and then all subsequent RDP traffic is

secured by using the cryptographic techniques specified by the negotiated security package.

Direct Approach: Instead of negotiating a security package, the client and server immediately execute
a predetermined security protocol (for example, the CredSSP Protocol [MS-CSSP]) prior to any RDP
traffic being exchanged on the wire. This approach results in all RDP traffic being secured using the
hard-coded security package. However, it has the disadvantage of not working with servers that
expect the connection sequence to be initiated by an X.224 Connection Request PDU.

For more details about Enhanced RDP Security, see section 5.4.

1.3.1.3 Deactivation-Reactivation Sequence

After the connection sequence has run to completion, the server can determine that the client has to
be connected to an existing session. To accomplish this task the server signals the client with a
Deactivate All PDU. A Deactivate All PDU implies that the connection will be dropped or that a

capability re-exchange will occur. If a capability re-exchange is required, then the Capability Exchange

and Connection Finalization phases of the connection sequence (section 1.3.1.1) are re-executed.

The sending and processing of the Deactivate All PDU is described in sections 3.3.5.5.1 and 3.2.5.5.1
respectively.

1.3.1.4 Disconnection Sequences

1.3.1.4.1 User-Initiated on Client

28 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The user can initiate a client-side disconnect by closing the RDP client application. To implement this
type of disconnection the client can initiate an immediate disconnect by sending the MCS Disconnect

Provider Ultimatum PDU (with the reason code set to "user requested") and then closing the
connection. Alternatively, the client can first notify the server of the intent to disconnect by sending

the Shutdown Request PDU and then waiting for a response. The server response to this PDU is
determined by whether the session is associated with a logged-on user account.

▪ If a logged-on user account is associated with the session, the server always denies the shutdown
request and sends the client a Shutdown Request Denied PDU. At this point the client behavior is
implementation-dependent (the client can, for example, choose to display a dialog box specifying
that the session will be disconnected). If the decision is made to proceed with the disconnection,
the client sends the server an MCS Disconnect Provider Ultimatum PDU (with the reason code set

to "user requested") and closes the connection.

▪ If a logged-on user account is not associated with the session, the server closes the connection
immediately after receiving the Shutdown Request PDU.

The sending and processing of the Shutdown Request PDU is described in sections 3.2.5.4.1 and

3.3.5.4.1 respectively. The sending and processing of the Shutdown Request Denied PDU is described
in sections 3.3.5.4.2 and 3.2.5.4.2 respectively.

1.3.1.4.2 User-Initiated on Server

The user can initiate a server-side disconnect by ending the session hosted on the server. To
implement this type of disconnection, the server sends the client the following sequence of PDUs:

▪ An optional Set Error Info PDU (containing a detailed reason for the pending disconnection)

▪ An optional Deactivate All PDU

▪ An optional MCS Disconnect Provider Ultimatum PDU (with the reason code set to "user

requested")

The connection is then closed by the server.

The sending of the Deactivate All and MCS Disconnect Provider Ultimatum PDUs is specified in section
3.3.5.5.1, while the sending of the Set Error Info PDU is specified in section 3.3.5.7.1.

1.3.1.4.3 Administrator-Initiated on Server

The administrator of a server can force a user to be logged off from a session or disconnect sessions

outside of the user's control. To implement this type of disconnection, the server sends the client the
following sequence of PDUs:

▪ An optional Set Error Info PDU (containing a detailed reason for the pending disconnection)

▪ An optional Deactivate All PDU

▪ An optional MCS Disconnect Provider Ultimatum PDU (with the reason code set to "provider
initiated")

The connection is then closed by the server.

The sending of the Deactivate All and MCS Disconnect Provider Ultimatum PDUs is specified in section
3.3.5.5.1, while the sending of the Set Error Info PDU is specified in section 3.3.5.7.1.

1.3.1.5 Automatic Reconnection

The Automatic Reconnection feature allows a client to reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server.

29 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

After a successful log on, the server sends the client an "auto-reconnect cookie" in the Save Session
Info PDU. This cookie is bound to the current user's session and is stored by the client. In the case of

a disconnection due to a network error, the client can try to automatically reconnect to the server. If it
can connect, it sends a cryptographically modified version of the cookie to the server in the Client Info

PDU (the Secure Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1).
The server uses the modified cookie to confirm that the client requesting auto-reconnection is the last
client that was connected to the session. If this check passes, then the client is automatically
connected to the desired session upon completion of the connection sequence.

The auto-reconnect cookie associated with a given session is flushed and regenerated whenever a
client connects to the session or the session is reset. This ensures that if a different client connects to
the session, then any previous clients that were connected can no longer use the auto-reconnect

mechanism to connect. Furthermore, the server invalidates and updates the cookie at hourly intervals,
sending the new cookie to the client in the Save Session Info PDU.

1.3.2 Server Error Reporting and Status Updates

A server can send detailed error codes to a client by using the Set Error Info PDU (the client indicates
during the Basic Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1,
that it supports this PDU). This PDU can be sent when a phase in the connection sequence fails or
when the client is about to be disconnected. Error codes allow the client to give much clearer failure
explanations to the user. If a server chooses not to send error codes to a client that supports receiving
these codes, then the client will be unable to report a clear diagnosable reason for any server-side
initiated disconnections.

Status updates can be sent to a client by using the Status Info PDU (the client indicates during the
Basic Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1, that it
supports this PDU). This PDU can be sent by the server to allow the client to give feedback to a user
when the server is performing processing that can take some time to complete.

The sending and processing of the Set Error Info PDU is described in sections 3.3.5.7.1 and 3.2.5.7.1
respectively, while the sending and processing of the Status Info PDU is described in sections

3.3.5.7.2 and 3.2.5.7.2 respectively.

1.3.3 Static Virtual Channels

Static Virtual Channels allow lossless communication between client and server components over the
main RDP data connection. Virtual channel data is application-specific and opaque to RDP. A maximum

of 31 static virtual channels can be created at connection time.

The list of desired virtual channels is requested and confirmed during the Basic Settings Exchange
phase of the connection sequence (as specified in section 1.3.1.1) and the endpoints are joined during
the Channel Connection phase (as specified in section 1.3.1.1). Once joined, the client and server
endpoints do not exchange data until the connection sequence has completed.

Static Virtual Channel data is broken up into chunks before being transmitted. The maximum size of
an individual chunk is determined by the settings exchanged in the Virtual Channel Capability Set

described in section 2.2.7.1.10 (the chunk size does not include RDP headers). Each virtual channel

acts as an independent data stream. The client and server examine the data received on each virtual
channel and route the data stream to the appropriate endpoint for further processing. A particular
client or server implementation can decide whether to pass on individual chunks of data as they are
received, or to assemble the separate chunks of data into a complete block before passing it on to the
endpoint.

30 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

1.3.4 Data Compression

RDP uses a bulk compressor to compress virtual channel data and some data in PDUs sent from server
to client. Capability advertising for various versions of the bulk compressor occurs in the Client Info

PDU (the Secure Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1).

One version of the bulk compressor (the RDP 4.0 bulk compressor) is based on the Microsoft Point-To-
Point Compression (MPPC) Protocol, as described in [RFC2118], and uses an 8 kilobyte history buffer.
A more advanced version of the compressor (the RDP 5.0 bulk compressor) is derived from the RDP
4.0 bulk compressor, but uses a 64 kilobyte history buffer and modified Huffman-style encoding rules.

Besides employing bulk compression for generic data, RDP also uses variations of run length encoding
(RLE) rules to implement compression of bitmap data sent from server to client. All clients have to be

capable of decompressing compressed bitmap data; this capability is not negotiable.

1.3.5 Keyboard and Mouse Input

The client sends mouse and keyboard input PDUs in two types: slow-path and fast-path. Slow-path is

similar to T.128 input formats for input PDUs, with some modifications for RDP input requirements.
Fast-path was introduced to take advantage of the fact that in RDP there are no extended Multipoint
Communication Services (MCS) topologies, just one top-level node and one leaf-node per socket.
Fast-path also uses reduced or removed headers and alternate bytestream-orientated encoding
formats to reduce bandwidth and CPU cycles for encode and decode.

Client-to-server Input Event PDUs convey keyboard and mouse data to the server so that it can inject
input as needed. The client can also periodically synchronize the state of the toggle keys (for example,

NUM LOCK and CAPS LOCK) using the Synchronize Event PDU. This is necessary when the client loses
input focus and then later gets the focus back (possibly with new toggle key states). In a similar vein,
the server can also force an update of the local keyboard toggle keys or the local input method editor
(IME) being used to ensure that synchronization with the session is maintained.

1.3.6 Basic Server Output

In a similar style to input-related PDUs (as specified in section 1.3.5), server output-related PDUs
come in two types: slow-path and fast-path. Slow-path output is similar to T.128 output and is not
optimized in any way. Fast-path output uses reduced or removed headers to save bandwidth and
reduce encoding and decoding latency by reducing the required CPU cycles.

The most fundamental output that a server can send to a connected client is bitmap images of the

user's session using Bitmap Updates. This allows the client to render the working space and enables a
user to interact with the session running on the server. The global palette information for a session is
sent to the client using Palette Updates.

The client can choose to render the mouse cursor locally (if it is not included in the graphics updates
sent by the server). In this case, the server sends updates of the current cursor image to ensure that
it can be drawn with the correct shape (the Pointer Update PDUs are used to accomplish this task).
Furthermore, if the mouse is programmatically moved in the user's session, the server informs the

client of the new position using the Pointer Position PDU.

Other basic output which a server sends to a connected client includes the Play Sound PDU, which
instructs a client to play rudimentary sounds (by specifying a frequency and its duration) and
Connection Management PDUs, as specified in section 2.2.10.

1.3.7 Controlling Server Graphics Output

A client connected to a server and displaying graphics data might need to request that the server
resend the graphics data for a collection of rectangular regions of the session screen area, or stop
sending graphics data for a period of time (perhaps when the client is minimized). These two tasks are

31 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

accomplished by having the client send the Refresh Rect PDU and Suppress Output PDUs,
respectively.

1.3.8 Server Redirection

A client connection can be redirected to a specific session on another server by using the Server
Redirection PDU (section 2.2.13). This enables basic load-balancing scenarios, as shown in the
following figure.

Figure 4: Basic server redirection

Assume that User A has an existing session on Server S1 (Session #3). Both Server S1 and Server S2
are able to communicate with a Connection Broker.

1. User A uses Client C to connect to Server S2 and authenticate.

2. Server S2 communicates with the Connection Broker and is informed that User A has an existing
session on Server S1 (Session #3).

3. Server S2 sends a Redirection PDU to Client C, which contains:

▪ The name of the target server (S1).

▪ The target Session ID (Session #3).

▪ The login credentials to use for Server S1 (if necessary).

4. Client C closes the connection to Server S2 and initiates a connection to Server S1. As part of the
connection initialization data sent to Server S1, Client C sends the login credentials and requests a
connection to Session #3.

5. Server S1 validates the login credentials, and, if they are correct, connects Client C to Session #3.

32 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If Client C cannot connect directly to Server S1, the Redirection PDU has to contain a variable-length
routing token that contains the information required by Server S2 to redirect the client connection

appropriately. The client places this token into the X.224 Connection Request PDU (section 2.2.1.1) of
the RDP Connection Sequence and then reconnects it back to Server S2. Server S2 reads the

routing token and then redirects the X.224 Connection Request and all future traffic from Client C to
Server S1.

For more information about load balancing of Remote Desktop sessions and the routing token
format, see [MSFT-SDLBTS] sections "Load-Balanced Configurations", "Revectoring Clients", and
"Routing Token Format".

1.3.8.1 RDSTLS

The RDSTLS Security Protocol (section 5.4.5.3) is primarily used in the context of server redirection
scenarios. When the Redirection PDU is sent to the client (step 3 in section 1.3.8), RDSTLS should be
used for the subsequent reconnection and authentication phase (steps 4 and 5 of section 1.3.8) if it
contains two key data items:

▪ The authentication certificate of the target server.

▪ An encrypted password for user authentication.

These two items are used in the context of RDSTLS to facilitate mutual authentication when
reconnecting to the target server.

1.3.9 Connect-Time and Continuous Network Characteristics Detection

Connect-Time Auto-Detection occurs once during the RDP Connection Sequence (section 1.3.1.1), and
is accomplished by sending request and response messages over the main RDP connection during the
Optional Connect-Time Auto-Detection phase.

The following messages are encapsulated in the server-to-client Auto-Detect Request PDU (section
2.2.14.3) and flow over the main RDP connection, implementing Connect-Time Auto-Detection:

▪ RTT Message Request (section 2.2.14.1.1)

▪ Bandwidth Measure Start (section 2.2.14.1.2)

▪ Bandwidth Measure Payload (section 2.2.14.1.3)

▪ Bandwidth Measure Stop (section 2.2.14.1.4)

▪ Network Characteristics Result (section 2.2.14.1.5)

The following messages are encapsulated in the client-to-server Auto-Detect Response PDU (section
2.2.14.2) and flow over the main RDP connection as part of Connect-Time Auto-Detection:

▪ RTT Measure Response (section 2.2.14.2.1)

▪ Bandwidth Measure Results (section 2.2.14.2.2)

▪ Network Characteristics Sync (section 2.2.14.2.3)

Continuous Auto-Detection occurs on a constant basis after the RDP Connection Sequence has
completed, and is implemented by sending request and response messages over the main RDP
connection and any created sideband channels ([MS-RDPEMT] section 1.3.2).

The following messages are encapsulated in the server-to-client Auto-Detect Request PDU and flow

over the main RDP connection, implementing Continuous Auto-Detection:

33 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ RTT Message Request (section 2.2.14.1.1)

▪ Bandwidth Measure Start (section 2.2.14.1.2)

▪ Bandwidth Measure Stop (section 2.2.14.1.4)

The following messages are encapsulated in the client-to-server Auto-Detect Response PDU and flow

over the main RDP connection as part of Continuous Auto-Detection:

▪ RTT Measure Response (section 2.2.14.2.1)

▪ Bandwidth Measure Results (section 2.2.14.2.2)

The following messages are encapsulated in the RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section
2.2.1.1.1) structure and are used to implement Continuous Auto-Detection over the sideband channels
that are in active use:

▪ Bandwidth Measure Start (section 2.2.14.1.2)

▪ Bandwidth Measure Stop (section 2.2.14.1.4)

▪ Network Characteristics Result (section 2.2.14.1.5)

▪ Bandwidth Measure Results (section 2.2.14.2.2)

1.3.10 Connection Health Monitoring

The Heartbeat PDU (section 2.2.16.1) allows a client to monitor the state of the connection to the
server in real time. If the client and server both support connection health monitoring, then the server
will send Heartbeat PDUs to the client at a regular cadence when no other data is sent. If no data has
been received over a predetermined number of heartbeat intervals by the client, then the server might
be down or the network link might be in a disconnected state. If this is the case, the client can
respond by displaying a warning or initiating a reconnection attempt.

1.4 Relationship to Other Protocols

[MS-RDPBCGR] is based on the ITU (International Telecommunication Union) T.120 series of
protocols. The T.120 standard is composed of a suite of communication and application-layer protocols

that enable implementers to create compatible products and services for real-time, multipoint data
connections and conferencing.

▪ Protocol for Providing the Connection-Mode Transport Service [X224]

▪ Multipoint communication service - Service definition [T122]

▪ Network-Specific Data Protocol Stacks for Multimedia Conferencing [T123]

▪ Generic Conference Control [T124]

▪ Multipoint Communication Service Protocol Specification [T125]

▪ Multipoint Application Sharing [T128]

The following protocols are tunneled within an [MS-RDPBCGR] static virtual channel:

▪ Multiparty Virtual Channel Extension [MS-RDPEMC]

▪ Clipboard Virtual Channel Extension [MS-RDPECLIP]

▪ Audio Output Virtual Channel Extension [MS-RDPEA]

34 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Remote Programs Virtual Channel Extension [MS-RDPERP]

▪ Dynamic Channel Virtual Channel Extension [MS-RDPEDYC]

▪ File System Virtual Channel Extension [MS-RDPEFS]

▪ Serial Port Virtual Channel Extension [MS-RDPESP]

▪ Print Virtual Channel Extension [MS-RDPEPC]

▪ Smart Card Virtual Channel Extension [MS-RDPESC]

[MS-RDPEDYC] tunnels the following protocols:

▪ XPS Printing Virtual Channel Extension [MS-RDPEXPS]

▪ Plug and Play Devices Virtual Channel Extension [MS-RDPEPNP]

▪ Video Virtual Channel Extension [MS-RDPEV]

▪ Audio Input Virtual Channel Extension [MS-RDPEAI]

▪ Composited Remoting V2 Extension [MS-RDPCR2]

▪ USB Devices Virtual Channel Extension [MS-RDPEUSB]

▪ Graphics Pipeline Extension [MS-RDPEGFX]

▪ Input Virtual Channel Extension [MS-RDPEI]

▪ Video Optimized Remoting Virtual Channel Extension [MS-RDPEVOR]

▪ Virtual Channel Echo Extension [MS-RDPEECO]

▪ Geometry Tracking Virtual Channel Protocol Extension [MS-RDPEGT]

▪ Display Control Virtual Channel Extension [MS-RDPEDISP]

The following protocols extend [MS-RDPBCGR]:

▪ Licensing Extension [MS-RDPELE]

▪ Session Selection Extension [MS-RDPEPS]

▪ Graphics Device Interface (GDI) Acceleration Extensions [MS-RDPEGDI]

▪ Desktop Composition Extension [MS-RDPEDC]

▪ Remote Programs Virtual Channel Extension [MS-RDPERP]

▪ NSCodec Extension [MS-RDPNSC]

▪ RemoteFX Codec Extension [MS-RDPRFX]

The following protocol tunnels [MS-RDPEDYC]:

▪ Multitransport Extension [MS-RDPEMT]

The following protocol tunnels [MS-RDPEMT]:

▪ UDP Transport Extension [MS-RDPEUDP]

The following protocol tunnels [MS-RDPBCGR]:

35 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Gateway Server Protocol [MS-TSGU]

1.5 Prerequisites/Preconditions

This protocol assumes that the client and server systems both have an IP address and are able to
communicate over a computer network. It also assumes that the initiator (or "client") has already
obtained the IP address of the server, that the server has registered a port, and that the server is
actively listening for client connections on that port.<1>

1.6 Applicability Statement

This protocol is applicable in scenarios where interactions with a session or application hosted on a
remote server are required. In this context, the graphical user interface of a session or application
running on a remote machine is transmitted to the client machine. The client, in turn, sends keyboard
and mouse input to be processed by the server allowing the client to interact with the session or

application on the server.

In scenarios in which more specialized communication between client and server components is
needed, Virtual Channels (section 1.3.3) provide an extensible transport mechanism. Examples of
more specialized communication include redirection of client-side devices (for example, printers,
drives, smart card readers, or Plug and Play devices) and synchronization of the local and remote
clipboards.

1.7 Versioning and Capability Negotiation

Capability negotiation for RDP is essentially the same as for T.128. The server advertises its
capabilities in a Demand Active PDU sent to the client, and the client advertises its capabilities in the
follow-up Confirm Active PDU (see the Capability Exchange phase in section 1.3.1.1). Capability sets

are packaged in a combined capability set structure. This structure contains a count of the number of
capability sets, followed by the contents of the individual capability sets.

Figure 5: Combined Capability Set structure

Information exchanged in the capability sets includes data such as supported PDUs and drawing
orders, desktop dimensions, and allowed color depths, input device support, cache structures and

feature support. The client and server do not violate any peer capabilities when sending data on the
wire. This ensures that all RDP traffic on the wire is consistent with expectations and can be processed
by each party.

Early capability information (in the form of a bitmask) is advertised by the client as part of the data
which it sends to the server during the Basic Settings Exchange phase. This information is intended for
capabilities that need to be advertised prior to the actual Capability Exchange phase. For example,

support for the Set Error Info PDU is established before the Licensing phase of the connection
sequence, which occurs before the Capability Exchange phase (section 1.3.1.1). This is necessary
because the server has to be aware of how errors can be communicated back to the client.

The client and server data exchanged during the Basic Settings Exchange phase in the RDP
Connection Sequence (section 1.3.1.1) includes an RDP version number (consisting of a major and
minor field). However, this version information does not accurately reflect the version of RDP being

36 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

used by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, and 8.1 clients because they all advertise a minor
version of "4").

The build number of the client is also available as part of the data the client sends to the server during
the Basic Settings Exchange phase. However, this value is implementation-dependent and is not

necessarily consistent across the spectrum of RDP clients manufactured by different vendors.

1.8 Vendor-Extensible Fields

This protocol uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors are free to choose

their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a customer
code.

1.9 Standards Assignments

None.

37 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2 Messages

2.1 Transport

The [MS-RDPBCGR] packets are encapsulated in the Transmission Control Protocol (TCP). The TCP

packets MUST be encapsulated in version 4 or 6 of the IP protocol.

There is no officially assigned TCP port for [MS-RDPBCGR], but protocol servers listen by default on
TCP port 3389 for client requests.

2.2 Message Syntax

All multiple-byte fields within a message MUST be marshaled in little-endian byte order, unless
otherwise specified. This protocol references commonly used data types as defined in [MS-DTYP].

Version 2 MCS Encoding Rules (defined in [T125] section 9) are used when encoding MCS structures

defined in [T125]. The MCS Send Data Request ([T125] section 11.32) and MCS Send Data Indication
([T125] section 11.33) structures MUST be restricted to 16,383 or fewer bytes in length to avoid
implementing ASN.1 Packed Encoding Rules (PER) extended size determinant encoding ([ITUX691]

section 10.9.3, excluding 10.9.3.8).

2.2.1 Connection Sequence

2.2.1.1 Client X.224 Connection Request PDU

The X.224 Connection Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Connection Initiation phase of the RDP Connection Sequence (section 1.3.1.1 for an
overview of the RDP Connection Sequence phases).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Crq

... routingToken (variable)

...

cookie (variable)

...

rdpNegReq (optional)

...

rdpCorrelationInfo (36 bytes, optional)

...

38 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Crq (7 bytes): An X.224 Class 0 Connection Request transport protocol data unit (TPDU), as
specified in [X224] section 13.3.

routingToken (variable): An optional and variable-length routing token (used for load balancing)
terminated by a 0x0D0A two-byte sequence. For more information about the routing token
format, see [MSFT-SDLBTS] "Routing Token Format". The length of the routing token and CR+LF
sequence is included in the X.224 Connection Request Length Indicator field. If this field is
present, then the cookie field MUST NOT be present.

cookie (variable): An optional and variable-length ANSI character string terminated by a 0x0D0A

two-byte sequence. This text string MUST be "Cookie: mstshash=IDENTIFIER", where IDENTIFIER
is an ANSI character string (an example cookie string is shown in section 4.1.1). The length of the
entire cookie string and CR+LF sequence is included in the X.224 Connection Request Length

Indicator field. This field MUST NOT be present if the routingToken field is present.

rdpNegReq (8 bytes): An optional RDP Negotiation Request (section 2.2.1.1.1) structure. The
length of this field is included in the X.224 Connection Request Length Indicator field.

rdpCorrelationInfo (36 bytes): An optional Correlation Info (section 2.2.1.1.2) structure. The

length of this field is included in the X.224 Connection Request Length Indicator field. This
field MUST be present if the CORRELATION_INFO_PRESENT (0x08) flag is set in the flags field of
the RDP Negotiation Request structure, encapsulated within the optional rdpNegReq field. If
the CORRELATION_INFO_PRESENT (0x08) flag is not set, then this field MUST NOT be present.

2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ)

The RDP Negotiation Request structure is used by a client to advertise the security protocols which it

supports.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags length

requestedProtocols

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x01 (TYPE_RDP_NEG_REQ).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags.

Flag Meaning

RESTRICTED_ADMIN_MODE_REQUIRED

0x01

Indicates that the client requires credential-less
logon over CredSSP (also known as "restricted
admin mode"). If the server supports this mode then
it is acceptable for the client to send empty
credentials in the TSPasswordCreds structure
defined in [MS-CSSP] section 2.2.1.2.1.<2>

REDIRECTED_AUTHENTICATION_MODE_REQUIRED
0x02

Indicates that the client requires credential-less
logon over CredSSP with redirected authentication
over CredSSP (also known as "Remote Credential
Guard"). If the server supports this mode, the client

39 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

can send a redirected logon buffer in the
TSRemoteGuardCreds structure defined in [MS-
CSSP] section 2.2.1.2.3.

CORRELATION_INFO_PRESENT

0x08

The optional rdpCorrelationInfo field of the 224
Connection Request PDU (section 2.2.1.1) is
present.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0008 (8 bytes).

requestedProtocols (4 bytes): A 32-bit, unsigned integer that contains flags indicating the
supported security protocols.

Flag Meaning

PROTOCOL_RDP

0x00000000

Standard RDP Security (section 5.3).

PROTOCOL_SSL

0x00000001

TLS 1.0, 1.1, or 1.2 (section 5.4.5.1).

PROTOCOL_HYBRID

0x00000002

Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2). If
this flag is set, then the PROTOCOL_SSL (0x00000001) flag SHOULD also be set
because Transport Layer Security (TLS) is a subset of CredSSP.

PROTOCOL_RDSTLS

0x00000004

RDSTLS protocol (section 5.4.5.3).

PROTOCOL_HYBRID_EX

0x00000008

Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2)
coupled with the Early User Authorization Result PDU (section 2.2.10.2). If this
flag is set, then the PROTOCOL_HYBRID (0x00000002) flag SHOULD also be
set. For more information on the sequencing of the CredSSP messages and the
Early User Authorization Result PDU, see sections 5.4.2.1 and 5.4.2.2.

2.2.1.1.2 RDP Correlation Info (RDP_NEG_CORRELATION_INFO)

The RDP Correlation Info structure is used by a client to propagate connection correlation information
to the server. This information allows diagnostic tools on the server to track and monitor a specific
connection as it is handled by Terminal Services components.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags length

correlationId (16 bytes)

...

...

reserved (16 bytes)

40 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

...

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x06 (TYPE_RDP_CORRELATION_INFO).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags. There are currently no defined

flags, so this field MUST be set to 0x00.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0024 (36 bytes).

correlationId (16 bytes): An array of sixteen 8-bit, unsigned integers that specifies a unique
identifier to associate with the connection. The first byte in the array SHOULD NOT have a value of
0x00 or 0xF4 and the value 0x0D SHOULD NOT be contained in any of the bytes.

reserved (16 bytes): An array of sixteen 8-bit, unsigned integers reserved for future use. All sixteen
integers within this array MUST be set to zero.

2.2.1.2 Server X.224 Connection Confirm PDU

The X.224 Connection Confirm PDU is an RDP Connection Sequence PDU sent from server to client

during the Connection Initiation phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the X.224 Connection
Request PDU (section 2.2.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Ccf

... rdpNegData (optional)

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Ccf (7 bytes): An X.224 Class 0 Connection Confirm TPDU, as specified in [X224] section 13.4.

rdpNegData (8 bytes): An optional RDP Negotiation Response (section 2.2.1.2.1) structure or an

optional RDP Negotiation Failure (section 2.2.1.2.2) structure. The length of this field is

included in the X.224 Connection Confirm Length Indicator field.

2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)

The RDP Negotiation Response structure is used by a server to inform the client of the security
protocol which it has selected to use for the connection.

41 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags length

selectedProtocol

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x02 (TYPE_RDP_NEG_RSP).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags.

Flag Meaning

EXTENDED_CLIENT_DATA_SUPPORTED

0x01

The server supports Extended Client Data Blocks in
the GCC Conference Create Request user data
(section 2.2.1.3).

DYNVC_GFX_PROTOCOL_SUPPORTED

0x02

The server supports the Graphics Pipeline
Extension Protocol described in [MS-RDPEGFX]
sections 1, 2, and 3.

NEGRSP_FLAG_RESERVED

0x04

An unused flag that is reserved for future use. This
flag SHOULD be ignored by the client.

RESTRICTED_ADMIN_MODE_SUPPORTED

0x08

Indicates that the server supports credential-less
logon over CredSSP (also known as "restricted
admin mode") and it is acceptable for the client to
send empty credentials in the TSPasswordCreds
structure defined in [MS-CSSP] section

2.2.1.2.1.<3>

REDIRECTED_AUTHENTICATION_MODE_SUPPORTED
0x10

Indicates that the server supports credential-less
logon over CredSSP with credential redirection
(also known as "Remote Credential Guard"). The
client can send a redirected logon buffer in the
TSRemoteGuardCreds structure defined in [MS-
CSSP] section 2.2.1.2.3.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0008 (8 bytes)

selectedProtocol (4 bytes): A 32-bit, unsigned integer that specifies the selected security protocol.

Value Meaning

PROTOCOL_RDP

0x00000000

Standard RDP Security (section 5.3).

PROTOCOL_SSL

0x00000001

TLS 1.0, 1.1 or 1.2 (section 5.4.5.1).

PROTOCOL_HYBRID

0x00000002

CredSSP (section 5.4.5.2).

PROTOCOL_RDSTLS

0x00000004

RDSTLS protocol (section 5.4.5.3).

PROTOCOL_HYBRID_EX Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2)

42 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x00000008 coupled with the Early User Authorization Result PDU (section 2.2.10.2).

2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)

The RDP Negotiation Failure structure is used by a server to inform the client of a failure that has
occurred while preparing security for the connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags length

failureCode

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x03 (TYPE_RDP_NEG_FAILURE).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags. There are currently no defined
flags, so the field MUST be set to 0x00.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to

0x0008 (8 bytes).

failureCode (4 bytes): A 32-bit, unsigned integer that specifies the failure code.

Value Meaning

SSL_REQUIRED_BY_SERVER

0x00000001

The server requires that the client support Enhanced
RDP Security (section 5.4) with either TLS 1.0, 1.1 or
1.2 (section 5.4.5.1) or CredSSP (section 5.4.5.2). If
only CredSSP was requested then the server only

supports TLS.

SSL_NOT_ALLOWED_BY_SERVER

0x00000002

The server is configured to only use Standard RDP
Security mechanisms (section 5.3) and does not
support any External Security Protocols (section 5.4.5).

SSL_CERT_NOT_ON_SERVER

0x00000003

The server does not possess a valid authentication
certificate and cannot initialize the External Security
Protocol Provider (section 5.4.5).

INCONSISTENT_FLAGS

0x00000004

The list of requested security protocols is not
consistent with the current security protocol in effect.
This error is only possible when the Direct Approach
(sections 5.4.2.2 and 1.3.1.2) is used and an External
Security Protocol (section 5.4.5) is already being used.

HYBRID_REQUIRED_BY_SERVER

0x00000005

The server requires that the client support Enhanced
RDP Security (section 5.4) with CredSSP (section
5.4.5.2).

SSL_WITH_USER_AUTH_REQUIRED_BY_SERVER

0x00000006

The server requires that the client support Enhanced
RDP Security (section 5.4) with TLS 1.0, 1.1 or 1.2
(section 5.4.5.1) and certificate-based client
authentication.<4>

43 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request

The MCS Connect Initial PDU is an RDP Connection Sequence PDU sent from client to server during the
Basic Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview
of the RDP Connection Sequence phases). It is sent after receiving the X.224 Connection Confirm PDU
(section 2.2.1.2). The MCS Connect Initial PDU encapsulates a GCC Conference Create Request, which
encapsulates concatenated blocks of settings data. A basic high-level overview of the nested structure

for the Client MCS Connect Initial PDU is illustrated in section 1.3.1.1, in the figure specifying the MCS
Connect Initial PDU. Note that the order of the settings data blocks is allowed to vary from that shown
in the previously mentioned figure and the message syntax layout that follows. This is possible
because each data block is identified by a User Data Header structure (section 2.2.1.3.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCi (variable)

...

gccCCrq (variable)

...

clientCoreData (variable)

...

clientSecurityData

...

...

clientNetworkData (variable)

...

clientClusterData (optional)

...

...

clientMonitorData (variable)

...

44 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

clientMessageChannelData (optional)

...

clientMultitransportChannelData (optional)

...

clientMonitorExtendedData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCi (variable): Variable-length Basic Encoding Rules encoded (BER-encoded) MCS Connect Initial

structure (using definite-length encoding) as described in [T125] section 11.1 (the ASN.1
structure definition is detailed in [T125] section 7, part 2). The userData field of the MCS Connect
Initial encapsulates the GCC Conference Create Request data (contained in the gccCCrq and
subsequent fields). If the server did not advertise support for extended client data (section
2.2.1.2.1), then the maximum allowed size of the userData field is 1024 bytes, and the combined
size of the gccCCrq and subsequent fields MUST be less than 1024 bytes. However, if the server

did advertise support for extended client data, then the maximum allowed size of the userData
field is 4096 bytes and the gccCCrq and subsequent fields MUST be less than 4096 bytes.

gccCCrq (variable): Variable-length Packed Encoding Rules encoded (PER-encoded) GCC Connect
Data structure, which encapsulates a Connect GCC PDU that contains a GCC Conference Create
Request structure as described in [T124] (the ASN.1 structure definitions are detailed in [T124]
section 8.7) appended as user data to the MCS Connect Initial (using the format described in
[T124] sections 9.5 and 9.6). The userData field of the GCC Conference Create Request contains

one user data set consisting of concatenated Client Data Blocks.

clientCoreData (variable): Variable-length Client Core Data structure (section 2.2.1.3.2).

clientSecurityData (12 bytes): Client Security Data structure (section 2.2.1.3.3).

clientNetworkData (variable): Variable-length Client Network Data structure (section 2.2.1.3.4).

clientClusterData (12 bytes): Optional Client Cluster Data structure (section 2.2.1.3.5).

clientMonitorData (variable): Variable-length Client Monitor Data structure (section 2.2.1.3.6). This
field MUST NOT be included if the server did not advertise support for Extended Client Data Blocks

by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as described in section
2.2.1.2.1.

clientMessageChannelData (8 bytes): Optional Client Message Channel Data structure (section

2.2.1.3.7). This field MUST NOT be included if the server did not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

clientMultitransportChannelData (8 bytes): Optional Client Multitransport Channel Data structure
(section 2.2.1.3.8). This field MUST NOT be included if the server did not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag
(0x00000001) as described in section 2.2.1.2.1.

45 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

clientMonitorExtendedData (variable): Variable-length Client Monitor Extended Data structure
(section 2.2.1.3.9). This field MUST NOT be included if the server did not advertise support for

Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag
(0x00000001) as described in 2.2.1.2.1.

2.2.1.3.1 User Data Header (TS_UD_HEADER)

The TS_UD_HEADER precedes all data blocks in the client and server GCC user data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type length

type (2 bytes): A 16-bit, unsigned integer. The type of the data block that this header precedes.

Value Meaning

CS_CORE

0xC001

The data block that follows contains Client Core Data (section 2.2.1.3.2).

CS_SECURITY

0xC002

The data block that follows contains Client Security Data (section 2.2.1.3.3).

CS_NET

0xC003

The data block that follows contains Client Network Data (section 2.2.1.3.4).

CS_CLUSTER

0xC004

The data block that follows contains Client Cluster Data (section 2.2.1.3.5).

CS_MONITOR

0xC005

The data block that follows contains Client Monitor Data (section 2.2.1.3.6).

CS_MCS_MSGCHANNEL

0xC006

The data block that follows contains Client Message Channel Data (section
2.2.1.3.7).

CS_MONITOR_EX

0xC008

The data block that follows contains Client Monitor Extended Data (section
2.2.1.3.9).

CS_MULTITRANSPORT

0xC00A

The data block that follows contains Client Multitransport Channel Data (section
2.2.1.3.8).

SC_CORE

0x0C01

The data block that follows contains Server Core Data (section 2.2.1.4.2).

SC_SECURITY

0x0C02

The data block that follows contains Server Security Data (section 2.2.1.4.3).

SC_NET

0x0C03

The data block that follows contains Server Network Data (section 2.2.1.4.4).

SC_MCS_MSGCHANNEL

0x0C04

The data block that follows contains Server Message Channel Data (section
2.2.1.4.5).

SC_MULTITRANSPORT

0x0C08

The data block that follows contains Server Multitransport Channel Data (section
2.2.1.4.6).

46 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

length (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data block, including this
header.

2.2.1.3.2 (Updated Section) Client Core Data (TS_UD_CS_CORE)

The TS_UD_CS_CORE data block contains core client connection-related information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

version

desktopWidth desktopHeight

colorDepth SASSequence

keyboardLayout

clientBuild

clientName (32 bytes)

...

...

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName (64 bytes)

...

...

postBeta2ColorDepth (optional) clientProductId (optional)

serialNumber (optional)

highColorDepth (optional) supportedColorDepths (optional)

earlyCapabilityFlags (optional) clientDigProductId (64 bytes, optional)

...

...

47 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

... connectionType (optional) pad1octet (optional)

serverSelectedProtocol (optional)

desktopPhysicalWidth (optional)

desktopPhysicalHeight (optional)

desktopOrientation (optional) desktopScaleFactor (optional)

... deviceScaleFactor (optional)

...

header (4 bytes): A GCC user data block header, as specified in section 2.2.1.3.1. The User Data

Header type field MUST be set to CS_CORE (0xC001).

version (4 bytes): A 32-bit, unsigned integer. Client version number for the RDP. The major version

number is stored in the high 2 bytes, while the minor version number is stored in the low 2 bytes.

Value Meaning

0x00080001 RDP 4.0 clients

0x00080004 RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, and 8.1 clients

0x00080005 RDP 10.0 clients

0x00080006 RDP 10.1 clients

0x00080007 RDP 10.2 clients

0x00080008 RDP 10.3 clients

0x00080009 RDP 10.4 clients

0x0008000A RDP 10.5 clients

0x0008000B RDP 10.6 clients

0x0008000C RDP 10.7 clients

0x0008000D RDP 10.8 clients

0x0008000E RDP 10.9 clients

0x0008000F RDP 10.10 clients

0x00080010 RDP 10.11 clients

desktopWidth (2 bytes): A 16-bit, unsigned integer. The requested desktop width in pixels
(validation of this field is described in section 3.3.5.3.3).

desktopHeight (2 bytes): A 16-bit, unsigned integer. The requested desktop height in pixels
(validation of this field is described in section 3.3.5.3.3).

colorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth. Values in this field
MUST be ignored if the postBeta2ColorDepth field is present.

48 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

RNS_UD_COLOR_4BPP

0xCA00

4 bits-per-pixel (bpp)

RNS_UD_COLOR_8BPP

0xCA01

8 bpp

SASSequence (2 bytes): A 16-bit, unsigned integer. Secure access sequence. This field SHOULD be
set to RNS_UD_SAS_DEL (0xAA03).

keyboardLayout (4 bytes): A 32-bit, unsigned integer. The active input locale identifier, also known
as the "HKL" (for example, 0x00010409 for a "United States-Dvorak" keyboard layout and
0x00020418 for a "Romanian (Programmers)" keyboard layout). For a list of input locale
identifiers, see [MSFT-DIL].<5> If the keyboardLayout field is set to zero, then the server
SHOULD use the default active input locale identifier and active language identifier (see the
CodePage field in section 2.2.1.11.1.1) associated with the user account.<6>

clientBuild (4 bytes): A 32-bit, unsigned integer. The build number of the client.

clientName (32 bytes): Name of the client computer. This field contains up to 15 Unicode characters
plus a null terminator.

keyboardType (4 bytes): A 32-bit, unsigned integer. The keyboard type.

Value Meaning

0x00000001 IBM PC/XT or compatible (83-key) keyboard

0x00000002 Olivetti "ICO" (102-key) keyboard

0x00000003 IBM PC/AT (84-key) and similar keyboards

0x00000004 IBM enhanced (101-key or 102-key) keyboard

0x00000005 Nokia 1050 and similar keyboards

0x00000006 Nokia 9140 and similar keyboards

0x00000007 Japanese keyboard

0x00000008 Korean keyboard

keyboardSubType (4 bytes): A 32-bit, unsigned integer. The keyboard subtype (an original

equipment manufacturer-dependent value).

keyboardFunctionKey (4 bytes): A 32-bit, unsigned integer. The number of function keys on the
keyboard.

imeFileName (64 bytes): A 64-byte field. The input method editor (IME) file name associated with
the active input locale. This field contains up to 31 Unicode characters plus a null terminator.

postBeta2ColorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth. Values in
this field MUST be ignored if the highColorDepth field is present.

Value Meaning

RNS_UD_COLOR_4BPP

0xCA00

4 bits-per-pixel (bpp)

49 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

RNS_UD_COLOR_8BPP

0xCA01

8 bpp

RNS_UD_COLOR_16BPP_555

0xCA02

15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for
blue)

RNS_UD_COLOR_16BPP_565

0xCA03

16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for
blue)

RNS_UD_COLOR_24BPP

0xCA04

24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)

If this field is not present, all of the subsequent fields MUST NOT be present.

clientProductId (2 bytes): A 16-bit, unsigned integer. The client product ID. This field SHOULD be
initialized to 1. If this field is present, then the postBeta2ColorDepth field MUST also be present.

If this field is not present, all of the subsequent fields MUST NOT be present.

serialNumber (4 bytes): A 32-bit, unsigned integer. Serial number. This field SHOULD be initialized
to zero. If this field is present, then the clientProductId field MUST also be present. If this field is
not present, all of the subsequent fields MUST NOT be present.

highColorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth.

Value Meaning

HIGH_COLOR_4BPP

0x0004

4 bpp

HIGH_COLOR_8BPP

0x0008

8 bpp

HIGH_COLOR_15BPP

0x000F

15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for
blue)

HIGH_COLOR_16BPP

0x0010

16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for
blue)

HIGH_COLOR_24BPP

0x0018

24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)

If this field is present, then the serialNumber field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

supportedColorDepths (2 bytes): A 16-bit, unsigned integer. Specifies the high color depths that
the client is capable of supporting.

Flag Meaning

RNS_UD_24BPP_SUPPORT

0x0001

24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)

RNS_UD_16BPP_SUPPORT

0x0002

16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for
blue)

RNS_UD_15BPP_SUPPORT 15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for

50 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

0x0004 blue)

RNS_UD_32BPP_SUPPORT

0x0008

32-bit RGB mask (8 bits for the alpha channel, 8 bits for red, 8 bits
for green, and 8 bits for blue)

If this field is present, then the highColorDepth field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

earlyCapabilityFlags (2 bytes): A 16-bit, unsigned integer that specifies capabilities early in the
connection sequence.

Flag Meaning

RNS_UD_CS_SUPPORT_ERRINFO_PDU

0x0001

Indicates that the client supports the Set Error Info
PDU (section 2.2.5.1).

RNS_UD_CS_WANT_32BPP_SESSION

0x0002

Indicates that the client is requesting a session color
depth of 32 bpp. This flag is necessary because the
highColorDepth field does not support a value of 32. If
this flag is set, the highColorDepth field SHOULD be
set to 24 to provide an acceptable fallback for the
scenario where the server does not support 32 bpp
color.

RNS_UD_CS_SUPPORT_STATUSINFO_PDU

0x0004

Indicates that the client supports the Server Status
Info PDU (section 2.2.5.2).

RNS_UD_CS_STRONG_ASYMMETRIC_KEYS

0x0008

Indicates that the client supports asymmetric keys
larger than 512 bits for use with the Server Certificate
(section 2.2.1.4.3.1) sent in the Server Security Data
block (section 2.2.1.4.3).

RNS_UD_CS_UNUSED

0x0010

An unused flag that MUST be ignored by the server.

RNS_UD_CS_VALID_CONNECTION_TYPE

0x0020

Indicates that the connectionType field contains valid

data.

RNS_UD_CS_SUPPORT_MONITOR_LAYOUT_PDU

0x0040

Indicates that the client supports the Monitor Layout
PDU (section 2.2.12.1).

RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT

0x0080

Indicates that the client supports network characteristics
detection using the structures and PDUs described in
section 2.2.14.

RNS_UD_CS_SUPPORT_DYNVC_GFX_PROTOCOL

0x0100

Indicates that the client supports the Graphics Pipeline
Extension Protocol described in [MS-RDPEGFX] sections
1, 2, and 3.

RNS_UD_CS_SUPPORT_DYNAMIC_TIME_ZONE

0x0200

Indicates that the client supports Dynamic DST.
Dynamic DST information is provided by the client in the
cbDynamicDSTTimeZoneKeyName,
dynamicDSTTimeZoneKeyName and
dynamicDaylightTimeDisabled fields of the
Extended Info Packet (section 2.2.1.11.1.1.1).

RNS_UD_CS_SUPPORT_HEARTBEAT_PDU

0x0400

Indicates that the client supports the Heartbeat PDU
(section 2.2.16.1).

51 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

RNS_UD_CS_SUPPORT_SKIP_CHANNELJOIN

0x0800

Indicates that the client supports skipping the MCS
Channel Join Request PDUs (section 2.2.1.8) and MCS
Channel Join Confirm PDUs (section 2.2.1.9) in the
Channel Connection phase of the RDP Connection
Sequence (section 1.3.1.1).

If this flag is set, the client considers all MCS channels
as joined after the MCS Attach User Confirm PDU
(section 2.2.1.7) has been received (section 3.2.5.3.8).

If this field is present, then the supportedColorDepths field MUST also be present. If this field is
not present, all of the subsequent fields MUST NOT be present.

clientDigProductId (64 bytes): Contains a value that uniquely identifies the client. If this field is

present, then the earlyCapabilityFlags field MUST also be present. If this field is not present, all
of the subsequent fields MUST NOT be present.

connectionType (1 byte): An 8-bit unsigned integer. Hints at the type of network connection being
used by the client. This field only contains valid data if the
RNS_UD_CS_VALID_CONNECTION_TYPE (0x0020) flag is present in the earlyCapabilityFlags
field.

Value Meaning

CONNECTION_TYPE_MODEM

0x01

Modem (56 Kbps)

CONNECTION_TYPE_BROADBAND_LOW

0x02

Low-speed broadband (256 Kbps - 2 Mbps)

CONNECTION_TYPE_SATELLITE

0x03

Satellite (2 Mbps - 16 Mbps with high latency)

CONNECTION_TYPE_BROADBAND_HIGH

0x04

High-speed broadband (2 Mbps - 10 Mbps)

CONNECTION_TYPE_WAN

0x05

WAN (10 Mbps or higher with high latency)

CONNECTION_TYPE_LAN

0x06

LAN (10 Mbps or higher)

CONNECTION_TYPE_AUTODETECT

0x07

The server SHOULD attempt to detect the connection type. If the
connection type can be successfully determined then the
performance flags, sent by the client in the performanceFlags
field of the Extended Info Packet (section 2.2.1.11.1.1.1),
SHOULD be ignored and the server SHOULD determine the
appropriate set of performance flags to apply to the remote
session (based on the detected connection type). If the
RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT (0x0080) flag is
not set in the earlyCapabilityFlags field, then this value
SHOULD be ignored.

If this field is present, then the clientDigProductId field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

52 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

pad1octet (1 byte): An 8-bit, unsigned integer. Padding to align the serverSelectedProtocol field
on the correct byte boundary. If this field is present, then the connectionType field MUST also be

present. If this field is not present, all of the subsequent fields MUST NOT be present.

serverSelectedProtocol (4 bytes): A 32-bit, unsigned integer that contains the value returned by

the server in the selectedProtocol field of the RDP Negotiation Response (section 2.2.1.2.1).
In the event that an RDP Negotiation Response was not received from the server, this field
MUST be initialized to PROTOCOL_RDP (0). This field MUST be present if an RDP Negotiation
Request (section 2.2.1.1.1) was sent to the server. If this field is present, then the pad1octet
field MUST also be present. If this field is not present, all of the subsequent fields MUST NOT be
present.

desktopPhysicalWidth (4 bytes): A 32-bit, unsigned integer. The requested physical width of the

desktop, in millimeters (mm). This value MUST be ignored if it is less than 10 mm or greater than
10,000 mm or desktopPhysicalHeight is less than 10 mm or greater than 10,000 mm. If this
field is present, then the serverSelectedProtocol and desktopPhysicalHeight fields MUST also
be present. If this field is not present, all of the subsequent fields MUST NOT be present. If the
desktopPhysicalHeight field is not present, this field MUST be ignored.

desktopPhysicalHeight (4 bytes): A 32-bit, unsigned integer. The requested physical height of the

desktop, in millimeters. This value MUST be ignored if it is less than 10 mm or greater than
10,000 mm or desktopPhysicalWidth is less than 10 mm or greater than 10,000 mm. If this
field is present, then the desktopPhysicalWidth field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

desktopOrientation (2 bytes): A 16-bit, unsigned integer. The requested orientation of the
desktop, in degrees.

Value Meaning

ORIENTATION_LANDSCAPE

0

The desktop is not rotated.

ORIENTATION_PORTRAIT

90

The desktop is rotated clockwise by 90 degrees.

ORIENTATION_LANDSCAPE_FLIPPED

180

The desktop is rotated clockwise by 180 degrees.

ORIENTATION_PORTRAIT_FLIPPED

270

The desktop is rotated clockwise by 270 degrees.

This value MUST be ignored if it is invalid. If this field is present, then the

desktopPhysicalHeight field MUST also be present. If this field is not present, all of the
subsequent fields MUST NOT be present.

desktopScaleFactor (4 bytes): A 32-bit, unsigned integer. The requested desktop scale factor. This
value MUST be ignored if it is less than 100% or greater than 500% or deviceScaleFactor is not
100%, 140%, or 180%. If this field is present, then the desktopOrientation and

deviceScaleFactor fields MUST also be present. If this field is not present, all of the subsequent

fields MUST NOT be present. If the deviceScaleFactor field is not present, this field MUST be
ignored.

deviceScaleFactor (4 bytes): A 32-bit, unsigned integer. The requested device scale factor. This
value MUST be ignored if it is not set to 100%, 140%, or 180% or desktopScaleFactor is less
than 100% or greater than 500%. If this field is present, then the desktopScaleFactor field
MUST also be present.<7>

2.2.1.3.3 Client Security Data (TS_UD_CS_SEC)

53 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The TS_UD_CS_SEC data block contains security-related information used to advertise client
cryptographic support. This information is only relevant when Standard RDP Security mechanisms

(section 5.3) will be used. See sections 3 and 5.3.2 for a detailed discussion of how this information is
used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

encryptionMethods

extEncryptionMethods

header (4 bytes): A GCC user data block header as described in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_SECURITY (0xC002).

encryptionMethods (4 bytes): A 32-bit unsigned integer. Cryptographic encryption methods
supported by the client and used in conjunction with Standard RDP Security. The client MUST
specify at least one encryption method, and the server MUST select one of the methods specified

by the client.

Flag Meaning

40BIT_ENCRYPTION_FLAG

0x00000001

40-bit session keys MUST be used to encrypt data (with RC4) and generate
Message Authentication Codes (MAC).

128BIT_ENCRYPTION_FLAG

0x00000002

128-bit session keys MUST be used to encrypt data (with RC4) and
generate MACs.

56BIT_ENCRYPTION_FLAG

0x00000008

56-bit session keys MUST be used to encrypt data (with RC4) and generate
MACs.

FIPS_ENCRYPTION_FLAG

0x00000010

All encryption and Message Authentication Code generation routines MUST
be Federal Information Processing Standard (FIPS) 140-1 compliant.

Section 5.3.2 describes how the client and server negotiate the security parameters for a given
connection.

extEncryptionMethods (4 bytes): A 32-bit unsigned integer. This field is used exclusively for the
French locale. In French locale clients, encryptionMethods MUST be set to zero and
extEncryptionMethods MUST be set to the value to which encryptionMethods would have
been set. For non-French locale clients, this field MUST be set to zero.

2.2.1.3.4 Client Network Data (TS_UD_CS_NET)

The TS_UD_CS_NET packet contains a list of requested virtual channels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

channelCount

54 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

channelDefArray (variable)

...

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_NET (0xC003).

channelCount (4 bytes): A 32-bit, unsigned integer. The number of requested static virtual

channels (the maximum allowed is 31).

channelDefArray (variable): A variable-length array containing the information for requested static
virtual channels encapsulated in CHANNEL_DEF structures (section 2.2.1.3.4.1). The number of
CHANNEL_DEF structures which follows is given by the channelCount field.

2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)

The CHANNEL_DEF packet contains information for a particular static virtual channel.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

name

...

options

name (8 bytes): An 8-byte array containing a null-terminated collection of seven ANSI characters
that uniquely identify the channel.

options (4 bytes): A 32-bit, unsigned integer. Channel option flags.

Flag Meaning

CHANNEL_OPTION_INITIALIZED

0x80000000

This flag is unused and its value MUST be ignored by the server.

CHANNEL_OPTION_ENCRYPT_RDP

0x40000000

This flag is unused and its value MUST be ignored by the server.

CHANNEL_OPTION_ENCRYPT_SC

0x20000000

This flag is unused and its value MUST be ignored by the server.

CHANNEL_OPTION_ENCRYPT_CS

0x10000000

This flag is unused and its value MUST be ignored by the server.

CHANNEL_OPTION_PRI_HIGH

0x08000000

Channel data MUST be sent with high MCS priority.

CHANNEL_OPTION_PRI_MED

0x04000000

Channel data MUST be sent with medium MCS priority.

CHANNEL_OPTION_PRI_LOW

0x02000000

Channel data MUST be sent with low MCS priority.

CHANNEL_OPTION_COMPRESS_RDP Virtual channel data MUST be compressed if RDP data is being

55 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

0x00800000 compressed.

CHANNEL_OPTION_COMPRESS

0x00400000

Virtual channel data MUST be compressed, regardless of RDP
compression settings.

CHANNEL_OPTION_SHOW_PROTOCOL

0x00200000

The value of this flag MUST be ignored by the server. The
visibility of the Channel PDU Header (section 2.2.6.1.1) is
determined by the CHANNEL_FLAG_SHOW_PROTOCOL
(0x00000010) flag as defined in the flags field (section
2.2.6.1.1).

REMOTE_CONTROL_PERSISTENT

0x00100000

Channel MUST be persistent across remote control transactions.

2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER)

The TS_UD_CS_CLUSTER data block is sent by the client to the server either to advertise that it can
support the Server Redirection PDUs (sections 2.2.13.2 and 2.2.13.3) or to request a connection to a
given session identifier.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

Flags

RedirectedSessionID

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_CLUSTER (0xC004).

Flags (4 bytes): A 32-bit, unsigned integer. Cluster information flags.

Flag Meaning

REDIRECTION_SUPPORTED

0x00000001

The client can receive server session redirection packets. If this flag
is set, the ServerSessionRedirectionVersionMask MUST contain the
server session redirection version that the client supports.

ServerSessionRedirectionVersionMa
sk

0x0000003C

The server session redirection version that the client supports. See
the discussion which follows this table for more information.

REDIRECTED_SESSIONID_FIELD_V
ALID

0x00000002

The RedirectedSessionID field contains an ID that identifies a
session on the server to associate with the connection.

REDIRECTED_SMARTCARD

0x00000040

The client logged on with a smart card.

The ServerSessionRedirectionVersionMask is a 4-bit enumerated value containing the server
session redirection version supported by the client. The following are possible version values.

56 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

REDIRECTION_VERSION1

0x00

If REDIRECTION_SUPPORTED is set, server session redirection
version 1 is supported by the client.<8>

REDIRECTION_VERSION2

0x01

If REDIRECTION_SUPPORTED is set, server session redirection
version 2 is supported by the client.<9>

REDIRECTION_VERSION3

0x02

If REDIRECTION_SUPPORTED is set, server session redirection
version 3 is supported by the client.<10>

REDIRECTION_VERSION4

0x03

If REDIRECTION_SUPPORTED is set, server session redirection
version 4 is supported by the client.<11>

REDIRECTION_VERSION5

0x04

If REDIRECTION_SUPPORTED is set, server session redirection
version 5 is supported by the client.<12>

REDIRECTION_VERSION6

0x05

If REDIRECTION_SUPPORTED is set, server session redirection

version 6 is supported by the client.<13>

The version values cannot be combined; only one value MUST be specified if the
REDIRECTED_SESSIONID_FIELD_VALID (0x00000002) flag is present in the Flags field.

RedirectedSessionID (4 bytes): A 32-bit unsigned integer. If the
REDIRECTED_SESSIONID_FIELD_VALID flag is set in the Flags field, then the
RedirectedSessionID field contains a valid session identifier to which the client requests to

connect.

2.2.1.3.6 Client Monitor Data (TS_UD_CS_MONITOR)

The TS_UD_CS_MONITOR packet describes the client-side display monitor layout. This packet is an
Extended Client Data Block and MUST NOT be sent to a server which does not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001)

as described in section 2.2.1.2.1.

The maximum width of the virtual desktop resulting from the union of the monitors contained in the
monitorDefArray field MUST NOT exceed 32,766 pixels. Similarly, the maximum height of the virtual
desktop resulting from the union of the monitors contained in the monitorDefArray field MUST NOT
exceed 32,766 pixels. The minimum permitted size of the virtual desktop is 200 x 200 pixels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

flags

monitorCount

monitorDefArray (variable)

...

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MONITOR (0xC005).

57 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of display monitor definitions in
the monitorDefArray field (the maximum allowed is 16).

monitorDefArray (variable): A variable-length array containing a series of TS_MONITOR_DEF
structures (section 2.2.1.3.6.1) which describe the display monitor layout of the client. The
number of TS_MONITOR_DEF structures is given by the monitorCount field.

2.2.1.3.6.1 Monitor Definition (TS_MONITOR_DEF)

The TS_MONITOR_DEF packet describes the configuration of a client-side display monitor. The x and y
coordinates used to describe the monitor position MUST be relative to the upper-left corner of the

monitor designated as the "primary display monitor" (the upper-left corner of the primary monitor is
always (0, 0)).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

left

top

right

bottom

flags

left (4 bytes): A 32-bit, signed integer. Specifies the x-coordinate of the upper-left corner of the
display monitor.

top (4 bytes): A 32-bit, signed integer. Specifies the y-coordinate of the upper-left corner of the

display monitor.

right (4 bytes): A 32-bit, signed integer. Specifies the inclusive x-coordinate of the lower-right
corner of the display monitor.

bottom (4 bytes): A 32-bit, signed integer. Specifies the inclusive y-coordinate of the lower-right
corner of the display monitor.

flags (4 bytes): A 32-bit, unsigned integer. Monitor configuration flags.

Flag Meaning

TS_MONITOR_PRIMARY

0x00000001

The top, left, right, and bottom fields describe the position of the primary
monitor.

2.2.1.3.7 Client Message Channel Data (TS_UD_CS_MCS_MSGCHANNEL)

The TS_UD_CS_MCS_MSGCHANNEL packet indicates support for the message channel which is used
to transport the Initiate Multitransport Request PDU (section 2.2.15.1). This packet is an Extended
Client Data Block and MUST NOT be sent to a server which does not advertise support for Extended

58 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section

2.2.1.3.1). The User Data Header type field MUST be set to CS_MCS_MSGCHANNEL (0xC006).

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

2.2.1.3.8 Client Multitransport Channel Data (TS_UD_CS_MULTITRANSPORT)

The TS_UD_CS_MULTITRANSPORT packet is used to indicate support for the RDP Multitransport Layer
([MS-RDPEMT] section 1.3) and to specify multitransport characteristics. This packet is an Extended

Client Data Block and MUST NOT be sent to a server which does not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MULTITRANSPORT (0xC00A).

flags (4 bytes): A 32-bit, unsigned integer that specifies protocols supported by the client-side
multitransport layer.

Value Meaning

TRANSPORTTYPE_UDPFECR

0x01

RDP-UDP Forward Error Correction (FEC) reliable transport ([MS-
RDPEUDP] sections 1 to 3).

TRANSPORTTYPE_UDPFECL

0x04

RDP-UDP FEC lossy transport ([MS-RDPEUDP] sections 1 to 3).

TRANSPORTTYPE_UDP_PREFERRED

0x100

Indicates that tunneling of static virtual channel traffic over UDP is
supported ([MS-RDPEDYC] section 3.1.5.4).

SOFTSYNC_TCP_TO_UDP

0x200

Indicates that switching dynamic virtual channels from the TCP to
UDP transport is supported ([MS-RDPEDYC] section 3.1.5.3).

2.2.1.3.9 Client Monitor Extended Data (TS_UD_CS_MONITOR_EX)

59 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The TS_UD_CS_MONITOR_EX packet describes extended attributes of the client-side display monitor
layout defined by the Client Monitor Data block (section 2.2.1.3.6). This packet is an Extended Client

Data Block and MUST NOT be sent to a server which does not advertise support for Extended Client
Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as described in

section 2.2.1.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

flags

monitorAttributeSize

monitorCount

monitorAttributesArray (variable)

...

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MONITOR_EX (0xC008).

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

monitorAttributeSize (4 bytes): A 32-bit, unsigned integer. The size, in bytes, of a single element
in the monitorAttributesArray field. This field MUST be set to 20 bytes, which is the size of the
Monitor Attributes structure (section 2.2.1.3.9.1).

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of elements in the
monitorAttributesArray field. This value MUST be the same as the monitorCount field specified
in the Client Monitor Data block.

monitorAttributesArray (variable): A variable-length array containing a series of Monitor Attribute

structures (section 2.2.1.3.9.1) which describe extended attributes of each display monitor
specified in the Client Monitor Data block. The number of Monitor Attribute structures is specified
by the monitorCount field.

2.2.1.3.9.1 Monitor Attributes (TS_MONITOR_ATTRIBUTES)

The TS_MONITOR_ATTRIBUTES packet describes extended attributes of a client-side display monitor.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

physicalWidth

physicalHeight

orientation

desktopScaleFactor

60 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

deviceScaleFactor

physicalWidth (4 bytes): A 32-bit, unsigned integer. The physical width of the monitor, in
millimeters (mm). This value MUST be ignored if it is less than 10 mm or greater than 10,000 mm
or physicalHeight is less than 10 mm or greater than 10,000 mm.

physicalHeight (4 bytes): A 32-bit, unsigned integer. The physical height of the monitor, in
millimeters. This value MUST be ignored if it is less than 10 mm or greater than 10,000 mm or
physicalWidth is less than 10 mm or greater than 10,000 mm.

orientation (4 bytes): A 32-bit, unsigned integer. The orientation of the monitor, in degrees. This
value MUST be ignored if it is invalid.

Value Meaning

ORIENTATION_LANDSCAPE

0

The desktop is not rotated.

ORIENTATION_PORTRAIT

90

The desktop is rotated clockwise by 90 degrees.

ORIENTATION_LANDSCAPE_FLIPPED

180

The desktop is rotated clockwise by 180 degrees.

ORIENTATION_PORTRAIT_FLIPPED

270

The desktop is rotated clockwise by 270 degrees.

desktopScaleFactor (4 bytes): A 32-bit, unsigned integer. The desktop scale factor of the monitor.

This value MUST be ignored if it is less than 100% or greater than 500% or deviceScaleFactor is
not 100%, 140% or 180%.

deviceScaleFactor (4 bytes): A 32-bit, unsigned integer. The device scale factor of the monitor.

This value MUST be ignored if it is not set to 100%, 140%, or 180% or desktopScaleFactor is
less than 100% or greater than 500%.<14>

2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response

The MCS Connect Response PDU is an RDP Connection Sequence PDU sent from server to client during
the Basic Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Connect Initial
PDU (section 2.2.1.3). The MCS Connect Response PDU encapsulates a GCC Conference Create

Response, which encapsulates concatenated blocks of settings data. A basic high-level overview of the
nested structure for the Server MCS Connect Response PDU is illustrated in section 1.3.1.1, in the
figure specifying MCS Connect Response PDU. Note that the order of the settings data blocks is
allowed to vary from that shown in the previously mentioned figure and the message syntax layout
that follows. This is possible because each data block is identified by a User Data Header structure
(section 2.2.1.4.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCrsp (variable)

61 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

gccCCrsp (variable)

...

serverCoreData (variable)

...

serverNetworkData (variable)

...

serverSecurityData (variable)

...

serverMessageChannelData (optional)

... serverMultitransportChannelData (optional)

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCrsp (variable): Variable-length BER-encoded MCS Connect Response structure (using definite-

length encoding) as described in [T125] section 11.2 (the ASN.1 structure definition is detailed in
[T125] section 7, part 2). The userData field of the MCS Connect Response encapsulates the GCC
Conference Create Response data (contained in the gccCCrsp and subsequent fields).

gccCCrsp (variable): Variable-length PER-encoded GCC Connect Data structure which encapsulates
a Connect GCC PDU that contains a GCC Conference Create Response structure as described in
[T124] (the ASN.1 structure definitions are specified in [T124] section 8.7) appended as user data

to the MCS Connect Response (using the format specified in [T124] sections 9.5 and 9.6). The
userData field of the GCC Conference Create Response contains one user data set consisting of
concatenated Server Data Blocks.

serverCoreData (variable): Variable-length Server Core Data structure (section 2.2.1.4.2).

serverNetworkData (variable): Variable-length Server Network Data structure (section 2.2.1.4.4).

serverSecurityData (variable): Variable-length Server Security Data structure (section 2.2.1.4.3).

serverMessageChannelData (6 bytes): Optional Server Message Channel Data structure (section

2.2.1.4.5). This field MUST NOT be included if the client did not populate the optional
clientMessageChannelData field in the MCS Connect Initial PDU (section 2.2.1.3).

serverMultitransportChannelData (8 bytes): Optional Server Multitransport Channel Data
structure (section 2.2.1.4.6). This field MUST NOT be included if the client did not populate the

62 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

optional clientMultitransportChannelData field in the MCS Connect Initial PDU (section
2.2.1.3).

2.2.1.4.1 User Data Header (TS_UD_HEADER)

See section 2.2.1.3.1 for a description of the User Data Header.

2.2.1.4.2 (Updated Section) Server Core Data (TS_UD_SC_CORE)

The TS_UD_SC_CORE data block contains core server connection-related information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

version

clientRequestedProtocols (optional)

earlyCapabilityFlags (optional)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_CORE (0x0C01).

version (4 bytes): A 32-bit, unsigned integer. The server version number for the RDP. The major
version number is stored in the high two bytes, while the minor version number is stored in the
low two bytes.

Value Meaning

0x00080001 RDP 4.0 servers

0x00080004 RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, and 8.1 servers

0x00080005 RDP 10.0 servers

0x00080006 RDP 10.1 servers

0x00080007 RDP 10.2 servers

0x00080008 RDP 10.3 servers

0x00080009 RDP 10.4 servers

0x0008000A RDP 10.5 servers

0x0008000B RDP 10.6 servers

0x0008000C RDP 10.7 servers

0x0008000D RDP 10.8 servers

0x0008000E RDP 10.9 servers

0x0008000F RDP 10.10 servers

0x00080010 RDP 10.11 servers

63 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the server advertises a version number greater than or equal to 0x00080004, it MUST support a
maximum length of 512 bytes for the UserName field in the Info Packet (section 2.2.1.11.1.1).

clientRequestedProtocols (4 bytes): A 32-bit, unsigned integer that contains the flags sent by the
client in the requestedProtocols field of the RDP Negotiation Request (section 2.2.1.1.1). In

the event that an RDP Negotiation Request was not received from the client, this field MUST be
initialized to PROTOCOL_RDP (0). If this field is not present, all of the subsequent fields MUST NOT
be present.

earlyCapabilityFlags (4 bytes): A 32-bit, unsigned integer that specifies capabilities early in the
connection sequence.

Value Meaning

RNS_UD_SC_EDGE_ACTIONS_SUPPORTED_V1

0x00000001

Indicates that the following key combinations are
reserved by the server operating system:

▪ WIN + Z

▪ WIN + CTRL + TAB

▪ WIN + C

▪ WIN + .

▪ WIN + SHIFT + .

In addition, the monitor boundaries of the remote session
are employed by the server operating system to trigger
user interface elements via touch or mouse gestures.

RNS_UD_SC_DYNAMIC_DST_SUPPORTED

0x00000002

Indicates that the server supports Dynamic DST. Dynamic
DST information is provided by the client in the
cbDynamicDSTTimeZoneKeyName,
dynamicDSTTimeZoneKeyName, and
dynamicDaylightTimeDisabled fields of the Extended
Info Packet (section 2.2.1.11.1.1.1).

RNS_UD_SC_EDGE_ACTIONS_SUPPORTED_V2

0x00000004

Indicates that the following key combinations are
reserved by the server operating system:

▪ WIN + Z

▪ WIN + TAB

▪ WIN + A

In addition, the monitor boundaries of the remote session
are employed by the server operating system to trigger
user interface elements via touch.

RNS_UD_SC_SKIP_CHANNELJOIN_SUPPORTED

0x00000008

Indicates that the server supports skipping the MCS

Channel Join Request PDUs (section 2.2.1.8) and MCS
Channel Join Confirm PDUs (section 2.2.1.9) in the
Channel Connection phase of the RDP Connection
Sequence (section 1.3.1.1).

If this flag is set, the server considers all MCS channels as
joined after the MCS Attach User Confirm PDU (section
2.2.1.7) has been sent (section 3.3.5.3.8).

If this field is present, all of the preceding fields MUST also be present.

64 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1)

The TS_UD_SC_SEC1 data block returns negotiated security-related information to the client. See
section 5.3.2 for a detailed discussion of how this information is used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

encryptionMethod

encryptionLevel

serverRandomLen (optional)

serverCertLen (optional)

serverRandom (variable)

...

serverCertificate (variable)

...

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_SECURITY (0x0C02).

encryptionMethod (4 bytes): A 32-bit, unsigned integer. The selected cryptographic method to use

for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST be set to
ENCRYPTION_METHOD_NONE (0).

Value Meaning

ENCRYPTION_METHOD_NONE

0x00000000

No encryption or Message Authentication Codes (MACs) will be used.

ENCRYPTION_METHOD_40BIT

0x00000001

40-bit session keys will be used to encrypt data (with RC4) and generate
MACs.

ENCRYPTION_METHOD_128BIT

0x00000002

128-bit session keys will be used to encrypt data (with RC4) and generate
MACs.

ENCRYPTION_METHOD_56BIT

0x00000008

56-bit session keys will be used to encrypt data (with RC4) and generate
MACs.

ENCRYPTION_METHOD_FIPS

0x00000010

All encryption and Message Authentication Code generation routines will be
FIPS 140-1 compliant.

encryptionLevel (4 bytes): A 32-bit, unsigned integer that describes the encryption behavior to use
for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST be set to
ENCRYPTION_LEVEL_NONE (0).

65 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Name Value

ENCRYPTION_LEVEL_NONE 0x00000000

ENCRYPTION_LEVEL_LOW 0x00000001

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE 0x00000002

ENCRYPTION_LEVEL_HIGH 0x00000003

ENCRYPTION_LEVEL_FIPS 0x00000004

See section 5.3.1 for a description of each of the low, client-compatible, high, and FIPS encryption
levels.

serverRandomLen (4 bytes): An optional 32-bit, unsigned integer that specifies the size in bytes of
the serverRandom field. If the encryptionMethod and encryptionLevel fields are both set to
zero, then this field MUST NOT be present and the length of the serverRandom field MUST be
zero. If either the encryptionMethod or encryptionLevel field is non-zero, this field MUST be

set to 0x00000020.

serverCertLen (4 bytes): An optional 32-bit, unsigned integer that specifies the size in bytes of the
serverCertificate field. If the encryptionMethod and encryptionLevel fields are both set to

zero, then this field MUST NOT be present and the length of the serverCertificate field MUST be
zero.

serverRandom (variable): The variable-length server random value used to derive session keys
(sections 5.3.4 and 5.3.5). The length in bytes is given by the serverRandomLen field. If the
encryptionMethod and encryptionLevel fields are both set to zero, then this field MUST NOT be
present.

serverCertificate (variable): The variable-length certificate containing the server's public key
information. The length in bytes is given by the serverCertLen field. If the encryptionMethod
and encryptionLevel fields are both set to zero, then this field MUST NOT be present.

2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE)

The SERVER_CERTIFICATE structure describes the generic server certificate structure to which all
server certificates present in the Server Security Data (section 2.2.1.4.3) conform.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVersion

certData (variable)

...

dwVersion (4 bytes): A 32-bit, unsigned integer. The format of this field is described by the
following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

certChainVersion t

66 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

certChainVersion (31 bits): A 31-bit, unsigned integer that contains the certificate version.

Value (31 bits) Meaning

CERT_CHAIN_VERSION_1

0x00000001

The certificate contained in the certData field is a Server Proprietary
Certificate (section 2.2.1.4.3.1.1).

CERT_CHAIN_VERSION_2

0x00000002

The certificate contained in the certData field is an X.509 Certificate
(section 5.3.3.2).

t (1 bit): A 1-bit field that indicates whether the certificate contained in the certData field has

been permanently or temporarily issued to the server.

Value (1 bit) Meaning

0 The certificate has been permanently issued to the server.

1 The certificate has been temporarily issued to the server.

certData (variable): Certificate data. The format of this certificate data is determined by the
dwVersion field.

2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)

The PROPRIETARYSERVERCERTIFICATE structure describes a signed certificate containing the server's
public key and conforming to the structure of a Server Certificate (section 2.2.1.4.3.1). For a detailed
description of Proprietary Certificates, see section 5.3.3.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVersion

dwSigAlgId

dwKeyAlgId

wPublicKeyBlobType wPublicKeyBlobLen

PublicKeyBlob (variable)

...

wSignatureBlobType wSignatureBlobLen

SignatureBlob (variable)

...

dwVersion (4 bytes): A 32-bit, unsigned integer. The certificate version number. This field MUST be
set to CERT_CHAIN_VERSION_1 (0x00000001).

dwSigAlgId (4 bytes): A 32-bit, unsigned integer. The signature algorithm identifier. This field MUST

be set to SIGNATURE_ALG_RSA (0x00000001).

67 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

dwKeyAlgId (4 bytes): A 32-bit, unsigned integer. The key algorithm identifier. This field MUST be
set to KEY_EXCHANGE_ALG_RSA (0x00000001).

wPublicKeyBlobType (2 bytes): A 16-bit, unsigned integer. The type of data in the PublicKeyBlob
field. This field MUST be set to BB_RSA_KEY_BLOB (0x0006).

wPublicKeyBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the PublicKeyBlob
field.

PublicKeyBlob (variable): Variable-length server public key bytes, formatted using the Rivest-
Shamir-Adleman (RSA) Public Key structure (section 2.2.1.4.3.1.1.1). The length in bytes is given
by the wPublicKeyBlobLen field.

wSignatureBlobType (2 bytes): A 16-bit, unsigned integer. The type of data in the SignatureBlob
field. This field is set to BB_RSA_SIGNATURE_BLOB (0x0008).

wSignatureBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the SignatureBlob
field.

SignatureBlob (variable): Variable-length signature of the certificate created with the Terminal
Services Signing Key (sections 5.3.3.1.1 and 5.3.3.1.2). The length in bytes is given by the
wSignatureBlobLen field.

2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)

The structure used to describe a public key in a Proprietary Certificate (section 2.2.1.4.3.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

magic

keylen

bitlen

datalen

pubExp

modulus (variable)

...

magic (4 bytes): A 32-bit, unsigned integer. The sentinel value. This field MUST be set to
0x31415352.

keylen (4 bytes): A 32-bit, unsigned integer. The size in bytes of the modulus field. This value is
directly related to the bitlen field and MUST be ((bitlen / 8) + 8) bytes.

bitlen (4 bytes): A 32-bit, unsigned integer. The number of bits in the public key modulus.

datalen (4 bytes): A 32-bit, unsigned integer. The maximum number of bytes that can be encoded
using the public key. This value is directly related to the bitlen field and MUST be ((bitlen / 8) - 1)
bytes.

pubExp (4 bytes): A 32-bit, unsigned integer. The public exponent of the public key.

68 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

modulus (variable): A variable-length array of bytes containing the public key modulus. The length
in bytes of this field is given by the keylen field. The modulus field contains all (bitlen / 8) bytes

of the public key modulus and 8 bytes of zero padding (which MUST follow after the modulus
bytes).

2.2.1.4.4 Server Network Data (TS_UD_SC_NET)

The TS_UD_SC_NET data block is a reply to the static virtual channel list presented in the Client
Network Data structure (section 2.2.1.3.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

MCSChannelId channelCount

channelIdArray (variable)

...

Pad (optional)

header (4 bytes): A GCC user data block header, as specified in section User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_NET (0x0C03).

MCSChannelId (2 bytes): A 16-bit, unsigned integer. The MCS channel identifier of the I/O channel.

channelCount (2 bytes): A 16-bit, unsigned integer. The number of 16-bit, unsigned integer MCS
channel IDs in the channelIdArray field.

channelIdArray (variable): A variable-length array of MCS channel IDs (each channel ID is a 16-

bit, unsigned integer) which have been allocated (the number is given by the channelCount
field). Each MCS channel ID corresponds in position to the channels requested in the Client

Network Data structure.

Pad (2 bytes): A 16-bit, unsigned integer. Optional padding. Values in this field MUST be ignored.
The size in bytes of the Server Network Data structure MUST be a multiple of 4. If the
channelCount field contains an odd value, then the size of the channelIdArray (and by
implication the entire Server Network Data structure) will not be a multiple of 4. In this scenario,
the Pad field MUST be present and it is used to add an additional 2 bytes to the size of the Server
Network Data structure. If the channelCount field contains an even value, then the Pad field is

not required and MUST NOT be present.

2.2.1.4.5 Server Message Channel Data (TS_UD_SC_MCS_MSGCHANNEL)

The TS_UD_SC_MCS_MSGCHANNEL packet is used to specify the ID of the MCS channel which

transports the Multitransport Bootstrapping PDUs (sections 2.2.15.1 and 2.2.15.2) and Network
Characteristics Detection PDUs (sections 2.2.14.3 and 2.2.14.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

MCSChannelID

69 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.4.1). The User Data Header type field MUST be set to SC_MCS_MSGCHANNEL (0x0C04).

MCSChannelID (2 bytes): A 16-bit, unsigned integer that specifies the MCS channel identifier of the
MCS message channel. If this value is zero, then the channel MUST NOT be joined (section

3.2.5.3.8), and the PDUs which are transported on this channel cannot be transmitted.

2.2.1.4.6 Server Multitransport Channel Data (TS_UD_SC_MULTITRANSPORT)

The TS_UD_CS_MULTITRANSPORT packet is used to indicate support for the RDP Multitransport
Layer ([MS-RDPEMT] section 1.3) and to specify multitransport characteristics.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section

2.2.1.3.1). The User Data Header type field MUST be set to SC_MULTITRANSPORT (0x0C08).

flags (4 bytes): A 32-bit, unsigned integer that specifies protocols supported by the server-side
multitransport layer.

Value Meaning

TRANSPORTTYPE_UDPFECR

0x01

RDP-UDP Forward Error Correction (FEC) reliable transport ([MS-
RDPEUDP] sections 1 to 3).

TRANSPORTTYPE_UDPFECL

0x04

RDP-UDP FEC lossy transport ([MS-RDPEUDP] sections 1 to 3).<15>

TRANSPORTTYPE_UDP_PREFERRED

0x100

Indicates that tunneling of static virtual channel traffic over UDP is
supported ([MS-RDPEDYC] section 3.1.5.4).

SOFTSYNC_TCP_TO_UDP

0x200

Indicates that switching dynamic virtual channels from the TCP to
UDP transport is supported ([MS-RDPEDYC] section 3.1.5.3).

If the server advertises the SOFTSYNC_TCP_TO_UDP flag, then the
server MUST support processing success responses in the Initiate
Multitransport Response PDU (section 2.2.15.2).

2.2.1.5 Client MCS Erect Domain Request PDU

The MCS Erect Domain Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an

overview of the RDP Connection Sequence phases). It is sent after receiving the MCS Connect
Response PDU (section 2.2.1.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

70 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

x224Data mcsEDrq

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsEDrq (5 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Erect Domain

Request structure, as specified in [T125] section 11.8 (the ASN.1 structure definitions are given in
[T125] section 7, parts 3 and 10).

2.2.1.6 Client MCS Attach User Request PDU

The MCS Attach User Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence to request a User Channel ID

(see section 1.3.1.1 for an overview of the RDP Connection Sequence phases). It is sent after
transmitting the MCS Erect Domain Request PDU (section 2.2.1.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsAUrq

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsAUrq (1 byte): PER-encoded MCS Domain PDU that encapsulates an MCS Attach User Request

structure, as specified in [T125] section 11.17 (the ASN.1 structure definitions are given in [T125]
section 7, parts 5 and 10).

2.2.1.7 Server MCS Attach User Confirm PDU

The MCS Attach User Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Attach User
Request PDU (section 2.2.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsAUcf

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in section [X224] 13.7.

71 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

mcsAUcf (4 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Attach User Confirm
structure, as specified in [T125] sections 11.18 (the ASN.1 structure definitions are given in

[T125] section 7, parts 5 and 10).

2.2.1.8 Client MCS Channel Join Request PDU

The MCS Channel Join Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after receiving the MCS Attach User

Confirm PDU (section 2.2.1.7). The client uses the MCS Channel Join Request PDU to join the user
channel obtained from the Attach User Confirm PDU, the I/O channel (section 2.2.1.4.4), the message
channel (section 2.2.1.4.5), and all of the static virtual channels obtained from the Server Network
Data structure (section 2.2.1.4.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCJrq

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCJrq (5 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Channel Join
Request structure as specified in [T125] section 11.21 (the ASN.1 structure definitions are given in
[T125] section 7, parts 6 and 10).

2.2.1.9 Server MCS Channel Join Confirm PDU

The MCS Channel Join Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Channel Join
Request PDU (section 2.2.1.8).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCJcf

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

72 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

mcsCJcf (8 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Channel Join Confirm
PDU structure, as specified in [T125] section 11.22 (the ASN.1 structure definitions are given in

[T125] section 7, parts 6 and 10).

2.2.1.10 Client Security Exchange PDU

The Security Exchange PDU is an optional RDP Connection Sequence PDU that is sent from client to
server during the RDP Security Commencement phase of the RDP Connection Sequence (see section
1.3.1.1 for an overview of the RDP Connection Sequence phases). It is sent after all of the requested

MCS Channel Join Confirm PDUs (section 2.2.1.9) have been received.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityExchangePduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Exchange
PDU Data (section 2.2.1.10.1) structure.

securityExchangePduData (variable): The actual contents of the Security Exchange PDU, as
specified in section 2.2.1.10.1.

2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET)

 The TS_SECURITY_PACKET structure contains the encrypted client random value which is used

together with the server random (section 2.2.1.4.3) to derive session keys to secure the connection
(sections 5.3.4 and 5.3.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

basicSecurityHeader

length

encryptedClientRandom (variable)

...

73 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

basicSecurityHeader (4 bytes): A Basic Security Header (section 2.2.8.1.1.2.1). The flags field of
the security header MUST contain the SEC_EXCHANGE_PKT flag (0x0001).

length (4 bytes): A 32-bit, unsigned integer. The size in bytes of the buffer containing the encrypted
client random value, not including the header length.

encryptedClientRandom (variable): The client random value encrypted with the public key of the
server (section 5.3.4).

2.2.1.11 Client Info PDU

The Client Info PDU is an RDP Connection Sequence PDU sent from client to server during the Secure
Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of the
RDP Connection Sequence phases). It is sent after transmitting a Security Exchange
PDU (section 2.2.1.10) or, if the Security Exchange PDU was not sent, it is transmitted after receiving
all requested MCS Channel Join Confirm PDUs (section 2.2.1.9).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

clientInfoPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Client Info PDU
Data (section 2.2.1.11.1) structure.

clientInfoPduData (variable): The contents of the Client Info PDU, as specified in section

2.2.1.11.1.

2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)

The CLIENT_INFO_PDU structure serves as a wrapper for a Security Header (section 2.2.8.1.1.2) and
the actual client information contained in a TS_INFO_PACKET structure (section 2.2.1.11.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

securityHeader (variable)

...

74 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

infoPacket (variable)

...

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

The flags field of the security header MUST contain the SEC_INFO_PKT flag (section
2.2.8.1.1.2.1).

infoPacket (variable): Client information, as specified in TS_INFO_PACKET.

2.2.1.11.1.1 Info Packet (TS_INFO_PACKET)

The TS_INFO_PACKET structure contains extra information not passed to the server during the Basic

Settings Exchange phase (section 1.3.1.1) of the RDP Connection Sequence, primarily to ensure that it
gets encrypted (as auto-logon password data and other sensitive information is passed here).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CodePage

flags

cbDomain cbUserName

cbPassword cbAlternateShell

cbWorkingDir Domain (variable)

...

UserName (variable)

...

Password (variable)

...

AlternateShell (variable)

75 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

WorkingDir (variable)

...

extraInfo (variable)

...

CodePage (4 bytes): A 32-bit, unsigned integer. If the flags field does not contain the
INFO_UNICODE flag (0x00000010), then this field MUST contain the ANSI code page descriptor
being used by the client (for a list of code pages, see [MSDN-CP]) to encode the character fields in

the Info Packet and Extended Info Packet (section 2.2.1.11.1.1.1). However, if the flags field
contains the INFO_UNICODE flag, then the CodePage field MUST contain the active language

identifier in the low-word<16> (for a list of language identifiers, see [MSDN-MUI]); the contents
of the high-word MUST be ignored by the server. The active language identifier SHOULD be
ignored by the server if the keyboardLayout field of the Client Core Data structure (section
2.2.1.3.2) is set to zero.<17>

flags (4 bytes): A 32-bit unsigned integer. Option flags.

Flag Meaning

INFO_MOUSE

0x00000001

Indicates that the client machine has a mouse attached.

INFO_DISABLECTRLALTDEL

0x00000002

Indicates that the CTRL+ALT+DEL (or the equivalent) secure access
keyboard sequence is not required at the logon prompt.

INFO_AUTOLOGON

0x00000008

The client requests auto logon using the included user name,
password and domain.

INFO_UNICODE

0x00000010

Indicates that the character set for strings in the Info Packet and
Extended Info Packet (section 2.2.1.11.1.1.1) is Unicode. If this
flag is absent, then the ANSI character set that is specified by the
ANSI code page descriptor in the CodePage field is used for strings
in the Info Packet and Extended Info Packet.

INFO_MAXIMIZESHELL

0x00000020

Indicates that the alternate shell (specified in the AlternateShell
field of the Info Packet structure) MUST be started in a maximized
state.

INFO_LOGONNOTIFY

0x00000040

Indicates that the client wants to be informed of the user name and
domain used to log on to the server, as well as the ID of the session
to which the user connected. The Save Session Info PDU (section
2.2.10.1) is sent from the server to notify the client of this
information using a Logon Info Version 1 (section 2.2.10.1.1.1) or
Logon Info Version 2 (section 2.2.10.1.1.2) structure.

INFO_COMPRESSION

0x00000080

Indicates that the CompressionTypeMask is valid and contains the
highest compression package type supported by the client.

CompressionTypeMask

0x00001E00

Indicates the highest compression package type supported. See the
discussion which follows this table for more information.

INFO_ENABLEWINDOWSKEY Indicates that the client uses the Windows key on Windows-
compatible keyboards.

76 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

0x00000100

INFO_REMOTECONSOLEAUDIO

0x00002000

Requests that audio played in a session hosted on a remote server be
played on the server.

INFO_FORCE_ENCRYPTED_CS_PDU

0x00004000

Indicates that all client-to-server traffic is encrypted when encryption
is in force. Setting this flag prevents the server from processing
unencrypted packets in man-in-the-middle attack scenarios. This flag
is not understood by RDP 4.0, 5.0, and 5.1 servers.

INFO_RAIL

0x00008000

Indicates that the remote connection being established is for the
purpose of launching remote programs using the protocol defined in
[MS-RDPERP] sections 2 and 3. This flag is not understood by RDP
4.0, 5.0, 5.1, and 5.2 servers.

INFO_LOGONERRORS

0x00010000

Indicates a request for logon error notifications using the Save
Session Info PDU. This flag is not understood by RDP 4.0, 5.0, 5.1,
and 5.2 servers.

INFO_MOUSE_HAS_WHEEL

0x00020000

Indicates that the mouse which is connected to the client machine
has a scroll wheel. This flag is not understood by RDP 4.0, 5.0, 5.1,
and 5.2 servers.

INFO_PASSWORD_IS_SC_PIN

0x00040000

Indicates that the Password field in the Info Packet contains a smart
card personal identification number (PIN). This flag is not understood
by RDP 4.0, 5.0, 5.1, and 5.2 servers.

INFO_NOAUDIOPLAYBACK

0x00080000

Indicates that audio redirection (using the protocol defined in [MS-
RDPEA] sections 2 and 3) MUST NOT take place. This flag is not
understood by RDP 4.0, 5.0, 5.1, and 5.2 servers. If the
INFO_NOAUDIOPLAYBACK flag is not set, then audio redirection
SHOULD take place if the INFO_REMOTECONSOLEAUDIO
(0x00002000) flag is also not set.

INFO_USING_SAVED_CREDS

0x00100000

Any user credentials sent on the wire during the RDP Connection
Sequence (sections 1.3.1.1 and 1.3.1.2) have been retrieved from a
credential store and were not obtained directly from the user. This
flag is not understood by RDP 4.0, 5.0, 5.1, 5.2, and 6.0 servers.

INFO_AUDIOCAPTURE

0x00200000

Indicates that the redirection of client-side audio input to a session
hosted on a remote server is supported using the protocol defined in
[MS-RDPEAI] sections 2 and 3. This flag is not understood by RDP
4.0, 5.0, 5.1, 5.2, 6.0, and 6.1 servers.

INFO_VIDEO_DISABLE

0x00400000

Indicates that video redirection or playback (using the protocol
defined in [MS-RDPEV] sections 2 and 3) MUST NOT take place. This
flag is not understood by RDP 4.0, 5.0, 5.1, 5.2, 6.0, and 6.1 servers.

INFO_RESERVED1

0x00800000

An unused flag that is reserved for future use. This flag MUST NOT be
set.

INFO_RESERVED2

0x01000000

An unused flag that is reserved for future use. This flag MUST NOT be
set.

INFO_HIDEF_RAIL_SUPPORTED

0x02000000

Indicates that the client supports Enhanced RemoteApp ([MS-
RDPERP] section 1.3.3). The INFO_HIDEF_RAIL_SUPPORTED flag
MUST be ignored if the INFO_RAIL (0x00008000) flag is not specified.
Furthermore, a client that specifies the
INFO_HIDEF_RAIL_SUPPORTED flag MUST send the Remote
Programs Capability Set ([MS-RDPERP] section 2.2.1.1.1) to the
server. The INFO_HIDEF_RAIL_SUPPORTED flag is not understood by
RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, and 8.0 servers.

77 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The CompressionTypeMask is a 4-bit enumerated value containing the highest compression
package support available on the client. The packages codes are:

Value Meaning

PACKET_COMPR_TYPE_8K

0x0

RDP 4.0 bulk compression (section 3.1.8.4.1).

PACKET_COMPR_TYPE_64K

0x1

RDP 5.0 bulk compression (section 3.1.8.4.2).

PACKET_COMPR_TYPE_RDP6

0x2

RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

PACKET_COMPR_TYPE_RDP61

0x3

RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

If a client supports compression package n then it MUST support packages 0...(n - 1).

cbDomain (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the

Domain field. This size excludes the length of the mandatory null terminator.

cbUserName (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
UserName field. This size excludes the length of the mandatory null terminator.

cbPassword (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
Password field. This size excludes the length of the mandatory null terminator.

cbAlternateShell (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in

the AlternateShell field. This size excludes the length of the mandatory null terminator.

cbWorkingDir (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
WorkingDir field. This size excludes the length of the mandatory null terminator.

Domain (variable): Variable-length logon domain of the user (the length in bytes is given by the
cbDomain field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is 52 bytes
(including the mandatory null terminator), while all other versions of RDP servers allow a
maximum length of 512 bytes (including the mandatory null terminator). The field MUST contain

at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

UserName (variable): Variable-length logon user name of the user (the length in bytes is given by
the cbUserName field). The maximum length allowed by RDP 4.0 servers is 44 bytes (including
the mandatory null terminator), while all other versions of RDP servers allow a maximum length of
512 bytes (including the mandatory null terminator). The field MUST contain at least a null
terminator character in Windows-1252 or Unicode format (depending on the presence of the

INFO_UNICODE flag). The contents of the UserName field SHOULD be ignored if the
INFO_PASSWORD_IS_SC_PIN (0x00040000) flag is specified in the flags field.

Password (variable): Variable-length logon password of the user (the length in bytes is given by the

cbPassword field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is 32 bytes
(including the mandatory null terminator), while all other versions of RDP servers allow a
maximum length of 512 bytes (including the mandatory null terminator). The field MUST contain

at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

AlternateShell (variable): Variable-length path to the executable file of an alternate shell, e.g.
"c:\dir\prog.exe" (the length in bytes is given by the cbAlternateShell field). The maximum
allowed length is 512 bytes (including the mandatory null terminator). This field MUST only be

78 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

initialized if the client is requesting a shell other than the default. The field MUST contain at least a
null terminator character in Windows-1252 or Unicode format (depending on the presence of the

INFO_UNICODE flag).

WorkingDir (variable): Variable-length directory that contains the executable file specified in the

AlternateShell field or any related files (the length in bytes is given by the cbWorkingDir field).
The maximum allowed length is 512 bytes (including the mandatory null terminator). This field
MAY be initialized if the client is requesting a shell other than the default. The field MUST contain
at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

extraInfo (variable): Optional and variable-length extended information used in all RDP versions,
except for RDP 4.0, and specified in section 2.2.1.11.1.1.1.

2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET)

The TS_EXTENDED_INFO_PACKET structure contains user information specific to all RDP versions,
except for RDP 4.0.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

clientAddressFamily cbClientAddress

clientAddress (variable)

...

cbClientDir clientDir (variable)

...

clientTimeZone (172 bytes, optional)

...

...

clientSessionId (optional)

performanceFlags (optional)

cbAutoReconnectCookie (optional) autoReconnectCookie (28 bytes, optional)

...

...

... reserved1 (optional)

reserved2 (optional) cbDynamicDSTTimeZoneKeyName (optional)

dynamicDSTTimeZoneKeyName (variable)

79 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

dynamicDaylightTimeDisabled (optional)

clientAddressFamily (2 bytes): A 16-bit, unsigned integer. The numeric socket descriptor for the
client address type.

Value Meaning

AF_INET

0x00002

The clientAddress field contains an IPv4 address.

AF_INET6

0x0017

The clientAddress field contains an IPv6 address.

cbClientAddress (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the

clientAddress field. This size includes the length of the mandatory null terminator.

clientAddress (variable): Variable-length textual representation of the client IPv4 or IPv6 address.
The maximum allowed length (including the mandatory null terminator) is 64 bytes for RDP 5.0,
5.1, 5.2, and 6.0, and 80 bytes for all other RDP versions.

cbClientDir (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the

clientDir field. This size includes the length of the mandatory null terminator.

clientDir (variable): Variable-length directory that contains either (a) the folder path on the client
machine from which the client software is being run, or (b) the full path of the software module
implementing the client (see section 4.1.10 for an example). The maximum allowed length is 512
bytes (including the mandatory null terminator).

clientTimeZone (172 bytes): A TS_TIME_ZONE_INFORMATION structure (section

2.2.1.11.1.1.1.1) that contains time zone information for a client. This field is not read by RDP 5.0

and 5.1 servers. If this field is not present, then all of the subsequent fields MUST NOT be present.

clientSessionId (4 bytes): A 32-bit, unsigned integer. This field was added in RDP 5.1 and is
currently ignored by the server. It SHOULD be set to zero. If this field is present, then the
clientTimeZone field MUST also be present. If this field is not present, then all of the subsequent
fields MUST NOT be present.

performanceFlags (4 bytes): A 32-bit, unsigned integer. It specifies a list of server desktop shell

features to enable or disable in the session (with the goal of optimizing bandwidth usage). This
field is not read by RDP 5.0 servers. If this field is present, then the clientSessionId field MUST
also be present. If this field is not present, then all of the subsequent fields MUST NOT be present.

Flag Meaning

PERF_DISABLE_WALLPAPER

0x00000001

Disable desktop wallpaper.

PERF_DISABLE_FULLWINDOWDRAG

0x00000002

Disable full-window drag (only the window outline is displayed
when the window is moved).

PERF_DISABLE_MENUANIMATIONS

0x00000004

Disable menu animations.

PERF_DISABLE_THEMING

0x00000008

Disable user interface themes.

80 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

PERF_RESERVED1

0x00000010

An unused flag that is reserved for future use. This flag SHOULD
be ignored by the server.

PERF_DISABLE_CURSOR_SHADOW

0x00000020

Disable mouse cursor shadows.

PERF_DISABLE_CURSORSETTINGS

0x00000040

Disable cursor blinking.

PERF_ENABLE_FONT_SMOOTHING

0x00000080

Enable font smoothing.<18>

PERF_ENABLE_DESKTOP_COMPOSITION

0x00000100

Enable Desktop Composition ([MS-RDPEDC] sections 1, 2 and 3;
and [MS-RDPCR2] sections 1, 2 and 3). The usage of Desktop
Composition in a remote session requires that the color depth be
32 bits per pixel (bpp). (See the description of the
highColorDepth, supportedColorDepths and
earlyCapabilityFlags (specifically the
RNS_UD_CS_WANT_32BPP_SESSION (0x0002) flag) fields in
section 2.2.1.3.2 for background on setting the remote session
color depth to 32 bpp.)<19>

PERF_RESERVED2

0x80000000

An unused flag that is reserved for future use. This flag SHOULD
be ignored by the server.

If the connectionType field of the Client Core Data (section 2.2.1.3.2) is set to
CONNECTION_TYPE_AUTODETECT (0x07), and the client indicates support for network
characteristics detection by specifying the RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT
(0x0080) flag in the earlyCapabilityFlags field of the Client Core Data, then the server SHOULD

ignore the contents of the performanceFlags field if the connection type can be determined
(using the PDUs specified in section 2.2.14) and SHOULD instead determine an appropriate set of
performance flags to apply to the remote session based on the detected connection type.

cbAutoReconnectCookie (2 bytes): A 16-bit, unsigned integer. The size in bytes of the cookie
specified by the autoReconnectCookie field. This field MUST be set to zero or 0x001C. The
cbAutoReconnectCookie field is not read by RDP 5.0 and 5.1 servers. If this field is present,
then the performanceFlags field MUST also be present. If this field is not present, then all of the

subsequent fields MUST NOT be present.

autoReconnectCookie (28 bytes): Buffer containing an ARC_CS_PRIVATE_PACKET structure
(section 2.2.4.3). This buffer is a unique cookie that allows a disconnected client to seamlessly
reconnect to a previously established session (see section 5.5 for more details). The
autoReconnectCookie field is not read by RDP 5.0 and 5.1 servers. This field MUST be present if
the cbAutoReconnectCookie field is nonzero.

reserved1 (2 bytes): This field is reserved for future use and has no effect on RDP wire traffic. It

SHOULD<20> be set to zero. If this field is present, the cbAutoReconnectCookie and
reserved2 fields MUST also be present. If this field is not present, then all of the subsequent

fields MUST NOT be present.

reserved2 (2 bytes): This field is reserved for future use and has no effect on RDP wire traffic. It
MUST be set to zero. If this field is present, then the reserved1 field MUST also be present. If this
field is not present, then all of the subsequent fields MUST NOT be present.

cbDynamicDSTTimeZoneKeyName (2 bytes): A 16-bit, unsigned integer. The size, in bytes, of the
dynamicDSTTimeZoneKeyName field. This field is not read by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0,
and 7.1 servers. If this field is present, then the reserved2 and dynamicDaylightTimeDisabled

81 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

fields MUST also be present. If this field is not present, then all of the subsequent fields MUST NOT
be present.<21>

dynamicDSTTimeZoneKeyName (variable): A variable-length array of Unicode characters with no
terminating null, containing the descriptive name of the Dynamic DST time zone on the client. This

field is not read by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 servers. The maximum allowed length
is 254 bytes. This field MUST be present if the cbDynamicDSTTimeZoneKeyName field is
nonzero.<22>

dynamicDaylightTimeDisabled (2 bytes): A 16-bit, unsigned integer that specifies whether
Dynamic DST MUST be disabled in the remote session. This field is not read by RDP 5.0, 5.1, 5.2,
6.0, 6.1, 7.0, and 7.1 servers.

Value Meaning

FALSE

0x0000

Dynamic DST MUST be enabled in the remote session if the feature
is supported.

TRUE

0x0001

Dynamic DST MUST be disabled in the remote session.

If this field is present, then the cbDynamicDSTTimeZoneKeyName field MUST also be present.
If this field is not present, then all of the subsequent fields MUST NOT be present.<23>

2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION)

The TS_TIME_ZONE_INFORMATION structure contains client time zone information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Bias

StandardName (64 bytes)

...

...

StandardDate (16 bytes)

...

...

StandardBias

DaylightName (64 bytes)

...

...

DaylightDate (16 bytes)

82 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

...

DaylightBias

Bias (4 bytes): A 32-bit, unsigned integer that contains the current bias for local time translation on
the client. The bias is the difference, in minutes, between Coordinated Universal Time (UTC) and
local time. All translations between UTC and local time are based on the following formula:

UTC = local time + bias

StandardName (64 bytes): An array of 32 Unicode characters. The descriptive name for standard
time on the client.

StandardDate (16 bytes): A TS_SYSTEMTIME (section 2.2.1.11.1.1.1.1.1) structure that contains

the date and local time when the transition from daylight saving time to standard time occurs on
the client. If this field contains a valid date and time, then the DaylightDate field MUST also

contain a valid date and time. If the wYear, wMonth, wDayOfWeek, wDay, wHour, wMinute,
wSecond, and wMilliseconds fields are all set to zero, then the client does not support daylight
saving time.

StandardBias (4 bytes): A 32-bit, unsigned integer that contains the bias value to be used during
local time translations that occur during standard time. This value is added to the value of the
Bias field to form the bias used during standard time. This field MUST be ignored if a valid date
and time is not specified in the StandardDate field or the wYear, wMonth, wDayOfWeek,

wDay, wHour, wMinute, wSecond, and wMilliseconds fields of the StandardDate field are all
set to zero.

DaylightName (64 bytes): An array of 32 Unicode characters. The descriptive name for daylight
saving time on the client.

DaylightDate (16 bytes): A TS_SYSTEMTIME (section 2.2.1.11.1.1.1.1.1) structure that contains a
date and local time when the transition from standard time to daylight saving time occurs on the
client. If this field contains a valid date and time, then the StandardDate field MUST also contain

a valid date and time. If the wYear, wMonth, wDayOfWeek, wDay, wHour, wMinute,
wSecond, and wMilliseconds fields are all set to zero, then the client does not support daylight
saving time.

DaylightBias (4 bytes): A 32-bit, unsigned integer that contains the bias value to be used during
local time translations that occur during daylight saving time. This value is added to the value of
the Bias field to form the bias used during daylight saving time. This field MUST be ignored if a

valid date and time is not specified in the DaylightDate field or the wYear, wMonth,
wDayOfWeek, wDay, wHour, wMinute, wSecond, and wMilliseconds fields of the
DaylightDate field are all set to zero.

2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)

 The TS_SYSTEMTIME structure contains a date and local time when the transition occurs between
daylight saving time to standard time occurs or standard time to daylight saving time.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wYear wMonth

83 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

wDayOfWeek wDay

wHour wMinute

wSecond wMilliseconds

wYear (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

wMonth (2 bytes): A 16-bit, unsigned integer. The month when transition occurs.

Value Meaning

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September

10 October

11 November

12 December

wDayOfWeek (2 bytes): A 16-bit, unsigned integer. The day of the week when transition occurs.

Value Meaning

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

wDay (2 bytes): A 16-bit, unsigned integer. The occurrence of wDayOfWeek within the month

when the transition takes place.

Value Meaning

1 First occurrence of wDayOfWeek

84 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

2 Second occurrence of wDayOfWeek

3 Third occurrence of wDayOfWeek

4 Fourth occurrence of wDayOfWeek

5 Last occurrence of wDayOfWeek

wHour (2 bytes): A 16-bit, unsigned integer. The hour when transition occurs (0 to 23).

wMinute (2 bytes): A 16-bit, unsigned integer. The minute when transition occurs (0 to 59).

wSecond (2 bytes): A 16-bit, unsigned integer. The second when transition occurs (0 to 59).

wMilliseconds (2 bytes): A 16-bit, unsigned integer. The millisecond when transition occurs (0 to

999).

2.2.1.12 Server License Error PDU - Valid Client

The License Error (Valid Client) PDU is an RDP Connection Sequence PDU sent from server to client
during the Licensing phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of

the RDP Connection Sequence phases). This licensing PDU indicates that the server will not issue the
client a license to store and that the Licensing Phase has ended successfully. This is one possible
licensing PDU that can be sent during the Licensing Phase (see [MS-RDPELE] section 2.2.2 for a list of
all permissible licensing PDUs).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

validClientLicenseData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Valid Client License Data (section 2.2.1.12.1) structure.

85 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).

This field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),

ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security
header does not contain the SEC_ENCRYPT (0x0008) flag (the licensing PDU is not encrypted),
then the field MUST contain a Basic Security Header. This MUST be the case if

SEC_LICENSE_ENCRYPT_SC (0x0200) flag was not set on the Security Exchange
PDU (section 2.2.1.10).

The flags field of the security header MUST contain the SEC_LICENSE_PKT (0x0080) flag (section
2.2.8.1.1.2.1).

validClientLicenseData (variable): The actual contents of the License Error (Valid Client) PDU, as
specified in section 2.2.1.12.1.

2.2.1.12.1 Valid Client License Data (LICENSE_VALID_CLIENT_DATA)

The LICENSE_VALID_CLIENT_DATA structure contains information which indicates that the server will
not issue the client a license to store and that the Licensing Phase has ended successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

preamble

validClientMessage (variable)

...

preamble (4 bytes): Licensing Preamble (section 2.2.1.12.1.1) structure containing header
information. The bMsgType field of the preamble structure MUST be set to ERROR_ALERT (0xFF).

validClientMessage (variable): A Licensing Error Message (section 2.2.1.12.1.3) structure. The

dwStateTransition field MUST be set to ST_NO_TRANSITION (0x00000002). The bbErrorInfo
field MUST contain an empty binary large object (BLOB) of type BB_ERROR_BLOB (0x0004).

2.2.1.12.1.1 Licensing Preamble (LICENSE_PREAMBLE)

The LICENSE_PREAMBLE structure precedes every licensing packet sent on the wire.

86 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bMsgType flags wMsgSize

bMsgType (1 byte): An 8-bit, unsigned integer. A type of the licensing packet. For more details
about the different licensing packets, see [MS-RDPELE] section 2.2.2.

Sent by server:

Value Meaning

LICENSE_REQUEST

0x01

Indicates a License Request PDU ([MS-RDPELE] section 2.2.2.1).

PLATFORM_CHALLENGE

0x02

Indicates a Platform Challenge PDU ([MS-RDPELE] section 2.2.2.4).

NEW_LICENSE

0x03

Indicates a New License PDU ([MS-RDPELE] section 2.2.2.7).

UPGRADE_LICENSE

0x04

Indicates an Upgrade License PDU ([MS-RDPELE] section 2.2.2.6).

Sent by client:

Value Meaning

LICENSE_INFO

0x12

Indicates a License Information PDU ([MS-RDPELE] section 2.2.2.3).

NEW_LICENSE_REQUEST

0x13

Indicates a New License Request PDU ([MS-RDPELE] section
2.2.2.2).

PLATFORM_CHALLENGE_RESPONSE

0x15

Indicates a Platform Challenge Response PDU ([MS-RDPELE] section
2.2.2.5).

Sent by either client or server:

Value Meaning

ERROR_ALERT

0xFF

Indicates a Licensing Error Message PDU (section 2.2.1.12.1.3).

flags (1 byte): An 8-bit unsigned integer. License preamble flags.

Value Meaning

LicenseProtocolVersionMask

0x0F

The license protocol version. See the discussion which follows this
table for more information.

EXTENDED_ERROR_MSG_SUPPORTED

0x80

Indicates that extended error information using the Licensing
Error Message (section 2.2.1.12.1.3) is supported.

The LicenseProtocolVersionMask is a 4-bit value containing the supported license protocol version.
The following are possible version values.

87 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

PREAMBLE_VERSION_2_0

0x2

RDP 4.0

PREAMBLE_VERSION_3_0

0x3

RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, 10.1, 10.2,
10.3, 10.4, and 10.5

wMsgSize (2 bytes): An 16-bit, unsigned integer. The size in bytes of the licensing packet (including
the size of the preamble).

2.2.1.12.1.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)

The LICENSE_BINARY_BLOB structure is used to encapsulate arbitrary length binary licensing data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wBlobType wBlobLen

blobData (variable)

...

wBlobType (2 bytes): A 16-bit, unsigned integer. The data type of the binary information. If
wBlobLen is set to 0, then the contents of this field SHOULD be ignored.

Value Meaning

BB_DATA_BLOB

0x0001

Used by License Information PDU and Platform Challenge
Response PDU ([MS-RDPELE] sections 2.2.2.3 and 2.2.2.5).

BB_RANDOM_BLOB

0x0002

Used by License Information PDU and New License Request PDU
([MS-RDPELE] sections 2.2.2.3 and 2.2.2.2).

BB_CERTIFICATE_BLOB

0x0003

Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).

BB_ERROR_BLOB

0x0004

Used by License Error PDU (section 2.2.1.12).

BB_ENCRYPTED_DATA_BLOB

0x0009

Used by Platform Challenge Response PDU and Upgrade License
PDU ([MS-RDPELE] sections 2.2.2.5 and 2.2.2.6).

BB_KEY_EXCHG_ALG_BLOB

0x000D

Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).

BB_SCOPE_BLOB

0x000E

Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).

BB_CLIENT_USER_NAME_BLOB

0x000F

Used by New License Request PDU ([MS-RDPELE] section
2.2.2.2).

BB_CLIENT_MACHINE_NAME_BLOB

0x0010

Used by New License Request PDU ([MS-RDPELE] section
2.2.2.2).

88 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

wBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the binary information in the
blobData field. If wBlobLen is set to 0, then the blobData field is not included in the Licensing

Binary BLOB structure and the contents of the wBlobType field SHOULD be ignored.

blobData (variable): Variable-length binary data. The size of this data in bytes is given by the

wBlobLen field. If wBlobLen is set to 0, then this field is not included in the Licensing Binary
BLOB structure.

2.2.1.12.1.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)

 The LICENSE_ERROR_MESSAGE structure is used to indicate that an error occurred during the
licensing protocol. Alternatively, it is also used to notify the peer of important status information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwErrorCode

dwStateTransition

bbErrorInfo (variable)

...

dwErrorCode (4 bytes): A 32-bit, unsigned integer. The error or status code.

Sent by client:

Name Value

ERR_INVALID_SERVER_CERTIFICATE 0x00000001

ERR_NO_LICENSE 0x00000002

Sent by server:

Name Value

ERR_INVALID_SCOPE 0x00000004

ERR_NO_LICENSE_SERVER 0x00000006

STATUS_VALID_CLIENT 0x00000007

ERR_INVALID_CLIENT 0x00000008

ERR_INVALID_PRODUCTID 0x0000000B

ERR_INVALID_MESSAGE_LEN 0x0000000C

Sent by client and server:

Name Value

ERR_INVALID_MAC 0x00000003

89 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

dwStateTransition (4 bytes): A 32-bit, unsigned integer. The licensing state to transition into upon
receipt of this message. For more details about how this field is used, see [MS-RDPELE] section

3.1.5.2.

Name Value

ST_TOTAL_ABORT 0x00000001

ST_NO_TRANSITION 0x00000002

ST_RESET_PHASE_TO_START 0x00000003

ST_RESEND_LAST_MESSAGE 0x00000004

bbErrorInfo (variable): A LICENSE_BINARY_BLOB (section 2.2.1.12.1.2) structure which MUST

contain a BLOB of type BB_ERROR_BLOB (0x0004) that includes information relevant to the error
code specified in dwErrorCode.

2.2.1.13 Mandatory Capability Exchange

2.2.1.13.1 Server Demand Active PDU

The Demand Active PDU is an RDP Connection Sequence PDU sent from server to client during the
Capabilities Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent upon successful completion of the Licensing phase of
the RDP Connection Sequence.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

demandActivePduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Demand Active PDU Data (section 2.2.1.13.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

90 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption

Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

demandActivePduData (variable): The contents of the Demand Active PDU, as specified in section

2.2.1.13.1.1.

2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU)

The TS_DEMAND_ACTIVE_PDU structure is a standard T.128 Demand Active PDU ([T128] section
8.4.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareID

... lengthSourceDescriptor

lengthCombinedCapabilities sourceDescriptor (variable)

...

numberCapabilities pad2Octets

capabilitySets (variable)

...

sessionId

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be
set to PDUTYPE_DEMANDACTIVEPDU (1), and the PDUVersion subfield MUST be set to
TS_PROTOCOL_VERSION (0x1).

shareID (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet ([T128] section
8.4.2 for more information regarding share IDs).

91 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit, unsigned integer. The combined size in bytes of
the numberCapabilities, pad2Octets, and capabilitySets fields.

sourceDescriptor (variable): A variable-length array of bytes containing a source descriptor (see
[T128] section 8.4.1 for more information regarding source descriptors).

numberCapabilities (2 bytes): A 16-bit, unsigned integer. The number of capability sets included in
the Demand Active PDU.

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

capabilitySets (variable): An array of Capability Set (section 2.2.1.13.1.1.1) structures. The
number of capability sets is specified by the numberCapabilities field.

sessionId (4 bytes): A 32-bit, unsigned integer. The session identifier. This field is ignored by the
client.

2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET)

 The TS_CAPS_SET structure is used to describe the type and size of a capability set exchanged
between clients and servers. All capability sets conform to this basic structure (section 2.2.7).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

capabilityData (variable)

...

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type identifier of the capability set.

Value Meaning

CAPSTYPE_GENERAL

0x0001

General Capability Set (section 2.2.7.1.1)

CAPSTYPE_BITMAP

0x0002

Bitmap Capability Set (section 2.2.7.1.2)

CAPSTYPE_ORDER

0x0003

Order Capability Set (section 2.2.7.1.3)

CAPSTYPE_BITMAPCACHE

0x0004

Revision 1 Bitmap Cache Capability Set (section 2.2.7.1.4.1)

CAPSTYPE_CONTROL

0x0005

Control Capability Set (section 2.2.7.2.2)

CAPSTYPE_ACTIVATION

0x0007

Window Activation Capability Set (section 2.2.7.2.3)

CAPSTYPE_POINTER

0x0008

Pointer Capability Set (section 2.2.7.1.5)

92 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

CAPSTYPE_SHARE

0x0009

Share Capability Set (section 2.2.7.2.4)

CAPSTYPE_COLORCACHE

0x000A

Color Table Cache Capability Set ([MS-RDPEGDI] section
2.2.1.1)

CAPSTYPE_SOUND

0x000C

Sound Capability Set (section 2.2.7.1.11)

CAPSTYPE_INPUT

0x000D

Input Capability Set (section 2.2.7.1.6)

CAPSTYPE_FONT

0x000E

Font Capability Set (section 2.2.7.2.5)

CAPSTYPE_BRUSH

0x000F

Brush Capability Set (section 2.2.7.1.7)

CAPSTYPE_GLYPHCACHE

0x0010

Glyph Cache Capability Set (section 2.2.7.1.8)

CAPSTYPE_OFFSCREENCACHE

0x0011

Offscreen Bitmap Cache Capability Set (section 2.2.7.1.9)

CAPSTYPE_BITMAPCACHE_HOSTSUPPORT

0x0012

Bitmap Cache Host Support Capability Set (section 2.2.7.2.1)

CAPSTYPE_BITMAPCACHE_REV2

0x0013

Revision 2 Bitmap Cache Capability Set (section 2.2.7.1.4.2)

CAPSTYPE_VIRTUALCHANNEL

0x0014

Virtual Channel Capability Set (section 2.2.7.1.10)

CAPSTYPE_DRAWNINEGRIDCACHE

0x0015

DrawNineGrid Cache Capability Set ([MS-RDPEGDI] section
2.2.1.2)

CAPSTYPE_DRAWGDIPLUS

0x0016

Draw GDI+ Cache Capability Set ([MS-RDPEGDI] section
2.2.1.3)

CAPSTYPE_RAIL

0x0017

Remote Programs Capability Set ([MS-RDPERP] section
2.2.1.1.1)

CAPSTYPE_WINDOW

0x0018

Window List Capability Set ([MS-RDPERP] section 2.2.1.1.2)

CAPSETTYPE_COMPDESK

0x0019

Desktop Composition Extension Capability
Set (section 2.2.7.2.8)

CAPSETTYPE_MULTIFRAGMENTUPDATE

0x001A

Multifragment Update Capability Set (section 2.2.7.2.6)

CAPSETTYPE_LARGE_POINTER

0x001B

Large Pointer Capability Set (section 2.2.7.2.7)

CAPSETTYPE_SURFACE_COMMANDS

0x001C

Surface Commands Capability Set (section 2.2.7.2.9)

93 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

CAPSETTYPE_BITMAP_CODECS

0x001D

Bitmap Codecs Capability Set (section 2.2.7.2.10)

CAPSSETTYPE_FRAME_ACKNOWLEDGE

0x001E

Frame Acknowledge Capability Set ([MS-RDPRFX] section
2.2.1.3)

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

capabilityData (variable): Capability set data which conforms to the structure of the type given by
the capabilitySetType field.

2.2.1.13.2 Client Confirm Active PDU

The Confirm Active PDU is an RDP Connection Sequence PDU sent from client to server during the

Capabilities Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent as a response to the Demand Active

PDU (section 2.2.1.13.1). Once the Confirm Active PDU has been sent, the client can start sending
input PDUs (section 2.2.8) to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

confirmActivePduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Confirm Active PDU Data (section 2.2.1.13.2) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than

ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

94 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

confirmActivePduData (variable): The contents of the Confirm Active PDU, as specified in section
2.2.1.13.2.1.

2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU)

 The TS_CONFIRM_ACTIVE_PDU structure is a standard T.128 Confirm Active PDU ([T128] section
8.4.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareID

... originatorID

lengthSourceDescriptor lengthCombinedCapabilities

sourceDescriptor (variable)

...

numberCapabilities pad2Octets

capabilitySets (variable)

...

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be

set to PDUTYPE_CONFIRMACTIVEPDU (3), and the PDUVersion subfield MUST be set to
TS_PROTOCOL_VERSION (0x1).

shareID (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet (see [T128]

section 8.4.2 for more information regarding share IDs).

originatorID (2 bytes): A 16-bit, unsigned integer. The identifier of the packet originator. This field
MUST be set to the server channel ID (0x03EA).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the

sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit, unsigned integer. The combined size in bytes of
the numberCapabilities, pad2Octets and capabilitySets fields.

95 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

sourceDescriptor (variable): A variable-length array of bytes containing a source descriptor (see
[T128] section 8.4.1 for more information regarding source descriptors).

numberCapabilities (2 bytes): A 16-bit, unsigned integer. Number of capability sets included in the
Confirm Active PDU.

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

capabilitySets (variable): An array of Capability Set (section 2.2.1.13.1.1.1) structures. The
number of capability sets is specified by the numberCapabilities field.

2.2.1.14 Client Synchronize PDU

The Client Synchronize PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after transmitting the Confirm Active
PDU (section 2.2.1.13.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

synchronizePduData (22 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Synchronize PDU Data (section 2.2.1.14.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security

header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

96 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

synchronizePduData (22 bytes): The contents of the Synchronize PDU, as specified in section
2.2.1.14.1.

2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)

The TS_SYNCHRONIZE_PDU structure is a standard T.128 Synchronize PDU ([T128] section 8.6.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... messageType

targetUser

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information

about the packet. The type subfield of the pduType field of the Share Data Header MUST be set
to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to

PDUTYPE2_SYNCHRONIZE (31).

messageType (2 bytes): A 16-bit, unsigned integer. The message type. This field MUST be set to
SYNCMSGTYPE_SYNC (1).

targetUser (2 bytes): A 16-bit, unsigned integer. The MCS channel ID of the target user.

2.2.1.15 Client Control PDU - Cooperate

The Client Control (Cooperate) PDU is an RDP Connection Sequence PDU sent from client to server
during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after transmitting the Client Synchronize
PDU (section 2.2.1.14).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

97 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

securityHeader (variable)

...

controlPduData (26 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The actual contents of the Control PDU, as specified in section
2.2.1.15.1. The grantId and controlId fields of the Control PDU Data MUST both be set to zero,
while the action field MUST be set to CTRLACTION_COOPERATE (0x0004).

2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU)

 The TS_CONTROL_PDU structure is a standard T.128 Synchronize PDU ([T128] section 8.12).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

98 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

... action

grantId controlId

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data

Header MUST be set to PDUTYPE2_CONTROL (20).

action (2 bytes): A 16-bit, unsigned integer. The action code.

Value Meaning

CTRLACTION_REQUEST_CONTROL

0x0001

Request control

CTRLACTION_GRANTED_CONTROL

0x0002

Granted control

CTRLACTION_DETACH

0x0003

Detach

CTRLACTION_COOPERATE

0x0004

Cooperate

grantId (2 bytes): A 16-bit, unsigned integer. The grant identifier.

controlId (4 bytes): A 32-bit, unsigned integer. The control identifier.

2.2.1.16 Client Control PDU - Request Control

The Client Control (Request Control) PDU is an RDP Connection Sequence PDU sent from client to
server during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence phases). It is sent after transmitting the Client
Control (Cooperate) PDU (section 2.2.1.15).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

99 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

controlPduData (26 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header

and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption

Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU, as specified in section 2.2.1.15.1. The
grantId and controlId fields of the Control PDU Data MUST both be set to zero, while the action
field MUST be set to CTRLACTION_REQUEST_CONTROL (0x0001).

2.2.1.17 Client Persistent Key List PDU

The Persistent Key List PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of

the RDP Connection Sequence phases). A single Persistent Key List PDU or a sequence of Persistent
Key List PDUs MUST be sent after transmitting the Client Control (Request Control)
PDU (section 2.2.1.16) if the client has bitmaps that were stored in a Persistent Bitmap
Cache (section 3.2.1.14), the server advertised support for the Bitmap Host Cache Support Capability

Set (section 2.2.7.2.1), and a Deactivation-Reactivation Sequence is not in progress (see section
1.3.1.3 for an overview of the Deactivation-Reactivation Sequence).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

100 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

persistentKeyListPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU), which

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Persistent Key List PDU Data (section 2.2.1.17.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

persistentKeyListPduData (variable): The contents of the Persistent Key List PDU, as specified in
section 2.2.1.17.1.

2.2.1.17.1 Persistent Key List PDU Data

(TS_BITMAPCACHE_PERSISTENT_LIST_PDU)

The TS_BITMAPCACHE_PERSISTENT_LIST_PDU structure contains a list of cached bitmap keys saved
from Cache Bitmap (Revision 2) Orders ([MS-RDPEGDI] section 2.2.2.2.1.2.3) that were sent in

previous sessions. By including a key in the Persistent Key List PDU Data the client indicates to the
server that it has a local copy of the bitmap associated with the key, which means that the server

does not need to retransmit the bitmap to the client (for more details about the Persistent Bitmap
Cache, see [MS-RDPEGDI] section 3.1.1.1.1). The bitmap keys can be sent in more than one
Persistent Key List PDU, with each PDU being marked using flags in the bBitMask field. The number
of bitmap keys encapsulated within the Persistent Key List PDU Data SHOULD be limited to 169.

101 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... numEntriesCache0

numEntriesCache1 numEntriesCache2

numEntriesCache3 numEntriesCache4

totalEntriesCache0 totalEntriesCache1

totalEntriesCache2 totalEntriesCache3

totalEntriesCache4 bBitMask Pad2

Pad3 entries (variable)

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data

Header MUST be set to PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST (43).

numEntriesCache0 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 0
in the current Persistent Key List PDU.

numEntriesCache1 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 1
in the current Persistent Key List PDU.

numEntriesCache2 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 2

in the current Persistent Key List PDU.

numEntriesCache3 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 3
in the current Persistent Key List PDU.

numEntriesCache4 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 4
in the current Persistent Key List PDU.

totalEntriesCache0 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap

Cache 0 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain

unchanged across the sequence. The sum of the totalEntriesCache0, totalEntriesCache1,
totalEntriesCache2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed
262,144.

totalEntriesCache1 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 1 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntriesCache0, totalEntriesCache1,

102 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

totalEntriesCache2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed
262,144.

totalEntriesCache2 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 2 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain

unchanged across the sequence. The sum of the totalEntriesCache0, totalEntriesCache1,
totalEntriesCache2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed
262,144.

totalEntriesCache3 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 3 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntriesCache0, totalEntriesCache1,
totalEntriesCache2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed

262,144.

totalEntriesCache4 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 4 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence.

bBitMask (1 byte): An 8-bit, unsigned integer. The sequencing flag.

Flag Meaning

PERSIST_PDU_FIRST

0x01

Indicates that the PDU is the first in a sequence of Persistent Key List PDUs.

PERSIST_PDU_LAST

0x02

Indicates that the PDU is the last in a sequence of Persistent Key List PDUs.

If neither PERSIST_FIRST_PDU (0x01) nor PERSIST_LAST_PDU (0x02) are set, then the current
PDU is an intermediate packet in a sequence of Persistent Key List PDUs.

Pad2 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

Pad3 (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

entries (variable): An array of TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY structures which
describe 64-bit bitmap keys. The keys MUST be arranged in order from low cache number to high

cache number. For instance, if a PDU contains one key for Bitmap Cache 0 and two keys for
Bitmap Cache 1, then numEntriesCache0 will be set to 1, numEntriesCache1 will be set to 2,
and numEntriesCache2, numEntriesCache3, and numEntriesCache4 will all be set to zero.
The keys will be arranged in the following order: (Bitmap Cache 0, Key 1), (Bitmap Cache 1, Key
1), (Bitmap Cache 1, Key 2).

2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)

The TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY structure contains a 64-bit bitmap key to be sent
back to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Key1

Key2

Key1 (4 bytes): Low 32 bits of the 64-bit persistent bitmap cache key.

103 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Key2 (4 bytes): A 32-bit, unsigned integer. High 32 bits of the 64-bit persistent bitmap cache key.

2.2.1.18 Client Font List PDU

The Font List PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after transmitting the Persistent Key List
PDUs (section 2.2.1.17) or, if the Persistent Key List PDUs were not sent, it is sent after transmitting
the Client Control (Request Control) PDU (section 2.2.1.16).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

fontListPduData (26 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request PDU contains a Security

Header and a Font List PDU Data (section 2.2.1.18.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

104 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

fontListPduData (26 bytes): The contents of the Font List PDU, as specified in section 2.2.1.18.1.

2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU)

The TS_FONT_LIST_PDU structure contains the contents of the Font List PDU, which is a Share Data
Header (section 2.2.8.1.1.1.2) and four fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... numberFonts

totalNumFonts listFlags

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section

2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_FONTLIST (39).

numberFonts (2 bytes): A 16-bit, unsigned integer. The number of fonts. This field SHOULD be set
to zero.

totalNumFonts (2 bytes): A 16-bit, unsigned integer. The total number of fonts. This field SHOULD
be set to zero.

listFlags (2 bytes): A 16-bit, unsigned integer. The sequence flags. This field SHOULD be set to
0x0003, which is the logical OR'd value of FONTLIST_FIRST (0x0001) and FONTLIST_LAST
(0x0002).

entrySize (2 bytes): A 16-bit, unsigned integer. The entry size. This field SHOULD be set to 0x0032
(50 bytes).

2.2.1.19 Server Synchronize PDU

The Server Synchronize PDU is an RDP Connection Sequence PDU sent from server to client during the

Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after receiving the Confirm Active
PDU (section 2.2.1.13.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

105 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

synchronizePduData (22 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in section 7, parts 7
and 10 of [T125]). The userData field of the MCS Send Data Indication contains a Security
Header and a Synchronize PDU Data (section 2.2.1.14.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

synchronizePduData (22 bytes): The contents of the Synchronize PDU as described in section

2.2.1.14.1.

2.2.1.20 Server Control PDU - Cooperate

 The Server Control (Cooperate) PDU is an RDP Connection Sequence PDU sent from server to client

during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after transmitting the Server
Synchronize PDU (section 2.2.1.19).

106 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

controlPduData (26 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU as described in section 2.2.1.15.1. The

grantId and controlId fields of the Control PDU Data MUST both be set to zero, while the action
field MUST be set to CTRLACTION_COOPERATE (0x0004).

107 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.1.21 Server Control PDU - Granted Control

The Server Control (Granted Control) PDU is an RDP Connection Sequence PDU sent from server to
client during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1

for an overview of the RDP Connection Sequence phases). It is sent after receiving the Client Control
(Request Control) PDU (section 2.2.1.16).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

controlPduData (26 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as

specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than

ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

108 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU as described in section 2.2.1.15.1. The

action field MUST be set to CTRLACTION_GRANTED_CONTROL (0x0002). The grantId field MUST
be set to the User Channel ID (sections 2.2.1.6 and 2.2.1.7), while the controlId field MUST be
set to the server channel ID (0x03EA).

2.2.1.22 Server Font Map PDU

The Font Map PDU is an RDP Connection Sequence PDU sent from server to client during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after receiving the Font List PDU (section 2.2.1.18).
The Font Map PDU is the last PDU in the connection sequence.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

fontMapPduData (26 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header

and a Font Map PDU Data (section 2.2.1.22.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security

header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

109 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

fontMapPduData (26 bytes): The contents of the Font Map PDU, as specified in section 2.2.1.22.1.

2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU)

The TS_FONT_MAP_PDU structure contains the contents of the Font Map PDU, which is a Share Data
Header (section 2.2.8.1.1.1.2) and four fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... numberEntries

totalNumEntries mapFlags

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2). The type subfield of the
pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be set to
PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to

PDUTYPE2_FONTMAP (40).

numberEntries (2 bytes): A 16-bit, unsigned integer. The number of fonts. This field SHOULD be
set to zero.

totalNumEntries (2 bytes): A 16-bit, unsigned integer. The total number of fonts. This field
SHOULD be set to zero.

mapFlags (2 bytes): A 16-bit, unsigned integer. The sequence flags. This field SHOULD be set to
0x0003, which is the logical OR'ed value of FONTMAP_FIRST (0x0001) and FONTMAP_LAST

(0x0002).

entrySize (2 bytes): A 16-bit, unsigned integer. The entry size. This field SHOULD be set to 0x0004
(4 bytes).

110 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.2 Disconnection Sequences

2.2.2.1 Client Shutdown Request PDU

 The Shutdown Request PDU is sent by the client as part of the User-Initiated on Client Disconnection
Sequence (see section 1.3.1.4.1 for an overview of the User-Initiated on Client Disconnection
Sequence).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

shutdownRequestPduData (18 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Shutdown Request PDU Data (section 2.2.2.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

111 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

shutdownRequestPduData (18 bytes): The contents of the Shutdown Request PDU, as specified in
section 2.2.2.1.1.

2.2.2.1.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)

The TS_SHUTDOWN_REQ_PDU structure contains the contents of the Shutdown Request PDU (section
2.2.2.1), which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SHUTDOWN_REQUEST (36).

2.2.2.2 Server Shutdown Request Denied PDU

The Shutdown Request Denied PDU is sent by the server as part of the User-Initiated on Client
Disconnection Sequence (see section 1.3.1.4.1 for an overview of the User-Initiated on Client

Disconnection Sequence).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

shutdownRequestDeniedPduData (18 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

112 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Shutdown Request Denied PDU Data (section 2.2.2.2.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shutdownRequestDeniedPduData (18 bytes): The contents of the Shutdown Request Denied
PDU, as specified in section 2.2.2.2.1.

2.2.2.2.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU)

The TS_SHUTDOWN_DENIED_PDU structure contains the contents of the Shutdown Request Denied

PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The

type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to

PDUTYPE2_SHUTDOWN_DENIED (37).

2.2.2.3 MCS Disconnect Provider Ultimatum PDU

The MCS Disconnect Provider Ultimatum PDU is an MCS PDU sent as part of the Disconnection

Sequences, described in section 1.3.1.4.

113 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsDPum

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsDPum (8 bytes): PER-encoded MCS Disconnect Provider Ultimatum PDU, as specified in [T125]

section 11.15 (the ASN.1 structure definition is given in [T125] section 7, part 4).

2.2.3 Deactivation-Reactivation Sequence

2.2.3.1 Server Deactivate All PDU

The Deactivate All PDU is sent from server to client to indicate that the connection will be dropped or
that a capability re-exchange using a Deactivation-Reactivation Sequence will occur (see section
1.3.1.3 for an overview of the Deactivation-Reactivation Sequence).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

deactivateAllPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Deactivate All PDU Data (section 2.2.3.1.1) structure.

114 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

deactivateAllPduData (variable): The contents of the Deactivate All PDU, as specified in section
2.2.3.1.1.

2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)

The TS_DEACTIVATE_ALL_PDU structure is a standard T.128 Deactivate All PDU ([T128] section
8.4.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareID

... lengthSourceDescriptor

sourceDescriptor (variable)

...

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be

set to PDUTYPE_DEACTIVATEALLPDU (6), and the PDUVersion subfield MUST be set to
TS_PROTOCOL_VERSION (0x1).

shareID (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet (see [T128]
section 8.4.2 for more information regarding share IDs).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

sourceDescriptor (variable): Variable number of bytes. The source descriptor. This field SHOULD

be set to 0x00.

115 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.4 Auto-Reconnect Sequence

2.2.4.1 Server Auto-Reconnect Status PDU

The Auto-Reconnect Status PDU is sent by the server to the client to indicate that automatic
reconnection using the Client Auto-Reconnect Packet (section 2.2.4.3), sent as part of the extended
information of the Client Info PDU (section 2.2.1.11.1), has failed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

arcStatusPduData (22 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and an Auto-Reconnect Status PDU Data (section 2.2.4.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

116 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

arcStatusPduData (22 bytes): The contents of the Auto-Reconnect Status PDU, as specified in

section 2.2.4.1.1.

2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)

The TS_AUTORECONNECT_STATUS_PDU structure contains the contents of the Auto-Reconnect Status
PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with a status field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... arcStatus

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The

type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_ARC_STATUS_PDU (50), and the pduSource field MUST be set to zero.

arcStatus (4 bytes): A 32-bit, unsigned integer. This field MUST be set to zero.

2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET)

The ARC_SC_PRIVATE_PACKET structure contains server-supplied information used to seamlessly re-
establish a connection to a server after network interruption. It is sent as part of the Save Session
Info PDU logon information (section 2.2.10.1.1.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbLen

Version

LogonId

ArcRandomBits (16 bytes)

...

...

117 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

cbLen (4 bytes): A 32-bit, unsigned integer. The length in bytes of the Server Auto-Reconnect
Packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit, unsigned integer. The value representing the auto-reconnect version.

Value Meaning

AUTO_RECONNECT_VERSION_1

0x00000001

Version 1 of auto-reconnect.

LogonId (4 bytes): A 32-bit, unsigned integer. The session identifier for reconnection.

ArcRandomBits (16 bytes): Byte buffer containing a 16-byte, random number generated as a key

for secure reconnection (section 5.5).

2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)

The ARC_CS_PRIVATE_PACKET structure contains the client response cookie used to seamlessly re-

establish a connection to a server after network interruption. It is sent as part of the extended
information of the Client Info PDU (section 2.2.1.11.1.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbLen

Version

LogonId

SecurityVerifier (16 bytes)

...

...

cbLen (4 bytes): A 32-bit, unsigned integer. The length in bytes of the Client Auto-Reconnect
Packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit, unsigned integer. The value representing the auto-reconnect version.

Value Meaning

AUTO_RECONNECT_VERSION_1

0x00000001

Version 1 of auto-reconnect.

LogonId (4 bytes): A 32-bit, unsigned integer. The session identifier for reconnection.

SecurityVerifier (16 bytes): Byte buffer containing a 16-byte verifier value derived using
cryptographic methods (as specified in section 5.5) from the ArcRandomBits field of the Server
Auto-Reconnect Packet (section 2.2.4.2).

118 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.5 Server Error Reporting and Status Updates

2.2.5.1 Server Set Error Info PDU

The Set Error Info PDU is sent by the server when there is a connection or disconnection failure. This
PDU is only sent to clients which have indicated that they are capable of handling error reporting using
the RNS_UD_CS_SUPPORT_ERRINFO_PDU flag in the Client Core Data (section 2.2.1.3.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

errorInfoPduData (22 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Error Info PDU Data (section 2.2.5.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

119 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

errorInfoPduData (22 bytes): The contents of the Set Error Info PDU, as specified in section

2.2.5.1.1.

2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)

The TS_SET_ERROR_INFO_PDU structure contains the contents of the Set Error Info PDU
(section 2.2.5.1), which is a Share Data Header (section 2.2.8.1.1.1.2) with an error value field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... errorInfo

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The

type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SET_ERROR_INFO_PDU (47), and the pduSource field MUST be set to zero.

errorInfo (4 bytes): A 32-bit, unsigned integer. Error code.

Protocol-independent codes:

Value Meaning

ERRINFO_NONE

0x00000000

No error has occurred. This code SHOULD be
ignored.

ERRINFO_RPC_INITIATED_DISCONNECT

0x00000001

The disconnection was initiated by an
administrative tool on the server in another
session.

ERRINFO_RPC_INITIATED_LOGOFF

0x00000002

The disconnection was due to a forced logoff
initiated by an administrative tool on the server in
another session.

ERRINFO_IDLE_TIMEOUT

0x00000003

The idle session limit timer on the server has
elapsed.

ERRINFO_LOGON_TIMEOUT

0x00000004

The active session limit timer on the server has
elapsed.

ERRINFO_DISCONNECTED_BY_OTHERCONNECTION

0x00000005

Another user connected to the server, forcing the
disconnection of the current connection.

ERRINFO_OUT_OF_MEMORY The server ran out of available memory resources.

120 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x00000006

ERRINFO_SERVER_DENIED_CONNECTION

0x00000007

The server denied the connection.

ERRINFO_SERVER_INSUFFICIENT_PRIVILEGES

0x00000009

The user cannot connect to the server due to
insufficient access privileges.

ERRINFO_SERVER_FRESH_CREDENTIALS_REQUIRED

0x0000000A

The server does not accept saved user credentials
and requires that the user enter their credentials
for each connection.

ERRINFO_RPC_INITIATED_DISCONNECT_BYUSER

0x0000000B

The disconnection was initiated by an
administrative tool on the server running in the
user’s session.

ERRINFO_LOGOFF_BY_USER

0x0000000C

The disconnection was initiated by the user
logging off his or her session on the server.

ERRINFO_CLOSE_STACK_ON_DRIVER_NOT_READY

0x0000000F

The display driver in the remote session did not
report any status within the time allotted for
startup.

ERRINFO_SERVER_DWM_CRASH

0x00000010

The DWM process running in the remote session
terminated unexpectedly.

ERRINFO_CLOSE_STACK_ON_DRIVER_FAILURE

0x00000011

The display driver in the remote session was
unable to complete all the tasks required for
startup.

ERRINFO_CLOSE_STACK_ON_DRIVER_IFACE_FAILURE

0x00000012

The display driver in the remote session started
up successfully, but due to internal failures was
not usable by the remoting stack.

ERRINFO_SERVER_WINLOGON_CRASH

0x00000017

The Winlogon process running in the remote
session terminated unexpectedly.

ERRINFO_SERVER_CSRSS_CRASH

0x00000018

The CSRSS process running in the remote session
terminated unexpectedly.

ERRINFO_SERVER_SHUTDOWN

0x00000019

The remote server is busy shutting down.

ERRINFO_SERVER_REBOOT

0x0000001A

The remote server is busy rebooting.

Protocol-independent licensing codes:

Value Meaning

ERRINFO_LICENSE_INTERNAL

0x00000100

An internal error has occurred in the Terminal
Services licensing component.

ERRINFO_LICENSE_NO_LICENSE_SERVER

0x00000101

A Remote Desktop License Server ([MS-RDPELE]
section 1.1) could not be found to provide a
license.

ERRINFO_LICENSE_NO_LICENSE

0x00000102

There are no Client Access Licenses ([MS-RDPELE]
section 1.1) available for the target remote

121 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

computer.

ERRINFO_LICENSE_BAD_CLIENT_MSG

0x00000103

The remote computer received an invalid licensing
message from the client.

ERRINFO_LICENSE_HWID_DOESNT_MATCH_LICENSE

0x00000104

The Client Access License ([MS-RDPELE] section
1.1) stored by the client has been modified.

ERRINFO_LICENSE_BAD_CLIENT_LICENSE

0x00000105

The Client Access License ([MS-RDPELE] section
1.1) stored by the client is in an invalid format

ERRINFO_LICENSE_CANT_FINISH_PROTOCOL

0x00000106

Network problems have caused the licensing
protocol ([MS-RDPELE] section 1.3.3) to be
terminated.

ERRINFO_LICENSE_CLIENT_ENDED_PROTOCOL

0x00000107

The client prematurely ended the licensing protocol

([MS-RDPELE] section 1.3.3).

ERRINFO_LICENSE_BAD_CLIENT_ENCRYPTION

0x00000108

A licensing message ([MS-RDPELE] sections 2.2
and 5.1) was incorrectly encrypted.

ERRINFO_LICENSE_CANT_UPGRADE_LICENSE

0x00000109

The Client Access License ([MS-RDPELE] section
1.1) stored by the client could not be upgraded or
renewed.

ERRINFO_LICENSE_NO_REMOTE_CONNECTIONS

0x0000010A

The remote computer is not licensed to accept
remote connections.

Protocol-independent codes generated by Connection Broker:

Value Meaning

ERRINFO_CB_DESTINATION_NOT_FOUND

0x00000400

The target endpoint could not be found.

ERRINFO_CB_LOADING_DESTINATION

0x00000402

The target endpoint to which the client is being
redirected is disconnecting from the Connection
Broker.

ERRINFO_CB_REDIRECTING_TO_DESTINATION

0x00000404

An error occurred while the connection was
being redirected to the target endpoint.

ERRINFO_CB_SESSION_ONLINE_VM_WAKE

0x00000405

An error occurred while the target endpoint (a
virtual machine) was being awakened.

ERRINFO_CB_SESSION_ONLINE_VM_BOOT

0x00000406

An error occurred while the target endpoint (a
virtual machine) was being started.

ERRINFO_CB_SESSION_ONLINE_VM_NO_DNS

0x00000407

The IP address of the target endpoint (a virtual
machine) cannot be determined.

ERRINFO_CB_DESTINATION_POOL_NOT_FREE

0x00000408

There are no available endpoints in the pool
managed by the Connection Broker.

ERRINFO_CB_CONNECTION_CANCELLED

0x00000409

Processing of the connection has been canceled.

ERRINFO_CB_CONNECTION_ERROR_INVALID_SETTINGS The settings contained in the routingToken

122 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x00000410 field of the X.224 Connection Request PDU
(section 2.2.1.1) cannot be validated.

ERRINFO_CB_SESSION_ONLINE_VM_BOOT_TIMEOUT

0x00000411

A time-out occurred while the target endpoint
(a virtual machine) was being started.

ERRINFO_CB_SESSION_ONLINE_VM_SESSMON_FAILED

0x00000412

A session monitoring error occurred while the
target endpoint (a virtual machine) was being
started.

RDP specific codes:

Value Meaning

ERRINFO_UNKNOWNPDUTYPE2

0x000010C9

Unknown pduType2 field in a received Share Data
Header (section 2.2.8.1.1.1.2).

ERRINFO_UNKNOWNPDUTYPE

0x000010CA

Unknown pduType field in a received Share Control
Header (section 2.2.8.1.1.1.1).

ERRINFO_DATAPDUSEQUENCE

0x000010CB

An out-of-sequence Slow-Path Data PDU (section
2.2.8.1.1.1.1) has been received.

ERRINFO_CONTROLPDUSEQUENCE

0x000010CD

An out-of-sequence Demand Active PDU (section
2.2.1.13.1), Confirm Active PDU (section
2.2.1.13.2), Deactivate All PDU (section 2.2.3.1) or
Enhanced Security Server Redirection PDU (section
2.2.13.3.1) has been received.

ERRINFO_INVALIDCONTROLPDUACTION

0x000010CE

A Control PDU (sections 2.2.1.15 and 2.2.1.16) has
been received with an invalid action field.

ERRINFO_INVALIDINPUTPDUTYPE

0x000010CF

One of two possible errors:

▪ A Slow-Path Input Event (section
2.2.8.1.1.3.1.1) has been received with an
invalid messageType field.

▪ A Fast-Path Input Event (section 2.2.8.1.2.2)
has been received with an invalid eventCode

field.

ERRINFO_INVALIDINPUTPDUMOUSE

0x000010D0

One of two possible errors:

▪ A Slow-Path Mouse Event (section
2.2.8.1.1.3.1.1.3) or Extended Mouse Event
(section 2.2.8.1.1.3.1.1.4) has been received
with an invalid pointerFlags field.

▪ A Fast-Path Mouse Event (section 2.2.8.1.2.2.3)
or Fast-Path Extended Mouse Event (section
2.2.8.1.2.2.4) has been received with an invalid
pointerFlags field.

ERRINFO_INVALIDREFRESHRECTPDU

0x000010D1

An invalid Refresh Rect PDU (section 2.2.11.2) has
been received.

ERRINFO_CREATEUSERDATAFAILED

0x000010D2

The server failed to construct the GCC Conference
Create Response user data (section 2.2.1.4).

123 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

ERRINFO_CONNECTFAILED

0x000010D3

Processing during the Channel Connection phase of
the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence
phases) has failed.

ERRINFO_CONFIRMACTIVEWRONGSHAREID

0x000010D4

A Confirm Active PDU (section 2.2.1.13.2) was
received from the client with an invalid shareID
field.

ERRINFO_CONFIRMACTIVEWRONGORIGINATOR

0x000010D5

A Confirm Active PDU (section 2.2.1.13.2) was
received from the client with an invalid
originatorID field.

ERRINFO_PERSISTENTKEYPDUBADLENGTH

0x000010DA

There is not enough data to process a Persistent
Key List PDU (section 2.2.1.17).

ERRINFO_PERSISTENTKEYPDUILLEGALFIRST

0x000010DB

A Persistent Key List PDU (section 2.2.1.17) marked
as PERSIST_PDU_FIRST (0x01) was received after
the reception of a prior Persistent Key List PDU also
marked as PERSIST_PDU_FIRST.

ERRINFO_PERSISTENTKEYPDUTOOMANYTOTALKEYS

0x000010DC

A Persistent Key List PDU (section 2.2.1.17) was
received which specified a total number of bitmap
cache entries larger than 262144.

ERRINFO_PERSISTENTKEYPDUTOOMANYCACHEKEYS

0x000010DD

A Persistent Key List PDU (section 2.2.1.17) was
received which specified an invalid total number of
keys for a bitmap cache (the number of entries that
can be stored within each bitmap cache is specified
in the Revision 1 or 2 Bitmap Cache Capability Set
(section 2.2.7.1.4) that is sent from client to
server).

ERRINFO_INPUTPDUBADLENGTH

0x000010DE

There is not enough data to process Input Event
PDU Data (section 2.2.8.1.1.3.1) or a Fast-Path
Input Event PDU (section 2.2.8.1.2).

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH

0x000010DF

There is not enough data to process the
shareDataHeader, NumInfoBlocks, Pad1, and
Pad2 fields of the Bitmap Cache Error PDU Data
([MS-RDPEGDI] section 2.2.2.3.1.1).

ERRINFO_SECURITYDATATOOSHORT

0x000010E0

One of two possible errors:

▪ The dataSignature field of the Fast-Path Input
Event PDU (section 2.2.8.1.2) does not contain
enough data.

▪ The fipsInformation and dataSignature
fields of the Fast-Path Input Event PDU (section
2.2.8.1.2) do not contain enough data.

ERRINFO_VCHANNELDATATOOSHORT

0x000010E1

One of two possible errors:

▪ There is not enough data in the Client Network
Data (section 2.2.1.3.4) to read the virtual
channel configuration data.

▪ There is not enough data to read a complete
Channel PDU Header (section 2.2.6.1.1).

124 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

ERRINFO_SHAREDATATOOSHORT

0x000010E2

One of four possible errors:

▪ There is not enough data to process Control
PDU Data (section 2.2.1.15.1).

▪ There is not enough data to read a complete
Share Control Header (section 2.2.8.1.1.1.1).

▪ There is not enough data to read a complete
Share Data Header (section 2.2.8.1.1.1.2) of a
Slow-Path Data PDU (section 2.2.8.1.1.1.1).

▪ There is not enough data to process Font List
PDU Data (section 2.2.1.18.1).

ERRINFO_BADSUPRESSOUTPUTPDU

0x000010E3

One of two possible errors:

▪ There is not enough data to process Suppress
Output PDU Data (section 2.2.11.3.1).

▪ The allowDisplayUpdates field of the
Suppress Output PDU Data (section 2.2.11.3.1)
is invalid.

ERRINFO_CONFIRMACTIVEPDUTOOSHORT

0x000010E5

One of two possible errors:

▪ There is not enough data to read the
shareControlHeader, shareID,
originatorID, lengthSourceDescriptor, and
lengthCombinedCapabilities fields of the
Confirm Active PDU Data (section 2.2.1.13.2.1).

▪ There is not enough data to read the
sourceDescriptor, numberCapabilities,
pad2Octets, and capabilitySets fields of the
Confirm Active PDU Data (section 2.2.1.13.2.1).

ERRINFO_CAPABILITYSETTOOSMALL

0x000010E7

There is not enough data to read the
capabilitySetType and the lengthCapability
fields in a received Capability Set (section
2.2.1.13.1.1.1).

ERRINFO_CAPABILITYSETTOOLARGE

0x000010E8

A Capability Set (section 2.2.1.13.1.1.1) has been
received with a lengthCapability field that contains
a value greater than the total length of the data
received.

ERRINFO_NOCURSORCACHE

0x000010E9

One of two possible errors:

▪ Both the colorPointerCacheSize and
pointerCacheSize fields in the Pointer
Capability Set (section 2.2.7.1.5) are set to
zero.

▪ The pointerCacheSize field in the Pointer
Capability Set (section 2.2.7.1.5) is not
present, and the colorPointerCacheSize field
is set to zero.

ERRINFO_BADCAPABILITIES The capabilities received from the client in the
Confirm Active PDU (section 2.2.1.13.2) were not

125 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x000010EA accepted by the server.

ERRINFO_VIRTUALCHANNELDECOMPRESSIONERR

0x000010EC

An error occurred while using the bulk compressor
(section 3.1.8 and [MS-RDPEGDI] section 3.1.8) to
decompress a Virtual Channel PDU (section 2.2.6.1)

ERRINFO_INVALIDVCCOMPRESSIONTYPE

0x000010ED

An invalid bulk compression package was specified
in the flags field of the Channel PDU Header
(section 2.2.6.1.1).

ERRINFO_INVALIDCHANNELID

0x000010EF

An invalid MCS channel ID was specified in the
mcsPdu field of the Virtual Channel PDU (section
2.2.6.1).

ERRINFO_VCHANNELSTOOMANY

0x000010F0

The client requested more than the maximum
allowed 31 static virtual channels in the Client
Network Data (section 2.2.1.3.4).

ERRINFO_REMOTEAPPSNOTENABLED

0x000010F3

The INFO_RAIL flag (0x00008000) MUST be set in
the flags field of the Info Packet (section
2.2.1.11.1.1) as the session on the remote server
can only host remote applications.

ERRINFO_CACHECAPNOTSET

0x000010F4

The client sent a Persistent Key List PDU (section
2.2.1.17) without including the prerequisite Revision
2 Bitmap Cache Capability Set (section 2.2.7.1.4.2)
in the Confirm Active PDU (section 2.2.1.13.2).

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH2

0x000010F5

The NumInfoBlocks field in the Bitmap Cache
Error PDU Data is inconsistent with the amount of
data in the Info field ([MS-RDPEGDI] section
2.2.2.3.1.1).

ERRINFO_OFFSCRCACHEERRORPDUBADLENGTH

0x000010F6

There is not enough data to process an Offscreen
Bitmap Cache Error PDU ([MS-RDPEGDI] section
2.2.2.3.2).

ERRINFO_DNGCACHEERRORPDUBADLENGTH

0x000010F7

There is not enough data to process a DrawNineGrid
Cache Error PDU ([MS-RDPEGDI] section 2.2.2.3.3).

ERRINFO_GDIPLUSPDUBADLENGTH

0x000010F8

There is not enough data to process a GDI+ Error
PDU ([MS-RDPEGDI] section 2.2.2.3.4).

ERRINFO_SECURITYDATATOOSHORT2

0x00001111

There is not enough data to read a Basic Security
Header (section 2.2.8.1.1.2.1).

ERRINFO_SECURITYDATATOOSHORT3

0x00001112

There is not enough data to read a Non-FIPS
Security Header (section 2.2.8.1.1.2.2) or FIPS
Security Header (section 2.2.8.1.1.2.3).

ERRINFO_SECURITYDATATOOSHORT4

0x00001113

There is not enough data to read the
basicSecurityHeader and length fields of the
Security Exchange PDU Data (section 2.2.1.10.1).

ERRINFO_SECURITYDATATOOSHORT5

0x00001114

There is not enough data to read the CodePage,
flags, cbDomain, cbUserName, cbPassword,
cbAlternateShell, cbWorkingDir, Domain,
UserName, Password, AlternateShell, and
WorkingDir fields in the Info Packet (section
2.2.1.11.1.1).

ERRINFO_SECURITYDATATOOSHORT6 There is not enough data to read the CodePage,

126 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x00001115 flags, cbDomain, cbUserName, cbPassword,
cbAlternateShell, and cbWorkingDir fields in the
Info Packet (section 2.2.1.11.1.1).

ERRINFO_SECURITYDATATOOSHORT7

0x00001116

There is not enough data to read the
clientAddressFamily and cbClientAddress fields
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT8

0x00001117

There is not enough data to read the clientAddress
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT9

0x00001118

There is not enough data to read the cbClientDir
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT10

0x00001119

There is not enough data to read the clientDir field
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT11

0x0000111A

There is not enough data to read the
clientTimeZone field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT12

0x0000111B

There is not enough data to read the
clientSessionId field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT13

0x0000111C

There is not enough data to read the
performanceFlags field in the Extended Info
Packet (section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT14

0x0000111D

There is not enough data to read the
cbAutoReconnectCookie field in the Extended
Info Packet (section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT15

0x0000111E

There is not enough data to read the
autoReconnectCookie field in the Extended Info
Packet (section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT16

0x0000111F

The cbAutoReconnectCookie field in the Extended
Info Packet (section 2.2.1.11.1.1.1) contains a value
which is larger than the maximum allowed length of
128 bytes.

ERRINFO_SECURITYDATATOOSHORT17

0x00001120

There is not enough data to read the
clientAddressFamily and cbClientAddress fields
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT18

0x00001121

There is not enough data to read the clientAddress
field in the Extended Info Packet (section

2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT19

0x00001122

There is not enough data to read the cbClientDir
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT20

0x00001123

There is not enough data to read the clientDir field
in the Extended Info Packet (section
2.2.1.11.1.1.1).

127 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

ERRINFO_SECURITYDATATOOSHORT21

0x00001124

There is not enough data to read the
clientTimeZone field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT22

0x00001125

There is not enough data to read the
clientSessionId field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT23

0x00001126

There is not enough data to read the Client Info PDU
Data (section 2.2.1.11.1).

ERRINFO_BADMONITORDATA

0x00001129

The number of TS_MONITOR_DEF (section
2.2.1.3.6.1) structures present in the
monitorDefArray field of the Client Monitor Data
(section 2.2.1.3.6) is less than the value specified in
monitorCount field.

ERRINFO_VCDECOMPRESSEDREASSEMBLEFAILED

0x0000112A

The server-side decompression buffer is invalid, or
the size of the decompressed VC data exceeds the
chunking size specified in the Virtual Channel
Capability Set (section 2.2.7.1.10).

ERRINFO_VCDATATOOLONG

0x0000112B

The size of a received Virtual Channel PDU (section
2.2.6.1) exceeds the chunking size specified in the
Virtual Channel Capability Set (section 2.2.7.1.10).

ERRINFO_BAD_FRAME_ACK_DATA

0x0000112C

There is not enough data to read a
TS_FRAME_ACKNOWLEDGE_PDU ([MS-RDPRFX]
section 2.2.3.1).

ERRINFO_GRAPHICSMODENOTSUPPORTED

0x0000112D

The graphics mode requested by the client is not
supported by the server.

ERRINFO_GRAPHICSSUBSYSTEMRESETFAILED

0x0000112E

The server-side graphics subsystem failed to reset.

ERRINFO_GRAPHICSSUBSYSTEMFAILED

0x0000112F

The server-side graphics subsystem is in an error
state and unable to continue graphics encoding.

ERRINFO_TIMEZONEKEYNAMELENGTHTOOSHORT

0x00001130

There is not enough data to read the
cbDynamicDSTTimeZoneKeyName field in the
Extended Info Packet (section 2.2.1.11.1.1.1).

ERRINFO_TIMEZONEKEYNAMELENGTHTOOLONG

0x00001131

The length reported in the
cbDynamicDSTTimeZoneKeyName field of the
Extended Info Packet (section 2.2.1.11.1.1.1) is too
long.

ERRINFO_DYNAMICDSTDISABLEDFIELDMISSING

0x00001132

The dynamicDaylightTimeDisabled field is not
present in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_VCDECODINGERROR

0x00001133

An error occurred when processing dynamic virtual
channel data ([MS-RDPEDYC] section 3.3.5).

ERRINFO_VIRTUALDESKTOPTOOLARGE

0x00001134

The width or height of the virtual desktop defined by
the monitor layout in the Client Monitor Data
(section 2.2.1.3.6) is larger than the maximum
allowed value of 32,766.

ERRINFO_MONITORGEOMETRYVALIDATIONFAILED The monitor geometry defined by the Client Monitor

128 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x00001135 Data (section 2.2.1.3.6) is invalid.

ERRINFO_INVALIDMONITORCOUNT

0x00001136

The monitorCount field in the Client Monitor Data
(section 2.2.1.3.6) is too large.

ERRINFO_UPDATESESSIONKEYFAILED

0x00001191

An attempt to update the session keys while using
Standard RDP Security mechanisms (section 5.3.7)
failed.

ERRINFO_DECRYPTFAILED

0x00001192

One of two possible error conditions:

▪ Decryption using Standard RDP Security
mechanisms (section 5.3.6) failed.

▪ Session key creation using Standard RDP
Security mechanisms (section 5.3.5) failed.

ERRINFO_ENCRYPTFAILED

0x00001193

Encryption using Standard RDP Security
mechanisms (section 5.3.6) failed.

ERRINFO_ENCPKGMISMATCH

0x00001194

Failed to find a usable Encryption Method (section
5.3.2) in the encryptionMethods field of the Client
Security Data (section 2.2.1.4.3).

ERRINFO_DECRYPTFAILED2

0x00001195

Unencrypted data was encountered in a protocol
stream which is meant to be encrypted with
Standard RDP Security mechanisms (section 5.3.6).

2.2.5.2 Server Status Info PDU

The Status Info PDU is sent by the server to update the client with status information. This PDU is only

sent to clients that have indicated that they are capable of status updates using the
RNS_UD_CS_SUPPORT_STATUSINFO_PDU flag in the Client Core Data (section 2.2.1.3.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

shareDataHeader (18 bytes)

...

...

129 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

... statusCode

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header,
a Share Data Header, and a status code.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than

ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shareDataHeader (18 bytes): A Share Data Header containing information about the packet. The

type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_STATUS_INFO_PDU (54), and the pduSource field MUST be set to zero.

statusCode (4 bytes): A 32-bit, unsigned integer. Status code.

Value Meaning

TS_STATUS_FINDING_DESTINATION

0x00000401

The destination computer is being located.

TS_STATUS_LOADING_DESTINATION

0x00000402

The destination computer is being prepared for use.

TS_STATUS_BRINGING_SESSION_ONLINE

0x00000403

The destination computer is being prepared to accept a
remote connection.

TS_STATUS_REDIRECTING_TO_DESTINATION

0x00000404

The client is being redirected to the destination computer.

TS_STATUS_VM_LOADING

0x00000501

The destination virtual machine image is being loaded.

130 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

TS_STATUS_VM_WAKING

0x00000502

The destination virtual machine is being resumed from
sleep or hibernation.

TS_STATUS_VM_STARTING

0x00000503

The destination virtual machine is being started.

TS_STATUS_VM_STARTING_MONITORING

0x00000504

Monitoring of the destination virtual machine is being
initiated.

TS_STATUS_VM_RETRYING_MONITORING

0x00000505

Monitoring of the destination virtual machine is being
reinitiated.

2.2.6 Static Virtual Channels

2.2.6.1 Virtual Channel PDU

The Virtual Channel PDU is sent from client to server or from server to client and is used to transport

data between static virtual channel endpoints.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsPdu (variable)

...

securityHeader (variable)

...

channelPduHeader

...

virtualChannelData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsPdu (variable): If the PDU is being sent from client to server, this field MUST contain a variable-
length, PER-encoded MCS Domain PDU (DomainMCSPDU) which encapsulates an MCS Send Data
Request structure (SDrq, choice 25 from DomainMCSPDU), as specified in [T125] section 11.32

(the ASN.1 structure definition is given in [T125] section 7, parts 7 and 10). The userData field of
the MCS Send Data Request contains a Security Header and the static virtual channel data.

131 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the PDU is being sent from server to client, this field MUST contain a variable-length, PER-
encoded MCS Domain PDU (DomainMCSPDU) which encapsulates an MCS Send Data Indication

structure (SDin, choice 26 from DomainMCSPDU), as specified in [T125] section 11.33 (the ASN.1
structure definition is given in [T125] section 7, parts 7 and 10). The userData field of the MCS

Send Data Indication contains a Security Header and the static virtual channel data.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the security headers
described in section 2.2.8.1.1.2.

If the PDU is being sent from client to server:

▪ The securityHeader field MUST contain a Non-FIPS Security Header (section 2.2.8.1.1.2.2) if
the Encryption Method selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT

(0x00000002).

If the PDU is being sent from server to client:

▪ The securityHeader field MUST contain a Basic Security Header (section 2.2.8.1.1.2.1) if the
Encryption Level selected by the server is ENCRYPTION_LEVEL_LOW (1).

▪ The securityHeader field MUST contain a Non-FIPS Security Header (section 2.2.8.1.1.2.2) if
the Encryption Method selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

If the Encryption Method selected by the server is ENCRYPTION_METHOD_FIPS (0x00000010) the

securityHeader field MUST contain a FIPS Security Header (section 2.2.8.1.1.2.3).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption

Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

channelPduHeader (8 bytes): A Channel PDU Header (section 2.2.6.1.1) structure, which contains
control flags and describes the size of the opaque channel data.

virtualChannelData (variable): Variable-length data to be processed by the static virtual channel

protocol handler. This field MUST NOT be larger than CHANNEL_CHUNK_LENGTH (1600) bytes in
size unless the maximum virtual channel chunk size is specified in the optional VCChunkSize field
of the Virtual Channel Capability Set (section 2.2.7.1.10).

2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)

The CHANNEL_PDU_HEADER MUST precede all opaque static virtual channel traffic chunks transmitted

via RDP between a client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length

flags

132 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

length (4 bytes): A 32-bit, unsigned integer. The total length in bytes of the uncompressed channel
data, excluding this header. The data can span multiple Virtual Channel PDUs and the individual

chunks will need to be reassembled in that case (section 3.1.5.2.2).

flags (4 bytes): A 32-bit, unsigned integer. The channel control flags.

Flag Meaning

CHANNEL_FLAG_FIRST

0x00000001

Indicates that the chunk is the first in a sequence.

CHANNEL_FLAG_LAST

0x00000002

Indicates that the chunk is the last in a sequence.

CHANNEL_FLAG_SHOW_PROTOCOL

0x00000010

The Channel PDU Header MUST be visible to the application
endpoint (section 2.2.1.3.4.1).

CHANNEL_FLAG_SUSPEND

0x00000020

All virtual channel traffic MUST be suspended. This flag is only
valid in server-to-client virtual channel traffic. It MUST be ignored
in client-to-server data.

CHANNEL_FLAG_RESUME

0x00000040

All virtual channel traffic MUST be resumed. This flag is only valid
in server-to-client virtual channel traffic. It MUST be ignored in
client-to-server data.

CHANNEL_FLAG_SHADOW_PERSISTENT

0x00000080

This flag is unused and its value MUST be ignored by the client
and server.

CHANNEL_PACKET_COMPRESSED

0x00200000

The virtual channel data is compressed. This flag is equivalent to
MPPC bit C (for more information see [RFC2118] section 3.1).

CHANNEL_PACKET_AT_FRONT

0x00400000

The decompressed packet MUST be placed at the beginning of the
history buffer. This flag is equivalent to MPPC bit B (for more
information see [RFC2118] section 3.1).

CHANNEL_PACKET_FLUSHED

0x00800000

The decompressor MUST reinitialize the history buffer (by filling it
with zeros) and reset the HistoryOffset to zero. After it has been
reinitialized, the entire history buffer is immediately regarded as
valid. This flag is equivalent to MPPC bit A (for more information
see [RFC2118] section 3.1). If the
CHANNEL_PACKET_COMPRESSED (0x00200000) flag is also
present, then the CHANNEL_PACKET_FLUSHED flag MUST be
processed first.

CompressionTypeMask

0x000F0000

Indicates the compression package which was used to compress
the data. See the discussion which follows this table for a list of
compression packages.

If neither the CHANNEL_FLAG_FIRST (0x00000001) nor the CHANNEL_FLAG_LAST (0x00000002)
flag is present, the chunk is from the middle of a sequence.

Instructions specifying how to set the compression flags can be found in section 3.1.8.2.1.

Possible compression types are as follows.

Value Meaning

PACKET_COMPR_TYPE_8K

0x0

RDP 4.0 bulk compression (section 3.1.8.4.1).

PACKET_COMPR_TYPE_64K RDP 5.0 bulk compression (section 3.1.8.4.2).

133 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x1

PACKET_COMPR_TYPE_RDP6

0x2

RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

PACKET_COMPR_TYPE_RDP61

0x3

RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

Instructions detailing how to compress a data stream are listed in section 3.1.8.2, while
decompression of a data stream is described in section 3.1.8.3.

2.2.7 Capability Sets

2.2.7.1 Mandatory Capability Sets

2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)

The TS_GENERAL_CAPABILITYSET structure is used to advertise general characteristics and is

based on the capability set specified in [T128] section 8.2.3. This capability is sent by both client and
server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

osMajorType osMinorType

protocolVersion pad2octetsA

compressionTypes extraFlags

updateCapabilityFlag remoteUnshareFlag

compressionLevel refreshRectSupport suppressOutputSupport

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_GENERAL (1).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

osMajorType (2 bytes): A 16-bit, unsigned integer. The type of platform.

Value Meaning

OSMAJORTYPE_UNSPECIFIED

0x0000

Unspecified platform

OSMAJORTYPE_WINDOWS

0x0001

Windows platform

OSMAJORTYPE_OS2 OS/2 platform

134 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

0x0002

OSMAJORTYPE_MACINTOSH

0x0003

Macintosh platform

OSMAJORTYPE_UNIX

0x0004

UNIX platform

OSMAJORTYPE_IOS

0x0005

iOS platform

OSMAJORTYPE_OSX

0x0006

OS X platform

OSMAJORTYPE_ANDROID

0x0007

Android platform

OSMAJORTYPE_CHROME_OS

0x0008

Chrome OS platform

osMinorType (2 bytes): A 16-bit, unsigned integer. The version of the platform specified in the
osMajorType field.

Value Meaning

OSMINORTYPE_UNSPECIFIED

0x0000

Unspecified version

OSMINORTYPE_WINDOWS_31X

0x0001

Windows 3.1x

OSMINORTYPE_WINDOWS_95

0x0002

Windows 95

OSMINORTYPE_WINDOWS_NT

0x0003

Windows NT

OSMINORTYPE_OS2_V21

0x0004

OS/2 2.1

OSMINORTYPE_POWER_PC

0x0005

PowerPC

OSMINORTYPE_MACINTOSH

0x0006

Macintosh

OSMINORTYPE_NATIVE_XSERVER

0x0007

Native X Server

OSMINORTYPE_PSEUDO_XSERVER

0x0008

Pseudo X Server

OSMINORTYPE_WINDOWS RT

0x0009

Windows RT

protocolVersion (2 bytes): A 16-bit, unsigned integer. The protocol version. This field MUST be set
to TS_CAPS_PROTOCOLVERSION (0x0200).

135 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

compressionTypes (2 bytes): A 16-bit, unsigned integer. General compression types. This field

MUST be set to zero.

extraFlags (2 bytes): A 16-bit, unsigned integer. General capability information.

All RDP versions, except for RDP 4.0, support the following flags.

Flag Meaning

FASTPATH_OUTPUT_SUPPORTED

0x0001

Advertiser supports fast-path output.<24>

NO_BITMAP_COMPRESSION_HDR

0x0400

Advertiser supports excluding the 8-byte Compressed Data
Header (section 2.2.9.1.1.3.1.2.3) from the Bitmap Data (section
2.2.9.1.1.3.1.2.2) structure or the Cache Bitmap (Revision 2)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

All RDP versions, except for RDP 4.0 and 5.0, support the following additional flags.

Flag Meaning

LONG_CREDENTIALS_SUPPORTED

0x0004

Advertiser supports long-length credentials for the user name,
password, or domain name in the Save Session Info PDU (section
2.2.10.1).<25>

All RDP versions, except for RDP 4.0, 5.0 and 5.1, support the following additional flags.

Flag Meaning

AUTORECONNECT_SUPPORTED

0x0008

Advertiser supports auto-reconnection (section 5.5).

ENC_SALTED_CHECKSUM

0x0010

Advertiser supports salted MAC generation (section 5.3.6.1.1).

updateCapabilityFlag (2 bytes): A 16-bit, unsigned integer. Support for update capability. This field
MUST be set to zero.

remoteUnshareFlag (2 bytes): A 16-bit, unsigned integer. Support for remote unsharing. This field
MUST be set to zero.

compressionLevel (2 bytes): A 16-bit, unsigned integer. General compression level. This field MUST
be set to zero.

refreshRectSupport (1 byte): An 8-bit, unsigned integer. Server-only flag that indicates whether

the Refresh Rect PDU (section 2.2.11.2) is supported.

Value Meaning

FALSE

0x00

Server does not support Refresh Rect PDU.

TRUE

0x01

Server supports Refresh Rect PDU.

suppressOutputSupport (1 byte): An 8-bit, unsigned integer. Server-only flag that indicates
whether the Suppress Output PDU (section 2.2.11.3) is supported.

136 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

FALSE

0x00

Server does not support Suppress Output PDU.

TRUE

0x01

Server supports Suppress Output PDU.

2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET)

The TS_BITMAP_CAPABILITYSET structure is used to advertise bitmap-orientated characteristics and is
based on the capability set specified in [T128] section 8.2.4. This capability is sent by both client and
server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

preferredBitsPerPixel receive1BitPerPixel

receive4BitsPerPixel receive8BitsPerPixel

desktopWidth desktopHeight

pad2octets desktopResizeFlag

bitmapCompressionFlag highColorFlags drawingFlags

multipleRectangleSupport pad2octetsB

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAP (2).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

preferredBitsPerPixel (2 bytes): A 16-bit, unsigned integer. The server MUST set this field to the
color depth of the session, while the client SHOULD set this field to the color depth requested in
the Client Core Data (section 2.2.1.3.2).

receive1BitPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive

1 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

receive4BitsPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
4 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

receive8BitsPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
8 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

desktopWidth (2 bytes): A 16-bit, unsigned integer. The width of the desktop in the session.

desktopHeight (2 bytes): A 16-bit, unsigned integer. The height of the desktop in the session.

137 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopResizeFlag (2 bytes): A 16-bit, unsigned integer. Indicates whether resizing the desktop by

using a Deactivation-Reactivation Sequence is supported (see section 1.3.1.3 for an overview of
the Deactivation-Reactivation Sequence).

Value Meaning

FALSE

0x0000

 Desktop resizing is not supported.

TRUE

0x0001

Desktop resizing is supported.

bitmapCompressionFlag (2 bytes): A 16-bit, unsigned integer. Indicates whether bitmap
compression is supported. This field MUST be set to TRUE (0x0001) because support for
compressed bitmaps is required for a connection to proceed.

highColorFlags (1 byte): An 8-bit, unsigned integer. Client support for 16 bpp color modes. This
field is ignored and SHOULD be set to zero.

drawingFlags (1 byte): An 8-bit, unsigned integer. Flags describing support for 32 bpp bitmaps.

Flag Meaning

DRAW_ALLOW_DYNAMIC_COLOR_FIDELITY

0x02

Indicates support for lossy compression of 32 bpp bitmaps
by reducing color-fidelity on a per-pixel basis ([MS-
RDPEGDI] section 3.1.9.1.4).

DRAW_ALLOW_COLOR_SUBSAMPLING

0x04

Indicates support for chroma subsampling when
compressing 32 bpp bitmaps ([MS-RDPEGDI] section
3.1.9.1.3).

DRAW_ALLOW_SKIP_ALPHA

0x08

Indicates that the client supports the removal of the alpha-
channel when compressing 32 bpp bitmaps. In this case the
alpha is assumed to be 0xFF, meaning the bitmap is
opaque.

DRAW_UNUSED_FLAG

0x10

An unused flag that MUST be ignored by the client if it is
present in the server-to-client Bitmap Capability Set.

Compression of 32 bpp bitmaps is specified in [MS-RDPEGDI] section 3.1.9.

multipleRectangleSupport (2 bytes): A 16-bit, unsigned integer. Indicates whether the use of
multiple bitmap rectangles is supported in the Bitmap Update (section 2.2.9.1.1.3.1.2). This field
MUST be set to TRUE (0x0001) because multiple rectangle support is required for a connection to
proceed.

pad2octetsB (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET)

The TS_ORDER_CAPABILITYSET structure advertises support for primary drawing order-related
capabilities and is based on the capability set specified in [T128] section 8.2.5 (for more information
about primary drawing orders, see [MS-RDPEGDI] section 2.2.2.2.1.1). This capability is sent by both

client and server.

138 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

terminalDescriptor (16 bytes)

...

...

pad4octetsA

desktopSaveXGranularity desktopSaveYGranularity

pad2octetsA maximumOrderLevel

numberFonts orderFlags

orderSupport (32 bytes)

...

...

textFlags orderSupportExFlags

pad4octetsB

desktopSaveSize

pad2octetsC pad2octetsD

textANSICodePage pad2octetsE

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_ORDER (3).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

terminalDescriptor (16 bytes): A 16-element array of 8-bit, unsigned integers. Terminal descriptor.
This field is ignored and SHOULD be set to all zeros.

pad4octetsA (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopSaveXGranularity (2 bytes): A 16-bit, unsigned integer. X granularity used in conjunction
with the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.12). This

value is ignored and assumed to be 1.

desktopSaveYGranularity (2 bytes): A 16-bit, unsigned integer. Y granularity used in conjunction
with the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.12). This
value is ignored and assumed to be 20.

139 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

maximumOrderLevel (2 bytes): A 16-bit, unsigned integer. Maximum order level. This value is

ignored and SHOULD be set to ORD_LEVEL_1_ORDERS (1).

numberFonts (2 bytes): A 16-bit, unsigned integer. Number of fonts. This value is ignored and

SHOULD be set to zero.

orderFlags (2 bytes): A 16-bit, unsigned integer. A 16-bit unsigned integer. Support for drawing
order options.

Flag Meaning

NEGOTIATEORDERSUPPORT

0x0002

Indicates support for specifying supported drawing orders in the
orderSupport field. This flag MUST be set.

ZEROBOUNDSDELTASSUPPORT

0x0008

Indicates support for the TS_ZERO_BOUNDS_DELTAS (0x20) flag
([MS-RDPEGDI] section 2.2.2.2.1.1.2). The client MUST set this flag.

COLORINDEXSUPPORT

0x0020

Indicates support for sending color indices (not RGB values) in
orders.

SOLIDPATTERNBRUSHONLY

0x0040

Indicates that this party can receive only solid and pattern brushes.

ORDERFLAGS_EXTRA_FLAGS

0x0080

Indicates that the orderSupportExFlags field contains valid data.

orderSupport (32 bytes): An array of 32 bytes indicating support for various primary drawing

orders. The indices of this array are the negotiation indices for the primary orders specified in
[MS-RDPEGDI] section 2.2.2.2.1.1.2.

Negotiation index Primary drawing order or orders

TS_NEG_DSTBLT_INDEX

0x00

DstBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.1).

TS_NEG_PATBLT_INDEX

0x01

PatBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.3) and OpaqueRect Primary Drawing Order
([MS-RDPEGDI] section 2.2.2.2.1.1.2.5).

TS_NEG_SCRBLT_INDEX

0x02

ScrBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.7).<26>

TS_NEG_MEMBLT_INDEX

0x03

MemBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.9).<27>

TS_NEG_MEM3BLT_INDEX

0x04

Mem3Blt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.10).

UnusedIndex1

0x05

The contents of the byte at this index MUST be ignored.

UnusedIndex2

0x06

The contents of the byte at this index MUST be ignored.

TS_NEG_DRAWNINEGRID_INDEX

0x07

DrawNineGrid Primary Drawing Order ([MS-RDPEGDI]
section 2.2.2.2.1.1.2.21).

140 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Negotiation index Primary drawing order or orders

TS_NEG_LINETO_INDEX

0x08

LineTo Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.11).

TS_NEG_MULTI_DRAWNINEGRID_INDEX

0x09

MultiDrawNineGrid Primary Drawing Order ([MS-RDPEGDI]
section 2.2.2.2.1.1.2.22).

UnusedIndex3

0x0A

The contents of the byte at this index MUST be ignored.

TS_NEG_SAVEBITMAP_INDEX

0x0B

SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.12).

UnusedIndex4

0x0C

The contents of the byte at this index MUST be ignored.

UnusedIndex5

0x0D

The contents of the byte at this index MUST be ignored.

UnusedIndex6

0x0E

The contents of the byte at this index MUST be ignored.

TS_NEG_MULTIDSTBLT_INDEX

0x0F

MultiDstBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.2).

TS_NEG_MULTIPATBLT_INDEX

0x10

MultiPatBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.4).

TS_NEG_MULTISCRBLT_INDEX

0x11

MultiScrBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.8).

TS_NEG_MULTIOPAQUERECT_INDEX

0x12

MultiOpaqueRect Primary Drawing Order ([MS-RDPEGDI]
section 2.2.2.2.1.1.2.6).

TS_NEG_FAST_INDEX_INDEX

0x13

FastIndex Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.14).

TS_NEG_POLYGON_SC_INDEX

0x14

PolygonSC Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.16) and PolygonCB Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.17).

TS_NEG_POLYGON_CB_INDEX

0x15

PolygonCB Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.17) and PolygonSC Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.16).

TS_NEG_POLYLINE_INDEX

0x16

Polyline Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.18).

UnusedIndex7

0x17

The contents of the byte at this index MUST be ignored.

TS_NEG_FAST_GLYPH_INDEX

0x18

FastGlyph Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.15).

TS_NEG_ELLIPSE_SC_INDEX

0x19

EllipseSC Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.19) and EllipseCB Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.20).

TS_NEG_ELLIPSE_CB_INDEX EllipseCB Primary Drawing Order ([MS-RDPEGDI] section

141 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Negotiation index Primary drawing order or orders

0x1A 2.2.2.2.1.1.2.20) and EllipseSC Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.19).

TS_NEG_INDEX_INDEX

0x1B

GlyphIndex Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.13).

UnusedIndex8

0x1C

The contents of the byte at this index MUST be ignored.

UnusedIndex9

0x1D

The contents of the byte at this index MUST be ignored.

UnusedIndex10

0x1E

The contents of the byte at this index MUST be ignored.

UnusedIndex11

0x1F

The contents of the byte at this index MUST be ignored.

If an order is supported, the byte at the given index MUST contain the value 0x01. Any order not
supported by the client causes the server to spend more time and bandwidth using workarounds,
such as other primary orders or simply sending screen bitmap data in a Bitmap Update (sections
2.2.9.1.1.3.1.2 and 2.2.9.1.2.1.2). If no primary drawing orders are supported, this array MUST
be initialized to all zeros.

textFlags (2 bytes): A 16-bit, unsigned integer. Values in this field MUST be ignored.

orderSupportExFlags (2 bytes): A 16-bit, unsigned integer. Extended order support flags.

Flag Meaning

ORDERFLAGS_EX_CACHE_BITMAP_REV3_SUPPORT

0x0002

The Cache Bitmap (Revision 3) Secondary Drawing
Order ([MS-RDPEGDI] section 2.2.2.2.1.2.8) is
supported.

ORDERFLAGS_EX_ALTSEC_FRAME_MARKER_SUPPORT

0x0004

The Frame Marker Alternate Secondary Drawing
Order ([MS-RDPEGDI] section 2.2.2.2.1.3.7) is
supported.

pad4octetsB (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopSaveSize (4 bytes): A 32-bit, unsigned integer. The maximum usable size of bitmap space
for bitmap packing in the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section

2.2.2.2.1.1.2.12). This field is ignored by the client and assumed to be 230400 bytes (480 * 480).

pad2octetsC (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pad2octetsD (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

textANSICodePage (2 bytes): A 16-bit, unsigned integer. ANSI code page descriptor being used by
the client (for a list of code pages, see [MSDN-CP]). This field is ignored by the client and SHOULD
be set to zero by the server.

pad2octetsE (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.1.4 Bitmap Cache Capability Set

2.2.7.1.4.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET)

142 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The TS_BITMAPCACHE_CAPABILITYSET structure is used to advertise support for Revision 1 bitmap
caches ([MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to server.

In addition to specifying bitmap caching parameters in the Revision 1 Bitmap Cache Capability Set, a
client MUST also support the MemBlt and Mem3Blt Primary Drawing Orders ([MS-RDPEGDI] sections

2.2.2.2.1.1.2.9 and 2.2.2.2.1.1.2.10, respectively) in order to receive the Cache Bitmap (Revision 1)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

pad1

pad2

pad3

pad4

pad5

pad6

Cache0Entries Cache0MaximumCellSize

Cache1Entries Cache1MaximumCellSize

Cache2Entries Cache2MaximumCellSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE (4).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

pad1 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pad2 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pad3 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pad4 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pad5 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pad6 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

Cache0Entries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 0
(maximum allowed value is 200 entries).

Cache0MaximumCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 0.

143 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Cache1Entries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 1
(maximum allowed value is 600 entries).

Cache1MaximumCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 1.

Cache2Entries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 2
(maximum allowed value is 65535 entries).

Cache2MaximumCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 2.

2.2.7.1.4.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)

The TS_BITMAPCACHE_CAPABILITYSET_REV2 structure is used to advertise support for Revision 2

bitmap caches ([MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to server.

In addition to specifying bitmap caching parameters in the Revision 2 Bitmap Cache Capability Set, a

client MUST also support the MemBlt and Mem3Blt Primary Drawing Orders ([MS-RDPEGDI] sections
2.2.2.2.1.1.2.9 and 2.2.2.2.1.1.2.10, respectively) in order to receive the Cache Bitmap (Revision 2)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

CacheFlags Pad2 NumCellCaches

BitmapCache0CellInfo

BitmapCache1CellInfo

BitmapCache2CellInfo

BitmapCache3CellInfo

BitmapCache4CellInfo

Pad3

...

...

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field

MUST be set to CAPSTYPE_BITMAPCACHE_REV2 (19).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

CacheFlags (2 bytes): A 16-bit, unsigned integer. Properties which apply to all the bitmap caches.

144 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

PERSISTENT_KEYS_EXPECTED_FLAG

0x0001

Indicates that the client will send a Persistent Key List PDU during
the Connection Finalization phase of the RDP Connection Sequence
(see section 1.3.1.1 for an overview of the RDP Connection
Sequence phases).

ALLOW_CACHE_WAITING_LIST_FLAG

0x0002

Indicates that the client supports a cache waiting list. If a waiting
list is supported, new bitmaps are cached on the second hit rather
than the first (that is, a bitmap is sent twice before it is cached).

Pad2 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

NumCellCaches (1 byte): An 8-bit, unsigned integer. Number of bitmap caches (with a maximum

allowed value of 5).

BitmapCache0CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 0. The maximum number of entries allowed in

this cache is 600. This field is only valid if NumCellCaches is greater than or equal to 1.

BitmapCache1CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 1. The maximum number of entries allowed in

this cache is 600. This field is only valid if NumCellCaches is greater than or equal to 2.

BitmapCache2CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 2. The maximum number of entries allowed in
this cache is 65536. This field is only valid if NumCellCaches is greater than or equal to 3.

BitmapCache3CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 3. The maximum number of entries allowed in
this cache is 4096. This field is only valid if NumCellCaches is greater than or equal to 4.

BitmapCache4CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 4. The maximum number of entries allowed in

this cache is 2048. This field is only valid if NumCellCaches is equal to 5.

Pad3 (12 bytes): A 12-element array of 8-bit, unsigned integers. Padding. Values in this field MUST
be ignored.

2.2.7.1.4.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)

The TS_BITMAPCACHE_CELL_CACHE_INFO structure contains information about a bitmap cache on
the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CellInfo

CellInfo (4 bytes): A 32-bit unsigned integer that contains information about a bitmap cache on the
client. The format of the CellInfo field is described by the following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumEntries k

145 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

NumEntries (31 bits): A 31-bit unsigned integer that contains the number of entries in the
cache.

k (1 bit): A 1-bit field that indicates that the bitmap cache is persistent across RDP connections
and that the client expects to receive a unique 64-bit bitmap key in the Cache Bitmap

(Revision 2) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3) for every bitmap
inserted into this cache. If this bit is set, 64-bit keys MUST be sent by the server.

2.2.7.1.5 Pointer Capability Set (TS_POINTER_CAPABILITYSET)

The TS_POINTER_CAPABILITYSET structure advertises pointer cache sizes and flags and is based on
the capability set specified in [T128] section 8.2.11. This capability is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

colorPointerFlag colorPointerCacheSize

pointerCacheSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_POINTER (8).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

colorPointerFlag (2 bytes): A 16-bit, unsigned integer. Indicates support for color pointers. Since
RDP supports monochrome cursors by using Color Pointer Updates and New Pointer Updates

(sections 2.2.9.1.1.4.4 and 2.2.9.1.1.4.5 respectively), the value of this field is ignored and is
always assumed to be TRUE (at a minimum the Color Pointer Update MUST be supported by an

RDP client).

Value Meaning

FALSE

0x0000

Monochrome mouse cursors are supported.

TRUE

0x0001

Color mouse cursors are supported.

colorPointerCacheSize (2 bytes): A 16-bit, unsigned integer. The number of available slots in the
24 bpp color pointer cache used to store data received in the Color Pointer Update (section

2.2.9.1.1.4.4).

pointerCacheSize (2 bytes): A 16-bit, unsigned integer. The number of available slots in the pointer
cache used to store pointer data of arbitrary bit depth received in the New Pointer Update (section

2.2.9.1.1.4.5).

If the value contained in this field is zero or the Pointer Capability Set sent from the client does
not include this field, the server will not use the New Pointer Update.

2.2.7.1.6 Input Capability Set (TS_INPUT_CAPABILITYSET)

The TS_INPUT_CAPABILITYSET structure is used to advertise support for input formats and
devices. This capability is sent by both client and server. The keyboardLayout, keyboardType,

146 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

keyboardSubType, and keyboardFunctionKey fields of the server-to-client
TS_INPUT_CAPABILITYSET structure SHOULD<28> be set to zero, and the imeFileName field of

the server-to-client TS_INPUT_CAPABILITYSET structure SHOULD<29> be filled with zeros.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

inputFlags pad2octetsA

keyboardLayout

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName (64 bytes)

...

...

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_INPUT (13).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

inputFlags (2 bytes): A 16-bit, unsigned integer. Input support flags.

Flag Meaning

INPUT_FLAG_SCANCODES

0x0001

Indicates support for using scancodes in the Keyboard Event
notifications (sections 2.2.8.1.1.3.1.1.1 and 2.2.8.1.2.2.1).

INPUT_FLAG_MOUSEX

0x0004

Indicates support for Extended Mouse Event notifications (sections
2.2.8.1.1.3.1.1.4 and 2.2.8.1.2.2.4).

INPUT_FLAG_FASTPATH_INPUT

0x0008

Advertised by RDP 5.0 and 5.1 servers to indicate support for fast-
path input.

INPUT_FLAG_UNICODE

0x0010

Indicates support for Unicode Keyboard Event notifications
(sections 2.2.8.1.1.3.1.1.2 and 2.2.8.1.2.2.2).

INPUT_FLAG_FASTPATH_INPUT2

0x0020

Advertised by all RDP servers, except for RDP 4.0, 5.0, and 5.1
servers, to indicate support for fast-path input. Clients that do not

support this flag will not be able to use fast-path input when
connecting to RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, 10.1, 10.2,
10.3, 10.4, and 10.5 servers.

INPUT_FLAG_UNUSED1

0x0040

An unused flag that MUST be ignored by the client if it is present in
the server-to-client Input Capability Set.

147 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

INPUT_FLAG_UNUSED2

0x0080

An unused flag that MUST be ignored by the server if it is present in
the client-to-server Input Capability Set.

TS_INPUT_FLAG_MOUSE_HWHEEL

0x0100

Indicates support for horizontal Mouse Wheel Event notifications
(sections 2.2.8.1.1.3.1.1.3 and 2.2.8.1.2.2.3).

TS_INPUT_FLAG_QOE_TIMESTAMPS

0x0200

Indicates support for Quality of Experience (QoE) Timestamp
Event notifications (section 2.2.8.1.2.2.6). There is no slow-path
support for Quality of Experience (QoE) timestamps.

At a minimum, the INPUT_FLAG_SCANCODES flag MUST be set, as server-side RDP keyboard
input handling is restricted to keyboard scancodes and Unicode input (unlike the code-point or
virtual codes supported in [T128]).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

keyboardLayout (4 bytes): A 32-bit, unsigned integer. The active input locale identifier, also known
as the "HKL" (for example, 0x00000409 for a "US" keyboard layout and 0x00010407 for a

"German (IBM)" keyboard layout). For a list of input locale identifiers, see [MSFT-DIL]. The active
input locale identifier is only specified in the client Input Capability Set and SHOULD be the
same as the keyboard layout specified in the Client Core Data (section 2.2.1.3.2).<30>

keyboardType (4 bytes): A 32-bit, unsigned integer. Keyboard type.

Value Meaning

0x00000001 IBM PC/XT or compatible (83-key) keyboard

0x00000002 Olivetti "ICO" (102-key) keyboard

0x00000003 IBM PC/AT (84-key) or similar keyboard

0x00000004 IBM enhanced (101- or 102-key) keyboard

0x00000005 Nokia 1050 and similar keyboards

0x00000006 Nokia 9140 and similar keyboards

0x00000007 Japanese keyboard

This value is only specified in the client Input Capability Set and SHOULD correspond with that
sent in the Client Core Data.

keyboardSubType (4 bytes): A 32-bit, unsigned integer. Keyboard subtype (an original equipment

manufacturer-dependent value). This value is only specified in the client Input Capability Set
and SHOULD correspond with that sent in the Client Core Data.

keyboardFunctionKey (4 bytes): A 32-bit, unsigned integer. Number of function keys on the
keyboard. This value is only specified in the client Input Capability Set and SHOULD correspond

with that sent in the Client Core Data.

imeFileName (64 bytes): A 64-byte field, containing the input method editor (IME) file name

associated with the input locale. This field contains up to 31 Unicode characters plus a null
terminator and is only specified in the client Input Capability Set and its contents SHOULD
correspond with that sent in the Client Core Data.

2.2.7.1.7 Brush Capability Set (TS_BRUSH_CAPABILITYSET)

148 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The TS_BRUSH_CAPABILITYSET advertises client brush support. This capability is only sent from
client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

brushSupportLevel

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field

MUST be set to CAPSTYPE_BRUSH (15).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

brushSupportLevel (4 bytes): A 32-bit, unsigned integer. The maximum brush level supported by

the client.

Value Meaning

BRUSH_DEFAULT

0x00000000

Support for solid-color and monochrome pattern brushes with no
caching. This is an RDP 4.0 implementation.

BRUSH_COLOR_8x8

0x00000001

Ability to handle color brushes (4-bit or 8-bit in RDP 5.0; 4-bit, 8-bit,
16-bit, or 24-bit in all other RDP versions, except for RDP 4.0) and
caching. Brushes are limited to 8-by-8 pixels.

BRUSH_COLOR_FULL

0x00000002

Ability to handle color brushes (4-bit or 8-bit in RDP 5.0; 4-bit, 8-bit,
16-bit, or 24-bit in all other RDP versions, except for RDP 4.0) and
caching. Brushes can have arbitrary dimensions.

2.2.7.1.8 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET)

 The TS_GLYPHCACHE_CAPABILITYSET structure advertises the glyph support level and associated

cache sizes. This capability is only sent from client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

GlyphCache (40 bytes)

...

...

FragCache

GlyphSupportLevel pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_GLYPHCACHE (16).

149 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

GlyphCache (40 bytes): An array of 10 TS_CACHE_DEFINITION structures. An ordered specification
of the layout of each of the glyph caches with IDs 0 through to 9 ([MS-RDPEGDI] section

3.1.1.1.2).

FragCache (4 bytes): Fragment cache data. The maximum number of entries allowed in the cache is
256, and the largest allowed maximum size of an element is 256 bytes.

GlyphSupportLevel (2 bytes): A 16-bit, unsigned integer. The level of glyph support.

Value Meaning

GLYPH_SUPPORT_NONE

0x0000

The client does not support glyph caching. All text output will be sent to the
client as expensive Bitmap Updates (sections 2.2.9.1.1.3.1.2 and
2.2.9.1.2.1.2).

GLYPH_SUPPORT_PARTIAL

0x0001

Indicates support for Revision 1 Cache Glyph Secondary Drawing Orders ([MS-
RDPEGDI] section 2.2.2.2.1.2.5).

GLYPH_SUPPORT_FULL

0x0002

Indicates support for Revision 1 Cache Glyph Secondary Drawing Orders ([MS-
RDPEGDI] section 2.2.2.2.1.2.5).

GLYPH_SUPPORT_ENCODE

0x0003

Indicates support for Revision 2 Cache Glyph Secondary Drawing Orders ([MS-
RDPEGDI] section 2.2.2.2.1.2.6).

If the GlyphSupportLevel is greater than GLYPH_SUPPORT_NONE (0), the client MUST support
the GlyphIndex Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.13) or the FastIndex

Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.14). If the FastIndex Primary
Drawing Order is not supported, then support for the GlyphIndex Primary Drawing Order is
assumed by the server (order support is specified in the Order Capability Set, as described in
section 2.2.7.1.3).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.1.8.1 Cache Definition (TS_CACHE_DEFINITION)

The TS_CACHE_DEFINITION structure specifies details about a particular cache in the Glyph Capability
Set (section 2.2.7.1.8) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CacheEntries CacheMaximumCellSize

CacheEntries (2 bytes): A 16-bit, unsigned integer. The number of entries in the cache. The
maximum number of entries allowed in a cache is 254, and the largest allowed maximum size of
an element is 2048 bytes.

CacheMaximumCellSize (2 bytes): A 16-bit, unsigned integer. The maximum size in bytes of an

entry in the cache.

2.2.7.1.9 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)

The TS_OFFSCREEN_CAPABILITYSET structure is used to advertise support for offscreen bitmap
caching ([MS-RDPEGDI] section 3.1.1.1.5). This capability is only sent from client to server.

150 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

offscreenSupportLevel

offscreenCacheSize offscreenCacheEntries

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_OFFSCREENCACHE (17).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

offscreenSupportLevel (4 bytes): A 32-bit, unsigned integer. Offscreen bitmap cache support level.

Value Meaning

FALSE

0x00000000

Offscreen bitmap cache is not supported.

TRUE

0x00000001

Offscreen bitmap cache is supported.

offscreenCacheSize (2 bytes): A 16-bit, unsigned integer. The maximum size, in kilobytes, of the
client-side offscreen bitmap cache.

offscreenCacheEntries (2 bytes): A 16-bit, unsigned integer. The maximum number of cache

entries allowed in the client-side offscreen bitmap cache.

2.2.7.1.10 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET)

The TS_VIRTUALCHANNEL_CAPABILITYSET structure is used to advertise virtual channel support
characteristics. This capability is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

flags

VCChunkSize (optional)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field

MUST be set to CAPSTYPE_VIRTUALCHANNEL (20).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

flags (4 bytes): A 32-bit, unsigned integer. Virtual channel compression flags.

151 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

VCCAPS_NO_COMPR

0x00000000

Virtual channel compression is not supported.

VCCAPS_COMPR_SC

0x00000001

Indicates to the server that virtual channel compression is supported by the
client for server-to-client traffic. The highest compression level supported by the
client is advertised in the Client Info PDU (section 2.2.1.11).

VCCAPS_COMPR_CS_8K

0x00000002

Indicates to the client that virtual channel compression is supported by the
server for client-to-server traffic (the compression level is limited to RDP 4.0
bulk compression).

VCChunkSize (4 bytes): A 32-bit unsigned integer. When sent from server to client, this field
contains the maximum allowed size of a virtual channel chunk. When sent from client to server,
the value in this field is ignored by the server; the server determines the maximum virtual channel
chunk size. This value MUST be greater than or equal to CHANNEL_CHUNK_LENGTH and less than
or equal to 16256.

2.2.7.1.11 Sound Capability Set (TS_SOUND_CAPABILITYSET)

The TS_SOUND_CAPABILITYSET structure advertises the ability to play a "beep" sound. This capability
is sent only from client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

soundFlags pad2octetsA

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_SOUND (12).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

soundFlags (2 bytes): A 16-bit, unsigned integer. Support for sound options.

Flag Meaning

SOUND_FLAG_BEEPS

0x0001

Playing a beep sound is supported.

If the client advertises support for beeps, it MUST support the Play Sound PDU (section
2.2.9.1.1.5).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2 Optional Capability Sets

2.2.7.2.1 Bitmap Cache Host Support Capability Set

(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET)

The TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET structure is used to advertise support for

persistent bitmap caching ([MS-RDPEGDI] section 3.1.1.1.1). This capability set is only sent from
server to client.

152 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

cacheVersion pad1 pad2

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE_HOSTSUPPORT (18).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

cacheVersion (1 byte): An 8-bit, unsigned integer. Cache version. This field MUST be set to
TS_BITMAPCACHE_REV2 (0x01), which indicates support for the Revision 2 bitmap caches ([MS-
RDPEGDI] section 3.1.1.1.1).

pad1 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pad2 (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.2 Control Capability Set (TS_CONTROL_CAPABILITYSET)

The TS_CONTROL_CAPABILITYSET structure is used by the client to advertise control capabilities and
is fully described in [T128] section 8.2.10. This capability is only sent from client to server and the
server ignores its contents.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

controlFlags remoteDetachFlag

controlInterest detachInterest

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field

MUST be set to CAPSTYPE_CONTROL (5).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

controlFlags (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to zero.

remoteDetachFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

controlInterest (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to

CONTROLPRIORITY_NEVER (0x0002).

detachInterest (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to
CONTROLPRIORITY_NEVER (0x0002).

2.2.7.2.3 Window Activation Capability Set

(TS_WINDOWACTIVATION_CAPABILITYSET)

153 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 The TS_WINDOWACTIVATION_CAPABILITYSET structure is used by the client to advertise window
activation characteristics capabilities and is fully specified in [T128] section 8.2.9. This capability is

only sent from client to server and the server ignores its contents.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

helpKeyFlag helpKeyIndexFlag

helpExtendedKeyFlag windowManagerKeyFlag

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_ACTIVATION (7).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

helpKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE (0x0000).

helpKeyIndexFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE

(0x0000).

helpExtendedKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

windowManagerKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

2.2.7.2.4 Share Capability Set (TS_SHARE_CAPABILITYSET)

The TS_SHARE_CAPABILITYSET structure is used to advertise the channel ID of the sender and is fully

specified in [T128] section 8.2.12. This capability is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

nodeID pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_SHARE (9).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

nodeID (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to zero by the client and to
the server channel ID by the server (0x03EA).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.5 Font Capability Set (TS_FONT_CAPABILITYSET)

The TS_FONT_CAPABILITYSET structure is used to advertise font support options. This capability is
sent by both client and server.

154 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

fontSupportFlags pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_FONT (14).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

fontSupportFlags (2 bytes): A 16-bit, unsigned integer. The font support options. This field
SHOULD be set to FONTSUPPORT_FONTLIST (0x0001).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.6 Multifragment Update Capability Set

(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET)

The TS_MULTIFRAGMENTUPDATE_CAPABILITYSET structure is used to specify capabilities related to
the fragmentation and reassembly of Fast-Path Updates (section 2.2.9.1.2.1). This capability is sent
by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

MaxRequestSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. Type of the capability set. This field MUST

be set to CAPSETTYPE_MULTIFRAGMENTUPDATE (26).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

MaxRequestSize (4 bytes): A 32-bit, unsigned integer. The size of the buffer used to reassemble
the fragments of a Fast-Path Update (section 2.2.9.1.2.1). The size of this buffer places a cap on
the size of the largest Fast-Path Update that can be fragmented (there MUST always be enough
buffer space to hold all of the related Fast-Path Update fragments for reassembly).

2.2.7.2.7 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)

The TS_LARGE_POINTER_CAPABILITYSET structure is used to specify capabilities related to large
mouse pointer shape support. This capability is sent by both client and server.

To support large pointer shapes, the client and server MUST support multifragment updates and
indicate this support by exchanging the Multifragment Update Capability Set (section 2.2.7.2.6). The
MaxRequestSize field of the Multifragment Update Capability Set MUST be set based on the flags

included in the largePointerSupportFlags field. If only the LARGE_POINTER_FLAG_96x96
(0x00000001) flag is specified, then the MaxRequestSize field MUST be set to at least 38,055 bytes
(so that a 96 x 96 pixel 32bpp pointer can be transported). If the LARGE_POINTER_FLAG_384x384
(0x00000002) flag is included, then the MaxRequestSize MUST be set to at least 608,299 bytes (so
that a 384 x 384 pixel 32bpp pointer can be transported).

155 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

largePointerSupportFlags

capabilitySetType (2 bytes): A 16-bit, unsigned integer. Type of the capability set. This field MUST
be set to CAPSETTYPE_LARGE_POINTER (27).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,

including the size of the capabilitySetType and lengthCapability fields.

largePointerSupportFlags (2 bytes): Support for large pointer shapes.

Flag Meaning

LARGE_POINTER_FLAG_96x96

0x00000001

Mouse pointer shapes of up to 96x96 pixels in size are supported.

LARGE_POINTER_FLAG_384x384

0x00000002

Mouse pointer shapes of up to 384x384 pixels in size, and the Fast-Path
Large Pointer Update (section 2.2.9.1.2.1.11), are supported.

Mouse pointer shapes are used by the following pointer updates:

▪ Color Pointer Update (section 2.2.9.1.1.4.4)

▪ New Pointer Update (section 2.2.9.1.1.4.5)

▪ Fast-Path Color Pointer Update (section 2.2.9.1.2.1.7)

▪ Fast-Path New Pointer Update (section 2.2.9.1.2.1.8)

▪ Fast-Path Large Pointer Update (section 2.2.9.1.2.1.11)

The pointer shape data is contained within the AND and XOR masks encapsulated in each of these
updates.

2.2.7.2.8 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET)

The TS_COMPDESK_CAPABILITYSET structure is used to support desktop composition. This capability
is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

CompDeskSupportLevel

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x0019 (CAPSETTYPE_COMPDESK).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

CompDeskSupportLevel (2 bytes): A 16-bit, unsigned integer. The desktop composition support
level.

156 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

COMPDESK_NOT_SUPPORTED

0x0000

Desktop composition services are not supported.

COMPDESK_SUPPORTED

0x0001

Desktop composition services are supported.

2.2.7.2.9 Surface Commands Capability Set (TS_SURFCMDS_CAPABILITYSET)

The TS_SURFCMDS_CAPABILITYSET structure advertises support for Surface
Commands (section 2.2.9.2). This capability is sent by both the client and the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

cmdFlags

reserved

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x001C (CAPSETTYPE_SURFACE_COMMANDS).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

cmdFlags (4 bytes): A 32-bit, unsigned integer. Flags indicating which Surface Commands are
supported.

Flag Meaning

SURFCMDS_SETSURFACEBITS

0x00000002

The Set Surface Bits Command (section 2.2.9.2.1) is supported.

SURFCMDS_FRAMEMARKER

0x00000010

The Frame Marker Command (section 2.2.9.2.3) is supported.

SURFCMDS_STREAMSURFACEBITS

0x00000040

The Stream Surface Bits Command (section 2.2.9.2.2) is
supported.

If the client advertises support for surface commands, it MUST also indicate support for fast-path
output by setting the FASTPATH_OUTPUT_SUPPORTED (0x0001) flag in the extraFlags field of
the General Capability Set (section 2.2.7.1.1).

reserved (4 bytes): This field is reserved for future use and has no effect on the RDP wire traffic. It
MUST be set to zero.

2.2.7.2.10 Bitmap Codecs Capability Set (TS_BITMAPCODECS_CAPABILITYSET)

The TS_BITMAPCODECS_CAPABILITYSET structure advertises support for bitmap encoding and
decoding codecs used in conjunction with the Set Surface Bits Surface Command (section 2.2.9.2.1)
and Cache Bitmap (Revision 3) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.8). This
capability is sent by both the client and server.

157 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

supportedBitmapCodecs (variable)

...

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x001D (CAPSETTYPE_BITMAP_CODECS).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

supportedBitmapCodecs (variable): A variable-length field containing a TS_BITMAPCODECS
structure (section 2.2.7.2.10.1).

2.2.7.2.10.1 Bitmap Codecs (TS_BITMAPCODECS)

The TS_BITMAPCODECS structure contains an array of bitmap codec capabilities.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bitmapCodecCount bitmapCodecArray (variable)

...

bitmapCodecCount (1 byte): An 8-bit, unsigned integer. The number of bitmap codec capability
entries contained in the bitmapCodecArray field (the maximum allowed is 255).

bitmapCodecArray (variable): A variable-length array containing a series of TS_BITMAPCODEC
structures (section 2.2.7.2.10.1.1) that describes the supported bitmap codecs. The number of
TS_BITMAPCODEC structures contained in the array is given by the bitmapCodecCount field.

2.2.7.2.10.1.1 Bitmap Codec (TS_BITMAPCODEC)

The TS_BITMAPCODEC structure is used to describe the encoding parameters of a bitmap codec.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

codecGUID (16 bytes)

...

...

codecID codecPropertiesLength codecProperties (variable)

...

codecGUID (16 bytes): A Globally Unique Identifier (section 2.2.7.2.10.1.1.1) that functions as a
unique ID for each bitmap codec.

158 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

CODEC_GUID_NSCODEC

{0xCA8D1BB9, 0x000F, 0x154F, 0x58,
0x9F, 0xAE, 0x2D, 0x1A, 0x87, 0xE2,
0xD6}

The Bitmap Codec structure defines encoding parameters for the
NSCodec Bitmap Codec ([MS-RDPNSC] sections 2 and 3). The
codecProperties field MUST contain an NSCodec Capability Set
([MS-RDPNSC] section 2.2.1) structure.

CODEC_GUID_REMOTEFX

{0x76772F12, 0xBD72, 0x4463, 0xAF,
0xB3, 0xB7, 0x3C, 0x9C, 0x6F, 0x78,
0x86}

The Bitmap Codec structure defines encoding parameters for the
RemoteFX Bitmap Codec ([MS-RDPRFX] sections 2 and 3). The
codecProperties field MUST contain a
TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)
structure or a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure.

CODEC_GUID_IMAGE_REMOTEFX

{0x2744CCD4, 0x9D8A, 0x4E74,
0x80, 0x3C, 0x0E, 0xCB, 0xEE, 0xA1,
0x9C, 0x54}

The Bitmap Codec structure defines encoding parameters for the

RemoteFX Bitmap Codec ([MS-RDPRFX] sections 2 and 3)
operating in image mode ([MS-RDPRFX] section 2.2.1.1.1.1). The
codecProperties field MUST contain a
TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)
structure or a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure.<31>

CODEC_GUID_IGNORE

{0x9C4351A6, 0x3535, 0x42AE, 0x91,
0x0C, 0xCD, 0xFC, 0xE5, 0x76, 0x0B,
0x58}

The Bitmap Codec structure MUST be ignored.

codecID (1 byte): An 8-bit unsigned integer. When sent from the client to the server, this field
contains a unique 8-bit ID that can be used to identify bitmap data encoded using the codec in

wire traffic associated with the current connection - this ID is used in subsequent Set Surface Bits
commands (section 2.2.9.2.1) and Cache Bitmap (Revision 3) orders ([MS-RDPEGDI] section
2.2.2.2.1.2.8). When sent from the server to the client, the value in this field is ignored by the
client - the client determines the 8-bit ID to use for the codec. If the codecGUID field contains
the CODEC_GUID_NSCODEC GUID, then this field MUST be set to 0x01 (the codec ID 0x01 MUST
NOT be associated with any other bitmap codec).

codecPropertiesLength (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
codecProperties field.

codecProperties (variable): A variable-length array of bytes containing data that describes the
encoding parameter of the bitmap codec. If the codecGUID field is set to
CODEC_GUID_NSCODEC, this field MUST contain an NSCodec Capability Set ([MS-RDPNSC]
section 2.2.1) structure. Otherwise, if the codecGUID field is set to CODEC_GUID_REMOTEFX,
this field MUST contain a TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)

structure when sent from client to server, and a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure when sent from server to client.

2.2.7.2.10.1.1.1 Globally Unique Identifier (GUID)

The GUID structure contains 128 bits that represent a globally unique identifier that can be used to

provide a distinctive reference number, as specified in [MS-DTYP] section 2.3.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

codecGUID1

codecGUID2 codecGUID3

159 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

codecGUID4 codecGUID5 codecGUID6 codecGUID7

codecGUID8 codecGUID9 codecGUID10 codecGUID11

codecGUID1 (4 bytes): A 32-bit, unsigned integer. The first GUID component.

codecGUID2 (2 bytes): A 16-bit, unsigned integer. The second GUID component.

codecGUID3 (2 bytes): A 16-bit, unsigned integer. The third GUID component.

codecGUID4 (1 byte): An 8-bit, unsigned integer. The fourth GUID component.

codecGUID5 (1 byte): An 8-bit, unsigned integer. The fifth GUID component.

codecGUID6 (1 byte): An 8-bit, unsigned integer. The sixth GUID component.

codecGUID7 (1 byte): An 8-bit, unsigned integer. The seventh GUID component.

codecGUID8 (1 byte): An 8-bit, unsigned integer. The eighth GUID component.

codecGUID9 (1 byte): An 8-bit, unsigned integer. The ninth GUID component.

codecGUID10 (1 byte): An 8-bit, unsigned integer. The tenth GUID component.

codecGUID11 (1 byte): An 8-bit, unsigned integer. The eleventh GUID component.

2.2.8 Keyboard and Mouse Input

2.2.8.1 Input PDU Packaging

2.2.8.1.1 Slow-Path (T.128) Formats

2.2.8.1.1.1 Share Headers

2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)

The TS_SHARECONTROLHEADER header is a T.128 header ([T128] section 8.3) that MUST be present
in the following PDUs.

▪ Demand Active PDU (section 2.2.1.13.1).

▪ Confirm Active PDU (section 2.2.1.13.2).

▪ Deactivate All PDU (section 2.2.3.1).

▪ Enhanced Security Server Redirection PDU (section 2.2.13.3.1).

▪ All Data PDUs (section 2.2.8.1.1.1.2).

A definitive list of all Data PDUs is given in section 2.2.8.1.1.1.2 in the description of the pduType2
field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

totalLength pduType

160 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

pduSource

totalLength (2 bytes): A 16-bit unsigned integer. The total length of the packet in bytes (the length
includes the size of the Share Control Header). If the totalLength field equals 0x8000, then the
Share Control Header and any data that follows MAY be interpreted as a T.128 FlowPDU as

described in [T128] section 8.5 (the ASN.1 structure definition is detailed in [T128] section 9.1)
and MUST be ignored.

pduType (2 bytes): A 16-bit unsigned integer. It contains the PDU type and protocol version
information. The format of the pduType field is described by the following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type PDUVersion

type (4 bits): A 4-bit unsigned integer that specifies the PDU type.

Value (4 bits) Meaning

PDUTYPE_DEMANDACTIVEPDU

0x1

Demand Active PDU (section 2.2.1.13.1).

PDUTYPE_CONFIRMACTIVEPDU

0x3

Confirm Active PDU (section 2.2.1.13.2).

PDUTYPE_DEACTIVATEALLPDU

0x6

Deactivate All PDU (section 2.2.3.1).

PDUTYPE_DATAPDU

0x7

Data PDU (actual type is revealed by the pduType2 field in the
Share Data Header (section 2.2.8.1.1.1.2) structure).

PDUTYPE_SERVER_REDIR_PKT

0xA

Enhanced Security Server Redirection PDU (section 2.2.13.3.1).

PDUVersion (12 bits): A 12-bit unsigned integer that specifies the PDU version.

pduSource (2 bytes): A 16-bit unsigned integer. The channel ID that is the transmission source of
the PDU.

2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)

The TS_SHAREDATAHEADER header is a T.128 header ([T128] section 8.3) that MUST be present in
all Data PDUs. A definitive list of all Data PDUs is given in the description of the pduType2 field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareID

... pad1 streamID

uncompressedLength pduType2 compressedType

161 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

compressedLength

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The PDUVersion subfield of the pduType field of the Share Control Header
MUST be set to TS_PROTOCOL_VERSION (0x1).

shareID (4 bytes): A 32-bit, unsigned integer. Share identifier for the packet (see [T128] section
8.4.2 for more information about share IDs).

pad1 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

streamID (1 byte): An 8-bit, unsigned integer. The stream identifier for the packet.

Value Meaning

STREAM_UNDEFINED

0x00

Undefined stream priority. This value might be used in the Server Synchronize PDU
(section 2.2.1.19) due to a server-side RDP bug. It MUST NOT be used in
conjunction with any other PDUs.

STREAM_LOW

0x01

Low-priority stream.

STREAM_MED

0x02

Medium-priority stream.

STREAM_HI

0x04

High-priority stream.

uncompressedLength (2 bytes): A 16-bit, unsigned integer. The uncompressed length of the
packet in bytes.

pduType2 (1 byte): An 8-bit, unsigned integer. The type of Data PDU.

Value Meaning

PDUTYPE2_UPDATE

0x02

Graphics Update PDU (section 2.2.9.1.1.3)

PDUTYPE2_CONTROL

0x14

Control PDU (section 2.2.1.15.1)

PDUTYPE2_POINTER

0x1B

Pointer Update PDU (section 2.2.9.1.1.4)

PDUTYPE2_INPUT

0x1C

Input Event PDU (section 2.2.8.1.1.3)

PDUTYPE2_SYNCHRONIZE

0x1F

Synchronize PDU (section 2.2.1.14.1)

PDUTYPE2_REFRESH_RECT

0x21

Refresh Rect PDU (section 2.2.11.2.1)

PDUTYPE2_PLAY_SOUND

0x22

Play Sound PDU (section 2.2.9.1.1.5.1)

PDUTYPE2_SUPPRESS_OUTPUT

0x23

Suppress Output PDU (section 2.2.11.3.1)

162 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

PDUTYPE2_SHUTDOWN_REQUEST

0x24

Shutdown Request PDU (section 2.2.2.1.1)

PDUTYPE2_SHUTDOWN_DENIED

0x25

Shutdown Request Denied PDU (section 2.2.2.2.1)

PDUTYPE2_SAVE_SESSION_INFO

0x26

Save Session Info PDU (section 2.2.10.1.1)

PDUTYPE2_FONTLIST

0x27

Font List PDU (section 2.2.1.18.1)

PDUTYPE2_FONTMAP

0x28

Font Map PDU (section 2.2.1.22.1)

PDUTYPE2_SET_KEYBOARD_INDICATORS

0x29

Set Keyboard Indicators PDU (section 2.2.8.2.1.1)

PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST

0x2B

Persistent Key List PDU (section 2.2.1.17.1)

PDUTYPE2_BITMAPCACHE_ERROR_PDU

0x2C

Bitmap Cache Error PDU ([MS-RDPEGDI] section 2.2.2.3.1)

PDUTYPE2_SET_KEYBOARD_IME_STATUS

0x2D

Set Keyboard IME Status PDU (section 2.2.8.2.2.1)

PDUTYPE2_OFFSCRCACHE_ERROR_PDU

0x2E

Offscreen Bitmap Cache Error PDU ([MS-RDPEGDI] section
2.2.2.3.2)

PDUTYPE2_SET_ERROR_INFO_PDU

0x2F

Set Error Info PDU (section 2.2.5.1.1)

PDUTYPE2_DRAWNINEGRID_ERROR_PDU

0x30

DrawNineGrid Cache Error PDU ([MS-RDPEGDI] section
2.2.2.3.3)

PDUTYPE2_DRAWGDIPLUS_ERROR_PDU

0x31

GDI+ Error PDU ([MS-RDPEGDI] section 2.2.2.3.4)

PDUTYPE2_ARC_STATUS_PDU

0x32

Auto-Reconnect Status PDU (section 2.2.4.1.1)

PDUTYPE2_STATUS_INFO_PDU

0x36

Status Info PDU (section 2.2.5.2)

PDUTYPE2_MONITOR_LAYOUT_PDU

0x37

Monitor Layout PDU (section 2.2.12.1)

compressedType (1 byte): An 8-bit, unsigned integer. The compression type and flags specifying
the data following the Share Data Header (section 2.2.8.1.1.1.2).

Flag Meaning

CompressionTypeMask

0x0F

Indicates the package which was used for compression. See the table which follows
for a list of compression packages.

163 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

PACKET_COMPRESSED

0x20

The payload data is compressed. This flag is equivalent to MPPC bit C (for more
information see [RFC2118] section 3.1).

PACKET_AT_FRONT

0x40

The decompressed packet MUST be placed at the beginning of the history buffer.
This flag is equivalent to MPPC bit B (for more information see [RFC2118] section
3.1).

PACKET_FLUSHED

0x80

The decompressor MUST reinitialize the history buffer (by filling it with zeros) and
reset the HistoryOffset to zero. After it has been reinitialized, the entire history
buffer is immediately regarded as valid. This flag is equivalent to MPPC bit A (for
more information see [RFC2118] section 3.1). If the PACKET_COMPRESSED (0x20)
flag is also present, then the PACKET_FLUSHED flag MUST be processed first.

Instructions specifying how to set the compression flags can be found in section 3.1.8.2.1.

Possible compression types are as follows.

Value Meaning

PACKET_COMPR_TYPE_8K

0x0

RDP 4.0 bulk compression (section 3.1.8.4.1).

PACKET_COMPR_TYPE_64K

0x1

RDP 5.0 bulk compression (section 3.1.8.4.2).

PACKET_COMPR_TYPE_RDP6

0x2

RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

PACKET_COMPR_TYPE_RDP61

0x3

RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

Instructions specifying how to compress a data stream are listed in section 3.1.8.2, while

decompression of a data stream is described in section 3.1.8.3.

compressedLength (2 bytes): A 16-bit, unsigned integer. The compressed length of the packet in

bytes.

2.2.8.1.1.2 Security Headers

2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER)

The TS_SECURITY_HEADER structure is used to store security flags.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags flagsHi

flags (2 bytes): A 16-bit, unsigned integer that contains security flags.

Flag Meaning

SEC_EXCHANGE_PKT

0x0001

Indicates that the packet is a Security Exchange PDU (section 2.2.1.10). This
packet type is sent from client to server only. The client only sends this
packet if it will be encrypting further communication and Standard RDP
Security mechanisms (section 5.3) are in effect.

164 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

SEC_TRANSPORT_REQ

0x0002

Indicates that the packet is an Initiate Multitransport Request PDU (section
2.2.15.1). This flag MUST NOT be present if the PDU containing the security
header is being sent from client to server.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

SEC_TRANSPORT_RSP

0x0004

Indicates that the packet is an Initiate Multitransport Response PDU (section
2.2.15.2). This flag MUST NOT be present if the PDU containing the security
header is being sent from server to client.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

SEC_ENCRYPT

0x0008

Indicates that the packet is encrypted.

SEC_RESET_SEQNO

0x0010

This flag is not processed by any RDP clients or servers and MUST be ignored.

SEC_IGNORE_SEQNO

0x0020

This flag is not processed by any RDP clients or servers and MUST be ignored.

SEC_INFO_PKT

0x0040

Indicates that the packet is a Client Info PDU (section 2.2.1.11). This packet
type is sent from client to server only. If Standard RDP Security mechanisms
are in effect, then this packet MUST also be encrypted.

SEC_LICENSE_PKT

0x0080

Indicates that the packet is a Licensing PDU (section 2.2.1.12).

SEC_LICENSE_ENCRYPT_CS

0x0200

Indicates to the client that the server is capable of processing encrypted
licensing packets. It is sent by the server together with any licensing PDUs
(section 2.2.1.12).

SEC_LICENSE_ENCRYPT_SC

0x0200

Indicates to the server that the client is capable of processing encrypted
licensing packets. It is sent by the client together with the
SEC_EXCHANGE_PKT flag when sending a Security Exchange PDU (section
2.2.1.10).

SEC_REDIRECTION_PKT

0x0400

Indicates that the packet is a Standard Security Server Redirection PDU
(section 2.2.13.2.1) and that the PDU is encrypted.

SEC_SECURE_CHECKSUM

0x0800

Indicates that the MAC for the PDU was generated using the "salted MAC
generation" technique (section 5.3.6.1.1). If this flag is not present, then the
standard technique was used (sections 2.2.8.1.1.2.2 and 2.2.8.1.1.2.3).

SEC_AUTODETECT_REQ

0x1000

Indicates that the packet is an Auto-Detect Request PDU (section 2.2.14.3).
This flag MUST NOT be present if the PDU containing the security header is
being sent from client to server.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

SEC_AUTODETECT_RSP

0x2000

Indicates that the packet is an Auto-Detect Response PDU (section 2.2.14.4).
This flag MUST NOT be present if the PDU containing the security header is
being sent from server to client.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (2.2.1.4.5).

165 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

SEC_HEARTBEAT

0x4000

Indicates that the packet is a Heartbeat PDU (section 2.2.16.1). This flag
MUST NOT be present if the PDU containing the security header is not being
sent on the MCS message channel. The ID of the message channel is specified
in the Server Message Channel Data (2.2.1.4.5).

SEC_FLAGSHI_VALID

0x8000

Indicates that the flagsHi field contains valid data. If this flag is not set, then
the contents of the flagsHi field MUST be ignored.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the

SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1)

The TS_SECURITY_HEADER1 structure extends the Basic Security Header (section 2.2.8.1.1.2.1) and

is used to store a 64-bit Message Authentication Code.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags flagsHi

dataSignature

...

flags (2 bytes): A 16-bit, unsigned integer that contains security flags as specified in section
2.2.8.1.1.2.1.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the
SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

dataSignature (8 bytes): A 64-bit Message Authentication Code generated by using one of the
techniques described in section 5.3.6.1.

2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2)

The TS_SECURITY_HEADER2 structure extends the Basic Security Header (section 2.2.8.1.1.2.1) and
is used to store padding information and a 64-bit Message Authentication Code.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags flagsHi

length version padlen

dataSignature

...

166 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

flags (2 bytes): A 16-bit, unsigned integer that contains security flags as specified in section
2.2.8.1.1.2.1.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the

SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

length (2 bytes): A 16-bit, unsigned integer. The length of the FIPS security header. This field MUST
be set to 0x0010 (16 bytes).

version (1 byte): An 8-bit, unsigned integer. The version of the FIPS header. This field SHOULD be
set to TSFIPS_VERSION1 (0x01).

padlen (1 byte): An 8-bit, unsigned integer. The number of padding bytes of padding appended to

the end of the packet prior to encryption to make sure that the data to be encrypted is a multiple
of the 3DES block size (that is, a multiple of 8 because the block size is 64 bits).

dataSignature (8 bytes): A 64-bit Message Authentication Code generated by using the techniques

specified in section 5.3.6.2.

2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU)

The Input Event PDU is used to transmit input events from client to server.<32><33>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

clientInputEventData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Client Input Event PDU Data (section 2.2.8.1.1.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

167 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

clientInputEventData (variable): The actual contents of the Client Input Event PDU, as specified in
section 2.2.8.1.1.3.1.

2.2.8.1.1.3.1 Client Input Event PDU Data (TS_INPUT_PDU_DATA)

The TS_INPUT_PDU_DATA structure contains a collection of Slow-Path Input Events (section
2.2.8.1.1.3.1.1) generated by the client and intended to be processed by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... numEvents

pad2Octets slowPathInputEvents (variable)

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section

2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_INPUT (28).

numEvents (2 bytes): A 16-bit, unsigned integer. The number of Slow-Path Input Events packed
together in the slowPathInputEvents field.

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

slowPathInputEvents (variable): A collection of Slow-Path Input Events to be processed by the
server. The number of events present in this array is given by the numEvents field.

2.2.8.1.1.3.1.1 Slow-Path Input Event (TS_INPUT_EVENT)

The TS_INPUT_EVENT structure is used to wrap event-specific information for all slow-path input
events.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventTime

168 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

messageType slowPathInputData (variable)

...

eventTime (4 bytes): A 32-bit, unsigned integer. The 32-bit time stamp for the input event. This
value is ignored by the server.

messageType (2 bytes): A 16-bit, unsigned integer. The input event type.

Value Meaning

INPUT_EVENT_SYNC

0x0000

Indicates a Synchronize Event (section 2.2.8.1.1.3.1.1.5).

INPUT_EVENT_UNUSED

0x0002

Indicates an Unused Event (section 2.2.8.1.1.3.1.1.6).

INPUT_EVENT_SCANCODE

0x0004

Indicates a Keyboard Event (section 2.2.8.1.1.3.1.1.1).

INPUT_EVENT_UNICODE

0x0005

Indicates a Unicode Keyboard Event (section 2.2.8.1.1.3.1.1.2).

INPUT_EVENT_MOUSE

0x8001

Indicates a Mouse Event (section 2.2.8.1.1.3.1.1.3).

INPUT_EVENT_MOUSEX

0x8002

Indicates an Extended Mouse Event (section 2.2.8.1.1.3.1.1.4).

slowPathInputData (variable): TS_KEYBOARD_EVENT, TS_UNICODE_KEYBOARD_EVENT,

TS_POINTER_EVENT, TS_POINTERX_EVENT, TS_SYNC_EVENT, or TS_UNUSED_EVENT. The actual
contents of the input event specified by the messageType field (sections 2.2.8.1.1.3.1.1.1

through 2.2.8.1.1.3.1.1.6).

2.2.8.1.1.3.1.1.1 Keyboard Event (TS_KEYBOARD_EVENT)

The TS_KEYBOARD_EVENT structure is a standard T.128 Keyboard Event ([T128] section 8.18.2). RDP
keyboard input is restricted to keyboard scancodes, unlike the code-point or virtual codes supported in

T.128 (a scancode is an 8-bit value specifying a key location on the keyboard). The server accepts a
scancode value and translates it into the correct character depending on the language locale and
keyboard layout used in the session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

keyboardFlags keyCode

pad2Octets

keyboardFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the keyboard event.

Flag Meaning

KBDFLAGS_EXTENDED

0x0100

Indicates that the keystroke message contains an extended scancode. For
enhanced 101-key and 102-key keyboards, extended keys include the right ALT
and right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

169 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

END, PAGE UP, PAGE DOWN and ARROW keys in the clusters to the left of the
numeric keypad; and the Divide ("/") and ENTER keys in the numeric keypad.

KBDFLAGS_EXTENDED1

0x0200

Used to send keyboard events triggered by the PAUSE key.

A PAUSE key press and release MUST be sent as the following sequence of
keyboard events:

▪ CTRL (0x1D) DOWN

▪ NUMLOCK (0x45) DOWN

▪ CTRL (0x1D) UP

▪ NUMLOCK (0x45) UP

The CTRL DOWN and CTRL UP events MUST both include the
KBDFLAGS_EXTENDED1 flag.

KBDFLAGS_DOWN

0x4000

Indicates that the key was down prior to this event.

KBDFLAGS_RELEASE

0x8000

The absence of this flag indicates a key-down event, while its presence indicates a
key-release event.

keyCode (2 bytes): A 16-bit, unsigned integer. The scancode of the key which triggered the event.

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.8.1.1.3.1.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)

The TS_UNICODE_KEYBOARD_EVENT structure is used to transmit a Unicode input code, as opposed
to a keyboard scancode. Support for the Unicode Keyboard Event is advertised in the Input Capability
Set (section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

keyboardFlags unicodeCode

pad2Octets

keyboardFlags (2 bytes): A 16-bit unsigned integer. The flags describing the Unicode keyboard

event.

Flag Meaning

KBDFLAGS_RELEASE

0x8000

The absence of this flag indicates a key-down event, whereas its presence indicates
a key-release event.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field MUST be ignored.

2.2.8.1.1.3.1.1.3 Mouse Event (TS_POINTER_EVENT)

The TS_POINTER_EVENT structure is a standard T.128 Keyboard Event ([T128] section 8.18.1). RDP
adds flags to deal with wheel mice and extended mouse buttons.

170 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pointerFlags xPos

yPos

pointerFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the pointer event.

Mouse wheel event:

Flag Meaning

PTRFLAGS_HWHEEL

0x0400

The event is a horizontal mouse wheel rotation. The only valid flags in a
horizontal wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the
WheelRotationMask; all other pointer flags are ignored. This flag MUST NOT
be sent to a server that does not indicate support for horizontal mouse
wheel events in the Input Capability Set (section 2.2.7.1.6).

PTRFLAGS_WHEEL

0x0200

The event is a vertical mouse wheel rotation. The only valid flags in a
vertical wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the
WheelRotationMask; all other pointer flags are ignored.

PTRFLAGS_WHEEL_NEGATIVE

0x0100

The wheel rotation value (contained in the WheelRotationMask bit field) is
negative and MUST be sign-extended before injection at the server.

WheelRotationMask

0x01FF

The bit field describing the number of rotation units the mouse wheel was
rotated. The value is negative if the PTRFLAGS_WHEEL_NEGATIVE flag is
set.

If both PTRFLAGS_WHEEL and PTRFLAGS_HWHEEL are specified, then PTRFLAGS_WHEEL takes
precedence.

Mouse movement event:

Flag Meaning

PTRFLAGS_MOVE

0x0800

Indicates that the mouse position MUST be updated to the location specified by the xPos
and yPos fields.

Mouse button events:

Flag Meaning

PTRFLAGS_DOWN

0x8000

Indicates that a click event has occurred at the position specified by the xPos and
yPos fields. The button flags indicate which button has been clicked and at least one
of these flags MUST be set.

PTRFLAGS_BUTTON1

0x1000

Mouse button 1 (left button) was clicked or released. If the PTRFLAGS_DOWN flag is
set, then the button was clicked, otherwise it was released.

PTRFLAGS_BUTTON2

0x2000

Mouse button 2 (right button) was clicked or released. If the PTRFLAGS_DOWN flag

is set, then the button was clicked, otherwise it was released.

PTRFLAGS_BUTTON3

0x4000

Mouse button 3 (middle button or wheel) was clicked or released. If the
PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it was released.

171 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the

PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

2.2.8.1.1.3.1.1.4 Extended Mouse Event (TS_POINTERX_EVENT)

The TS_POINTERX_EVENT structure has the same format as the

TS_POINTER_EVENT (section 2.2.8.1.1.3.1.1.3). The fields and possible field values are all the same,
except for the pointerFlags field. Support for the Extended Mouse Event is advertised in the Input
Capability Set (section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pointerFlags xPos

yPos

pointerFlags (2 bytes): A 16-bit unsigned integer. The flags describing the extended mouse event.

Flag Meaning

PTRXFLAGS_DOWN

0x8000

Indicates that a click event has occurred at the position specified by the xPos and
yPos fields. The button flags indicate which button has been clicked and at least
one of these flags MUST be set.

PTRXFLAGS_BUTTON1

0x0001

Extended mouse button 1 (also referred to as button 4) was clicked or released. If
the PTRXFLAGS_DOWN flag is set, the button was clicked; otherwise, it was
released.

PTRXFLAGS_BUTTON2

0x0002

Extended mouse button 2 (also referred to as button 5) was clicked or released. If
the PTRXFLAGS_DOWN flag is set, the button was clicked; otherwise, it was
released.

xPos (2 bytes): A 16-bit unsigned integer. The x-coordinate of the pointer.

yPos (2 bytes): A 16-bit unsigned integer. The y-coordinate of the pointer.

2.2.8.1.1.3.1.1.5 Synchronize Event (TS_SYNC_EVENT)

The TS_SYNC_EVENT structure is a standard T.128 Input Synchronize Event ([T128] section 8.18.6).
In RDP this event is used to synchronize the values of the toggle keys (for example, Caps Lock) and to
reset the server key state to all keys up. This event is sent by the client to communicate the state of

the toggle keys. The synchronize event SHOULD be followed by key-down events to communicate
which keyboard and mouse keys are down.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pad2Octets toggleFlags

172 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

toggleFlags (4 bytes): A 32-bit, unsigned integer. Flags indicating the "on" status of the keyboard
toggle keys.

Flag Meaning

TS_SYNC_SCROLL_LOCK

0x00000001

Indicates that the Scroll Lock indicator light SHOULD be on.

TS_SYNC_NUM_LOCK

0x00000002

Indicates that the Num Lock indicator light SHOULD be on.

TS_SYNC_CAPS_LOCK

0x00000004

Indicates that the Caps Lock indicator light SHOULD be on.

TS_SYNC_KANA_LOCK

0x00000008

Indicates that the Kana Lock indicator light SHOULD be on.

2.2.8.1.1.3.1.1.6 Unused Event (TS_UNUSED_EVENT)

The TS_UNUSED_EVENT structure is sent by RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 clients if
the server erroneously did not indicate support for scancodes in the Input Capability Set

(TS_INPUT_CAPABILITYSET) (section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pad4Octets

pad2Octets

pad4Octets (4 bytes): A 32-bit, unsigned integer. This field is padding, and the values in this field
MUST be ignored.

pad2Octets (2 bytes): A 32-bit, unsigned integer. This field is padding, and the values in this field
MUST be ignored.

2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)

The Fast-Path Input Event PDU is used to transmit input events from client to server.<34> Fast-path

revises client input packets from the first byte with the goal of improving bandwidth. The TPKT Header
([T123] section 8), X.224 Class 0 Data TPDU ([X224] section 13.7), and MCS Send Data Request
([T125] section 11.32) are replaced; the Security Header (section 2.2.8.1.1.2) is collapsed into the
fast-path input header, and the Share Data Header (section 2.2.8.1.1.1.2) is replaced by a new fast-
path format. The contents of the input notification events (section 2.2.8.1.1.3.1.1) are also changed

to reduce their size, particularly by removing or reducing headers. Support for fast-path input is
advertised in the Input Capability Set (section 2.2.7.1.6).

173 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

fpInputHeader length1 length2 (optional) fipsInformation (optional)

... dataSignature (optional)

...

... numEvents (optional)

fpInputEvents (variable)

...

fpInputHeader (1 byte): An 8-bit, unsigned integer. One-byte, bit-packed header. This byte
coincides with the first byte of the TPKT Header ([T123] section 8). Three pieces of information
are collapsed into this byte:

▪ Security flags

▪ Number of events in the fast-path input PDU

▪ Action code

The format of the fpInputHeader byte is described by the following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

action numEvents flags

action (2 bits): A 2-bit, unsigned integer that indicates whether the PDU is in fast-path or slow-

path format.

Value (2 bits) Meaning

FASTPATH_INPUT_ACTION_FASTPATH

0x0

Indicates the PDU is a fast-path input PDU.

FASTPATH_INPUT_ACTION_X224

0x3

Indicates the presence of a TPKT Header initial version byte,
which indicates that the PDU is a slow-path input PDU (in this
case the full value of the initial byte MUST be 0x03).

numEvents (4 bits): A 4-bit, unsigned integer that collapses the number of fast-path input
events packed together in the fpInputEvents field into 4 bits if the number of events is in the

range 1 to 15. If the number of input events is greater than 15, then the numEvents bit field
in the fast-path header byte MUST be set to zero, and the numEvents optional field inserted

after the dataSignature field. This allows up to 255 input events in one PDU.

flags (2 bits): A 2-bit, unsigned integer that contains the flags describing the cryptographic
parameters of the PDU.

Flag (2 bits) Meaning

FASTPATH_INPUT_SECURE_CHECKSUM Indicates that the MAC signature for the PDU was generated

174 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag (2 bits) Meaning

0x1 using the "salted MAC generation" technique (section
5.3.6.1.1). If this bit is not set, then the standard technique
was used (sections 2.2.8.1.1.2.2 and 2.2.8.1.1.2.3).

FASTPATH_INPUT_ENCRYPTED

0x2

Indicates that the PDU contains an 8-byte MAC signature
after the optional length2 field (that is, the dataSignature
field is present) and the contents of the PDU are encrypted
using the negotiated encryption package (sections 5.3.2 and
5.3.6).

length1 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not

set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains the
overall PDU length (the length2 field is not present in this case). However, if the most significant
bit of the length1 field is set, then the overall PDU length is given by the low 7 bits of the length1
field concatenated with the 8 bits of the length2 field, in big-endian order (the length2 field
contains the low-order bits). The overall PDU length SHOULD be less than or equal to 16,383
bytes.

length2 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not

set, then the length2 field is not present. If the most significant bit of the length1 field is set,
then the overall PDU length is given by the low 7 bits of the length1 field concatenated with the 8
bits of the length2 field, in big-endian order (the length2 field contains the low-order bits). The
overall PDU length SHOULD be less than or equal to 16,383 bytes.

fipsInformation (4 bytes): An optional Fast-Path FIPS Information (section 2.2.8.1.2.1) structure,
present when the Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3) is
ENCRYPTION_METHOD_FIPS (0x00000010).

dataSignature (8 bytes): MAC generated over the packet using one of the techniques described in
section 5.3.6 (the FASTPATH_INPUT_SECURE_CHECKSUM flag, which is set in the
fpInputHeader field, describes the method used to generate the signature). This field MUST be
present if the FASTPATH_INPUT_ENCRYPTED flag is set in the fpInputHeader field.

numEvents (1 byte): An 8-bit, unsigned integer. The number of fast-path input events packed
together in the fpInputEvents field (up to 255). This field is present if the numEvents bit field in

the fast-path header byte is zero.

fpInputEvents (variable): An array of Fast-Path Input Event (section 2.2.8.1.2.2) structures to be
processed by the server. The number of events present in this array is given by the numEvents
bit field in the fast-path header byte, or by the numEvents field in the Fast-Path Input Event PDU
(if it is present).

2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)

The TS_FP_FIPS_INFO structure contains FIPS information for inclusion in a fast-path header.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length version padlen

length (2 bytes): A 16-bit, unsigned integer. The length of the FIPS Security Header (section
2.2.8.1.1.2.3). This field MUST be set to 0x0010 (16 bytes).

version (1 byte): An 8-bit, unsigned integer. The version of the FIPS Header. This field SHOULD be
set to TSFIPS_VERSION1 (0x01).

175 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

padlen (1 byte): An 8-bit, unsigned integer. The number of padding bytes of padding appended to
the end of the packet prior to encryption to make sure that the data to be encrypted is a multiple

of the 3DES block size (that is, a multiple of 8 because the block size is 64 bits).

2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT)

The TS_FP_INPUT_EVENT structure is used to describe the type and encapsulate the data for a fast-
path input event sent from client to server. All fast-path input events conform to this basic structure
(sections 2.2.8.1.2.2.1 to 2.2.8.1.2.2.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader eventData (variable)

...

eventHeader (1 byte): An 8-bit, unsigned integer. One byte bit-packed event header. Two pieces of
information are collapsed into this byte:

▪ Fast-path input event type

▪ Flags specific to the input event

The format of the eventHeader field is described by the following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventFlags eventCod
e

eventFlags (5 bits): A 5-bit, unsigned integer that contains flags specific to the input event.

eventCode (3 bits): A 3-bit, unsigned integer that specifies the type code of the input event.

Value (3 bits) Meaning

FASTPATH_INPUT_EVENT_SCANCODE

0x0

Indicates a Fast-Path Keyboard
Event (section 2.2.8.1.2.2.1).

FASTPATH_INPUT_EVENT_MOUSE

0x1

Indicates a Fast-Path Mouse
Event (section 2.2.8.1.2.2.3).

FASTPATH_INPUT_EVENT_MOUSEX

0x2

Indicates a Fast-Path Extended Mouse
Event (section 2.2.8.1.2.2.4).

FASTPATH_INPUT_EVENT_SYNC

0x3

Indicates a Fast-Path Synchronize
Event (section 2.2.8.1.2.2.5).

FASTPATH_INPUT_EVENT_UNICODE

0x4

Indicates a Fast-Path Unicode Keyboard
Event (section 2.2.8.1.2.2.2).

FASTPATH_INPUT_EVENT_QOE_TIMESTAMP

0x6

Indicates a Fast-Path Quality of Experience (QoE)
Timestamp Event (section 2.2.8.1.2.2.6).

eventData (variable): Optional and variable-length data specific to the input event.

176 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT)

The TS_FP_KEYBOARD_EVENT structure is the fast-path variant of the
TS_KEYBOARD_EVENT (section 2.2.8.1.1.3.1.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader keyCode

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field described in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_SCANCODE (0). The eventFlags bitfield (5 bits in size)
contains flags describing the keyboard event.

5-Bit Codes Meaning

FASTPATH_INPUT_KBDFLAGS_RELEASE

0x01

The absence of this flag indicates a key-down event, while its
presence indicates a key-release event.

FASTPATH_INPUT_KBDFLAGS_EXTENDED

0x02

Indicates that the keystroke message contains an extended
scancode. For enhanced 101-key and 102-key keyboards,
extended keys include the right ALT and right CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE
UP, PAGE DOWN and ARROW keys in the clusters to the left of
the numeric keypad; and the Divide ("/") and ENTER keys in
the numeric keypad.

FASTPATH_INPUT_KBDFLAGS_EXTENDED1

0x04

Used to send keyboard events triggered by the PAUSE key.

A PAUSE key press and release MUST be sent as the following
sequence of keyboard events:

▪ CTRL (0x1D) DOWN

▪ NUMLOCK (0x45) DOWN

▪ CTRL (0x1D) UP

▪ NUMLOCK (0x45) UP

The CTRL DOWN and CTRL UP events MUST both include the
FASTPATH_INPUT_KBDFLAGS_EXTENDED1 flag.

keyCode (1 byte): An 8-bit, unsigned integer. The scancode of the key which triggered the event.

2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event

(TS_FP_UNICODE_KEYBOARD_EVENT)

The TS_FP_UNICODE_KEYBOARD_EVENT structure is the fast-path variant of the
TS_UNICODE_KEYBOARD_EVENT (section 2.2.8.1.1.3.1.1.2) structure. Support for the Unicode

Keyboard Event is advertised in the Input Capability Set (section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader unicodeCode

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)

177 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

MUST be set to FASTPATH_INPUT_EVENT_UNICODE (4). The eventFlags bitfield (5 bits in size)
contains flags describing the keyboard event.

5-Bit Codes Meaning

FASTPATH_INPUT_KBDFLAGS_RELEASE

0x01

The absence of this flag indicates a key-down event, whereas its
presence indicates a key-release event.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)

 The TS_FP_POINTER_EVENT structure is the fast-path variant of the
TS_POINTER_EVENT (section 2.2.8.1.1.3.1.1.3) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader pointerFlags xPos

... yPos

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_MOUSE (1). The eventFlags bitfield (5 bits in size)

MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the pointer event. The
possible flags are identical to those found in the pointerFlags field of the TS_POINTER_EVENT
structure.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer relative to the top-left

corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the

pointerFlags field.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT)

 The TS_FP_POINTERX_EVENT structure is the fast-path variant of the
TS_POINTERX_EVENT (section 2.2.8.1.1.3.1.1.4) structure. Support for the Extended Mouse Event is
advertised in the Input Capability Set (section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader pointerFlags xPos

... yPos

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)

178 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

MUST be set to FASTPATH_INPUT_EVENT_MOUSEX (2). The eventFlags bitfield (5 bits in size)
MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the pointer event. The
possible flags are identical to those found in the pointerFlags field of the TS_POINTERX_EVENT

structure.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer.

2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT)

 The TS_FP_SYNC_EVENT structure is the fast-path variant of the
TS_SYNC_EVENT (section 2.2.8.1.1.3.1.1.5) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_SYNC (3). The eventFlags bitfield (5 bits in size)
contains flags indicating the "on" status of the keyboard toggle keys.

5-Bit Codes Meaning

FASTPATH_INPUT_SYNC_SCROLL_LOCK

0x01

Indicates that the Scroll Lock indicator light SHOULD be on.

FASTPATH_INPUT_SYNC_NUM_LOCK

0x02

Indicates that the Num Lock indicator light SHOULD be on.

FASTPATH_INPUT_SYNC_CAPS_LOCK

0x04

Indicates that the Caps Lock indicator light SHOULD be on.

FASTPATH_INPUT_SYNC_KANA_LOCK

0x08

Indicates that the Kana Lock indicator light SHOULD be on.

2.2.8.1.2.2.6 Fast-Path Quality of Experience (QoE) Timestamp Event

(TS_FP_QOETIMESTAMP_EVENT)

The TS_FP_QOETIMESTAMP_EVENT structure is used to enable the calculation of Quality of Experience
(QoE) metrics. This event is sent solely for informational and debugging purposes and MUST NOT be
transmitted to the server if the TS_INPUT_FLAG_QOE_TIMESTAMPS (0x0200) flag was not received in

the Input Capability Set (section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader timestamp

...

179 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)

MUST be set to FASTPATH_INPUT_EVENT_QOE_TIMESTAMP (6). The eventFlags bitfield (5 bits in
size) MUST be zeroed out.

timestamp (4 bytes): A 32-bit, unsigned integer. A client-generated timestamp, in milliseconds,
that indicates when the current input batch was encoded by the client. The value of the first
timestamp sent by the client implicitly defines the origin for all subsequent timestamps. The
server is responsible for handling roll-over of the timestamp.

2.2.8.2 Keyboard Status PDUs

2.2.8.2.1 Server Set Keyboard Indicators PDU

The Set Keyboard Indicators PDU is sent by the server to synchronize the state of the keyboard toggle
keys (Scroll Lock, Num Lock, and so on). It is similar in operation to the Client Synchronize Input
Event Notification (sections 2.2.8.1.1.3.1.1.5 and 2.2.8.1.2.2.5), but flows in the opposite direction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

setKeyBdIndicatorsPduData (22 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as

specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header

and a Set Keyboard Indicators PDU Data (section 2.2.8.2.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

180 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

setKeyBdIndicatorsPduData (22 bytes): The actual contents of the Set Keyboard Indicators PDU,

as specified in section 2.2.8.2.1.1.

2.2.8.2.1.1 Set Keyboard Indicators PDU Data

(TS_SET_KEYBOARD_INDICATORS_PDU)

The TS_SET_KEYBOARD_INDICATORS_PDU structure contains the actual contents of the Set

Keyboard Indicators PDU (section 2.2.8.2.1). The contents of the LedFlags field is identical to the
flags used in the Client Synchronize Input Event Notification (section 2.2.8.1.1.3.1.1.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... UnitId

LedFlags

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SET_KEYBOARD_INDICATORS (41).

UnitId (2 bytes): A 16-bit, unsigned integer. Hardware related value. This field SHOULD be ignored
by the client and as a consequence SHOULD be set to zero by the server.

LedFlags (2 bytes): A 16-bit, unsigned integer. The flags indicating the "on" status of the keyboard
toggle keys.

Flag Meaning

TS_SYNC_SCROLL_LOCK

0x0001

Indicates that the Scroll Lock indicator light SHOULD be on.

TS_SYNC_NUM_LOCK

0x0002

Indicates that the Num Lock indicator light SHOULD be on.

TS_SYNC_CAPS_LOCK Indicates that the Caps Lock indicator light SHOULD be on.

181 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

0x0004

TS_SYNC_KANA_LOCK

0x0008

Indicates that the Kana Lock indicator light SHOULD be on.

2.2.8.2.2 Server Set Keyboard IME Status PDU

The Set Keyboard IME Status PDU is used to request that the client set the state of the input method
editor (IME) and is sent by the server<35> when the user's session employs at least one IME. This
PDU is accepted and ignored by non-IME-aware clients.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

setKeyBdImeStatusPduData (28 bytes)

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Keyboard IME Status PDU Data (section 2.2.8.2.2.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

182 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

setKeyBdImeStatusPduData (28 bytes): The actual contents of the Set Keyboard IME Status PDU,
as specified in section 2.2.8.2.2.1.

2.2.8.2.2.1 Set Keyboard IME Status PDU Data

(TS_SET_KEYBOARD_IME_STATUS_PDU)

The TS_SET_KEYBOARD_IME_STATUS_PDU structure contains the actual contents of the Set
Keyboard IME Status PDU (section 2.2.8.2.2). The ImeState and ImeConvMode fields are used as
input parameters to a Fujitsu Oyayubi-specific IME control function on Asian IME clients.

For more information on input method editors (IMEs), see [International], section "Input Method

Editors" in chapter 5.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... UnitId

ImeState

ImeConvMode

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SET_KEYBOARD_IME_STATUS (45).

UnitId (2 bytes): A 16-bit, unsigned integer. The unit identifier for which the IME message is
intended. This field SHOULD be ignored by the client and as a consequence SHOULD be set to zero
by the server.

ImeState (4 bytes): A 32-bit, unsigned integer. Indicates the open or closed state of the IME.

Value Meaning

IME_STATE_CLOSED

0x00000000

The IME state is closed.

IME_STATE_OPEN

0x00000001

The IME state is open.

ImeConvMode (4 bytes): A 32-bit, unsigned integer. Indicates the IME conversion mode.

183 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag Meaning

IME_CMODE_NATIVE

0x00000001

The input mode is native. If not set, the input mode is alphanumeric.

IME_CMODE_KATAKANA

0x00000002

The input mode is Katakana. If not set, the input mode is Hiragana.

IME_CMODE_FULLSHAPE

0x00000008

The input mode is full-width. If not set, the input mode is half-width.

IME_CMODE_ROMAN

0x00000010

The input mode is Roman.

IME_CMODE_CHARCODE

0x00000020

Character-code input is in effect.

IME_CMODE_HANJACONVERT

0x00000040

Hanja conversion mode is in effect.

IME_CMODE_SOFTKBD

0x00000080

A soft (on-screen) keyboard is being used.

IME_CMODE_NOCONVERSION

0x00000100

IME conversion is inactive (that is, the IME is closed).

IME_CMODE_EUDC

0x00000200

End-User Defined Character (EUDC) conversion mode is in effect.

IME_CMODE_SYMBOL

0x00000400

Symbol conversion mode is in effect.

IME_CMODE_FIXED

0x00000800

Fixed conversion mode is in effect.

2.2.9 Basic Output

2.2.9.1 Output PDU Packaging

2.2.9.1.1 Slow-Path (T.128) Format

2.2.9.1.1.1 Share Headers

The Share Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.1.

2.2.9.1.1.2 Security Headers

The Security Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.2.

2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)

The Slow-Path Graphics Update PDU is used to transmit graphics updates from server to client.

184 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

slowPathGraphicsUpdates (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Slow-Path Graphics Update (section 2.2.9.1.1.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

slowPathGraphicsUpdates (variable): A variable-length array of Slow-Path Graphics Updates

(section 2.2.9.1.1.3.1) to be processed by the client.

2.2.9.1.1.3.1 Slow-Path Graphics Update (TS_GRAPHICS_UPDATE)

The TS_GRAPHICS_UPDATE structure is used to describe the type and encapsulate the data for a
slow-path graphics update sent from server to client.<36> All slow-path graphic updates conform to
this basic structure (section 2.2.9.1.1.3.1.1).

185 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... updateType

updateData (variable)

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data

Header MUST be set to PDUTYPE2_UPDATE (2).

updateType (2 bytes): A 16-bit, unsigned integer. Type of the graphics update.

Value Meaning

UPDATETYPE_ORDERS

0x0000

Indicates an Orders Update ([MS-RDPEGDI] section 2.2.2.2).

UPDATETYPE_BITMAP

0x0001

Indicates a Bitmap Graphics Update (section 2.2.9.1.1.3.1.2).

UPDATETYPE_PALETTE

0x0002

Indicates a Palette Update (section 2.2.9.1.1.3.1.1).

UPDATETYPE_SYNCHRONIZE

0x0003

Indicates a Synchronize Update (section 2.2.9.1.1.3.1.3).

updateData (variable): Variable-length data specific to the graphics update.

2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE)

The TS_UPDATE_PALETTE structure contains global palette information that covers the entire session's

palette ([T128] section 8.18.6). Only 256-color palettes are sent in this update. Palletized color is
supported only in RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... paletteData (variable)

186 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data

Header MUST be set to PDUTYPE2_UPDATE (2).

paletteData (variable): The actual palette update data, as specified in section 2.2.9.1.1.3.1.1.1.

2.2.9.1.1.3.1.1.1 Palette Update Data (TS_UPDATE_PALETTE_DATA)

The TS_UPDATE_PALETTE_DATA encapsulates the palette data that defines a Palette
Update (section 2.2.9.1.1.3.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateType pad2Octets

numberColors

paletteEntries (variable)

...

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_PALETTE (0x0002).

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

numberColors (4 bytes): A 32-bit, unsigned integer. The number of RGB triplets in the paletteData

field. This field MUST be set to 256 (the number of entries in an 8 bpp palette).

paletteEntries (variable): An array of palette entries in RGB triplet format (section

2.2.9.1.1.3.1.1.2) packed on byte boundaries. The number of triplet entries is given by the
numberColors field.

2.2.9.1.1.3.1.1.2 RGB Palette Entry (TS_PALETTE_ENTRY)

The TS_PALETTE_ENTRY structure is used to express the red, green, and blue components necessary
to reproduce a color in the additive RGB space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

red green blue

red (1 byte): An 8-bit, unsigned integer. The red RGB color component.

green (1 byte): An 8-bit, unsigned integer. The green RGB color component.

blue (1 byte): An 8-bit, unsigned integer. The blue RGB color component.

2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP)

187 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The TS_UPDATE_BITMAP structure contains one or more rectangular clippings taken from the server-
side screen frame buffer ([T128] section 8.17).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... bitmapData (variable)

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information

about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

bitmapData (variable): The actual bitmap update data, as specified in section 2.2.9.1.1.3.1.2.1.

2.2.9.1.1.3.1.2.1 Bitmap Update Data (TS_UPDATE_BITMAP_DATA)

The TS_UPDATE_BITMAP_DATA structure encapsulates the bitmap data that defines a Bitmap

Update (section 2.2.9.1.1.3.1.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateType numberRectangles

rectangles (variable)

...

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_BITMAP (0x0001).

numberRectangles (2 bytes): A 16-bit, unsigned integer. The number of screen rectangles present
in the rectangles field.

rectangles (variable): Variable-length array of TS_BITMAP_DATA (section 2.2.9.1.1.3.1.2.2)
structures, each of which contains a rectangular clipping taken from the server-side screen frame
buffer. The number of screen clippings in the array is specified by the numberRectangles field.

2.2.9.1.1.3.1.2.2 Bitmap Data (TS_BITMAP_DATA)

The TS_BITMAP_DATA structure wraps the bitmap data for a screen area rectangle containing a
clipping taken from the server-side screen frame buffer.

188 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

destLeft destTop

destRight destBottom

width height

bitsPerPixel flags

bitmapLength bitmapComprHdr (optional)

...

... bitmapDataStream (variable)

...

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the rectangle.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the rectangle.

destRight (2 bytes): A 16-bit, unsigned integer. Inclusive right bound of the rectangle.

destBottom (2 bytes): A 16-bit, unsigned integer. Inclusive bottom bound of the rectangle.

width (2 bytes): A 16-bit, unsigned integer. The width of the rectangle.

height (2 bytes): A 16-bit, unsigned integer. The height of the rectangle.

bitsPerPixel (2 bytes): A 16-bit, unsigned integer. The color depth of the rectangle data in bits-per-
pixel.

flags (2 bytes): A 16-bit, unsigned integer. The flags describing the format of the bitmap data in the

bitmapDataStream field.

Flags Meaning

BITMAP_COMPRESSION

0x0001

Indicates that the bitmap data is compressed. The bitmapComprHdr
field MUST be present if the NO_BITMAP_COMPRESSION_HDR
(0x0400) flag is not set.

NO_BITMAP_COMPRESSION_HDR

0x0400

Indicates that the bitmapComprHdr field is not present (removed for
bandwidth efficiency to save 8 bytes).

bitmapLength (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data in the

bitmapComprHdr and bitmapDataStream fields.

bitmapComprHdr (8 bytes): Optional Compressed Data Header structure (section 2.2.9.1.1.3.1.2.3)
specifying the bitmap data in the bitmapDataStream. This field MUST be present if the

BITMAP_COMPRESSION (0x0001) flag is present in the flags field, but the
NO_BITMAP_COMPRESSION_HDR (0x0400) flag is not.

bitmapDataStream (variable): A variable-length array of bytes describing a bitmap image. Bitmap
data is either compressed or uncompressed, depending on whether the BITMAP_COMPRESSION
flag is present in the flags field. Uncompressed bitmap data is formatted as a bottom-up, left-to-

189 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

right series of pixels. Each pixel is a whole number of bytes. Each row contains a multiple of four
bytes (including up to three bytes of padding, as necessary). Compressed bitmaps not in 32 bpp

format are compressed using Interleaved RLE and encapsulated in an RLE Compressed Bitmap
Stream structure (section 2.2.9.1.1.3.1.2.4), while compressed bitmaps at a color depth of 32 bpp

are compressed using RDP 6.0 Bitmap Compression and stored inside an RDP 6.0 Bitmap
Compressed Stream structure ([MS-RDPEGDI] section 2.2.2.5.1).

2.2.9.1.1.3.1.2.3 Compressed Data Header (TS_CD_HEADER)

The TS_CD_HEADER structure is used to describe compressed bitmap data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbCompFirstRowSize cbCompMainBodySize

cbScanWidth cbUncompressedSize

cbCompFirstRowSize (2 bytes): A 16-bit, unsigned integer. The field MUST be set to 0x0000.

cbCompMainBodySize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the compressed
bitmap data (which follows this header).

cbScanWidth (2 bytes): A 16-bit, unsigned integer. The width of the bitmap (which follows this
header) in pixels (this value MUST be divisible by 4).

cbUncompressedSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the bitmap data
(which follows this header) after it has been decompressed.

2.2.9.1.1.3.1.2.4 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)

The RLE_BITMAP_STREAM structure contains a stream of bitmap data compressed using Interleaved
Run-Length Encoding (RLE). Bitmap data compressed by the server MUST follow a Compressed Data

Header (section 2.2.9.1.1.3.1.2.3) structure unless the exclusion of this header has been specified in
the General Capability Set (section 2.2.7.1.1).

A compressed bitmap is sent as a series of compression orders that instruct the decoder how to

reassemble a compressed bitmap (a particular bitmap can have many valid compressed
representations). A compression order consists of an order header, followed by an optional encoded
run length, followed by optional data associated with the compression order. Some orders require the
decoder to refer to the previous scanline of bitmap data and because of this fact the first scanline
sometimes requires special cases for decoding.

Standard Compression Orders begin with a one-byte order header. The high order bits of this header
contain a code identifier, while the low order bits store the unsigned length of the associated run

(unless otherwise specified). There are two forms of Standard Compression Orders:

▪ The regular form contains a 3-bit code identifier and a 5-bit run length.

▪ The lite form contains a 4-bit code identifier and a 4-bit run length.

For both the regular and lite forms a run length of zero indicates an extended run (a MEGA run),
where the byte following the order header contains the encoded length of the associated run. The
encoded run length is calculated using the following formula (unless otherwise specified):

 EncodedMegaRunLength = RunLength - (MaximumNonMegaRunLength + 1)

190 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The maximum run length that can be stored in a non-MEGA regular order is 31, while a non-MEGA lite
order can only store a maximum run length of 15.

Extended Compression Orders begin with a one-byte order header which contains an 8-bit code
identifier. There are two types of Extended Compression Orders:

▪ The MEGA_MEGA type stores the unsigned length of the associated run in the two bytes following
the order header (in little-endian order).

▪ The single-byte type is used to encode short, commonly occurring foreground/background
sequences and single black or white pixels.

Pseudo-code describing how to decompress a compressed bitmap stream can be found in section
3.1.9.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

rleCompressedBitmapStream (variable)

...

rleCompressedBitmapStream (variable): An array of compression codes describing compressed
structures in the bitmap.

Background Run Orders

A Background Run Order encodes a run of pixels where each pixel in the run matches the
uncompressed pixel on the previous scanline. If there is no previous scanline then each pixel in the
run MUST be black.

When encountering back-to-back background runs, the decompressor MUST write a one-pixel
foreground run to the destination buffer before processing the second background run if both runs

occur on the first scanline or after the first scanline (if the first run is on the first scanline, and the
second run is on the second scanline, then a one-pixel foreground run MUST NOT be written to the
destination buffer). This one-pixel foreground run is counted in the length of the run.

The run length encodes the number of pixels in the run. There is no data associated with Background
Run Orders.

Code Identifier Meaning

REGULAR_BG_RUN

0x0

The compression order encodes a regular-form background run. The run length is stored
in the five low-order bits of the order header byte. If this value is zero, then the run
length is encoded in the byte following the order header and MUST be incremented by
32 to give the final value.

MEGA_MEGA_BG_RUN

0xF0

The compression order encodes a MEGA_MEGA background run. The run length is stored
in the two bytes following the order header (in little-endian format).

Foreground Run Orders

A Foreground Run Order encodes a run of pixels where each pixel in the run matches the
uncompressed pixel on the previous scanline XOR'd with the current foreground color. The initial
foreground color MUST be white. If there is no previous scanline, then each pixel in the run MUST be

set to the current foreground color.

The run length encodes the number of pixels in the run.

191 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the order is a "set" variant, then in addition to encoding a run of pixels, the order also encodes a
new foreground color (in little-endian format) in the bytes following the optional run length. The

current foreground color MUST be updated with the new value before writing the run to the
destination buffer.

Code Identifier Meaning

REGULAR_FG_RUN

0x1

The compression order encodes a regular-form foreground run. The run length is
stored in the five low-order bits of the order header byte. If this value is zero, then
the run length is encoded in the byte following the order header and MUST be
incremented by 32 to give the final value.

MEGA_MEGA_FG_RUN

0xF1

The compression order encodes a MEGA_MEGA foreground run. The run length is
stored in the two bytes following the order header (in little-endian format).

LITE_SET_FG_FG_RUN

0xC

The compression order encodes a "set" variant lite-form foreground run. The run
length is stored in the four low-order bits of the order header byte. If this value is
zero, then the run length is encoded in the byte following the order header and
MUST be incremented by 16 to give the final value.

MEGA_MEGA_SET_FG_RUN

0xF6

The compression order encodes a "set" variant MEGA_MEGA foreground run. The
run length is stored in the two bytes following the order header (in little-endian
format).

Dithered Run Orders

A Dithered Run Order encodes a run of pixels which is composed of two alternating colors. The two
colors are encoded (in little-endian format) in the bytes following the optional run length.

The run length encodes the number of pixel-pairs in the run (not pixels).

Code Identifier Meaning

LITE_DITHERED_RUN

0xE

The compression order encodes a lite-form dithered run. The run length is stored
in the four low-order bits of the order header byte. If this value is zero, then the
run length is encoded in the byte following the order header and MUST be
incremented by 16 to give the final value.

MEGA_MEGA_DITHERED_RUN

0xF8

The compression order encodes a MEGA_MEGA dithered run. The run length is
stored in the two bytes following the order header (in little-endian format).

Color Run Orders

A Color Run Order encodes a run of pixels where each pixel is the same color. The color is encoded (in
little-endian format) in the bytes following the optional run length.

The run length encodes the number of pixels in the run.

Code Identifier Meaning

REGULAR_COLOR_RUN

0x3

The compression order encodes a regular-form color run. The run length is stored in
the five low-order bits of the order header byte. If this value is zero, then the run
length is encoded in the byte following the order header and MUST be incremented
by 32 to give the final value.

MEGA_MEGA_COLOR_RUN

0xF3

The compression order encodes a MEGA_MEGA color run. The run length is stored in
the two bytes following the order header (in little-endian format).

Foreground / Background Image Orders

192 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

A Foreground/Background Image Order encodes a binary image where each pixel in the image that is
not on the first scanline fulfills exactly one of the following two properties:

(a) The pixel matches the uncompressed pixel on the previous scanline XOR'ed with the current
foreground color.

(b) The pixel matches the uncompressed pixel on the previous scanline.

If the pixel is on the first scanline then it fulfills exactly one of the following two properties:

(c) The pixel is the current foreground color.

(d) The pixel is black.

The binary image is encoded as a sequence of byte-sized bitmasks which follow the optional run
length (the last bitmask in the sequence can be smaller than one byte in size). If the order is a "set"
variant then the bitmasks MUST follow the bytes which specify the new foreground color. Each bit in

the encoded bitmask sequence represents one pixel in the image. A bit that has a value of 1
represents a pixel that fulfills either property (a) or (c), while a bit that has a value of 0 represents a

pixel that fulfills either property (b) or (d). The individual bitmasks MUST each be processed from the
low-order bit to the high-order bit.

The run length encodes the number of pixels in the run.

If the order is a "set" variant, then in addition to encoding a binary image, the order also encodes a

new foreground color (in little-endian format) in the bytes following the optional run length. The
current foreground color MUST be updated with the new value before writing the run to the
destination buffer.

Code Identifier Meaning

REGULAR_FGBG_IMAGE

0x2

The compression order encodes a regular-form foreground/background image.
The run length is encoded in the five low-order bits of the order header byte
and MUST be multiplied by 8 to give the final value. If this value is zero, then
the run length is encoded in the byte following the order header and MUST be
incremented by 1 to give the final value.

MEGA_MEGA_FGBG_IMAGE

0xF2

The compression order encodes a MEGA_MEGA foreground/background image.
The run length is stored in the two bytes following the order header (in little-
endian format).

LITE_SET_FG_FGBG_IMAGE

0xD

The compression order encodes a "set" variant lite-form
foreground/background image. The run length is encoded in the four low-
order bits of the order header byte and MUST be multiplied by 8 to give the

final value. If this value is zero, then the run length is encoded in the byte
following the order header and MUST be incremented by 1 to give the final
value.

MEGA_MEGA_SET_FGBG_IMAGE

0xF7

The compression order encodes a "set" variant MEGA_MEGA
foreground/background image. The run length is stored in the two bytes
following the order header (in little-endian format).

Color Image Orders

A Color Image Order encodes a run of uncompressed pixels.

The run length encodes the number of pixels in the run. So, to compute the actual number of bytes
which follow the optional run length, the run length MUST be multiplied by the color depth (in bits-
per-pixel) of the bitmap data.

193 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Code Identifier Meaning

REGULAR_COLOR_IMAGE

0x4

The compression order encodes a regular-form color image. The run length is
stored in the five low-order bits of the order header byte. If this value is zero,
then the run length is encoded in the byte following the order header and MUST
be incremented by 32 to give the final value.

MEGA_MEGA_COLOR_IMAGE

0xF4

The compression order encodes a MEGA_MEGA color image. The run length is
stored in the two bytes following the order header (in little-endian format).

Special Orders

Code Identifier Meaning

SPECIAL_FGBG_1

0xF9

The compression order encodes a foreground/background image with an 8-bit bitmask of
0x03.

SPECIAL_FGBG_2

0xFA

The compression order encodes a foreground/background image with an 8-bit bitmask of
0x05.

WHITE

0xFD

The compression order encodes a single white pixel.

BLACK

0xFE

The compression order encodes a single black pixel.

2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC)

The TS_UPDATE_SYNC structure is an artifact of the T.128 protocol ([T128] section 8.6.2) and
SHOULD be ignored.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... updateType

pad2Octets

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information

about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_SYNCHRONIZE (0x0003).

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

194 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU)

The Pointer Update PDU is sent from server to client and is used to convey pointer information,
including pointers' bitmap images, use of system or hidden pointers, use of cached cursors and

position updates.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

shareDataHeader (18 bytes)

...

...

... messageType

pad2Octets pointerAttributeData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and the Pointer Update PDU data.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

195 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_POINTER (27).

messageType (2 bytes): A 16-bit, unsigned integer. Type of pointer update.

Value Meaning

TS_PTRMSGTYPE_SYSTEM

0x0001

Indicates a System Pointer Update (section 2.2.9.1.1.4.3).

TS_PTRMSGTYPE_POSITION

0x0003

Indicates a Pointer Position Update (section 2.2.9.1.1.4.2).

TS_PTRMSGTYPE_COLOR

0x0006

Indicates a Color Pointer Update (section 2.2.9.1.1.4.4).

TS_PTRMSGTYPE_CACHED

0x0007

Indicates a Cached Pointer Update (section 2.2.9.1.1.4.6).

TS_PTRMSGTYPE_POINTER

0x0008

Indicates a New Pointer Update (section 2.2.9.1.1.4.5).

T.128 Monochrome Pointer updates ([T128] section 8.14.2) are not used in RDP and are not
planned for a future version. Monochrome pointers are translated into 24 bpp cursors using the
Color Pointer Update (section 2.2.9.1.1.4.4) when the New Pointer Update (section 2.2.9.1.1.4.5)

is not supported, or sent as 1 bpp using the New Pointer Update.

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pointerAttributeData (variable): A Pointer Position Update (section 2.2.9.1.1.4.2), System Pointer
Update (section 2.2.9.1.1.4.3), Color Pointer Update (section 2.2.9.1.1.4.4), New Pointer Update
(section 2.2.9.1.1.4.5), or Cached Pointer Update (section 2.2.9.1.1.4.6). The actual contents of
the slow-path pointer update.

2.2.9.1.1.4.1 Point (TS_POINT16)

The TS_POINT16 structure specifies a point relative to the top-left corner of the server's desktop.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

xPos yPos

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate relative to the top-left corner of the
server's desktop.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate relative to the top-left corner of the
server's desktop.

196 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE)

The TS_POINTERPOSATTRIBUTE structure is used to indicate that the client pointer MUST be moved to
the specified position relative to the top-left corner of the server's desktop ([T128] section 8.14.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

position

position (4 bytes): A Point (section 2.2.9.1.1.4.1) structure containing the new x-coordinates and y-
coordinates of the pointer.

2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE)

The TS_SYSTEMPOINTERATTRIBUTE structure is used to hide the pointer or to set its shape to the
operating system default ([T128] section 8.14.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

systemPointerType

systemPointerType (4 bytes): A 32-bit, unsigned integer. The type of system pointer.

Value Meaning

SYSPTR_NULL

0x00000000

The hidden pointer.

SYSPTR_DEFAULT

0x00007F00

The default system pointer.

2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)

The TS_COLORPOINTERATTRIBUTE structure represents a regular T.128 24 bpp color pointer, as
specified in [T128] section 8.14.3. This pointer update is used for both monochrome and color pointers
in RDP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cacheIndex hotSpot

... width

height lengthAndMask

lengthXorMask xorMaskData (variable)

...

197 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

andMaskData (variable)

...

pad (optional)

cacheIndex (2 bytes): A 16-bit, unsigned integer. The zero-based cache entry in the pointer cache
in which to store the pointer image. The number of cache entries is specified using the Pointer
Capability Set (section 2.2.7.1.5).

hotSpot (4 bytes): A Point (section 2.2.9.1.1.4.1) structure containing the x-coordinates and y-
coordinates of the pointer hotspot.

width (2 bytes): A 16-bit, unsigned integer. The width of the pointer in pixels. The maximum
allowed pointer width is 96 pixels if the client set the LARGE_POINTER_FLAG_96x96
(0x00000001) flag in the Large Pointer Capability Set (section 2.2.7.2.7). If the

LARGE_POINTER_FLAG_96x96 was not set, the maximum allowed pointer width is 32 pixels.

height (2 bytes): A 16-bit, unsigned integer. The height of the pointer in pixels. The maximum
allowed pointer height is 96 pixels if the client set the LARGE_POINTER_FLAG_96x96
(0x00000001) flag in the Large Pointer Capability Set (section 2.2.7.2.7). If the
LARGE_POINTER_FLAG_96x96 was not set, the maximum allowed pointer height is 32 pixels.

lengthAndMask (2 bytes): A 16-bit, unsigned integer. The size in bytes of the andMaskData field.

lengthXorMask (2 bytes): A 16-bit, unsigned integer. The size in bytes of the xorMaskData field.

xorMaskData (variable): A variable-length array of bytes. Contains the 24-bpp, bottom-up XOR

mask scan-line data. The XOR mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 3x3 pixel cursor is being sent, then each scan-line will consume 10 bytes (3
pixels per scan-line multiplied by 3 bytes per pixel, rounded up to the next even number of bytes).

andMaskData (variable): A variable-length array of bytes. Contains the 1-bpp, bottom-up AND
mask scan-line data. The AND mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 7x7 pixel cursor is being sent, then each scan-line will consume 2 bytes (7 pixels
per scan-line multiplied by 1 bpp, rounded up to the next even number of bytes).

pad (1 byte): An optional 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)

The TS_POINTERATTRIBUTE structure is used to send pointer data at an arbitrary color depth.
Support for the New Pointer Update is advertised in the Pointer Capability Set (section 2.2.7.1.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

xorBpp colorPtrAttr (variable)

...

xorBpp (2 bytes): A 16-bit, unsigned integer. The color depth in bits-per-pixel of the XOR mask
contained in the colorPtrAttr field.

colorPtrAttr (variable): Encapsulated Color Pointer Update (section 2.2.9.1.1.4.4) structure which
contains information about the pointer. The Color Pointer Update fields are all used, as specified in
section 2.2.9.1.1.4.4; however color XOR data is presented in the color depth described in the

198 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

xorBpp field (for 8 bpp, each byte contains one palette index; for 4 bpp, there are two palette
indices per byte).

2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)

The TS_CACHEDPOINTERATTRIBUTE structure is used to instruct the client to change the current
pointer shape to one already present in the pointer cache.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cacheIndex

cacheIndex (2 bytes): A 16-bit, unsigned integer. A zero-based cache entry containing the cache
index of the cached pointer to which the client's pointer MUST be changed. The pointer data MUST
have already been cached using either the Color Pointer Update (section 2.2.9.1.1.4.4) or New
Pointer Update (section 2.2.9.1.1.4.5).

2.2.9.1.1.5 Server Play Sound PDU

The Play Sound PDU instructs the client to play a "beep" sound.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

playSoundPduData (26 bytes)

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Play Sound PDU Data (section 2.2.9.1.1.5.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

199 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption

Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

playSoundPduData (26 bytes): The actual contents of the Play Sound PDU, as specified in section

2.2.9.1.1.5.1.

2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA)

The TS_PLAY_SOUND_PDU_DATA structure contains the contents of the Play Sound PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) and two fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... duration

... frequency

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_PLAY_SOUND (34).

duration (4 bytes): A 32-bit, unsigned integer. Duration of the beep the client MUST play.

frequency (4 bytes): A 32-bit, unsigned integer. Frequency of the beep the client MUST play.

2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)

Fast-path revises server output packets from the first byte with the goal of improving bandwidth. The
TPKT Header ([T123] section 8), X.224 Class 0 Data TPDU ([X224] section 13.7), and MCS Send Data
Indication ([T125] section 11.33) are replaced; the Security Header (section 2.2.8.1.1.2) is collapsed

into the fast-path output header; and the Share Data Header (section 2.2.8.1.1.1.2) is replaced by a
new fast-path format. The contents of the graphics and pointer updates (sections 2.2.9.1.1.3 and

200 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.9.1.1.4) are also changed to reduce their size, particularly by removing or reducing headers.
Support for fast-path output is advertised in the General Capability Set (section 2.2.7.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

fpOutputHeader length1 length2 (optional) fipsInformation (optional)

... dataSignature (optional)

...

... fpOutputUpdates
(variable)

...

fpOutputHeader (1 byte): An 8-bit, unsigned integer. One-byte, bit-packed header. This byte
coincides with the first byte of the TPKT Header ([T123] section 8). Two pieces of information are
collapsed into this byte:

▪ Security flags

▪ Action code

The format of the fpOutputHeader byte is described by the following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

action reserved flags

action (2 bits): A 2-bit, unsigned integer that indicates whether the PDU is in fast-path or slow-
path format.

Value (2 bits) Meaning

FASTPATH_OUTPUT_ACTION_FASTPATH

0x0

Indicates that the PDU is a fast-path output PDU.

FASTPATH_OUTPUT_ACTION_X224

0x3

Indicates the presence of a TPKT Header ([T123] section 8)
initial version byte which indicates that the PDU is a slow-
path output PDU (in this case the full value of the initial byte
MUST be 0x03).

reserved (4 bits): A 4-bit, unsigned integer that is unused and reserved for future use. This field

MUST be set to zero.

flags (2 bits): A 2-bit, unsigned integer that contains flags describing the cryptographic
parameters of the PDU.

Flag (2 bits) Meaning

FASTPATH_OUTPUT_SECURE_CHECKSUM

0x1

Indicates that the MAC signature for the PDU was
generated using the "salted MAC generation" technique
(section 5.3.6.1.1). If this bit is not set, then the standard
technique was used (sections 2.2.8.1.1.2.2 and

201 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag (2 bits) Meaning

2.2.8.1.1.2.3).

FASTPATH_OUTPUT_ENCRYPTED

0x2

Indicates that the PDU contains an 8-byte MAC signature
after the optional length2 field (that is, the
dataSignature field is present), and the contents of the
PDU are encrypted using the negotiated encryption
package (sections 5.3.2 and 5.3.6).

length1 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not
set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains the

overall PDU length (the length2 field is not present in this case). However, if the most significant
bit of the length1 field is set, then the overall PDU length is given by the low 7 bits of the
length1 field concatenated with the 8 bits of the length2 field, in big-endian order (the length2
field contains the low-order bits). The overall PDU length SHOULD be less than or equal to 16,383
bytes.

length2 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not

set, then the length2 field is not present. If the most significant bit of the length1 field is set,
then the overall PDU length is given by the low 7 bits of the length1 field concatenated with the 8
bits of the length2 field, in big-endian order (the length2 field contains the low-order bits). The
overall PDU length SHOULD be less than or equal to 16,383 bytes.

fipsInformation (4 bytes): An optional Fast-Path FIPS Information (section 2.2.8.1.2.1) structure,
present when the Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3) is
ENCRYPTION_METHOD_FIPS (0x00000010).

dataSignature (8 bytes): MAC generated over the packet using one of the techniques specified in
section 5.3.6 (the FASTPATH_OUTPUT_SECURE_CHECKSUM flag, which is set in the
fpOutputHeader field, describes the method used to generate the signature). This field MUST be
present if the FASTPATH_OUTPUT_ENCRYPTED flag is set in the fpOutputHeader field.

fpOutputUpdates (variable): An array of Fast-Path Update (section 2.2.9.1.2.1) structures to be

processed by the client.

2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)

The TS_FP_UPDATE structure is used to describe and encapsulate the data for a fast-path update sent
from server to client. All fast-path updates conform to this basic structure (sections 2.2.9.1.2.1.1 to
2.2.9.1.2.1.10).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

updateData (variable)

...

updateHeader (1 byte): An 8-bit, unsigned integer. Three pieces of information are collapsed into
this byte:

▪ Fast-path update type

▪ Fast-path fragment sequencing

202 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Compression usage indication

The format of the updateHeader byte is described by the following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateCode
fragm
entati

on

compr
ession

updateCode (4 bits): A 4-bit, unsigned integer that specifies the type code of the update.

Value (4 bits) Meaning

FASTPATH_UPDATETYPE_ORDERS

0x0

Indicates a Fast-Path Orders Update ([MS-RDPEGDI]
section 2.2.2.2).

FASTPATH_UPDATETYPE_BITMAP

0x1

Indicates a Fast-Path Bitmap Update (section
2.2.9.1.2.1.2).

FASTPATH_UPDATETYPE_PALETTE

0x2

Indicates a Fast-Path Palette Update (section
2.2.9.1.2.1.1).

FASTPATH_UPDATETYPE_SYNCHRONIZE

0x3

Indicates a Fast-Path Synchronize Update (section
2.2.9.1.2.1.3).

FASTPATH_UPDATETYPE_SURFCMDS

0x4

Indicates a Fast-Path Surface Commands Update (section
2.2.9.1.2.1.10).

FASTPATH_UPDATETYPE_PTR_NULL

0x5

Indicates a Fast-Path System Pointer Hidden Update
(section 2.2.9.1.2.1.5).

FASTPATH_UPDATETYPE_PTR_DEFAULT

0x6

Indicates a Fast-Path System Pointer Default Update
(section 2.2.9.1.2.1.6).

FASTPATH_UPDATETYPE_PTR_POSITION

0x8

Indicates a Fast-Path Pointer Position Update (section
2.2.9.1.2.1.4).

FASTPATH_UPDATETYPE_COLOR

0x9

Indicates a Fast-Path Color Pointer Update (section
2.2.9.1.2.1.7).

FASTPATH_UPDATETYPE_CACHED

0xA

Indicates a Fast-Path Cached Pointer Update (section
2.2.9.1.2.1.9).

FASTPATH_UPDATETYPE_POINTER

0xB

Indicates a Fast-Path New Pointer Update (section
2.2.9.1.2.1.8).

FASTPATH_UPDATETYPE_LARGE_POINTER

0xC

Indicates a Fast-Path Large Pointer Update (section
2.2.9.1.2.1.11).

fragmentation (2 bits): A 2-bit, unsigned integer that specifies the fast-path fragment
sequencing information. Support for fast-path fragmentation is specified in the Multifragment
Update Capability Set (section 2.2.7.2.6).

Flag (2 bits) Meaning

FASTPATH_FRAGMENT_SINGLE The fast-path data in the updateData field is not part of a sequence

203 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Flag (2 bits) Meaning

0x0 of fragments.

FASTPATH_FRAGMENT_LAST

0x1

The fast-path data in the updateData field contains the last
fragment in a sequence of fragments.

FASTPATH_FRAGMENT_FIRST

0x2

The fast-path data in the updateData field contains the first
fragment in a sequence of fragments.

FASTPATH_FRAGMENT_NEXT

0x3

The fast-path data in the updateData field contains the second or
subsequent fragment in a sequence of fragments.

compression (2 bits): A 2-bit, unsigned integer that specifies compression parameters.

Flag (2 bits) Meaning

FASTPATH_OUTPUT_COMPRESSION_USED

0x2

Indicates that the compressionFlags field is present.

compressionFlags (1 byte): An 8-bit, unsigned integer. Optional compression flags. The flags used
in this field are exactly the same as the flags used in the compressedType field in the Share
Data Header (section 2.2.8.1.1.1.2) and have the same meaning.

size (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data in the updateData field.

updateData (variable): Optional and variable-length data specific to the update.

2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)

The TS_FP_UPDATE_PALETTE structure is the fast-path variant of the
TS_UPDATE_PALETTE (section 2.2.9.1.1.3.1.1) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader
compressionFlags

(optional)
size

paletteUpdateData (variable)

...

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field, specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PALETTE (2).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

paletteUpdateData (variable): Variable-length palette data. Both slow-path and fast-path utilize
the same data format, a Palette Update Data (section 2.2.9.1.1.3.1.1.1) structure, to represent

this information.

204 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP)

The TS_FP_UPDATE_BITMAP structure is the fast-path variant of the
TS_UPDATE_BITMAP (section 2.2.9.1.1.3.1.2) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

bitmapUpdateData (variable)

...

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The

updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_BITMAP (1).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is

the same as the size field specified in the Fast-Path Update structure.

bitmapUpdateData (variable): Variable-length bitmap data. Both slow-path and fast-path utilize
the same data format, a Bitmap Update Data (section 2.2.9.1.1.3.1.2.1) structure, to represent
this information.

2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)

The TS_FP_UPDATE_SYNCHRONIZE structure is the fast-path variant of the

TS_UPDATE_SYNC (section 2.2.9.1.1.3.1.3) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field described in the Fast-Path Update (section 2.2.9.1.2.1). The

updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_SYNCHRONIZE (3).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field described in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)

The TS_FP_POINTERPOSATTRIBUTE structure is the fast-path variant of the
TS_POINTERPOSATTRIBUTE structure (section 2.2.9.1.1.4.2).

205 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader
compressionFlags

(optional)
size

pointerPositionUpdateData

updateHeader (1 byte): The format of this field is the same as the updateHeader byte field
specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The updateCode bitfield (4 bits
in size) MUST be set to FASTPATH_UPDATETYPE_PTR_POSITION (8).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is

the same as the size field specified in the Fast-Path Update structure.

pointerPositionUpdateData (4 bytes): Pointer coordinates. Both slow-path and fast-path utilize the
same data format, a Pointer Position Update (section 2.2.9.1.1.4.2) structure, to represent this
information.

2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update

(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)

The TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE structure is used to hide the pointer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader
compressionFlags

(optional)
size

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the

updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_NULL (5).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.6 Fast-Path System Pointer Default Update

(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)

The TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE structure is used to set the shape of the pointer to
the operating system default.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

206 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The

updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_DEFAULT (6).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as

the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)

The TS_FP_COLORPOINTERATTRIBUTE structure is the fast-path variant of the
TS_COLORPOINTERATTRIBUTE (section 2.2.9.1.1.4.4) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

colorPointerUpdateData (variable)

...

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_COLOR (9).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update

structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

colorPointerUpdateData (variable): Color pointer data. Both slow-path and fast-path utilize the
same data format, a Color Pointer Update (section 2.2.9.1.1.4.4) structure, to represent this
information.

2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)

The TS_FP_POINTERATTRIBUTE structure is the fast-path variant of the
TS_POINTERATTRIBUTE (section 2.2.9.1.1.4.5) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

newPointerUpdateData (variable)

...

207 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The

updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_POINTER (11).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as

the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

newPointerUpdateData (variable): Color pointer data at arbitrary color depth. Both slow-path and
fast-path utilize the same data format, a New Pointer Update (section 2.2.9.1.1.4.5) structure, to
represent this information.

2.2.9.1.2.1.9 Fast-Path Cached Pointer Update (TS_FP_CACHEDPOINTERATTRIBUTE)

The TS_FP_CACHEDPOINTERATTRIBUTE structure is the fast-path variant of the

TS_CACHEDPOINTERATTRIBUTE (section 2.2.9.1.1.4.6) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader
compressionFlags

(optional)
size

cachedPointerUpdateData

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_CACHED (10).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as

the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

cachedPointerUpdateData (2 bytes): Cached pointer data. Both slow-path and fast-path utilize
the same data format, a Cached Pointer Update (section 2.2.9.1.1.4.6) structure, to represent this
information.

2.2.9.1.2.1.10 Fast-Path Surface Commands Update (TS_FP_SURFCMDS)

The TS_FP_SURFCMDS structure encapsulates one or more Surface Command (section
2.2.9.1.2.1.10.1) structures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

surfaceCommands (variable)

...

208 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The

updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_SURFCMDS (4).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as

the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
(section 2.2.9.1.2.1) structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

surfaceCommands (variable): An array of Surface Command (section 2.2.9.1.2.1.10.1) structures
containing a collection of commands to be processed by the client.

2.2.9.1.2.1.10.1 Surface Command (TS_SURFCMD)

The TS_SURFCMD structure is used to specify the Surface Command type and to encapsulate the data
for a Surface Command sent from a server to a client. All Surface Commands in section 2.2.9.2

conform to this structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cmdType cmdData (variable)

...

cmdType (2 bytes): A 16-bit unsigned integer. Surface Command type.

Value Meaning

CMDTYPE_SET_SURFACE_BITS

0x0001

Indicates a Set Surface Bits Command (section 2.2.9.2.1).

CMDTYPE_FRAME_MARKER

0x0004

Indicates a Frame Marker Command (section 2.2.9.2.3).

CMDTYPE_STREAM_SURFACE_BITS

0x0006

Indicates a Stream Surface Bits Command (section 2.2.9.2.2).

cmdData (variable): Variable-length data specific to the Surface Command.

2.2.9.1.2.1.11 Fast-Path Large Pointer Update

(TS_FP_LARGEPOINTERATTRIBUTE)

The TS_FP_LARGEPOINTERATTRIBUTE structure is used to transport mouse pointer shapes larger than
96x96 pixels in size.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags
(optional)

size

xorBpp cacheIndex

209 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

hotSpot

width height

lengthAndMask

lengthXorMask

xorMaskData (variable)

...

andMaskData (variable)

...

pad (optional)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_LARGE_POINTER

(12).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

xorBpp (2 bytes): A 16-bit, unsigned integer. The color depth in bits-per-pixel of the XOR mask
contained in the xorMaskData field.

cacheIndex (2 bytes): A 16-bit, unsigned integer. The zero-based cache entry in the pointer cache
in which to store the pointer image. The number of cache entries is specified using the Pointer
Capability Set (section 2.2.7.1.5).

hotSpot (4 bytes): A Point (section 2.2.9.1.1.4.1) structure containing the x-coordinates and y-
coordinates of the pointer hotspot.

width (2 bytes): A 16-bit, unsigned integer. The width of the pointer in pixels. The maximum
allowed pointer width is 384 pixels.

height (2 bytes): A 16-bit, unsigned integer. The height of the pointer in pixels. The maximum
allowed pointer height is 384 pixels.

lengthAndMask (4 bytes): A 32-bit, unsigned integer. The size in bytes of the andMaskData field.

lengthXorMask (4 bytes): A 32-bit, unsigned integer. The size in bytes of the xorMaskData field.

xorMaskData (variable): A variable-length array of bytes. Contains the 24-bpp, bottom-up XOR

mask scan-line data. The XOR mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 3x3 pixel cursor is being sent, then each scan-line will consume 10 bytes (3
pixels per scan-line multiplied by 3 bytes per pixel, rounded up to the next even number of bytes).

210 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

andMaskData (variable): A variable-length array of bytes. Contains the 1-bpp, bottom-up AND
mask scan-line data. The AND mask is padded to a 2-byte boundary for each encoded scan-line.

For example, if a 7x7 pixel cursor is being sent, then each scan-line will consume 2 bytes (7 pixels
per scan-line multiplied by 1 byte per pixel, rounded up to the next even number of bytes).

pad (1 byte): An optional 8-bit, unsigned integer used for padding. Values in this field MUST be
ignored.

2.2.9.2 Surface Commands

Surface Commands all conform to the layout of the Surface Command (section 2.2.9.1.2.1.10.1)
structure and MUST be wrapped in a Fast-Path Surface Commands Update (section 2.2.9.1.2.1.10).

2.2.9.2.1 Set Surface Bits Command (TS_SURFCMD_SET_SURF_BITS)

The Set Surface Bits Command is used to transport encoded bitmap data destined for a rectangular
region of the primary drawing surface from an RDP server to an RDP client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cmdType destLeft

destTop destRight

destBottom bitmapData (variable)

...

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_SET_SURFACE_BITS (0x0001).

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the destination rectangle that will
contain the decoded bitmap data.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the destination rectangle that will
contain the decoded bitmap data.

destRight (2 bytes): A 16-bit, unsigned integer. Exclusive right bound of the destination rectangle

that will contain the decoded bitmap data. This field SHOULD be ignored, as the width of the
encoded bitmap image is specified in the Extended Bitmap Data (section 2.2.9.2.1.1) present in
the variable-length bitmapData field.

destBottom (2 bytes): A 16-bit, unsigned integer. Exclusive bottom bound of the destination
rectangle that will contain the decoded bitmap data. This field SHOULD be ignored, as the height
of the encoded bitmap image is specified in the Extended Bitmap Data present in the variable-

length bitmapData field.

bitmapData (variable): An Extended Bitmap Data structure that contains an encoded bitmap image.

2.2.9.2.1.1 Extended Bitmap Data (TS_BITMAP_DATA_EX)

The TS_BITMAP_DATA_EX structure is used to encapsulate encoded bitmap data.

211 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bpp flags reserved codecID

width height

bitmapDataLength

exBitmapDataHeader (variable)

...

bitmapData (variable)

...

bpp (1 byte): An 8-bit, unsigned integer. The color depth of the bitmap data in bits-per-pixel.

flags (1 byte): An 8-bit, unsigned integer that contains flags.

Flag Meaning

EX_COMPRESSED_BITMAP_HEADER_PRESENT

0x01

Indicates that the optional exBitmapDataHeader
field is present.

reserved (1 byte): An 8-bit, unsigned integer. This field is reserved for future use. It MUST be set to

zero.

codecID (1 byte): An 8-bit, unsigned integer. The client-assigned ID that identifies the bitmap codec
that was used to encode the bitmap data. Bitmap codec parameters are exchanged in the Bitmap
Codecs Capability Set (section 2.2.7.2.10). If this field is 0, then the bitmap data is not encoded
and can be used without performing any decoding transformation.

width (2 bytes): A 16-bit, unsigned integer. The width of the decoded bitmap image in pixels.

height (2 bytes): A 16-bit, unsigned integer. The height of the decoded bitmap image in pixels.

bitmapDataLength (4 bytes): A 32-bit, unsigned integer. The size in bytes of the bitmapData
field.

exBitmapDataHeader (variable): An optional Extended Compressed Bitmap Header (section
2.2.9.2.1.1.1) structure that contains nonessential information associated with bitmap data in the
bitmapData field. This field MUST be present if the

EX_COMPRESSED_BITMAP_HEADER_PRESENT (0x01) flag is present.

bitmapData (variable): A variable-length array of bytes containing bitmap data encoded using the

codec identified by the ID in the codecID field.

2.2.9.2.1.1.1 Extended Compressed Bitmap Header

(TS_COMPRESSED_BITMAP_HEADER_EX)

212 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The TS_COMPRESSED_BITMAP_HEADER_EX structure is used to encapsulate nonessential
information associated with bitmap data being transported in an Extended Bitmap Data (section

2.2.9.2.1.1) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

highUniqueId

lowUniqueId

tmMilliseconds

...

tmSeconds

...

highUniqueId (4 bytes): A 32-bit, unsigned integer that contains the high-order bits of a unique 64-
bit identifier for the bitmap data.

lowUniqueId (4 bytes): A 32-bit, unsigned integer that contains the low-order bits of a unique 64-
bit identifier for the bitmap data.

tmMilliseconds (8 bytes): A 64-bit, unsigned integer that contains the milliseconds component of
the timestamp that indicates when the bitmap data was generated. The timestamp (composed of

the tmMilliseconds and tmSeconds fields), denotes the period of time that has elapsed since
January 1, 1970 (midnight UTC/GMT), not counting leap seconds.

tmSeconds (8 bytes): A 64-bit, unsigned integer that contains the seconds component of the

timestamp that indicates when the bitmap data was generated. The timestamp (composed of the
tmMilliseconds and tmSeconds fields), denotes the period of time that has elapsed since
January 1, 1970 (midnight UTC/GMT), not counting leap seconds.

2.2.9.2.2 Stream Surface Bits Command (TS_SURFCMD_STREAM_SURF_BITS)

The Stream Surface Bits Command is used to transport encoded bitmap data destined for a
rectangular region of the primary drawing surface from an RDP server to an RDP client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cmdType destLeft

destTop destRight

destBottom bitmapData (variable)

...

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_STREAM_SURFACE_BITS (0x0006).

213 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the destination rectangle that will
contain the decoded bitmap data.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the destination rectangle that will
contain the decoded bitmap data.

destRight (2 bytes): A 16-bit, unsigned integer. Exclusive right bound of the destination rectangle
that will contain the decoded bitmap data.

destBottom (2 bytes): A 16-bit, unsigned integer. Exclusive bottom bound of the destination
rectangle that will contain the decoded bitmap data.

bitmapData (variable): An Extended Bitmap Data (section 2.2.9.2.1.1) structure that contains an
encoded bitmap image.

2.2.9.2.3 Frame Marker Command (TS_FRAME_MARKER)

The Frame Marker Command is used to group multiple surface commands so that these commands

can be processed and presented to the user as a single entity, a frame.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cmdType frameAction

frameId

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_FRAME_MARKER (0x0004).

frameAction (2 bytes): A 16-bit, unsigned integer. Identifies the beginning and end of a frame.

Value Meaning

SURFACECMD_FRAMEACTION_BEGIN

0x0000

Indicates the start of a new frame.

SURFACECMD_FRAMEACTION_END

0x0001

Indicates the end of the current frame.

frameId (4 bytes): A 32-bit, unsigned integer. The ID identifying the frame.

2.2.10 Logon and Authorization Notifications

2.2.10.1 Server Save Session Info PDU

The Save Session Info PDU is used by the server to transmit session and user logon information back

to the client after the user has logged on.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

214 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

securityHeader (variable)

...

saveSessionInfoPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as

specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Save Session Info PDU Data (section 2.2.10.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

saveSessionInfoPduData (variable): The actual contents of the Save Session Info PDU, as

specified in section 2.2.10.1.1.

2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA)

The TS_SAVE_SESSION_INFO_PDU_DATA structure is a wrapper around different classes of user
logon information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

215 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

... infoType

... infoData (variable)

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data

Header MUST be set to PDUTYPE2_SAVE_SESSION_INFO (38).

infoType (4 bytes): A 32-bit, unsigned integer. The type of logon information.

Value Meaning

INFOTYPE_LOGON

0x00000000

This is a notification that the user has logged on. The infoData field
which follows contains a Logon Info Version 1 (section
2.2.10.1.1.1) structure.

INFOTYPE_LOGON_LONG

0x00000001

This is a notification that the user has logged on. The infoData field
which follows contains a Logon Info Version 2 (section
2.2.10.1.1.2) structure. This type is supported by all RDP versions
except for RDP 4.0 and 5.0, and SHOULD be used if the
LONG_CREDENTIALS_SUPPORTED (0x00000004) flag is set in the
General Capability Set (section 2.2.7.1.1).

INFOTYPE_LOGON_PLAINNOTIFY

0x00000002

This is a notification that the user has logged on. The infoData field
which follows contains a Plain Notify structure which contains 576
bytes of padding (section 2.2.10.1.1.3). This type is supported by all
RDP versions except for RDP 4.0 and 5.0.

INFOTYPE_LOGON_EXTENDED_INFO

0x00000003

The infoData field which follows contains a Logon Info Extended
(section 2.2.10.1.1.4) structure. This type is supported by all RDP
versions except for RDP 4.0, 5.0, and 5.1.

infoData (variable): A Logon Info Version 1 (section 2.2.10.1.1.1), Logon Info Version 2
(section 2.2.10.1.1.2), Plain Notify (section 2.2.10.1.1.3), or Logon Info Extended (section
2.2.10.1.1.4) structure. The type of data that follows depends on the value of the infoType field.

2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)

The TS_LOGON_INFO structure is a fixed-length structure that contains logon information intended
for the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbDomain

Domain (52 bytes)

...

...

216 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

cbUserName

UserName (512 bytes)

...

...

SessionId

cbDomain (4 bytes): A 32-bit, unsigned integer. The size of the Unicode character data (including
the mandatory null terminator) in bytes present in the fixed-length Domain field.

Domain (52 bytes): An array of 26 Unicode characters: Null-terminated Unicode string containing

the name of the domain to which the user is logged on. The length of the character data in bytes

is given by the cbDomain field.

cbUserName (4 bytes): A 32-bit, unsigned integer. Size of the Unicode character data (including the
mandatory null terminator) in bytes present in the fixed-length UserName field.

UserName (512 bytes): An array of 256 Unicode characters: Null-terminated Unicode string
containing the username which was used to log on. The length of the character data in bytes is

given by the cbUserName field.

SessionId (4 bytes): A 32-bit, unsigned integer. Optional ID of the session on the remote server
according to the server. Sent by all RDP servers, except for RDP 4.0 servers.

2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)

TS_LOGON_INFO_VERSION_2 is a variable-length structure that contains logon information intended
for the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Size

... SessionId

... cbDomain

... cbUserName

... Pad (558 bytes)

...

...

Domain (variable)

...

217 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

UserName (variable)

...

Version (2 bytes): A 16-bit, unsigned integer. The logon version.

Value Meaning

SAVE_SESSION_PDU_VERSION_ONE

0x0001

Version 1

Size (4 bytes): A 32-bit, unsigned integer. The total size in bytes of this structure, excluding the
Domain and UserName variable-length fields.

SessionId (4 bytes): A 32-bit, unsigned integer. The ID of the session on the remote server
according to the server.

cbDomain (4 bytes): A 32-bit, unsigned integer. The size in bytes of the Domain field (including the
mandatory null terminator).

cbUserName (4 bytes): A 32-bit, unsigned integer. The size in bytes of the UserName field
(including the mandatory null terminator).

Pad (558 bytes): 558 bytes. Padding. Values in this field MUST be ignored.

Domain (variable): Variable-length null-terminated Unicode string containing the name of the
domain to which the user is logged on. The size of this field in bytes is given by the cbDomain
field.

UserName (variable): Variable-length null-terminated Unicode string containing the user name
which was used to log on. The size of this field in bytes is given by the cbUserName field.

2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY)

TS_PLAIN_NOTIFY is a fixed-length structure that contains 576 bytes of padding.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad (576 bytes)

...

...

Pad (576 bytes): 576 bytes. Padding. Values in this field MUST be ignored.

2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED)

The TS_LOGON_INFO_EXTENDED structure contains extended logon information and is supported
by all RDP versions, except for RDP 4.0, 5.0, and 5.1.

218 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length FieldsPresent

... LogonFields (variable)

...

Pad (570 bytes)

...

...

...

Length (2 bytes): A 16-bit, unsigned integer. The total size in bytes of this structure, including the
variable LogonFields field.

FieldsPresent (4 bytes): A 32-bit, unsigned integer. The flags indicating which fields are present in

the LogonFields field.

Flag Meaning

LOGON_EX_AUTORECONNECTCOOKIE

0x00000001

An auto-reconnect cookie field is present. The LogonFields field of
the associated Logon Info (section 2.2.10.1.1.4.1) structure MUST
contain a Server Auto-Reconnect Packet (section 2.2.4.2)
structure.

LOGON_EX_LOGONERRORS

0x00000002

A logon error field is present. The LogonFields field of the
associated Logon Info MUST contain a Logon Errors Info
(section 2.2.10.1.1.4.1.1) structure.

LogonFields (variable): Extended logon information fields encapsulated in Logon Info Field
(section 2.2.10.1.1.4.1) structures. The presence of an information field is indicated by the flags
within the FieldsPresent field of the Logon Info Extended structure. The ordering of the fields

is implicit and is as follows:

1. Auto-reconnect cookie data

2. Logon notification data

If a field is not present, the next field which is present is read.

Pad (570 bytes): 570 bytes. Padding. Values in this field MUST be ignored.

2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD)

The TS_LOGON_INFO_FIELD structure is used to encapsulate extended logon information field data
of variable length.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbFieldData

219 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

FieldData (variable)

...

cbFieldData (4 bytes): A 32-bit, unsigned integer. The size in bytes of the variable-length data in
the FieldData field.

FieldData (variable): Variable-length data conforming to the structure for the type given in the

FieldsPresent field of the Logon Info Extended (section 2.2.10.1.1.4) structure.

2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO)

The TS_LOGON_ERRORS_INFO structure contains information that describes a logon error
notification.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ErrorNotificationType

ErrorNotificationData

ErrorNotificationType (4 bytes): A 32-bit, unsigned integer that specifies an NTSTATUS value (see
[ERRTRANS] for information about translating NTSTATUS error codes to usable text strings), or
one of the following values.

Value Meaning

LOGON_MSG_SESSION_BUSY_OPTIONS

0xFFFFFFF8

The "Session is Busy" dialog is being displayed by Winlogon. The
session identifier is specified by the ErrorNotificationData
field.

LOGON_MSG_DISCONNECT_REFUSED

0xFFFFFFF9

The "Disconnection Refused" dialog is being displayed by
Winlogon. The session identifier is specified by the
ErrorNotificationData field.

LOGON_MSG_NO_PERMISSION

0xFFFFFFFA

The "No Permission" dialog is being displayed by Winlogon. The
session identifier is specified by the ErrorNotificationData
field.

LOGON_MSG_BUMP_OPTIONS

0xFFFFFFFB

The "Session Contention" dialog is being displayed by Winlogon.
The session identifier is specified by the ErrorNotificationData
field.

LOGON_MSG_ RECONNECT_OPTIONS

0xFFFFFFFC

The "Session Reconnection" dialog is being displayed by
Winlogon. The session identifier is specified by the
ErrorNotificationData field.

LOGON_MSG_SESSION_TERMINATE

0xFFFFFFFD

The session is being terminated. The session identifier is
specified by the ErrorNotificationData field.

LOGON_MSG_SESSION_CONTINUE

0xFFFFFFFE

The logon process is continuing. The session identifier is
specified by the ErrorNotificationData field.

ERROR_CODE_ACCESS_DENIED

0xFFFFFFFF

The logon process failed and cannot proceed. The contents of
the ErrorNotificationData field SHOULD be ignored.

220 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

ErrorNotificationData (4 bytes): A 32-bit, unsigned integer that specifies the session identifier, or
one of the following values.

Value Meaning

LOGON_FAILED_BAD_PASSWORD

0x00000000

The logon process failed. The logon credentials which were supplied
are invalid. The user's focus SHOULD be directed to the WinLogon
screen.

LOGON_FAILED_UPDATE_PASSWORD

0x00000001

The logon process failed. The user cannot continue with the logon
process until the password is changed. The user's focus SHOULD be
directed to the WinLogon screen.

LOGON_FAILED_OTHER

0x00000002

The logon process failed. The user's focus SHOULD be directed to
the WinLogon screen.

LOGON_WARNING

0x00000003

The logon process has displayed a warning. The user's focus
SHOULD be directed to the WinLogon screen.

2.2.10.2 Early User Authorization Result PDU

The Early User Authorization Result PDU is sent from server to client and is used to convey
authorization information to the client. This PDU is only sent by the server if the client advertised
support for it by specifying the PROTOCOL_HYBRID_EX (0x00000008) flag in the

requestedProtocols field of the RDP Negotiation Request (section 2.2.1.1.1) structure and it MUST
be sent immediately after the CredSSP handshake (section 5.4.5.2) has completed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

authorizationResult

authorizationResult (4 bytes): A 32-bit unsigned integer. Specifies the authorization result.

Value Meaning

AUTHZ_SUCCESS

0x00000000

The user has permission to access the server.

AUTHZ_ACCESS_DENIED

0x00000005

The user does not have permission to access the server.

2.2.11 Controlling Server Graphics Output

2.2.11.1 Inclusive Rectangle (TS_RECTANGLE16)

The TS_RECTANGLE16 structure describes a rectangle expressed in inclusive coordinates (the right
and bottom coordinates are included in the rectangle bounds).

221 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

left top

right bottom

left (2 bytes): A 16-bit, unsigned integer. The leftmost bound of the rectangle.

top (2 bytes): A 16-bit, unsigned integer. The upper bound of the rectangle.

right (2 bytes): A 16-bit, unsigned integer. The rightmost bound of the rectangle.

bottom (2 bytes): A 16-bit, unsigned integer. The lower bound of the rectangle.

2.2.11.2 Client Refresh Rect PDU

The Refresh Rect PDU allows the client to request that the server redraw one or more rectangles of

the session screen area. The client can use it to repaint sections of the client window that were
obscured by local applications.<37> Server support for this PDU is indicated in the General Capability
Set (section 2.2.7.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

refreshRectPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as

specified in [T125] section 11.32 (the ASN.1 structure definitions are given [T125] in section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Refresh Rect PDU Data (section 2.2.11.2.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than

ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

222 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

refreshRectPduData (variable): The actual contents of the Refresh Rect PDU, as specified in
section 2.2.11.2.1.

2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU)

The TS_REFRESH_RECT_PDU structure contains the contents of the Refresh Rect PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) and two fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... numberOfAreas pad3Octects

... areasToRefresh (variable)

...

shareDataHeader (18 bytes): A Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be

set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_REFRESH_RECT (33).

numberOfAreas (1 byte): An 8-bit, unsigned integer. The number of Inclusive Rectangle (section
2.2.11.1) structures in the areasToRefresh field.

pad3Octects (3 bytes): A 3-element array of 8-bit, unsigned integer values. Padding. Values in this
field MUST be ignored.

areasToRefresh (variable): An array of TS_RECTANGLE16 structures (variable number of bytes).

Array of screen area Inclusive Rectangles to redraw. The number of rectangles is given by the

numberOfAreas field.

2.2.11.3 Client Suppress Output PDU

The Suppress Output PDU is sent by the client to toggle all display updates from the server. This
packet does not end the session or socket connection. Typically, a client sends this packet when its
window is either minimized or restored. Server support for this PDU is indicated in the General
Capability Set (section 2.2.7.1.1).

223 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

suppressOutputPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Client Suppress Output PDU Data (section 2.2.11.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

suppressOutputPduData (variable): TS_SUPPRESS_OUTPUT_PDU (variable number of bytes):

The actual contents of the Suppress Output PDU, as specified in section 2.2.11.3.1.

2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU)

The TS_SUPPRESS_OUTPUT_PDU structure contains the contents of the Suppress Output PDU, which
is a Share Data Header (section 2.2.8.1.1.1.2) and two fields.

224 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader (18 bytes)

...

...

... allowDisplayUpdates pad3Octets

... desktopRect

...

...

shareDataHeader (18 bytes): A Share Data Header containing information about the packet
(section 2.2.8.1.1.1.2). The type subfield of the pduType field of the Share Control Header
(section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share

Data Header MUST be set to PDUTYPE2_SUPPRESS_OUTPUT (35).

allowDisplayUpdates (1 byte): An 8-bit, unsigned integer. Indicates whether the client wants to
receive display updates from the server.

Value Meaning

SUPPRESS_DISPLAY_UPDATES

0x00

Turn off display updates from the server.

ALLOW_DISPLAY_UPDATES

0x01

Turn on display updates from the server.

pad3Octets (3 bytes): A 3-element array of 8-bit, unsigned integer values. Padding. Values in this
field MUST be ignored.

desktopRect (8 bytes): An Inclusive Rectangle (section 2.2.11.1) which contains the coordinates of
the desktop rectangle if the allowDisplayUpdates field is set to ALLOW_DISPLAY_UPDATES (1).
If the allowDisplayUpdates field is set to SUPPRESS_DISPLAY_UPDATES (0), this field MUST
NOT be included in the PDU.

2.2.12 Display Update Notifications

2.2.12.1 Monitor Layout PDU

The Monitor Layout PDU is used by the server to notify the client of the monitor layout in the session

on the remote server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

225 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

shareDataHeader (18 bytes)

...

...

... monitorCount

... monitorDefArray (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header,
Share Data Header, monitor count, and a monitor definition array.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shareDataHeader (18 bytes): A Share Data Header containing information about the packet. The

type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_MONITOR_LAYOUT_PDU (55), and the pduSource field MUST be set to zero.

226 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of display monitor definitions in
the monitorDefArray field.

monitorDefArray (variable): A variable-length array containing a series of TS_MONITOR_DEF
structures (section 2.2.1.3.6.1), which describe the display monitor layout of the session on the

remote server. The number of TS_MONITOR_DEF structures that follows is given by the
monitorCount field.

2.2.13 Server Redirection

2.2.13.1 Server Redirection Packet (RDP_SERVER_REDIRECTION_PACKET)

The RDP_SERVER_REDIRECTION_PACKET structure contains information to enable a client to
reconnect to a session on a specified server. This data is sent to a client in a Redirection PDU to
enable load-balancing of Remote Desktop sessions across a collection of machines. For more

information about the load balancing of Remote Desktop sessions, see [MSFT-SDLBTS] "Load-
Balanced Configurations" and "Revectoring Clients".

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags Length

SessionID

RedirFlags

TargetNetAddressLength (optional)

TargetNetAddress (variable)

...

LoadBalanceInfoLength (optional)

LoadBalanceInfo (variable)

...

UserNameLength (optional)

UserName (variable)

...

DomainLength (optional)

Domain (variable)

...

PasswordLength (optional)

227 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Password (variable)

...

TargetFQDNLength (optional)

TargetFQDN (variable)

...

TargetNetBiosNameLength (optional)

TargetNetBiosName (variable)

...

TsvUrlLength (optional)

TsvUrl (variable)

...

RedirectionGuidLength (optional)

RedirectionGuid (variable)

...

TargetCertificateLength (optional)

TargetCertificate (variable)

...

TargetNetAddressesLength (optional)

TargetNetAddresses (variable)

...

Pad (optional)

...

Flags (2 bytes): A 16-bit unsigned integer. The server redirection identifier. This field MUST be set to
SEC_REDIRECTION_PKT (0x0400).

Length (2 bytes): A 16-bit unsigned integer. The overall length, in bytes, of the Server Redirection

Packet structure.

228 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

SessionID (4 bytes): A 32-bit unsigned integer. The session identifier to which the client MUST
reconnect. This identifier MUST be specified in the RedirectedSessionID field of the Client

Cluster Data (section 2.2.1.3.5) if a reconnect attempt takes place. The Client Cluster Data is
transmitted as part of the MCS Connect Initial PDU (section 2.2.1.3).

RedirFlags (4 bytes): A 32-bit unsigned integer. A bit field that contains redirection information
flags, some of which indicate the presence of additional data at the end of the packet.

Flag Meaning

LB_TARGET_NET_ADDRESS

0x00000001

Indicates that the TargetNetAddressLength and
TargetNetAddress fields are present.

LB_LOAD_BALANCE_INFO

0x00000002

Indicates that the LoadBalanceInfoLength and LoadBalanceInfo
fields are present.

LB_USERNAME

0x00000004

Indicates that the UserNameLength and UserName fields are
present.

LB_DOMAIN

0x00000008

Indicates that the DomainLength and Domain fields are present.

LB_PASSWORD

0x00000010

Indicates that the PasswordLength and Password fields are
present.

LB_DONTSTOREUSERNAME

0x00000020

Indicates that when reconnecting, the client MUST send the
username specified in the UserName field to the server in the Client
Info PDU (section 2.2.1.11.1.1).

LB_SMARTCARD_LOGON

0x00000040

Indicates that the user can use a smart card for authentication.

LB_NOREDIRECT

0x00000080

Indicates that the contents of the PDU are for informational purposes
only. No actual redirection is required.

LB_TARGET_FQDN

0x00000100

Indicates that the TargetFQDNLength and TargetFQDN fields are
present.

LB_TARGET_NETBIOS_NAME

0x00000200

Indicates that the TargetNetBiosNameLength and
TargetNetBiosName fields are present.

LB_TARGET_NET_ADDRESSES

0x00000800

Indicates that the TargetNetAddressesLength and
TargetNetAddresses fields are present.

LB_CLIENT_TSV_URL

0x00001000

Indicates that the TsvUrlLength and TsvUrl fields are present.<38>

LB_SERVER_TSV_CAPABLE

0x00002000

Indicates that the server supports redirection based on the TsvUrl
present in the LoadBalanceInfo sent by the client.<39>

LB_PASSWORD_IS_PK_ENCRYPTED

0x00004000

Indicates that the data in the Password field is encrypted and
contains data that SHOULD be used in the RDSTLS Authentication
Request PDU with Password Credentials (section 2.2.17.2).

LB_REDIRECTION_GUID

0x00008000

Indicates that the RedirectionGuidLength and RedirectionGuid
fields are present.

LB_TARGET_CERTIFICATE

0x00010000

Indicates that the TargetCertificateLength and TargetCertificate
fields are present.

229 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

TargetNetAddressLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the
TargetNetAddress field.

TargetNetAddress (variable): A variable-length array of bytes containing the IP address of the
server (for example, "192.168.0.1" using dotted decimal notation) in Unicode format, including a

null-terminator.

LoadBalanceInfoLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the
LoadBalanceInfo field.

LoadBalanceInfo (variable): A variable-length array of bytes containing load balancing information
that MUST be treated as opaque data by the client and passed to the server if the
LB_TARGET_NET_ADDRESS (0x00000001) flag is not present in the RedirFlags field and a
reconnection takes place. See section 3.2.5.3.1 for details on populating the routingToken field

of the X.224 Connection Request PDU (section 2.2.1.1).

UserNameLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the UserName
field.

UserName (variable): A variable-length array of bytes containing the username of the user in
Unicode format, including a null-terminator.

DomainLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the Domain field.

Domain (variable): A variable-length array of bytes containing the domain to which the user
connected in Unicode format, including a null-terminator.

PasswordLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the Password field.

Password (variable): A variable-length array of bytes containing a password to be used when
connecting to the redirected server. If the LB_PASSWORD_IS_PK_ENCRYPTED (0x00004000) flag
is specified in the RedirFlags field, then the password MUST be treated as an opaque encrypted
blob and sent to the target server using the RDSTLS protocol (section 5.4.5.3). If the

LB_PASSWORD_IS_PK_ENCRYPTED flag is not set, then the Password field contains a cleartext
password (in Unicode format), including a null-terminator, that MUST be passed to the target

server on successful connection.

TargetFQDNLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the TargetFQDN
field.

TargetFQDN (variable): A variable-length array of bytes containing the fully qualified domain name
(FQDN) of the target machine, including a null-terminator.

TargetNetBiosNameLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the
TargetNetBiosName field.

TargetNetBiosName (variable): A variable-length array of bytes containing the NETBIOS name of
the target machine, including a null-terminator.

TsvUrlLength (4 bytes): The length, in bytes, of the TsvUrl field.<40>

TsvUrl (variable): A variable-length array of bytes.<41> If the client has previously sent a TsvUrl

field in the LoadBalanceInfo to the server in the expected format, then the server will return the
same TsvUrl to the client in this field. The client verifies that it is the same as the one that it
previously passed to the server and if they don't match, the client immediately disconnects the
connection.

RedirectionGuidLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the
RedirectionGuid field.

230 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

RedirectionGuid (variable): A variable-length array of bytes containing a Base64-encoded
([RFC4648] section 4) GUID ([MS-DTYP] section 2.3.4) in Unicode format that functions as a

unique identifier for the redirected connection.

TargetCertificateLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the

TargetCertificate field.

TargetCertificate (variable): A variable-length array of bytes containing a Base64-encoded Target
Certificate Container (section 2.2.13.1.2) structure in Unicode format that encapsulates the
X.509 certificate of the target server.

TargetNetAddressesLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the
TargetNetAddresses field.

TargetNetAddresses (variable): A variable-length array of bytes containing the target IP addresses

of the server to connect against, stored in a Target Net Addresses (section 2.2.13.1.1)
structure.

Pad (8 bytes): An optional 8-element array of 8-bit unsigned integers. Padding. Values in this field

MUST be ignored.

2.2.13.1.1 Target Net Addresses (TARGET_NET_ADDRESSES)

The TARGET_NET_ADDRESSES structure is used to hold a collection of IP addresses in Unicode
format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

addressCount

addresses (variable)

...

addressCount (4 bytes): A 32-bit, unsigned integer. The number of IP addresses present in the
address field.

addresses (variable): An array of Target Net Address (section 2.2.13.1.1.1) structures, each
containing an IP address.

2.2.13.1.1.1 Target Net Address (TARGET_NET_ADDRESS)

The TARGET_NET_ADDRESS structure holds a Unicode text representation of an IP address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

addressLength

address (variable)

...

addressLength (4 bytes): A 32-bit, unsigned integer. The length in bytes of the address field.

231 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

address (variable): A variable-length array of bytes containing an IP address in Unicode format,
including a null-terminator.

2.2.13.1.2 Target Certificate Container (TARGET_CERTIFICATE_CONTAINER)

The TARGET_CERTIFICATE_CONTAINER structure is used to wrap an X.509 certificate. It contains
an array of Certificate Meta Element (section 2.2.13.1.2.1) structures. The element of type
ELEMENT_TYPE_CERTIFICATE (32) and encoding ENCODING_TYPE_ASN1_DER (1) contains the X.509
certificate.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

elements (variable)

...

...

...

elements (variable): An array of Certificate Meta Element structures. All elements in this array
SHOULD be ignored, except for the element of type ELEMENT_TYPE_CERTIFICATE (32) and

encoding ENCODING_TYPE_ASN1_DER (1).

2.2.13.1.2.1 Certificate Meta Element (CERTIFICATE_META_ELEMENT)

The CERTIFICATE_META_ELEMENT structure specifies an element contained within a Target
Certificate Container (section 2.2.13.1.2) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type

encoding

elementSize

elementData (variable)

...

...

...

type (4 bytes): A 32-bit, unsigned integer specifying the type of the data in the elementData field.
All values SHOULD be ignored except for ELEMENT_TYPE_CERTIFICATE (32), which indicates that
the element is an X.509 certificate.

encoding (4 bytes): A 32-bit, unsigned integer specifying the encoding used to serialize the data in
the elementData field. All values SHOULD be ignored except for ENCODING_TYPE_ASN1_DER
(1), which indicates that the element is encoded using the ASN.1 DER scheme.

232 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

elementSize (4 bytes): A 32-bit, unsigned integer specifying the size, in bytes, of the elementData
field.

elementData (variable): A variable-length array of bytes containing the certificate meta element
data.

2.2.13.2 Standard RDP Security

2.2.13.2.1 Standard Security Server Redirection PDU

(TS_STANDARD_SECURITY_SERVER_REDIRECTION)

The Standard Security Server Redirection PDU is sent by the server to the client to instruct it to
reconnect to an existing session on another server. The information required to perform the
reconnection is contained in an embedded Server Redirection Packet (section 2.2.13.1). This PDU
MUST NOT be sent if the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0);
the Enhanced Security Server Redirection PDU (section 2.2.13.3.1) MUST be used instead. Because

the Standard Security Server Redirection PDU can contain confidential information, it MUST always be

encrypted using Standard RDP Security mechanisms (section 5.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

serverRedirectionPDU (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as

specified in [T125] section 11.33 (the ASN.1 structure definitions are specified in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and the Server Redirection PDU data.

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

233 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The flags field of the security header MUST contain the SEC_REDIRECTION_PKT (0x0400) flag
(section 2.2.8.1.1.2.1).

serverRedirectionPDU (variable): Information required by the client to initiate a reconnection to a
given session on a target server encapsulated in a Server Redirection Packet (section 2.2.13.1)

structure.

2.2.13.3 Enhanced RDP Security

2.2.13.3.1 Enhanced Security Server Redirection PDU

(TS_ENHANCED_SECURITY_SERVER_REDIRECTION)

The Enhanced Security Server Redirection PDU is sent by the server to the client to instruct it to
reconnect to an existing session on another server. The information required to perform the
reconnection is contained in an embedded Server Redirection Packet (section 2.2.13.1). This PDU
MUST NOT be sent if Standard RDP Security (section 5.3) is in effect. The Standard Security Server

Redirection PDU (section 2.2.13.2.1) MUST be used instead. Because this PDU can contain confidential

information, it MUST always be encrypted by the External Security Protocol layer (section 5.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

shareControlHeader

... pad2Octets

serverRedirectionPDU (variable)

...

pad1Octet (optional)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as

specified in [T125] section 11.33 (the ASN.1 structure definitions are specified in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Indication contains a Share Control
Header and the Server Redirection PDU data.

shareControlHeader (6 bytes): A Share Control Header (as specified in section 2.2.8.1.1.1.1)
containing information on the packet. The type subfield of the pduType field of the Share Control
Header MUST be set to PDUTYPE_SERVER_REDIR_PKT (10), and the PDUVersion subfield MUST
be set to zero.

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

234 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

serverRedirectionPDU (variable): Information required by the client to initiate a reconnection to a
given session on a target server encapsulated in a Server Redirection Packet (section 2.2.13.1)

structure.

pad1Octet (1 byte): An optional 8-bit, unsigned integer. Padding. Values in this field MUST be

ignored.

2.2.14 Network Characteristics Detection

2.2.14.1 Server-to-Client Request Messages

2.2.14.1.1 RTT Measure Request (RDP_RTT_REQUEST)

The RDP_RTT_REQUEST structure is used to initiate a round-trip time measurement operation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

requestType

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06.

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST

be set to one of the following values.

Value Meaning

0x0001 The RTT Measure Request message is encapsulated in the autoDetectReqPduData field of an
Auto-Detect Request PDU (section 2.2.14.3) sent after the RDP Connection Sequence (section
1.3.1.1) has completed.

0x1001 The RTT Measure Request message is encapsulated in the autoDetectReqPduData field of an
Auto-Detect Request PDU sent during the Optional Connect-Time Auto-Detection phase of the
RDP Connection Sequence.

2.2.14.1.2 Bandwidth Measure Start (RDP_BW_START)

The RDP_BW_START structure is used to start a bandwidth measurement operation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

requestType

235 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06.

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to one of the following values.

Value Meaning

0x0014 One of two possible meanings:

▪ The Bandwidth Measure Start message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled
over a reliable UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

▪ The Bandwidth Measure Start message is encapsulated in the autoDetectReqPduData field
of an Auto-Detect Request PDU (section 2.2.14.3) sent after the RDP Connection Sequence
(section 1.3.1.1) has completed.

0x0114 The Bandwidth Measure Start message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled over
a lossy UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

0x1014 The Bandwidth Measure Start message is encapsulated in the autoDetectReqPduData field of an
Auto-Detect Request PDU sent during the Optional Connect-Time Auto-Detection phase of the RDP
Connection Sequence.

2.2.14.1.3 Bandwidth Measure Payload (RDP_BW_PAYLOAD)

The RDP_BW_PAYLOAD structure is used to transfer data associated with a bandwidth measurement

operation that occurs during the Optional Connect-Time Auto-Detection phase of the RDP Connection
Sequence (see section 1.3.1.1 for an overview of the RDP Connection Sequence phases).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

requestType payloadLength

payload (variable)

...

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x08.

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

236 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to 0x0002.

payloadLength (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the payload
field.

payload (variable): A variable-length array of bytes that contains random data. The number of
bytes in this array is specified by the payloadLength field.

2.2.14.1.4 Bandwidth Measure Stop (RDP_BW_STOP)

The RDP_BW_STOP structure is used to stop a bandwidth measurement operation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

requestType payloadLength (optional)

payload (variable)

...

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06 if the requestType field is not set to 0x002B and 0x08 if the
requestType field is set to 0x002B.

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST

be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to one of the following values.

Value Meaning

0x002B The Bandwidth Measure Stop message is encapsulated in the autoDetectReqPduData field of
an Auto-Detect Request PDU (section 2.2.14.3) sent during the Optional Connect-Time Auto-
Detection phase of the RDP Connection Sequence (section 1.3.1.1). The payloadLength field is
present and has a value greater than zero.

0x0429 One of two possible meanings:

▪ The Bandwidth Measure Stop message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled
over a reliable UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

▪ The Bandwidth Measure Stop message is encapsulated in the autoDetectReqPduData field
of an Auto-Detect Request PDU sent after the RDP Connection Sequence has completed.

0x0629 The Bandwidth Measure Stop message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled

237 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Value Meaning

over a lossy UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

payloadLength (2 bytes): An optional 16-bit unsigned integer that specifies the size, in bytes, of
the payload field. If this field is not present, then the size of the payload field is zero bytes. The
payloadLength field MUST NOT be present if the value of the requestType field is not set to
0x002B. It MUST be present (and have a value greater than zero) if the value of the requestType
field is set to 0x002B.

payload (variable): A variable-length array of bytes that contains random data. The number of
bytes in this array is specified by the payloadLength field.

2.2.14.1.5 Network Characteristics Result (RDP_NETCHAR_RESULTS)

The RDP_NETCHAR_RESULTS structure is used by the server to send detected network characteristics
to the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

requestType baseRTT (optional)

... bandwidth (optional)

... averageRTT (optional)

...

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x0E if the requestType field is not set to 0x08C0 and 0x12 if the
requestType field is set to 0x08C0

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence

number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to one of the following values.

Value Meaning

0x0840 The baseRTT and averageRTT fields are present in the Network Characteristics Result message
(the bandwidth field is not present).

0x0880 The bandwidth and averageRTT fields are present in the Network Characteristics Result
message (the baseRTT field is not present).

0x08C0 The baseRTT, bandwidth and averageRTT fields are present in the Network Characteristics
Result message.

baseRTT (4 bytes): An optional 32-bit unsigned integer that specifies the lowest detected round-trip
time in milliseconds.

238 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

bandwidth (4 bytes): An optional 32-bit unsigned integer that specifies the current bandwidth in
kilobits per second.

averageRTT (4 bytes): An optional 32-bit unsigned integer that specifies the current average round-
trip time in milliseconds.

2.2.14.2 Client-to-Server Response Messages

2.2.14.2.1 RTT Measure Response (RDP_RTT_RESPONSE)

The RDP_RTT_RESPONSE structure is used to respond to round-trip time measurement operations

initiated by the RTT Measure Request (section 2.2.14.1.1) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

responseType

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06.

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_RESPONSE (0x01).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number. This field SHOULD be set to the same value as the sequenceNumber field of the most
recent RTT Measure Request (section 2.2.14.1.1) message received from the server.

responseType (2 bytes): A 16-bit unsigned integer that specifies a response type code. This field
MUST be set to 0x0000.

2.2.14.2.2 Bandwidth Measure Results (RDP_BW_RESULTS)

The RDP_BW_RESULTS structure is used to send the results of a bandwidth measurement operation to
the initiating end-point. Bandwidth measurement is started by the initiating end-point using the
Bandwidth Measure Start (section 2.2.14.1.2) message and stopped by the same end-point using the
Bandwidth Measure Stop (section 2.2.14.1.4) message. During the RDP Connection Sequence (section
1.3.1.1) payloads of random data are transmitted by the initiating end-point using a sequence of
Bandwidth Measure Payload (section 2.2.14.1.3) messages (sent between the start and stop
messages). After the RDP Connection Sequence, the PDUs sent from server to client (between start

and stop messages) replace the payload messages.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

responseType timeDelta

... byteCount

...

239 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x0E.

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_RESPONSE (0x01).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number. This field SHOULD be set to the same value as the sequenceNumber field of the most
recent Bandwidth Measure Stop (section 2.2.14.1.4) message received from the server.

responseType (2 bytes): A 16-bit unsigned integer that specifies a response type code. This field
MUST be set to one of the following values.

Value Meaning

0x0003 The Bandwidth Measure Results message is encapsulated in the autoDetectReqPduData field of
an Auto-Detect Request PDU (section 2.2.14.3) sent during the Optional Connect-Time Auto-
Detection phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of the RDP
Connection Sequence phases).

0x000B One of two possible meanings:

▪ The Bandwidth Measure Results message is encapsulated in the autoDetectReqPduData
field of an Auto-Detect Request PDU (section 2.2.14.3) sent after the RDP Connection
Sequence has completed.

▪ The Bandwidth Measure Results message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure.

timeDelta (4 bytes): A 32-bit unsigned integer that specifies the time delta, in milliseconds,
between the receipt of the Bandwidth Measure Start and the Bandwidth Measure Stop messages.

byteCount (4 bytes): A 32-bit unsigned integer that specifies the total data received in the
Bandwidth Measure Payload messages.

2.2.14.2.3 Network Characteristics Sync (RDP_NETCHAR_SYNC)

The RDP_NETCHAR_SYNC structure is sent in response to the RTT Measure Request (section
2.2.14.1.1) message or Bandwidth Measure Start (section 2.2.14.1.2) message and is used to short-
circuit connect-time network characteristics detection in the case of an auto-reconnect (section 1.3.1.5
and 2.2.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

headerLength headerTypeId sequenceNumber

responseType bandwidth

... rtt

...

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header

data. This field MUST be set to 0x0E.

headerTypeId (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_RESPONSE (0x01).

240 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number. This field SHOULD be set to the same value as the sequenceNumber field of the most

recent RTT Measure Request (section 2.2.14.1.1) or Bandwidth Measure Stop (section 2.2.14.1.4)
message received from the server.

responseType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field
MUST be set to 0x0018.

bandwidth (4 bytes): A 32-bit unsigned integer that specifies the previously detected bandwidth in
kilobits per second.

rtt (4 bytes): A 32-bit unsigned integer that specifies the previously detected round-trip time in
milliseconds.

2.2.14.3 Server Auto-Detect Request PDU

The Auto-Detect Request PDU is sent by server to the client and is used to detect network
characteristics such as bandwidth and round-trip time.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is

specified in the Server Message Channel Data (section 2.2.1.4.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

autoDetectReqPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header

and auto-detect request data.

securityHeader (variable): A security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

241 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT

(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security
header does not contain the SEC_ENCRYPT (0x0008) flag (the PDU is not encrypted), then the
field MUST contain a Basic Security Header.

The flags field of the security header MUST contain the SEC_AUTODETECT_REQ (0x1000) flag
(2.2.8.1.1.2.1).

autoDetectReqPduData (variable): A variable-length field that contains auto-detect request data,

specifically one of the five messages described in sections 2.2.14.1.1, 2.2.14.1.2, 2.2.14.1.3,
2.2.14.1.4 and 2.2.14.1.5.

2.2.14.4 Client Auto-Detect Response PDU

The Auto-Detect Response PDU is sent by the client to the server and is used to detect network
characteristics such as bandwidth and round-trip time.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

autoDetectRspPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,

parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and auto-detect response data.

242 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

securityHeader (variable): An optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections

5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than

ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

The flags field of the security header MUST contain the SEC_AUTODETECT_RSP (0x2000) flag
(2.2.8.1.1.2.1).

autoDetectRspPduData (variable): A variable-length field that contains auto-detect response data,
specifically one of the three messages described in sections 2.2.14.2.1, 2.2.14.2.2 and 2.2.14.2.3.

2.2.15 Multitransport Bootstrapping

2.2.15.1 Server Initiate Multitransport Request PDU

The Initiate Multitransport Request PDU is sent by the server to the client and is used to bootstrap the
creation of a sideband channel ([MS-RDPEMT] section 1.3). Upon receiving and successfully decoding
the Initiate Multitransport Request PDU, the client SHOULD create the requested channel using the
specified transport protocol ([MS-RDPEUDP] sections 1.3.2.1 and 3.1.5.2) and then secure the channel
using TLS or DTLS ([MS-RDPEMT] sections 1.4 and 5.1). After the channel has been successfully
created and secured, the client MUST send the Tunnel Create Request PDU ([MS-RDPEMT] section

2.2.2.1) to the server over the newly created channel ([MS-RDPEMT] section 1.3.1).

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

requestId

requestedProtocol reserved

securityCookie (16 bytes)

243 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that

encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header,
ID, transport protocol, and a security cookie.

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).

This field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags

field contains the SEC_ENCRYPT (0x0008) flag.

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security

header does not contain the SEC_ENCRYPT (0x0008) flag (the PDU is not encrypted), then the

field MUST contain a Basic Security Header.

The flags field of the security header MUST contain the SEC_TRANSPORT_REQ (0x0002) flag
(section 2.2.8.1.1.2.1).

requestId (4 bytes): A 32-bit unsigned integer that specifies a unique ID that the server MUST use
to associate this Initiate Multitransport Request PDU with the Tunnel Create Request PDU ([MS-
RDPEMT] section 2.2.2.1) sent by the client after the transport has been established.

requestedProtocol (2 bytes): A 16-bit unsigned integer that specifies the protocol to use in the
transport.

Value Meaning

INITITATE_REQUEST_PROTOCOL_UDPFECR

0x01

RDP-UDP Forward Error Correction (FEC) reliable
transport ([MS-RDPEUDP] sections 1 to 3).

INITITATE_REQUEST_PROTOCOL_UDPFECL

0x02

RDP-UDP FEC lossy transport ([MS-RDPEUDP]
sections 1 to 3).<42>

reserved (2 bytes): A 16-bit unsigned integer. This field is unused and reserved for future use. It
MUST be set to zero.

244 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

securityCookie (16 bytes): A 16-element array of 8-bit unsigned integers that contains randomly
generated data. This array MUST be retransmitted by the client in the Tunnel Create Request PDU

([MS-RDPEMT] section 2.2.2.1) after the channel has been created and is used by the server to
validate the channel setup ([MS-RDPEMT] section 3.2.5.1).

2.2.15.2 Client Initiate Multitransport Response PDU

The Initiate Multitransport Response PDU is sent by the client to the server and is used to indicate to
the server whether the client was able to complete the multitransport initiation request associated

with the ID specified in the requestId field.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

requestId

hrResponse

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that

encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Control PDU Data structure (section 2.2.1.15.1).

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_NONE (0).

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

245 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The flags field of the security header MUST contain the SEC_TRANSPORT_RSP (0x0004) flag
(section 2.2.8.1.1.2.1).

requestId (4 bytes): A 32-bit unsigned integer that MUST contain the ID that was sent to the client
in the requestId field of the associated Initiate Multitransport Request PDU (section 2.2.15.1).

hrResponse (4 bytes): A 32-bit unsigned integer that specifies a response code.

Value Meaning

E_ABORT

0x80004004

Indicates that the client was unable to successfully establish the multitransport connection.

S_OK

0x00000000

Indicates that the client was able to successfully complete the multitransport initiation
request.

This response code MUST only be sent to a server that advertises the
SOFTSYNC_TCP_TO_UDP (0x200) flag in the Server Multitransport Channel Data (section
2.2.1.4.6).

2.2.16 Connection Health Monitoring

2.2.16.1 Server Heartbeat PDU

The Heartbeat PDU is sent by the server to the client and allows the client to monitor the state of the

connection to the server in real time.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5). It SHOULD only be sent when no
other PDUs have been sent to the client in a given heartbeat interval.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

reserved period count1 count2

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a security header
and heartbeat information.

246 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.1 and 2.2.1.4.3).

This field MUST contain one of the following headers:

▪ Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

▪ Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

▪ FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),

ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security
header does not contain the SEC_ENCRYPT (0x0008) flag (meaning the PDU is not encrypted),
then the field MUST contain a Basic Security Header.

The flags field of the security header MUST contain the SEC_HEARTBEAT (0x4000) flag (section
2.2.8.1.1.2.1).

reserved (1 byte): An 8-bit unsigned integer reserved for future use. This field MUST be set to zero.

period (1 byte): An 8-bit unsigned integer that specifies the time (in seconds) between Heartbeat
PDUs.

count1 (1 byte): An 8-bit unsigned integer that specifies how many missed heartbeats SHOULD
trigger a client-side warning. The client MAY ignore this value.

count2 (1 byte): An 8-bit unsigned integer that specifies how many missed heartbeats after the
warning SHOULD trigger a client-side reconnection attempt. The client MAY ignore this value.

2.2.17 RDSTLS PDUs

2.2.17.1 RDSTLS Capabilities PDU

The RDSTLS Capabilities PDU is sent by the server to the client and allows the server to advertise the
supported RDSTLS versions.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version PduType

DataType SupportedVersions

Version (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS version. This field MUST be
set to RDSTLS_VERSION_1 (0x0001).

PduType (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS PDU type. This field MUST
be set to RDSTLS_TYPE_CAPABILITIES (0x0001).

DataType (2 bytes): A 16-bit unsigned integer that specifies the type of data contained in the PDU.
This field MUST be set to RDSTLS_DATA_CAPABILITIES (0x0001).

247 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

SupportedVersions (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS versions
supported by the server. This field MUST be set to RDSTLS_VERSION_1 (0x0001).

2.2.17.2 RDSTLS Authentication Request PDU with Password Credentials

The RDSTLS Authentication Request PDU is sent by the client to the server and is used to request user
authentication using data acquired from the Server Redirection Packet (section 2.2.13.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version PduType

DataType RedirectionGuidLength

RedirectionGuid (variable)

...

UserNameLength UserName (variable)

...

DomainLength Domain (variable)

...

PasswordLength Password (variable)

...

Version (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS version. This field MUST be

set to RDSTLS_VERSION_1 (0x0001).

PduType (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS PDU type. This field MUST
be set to RDSTLS_TYPE_AUTHREQ (0x0002).

DataType (2 bytes): A 16-bit unsigned integer that specifies the type of data contained in the PDU.
This field MUST be set to RDSTLS_DATA_PASSWORD_CREDS (0x0001).

RedirectionGuidLength (2 bytes): A 16-bit unsigned integer that specifies the length, in bytes, of
the RedirectionGuid field.

RedirectionGuid (variable): A variable-length array of bytes containing a Base64-encoded
([RFC4648] Section 4) GUID ([MS-DTYP] section 2.3.4) in Unicode format that functions as a

unique identifier for the current redirected connection. This value SHOULD be acquired from the
RedirectionGuid field of the Server Redirection Packet (section 2.2.13.1).

UserNameLength (2 bytes): A 16-bit unsigned integer that specifies the length, in bytes, of the
UserName field.

UserName (variable): A variable-length array of bytes containing the username of the user in

Unicode format, including a null-terminator. This value SHOULD be acquired from the UserName
field of the Server Redirection Packet (section 2.2.13.1).

248 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

DomainLength (2 bytes): A 16-bit unsigned integer that specifies the length, in bytes, of the
Domain field.

Domain (variable): A variable-length array of bytes containing the domain to which the user
connected in Unicode format, including a null-terminator. This value SHOULD be acquired from the

Domain field of the Server Redirection Packet (section 2.2.13.1).

PasswordLength (2 bytes): A 16-bit unsigned integer that specifies the length, in bytes, of the
Password field.

Password (variable): A variable-length array of bytes containing an encrypted password blob. This
value SHOULD be acquired from the Password field of the Server Redirection Packet (section
2.2.13.1).

2.2.17.3 RDSTLS Authentication Request PDU with Auto-Reconnect Cookie

The RDSTLS Authentication Request PDU is sent by the client to the server and is used to request user
authentication using an auto-reconnect cookie that was generated as specified in section 5.5.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version PduType

DataType SessionID

... AutoReconnectCookieLength

AutoReconnectCookie (variable)

...

Version (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS version. This field MUST be
set to RDSTLS_VERSION_1 (0x0001).

PduType (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS PDU type. This field MUST
be set to RDSTLS_TYPE_AUTHREQ (0x0002).

DataType (2 bytes): A 16-bit unsigned integer that specifies the type of data contained in the PDU.
This field MUST be set to RDSTLS_DATA_AUTORECONNECT_COOKIE (0x0002).

SessionID (4 bytes): A 32-bit unsigned integer that specifies the identifier of the session to which

the client MUST be connected.

AutoReconnectCookieLength (2 bytes): A 16-bit unsigned integer that specifies the length, in
bytes, of the AutoReconnectCookie field.

AutoReconnectCookie (variable): A variable-length array of bytes containing an auto-reconnect

cookie that was generated as specified in section 5.5.

2.2.17.4 RDSTLS Authentication Response PDU

The RDSTLS Authentication Response PDU is sent by the server to the client and is used to
indicate the result of user authentication.

249 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version PduType

DataType ResultCode

...

Version (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS version. This field MUST be
set to RDSTLS_VERSION_1 (0x0001).

PduType (2 bytes): A 16-bit unsigned integer that specifies the RDSTLS PDU type. This field MUST

be set to RDSTLS_TYPE_AUTHRSP (0x0004).

DataType (2 bytes): A 16-bit unsigned integer that specifies the type of data contained in the PDU.
This field MUST be set to RDSTLS_DATA_RESULT_CODE (0x0001).

ResultCode (4 bytes): A 32-bit unsigned integer that specifies the user authentication result.

Value Meaning

RDSTLS_RESULT_SUCCESS

0x00000000

User authentication succeeded.

RDSTLS_RESULT_ACCESS_DENIED

0x00000005

The user does not have permission to access
the server.

RDSTLS_RESULT_LOGON_FAILURE

0x0000052e

The username is unknown or the supplied
password is incorrect.

RDSTLS_RESULT_INVALID_LOGON_HOURS

0x00000530

The user account has time restrictions and
cannot be accessed at this time.

RDSTLS_RESULT_PASSWORD_EXPIRED

0x00000532

The password associated with the user account
has expired.

RDSTLS_RESULT_ACCOUNT_DISABLED

0x00000533

The user account is currently disabled.

RDSTLS_RESULT_PASSWORD_MUST_CHANGE

0x00000773

The password associated with the user account
has to be changed.

RDSTLS_RESULT_ACCOUNT_LOCKED_OUT

0x00000775

The user account is currently locked out and
cannot be accessed.

250 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Disconnection Sequences

3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU

The structure and fields of the MCS Disconnect Provider Ultimatum PDU are specified in section
2.2.2.3.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Disconnect Provider Ultimatum PDU (embedded within the mcsDPum field) is specified in
[T125] section 7, part 4. Only the rn-provider-initiated (1) or rn-user-requested (3) reason codes
MUST be used in the reason field.

▪ In the case of a user-initiated client-side disconnection (section 1.3.1.4.1), the reason code set by
the client MUST be rn-user-requested (3).

▪ In the case of a user-initiated server-side disconnection (section 1.3.1.4.2), the reason code set

by the server MUST be rn-user-requested (3).

▪ In the case of an administrator-initiated server-side disconnection (section 1.3.1.4.3), the reason
code set by the server MUST be rn-provider-initiated (1).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

Once the MCS Disconnect Provider Ultimatum PDU has been sent, the network connection MUST be

closed.

3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDU

251 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The structure and fields of the MCS Disconnect Provider Ultimatum PDU are specified in section
2.2.2.3.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol MUST be used to
decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Disconnect Provider Ultimatum PDU (embedded within the mcsDPum field) is specified in
[T125] section 7, part 4.

▪ Servers MUST ignore the reason field within the MCS Disconnect Provider Ultimatum PDU.

▪ Clients MAY use the value in the reason field to present an appropriate message to the user to
indicate the cause of the disconnection that will follow. If the reason code was not set to either rn-

provider-initiated (1) or rn-user-requested (3), the client MUST ignore the reason code.

After receiving an MCS Disconnect Provider Ultimatum PDU, the recipient MUST expect the network

connection to be closed by the sender.

3.1.5.2 Static Virtual Channels

3.1.5.2.1 Sending of Virtual Channel PDU

The Virtual Channel PDU is transmitted by both the client and the server. Its structure and fields are
specified in section 2.2.6.1.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

As specified in section 2.2.6.1, the mcsPdu field encapsulates either an MCS Send Data Request PDU
(if the PDU is being sent from client to server) or an MCS Send Data Indication PDU (if the PDU is
being sent from server to client), and is initialized as specified in [T125] sections 11.32 and 11.33,

respectively. In both of these cases, the embedded channelId field MUST contain the server-assigned
virtual channel ID. Static virtual channels are requested by name in the Client Network Data (section
2.2.1.3.4), and the server-assigned IDs for each of those channels are enumerated in the Server
Network Data (section 2.2.1.4.4). The embedded initiator field for a client-to-server Virtual Channel

PDU MUST be set to the User Channel ID held in the User Channel ID store (section 3.2.1.5). For a
server-to-client Virtual Channel PDU, the embedded initiator field MUST be set to the MCS server
channel ID held in the Server Channel ID store (section 3.3.1.5). The remaining fields of the Virtual
Channel PDU are encapsulated inside the userData field of the mcsPdu.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol MUST be used to
encrypt the entire PDU and generate a verification digest before the PDU is transmitted over the wire.

Also, in this scenario, the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field is encrypted and signed (using the methods and techniques specified in section

5.3.6) based on the values of the Encryption Level and Encryption Method selected by the server as
part of the negotiation specified in section 5.3.2. The format of the securityHeader field is selected
as specified in section 2.2.6.1, and the fields populated with appropriate security data. If the data is to
be encrypted, the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT

(0x0008) flag.

The usage of compression for virtual channel traffic is specified in the Virtual Channel Capability Set
(section 2.2.7.1.10), while the highest compression level supported by the client is advertised in the
Client Info PDU (section 3.2.5.3.11). If compression of the opaque virtual channel traffic has been
requested, the sending entity SHOULD compress the data before it is encrypted.

252 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If compression is to be applied to client-to-server traffic, RDP 4.0 bulk compression (section 3.1.8.4.1)
MUST be used, while the compression type to apply to server-to-client traffic MUST be the highest

type advertised by the client in the Client Info PDU (section 2.2.1.11.1.1) and supported by the
server. Data compression is discussed in section 3.1.8.2 (the Virtual Channel PDU compression flags

are specified in section 2.2.6.1.1).

If the optional VCChunkSize field is not present in either the client or the server Virtual Channel
Capability Set (section 2.2.7.1.10), the resultant virtual channel data sent on the wire (contained in
the virtualChannelData field) MUST be less than or equal to 1,600 bytes in length. If the maximum
virtual channel chunk size is specified by the server in the optional VCChunkSize field of the Virtual
Channel Capability Set and the VCChunkSize field is present in the Virtual Channel Capability Set
sent by the client, the virtual channel data sent on the wire MUST be less than or equal to the value

specified in the server-to-client VCChunkSize field.

If the total size of the virtual channel data is larger than the chunk size, then each chunk MUST be
sent in a separate Virtual Channel PDU. If a given chunk is the first or last in the sequence of chunks,
the CHANNEL_FLAG_FIRST (0x00000001) flag or CHANNEL_FLAG_LAST (0x00000002) flag MUST be
set appropriately in the embedded flags field of the channelPduHeader field (the Channel PDU

Header structure is specified in section 2.2.6.1.1). Virtual channel data that fits in a single Virtual

Channel PDU MUST specify both flags, and chunked data that is not the first or last chunk in a
sequence of chunks MUST NOT specify either of these two flags. Chunks of virtual channel data MUST
be sent in order, because there is no way to specify the position of a chunk. Furthermore, all Virtual
Channel PDUs that contain chunked data MUST specify the CHANNEL_FLAG_SHOW_PROTOCOL
(0x00000010) flag so that the recipient can correctly reassemble the data.

3.1.5.2.2 Processing of Virtual Channel PDU

The Virtual Channel PDU is received by both the client and the server. Its structure and fields are
specified in section 2.2.6.1.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsPdu ([T125] section 7,
parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any

discrepancy, the connection SHOULD be dropped.

The mcsPdu field encapsulates either an MCS Send Data Request PDU (if the PDU is being sent from
client to server) or an MCS Send Data Indication PDU (if the PDU is being sent from server to client).
In both of these cases, the embedded channelId field MUST contain the server-assigned virtual
channel ID. This ID MUST be used to route the data in the virtualChannelData field to the
appropriate virtual channel endpoint after decryption of the PDU and any necessary decompression of

the payload has been conducted.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in section 2.2.6.1. If the securityHeader field is
present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT (0x0008)
flag (section 2.2.8.1.1.2.1), and, if it is present, the data following the securityHeader field MUST be

verified and decrypted using the methods and techniques specified in section 5.3.6. If the MAC
signature is incorrect, or the data cannot be decrypted correctly, the connection SHOULD be dropped.

If the data in the virtualChannelData field is compressed, then the data MUST be decompressed
using the techniques detailed in section 3.1.8.3 (the Virtual Channel PDU compression flags are
specified in section 2.2.6.1.1).

If the embedded flags field of the channelPduHeader field (the Channel PDU Header structure is
specified in section 2.2.6.1.1) does not contain the CHANNEL_FLAG_FIRST (0x00000001) flag or
CHANNEL_FLAG_LAST (0x00000002) flag, and the data is not part of a chunked sequence (that is, a

253 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

start chunk has not been received), then the data in the virtualChannelData field can be dispatched
to the appropriate virtual channel endpoint (no reassembly is required by the endpoint). If the

CHANNEL_FLAG_SHOW_PROTOCOL (0x00000010) flag is specified in the Channel PDU Header, then
the channelPduHeader field MUST also be dispatched to the virtual channel endpoint.

If the virtual channel data is part of a sequence of chunks, then the instructions in section 3.1.5.2.2.1
MUST be followed to reassemble the stream.

3.1.5.2.2.1 Reassembly of Chunked Virtual Channel Data

Virtual channel data can span multiple Virtual Channel PDUs (section 3.1.5.2.1). If this is the case, the
embedded length field of the channelPduHeader field (the Channel PDU Header structure is
specified in section 2.2.6.1.1) specifies the total length of the uncompressed virtual channel data

spanned across all of the associated Virtual Channel PDUs. This length is referred to as totalLength.
For example, assume that the virtual channel chunking size specified in the Virtual Channel Capability
Set (section 2.2.7.1.10) is 1,000 bytes and that 2,062 bytes need to be transmitted on a given virtual
channel. In this example, the following sequence of Virtual Channel PDUs will be sent (only relevant
fields are listed):

 Virtual Channel PDU 1:
 CHANNEL_PDU_HEADER::length = 2062 bytes
 CHANNEL_PDU_HEADER::flags = CHANNEL_FLAG_FIRST
 Actual virtual channel data is 1000 bytes (the chunking size).

 Virtual Channel PDU 2:
 CHANNEL_PDU_HEADER::length = 2062 bytes
 CHANNEL_PDU_HEADER::flags = 0
 Actual virtual channel data is 1000 bytes (the chunking size).

 Virtual Channel PDU 3:
 CHANNEL_PDU_HEADER::length = 2062 bytes
 CHANNEL_PDU_HEADER::flags = CHANNEL_FLAG_LAST
 Actual virtual channel data is 62 bytes.

The size of the virtual channel data in the last PDU (the data in the virtualChannelData field) is
determined by subtracting the offset of the virtualChannelData field in the encapsulating Virtual
Channel PDU from the total size specified in the tpktHeader field. This length is referred to as
chunkLength.

Upon receiving each Virtual Channel PDU, the server MUST dispatch the virtual channel data to the
appropriate virtual channel endpoint. The sequencing of the chunk (whether it is first, intermediate, or

last), totalLength, chunkLength, and the virtualChannelData fields MUST be dispatched to the
virtual channel endpoint so that the data can be correctly reassembled. If the
CHANNEL_FLAG_SHOW_PROTOCOL (0x00000010) flag is specified in the Channel PDU Header, then
the channelPduHeader field MUST also be dispatched to the virtual channel endpoint.

A reassembly buffer MUST be created by the virtual channel endpoint using the size specified by
totalLength when the first chunk is received. After the reassembly buffer has been created the first
chunk MUST be copied into the front of the buffer. Subsequent chunks MUST then be copied into the

reassembly buffer in the order in which they are received. Upon receiving the last chunk of virtual

channel data, the reassembled data is processed by the virtual channel endpoint.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

254 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.1.8 MPPC-Based Bulk Data Compression

RDP uses a modified form of the Microsoft Point-to-Point Compression (MPPC) Protocol to perform bulk
compression of the PDU contents. This protocol is described in [RFC2118]. There are two forms of bulk

compression used at the server and client:

▪ RDP 4.0: Based on the original MPPC Protocol, with an 8,192 byte history buffer (section
3.1.8.4.1).

▪ RDP 5.0: A modified version of RDP 4.0 that uses a 65,536 byte history buffer and implements
rearranged Huffman style encoding for the bitstream formats (section 3.1.8.4.2).

Both the server and client can operate as the sender of compressed data. Server-to-client
compression can be used for fast-path output data (section 2.2.9.1.2.1), slow-path output data

(section 2.2.9.1.1) or virtual channel data (section 2.2.6.1). Client-to-server compression can
currently only be used for virtual channel data.

The client advertises the maximum compression type it supports in the Client Info PDU (section

2.2.1.11). In response the server selects a compression type within the range advertised by the client.
This compression type is then used when performing all subsequent server-to-client and client-to-
server bulk compression.

The compression type usage is indicated on a per-PDU basis by compression flags which are set in the
header flags associated with each PDU. Besides being used to indicate the compression type, the
compression flags are also used to communicate compression state changes which are required to
maintain state synchronization. The header used to transmit the compression flags will depend on the
type of data payload, such as fast-path output data (section 2.2.9.1.2.1), virtual channel data (section
2.2.6.1) or slow-path data (section 2.2.9.1.1).

3.1.8.1 Abstract Data Model

The shared state necessary to support the transmission and reception of compressed data between a
client and server requires a history buffer and a current offset into the history buffer (HistoryOffset).
The size of the history buffer depends on the compression type being used (8 kilobytes for RDP 4.0

and 64 kilobytes for RDP 5.0). Any data that is being compressed MUST be smaller in size than the

history buffer. The HistoryOffset MUST start initialized to zero while the history buffer MUST be filled
with zeros. After it has been initialized, the entire history buffer is immediately regarded as valid.

When compressing data, the sender MUST first check that the uncompressed data can be inserted into
the history buffer at the position in the history buffer given by the HistoryOffset. If the data will not
fit into the history buffer (the sum of the HistoryOffset and the size of the uncompressed data
exceeds the size of the history buffer), the HistoryOffset MUST be reset to the start of the history

buffer (offset 0). If the data will fit into the history buffer, the sender endpoint inserts the
uncompressed data at the position in the history buffer given by the HistoryOffset, and then
advances the HistoryOffset by the amount of data added.

As the receiver endpoint decompresses the data, it inserts the decompressed data at the position in
the history buffer given by its local copy HistoryOffset. If a reset occurs, the sender endpoint MUST
notify the target receiver so it can reset its local state. In this way, the sender and receiver endpoints

maintain an exact replica of the history buffer and HistoryOffset.

3.1.8.2 Compressing Data

The uncompressed data is first inserted into the local history buffer at the position indicated by
HistoryOffset by the sender. The compressor then runs through the length of newly added
uncompressed data to be sent and produces as output a sequence of literals (bytes to be sent

uncompressed) or copy-tuples which consists of a <copy-offset, length-of-match> pair.

255 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The copy-offset component of the copy-tuple is an index into HistoryBuffer (counting backwards from
the current byte being compressed in the history buffer towards the start of the buffer) where there is

a match to the data to be sent. The length-of-match component is the length of that match in bytes,
and MUST be larger than 2 (section 3.1.8.4.1.2.2 and 3.1.8.4.2.2.2). If the resulting data is not

smaller than the original bytes (that is, expansion instead of compression results), then this results in
a flush and the data is sent uncompressed so as never to send more data than the original
uncompressed bytes.

In this way the compressor aims to reduce the size of data that needs to be transmitted. For example,
consider the following string.

 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!

The compressor produces the following:

 for.whom.the.bell.tolls,<16,15>.<40,4><19,3>e!

The <16,15> tuple is the compression of '.the.bell.tolls' and <40,4> is 'for.', <19,3> gives 'the'.

The expansion of a copy-tuple MUST use a "replicating copy". A replicating copy is implemented using
the following pseudocode.

 SrcPtr = HistoryPtr - CopyOffset;

 while (LengthOfMatch > 0)
 {
 *HistoryPtr = *SrcPtr;

 SrcPtr = SrcPtr + 1;
 HistoryPtr = HistoryPtr + 1;

 LengthOfMatch = LengthOfMatch - 1;
 }

For example, consider the following compressed stream.

 Xcd<2,4>YZ

Using a replicating copy, this is correctly decompressed to

 XcdcdcdYZ

Literals and copy-tuples are encoded using the scheme described in section 3.1.8.4.1 or 3.1.8.4.2 (the

scheme used depends on whether RDP 4.0 or 5.0 bulk compression is being used).

3.1.8.2.1 Setting the Compression Flags

The sender MUST always specify the compression flags associated with a compressed payload. These
flags MUST be set in the header field appropriate to the type of data payload, such as fast-path output
data (section 2.2.9.1.2.1), virtual channel data (section 2.2.6.1), or slow-path output data (section
2.2.9.1.1).

256 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The compression flags are produced by performing a logical OR operation of the compression type
with one or more of the following flags.

Compression flag Meaning

PACKET_COMPRESSED

0x20

Used to indicate that the data is compressed. This flag is equivalent to MPPC bit C (for
more information see [RFC2118] section 3.1). This flag MUST be set when compression
of the data was successful.

PACKET_AT_FRONT

0x40

Used to indicate that the decompressed data MUST be placed at the beginning of the
local history buffer. This flag is equivalent to MPPC bit B (for more information see
[RFC2118] section 3.1). This flag MUST be set in conjunction with the
PACKET_COMPRESSED (0x20) flag.

There are two conditions on the "compressor-side" that generate this scenario: (1) this
is the first packet to be compressed, and (2) the data to be compressed will not fit at
the end of the history buffer but instead needs to be placed at the start of the history
buffer.

PACKET_FLUSHED

0x80

Used to indicate that the decompressor MUST reinitialized the history buffer (by filling it
with zeros) and reset the HistoryOffset to zero. After it has been reinitialized, the entire
history buffer is immediately regarded as valid. This flag is equivalent to MPPC bit A (for
more information see [RFC2118] section 3.1).

If the PACKET_COMPRESSED (0x20) flag is also present, then the PACKET_FLUSHED
flag MUST be processed first.

Data that is tagged as compressed (using the PACKET_COMPRESSED flag) MUST NOT be larger in size
than the original data. This implies that in a minority of cases it is possible for compressed data to be
the same size as the original data, and still be regarded as compressed. In effect, the statement that

"data is compressed" simply implies that the data is encoded using a particular scheme, and that a
decoder (or decompressor) is required to obtain the original data.

3.1.8.2.2 Operation of the Bulk Compressor

The flowchart in the following figure illustrates the general operation of the bulk compressor and the

production of the compression flags described in section 3.1.8.2.1.

The constructs that follow are used throughout the flowchart.

▪ Flags: The compression flags.

▪ SrcData: The source bytes to be passed to the compressor.

▪ HistoryBuffer: The history buffer as described in section 3.1.8.1.

▪ HistoryOffset: The current offset into the history buffer as described in section 3.1.8.1.

▪ HistoryPtr: A pointer to the current byte in the history buffer which is being encoded.

▪ OutputBuffer: The output buffer that will contain the encoded bytes.

257 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Figure 6: Operation of the bulk compressor

3.1.8.2.3 Data Compression Example

This example is based on the flowchart in the preceding figure that describes the operation of the bulk
compressor.

 Source Data (ANSI characters):
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!

 HistoryPtr = 0

258 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 HistoryOffset = 0

(1) Copy the source data to the history buffer.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ̂ (HistoryPtr = 0)

 HistoryOffset = 49

 Output Buffer:
 <empty>

(2) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('f') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 1)

 Output Buffer:
 f

(3) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('o') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 2)

 Output Buffer:
 fo

(4) No match larger than 2 characters found at the current position. Add the ANSI character at

HistoryPtr ('r') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 3)

 Output Buffer:
 for

(5) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('.') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!

259 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 ^ (HistoryPtr = 4)

 Output Buffer:
 for.

For the sake of brevity, we skip the next 19 steps where we just add ANSI characters to the output
buffer.

(6) Current value of HistoryPtr is 23. No match larger than 2 characters found at the current position.
Add the ANSI character at HistoryPtr (',') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 24)

 Output Buffer:
 for.whom.the.bell.tolls,

(7) We find a match in the history buffer at position 8 of length 15 characters (".the.bell.tolls").
Encode the copy-tuple and add it to the output buffer and advance HistoryPtr by the size of the match.
Recall from section 3.1.8.2 that the copy-offset component of the copy-tuple is an index into
HistoryBuffer (counting backwards from the HistoryPtr towards the start of the buffer) where there is
a match to the data to be sent.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 39)

 Output Buffer:
 for.whom.the.bell.tolls,<16,15>

(8) No match larger than 2 characters found at the current position. Add the ANSI character at

HistoryPtr ('.') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 40)

 Output Buffer:
 for.whom.the.bell.tolls,<16,15>.

(9) We find a match in the history buffer at position 0 of length 4 characters ("for."). Encode the copy-
tuple and add it to the output buffer and advance HistoryPtr by the size of the match.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 44)

 Output Buffer:
 for.whom.the.bell.tolls,<16,15>.<40,4>

260 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

(10) We find a match in the history buffer at position 25 of length 3 characters ("the"). Encode the
copy-tuple and add it to the output buffer and advance HistoryPtr by the size of the match.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 47)

 Output Buffer:
 for.whom.the.bell.tolls,<16,15>.<40,4><19,3>

(11) No match larger than 2 characters found at the current position. Add the ANSI character at

HistoryPtr ('e') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 48)

 Output Buffer:
 for.whom.the.bell.tolls,<16,15>.<40,4><19,3>e

(12) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('!') to the output buffer and advance HistoryPtr.

 History Buffer:
 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for.whom.the.bell.tolls,.the.bell.tolls.for.thee!
 ^ (HistoryPtr = 49)

 Output Buffer:
 for.whom.the.bell.tolls,<16,15>.<40,4><19,3>e!

(13) HistoryPtr (49) is not less than HistoryOffset (49), so we add the PACKET_COMPRESSED flag to

the output packet and send the Output Buffer.

3.1.8.3 Decompressing Data

An endpoint which receives compressed data MUST decompress the data and store the resultant data
at the end of the history buffer. The order of actions depends on the compression flags associated with

the compressed data.

Compression flag Meaning

PACKET_FLUSHED

0x80

If this flag is set, the decompressor MUST reinitialize the history buffer (by filling it with
zeros) and reset the HistoryOffset to zero. Once the history buffer has been reinitialized,
its entire contents are immediately regarded as valid.

If the PACKET_COMPRESSED (0x20) flag is also present, then the PACKET_FLUSHED
flag MUST be processed first.

PACKET_AT_FRONT

0x40

If this flag is set, the decompressor MUST start decompressing to the start of the
history buffer, by resetting the HistoryOffset to zero. Otherwise, the decompressor
MUST append the decompressed data to the end of the history buffer.

PACKET_COMPRESSED If this flag is set, the decompressor MUST decompress the data, appending the
decompressed data to the history buffer and advancing the HistoryOffset by the size of

261 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Compression flag Meaning

0x20 the resulting decompressed data.

3.1.8.4 Compression Types

3.1.8.4.1 RDP 4.0

3.1.8.4.1.1 Literal Encoding

Literals are bytes sent uncompressed. If the value of a literal is below 0x80, it is not encoded in any
special manner. If the literal has a value greater than 0x7F it is sent as the bits 10 followed by the
lower 7 bits of the literal. For example, 0x56 is transmitted as the binary value 01010110, while 0xE7
is transmitted as the binary value 101100111.

3.1.8.4.1.2 Copy-Tuple Encoding

Copy-tuples consist of a <copy-offset> and <length-of-match> pair (see section 3.1.8.2 for more
details).

3.1.8.4.1.2.1 Copy-Offset Encoding

Encoding of the copy-offset value is performed according to the following table.

Copy-offset range Encoding (binary header + copy-offset bits)

0...63 1111 + lower 6 bits of copy-offset

64...319 1110 + lower 8 bits of (copy-offset – 64)

320...8191 110 + lower 13 bits of (copy-offset – 320)

For example:

▪ A copy-offset value of 3 is encoded as the binary value 1111 000011.

▪ A copy-offset value of 128 is encoded as the binary value 1110 01000000.

▪ A copy-offset value of 1024 is encoded as the binary value 110 0001011000000.

A copy-offset value MUST be followed by a length-of-match (L-o-M) value.

3.1.8.4.1.2.2 Length-of-Match Encoding

Encoding of the length-of-match (L-o-M) value is performed according to the following table.

L-o-M range Encoding (binary header + L-o-M bits)

3 0

4...7 10 + 2 lower bits of L-o-M

8...15 110 + 3 lower bits of L-o-M

16...31 1110 + 4 lower bits of L-o-M

32...63 11110 + 5 lower bits of L-o-M

262 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

L-o-M range Encoding (binary header + L-o-M bits)

64...127 111110 + 6 lower bits of L-o-M

128...255 1111110 + 7 lower bits of L-o-M

256...511 11111110 + 8 lower bits of L-o-M

512...1023 111111110 + 9 lower bits of L-o-M

1024...2047 1111111110 + 10 lower bits of L-o-M

2048...4095 11111111110 + 11 lower bits of L-o-M

4096...8191 111111111110 + 12 lower bits of L-o-M

For example:

▪ A length-of-match value of 15 is encoded as the binary value 110 111.

▪ A length-of-match value of 120 is encoded as the binary value 111110 111000.

▪ A length-of-match value of 4097 is encoded as the binary value 111111111110 000000000001.

3.1.8.4.2 RDP 5.0

The rules for RDP 5.0 are very similar to those of RDP 4.0 (section 3.1.8.4.1). RDP 5.0 has a history
buffer size of 64 kilobytes, thus both endpoints MUST maintain a 64 kilobyte window.

3.1.8.4.2.1 Literal Encoding

Literals are bytes sent uncompressed. If the value of a literal is below 0x80, it is not encoded in any

special manner. If the literal has a value greater than 0x7F it is sent as the bits 10 followed by the
lower 7 bits of the literal. For example, 0x56 is transmitted as the binary value 01010110, while 0xE7
is transmitted as the binary value 101100111.

3.1.8.4.2.2 Copy-Tuple Encoding

Copy-tuples consist of a <copy-offset> and <length-of-match> pair (see section 3.1.8.2 for more
details).

3.1.8.4.2.2.1 Copy-Offset Encoding

Encoding of the copy-offset value is performed according to the following table.

Copy-offset range Encoding (binary header + copy-offset bits)

0...63 11111 + lower 6 bits of copy-offset

64...319 11110 + lower 8 bits of (copy-offset – 64)

320...2367 1110 + lower 11 bits of (copy-offset – 320)

2368+ 110 + lower 16 bits of (copy-offset – 2368)

A copy-offset value MUST be followed by a length-of-match value.

3.1.8.4.2.2.2 Length-of-Match Encoding

Encoding of the length-of-match (L-o-M) value is performed according to the following table.

263 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

L-o-M range Encoding (binary header + L-o-M bits)

3 0

4..7 10 + 2 lower bits of L-o-M

8..15 110 + 3 lower bits of L-o-M

16..31 1110 + 4 lower bits of L-o-M

32..63 11110 + 5 lower bits of L-o-M

64..127 111110 + 6 lower bits of L-o-M

128..255 1111110 + 7 lower bits of L-o-M

256..511 11111110 + 8 lower bits of L-o-M

512..1023 111111110 + 9 lower bits of L-o-M

1024..2047 1111111110 + 10 lower bits of L-o-M

2048..4095 11111111110 + 11 lower bits of L-o-M

4096..8191 111111111110 + 12 lower bits of L-o-M

8192..16383 1111111111110 + 13 lower bits of L-o-M

16384..32767 11111111111110 + 14 lower bits of L-o-M

32768..65535 111111111111110 + 15 lower bits of L-o-M

3.1.9 Interleaved RLE-Based Bitmap Compression

Bitmap data sent from server to client can be compressed using Interleaved RLE as described in
section 2.2.9.1.1.3.1.2.4. The pseudo-code which follows shows how to decompress a compressed
bitmap stream.

 //
 // Bitmasks
 //
 BYTE g_MaskBit0 = 0x01; // Least significant bit
 BYTE g_MaskBit1 = 0x02;
 BYTE g_MaskBit2 = 0x04;
 BYTE g_MaskBit3 = 0x08;
 BYTE g_MaskBit4 = 0x10;
 BYTE g_MaskBit5 = 0x20;
 BYTE g_MaskBit6 = 0x40;
 BYTE g_MaskBit7 = 0x80; // Most significant bit

 BYTE g_MaskRegularRunLength = 0x1F;
 BYTE g_MaskLiteRunLength = 0x0F;

 BYTE g_MaskSpecialFgBg1 = 0x03;
 BYTE g_MaskSpecialFgBg2 = 0x05;

 //
 // Returns the color depth (in bytes per pixel) that was selected
 // for the RDP connection.
 //
 UINT
 GetColorDepth();

264 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 //
 // PIXEL is a dynamic type that is sized based on the current color
 // depth being used for the RDP connection.
 //
 // if (GetColorDepth() == 8) then PIXEL is an 8-bit unsigned integer
 // if (GetColorDepth() == 15) then PIXEL is a 16-bit unsigned integer
 // if (GetColorDepth() == 16) then PIXEL is a 16-bit unsigned integer
 // if (GetColorDepth() == 24) then PIXEL is a 24-bit unsigned integer
 //

 //
 // Writes a pixel to the specified buffer.
 //
 VOID
 WritePixel(
 BYTE* pbBuffer,
 PIXEL pixel
);

 //
 // Reads a pixel from the specified buffer.
 //
 PIXEL
 ReadPixel(
 BYTE* pbBuffer
);

 //
 // Returns the size of a pixel in bytes.
 //
 UINT
 GetPixelSize()
 {
 UINT colorDepth = GetColorDepth();

 if (colorDepth == 8)
 {
 return 1;
 }
 else if (colorDepth == 15 || colorDepth == 16)
 {
 return 2;
 }
 else if (colorDepth == 24)
 {
 return 3;
 }
 }

 //
 // Returns a pointer to the next pixel in the specified buffer.
 //
 BYTE*
 NextPixel(
 BYTE* pbBuffer
)
 {
 return pbBuffer + GetPixelSize();
 }

 //
 // Reads the supplied order header and extracts the compression
 // order code ID.
 //
 UINT
 ExtractCodeId(
 BYTE bOrderHdr
);

265 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 //
 // Returns a pointer to the data that follows the compression
 // order header and optional run length.
 //
 BYTE*
 AdvanceOverOrderHeader(
 UINT codeId,
 BYTE* pbOrderHdr
);

 //
 // Returns TRUE if the supplied code identifier is for a regular-form
 // standard compression order. For example IsRegularCode(0x01) returns
 // TRUE as 0x01 is the code ID for a Regular Foreground Run Order.
 //
 BOOL
 IsRegularCode(
 UINT codeId
);

 //
 // Returns TRUE if the supplied code identifier is for a lite-form
 // standard compression order. For example IsLiteCode(0x0E) returns
 // TRUE as 0x0E is the code ID for a Lite Dithered Run Order.
 //
 BOOL
 IsLiteCode(
 UINT codeId
);

 //
 // Returns TRUE if the supplied code identifier is for a MEGA_MEGA
 // type extended compression order. For example IsMegaMegaCode(0xF0)
 // returns TRUE as 0xF0 is the code ID for a MEGA_MEGA Background
 // Run Order.
 //
 BOOL
 IsMegaMegaCode(
 UINT codeId
);

 //
 // Returns a black pixel.
 //
 PIXEL
 GetColorBlack()
 {
 UINT colorDepth = GetColorDepth();

 if (colorDepth == 8)
 {
 return (PIXEL) 0x00;
 }
 else if (colorDepth == 15)
 {
 return (PIXEL) 0x0000;
 }
 else if (colorDepth == 16)
 {
 return (PIXEL) 0x0000;
 }
 else if (colorDepth == 24)
 {
 return (PIXEL) 0x000000;
 }
 }

 //
 // Returns a white pixel.
 //

266 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 PIXEL
 GetColorWhite()
 {
 UINT colorDepth = GetColorDepth();

 if (colorDepth == 8)
 {
 //
 // Palette entry #255 holds black.
 //
 return (PIXEL) 0xFF;
 }
 else if (colorDepth == 15)
 {
 //
 // 5 bits per RGB component:
 // 0111 1111 1111 1111 (binary)
 //
 return (PIXEL) 0x7FFF;
 }
 else if (colorDepth == 16)
 {
 //
 // 5 bits for red, 6 bits for green, 5 bits for green:
 // 1111 1111 1111 1111 (binary)
 //
 return (PIXEL) 0xFFFF;
 }
 else if (colorDepth == 24)
 {
 //
 // 8 bits per RGB component:
 // 1111 1111 1111 1111 1111 1111 (binary)
 //
 return (PIXEL) 0xFFFFFF;
 }
 }

 //
 // Extract the run length of a Regular-Form Foreground/Background
 // Image Order.
 //
 UINT
 ExtractRunLengthRegularFgBg(
 BYTE* pbOrderHdr
)
 {
 UINT runLength;

 runLength = *pbOrderHdr AND g_MaskRegularRunLength;
 if (runLength == 0)
 {
 runLength = *(pbOrderHdr + 1) + 1;
 }
 else
 {
 runLength = runLength * 8;
 }

 return runLength;
 }

 //
 // Extract the run length of a Lite-Form Foreground/Background
 // Image Order.
 //
 UINT
 ExtractRunLengthLiteFgBg(
 BYTE* pbOrderHdr
)

267 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 {
 UINT runLength;

 runLength = *pbOrderHdr AND g_MaskLiteRunLength;
 if (runLength == 0)
 {
 runLength = *(pbOrderHdr + 1) + 1;
 }
 else
 {
 runLength = runLength * 8;
 }

 return runLength;
 }

 //
 // Extract the run length of a regular-form compression order.
 //
 UINT
 ExtractRunLengthRegular(
 BYTE* pbOrderHdr
)
 {
 UINT runLength;

 runLength = *pbOrderHdr AND g_MaskRegularRunLength;
 if (runLength == 0)
 {
 //
 // An extended (MEGA) run.
 //
 runLength = *(pbOrderHdr + 1) + 32;
 }

 return runLength;
 }

 //
 // Extract the run length of a lite-form compression order.
 //
 UINT
 ExtractRunLengthLite(
 BYTE* pbOrderHdr
)
 {
 UINT runLength;

 runLength = *pbOrderHdr AND g_MaskLiteRunLength;
 if (runLength == 0)
 {
 //
 // An extended (MEGA) run.
 //
 runLength = *(pbOrderHdr + 1) + 16;
 }

 return runLength;
 }

 //
 // Extract the run length of a MEGA_MEGA-type compression order.
 //
 UINT
 ExtractRunLengthMegaMega(
 BYTE* pbOrderHdr
)
 {
 UINT runLength;

268 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 pbOrderHdr = pbOrderHdr + 1;
 runLength = ((UINT16) pbOrderHdr[0]) OR ((UINT16) pbOrderHdr[1] << 8);

 return runLength;
 }

 //
 // Extract the run length of a compression order.
 //
 UINT
 ExtractRunLength(
 UINT code,
 BYTE* pbOrderHdr
)
 {
 UINT runLength;

 if (code == REGULAR_FGBG_IMAGE)
 {
 runLength = ExtractRunLengthRegularFgBg(pbOrderHdr);
 }
 else if (code == LITE_SET_FG_FGBG_IMAGE)
 {
 runLength = ExtractRunLengthLiteFgBg(pbOrderHdr);
 }
 else if (IsRegularCode(code))
 {
 runLength = ExtractRunLengthRegular(pbOrderHdr);
 }
 else if (IsLiteCode(code))
 {
 runLength = ExtractRunLengthLite(pbOrderHdr);
 }
 else if (IsMegaMegaCode(code))
 {
 runLength = ExtractRunLengthMegaMega(pbOrderHdr);
 }
 else
 {
 runLength = 0;
 }

 return runLength;
 }

 //
 // Write a foreground/background image to a destination buffer.
 //
 BYTE*
 WriteFgBgImage(
 BYTE* pbDest,
 UINT rowDelta,
 BYTE bitmask,
 PIXEL fgPel,
 UINT cBits
)
 {
 PIXEL xorPixel;

 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit0)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

269 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 if (cBits > 0)
 {
 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit1)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit2)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit3)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit4)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit5)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

270 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 if (cBits > 0)
 {
 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit6)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 xorPixel = ReadPixel(pbDest - rowDelta);
 if (bitmask AND g_MaskBit7)
 {
 WritePixel(pbDest, xorPixel XOR fgPel);
 }
 else
 {
 WritePixel(pbDest, xorPixel);
 }
 pbDest = NextPixel(pbDest);
 }
 }
 }
 }
 }
 }
 }

 return pbDest;
 }

 //
 // Write a foreground/background image to a destination buffer
 // for the first line of compressed data.
 //
 BYTE*
 WriteFirstLineFgBgImage(
 BYTE* pbDest,
 BYTE bitmask,
 PIXEL fgPel,
 UINT cBits
)
 {
 if (bitmask AND g_MaskBit0)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 if (bitmask AND g_MaskBit1)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());

271 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 if (bitmask AND g_MaskBit2)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 if (bitmask AND g_MaskBit3)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 if (bitmask AND g_MaskBit4)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 if (bitmask AND g_MaskBit5)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)
 {
 if (bitmask AND g_MaskBit6)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());
 }
 pbDest = NextPixel(pbDest);
 cBits = cBits - 1;

 if (cBits > 0)

272 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 {
 if (bitmask AND g_MaskBit7)
 {
 WritePixel(pbDest, fgPel);
 }
 else
 {
 WritePixel(pbDest, GetColorBlack());
 }
 pbDest = NextPixel(pbDest);
 }
 }
 }
 }
 }
 }
 }

 return pbDest;
 }

 //
 // Decompress an RLE compressed bitmap.
 //
 VOID
 RleDecompress(
 BYTE* pbSrcBuffer, // Source buffer containing compressed bitmap
 UINT cbSrcBuffer, // Size of source buffer in bytes
 BYTE* pbDestBuffer, // Destination buffer
 UINT rowDelta // Scanline length in bytes
)
 {
 BYTE* pbSrc = pbSrcBuffer;
 BYTE* pbEnd = pbSrcBuffer + cbSrcBuffer;
 BYTE* pbDest = pbDestBuffer;

 PIXEL fgPel = GetColorWhite();
 BOOL fInsertFgPel = FALSE;
 BOOL fFirstLine = TRUE;

 BYTE bitmask;
 PIXEL pixelA, pixelB;

 UINT runLength;
 UINT code;

 while (pbSrc < pbEnd)
 {
 //
 // Watch out for the end of the first scanline.
 //
 if (fFirstLine)
 {
 if (pbDest - pbDestBuffer >= rowDelta)
 {
 fFirstLine = FALSE;
 fInsertFgPel = FALSE;
 }
 }

 //
 // Extract the compression order code ID from the compression
 // order header.
 //
 code = ExtractCodeId(*pbSrc);

 //
 // Handle Background Run Orders.
 //
 if (code == REGULAR_BG_RUN OR

273 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 code == MEGA_MEGA_BG_RUN)
 {
 runLength = ExtractRunLength(code, pbSrc);
 pbSrc = AdvanceOverOrderHeader(code, pbSrc);

 if (fFirstLine)
 {
 if (fInsertFgPel)
 {
 WritePixel(pbDest, fgPel);
 pbDest = NextPixel(pbDest);
 runLength = runLength - 1;
 }
 while (runLength > 0)
 {
 WritePixel(pbDest, GetColorBlack());
 pbDest = NextPixel(pbDest);
 runLength = runLength - 1;
 }
 }
 else
 {
 if (fInsertFgPel)
 {
 WritePixel(
 pbDest,
 ReadPixel(pbDest - rowDelta) XOR fgPel
);
 pbDest = NextPixel(pbDest);
 runLength = runLength - 1;
 }

 while (runLength > 0)
 {
 WritePixel(pbDest, ReadPixel(pbDest - rowDelta));
 pbDest = NextPixel(pbDest);
 runLength = runLength - 1;
 }
 }

 //
 // A follow-on background run order will need a
 // foreground pel inserted.
 //
 fInsertFgPel = TRUE;
 continue;
 }

 //
 // For any of the other run-types a follow-on background run
 // order does not need a foreground pel inserted.
 //
 fInsertFgPel = FALSE;

 //
 // Handle Foreground Run Orders.
 //
 if (code == REGULAR_FG_RUN OR
 code == MEGA_MEGA_FG_RUN OR
 code == LITE_SET_FG_FG_RUN OR
 code == MEGA_MEGA_SET_FG_RUN)
 {
 runLength = ExtractRunLength(code, pbSrc);
 pbSrc = AdvanceOverOrderHeader(code, pbSrc);

 if (code == LITE_SET_FG_FG_RUN OR
 code == MEGA_MEGA_SET_FG_RUN)
 {
 fgPel = ReadPixel(pbSrc);
 pbSrc = NextPixel(pbSrc);

274 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 }

 while (runLength > 0)
 {
 if (fFirstLine)
 {
 WritePixel(pbDest, fgPel);
 pbDest = NextPixel(pbDest);
 }
 else
 {
 WritePixel(
 pbDest,
 ReadPixel(pbDest - rowDelta) XOR fgPel
);
 pbDest = NextPixel(pbDest);
 }

 runLength = runLength - 1;
 }

 continue;
 }

 //
 // Handle Dithered Run Orders.
 //
 if (code == LITE_DITHERED_RUN OR
 code == MEGA_MEGA_DITHERED_RUN)
 {
 runLength = ExtractRunLength(code, pbSrc);
 pbSrc = AdvanceOverOrderHeader(code, pbSrc);

 pixelA = ReadPixel(pbSrc);
 pbSrc = NextPixel(pbSrc);
 pixelB = ReadPixel(pbSrc);
 pbSrc = NextPixel(pbSrc);

 while (runLength > 0)
 {
 WritePixel(pbDest, pixelA);
 pbDest = NextPixel(pbDest);
 WritePixel(pbDest, pixelB);
 pbDest = NextPixel(pbDest);

 runLength = runLength - 1;
 }

 continue;
 }

 //
 // Handle Color Run Orders.
 //
 if (code == REGULAR_COLOR_RUN OR
 code == MEGA_MEGA_COLOR_RUN)
 {
 runLength = ExtractRunLength(code, pbSrc);
 pbSrc = AdvanceOverOrderHeader(code, pbSrc);

 pixelA = ReadPixel(pbSrc);
 pbSrc = NextPixel(pbSrc);

 while (runLength > 0)
 {
 WritePixel(pbDest, pixelA);
 pbDest = NextPixel(pbDest);

 runLength = runLength - 1;
 }

275 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 continue;
 }

 //
 // Handle Foreground/Background Image Orders.
 //
 if (code == REGULAR_FGBG_IMAGE OR
 code == MEGA_MEGA_FGBG_IMAGE OR
 code == LITE_SET_FG_FGBG_IMAGE OR
 code == MEGA_MEGA_SET_FGBG_IMAGE)
 {
 runLength = ExtractRunLength(code, pbSrc);
 pbSrc = AdvanceOverOrderHeader(code, pbSrc);

 if (code == LITE_SET_FG_FGBG_IMAGE OR
 code == MEGA_MEGA_SET_FGBG_IMAGE)
 {
 fgPel = ReadPixel(pbSrc);
 pbSrc = NextPixel(pbSrc);
 }

 while (runLength > 8)
 {
 bitmask = *pbSrc;
 pbSrc = pbSrc + 1;

 if (fFirstLine)
 {
 pbDest = WriteFirstLineFgBgImage(
 pbDest,
 bitmask,
 fgPel,
 8
);
 }
 else
 {
 pbDest = WriteFgBgImage(
 pbDest,
 rowDelta,
 bitmask,
 fgPel,
 8
);
 }

 runLength = runLength - 8;
 }

 if (runLength > 0)
 {
 bitmask = *pbSrc;
 pbSrc = pbSrc + 1;

 if (fFirstLine)
 {
 pbDest = WriteFirstLineFgBgImage(
 pbDest,
 bitmask,
 fgPel,
 runLength
);
 }
 else
 {
 pbDest = WriteFgBgImage(
 pbDest,
 rowDelta,
 bitmask,

276 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 fgPel,
 runLength
);
 }
 }

 continue;
 }

 //
 // Handle Color Image Orders.
 //
 if (code == REGULAR_COLOR_IMAGE OR
 code == MEGA_MEGA_COLOR_IMAGE)
 {
 UINT byteCount;

 runLength = ExtractRunLength(code, pbSrc);
 pbSrc = AdvanceOverOrderHeader(code, pbSrc);

 byteCount = runLength * GetColorDepth();

 while (byteCount > 0)
 {
 *pbDest = *pbSrc;
 pbDest = pbDest + 1;
 pbSrc = pbSrc + 1;

 byteCount = byteCount - 1;
 }

 continue;
 }

 //
 // Handle Special Order 1.
 //
 if (code == SPECIAL_FGBG_1)
 {
 if (fFirstLine)
 {
 pbDest = WriteFirstLineFgBgImage(
 pbDest,
 g_MaskSpecialFgBg1,
 fgPel,
 8
);
 }
 else
 {
 pbDest = WriteFgBgImage(
 pbDest,
 rowDelta,
 g_MaskSpecialFgBg1,
 fgPel,
 8
);
 }

 continue;
 }

 //
 // Handle Special Order 2.
 //
 if (code == SPECIAL_FGBG_2)
 {
 if (fFirstLine)
 {
 pbDest = WriteFirstLineFgBgImage(

277 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 pbDest,
 g_MaskSpecialFgBg2,
 fgPel,
 8
);
 }
 else
 {
 pbDest = WriteFgBgImage(
 pbDest,
 rowDelta,
 g_MaskSpecialFgBg2,
 fgPel,
 8
);
 }

 continue;
 }

 //
 // Handle White Order.
 //
 if (code == WHITE)
 {
 WritePixel(pbDest, GetColorWhite());
 pbDest = NextPixel(pbDest);

 continue;
 }

 //
 // Handle Black Order.
 //
 if (code == BLACK)
 {
 WritePixel(pbDest, GetColorBlack());
 pbDest = NextPixel(pbDest);

 continue;
 }
 }
 }

3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

3.2.1.1 Received Server Data

The Received Server Data store contains data received from the server during execution of the
Remote Desktop Protocol. This store is initialized when processing the MCS Connect Response PDU
with GCC Conference Create Response (sections 2.2.1.4 and 3.2.5.3.4).

278 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.2.1.2 Static Virtual Channel IDs

The Static Virtual Channel IDs store contains the MCS channel identifiers of the static virtual channels.
This data store is initialized when processing the Server Network Data (sections 2.2.1.4.4 and

3.2.5.3.4).

3.2.1.3 I/O Channel ID

The I/O Channel ID store contains the MCS channel identifier of the I/O channel. This data store is
initialized when processing the Server Network Data (sections 2.2.1.4.4 and 3.2.5.3.4).

3.2.1.4 Message Channel ID

The Message Channel ID store contains the MCS channel identifier of the message channel. This data
store is initialized when processing the Server Message Channel Data (sections 2.2.1.4.5 and

3.2.5.3.4).

3.2.1.5 User Channel ID

The User Channel ID store contains the MCS channel identifier of the user channel. This data store is
initialized when processing the MCS Attach User Confirm PDU (sections 2.2.1.7 and 3.2.5.3.7).

3.2.1.6 Server Channel ID

The Server Channel ID store contains the MCS channel identifier of the server channel. This data store
is initialized when processing the Demand Active PDU (sections 2.2.1.13.1.1 and 3.2.5.3.13.1).

3.2.1.7 Server Capabilities

The Server Capabilities store contains capability sets (section 1.7) received from the server in the
Demand Active PDU (sections 2.2.1.13.1 and 3.2.5.3.13.1).

3.2.1.8 Share ID

The Share ID store holds the share identifier selected by the server ([T128] section 8.4.2 for more
information regarding share IDs). This data store is initialized when processing the Demand Active
PDU (sections 2.2.1.13.1 and 3.2.5.3.13.1) and is used to initialize the shareID field of the Share
Data Header when sending basic client-to-server slow-path PDUs (section 3.2.5.1).

3.2.1.9 Automatic Reconnection Cookie

The Automatic Reconnection Cookie store contains a cookie received from the server that enables
seamless reconnections in cases where the connection has been broken due to short-term transient

network failure (section 5.5). The cookie is sent by the server to the client in the Save Session Info
PDU (sections 2.2.10.1 and 3.2.5.10.1), and sent by the client to the server in the Client Info PDU
(sections 2.2.1.11.1.1.1 and 3.3.5.3.11).

3.2.1.10 Server Licensing Encryption Ability

The Server Licensing Encryption Ability store determines whether the server has the ability to handle
encrypted licensing packets when using Standard RDP Security mechanisms (see the discussion of the
SEC_LICENSE_ENCRYPT_CS flag in section 2.2.8.1.1.2.1). This fact is communicated to the client by
setting the SEC_LICENSE_ENCRYPT_CS (0x0200) flag in all licensing PDUs sent from the server.

279 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.2.1.11 Pointer Image Cache

The Pointer Image Cache contains a collection of pointer images saved from Color Pointer Updates
(sections 2.2.9.1.2.1.7, 3.2.5.9.2, and 3.2.5.9.3), New Pointer Updates (sections 2.2.9.1.2.1.8,

3.2.5.9.2, and 3.2.5.9.3), and Large Pointer Updates (sections 2.2.9.1.2.1.11 and 3.2.5.9.3). The
images stored in the cache are used to set the shape of the pointer when processing a Cached Pointer
Update (sections 2.2.9.1.1.4.6, 3.2.5.9.2, and 3.2.5.9.3). The size and color depth (either variable or
fixed at 24 bpp) of the cache is specified in the Pointer Capability Set (section 2.2.7.1.5).

3.2.1.12 Session Keys

The Session Keys store holds the symmetric keys (sections 5.3.5 to 5.3.7) used to encrypt, decrypt,
and sign RDP packets.

3.2.1.13 Bitmap Caches

A Bitmap Cache is a store that contains bitmap images that were sent to the client using the Cache

Bitmap (Revision 2) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

3.2.1.14 Persistent Bitmap Caches

A Persistent Bitmap Cache is a store that contains bitmap images that were sent to the client by using
the Cache Bitmap (Revision 2) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).
Unlike the Bitmap Caches described in section 3.2.1.13, Persistent Bitmap Caches are not bound to
the lifetime of a given RDP connection and their contents are persisted even after the RDP connection
is closed.

3.2.1.15 Persisted Bitmap Keys

The Persisted Bitmap Keys store holds a collection of 64-bit bitmap keys, each of which uniquely
identifies a bitmap image that is present in a Persistent Bitmap Cache (section 3.2.1.14). The lifetime

of this store is bound to the lifetime of the Persistent Bitmap Caches.

3.2.1.16 Connection Start Time

The Connection Start Time store contains the time at which the client first sent network traffic to the
server.

3.2.1.17 Network Characteristics Byte Count

The Network Characteristics Byte Count store is a byte counter that is used when determining the
network characteristics by using the messages defined in section 2.2.14.1.

3.2.1.18 Network Characteristics Sequence Number

The Network Characteristics Sequence Number store is used to correlate bandwidth measurement

operations when determining network characteristics by using the bandwidth measurement messages
defined in sections 2.2.14.2 and 2.2.14.4.

280 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.2.2 Timers

3.2.2.1 Connection Sequence Timeout Timer

The Connection Sequence Timeout Timer stores the amount of time that has elapsed since the client
first sent network traffic to the server. The connection start time is stored in the Connection Start
Time store (section 3.2.1.16).

3.2.2.2 Network Characteristics Timer

The Network Characteristics Timer store is a millisecond-resolution timer that is used when
determining the network characteristics using the messages defined in 2.2.14.1.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Constructing a Client-to-Server Slow-Path PDU

The majority of client-to-server slow-path PDUs have the same basic structure (sections 5.3.8 and
5.4.4):

▪ tpktHeader: TPKT Header ([T123] section 8)

▪ x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)

▪ mcsSDrq: MCS Send Data Request PDU ([T125] section 7, Part 7)

▪ securityHeader: Optional Security Header (section 2.2.8.1.1.2)

▪ shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)

▪ PDU Contents (see the section describing the PDU structure and fields in section 2.2)

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field is
initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as specified in [T125] section 11.32. The embedded initiator field

MUST be set to the User Channel ID held in the User Channel ID store (section 3.2.1.5) and the
embedded channelId field MUST be set to the MCS I/O channel ID held in the I/O Channel ID store
(section 3.2.1.3). The embedded userData field contains the remaining fields of the PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario, the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field is encrypted and signed (using the methods and techniques specified in section
5.3.6) based on the values of the Encryption Level and Encryption Method selected by the server as
part of the negotiation specified in section 5.3.2. The format of the securityHeader field is selected
as specified in the section describing the PDU structure and fields in section 2.2, and the fields

281 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

populated with the appropriate security data. If the data is to be encrypted, the embedded flags field
of the securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The shareDataHeader field contains a Share Data Header structure as described in section
2.2.8.1.1.1.2. The pduSource field of the embedded Share Control Header (section 2.2.8.1.1.1.1)

MUST be set to the User Channel ID held in the User Channel ID store (section 3.2.1.5). If the
contents of the PDU are to be compressed (this MUST be done before any MAC signature is
constructed and encryption methods applied), the embedded compressedType field of the
shareDataHeader MUST be initialized as specified in section 2.2.8.1.1.1.2. The remaining Share Data
Header and Share Control Header fields MUST be populated as specified in sections 2.2.8.1.1.1.1,
2.2.8.1.1.1.2, and the section describing the PDU structure and fields in section 2.2.

Any remaining fields are populated as specified in the section describing the PDU structure and fields

in section 2.2.

3.2.5.2 Processing a Server-to-Client Slow-Path PDU

The majority of server-to-client slow-path PDUs have the same basic structure (sections 5.3.8 and

5.4.4):

▪ tpktHeader: TPKT Header ([T123] section 8)

▪ x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)

▪ mcsSDin: MCS Send Data Indication PDU ([T125] section 7, part 7)

▪ securityHeader: Optional Security Header (section 2.2.8.1.1.2)

▪ shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)

▪ PDU Contents (see the section describing the PDU structure and fields in section 2.2)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior

to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsSDin ([T125] section
7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDin is used to route the PDU to the appropriate target
channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in the section describing the PDU structure and
fields in section 2.2. If the securityHeader field is present, the embedded flags field MUST be
examined for the presence of the SEC_ENCRYPT (0x0008) flag (section 2.2.8.1.1.2.1), and, if it is
present, the data following the securityHeader field MUST be verified and decrypted using the

methods and techniques specified in section 5.3.6. If the MAC signature is incorrect, or the data
cannot be decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in

effect and the SEC_ENCRYPT flag is present, the connection SHOULD be dropped because double-
encryption is never used in this scenario.

The shareDataHeader field (which contains the Share Control Header and Share Data Header
described in sections 2.2.8.1.1.1.1 and 2.2.8.1.1.1.2 respectively) MUST be examined to determine
the PDU type (from the pduType and pduType2 fields), as well as the compression usage

information (from the compressedType field). If the data following the Share Data Header is
compressed, then decompression using the techniques specified in section 3.1.8.3 MUST be
performed. The value of the totalLength field MUST also be examined for consistency with the

282 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

received data. If there is any discrepancy, the connection SHOULD be dropped. The remaining Share
Control Header and Share Data Header fields MAY be ignored.

Any remaining PDU fields MUST be interpreted and processed in accordance with the section
describing the PDU structure and fields in section 2.2.

3.2.5.3 Connection Sequence

3.2.5.3.1 Sending X.224 Connection Request PDU

The structure and fields of the X.224 Connection Request PDU are specified in section 2.2.1.1.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Crq field is
initialized as specified in [X224] section 13.3 (the Destination reference and Source reference fields
are both set to zero, and the Class and options fields are both set to zero). Parameter fields MUST
NOT be specified in the variable part of the Connection Request PDU. This implies that the default
maximum size of an X.224 Data PDU payload (65528 bytes) is used because the maximum TPDU size

and preferred maximum TPDU size are not present.

The routingToken field is optional. If the client is in possession of a routing token, it MUST populate
the routingToken field. The primary source of a routing token is the LoadBalanceInfo field of the
Server Redirection PDU (section 2.2.13.1). However other methods, such as scriptable APIs or file
input, can be used to provide a client with a routing token before a connection to an RDP server is
initiated. For more information about load balancing of Remote Desktop sessions and the routing
token format, see [MSFT-SDLBTS] sections "Load-Balanced Configurations", "Revectoring Clients", and
"Routing Token Format".

The cookie field is optional and MUST NOT be present if the routingToken field is present.<43>

The optional rdpNegData field contains an RDP Negotiation Request structure, as specified in section
2.2.1.1.1. The requestedProtocols field is initialized with flags describing the security protocols
which the client supports (see section 5.4 for more details on Enhanced RDP Security).

Upon successfully transmitting the X.224 Connection Request PDU, the client MUST update the
Connection Start Time store (section 3.2.1.16).

3.2.5.3.2 Processing X.224 Connection Confirm PDU

The structure and fields of the X.224 Connection Confirm PDU are specified in section 2.2.1.2.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.
The Destination reference, Source reference, and Class and options fields within the x224Ccf field
MAY be ignored.

If the rdpNegData field is not present, it is assumed that the server does not support Enhanced RDP
Security (section 5.4) and the protocol selected by the server is implicitly assumed to be
PROTOCOL_RDP (0x00000000). If the rdpNegData is present, then it MUST contain either an RDP
Negotiation Response (section 2.2.1.2.1) structure or RDP Negotiation Failure (section 2.2.1.2.2)

structure. If any other structure is present, the connection SHOULD be dropped.

If an RDP Negotiation Failure structure is present, the failure code is extracted from the failureCode
field and the connection SHOULD be dropped (see section 2.2.1.2.2 for a list of failure codes). If an

RDP Negotiation Response structure is present, the selectedProtocol field is parsed to extract the
selected protocol identifier (see section 2.2.1.2.1 for a list of identifiers).

If an External Security Protocol (section 5.4.5) will be used for the duration of the connection, and the
Negotiation-Based Approach (section 5.4.2.1) is being used, the client MUST execute the selected
protocol at this stage by calling into the relevant External Security Protocol provider. Once the

283 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

External Security Protocol handshake has successfully run to completion and all authentication
requirements have been fulfilled, the client SHOULD continue with the connection sequence by

sending the MCS Connect Initial PDU (section 2.2.1.3) to the server over the newly established secure
channel (section 3.2.5.3.3).

If Standard RDP Security mechanisms (section 5.3) are to be used, that is, the protocol selected by
the server is PROTOCOL_RDP (0x00000000), then the client SHOULD do either of the following:

▪ Continue with the connection sequence by sending the Client MCS Connect Initial
PDU (section 2.2.1.3) to the server.

▪ Disconnect and then restart the connection sequence, specifying only the PROTOCOL_RDP flag
(0x00000000) in the requestedProtocols field of the RDP Negotiation Request structure (section
2.2.1.1.1).

Both of these actions will result in a session that is secured using Standard RDP Security mechanisms.
However, the second option makes it possible for a client application to prompt the user and wait for a
response before continuing with the connection.

3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request

The structure and fields of the MCS Connect Initial PDU with GCC Conference Create Request are

specified in section 2.2.1.3. A basic high-level overview of the nested structure for the MCS Connect
Initial PDU is illustrated in section 1.3.1.1, in the figure specifying MCS Connect Initial PDU.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Connect Initial PDU (embedded within the mcsCi field) is specified in [T125] section 7, part
2. The client SHOULD initialize the fields of the MCS Connect Initial PDU as follows.

 Connect initial field Value

calledDomainSelector 0x01.

callingDomainSelector 0x01.

upwardFlag TRUE.

targetParameters See the following table.

minimumParameters See the following table.

maximumParameters See the following table.

userData GCC Conference Create Request.

The targetParameters, minimumParameters, and maximumParameters domain parameter

structures SHOULD be initialized as follows.

 Domain parameter targetParameters minimumParameters maximumParameters

maxChannelIds 34 1 65535

maxUserIds 2 1 65535

maxTokenIds 0 1 65535

numPriorities 1 1 1

minThroughput 0 0 0

284 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 Domain parameter targetParameters minimumParameters maximumParameters

maxHeight 1 1 1

maxMCSPDUsize 65535 1056 65535

protocolVersion 2 2 2

The userData field of the MCS Connect Initial PDU contains the GCC Conference Create Request
(embedded within the gccCCrq field). The GCC Conference Create Request is specified in [T124]
section 8.7 and appended as user data to the MCS Connect Initial PDU using the format specified in
[T124] sections 9.5 and 9.6. The client SHOULD initialize the fields of the GCC Conference Create
Request as follows.

 Conference create request field Value

conferenceName "1"

convenerPassword Optional field, not used

password Optional field, not used

lockedConference FALSE

listedConference FALSE

conductibleConference FALSE

terminationMethod automatic (0)

conductorPrivileges Optional field, not used

conductedPrivileges Optional field, not used

nonConductedPrivileges Optional field, not used

conferenceDescription Optional field, not used

callerIdentifier Optional field, not used

userData Basic client settings data blocks

The userData field of the GCC Conference Create Request MUST be initialized with basic client

settings data blocks (sections 2.2.1.3.2 through 2.2.1.3.5). The client-to-server H.221 nonstandard
key which MUST be embedded at the start of the userData field ([T124] section 8.7 for a description
of the structure of user data) MUST be the ANSI character string "Duca".

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create

Response

The structure and fields of the MCS Connect Response PDU with GCC Conference Create Response are
specified in section 2.2.1.4. A basic high-level overview of the nested structure for the MCS Connect
Response PDU is illustrated in section 1.3.1.1, in the figure specifying the MCS Connect Response

PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

285 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Connect Response PDU (embedded within the mcsCrsp field) is specified in [T125] section
7, part 2. The client ignores the calledConnectId and domainParameters fields of this PDU. If the

result field is set to rt-successful (0) the client MUST send the MCS Erect Domain Request PDU to the
server (section 3.2.5.3.5). If the result field is set to any other value, the client SHOULD drop the
connection.

The mcsCrsp field of the MCS Connect Response PDU contains the GCC Conference Create Response
data (embedded within the gccCCrsp field). The GCC Conference Create Response is described in
[T124] section 8.7 and appended as user data to the MCS Connect Response PDU using the format
specified in [T124] sections 9.5 and 9.6. The client MUST ignore the specified length of the MCS

Connect Response PDU user data.

The client ignores all of the GCC Conference Create Response fields, except for the userData field.
The userData field of the GCC Conference Create Response MUST contain basic server settings data
blocks (sections 2.2.1.4.2 through 2.2.1.4.4). The client MUST check that the server-to-client H.221

nonstandard key embedded at the start of the x224Data field ([T124] section 8.7 for a description of
the structure of user data) MUST be the ANSI character string "McDn". If this is not the case, the

connection SHOULD be dropped.

All of the encoded lengths within the MCS Connect Response PDU and the GCC Conference Create
Response (except for those already noted) MUST also be examined for consistency with the received
data. If there is any discrepancy, the connection SHOULD be dropped.

Once the mcsCrsp and gccCCrsp fields have been successfully parsed the client examines the basic
server settings data blocks and stores the received data in the Received Server Data store (section
3.2.1.1). However, before the data is stored the Basic Server Settings Data Blocks are checked for

validity.

The clientRequestedProtocols field in the Server Core Data (section 2.2.1.4.2) is examined to
ensure that it contains the same flags that the client sent to the server in the RDP Negotiation
Request (section 2.2.1.1.1). If this is not the case, the client SHOULD drop the connection. In the

event that this optional field is not present, the value PROTOCOL_RDP (0) MUST be assumed.

Select settings in the Server Security Data (section 2.2.1.4.3) are validated using the following rules.

 Server security
data field Validation rule

encryptionMethod If this field does not contain a valid Encryption Method identifier, the client SHOULD drop
the connection. If the client does not support the selected Encryption Method it SHOULD
disconnect because further communication with the server will not be possible.

encryptionLevel If this field contains a nonzero value and there is not enough data to read the data in the
serverRandom or serverCertificate fields, the client SHOULD drop the connection.

serverRandomLen If this field does not contain a value of 32, the client SHOULD drop the connection.

serverCertificate If this field does not contain a valid certificate, the client SHOULD drop the connection.
Proprietary certificates (sections 3.2.5.3.1 and 5.3.3.1) SHOULD be tested for validity
using the techniques specified in section 5.3.3.1.3.

The channelCount and channelIdArray fields in the Server Network Data (section 2.2.1.4.4) MUST
be examined for consistency to ensure that the packet contains enough data to extract the specified
number of channel IDs. If there is not enough data, the client SHOULD drop the connection. The MCS
channel IDs returned in the channelIdArray MUST be saved in the Static Virtual Channel IDs store
(section 3.2.1.2), while the MCSChannelId field MUST be saved in the I/O Channel ID store (section
3.2.1.3). The MCSChannelId field in the Server Message Channel Data (section 2.2.1.4.5) MUST be

286 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

saved in the Message Channel ID store (section 3.2.1.4). These IDs MUST be used by the client when
sending MCS Channel Join Request PDUs (sections 2.2.1.8 and 3.2.5.3.8).

Once the basic server settings data blocks have been processed successfully, the client MUST send the
MCS Attach User Request PDU (section 3.2.5.3.6) to the server.

3.2.5.3.5 Sending MCS Erect Domain Request PDU

The structure and fields of the MCS Erect Domain Request PDU are specified in section 2.2.1.5.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Erect Domain Request PDU (embedded within the mcsEDrq field) is specified in [T125]
section 7, parts 3 and 10. The client SHOULD initialize both the subHeight and subinterval fields of

the MCS Erect Domain Request PDU to zero.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST

be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.2.5.3.6 Sending MCS Attach User Request PDU

The structure and fields of the MCS Attach User Request PDU are specified in section 2.2.1.6.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Attach User Request PDU (embedded within the mcsAUrq field) is specified in [T125]
section 7, parts 5 and 10.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted

over the wire.

3.2.5.3.7 Processing MCS Attach User Confirm PDU

The structure and fields of the MCS Attach User Confirm PDU are specified in section 2.2.1.7.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for

consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Attach User Confirm PDU (embedded within the mcsAUcf field) is specified in [T125] section
7, parts 5 and 10. If the result field is not set to rt-successful (0), the client SHOULD drop the
connection. If the result field is set to rt-successful (0) but the initiator field is not present, the client
SHOULD drop the connection. If the initiator field is present, the client stores the value of the
initiator in the User Channel ID store (section 3.2.1.5), because the initiator specifies the User

Channel ID.

Once the User Channel ID has been extracted, the client MUST send an MCS Channel Join Request
PDU for the user channel (section 3.2.5.3.8).

3.2.5.3.8 (Updated Section) Sending MCS Channel Join Request PDU(s)

The structure and fields of the MCS Channel Join Request PDU are specified in section 2.2.1.8.

Multiple MCS Channel Join Request PDUs are sent to join the following channels:

287 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

1. User Channel (the MCS channel ID is stored in the User Channel ID store (section 3.2.1.5)).

2. I/O channel (the MCS channel ID is stored in the I/O Channel ID store (section 3.2.1.3)).

3. Message channel, if the Message Channel ID is non-zero (the MCS channel ID is stored in the
Message Channel ID store (section 3.2.1.4)).

4. Static Virtual Channels (the MCS channel IDs are stored in the Static Virtual Channel IDs store
(section 3.2.1.2)).

The MCS Channel Join Request PDUs are sent sequentially. The first PDU is sent after receiving the
MCS Attach User Confirm PDU (section 2.2.1.7) and subsequent PDUs are sent after receiving the MCS
Channel Join Confirm PDU (section 2.2.1.9) for the previous request. Sending of the MCS Channel Join
Request PDUs MUST continue until all channels have been successfully joined.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which

contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Channel Join Request PDU (embedded within the mcsCJrq field) is specified in [T125]

section 7, parts 6 and 10. The initiator field is initialized with the User Channel ID obtained during
the processing of the MCS Attach User Confirm PDU and stored in the User Channel ID store. The
channelId field is initialized with the MCS channel ID of the channel that is being joined.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST

be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

If the client set the RNS_UD_CS_SUPPORT_SKIP_CHANNELJOIN flag in the earlyCapabilityFlags
field of the Client Core Data (section 2.2.1.3.2), and the server set the
RNS_UD_SC_SKIP_CHANNELJOIN_SUPPORTED flag in earlyCapabilityFlags field of the Server Core
Data (section 2.2.1.4.2), then the MCS Channel Join Request PDUs (section 2.2.1.8) and the MCS
Channel Join Confirm PDUs (section 2.2.1.9) SHOULD be skipped to reduce the connection time. Upon

reception of the MCS Attach User Confirm PDU (section 2.2.1.7) all the MCS channels (the user
channel, the I/O channel, the message channel, and all static virtual channels) SHOULD be considered

as fully joined by the client. The client SHOULD NOT send any MCS Channel Join Request PDUs to
server and SHOULD proceed to the RDP Security Commencement phase (section 1.3.1.1).

3.2.5.3.9 Processing MCS Channel Join Confirm PDU(s)

The structure and fields of the MCS Channel Join Confirm PDU are specified in section 2.2.1.9.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Channel Join Confirm PDU (embedded within the mcsCJcf field) is specified in [T125] section
7, parts 6 and 10. If the optional channelId field is not present, the client SHOULD drop the

connection. Furthermore, if the result field is not set to rt-successful (0), the client SHOULD also drop

the connection. The initiator and requested fields MAY be ignored, however, the channelId field
MUST be examined. If the value of the channelId field does not correspond with the value of the
channelId field sent in the previous MCS Channel Join Request PDU (section 2.2.1.8) the connection
SHOULD be dropped.

Once the client has successfully processed the MCS Channel Join Confirm PDU, it MUST send a new
MCS Channel Join Request PDU to the server containing the ID of the next channel which has not yet

been joined. If all channels have been joined, the client MUST proceed to send one of the following
PDUs:

288 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ The Security Exchange PDU (section 2.2.1.10) if Standard RDP Security mechanisms (section 5.3)
are in effect and the Encryption Level (section 5.3.1) and Encryption Method returned from the

server in the Server Security Data (sections 2.2.1.4.2 and 3.2.5.3.4) are both greater than zero.

▪ The Client Info PDU (section 2.2.1.11) if the Encryption Level and Encryption Method returned

from the server are both zero.

3.2.5.3.10 Sending Security Exchange PDU

The structure and fields of the Security Exchange PDU are specified in section 2.2.1.10.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as specified in [T125] section 11.32. The embedded initiator field

MUST be set to the User Channel ID (held in the User Channel ID store (section 3.2.1.5)) and the
embedded channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID store
(section 3.2.1.3). The embedded userData field contains the remaining fields of the Security

Exchange PDU.

The embedded flags field of the basicSecurityHeader MUST contain the SEC_EXCHANGE_PKT
(0x0001) flag (specified in section 2.2.8.1.1.2.1) to indicate the PDU type. If the client can handle

encrypted licensing packets from the server and Standard RDP Security mechanisms (sections 5.3 and
5.4) are being used, then the SEC_LICENSE_ENCRYPT_SC (0x0200) flag SHOULD also be included in
the flags subfield of the basicSecurityHeader field.

A 32-byte random number MUST be generated and then encrypted using the public key of the server
and the techniques specified in section 5.3.4.1. The public key of the server is embedded in the
server's certificate, which is held in the serverCertificate field of the Server Security Data (section
2.2.1.4.3) sent in the MCS Connect Response PDU with GCC Conference Response (section 3.2.5.3.4).

Once the 32-byte random number has been successfully encrypted, it MUST be copied into the
encryptedClientRandom field. The size of the encryptedClientRandom field MUST be derived as
specified in section 5.3.4.1. After the encrypted client random has been copied into the
encryptedClientRandom buffer, 8 bytes of padding (which MUST be filled with zeroes) will remain.

Once the client has sent the Security Exchange PDU, it MUST generate the session keys which will be
used to encrypt, decrypt, and sign data sent on the wire. The 32-byte client random and server
random (transmitted in the Server Security Data (section 2.2.1.4.3)) are used to accomplish this task

by employing the techniques specified in section 5.3.5. On successful generation of the session keys,
the client MUST send the Client Info PDU to the server (section 3.2.5.3.11) and store the session keys
in the Session Keys store (section 3.2.1.12).

3.2.5.3.11 Sending Client Info PDU

The structure and fields of the Client Info PDU are specified in section 2.2.1.11.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as specified in [T125] section 11.32. The embedded initiator field

MUST be set to the User Channel ID (held in the User Channel ID store (section 3.2.1.5)) and the
embedded channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID
(section 3.2.1.3)). The embedded userData field contains the remaining fields of the Client Info PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST

be used to encrypt the entire PDU and generate a verification digest. The securityHeader field MUST
be present; however, it will contain a Basic Security Header structure (section 2.2.8.1.1.2.1).

289 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the
securityHeader field can be encrypted and signed (depending on the values of the Encryption Level

(section 5.3.1) and Encryption Method selected by the server as part of the negotiation specified in
section 5.3.2) using the methods and techniques described in 5.3.6. The format of the

securityHeader field is selected as described in the section detailing the PDU structure and fields
(section 2.2) and the fields populated with appropriate security data. If the data is to be encrypted,
the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The embedded flags field of the securityHeader field (which is always present) MUST contain the
SEC_INFO_PKT (0x0040) flag (specified in section 2.2.8.1.1.2.1) to indicate the PDU type.

If the client is in the process of attempting an automatic reconnection operation using a cookie stored
in the Automatic Reconnection Cookie store (section 3.2.1.9), then it MUST populate the

autoReconnectCookie field of the Extended Info Structure (section 2.2.1.11.1.1.1) with the contents
of the cookie. The remainder of the PDU MUST be populated with client settings according to the
structure and type definition in section 2.2.1.11.1.1.

3.2.5.3.12 Processing License Error PDU - Valid Client

The structure and fields of the License Error (Valid Client) PDU are specified in section 2.2.1.12.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsSDin ([T125] section
7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDin is used to route the PDU to the appropriate target
channel.

The securityHeader field MUST always be present and it MUST contain at least a Basic Security
Header structure (section 2.2.8.1.1.2.1). The embedded flags field of the securityHeader MUST
contain the SEC_LICENSE_PKT (0x0080) flag (section 2.2.8.1.1.2.1). If this flag is not present then

the packet cannot be handled as a licensing PDU, and the connection SHOULD be dropped.

If the SEC_LICENSE_ENCRYPT_CS (0x0200) flag is present, then the server is able to accept
encrypted licensing packets when using Standard RDP Security mechanisms (section 5.3). This fact is
stored in the Server Licensing Encryption Ability store (section 3.2.1.10).

If the SEC_ENCRYPT (0x0008) flag is present, then the data following the securityHeader field is
encrypted and it MUST be verified and decrypted using the methods and techniques described in
section 5.3.6. If the MAC signature is incorrect or the data cannot be decrypted correctly, the
connection SHOULD be dropped.

The remaining PDU fields MUST be interpreted and processed according to the description in section
2.2.1.12. If the bMsgType field is not set to ERROR_ALERT (0xFF) then the message is not a License

Error PDU and the client MAY drop the connection. However, if the client is able to process licensing
PDUs, as specified in [MS-RDPELE] section 2.2.2, it MUST determine if the message is another type of
licensing PDU enumerated in [MS-RDPELE] section 2.2.2 and if so, process it accordingly. If the PDU is

a License Error PDU, the client MUST examine the remaining fields and ensure that they conform to
the structure and values listed in section 2.2.1.12. If this is not the case, the client SHOULD drop the
connection.

3.2.5.3.13 Mandatory Capability Exchange

3.2.5.3.13.1 Processing Demand Active PDU

The structure and fields of the Demand Active PDU are specified in section 2.2.1.13.1.

290 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior

to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsSDin ([T125] section

7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDin is used to route the PDU to the appropriate target
channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in section 2.2.1.13.1. If the securityHeader field
is present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT

(0x0008) flag (section 2.2.8.1.1.2.1), and if it is present the data following the securityHeader field
MUST be verified and decrypted using the methods and techniques described in section 5.3.6. If the
MAC signature is incorrect or the data cannot be decrypted correctly, the connection SHOULD be
dropped.

The shareControlHeader field (which contains a Share Control Header as specified in section
2.2.8.1.1.1.1) MUST be examined to ensure that the PDU type (present in the pduType field) has the

value PDUTYPE_DEMANDACTIVEPDU (1). If this is not the case the received PDU SHOULD be ignored.
The value of the totalLength field MUST also be examined for consistency with the received data. If
there is any discrepancy, the connection SHOULD be dropped. If there is no length discrepancy, the
server MCS channel ID (present in the pduSource field) MUST be stored in the Server Channel ID
store (section 3.2.1.6).

The remaining PDU fields and capability data MUST be interpreted and processed according to sections
2.2.1.13.1.1 and 2.2.7. The capabilities received from the server MUST be stored in the Server

Capabilities store (section 3.2.1.7) and MUST be used to determine what subset of RDP to send to the
server. The contents of the shareID field MUST be stored in the Share ID store (section 3.2.1.8).

After successfully processing the Demand Active PDU, the client MUST send the Confirm Active PDU
(section 2.2.1.13.2) to the server. If processing of the Demand Active PDU was unsuccessful, the

connection SHOULD be dropped.

3.2.5.3.13.2 Sending Confirm Active PDU

The structure and fields of the Confirm Active PDU are specified in section 2.2.1.13.2.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as described in [T125] section 11.32. The embedded initiator field
MUST be set to the User Channel ID (held in the User Channel ID store (section 3.2.1.5) described in
section 3.3.1.6) and the embedded channelId field MUST be set to the MCS I/O channel ID (held in

the I/O Channel ID store (section 3.2.1.3)) described in section 3.3.1.5). The embedded userData
field contains the remaining fields of the Confirm Active PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST

be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field can be encrypted and signed (depending on the values of the Encryption Level

(section 5.3.1) and Encryption Method selected by the server as part of the negotiation specified in
section 5.3.2) using the methods and techniques described in 5.3.6. The format of the
securityHeader field is selected as specified in section 2.2.1.13.2 and the fields populated with

291 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

appropriate security data. If the data is to be encrypted, the embedded flags field of the
securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The remaining fields are populated as described in section 2.2.1.13.2.1, with the combined capability
set data being inserted into the capabilitySets field.

After sending the Confirm Active PDU, the client MUST send the Synchronize PDU (section 3.2.5.3.14)
to the server.

Once the client has successfully transmitted this PDU, input PDUs (section 2.2.8) SHOULD be sent to
the server (section 3.3.5.8).

3.2.5.3.14 Sending Synchronize PDU

The structure and fields of the Synchronize PDU are specified in section 2.2.1.14 and the techniques

specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The targetUser
field SHOULD be set to the MCS server channel ID that is held in the Server Channel ID store (section
3.2.1.6). The contents of this PDU MUST NOT be compressed.

After sending the Synchronize PDU, the client MUST send the Control (Cooperate) PDU (section
3.2.5.3.15) to the server.

3.2.5.3.15 Sending Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are specified in section 2.2.1.15, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
grantId and controlId fields SHOULD be set to zero. The contents of this PDU MUST NOT be
compressed.

After sending the Control (Cooperate) PDU, the client MUST send the Control (Request Control) PDU
(section 3.2.5.3.16) to the server.

3.2.5.3.16 Sending Control PDU - Request Control

The structure and fields of the Control (Request Control) PDU are specified in section 2.2.1.16, and
the techniques described in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
grantId and controlId fields SHOULD be set to zero. The contents of this PDU MUST NOT be
compressed.

After sending the Control (Request Control) PDU, the client MUST send the Persistent Key List PDU

(section 3.2.5.3.17) to the server if the server supports the Revision 2 bitmap caches (section
2.2.7.2.1 and [MS-RDPEGDI] section 3.1.1.1.1) and a Deactivation-Reactivation
Sequence (section 1.3.1.3) is not in progress. If the server does not support the Revision 2 bitmap
caches, the client MUST proceed to send the Font List PDU (section 3.2.5.3.18).

3.2.5.3.17 Sending Persistent Key List PDU(s)

The structure and fields of the Persistent Key List PDU are specified in section 2.2.1.17, and the

techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU MUST NOT be compressed.

Each of the keys sent in a Persistent Key List PDU is encapsulated in a Persistent List Entry (section
2.2.1.17.1.1) and is obtained from the Persisted Bitmap Keys store (section 3.2.1.15).

After sending a single Persistent Key List PDU or a sequence of Persistent Key List PDUs, the client
MUST send the Font List PDU (section 3.2.5.3.18) to the server.

3.2.5.3.18 Sending Font List PDU

292 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The structure and fields of the Font List PDU are specified in section 2.2.1.18, and the techniques
specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The contents of this

PDU MUST NOT be compressed.

3.2.5.3.19 Processing Synchronize PDU

The structure and fields of the Synchronize PDU are specified in section 2.2.1.19, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The contents of the
targetUser field MUST be ignored.

3.2.5.3.20 Processing Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are specified in section 2.2.1.20, and the

techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlId and grantId fields MUST be ignored.

3.2.5.3.21 Processing Control PDU - Granted Control

The structure and fields of the Control (Granted Control) PDU are specified in section 2.2.1.21, and
the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlId and grantId fields MUST be ignored.

3.2.5.3.22 Processing Font Map PDU

The structure and fields of the Font Map PDU are specified in section 2.2.1.22, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The contents of the
numberEntries, totalNumEntries, mapFlags, and entrySize fields MUST be ignored.

3.2.5.4 Disconnection Sequences

3.2.5.4.1 Sending Shutdown Request PDU

The structure and fields of the Shutdown Request PDU are specified in section 2.2.2.1, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU MUST NOT be compressed.

3.2.5.4.2 Processing Shutdown Request Denied PDU

The structure and fields of the Shutdown Request Denied PDU are specified in section 2.2.2.2, and the
techniques described in section 3.2.5.2 demonstrate how to process the contents of the PDU.

After this PDU has been processed, the client MAY prompt the user to determine whether a
disconnection is required. If the user chooses to disconnect the client SHOULD send an MCS

Disconnect Provider Ultimatum PDU (section 3.1.5.1.1) to the server and thereafter MUST drop the
connection.

3.2.5.5 Deactivation-Reconnection Sequence

3.2.5.5.1 Processing Deactivate All PDU

The structure and fields of the Deactivate All PDU are specified in section 2.2.3.1, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client MUST disable its graphics and input protocol handlers
and prepare either for a capability re-exchange (which will employ a Deactivation-Reactivation
Sequence as described in section 1.3.1.3) or a disconnection (the client MUST be prepared to process

293 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

the optional MCS Disconnect Provider Ultimatum PDU (section 3.1.5.1.2) after receiving the
Deactivate All PDU, but prior to the actual disconnection).

3.2.5.6 Auto-Reconnect Sequence

3.2.5.6.1 Processing Auto-Reconnect Status PDU

The structure and fields of the Auto-Reconnect Status PDU are specified in section 2.2.4.1, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD discard the Automatic Reconnection Cookie

(section 3.2.1.9) and continue with the connection by prompting the user to manually enter
credentials for the reconnection attempt.

3.2.5.7 Server Error Reporting and Status Updates

3.2.5.7.1 Processing Set Error Info PDU

The structure and fields of the Set Error Info PDU are specified in section 2.2.5.1, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

The Set Error Info PDU is sent as a precursor to a server-side disconnect and informs the client of the
reason for the disconnection which will follow. Once this PDU has been processed, the client MUST
store the error code so that the reason for the server disconnect which will follow can be accurately

reported to the user.

3.2.5.7.2 Processing Status Info PDU

The structure and fields of the Status Info PDU are specified in section 2.2.5.2, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client can use the status code to give feedback to a user to

ensure that it is evident that server-side processing is taking place and that the connection is

progressing.

3.2.5.8 Keyboard and Mouse Input

3.2.5.8.1 Input Event Notifications

3.2.5.8.1.1 Sending Input Event PDU

The structure and fields of the Input Event PDU are specified in sections 2.2.8.1.1.3 and 2.2.8.1.1.3.1,
and the techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU.

The slowPathInputEvents field (section 2.2.8.1.1.3.1) encapsulates a collection of input events and
is populated with the following input event data:

▪ Keyboard Event (section 2.2.8.1.1.3.1.1.1)

▪ Unicode Keyboard Event (section 2.2.8.1.1.3.1.1.2)

▪ Mouse Event (section 2.2.8.1.1.3.1.1.3)

▪ Extended Mouse Event (section 2.2.8.1.1.3.1.1.4)

▪ Synchronize Event (section 2.2.8.1.1.3.1.1.5)

294 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Unused Event (section 2.2.8.1.1.3.1.1.6)

The contents of this PDU MUST NOT be compressed.

If the client has sent a Synchronize Event, it SHOULD subsequently send key-down events for all of
the keyboard and mouse keys that are down.

3.2.5.8.1.2 Sending Fast-Path Input Event PDU

The Fast-Path Input Event PDU (section 2.2.8.1.2) has the following basic structure (sections 5.3.8
and 5.4.4):

▪ fpInputHeader: Fast-Path Input Header (section 2.2.8.1.2)

▪ length1 and length2: Packet length (section 2.2.8.1.2)

▪ fipsInformation: Optional Fast-Path FIPS Information (section 2.2.8.1.2)

▪ dataSignature: Optional data signature (section 2.2.8.1.2)

▪ numEvents: Optional number of events (section 2.2.8.1.2)

▪ PDU contents (collection of fast-path input events):

▪ Keyboard Event (section 2.2.8.1.2.2.1)

▪ Unicode Keyboard Event (section 2.2.8.1.2.2.2)

▪ Mouse Event (section 2.2.8.1.2.2.3)

▪ Extended Mouse Event (section 2.2.8.1.2.2.4)

▪ Synchronize Event (section 2.2.8.1.2.2.5)

▪ Quality Of Experience (QOE) Timestamp Event (section 2.2.8.1.2.2.6)

The fpInputHeader, length1, length2, and numEvents fields MUST be initialized as described in
2.2.8.1.2. Because the PDU is in fast-path format, the embedded action field of the fpInputHeader
field MUST be set to FASTPATH_INPUT_ACTION_FASTPATH (0).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST

be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario the fipsInformation and dataSignature fields MUST NOT be
present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
dataSignature field can be encrypted and signed (depending on the values of the Encryption Level
(section 5.3.1) and Encryption Method selected by the server as part of the negotiation described in
section 5.3.2), using the methods and techniques described in section 5.3.6. If the data is to be

encrypted, the embedded flags field of the fpInputHeader field MUST contain the
FASTPATH_INPUT_ENCRYPTED (2) flag.

The actual PDU contents, which encapsulates a collection of input events, is populated with fast-path
event data as described from 2.2.8.1.2.2.1 to 2.2.8.1.2.2.5.

3.2.5.8.2 Keyboard Status PDUs

3.2.5.8.2.1 Processing Set Keyboard Indicators PDU

The structure and fields of the Set Keyboard Indicators PDU are specified in section 2.2.8.2.1 and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

295 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Once this PDU has been processed, the client SHOULD update the local keyboard indictors.

3.2.5.8.2.2 Processing Set Keyboard IME Status PDU

The structure and fields of the Set Keyboard IME Status PDU are specified in section 2.2.8.2.2, and

the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD update the state of the local input method
editor (IME). Non-IME aware clients MAY ignore this PDU.

3.2.5.9 Basic Output

3.2.5.9.1 Processing Slow-Path Graphics Update PDU

The structure and fields of the Slow-Path Graphics Update PDU are specified in section 2.2.9.1.1.3,
and the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

The slowPathGraphicsUpdate field contains a single graphics update structure, which MUST be one
of the following types:

▪ Orders Update ([MS-RDPEGDI] section 2.2.2.2)

▪ Palette Update (section 2.2.9.1.1.3.1.1)

▪ Bitmap Update (section 2.2.9.1.1.3.1.2)

▪ Synchronize Update (section 2.2.9.1.1.3.1.3)

If a slow-path update structure is received which does not match one of the known types, the client
SHOULD ignore the data in the update.

Once this PDU has been processed, the client MUST carry out any operations necessary to complete

the update. In the case of a Palette Update, the client MUST update the global palette on all drawing
surfaces. Processing of the Bitmap Update requires that the client render the attached bitmap data on

the primary drawing surface as specified by the update parameters. The Synchronize Update MAY be
ignored by the client. Processing of the Orders Update (which contains Optimized RDP Drawing
Orders) is specified in [MS-RDPEGDI] section 3.2.5.

3.2.5.9.2 Processing Slow-Path Pointer Update PDU

The structure and fields of the Slow-Path Pointer Update PDU are specified in section 2.2.9.1.1.4, and
the techniques specified in section 3.2.5.9.2 demonstrate how to process the contents of the PDU.

The messageType field contains an identifier that describes the type of Pointer Update data (see
section 2.2.9.1.1.4 for a list of possible values) present in the pointerAttributeData field:

▪ Pointer Position Update (section 2.2.9.1.1.4.2)

▪ System Pointer Update (section 2.2.9.1.1.4.3)

▪ Color Pointer Update (section 2.2.9.1.1.4.4)

▪ New Pointer Update (section 2.2.9.1.1.4.5)

▪ Cached Pointer Update (section 2.2.9.1.1.4.6)

If a slow-path update structure is received which does not match one of the known types, the client
SHOULD ignore the data in the update.

296 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Once this PDU has been processed, the client MUST carry out any operations necessary to update the
local pointer position (in the case of the Position Update) or change the shape (in the case of the

System, Color, New, and Cached Pointer Updates). In the case of the Color and New Pointer Updates
the new pointer image MUST also be stored in the Pointer Image Cache (section 3.2.1.11), in the slot

specified by the cacheIndex field. This necessary step ensures that the client is able to correctly
process future Cached Pointer Updates.

3.2.5.9.3 Processing Fast-Path Update PDU

The Fast-Path Update PDU has the following basic structure (sections 5.3.8 and 5.4.4):

▪ fpOutputHeader: Fast-Path Output Header (section 2.2.9.1.2)

▪ length1 and length2: Packet length (section 2.2.9.1.2)

▪ fipsInformation: Optional Fast-Path FIPS Information (section 2.2.9.1.2)

▪ dataSignature: Optional data signature (section 2.2.9.1.2)

▪ PDU contents (collection of fast-path output updates):

▪ Orders Update ([MS-RDPEGDI] section 2.2.2.2)

▪ Palette Update (section 2.2.9.1.2.1.1)

▪ Bitmap Update (section 2.2.9.1.2.1.2)

▪ Synchronize Update (section 2.2.9.1.2.1.3)

▪ Pointer Position Update (section 2.2.9.1.2.1.4)

▪ System Pointer Hidden Update (section 2.2.9.1.2.1.5)

▪ System Pointer Default Update (section 2.2.9.1.2.1.6)

▪ Color Pointer Update (section 2.2.9.1.2.1.7)

▪ New Pointer Update (section 2.2.9.1.2.1.8)

▪ Cached Pointer Update (section 2.2.9.1.2.1.9)

▪ Surface Commands Update (section 2.2.9.1.2.1.10)

▪ Large Pointer Update (section 2.2.9.1.2.1.11)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The contents of the embedded action field of the fpOutputHeader field MUST be set to
FASTPATH_OUTPUT_ACTION_FASTPATH (0). If it is not set to this value, the PDU is not a Fast-Path

Update PDU and MUST be processed as a slow-path PDU (section 3.2.5.2).

If the embedded flags field of the fpOutputHeader field contains the
FASTPATH_OUTPUT_ENCRYPTED (2) flag, then the data following the optional dataSignature field
(which in this case MUST be present) MUST be verified and decrypted using the methods and
techniques described in section 5.3.6. If the MAC signature is incorrect or the data cannot be
decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in effect and the

FASTPATH_OUTPUT_ENCRYPTED (2) flag is present the connection SHOULD be dropped because
double-encryption is not used within RDP in the presence of an External Security Protocol provider.

297 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The update structures present in the fpOutputUpdates field MUST be interpreted and processed
according to the descriptions detailed from section 2.2.9.1.2.1.1 to section 2.2.9.1.2.1.11. The

contents of each individual update MAY have been compressed by the server. If this is the case, the
embedded compression field of the common updateHeader field MUST contain the

FASTPATH_OUTPUT_COMPRESSION_USED flag and the optional compressionFlags field will be
initialized with the compression usage information. Once this PDU has been processed, the client
MUST carry out the operation appropriate to the update type, as specified in the slow-path versions of
this PDU (sections 3.2.5.9.1 and 3.2.5.9.2).

3.2.5.9.3.1 Processing Fast-Path Update Fragments

A Fast-Path Update (section 2.2.9.1.2.1) structure contains fragmented data in the updateData field

if the fragmentation subfield of the updateHeader field is non-zero:

▪ FASTPATH_FRAGMENT_FIRST (0x2)

▪ FASTPATH_FRAGMENT_NEXT (0x3)

▪ FASTPATH_FRAGMENT_LAST (0x1)

Fragments MUST be reassembled in the order in which they arrive from the server. A
FASTPATH_FRAGMENT_FIRST fragment MUST start a sequence of fragments. Zero, one, or more

FASTPATH_FRAGMENT_NEXT fragments MUST follow a FASTPATH_FRAGMENT_FIRST fragment. The
FASTPATH_FRAGMENT_LAST fragment MUST follow a FASTPATH_FRAGMENT_NEXT or a
FASTPATH_FRAGMENT_FIRST fragment.

Valid fragment sequences can be summarized as:

▪ FIRST fragment, LAST fragment

▪ FIRST fragment, multiple NEXT fragments, LAST fragment

Any deviation from the set of valid fragment sequences SHOULD trigger a disconnect.

As fragments are received from the server, the client SHOULD copy the contents into a reassembly

buffer. When the FASTPATH_FRAGMENT_LAST fragment has been received, the reassembly buffer will
contain an update that SHOULD be processed. The type of the update is determined by the
updateCode subfield in the updateHeader field (all updates MUST have the same updateCode and
compression subfield values).

An overview of the reassembly process is presented in the figure titled "Reassembly of a fragmented
update".

Figure 7: Reassembly of a fragmented update

298 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.2.5.9.4 Sound

3.2.5.9.4.1 Processing Play Sound PDU

The structure and fields of the Play Sound PDU are specified in section 2.2.9.1.1.5, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD play a sound using the frequency and duration
specified by the PDU.<44>

3.2.5.10 Logon and Authorization Notifications

3.2.5.10.1 Processing Save Session Info PDU

The structure and fields of the Save Session Info PDU are specified in section 2.2.10.1, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD respond to the type of data contained in the
PDU:

▪ In the case of a logon notification being present in the PDU, the client MAY carry out some
implementation-dependent action, and if wanted, save the new user name and domain (if
received) that were used to log on.

▪ In the case of an auto-reconnect cookie being received in the PDU, the client SHOULD save the
cookie in the Automatic Reconnection Cookie store (section 3.2.1.9) for possible use during an
automatic reconnection sequence.

▪ In the case of a logon error or warning notification being present in the PDU, the client SHOULD
carry out some implementation-dependent action to respond to the notification.

3.2.5.10.2 Processing Early User Authorization Result PDU

The structure and fields of the Early User Authorization Result PDU are specified in section 2.2.10.2. If
the authorizationResult field is set to AUTHZ_ACCESS_DENIED (0x00000005), the client SHOULD
drop the connection as user authorization has failed and login to the remote session will not be

possible.

3.2.5.11 Controlling Server Graphics Output

3.2.5.11.1 Sending Refresh Rect PDU

The structure and fields of the Refresh Rect PDU are specified in section 2.2.11.2, and the techniques
specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU MUST NOT be compressed.

3.2.5.11.2 Sending Suppress Output PDU

The structure and fields of the Suppress Output PDU are specified in section 2.2.11.3, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU MUST NOT be compressed.

3.2.5.12 Display Update Notifications

3.2.5.12.1 Processing Monitor Layout PDU

299 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The structure and fields of the Monitor Layout PDU are specified in section 2.2.12.1, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client can use the monitor layout information to determine
whether the local monitor configuration matches the remote configuration (as a precursor to possibly

enabling full-screen viewing), or provide some form of high-level navigation among the remoted
monitors.

3.2.5.13 Server Redirection

3.2.5.13.1 Processing of the Server Redirection PDUs

An overview of the principles behind server redirection and an example of how it operates within the
context of an RDP connection is presented in section 1.3.3.

Two variants of the Server Redirection PDU can be received by the client to indicate that it MUST
terminate the current connection and reconnect to another server. The Standard Security variant

(section 2.2.13.2.1) of the Server Redirection PDU MUST be received when Enhanced RDP Security

(section 5.4) is not in effect. When Enhanced RDP Security is being used to secure the connection, the
Enhanced Security variant (section 2.2.13.3.1) of the PDU MUST be received.

The actual contents of the Server Redirection PDU (embedded in the Standard Security or Enhanced
Security variant) are contained in a Server Redirection Packet (section 2.2.13.1). The information
required by the client to connect to a new target server MUST be specified in this PDU.

The techniques described in section 3.2.5.2 describe how to process the two variants of this PDU (the
instructions regarding the Share Data Header MUST be ignored because it is not present in either

PDU).

Once the client has completed processing the appropriate variant of this PDU, it MUST terminate the
current connection to the server that transmitted the PDU and initiate a new connection to the target
server specified in the Server Redirection Packet.

3.2.5.14 Network Characteristics Detection

The steps that follow describe how a client SHOULD respond when receiving the server-to-client
network characteristics request detection messages described in section 2.2.14.1.

▪ When receiving an RTT Measure Request (section 2.2.14.1.1):

Immediately send an RTT Measure Response (section 2.2.14.2.1), embedded in an Auto-Detect
Response PDU (section 2.2.14.4), to the server.

▪ When receiving a Bandwidth Measure Start (section 2.2.14.1.2):

▪ If the requestType field equals 0x0014:

1. Clear the Network Characteristics Byte Count store (section 3.2.1.17) and the Network
Characteristics Timer (section 3.2.2.2).

2. Start the Network Characteristics Timer (section 3.2.2.2).

3. When receiving any data from the server, add the number of bytes received to the
Network Characteristics Byte Count store (section 3.2.1.17). If an RDP Security Header

(section 2.2.8.1.1.2) is present in the data, then only the bytes following the Security
Header MUST be included in the count. If an RDP_TUNNEL_HEADER ([MS-RDPEMT]
section 2.2.1.1) structure is present in the data, then only the data following the Tunnel
PDU Header MUST be included in the count. Continue doing this until a Bandwidth Measure
Stop (section 2.2.14.1.4) is received.

300 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4. If a Bandwidth Measure Start (section 2.2.14.1.2) is received before receiving a Bandwidth
Measure Stop (section 2.2.14.1.4), jump to step 1.

▪ If the requestType field equals 0x0114:

1. Clear the Network Characteristics Byte Count store (section 3.2.1.17) and the Network

Characteristics Timer (section 3.2.2.2), and save the contents of the sequenceNumber
field to the Network Characteristics Sequence Number store (section 3.2.1.18).

2. Start the Network Characteristics Timer (section 3.2.2.2).

3. When receiving any data from the server, add the number of bytes received to the
Network Characteristics Byte Count store (section 3.2.1.17). Only the data following the
Tunnel PDU Header ([MS-RDPEMT] section 2.2.1.1) MUST be included in the count.
Continue doing this until a Bandwidth Measure Stop is received.

4. If a Bandwidth Measure Start (section 2.2.14.1.2) is received before receiving a Bandwidth
Measure Stop (section 2.2.14.1.4), jump to step 1.

▪ If the requestType field equals 0x1014:

1. Clear the Network Characteristics Byte Count store (section 3.2.1.17) and the Network
Characteristics Timer (section 3.2.2.2); or send the Network Characteristics Sync,
embedded in an Auto-Detect Response PDU (section 2.2.14.4), to the server and then skip

step 2.

2. Start the Network Characteristics Timer (section 3.2.2.2).

▪ When receiving a Bandwidth Measure Payload (section 2.2.14.1.3):

Increment the Network Characteristics Byte Count store (section 3.2.1.17) by the value specified
in the payloadLength field plus the size of the header fields (8 bytes).

▪ When receiving a Bandwidth Measure Stop (section 2.2.14.1.4):

▪ If the requestType field equals 0x002B:

1. Increment the Network Characteristics Byte Count store (section 3.2.1.17) by the value
specified in the payloadLength field plus the size of the header fields (8 bytes).

2. Stop the Network Characteristics Timer.

3. Immediately send the contents of the Network Characteristics Timer and the Network
Characteristics Byte Count store (section 3.2.1.17) to the server in a Bandwidth Measure
Results (section 2.2.14.2.2) with a responseType of 0x0003. The Bandwidth Measure
Results MUST be encapsulated in an Auto-Detect Response PDU (section 2.2.14.4) and be

sent on the main RDP channel, as opposed to a multitransport channel ([MS-RDPEMT]
section 1.3.2).

▪ If the requestType field equals 0x0429:

1. Stop the Network Characteristics Timer (section 3.2.2.2).

2. Send the contents of the Network Characteristics Timer and the Network Characteristics
Byte Count store (section 3.2.1.17) to the server in a Bandwidth Measure Results (section

2.2.14.2.2) with a responseType of 0x000B.

▪ If the Bandwidth Measure Stop message is encapsulated in the SubHeaderData field
of an RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is
being tunneled over a reliable UDP multitransport connection, then the Bandwidth
Measure Results MUST be encapsulated in an RDP_TUNNEL_SUBHEADER structure

301 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

and be sent over the reliable UDP multitransport channel ([MS-RDPEMT] section
1.3.2).

▪ If the Bandwidth Measure Stop message is encapsulated in the
autoDetectReqPduData field of an Auto-Detect Request PDU (section 2.2.14.3),

then the Bandwidth Measure Results MUST be encapsulated in an Auto-Detect
Response PDU (section 2.2.14.4) and sent on the main RDP channel, as opposed to a
multitransport channel ([MS-RDPEMT] section 1.3.2).

▪ If the requestType field equals 0x0629:

1. Verify that the sequence number stored in the Network Characteristics Sequence Number
store (section 3.2.1.18) is the same as the contents of the sequenceNumber field. If it is
not the same, skip step 2.

2. Send the contents of the Network Characteristics Timer and the Network Characteristics
Byte Count store (section 3.2.1.17) to the server in a Bandwidth Measure Results (section
2.2.14.2.2) with a responseType of 0x000B. The Bandwidth Measure Results MUST be

encapsulated in an RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1)
structure and be sent over the lossy UDP multitransport channel ([MS-RDPEMT] section
1.3.2).

▪ When receiving a Network Characteristics Result (section 2.2.14.1.5):

Extract the network metrics from the PDU.

3.2.5.15 Multitransport Bootstrapping

3.2.5.15.1 Processing the Initiate Multitransport Request PDU

The structure and fields of the Initiate Multitransport Request PDU are described in section 2.2.14.1.
Upon successfully decoding this PDU the client MUST attempt to establish a sideband channel ([MS-
RDPEMT] sections 1.3 and 3) using the transport protocol requested in the requestedProtocol field

(for reliable or lossy UDP). If the client is unable to initiate the creation of a sideband channel, then
the Initiate Multitransport Response PDU SHOULD be sent to the server (section 3.2.5.15.2).

If Soft-Sync (switching dynamic virtual channels from the TCP to the UDP transport) is supported by

the client and server, as indicated by the SOFTSYNC_TCP_TO_UDP (0x200) flag in the Client
Multitransport Channel Data (section 2.2.1.3.8) and Server Multitransport Channel Data (section
2.2.1.4.6), the Initiate Multitransport Response PDU MUST be sent to the server regardless of whether
the sideband channel creation succeeded or failed. For more information on Soft-Sync see [MS-
RDPEDYC] section 3.1.5.3.

3.2.5.15.2 Sending the Initiate Multitransport Response PDU

The structure and fields of the Initiate Multitransport Response PDU are described in section 2.2.15.2,
and the PDU MUST be initialized according to this specification. The embedded initiator field of the
mcsSDrq field MUST be set to the User Channel ID held in the User Channel ID store (section
3.2.1.4), while the embedded channelId field MUST be set to the MCS message channel ID held in

the Message Channel ID store (section 3.2.1.3). Furthermore, the embedded flags field of the
securityHeader MUST contain the SEC_TRANSPORT_RSP (0x0004) flag (section 2.2.8.1.1.2.1).

This Initiate Multitransport Response PDU indicates to the server that a sideband initiation request
succeeded or failed. If the hrResponse field indicates a failure, the client MUST NOT attempt to
create a sideband channel after sending this PDU.

302 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.2.6 Timer Events

3.2.6.1 Client-Side Connection Sequence Timeout

The Client-Side Connection Sequence Timeout fires if more than 300 seconds have elapsed on the
client-side Connection Sequence Timeout Timer (section 3.2.2.1). In this event the client MAY
terminate the connection to the server.

3.2.7 Other Local Events

None.

3.2.7.1 Disconnection Due to Network Error

If the client detects that a disconnection which has taken place is due to a network error, it MAY
attempt to automatically reconnect to the server using the technique specified in section 5.5.

Automatic reconnection allows the client to seamlessly reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server.

3.3 Server Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this

document.

3.3.1.1 Received Client Data

The Received Client Data store contains data received from the client during execution of the Remote
Desktop Protocol. This store is initialized when processing the X.224 Connection Request

PDU (section 2.2.1.1), MCS Connect Initial PDU with GCC Conference Create Request (sections 2.2.1.3
and 3.3.5.3.3), and Client Info PDU (sections 2.2.1.11 and 3.3.5.3.11).

3.3.1.2 User Channel ID

The User Channel ID store contains the MCS channel identifier allocated by the server to identify the
user channel. This value MUST be in the range 1001 to 65536, inclusive, as required by the T.125
ASN.1 definitions of the UserId and DynamicChannelId types ([T125] section 7, part 1).

3.3.1.3 I/O Channel ID

The I/O Channel ID store contains the MCS channel identifier selected by the server to identify the I/O
channel. This ID is communicated to the client in the Server Network Data (sections 2.2.1.4.4 and
3.2.5.3.4).

303 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.3.1.4 Message Channel ID

The Message Channel ID store contains the MCS channel identifier selected by the server to identify
the message channel. This ID is communicated to the client in the Server Message Channel Data

(sections 2.2.1.4.5 and 3.2.5.3.4).

3.3.1.5 Server Channel ID

The Server Channel ID store contains the MCS channel identifier of the server channel, which is
defined as the arbitrarily chosen but fixed value 0x03EA (1002). This value is in the range 1001 to

65536, inclusive, as required by the T.125 ASN.1 definitions of the UserId and DynamicChannelId
types ([T125] section 7, part 1).

3.3.1.6 Client Licensing Encryption Ability

The Client Licensing Encryption Ability store determines whether the client has the ability to handle
encrypted licensing packets when using RDP Security mechanisms (see section 5.3 and the discussion

of the SEC_LICENSE_ENCRYPT_SC flag in section 2.2.8.1.1.2.1). This fact is communicated to the
server as part of the Security Exchange PDU (sections 2.2.1.10 and 3.2.5.3.10).

3.3.1.7 Client Capabilities

The Client Capabilities store contains the capability sets (sections 1.4 and 2.2.6) received from the
client in the Confirm Active PDU (sections 2.2.1.13.2 and 3.3.5.3.13.2).

3.3.1.8 Cached Bitmap Keys

The Cached Bitmap Keys store holds a collection of 64-bit bitmap keys, each of which uniquely
identifies a bitmap image that was sent to the client by using a Cache Bitmap (Revision 2) Secondary
Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

3.3.1.9 Pointer Image Cache

The Pointer Image Cache contains a collection of pointer images sent to the client in Color Pointer
Updates (sections 2.2.9.1.2.1.7, 3.3.5.9.2, and 3.3.5.9.3) and New Pointer Updates (sections
2.2.9.1.2.1.8, 3.3.5.9.2, and 3.3.5.9.3). The size and color depth (either variable or fixed at 24 bpp)
of the cache is specified in the Pointer Capability Set (section 2.2.7.1.5).

3.3.1.10 Session Keys

The Session Keys store holds the symmetric keys (sections 5.3.5 to 5.3.7) used to encrypt, decrypt,
and sign RDP packets.

3.3.1.11 Automatic Reconnection Cookie

The Automatic Reconnection Cookie store holds the cookie received from the client in the Client Info

PDU (sections 2.2.1.11.1.1.1 and 3.3.5.3.11).

3.3.1.12 Connection Start Time

The Connection Start Time store holds the time at which the server first received network traffic from
the client.

304 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.3.1.13 RTT Measure Request Data

The RTT Measure Request Data store contains the timestamp and sequence number associated with
each RTT Measure Request (section 2.2.14.1.1) message that has been sent to the client.

3.3.1.14 Multitransport Request Data

The Multitransport Request Data store contains the request ID, requested protocol, and 16-byte
security cookie for each Initiate Multitransport Request PDU (section 2.2.15.1) that has been sent to
the client.

3.3.2 Timers

3.3.2.1 Connection Sequence Timeout Timer

The Connection Sequence Timeout Timer stores the amount of time that has elapsed since the server

first received network traffic from the client. The connection start time is stored in the Connection
Start Time store (section 3.3.1.12).

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

None.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Constructing a Server-to-Client Slow-Path PDU

The majority of server-to-client slow-path PDUs have the same basic structure (sections 5.3.7.2 and
5.4.4):

▪ tpktHeader: TPKT Header ([T123] section 8)

▪ x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)

▪ mcsSDin: MCS Send Data Indication PDU ([T125] section 7, Part 7)

▪ securityHeader: Optional Security Header (section 2.2.9.1.1.2)

▪ shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)

▪ PDU Contents (see the section describing the PDU structure and fields in section 2.2)

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field is
initialized as specified in [X224] section 13.7.

The mcsSDin field is initialized as specified in [T125] section 11.33. The embedded initiator field
MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5) and
the embedded channelId field MUST be set to the MCS I/O channel ID held in the I/O Channel ID
store (section 3.2.1.3). The embedded userData field contains the remaining fields of the PDU.

305 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted

over the wire. Also, in this scenario, the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional

securityHeader field is encrypted and signed (using the methods and techniques specified in section
5.3.6) based on the values of the Encryption Level and Encryption Method selected by the server as
part of the negotiation specified in section 5.3.2. The format of the securityHeader field is selected
as specified in the section describing the PDU structure and fields in section 2.2, and the fields
populated with the appropriate security data. If the data is to be encrypted, the embedded flags field
of the securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The shareDataHeader field contains a Share Data Header structure as described in section

2.2.8.1.1.1.2. The pduSource field of the embedded Share Control Header (section 2.2.8.1.1.1.1)
MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5). If the
contents of the PDU are to be compressed (this MUST be done before any MAC signature is
constructed and encryption methods applied), the embedded compressedType field of the
shareDataHeader MUST be initialized as specified in section 2.2.8.1.1.1.2. The remaining Share Data

Header and Share Control Header fields MUST be populated as specified in sections 2.2.8.1.1.1.1,

2.2.8.1.1.1.2, and the section describing the PDU structure and fields in section 2.2.

Any remaining fields are populated as specified in the section describing the PDU structure and fields
in section 2.2.

3.3.5.2 Processing a Client-to-Server Slow-Path PDU

The majority of client-to-server slow-path PDUs have the same basic structure (sections 5.3.8 and
5.4.4):

▪ tpktHeader: TPKT Header ([T123] section 8)

▪ x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)

▪ mcsSDrq: MCS Send Data Request PDU ([T125] section 7, part 7)

▪ securityHeader: Optional Security Header (section 2.2.8.1.1.2)

▪ shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)

▪ PDU Contents (see the section describing the PDU structure and fields in section 2.2)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsSDrq ([T125] section
7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any

discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate

target channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in the section describing the PDU structure and
fields in section 2.2. If the securityHeader field is present, the embedded flags field MUST be
examined for the presence of the SEC_ENCRYPT (0x0008) flag (section 2.2.8.1.1.2.1), and, if it is

present the data following the securityHeader field MUST be verified and decrypted using the
methods and techniques specified in section 5.3.6. If the MAC signature is incorrect, or the data
cannot be decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in

306 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

effect and the SEC_ENCRYPT flag is present, the connection SHOULD be dropped because double-
encryption is never used in this scenario.

The shareDataHeader field (which contains the Share Control Header and Share Data Header
described in sections 2.2.8.1.1.1.1 and 2.2.8.1.1.1.2 respectively) MUST be examined to determine

the PDU type (from the pduType and pduType2 fields), as well as the compression usage
information (from the compressedType field). If the data following the Share Data Header is
compressed, then decompression using the techniques specified in section 3.1.8.3 MUST be
performed. The value of the totalLength field MUST also be examined for consistency with the
received data. If there is any discrepancy, the connection SHOULD be dropped. The remaining Share
Control Header and Share Data Header fields MAY be ignored.

Any remaining PDU fields MUST be interpreted and processed in accordance with the section

describing the PDU structure and fields in section 2.2.

3.3.5.3 Connection Sequence

3.3.5.3.1 Processing X.224 Connection Request PDU

The structure and fields of the X.224 Connection Request PDU are specified in section 2.2.1.1.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.
Other reasons for dropping the connection include:

▪ The length of the X.224 Connection Request PDU is less than 11 bytes.

▪ The X.224 Connection Request PDU is not Class 0 ([X224] section 13.7).

The Destination reference, Source reference, and Class and options fields within the x224Crq field
SHOULD be ignored.

If the optional routingToken field exists, it MUST be ignored because the routing token is intended to
be inspected and parsed by external networking hardware along the connection path (for more

information about load balancing of Remote Desktop sessions and the routing token format, see
[MSFT-SDLBTS] "Load-Balanced Configurations", "Revectoring Clients", and "Routing Token Format").

If the optional cookie field is present, it MUST be ignored.

If both the routingToken and cookie fields are present, the server SHOULD continue with the
connection. Since the server does not process either the routingToken or cookie fields, a client
violation of the protocol specification in section 2.2.1.1 is not an issue. However, including both the
routingToken and the cookie fields will most likely result in problems when the X.224 Connection
Request is inspected and parsed by networking hardware that is used for load balancing Remote
Desktop sessions.

If the rdpNegData field is not present, it is assumed that the client does not support Enhanced RDP
Security (section 5.4) and negotiation data MUST NOT be sent to the client as part of the X.224
Connection Confirm PDU (section 2.2.1.2). If the rdpNegData field is present, it is parsed to check

that it contains an RDP Negotiation Request structure, as specified in section 2.2.1.1.1. If this is the
case, the flags describing the supported security protocols in the requestedProtocols field are saved
in the Received Client Data store (section 3.3.1.1).

Once the X.224 Connection Request PDU has been processed successfully, the server MUST send the

X.224 Connection Confirm PDU to the client (section 3.3.5.3.2) and update the Connection Start Time
store (section 3.3.1.12).

3.3.5.3.2 Sending X.224 Connection Confirm PDU

307 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The structure and fields of the X.224 Connection Confirm PDU are specified in section 2.2.1.2.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Ccf field is

initialized as detailed in [X224] section 13.4 (the Destination reference is set to zero, the Source
reference is set to 0x1234, and the Class and options are set to zero). Parameter fields MUST NOT be

specified in the variable part of the Connection Response PDU.

The rdpNegData field is left empty if the client did not append any negotiation data to the X.224
Connection Request PDU (section 2.2.1.1). If the client did append negotiation data to the X.224
Connection Request PDU, the rdpNegData field SHOULD contain an RDP Negotiation Response
(section 2.2.1.2.1) or RDP Negotiation Failure (section 2.2.1.2.2) structure.

The RDP Negotiation Response structure is sent if the server supports (and is configured to use) one
of the client-requested security protocols specified in the X.224 Connection Request PDU and saved in

the Received Client Data store (section 3.3.1.1). The selectedProtocol field is initialized with the
selected protocol identifier (see section 2.2.1.2.1 for a list of identifiers). If the server decides to use
Standard RDP Security mechanisms (section 5.3), it MUST set the selectedProtocol field to
PROTOCOL_RDP (0x00000000).

The RDP Negotiation Failure structure is sent if it is not possible to continue the connection with any of
the client-requested External Security Protocol (section 5.4.5). The possible failure codes and a reason

for sending each of them are listed in section 2.2.1.2.2. After sending the RDP Negotiation Failure
structure the server MUST close the connection.

If an External Security Protocol, such as TLS (section 5.4.5.1) or CredSSP (section 5.4.5.2), will be
used for the duration of the connection, the server MUST prepare to execute the selected protocol by
calling into the relevant External Security Protocol Provider after the X.224 Connection Confirm PDU
(with RDP Negotiation Response) has been sent to the client.

3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request

The structure and fields of the MCS Connect Initial PDU with GCC Conference Create Request
are specified in section 2.2.1.3. A basic high-level overview of the nested structure for the MCS
Connect Initial PDU is illustrated in section 1.3.1.1, in the figure specifying MCS Connect Initial

PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)
MUST be used to decrypt and verify the integrity of the entire PDU prior to any processing taking

place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Connect Initial PDU (embedded within the mcsCi field) is specified in [T125] section 7,
part 2. The server SHOULD ignore the calledDomainSelector, callingDomainSelector, and
upwardFlag fields of this PDU.

The domain parameters (contained in the targetParameters, minimumParameters, and
maximumParameters fields) received in the MCS Connect Initial PDU are examined and the
resultant parameters determined. The following pseudo-code describes the process employed by the

server to merge the domain parameters. If the server is unable to successfully merge the domain
parameters, the connection SHOULD be dropped.

 //
 // Merges the fields contained in the targetParameters, minimumParameters, and
 // maximumParameters fields. Returns TRUE if the domain parameters were successfully
 // merged, FALSE otherwise.
 //
 BOOL
 MergeDomainParameters(

308 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 DomainParameters targetParameters,
 DomainParameters minimumParameters,
 DomainParameters maximumParameters,
 DomainParameters* pOutParameters
)
 {
 //
 // maxChannelIds
 //
 if (targetParameters.maxChannelIds >= 4)
 {
 pOutParameters->maxChannelIds = targetParameters.maxChannelIds;
 }
 else if (maximumParameters.maxChannelIds >= 4)
 {
 pOutParameters->maxChannelIds = 4;
 }
 else
 {
 return FALSE;
 }

 //
 // maxUserIds
 //
 if (targetParameters.maxUserIds >= 3)
 {
 pOutParameters->maxUserIds = targetParameters.maxUserIds;
 }
 else if (maximumParameters.maxUserIds >= 3)
 {
 pOutParameters->maxUserIds = 3;
 }
 else
 {
 return FALSE;
 }

 //
 // maxTokenIds
 //
 pOutParameters->maxTokenIds = targetParameters.maxTokenIds;

 //
 // numPriorities
 //
 if (minimumParameters.numPriorities <= 1)
 {
 pOutParameters->numPriorities = 1;
 }
 else
 {
 return FALSE;
 }

 //
 // minThroughput
 //
 pOutParameters->minThroughput = targetParameters.minThroughput;

 //
 // maxHeight
 //
 if ((targetParameters.maxHeight == 1) ||
 (minimumParameters.maxHeight <= 1))
 {
 pOutParameters->maxHeight = 1;
 }
 else

309 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 {
 return FALSE;
 }

 //
 // maxMCSPDUsize
 //
 if (targetParameters.maxMCSPDUsize >= 124)
 {
 if (targetParameters.maxMCSPDUsize <= 65528)
 {
 pOutParameters->maxMCSPDUsize = targetParameters.maxMCSPDUsize;
 }
 else if (minimumParameters.maxMCSPDUsize >= 124 &&
 minimumParameters.maxMCSPDUsize <= 65528)
 {
 pOutParameters->maxMCSPDUsize = 65528;
 }
 else
 {
 return FALSE;
 }
 }
 else
 {
 if (maximumParameters.maxMCSPDUsize >= 124)
 {
 pOutParameters->maxMCSPDUsize = maximumParameters.maxMCSPDUsize;
 }
 else
 {
 return FALSE;
 }
 }

 //
 // protocolVersion
 //
 if ((targetParameters.protocolVersion == 2) ||
 (minimumParameters.protocolVersion <= 2 && maximumParameters.protocolVersion >= 2))
 {
 pOutParameters->protocolVersion = 2;
 }
 else
 {
 return FALSE;
 }

 return TRUE;
 }

The userData field of the MCS Connect Initial PDU contains the GCC Conference Create Request
(embedded within the gccCCrq field). The GCC Conference Create Request is described in [T124]
section 8.7 and appended as user data to the MCS Connect Initial PDU using the format specified in
[T124] sections 9.5 and 9.6.

The server MUST ensure that the size of the GCC Conference Create Request data is within bounds. If
Extended Client Data Blocks are not supported (section 2.2.1.2.1), then the maximum allowed size of

the GCC Conference Create Request data is 1024 bytes. If Extended Client Data Blocks are supported,
then the maximum allowed size is 4096 bytes. If the size of the GCC Conference Create Request data
is invalid, the server MUST close the connection as specified in section 3.3.5.3.3.1.

If the size of the GCC Conference Create Request data is valid, processing MUST continue. The server
MAY ignore all of the GCC Conference Create Request fields, except for the userData field. The
userData field of the GCC Conference Create Request MUST contain basic client settings data blocks

(sections 2.2.1.3.2 through 2.2.1.3.5). The server MUST check that the client-to-server H.221

310 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

nonstandard key embedded at the start of the userData field ([T124] section 8.7 for a description of
the structure of user data) is the ANSI character string "Duca". If this is not the case, the server MUST

close the connection as specified in section 3.3.5.3.3.1.

All of the encoded lengths within the MCS Connect Initial PDU and the GCC Conference Create

Request MUST also be examined for consistency with the received data. If there is any discrepancy,
the server MUST close the connection as specified in section 3.3.5.3.3.1.

Once the mcsCi and gccCCrq fields have been successfully parsed the server examines the basic
client settings data blocks in the GCC Conference Create Request user data and stores this data in the
Received Client Data store (section 3.3.1.1). However, before the data is stored, the basic client
settings data blocks are checked for validity.

Select settings in the Client Core Data (section 2.2.1.3.2) are validated using the following rules.

Client core data field Validation rule

desktopWidth If this field contains a value greater than the maximum allowed
width,<45> it is implicitly assumed to equal the maximum allowed width.

desktopHeight If this field contains a value greater than the maximum allowed
height,<46> it is implicitly assumed to equal the maximum allowed
height.

colorDepth If this field does not contain a valid color depth (valid values are specified
in section 2.2.1.3.2) and the postBeta2ColorDepth field is not present,
the server MUST close the connection as specified in section 3.3.5.3.3.1.

postBeta2ColorDepth If this field does not contain a valid color depth (valid values are specified
in section 2.2.1.3.2) and the highColorDepth field is not present, the
server MUST close the connection as specified in section 3.3.5.3.3.1.

highColorDepth If this field does not contain a valid color depth (valid values are specified
in section 2.2.1.3.2), a value of 8 bits per pixel is assumed.

serverSelectedProtocol If this field does not contain the same value that the server transmitted
to the client in the RDP Negotiation Response (section 3.3.5.3.2), the
server SHOULD drop the connection. In the event that this optional field
is not present, the value PROTOCOL_RDP (0) MUST be assumed.

The encryptionMethods and extEncryptionMethods fields in the Client Security Data (section
2.2.1.3.3) are examined to ensure that they contain at least one valid flag. If no valid flags are
present, the server MUST close the connection as specified in section 3.3.5.3.3.1.

If the Client Network Data (section 2.2.1.3.4) is included in the Settings Data, the server MUST check
that the channelCount field is within bounds. Furthermore, the data supplied in the
channelDefArray MUST be complete. If these two conditions are not met, the server MUST close the
connection as specified in section 3.3.5.3.3.1.

Once the basic client settings data blocks have been processed successfully, the server MUST send the
MCS Connect Response PDU with GCC Conference Create Response (section 2.2.1.4) to the client.

3.3.5.3.3.1 Handling Errors in the GCC Conference Create Request Data

If there is invalid data in the GCC Conference Create Request data then the server MUST follow one of
the following courses of action:

▪ Send an MCS Connect Response PDU (section 2.2.1.4) to the client containing only a result field

set to the value rt-unspecified-failure (14), and then close the connection.

311 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Close the connection without sending an MCS Connect Response PDU containing the rt-
unspecified-failure (14) code (in this case the client will not be able to determine that the

disconnection is due to invalid GCC Conference Create Request data).

3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response

The structure and fields of the MCS Connect Response PDU with GCC Conference Create Response are
described in section 2.2.1.4. A basic high-level overview of the nested structure for the MCS Connect
Response PDU is illustrated in section 1.3.1.1, in the figure specifying MCS Connect Response PDU.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Connect Response PDU (embedded within the mcsCrsp field) is described in [T125] section

7, part 2. The fact that the MCS Connect Response PDU will contain a GCC Conference Create
Response as user data implies that processing of the MCS Connect Initial PDU with GCC Conference
Create Request (section 3.3.5.3.3) was successful, and hence the server MUST set the result field of
the MCS Connect Response PDU to rt-successful (0). The calledConnectId field SHOULD be set to

zero, while the domainParameters field MUST be initialized with the parameters which were derived
from processing of the MCS Connect Initial PDU (see section 3.3.5.3.3 for a description of the

negotiation rules).

The userData field of the MCS Connect Response PDU contains the GCC Conference Create Response
(embedded within the gccCCrsp field). The GCC Conference Create Response is described in [T124]
section 8.7 and appended as user data to the MCS Connect Response PDU using the format described
in [T124] sections 9.5 and 9.6. The server SHOULD initialize the fields of the GCC Conference Create
Response as follows.

 Conference Create Response field Value

tag 1 (length of 1 byte)

result success (0)

userData Basic Server Settings Data Blocks

The nodeID field of the GCC Conference Create Response MUST be initialized with a value in the
range 1001 to 65536, inclusive, as required by the T.124 ASN.1 definitions of the UserID and
DynamicChannelID types ([T124] section 8.7, parts 1 and 2).

The userData field of the GCC Conference Create Response MUST be initialized with basic server

settings data blocks (sections 2.2.1.4.2 through to 2.2.1.4.4). The server-to-client H.221 nonstandard
key which MUST be embedded at the start of the userData field ([T124] section 8.7 for a description
of the structure of user data) is the ANSI character string "McDn".

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.3.5.3.5 Processing MCS Erect Domain Request PDU

The structure and fields of the MCS Erect Domain Request PDU are described in section 2.2.1.5.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

312 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The MCS Erect Domain Request PDU (embedded within the mcsEDrq field) is described in [T125]
section 7, parts 3 and 10. The server MUST ensure that the subHeight and subinterval fields are

contained within the PDU. If this is not the case, the connection SHOULD be dropped.

3.3.5.3.6 Processing MCS Attach User Request PDU

The structure and fields of the MCS Attach User Request PDU are described in section 2.2.1.6.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Attach User Request PDU (embedded within the mcsAUrq field) is described in [T125]

section 7, parts 5 and 10.

Upon receiving the MCS Attach User Request PDU the server MUST send the MCS Attach User Confirm

PDU (section 3.3.5.3.7) to the client.

3.3.5.3.7 Sending MCS Attach User Confirm PDU

The structure and fields of the MCS Attach User Confirm PDU are described in section 2.2.1.7.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Connect Response PDU (embedded within the mcsCrsp field (section 2.2.1.4)) is described
in [T125] section 7, parts 5 and 10.

If processing of the MCS Attach User Request was successful (section 3.3.5.3.6), the result field
MUST be set to rt-successful (0), and the optional initiator field MUST be present and MUST contain
an integer identifier that will be used to identify the user channel (this identifier MUST be stored in the

User Channel ID store (section 3.3.1.2)). If processing of the MCS Attach User Request was not

successful, then the optional initiator field SHOULD NOT be present and the result field MUST be set
to rt-unspecified-failure (14).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.3.5.3.8 (Updated Section) Processing MCS Channel Join Request PDU(s)

The structure and fields of the MCS Channel Join Request PDU are described in section 2.2.1.8.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Channel Join Request PDU (embedded within the mcsCJrq field) is described in detail in

[T125] section 7, parts 6 and 10.

Upon receiving the MCS Channel Join Request PDU the server MUST carry out any necessary
processing to mark the channel as "joined" and MUST then send the MCS Channel Join Confirm PDU
(section 3.3.5.3.9) to the client to indicate the result of the join operation. If the server receives a
Channel Join Request PDU for a channel that has already been joined, then the request SHOULD be
ignored and a Channel Join Confirm PDU SHOULD NOT be sent.

313 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If the client set the RNS_UD_CS_SUPPORT_SKIP_CHANNELJOIN flag in the earlyCapabilityFlags
field of the Client Core Data (section 2.2.1.3.2), and the server set the

RNS_UD_SC_SKIP_CHANNELJOIN_SUPPORTED flag in earlyCapabilityFlags field of the Server Core
Data (section 2.2.1.4.2), then the MCS Channel Join Request PDUs (section 2.2.1.8) and the MCS

Channel Join Confirm PDUs (section 2.2.1.9) SHOULD be skipped to reduce the connection time. After
sending the MCS Attach User Confirm PDU (section 2.2.1.7) all the MCS channels (the user channel,
the I/O channel, the message channel, and all static virtual channels) SHOULD be considered as fully
joined by the server. The server SHOULD ignore any MCS Channel Join Request PDUs and SHOULD
proceed to the RDP Security Commencement phase (section 1.3.1.1).

3.3.5.3.9 Sending MCS Channel Join Confirm PDU(s)

The structure and fields of the MCS Channel Join Confirm PDU are described in section 2.2.1.9.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Channel Join Confirm PDU (embedded within the mcsCJcf field) is described in [T125]

section 7, parts 6 and 10. The result field MUST be set to rt-successful (0) if the MCS channel ID in
the corresponding MCS Channel Join Request PDU (section 3.3.5.3.8) was successfully joined. If an

error occurred during the join (for example, too many channels, no such MCS channel ID, or a
memory allocation error), the server MUST set the result field to rt-unspecified-failure (14). The
remaining fields MUST be initialized as follows (these fields are essentially copied over from the MCS
Channel Join Request PDU).

 Channel Join Confirm
field Value

initiator The initiator value which was sent in the corresponding MCS Channel Join Request
PDU.

requested The MCS channel ID which was sent in the corresponding MCS Channel Join
Request PDU.

channelId The MCS channel ID which was sent in the corresponding MCS Channel Join
Request PDU.

The optional channelId field MUST be included in the MCS Channel Join Confirm PDU sent to the
client.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.3.5.3.10 Processing Security Exchange PDU

The structure and fields of the Security Exchange PDU are described in section 2.2.1.10.

The embedded length fields within the tpktHeader ([T123] section 8) and the mcsSDrq ([T125]
section 7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is

any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate

target channel.

The embedded flags field of the basicSecurityHeader MUST contain the SEC_EXCHANGE_PKT
(0x0001) flag (described in section 2.2.8.1.1.2.1). If this flag is not present then the packet cannot be
interpreted as a Security Exchange PDU, and the connection SHOULD be dropped. If the
SEC_LICENSE_ENCRYPT_SC (0x0200) flag is present, then the client is able to accept encrypted

314 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

licensing packets when using Standard RDP Security mechanisms (section 5.3). This fact is stored in
the Client Licensing Encryption Ability store (section 3.3.1.6).

The encrypted client random value is extracted from the encryptedClientRandom field using the
length field to determine the size of the data. If the value of the length field is inconsistent with the

size of the received data, the connection SHOULD be dropped. The encrypted client random value is
then decrypted using the methods and techniques described in section 5.3.4.2.

Once the server has extracted and decrypted the client random it MUST generate the session keys
which will be used to encrypt, decrypt, and sign data sent on the wire. The 32-byte client random and
server random (transmitted in the Server Security Data described in section 2.2.1.4.3) are used to
accomplish this task by employing the techniques described in section 5.3.5. On successful generation
of the session keys, the server MUST store the session keys in the Session Keys store (section

3.3.1.10).

3.3.5.3.11 Processing Client Info PDU

The structure and fields of the Client Info PDU are specified in section 2.2.1.11.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and the mcsSDrq ([T125]
section 7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is
any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The securityHeader field MUST always be present and it MUST contain at least a Basic Security
Header structure (section 2.2.8.1.1.2.1). The embedded flags field of the securityHeader MUST

contain the SEC_INFO_PKT (0x0040) flag (described in section 2.2.8.1.1.2.1). If this flag is not
present then the packet cannot be interpreted as a Client Info PDU (section 2.2.1.11), and the
connection SHOULD be dropped. If the SEC_ENCRYPT (0x0008) flag is present, then the data

following the securityHeader field is encrypted and it MUST be verified and decrypted using the
methods and techniques specified in section 5.3.6. If the Encryption Level (section 5.3.1) selected by
the server (sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_NONE (0) the SEC_ENCRYPT flag
MAY<47> be set incorrectly. In this case the Encryption Level setting MUST be respected and the

value of the flag MUST be ignored. If the MAC signature is incorrect or the data cannot be decrypted
correctly, the connection SHOULD be dropped.

Before reading the client settings fields, the format of the character data MUST be determined by
testing for the presence of the INFO_UNICODE (0x00000010) flag (section 2.2.1.11.1.1). If the flag is
present, all character data MUST be interpreted as Unicode; otherwise, it MUST be treated as ANSI
characters.

All of the received client settings are stored in the Received Client Data store (section 3.3.1.1). When
storing character data, the server SHOULD only save the maximum allowed sizes specified in section
2.2.1.11.1.1. For example, the maximum specified size for the AlternateShell field is 512 bytes. If
received data is larger than this size, it SHOULD be truncated to 512 bytes in length (including the

mandatory null terminator) when it is stored.

If there is not enough received data to completely read a variable-length field, the connection SHOULD
be dropped. For example, if the cbAlternateShell field contains a value of 44 bytes, but only 30

bytes remain to be parsed, the connection SHOULD be dropped.

If an auto-reconnect cookie exists in the autoReconnectCookie field, the server SHOULD store the
cookie in the Automatic Reconnection Cookie store (section 3.3.1.10)and use it to log on the user once
the connection sequence completes (for a description of how automatic reconnection works, see

315 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

section 5.5). If logon with the cookie fails, the credentials supplied in the Client Info PDU SHOULD be
used, or alternatively the user MAY enter credentials at a server-side prompt remoted using RDP.

Once the server has successfully processed the Client Info PDU, it can enter the Licensing phase of the
RDP Connection Sequence and carry out a licensing exchange with the client (see section 1.3.1.1 for

an overview of the RDP Connection Sequence phases).

3.3.5.3.12 Sending License Error PDU - Valid Client

The structure and fields of the License Error (Valid Client) PDU are described in section 2.2.1.12.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDin field is initialized as described in [T125] section 11.33. The embedded initiator field

MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5) and
the embedded channelId field MUST be set to the MCS I/O channel ID held in the I/O Channel ID
store (section 3.3.1.3). The embedded userData field contains the remaining fields of the Valid Client

PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest. The securityHeader field MUST

be present; however, it will contain a Basic Security Header structure (section 2.2.8.1.1.2.1).

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the
securityHeader field can be encrypted and signed (depending on the values of the Encryption Level
and Encryption Method selected by the server as part of the negotiation described in section 5.3.2 and
the contents of the Client Licensing Encryption Ability store (section 3.3.1.6) using the methods and
techniques described in section 5.3.6). The format of the securityHeader field is selected as
described in section 2.2.1.12 and the fields populated with appropriate security data. If the data is to

be encrypted, the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT
(0x0008) flag.

The embedded flags field of the securityHeader field (which is always present) MUST contain the

SEC_LICENSE_PKT (0x0080) flag (described in section 2.2.8.1.1.2.1) to indicate that the message is a
licensing PDU. If the server can handle encrypted licensing packets from the client and Standard RDP
Security mechanisms are being used, then the SEC_LICENSE_ENCRYPT_CS (0x0200) flag SHOULD
also be included in the flags subfield of the securityHeader field.

The remainder of the PDU MUST be populated according to the structure and type definition in section
2.2.1.12.

After sending the License Error (Valid Client) PDU, the server MUST send the Demand Active PDU
(section 3.3.5.3.13.1) to the client.

3.3.5.3.13 Mandatory Capability Exchange

3.3.5.3.13.1 Sending Demand Active PDU

The structure and fields of the Demand Active PDU are described in section 2.2.1.13.1.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDin field is initialized as described in [T125] section 11.33. The embedded initiator field
MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5) and

the embedded channelId field MUST be set to the MCS I/O channel ID held in the I/O Channel ID
store (section 3.3.1.3). The embedded userData field contains the remaining fields of the Demand
Active PDU.

316 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted

over the wire. Also, in this scenario the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional

securityHeader field can be encrypted and signed (depending on the values of the Encryption Level
and Encryption Method selected by the server as part of the negotiation described in section 5.3.2)
using the methods and techniques described in 5.3.6. The format of the securityHeader field is
selected as described in section 2.2.1.13.1 and the fields populated with appropriate security data. If
the data is to be encrypted, the embedded flags field of the securityHeader field MUST contain the
SEC_ENCRYPT (0x0008) flag.

The remaining fields are populated as described in section 2.2.1.13.1.1, with the combined capability

set data being inserted into the capabilitySets field.

3.3.5.3.13.2 Processing Confirm Active PDU

The structure and fields of the Confirm Active PDU are described in section 2.2.1.13.2.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior

to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and the mcsSDrq ([T125]
section 7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is
any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security

Header structure present in this field, are explained in section 2.2.1.13.2. If the securityHeader field
is present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT
(0x0008) flag (section 2.2.8.1.1.2.1), and if it is present the data following the securityHeader field

MUST be verified and decrypted using the methods and techniques described in section 5.3.6. If the
MAC signature is incorrect or the data cannot be decrypted correctly, the connection SHOULD be
dropped.

The shareControlHeader field (which contains a Share Control Header as described in section

2.2.8.1.1.1.1) MUST be examined to ensure that the PDU type (present in the pduType field) has the
value PDUTYPE_CONFIRMACTIVEPDU (3).

The remaining PDU fields and capability data MUST be interpreted and processed according to sections
2.2.1.13.2.1 and 2.2.7. The capabilities received from the client MUST be stored in the Client
Capabilities store (section 3.3.1.7) and MUST be used to determine what subset of RDP to send to the
client.

After successfully processing the Confirm Active PDU, the server MUST send the Synchronize PDU
(section 3.3.5.3.14) to the client. If processing of the Confirm Active PDU was unsuccessful, the
connection SHOULD be dropped.

3.3.5.3.14 Processing Synchronize PDU

The structure and fields of the Synchronize PDU are described in section 2.2.1.14, and the techniques
described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The contents of the

targetUser field MUST be ignored.

3.3.5.3.15 Processing Control PDU - Cooperate

317 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The structure and fields of the Control (Cooperate) PDU are described in section 2.2.1.15, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The

contents of the controlId and grantId fields MUST be ignored.

After successfully processing the client-to-server Control (Cooperate) PDU, the server MUST send the

Control (Cooperate) PDU (section 3.3.5.3.20) to the client. If processing of the client-to-server Control
(Cooperate) PDU was unsuccessful, the connection SHOULD be dropped.

3.3.5.3.16 Processing Control PDU - Request Control

The structure and fields of the Control (Request Control) PDU are described in section 2.2.1.16, and
the techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlId and grantId fields MUST be ignored.

After successfully processing the Control (Request Control) PDU, the server MUST send the Control
(Granted Control) PDU (section 3.3.5.3.21) to the client. If processing of the Control (Request Control)
PDU was unsuccessful, the connection SHOULD be dropped.

3.3.5.3.17 Processing Persistent Key List PDU(s)

The structure and fields of the Persistent Key List PDU are described in section 2.2.1.17, and the

techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. Note
that multiple Persistent Key List PDUs can be sent in succession. The bBitMask flag indicates the
sequencing.

After the server has successfully processed the Persistent Key List PDU (or sequence of Persistent Key
List PDUs), it MUST store the 64-bit bitmap keys received from the client in the Cached Bitmap Keys
store (section 3.3.1.8).

3.3.5.3.18 Processing Font List PDU

The structure and fields of the Font List are described in section 2.2.1.18, and the techniques
described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The contents of the

numberFonts, totalNumFonts, listFlags, and entrySize fields MUST be ignored.

After successfully processing the Font List PDU, the server MUST send the Font Map PDU (section
3.3.5.3.22) to the client. If processing of the Font List PDU was unsuccessful, the connection SHOULD
be dropped.

3.3.5.3.19 Sending Synchronize PDU

The structure and fields of the Synchronize PDU are described in section 2.2.1.19, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The targetUser
field SHOULD<48> be set to zero. The contents of this PDU SHOULD NOT be compressed.

3.3.5.3.20 Sending Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are described in section 2.2.1.20, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The

grantId and controlId fields SHOULD be set to zero. The contents of this PDU SHOULD NOT be
compressed.

3.3.5.3.21 Sending Control PDU - Granted Control

The structure and fields of the Control (Granted Control) PDU are described in section 2.2.1.21, and

the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
grantId field SHOULD be set to the User Channel ID (held in the User Channel ID store (3.3.1.2)),

318 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

while the controlId field SHOULD be set to the MCS server channel ID (held in the Server Channel ID
store (section 3.3.1.5)). The contents of this PDU SHOULD NOT be compressed.

3.3.5.3.22 Sending Font Map PDU

The structure and fields of the Font Map PDU are described in section 2.2.1.22, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU SHOULD NOT be compressed.

Once the server has successfully sent this PDU, graphics and pointer updates (section 2.2.9) SHOULD
be sent to the client (section 3.3.5.9).

3.3.5.4 Disconnection Sequences

3.3.5.4.1 Processing Shutdown Request PDU

The structure and fields of the Shutdown Request PDU are described in section 2.2.2.1, and the

techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

After the server has successfully processed the Shutdown Request PDU, it MUST send the Shutdown
Request Denied PDU (section 3.3.5.4.2) to the client if a logged-on user account is associated with the
session. If a logged-on user account is not associated with the session, the server MUST close the
connection.

3.3.5.4.2 Sending Shutdown Request Denied PDU

The structure and fields of the Shutdown Request Denied PDU are described in section 2.2.2.2, and

the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

3.3.5.5 Deactivation-Reconnection Sequence

3.3.5.5.1 Sending Deactivate All PDU

The structure and fields of the Deactivate All PDU are described in section 2.2.3.1, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.

The Deactivate All PDU is sent from server to client to indicate that the connection will be closed or
that a capability re-exchange will occur. After sending the Deactivate All PDU the server MUST follow
one of the following courses of action.

▪ Send an MCS Disconnect Provider Ultimatum PDU (section 3.1.5.1.1) to notify the client of the

source of the disconnection ("user requested" or "provider initiated"), and then close the
connection.

▪ Close the connection without sending an MCS Disconnect Provider Ultimatum (in this case the
client will not be informed of the source of the disconnection).

▪ Initiate a capability re-exchange by re-executing the connection sequence, starting with the
Demand Active PDU (section 3.3.5.3.13.1).

3.3.5.6 Auto-Reconnect Sequence

3.3.5.6.1 Sending Auto-Reconnect Status PDU

319 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The structure and fields of the Auto-Reconnect Status PDU are described in section 2.2.4.1, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU SHOULD NOT be compressed.

3.3.5.7 Server Error Reporting and Status Updates

3.3.5.7.1 Sending Set Error Info PDU

The structure and fields of the Set Error Info PDU are described in section 2.2.5.1, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The contents of this

PDU SHOULD NOT be compressed.

This PDU MUST NOT be sent to a client which has not indicated support for it by setting the
RNS_UD_CS_SUPPORT_ERRINFO_PDU flag (0x0001) in the earlyCapabilityFlags field of the Client
Core Data (section 2.2.1.3.2).

After the PDU has been sent the server MUST disconnect the client (since the Set Error Info PDU has

been sent, the client will be aware of the reason for the disconnect).

3.3.5.7.1.1 User Authorization Failures

The process of user authorization ensures that a user has sufficient permission to access a server
remotely via RDP. User authorization MUST only take place after the credentials for a user have been
received.

When Enhanced RDP Security (section 5.4) with CredSSP (section 5.4.5.2) is used, the user
credentials will be accessible by the time the MCS Connect Initial PDU (section 3.3.5.3.3) and MCS

Connect Response PDU (section 3.3.5.3.4) have been exchanged (sections 5.4.2.1 and 5.4.2.2). In
this scenario, user authorization MUST take place after all the MCS Channel Join Request PDUs
(section 3.3.5.3.8) and MCS Channel Join Confirm PDUs (section 3.3.5.3.9) have been exchanged.

If the process of user authorization fails, and the client has indicated support for the Set Error Info
PDU (section 2.2.5.1) by setting the RNS_UD_CS_SUPPORT_ERRINFO_PDU flag (0x0001) in the

earlyCapabilityFlags field of the Client Core Data (section 2.2.1.3.2), then the server MUST send a
Set Error Info PDU to the client with the error code ERRINFO_SERVER_INSUFFICIENT_PRIVILEGES

(0x00000009) and close the connection. If the client does not support the Set Error Info PDU, the
server MUST close the connection without sending a Set Error Info PDU.

3.3.5.7.2 Sending Status Info PDU

The structure and fields of the Status Info PDU are described in section 2.2.5.2, and the techniques
specified in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU SHOULD NOT be compressed.

This PDU MUST NOT be sent to a client which has not indicated support for it by setting the
RNS_UD_CS_SUPPORT_STATUSINFO_PDU (0x0004) in the earlyCapabilityFlags field of the Client
Core Data (section 2.2.1.3.2).

3.3.5.8 Keyboard and Mouse Input

3.3.5.8.1 Input Event Notifications

3.3.5.8.1.1 Processing Input Event PDU

The structure and fields of the Input Event PDU are described in sections 2.2.8.1.1.3 and
2.2.8.1.1.3.1, and the techniques described in section 3.3.5.2 demonstrate how to process the

contents of the PDU.

320 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The slowPathInputEvents field (section 2.2.8.1.1.3.1) encapsulates a collection of input events and
is populated with the following input event data:

▪ Keyboard Event (section 2.2.8.1.1.3.1.1.1)

▪ Unicode Keyboard Event (section 2.2.8.1.1.3.1.1.2)

▪ Mouse Event (section 2.2.8.1.1.3.1.1.3)

▪ Extended Mouse Event (section 2.2.8.1.1.3.1.1.4)

▪ Synchronize Event (section 2.2.8.1.1.3.1.1.5)

▪ Unused Event (section 2.2.8.1.1.3.1.1.6)

If an input event is received that does not match one of the known types, the server SHOULD drop the
connection.

Once this PDU has been processed, the server MUST inject the input event into the user's session.

3.3.5.8.1.2 Processing Fast-Path Input Event PDU

The Fast-Path Input Event PDU has the following basic structure (sections 5.3.8 and 5.4.4):

▪ fpInputHeader: Fast-Path Input Header (section 2.2.8.1.2)

▪ length1 and length2: Packet length (section 2.2.8.1.2)

▪ fipsInformation: Optional Fast-Path FIPS Information (section 2.2.8.1.2)

▪ dataSignature: Optional data signature (section 2.2.8.1.2)

▪ numEvents: Optional number of events (section 2.2.8.1.2)

▪ PDU contents (collection of input events):

▪ Keyboard Event (section 2.2.8.1.2.2.1)

▪ Unicode Keyboard Event (section 2.2.8.1.2.2.2)

▪ Mouse Event (section 2.2.8.1.2.2.3)

▪ Extended Mouse Event (section 2.2.8.1.2.2.4)

▪ Synchronize Event (section 2.2.8.1.2.2.5)

▪ Quality Of Experience (QOE) Timestamp Event (section 2.2.8.1.2.2.6)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The contents of the embedded action field of the fpInputHeader field MUST be set to
FASTPATH_INPUT_ACTION_FASTPATH (0). If it is not set to this value the PDU is not a Fast-Path

Input Event PDU and MUST be processed as a slow-path PDU (section 3.3.5.2).

If the embedded flags field of the fpInputHeader field contains the FASTPATH_INPUT_ENCRYPTED
(2) flag, then the data following the optional dataSignature field (which in this case MUST be
present) MUST be verified and decrypted using the methods and techniques described in section
5.3.6. If the MAC signature is incorrect or the data cannot be decrypted correctly, the connection
SHOULD be dropped. If Enhanced RDP Security is in effect and the FASTPATH_INPUT_ENCRYPTED (2)

321 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

flag is present the connection SHOULD be dropped because double-encryption is not used within RDP
in the presence of an External Security Protocol Provider.

The numEvents field details the number of input events present in the fpInputEvents field. The
input events present in this field MUST be interpreted and processed according to the descriptions

detailed from sections 2.2.8.1.2.2.1 through 2.2.8.1.2.2.5. If a Fast-Path Input Event structure is
received that does not match one of the known types, the server SHOULD drop the connection.

Once this PDU has been processed, the server MUST inject the input event into the user's session.

3.3.5.8.2 Keyboard Status PDUs

3.3.5.8.2.1 Sending Set Keyboard Indicators PDU

The structure and fields of the Set Keyboard Indicators PDU are described in section 2.2.8.2.1, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

3.3.5.8.2.2 Sending Set Keyboard IME Status PDU

The structure and fields of the Set Keyboard IME Status PDU are described in section 2.2.8.2.2, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU SHOULD NOT be compressed.

3.3.5.9 Basic Output

3.3.5.9.1 Sending Slow-Path Graphics Update PDU

The structure and fields of the Slow-Path Graphics Update PDU are described in section 2.2.9.1.1.3,
and the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.

The slowPathGraphicsUpdate field contains a single graphics update structure, which MUST be one
of the following types:

▪ Orders Update ([MS-RDPEGDI] section 2.2.2.2)

▪ Palette Update (section 2.2.9.1.1.3.1.1)

▪ Bitmap Update (section 2.2.9.1.1.3.1.2)

▪ Synchronize Update (section 2.2.9.1.1.3.1.3)

The contents of this PDU SHOULD be compressed by the server before any MAC signature is
constructed and encryption methods applied if the size of the data payload exceeds 50 bytes. The
Share Data Header MUST be initialized with the compression usage information (section 3.3.5.1).

3.3.5.9.2 Sending Slow-Path Pointer Update PDU

The structure and fields of the Slow-Path Pointer Update PDU are described in section 2.2.9.1.1.4, and

the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.

The messageType field MUST be initialized with the identifier describing the type of the Pointer
Update (see section 2.2.9.1.1.4 for a list of possible values), while the pointerAttributeData field
MUST be initialized with the actual update data contained in one of the following structures:

▪ Pointer Position Update (section 2.2.9.1.1.4.2)

▪ System Pointer Update (section 2.2.9.1.1.4.3)

322 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

▪ Color Pointer Update (section 2.2.9.1.1.4.4)

▪ New Pointer Update (section 2.2.9.1.1.4.5)

▪ Cached Pointer Update (section 2.2.9.1.1.4.6)

When sending a Color or New Pointer Update, the server MUST save the pointer image in the Pointer

Image Cache (section 3.3.1.9) and initialize the cacheIndex field with the index of the cache entry
which was used. If the pointer image has to be changed and the image is already present in the cache
the server SHOULD send the client a Cached Pointer Update to save bandwidth that would have been
used to resend the image.

The contents of this PDU SHOULD be compressed by the server before any MAC signature is
constructed and encryption methods applied if the size of the data payload exceeds 50 bytes. The
Share Data Header MUST be initialized with the compression usage information (section 3.3.5.1).

3.3.5.9.3 Sending Fast-Path Update PDU

The Fast-Path Update PDU has the following basic structure (sections 5.3.8 and 5.4.4):

▪ fpOutputHeader: Fast-Path Output Header (section 2.2.9.1.2)

▪ length1 and length2: Packet length (section 2.2.9.1.2)

▪ fipsInformation: Optional Fast-Path FIPS Information (section 2.2.9.1.2)

▪ dataSignature: Optional data signature (section 2.2.9.1.2)

▪ PDU contents (collection of fast-path output updates):

▪ Orders Update ([MS-RDPEGDI] section 2.2.2.2)

▪ Palette Update (section 2.2.9.1.2.1.1)

▪ Bitmap Update (section 2.2.9.1.2.1.2)

▪ Synchronize Update (section 2.2.9.1.2.1.3)

▪ Pointer Position Update (section 2.2.9.1.2.1.4)

▪ System Pointer Hidden Update (section 2.2.9.1.2.1.5)

▪ System Pointer Default Update (section 2.2.9.1.2.1.6)

▪ Color Pointer Update (section 2.2.9.1.2.1.7)

▪ New Pointer Update (section 2.2.9.1.2.1.8)

▪ Cached Pointer Update (section 2.2.9.1.2.1.9)

▪ Surface Commands Update (section 2.2.9.1.2.1.10)

The fpOutputHeader, length1, and length2 fields MUST be initialized as described in section

2.2.9.1.2. Because the PDU is in fast-path format, the embedded action field of the fpOutputHeader
field MUST be set to FASTPATH_OUTPUT_ACTION_FASTPATH (0).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario the fipsInformation and dataSignature fields MUST NOT be
present.

323 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
dataSignature field can be encrypted and signed (depending on the values of the Encryption Level

and Encryption Method selected by the server as part of the negotiation described in section 5.3.2)
using the methods and techniques described in section 5.3.6. If the data is to be encrypted, the

embedded flags field of the fpOutputHeader field MUST contain the
FASTPATH_OUTPUT_ENCRYPTED (2) flag.

The PDU contents, which encapsulate a collection of output events, is populated with fast-path update
data as described in sections 2.2.9.1.2.1.1 through 2.2.9.1.2.1.10. The contents of each individual
update SHOULD be compressed by the server before any MAC signature is constructed and encryption
methods applied if the size of the data payload exceeds 50 bytes. If this is the case, the embedded
compression field of the common updateHeader field MUST contain the

FASTPATH_OUTPUT_COMPRESSION_USED flag and the optional compressionFlags field MUST be
initialized with the compression usage information.

3.3.5.9.4 Sound

3.3.5.9.4.1 Sending Play Sound PDU

The structure and fields of the Play Sound PDU are described in section 2.2.9.1.1.5, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
Play Sound PDU SHOULD<49> be sent to instruct a client to play a sound by specifying its frequency
and duration. The contents of this PDU SHOULD NOT be compressed.

3.3.5.10 Logon and Authorization Notifications

3.3.5.10.1 Sending Save Session Info PDU

The structure and fields of the Save Session Info PDU are described in section 2.2.10.1.

The three reasons for sending this PDU are:

1. Notifying the client that the user has logged on (the username and domain which were used, as

well as the ID of the session to which the user connected, can be included in this notification).

2. Transmitting an auto-reconnect cookie to the client (see section 1.3.1.5 for an overview of
automatic reconnection).

3. Informing the client of an error or warning that occurred while the user was logging on.

The client SHOULD always be notified after the user has logged on. The INFOTYPE_LOGON
(0x00000000), INFOTYPE_LOGON_LONG (0x00000001), or INFOTYPE_LOGON_PLAINNOTIFY
(0x00000002) notification types MUST be used to accomplish this task.

A logon notification of type INFOTYPE_LOGON or INFOTYPE_LOGON_LONG SHOULD<50> be sent if

the INFO_LOGONNOTIFY (0x00000040) flag was set by the client in the Client Info PDU (sections
2.2.1.11 and 3.3.5.3.1) or if the username or domain used to log on to the session is different from
what was sent in the Client Info PDU (the original username or domain might have been invalid,
resulting in the user having to re-enter its credentials at a remoted logon prompt). The

LONG_CREDENTIALS_SUPPORTED (0x00000004) flag, in the extraFlags field of the General
Capability Set (section 2.2.7.1.1) received from the client (section 3.3.5.3.13.2), determines

whether the INFOTYPE_LOGON or INFOTYPE_LOGON_LONG type is used.

A logon notification of type INFOTYPE_LOGON_PLAINNOTIFY SHOULD be sent whenever a notification
of type INFOTYPE_LOGON or INFOTYPE_LOGON_LONG would not be sent.

The techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

324 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3.3.5.10.2 Sending Early User Authorization Result PDU

The structure and fields of the Early User Authorization Result PDU are described in section 2.2.10.2.
If the PROTOCOL_HYBRID_EX (0x00000008) flag was specified in the requestedProtocols field of

the RDP Negotiation Request (section 2.2.1.1.1) structure, and the server set the selectedProtocol
field of the RDP Negotiation Response (section 2.2.1.2.1) to PROTOCOL_HYBRID_EX, then the server
SHOULD authorize the user (once the CredSSP (section 5.4.5.2) handshake has completed) and then
indicate the result of the authorization by using the Early User Authorization Result PDU. If it is to be
sent to the client, the Early User Authorization Result PDU MUST be sent before any post-handshake
PDUs are transmitted (section 5.4.2.1 and 5.4.2.2).

3.3.5.11 Controlling Server Graphics Output

3.3.5.11.1 Processing Refresh Rect PDU

The structure and fields of the Refresh Rect PDU are described in section 2.2.11.2, and the techniques

described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the server MUST send updated graphics data for the region
specified by the PDU.

3.3.5.11.2 Processing Suppress Output PDU

The structure and fields of the Suppress Output PDU are described in section 2.2.11.3, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the server MUST stop or resume sending graphics updates,
depending on the value of the allowDisplayUpdates field in the PDU.

3.3.5.12 Display Update Notifications

3.3.5.12.1 Sending Monitor Layout PDU

The structure and fields of the Monitor Layout PDU are specified in section 2.2.12.1, and the
techniques specified in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

This PDU MUST NOT be sent to a client that has not indicated support for it by setting the
RNS_UD_CS_SUPPORT_MONITOR_LAYOUT_PDU flag (0x0040) in the earlyCapabilityFlags field of
the Client Core Data (section 2.2.1.3.2).

3.3.5.13 Server Redirection

3.3.5.13.1 Sending of the Server Redirection PDUs

An overview of the principles behind server redirection and an example of how it operates within the
context of an RDP connection are presented in section 1.3.8.

Two variants of the Server Redirection PDU are used to force the client to direct the current
connection to another server. The Standard Security variant (section 2.2.13.2) of the Server
Redirection PDU MUST be used when Enhanced RDP Security (section 5.4) is not in effect. When
Enhanced RDP Security is being used to secure the connection, the Enhanced Security variant (section
2.2.13.3) of the PDU MUST be used.

The actual contents of the Server Redirection PDU (embedded in the Standard Security or Enhanced
Security variant) are contained in a Server Redirection Packet (section 2.2.13). The server MUST

325 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

initialize this structure with all of the information required by the client to connect to a new target
server.

The techniques described in section 3.3.5.1 describe how to initialize the two variants of this PDU (the
instructions regarding the Share Data Header MUST be ignored because it is not present in either

PDU). The contents of this PDU SHOULD NOT be compressed.

3.3.5.14 Network Characteristics Detection

The steps that follow describe how a server SHOULD respond when receiving the client-to-server

network characteristics response detection messages described in section 2.2.14.2.

1. When sending an RTT Measure Request (section 2.2.14.1.1) to the client, the server MUST save
the timestamp (the current system time in milliseconds) and the unique sequence number
associated with the message in the RTT Measure Request Data store (section 3.3.1.13).

2. When receiving an RTT Measure Response (section 2.2.14.2.1) from the client, the server MUST
look up the timestamp of the associated RTT Measure Request (section 2.2.14.1.1) by searching

the RTT Measure Request Data store (section 3.3.1.13) using the contents of the

sequenceNumber field as a key. Subtracting the saved timestamp from the current time will
yield an RTT (round-trip time) sample in milliseconds. This value can be used by the server to
calculate the average RTT or moving average RTT.

3. When receiving a Bandwidth Measure Results (section 2.2.14.2.2) the server MUST use the
contents of the timeDelta and byteCount fields to calculate the bandwidth in kilobits per second
using the following calculation: (byteCount * 8) / timeDelta.

4. When receiving a Network Characteristics Sync (section 2.2.14.2.3) the server MUST stop any RTT

or bandwidth measurement operation that is in progress and instead use the values transmitted in
the bandwidth and rtt fields.

3.3.5.15 Multitransport Bootstrapping

3.3.5.15.1 Sending the Initiate Multitransport Request PDU

The structure and fields of the Initiate Multitransport Request PDU are described in section 2.2.15.1
and the PDU MUST be initialized according to this specification. The embedded initiator field of the
mcsSDin field MUST be set to the MCS server channel ID held in the Server Channel ID store (section
3.3.1.5), while the embedded channelId field MUST be set to the MCS message channel ID held in
the Message Channel ID store (section 3.3.1.4). Furthermore, the embedded flags field of the

securityHeader MUST contain the SEC_TRANSPORT_REQ (0x0002) flag (section 2.2.8.1.1.2.1).

A single Initiate Multitransport Request PDU MUST be sent to the client for each type of sideband
channel being requested. A sideband channel utilizes either reliable UDP or lossy UDP as a transport
protocol ([MS-RDPEMT] section 1.3) and hence only a maximum of two Initiate Multitransport Request
PDUs can be sent to the client.

The server MUST save the request ID (specified in the requestId field), requested protocol (specified
in the requestedProtocol field) and the security cookie (specified in the securityCookie field) in the

Multitransport Request Data store (section 3.3.1.14) so that the sideband initiation request can be
correctly correlated with the Tunnel Create Request PDU ([MS-RDPEMT] section 2.2.2.1) or Initiate
Multitransport Response PDU (section 2.2.15.2).

The Initiate Multitransport Request PDU is only used to bootstrap the creation of a sideband channel.
More information on the creation, setup sequence, and operation of sideband channels is available in
[MS-RDPEMT] section 1.3.1.

3.3.5.15.2 Processing the Initiate Multitransport Response PDU

326 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The structure and fields of the Initiate Multitransport Response PDU are described in section 2.2.15.2.
The receipt of this PDU indicates to the server whether or not the client was able to initiate a sideband

channel for the request associated with the ID specified in the requestId field. The protocol and
security cookie associated with the request can be determined by looking up the data associated with

the request ID in the Multitransport Request Data store (section 3.3.1.14).

3.3.6 Timer Events

3.3.6.1 Server-Side Connection Sequence Timeout

The Server-Side Connection Sequence Timeout fires if more than 60 seconds have elapsed on the
server-side Connection Sequence Timeout Timer (section 3.3.2.1). In this event the server MAY
terminate the connection to the server.

3.3.6.2 Auto-Reconnect Cookie Update

The Auto-Reconnect Cookie Update event fires at hourly intervals and triggers the creation of an Auto-
Reconnect cookie (section 5.5). This cookie is effectively a 16-byte, cryptographically secure random
number contained within a Server Auto-Reconnect Packet (section 2.2.4.2), and it is sent to the client
by using the Save Session Info PDU (section 2.2.10.1).

3.3.7 Other Local Events

None.

327 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4 Protocol Examples

4.1 Annotated Connection Sequence

The annotated connection sequence PDUs detailed in sections 4.1.1 through 4.1.22 were exchanged

between a Microsoft RDP 5.1 client and Microsoft RDP 5.1 server.

4.1.1 Client X.224 Connection Request PDU

The following is an annotated dump of the X.224 Connection Request PDU (section 2.2.1.1).

 00000000 03 00 00 2c 27 e0 00 00 00 00 00 43 6f 6f 6b 69 ...,'......Cooki
 00000010 65 3a 20 6d 73 74 73 68 61 73 68 3d 65 6c 74 6f e: mstshash=elto
 00000020 6e 73 0d 0a 01 00 08 00 00 00 00 00 ns..........

 03 -> TPKT Header: version = 3
 00 -> TPKT Header: Reserved = 0
 00 -> TPKT Header: Packet length - high part
 2c -> TPKT Header: Packet length - low part (total = 44 bytes)
 27 -> X.224: Length indicator (39 bytes)
 e0 -> X.224: Type (high nibble) = 0xe = CR TPDU; credit (low nibble) = 0
 00 00 -> X.224: Destination reference = 0
 00 00 -> X.224: Source reference = 0
 00 -> X.224: Class and options = 0

 43 6f 6f 6b 69 65 3a 20 6d 73 74 73 68 61 73 68
 3d 65 6c 74 6f 6e 73 -> "Cookie: mstshash=eltons"
 0d0a -> Cookie terminator sequence

 01 -> RDP_NEG_REQ::type (TYPE_RDP_NEG_REQ)
 00 -> RDP_NEG_REQ::flags (0)
 08 00 -> RDP_NEG_REQ::length (8 bytes)
 00 00 00 00 -> RDP_NEG_REQ::requestedProtocols (PROTOCOL_RDP)

4.1.2 Server X.224 Connection Confirm PDU

The following is an annotated dump of the X.224 Connection Confirm PDU (section 2.2.1.2).

 00000000 03 00 00 13 0e d0 00 00 12 34 00 02 00 08 00 004......
 00000010 00 00 00 ...

 03 -> TPKT Header: TPKT version = 3
 00 -> TPKT Header: Reserved = 0
 00 -> TPKT Header: Packet length - high part
 13 -> TPKT Header: Packet length - low part (total = 19 bytes)
 0e -> X.224: Length indicator (14 bytes)
 d0 -> X.224: Type (high nibble) = 0xd = CC TPDU; credit (low nibble) = 0
 00 00 -> X.224: Destination reference = 0
 12 34 -> X.224: Source reference = 0x1234 (bogus value)
 00 -> X.224: Class and options = 0

 02 -> RDP_NEG_RSP::type (TYPE_RDP_NEG_RSP)
 00 -> RDP_NEG_RSP::flags (0)
 08 00 -> RDP_NEG_RSP::length (8 bytes)
 00 00 00 00 -> RDP_NEG_RSP::selectedProtocol (PROTOCOL_RDP)

328 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request

The following is an annotated dump of the MCS Connect Initial PDU with GCC Conference Create
Request (section 2.2.1.3).

 00000000 03 00 01 a0 02 f0 80 7f 65 82 01 94 04 01 01 04e.......
 00000010 01 01 01 01 ff 30 19 02 01 22 02 01 02 02 01 000..."......
 00000020 02 01 01 02 01 00 02 01 01 02 02 ff ff 02 01 02
 00000030 30 19 02 01 01 02 01 01 02 01 01 02 01 01 02 01 0...............
 00000040 00 02 01 01 02 02 04 20 02 01 02 30 1c 02 02 ff0....
 00000050 ff 02 02 fc 17 02 02 ff ff 02 01 01 02 01 00 02
 00000060 01 01 02 02 ff ff 02 01 02 04 82 01 33 00 05 003...
 00000070 14 7c 00 01 81 2a 00 08 00 10 00 01 c0 00 44 75 .|...*........Du
 00000080 63 61 81 1c 01 c0 d8 00 04 00 08 00 00 05 00 04 ca..............
 00000090 01 ca 03 aa 09 04 00 00 ce 0e 00 00 45 00 4c 00E.L.
 000000a0 54 00 4f 00 4e 00 53 00 2d 00 44 00 45 00 56 00 T.O.N.S.-.D.E.V.
 000000b0 32 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 2...............
 000000c0 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00
 000000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000100 00 00 00 00 00 00 00 00 01 ca 01 00 00 00 00 00
 00000110 18 00 07 00 01 00 36 00 39 00 37 00 31 00 32 006.9.7.1.2.
 00000120 2d 00 37 00 38 00 33 00 2d 00 30 00 33 00 35 00 -.7.8.3.-.0.3.5.
 00000130 37 00 39 00 37 00 34 00 2d 00 34 00 32 00 37 00 7.9.7.4.-.4.2.7.
 00000140 31 00 34 00 00 00 00 00 00 00 00 00 00 00 00 00 1.4.............
 00000150 00 00 00 00 00 00 00 00 00 00 00 00 04 c0 0c 00
 00000160 0d 00 00 00 00 00 00 00 02 c0 0c 00 1b 00 00 00
 00000170 00 00 00 00 03 c0 2c 00 03 00 00 00 72 64 70 64,.....rdpd
 00000180 72 00 00 00 00 00 80 80 63 6c 69 70 72 64 72 00 r.......cliprdr.
 00000190 00 00 a0 c0 72 64 70 73 6e 64 00 00 00 00 00 c0rdpsnd......

 03 -> TPKT: TPKT version = 3
 00 -> TPKT: Reserved = 0
 01 -> TPKT: Packet length - high part
 a0 -> TPKT: Packet length - low part (total = 416 bytes)
 02 -> X.224: Length indicator = 2
 f0 -> X.224: Type = 0xf0 = Data TPDU
 80 -> X.224: EOT

 7f 65 -> BER: Application-Defined Type = APPLICATION 101 =
 Connect-Initial
 This is the BER encoded multiple octet variant of the ASN.1 type field. The multiple octet
variant is used when the type can be greater than 30, and is constructed as follows:

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-----------------+ +-----------------+ +-----------------+
 | C C F 1 1 1 1 1 | | 1 T T T T T T T | ... | 0 T T T T T T T |
 +-----------------+ +-----------------+ +-----------------+
 1 2 n

 In this case, CC = 01 which means the type is APPLICATION defined, and F = 1 to indicate that
the type is constructed (as opposed to primitive). There is only one octet containing the

type value (the second octet, which has the form 0TTTTTTT), and hence the type is 0x65

(MCS_TYPE_CONNECTINITIAL).

 82 01 94 -> BER: Type Length = 404 bytes
 This is the BER encoded definite long variant of the ASN.1 length field. The long variant
layout is constructed as follows:

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-----------------+ +-----------------+ +-----------------+
 | 1 (0 < n < 127) | | L L L L L L L L | ... | L L L L L L L L |
 +-----------------+ +-----------------+ +-----------------+
 1 2 n + 1

 Since the most significant bit of the first byte (0x82) is set, the low seven bits contain
the number of length bytes, which means that the number of length bytes is 2. Hence 0x01 and

329 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

0x94 are length bytes, which indicates that the length is greater than 256 bytes and less

than 65536 bytes, specifically 0x194 (404) bytes.

 04 01 01 -> Connect-Initial::callingDomainSelector
 The first byte (0x04) is the ASN.1 BER encoded OctetString type. The length of the data is
given by the second byte (1 byte), which is encoded using the BER definite short variant of

the ASN.1 length field. The third byte contains the value, which is 0x01.

 04 01 01 -> Connect-Initial::calledDomainSelector

 01 01 ff -> Connect-Initial::upwardFlag = TRUE
 The first byte (0x01) is the ASN.1 BER encoded Boolean type. The length of the data is given
by the second byte (0x01, so the length is 1 byte). The third byte contains the value, which

is 0xff (TRUE).

 30 19 -> Connect-Initial::targetParameters (25 bytes)
 The first byte (0x30) is the ASN.1 BER encoded SequenceOf type. The length of the sequence
data is given by the second byte (0x19, so the length is 25 bytes).

 02 01 22 -> DomainParameters::maxChannelIds = 34
 The first byte (0x02) is the ASN.1 BER encoded Integer type. The length of the integer is
given by the second byte (1 byte), and the actual value is 34 (0x22).

 02 01 02 -> DomainParameters::maxUserIds = 2
 02 01 00 -> DomainParameters::maxTokenIds = 0
 02 01 01 -> DomainParameters::numPriorities = 1
 02 01 00 -> DomainParameters::minThroughput = 0
 02 01 01 -> DomainParameters::maxHeight = 1
 02 02 ff ff -> DomainParameters::maxMCSPDUsize = 65535
 02 01 02 -> DomainParameters::protocolVersion = 2

 30 19 -> Connect-Initial::minimumParameters (25 bytes)
 02 01 01 -> DomainParameters::maxChannelIds = 1
 02 01 01 -> DomainParameters::maxUserIds = 1
 02 01 01 -> DomainParameters::maxTokenIds = 1
 02 01 01 -> DomainParameters::numPriorities = 1
 02 01 00 -> DomainParameters::minThroughput = 0
 02 01 01 -> DomainParameters::maxHeight = 1
 02 02 04 20 -> DomainParameters::maxMCSPDUsize = 1056
 02 01 02 -> DomainParameters::protocolVersion = 2

 30 1c -> Connect-Initial::maximumParameters (28 bytes)
 0x02 0x02 0xff 0xff -> DomainParameters::maxChannelIds = 65535
 0x02 0x02 0xfc 0x17 -> DomainParameters::maxUserIds = 64535
 0x02 0x02 0xff 0xff -> DomainParameters::maxTokenIds = 65535
 0x02 0x01 0x01 -> DomainParameters::numPriorities = 1
 0x02 0x01 0x00 -> DomainParameters::minThroughput = 0
 0x02 0x01 0x01 -> DomainParameters::maxHeight = 1
 0x02 0x02 0xff 0xff -> DomainParameters::maxMCSPDUsize = 65535
 0x02 0x01 0x02 -> DomainParameters::protocolVersion = 2

 04 82 01 33 -> Connect-Initial::userData (307 bytes)
 The first byte (0x04) is the ASN.1 OctetString type. The length is encoded using the BER
definite long variant format. Hence, since the most significant bit of the second byte (0x82)

is set, the low seven bits contain the number of length bytes, which means that the number of

length bytes is 2. Hence 0x01 and 0x33 are length bytes, which indicates that the length is

greater than 256 bytes and less than 65536 bytes, specifically 0x133 (307) bytes.

 PER encoded (ALIGNED variant of BASIC-PER) GCC Connection Data (ConnectData):
 00 05 00 14 7c 00 01 81 2a 00 08 00 10 00 01 c0
 00 44 75 63 61 81 1c

 0 - CHOICE: From Key select object (0) of type OBJECT IDENTIFIER
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding

330 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 05 -> object length = 5 bytes

 00 14 7c 00 01 -> object
 The first byte gives the first two values in the sextuple (m and n), as it is encoded as
 40m + n. Hence, decoding the remaining data yields the correct results:

 OID = { 0 0 20 124 0 1 } = {itu-t(0) recommendation(0) t(20) t124(124) version(0) 1}
 Description = v.1 of ITU-T Recommendation T.124 (Feb 1998): "Generic Conference Control"

 81 2a -> ConnectData::connectPDU length = 298 bytes
 Since the most significant bit of the first byte (0x81) is set to 1 and the following bit is
set to 0, the length is given by the low six bits of the first byte and the second byte.

Hence, the value is 0x12a, which is 298 bytes.

 PER encoded (ALIGNED variant of BASIC-PER) GCC Conference Create Request PDU:
 00 08 00 10 00 01 c0 00 44 75 63 61 81 1c

 0x00:
 0 - extension bit (ConnectGCCPDU)
 0 - --\
 0 - | CHOICE: From ConnectGCCPDU select conferenceCreateRequest (0)
 0 - --/ of type ConferenceCreateRequest
 0 - extension bit (ConferenceCreateRequest)
 0 - ConferenceCreateRequest::convenerPassword present
 0 - ConferenceCreateRequest::password present
 0 - ConferenceCreateRequest::conductorPrivileges present

 0x08:
 0 - ConferenceCreateRequest::conductedPrivileges present
 0 - ConferenceCreateRequest::nonConductedPrivileges present
 0 - ConferenceCreateRequest::conferenceDescription present
 0 - ConferenceCreateRequest::callerIdentifier present
 1 - ConferenceCreateRequest::userData present
 0 - extension bit (ConferenceName)
 0 - ConferenceName::text present
 0 - padding

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - | ConferenceName::numeric length = 0 + 1 = 1 character
 0 - | (minimum for SimpleNumericString is 1)
 0 - |
 0 - |
 0 - --/

 0x10:
 0 - --\
 0 - | ConferenceName::numeric = "1"
 0 - |
 1 - --/
 0 - ConferenceCreateRequest::lockedConference
 0 - ConferenceCreateRequest::listedConference
 0 - ConferenceCreateRequest::conducibleConference
 0 - extension bit (TerminationMethod)

 0x00:
 0 - TerminationMethod::automatic
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x01:
 0 - --\

331 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0 - |
 0 - |
 0 - | number of UserData sets = 1
 0 - |
 0 - |
 0 - |
 1 - --/

 0xc0:
 1 - UserData::value present
 1 - CHOICE: From Key select h221NonStandard (1) of type H221NonStandardIdentifier
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - | h221NonStandard length = 0 + 4 = 4 octets
 0 - | (minimum for H221NonStandardIdentifier is 4)
 0 - |
 0 - |
 0 - --/

 44 75 63 61 -> h221NonStandard (client-to-server H.221 key) = "Duca"

 81 1c -> UserData::value length = 284 bytes
 Since the most significant bit of the first byte (0x81) is set to 1 and the following bit is
set to 0, the length is given by the low six bits of the first byte and the second byte.

Hence, the value is 0x11c, which is 284 bytes.

 01 c0 d8 00 -> TS_UD_HEADER::type = CS_CORE (0xc001), length = 216 bytes

 04 00 08 00 -> TS_UD_CS_CORE::version = 0x00080004
 00 05 -> TS_UD_CS_CORE::desktopWidth = 1280
 00 04 -> TS_UD_CS_CORE::desktopHeight = 1024
 01 ca -> TS_UD_CS_CORE::colorDepth = RNS_UD_COLOR_8BPP (0xca01)
 03 aa -> TS_UD_CS_CORE::SASSequence
 09 04 00 00 -> TS_UD_CS_CORE::keyboardLayout = 0x409 = 1033 = English (US)
 ce 0e 00 00 -> TS_UD_CS_CORE::clientBuild = 3790

 45 00 4c 00 54 00 4f 00 4e 00 53 00 2d 00 44 00
 45 00 56 00 32 00 00 00 00 00 00 00 00 00 00 00 -> TS_UD_CS_CORE::clientName = ELTONS-TEST2

 04 00 00 00 -> TS_UD_CS_CORE::keyboardType
 00 00 00 00 -> TS_UD_CS_CORE::keyboardSubType
 0c 00 00 00 -> TS_UD_CS_CORE::keyboardFunctionKey

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_UD_CS_CORE::imeFileName = ""

 01 ca -> TS_UD_CS_CORE::postBeta2ColorDepth = RNS_UD_COLOR_8BPP (0xca01)

 01 00 -> TS_UD_CS_CORE::clientProductId
 00 00 00 00 -> TS_UD_CS_CORE::serialNumber
 18 00 -> TS_UD_CS_CORE::highColorDepth = 24 bpp

 07 00 -> TS_UD_CS_CORE::supportedColorDepths
 0x07
 = 0x01 | 0x02 | 0x04
 = RNS_UD_24BPP_SUPPORT | RNS_UD_16BPP_SUPPORT | RNS_UD_15BPP_SUPPORT

 01 00 -> TS_UD_CS_CORE::earlyCapabilityFlags

332 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0x01
 = RNS_UD_CS_SUPPORT_ERRINFO_PDU

 36 00 39 00 37 00 31 00 32 00 2d 00 37 00 38 00
 33 00 2d 00 30 00 33 00 35 00 37 00 39 00 37 00
 34 00 2d 00 34 00 32 00 37 00 31 00 34 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_UD_CS_CORE::clientDigProductId = "69712-783-0357974-42714"

 00 -> TS_UD_CS_CORE::connectionType = 0 (ignored as RNS_UD_CS_VALID_CONNECTION_TYPE not set)
 00 -> TS_UD_CS_CORE::pad1octet

 00 00 00 00 -> TS_UD_CS_CORE::serverSelectedProtocol

 04 c0 0c 00 -> TS_UD_HEADER::type = CS_CLUSTER (0xc004), length = 12 bytes

 0d 00 00 00 -> TS_UD_CS_CLUSTER::Flags = 0x0d
 0x0d
 = 0x03 << 2 | 0x01
 = REDIRECTION_VERSION4 << 2 | REDIRECTION_SUPPORTED

 00 00 00 00 -> TS_UD_CS_CLUSTER::RedirectedSessionID

 02 c0 0c 00 -> TS_UD_HEADER::type = CS_SECURITY (0xc002), length = 12 bytes

 1b 00 00 00 -> TS_UD_CS_SEC::encryptionMethods
 0x1b
 = 0x01 | 0x02 | 0x08 | 0x10
 = 40BIT_ENCRYPTION_FLAG | 128BIT_ENCRYPTION_FLAG |
 56BIT_ENCRYPTION_FLAG | FIPS_ENCRYPTION_FLAG

 00 00 00 00 -> TS_UD_CS_SEC::extEncryptionMethods

 03 c0 2c 00 -> TS_UD_HEADER::type = CS_NET (0xc003), length = 44 bytes

 03 00 00 00 -> TS_UD_CS_NET::channelCount = 3
 72 64 70 64 72 00 00 00 -> CHANNEL_DEF::name = "rdpdr"

 00 00 80 80 -> CHANNEL_DEF::options = 0x80800000
 0x80800000
 = 0x80000000 | 0x00800000
 = CHANNEL_OPTION_INITIALIZED | CHANNEL_OPTION_COMPRESS_RDP

 63 6c 69 70 72 64 72 00 -> CHANNEL_DEF::name = "cliprdr"

 00 00 a0 c0 -> CHANNEL_DEF::options = 0xc0a00000
 0xc0a00000
 = 0x80000000 |
 0x40000000 |
 0x00800000 |
 0x00200000
 = CHANNEL_OPTION_INITIALIZED |
 CHANNEL_OPTION_ENCRYPT_RDP |
 CHANNEL_OPTION_COMPRESS_RDP |
 CHANNEL_OPTION_SHOW_PROTOCOL

 72 64 70 73 6e 64 00 00 -> CHANNEL_DEF::name = "rdpsnd"

 00 00 00 c0 -> CHANNEL_DEF::options = 0xc0000000
 0xc0000000
 = 0x80000000 | 0x40000000
 = CHANNEL_OPTION_INITIALIZED |
 CHANNEL_OPTION_ENCRYPT_RDP

333 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response

The following is an annotated dump of the MCS Connect Response PDU with GCC Conference
Create Response (section 2.2.1.4).

 00000000 03 00 01 51 02 f0 80 7f 66 82 01 45 0a 01 00 02 ...Q....f..E....
 00000010 01 00 30 1a 02 01 22 02 01 03 02 01 00 02 01 01 ..0...".........
 00000020 02 01 00 02 01 01 02 03 00 ff f8 02 01 02 04 82
 00000030 01 1f 00 05 00 14 7c 00 01 2a 14 76 0a 01 01 00|..*.v....
 00000040 01 c0 00 4d 63 44 6e 81 08 01 0c 0c 00 04 00 08 ...McDn.........
 00000050 00 00 00 00 00 03 0c 10 00 eb 03 03 00 ec 03 ed
 00000060 03 ee 03 00 00 02 0c ec 00 02 00 00 00 02 00 00
 00000070 00 20 00 00 00 b8 00 00 00 10 11 77 20 30 61 0aw 0a.
 00000080 12 e4 34 a1 1e f2 c3 9f 31 7d a4 5f 01 89 34 96 ..4.....1}._..4.
 00000090 e0 ff 11 08 69 7f 1a c3 d2 01 00 00 00 01 00 00i...........
 000000a0 00 01 00 00 00 06 00 5c 00 52 53 41 31 48 00 00\.RSA1H..
 000000b0 00 00 02 00 00 3f 00 00 00 01 00 01 00 cb 81 fe?..........
 000000c0 ba 6d 61 c3 55 05 d5 5f 2e 87 f8 71 94 d6 f1 a5 .ma.U.._...q....
 000000d0 cb f1 5f 0c 3d f8 70 02 96 c4 fb 9b c8 3c 2d 55 .._.=.p......<-U
 000000e0 ae e8 ff 32 75 ea 68 79 e5 a2 01 fd 31 a0 b1 1f ...2u.hy....1...
 000000f0 55 a6 1f c1 f6 d1 83 88 63 26 56 12 bc 00 00 00 U.......c&V.....
 00000100 00 00 00 00 00 08 00 48 00 e9 e1 d6 28 46 8b 4eH....(F.N
 00000110 f5 0a df fd ee 21 99 ac b4 e1 8f 5f 81 57 82 ef!....._.W..
 00000120 9d 96 52 63 27 18 29 db b3 4a fd 9a da 42 ad b5 ..Rc'.)..J...B..
 00000130 69 21 89 0e 1d c0 4c 1a a8 aa 71 3e 0f 54 b9 9a i!....L...q>.T..
 00000140 e4 99 68 3f 6c d6 76 84 61 00 00 00 00 00 00 00 ..h?l.v.a.......
 00000150 00 .

 03 00 01 51 -> TPKT Header (length = 337 bytes)
 02 f0 80 -> X.224 Data TPDU

 7f 66 -> BER: Application-Defined Type = APPLICATION 102 =
 Connect-Response
 82 01 45 -> BER: Type Length = 325 bytes

 0a 01 00 -> Connect-Response::result = rt-successful (0)
 The first byte (0x0a) is the ASN.1 BER encoded Enumerated type. The
 length of the value is given by the second byte (1 byte), and the
 actual value is 0 (rt-successful).

 02 01 00 -> Connect-Response::calledConnectId = 0

 30 1a -> Connect-Response::domainParameters (26 bytes)
 02 01 22 -> DomainParameters::maxChannelIds = 34
 02 01 03 -> DomainParameters::maxUserIds = 3
 02 01 00 -> DomainParameters::maximumTokenIds = 0
 02 01 01 -> DomainParameters::numPriorities = 1
 02 01 00 -> DomainParameters::minThroughput = 0
 02 01 01 -> DomainParameters::maxHeight = 1
 02 03 00 ff f8 -> DomainParameters::maxMCSPDUsize = 65528
 02 01 02 -> DomainParameters::protocolVersion = 2

 04 82 01 1f -> Connect-Response::userData (287 bytes)

 PER encoded (ALIGNED variant of BASIC-PER) GCC Connection Data (ConnectData):
 00 05 00 14 7c 00 01 2a 14 76 0a 01 01 00 01 c0
 00 4d 63 44 6e 81 08

 00 05 -> Key::object length = 5 bytes
 00 14 7c 00 01 -> Key::object = { 0 0 20 124 0 1 }

 2a -> ConnectData::connectPDU length = 42 bytes
 This length is ignored by the client.

 PER encoded (ALIGNED variant of BASIC-PER) GCC Conference Create Response
 PDU:
 14 76 0a 01 01 00 01 c0 00 00 4d 63 44 6e 81 08

334 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0x14:
 0 - extension bit (ConnectGCCPDU)
 0 - --\
 0 - | CHOICE: From ConnectGCCPDU select conferenceCreateResponse (1)
 1 - --/ of type ConferenceCreateResponse
 0 - extension bit (ConferenceCreateResponse)
 1 - ConferenceCreateResponse::userData present
 0 - padding
 0 - padding

 0x76:
 0 - --\
 1 - |
 1 - |
 1 - |
 0 - |
 1 - |
 1 - |
 0 - |
 | ConferenceCreateResponse::nodeID = 0x760a + 1001 = 30218 + 1001 = 31219
 0x0a: | (minimum for UserID is 1001)
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 0 - |
 1 - |
 0 - --/

 0x01:
 0 - --\
 0 - |
 0 - |
 0 - | ConferenceCreateResponse::tag length = 1 byte
 0 - |
 0 - |
 0 - |
 1 - --/

 0x01:
 0 - --\
 0 - |
 0 - |
 0 - | ConferenceCreateResponse::tag = 1
 0 - |
 0 - |
 0 - |
 1 - --/

 0x00:
 0 - extension bit (Result)
 0 - --\
 0 - | ConferenceCreateResponse::result = success (0)
 0 - --/
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x01:
 0 - --\
 0 - |
 0 - |
 0 - | number of UserData sets = 1
 0 - |
 0 - |
 0 - |
 1 - --/

335 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0xc0:
 1 - UserData::value present
 1 - CHOICE: From Key select h221NonStandard (1) of type H221NonStandardIdentifier
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - | h221NonStandard length = 0 + 4 = 4 octets
 0 - | (minimum for H221NonStandardIdentifier is 4)
 0 - |
 0 - |
 0 - --/

 4d 63 44 6e -> h221NonStandard (server-to-client H.221 key) = "McDn"

 81 08 -> UserData::value length = 264 bytes

 01 0c 0c 00 -> TS_UD_HEADER::type = SC_CORE (0x0c01), length = 12
 bytes

 04 00 08 00 -> TS_UD_SC_CORE::version = 0x00080004
 00 00 00 00 -> TS_UD_SC_CORE::clientRequestedProtocols = PROTOCOL_RDP

 03 0c 10 00 -> TS_UD_HEADER::type = SC_NET (0x0c03), length = 16 bytes

 eb 03 -> TS_UD_SC_NET::MCSChannelId = 0x3eb = 1003 (I/O channel)
 03 00 -> TS_UD_SC_NET::channelCount = 3
 ec 03 -> channelIdArray[0] = 0x3ec = 1004 (rdpdr)
 ed 03 -> channelIdArray[1] = 0x3ed = 1005 (cliprdr)
 ee 03 -> channelIdArray[2] = 0x3ee = 1006 (rdpsnd)
 00 00 -> Pad

 02 0c ec 00 -> TS_UD_HEADER::type = SC_SECURITY, length = 236

 02 00 00 00 -> TS_UD_SC_SEC1::encryptionMethod = ENCRYPTION_METHOD_128BIT
 02 00 00 00 -> TS_UD_SC_SEC1::encryptionLevel = ENCRYPTION_LEVEL_CLIENT_COMPATIBLE
 20 00 00 00 -> TS_UD_SC_SEC1::serverRandomLen = 32 bytes
 b8 00 00 00 -> TS_UD_SC_SEC1::serverCertLen = 184 bytes

 10 11 77 20 30 61 0a 12 e4 34 a1 1e f2 c3 9f 31
 7d a4 5f 01 89 34 96 e0 ff 11 08 69 7f 1a c3 d2 -> TS_UD_SC_SEC1::serverRandom

 TS_UD_SC_SEC1::serverCertificate:
 01 00 00 00 01 00 00 00 01 00 00 00 06 00 5c 00
 52 53 41 31 48 00 00 00 00 02 00 00 3f 00 00 00
 01 00 01 00 cb 81 fe ba 6d 61 c3 55 05 d5 5f 2e
 87 f8 71 94 d6 f1 a5 cb f1 5f 0c 3d f8 70 02 96
 c4 fb 9b c8 3c 2d 55 ae e8 ff 32 75 ea 68 79 e5
 a2 01 fd 31 a0 b1 1f 55 a6 1f c1 f6 d1 83 88 63
 26 56 12 bc 00 00 00 00 00 00 00 00 08 00 48 00
 e9 e1 d6 28 46 8b 4e f5 0a df fd ee 21 99 ac b4
 e1 8f 5f 81 57 82 ef 9d 96 52 63 27 18 29 db b3
 4a fd 9a da 42 ad b5 69 21 89 0e 1d c0 4c 1a a8
 aa 71 3e 0f 54 b9 9a e4 99 68 3f 6c d6 76 84 61
 00 00 00 00 00 00 00 00

 01 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::dwVersion = CERT_CHAIN_VERSION_1 (1)
 01 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::dwSigAlgId = SIGNATURE_ALG_RSA (1)
 01 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::dwKeyAlgId = KEY_EXCHANGE_ALG_RSA (1)
 06 00 -> PROPRIETARYSERVERCERTIFICATE::wPublicKeyBlobType = BB_RSA_KEY_BLOB (6)
 5c 00 -> PROPRIETARYSERVERCERTIFICATE::wPublicKeyBlobLen = 92 bytes

 PROPRIETARYSERVERCERTIFICATE::PublicKeyBlob:

336 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 52 53 41 31 48 00 00 00 00 02 00 00 3f 00 00 00
 01 00 01 00 cb 81 fe ba 6d 61 c3 55 05 d5 5f 2e
 87 f8 71 94 d6 f1 a5 cb f1 5f 0c 3d f8 70 02 96
 c4 fb 9b c8 3c 2d 55 ae e8 ff 32 75 ea 68 79 e5
 a2 01 fd 31 a0 b1 1f 55 a6 1f c1 f6 d1 83 88 63
 26 56 12 bc 00 00 00 00 00 00 00 00

 52 53 41 31 -> RSA_PUBLIC_KEY::magic = "RSA1"
 48 00 00 00 -> RSA_PUBLIC_KEY::keylen = 72 bytes ((512 / 8) + 8)
 00 02 00 00 -> RSA_PUBLIC_KEY::bitlen = 0x0200 = 512 bits
 3f 00 00 00 -> RSA_PUBLIC_KEY::datalen = 63 bytes ((512 / 8) – 1)
 01 00 01 00 -> RSA_PUBLIC_KEY::pubExp = 0x00010001

 cb 81 fe ba 6d 61 c3 55 05 d5 5f 2e 87 f8 71 94
 d6 f1 a5 cb f1 5f 0c 3d f8 70 02 96 c4 fb 9b c8
 3c 2d 55 ae e8 ff 32 75 ea 68 79 e5 a2 01 fd 31
 a0 b1 1f 55 a6 1f c1 f6 d1 83 88 63 26 56 12 bc
 00 00 00 00 00 00 00 00 -> RSA_PUBLIC_KEY::modulus

 08 00 -> PROPRIETARYSERVERCERTIFICATE::wSignatureBlobType = BB_RSA_SIGNATURE_BLOB (8)
 48 00 -> PROPRIETARYSERVERCERTIFICATE::wSignatureBlobLen = 72 bytes

 e9 e1 d6 28 46 8b 4e f5 0a df fd ee 21 99 ac b4
 e1 8f 5f 81 57 82 ef 9d 96 52 63 27 18 29 db b3
 4a fd 9a da 42 ad b5 69 21 89 0e 1d c0 4c 1a a8
 aa 71 3e 0f 54 b9 9a e4 99 68 3f 6c d6 76 84 61
 00 00 00 00 00 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::SignatureBlob

4.1.5 Client MCS Erect Domain Request PDU

The following is an annotated dump of the MCS Erect Domain Request PDU (section 2.2.1.5).

 00000000 03 00 00 0c 02 f0 80 04 01 00 01 00

 03 00 00 0c -> TPKT Header (length = 12 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) PDU contents:
 04 01 00 01 00

 0x04:
 0 - --\
 0 - |
 0 - | CHOICE: From DomainMCSPDU select erectDomainRequest (1)
 0 - | of type ErectDomainRequest
 0 - |
 1 - --/
 0 - padding
 0 - padding

 0x01:
 0 - --\
 0 - |
 0 - |
 0 - | ErectDomainRequest::subHeight length = 1 byte
 0 - |
 0 - |
 0 - |
 1 - --/

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - | ErectDomainRequest::subHeight = 0
 0 - |
 0 - |

337 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0 - |
 0 - --/

 0x01:
 0 - --\
 0 - |
 0 - |
 0 - | ErectDomainRequest::subInterval length = 1 byte
 0 - |
 0 - |
 0 - |
 1 - --/

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - | ErectDomainRequest::subInterval = 0
 0 - |
 0 - |
 0 - |
 0 - --/

4.1.6 Client MCS Attach User Request PDU

The following is an annotated dump of the MCS Attach User Request PDU (section 2.2.1.6).

 00000000 03 00 00 08 02 f0 80 28 (

 03 00 00 08 -> TPKT Header (length = 8 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) PDU contents:
 28

 0x28:
 0 - --\
 0 - |
 1 - | CHOICE: From DomainMCSPDU select attachUserRequest (10)
 0 - | of type AttachUserRequest
 1 - |
 0 - --/
 0 - padding
 0 - padding

4.1.7 Server MCS Attach-User Confirm PDU

The following is an annotated dump of the MCS Attach User Confirm PDU (section 2.2.1.7).

 00000000 03 00 00 0b 02 f0 80 2e 00 00 06

 03 00 00 0b -> TPKT Header (length = 11 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) PDU contents:
 2e 00 00 06

 0x2e:
 0 - --\
 0 - |
 1 - | CHOICE: From DomainMCSPDU select attachUserConfirm (11)
 0 - | of type AttachUserConfirm
 1 - |
 1 - --/

338 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 1 - AttachUserConfirm::initiator present
 0 - --\
 |
 0x00: | AttachUserConfirm::result = rt-successful (0)
 0 - |
 0 - |
 0 - --/
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 | AttachUserConfirm::initiator = 0x0006 + 1001 = 0x03ef = 1007 (user channel)
 0x06: |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 0 - --/

4.1.8 MCS Channel Join Request and Confirm PDUs

4.1.8.1 Channel 1007

4.1.8.1.1 Client Join Request PDU for Channel 1007 (User Channel)

The following is an annotated dump of the MCS Channel Join Request PDU (section 2.2.1.8).

 00000000 03 00 00 0c 02 f0 80 38 00 06 03 ef 8....

 03 00 00 0c -> TPKT Header (length = 12 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) PDU contents:
 38 00 06 03 ef

 0x38:
 0 - --\
 0 - |
 1 - | CHOICE: From DomainMCSPDU select channelJoinRequest (14)
 1 - | of type ChannelJoinRequest
 1 - |
 0 - --/
 0 - padding
 0 - padding

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |

339 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0 - |
 0 - |
 0 - |
 | ChannelJoinRequest::initiator = 0x06 + 1001 = 1007 (0x03ef)
 0x06: |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 0 - --/

 0x03:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 | ChannelJoinRequest::channelId = 0x03ef = 1007
 0xef: |
 1 - |
 1 - |
 1 - |
 0 - |
 1 - |
 1 - |
 1 - |
 1 - --/

4.1.8.1.2 Server Join Confirm PDU for Channel 1007 (User Channel)

The following is an annotated dump of the MCS Channel Join Confirm PDU (section 2.2.1.9).

 00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ef 03 ef >.......

 03 00 00 0f -> TPKT Header (length = 15 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) PDU contents:
 3e 00 00 06 03 ef 03 ef

 0x3e:
 0 - --\
 0 - |
 1 - | CHOICE: From DomainMCSPDU select channelJoinConfirm (15)
 1 - | of type ChannelJoinConfirm
 1 - |
 1 - --/
 1 - ChannelJoinConfirm::channelId present
 0 - --\
 |
 0x00: | ChannelJoinConfirm::result = rt-successful (0)
 0 - |
 0 - |
 0 - --/
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x00:

340 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 | ChannelJoinConfirm::initiator = 0x06 + 1001 = 1007 (0x03ef)
 0x06: |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 0 - --/

 0x03:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 | ChannelJoinConfirm::requested = 0x03ef = 1007
 0xef: |
 1 - |
 1 - |
 1 - |
 0 - |
 1 - |
 1 - |
 1 - |
 1 - --/

 0x03:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 | ChannelJoinConfirm::channelId = 0x03ef = 1007
 0xef: |
 1 - |
 1 - |
 1 - |
 0 - |
 1 - |
 1 - |
 1 - |
 1 - --/

4.1.8.2 Channel 1003

4.1.8.2.1 Client Join Request PDU for Channel 1003 (I/O Channel)

The following is an annotated dump of the MCS Channel Join Request PDU (section 2.2.1.8).

 00000000 03 00 00 0c 02 f0 80 38 00 06 03 eb 8....

341 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 ChannelJoinRequest::initiator = 6 + 1001 = 1007
 ChannelJoinRequest::channelId = 0x03eb = 1003

4.1.8.2.2 Server Join Confirm PDU for Channel 1003 (I/O Channel)

The following is an annotated dump of the MCS Channel Join Confirm PDU (section 2.2.1.9).

 00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 eb 03 eb >.......

 ChannelJoinConfirm::result = rt-successful (0)
 ChannelJoinConfirm::initiator = 6 + 1001 = 1007
 ChannelJoinConfirm::requested = 0x03eb = 1003
 ChannelJoinConfirm::channelId = 0x03eb = 1003

4.1.8.3 Channel 1004

4.1.8.3.1 Client Join Request PDU for Channel 1004 (rdpdr Channel)

The following is an annotated dump of the MCS Channel Join Request PDU (section 2.2.1.8).

 00000000 03 00 00 0c 02 f0 80 38 00 06 03 ec 8....

 ChannelJoinRequest::initiator = 6 + 1001 = 1007
 ChannelJoinRequest::channelId = 0x03ec = 1004

4.1.8.3.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel)

The following is an annotated dump of the Client MCS Channel Join Confirm PDU (section 2.2.1.9).

 00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ec 03 ec >.......

 ChannelJoinConfirm::result = rt-successful (0)
 ChannelJoinConfirm::initiator = 6 + 1001 = 1007
 ChannelJoinConfirm::requested = 0x03ec = 1004
 ChannelJoinConfirm::channelId = 0x03ec = 1004

4.1.8.4 Channel 1005

4.1.8.4.1 Client Join Request PDU for Channel 1005 (cliprdr Channel)

The following is an annotated dump of the MCS Channel Join Request PDU (section 2.2.1.8).

 00000000 03 00 00 0c 02 f0 80 38 00 06 03 ed 8....

 ChannelJoinRequest::initiator = 6 + 1001 = 1007
 ChannelJoinRequest::channelId = 0x03ed = 1005

4.1.8.4.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel)

The following is an annotated dump of the MCS Channel Join Confirm PDU (section 2.2.1.9).

 00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ed 03 ed >.......

 ChannelJoinConfirm::result = rt-successful (0)

342 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 ChannelJoinConfirm::initiator = 6 + 1001 = 1007
 ChannelJoinConfirm::requested = 0x03ed = 1005
 ChannelJoinConfirm::channelId = 0x03ed = 1005

4.1.8.5 Channel 1006

4.1.8.5.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel)

The following is an annotated dump of the MCS Channel Join Request PDU (section 2.2.1.8).

 00000000 03 00 00 0c 02 f0 80 38 00 06 03 ee 8....

 ChannelJoinRequest::initiator = 6 + 1001 = 1007
 ChannelJoinRequest::channelId = 0x03ee = 1006

4.1.8.5.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel)

The following is an annotated dump of the MCS Channel Join Confirm PDU (section 2.2.1.9).

 00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ee 03 ee >.......

 ChannelJoinConfirm::result = rt-successful (0)
 ChannelJoinConfirm::initiator = 6 + 1001 = 1007
 ChannelJoinConfirm::requested = 0x03ee = 1006
 ChannelJoinConfirm::channelId = 0x03ee = 1006

4.1.9 Client Security Exchange PDU

The following is an annotated dump of the Security Exchange PDU (section 2.2.1.10).

 00000000 03 00 00 5e 02 f0 80 64 00 06 03 eb 70 50 01 02 ...^...d....pP..
 00000010 00 00 48 00 00 00 91 ac 0c 8f 64 8c 39 f4 e7 ff ..H.......d.9...
 00000020 0a 3b 79 11 5c 13 51 2a cb 72 8f 9d b7 42 2e f7 .;y.\.Q*.r...B..
 00000030 08 4c 8e ae 55 99 62 d2 81 81 e4 66 c8 05 ea d4 .L..U.b....f....
 00000040 73 06 3f c8 5f af 2a fd fc f1 64 b3 3f 0a 15 1d s.?._.*...d.?...
 00000050 db 2c 10 9d 30 11 00 00 00 00 00 00 00 00 .,..0.........

 03 00 00 5e -> TPKT Header (length = 94 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest PDU:
 64 00 06 03 eb 70 50

 0x64:
 0 - --\
 1 - |
 1 - | CHOICE: From DomainMCSPDU select sendDataRequest (25)
 0 - | of type SendDataRequest
 0 - |
 1 - --/
 0 - padding
 0 - padding

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |

343 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0 - |
 | SendDataRequest::initiator = 0x06 + 1001 = 1007
 0x06: |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 0 - --/

 0x03:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 | SendDataRequest::channelId = 0x03eb = 1003
 0xeb: |
 1 - |
 1 - |
 1 - |
 0 - |
 1 - |
 0 - |
 1 - |
 1 - --/

 0x70:
 0 - --\ SendDataRequest::dataPriority = 0x01 = high
 1 - --/
 1 - --\ SendDataRequest::segmentation = 0x03 = (0x02 | 0x01) = (begin | end)
 1 - --/
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x50:
 0 - --\
 1 - |
 0 - |
 1 - | SendDataRequest::userData length = 80 bytes
 0 - |
 0 - |
 0 - |
 0 - --/

 01 02 -> TS_SECURITY_HEADER::flags = 0x0201
 0x0201
 = 0x0200 | 0x0001
 = SEC_LICENSE_ENCRYPT_SC | SEC_EXCHANGE_PKT

 00 00 -> TS_SECURITY_HEADER::flagsHi = 0x0000

 48 00 00 00 -> TS_SECURITY_PACKET::length = 0x48 = 72 bytes

 91 ac 0c 8f 64 8c 39 f4 e7 ff 0a 3b 79 11 5c 13
 51 2a cb 72 8f 9d b7 42 2e f7 08 4c 8e ae 55 99
 62 d2 81 81 e4 66 c8 05 ea d4 73 06 3f c8 5f af
 2a fd fc f1 64 b3 3f 0a 15 1d db 2c 10 9d 30 11 ->
 TS_SECURITY_PACKET::encryptedClientRandom

 00 00 00 00 00 00 00 00 -> 8-bytes of rear padding (always present)

344 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4.1.10 Client Info PDU

The following is an annotated dump of the Client Info PDU (section 2.2.1.11).

 00000000 03 00 01 ab 02 f0 80 64 00 06 03 eb 70 81 9c 48d....p..H
 00000010 00 00 00 45 ca 46 fa 5e a7 be bc 74 21 d3 65 e9 ...E.F.^...t!.e.
 00000020 ba 76 12 7c 55 4b 9d 84 3b 3e 07 29 20 73 25 7b .v.|UK..;>.) s%{
 00000030 e6 9a bb e8 41 8a a0 69 3f 26 9a cd bc a6 03 27A..i?&.....'
 00000040 f5 ce bb a8 c2 ff 0f 38 a3 bf 74 81 ac cb c9 088..t.....
 00000050 49 0a 43 cf 91 31 36 cd ba 3d 16 4f 11 d7 69 12 I.C..16..=.O..i.
 00000060 c8 e9 57 c0 b8 0f c4 72 66 79 bd 86 ba 30 60 76 ..W....rfy...0`v
 00000070 b4 cd 52 5e 79 8e 88 95 f0 9a 43 20 d9 96 74 1d ..R^y.....C ..t.
 00000080 5c 8a 9a e3 8a 5d d2 55 17 8c f2 66 6b 3f 3d 3a \....].U...fk?=:
 00000090 e3 2a d4 ff d5 11 30 30 e2 ff e2 e4 11 0c 7f 6a .*....00.......j
 000000a0 1e a3 f4 2f dd 4f 89 8c c0 ca d3 8a 49 d7 00 d9 .../.O......I...
 000000b0 09 40 ab 79 1a 72 f9 89 42 af 20 aa 50 c7 cd d0 .@.y.r..B. .P...
 000000c0 b8 1e ab d3 eb 10 01 82 68 9f f5 c9 05 fe 20 bbh..... .
 000000d0 7c 68 b4 72 cd 37 53 df 43 0a 6d de cb be 5f 80 |h.r.7S.C.m..._.
 000000e0 05 1e b8 f3 5d 04 0c c6 66 3b 39 5f 5d a2 da b9]...f;9_]...
 000000f0 ea c9 da ba 7c 9d 4e 4a 4f 4a 16 04 ea 4e 23 d3|.NJOJ...N#.
 00000100 6d 2c 2b 42 58 19 69 10 23 d4 e1 af 46 34 fc 23 m,+BX.i.#...F4.#
 00000110 81 59 54 65 5f 6c 67 57 14 62 57 94 f1 81 86 00 .YTe_lgW.bW.....
 00000120 fe 1c 27 f6 76 e2 00 ea c5 f7 b5 e9 b2 ad ef 7f ..'.v...........
 00000130 87 8b 8a b0 d3 1e 43 54 4b ab f6 ba 7f 5a b9 e5CTK....Z..
 00000140 2d 5f 81 ab 2a 15 c4 97 bc d3 92 9a da be 8a b0 -_..*...........
 00000150 fb a4 1a a0 96 26 86 23 10 1b 21 0a 91 05 22 4d&.#..!..."M
 00000160 6c 4d 01 4c 84 f3 50 56 4f 3a e4 c0 24 bf 35 f6 lM.L..PVO:..$.5.
 00000170 f5 8b 3f 20 55 98 91 05 4d ee 46 95 44 6d 06 33 ..? U...M.F.Dm.3
 00000180 42 1f 9f 84 91 e7 c5 9f 04 11 de cf a5 07 5f 27 B............._'
 00000190 dd c0 ac b1 a7 98 9d 6d 79 00 70 33 bf 4e 16 23my.p3.N.#
 000001a0 57 f5 c7 88 82 d1 c6 a3 b4 0b 29 W.........)

 03 00 01 ab -> TPKT Header (length = 427 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 81 9c -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x19c = 412 bytes

 48 00 -> TS_SECURITY_HEADER::flags = 0x0048
 0x0048
 = 0x0040 | 0x0008
 = SEC_INFO_PKT | SEC_ENCRYPT

 00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 45 ca 46 fa 5e a7 be bc -> TS_SECURITY_HEADER1::dataSignature

 74 21 d3 65 e9 ba 76 12 7c 55 4b 9d 84 3b 3e 07
 29 20 73 25 7b e6 9a bb e8 41 8a a0 69 3f 26 9a
 cd bc a6 03 27 f5 ce bb a8 c2 ff 0f 38 a3 bf 74
 81 ac cb c9 08 49 0a 43 cf 91 31 36 cd ba 3d 16
 4f 11 d7 69 12 c8 e9 57 c0 b8 0f c4 72 66 79 bd
 86 ba 30 60 76 b4 cd 52 5e 79 8e 88 95 f0 9a 43
 20 d9 96 74 1d 5c 8a 9a e3 8a 5d d2 55 17 8c f2
 66 6b 3f 3d 3a e3 2a d4 ff d5 11 30 30 e2 ff e2
 e4 11 0c 7f 6a 1e a3 f4 2f dd 4f 89 8c c0 ca d3
 8a 49 d7 00 d9 09 40 ab 79 1a 72 f9 89 42 af 20
 aa 50 c7 cd d0 b8 1e ab d3 eb 10 01 82 68 9f f5
 c9 05 fe 20 bb 7c 68 b4 72 cd 37 53 df 43 0a 6d
 de cb be 5f 80 05 1e b8 f3 5d 04 0c c6 66 3b 39
 5f 5d a2 da b9 ea c9 da ba 7c 9d 4e 4a 4f 4a 16
 04 ea 4e 23 d3 6d 2c 2b 42 58 19 69 10 23 d4 e1
 af 46 34 fc 23 81 59 54 65 5f 6c 67 57 14 62 57
 94 f1 81 86 00 fe 1c 27 f6 76 e2 00 ea c5 f7 b5
 e9 b2 ad ef 7f 87 8b 8a b0 d3 1e 43 54 4b ab f6

345 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 ba 7f 5a b9 e5 2d 5f 81 ab 2a 15 c4 97 bc d3 92
 9a da be 8a b0 fb a4 1a a0 96 26 86 23 10 1b 21
 0a 91 05 22 4d 6c 4d 01 4c 84 f3 50 56 4f 3a e4
 c0 24 bf 35 f6 f5 8b 3f 20 55 98 91 05 4d ee 46
 95 44 6d 06 33 42 1f 9f 84 91 e7 c5 9f 04 11 de
 cf a5 07 5f 27 dd c0 ac b1 a7 98 9d 6d 79 00 70
 33 bf 4e 16 23 57 f5 c7 88 82 d1 c6 a3 b4 0b 29 -> Encrypted
 TS_INFO_PACKET

 Decrypted TS_INFO_PACKET:
 00000000 09 04 09 04 b3 43 00 00 0a 00 0c 00 00 00 00 00C..........
 00000010 00 00 4e 00 54 00 44 00 45 00 56 00 00 00 65 00 ..N.T.D.E.V...e.
 00000020 6c 00 74 00 6f 00 6e 00 73 00 00 00 00 00 00 00 l.t.o.n.s.......
 00000030 00 00 02 00 1e 00 31 00 35 00 37 00 2e 00 35 001.5.7...5.
 00000040 39 00 2e 00 32 00 34 00 32 00 2e 00 31 00 35 00 9...2.4.2...1.5.
 00000050 36 00 00 00 84 00 43 00 3a 00 5c 00 64 00 65 00 6.....C.:.\.d.e.
 00000060 70 00 6f 00 74 00 73 00 5c 00 77 00 32 00 6b 00 p.o.t.s.\.w.2.k.
 00000070 33 00 5f 00 31 00 5c 00 74 00 65 00 72 00 6d 00 3._.1.\.t.e.r.m.
 00000080 73 00 72 00 76 00 5c 00 6e 00 65 00 77 00 63 00 s.r.v.\.n.e.w.c.
 00000090 6c 00 69 00 65 00 6e 00 74 00 5c 00 6c 00 69 00 l.i.e.n.t.\.l.i.
 000000a0 62 00 5c 00 77 00 69 00 6e 00 33 00 32 00 5c 00 b.\.w.i.n.3.2.\.
 000000b0 6f 00 62 00 6a 00 5c 00 69 00 33 00 38 00 36 00 o.b.j.\.i.3.8.6.
 000000c0 5c 00 6d 00 73 00 74 00 73 00 63 00 61 00 78 00 \.m.s.t.s.c.a.x.
 000000d0 2e 00 64 00 6c 00 6c 00 00 00 e0 01 00 00 50 00 ..d.l.l.......P.
 000000e0 61 00 63 00 69 00 66 00 69 00 63 00 20 00 53 00 a.c.i.f.i.c. .S.
 000000f0 74 00 61 00 6e 00 64 00 61 00 72 00 64 00 20 00 t.a.n.d.a.r.d. .
 00000100 54 00 69 00 6d 00 65 00 00 00 00 00 00 00 00 00 T.i.m.e.........
 00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000120 0a 00 00 00 05 00 02 00 00 00 00 00 00 00 00 00
 00000130 00 00 50 00 61 00 63 00 69 00 66 00 69 00 63 00 ..P.a.c.i.f.i.c.
 00000140 20 00 44 00 61 00 79 00 6c 00 69 00 67 00 68 00 .D.a.y.l.i.g.h.
 00000150 74 00 20 00 54 00 69 00 6d 00 65 00 00 00 00 00 t. .T.i.m.e.....
 00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000170 00 00 00 00 04 00 00 00 01 00 02 00 00 00 00 00
 00000180 00 00 c4 ff ff ff 00 00 00 00 01 00 00 00 00 00

 09 04 09 04 -> TS_INFO_PACKET::CodePage = 0x04090409
 Low word = 0x0409 = 1033 = English (US)
 Since the INFO_UNICODE flag is set, this is the active language identifier.

 b3 43 00 00 -> TS_INFO_PACKET::flags = 0x000043b3
 0x000043b3
 = 0x00000001 |
 0x00000002 |
 0x00000010 |
 0x00000020 |
 0x00000080 |
 0x00000100 |
 0x00000200 |
 0x00004000
 = INFO_MOUSE |
 INFO_DISABLECTRLALTDEL |
 INFO_UNICODE |
 INFO_MAXIMIZESHELL |
 INFO_COMPRESSION |
 INFO_ENABLEWINDOWSKEY |
 PACKET_COMPR_TYPE_64K << 9 |
 INFO_FORCE_ENCRYPTED_CS_PDU

 0a 00 -> TS_INFO_PACKET::cbDomain = 0x0a = 10 bytes (not including
 the size of the mandatory NULL terminator)
 0c 00 -> TS_INFO_PACKET::cbUserName = 0x0c = 12 bytes (not including
 the size of the mandatory NULL terminator)
 00 00 -> TS_INFO_PACKET::cbPassword = 0 bytes
 00 00 -> TS_INFO_PACKET::cbAlternateShell = 0 bytes
 00 00 -> TS_INFO_PACKET::cbWorkingDir = 0 bytes

 4e 00 54 00 44 00 45 00 56 00 00 00 -> TS_INFO_PACKET::Domain = "NTDEV"
 65 00 6c 00 74 00 6f 00 6e 00 73 00 00 00 ->
 TS_INFO_PACKET::UserName = "eltons"

346 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 -> TS_INFO_PACKET::Password = ""
 00 00 -> TS_INFO_PACKET::AlternateShell = ""
 00 00 -> TS_INFO_PACKET::WorkingDir = ""

 02 00 -> TS_EXTENDED_INFO_PACKET::clientAddressFamily = AF_INET (2)
 1e 00 -> TS_EXTENDED_INFO_PACKET::cbClientAddress = 0x1e = 30 bytes
 (including the size of the mandatory NULL terminator)

 31 00 35 00 37 00 2e 00 35 00 39 00 2e 00 32 00
 34 00 32 00 2e 00 31 00 35 00 36 00 00 00 ->
 TS_EXTENDED_INFO_PACKET::clientAddress = "157.59.242.156"

 84 00 -> TS_EXTENDED_INFO_PACKET::cbClientDir = 0x84 = 132 bytes (including the size of the
mandatory NULL terminator)

 43 00 3a 00 5c 00 64 00 65 00 70 00 6f 00 74 00
 73 00 5c 00 77 00 32 00 6b 00 33 00 5f 00 31 00
 5c 00 74 00 65 00 72 00 6d 00 73 00 72 00 76 00
 5c 00 6e 00 65 00 77 00 63 00 6c 00 69 00 65 00
 6e 00 74 00 5c 00 6c 00 69 00 62 00 5c 00 77 00
 69 00 6e 00 33 00 32 00 5c 00 6f 00 62 00 6a 00
 5c 00 69 00 33 00 38 00 36 00 5c 00 6d 00 73 00
 74 00 73 00 63 00 61 00 78 00 2e 00 64 00 6c 00
 6c 00 00 00 -> TS_EXTENDED_INFO_PACKET::clientDir =
 "C:\depots\w2k3_1\termsrv\newclient\lib\win32\obj\i386\mstscax.dll"

 e0 01 00 00 -> TS_TIME_ZONE_INFORMATION::Bias = 0x01e0 = 480 mins = 8 hrs

 50 00 61 00 63 00 69 00 66 00 69 00 63 00 20 00
 53 00 74 00 61 00 6e 00 64 00 61 00 72 00 64 00
 20 00 54 00 69 00 6d 00 65 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_TIME_ZONE_INFORMATION::StandardName = "Pacific Standard Time"

 00 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wYear = 0
 0a 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wMonth = 0x0a =
 October (10)
 00 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wDayOfWeek = Sunday (0)
 05 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wDay = 5 (last Sunday)
 02 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wHour = 2am
 00 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wMinute = 0
 00 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wSecond = 0
 00 00 -> TS_TIME_ZONE_INFORMATION::StandardDate::wMilliseconds = 0

 00 00 00 00 -> TS_TIME_ZONE_INFORMATION::StandardBias = 0

 50 00 61 00 63 00 69 00 66 00 69 00 63 00 20 00
 44 00 61 00 79 00 6c 00 69 00 67 00 68 00 74 00
 20 00 54 00 69 00 6d 00 65 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_TIME_ZONE_INFORMATION::DaylightName = "Pacific Daylight Time"

 00 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wYear = 0
 04 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wMonth = April (4)
 00 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wDayOfWeek = Sunday (0)
 01 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wDay = 1 (first Sunday)
 02 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wHour = 2am
 00 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wMinute = 0
 00 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wSecond = 0
 00 00 -> TS_TIME_ZONE_INFORMATION::DaylightDate::wMilliseconds = 0

 c4 ff ff ff -> TS_TIME_ZONE_INFORMATION::DaylightBias = 0xffffffc4 =
 -60 (two's complement)

 00 00 00 00 -> TS_EXTENDED_INFO_PACKET::clientSessionId = 0
 01 00 00 00 -> TS_EXTENDED_INFO_PACKET::performanceFlags = 0x01 =
 TS_PERF_DISABLE_WALLPAPER
 00 00 -> TS_EXTENDED_INFO_PACKET:: cbAutoReconnectCookie = 0

347 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4.1.11 Server License Error PDU - Valid Client

The following is an annotated dump of the License Error (Valid Client) PDU (section 2.2.1.12).

 00000000 03 00 00 2a 02 f0 80 68 00 01 03 eb 70 1c 88 02 ...*...h....p...
 00000010 02 03 8d 43 9a ab d5 2a 31 39 62 4d c1 ec 0d 99 ...C...*19bM....
 00000020 88 e6 da ab 2c 02 72 4d 49 90 ,.rMI.

 03 00 00 2a -> TPKT Header (length = 42 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication PDU:
 68 00 01 03 eb 70 1c

 0x68:
 0 - --\
 1 - |
 1 - | CHOICE: From DomainMCSPDU select sendDataIndication (26) of
 0 - | type SendDataIndication
 1 - |
 0 - --/
 0 - padding
 0 - padding

 0x00:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 | SendDataIndication::initiator = 0x01 + 1001 = 1002 (0x03ea)
 0x01: |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - --/

 0x03:
 0 - --\
 0 - |
 0 - |
 0 - |
 0 - |
 0 - |
 1 - |
 1 - |
 | SendDataIndication::channelId = 0x03eb = 1003
 0xeb: |
 1 - |
 1 - |
 1 - |
 0 - |
 1 - |
 0 - |
 1 - |
 1 - --/

 0x70:
 0 - --\ SendDataIndication::dataPriority = 0x01 = high
 1 - --/
 1 - --\ SendDataIndication::segmentation = 0x03 = (0x02 | 0x01) = (begin | end)

348 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 1 - --/
 0 - padding
 0 - padding
 0 - padding
 0 - padding

 0x1c:
 0 - --\
 0 - |
 0 - |
 1 - | SendDataIndication::userData length = 28 bytes
 1 - |
 1 - |
 0 - |
 0 - --/

 88 02 -> TS_SECURITY_HEADER::flags = 0x0288
 0x0288
 = 0x0008 | 0x0080 | 0x0200
 = SEC_ENCRYPT | SEC_LICENSE_PKT | SEC_LICENSE_ENCRYPT_CS

 02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does not contain
SEC_FLAGSHI_VALID (0x8000)

 8d 43 9a ab d5 2a 31 39 -> TS_SECURITY_HEADER1::dataSignature

 62 4d c1 ec 0d 99 88 e6 da ab 2c 02 72 4d 49 90 -> Encrypted Licensing Packet

 Decrypted Licensing Packet:
 00000000 ff 03 10 00 07 00 00 00 02 00 00 00 04 00 00 00

 ff -> LICENSE_PREAMBLE::bMsgType = ERROR_ALERT
 03 -> LICENSE_PREAMBLE::flags = 3 (RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0,
10.1, 10.2, 10.3, 10.4, and 10.5)

 10 00 -> LICENSE_PREAMBLE::wMsgSize = 0x10 = 16 bytes

 07 00 00 00 -> LICENSE_ERROR_MESSAGE::dwErrorCode = STATUS_VALID_CLIENT
 02 00 00 00 -> LICENSE_ERROR_MESSAGE::dwStateTransition = ST_NO_TRANSITION
 04 00 -> LICENSE_ERROR_MESSAGE::bbErrorInfo::wBlobType = BB_ERROR_BLOB
 00 00 -> LICENSE_ERROR_MESSAGE::bbErrorInfo::wBlobLen = 0

4.1.12 Server Demand Active PDU

The following is an annotated dump of the Demand Active PDU (section 2.2.1.13.1).

 00000000 03 00 01 82 02 f0 80 68 00 01 03 eb 70 81 73 08h....p.s.
 00000010 00 02 03 56 02 e1 47 ac 5c 50 d9 72 f9 c3 32 0a ...V..G.\P.r..2.
 00000020 c7 23 3f 5f 78 11 de e2 af 6c 9b f3 63 32 6b 18 .#?_x....l..c2k.
 00000030 15 1c e5 e2 ff e2 61 f9 1e 99 90 c5 62 9b 8f 2aa.....b..*
 00000040 c3 de bb 6f 3e 59 01 62 4f 75 e4 5c be e7 ce 08 ...o>Y.bOu.\....
 00000050 44 b1 37 9f c0 27 55 bd e5 eb 7e 63 80 6a bf 8e D.7..'U...~c.j..
 00000060 0e 21 f0 c3 70 f8 e9 4f da 72 0f e5 ca 2a f3 b5 .!..p..O.r...*..
 00000070 9d d7 05 de 4d 35 49 80 37 2f 8a fb 4b c2 1f f8M5I.7/..K...
 00000080 01 4f 2f 1d 73 7b 95 01 52 9d b1 c6 d2 03 61 51 .O/.s{..R.....aQ
 00000090 da 3a 17 86 77 36 05 a2 24 63 5c af 65 67 e7 8d .:..w6..$c\.eg..
 000000a0 0b a3 71 e1 ec f3 e4 a1 24 ed c8 2a 4f 5d 9f 91 ..q.....$..*O]..
 000000b0 89 91 1d 69 c5 f5 48 bb 37 b2 93 e9 35 21 7e 0d ...i..H.7...5!~.
 000000c0 09 27 d6 16 d6 91 57 9c 7e f9 d2 a1 c5 26 63 de .'....W.~....&c.
 000000d0 78 38 f7 77 08 95 76 e3 68 bc 26 82 18 3c fb f0 x8.w..v.h.&..<..
 000000e0 ba 21 02 72 55 27 fa 8c e2 59 ba 86 dd 11 12 ba .!.rU'...Y......
 000000f0 7e 87 74 3e c4 7c 57 3d 50 c0 b7 0f 85 a0 7b 1d ~.t>.|W=P.....{.
 00000100 86 7a 03 b3 6d ef de 1b 59 5c 4d ea 65 34 f8 bf .z..m...Y\M.e4..
 00000110 f3 50 6b 24 b5 30 85 1d e6 30 3b 99 0d 0b 31 b1 .Pk$.0...0;...1.
 00000120 45 10 6b af 4a 38 bc 14 9c c5 c7 a7 24 b3 f9 6a E.k.J8......$..j
 00000130 3a 87 c7 39 0f 59 b7 d6 3d c4 23 d7 d3 fe c5 f3 :..9.Y..=.#.....
 00000140 b6 16 e4 2c c2 c7 27 a7 31 e9 d9 84 b8 19 59 ea ...,..'.1.....Y.
 00000150 a7 e1 1c d2 8d a7 00 61 e9 b5 ab 0d 53 fe e2 cca....S...
 00000160 1d b8 93 39 c1 d4 e4 40 b3 e4 b8 a6 46 75 11 59 ...9...@....Fu.Y

349 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00000170 c1 cb 60 72 7a 6d a8 1a fe 9d b7 4a 06 60 99 ad ..`rzm.....J.`..
 00000180 81 48 .H

 03 00 01 82 -> TPKT Header (length = 386 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 81 73 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x173 = 371 bytes

 08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT
 02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 56 02 e1 47 ac 5c 50 d9 -> TS_SECURITY_HEADER1::dataSignature

 72 f9 c3 32 0a c7 23 3f 5f 78 11 de e2 af 6c 9b
 f3 63 32 6b 18 15 1c e5 e2 ff e2 61 f9 1e 99 90
 c5 62 9b 8f 2a c3 de bb 6f 3e 59 01 62 4f 75 e4
 5c be e7 ce 08 44 b1 37 9f c0 27 55 bd e5 eb 7e
 63 80 6a bf 8e 0e 21 f0 c3 70 f8 e9 4f da 72 0f
 e5 ca 2a f3 b5 9d d7 05 de 4d 35 49 80 37 2f 8a
 fb 4b c2 1f f8 01 4f 2f 1d 73 7b 95 01 52 9d b1
 c6 d2 03 61 51 da 3a 17 86 77 36 05 a2 24 63 5c
 af 65 67 e7 8d 0b a3 71 e1 ec f3 e4 a1 24 ed c8
 2a 4f 5d 9f 91 89 91 1d 69 c5 f5 48 bb 37 b2 93
 e9 35 21 7e 0d 09 27 d6 16 d6 91 57 9c 7e f9 d2
 a1 c5 26 63 de 78 38 f7 77 08 95 76 e3 68 bc 26
 82 18 3c fb f0 ba 21 02 72 55 27 fa 8c e2 59 ba
 86 dd 11 12 ba 7e 87 74 3e c4 7c 57 3d 50 c0 b7
 0f 85 a0 7b 1d 86 7a 03 b3 6d ef de 1b 59 5c 4d
 ea 65 34 f8 bf f3 50 6b 24 b5 30 85 1d e6 30 3b
 99 0d 0b 31 b1 45 10 6b af 4a 38 bc 14 9c c5 c7
 a7 24 b3 f9 6a 3a 87 c7 39 0f 59 b7 d6 3d c4 23
 d7 d3 fe c5 f3 b6 16 e4 2c c2 c7 27 a7 31 e9 d9
 84 b8 19 59 ea a7 e1 1c d2 8d a7 00 61 e9 b5 ab
 0d 53 fe e2 cc 1d b8 93 39 c1 d4 e4 40 b3 e4 b8
 a6 46 75 11 59 c1 cb 60 72 7a 6d a8 1a fe 9d b7
 4a 06 60 99 ad 81 48 -> Encrypted TS_DEMAND_ACTIVE_PDU

 Decrypted TS_DEMAND_ACTIVE_PDU:
 00000000 67 01 11 00 ea 03 ea 03 01 00 04 00 51 01 52 44 g...........Q.RD
 00000010 50 00 0d 00 00 00 09 00 08 00 ea 03 dc e2 01 00 P...............
 00000020 18 00 01 00 03 00 00 02 00 00 00 00 1d 04 00 00
 00000030 00 00 00 00 01 01 14 00 08 00 02 00 00 00 16 00
 00000040 28 00 00 00 00 00 70 f6 13 f3 01 00 00 00 01 00 (.....p.........
 00000050 00 00 18 00 00 00 9c f6 13 f3 61 a6 82 80 00 00a.....
 00000060 00 00 00 50 91 bf 0e 00 04 00 02 00 1c 00 18 00 ...P............
 00000070 01 00 01 00 01 00 00 05 00 04 00 00 01 00 01 00
 00000080 00 00 01 00 00 00 03 00 58 00 00 00 00 00 00 00X.......
 00000090 00 00 00 00 00 00 00 00 00 00 40 42 0f 00 01 00@B....
 000000a0 14 00 00 00 01 00 00 00 22 00 01 01 01 01 01 00".......
 000000b0 00 01 01 01 01 01 00 00 00 01 01 01 01 01 01 01
 000000c0 01 00 01 01 01 01 00 00 00 00 a1 06 00 00 40 42@B
 000000d0 0f 00 40 42 0f 00 01 00 00 00 00 00 00 00 0a 00 ..@B............
 000000e0 08 00 06 00 00 00 12 00 08 00 01 00 00 00 08 00
 000000f0 0a 00 01 00 19 00 19 00 0d 00 58 00 35 00 00 00X.5...
 00000100 a1 06 00 00 40 42 0f 00 0c f6 13 f3 93 5a 37 f3@B.......Z7.
 00000110 00 90 30 e1 34 1c 38 f3 40 f6 13 f3 04 00 00 00 ..0.4.8.@.......
 00000120 4c 54 dc e2 08 50 dc e2 01 00 00 00 08 50 dc e2 LT...P.......P..
 00000130 00 00 00 00 38 f6 13 f3 2e 05 38 f3 08 50 dc e28.....8..P..
 00000140 2c f6 13 f3 00 00 00 00 08 00 0a 00 01 00 19 00 ,...............
 00000150 17 00 08 00 00 00 00 00 18 00 0b 00 00 00 00 00
 00000160 00 00 00 00 00 00 00

 67 01 -> TS_SHARECONTROLHEADER::totalLength = 0x0167 = 359 bytes
 11 00 -> TS_SHARECONTROLHEADER::pduType = 0x0011
 0x0011

350 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 = 0x0010 | 0x0001
 = TS_PROTOCOL_VERSION | PDUTYPE_DEMANDACTIVEPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea (1002)

 ea 03 01 00 -> TS_DEMAND_ACTIVE_PDU::shareID
 04 00 -> TS_DEMAND_ACTIVE_PDU::lengthSourceDescriptor = 4 bytes
 51 01 -> TS_DEMAND_ACTIVE_PDU::lengthCombinedCapabilities = 0x151 = 337 bytes

 52 44 50 00 -> TS_DEMAND_ACTIVE_PDU::sourceDescriptor = "RDP"

 0d 00 -> TS_DEMAND_ACTIVE_PDU::numberCapabilities = 13
 00 00 -> TS_DEMAND_ACTIVE_PDU::pad2Octets

 Share Capability Set (8 bytes)
 09 00 08 00 ea 03 dc e2

 09 00 -> TS_SHARE_CAPABILITYSET::capabilitySetType = CAPSTYPE_SHARE (9)
 08 00 -> TS_SHARE_CAPABILITYSET::lengthCapability = 8 bytes
 ea 03 -> TS_SHARE_CAPABILITYSET::nodeID = 0x03ea (1002)
 dc e2 -> TS_SHARE_CAPABILITYSET::pad2octets

 General Capability Set (24 bytes)
 01 00 18 00 01 00 03 00 00 02 00 00 00 00 1d 04
 00 00 00 00 00 00 01 01

 01 00 -> TS_GENERAL_CAPABILITYSET::capabilitySetType = CAPSTYPE_GENERAL (1)
 18 00 -> TS_GENERAL_CAPABILITYSET::lengthCapability = 24 bytes

 01 00 -> TS_GENERAL_CAPABILITYSET::osMajorType = OSMAJORTYPE_WINDOWS (1)
 03 00 -> TS_GENERAL_CAPABILITYSET::osMinorType = OSMINORTYPE_WINDOWS_NT (3)
 00 02 -> TS_GENERAL_CAPABILITYSET::protocolVersion = TS_CAPS_PROTOCOLVERSION (0x0200)
 00 00 -> TS_GENERAL_CAPABILITYSET::pad2octetsA
 00 00 -> TS_GENERAL_CAPABILITYSET::compressionTypes = 0
 1d 04 -> TS_GENERAL_CAPABILITYSET::extraFlags = 0x041d
 0x041d
 = 0x0400 |
 0x0010 |
 0x0008 |
 0x0004 |
 0x0001
 = NO_BITMAP_COMPRESSION_HDR |
 ENC_SALTED_CHECKSUM |
 AUTORECONNECT_SUPPORTED |
 LONG_CREDENTIALS_SUPPORTED |
 FASTPATH_OUTPUT_SUPPORTED

 00 00 -> TS_GENERAL_CAPABILITYSET::updateCapabilityFlag = 0
 00 00 -> TS_GENERAL_CAPABILITYSET::remoteUnshareFlag = 0
 00 00 -> TS_GENERAL_CAPABILITYSET::compressionLevel = 0
 01 -> TS_GENERAL_CAPABILITYSET::refreshRectSupport = TRUE
 01 -> TS_GENERAL_CAPABILITYSET::suppressOutputSupport = TRUE

 Virtual Channel Capability Set (8 bytes)
 14 00 08 00 02 00 00 00

 14 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::capabilitySetType = CAPSTYPE_VIRTUALCHANNEL (20)
 08 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::lengthCapability = 8 bytes

 02 00 00 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::flags = 0x00000002
 = VCCAPS_COMPR_CS_8K

 DrawGdiPlus Capability Set (40 bytes)
 16 00 28 00 00 00 00 00 70 f6 13 f3 01 00 00 00
 01 00 00 00 18 00 00 00 9c f6 13 f3 61 a6 82 80
 00 00 00 00 00 50 91 bf

 16 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::capabilitySetType = CAPSTYPE_DRAWGDIPLUS (22)
 28 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::lengthCapability = 40 bytes

351 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusSupportLevel
 = TS_DRAW_GDIPLUS_DEFAULT (0)
 70 f6 13 f3 -> TS_DRAW_GDIPLUS_CAPABILITYSET::GdipVersion
 (not initialized by server)
 01 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusCacheLevel
 = TS_DRAW_GDIPLUS_CACHE_LEVEL_ONE (1)

 01 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipGraphicsCacheEntries
 (not initialized by server)
 00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectBrushCacheEntries
 (not initialized by server)
 18 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectPenCacheEntries
 (not initialized by server)
 00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageCacheEntries
 (not initialized by server)
 9c f6 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageAttributesCacheEntries
 (not initialized by server)

 13 f3 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipGraphicsCacheChunkSize
 (not initialized by server)
 61 a6 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectBrushCacheChunkSize
 (not initialized by server)
 82 80 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectPenCacheChunkSize
 (not initialized by server)
 00 00 ->
 TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectImageAttributesCacheChunkSize
 (not initialized by server)

 00 00 -> TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheChunkSize
 (not initialized by server)
 00 50 -> TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheTotalSize
 (not initialized by server)
 91 bf -> TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheMaxSize
 (not initialized by server)

 Font Capability Set (4 bytes)
 0e 00 04 00

 0e 00 -> TS_FONT_CAPABILITYSET::capabilitySetType = CAPSTYPE_FONT (14)
 04 00 -> TS_FONT_CAPABILITYSET::lengthCapability = 4 bytes

 Due to a bug, the TS_FONT_CAPABILITYSET capability set size is incorrectly set to 4 bytes (it
has to be 8 bytes). As a result of this bug, the fontSupportFlags and pad2octets fields are

missing.

 Bitmap Capability Set (28 bytes)
 02 00 1c 00 18 00 01 00 01 00 01 00 00 05 00 04
 00 00 01 00 01 00 00 00 01 00 00 00

 02 00 -> TS_BITMAP_CAPABILITYSET::capabilitySetType = CAPSTYPE_BITMAP (2)
 1c 00 -> TS_BITMAP_CAPABILITYSET::lengthCapability = 28 bytes

 18 00 -> TS_BITMAP_CAPABILITYSET::preferredBitsPerPixel = 24 bpp
 01 00 -> TS_BITMAP_CAPABILITYSET::receive1BitPerPixel = TRUE
 01 00 -> TS_BITMAP_CAPABILITYSET::receive4BitsPerPixel = TRUE
 01 00 -> TS_BITMAP_CAPABILITYSET::receive8BitsPerPixel = TRUE
 00 05 -> TS_BITMAP_CAPABILITYSET::desktopWidth = 1280 pixels
 00 04 -> TS_BITMAP_CAPABILITYSET::desktopHeight = 1024 pixels
 00 00 -> TS_BITMAP_CAPABILITYSET::pad2octets
 01 00 -> TS_BITMAP_CAPABILITYSET::desktopResizeFlag = TRUE
 01 00 -> TS_BITMAP_CAPABILITYSET::bitmapCompressionFlag = TRUE
 00 -> TS_BITMAP_CAPABILITYSET::highColorFlags = 0
 00 -> TS_BITMAP_CAPABILITYSET::drawingFlags
 01 00 -> TS_BITMAP_CAPABILITYSET::multipleRectangleSupport = TRUE
 00 00 -> TS_BITMAP_CAPABILITYSET::pad2octetsB

 Order Capability Set (88 bytes)
 03 00 58 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 40 42 0f 00 01 00 14 00 00 00 01 00
 00 00 22 00 01 01 01 01 01 00 00 01 01 01 01 01

352 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 00 01 01 01 01 01 01 01 01 00 01 01 01 01
 00 00 00 00 a1 06 00 00 40 42 0f 00 40 42 0f 00
 01 00 00 00 00 00 00 00

 03 00 -> TS_ORDER_CAPABILITYSET::capabilitySetType = CAPSTYPE_ORDER (3)
 58 00 -> TS_ORDER_CAPABILITYSET::lengthCapability = 88 bytes

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_ORDER_CAPABILITYSET::terminalDescriptor = ""
 40 42 0f 00 -> TS_ORDER_CAPABILITYSET::pad4octetsA

 01 00 -> TS_ORDER_CAPABILITYSET::desktopSaveXGranularity = 1
 14 00 -> TS_ORDER_CAPABILITYSET::desktopSaveYGranularity = 20
 00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsA
 01 00 -> TS_ORDER_CAPABILITYSET::maximumOrderLevel = ORD_LEVEL_1_ORDERS (1)
 00 00 -> TS_ORDER_CAPABILITYSET::numberFonts = 0

 22 00 -> TS_ORDER_CAPABILITYSET::orderFlags = 0x0022
 0x0022
 = 0x0020 | 0x0002
 = COLORINDEXSUPPORT | NEGOTIATEORDERSUPPORT

 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DSTBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_PATBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SCRBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEMBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEM3BLT_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x05] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x06] = FALSE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DRAWNINEGRID_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_LINETO_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTI_DRAWNINEGRID_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[0x0A] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SAVEBITMAP_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x0C] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0X0D] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0X0E] = FALSE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIDSTBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIPATBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTISCRBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIOPAQUERECT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_INDEX_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_SC_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_CB_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYLINE_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0X17] = 0
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_GLYPH_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_SC_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_CB_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_INDEX_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0X1C] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0X1D] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0X1E] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0X1F] = 0

 a1 06 -> TS_ORDER_CAPABILITYSET::textFlags = 0x06a1

 00 00 -> TS_ORDER_CAPABILITYSET::orderSupportExFlags
 40 42 0f 00 -> TS_ORDER_CAPABILITYSET::pad4octetsB

 40 42 0f 00 -> TS_ORDER_CAPABILITYSET::desktopSaveSize = 0xf4240 = 1000000
 01 00 -> TS_ORDER_CAPABILITYSET::pad2octetsC
 00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsD
 00 00 -> TS_ORDER_CAPABILITYSET::textANSICodePage
 00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsE

 Color Table Cache Capability Set (8 bytes)
 0a 00 08 00 06 00 00 00

 0a 00 -> TS_COLORTABLECACHE_CAPABILITYSET::capabilitySetType = CAPSTYPE_COLORCACHE (10)

353 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 08 00 -> TS_COLORTABLECACHE_CAPABILITYSET::lengthCapability = 8 bytes

 06 00 -> TS_COLORTABLECACHE_CAPABILITYSET::colorTableCacheSize = 6
 00 00 -> TS_COLORTABLECACHE_CAPABILITYSET::pad2octets

 Bitmap Cache Host Support Capability Set (8 bytes)
 12 00 08 00 01 00 00 00

 12 00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::capabilitySetType
 = CAPSTYPE_BITMAPCACHE_HOSTSUPPORT (18)
 08 00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::lengthCapability
 = 8 bytes

 01 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::CacheVersion = 1
 (corresponds to rev. 2 capabilities)
 00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::Pad1
 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::Pad2

 Pointer Capability Set (10 bytes)
 08 00 0a 00 01 00 19 00 19 00

 08 00 -> TS_POINTER_CAPABILITYSET::capabilitySetType = CAPSTYPE_POINTER (8)
 0a 00 -> TS_POINTER_CAPABILITYSET::lengthCapability = 10 bytes

 01 00 -> TS_POINTER_CAPABILITYSET::colorPointerFlag = TRUE
 19 00 -> TS_POINTER_CAPABILITYSET::colorPointerCacheSize = 25
 19 00 -> TS_POINTER_CAPABILITYSET::pointerCacheSize = 25

 Input Capability Set (88 bytes)
 0d 00 58 00 35 00 00 00 a1 06 00 00 40 42 0f 00
 0c f6 13 f3 93 5a 37 f3 00 90 30 e1 34 1c 38 f3
 40 f6 13 f3 04 00 00 00 4c 54 dc e2 08 50 dc e2
 01 00 00 00 08 50 dc e2 00 00 00 00 38 f6 13 f3
 2e 05 38 f3 08 50 dc e2 2c f6 13 f3 00 00 00 00
 08 00 0a 00 01 00 19 00

 0d 00 -> TS_INPUT_CAPABILITYSET::capabilitySetType = CAPSTYPE_INPUT (13)
 58 00 -> TS_INPUT_CAPABILITYSET::lengthCapability = 88 bytes

 35 00 -> TS_INPUT_CAPABILITYSET::inputFlags = 0x0035
 0x0035
 = 0x0020 |
 0x0010 |
 0x0004 |
 0x0001
 = INPUT_FLAG_FASTPATH_INPUT2 |
 INPUT_FLAG_VKPACKET |
 INPUT_FLAG_MOUSEX |
 INPUT_FLAG_SCANCODES

 00 00 -> TS_INPUT_CAPABILITYSET::pad2octetsA
 a1 06 00 00 -> TS_INPUT_CAPABILITYSET::keyboardLayout (not initialized by server)
 40 42 0f 00 -> TS_INPUT_CAPABILITYSET::keyboardType (not initialized by server)
 0c f6 13 f3 -> TS_INPUT_CAPABILITYSET::keyboardSubType
 (not initialized by server)
 93 5a 37 f3 -> TS_INPUT_CAPABILITYSET::keyboardFunctionKey
 (not initialized by server)

 00 90 30 e1 34 1c 38 f3 40 f6 13 f3 04 00 00 00
 4c 54 dc e2 08 50 dc e2 01 00 00 00 08 50 dc e2
 00 00 00 00 38 f6 13 f3 2e 05 38 f3 08 50 dc e2
 2c f6 13 f3 00 00 00 00 08 00 0a 00 01 00 19 00 ->
 TS_INPUT_CAPABILITYSET::imeFileName (not initialized by server)

 RAIL Capability Set (8 bytes)
 17 00 08 00 00 00 00 00

 17 00 -> TS_RAIL_CAPABILITYSET::capabilitySetType = CAPSTYPE_RAIL (23)
 08 00 -> TS_RAIL_CAPABILITYSET::lengthCapability = 8 bytes

354 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 00 00 -> TS_RAIL_CAPABILITYSET::railSupportLevel =
 TS_RAIL_LEVEL_DEFAULT (0)

 Windowing Capability Set (11 bytes)
 18 00 0b 00 00 00 00 00 00 00 00

 18 00 -> TS_WINDOW_CAPABILITYSET::capabilitySetType =
 CAPSTYPE_WINDOW (24)
 0b 00 -> TS_WINDOW_CAPABILITYSET::lengthCapability = 11 bytes

 00 00 00 00 -> TS_WINDOW_CAPABILITYSET::wndSupportLevel =
 TS_WINDOW_LEVEL_DEFAULT (0)
 00 -> TS_WINDOW_CAPABILITYSET::nIconCaches = 0
 00 00 -> TS_WINDOW_CAPABILITYSET::nIconCacheEntries = 0

 Remainder of Demand Active PDU:

 00 00 00 00 -> TS_DEMAND_ACTIVE_PDU::sessionId = 0

4.1.13 Client Confirm Active PDU

The following is an annotated dump of the Confirm Active PDU (section 2.2.1.13.2).

 00000000 03 00 02 07 02 f0 80 64 00 06 03 eb 70 81 f8 38d....p..8
 00000010 00 00 00 ab 1f 51 e7 93 17 5c 45 04 36 38 41 80Q...\E.68A.
 00000020 2f ad d4 d3 48 e9 88 84 05 f4 3f c4 d1 e8 9d 92 /...H.....?.....
 00000030 85 ac e6 fd 25 30 6d b5 fe 0e 4b 72 e3 f4 15 9f%0m...Kr....
 00000040 2a 01 6e 44 15 d1 b4 1b f6 96 36 40 63 39 6f 73 *.nD......6@c9os
 00000050 fc 93 57 b2 a7 f8 df 44 e5 23 5d 2f 57 4a e2 df ..W....D.#]/WJ..
 00000060 aa 2d bc 99 4c fd 78 e1 a4 df 57 71 07 1e d4 99 .-..L.x...Wq....
 00000070 59 c8 4d ae 4f 00 90 de 56 63 3a 8c cc ca 40 60 Y.M.O...Vc:...@`
 00000080 2b ae 74 c5 e2 70 e9 bb 5e 0b c6 e8 82 21 cc a3 +.t..p..^....!..
 00000090 e9 61 4c 6e db 76 7a fc a4 cc 57 a5 94 d5 96 5c .aLn.vz...W....\
 000000a0 b2 99 1a 2a 84 52 84 97 35 54 6b c9 7d 3e f0 c8 ...*.R..5Tk.}>..
 000000b0 3c e4 3d 44 79 76 07 e6 3f 20 1d 66 2c c9 0f d2 <.=Dyv..? .f,...
 000000c0 cd 3d bf 25 38 7b cd 10 7c d7 2d da 72 8b db de .=.%8{..|.-.r...
 000000d0 b8 97 00 11 14 dd 22 b5 a0 b9 19 7b e5 9d e1 90"....{....
 000000e0 72 5f 5a 5a 48 59 a8 67 68 b5 e6 95 70 e9 d3 19 r_ZZHY.gh...p...
 000000f0 4f bd d9 1c 09 03 ac fa 6e 4b f5 0a 1e 21 a6 2f O.......nK...!./
 00000100 57 c0 70 80 fc a1 0f 12 58 fe 0a 89 ca fc ff cf W.p.....X.......
 00000110 37 04 b1 12 fd d2 03 30 b4 c7 fe a1 ad 5e 2b 8d 7......0.....^+.
 00000120 21 3d 18 6e 0c b0 18 c4 78 33 06 f0 14 67 7a 7d !=.n....x3...gz}
 00000130 09 1c 6e 66 57 00 db be 95 ef bf c2 1a a7 11 5e ..nfW..........^
 00000140 d2 d3 36 c8 13 8d 64 ed 0f a3 bf ce c2 6f 8e e4 ..6...d......o..
 00000150 11 4f 84 e5 c5 61 68 15 44 c5 5d 53 40 24 35 26 .O...ah.D.]S@$5&
 00000160 20 21 a5 cf 11 6a a2 7a 6c 3e 36 d5 93 a1 f9 5e !...j.zl>6....^
 00000170 df e6 a5 2c 94 4f 1a 22 9f 7d fd 24 b4 06 7d 70 ...,.O.".}.$..}p
 00000180 f0 49 ae 04 54 9d 14 73 48 27 57 e6 38 32 0e 31 .I..T..sH'W.82.1
 00000190 c5 aa d5 c9 1c 82 0d ae 18 24 9c 18 90 b4 90 8d$......
 000001a0 f1 bd 5f fb 10 c7 0b 01 fb bc 12 56 1d 30 19 c6 .._........V.0..
 000001b0 90 a1 06 17 38 ed 0f 3c 62 1e 16 0d 87 b4 90 af8..<b.......
 000001c0 ff 08 71 ff e9 25 19 8c d4 eb 7f b4 6a 43 d4 8b ..q..%......jC..
 000001d0 05 43 b8 66 59 e2 1d 23 d8 92 14 9b 3c a7 07 40 .C.fY..#....<..@
 000001e0 d6 30 7b 58 3e 6e 7f c8 12 15 bc eb 9f 74 8f 9c .0{X>n.......t..
 000001f0 b3 8d e2 60 34 a3 3a 8f a0 34 42 b1 18 08 a0 c5 ...`4.:..4B.....
 00000200 b5 97 44 ed b5 48 82 ..D..H.

 03 00 02 07 -> TPKT Header (length = 519 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 81 f8 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x1f8 = 504 bytes

355 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 38 00 -> TS_SECURITY_HEADER::flags = 0x0038
 0x0038
 = 0x0010 | 0x0020 | 0x0008
 = SEC_RESET_SEQNO | SEC_IGNORE_SEQNO | SEC_ENCRYPT

 00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 ab 1f 51 e7 93 17 5c 45 -> TS_SECURITY_HEADER1::dataSignature

 04 36 38 41 80 2f ad d4 d3 48 e9 88 84 05 f4 3f
 c4 d1 e8 9d 92 85 ac e6 fd 25 30 6d b5 fe 0e 4b
 72 e3 f4 15 9f 2a 01 6e 44 15 d1 b4 1b f6 96 36
 40 63 39 6f 73 fc 93 57 b2 a7 f8 df 44 e5 23 5d
 2f 57 4a e2 df aa 2d bc 99 4c fd 78 e1 a4 df 57
 71 07 1e d4 99 59 c8 4d ae 4f 00 90 de 56 63 3a
 8c cc ca 40 60 2b ae 74 c5 e2 70 e9 bb 5e 0b c6
 e8 82 21 cc a3 e9 61 4c 6e db 76 7a fc a4 cc 57
 a5 94 d5 96 5c b2 99 1a 2a 84 52 84 97 35 54 6b
 c9 7d 3e f0 c8 3c e4 3d 44 79 76 07 e6 3f 20 1d
 66 2c c9 0f d2 cd 3d bf 25 38 7b cd 10 7c d7 2d
 da 72 8b db de b8 97 00 11 14 dd 22 b5 a0 b9 19
 7b e5 9d e1 90 72 5f 5a 5a 48 59 a8 67 68 b5 e6
 95 70 e9 d3 19 4f bd d9 1c 09 03 ac fa 6e 4b f5
 0a 1e 21 a6 2f 57 c0 70 80 fc a1 0f 12 58 fe 0a
 89 ca fc ff cf 37 04 b1 12 fd d2 03 30 b4 c7 fe
 a1 ad 5e 2b 8d 21 3d 18 6e 0c b0 18 c4 78 33 06
 f0 14 67 7a 7d 09 1c 6e 66 57 00 db be 95 ef bf
 c2 1a a7 11 5e d2 d3 36 c8 13 8d 64 ed 0f a3 bf
 ce c2 6f 8e e4 11 4f 84 e5 c5 61 68 15 44 c5 5d
 53 40 24 35 26 20 21 a5 cf 11 6a a2 7a 6c 3e 36
 d5 93 a1 f9 5e df e6 a5 2c 94 4f 1a 22 9f 7d fd
 24 b4 06 7d 70 f0 49 ae 04 54 9d 14 73 48 27 57
 e6 38 32 0e 31 c5 aa d5 c9 1c 82 0d ae 18 24 9c
 18 90 b4 90 8d f1 bd 5f fb 10 c7 0b 01 fb bc 12
 56 1d 30 19 c6 90 a1 06 17 38 ed 0f 3c 62 1e 16
 0d 87 b4 90 af ff 08 71 ff e9 25 19 8c d4 eb 7f
 b4 6a 43 d4 8b 05 43 b8 66 59 e2 1d 23 d8 92 14
 9b 3c a7 07 40 d6 30 7b 58 3e 6e 7f c8 12 15 bc
 eb 9f 74 8f 9c b3 8d e2 60 34 a3 3a 8f a0 34 42
 b1 18 08 a0 c5 b5 97 44 ed b5 48 82 ->
 Encrypted TS_CONFIRM_ACTIVE_PDU

 Decrypted TS_CONFIRM_ACTIVE_PDU:
 00000000 ec 01 13 00 ef 03 ea 03 01 00 ea 03 06 00 d6 01
 00000010 4d 53 54 53 43 00 12 00 00 00 01 00 18 00 01 00 MSTSC...........
 00000020 03 00 00 02 00 00 00 00 1d 04 00 00 00 00 00 00
 00000030 00 00 02 00 1c 00 18 00 01 00 01 00 01 00 00 05
 00000040 00 04 00 00 01 00 01 00 00 00 01 00 00 00 03 00
 00000050 58 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 X...............
 00000060 00 00 00 00 00 00 01 00 14 00 00 00 01 00 00 00
 00000070 2a 00 01 01 01 01 01 00 00 01 01 01 00 01 00 00 *...............
 00000080 00 01 01 01 01 01 01 01 01 00 01 01 01 00 00 00
 00000090 00 00 a1 06 00 00 00 00 00 00 00 84 03 00 00 00
 000000a0 00 00 e4 04 00 00 13 00 28 00 03 00 00 03 78 00(.....x.
 000000b0 00 00 78 00 00 00 fb 09 00 80 00 00 00 00 00 00 ..x.............
 000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0a 00
 000000d0 08 00 06 00 00 00 07 00 0c 00 00 00 00 00 00 00
 000000e0 00 00 05 00 0c 00 00 00 00 00 02 00 02 00 08 00
 000000f0 0a 00 01 00 14 00 15 00 09 00 08 00 00 00 00 00
 00000100 0d 00 58 00 15 00 20 00 09 04 00 00 04 00 00 00 ..X...
 00000110 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00
 00000120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000150 00 00 00 00 00 00 00 00 0c 00 08 00 01 00 00 00
 00000160 0e 00 08 00 01 00 00 00 10 00 34 00 fe 00 04 004.....
 00000170 fe 00 04 00 fe 00 08 00 fe 00 08 00 fe 00 10 00
 00000180 fe 00 20 00 fe 00 40 00 fe 00 80 00 fe 00 00 01@.........
 00000190 40 00 00 08 00 01 00 01 03 00 00 00 0f 00 08 00 @...............
 000001a0 01 00 00 00 11 00 0c 00 01 00 00 00 00 1e 64 00d.

356 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 000001b0 14 00 08 00 01 00 00 00 15 00 0c 00 02 00 00 00
 000001c0 00 0a 00 01 16 00 28 00 00 00 00 00 00 00 00 00(.........
 000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000001e0 00 00 00 00 00 00 00 00 00 00 00 00

 ec 01 -> TS_SHARECONTROLHEADER::totalLength = 0x01ec = 492 bytes
 13 00 -> TS_SHARECONTROLHEADER::pduType = 0x0013
 0x0013
 = 0x0010 | 0x0003
 = TS_PROTOCOL_VERSION | PDUTYPE_CONFIRMACTIVEPDU

 ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef (1007)
 ea 03 01 00 -> TS_CONFIRM_ACTIVE_PDU::shareID = 0x000103ea
 ea 03 -> TS_CONFIRM_ACTIVE_PDU::originatorID = 0x03ea (1002)
 06 00 -> TS_CONFIRM_ACTIVE_PDU::lengthSourceDescriptor = 6 bytes
 d6 01 -> TS_CONFIRM_ACTIVE_PDU::lengthCombinedCapabilities = 0x1d6 = 470 bytes

 4d 53 54 53 43 00 -> TS_CONFIRM_ACTIVE_PDU::sourceDescriptor = "MSTSC"

 12 00 -> TS_CONFIRM_ACTIVE_PDU::numberCapabilities = 18
 00 00 -> TS_CONFIRM_ACTIVE_PDU::pad2Octets

 General Capability Set (24 bytes)
 01 00 18 00 01 00 03 00 00 02 00 00 00 00 1d 04
 00 00 00 00 00 00 00 00

 01 00 -> TS_GENERAL_CAPABILITYSET::capabilitySetType = CAPSTYPE_GENERAL (1)
 18 00 -> TS_GENERAL_CAPABILITYSET::lengthCapability = 24 bytes

 01 00 -> TS_GENERAL_CAPABILITYSET::osMajorType = OSMAJORTYPE_WINDOWS (1)
 03 00 -> TS_GENERAL_CAPABILITYSET::osMinorType = OSMINORTYPE_WINDOWS_NT (3)
 00 02 -> TS_GENERAL_CAPABILITYSET::protocolVersion = TS_CAPS_PROTOCOLVERSION (0x0200)
 00 00 -> TS_GENERAL_CAPABILITYSET::pad2octetsA
 00 00 -> TS_GENERAL_CAPABILITYSET::compressionTypes = 0

 1d 04 -> TS_GENERAL_CAPABILITYSET::extraFlags = 0x041d
 0x041d
 = 0x0400 |
 0x0010 |
 0x0008 |
 0x0004 |
 0x0001
 = NO_BITMAP_COMPRESSION_HDR |
 ENC_SALTED_CHECKSUM |
 AUTORECONNECT_SUPPORTED |
 LONG_CREDENTIALS_SUPPORTED |
 FASTPATH_OUTPUT_SUPPORTED

 00 00 -> TS_GENERAL_CAPABILITYSET::updateCapabilityFlag = 0
 00 00 -> TS_GENERAL_CAPABILITYSET::remoteUnshareFlag = 0
 00 00 -> TS_GENERAL_CAPABILITYSET::compressionLevel = 0

 00 -> TS_GENERAL_CAPABILITYSET::refreshRectSupport = FALSE
 00 -> TS_GENERAL_CAPABILITYSET::suppressOutputSupport = FALSE

 Bitmap Capability Set (28 bytes)
 02 00 1c 00 18 00 01 00 01 00 01 00 00 05 00 04
 00 00 01 00 01 00 00 00 01 00 00 00

 02 00 -> TS_BITMAP_CAPABILITYSET::capabilitySetType = CAPSTYPE_BITMAP (2)
 1c 00 -> TS_BITMAP_CAPABILITYSET::lengthCapability = 28 bytes

 18 00 -> TS_BITMAP_CAPABILITYSET::preferredBitsPerPixel = 24 bpp
 01 00 -> TS_BITMAP_CAPABILITYSET::receive1BitPerPixel = TRUE
 01 00 -> TS_BITMAP_CAPABILITYSET::receive4BitsPerPixel = TRUE
 01 00 -> TS_BITMAP_CAPABILITYSET::receive8BitsPerPixel = TRUE
 00 05 -> TS_BITMAP_CAPABILITYSET::desktopWidth = 1280 pixels
 00 04 -> TS_BITMAP_CAPABILITYSET::desktopHeight = 1024 pixels
 00 00 -> TS_BITMAP_CAPABILITYSET::pad2octets
 01 00 -> TS_BITMAP_CAPABILITYSET::desktopResizeFlag = TRUE

357 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 01 00 -> TS_BITMAP_CAPABILITYSET::bitmapCompressionFlag = TRUE
 00 -> TS_BITMAP_CAPABILITYSET::highColorFlags = 0
 00 -> TS_BITMAP_CAPABILITYSET::drawingFlags
 01 00 -> TS_BITMAP_CAPABILITYSET::multipleRectangleSupport = TRUE
 00 00 -> TS_BITMAP_CAPABILITYSET::pad2octetsB

 Order Capability Set (88 bytes)
 03 00 58 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 01 00 14 00 00 00 01 00
 00 00 2a 00 01 01 01 01 01 00 00 01 01 01 00 01
 00 00 00 01 01 01 01 01 01 01 01 00 01 01 01 00
 00 00 00 00 a1 06 00 00 00 00 00 00 00 84 03 00
 00 00 00 00 e4 04 00 00

 03 00 -> TS_ORDER_CAPABILITYSET::capabilitySetType = CAPSTYPE_ORDER (3)
 58 00 -> TS_ORDER_CAPABILITYSET::lengthCapability = 88 bytes

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_ORDER_CAPABILITYSET::terminalDescriptor = ""
 00 00 00 00 -> TS_ORDER_CAPABILITYSET::pad4octetsA

 01 00 -> TS_ORDER_CAPABILITYSET::desktopSaveXGranularity = 1
 14 00 -> TS_ORDER_CAPABILITYSET::desktopSaveYGranularity = 20
 00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsA
 01 00 -> TS_ORDER_CAPABILITYSET::maximumOrderLevel = ORD_LEVEL_1_ORDERS (1)
 00 00 -> TS_ORDER_CAPABILITYSET::numberFonts = 0

 2a 00 -> TS_ORDER_CAPABILITYSET::orderFlags = 0x002a
 0x002a
 = 0x0020 |
 0x0008 |
 0x0002
 = COLORINDEXSUPPORT |
 ZEROBOUNDSDELTASSUPPORT |
 NEGOTIATEORDERSUPPORT

 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DSTBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_PATBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SCRBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEMBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEM3BLT_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x05] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x06] = FALSE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DRAWNINEGRID_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_LINETO_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTI_DRAWNINEGRID_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x0A] = FALSE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SAVEBITMAP_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x0C] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x0D] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x0E] = FALSE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIDSTBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIPATBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTISCRBLT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIOPAQUERECT_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_INDEX_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_SC_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_CB_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYLINE_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x17] = 0
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_GLYPH_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_SC_INDEX] = TRUE
 01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_CB_INDEX] = TRUE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_INDEX_INDEX] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x1C] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x1D] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x1E] = FALSE
 00 -> TS_ORDER_CAPABILITYSET::orderSupport[0x1F] = 0

 a1 06 -> TS_ORDER_CAPABILITYSET::textFlags = 0x06a1

358 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0x6a1
 = 0x400 |
 0x200 |
 0x080 |
 0x020 |
 0x001
 = TS_TEXTFLAGS_ALLOWCELLHEIGHT |
 TS_TEXTFLAGS_USEBASELINESTART |
 TS_TEXTFLAGS_CHECKFONTSIGNATURES |
 TS_TEXTFLAGS_ALLOWDELTAXSIM |
 TS_TEXTFLAGS_CHECKFONTASPECT

 00 00 -> TS_ORDER_CAPABILITYSET::orderSupportExFlags
 00 00 00 00 -> TS_ORDER_CAPABILITYSET::pad4octetsB
 00 84 03 00 -> TS_ORDER_CAPABILITYSET::desktopSaveSize = 0x38400 = 230400
 00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsC
 00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsD
 e4 04 -> TS_ORDER_CAPABILITYSET::textANSICodePage = 0x04e4 = ANSI - Latin I (1252)
 00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsE

 Bitmap Cache Rev. 2 Capability Set (40 bytes)
 13 00 28 00 03 00 00 03 78 00 00 00 78 00 00 00
 fb 09 00 80 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00

 13 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::capabilitySetType =
 CAPSTYPE_BITMAPCACHE_REV2 (19)
 28 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::lengthCapability =
 40 bytes

 03 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::CacheFlags = = 0x0003
 0x0003
 = 0x0001 | 0x0002
 = PERSISTENT_KEYS_EXPECTED_FLAG | ALLOW_CACHE_WAITING_LIST_FLAG

 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::Pad2
 03 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::NumCellCaches = 3

 78 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::BitmapCache0CellInfo = 0x00000078
 TS_BITMAPCACHE_CELL_CACHE_INFO::NumEntries = 0x78 = 120
 TS_BITMAPCACHE_CELL_CACHE_INFO::k = FALSE

 78 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::BitmapCache1CellInfo =
 0x00000078
 TS_BITMAPCACHE_CELL_CACHE_INFO::NumEntries = 0x78 = 120
 TS_BITMAPCACHE_CELL_CACHE_INFO::k = FALSE

 fb 09 00 80 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::BitmapCache2CellInfo = 0x800009fb
 TS_BITMAPCACHE_CELL_CACHE_INFO::NumEntries = 0x9fb = 2555
 TS_BITMAPCACHE_CELL_CACHE_INFO::k = TRUE

 00 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::BitmapCache3CellInfo = 0x00000000
 00 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::BitmapCache4CellInfo = 0x00000000

 00 00 00 00 00 00 00 00 00 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::Pad3

 Color Table Cache Capability Set (8 bytes)
 0a 00 08 00 06 00 00 00

 0a 00 -> TS_COLORTABLECACHE_CAPABILITYSET::capabilitySetType = CAPSTYPE_COLORCACHE (10)
 08 00 -> TS_COLORTABLECACHE_CAPABILITYSET::lengthCapability = 8 bytes

 06 00 -> TS_COLORTABLECACHE_CAPABILITYSET::colorTableCacheSize = 6
 00 00 -> TS_COLORTABLECACHE_CAPABILITYSET::pad2octets = 0

 Window Activation Capability Set (12 bytes)
 07 00 0c 00 00 00 00 00 00 00 00 00

 07 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::capabilitySetType = CAPSTYPE_ACTIVATION (7)
 0c 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::lengthCapability = 12 bytes

359 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::helpKeyFlag = 0
 00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::helpKeyIndexFlag = 0
 00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::helpExtendedKeyFlag = 0
 00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::windowManagerKeyFlag = 0

 Control Capability Set (12 bytes)
 05 00 0c 00 00 00 00 00 02 00 02 00

 05 00 -> TS_CONTROL_CAPABILITYSET::capabilitySetType = CAPSTYPE_CONTROL (5)
 0c 00 -> TS_CONTROL_CAPABILITYSET::lengthCapability = 12 bytes

 00 00 -> TS_CONTROL_CAPABILITYSET::controlFlags = 0
 00 00 -> TS_CONTROL_CAPABILITYSET::remoteDetachFlag = 0
 02 00 -> TS_CONTROL_CAPABILITYSET::controlInterest = CONTROLPRIORITY_NEVER (2)
 02 00 -> TS_CONTROL_CAPABILITYSET::detachInterest = CONTROLPRIORITY_NEVER (2)

 Pointer Capability Set (10 bytes)
 08 00 0a 00 01 00 14 00 15 00

 08 00 -> TS_POINTER_CAPABILITYSET::capabilitySetType = CAPSTYPE_POINTER (8)
 0a 00 -> TS_POINTER_CAPABILITYSET::lengthCapability = 10 bytes

 01 00 -> TS_POINTER_CAPABILITYSET::colorPointerFlag = TRUE
 14 00 -> TS_POINTER_CAPABILITYSET::colorPointerCacheSize = 20
 15 00 -> TS_POINTER_CAPABILITYSET::pointerCacheSize = 21

 Share Capability Set (8 bytes)
 09 00 08 00 00 00 00 00

 09 00 -> TS_SHARE_CAPABILITYSET::capabilitySetType = CAPSTYPE_SHARE (9)
 08 00 -> TS_SHARE_CAPABILITYSET::lengthCapability = 8 bytes

 00 00 -> TS_SHARE_CAPABILITYSET::nodeID = 0
 00 00 -> TS_SHARE_CAPABILITYSET::pad2octets

 Input Capability Set (88 bytes)
 0d 00 58 00 15 00 20 00 09 04 00 00 04 00 00 00
 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00

 0d 00 -> TS_INPUT_CAPABILITYSET::capabilitySetType = CAPSTYPE_INPUT (13)
 58 00 -> TS_INPUT_CAPABILITYSET::lengthCapability = 88 bytes

 0d 00 -> TS_INPUT_CAPABILITYSET::capabilitySetType = CAPSTYPE_INPUT (13)
 58 00 -> TS_INPUT_CAPABILITYSET::lengthCapability = 88 bytes

 15 00 -> TS_INPUT_CAPABILITYSET::inputFlags = 0x0015
 0x0015
 = 0x0010 |
 0x0004 |
 0x0001
 = INPUT_FLAG_VKPACKET |
 INPUT_FLAG_MOUSEX |
 INPUT_FLAG_SCANCODES

 20 00 -> TS_INPUT_CAPABILITYSET::pad2octetsA
 09 04 00 00 -> TS_INPUT_CAPABILITYSET::keyboardLayout = 0x00000409
 = English (United States)
 04 00 00 00 -> TS_INPUT_CAPABILITYSET::keyboardType = 4
 = IBM enhanced (101- or 102-key) keyboard
 00 00 00 00 -> TS_INPUT_CAPABILITYSET::keyboardSubType = 0
 0c 00 00 00 -> TS_INPUT_CAPABILITYSET::keyboardFunctionKey = 0x0c = 12

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

360 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_INPUT_CAPABILITYSET::imeFileName

 Sound Capability Set (8 bytes)
 0c 00 08 00 01 00 00 00

 0c 00 -> TS_SOUND_CAPABILITYSET::capabilitySetType = CAPSTYPE_SOUND (12)
 08 00 -> TS_SOUND_CAPABILITYSET::lengthCapability = 8 bytes

 01 00 -> TS_SOUND_CAPABILITYSET::soundFlags = 0x0001 = SOUND_FLAG_BEEPS
 00 00 -> TS_SOUND_CAPABILITYSET::pad2octetsA

 Font Capability Set (8 bytes)
 0e 00 08 00 01 00 00 00

 0e 00 -> TS_FONT_CAPABILITYSET::capabilitySetType = CAPSTYPE_FONT (14)
 08 00 -> TS_FONT_CAPABILITYSET::lengthCapability = 8 bytes

 01 00 -> TS_FONT_CAPABILITYSET::fontSupportFlags = 0x0001 = FONTSUPPORT_FONTLIST
 00 00 -> TS_FONT_CAPABILITYSET::pad2octets

 Glyph Cache Capability Set (52 bytes)
 10 00 34 00 fe 00 04 00 fe 00 04 00 fe 00 08 00
 fe 00 08 00 fe 00 10 00 fe 00 20 00 fe 00 40 00
 fe 00 80 00 fe 00 00 01 40 00 00 08 00 01 00 01
 03 00 00 00

 10 00 -> TS_GLYPHCACHE_CAPABILITYSET::capabilitySetType = CAPSTYPE_GLYPHCACHE (16)
 34 00 -> TS_GLYPHCACHE_CAPABILITYSET::lengthCapability = 52 bytes

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[0]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 04 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 4

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[1]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 04 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 4

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[2]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 08 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 8

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[3]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 08 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 8

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[4]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 10 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 16

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[5]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 20 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 32

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[6]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 40 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 64

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[7]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 80 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 128

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[8]:
 fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254
 00 01 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 256

 TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[9]:
 40 00 -> TS_CACHE_DEFINITION::CacheEntries = 64
 00 08 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 256

361 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 TS_GLYPHCACHE_CAPABILITYSET::FragCache:
 00 01 -> TS_CACHE_DEFINITION::CacheEntries = 256
 00 01 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 256

 03 00 -> TS_GLYPHCACHE_CAPABILITYSET::GlyphSupportLevel = GLYPH_SUPPORT_ENCODE (3)
 00 00 -> TS_GLYPHCACHE_CAPABILITYSET::pad2octets

 Brush Capability Set (8 bytes)
 0f 00 08 00 01 00 00 00

 0f 00 -> TS_BRUSH_CAPABILITYSET::capabilitySetType = CAPSTYPE_BRUSH (15)
 08 00 -> TS_BRUSH_CAPABILITYSET::lengthCapability = 8 bytes

 01 00 00 00 -> TS_BRUSH_CAPABILITYSET::brushSupportLevel = BRUSH_COLOR_8x8 (1)

 Offscreen Bitmap Cache Capability Set (12 bytes)
 11 00 0c 00 01 00 00 00 00 1e 64 00

 11 00 -> TS_OFFSCREEN_CAPABILITYSET::capabilitySetType = CAPSTYPE_OFFSCREENCACHE (17)
 0c 00 -> TS_OFFSCREEN_CAPABILITYSET::lengthCapability = 12 bytes

 01 00 00 00 -> TS_OFFSCREEN_CAPABILITYSET::offscreenSupportLevel = TRUE (1)
 00 1e -> TS_OFFSCREEN_CAPABILITYSET::offscreenCacheSize = 7680
 64 00 -> TS_OFFSCREEN_CAPABILITYSET::offscreenCacheEntries = 100

 Virtual Channel Capability Set (8 bytes)
 14 00 08 00 01 00 00 00

 14 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::capabilitySetType = CAPSTYPE_VIRTUALCHANNEL (20)
 08 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::lengthCapability = 8 bytes

 01 00 00 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::flags = 0x00000001 = VCCAPS_COMPR_SC

 DrawNineGridCache Capability Set (12 bytes)
 15 00 0c 00 02 00 00 00 00 0a 00 01

 15 00 -> TS_DRAW_NINEGRID_CAPABILITYSET::capabilitySetType = CAPSTYPE_DRAWNINEGRIDCACHE (21)
 0c 00 -> TS_DRAW_NINEGRID_CAPABILITYSET::lengthCapability = 12 bytes

 02 00 00 00 -> TS_DRAW_NINEGRID_CAPABILITYSET::drawNineGridSupportLevel
 = DRAW_NINEGRID_SUPPORTED_REV2 (2)
 00 0a -> TS_DRAW_NINEGRID_CAPABILITYSET::drawNineGridCacheSize = 2560
 00 01 -> TS_DRAW_NINEGRID_CAPABILITYSET::drawNineGridCacheEntries = 256

 DrawGdiPlus Capability Set (40 bytes)
 16 00 28 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00

 16 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::capabilitySetType = CAPSTYPE_DRAWGDIPLUS (22)
 28 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::lengthCapability = 40 bytes

 00 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusSupportLevel
 = TS_DRAW_GDIPLUS_DEFAULT (0)
 00 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::GdipVersion = 0
 00 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusCacheLevel
 = TS_DRAW_GDIPLUS_CACHE_LEVEL_DEFAULT (0)

 00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipGraphicsCacheEntries
 00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectBrushCacheEntries
 00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectPenCacheEntries
 00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageCacheEntries
 00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageAttributesCacheEntries

 00 00 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipGraphicsCacheChunkSize
 00 00 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectBrushCacheChunkSize
 00 00 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectPenCacheChunkSize
 00 00 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectImageAttributesCacheChunkSize

 00 00 -> TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheChunkSize

362 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 -> TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheTotalSize
 00 00 -> TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheMaxSize

4.1.14 Client Synchronize PDU

The following is an annotated dump of the Synchronize PDU (section 2.2.1.14).

 00000000 03 00 00 30 02 f0 80 64 00 06 03 eb 70 22 28 00 ...0...d....p"(.
 00000010 81 f8 59 ff cb 2f 73 57 2b 42 db 88 2e 23 a9 97 ..Y../sW+B...#..
 00000020 c2 b1 f5 74 bc 49 cc 8a d8 fd 60 8a 7a f6 44 75 ...t.I....`.z.Du

 03 00 00 30 -> TPKT Header (length = 48 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 22 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x22 = 34 bytes

 28 00 -> TS_SECURITY_HEADER::flags = 0x0028
 0x0028
 = 0x0020 | 0x0008
 = SEC_IGNORE_SEQNO | SEC_ENCRYPT

 81 f8 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 59 ff cb 2f 73 57 2b 42 -> TS_SECURITY_HEADER1::dataSignature

 db 88 2e 23 a9 97 c2 b1 f5 74 bc 49 cc 8a d8 fd
 60 8a 7a f6 44 75 -> Encrypted TS_SYNCHRONIZE_PDU

 Decrypted TS_SYNCHRONIZE_PDU:
 00000000 16 00 17 00 ef 03 ea 03 01 00 00 01 08 00 1f 00
 00000010 00 00 01 00 ea 03

 16 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0016 = 22 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 08 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0008 = 8 bytes
 1f -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SYNCHRONIZE (31)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 01 00 ->TS_SYNCHRONIZE_PDU::messageType = SYNCMSGTYPE_SYNC (1)
 ea 03 ->TS_SYNCHRONIZE_PDU::targetUser = 0x03ea

4.1.15 Client Control PDU - Cooperate

The following is an annotated dump of the Client Control (Cooperate) PDU (section 2.2.1.15).

 00000000 03 00 00 34 02 f0 80 64 00 06 03 eb 70 26 08 00 ...4...d....p&..
 00000010 81 f8 04 03 de f7 91 a3 7c af 3f 7a 62 4e 3b fe|.?zbN;.
 00000020 b6 7a 28 bf 0d 4f 31 27 03 b9 4a f1 e6 26 f0 bd .z(..O1'..J..&..
 00000030 c5 71 0a 53 .q.S

363 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 03 00 00 34 -> TPKT Header (length = 52 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 26 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x26 = 38 bytes

 08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT
 81 f8 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 04 03 de f7 91 a3 7c af -> TS_SECURITY_HEADER1::dataSignature

 3f 7a 62 4e 3b fe b6 7a 28 bf 0d 4f 31 27 03 b9
 4a f1 e6 26 f0 bd c5 71 0a 53 -> Encrypted TS_CONTROL_PDU

 Decrypted TS_CONTROL_PDU:
 00000000 1a 00 17 00 ef 03 ea 03 01 00 00 01 0c 00 14 00
 00000010 00 00 04 00 00 00 00 00 00 00

 1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 0c 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x000c = 12 bytes
 14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 04 00 -> TS_CONTROL_PDU::action = CTRLACTION_COOPERATE (4)
 00 00 -> TS_CONTROL_PDU::grantId = 0
 00 00 00 00 -> TS_CONTROL_PDU::controlId = 0

4.1.16 Client Control PDU - Request Control

The following is an annotated dump of the Client Control (Request) PDU (section 2.2.1.16).

 00000000 03 00 00 34 02 f0 80 64 00 06 03 eb 70 26 08 00 ...4...d....p&..
 00000010 81 f8 3b 8b b4 72 56 ff d1 d6 4b 17 1e ae f6 8d ..;..rV...K.....
 00000020 dd 75 a0 a3 16 97 29 12 b7 cf 14 c9 11 0b d8 c8 .u....).........
 00000030 fa a1 81 3a ...:

 03 00 00 34 -> TPKT Header (length = 52 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 26 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x26 = 38 bytes

 08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT
 81 f8 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 3b 8b b4 72 56 ff d1 d6 -> TS_SECURITY_HEADER1::dataSignature

 4b 17 1e ae f6 8d dd 75 a0 a3 16 97 29 12 b7 cf
 14 c9 11 0b d8 c8 fa a1 81 3a -> Encrypted TS_CONTROL_PDU

364 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 Decrypted TS_CONTROL_PDU:
 00000000 1a 00 17 00 ef 03 ea 03 01 00 00 01 0c 00 14 00
 00000010 00 00 01 00 00 00 00 00 00 00

 1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 0c 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x000c = 12 bytes
 14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 01 00 -> TS_CONTROL_PDU::action = CTRLACTION_REQUEST_CONTROL (1)
 00 00 -> TS_CONTROL_PDU::grantId = 0
 00 00 00 00 -> TS_CONTROL_PDU::controlId = 0

4.1.17 Client Persistent Key List PDU

The following is an annotated dump of the Persistent Key List PDU (section 2.2.1.17).

 00000000 03 00 01 0d 02 f0 80 64 00 06 03 eb 70 80 fe 08d....p...
 00000010 00 90 16 ce c6 4a 69 d9 d3 49 9e 10 a5 04 0f cfJi..I......
 00000020 ab 4f 6a 3b da 31 03 4f 29 bd 64 3e 98 46 ec 0a .Oj;.1.O).d>.F..
 00000030 1d cd 9c ad 13 58 a3 bd 8b 9d ae f1 e9 9d 43 96X........C.
 00000040 53 f5 d0 b7 50 88 f3 81 f1 cb ad 17 55 75 9c 5f S...P.......Uu._
 00000050 ef ec a9 35 40 b3 74 06 d1 ae d1 15 9f ed 91 49 ...5@.t........I
 00000060 a6 3d 1f c1 31 b1 17 58 da 0e 24 df 1f 87 86 39 .=..1..X..$....9
 00000070 d1 46 66 ea 0e 98 d0 4b 5b 7b 01 b9 8a e8 68 32 .Ff....K[{....h2
 00000080 80 da b9 58 a6 9f 4f b5 ba 79 04 ae d9 63 c0 6a ...X..O..y...c.j
 00000090 a8 81 51 97 25 0b 3f c3 d2 47 fa 0a 7a 22 1f bd ..Q.%.?..G..z"..
 000000a0 5f 4e b8 00 ea 32 06 e6 af 15 e4 6f b3 d3 c1 4c _N...2.....o...L
 000000b0 cb 0a 8e dd a7 29 07 03 59 c1 c1 08 1b aa 56 3c)..Y.....V<
 000000c0 f5 d0 89 e3 cd cf 26 8b 65 59 0a cb 7e 81 b6 33&.eY..~..3
 000000d0 bb 4d 9a 13 80 e7 57 2a 0d 1d 11 b4 18 c4 31 2f .M....W*......1/
 000000e0 4f 89 77 09 94 2e c3 8e bf fd 6a 39 2b 47 74 0e O.w.......j9+Gt.
 000000f0 12 74 ec 45 14 c3 6b 27 d6 b6 93 11 a4 bc 46 de .t.E..k'......F.
 00000100 69 4a b4 54 c7 24 24 99 8f 60 b7 21 59 iJ.T.$$..`.!Y

 03 00 01 0d -> TPKT Header (length = 269 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 80 fe -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0xfe = 254 bytes

 08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT
 90 16 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 ce c6 4a 69 d9 d3 49 9e -> TS_SECURITY_HEADER1::dataSignature

 10 a5 04 0f cf ab 4f 6a 3b da 31 03 4f 29 bd 64
 3e 98 46 ec 0a 1d cd 9c ad 13 58 a3 bd 8b 9d ae
 f1 e9 9d 43 96 53 f5 d0 b7 50 88 f3 81 f1 cb ad
 17 55 75 9c 5f ef ec a9 35 40 b3 74 06 d1 ae d1
 15 9f ed 91 49 a6 3d 1f c1 31 b1 17 58 da 0e 24
 df 1f 87 86 39 d1 46 66 ea 0e 98 d0 4b 5b 7b 01

365 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 b9 8a e8 68 32 80 da b9 58 a6 9f 4f b5 ba 79 04
 ae d9 63 c0 6a a8 81 51 97 25 0b 3f c3 d2 47 fa
 0a 7a 22 1f bd 5f 4e b8 00 ea 32 06 e6 af 15 e4
 6f b3 d3 c1 4c cb 0a 8e dd a7 29 07 03 59 c1 c1
 08 1b aa 56 3c f5 d0 89 e3 cd cf 26 8b 65 59 0a
 cb 7e 81 b6 33 bb 4d 9a 13 80 e7 57 2a 0d 1d 11
 b4 18 c4 31 2f 4f 89 77 09 94 2e c3 8e bf fd 6a
 39 2b 47 74 0e 12 74 ec 45 14 c3 6b 27 d6 b6 93
 11 a4 bc 46 de 69 4a b4 54 c7 24 24 99 8f 60 b7
 21 59 -> Encrypted TS_BITMAPCACHE_PERSISTENT_LIST

 Decrypted TS_BITMAPCACHE_PERSISTENT_LIST:
 00000000 f2 00 17 00 ef 03 ea 03 01 00 00 01 00 00 2b 00+.
 00000010 00 00 00 00 00 00 19 00 00 00 00 00 00 00 00 00
 00000020 19 00 00 00 00 00 03 00 00 00 a3 1e 51 16 48 29Q.H)
 00000030 22 78 61 f7 89 9c cd a9 66 a8 44 4e b7 bd b4 6d "xa.....f.DN...m
 00000040 9e f6 39 91 64 af bc c3 70 02 9f aa fa fd 6e ba ..9.d...p.....n.
 00000050 58 dc 7b af de 06 56 3a c2 ce 68 ba 54 b6 bf 9e X.{...V:..h.T...
 00000060 bc d6 d1 22 c0 98 63 e9 41 fe 38 6c 50 35 0e db ..."..c.A.8lP5..
 00000070 b3 f5 45 cc 18 2d 30 44 fc 88 e5 c3 5d 23 63 f6 ..E..-0D....]#c.
 00000080 cf 53 0a a8 01 b6 10 51 a5 28 70 81 6c 59 19 29 .S.....Q.(p.lY.)
 00000090 00 c9 e2 b5 e7 a7 46 04 4e 1b 72 8d 4a dd 81 bbF.N.r.J...
 000000a0 14 16 53 6a 4e 3c 48 72 66 c9 6c 77 4b 4a 32 48 ..SjN<Hrf.lwKJ2H
 000000b0 2c c6 02 54 56 f2 81 c9 85 56 2c 0a 3d 54 86 9d ,..TV....V,.=T..
 000000c0 2b 97 63 0f 0a 36 f8 63 79 3e c9 70 41 4b ec a8 +.c..6.cy>.pAK..
 000000d0 7c 7b 79 28 b6 b4 a6 43 24 de cb 9c ff a2 29 3c |{y(...C$.....)<
 000000e0 02 56 64 df 80 b0 0d 6e e7 1a 83 c7 54 31 aa 8a .Vd....n....T1..
 000000f0 90 b3 ..

 f2 00 -> TS_SHARECONTROLHEADER::totalLength = 0x00f2 = 242 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 00 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0
 2b -> TS_SHAREDATAHEADER::pduType2 =
 PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST (43)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::numEntriesCache0 = 0
 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::numEntriesCache1 = 0
 19 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::numEntriesCache2 = 0x19 = 25
 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::numEntriesCache3 = 0
 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::numEntriesCache4 = 0

 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::totalEntriesCache0 = 0
 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::totalEntriesCache1 = 0
 19 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::totalEntriesCache2 = 0x19 = 25
 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::totalEntriesCache3 = 0
 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::totalEntriesCache4 = 0

 03 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::bBitMask = 0x03
 0x03
 = 0x01 | 0x02
 = PERSIST_FIRST_PDU | PERSIST_LAST_PDU

 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::Pad2
 00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST_PDU::Pad3

 TS_BITMAPCACHE_PERSISTENT_LIST_PDU::entries:
 a3 1e 51 16 -> Low 32-bits of Cache 2, Key 0 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 48 29 22 78 -> High 32-bits of Cache 2, Key 0 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 61 f7 89 9c -> Low 32-bits of Cache 2, Key 1 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 cd a9 66 a8 -> High 32-bits of Cache 2, Key 1 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

366 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 44 4e b7 bd -> Low 32-bits of Cache 2, Key 2 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 b4 6d 9e f6 -> High 32-bits Cache 2, Key 2 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 39 91 64 af -> Low 32-bits of Cache 2, Key 3 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 bc c3 70 02 -> High 32-bits of Cache 2, Key 3 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 9f aa fa fd -> Low 32-bits of Cache 2, Key 4 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 6e ba 58 dc -> High 32-bits of Cache 2, Key 4 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 7b af de 06 -> Low 32-bits of Cache 2, Key 5 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 56 3a c2 ce -> High 32-bits of Cache 2, Key 5 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 68 ba 54 b6 -> Low 32-bits of Cache 2, Key 6 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 bf 9e bc d6 -> High 32-bits of Cache 2, Key 6 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 d1 22 c0 98 -> Low 32-bits of Cache 2, Key 7 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 63 e9 41 fe -> High 32-bits of Cache 2, Key 7 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 38 6c 50 35 -> Low 32-bits of Cache 2, Key 8 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 0e db b3 f5 -> High 32-bits of Cache 2, Key 8 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 45 cc 18 2d -> Low 32-bits of Cache 2, Key 9 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 30 44 fc 88 -> High 32-bits of Cache 2, Key 9 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 e5 c3 5d 23 -> Low 32-bits of Cache 2, Key 10 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 63 f6 cf 53 -> High 32-bits of Cache 2, Key 10 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 0a a8 01 b6 -> Low 32-bits of Cache 2, Key 11 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 10 51 a5 28 -> High 32-bits of Cache 2, Key 11 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 70 81 6c 59 -> Low 32-bits of Cache 2, Key 12 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 19 29 00 c9 -> High 32-bits of Cache 2, Key 12 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 e2 b5 e7 a7 -> Low 32-bits of Cache 2, Key 13 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 46 04 4e 1b -> High 32-bits of Cache 2, Key 13 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 72 8d 4a dd -> Low 32-bits of Cache 2, Key 14 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 81 bb 14 16 -> High 32-bits of Cache 2, Key 14 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 53 6a 4e 3c -> Low 32-bits of Cache 2, Key 15 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 48 72 66 c9 -> High 32-bits of Cache 2, Key 15 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 6c 77 4b 4a -> Low 32-bits of Cache 2, Key 16 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 32 48 2c c6 -> High 32-bits of Cache 2, Key 16 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 02 54 56 f2 -> Low 32-bits of Cache 2, Key 17 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 81 c9 85 56 -> High 32-bits of Cache 2, Key 17 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 2c 0a 3d 54 -> Low 32-bits of Cache 2, Key 18 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 86 9d 2b 97 -> High 32-bits of Cache 2, Key 18 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 63 0f 0a 36 -> Low 32-bits of Cache 2, Key 19 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 f8 63 79 3e -> High 32-bits of Cache 2, Key 19 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 c9 70 41 4b -> Low 32-bits of Cache 2, Key 20 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 ec a8 7c 7b -> High 32-bits of Cache 2, Key 20 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 79 28 b6 b4 -> Low 32-bits of Cache 2, Key 21 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 a6 43 24 de -> High 32-bits of Cache 2, Key 21 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 cb 9c ff a2 -> Low 32-bits of Cache 2, Key 22 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 29 3c 02 56 -> High 32-bits of Cache 2, Key 22 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 64 df 80 b0 -> Low 32-bits of Cache 2, Key 23 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 0d 6e e7 1a -> High 32-bits of Cache 2, Key 23 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
 83 c7 54 31 -> Low 32-bits of Cache 2, Key 24 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
 aa 8a 90 b3 -> High 32-bits of Cache 2, Key 24 (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

4.1.18 Client Font List PDU

The following is an annotated dump of the Font List PDU (section 2.2.1.18).

 00000000 03 00 00 34 02 f0 80 64 00 06 03 eb 70 26 08 00 ...4...d....p&..
 00000010 80 fe 98 19 5c fb 92 92 f5 97 18 b2 b7 c3 13 dc\...........
 00000020 03 fb 64 45 c0 43 6d 91 37 26 fd 8e 71 e6 f2 2a ..dE.Cm.7&..q..*
 00000030 1e ae 35 03 ..5.

 03 00 00 34 -> TPKT Header (length = 52 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 26 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x26 = 38 bytes

 08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT

367 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 80 fe -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 98 19 5c fb 92 92 f5 97 -> TS_SECURITY_HEADER1::dataSignature

 18 b2 b7 c3 13 dc 03 fb 64 45 c0 43 6d 91 37 26
 fd 8e 71 e6 f2 2a 1e ae 35 03 -> Encrypted TS_FONT_LIST_PDU

 Decrypted TS_FONT_LIST_PDU:
 00000000 1a 00 17 00 ef 03 ea 03 01 00 00 01 3b da 27 00;.'.
 00000010 00 00 00 00 00 00 03 00 32 00 2.

 1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 3b da -> TS_SHAREDATAHEADER::uncompressedLength (uninitialized due to bug)
 27 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_FONTLIST (39)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 00 00 -> TS_FONT_LIST_PDU::numberFonts = 0
 00 00 -> TS_FONT_LIST_PDU::totalNumFonts = 0

 03 00 -> TS_FONT_LIST_PDU::listFlags = 0x0003
 0x0003
 = 0x0002 | 0x0001
 = FONTLIST_LAST | FONTLIST_FIRST

 32 00 -> TS_FONT_LIST_PDU::entrySize = 0x0032 = 50 bytes

4.1.19 Server Synchronize PDU

The following is an annotated dump of the Synchronize PDU (section 2.2.1.19).

 00000000 03 00 00 30 02 f0 80 68 00 01 03 eb 70 22 08 08 ...0...h....p"..
 00000010 02 03 f4 4e d1 9e b4 53 b6 e6 d7 be cc c2 2b 18 ...N...S......+.
 00000020 a2 cf 5c 9f 59 de c6 02 e2 ff 36 69 b7 ff 0e 27 ..\.Y.....6i...'

 03 00 00 30 -> TPKT Header (length = 48 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 22 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x22 = 34 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 f4 4e d1 9e b4 53 b6 e6 -> TS_SECURITY_HEADER1::dataSignature

 d7 be cc c2 2b 18 a2 cf 5c 9f 59 de c6 02 e2 ff
 36 69 b7 ff 0e 27 -> Encrypted TS_SYNCHRONIZE_PDU

 Decrypted TS_SYNCHRONIZE_PDU:

368 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00000000 16 00 17 00 ea 03 ea 03 01 00 14 00 16 00 1f 00
 00000010 00 00 01 00 63 44 cD

 16 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0016 = 22 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 14 -> TS_SHAREDATAHEADER::pad1
 00 -> TS_SHAREDATAHEADER::streamID = STREAM_UNDEFINED (0)
 16 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0016 = 22 bytes
 1f -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SYNCHRONIZE (31)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 01 00 -> TS_SYNCHRONIZE_PDU::messageType = SYNCMSGTYPE_SYNC (1)
 63 44 -> TS_SYNCHRONIZE_PDU::targetUser (uninitialized due to bug)

4.1.20 Server Control PDU - Cooperate

The following is an annotated dump of the Server Control (Cooperate) PDU (section 2.2.1.20).

 00000000 03 00 00 34 02 f0 80 68 00 01 03 eb 70 26 08 08 ...4...h....p&..
 00000010 02 03 1c 2c 1b a6 84 ae 6d 6d 1f ad 25 6d 8b 61 ...,....mm..%m.a
 00000020 11 f1 b2 0e 12 e6 e8 6b 43 af b0 4e c8 79 73 46kC..N.ysF
 00000030 31 ee 05 f9 1...

 03 00 00 34 -> TPKT Header (length = 52 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 26 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x26 = 38 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 1c 2c 1b a6 84 ae 6d 6d -> TS_SECURITY_HEADER1::dataSignature

 1f ad 25 6d 8b 61 11 f1 b2 0e 12 e6 e8 6b 43 af
 b0 4e c8 79 73 46 31 ee 05 f9 -> Encrypted TS_CONTROL_PDU

 Decrypted TS_CONTROL_PDU:
 00000000 1a 00 17 00 ea 03 ea 03 01 00 b5 02 1a 00 14 00
 00000010 00 00 04 00 00 00 00 00 00 00

 1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 b5 -> TS_SHAREDATAHEADER::pad1
 02 -> TS_SHAREDATAHEADER::streamID = STREAM_MED (2)
 1a 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x001a = 26 bytes

369 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 04 00 -> TS_CONTROL_PDU::action = CTRLACTION_COOPERATE (4)
 00 00 -> TS_CONTROL_PDU::grantId = 0
 00 00 00 00 -> TS_CONTROL_PDU::controlId = 0

4.1.21 Server Control PDU - Granted Control

The following is an annotated dump of the Server Control (Granted Control) PDU (section 2.2.1.21).

 00000000 03 00 00 34 02 f0 80 68 00 01 03 eb 70 26 08 08 ...4...h....p&..
 00000010 02 03 c3 90 ba eb 39 68 dd ed 60 54 ad 97 a5 a59h..`T....
 00000020 ec 44 e6 63 45 20 bd c9 66 4e 12 de 01 d3 3c 39 .D.cE ..fN....<9
 00000030 09 0c 99 f8

 03 00 00 34 -> TPKT Header (length = 52 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 26 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x26 = 38 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 c3 90 ba eb 39 68 dd ed -> TS_SECURITY_HEADER1::dataSignature

 60 54 ad 97 a5 a5 ec 44 e6 63 45 20 bd c9 66 4e
 12 de 01 d3 3c 39 09 0c 99 f8 -> Encrypted TS_CONTROL_PDU

 Decrypted TS_CONTROL_PDU:
 00000000 1a 00 17 00 ea 03 ea 03 01 00 12 02 1a 00 14 00
 00000010 00 00 02 00 ef 03 ea 03 00 00

 1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 12 -> TS_SHAREDATAHEADER::pad1
 02 -> TS_SHAREDATAHEADER::streamID = STREAM_MED (2)
 1a 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x001a = 26 bytes
 14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 02 00 -> TS_CONTROL_PDU::action = CTRLACTION_GRANTED_CONTROL (2)
 ef 03 -> TS_CONTROL_PDU::grantId = 0x03ef = 1007
 ea 03 00 00 -> TS_CONTROL_PDU::controlId = 0x03ea = 1002

4.1.22 Server Font Map PDU

The following is an annotated dump of the Font Map PDU (section 2.2.1.22).

370 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00000000 03 00 00 34 02 f0 80 68 00 01 03 eb 70 26 08 08 ...4...h....p&..
 00000010 02 03 41 e9 b7 a2 62 9e bb d3 a0 be 09 9e d4 de ..A...b.........
 00000020 8c 6d b6 79 64 4c bf 9d 21 46 32 7f 3b e4 dc 7f .m.ydL..!F2.;...
 00000030 08 39 23 c1 .9#.

 03 00 00 34 -> TPKT Header (length = 52 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 26 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x26 = 38 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 41 e9 b7 a2 62 9e bb d3 -> TS_SECURITY_HEADER1::dataSignature

 a0 be 09 9e d4 de 8c 6d b6 79 64 4c bf 9d 21 46
 32 7f 3b e4 dc 7f 08 39 23 c1 -> Encrypted TS_FONT_MAP_PDU

 Decrypted TS_FONT_MAP_PDU:
 00000000 1a 00 17 00 ea 03 ea 03 01 00 45 02 1a 00 28 00E...(.
 00000010 00 00 00 00 00 00 03 00 04 00

 1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
 45 -> TS_SHAREDATAHEADER::pad1
 02 -> TS_SHAREDATAHEADER::streamID = STREAM_MED (2)
 1a 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x001a = 26 bytes
 28 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_FONTMAP (40)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 00 00 -> TS_FONT_MAP_PDU::numberEntries = 0
 00 00 -> TS_FONT_MAP_PDU::totalNumEntries = 0

 03 00 -> TS_FONT_MAP_PDU::mapFlags = 0x0003
 0x0003
 = 0x0002 | 0x0001
 = FONTMAP_LAST | FONTMAP_FIRST

 04 00 -> TS_FONT_MAP_PDU::entrySize = 4 bytes

4.2 Annotated User-Initiated (on Client) Disconnection Sequence

The annotated disconnection sequence PDUs detailed in sections 4.2.1 through 4.2.3 were exchanged
between a Microsoft RDP 5.1 client and Microsoft RDP 5.1 server.

4.2.1 Client Shutdown Request PDU

The following is an annotated dump of the Shutdown Request PDU (section 2.2.2.1).

371 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00000000 03 00 00 2c 02 f0 80 64 00 06 03 eb 70 1e 08 08 ...,...d....p...
 00000010 70 52 ca 3d ba 05 20 60 e6 57 43 2c f1 41 f0 3b pR.=.. `.WC,.A.;
 00000020 0c a0 33 ff 04 55 d4 e6 9b 3c 28 f6 ..3..U...<(.

 03 00 00 2c -> TPKT Header (length = 44 bytes)
 02 f0 80 -> X.224 Data TPDU

 64 00 06 03 eb 70 1e -> PER encoded (ALIGNED variant of BASIC-PER) SendDataRequest
 initiator = 1007 (0x03ef)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x1e = 30 bytes

 08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT
 70 52 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 ca 3d ba 05 20 60 e6 57 -> TS_SECURITY_HEADER1::dataSignature

 43 2c f1 41 f0 3b 0c a0 33 ff 04 55 d4 e6 9b 3c
 28 f6 -> Encrypted TS_SHUTDOWN_REQ_PDU

 Decrypted TS_SHUTDOWN_REQ_PDU:
 12 00 17 00 ef 03 ea 03 02 00 00 01 04 00 24 00
 00 00

 12 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0012 = 18 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007
 ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 04 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0004 = 4 bytes
 24 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SHUTDOWN_REQUEST (36)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

4.2.2 Server Shutdown Request Denied PDU

The following is an annotated dump of the Shutdown Request Denied PDU (section 2.2.2.2).

 00000000 03 00 00 24 02 f0 80 68 00 01 03 eb 70 1e 08 08 ...$...h....p...
 00000010 10 00 31 19 b0 6c e3 cf 5e 0a df b6 5f 69 ce 41 ..1..l..^..._i.A
 00000020 e3 23 f1 f6 50 4a 59 2e af e8 80 fb .#..PJY.....

 03 00 00 24 -> TPKT Header (length = 36 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 1e -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x1e = 30 bytes

 08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT
 10 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 31 19 b0 6c e3 cf 5e 0a -> TS_SECURITY_HEADER1::dataSignature

 df b6 5f 69 ce 41 e3 23 f1 f6 50 4a 59 2e af e8
 80 fb -> Encrypted TS_SHUTDOWN_DENIED_PDU

372 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 Decrypted TS_SHUTDOWN_DENIED_PDU:
 12 00 17 00 ea 03 ea 03 02 00 a6 02 12 00 25 00
 00 00

 12 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0012 = 18 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea
 a6 -> TS_SHAREDATAHEADER::pad1
 02 -> TS_SHAREDATAHEADER::streamID = STREAM_MED (2)
 12 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0012 = 18 bytes
 25 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SHUTDOWN_DENIED (37)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

4.2.3 MCS Disconnect Provider Ultimatum PDU

The following is an annotated dump of the MCS Disconnect Provider Ultimatum PDU (section 2.2.2.3).

 00000000 03 00 00 09 02 f0 80 21 80 !.

 03 00 00 09 -> TPKT Header (length = 9 bytes)
 02 f0 80 -> X.224 Data TPDU

 PER encoded (ALIGNED variant of BASIC-PER) PDU contents:
 21 80

 0x21:
 0 - --\
 0 - |
 1 - | CHOICE: From DomainMCSPDU select disconnectProviderUltimatum (8)
 0 - | of type DisconnectProviderUltimatum
 0 - |
 0 - --/
 0 - --\
 1 - |
 | DisconnectProviderUltimatum::reason = rn-user-requested (3)
 0x80: |
 1 - --/
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding
 0 - padding

4.3 Annotated Save Session Info PDU

The annotated Save Session Info PDUs detailed in sections 4.3.1 through 4.3.3 were sent from a
Microsoft RDP 5.1 server to a Microsoft RDP 5.1 client.

4.3.1 Logon Info Version 2

The following is an annotated dump of Save Session Info PDU containing a Logon Info Version 2
structure, section 2.2.10.1.1.2.

373 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00000000 03 00 02 8b 02 f0 80 68 00 01 03 eb 70 82 7c 08h....p.|.
 00000010 08 00 00 6e 4b c4 ce 9e 4a 69 c4 0a f9 41 2e 6b ...nK...Ji...A.k
 00000020 28 f5 95 7e ca c3 87 37 43 4c da 68 84 12 11 a1 (..~...7CL.h....
 00000030 b8 5c 28 b2 78 15 30 98 c2 20 00 36 ef e6 6c 91 .\(.x.0.. .6..l.
 00000040 60 d2 c7 51 f7 de 49 c3 0c 3e 5b 51 89 7f a3 b3 `..Q..I..>[Q....
 00000050 d6 58 30 50 7b 1b ed 47 b6 8a fe 4f e2 e3 7b 65 .X0P{..G...O..{e
 00000060 08 52 ed bf 52 16 8c 8b 42 4e 31 a0 8c 8b 59 f9 .R..R...BN1...Y.
 00000070 84 66 58 b4 f8 a0 b6 49 15 01 b4 00 56 bd fe 7e .fX....I....V..~
 00000080 dd ea 4a e1 9a 5a 41 dc e0 9b 1d d6 ca 09 54 94 ..J..ZA.......T.
 00000090 93 48 04 40 f3 6b 17 9b 81 a2 3d 66 2e c2 00 70 .H.@.k....=f...p
 000000a0 8f c5 5e 12 a5 54 98 77 4b 74 22 07 a8 09 5b 4f ..^..T.wKt"...[O
 000000b0 d6 04 50 6f 90 88 1f 6d 66 a6 19 31 59 f3 68 74 ..Po...mf..1Y.ht
 000000c0 16 25 51 b1 25 97 7b 3b e2 c9 ae 99 0d 8b 61 77 .%Q.%.{;......aw
 000000d0 3a c7 1c 2e 20 73 93 c3 c6 2b c2 2a d6 0c b6 9c :... s...+.*....
 000000e0 72 b0 2d f1 4b 3d 9c 6c e0 22 2d d3 83 b2 a3 b9 r.-.K=.l."-.....
 000000f0 6e 4f ee 0c f4 98 d7 8c 19 65 1a c6 be c4 9b d9 nO.......e......
 00000100 b4 3f 30 0d df bf 31 9e 33 50 e2 20 a3 9b 1d e2 .?0...1.3P.
 00000110 46 3c b0 dc 07 29 d8 0b ed c3 68 0a 2c d9 3f ff F<...)....h.,.?.
 00000120 3b f2 96 be b6 cf cf 8f 36 d2 86 71 be f7 01 31 ;.......6..q...1
 00000130 5c 61 e7 83 2e 0e 7b 3c 76 18 69 52 39 6e 94 6d \a....{<v.iR9n.m
 00000140 e6 63 00 7f 2e 9f f3 bd 86 43 36 25 d5 1c 77 ed .c.......C6%..w.
 00000150 45 c1 7f f8 41 23 1f 25 f8 0a f2 6d 6d ac 98 d5 E...A#.%...mm...
 00000160 9e d8 3b e4 63 35 67 54 4e c6 8d 50 30 a4 ee af ..;.c5gTN..P0...
 00000170 84 a4 63 80 9e 62 f3 f2 94 8e 2f a3 f9 71 06 99 ..c..b..../..q..
 00000180 3f 25 c8 6d 84 57 1a 5c 51 ef 88 9e e6 60 87 13 ?%.m.W.\Q....`..
 00000190 d9 dd 5c 16 d1 0a bc 99 ec c9 d0 fe ad 3b f7 a4 ..\..........;..
 000001a0 28 7e 41 e5 a1 85 fd ed 92 52 13 7e 1f fa 0d 3f (~A......R.~...?
 000001b0 05 13 86 05 b2 1c fb 5f 76 a5 4c 47 da 4b 2b 1a_v.LG.K+.
 000001c0 88 7f 5d ae c9 c5 03 08 79 6a 96 96 9f 7a 11 be ..].....yj...z..
 000001d0 5a 66 c5 21 f4 a4 bc a0 0f 04 b7 9c 1b 71 9e c4 Zf.!.........q..
 000001e0 d7 b3 60 52 33 a1 c6 76 de cf 05 f1 71 dd 4a aa ..`R3..v....q.J.
 000001f0 3d d6 db 2e a7 f9 45 95 f6 06 d5 a6 3a 49 d7 73 =.....E.....:I.s
 00000200 c5 af 42 c1 f5 6a 86 2b f1 ad 04 4e 1c 7c 00 35 ..B..j.+...N.|.5
 00000210 77 12 c1 7e 6a bd 07 e8 61 fa 78 70 d6 d6 10 f1 w..~j...a.xp....
 00000220 35 53 d8 47 03 a8 7a 49 57 12 5d 96 3a 6d 1c 86 5S.G..zIW.].:m..
 00000230 f6 72 28 c8 5c 87 72 49 3c 0f 9c 07 48 ef 12 5e .r(.\.rI<...H..^
 00000240 14 77 38 01 d0 bf 5e 90 e1 9a 89 f2 fa c6 06 02 .w8...^.........
 00000250 4d 90 fa fd d7 12 bd e6 7e d6 08 15 82 98 b1 c1 M.......~.......
 00000260 84 1b d2 9e 29 41 c0 19 96 16 82 4f 16 ee 5e 86)A.....O..^.
 00000270 9a 1c 2d 1f 85 c3 46 65 ed 31 d4 a9 47 e5 e4 64 ..-...Fe.1..G..d
 00000280 d9 40 0f 78 4e 47 91 ec d7 39 c6 .@.xNG...9.

 03 00 02 8b -> TPKT Header (length = 651 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 82 7c -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x27c = 636 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)

 6e 4b c4 ce 9e 4a 69 c4 -> TS_SECURITY_HEADER1::dataSignature

 0a f9 41 2e 6b 28 f5 95 7e ca c3 87 37 43 4c da
 68 84 12 11 a1 b8 5c 28 b2 78 15 30 98 c2 20 00
 36 ef e6 6c 91 60 d2 c7 51 f7 de 49 c3 0c 3e 5b
 51 89 7f a3 b3 d6 58 30 50 7b 1b ed 47 b6 8a fe
 4f e2 e3 7b 65 08 52 ed bf 52 16 8c 8b 42 4e 31
 a0 8c 8b 59 f9 84 66 58 b4 f8 a0 b6 49 15 01 b4
 00 56 bd fe 7e dd ea 4a e1 9a 5a 41 dc e0 9b 1d

374 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 d6 ca 09 54 94 93 48 04 40 f3 6b 17 9b 81 a2 3d
 66 2e c2 00 70 8f c5 5e 12 a5 54 98 77 4b 74 22
 07 a8 09 5b 4f d6 04 50 6f 90 88 1f 6d 66 a6 19
 31 59 f3 68 74 16 25 51 b1 25 97 7b 3b e2 c9 ae
 99 0d 8b 61 77 3a c7 1c 2e 20 73 93 c3 c6 2b c2
 2a d6 0c b6 9c 72 b0 2d f1 4b 3d 9c 6c e0 22 2d
 d3 83 b2 a3 b9 6e 4f ee 0c f4 98 d7 8c 19 65 1a
 c6 be c4 9b d9 b4 3f 30 0d df bf 31 9e 33 50 e2
 20 a3 9b 1d e2 46 3c b0 dc 07 29 d8 0b ed c3 68
 0a 2c d9 3f ff 3b f2 96 be b6 cf cf 8f 36 d2 86
 71 be f7 01 31 5c 61 e7 83 2e 0e 7b 3c 76 18 69
 52 39 6e 94 6d e6 63 00 7f 2e 9f f3 bd 86 43 36
 25 d5 1c 77 ed 45 c1 7f f8 41 23 1f 25 f8 0a f2
 6d 6d ac 98 d5 9e d8 3b e4 63 35 67 54 4e c6 8d
 50 30 a4 ee af 84 a4 63 80 9e 62 f3 f2 94 8e 2f
 a3 f9 71 06 99 3f 25 c8 6d 84 57 1a 5c 51 ef 88
 9e e6 60 87 13 d9 dd 5c 16 d1 0a bc 99 ec c9 d0
 fe ad 3b f7 a4 28 7e 41 e5 a1 85 fd ed 92 52 13
 7e 1f fa 0d 3f 05 13 86 05 b2 1c fb 5f 76 a5 4c
 47 da 4b 2b 1a 88 7f 5d ae c9 c5 03 08 79 6a 96
 96 9f 7a 11 be 5a 66 c5 21 f4 a4 bc a0 0f 04 b7
 9c 1b 71 9e c4 d7 b3 60 52 33 a1 c6 76 de cf 05
 f1 71 dd 4a aa 3d d6 db 2e a7 f9 45 95 f6 06 d5
 a6 3a 49 d7 73 c5 af 42 c1 f5 6a 86 2b f1 ad 04
 4e 1c 7c 00 35 77 12 c1 7e 6a bd 07 e8 61 fa 78
 70 d6 d6 10 f1 35 53 d8 47 03 a8 7a 49 57 12 5d
 96 3a 6d 1c 86 f6 72 28 c8 5c 87 72 49 3c 0f 9c
 07 48 ef 12 5e 14 77 38 01 d0 bf 5e 90 e1 9a 89
 f2 fa c6 06 02 4d 90 fa fd d7 12 bd e6 7e d6 08
 15 82 98 b1 c1 84 1b d2 9e 29 41 c0 19 96 16 82
 4f 16 ee 5e 86 9a 1c 2d 1f 85 c3 46 65 ed 31 d4
 a9 47 e5 e4 64 d9 40 0f 78 4e 47 91 ec d7 39 c6 -> Encrypted
 TS_SAVE_SESSION_INFO_PDU_DATA

 Decrypted TS_SAVE_SESSION_INFO_PDU_DATA:
 00000000 70 02 17 00 ea 03 ea 03 02 00 00 01 70 02 26 00 p...........p.&.
 00000010 00 00 01 00 00 00 01 00 12 00 00 00 02 00 00 00
 00000020 0c 00 00 00 0e 00 00 00 00 00 00 00 00 00 00 00
 00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

375 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000250 00 00 00 00 00 00 4e 00 54 00 44 00 45 00 56 00N.T.D.E.V.
 00000260 00 00 65 00 6c 00 74 00 6f 00 6e 00 73 00 00 00 ..e.l.t.o.n.s...

 70 02 -> TS_SHARECONTROLHEADER::totalLength = 0x0270 = 624 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 70 02 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0270 = 624 bytes
 26 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SAVE_SESSION_INFO (38)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 01 00 00 00 -> TS_SAVE_SESSION_INFO_PDU_DATA::infoType =
 INFOTYPE_LOGON_LONG (1)

 01 00 -> TS_LOGON_INFO_VERSION_2::Version
 12 00 00 00 -> TS_LOGON_INFO_VERSION_2::Size
 02 00 00 00 -> TS_LOGON_INFO_VERSION_2::SessionId

 0c 00 00 00 -> TS_LOGON_INFO_VERSION_2::cbDomain
 0e 00 00 00 -> TS_LOGON_INFO_VERSION_2::cbUserName

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_LOGON_INFO_VERSION_2::Pad (558 bytes)

 4e 00 54 00 44 00 45 00 56 00 00 00 ->
 TS_LOGON_INFO_VERSION_2::Domain = ""NTDEV

376 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 65 00 6c 00 74 00 6f 00 6e 00 73 00 00 00 ->
 TS_LOGON_INFO_VERSION_2::UserName = "username"

4.3.2 Plain Notify

The following is an annotated dump of Save Session Info PDU (section 2.2.10.1.1) containing a Plain
Notify structure, section 2.2.10.1.1.3.

 00000000 03 00 02 71 02 f0 80 68 00 01 03 eb 70 82 62 08 ...q...h....p.b.
 00000010 08 02 03 90 94 9a cc a2 38 22 3b 03 6e a4 a2 e38";.n...
 00000020 1c 4d 55 aa 56 d3 ca f8 e6 52 99 1e b5 f1 a0 42 .MU.V....R.....B
 00000030 4e 89 64 83 54 1f da 89 a7 f5 53 8b 61 bb 73 b5 N.d.T.....S.a.s.
 00000040 58 d4 6b bc 28 c2 84 c3 90 b4 45 b5 97 d5 d2 05 X.k.(.....E.....
 00000050 bc 66 a4 d4 73 31 7e 0e 4d 42 12 0a 95 88 18 ff .f..s1~.MB......
 00000060 f6 87 07 71 38 5b 3e 48 e6 d4 d0 2f c2 80 4c 7f ...q8[>H.../..L.
 00000070 7d 88 78 5f ec 06 cf 8d cb 91 d6 d3 7c 56 45 59 }.x_........|VEY
 00000080 7c 26 05 ed 14 92 a4 a5 a7 d8 98 1b f0 bf be b0 |&..............
 00000090 bf e3 35 e8 38 8a ad 12 ec e1 72 9c 89 0a 1e a5 ..5.8.....r.....
 000000a0 dc 19 48 5e 2a 7f 9e d0 11 92 70 cc 01 45 50 d5 ..H^*.....p..EP.
 000000b0 1e c7 f9 ff 74 c1 74 45 04 4e 4f 5d 49 ce 41 b3t.tE.NO]I.A.
 000000c0 ed 7f 5c 0e bb 37 50 d0 f7 79 e9 d7 c0 55 4a 1c ..\..7P..y...UJ.
 000000d0 54 29 84 62 3f c9 68 04 5f b3 51 41 89 2b 36 a6 T).b?.h._.QA.+6.
 000000e0 65 0a 4e da 92 61 38 a5 73 16 a5 b4 cd 87 db 84 e.N..a8.s.......
 000000f0 10 3e b9 1f ad 3e df 50 37 5b 8e ac cb e9 e5 51 .>...>.P7[.....Q
 00000100 90 bf e1 e5 0f 16 f2 70 b9 dc 89 2a 46 53 c1 fap...*FS..
 00000110 e2 ef 0a bb ce 16 a1 2a 2d 24 1e 21 fe b9 b6 54*-$.!...T
 00000120 2a 6e ff e5 b7 d3 84 52 19 dd 41 eb eb 4b 81 ab *n.....R..A..K..
 00000130 20 11 8c 18 19 45 e9 23 00 58 a5 71 94 6c c0 58 E.#.X.q.l.X
 00000140 70 9b 1d 75 f6 e4 f7 18 17 f9 8c 1d e9 c1 9b 76 p..u...........v
 00000150 21 a3 6e f6 3e 4b 82 54 f2 16 96 21 0e 1c 54 e9 !.n.>K.T...!..T.
 00000160 d1 65 18 0f e5 f9 45 bf d7 f9 24 a9 7e 3e 6a 73 .e....E...$.~>js
 00000170 23 fc 3c 0a 04 52 c4 ee fa 13 64 21 a1 47 2d 4a #.<..R....d!.G-J
 00000180 4f 00 c0 80 8b 9c a6 ec e9 94 57 a4 3d 88 77 e5 O.........W.=.w.
 00000190 b6 71 e6 a1 15 a4 c6 02 64 a1 af 34 b9 73 87 e1 .q......d..4.s..
 000001a0 22 1b 33 a5 bf bb 7e 96 bc 31 92 f8 4a bc ab f8 ".3...~..1..J...
 000001b0 3f 5b 85 1b 23 75 46 45 b7 31 08 45 ca de 1f df ?[..#uFE.1.E....
 000001c0 49 3e 37 f1 2e af 16 d2 5c 3e 2e 30 68 36 d1 ae I>7.....\>.0h6..
 000001d0 9e 0d bf ff 53 ce 96 f6 6f 31 60 f1 40 e0 6f 0cS...o1`.@.o.
 000001e0 a1 b3 b3 6b 04 99 a1 f6 b9 cf 69 21 e4 a2 bc 07 ...k......i!....
 000001f0 81 c4 36 dc 9e 99 9d 50 da 62 55 71 f0 5d 3d fd ..6....P.bUq.]=.
 00000200 08 73 54 b6 cb 48 dd 5d 54 1a 08 09 ae 9f 98 b0 .sT..H.]T.......
 00000210 3b e3 2a a8 e8 61 1f 4f e5 11 d4 4f 8e e0 96 8d ;.*..a.O...O....
 00000220 c8 ed d1 9e f2 27 1f c6 79 dc a2 df 52 01 21 be'..y...R.!.
 00000230 13 7f c6 55 bb 08 b1 d3 2d de e3 7b 8b 11 95 53 ...U....-..{...S
 00000240 af 4b bf 80 e9 5f 54 d4 96 f1 da 35 ee d4 50 e8 .K..._T....5..P.
 00000250 28 58 aa 59 86 db f3 e5 44 a3 8b 3c 40 fd f5 b5 (X.Y....D..<@...
 00000260 9f 1d b8 1c 30 43 52 9f 4b 34 4b c7 59 6b b6 060CR.K4K.Yk..
 00000270 e7 .

 03 00 02 71 -> TPKT Header (length = 625 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 82 62 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x262 = 610 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)

377 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 90 94 9a cc a2 38 22 3b -> TS_SECURITY_HEADER1::dataSignature

 03 6e a4 a2 e3 1c 4d 55 aa 56 d3 ca f8 e6 52 99
 1e b5 f1 a0 42 4e 89 64 83 54 1f da 89 a7 f5 53
 8b 61 bb 73 b5 58 d4 6b bc 28 c2 84 c3 90 b4 45
 b5 97 d5 d2 05 bc 66 a4 d4 73 31 7e 0e 4d 42 12
 0a 95 88 18 ff f6 87 07 71 38 5b 3e 48 e6 d4 d0
 2f c2 80 4c 7f 7d 88 78 5f ec 06 cf 8d cb 91 d6
 d3 7c 56 45 59 7c 26 05 ed 14 92 a4 a5 a7 d8 98
 1b f0 bf be b0 bf e3 35 e8 38 8a ad 12 ec e1 72
 9c 89 0a 1e a5 dc 19 48 5e 2a 7f 9e d0 11 92 70
 cc 01 45 50 d5 1e c7 f9 ff 74 c1 74 45 04 4e 4f
 5d 49 ce 41 b3 ed 7f 5c 0e bb 37 50 d0 f7 79 e9
 d7 c0 55 4a 1c 54 29 84 62 3f c9 68 04 5f b3 51
 41 89 2b 36 a6 65 0a 4e da 92 61 38 a5 73 16 a5
 b4 cd 87 db 84 10 3e b9 1f ad 3e df 50 37 5b 8e
 ac cb e9 e5 51 90 bf e1 e5 0f 16 f2 70 b9 dc 89
 2a 46 53 c1 fa e2 ef 0a bb ce 16 a1 2a 2d 24 1e
 21 fe b9 b6 54 2a 6e ff e5 b7 d3 84 52 19 dd 41
 eb eb 4b 81 ab 20 11 8c 18 19 45 e9 23 00 58 a5
 71 94 6c c0 58 70 9b 1d 75 f6 e4 f7 18 17 f9 8c
 1d e9 c1 9b 76 21 a3 6e f6 3e 4b 82 54 f2 16 96
 21 0e 1c 54 e9 d1 65 18 0f e5 f9 45 bf d7 f9 24
 a9 7e 3e 6a 73 23 fc 3c 0a 04 52 c4 ee fa 13 64
 21 a1 47 2d 4a 4f 00 c0 80 8b 9c a6 ec e9 94 57
 a4 3d 88 77 e5 b6 71 e6 a1 15 a4 c6 02 64 a1 af
 34 b9 73 87 e1 22 1b 33 a5 bf bb 7e 96 bc 31 92
 f8 4a bc ab f8 3f 5b 85 1b 23 75 46 45 b7 31 08
 45 ca de 1f df 49 3e 37 f1 2e af 16 d2 5c 3e 2e
 30 68 36 d1 ae 9e 0d bf ff 53 ce 96 f6 6f 31 60
 f1 40 e0 6f 0c a1 b3 b3 6b 04 99 a1 f6 b9 cf 69
 21 e4 a2 bc 07 81 c4 36 dc 9e 99 9d 50 da 62 55
 71 f0 5d 3d fd 08 73 54 b6 cb 48 dd 5d 54 1a 08
 09 ae 9f 98 b0 3b e3 2a a8 e8 61 1f 4f e5 11 d4
 4f 8e e0 96 8d c8 ed d1 9e f2 27 1f c6 79 dc a2
 df 52 01 21 be 13 7f c6 55 bb 08 b1 d3 2d de e3
 7b 8b 11 95 53 af 4b bf 80 e9 5f 54 d4 96 f1 da
 35 ee d4 50 e8 28 58 aa 59 86 db f3 e5 44 a3 8b
 3c 40 fd f5 b5 9f 1d b8 1c 30 43 52 9f 4b 34 4b
 c7 59 6b b6 06 e7 -> Encrypted TS_SAVE_SESSION_INFO_PDU_DATA

 Decrypted TS_SAVE_SESSION_INFO_PDU_DATA:
 00000 56 02 17 00 ea 03 ea 03 02 00 00 01 56 02 26 00 V...........V.&.
 00010 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00
 00020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

378 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00250 00 00 00 00 00 00

 56 02 -> TS_SHARECONTROLHEADER::totalLength = 0x0256 = 598 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 56 02 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0256 = 598 bytes
 26 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SAVE_SESSION_INFO (38)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 02 00 00 00 -> TS_SAVE_SESSION_INFO_PDU_DATA::infoType =
 INFOTYPE_LOGON_PLAINNOTIFY (2)

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->
 TS_PLAIN_NOTIFY::Pad (576 bytes)

379 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4.3.3 Logon Info Extended

The following is an annotated dump of Save Session Info PDU (section 2.2.10.1.1) containing a Logon
Info Extended structure, as specified in section 2.2.10.1.1.4.

 00000000 03 00 02 91 02 f0 80 68 00 01 03 eb 70 82 82 08h....p...
 00000010 08 00 00 a6 70 37 7e 91 62 c5 1d c4 a0 a9 67 53p7~.b.....gS
 00000020 c0 fa c3 ee 78 9d 89 70 8e 6b e4 0e d9 2f 44 39x..p.k.../D9
 00000030 97 20 3d 78 77 9e 53 44 4d 91 f3 71 3e 78 60 7b . =xw.SDM..q>x`{
 00000040 6b c6 05 3c 4a f6 2e 92 00 3c 63 81 ce e7 da 37 k..<J....<c....7
 00000050 33 07 70 af a3 8c f8 3a a1 cd dd 02 60 8b 85 35 3.p....:....`..5
 00000060 57 7b 6e dd 69 84 22 68 11 46 74 e6 ae 17 18 8d W{n.i."h.Ft.....
 00000070 df 94 52 6b 82 1e b9 77 73 07 1e 0c 76 d4 83 87 ..Rk...ws...v...
 00000080 38 34 4c f5 3e cf 4f 75 d2 53 bf db 3d fb e4 77 84L.>.Ou.S..=..w
 00000090 92 c9 fc 43 dc 06 96 c0 ad c7 dc 48 11 83 2a 40 ...C.......H..*@
 000000a0 d4 58 3c cd 7e 6e bb d8 a4 f1 a1 6d c5 6e 98 90 .X<.~n.....m.n..
 000000b0 e6 0f 73 02 6a f2 d3 05 af ee 01 e2 cb 5d 8c ae ..s.j........]..
 000000c0 a4 66 4b c6 36 c4 5e 61 a2 fd c3 cd 2f 8c fb a9 .fK.6.^a..../...
 000000d0 34 bb 55 61 92 a8 bf b4 2a aa ff 3a 35 3e 62 4b 4.Ua....*..:5>bK
 000000e0 14 bc ae 11 36 c8 f4 14 c2 ce 86 0f 6c d8 36 576.......l.6W
 000000f0 d6 d4 4e c4 f4 62 54 86 46 e6 c3 a7 fe 6a b5 53 ..N..bT.F....j.S
 00000100 49 8a a6 72 13 fb e5 60 2f 3c 21 4b 76 54 99 e8 I..r...`/<!KvT..
 00000110 c1 83 6c 89 e4 2d 57 ad 15 61 f4 06 bf 87 c8 a6 ..l..-W..a......
 00000120 69 5a f4 ec 6d de c6 af df f8 82 be 42 d0 21 85 iZ..m.......B.!.
 00000130 59 e3 80 9f a6 18 5c 83 3b b5 29 9b c2 f6 ee 13 Y.....\.;.).....
 00000140 2e 53 5c ea ee 2f e4 52 93 58 90 e1 2b fb c1 9d .S\../.R.X..+...
 00000150 2d 64 95 61 8a 22 36 00 45 ea 56 b5 39 e6 de fe -d.a."6.E.V.9...
 00000160 82 dc 67 ec 1d da 2d a3 17 27 22 c2 39 44 2f 04 ..g...-..'".9D/.
 00000170 8d 8b ff 84 27 f0 9c 18 2a d2 69 a0 af fd 6a e0'...*.i...j.
 00000180 3d ab ce f7 4b 6b 5d 8e bf 49 24 b4 71 ec 70 5e =...Kk]..I$.q.p^
 00000190 14 42 cf 0c 8b 45 b6 7d 77 b1 23 0c 87 3b fa f0 .B...E.}w.#..;..
 000001a0 44 13 31 b4 16 84 db 03 c7 04 dd 23 b7 5c 95 c7 D.1........#.\..
 000001b0 29 50 5d d6 dd 21 39 85 18 1b dd fa 1c a2 0a 66)P]..!9........f
 000001c0 a6 75 e0 e5 e4 f0 0e 20 9d 39 9f 07 eb 2c 7f fc .u..... .9...,..
 000001d0 3b f2 88 e0 88 dd 9f 3c 1d b2 36 8b 90 81 b1 63 ;......<..6....c
 000001e0 3f 31 40 2b 91 a7 1b f3 59 bf 90 53 68 c2 5a 99 ?1@+....Y..Sh.Z.
 000001f0 4d 2e 2d 59 b7 bc f9 ba 05 45 18 2c 3c 16 ae d9 M.-Y.....E.,<...
 00000200 0d f1 35 fd 0d 12 51 08 50 18 d2 38 07 52 4c cb ..5...Q.P..8.RL.
 00000210 8c 16 b9 5a 57 2a 8e 7c ee d7 82 56 27 a8 f0 1d ...ZW*.|...V'...
 00000220 9b e8 be 06 a3 ac c3 b8 61 d6 e3 70 05 5a 14 68a..p.Z.h
 00000230 19 4f 78 a5 5a 0d 0a 13 e5 e4 78 04 46 00 cb ba .Ox.Z.....x.F...
 00000240 53 b2 10 a4 6c d9 7b 07 34 44 52 fb e8 65 49 57 S...l.{.4DR..eIW
 00000250 f9 96 6e 0f 53 30 b7 31 93 15 a1 cb 60 ba 6a c4 ..n.S0.1....`.j.
 00000260 dc 29 ac 11 8c 37 91 eb b3 97 b8 51 88 5d 11 f9 .)...7.....Q.]..
 00000270 79 8b 3e 38 8e 88 3d 54 0d fa 83 58 2f ef bc 80 y.>8..=T...X/...
 00000280 2b 78 8c b8 91 c2 a2 21 36 85 00 ae ef 2e c6 28 +x.....!6......(
 00000290 3d =

 03 00 02 91 -> TPKT Header (length = 657 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 82 82 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x282 = 642 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)

 a6 70 37 7e 91 62 c5 1d -> TS_SECURITY_HEADER1::dataSignature

380 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 c4 a0 a9 67 53 c0 fa c3 ee 78 9d 89 70 8e 6b e4
 0e d9 2f 44 39 97 20 3d 78 77 9e 53 44 4d 91 f3
 71 3e 78 60 7b 6b c6 05 3c 4a f6 2e 92 00 3c 63
 81 ce e7 da 37 33 07 70 af a3 8c f8 3a a1 cd dd
 02 60 8b 85 35 57 7b 6e dd 69 84 22 68 11 46 74
 e6 ae 17 18 8d df 94 52 6b 82 1e b9 77 73 07 1e
 0c 76 d4 83 87 38 34 4c f5 3e cf 4f 75 d2 53 bf
 db 3d fb e4 77 92 c9 fc 43 dc 06 96 c0 ad c7 dc
 48 11 83 2a 40 d4 58 3c cd 7e 6e bb d8 a4 f1 a1
 6d c5 6e 98 90 e6 0f 73 02 6a f2 d3 05 af ee 01
 e2 cb 5d 8c ae a4 66 4b c6 36 c4 5e 61 a2 fd c3
 cd 2f 8c fb a9 34 bb 55 61 92 a8 bf b4 2a aa ff
 3a 35 3e 62 4b 14 bc ae 11 36 c8 f4 14 c2 ce 86
 0f 6c d8 36 57 d6 d4 4e c4 f4 62 54 86 46 e6 c3
 a7 fe 6a b5 53 49 8a a6 72 13 fb e5 60 2f 3c 21
 4b 76 54 99 e8 c1 83 6c 89 e4 2d 57 ad 15 61 f4
 06 bf 87 c8 a6 69 5a f4 ec 6d de c6 af df f8 82
 be 42 d0 21 85 59 e3 80 9f a6 18 5c 83 3b b5 29
 9b c2 f6 ee 13 2e 53 5c ea ee 2f e4 52 93 58 90
 e1 2b fb c1 9d 2d 64 95 61 8a 22 36 00 45 ea 56
 b5 39 e6 de fe 82 dc 67 ec 1d da 2d a3 17 27 22
 c2 39 44 2f 04 8d 8b ff 84 27 f0 9c 18 2a d2 69
 a0 af fd 6a e0 3d ab ce f7 4b 6b 5d 8e bf 49 24
 b4 71 ec 70 5e 14 42 cf 0c 8b 45 b6 7d 77 b1 23
 0c 87 3b fa f0 44 13 31 b4 16 84 db 03 c7 04 dd
 23 b7 5c 95 c7 29 50 5d d6 dd 21 39 85 18 1b dd
 fa 1c a2 0a 66 a6 75 e0 e5 e4 f0 0e 20 9d 39 9f
 07 eb 2c 7f fc 3b f2 88 e0 88 dd 9f 3c 1d b2 36
 8b 90 81 b1 63 3f 31 40 2b 91 a7 1b f3 59 bf 90
 53 68 c2 5a 99 4d 2e 2d 59 b7 bc f9 ba 05 45 18
 2c 3c 16 ae d9 0d f1 35 fd 0d 12 51 08 50 18 d2
 38 07 52 4c cb 8c 16 b9 5a 57 2a 8e 7c ee d7 82
 56 27 a8 f0 1d 9b e8 be 06 a3 ac c3 b8 61 d6 e3
 70 05 5a 14 68 19 4f 78 a5 5a 0d 0a 13 e5 e4 78
 04 46 00 cb ba 53 b2 10 a4 6c d9 7b 07 34 44 52
 fb e8 65 49 57 f9 96 6e 0f 53 30 b7 31 93 15 a1
 cb 60 ba 6a c4 dc 29 ac 11 8c 37 91 eb b3 97 b8
 51 88 5d 11 f9 79 8b 3e 38 8e 88 3d 54 0d fa 83
 58 2f ef bc 80 2b 78 8c b8 91 c2 a2 21 36 85 00
 ae ef 2e c6 28 3d -> Encrypted TS_SAVE_SESSION_INFO_PDU_DATA

 Decrypted TS_SAVE_SESSION_INFO_PDU_DATA:
 00000 76 02 17 00 ea 03 ea 03 02 00 00 01 76 02 26 00 v...........v.&.
 00010 00 00 03 00 00 00 26 00 01 00 00 00 1c 00 00 00&.........
 00020 1c 00 00 00 01 00 00 00 02 00 00 00 a8 02 e7 25%
 00030 e2 4c 82 b7 52 a5 53 50 34 98 a1 a8 00 00 00 00 .L..R.SP4.......
 00040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

381 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00250 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00270 00 00 00 00 00 00

 76 02 -> TS_SHARECONTROLHEADER::totalLength = 0x0276 = 630 bytes
 17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
 0x0017
 = 0x0010 | 0x0007
 = TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002
 ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea
 00 -> TS_SHAREDATAHEADER::pad1
 01 -> TS_SHAREDATAHEADER::streamID = STREAM_LOW (1)
 76 02 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0276 = 630 bytes
 26 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SAVE_SESSION_INFO (38)
 00 -> TS_SHAREDATAHEADER::compressedType = 0
 00 00 -> TS_SHAREDATAHEADER::compressedLength = 0

 03 00 00 00 -> TS_SAVE_SESSION_INFO_PDU_DATA::infoType =
 INFOTYPE_LOGON_EXTENDED_INFO (3)

 26 00 -> TS_LOGON_INFO_EXTENDED::Length = 0x26 = 38
 01 00 00 00 -> TS_LOGON_INFO_EXTENDED::FieldsPresent =
 LOGON_EX_AUTORECONNECTCOOKIE (1)

 1c 00 00 00 -> TS_LOGON_INFO_FIELD::cbFieldData = 28

 1c 00 00 00 -> ARC_SC_PRIVATE_PACKET::cbLen = 28
 01 00 00 00 -> ARC_SC_PRIVATE_PACKET::Version
 02 00 00 00 -> ARC_SC_PRIVATE_PACKET::LogonId
 a8 02 e7 25 e2 4c 82 b7 52 a5 53 50 34 98 a1 a8 ->
 ARC_SC_PRIVATE_PACKET::ArcRandomBits

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

382 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 ->
 TS_LOGON_INFO_EXTENDED::Pad (570 bytes)

4.4 Annotated Server-to-Client Virtual Channel PDU

The following is an annotated dump of the Virtual Channel PDU (section 2.2.6.1) that was

exchanged between a Microsoft RDP 5.1 client and Microsoft RDP 5.1 server.

 00000000 03 00 00 2e 02 f0 80 68 00 01 03 ed f0 1c 08 08h..... ..
 00000010 01 00 47 bd eb cb 29 51 ae 0a f6 07 33 ce fc a5 ..G...)Q....3...
 00000020 f7 09 de 67 4e a3 2a 2c 38 29 ...gN.*,8)

 03 00 00 2a -> TPKT Header (length = 42 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 ed f0 1c -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1005 (0x03ed) = "cliprdr"
 dataPriority = low
 segmentation = begin | end
 userData length = 0x1c = 28 bytes

 08 08 -> TS_SECURITY_HEADER::flags = 0x0808
 0x0808
 = 0x0800 | 0x0008
 = SEC_SECURE_CHECKSUM | SEC_ENCRYPT

 01 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does
 not contain SEC_FLAGSHI_VALID (0x8000)
 47 bd eb cb 29 51 ae 0a -> TS_SECURITY_HEADER1::dataSignature

 f6 07 33 ce fc a5 f7 09 de 67 4e a3 2a 2c 38 29 -> Encrypted static
 virtual channel data

 Decrypted static virtual channel data:
 00000000 08 00 00 00 03 00 00 00 03 00 01 00 00 00 00 00

 08 00 00 00 -> CHANNEL_PDU_HEADER::length = 8 bytes

 03 00 00 00 -> CHANNEL_PDU_HEADER::flags = 0x00000003
 0x00000003
 = 0x00000002 | 0x00000001
 = CHANNEL_FLAG_FIRST | CHANNEL_FLAG_LAST

 03 00 01 00 00 00 00 00 -> Channel data to be processed by the
 "cliprdr" handler

4.5 Annotated Standard Security Server Redirection PDU

The following is an annotated dump of a Standard Security Server Redirection PDU (section
2.2.13.2.1) that was sent from a Microsoft RDP 5.1 server to a Microsoft RDP 5.1 client.

 00000000 03 00 02 1f 02 f0 80 68 00 01 03 eb 70 82 10 00h....p...
 00000010 0c 00 00 58 dd 3f e5 f3 de 80 26 c0 d6 3f 26 0e ...X.?....&..?&.
 00000020 2c b5 93 dd 26 d5 4b 84 a1 1d 2a 78 85 38 cf 1d ,...&.K...*x.8..

383 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 00000030 72 80 46 0e 72 fb fd 29 77 e7 e3 0a ba 3f cc a4 r.F.r..)w....?..
 00000040 50 2c 5b 87 cb e2 2b 61 ea 9a b7 19 25 a6 ea 33 P,[...+a....%..3
 00000050 01 9a 2e 3a 58 fe 7e 1e 66 c0 3c a0 d3 5b d1 96 ...:X.~.f.<..[..
 00000060 43 4a f4 94 57 b2 71 ba df 69 ed 3a ad b2 83 a5 CJ..W.q..i.:....
 00000070 d8 db 8d e1 c1 5e 73 6c d3 61 3c fc ae 05 78 94^sl.a<...x.
 00000080 f2 f6 87 ae 78 24 8e 5b 50 d6 36 2c c6 56 e2 2dx$.[P.6,.V.-
 00000090 61 46 d3 a3 22 d6 ce 1a 26 1c 1e e0 9b 97 2d 98 aF.."...&.....-.
 000000a0 45 3c b9 92 47 1a 25 f0 8c 7c c0 6f 54 b6 09 21 E<..G.%..|.oT..!
 000000b0 67 e3 41 3e 4e b9 be d2 86 d9 38 10 69 d7 f5 90 g.A>N.....8.i...
 000000c0 ef c1 50 39 13 b2 9b 7c 98 52 35 0f 90 26 cc ad ..P9...|.R5..&..
 000000d0 7d df 11 37 97 09 d9 69 12 0a 5f 3b bd 38 28 f6 }..7...i.._;.8(.
 000000e0 8a 4d 65 a6 3f 74 8f 6d 09 84 e2 03 b6 35 b9 b1 .Me.?t.m.....5..
 000000f0 11 10 b0 53 5e c8 25 f0 b2 bd af 4c ce 49 62 de ...S^.%....L.Ib.
 00000100 23 67 43 66 0a f1 3a 8f d7 9d 80 fb 2a 37 c3 de #gCf..:.....*7..
 00000110 8e 02 16 e2 12 73 2b 58 b8 5e 7e 61 ba 6f 80 73s+X.^~a.o.s
 00000120 0b f5 27 b7 45 1c bf 6a 1c fe 74 55 df 81 f6 06 ..'.E..j..tU....
 00000130 f3 ca b2 ce a8 d4 94 75 24 c2 02 0a 56 a9 fd 13u$...V...
 00000140 a6 af 8d 53 66 49 4d 4e bc b2 ff 80 5b 48 68 da ...SfIMN....[Hh.
 00000150 ee 01 1c bd a2 17 42 50 e5 15 4e 21 0c 6e d3 5bBP..N!.n.[
 00000160 3c 5a ce bc 0f e3 13 fb a3 7f 3c e0 7a c7 be 06 <Z........<.z...
 00000170 90 7a a2 91 33 ce 00 68 21 63 89 a3 5c 43 be 96 .z..3..h!c..\C..
 00000180 e0 11 b8 48 a8 47 1a 75 47 22 2f 3f 97 8d bd 14 ...H.G.uG"/?....
 00000190 34 a5 89 06 49 6a 8c 19 82 eb 4f 7e ec 06 80 e2 4...Ij....O~....
 000001a0 20 b5 ac 04 65 da 98 65 27 8f 45 80 ff 73 3e af ...e..e'.E..s>.
 000001b0 05 ab bc e4 66 4d d0 34 85 a5 9a a4 57 5a c6 b9fM.4....WZ..
 000001c0 27 e7 73 37 7e 7c 0b 65 24 cd 5c 61 89 f7 13 a2 '.s7~|.e$.\a....
 000001d0 d8 e1 85 ea 6f 81 7a 3b f5 e8 fb 45 92 f2 81 8co.z;...E....
 000001e0 cd 59 84 13 d9 6b db 0a ba af 0c 4f 9a de aa d6 .Y...k.....O....
 000001f0 a1 44 db cc 07 4c 71 4e 2a c3 50 9c f5 0f 9e 2b .D...LqN*.P....+
 00000200 2f 4b bb b6 fa 08 d1 65 e3 1a 1a 62 06 c4 ec 41 /K.....e...b...A
 00000210 69 6b d5 86 93 9c 46 de 4f 07 11 55 54 e9 16 ik....F.O..UT..

 03 00 02 1f -> TPKT Header (length = 543 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 82 10 -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x210 = 528 bytes

 00 0c -> TS_SECURITY_HEADER::flags = 0x0c00
 0x0c00
 = 0x0800 | 0x0400
 = SEC_SECURE_CHECKSUM | SEC_REDIRECTION_PKT

 00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does not contain
RDP_SEC_FLAGSHI_VALID (0x8000)

 58 dd 3f e5 f3 de 80 26 -> TS_SECURITY_HEADER1::dataSignature

 c0 d6 3f 26 0e 2c b5 93 dd 26 d5 4b 84 a1 1d 2a
 78 85 38 cf 1d 72 80 46 0e 72 fb fd 29 77 e7 e3
 0a ba 3f cc a4 50 2c 5b 87 cb e2 2b 61 ea 9a b7
 19 25 a6 ea 33 01 9a 2e 3a 58 fe 7e 1e 66 c0 3c
 a0 d3 5b d1 96 43 4a f4 94 57 b2 71 ba df 69 ed
 3a ad b2 83 a5 d8 db 8d e1 c1 5e 73 6c d3 61 3c
 fc ae 05 78 94 f2 f6 87 ae 78 24 8e 5b 50 d6 36
 2c c6 56 e2 2d 61 46 d3 a3 22 d6 ce 1a 26 1c 1e
 e0 9b 97 2d 98 45 3c b9 92 47 1a 25 f0 8c 7c c0
 6f 54 b6 09 21 67 e3 41 3e 4e b9 be d2 86 d9 38
 10 69 d7 f5 90 ef c1 50 39 13 b2 9b 7c 98 52 35
 0f 90 26 cc ad 7d df 11 37 97 09 d9 69 12 0a 5f
 3b bd 38 28 f6 8a 4d 65 a6 3f 74 8f 6d 09 84 e2
 03 b6 35 b9 b1 11 10 b0 53 5e c8 25 f0 b2 bd af
 4c ce 49 62 de 23 67 43 66 0a f1 3a 8f d7 9d 80
 fb 2a 37 c3 de 8e 02 16 e2 12 73 2b 58 b8 5e 7e
 61 ba 6f 80 73 0b f5 27 b7 45 1c bf 6a 1c fe 74
 55 df 81 f6 06 f3 ca b2 ce a8 d4 94 75 24 c2 02
 0a 56 a9 fd 13 a6 af 8d 53 66 49 4d 4e bc b2 ff

384 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 80 5b 48 68 da ee 01 1c bd a2 17 42 50 e5 15 4e
 21 0c 6e d3 5b 3c 5a ce bc 0f e3 13 fb a3 7f 3c
 e0 7a c7 be 06 90 7a a2 91 33 ce 00 68 21 63 89
 a3 5c 43 be 96 e0 11 b8 48 a8 47 1a 75 47 22 2f
 3f 97 8d bd 14 34 a5 89 06 49 6a 8c 19 82 eb 4f
 7e ec 06 80 e2 20 b5 ac 04 65 da 98 65 27 8f 45
 80 ff 73 3e af 05 ab bc e4 66 4d d0 34 85 a5 9a
 a4 57 5a c6 b9 27 e7 73 37 7e 7c 0b 65 24 cd 5c
 61 89 f7 13 a2 d8 e1 85 ea 6f 81 7a 3b f5 e8 fb
 45 92 f2 81 8c cd 59 84 13 d9 6b db 0a ba af 0c
 4f 9a de aa d6 a1 44 db cc 07 4c 71 4e 2a c3 50
 9c f5 0f 9e 2b 2f 4b bb b6 fa 08 d1 65 e3 1a 1a
 62 06 c4 ec 41 69 6b d5 86 93 9c 46 de 4f 07 11
 55 54 e9 16 -> Encrypted RDP_SERVER_REDIRECTION_PACKET

 Decrypted RDP_SERVER_REDIRECTION_PACKET:
 00000000 00 04 04 02 02 00 00 00 1d 0b 00 00 46 00 00 00F...
 00000010 32 00 30 00 30 00 31 00 3a 00 34 00 38 00 39 00 2.0.0.1.:.4.8.9.
 00000020 38 00 3a 00 32 00 62 00 3a 00 32 00 3a 00 39 00 8.:.2.b.:.2.:.9.
 00000030 64 00 65 00 37 00 3a 00 34 00 35 00 36 00 39 00 d.e.7.:.4.5.6.9.
 00000040 3a 00 66 00 62 00 33 00 39 00 3a 00 65 00 66 00 :.f.b.3.9.:.e.f.
 00000050 32 00 39 00 00 00 1c 00 00 00 61 00 64 00 6d 00 2.9.......a.d.m.
 00000060 69 00 6e 00 69 00 73 00 74 00 72 00 61 00 74 00 i.n.i.s.t.r.a.t.
 00000070 6f 00 72 00 00 00 16 00 00 00 54 00 53 00 2d 00 o.r.......T.S.-.
 00000080 53 00 54 00 52 00 45 00 53 00 53 00 31 00 00 00 S.T.R.E.S.S.1...
 00000090 78 00 00 00 02 00 00 80 44 53 48 4c 06 6f 27 1b x.......DSHL.o'.
 000000a0 29 10 f9 d9 58 fb 46 7d f9 e1 02 14 a2 15 aa 00)...X.F}........
 000000b0 34 5c 76 a4 52 76 fd 04 d6 2d 85 8d 64 69 88 80 4\v.Rv...-..di..
 000000c0 1b 8d 0e b0 b7 9b d3 d8 84 c6 10 a2 e9 b6 e0 06
 000000d0 99 5d 85 16 2d bf d8 f1 99 77 75 2d be e2 77 a6 .]..-....wu-..w.
 000000e0 3f 5e fb 86 ca ed 04 81 31 11 d3 b9 fc 32 ad 45 ?^......1....2.E
 000000f0 df ad ca b7 8d 02 6f 92 65 c6 d7 b4 68 cd f6 49o.e...h..I
 00000100 bc b8 88 87 6e 01 ce d0 95 fd 00 00 5a 00 00 00n.......Z...
 00000110 6a 00 69 00 61 00 7a 00 6f 00 75 00 2d 00 74 00 j.i.a.z.o.u.-.t.
 00000120 65 00 73 00 74 00 32 00 2e 00 74 00 73 00 2d 00 e.s.t.2...t.s.-.
 00000130 73 00 74 00 72 00 65 00 73 00 73 00 31 00 2e 00 s.t.r.e.s.s.1...
 00000140 6e 00 74 00 74 00 65 00 73 00 74 00 2e 00 6d 00 n.t.t.e.s.t...m.
 00000150 69 00 63 00 72 00 6f 00 73 00 6f 00 66 00 74 00 i.c.r.o.s.o.f.t.
 00000160 2e 00 63 00 6f 00 6d 00 00 00 1a 00 00 00 4a 00 ..c.o.m.......J.
 00000170 49 00 41 00 5a 00 4f 00 55 00 2d 00 54 00 45 00 I.A.Z.O.U.-.T.E.
 00000180 53 00 54 00 32 00 00 00 70 00 00 00 02 00 00 00 S.T.2...p.......
 00000190 46 00 00 00 32 00 30 00 30 00 31 00 3a 00 34 00 F...2.0.0.1.:.4.
 000001a0 38 00 39 00 38 00 3a 00 32 00 62 00 3a 00 32 00 8.9.8.:.2.b.:.2.
 000001b0 3a 00 39 00 64 00 65 00 37 00 3a 00 34 00 35 00 :.9.d.e.7.:.4.5.
 000001c0 36 00 39 00 3a 00 66 00 62 00 33 00 39 00 3a 00 6.9.:.f.b.3.9.:.
 000001d0 65 00 66 00 32 00 39 00 00 00 1e 00 00 00 31 00 e.f.2.9.......1.
 000001e0 35 00 37 00 2e 00 35 00 39 00 2e 00 32 00 34 00 5.7...5.9...2.4.
 000001f0 30 00 2e 00 31 00 34 00 34 00 00 00 c0 c0 c0 c0 0...1.4.4.......
 00000200 c0 c0 c0 c0

 00 04 -> RDP_SERVER_REDIRECTION_PACKET::Flags = 0x0400 = SEC_REDIRECTION_PKT
 04 02 -> RDP_SERVER_REDIRECTION_PACKET::Length = 0x204 = 516 bytes
 02 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::SessionID = 2

 1d 0b 00 00 -> RDP_SERVER_REDIRECTION_PACKET::RedirFlags = 0x00000b1d
 0x00000b1d
 = 0x00000800 |
 0x00000200 |
 0x00000100 |
 0x00000010 |
 0x00000008 |
 0x00000004 |
 0x00000001
 = LB_TARGET_NET_ADDRESSES |
 LB_TARGET_NETBIOS_NAME |
 LB_TARGET_FQDN |
 LB_PASSWORD |
 LB_DOMAIN |
 LB_USERNAME |
 LB_TARGET_NET_ADDRESS

385 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 46 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetAddressLength = 0x46 = 70 bytes

 32 00 30 00 30 00 31 00 3a 00 34 00 38 00 39 00
 38 00 3a 00 32 00 62 00 3a 00 32 00 3a 00 39 00
 64 00 65 00 37 00 3a 00 34 00 35 00 36 00 39 00
 3a 00 66 00 62 00 33 00 39 00 3a 00 65 00 66 00
 32 00 39 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetAddress =
"2001:4898:2b:2:9de7:4569:fb39:ef29"

 1c 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::UserNameLength = 0x1c = 28

 61 00 64 00 6d 00 69 00 6e 00 69 00 73 00 74 00
 72 00 61 00 74 00 6f 00 72 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::UserName =
"administrator"

 16 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::DomainLength = 0x16 = 22 bytes

 54 00 53 00 2d 00 53 00 54 00 52 00 45 00 53 00
 53 00 31 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::Domain = "TS-STRESS1"

 78 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::PasswordLength = 0x78 = 120 bytes

 02 00 00 80 44 53 48 4c 06 6f 27 1b 29 10 f9 d9
 58 fb 46 7d f9 e1 02 14 a2 15 aa 00 34 5c 76 a4
 52 76 fd 04 d6 2d 85 8d 64 69 88 80 1b 8d 0e b0
 b7 9b d3 d8 84 c6 10 a2 e9 b6 e0 06 99 5d 85 16
 2d bf d8 f1 99 77 75 2d be e2 77 a6 3f 5e fb 86
 ca ed 04 81 31 11 d3 b9 fc 32 ad 45 df ad ca b7
 8d 02 6f 92 65 c6 d7 b4 68 cd f6 49 bc b8 88 87
 6e 01 ce d0 95 fd 00 00 -> RDP_SERVER_REDIRECTION_PACKET::Password

 5a 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetFQDNLength = 0x5a = 90

 6a 00 69 00 61 00 7a 00 6f 00 75 00 2d 00 74 00
 65 00 73 00 74 00 32 00 2e 00 74 00 73 00 2d 00
 73 00 74 00 72 00 65 00 73 00 73 00 31 00 2e 00
 6e 00 74 00 74 00 65 00 73 00 74 00 2e 00 6d 00
 69 00 63 00 72 00 6f 00 73 00 6f 00 66 00 74 00
 2e 00 63 00 6f 00 6d 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetFQDN = "jiazou-
test2.ts-stress1.nttest.microsoft.com"

 1a 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetBiosNameLength = 0x1a = 26

 4a 00 49 00 41 00 5a 00 4f 00 55 00 2d 00 54 00
 45 00 53 00 54 00 32 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetBiosName = "JIAZOU-
TEST2"

 70 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetAddressesLength = 112 bytes

 02 00 00 00 -> TARGET_NET_ADDRESSES::addressCount = 2

 46 00 00 00 -> TARGET_NET_ADDRESS::addressLength = 70 bytes

 32 00 30 00 30 00 31 00 3a 00 34 00 38 00 39 00
 38 00 3a 00 32 00 62 00 3a 00 32 00 3a 00 39 00
 64 00 65 00 37 00 3a 00 34 00 35 00 36 00 39 00
 3a 00 66 00 62 00 33 00 39 00 3a 00 65 00 66 00
 32 00 39 00 00 00 -> TARGET_NET_ADDRESS::address = "2001:4898:2b:2:9de7:4569:fb39:ef29"

 1e 00 00 00 -> TARGET_NET_ADDRESS::addressLength = 30 bytes

 31 00 35 00 37 00 2e 00 35 00 39 00 2e 00 32 00
 34 00 30 00 2e 00 31 00 34 00 34 00 00 00 -> TARGET_NET_ADDRESS::address = "157.59.240.144"

 c0 c0 c0 c0 c0 c0 c0 c0 -> RDP_SERVER_REDIRECTION_PACKET::Pad

386 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

4.6 Annotated Enhanced Security Server Redirection PDU

The following is an annotated dump of an Enhanced Security Server Redirection
PDU (section 2.2.13.3.1) that was sent from a Microsoft RDP 5.1 server to a Microsoft RDP 5.1 client.

 00000000 03 00 02 1c 02 f0 80 68 00 01 03 eb 70 82 0d 0dh....p...
 00000010 02 0a 00 ea 03 5f 59 00 04 04 02 02 00 00 00 1d_Y.........
 00000020 0b 00 00 46 00 00 00 32 00 30 00 30 00 31 00 3a ...F...2.0.0.1.:
 00000030 00 34 00 38 00 39 00 38 00 3a 00 32 00 62 00 3a .4.8.9.8.:.2.b.:
 00000040 00 32 00 3a 00 39 00 64 00 65 00 37 00 3a 00 34 .2.:.9.d.e.7.:.4
 00000050 00 35 00 36 00 39 00 3a 00 66 00 62 00 33 00 39 .5.6.9.:.f.b.3.9
 00000060 00 3a 00 65 00 66 00 32 00 39 00 00 00 1c 00 00 .:.e.f.2.9......
 00000070 00 61 00 64 00 6d 00 69 00 6e 00 69 00 73 00 74 .a.d.m.i.n.i.s.t
 00000080 00 72 00 61 00 74 00 6f 00 72 00 00 00 16 00 00 .r.a.t.o.r......
 00000090 00 54 00 53 00 2d 00 53 00 54 00 52 00 45 00 53 .T.S.-.S.T.R.E.S
 000000a0 00 53 00 31 00 00 00 78 00 00 00 02 00 00 80 44 .S.1...x.......D
 000000b0 53 48 4c 02 10 f3 e3 bf b1 37 95 28 80 b7 56 f3 SHL......7.(..V.
 000000c0 7c 27 4a 43 cc 50 98 59 05 b5 6b 50 97 62 f8 cf |'JC.P.Y..kP.b..
 000000d0 c0 1b 6a 06 16 db b9 b1 ba 21 01 f4 ea 82 dc 37 ..j......!.....7
 000000e0 17 65 7d be 58 ec 34 e9 33 07 12 c1 76 8d f5 bc .e}.X.4.3...v...
 000000f0 a2 9f 2c ef 32 a7 a4 80 a9 05 f7 02 94 96 8d 95 ..,.2...........
 00000100 b8 2c db 55 4a 78 08 eb 87 10 c7 8b a9 0a e6 44 .,.UJx.........D
 00000110 ab ec 6b ee 42 bb 32 e7 b0 ef 3c ae 45 73 a6 69 ..k.B.2...<.Es.i
 00000120 69 00 00 5a 00 00 00 6a 00 69 00 61 00 7a 00 6f i..Z...j.i.a.z.o
 00000130 00 75 00 2d 00 74 00 65 00 73 00 74 00 32 00 2e .u.-.t.e.s.t.2..
 00000140 00 74 00 73 00 2d 00 73 00 74 00 72 00 65 00 73 .t.s.-.s.t.r.e.s
 00000150 00 73 00 31 00 2e 00 6e 00 74 00 74 00 65 00 73 .s.1...n.t.t.e.s
 00000160 00 74 00 2e 00 6d 00 69 00 63 00 72 00 6f 00 73 .t...m.i.c.r.o.s
 00000170 00 6f 00 66 00 74 00 2e 00 63 00 6f 00 6d 00 00 .o.f.t...c.o.m..
 00000180 00 1a 00 00 00 4a 00 49 00 41 00 5a 00 4f 00 55J.I.A.Z.O.U
 00000190 00 2d 00 54 00 45 00 53 00 54 00 32 00 00 00 70 .-.T.E.S.T.2...p
 000001a0 00 00 00 02 00 00 00 46 00 00 00 32 00 30 00 30F...2.0.0
 000001b0 00 31 00 3a 00 34 00 38 00 39 00 38 00 3a 00 32 .1.:.4.8.9.8.:.2
 000001c0 00 62 00 3a 00 32 00 3a 00 39 00 64 00 65 00 37 .b.:.2.:.9.d.e.7
 000001d0 00 3a 00 34 00 35 00 36 00 39 00 3a 00 66 00 62 .:.4.5.6.9.:.f.b
 000001e0 00 33 00 39 00 3a 00 65 00 66 00 32 00 39 00 00 .3.9.:.e.f.2.9..
 000001f0 00 1e 00 00 00 31 00 35 00 37 00 2e 00 35 00 391.5.7...5.9
 00000200 00 2e 00 32 00 34 00 30 00 2e 00 31 00 34 00 34 ...2.4.0...1.4.4
 00000210 00 00 00 c0 c0 c0 c0 c0 c0 c0 c0 00

 03 00 02 1c -> TPKT Header (length = 540 bytes)
 02 f0 80 -> X.224 Data TPDU

 68 00 01 03 eb 70 82 0d -> PER encoded (ALIGNED variant of BASIC-PER) SendDataIndication
 initiator = 1002 (0x03ea)
 channelId = 1003 (0x03eb)
 dataPriority = high
 segmentation = begin | end
 userData length = 0x20d = 525 bytes

 0d 02 -> TS_SHARECONTROLHEADER::totalLength = 0x020d = 525 bytes
 0a 00 -> TS_SHARECONTROLHEADER::pduType = 0x000a = PDUTYPE_SERVER_REDIR_PKT (10)
 ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea (1002)

 5f 59 -> TS_ENHANCED_SECURITY_SERVER_REDIRECTION::pad2Octets

 00 04 -> RDP_SERVER_REDIRECTION_PACKET::Flags = 0x0400 = SEC_REDIRECTION_PKT
 04 02 -> RDP_SERVER_REDIRECTION_PACKET::Length = 0x204 = 516 bytes
 02 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::SessionID = 2

 1d 0b 00 00 -> RDP_SERVER_REDIRECTION_PACKET::RedirFlags = 0x00000b1d
 0x00000b1d
 = 0x00000800 |
 0x00000200 |
 0x00000100 |
 0x00000010 |
 0x00000008 |
 0x00000004 |

387 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0x00000001
 = LB_TARGET_NET_ADDRESSES |
 LB_TARGET_NETBIOS_NAME |
 LB_TARGET_FQDN |
 LB_PASSWORD |
 LB_DOMAIN |
 LB_USERNAME |
 LB_TARGET_NET_ADDRESS

 46 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetAddressLength = 0x46 = 70 bytes

 32 00 30 00 30 00 31 00 3a 00 34 00 38 00 39 00
 38 00 3a 00 32 00 62 00 3a 00 32 00 3a 00 39 00
 64 00 65 00 37 00 3a 00 34 00 35 00 36 00 39 00
 3a 00 66 00 62 00 33 00 39 00 3a 00 65 00 66 00
 32 00 39 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetAddress =
"2001:4898:2b:2:9de7:4569:fb39:ef29"

 1c 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::UserNameLength = 0x1c = 28

 61 00 64 00 6d 00 69 00 6e 00 69 00 73 00 74 00
 72 00 61 00 74 00 6f 00 72 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::UserName =
"administrator"

 16 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::DomainLength = 0x16 = 22 bytes

 54 00 53 00 2d 00 53 00 54 00 52 00 45 00 53 00
 53 00 31 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::Domain = "TS-STRESS1"

 78 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::PasswordLength = 0x78 = 120 bytes

 02 00 00 80 44 53 48 4c 02 10 f3 e3 bf b1 37 95
 28 80 b7 56 f3 7c 27 4a 43 cc 50 98 59 05 b5 6b
 50 97 62 f8 cf c0 1b 6a 06 16 db b9 b1 ba 21 01
 f4 ea 82 dc 37 17 65 7d be 58 ec 34 e9 33 07 12
 c1 76 8d f5 bc a2 9f 2c ef 32 a7 a4 80 a9 05 f7
 02 94 96 8d 95 b8 2c db 55 4a 78 08 eb 87 10 c7
 8b a9 0a e6 44 ab ec 6b ee 42 bb 32 e7 b0 ef 3c
 ae 45 73 a6 69 69 00 00 -> RDP_SERVER_REDIRECTION_PACKET::Password

 5a 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetFQDNLength = 0x5a = 90

 6a 00 69 00 61 00 7a 00 6f 00 75 00 2d 00 74 00
 65 00 73 00 74 00 32 00 2e 00 74 00 73 00 2d 00
 73 00 74 00 72 00 65 00 73 00 73 00 31 00 2e 00
 6e 00 74 00 74 00 65 00 73 00 74 00 2e 00 6d 00
 69 00 63 00 72 00 6f 00 73 00 6f 00 66 00 74 00
 2e 00 63 00 6f 00 6d 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetFQDN = "jiazou-
test2.ts-stress1.nttest.microsoft.com"

 1a 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetBiosNameLength = 0x1a = 26

 4a 00 49 00 41 00 5a 00 4f 00 55 00 2d 00 54 00
 45 00 53 00 54 00 32 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetBiosName = "JIAZOU-
TEST2"

 70 00 00 00 -> RDP_SERVER_REDIRECTION_PACKET::TargetNetAddressesLength = 112 bytes

 02 00 00 00 -> TARGET_NET_ADDRESSES::addressCount = 2

 46 00 00 00 -> TARGET_NET_ADDRESS::addressLength = 70 bytes

 32 00 30 00 30 00 31 00 3a 00 34 00 38 00 39 00
 38 00 3a 00 32 00 62 00 3a 00 32 00 3a 00 39 00
 64 00 65 00 37 00 3a 00 34 00 35 00 36 00 39 00
 3a 00 66 00 62 00 33 00 39 00 3a 00 65 00 66 00
 32 00 39 00 00 00 -> TARGET_NET_ADDRESS::address = "2001:4898:2b:2:9de7:4569:fb39:ef29"

 1e 00 00 00 -> TARGET_NET_ADDRESS::addressLength = 30 bytes

388 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 31 00 35 00 37 00 2e 00 35 00 39 00 2e 00 32 00
 34 00 30 00 2e 00 31 00 34 00 34 00 00 00 -> TARGET_NET_ADDRESS::address = "157.59.240.144"

 c0 c0 c0 c0 c0 c0 c0 c0 -> RDP_SERVER_REDIRECTION_PACKET::Pad

 00 -> TS_ENHANCED_SECURITY_SERVER_REDIRECTION::pad1Octet

4.7 Annotated Fast-Path Input Event PDU

The following is an annotated dump of a Fast-Path Input Event PDU (section 2.2.8.1.2) that was sent

from a Microsoft RDP 5.1 client to a Microsoft RDP 5.1 server.

 00000000 c4 11 30 35 6b 5b b5 34 c8 47 26 18 5e 76 0e de ..05k[.4.G&.^v..
 00000010 28 (

 c4 -> TS_FP_INPUT_PDU::fpInputHeader = 0xc4
 Binary of 0xc4 = 11 0001 00
 action = FASTPATH_INPUT_ACTION_FASTPATH (0)
 numEvents = 1
 flags = 0x3
 0x3
 = 0x1 | 0x2
 = FASTPATH_INPUT_SECURE_CHECKSUM | FASTPATH_INPUT_ENCRYPTED

 11 -> TS_FP_INPUT_PDU::length1 = 0x11 = 17 bytes

 30 35 6b 5b b5 34 c8 47 -> TS_FP_INPUT_PDU::dataSignature

 26 18 5e 76 0e de 28 -> Encrypted TS_FP_INPUT_PDU::fpInputEvents

 Decrypted TS_FP_INPUT_PDU::fpInputEvents:
 00000000 20 00 08 ab 02 6f 01 o.

 20 -> TS_FP_INPUT_EVENT::eventHeader = 0x20
 Binary of 0x20 = 001 00000
 eventFlags = 0
 eventCode = 1 (FASTPATH_INPUT_EVENT_MOUSE)

 00 08 -> TS_FP_POINTER_EVENT::pointerFlags = 0x0800
 0x0800
 = PTRFLAGS_MOVE

 ab 02 -> TS_FP_POINTER_EVENT::xPos = 0x02ab = 683
 6f 01 -> TS_FP_POINTER_EVENT::yPos = 0x016f = 367

4.8 Java Code to Encrypt and Decrypt a Sample Client Random

The following Java code illustrates how to encrypt and decrypt with RSA.

 import java.math.BigInteger;

 public class RdpRsaEncrypt
 {
 //
 // Print out the contents of a byte array in hexadecimal.
 //
 private static void PrintBytes(
 byte[] bytes
)
 {
 int cBytes = bytes.length;
 int iByte = 0;

 for (;;) {

389 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 for (int i = 0; i < 8; i++) {
 String hex = Integer.toHexString(bytes[iByte++] & 0xff);
 if (hex.length() == 1) {
 hex = "0" + hex;
 }

 System.out.print("0x" + hex + " ");
 if (iByte >= cBytes) {
 System.out.println();
 return;
 }
 }
 System.out.println();
 }
 }

 //
 // Reverse the order of the values in a byte array.
 //
 public static void ReverseByteArray(
 byte[] array
)
 {
 int i, j;
 byte temp;

 for (i = 0, j = array.length - 1; i < j; i++, j--) {
 temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }

 //
 // Use RSA to encrypt data.
 //
 public static byte[] RsaEncrypt(
 byte[] modulusBytes,
 byte[] exponentBytes,
 byte[] dataBytes
)
 {
 //
 // Reverse the passed in byte arrays and then use these to
 // create the BigIntegers for the RSA computation.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(exponentBytes);
 ReverseByteArray(dataBytes);

 BigInteger modulus = new BigInteger(
 1,
 modulusBytes
);
 BigInteger exponent = new BigInteger(
 1,
 exponentBytes
);
 BigInteger data = new BigInteger(
 1,
 dataBytes
);

 //
 // Perform RSA encryption:
 // ciphertext = plaintext^exponent % modulus.
 //
 BigInteger cipherText = data.modPow(
 exponent,
 modulus

390 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

);

 //
 // Reverse the generated ciphertext.
 //
 byte[] cipherTextBytes = cipherText.toByteArray();
 ReverseByteArray(cipherTextBytes);

 //
 // Undo the reversal of the passed in byte arrays.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(exponentBytes);
 ReverseByteArray(dataBytes);

 return cipherTextBytes;
 }

 //
 // Use RSA to decrypt data.
 //
 public static byte[] RsaDecrypt(
 byte[] modulusBytes,
 byte[] privateExponentBytes,
 byte[] encryptedDataBytes
)
 {
 //
 // Reverse the passed in byte arrays and then use these to
 // create the BigIntegers for the RSA computation.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(privateExponentBytes);
 ReverseByteArray(encryptedDataBytes);

 BigInteger modulus = new BigInteger(
 1,
 modulusBytes
);
 BigInteger privateExponent = new BigInteger(
 1,
 privateExponentBytes
);
 BigInteger encryptedData = new BigInteger(
 1,
 encryptedDataBytes
);

 //
 // Perform RSA encryption:
 // plaintext = ciphertext^privateExponent % modulus.
 //
 BigInteger decryptedData = encryptedData.modPow(
 privateExponent,
 modulus
);

 //
 // Reverse the generated plaintext.
 //
 byte[] decryptedDataBytes = decryptedData.toByteArray();
 ReverseByteArray(decryptedDataBytes);

 //
 // Undo the reversal of the passed in byte arrays.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(privateExponentBytes);
 ReverseByteArray(encryptedDataBytes);

391 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 return decryptedDataBytes;
 }

 //
 // Main routine.
 //
 public static void main(
 String[] args
)
 {
 //
 // Modulus bytes obtained straight from the wire in the
 // proprietary certificate (in little endian format).
 // This is for a 512-bit key set.
 //
 byte[] modulusBytes =
 {
 (byte) 0x37, (byte) 0xa8, (byte) 0x70, (byte) 0xfe,
 (byte) 0x9a, (byte) 0xb9, (byte) 0xa8, (byte) 0x54,
 (byte) 0xcb, (byte) 0x98, (byte) 0x79, (byte) 0x44,
 (byte) 0x7a, (byte) 0xb9, (byte) 0xeb, (byte) 0x38,
 (byte) 0x06, (byte) 0xea, (byte) 0x26, (byte) 0xa1,
 (byte) 0x47, (byte) 0xea, (byte) 0x19, (byte) 0x70,
 (byte) 0x5d, (byte) 0xf3, (byte) 0x52, (byte) 0x88,
 (byte) 0x70, (byte) 0x21, (byte) 0xb5, (byte) 0x9e,
 (byte) 0x50, (byte) 0xb4, (byte) 0xe1, (byte) 0xf5,
 (byte) 0x1a, (byte) 0xd8, (byte) 0x2d, (byte) 0x51,
 (byte) 0x4d, (byte) 0x1a, (byte) 0xad, (byte) 0x79,
 (byte) 0x7c, (byte) 0x89, (byte) 0x46, (byte) 0xb0,
 (byte) 0xcc, (byte) 0x66, (byte) 0x74, (byte) 0x02,
 (byte) 0xd8, (byte) 0x28, (byte) 0x5d, (byte) 0x9d,
 (byte) 0xd7, (byte) 0xca, (byte) 0xfc, (byte) 0x60,
 (byte) 0x0f, (byte) 0x38, (byte) 0xf9, (byte) 0xb3
 };

 //
 // Exponent bytes (in little endian order) obtained straight
 // from the wire (in the proprietary certificate).
 //
 byte[] exponentBytes =
 {
 (byte) 0x01, (byte) 0x00, (byte) 0x01, (byte) 0x00
 };

 //
 // Private exponent of the private key generated by the
 // server (in little endian format).
 //
 byte[] privateExponentBytes =
 {
 (byte) 0xc1, (byte) 0x07, (byte) 0xe7, (byte) 0xd4,
 (byte) 0xd3, (byte) 0x38, (byte) 0x8d, (byte) 0x36,
 (byte) 0xf5, (byte) 0x9e, (byte) 0x8b, (byte) 0x96,
 (byte) 0x0d, (byte) 0x55, (byte) 0x65, (byte) 0x08,
 (byte) 0x28, (byte) 0x25, (byte) 0xa3, (byte) 0x2e,
 (byte) 0xc7, (byte) 0x68, (byte) 0xd6, (byte) 0x44,
 (byte) 0x85, (byte) 0x2d, (byte) 0x32, (byte) 0xf6,
 (byte) 0x72, (byte) 0xa8, (byte) 0x9b, (byte) 0xba,
 (byte) 0x5e, (byte) 0x82, (byte) 0x82, (byte) 0xf0,
 (byte) 0x5c, (byte) 0x0c, (byte) 0xeb, (byte) 0x6b,
 (byte) 0x12, (byte) 0x6a, (byte) 0xa7, (byte) 0x45,
 (byte) 0x15, (byte) 0xce, (byte) 0x41, (byte) 0xe0,
 (byte) 0x03, (byte) 0xe5, (byte) 0xe6, (byte) 0x6d,
 (byte) 0xdf, (byte) 0xfd, (byte) 0x58, (byte) 0x61,
 (byte) 0x0b, (byte) 0x07, (byte) 0xa4, (byte) 0x7b,
 (byte) 0xb3, (byte) 0xf3, (byte) 0x71, (byte) 0x94
 };

 //
 // Sample 32-byte client random.

392 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 //
 byte[] clientRandomBytes =
 {
 (byte) 0xff, (byte) 0xee, (byte) 0x00, (byte) 0x00,
 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0xff
 };

 System.out.println("Client random:");
 PrintBytes(clientRandomBytes);

 //
 // Perform encryption.
 //
 byte[] encryptedClientRandomBytes = RsaEncrypt(
 modulusBytes,
 exponentBytes,
 clientRandomBytes
);

 System.out.println("Encrypted client random:");
 PrintBytes(encryptedClientRandomBytes);

 //
 // Perform decryption.
 //
 byte[] decryptedClientRandomBytes = RsaDecrypt(
 modulusBytes,
 privateExponentBytes,
 encryptedClientRandomBytes
);

 System.out.println("Decrypted client random:");
 PrintBytes(decryptedClientRandomBytes);
 }
 };

4.9 Java Code to Sign a Sample Proprietary Certificate Hash

The following Java code illustrates how to sign a Proprietary Certificate Hash with RSA.

 import java.math.BigInteger;

 public class RdpRsaSign
 {
 //
 // Print out the contents of a byte array in hexadecimal.
 //
 private static void PrintBytes(
 byte[] bytes
)
 {
 int cBytes = bytes.length;
 int iByte = 0;

 for (;;) {
 for (int i = 0; i < 8; i++) {
 String hex = Integer.toHexString(bytes[iByte++] & 0xff);
 if (hex.length() == 1) {
 hex = "0" + hex;
 }

393 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 System.out.print("0x" + hex + " ");
 if (iByte >= cBytes) {
 System.out.println();
 return;
 }
 }
 System.out.println();
 }
 }

 //
 // Reverse the order of the values in a byte array.
 //
 public static void ReverseByteArray(
 byte[] array
)
 {
 int i, j;
 byte temp;

 for (i = 0, j = array.length - 1; i < j; i++, j--) {
 temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }

 //
 // Use RSA to encrypt data.
 //
 public static byte[] RsaEncrypt(
 byte[] modulusBytes,
 byte[] exponentBytes,
 byte[] dataBytes
)
 {
 //
 // Reverse the passed in byte arrays and then use these to
 // create the BigIntegers for the RSA computation.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(exponentBytes);
 ReverseByteArray(dataBytes);

 BigInteger modulus = new BigInteger(
 1,
 modulusBytes
);
 BigInteger exponent = new BigInteger(
 1,
 exponentBytes
);
 BigInteger data = new BigInteger(
 1,
 dataBytes
);

 //
 // Perform RSA encryption:
 // ciphertext = plaintext^exponent % modulus.
 //
 BigInteger cipherText = data.modPow(
 exponent,
 modulus
);

 //
 // Reverse the generated ciphertext.
 //
 byte[] cipherTextBytes = cipherText.toByteArray();

394 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 ReverseByteArray(cipherTextBytes);

 //
 // Undo the reversal of the passed in byte arrays.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(exponentBytes);
 ReverseByteArray(dataBytes);

 return cipherTextBytes;
 }

 //
 // Use RSA to decrypt data.
 //
 public static byte[] RsaDecrypt(
 byte[] modulusBytes,
 byte[] privateExponentBytes,
 byte[] encryptedDataBytes
)
 {
 //
 // Reverse the passed in byte arrays and then use these to
 // create the BigIntegers for the RSA computation.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(privateExponentBytes);
 ReverseByteArray(encryptedDataBytes);

 BigInteger modulus = new BigInteger(
 1,
 modulusBytes
);
 BigInteger privateExponent = new BigInteger(
 1,
 privateExponentBytes
);
 BigInteger encryptedData = new BigInteger(
 1,
 encryptedDataBytes
);

 //
 // Perform RSA encryption:
 // plaintext = ciphertext^privateExponent % modulus.
 //
 BigInteger decryptedData = encryptedData.modPow(
 privateExponent,
 modulus
);

 //
 // Reverse the generated plaintext.
 //
 byte[] decryptedDataBytes = decryptedData.toByteArray();
 ReverseByteArray(decryptedDataBytes);

 //
 // Undo the reversal of the passed in byte arrays.
 //
 ReverseByteArray(modulusBytes);
 ReverseByteArray(privateExponentBytes);
 ReverseByteArray(encryptedDataBytes);

 return decryptedDataBytes;
 }

 //
 // Main routine.
 //

395 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 public static void main(
 String[] args
)
 {
 //
 // Modulus bytes obtained straight from the wire in the
 // proprietary certificate (in little endian format).
 // This is for a 512-bit key set.
 //
 byte[] modulusBytes =
 {
 (byte) 0x3d, (byte) 0x3a, (byte) 0x5e, (byte) 0xbd,
 (byte) 0x72, (byte) 0x43, (byte) 0x3e, (byte) 0xc9,
 (byte) 0x4d, (byte) 0xbb, (byte) 0xc1, (byte) 0x1e,
 (byte) 0x4a, (byte) 0xba, (byte) 0x5f, (byte) 0xcb,
 (byte) 0x3e, (byte) 0x88, (byte) 0x20, (byte) 0x87,
 (byte) 0xef, (byte) 0xf5, (byte) 0xc1, (byte) 0xe2,
 (byte) 0xd7, (byte) 0xb7, (byte) 0x6b, (byte) 0x9a,
 (byte) 0xf2, (byte) 0x52, (byte) 0x45, (byte) 0x95,
 (byte) 0xce, (byte) 0x63, (byte) 0x65, (byte) 0x6b,
 (byte) 0x58, (byte) 0x3a, (byte) 0xfe, (byte) 0xef,
 (byte) 0x7c, (byte) 0xe7, (byte) 0xbf, (byte) 0xfe,
 (byte) 0x3d, (byte) 0xf6, (byte) 0x5c, (byte) 0x7d,
 (byte) 0x6c, (byte) 0x5e, (byte) 0x06, (byte) 0x09,
 (byte) 0x1a, (byte) 0xf5, (byte) 0x61, (byte) 0xbb,
 (byte) 0x20, (byte) 0x93, (byte) 0x09, (byte) 0x5f,
 (byte) 0x05, (byte) 0x6d, (byte) 0xea, (byte) 0x87,
 };

 //
 // Exponent bytes (in little endian order) obtained straight
 // from the wire (in the proprietary certificate).
 //
 byte[] exponentBytes =
 {
 (byte) 0x5b, (byte) 0x7b, (byte) 0x88, (byte) 0xc0
 };

 //
 // Private exponent of the private key generated by the
 // server (in little endian format).
 //
 byte[] privateExponentBytes =
 {
 (byte) 0x87, (byte) 0xa7, (byte) 0x19, (byte) 0x32,
 (byte) 0xda, (byte) 0x11, (byte) 0x87, (byte) 0x55,
 (byte) 0x58, (byte) 0x00, (byte) 0x16, (byte) 0x16,
 (byte) 0x25, (byte) 0x65, (byte) 0x68, (byte) 0xf8,
 (byte) 0x24, (byte) 0x3e, (byte) 0xe6, (byte) 0xfa,
 (byte) 0xe9, (byte) 0x67, (byte) 0x49, (byte) 0x94,
 (byte) 0xcf, (byte) 0x92, (byte) 0xcc, (byte) 0x33,
 (byte) 0x99, (byte) 0xe8, (byte) 0x08, (byte) 0x60,
 (byte) 0x17, (byte) 0x9a, (byte) 0x12, (byte) 0x9f,
 (byte) 0x24, (byte) 0xdd, (byte) 0xb1, (byte) 0x24,
 (byte) 0x99, (byte) 0xc7, (byte) 0x3a, (byte) 0xb8,
 (byte) 0x0a, (byte) 0x7b, (byte) 0x0d, (byte) 0xdd,
 (byte) 0x35, (byte) 0x07, (byte) 0x79, (byte) 0x17,
 (byte) 0x0b, (byte) 0x51, (byte) 0x9b, (byte) 0xb3,
 (byte) 0xc7, (byte) 0x10, (byte) 0x01, (byte) 0x13,
 (byte) 0xe7, (byte) 0x3f, (byte) 0xf3, (byte) 0x5f
 };

 //
 // Sample hash of a proprietary certificate.
 //
 byte[] hashBytes =
 {
 (byte) 0xf5, (byte) 0xcc, (byte) 0x18, (byte) 0xee,
 (byte) 0x45, (byte) 0xe9, (byte) 0x4d, (byte) 0xa6,
 (byte) 0x79, (byte) 0x02, (byte) 0xca, (byte) 0x76,

396 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 (byte) 0x51, (byte) 0x33, (byte) 0xe1, (byte) 0x7f,
 (byte) 0x00, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0x01
 };

 System.out.println("Hash:");
 PrintBytes(hashBytes);

 //
 // Perform decryption (signing).
 //
 byte[] signedHashBytes = RsaDecrypt(
 modulusBytes,
 privateExponentBytes,
 hashBytes
);

 System.out.println("Signed hash bytes:");
 PrintBytes(signedHashBytes);

 //
 // Perform encryption (verification).
 //
 byte[] verifiedHashBytes = RsaEncrypt(
 modulusBytes,
 exponentBytes,
 signedHashBytes
);

 System.out.println("Verified hash bytes:");
 PrintBytes(verifiedHashBytes);
 }
 };

4.10 Specifying the Active Keyboard Layout and Language

Examples of how to encode a select set of keyboard layouts and language combinations are presented
in this section.

The client-side keyboard layout is sent to the server in the keyboardLayout field of the Client Core
Data (section 2.2.1.3.2) structure, while the active language identifier is sent to the server in the low-
word of the CodePage field of the Info Packet (2.2.1.11.1.1) structure (if the INFO_UNICODE
(0x00000010) flag is set in the flags field).

1. "English (United States)" Language with "US" Keyboard Layout:

 TS_UD_CS_CORE::KeyboardLayout = 0x00000409
 LOWORD(TS_INFO_PACKET::CodePage) = 0x0409

2. "German (Luxembourg)" Language with "German" Keyboard Layout:

 TS_UD_CS_CORE::KeyboardLayout = 0x00000407
 LOWORD(TS_INFO_PACKET::CodePage) = 0x1007

397 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

3. "Afrikaans" Language with "Romanian (Programmers)" Keyboard Layout:

 TS_UD_CS_CORE::KeyboardLayout = 0x00020418
 LOWORD(TS_INFO_PACKET::CodePage) = 0x0436

4. "Uzbek (Cyrillic)" Language with "Azerbaijani Cyrillic" Keyboard Layout:

 TS_UD_CS_CORE::KeyboardLayout = 0x0000082C
 LOWORD(TS_INFO_PACKET::CodePage) = 0x0843

398 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

5 Security

5.1 Security Considerations for Implementers

See sections 5.3 through 5.5 for complete details of RDP security considerations.

5.2 Index of Security Parameters

None.

5.3 Standard RDP Security

5.3.1 Encryption Levels

Standard RDP Security (section 5.3) supports four levels of encryption: Low, Client Compatible, High,

and FIPS Compliant. The required Encryption Level is configured on the server.

1. Low: All data sent from the client to the server is protected by encryption based on the maximum
key strength supported by the client.

2. Client Compatible: All data sent between the client and the server is protected by encryption
based on the maximum key strength supported by the client.

3. High: All data sent between the client and server is protected by encryption based on the server's
maximum key strength.

4. FIPS: All data sent between the client and server is protected using Federal Information
Processing Standard 140-1 validated encryption methods.

5.3.2 Negotiating the Cryptographic Configuration

Clients advertise their cryptographic support (for use with Standard RDP Security mechanisms, as
described in sections 5.3.3 to 5.3.8) in the Client Security Data (section 2.2.1.3.3), sent to the server
as part of the Basic Settings Exchange phase of the RDP Connection Sequence (section 1.3.1.1). Upon
receiving the client data the server will determine the cryptographic configuration to use for the
session based on its configured Encryption Level and then send this selection to the client in the
Server Security Data (section 2.2.1.4.3), as part of the Basic Settings Exchange phase. The client will

use this information to configure its cryptographic modules.

Figure 8: Determining the cryptographic configuration for a session

399 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The Encryption Method and Encryption Level (section 5.3.1) are closely related. If the Encryption Level
is zero, then the Encryption Method is zero (the converse is also true). This means that if no

encryption is being used for the session (an Encryption Level of zero), there is no Encryption Method
being applied to the data. If the Encryption Level is greater than zero (encryption is in force for at

least client-to-server traffic) then the Encryption Method is greater than zero (the converse is also
true). This means that if encryption is in force for the session, then an Encryption Method is defined
which specifies how to encrypt the data. Furthermore, if the Encryption Level is set to FIPS, then the
Encryption Method selects only FIPS-compatible methods.

If the server determines that no encryption is necessary for the session, it can send the client a value
of zero for the selected Encryption Method and Encryption Level. In this scenario the Security
Commencement phase of the connection sequence (section 5.4.2.3) is not executed, with the result

that the client does not send the Security Exchange PDU (section 2.2.1.10). This PDU can be dropped
because the Client Random (section 5.3.4) is redundant, since no security keys need to be generated.
Furthermore, because no security measures are in effect, the Security Header (section 5.3.8) will not
be included with any data sent on the wire, except for the Client Info (section 3.2.5.3.11) and
licensing PDUs ([MS-RDPELE]), which always contain the Security Header (section 2.2.9.1.1.2). To
protect the confidentiality of client-to-server user data, an RDP server ensures that the negotiated

Encryption Level is always greater than zero when using Standard RDP Security mechanisms.

5.3.2.1 Cryptographic Negotiation Failures

The Encryption Method selected by the server (section 5.3.2) is based on the Encryption Methods
supported by the client (section 2.2.1.3.3), the Encryption Methods supported by the server and the

configured Encryption Level (section 5.3.1) of the server.

The negotiation of the cryptographic parameters for a connection fails if the server is not able to select
an Encryption Method to send to the client (section 2.2.1.4.3).

▪ Low and Client Compatible: Cryptographic configuration fails if the server does not support the
highest Encryption Method advertised by the client (for example, the server supports 40-bit and
56-bit encryption while the client only supports 40-bit, 56-bit and 128-bit encryption).

▪ High: Cryptographic configuration fails if the client does not support the highest Encryption
Method supported by the server (for example, the server supports 40-bit, 56-bit and 128-bit
encryption while the client only supports 40-bit and 56-bit encryption).

▪ FIPS: Cryptographic configuration fails if the client does not support FIPS 140-1 validated
encryption methods.

If the server is not able to select an Encryption Method to send to the client, then the network
connection is closed.

5.3.3 Server Certificates

5.3.3.1 Proprietary Certificates

Proprietary Certificates are used exclusively by servers that have not received an X.509 certificate

from a Domain or Enterprise License Server. Every server creates a public/private key pair and then
generates and stores a Proprietary Certificate containing the public key at least once at system start-
up time. The certificate is only generated when one does not already exist.

The server sends the Proprietary Certificate to the client in the Server Security Data (section

2.2.1.4.3) during the Basic Settings Exchange phase of the RDP Connection Sequence (section
1.3.1.1). The Proprietary Certificate structure is detailed in section 2.2.1.4.3.1.1.

5.3.3.1.1 Terminal Services Signing Key

400 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The modulus, private exponent, and public exponent of the 512-bit Terminal Services asymmetric key
used for signing Proprietary Certificates with the RSA algorithm are detailed as follows.

64-byte Modulus (n):

 0x3d, 0x3a, 0x5e, 0xbd, 0x72, 0x43, 0x3e, 0xc9,
 0x4d, 0xbb, 0xc1, 0x1e, 0x4a, 0xba, 0x5f, 0xcb,
 0x3e, 0x88, 0x20, 0x87, 0xef, 0xf5, 0xc1, 0xe2,
 0xd7, 0xb7, 0x6b, 0x9a, 0xf2, 0x52, 0x45, 0x95,
 0xce, 0x63, 0x65, 0x6b, 0x58, 0x3a, 0xfe, 0xef,
 0x7c, 0xe7, 0xbf, 0xfe, 0x3d, 0xf6, 0x5c, 0x7d,
 0x6c, 0x5e, 0x06, 0x09, 0x1a, 0xf5, 0x61, 0xbb,
 0x20, 0x93, 0x09, 0x5f, 0x05, 0x6d, 0xea, 0x87

64-byte Private Exponent (d):

 0x87, 0xa7, 0x19, 0x32, 0xda, 0x11, 0x87, 0x55,
 0x58, 0x00, 0x16, 0x16, 0x25, 0x65, 0x68, 0xf8,
 0x24, 0x3e, 0xe6, 0xfa, 0xe9, 0x67, 0x49, 0x94,
 0xcf, 0x92, 0xcc, 0x33, 0x99, 0xe8, 0x08, 0x60,
 0x17, 0x9a, 0x12, 0x9f, 0x24, 0xdd, 0xb1, 0x24,
 0x99, 0xc7, 0x3a, 0xb8, 0x0a, 0x7b, 0x0d, 0xdd,
 0x35, 0x07, 0x79, 0x17, 0x0b, 0x51, 0x9b, 0xb3,
 0xc7, 0x10, 0x01, 0x13, 0xe7, 0x3f, 0xf3, 0x5f

4-byte Public Exponent (e):

 0x5b, 0x7b, 0x88, 0xc0

The enumerated integers are in little-endian byte order. The public key is the pair (e, n), while the
private key is the pair (d, n).

5.3.3.1.2 Signing a Proprietary Certificate

The Proprietary Certificate is signed by using RSA to encrypt the hash of the first six fields with the
Terminal Services private signing key (specified in section 5.3.3.1.1) and then appending the result to
the end of the certificate. Mathematically the signing operation is formulated as follows:

 s = m^d mod n

Where

 s = signature;
 m = hash of first six fields of certificate
 d = private exponent
 n = modulus

The structure of the Proprietary Certificate is detailed in section 2.2.1.4.3.1.1. The structure of the

public key embedded in the certificate is described in 2.2.1.4.3.1.1.1. An example of public key bytes
(in little-endian format) follows.

 0x52 0x53 0x41 0x31: magic (0x31415352)
 0x48 0x00 0x00 0x00: keylen (72 bytes)
 0x00 0x02 0x00 0x00: bitlen (512 bits)
 0x3f 0x00 0x00 0x00: datalen (63 bytes)
 0x01 0x00 0x01 0x00: pubExp (0x00010001)

401 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0xaf 0xfe 0x36 0xf2 0xc5 0xa1 0x44 0x2e
 0x47 0xc1 0x31 0xa7 0xdb 0xc6 0x67 0x02
 0x64 0x71 0x5c 0x00 0xc9 0xb6 0xb3 0x04
 0xd0 0x89 0x9f 0xe7 0x6b 0x24 0xe8 0xe8
 0xe5 0x2d 0x0b 0x13 0xa9 0x0c 0x6d 0x4d
 0x91 0x5e 0xe8 0xf6 0xb3 0x17 0x17 0xe3
 0x9f 0xc5 0x4d 0x4a 0xba 0xfa 0xb9 0x2a
 0x1b 0xfb 0x10 0xdd 0x91 0x8c 0x60 0xb7: modulus

A 128-bit MD5 hash over the first six fields of the proprietary certificate (which are all in little-endian

format) appears as follows.

 PublicKeyBlob = wBlobType + wBlobLen + PublicKeyBytes
 hash = MD5(dwVersion + dwSigAlgID + dwKeyAlgID + PublicKeyBlob)

Because the Terminal Services private signing key has a 64-byte modulus, the maximum number of

bytes that can be encoded by using the key is 63 (the size of the modulus, in bytes, minus 1). An
array of 63 bytes is created and initialized as follows.

 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0x00 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0x01

The 128-bit MD5 hash is copied into the first 16 bytes of the array. For example, assume that the
generated hash is as follows.

 0xf5 0xcc 0x18 0xee 0x45 0xe9 0x4d 0xa6
 0x79 0x02 0xca 0x76 0x51 0x33 0xe1 0x7f

The byte array will appear as follows after copying in the 16 bytes of the MD5 hash.

 0xf5 0xcc 0x18 0xee 0x45 0xe9 0x4d 0xa6
 0x79 0x02 0xca 0x76 0x51 0x33 0xe1 0x7f
 0x00 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0x01

The 63-byte array is then treated as an unsigned little-endian integer and signed with the Terminal

Services private key by using RSA. The resultant signature has to be in little-endian format before
appending it to the Proprietary Certificate structure. The final structure of the certificate has to
conform to the specification in section 2.2.1.4.3.1.1. This means that fields 7 through to 9 will be the

signature BLOB type, the number of bytes in the signature and the actual signature bytes respectively.
The BLOB type and number of bytes have to be in little-endian format.

Example Java source code that shows how to use a private 64-byte asymmetric key to sign an array
of 63 bytes using RSA is presented in section 4.9. The code also shows how to use the associated
public key to verify the signature.

402 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

5.3.3.1.3 Validating a Proprietary Certificate

Verification of the Proprietary Certificate signature is carried out by decrypting the signature with the
Terminal Services public signing key and then verifying that this result is the same as the MD5 hash of

the first six fields of the certificate.

 m = s^e mod n

Where

 m = decrypted signature
 s = signature
 e = public exponent
 n = modulus

The structure of the Proprietary Certificate is detailed in section 2.2.1.4.3.1.1. A 128-bit MD5 hash

over the first six fields (which are all little-endian integers of varying lengths) appears as follows.

 PublicKeyBlob = wBlobType + wBlobLen + PublicKeyBytes
 hash = MD5(dwVersion + dwSigAlgID + dwKeyAlgID + PublicKeyBlob)

Next, the actual signature bytes are decrypted with the Terminal Services public key using RSA by
treating the signature bytes as an unsigned little-endian integer. If performed correctly, the
decryption operation will produce a 63-byte integer value. When represented in little-endian format,
this integer value conforms to the following specification.

▪ The 17th byte is 0x00.

▪ The 18th through 62nd bytes are each 0xFF.

▪ The 63rd byte is 0x01.

The following is an example of a successfully decrypted signature.

 0xf5 0xcc 0x18 0xee 0x45 0xe9 0x4d 0xa6
 0x79 0x02 0xca 0x76 0x51 0x33 0xe1 0x7f
 0x00 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff
 0xff 0xff 0xff 0xff 0xff 0xff 0x01

The first 16 bytes of the decrypted signature are then compared to the hash that was generated over
the Proprietary Certificate, and if they match, the signature has been successfully verified.

Example Java source code that shows how to use a private 64-byte asymmetric key to sign an array

of 63 bytes by using RSA is presented in section 4.9. The code also shows how to use the associated
public key to verify the signature.

5.3.3.2 X.509 Certificate Chains

X.509-compliant certificates are issued to servers upon request by Domain or Enterprise License
Servers and are required to issue client licenses (see [MS-RDPELE] for more information on RDP
Licensing). An X.509 Certificate Chain consists of a collection of certificates concatenated together in
root-certificate-first order. This eliminates the need to scan the chain to the end to get the root

403 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

certificate for starting chain validation. The last certificate is the certificate of the server; the second-
to-last is the license server's certificate, and so forth. More details on the structure of the chain and

the component certificates are in [MS-RDPELE] section 2.2.1.4.2.

Servers send the X.509 Certificate Chain to clients in the Server Security Data (section 2.2.1.4.3)

settings block during the Basic Settings Exchange phase of the RDP Connection Sequence (section
1.3.1.1). A server that has not yet been issued an X.509 Certificate Chain will fall back to using a
Proprietary Certificate (section 2.2.1.4.3.1.1). Proprietary Certificates are always used when an RDP
4.0 client connects to a server (the client version can be determined from the Client Core Data
(section 2.2.1.3.2)).

5.3.4 Client and Server Random Values

The client and server both generate a 32-byte random value using a cryptographically-safe
pseudorandom number generator.

The server sends the random value that it generated (along with its public key embedded in a
certificate) to the client in the Server Security Data (section 2.2.1.4.3) during the Basic Settings

Exchange phase of the RDP Connection Sequence (section 1.3.1.1).

If RDP Standard Security mechanisms (section 5.3) are being used, the client sends its random value
to the server (encrypted with the server's public key) in the Security Exchange PDU (section 2.2.1.10)
as part of the RDP Security Commencement phase of the RDP Connection Sequence (section 1.3.1.1).

Figure 9: Client and server random value exchange

The two random values are used by the client and server to generate session keys to secure the
connection.

5.3.4.1 Encrypting Client Random

The client random is encrypted by the client with the server's public key (obtained from the Server
Security Data (section 2.2.1.4.3)) using RSA. Mathematically the encryption operation is formulated
as follows.

 c = r^e mod n

Where

 c = encrypted client random
 r = unencrypted client random
 e = public exponent

404 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 n = modulus

The client random value is interpreted as an unsigned little-endian integer value when performing the
encryption. The resultant encrypted client random is copied into a zeroed-out buffer, which is of size:

 (bitlen / 8) + 8

For example, if the public key of the server is 512 bits long, then the zeroed-out buffer is 72 bytes.
This value can also be obtained from the keylen field in the public key structure (section
2.2.1.4.3.1.1.1). The buffer is sent to the server in the Security Exchange PDU (section 2.2.1.10).

Example Java source code that shows how to use a public 64-byte asymmetric key to encrypt a 32-

byte client random using RSA is presented in section 4.8. The code also shows how to use the
associated private key to decrypt the ciphertext.

5.3.4.2 Decrypting Client Random

The server can decrypt the client random because it possesses the private exponent of the
public/private key pair which it generated. Mathematically the decryption operation is formulated as
follows.

 r = c^d mod n

Where

 r = unencrypted client random
 c = encrypted client random
 d = private exponent
 n = modulus

The encrypted client random is obtained from the Security Exchange PDU (section 2.2.1.10). The
encrypted client random value is interpreted as an unsigned little-endian integer value when
performing the decryption operation.

5.3.5 Initial Session Key Generation

RDP uses three symmetric session keys derived from the client and server random values (section
5.3.4). Client-to-server traffic is encrypted with one of these keys (known as the "client's encryption
key" and "server's decryption key"), server-to-client traffic with another (known as the "server's
encryption key" and "client's decryption key") and the final key is used to generate a MAC over the
data to help ensure its integrity. The generated keys are 40, 56, or 128 bits in length.

5.3.5.1 Non-FIPS

The client and server random values are used to create a 384-bit Pre-Master Secret by concatenating
the first 192 bits of the Client Random with the first 192 bits of the Server Random.

 PreMasterSecret = First192Bits(ClientRandom) + First192Bits(ServerRandom)

A 384-bit Master Secret is generated using the Pre-Master Secret, the client and server random
values, and the MD5 hash and SHA-1 hash functions.

405 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 MasterSecret = PreMasterHash(0x41) + PreMasterHash(0x4242) + PreMasterHash(0x434343)

Here, the PreMasterHash function is defined as follows.

 PreMasterHash(I) = SaltedHash(PremasterSecret, I)

The SaltedHash function is defined as follows.

 SaltedHash(S, I) = MD5(S + SHA(I + S + ClientRandom + ServerRandom))

A 384-bit session key blob is generated as follows.

 SessionKeyBlob = MasterHash(0x58) + MasterHash(0x5959) + MasterHash(0x5A5A5A)

Here, the MasterHash function is defined as follows.

 MasterHash(I) = SaltedHash(MasterSecret, I)

From the session key blob the actual session keys which will be used are derived. Both client and
server extract the same key data for generating MAC signatures.

 MACKey128 = First128Bits(SessionKeyBlob)

The initial encryption and decryption keys are generated next (these keys are updated at a later point
in the protocol, per section 5.3.6.1). The server generates its encryption and decryption keys as
follows.

 InitialServerEncryptKey128 = FinalHash(Second128Bits(SessionKeyBlob))
 InitialServerDecryptKey128 = FinalHash(Third128Bits(SessionKeyBlob))

Here, the FinalHash function is defined as follows.

 FinalHash(K) = MD5(K + ClientRandom + ServerRandom)

The client constructs its initial decryption key with the bytes that the server uses to construct its initial
encryption key. Similarly, the client forms its initial encryption key with the bytes that the server uses
to form its initial decryption key.

 InitialClientDecryptKey128 = FinalHash(Second128Bits(SessionKeyBlob))
 InitialClientEncryptKey128 = FinalHash(Third128Bits(SessionKeyBlob))

This means that the client will use its encryption key to encrypt data and the server will use its
decryption key to decrypt the same data. Similarly, the server will use its encryption key to encrypt
data and the client will use its decryption key to decrypt the same data. In effect, there are two
streams of data (client-to-server and server-to-client) encrypted with different session keys which are
updated at different intervals.

406 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

To reduce the entropy of the keys to either 40 or 56 bits, the 128-bit client and server keys are salted
appropriately to produce 64-bit versions with the required strength. The salt values to reduce key

entropy are shown in the following table:

 Negotiated key length Salt length Salt values RC4 key length

40 bits 3 bytes 0xD1, 0x26, 0x9E 8 bytes

56 bits 1 byte 0xD1 8 bytes

128 bits 0 bytes N/A 16 bytes

Table 1: Salt values to reduce key entropy

Using the salt values, the 40-bit keys are generated as follows.

 MACKey40 = 0xD1269E + Last40Bits(First64Bits(MACKey128))

 InitialServerEncryptKey40 = 0xD1269E + Last40Bits(First64Bits(InitialServerEncryptKey128))
 InitialServerDecryptKey40 = 0xD1269E + Last40Bits(First64Bits(InitialServerDecryptKey128))

 InitialClientEncryptKey40 = 0xD1269E + Last40Bits(First64Bits(InitialClientEncryptKey128))
 InitialClientDecryptKey40 = 0xD1269E + Last40Bits(First64Bits(InitialClientDecryptKey128))

The 56-bit keys are generated as follows.

 MACKey56 = 0xD1 + Last56Bits(First64Bits(MACKey128))

 InitialServerEncryptKey56 = 0xD1 + Last56Bits(First64Bits(InitialServerEncryptKey128))
 InitialServerDecryptKey56 = 0xD1 + Last56Bits(First64Bits(InitialServerDecryptKey128))

 InitialClientEncryptKey56 = 0xD1 + Last56Bits(First64Bits(InitialClientEncryptKey128))
 InitialClientDecryptKey56 = 0xD1 + Last56Bits(First64Bits(InitialClientDecryptKey128))

After any necessary salting has been applied, the generated encryption and decryption keys are used
to initialize RC4 substitution tables which can then be used to encrypt and decrypt data.

At the end of this process the client and server will each possess three symmetric keys to use with the
RC4 stream cipher: a MAC key, an encryption key, and a decryption key. The MAC key is used to
initialize the RC4 substitution table that is used to generate Message Authentication Codes, the

encryption key is used to initialize the RC4 substitution table that is used to perform encryption, and
the decryption key is used to initialize the RC4 substitution table that is used to perform decryption
(for more information on RC4 substitution table initialization, see [[SCHNEIER]] section 17.1).

5.3.5.2 FIPS

The client and server random values are used to generate temporary 160-bit initial encryption and
decryption keys by using the SHA-1 hash function. The client generates the following:

 ClientEncryptKeyT = SHA(Last128Bits(ClientRandom) + Last128Bits(ServerRandom))
 ClientDecryptKeyT = SHA(First128Bits(ClientRandom) + First128Bits(ServerRandom))

The server generates the following:

 ServerDecryptKeyT = SHA(Last128Bits(ClientRandom) + Last128Bits(ServerRandom))
 ServerEncryptKeyT= SHA(First128Bits(ClientRandom) + First128Bits(ServerRandom))

407 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Each of these four keys are then expanded to be 168 bits in length by copying the first 8 bits of each
key to the rear of the key:

 ClientEncryptKey = ClientEncryptKeyT + First8Bits(ClientEncryptKeyT)
 ClientDecryptKey = ClientDecryptKeyT + First8Bits(ClientDecryptKeyT)

 ServerDecryptKey = ServerDecryptKeyT + First8Bits(ServerDecryptKeyT)
 ServerEncryptKey= ServerEncryptKeyT + First8Bits(ServerEncryptKeyT)

After expansion to 168 bits, each key is then expanded to be 192 bits in length by adding a zero-bit to
every group of seven bits using the following algorithm:

1. Reverse every byte in the key.

2. Insert a zero-bit bit after every seventh bit.

3. Reverse every byte.

The following example (which only shows the first 5 bytes of a 21-byte key) demonstrates how a 168-
bit key is expanded to 192 bits in size. Assume that the key is:

 0xD1 0x5E 0xC4 0x7E 0xDA ...

In binary this is:

 11010001 01011110 11000100 01111110 11011010 ...

Reversing each byte yields:

 10001011 01111010 00100011 01111110 01011011 ...

Adding a zero-bit after each group of seven bits results in the following values:

 10001010 10111100 10001000 01101110 11100100 ...

Finally, reversing each of the bytes yields:

 01010001 00111101 00010001 01110110 00100111 ...

In hexadecimal this is:

 0x51 0x3D 0x11 0x76 0x27 ...

Once each key has been expanded to 192 bits in size, the final step is to alter the least significant bit
in each byte so that the entire byte has odd parity. Applying this transformation to the bytes in the
previous example yields:

 01010001 00111101 00010000 01110110 00100110 ...

In hexadecimal this is:

408 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 0x51 0x3D 0x10 0x76 0x26 ...

After producing the client and server encryption and decryption keys, the shared key to be used with
the SHA-1 hash function to produce Hash-Based Message Authentication Codes (HMAC) ([RFC2104])
is computed by the client as follows:

 HMACKey = SHA(ClientDecryptKeyT + ClientEncryptKeyT)

The server performs the same computation with the same data (the client encryption and server

decryption keys are identical, while the server encryption and client decryption keys are identical).

 HMACKey = SHA(ServerEncryptKeyT + ServerDecryptKeyT)

At the end of this process the client and server will each possess three symmetric keys to use with the

Triple DES block cipher: an HMAC key, an encryption key, and a decryption key.

5.3.6 Encrypting and Decrypting the I/O Data Stream

If the Encryption Level (section 5.4.1) of the server is greater than zero, then encryption will always
be in effect. At a minimum, all client-to-server traffic (except for licensing PDUs which have optional

encryption) will be encrypted and a MAC will be appended to the data to ensure transmission integrity.

The table which follows summarizes the possible encryption and MAC generation scenarios based on
the Encryption Method and Encryption Level selected by the server (the Encryption Method values are
described in section 2.2.1.4.3, while the Encryption Levels are described in 5.4.1) as part of the
cryptographic negotiation described in section 5.3.2:

Selected
Encryption Level

Selected
Encryption
Method Data Encryption MAC Generation

None (0) None (0x00) None None

Low (1) 40-Bit (0x01)

56-Bit (0x08)

128-Bit (0x02)

Client-to-server traffic only
using RC4

Client-to-server traffic only using
MD5 and SHA-1

Client Compatible
(2)

40-Bit (0x01)

56-Bit (0x08)

128-Bit (0x02)

Client-to-server and server-to-
client traffic using RC4

Client-to-server and server-to-
client traffic using MD5 and SHA-1

High (3) 128-Bit (0x02) Client-to-server and server-to-
client traffic using RC4

Client-to-server and server-to-
client traffic using MD5 and SHA-1

FIPS (4) FIPS (0x10) Client-to-server and server-to-
client traffic using Triple DES

Client-to-server and server-to-
client traffic using SHA-1

5.3.6.1 Non-FIPS

The client and server follow the same series of steps to encrypt a block of data. First, a MAC value is
generated over the unencrypted data.

409 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 Pad1 = 0x36 repeated 40 times to give 320 bits
 Pad2 = 0x5C repeated 48 times to give 384 bits

 SHAComponent = SHA(MACKeyN + Pad1 + DataLength + Data)
 MACSignature = First64Bits(MD5(MACKeyN + Pad2 + SHAComponent))

 MACKeyN is either MACKey40, MACKey56 or MACKey128, depending on the negotiated key strength.

DataLength is the size of the data to encrypt in bytes, expressed as a little-endian 32-bit integer.
Data is the information to be encrypted. The first 8 bytes of the generated MD5 hash are used as an
8-byte MAC value to send on the wire.

Next, the data block is encrypted with RC4 using the current client or server encryption substitution
table. The encrypted data is appended to the 8-byte MAC value in the network packet.

Decryption involves a reverse ordering of the previous steps. First, the data is decrypted using the

current RC4 decryption substitution table. Then, a 16-byte MAC value is generated over the decrypted
data, and the first 8 bytes of this MAC are compared to the 8-byte MAC value that was sent over the

wire. If the MAC values do not match, an appropriate error is generated and the connection is
dropped.

5.3.6.1.1 Salted MAC Generation

The MAC value can be generated by salting the data to be hashed with the current encryption count.

For example, assume that 42 packets have already been encrypted. When the next packet is
encrypted the value 42 is added to the SHA component of the MAC signature. The addition of the
encryption count can be expressed as follows.

 SHAComponent = SHA(MACKeyN + Pad1 + DataLength + Data + EncryptionCount)
 MACSignature = First64Bits(MD5(MACKeyN + Pad2 + SHAComponent))

EncryptionCount is the cumulative encryption count, indicating how many encryptions have been

carried out. It is expressed as a little-endian 32-bit integer. The descriptions for DataLength, Data,
and MacKeyN are the same as in section 5.3.6.1.

The use of the salted MAC is dictated by capability flags in the General Capability Set (section
2.2.7.1.1), sent by both client and server during the Capability Exchange phase of the RDP Connection
Sequence (section 1.3.1.1). In addition, the presence of a salted MAC is indicated by the presence of
the SEC_SECURE_CHECKSUM flag in the Security Header flags field (section 5.3.8).

5.3.6.2 FIPS

Prior to performing an encryption or decryption operation, the cryptographic modules used to
implement Triple DES are configured with the following Initialization Vector.

 {0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF}

The 160-bit MAC signature key is used to key the HMAC function ([RFC2104]), which uses SHA-1 as
the iterative hash function.

 MACSignature = First64Bits(HMAC(HMACKey, Data + EncryptionCount))

410 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

EncryptionCount is the cumulative encryption count, indicating how many encryptions have been
carried out. It is expressed as a little-endian 32-bit integer. The description for Data is the same as in

section 5.3.6.1.

Encryption of the data and construction of the network packet to transmit is similar to section 5.3.6.1.

The main difference is that Triple DES (in cipher block chaining (CBC) mode) is used. Because DES is a
block cipher, the data to be encrypted is padded to be a multiple of the block size (8 bytes). The FIPS
Security Header (sections 2.2.8.1 and 2.2.9.1) has an extra field to record the number of padding
bytes which were appended to the data prior to encryption to ensure that upon decryption these bytes
are not included as part of the data.

5.3.7 Session Key Updates

During the course of a session, the symmetric encryption and decryption keys might need to be
refreshed.

5.3.7.1 Non-FIPS

The encryption and the decryption keys are updated after 4,096 packets have been sent or received.

Generating an updated session key requires:

1. The initial session keys (generated as described in section 5.3.5).

2. The current session keys (if no update has been performed, the current and initial session keys
will be identical).

3. Knowledge of the RC4 key length (computed using Table 1 and the negotiated key length).

The following sequence of steps shows how updated client and server encryption keys are generated
(the same steps are used to update the client and server decryption keys). The following padding
constants are used.

 Pad1 = 0x36 repeated 40 times to give 320 bits
 Pad2 = 0x5C repeated 48 times to give 384 bits

If the negotiated key strength is 128-bit, then the full 128 bits of the initial and current encryption key
will be used.

 InitialEncryptKey = InitialEncryptKey128
 CurrentEncryptKey = CurrentEncryptKey128

If the negotiated key strength is 40-bit or 56-bit, then the first 64 bits of the initial and current
encryption keys will be used.

 InitialEncryptKey = First64Bits(InitialEncryptKeyN)
 CurrentEncryptKey = First64Bits(CurrentEncryptKeyN)

 InitialEncryptKeyN is either InitialEncryptKey40 or InitialEncryptKey56, depending
 on the negotiated key strength, while CurrentEncryptKeyN is either CurrentEncryptKey40
 or CurrentEncryptKey56, depending on the negotiated key strength.

The initial and current keys are concatenated and hashed together with padding to form a temporary
key as follows.

 SHAComponent = SHA(InitialEncryptKey + Pad1 + CurrentEncryptKey)

411 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 TempKey128 = MD5(InitialEncryptKey + Pad2 + SHAComponent)

If the key strength is 128 bits, then the temporary key (TempKey128) is used to reinitialize the
associated RC4 substitution table. (For more information on RC4 substitution table initialization, see
[[SCHNEIER]] section 17.1.)

 S-TableEncrypt = InitRC4(TempKey128)

RC4 is then used to encrypt TempKey128 to obtain the new 128-bit encryption key.

 NewEncryptKey128 = RC4(TempKey128, S-TableEncrypt)

Finally, the associated RC4 substitution table is reinitialized with the new encryption key
(NewEncryptKey128), which can then be used to encrypt a further 4,096 packets.

 S-Table = InitRC4(NewEncryptKey128)

If 40-bit or 56-bit keys are being used, then the first 64 bits of the temporary key (TempKey128) are
used to reinitialize the associated RC4 substitution table.

 TempKey64 = First64Bits(TempKey128)
 S-TableEncrypt = InitRC4(TempKey64)

RC4 is then used to encrypt these 64 bits, and the first few bytes are salted according to the key
strength to derive a new 40-bit or 56-bit encryption key (see section 5.3.5.1 for details on how to
perform the salting operation).

 PreSaltKey = RC4(TempKey64, S-TableEncrypt)

 NewEncryptKey40 = 0xD1269E + Last40Bits(PreSaltKey)
 NewEncryptKey56 = 0xD1 + Last56Bits(PreSaltKey)

Finally, the new 40-bit or 56-bit encryption key (NewEncryptKey40 or NewEncryptKey56) is used to
reinitialize the associated RC4 substitution table.

5.3.7.2 FIPS

No session key updates take place for the duration of a connection if Standard RDP Security

mechanisms (section 5.3) are being used with a FIPS Encryption Level.

5.3.8 Packet Layout in the I/O Data Stream

The usage of Standard RDP Security mechanisms (section 5.3) results in a security header being
present in all packets following the Security Exchange PDU (section 2.2.1.10) when encryption is in

force. Connection sequence PDUs following the RDP Security Commencement phase of the RDP
Connection Sequence (section 1.3.1.1) and slow-path packets have the same general wire format.

Figure 10: Slow-path packet layout

412 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The Security Header essentially contains flags and a MAC signature taken over the encrypted data
(section 5.3.6 for details on the MAC generation). In FIPS scenarios, the header also includes the

number of padding bytes appended to the data.

Fast-path packets are more compact and formatted differently, but the essential contents of the

Security Header are still present. For non-FIPS scenarios, the packet layout is as follows.

Figure 11: Non-FIPS fast-path packet layout

And in FIPS fast-path scenarios the packet layout is as follows.

Figure 12: FIPS fast-path packet layout

If no encryption is in effect, the Selected Encryption Method and Encryption Level (section 5.3.1)

returned to the client is zero. The Security Header will not be included with any data sent on the wire,
except for the Client Info (section 2.2.1.11) and licensing PDUs (for an example of a licensing PDU
section 2.2.1.12), which always contain the Security Header.

See sections 2.2.8.1 and 2.2.9.1 for more details on slow and fast-path packet formats and the
structure of the Security Header in both of these scenarios.

5.4 Enhanced RDP Security

When Enhanced RDP Security is used, RDP traffic is no longer protected by using the techniques
described in section 5.3. Instead, all security operations (such as encryption and decryption, data

integrity checks, and server authentication) are implemented by one of the following External Security
Protocols:

▪ TLS 1.0 ([RFC2246])

▪ TLS 1.1 ([RFC4346])

▪ TLS 1.2 ([RFC5246])

▪ CredSSP ([MS-CSSP])

▪ RDSTLS (section 5.4.5.3)

The benefit of using an External Security Protocol is that RDP developers no longer need to manually
implement protocol security mechanisms, but can instead rely on well-known and proven security

protocol packages (such as the Schannel Security Package which implements SSL, see [MSDN-

SCHANNEL]) to provide end-to-end security.

Another key benefit of Enhanced RDP Security is that it enables the use of Network Level
Authentication (NLA) when using CredSSP as the External Security Protocol.

5.4.1 Encryption Levels

Enhanced RDP Security (section 5.4) supports a subset of the encryption levels used by Standard RDP
Security (section 5.3.1). The required Encryption Level is configured on the server.

413 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

1. Client Compatible: All data sent between the client and the server is protected using encryption
techniques negotiated through mechanisms defined by the negotiated security protocol.

2. High: All data sent between the client and the server is protected using encryption techniques
which employ at least a 128-bit symmetric key negotiated through mechanisms defined by the

negotiated security protocol. The server enforces the key strength, and clients that do not support
128-bit symmetric keys cannot connect.

3. FIPS: All data sent between the client and server is protected by the negotiated security protocol
using the following Federal Information Processing Standard 140-1 validated methods: RSA for
key exchange, Triple DES for bulk encryption, and SHA-1 for any hashing operations. Clients that
do not support these methods cannot connect.

When a client connects to a server configured for Enhanced RDP Security, the selected encryption

level returned to the client is ENCRYPTION_LEVEL_NONE (0). This is due to the fact that the
encryption for the session is provided by an External Security Protocol (section 5.4.5) and double-
encryption of the RDP traffic (although possible) is not desirable from a performance standpoint.

5.4.2 Security-Enhanced Connection Sequence

When Enhanced RDP Security (section 5.4) is being used, the connection sequence is changed to
incorporate the possible use of an External Security Protocol (section 5.4.5). A brief overview of the
connection sequence changes are described in section 1.3.1.2. The two variations of the Security-
Enhanced Connection Sequence are the Negotiation-Based Approach (section 5.4.2.1) and the Direct
Approach (section 5.4.2.2).

5.4.2.1 Negotiation-Based Approach

The client advertises the security protocols which it supports by appending an RDP Negotiation
Request (section 2.2.1.1.1) structure to the X.224 Connection Request PDU (section 2.2.1.1).

Upon receipt of the RDP Negotiation Request, the server examines the client request and selects the

protocol to use. The server indicates its response to the client by appending an RDP Negotiation

Response (section 2.2.1.2.1) structure to the X.224 Connection Confirm PDU (section 2.2.1.2). If the
server does not support any of the protocols requested by the client, or if there was an error setting
up the External Cryptographic Protocol Provider, then the server appends an RDP Negotiation Failure
(section 2.2.1.2.2) structure to the X.224 Connection Confirm PDU.

If the server selects an External Security Protocol via the RDP Negotiation Response and the client
accepts the server's choice, then the security protocol is instantiated by the client by calling into an

External Cryptographic Protocol Provider. Once the External Security Protocol (section 5.4.5)
handshake has successfully run to completion, the RDP messages resume, continuing with (a) the
MCS Connect Initial PDU (section 2.2.1.3); or (b) the Early User Authorization Result PDU (section
2.2.10.2) followed by the MCS Connect Initial PDU. From this point all RDP traffic is encrypted using
the External Security Protocol.

414 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Figure 13: Negotiation-based security-enhanced connection sequence

Because both the RDP Negotiation Request and RDP Negotiation Response are initially exchanged in
the clear, they are re-exchanged in the reverse direction after the External Security Protocol
handshake as part of the Basic Settings Exchange phase of the RDP Connection Sequence (section
1.3.1.1). This step ensures that no tampering has taken place. The client replays the server's protocol
choice in the Client Core Data (section 2.2.1.3.2), while the server replays the client's requested

protocols in the Server Core Data (section 2.2.1.4.2).

5.4.2.2 Direct Approach

The Negotiation-Based Approach (specified in section 5.4.2.1) aims to have the client and server
agree on a security protocol to use for the connection. The fact that the X.224 messages are

unencrypted helps to ensure backward compatibility with prior versions of RDP servers, as the packets
can always be read. However, the fact that the X.224 PDUs are unencrypted is also a threat because

an attacker can seek to compromise or take down the server by sending malformed X.224 PDUs.
Hence the goal of the Direct Approach is to ensure that all RDP traffic is protected.

When using the Direct Approach, no negotiation of the security protocol takes place. The client and
server are hard-coded to use the Credential Security Support Provider (CredSSP) Protocol (section

5.4.5) when a connection is initiated. The Early User Authorization Result PDU (section 2.2.10.2) is not
supported in the Direct Approach. Once the security protocol handshake has completed successfully,
the RDP Connection Sequence begins, starting with the X.224 messages which form the Connection
Initiation phase (section 1.3.1.1). From this point all RDP traffic is encrypted using the CredSSP
External Security Protocol.

415 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

The RDP Negotiation Request (section 2.2.1.1.1) MUST be appended to the X.224 Connection Request
PDU (section 2.2.1.1) and the requested protocol list MUST contain the PROTOCOL_HYBRID

(0x00000002) flag identifying the CredSSP protocol (section 2.2.1.1.1). If this is not the case, the
server will append an RDP Negotiation Failure (section 2.2.1.2.2) to the X.224 Connection Confirm

PDU (section 2.2.1.2) with a failure code of INCONSISTENT_FLAGS (0x04). Similarly, the server MUST
indicate that CredSSP is the selected protocol in the RDP Negotiation Response (section 2.2.1.2.1)
which is appended to the X.224 Connection Confirm PDU.

Figure 14: Direct security-enhanced connection sequence

As specified in the Negotiation-Based Approach, the client and server also confirm the selected
protocol and the requested protocols in the Client Core Data (section 2.2.1.3.2) and Server Core Data
(section 2.2.1.4.2), respectively.

5.4.2.3 Changes to the Security Commencement Phase

If Standard RDP Security mechanisms are not being used in conjunction with an External Security
protocol (that is, the selected Encryption Level described in section 5.3.2 is
ENCRYPTION_LEVEL_NONE (0)), then the Security Commencement phase of the RDP Connection
Sequence (section 1.3.1.1) is not executed, with the result that the client does not send the Security

Exchange PDU (section 2.2.1.10). This PDU can be dropped because the Client Random is redundant
in this case because encryption for the connection is only provided by the External Security Protocol
(section 5.4.5).

5.4.2.4 Disabling Forced Encryption of Licensing Packets

Encryption of licensing PDUs is optional when Standard RDP Security mechanisms (section 5.3) are
being used. However, if an External Security Protocol (section 5.4.5) is being used, then the server

and client do not need to ever encrypt any licensing packets because the External Security Protocol

416 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

will encrypt them. For this reason, the SEC_LICENSE_ENCRYPT_CS (0x0200) and
SEC_LICENSE_ENCRYPT_SC (0x0200) flags (section 2.2.8.1.1.2.1) do not need to be set in the

Security Header that is always attached to licensing packets.

5.4.3 Encrypting and Decrypting the I/O Data Stream

Encryption and decryption of RDP traffic is only carried out by the External Security Protocol (section
5.4.5) layer. Double-encryption of data does not take place.

5.4.4 Packet Layout in the I/O Data Stream

Because RDP encryption is not used in the presence of an External Security Protocol (section 5.4.5)
layer, the security header data (section 5.4.4) is not present in any RDP traffic (except for the Client
Info (section 2.2.1.11) and licensing PDUs). All of the RDP traffic which is encrypted by the External
Security Protocol is wrapped by headers determined by the protocol specification.

For example, if SSL is used as the External Security Protocol, an encrypted RDP slow-path packet

would appear as follows.

Figure 15: Encrypted slow-path packet

A fast-path packet would appear as follows if SSL is the External Security Protocol:

Figure 16: Encrypted fast-path packet

Notice that in both of these cases, the security header data is missing. See sections 2.2.8.1 and

2.2.9.1 for more details on slow and fast-path packet formats.

5.4.5 External Security Protocols Used By RDP

RDP supports four External Security Protocols: TLS 1.0 ([RFC2246]) TLS 1.1 ([RFC4346])<51>, TLS

1.2 ([RFC5246])<52> and the Credential Security Support Provider (CredSSP) Protocol [MS-
CSSP].<53> All of the TLS variants and the CredSSP protocol require external infrastructure, such as
authentication certificates (TLS and CredSSP) or Key Distribution Centers (CredSSP), to run
successfully. These resources are opaque to RDP and left to implementers to provide, set up, and
maintain.

5.4.5.1 Transport Layer Security (TLS)

TLS 1.0, 1.1 and 1.2 are represented by the PROTOCOL_SSL (0x00000001) flag in the RDP
Negotiation Request (section 2.2.1.1.1) and RDP Negotiation Response (section 2.2.1.2.1)
structures. TLS is derived from SSL ([SSL3]) and was added to RDP to enable authentication of the
remote computer's identity, hence mitigating man-in-the-middle attacks on RDP traffic.<54>

5.4.5.2 CredSSP

CredSSP is represented by the PROTOCOL_HYBRID (0x00000002) and PROTOCOL_HYBRID_EX
(0x00000008) flags in the RDP Negotiation Request (section 2.2.1.1.1) and RDP Negotiation Response

417 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

(section 2.2.1.2.1) structures. The Credential Security Support Provider (CredSSP) Protocol [MS-
CSSP] is essentially the amalgamation of TLS with Kerberos and NT LAN Manager (NTLM). Besides

enabling authentication of the remote computer's identity, the Credential Security Support Provider
(CredSSP) Protocol also facilitates user authentication and the transfer of user credentials from client

to server, hence enabling single-sign-on scenarios.

When the Credential Security Support Provider (CredSSP) Protocol begins execution, the TLS
handshake will always be executed. Once a TLS channel has been successfully established (the
identity of the server could have been authenticated in the process), Kerberos or NTLM will be used
within the TLS channel to authenticate the user (and the server as well if Kerberos is being used).
Once Kerberos or NTLM has completed successfully, the user's credentials are sent to the server.
Traffic on the wire remains encrypted with TLS and is wrapped by TLS headers. There is no double-

encryption of traffic because the Kerberos (or NTLM) session is securely bound to the TLS session.

5.4.5.2.1 User Authorization Failures

User authorization failures are handled as specified in 3.3.5.7.1.1.

5.4.5.2.2 TLS Fatal Alerts

The CredSSP protocol leverages TLS Alert Messages with the level set to Fatal ([RFC2246] section 7.2,
[RFC4346] section 7.2, and [RFC5246] section 7.2) to report error conditions. The alert messages that
can be transmitted are summarized in the following table.

TLS Alert Code Meaning

TLS1_ALERT_UNEXPECTED_MESSAGE

10

An inappropriate message was received.

TLS1_ALERT_DECRYPTION_FAILED

21

Ciphertext was decrypted in an invalid way: either it was not an even
multiple of the block length or its padding values, when checked, were
incorrect.

TLS1_ALERT_BAD_CERTIFICATE

42

A certificate was corrupt; for example, it contained signatures that did
not verify correctly.

TLS1_ALERT_CERTIFICATE_EXPIRED

45

A certificate has expired or is not currently valid.

TLS1_ALERT_UNKNOWN_CA

48

A valid certificate chain or partial chain was received, but the certificate
was not accepted because the certification authority (CA) certificate
could not be located or could not be matched with a known, trusted CA.

TLS1_ALERT_ACCESS_DENIED

49

A login failure occurred due to invalid credentials.

TLS1_ALERT_INTERNAL_ERROR

80

A generic, catch-all error code.

5.4.5.3 RDSTLS Security

RDSTLS is a variation of Enhanced RDP Security that is primarily used in the context of server
redirection scenarios (section 1.3.8). Server authentication, encryption, decryption, and data integrity
checks are implemented by leveraging the TLS security protocol, while user authentication is
accomplished by exchanging RDSTLS PDUs directly following the TLS handshake.

418 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

5.4.5.3.1 RDSTLS Connection Sequence

The RDSTLS connection sequence only takes place in the context of the Negotiation-Based Approach
(section 5.4.2.1) of the security-enhanced connection sequence.

 Figure 17: The RDSTLS connection sequence

Since the RDTLS protocol is primarily used in the context of server redirection scenarios (section
1.3.8) there is a strong dependency on structures exchanged in the Server Redirection Packet (section

2.2.13.1), specifically the TargetCertificate, RedirectionGuid, UserName, Domain, and
Password fields. For the purpose of server authentication in the TLS protocol, the X.509 certificate
extracted from the TargetCertificate field of the Server Redirection Packet MUST be identical to the
certificate that the server presents for authentication. If there is a mismatch, then the client SHOULD
NOT continue the TLS handshake.

The three RDSTLS PDUs (which are encrypted and wrapped by the TLS protocol using the parameters

negotiated as part of the TLS handshake) are described in section 2.2.17 and are used as follows:

1. The server sends the RDSTLS Capabilities PDU (section 2.2.17.1) to the client, advertising the
versions of the RDSTLS protocol that are supported.

2. The client sends the RDSTLS Authentication PDU to the server. This PDU will contain either
encrypted password credentials (section 2.2.17.2) or an auto-reconnect cookie (section 2.2.17.3).

3. The server notifies the client of the authentication result by sending the RDSTLS Authentication
Response PDU (section 2.2.17.4).

419 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Upon successful completion of the RDSTLS protocol, the subsequent RDP traffic is encrypted and
wrapped by the TLS protocol using the parameters negotiated as part of the TLS handshake. If the

RDSTLS Authentication PDU indicates that user authentication has failed, then the client SHOULD drop
the connection.

5.5 Automatic Reconnection

The Automatic Reconnection feature allows a client to reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server. A

connection which employs Automatic Reconnection proceeds as follows:

1. The user logs in to a new or existing session. As soon as the user has been authenticated, a
Server Auto-Reconnect Packet (section 2.2.4.2) is generated by the server and sent to the client
in the Save Session Info PDU (section 2.2.10.1). The Auto-Reconnect Packet (also called the auto-
reconnect cookie) contains a 16-byte cryptographically secure random number (called the auto-
reconnect random) and the ID of the session to which the user has connected.

2. The client receives the cookie and stores it in memory, never allowing programmatic access to it.

3. In the case of a disconnection due to a network error, the client attempts to reconnect to the
server by trying to reconnect continuously or for a predetermined number of times. Once it has
connected, the client and server can exchange large random numbers (the client and server
random specified in section 5.3.4). If Enhanced RDP Security (section 5.4) is in effect, no client
random is sent to the server (section 5.3.2).

4. The client derives a 16-byte security verifier from the random number contained in the auto-
reconnect cookie received in Step 2. This security verifier is wrapped in a Client Auto-Reconnect

Packet (section 2.2.4.3) and sent to the server as part of the extended information (section
2.2.1.11.1.1.1) of the Client Info PDU (section 2.2.1.11).

The auto-reconnect random is used to key the HMAC function ([RFC2104]), which uses MD5 as
the iterative hash function. The security verifier is derived by applying the HMAC to the client
random received in Step 3.

 SecurityVerifier = HMAC(AutoReconnectRandom, ClientRandom)

When Enhanced RDP Security is in effect the client random value is not generated (section 5.3.2).
In this case, for the purpose of generating the security verifier, the client random is assumed to be
an array of 32 zero bytes. This implies that the derived security verifier will always have the same
value for a given auto-reconnect random when auto-reconnecting with Enhanced RDP Security.

5. When the server receives the Client Auto-Reconnect Packet, it looks up the auto-reconnect

random for the session and computes the security verifier using the client random (the same
calculation executed by the client). If the security verifier value which the client transmitted
matches the one computed by the server, the client is granted access. At this point, the server has
confirmed that the client requesting auto-reconnection was the last one connected to the session
in question.

6. If the check in Step 5 passes, then the client is automatically reconnected to the desired session;

otherwise the client obtains the user's credentials to regain access to the session on the remote
server.

The auto-reconnect cookie associated with a given session is flushed and regenerated whenever a
client connects to the session or the session is reset. This ensures that if a different client connects to
the session, then any previous clients which were connected can no longer use the auto-reconnect
mechanism to connect. Furthermore, the server invalidates and updates the cookie at hourly intervals,
sending the new cookie to the client in the Save Session Info PDU.

420 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ Windows NT Server 4.0 operating system, Terminal Server Edition

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 7 operating system with Service Pack 1 (SP1)

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

▪ Windows Server 2022 operating system

▪ Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 1.5: By default, Microsoft RDP servers listen on port 3389. Microsoft RDP clients, by
extension, attempt to connect on the same port.

<2> Section 2.2.1.1.1: Microsoft RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, and 7.0 clients do not support
credential-less logon over CredSSP. This functionality is not supported in Windows NT operating
system, Windows 2000, Windows XP, and Windows Vista.

421 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

<3> Section 2.2.1.2.1: Microsoft RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, and 7.0 servers do not support
credential-less logon over CredSSP. This functionality is not supported in Windows Server 2003 and

Windows Server 2008.

<4> Section 2.2.1.2.2: The SSL_WITH_USER_AUTH_REQUIRED_BY_SERVER (0x00000006) failure

code is only sent by Microsoft RDP 6.0 servers.

<5> Section 2.2.1.3.2: All Microsoft RemoteFX servers ignore the keyboardLayout field.

<6> Section 2.2.1.3.2: Microsoft RDP servers apply only the active locale identifier to a newly created
session. The value is ignored when connecting to an existing session.

<7> Section 2.2.1.3.2: The deviceScaleFactor field is processed only in Windows 8.1.

:<8> Section 2.2.1.3.5: REDIRECTION_VERSION1 (0x00) is not advertised by any Microsoft RDP
clients.

<9> Section 2.2.1.3.5: REDIRECTION_VERSION2 (0x01) is not advertised by any Microsoft RDP
clients.

<10> Section 2.2.1.3.5: REDIRECTION_VERSION3 (0x02) is advertised only by Microsoft RDP 5.1 and
5.2 clients.

<11> Section 2.2.1.3.5: REDIRECTION_VERSION4 (0x03) is advertised only by Microsoft RDP 6.0 and
6.1 clients.

<12> Section 2.2.1.3.5: REDIRECTION_VERSION5 (0x04) is advertised only by Microsoft RDP 7.0 and
7.1 clients.

<13> Section 2.2.1.3.5: REDIRECTION_VERSION6 (0x05) is advertised only by Microsoft RDP 8.0,
8.1, 10.0, 10.1, 10.2, 10.3, 10.4, and 10.5 clients.

<14> Section 2.2.1.3.9.1: The deviceScaleFactor field is processed only in Windows 8.1.

<15> Section 2.2.1.4.6: Only Microsoft RDP 8.0 and 8.1 servers advertise the

TRANSPORTTYPE_UDPFECL (0x04) flag.

<16> Section 2.2.1.11.1.1: The Microsoft RDP 6.0 client incorrectly sends the active input locale
identifier in the CodePage field of the Info Packet structure.

<17> Section 2.2.1.11.1.1: Microsoft RDP servers only apply the active language identifier to a newly
created session. The value is ignored when connecting to an existing session.

<18> Section 2.2.1.11.1.1.1: The PERF_ENABLE_FONT_SMOOTHING flag is not read by RDP 4.0, 5.0,
5.1, or 5.2 servers.

<19> Section 2.2.1.11.1.1.1: The PERF_ENABLE_DESKTOP_COMPOSITION flag is only read by RDP

6.0, 6.1, 7.0, and 7.1 servers.

<20> Section 2.2.1.11.1.1.1: Microsoft RDP clients set the reserved1 field to 100.

<21> Section 2.2.1.11.1.1.1: Microsoft RDP 8.0, 8.1, 10.0, 10.1, 10.2, 10.3, 10.4, and 10.5 clients do
not send the cbDynamicDSTTimeZoneKeyName, dynamicDSTTimeZoneKeyName and
dynamicDaylightTimeDisabled fields if the RNS_UD_SC_ DYNAMIC_TIME_ZONE_SUPPORTED
(0x00000002) flag is not set in the earlyCapabilityFlags field of the Server Core Data (section

2.2.1.4.2).

<22> Section 2.2.1.11.1.1.1<22> Section 2.2.1.11.1.1.1:: Microsoft RDP 8.0, 8.1, 10.0, 10.1, 10.2,
10.3, 10.4, and 10.5 clients do not send the cbDynamicDSTTimeZoneKeyName,
dynamicDSTTimeZoneKeyName and dynamicDaylightTimeDisabled fields if the RNS_UD_SC_

422 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

DYNAMIC_TIME_ZONE_SUPPORTED (0x00000002) flag is not set in the earlyCapabilityFlags field of
the Server Core Data (section 2.2.1.4.2).

<23> Section 2.2.1.11.1.1.1: Microsoft RDP 8.0, 8.1, 10.0, 10.1, 10.2, 10.3, 10.4, and 10.5 clients do
not send the cbDynamicDSTTimeZoneKeyName, dynamicDSTTimeZoneKeyName and

dynamicDaylightTimeDisabled fields if the RNS_UD_SC_ DYNAMIC_TIME_ZONE_SUPPORTED
(0x00000002) flag is not set in the earlyCapabilityFlags field of the Server Core Data (section
2.2.1.4.2).

<24> Section 2.2.7.1.1: Microsoft RDP 7.1 RemoteFX servers and RDP 8.0, 8.1, 10.0, 10.1, 10.2,
10.3, 10.4, and 10.5 servers require that clients specify both the FASTPATH_OUTPUT_SUPPORTED
(0x0001) and LONG_CREDENTIALS_SUPPORTED (0x0004) flags to indicate support for fast-path
output. If both of these flags are not specified, then the server assumes that the client does not

support fast-path output.

<25> Section 2.2.7.1.1: Microsoft RDP 7.1 RemoteFX servers and RDP 8.0, 8.1, 10.0, 10.1, 10.2,
10.3, 10.4, and 10.5 servers require that clients specify both the FASTPATH_OUTPUT_SUPPORTED
(0x0001) and LONG_CREDENTIALS_SUPPORTED (0x0004) flags to indicate support for fast-path

output. If both of these flags are not specified, then the server assumes that the client does not
support fast-path output.

<26> Section 2.2.7.1.3: Microsoft RDP clients that advertise support for Surface Commands (2.2.9.2)
and TS_NEG_SCRBLT_INDEX (0x02) also advertise support for TS_NEG_MEMBLT_INDEX (0x03) when
connecting to RDP 8.0, 8.1, 10.0, 10.1, 10.2, 10.3, 10.4, and 10.5 servers.

<27> Section 2.2.7.1.3: Microsoft RDP clients that advertise support for Surface Commands (2.2.9.2)
and TS_NEG_MEMBLT_INDEX (0x03) also advertise support for TS_NEG_SCRBLT_INDEX (0x02) when
connecting to RDP 8.0, 8.1, 10.0, 10.1, 10.2, 10.3, 10.4, and 10.5 servers.

<28> Section 2.2.7.1.6: Microsoft RDP 4.0, 5.0, 5.1, and 5.2 servers do not explicitly set the

keyboardLayout, keyboardType, keyboardSubType, and keyboardFunctionKey fields to zero.

<29> Section 2.2.7.1.6: Microsoft RDP 4.0, 5.0, 5.1, and 5.2 servers do not explicitly fill the
imeFileName field with zeros.

<30> Section 2.2.7.1.6: All Microsoft RDP RemoteFX servers ignore the keyboardLayout field.

<31> Section 2.2.7.2.10.1.1: Microsoft RDP servers ignore Bitmap Codec structures (section
2.2.7.2.10.1.1) with the codecGUID field set to CODEC_GUID_IMAGE_REMOTEFX.

<32> Section 2.2.8.1.1.3: Due to server-side timing issues, Microsoft RDP 8.0 servers do not always

process slow-path input PDUs that were sent by the client before it received any graphics PDUs.

<33> Section 2.2.8.1.1.3: Microsoft RDP 7.1 RemoteFX servers do not support slow-path input.

<34> Section 2.2.8.1.2: Due to server-side timing issues, Microsoft RDP 7.1 RemoteFX servers and
RDP 8.0 servers do not always process fast-path input PDUs that were sent by the client before it
received any graphics PDUs.

<35> Section 2.2.8.2.2: Only Microsoft RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 servers send the Set

Keyboard IME Status PDU.

<36> Section 2.2.9.1.1.3.1: Microsoft RDP 7.1 RemoteFX servers and RDP 8.0, 8.1, 10.0, 10.1, 10.2,
10.3, 10.4, and 10.5 servers do not support slow-path graphics output.

<37> Section 2.2.11.2: Microsoft RDP 8.0 servers do not correctly process the Refresh Rect PDU in
either single monitor or multiple monitor scenarios. Microsoft RDP 8.1 servers do not correctly process
the Refresh Rect PDU in multiple monitor scenarios. The workaround in both cases is to force a refresh
of the entire virtual desktop by sending two Suppress Output PDUs (section 2.2.11.3): one Suppress

423 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Output PDU to suppress display updates, followed by another Suppress Output PDU to resume display
updates.

<38> Section 2.2.13.1<38> Section 2.2.13.1:: The LB_CLIENT_TSV_URL redirection flag is supported
only on Windows 7 and Windows Server 2008 R2.

<39> Section 2.2.13.1: The LB_SERVER_TSV_CAPABLE redirection flag is supported only on Windows
7 and Windows Server 2008 R2.

<40> Section 2.2.13.1: The TsvUrlLength field is supported only on Windows 7 and Windows Server
2008 R2.

<41> Section 2.2.13.1: The TsvUrl field is supported only on Windows 7 and Windows Server 2008
R2.

<42> Section 2.2.15.1: Only Microsoft RDP 8.0 and 8.1 servers send the Server Initiate

Multitransport Request PDU with the requestedProtocol field set to
INITITATE_REQUEST_PROTOCOL_UDPFECL (0x02). This implies that the RDP-UDP FEC lossy transport
is only supported by RDP 8.0 and 8.1 servers.

<43> Section 3.2.5.3.1: All Microsoft RDP clients, except for RDP 4.0 and 5.0 clients, include the
cookie field in the X.224 Connection Request PDU if a nonempty username can be retrieved for the
current user and the routingToken field is not present (the IDENTIFIER used in the cookie string is

the login name of the user truncated to nine characters).

<44> Section 3.2.5.9.4.1: The Play Sound PDU is not sent by Windows 7 and Windows Server 2008
R2 operating system Remote Desktop implementations, due to architectural changes in the underlying
driver subsystem. Instead, all system and application-generated beeps are dispatched to a client by
using the RDP audio redirection protocol specified in [MS-RDPEA]. If a client does not support RDP
audio redirection, it will not receive any beep notifications.

<45> Section 3.3.5.3.3: Microsoft RDP 5.0 servers support a maximum width of 1,600 pixels.

Microsoft RDP 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 servers support a maximum width of 4,096 pixels. Note
that Windows Server 2003 RDP servers scale down the supported color depth to reduce memory

usage if the width is greater than 1,600 pixels. Microsoft RDP 8.0, 8.1, 10.0, 10.1, 10.2, 10.3, 10.4,
and 10.5 servers support a maximum width of 8,192 pixels.

<46> Section 3.3.5.3.3: Microsoft RDP 5.0 servers support a maximum height of 1,200 pixels.
Microsoft RDP 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 servers support a maximum height of 2,048 pixels. Note
that Windows Server 2003 RDP servers scale down the supported color depth to reduce memory

usage if the height is greater than 1,200 pixels. Microsoft RDP 8.0, 8.1, 10.0, 10.1, 10.2, 10.3, 10.4,
and 10.5 servers support a maximum height of 8,192 pixels.

<47> Section 3.3.5.3.11: Microsoft RDP 4.0, 5.0, 5.1, 5.2, 6.0, and 6.1 clients always set the
SEC_ENCRYPT flag in the Client Info PDU, even when the Encryption Level is
ENCRYPTION_LEVEL_NONE (0).

<48> Section 3.3.5.3.19: Microsoft RDP 4.0, 5.0, 5.1, and 5.2 servers set the targetUser field to a

random value.

<49> Section 3.3.5.9.4.1: The Play Sound PDU is not sent by Windows 7 and Windows Server 2008
R2 Remote Desktop implementations due to architectural changes in the underlying driver subsystem.
Instead, all system and application-generated beeps are dispatched to a client by using the RDP audio
redirection protocol specified in [MS-RDPEA]. If a client does not support RDP audio redirection, it will
not receive any beep notifications.

<50> Section 3.3.5.10.1: Microsoft RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, 10.1, 10.2,

10.3, 10.4, and 10.5 servers send the INFOTYPE_LOGON or INFOTYPE_LOGON_LONG notification if
the INFO_LOGONNOTIFY and INFO_AUTOLOGON flag was set by the client in the Client Info PDU

424 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

(section 2.2.1.11) or if the username or domain used to log on to the session is different from what
was sent in the Client Info PDU.

<51> Section 5.4.5: TLS 1.1 is not supported by Windows NT, Windows 2000 Server operating
system, Windows XP, Windows Server 2003, Windows Vista and Windows Server 2008.

<52> Section 5.4.5: TLS 1.2 is not supported by Windows NT, Windows 2000 Server, Windows XP,
Windows Server 2003, Windows Vista, and Windows Server 2008.

<53> Section 5.4.5: CredSSP is not supported by Windows NT, Windows 2000 Server, Windows XP
operating system Service Pack 1 (SP1), Windows XP operating system Service Pack 2 (SP2), and
Windows Server 2003.

<54> Section 5.4.5.1: Microsoft RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, 10.1, 10.2, 10.3, 10.4,
and 10.5 servers expect that the final set of client-to-server TLS handshake messages

(ClientKeyExchange, ChangeCipherSpec, and Finished, illustrated in [RFC2246] Figure 1) be sent
together in a single frame.

425 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.2.1.3.2 Client Core Data
(TS_UD_CS_CORE)

11277 : Added the version value for RDP 10.10. Major

2.2.1.3.2 Client Core Data
(TS_UD_CS_CORE)

Added new value for RDP 10.11 clients. Major

2.2.1.3.2 Client Core Data
(TS_UD_CS_CORE)

Added new value for earlyCapabilityFlags indicating client
supports skipping some join operations.

Major

2.2.1.4.2 Server Core Data
(TS_UD_SC_CORE)

11277 : Added the version value for RDP 10.10. Major

2.2.1.4.2 Server Core Data
(TS_UD_SC_CORE)

Added new value for RDP version number. Major

2.2.1.4.2 Server Core Data
(TS_UD_SC_CORE)

Added new value earlyCapabilityFlags that indicates the
server supports skipping some join operations.

Major

3.2.5.3.8 Sending MCS
Channel Join Request PDU(s)

Added processing rules fo
RNS_UD_CS_SUPPORT_SKIP_CHANNELJOIN flag.

Major

3.3.5.3.8 Processing MCS
Channel Join Request PDU(s)

Updated processing rules for MCS Channel Join Request PDUs. Major

426 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

8 Index
_

__packet__ packet (section 2.2.1.1.2 39, section 2.2.8.1.1.3.1.1.6 172, section 2.2.14.3 240)

A

Abstract data model
 client (section 3.1.1 250, section 3.2.1 277)
 MPPC-based bulk data compression 254
 server (section 3.1.1 250, section 3.3.1 302)
Administrator-initiated on server disconnection sequence 28
Annotated connection sequence example 327
Annotated disconnection sequence example 370
Annotated fast-path input event PDU example 388
Annotated save session info PDU example 372
Annotated virtual channel PDU example 382
Applicability 35
ARC_CS_PRIVATE_PACKET packet 117

ARC_SC_PRIVATE_PACKET packet 116
Automatic reconnection (section 1.3.1.5 28, section 2.2.4 115, section 5.5 419)

B

Basic server output 30

C

Capability negotiation 35
Capability sets 133
Change tracking 425
CHANNEL_DEF packet 54
CHANNEL_PDU_HEADER packet 131
Client
 abstract data model (section 3.1.1 250, section 3.2.1 277)
 higher-layer triggered events (section 3.1.4 250, section 3.2.4 280)
 initialization (section 3.1.3 250, section 3.2.3 280)
 interleaved RLE-based bitmap compression 263
 local events (section 3.1.7 253, section 3.2.7 302)
 message processing (section 3.1.5 250, section 3.2.5 280)
 MPPC-based bulk data compression 254
 other local events 302
 sequencing rules (section 3.1.5 250, section 3.2.5 280)
 timer events (section 3.1.6 253, section 3.2.6 302)
 timers (section 3.1.2 250, section 3.2.2 280)
Client Initiate Multitransport Error packet 244
Client_Confirm_Active_PDU packet 93
Client_Control_PDU_Cooperate packet 96
Client_Control_PDU_Request_Control packet 98
Client_Font_List_PDU packet 103
Client_Info_PDU packet (section 2.2.1.11 73, section 2.2.1.11.1 73)
Client_MCS_Attach_User_Request_PDU packet 70

Client_MCS_Channel_Join_Request_PDU packet 71
Client_MCS_Connect_Initial_PDU_with_GCC_Conference_Create_Request packet 43
Client_MCS_Erect_Domain_Request_PDU packet 69
Client_Persistent_Key_List_PDU packet 99
Client_Refresh_Rect_PDU packet 221
Client_Security_Exchange_PDU packet 72
Client_Shutdown_Request_PDU packet 110
Client_Suppress_Output_PDU packet 222
Client_Synchronize_PDU packet 95
Client_X_224_Connection_Request_PDU packet 37

427 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Compression flags 255
Compression types - MPPC-based bulk data compression 261
Connection sequence
 deactivation-reactivation 27
 overview 22
 security-enhanced (section 1.3.1.2 27, section 5.4.2 413)
Cryptographic configuration negotiation 398

D

Data
 compressing - MPPC-based bulk data compression 254
 compression 30
 decompressing - MPPC-based bulk data compression 260
Data model - abstract
 client (section 3.1.1 250, section 3.2.1 277)
 MPPC-based bulk data compression 254

 server (section 3.1.1 250, section 3.3.1 302)
Deactivation-reactivation sequence (section 1.3.1.3 27, section 2.2.3 113)
Disconnection sequence 250
 administrator-initiated on server 28
 user-initiated on client 27
 user-initiated on server 28

E

Encryption levels (section 5.3.1 398, section 5.4.1 412)
Enhanced RDP security (section 2.2.13.3 233, section 5.4 412)
Enhanced security server redirection example 386
Error reporting (section 1.3.2 29, section 2.2.5 118)
Examples
 annotated connection sequence 327
 annotated disconnection sequence 370
 annotated fast-path input event PDU 388
 annotated save session info PDU 372
 annotated virtual channel PDU 382
 enhanced security server redirection 386
 Java code encryption/decryption 388
 Java code Proprietary Certificate Hash 392
 standard security server redirection 382
External security protocols 416

F

Fields - vendor-extensible 36
Flags - setting compression flags 255

G

Glossary 17
Graphics output 220
Graphics output - server 30
GUID packet 158

H

Higher-layer triggered events
 client (section 3.1.4 250, section 3.2.4 280)
 server (section 3.1.4 250, section 3.3.4 304)

I

I/O data stream
 encrypting and decrypting (section 5.3.6 408, section 5.4.3 416)

428 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

 packet layout (section 5.3.8 411, section 5.4.4 416)
Implementer - security considerations 398
Implementers - security considerations 398
Index of security parameters 398
Informative references 20
Initialization
 client (section 3.1.3 250, section 3.2.3 280)
 server (section 3.1.3 250, section 3.3.3 304)
Interleaved RLE-based bitmap compression 263
Introduction 17

J

Java code encryption/decryption example 388
Java code Proprietary Certificate Hash example 392

K

Keyboard input (section 1.3.5 30, section 2.2.8 159)

L

LICENSE_BINARY_BLOB packet 87
LICENSE_ERROR_MESSAGE packet 88
LICENSE_PREAMBLE packet 85
LICENSE_VALID_CLIENT_DATA packet 85
Local events
 client (section 3.1.7 253, section 3.2.7 302)
 server (section 3.1.7 253, section 3.3.7 326)
Logon and authorization notifications 213

M

Mandatory capability exchange 89
MCS_Disconnect_Provider_Ultimatum_PDU packet 112
Message processing
 client (section 3.1.5 250, section 3.2.5 280)
 server (section 3.1.5 250, section 3.3.5 304)
Messages
 flow (section 1.3.1 22, section 1.3.1.1 22)
 syntax 37
 transport 37
Monitor_Layout_PDU packet 224
Mouse input (section 1.3.5 30, section 2.2.8 159)
MPPC-based bulk data compression

 abstract data model 254
 compressing data 254
 compression types 261
 decompressing data 260
 overview 254

N

Network Characteristics Result (RDP_NETCHAR_RESULT) packet 237
Network Characteristics Sync (RDP_NETCHAR_SYNC) packet 239
Normative references 19

O

Other local events
 client 302
 server 326
Output 183
Overview (synopsis) 22

429 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

P

packet (section 2.2.10.2 220, section 2.2.14.1 234, section 2.2.14.1.3 235, section 2.2.14.2 238, section 2.2.14.4

241)
Parameter index - security 398
Parameters - security index 398
Preconditions 35
Prerequisites 35
Product behavior 420
PROPRIETARYSERVERCERTIFICATE packet 66

R

Random values 403
RDP security
 enhanced (section 2.2.13.3 233, section 5.4 412)
 standard (section 2.2.13.2 232, section 5.3 398)
RDP_BW_RESULTS packet 238
RDP_BW_START packet 234
RDP_BW_STOP packet 236
RDP_NEG_FAILURE packet 42
RDP_NEG_REQ packet 38
RDP_NEG_RSP packet 40
RDP_RTT_REQUEST packet 234
RDP_RTT_RESPONSE packet 238
RDP_SERVER_REDIRECTION_PACKET packet 226
Reconnection 28
References 19
 informative 20
 normative 19
Relationship to other protocols 33
RLE_BITMAP_STREAM packet 189
RSA_PUBLIC_KEY packet 67

S

Security
 automatic reconnection 419
 enhanced RDP security (section 2.2.13.3 233, section 5.4 412)
 external protocols 416
 implementer considerations 398
 parameter index 398
 standard RDP security (section 2.2.13.2 232, section 5.3 398)
Security-enhanced connection sequence 27
Sequencing rules
 client (section 3.1.5 250, section 3.2.5 280)
 server (section 3.1.5 250, section 3.3.5 304)
Server
 abstract data model (section 3.1.1 250, section 3.3.1 302)
 certificates 399

 error reporting (section 1.3.2 29, section 2.2.5 118)
 graphics output (section 1.3.7 30, section 2.2.11 220)
 higher-layer triggered events (section 3.1.4 250, section 3.3.4 304)
 initialization (section 3.1.3 250, section 3.3.3 304)
 interleaved RLE-based bitmap compression 263
 local events (section 3.1.7 253, section 3.3.7 326)
 message processing (section 3.1.5 250, section 3.3.5 304)
 MPPC-based bulk data compression 254
 other local events 326
 output 30
 redirection (section 1.3.8 31, section 2.2.13 226)
 sequencing rules (section 3.1.5 250, section 3.3.5 304)
 timer events (section 3.1.6 253, section 3.3.6 326)
 timers (section 3.1.2 250, section 3.3.2 304)

430 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

Server Heartbeat PDU packet 245
Server Initiate Multitransport Request packet 242
Server_Auto_Reconnect_Status_PDU packet 115
SERVER_CERTIFICATE packet 65
Server_Control_PDU_Cooperate packet 105
Server_Control_PDU_Granted_Control packet 107
Server_Deactivate_All_PDU packet 113
Server_Demand_Active_PDU packet 89
Server_Font_Map_PDU packet 108
Server_License_Error_PDU_Valid_Client packet 84
Server_MCS_Attach_User_Confirm_PDU packet 70
Server_MCS_Channel_Join_Confirm_PDU packet 71
Server_MCS_Connect_Response_PDU_with_GCC_Conference_Create_Response packet 60
Server_Play_Sound_PDU packet 198
Server_Save_Session_Info_PDU packet 213
Server_Set_Error_Info_PDU packet 118
Server_Set_Keyboard_IME_Status_PDU packet 181
Server_Set_Keyboard_Indicators_PDU packet 179
Server_Shutdown_Request_Denied_PDU packet 111
Server_Status_Info_PDU packet 128
Server_Synchronize_PDU packet 104
Server_X_224_Connection_Confirm_PDU packet 40
Session key

 generating 404
 updates 410
Specifying the active keyboard layout and language example 396
Standard RDP security (section 2.2.13.2 232, section 5.3 398)
Standard security server redirection example 382
Standards assignments 36
Static virtual channel (section 1.3.3 29, section 2.2.6 130, section 3.1.5.2 251, section 3.1.5.2.1 251)
Syntax - message 37

T

TARGET_NET_ADDRESS packet 230
TARGET_NET_ADDRESSES packet 230
Timer events
 client (section 3.1.6 253, section 3.2.6 302)
 server (section 3.1.6 253, section 3.3.6 326)
Timers
 client (section 3.1.2 250, section 3.2.2 280)
 server (section 3.1.2 250, section 3.3.2 304)
Tracking changes 425
Transport 37
Triggered events - higher-layer
 client (section 3.1.4 250, section 3.2.4 280)
 server (section 3.1.4 250, section 3.3.4 304)
TS_AUTORECONNECT_STATUS_PDU packet 116
TS_BITMAP_CAPABILITYSET packet 136
TS_BITMAP_DATA packet 187
TS_BITMAP_DATA_EX packet 210
TS_BITMAPCACHE_CAPABILITYSET packet 141
TS_BITMAPCACHE_CAPABILITYSET_REV2 packet 143
TS_BITMAPCACHE_CELL_CACHE_INFO packet 144
TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET packet 151
TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY packet 102
TS_BITMAPCACHE_PERSISTENT_LIST_PDU packet 100
TS_BITMAPCODEC packet 157
TS_BITMAPCODECS packet 157
TS_BITMAPCODECS_CAPABILITYSET packet 156
TS_BRUSH_CAPABILITYSET packet 147
TS_CACHE_DEFINITION packet 149

TS_CACHEDPOINTERATTRIBUTE packet 198
TS_CAPS_SET packet 91
TS_CD_HEADER packet 189

431 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

TS_COLORPOINTERATTRIBUTE packet 196
TS_COMPDESK_CAPABILITYSET packet 155
TS_CONFIRM_ACTIVE_PDU packet 94
TS_CONTROL_CAPABILITYSET packet 152
TS_CONTROL_PDU packet 97
TS_DEACTIVATE_ALL_PDU packet 114
TS_DEMAND_ACTIVE_PDU packet 90
TS_ENHANCED_SECURITY_SERVER_REDIRECTION packet 233
TS_EXTENDED_INFO_PACKET packet 78
TS_FONT_CAPABILITYSET packet 153
TS_FONT_LIST_PDU packet 104
TS_FONT_MAP_PDU packet 109
TS_FP_CACHEDPOINTERATTRIBUTE packet 207
TS_FP_COLORPOINTERATTRIBUTE packet 206
TS_FP_FIPS_INFO packet 174
TS_FP_INPUT_EVENT packet 175
TS_FP_INPUT_PDU packet 172
TS_FP_KEYBOARD_EVENT packet 176
TS_FP_POINTER_EVENT packet 177
TS_FP_POINTERATTRIBUTE packet 206
TS_FP_POINTERPOSATTRIBUTE packet 204
TS_FP_POINTERX_EVENT packet 177
TS_FP_SURFCMDS packet 207

TS_FP_SYNC_EVENT packet 178
TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE packet 205
TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE packet 205
TS_FP_UNICODE_KEYBOARD_EVENT packet 176
TS_FP_UPDATE packet 201
TS_FP_UPDATE_BITMAP packet 204
TS_FP_UPDATE_PALETTE packet 203
TS_FP_UPDATE_PDU packet 199
TS_FP_UPDATE_SYNCHRONIZE packet 204
TS_FRAME_MARKER packet 213
TS_GENERAL_CAPABILITYSET packet 133
TS_GLYPHCACHE_CAPABILITYSET packet 148
TS_GRAPHICS_PDU packet 183
TS_GRAPHICS_UPDATE packet 184
TS_INFO_PACKET packet 74
TS_INPUT_CAPABILITYSET packet 145
TS_INPUT_EVENT packet 167
TS_INPUT_PDU packet 166
TS_INPUT_PDU_DATA packet 167
TS_KEYBOARD_EVENT packet 168
TS_LARGE_POINTER_CAPABILITYSET packet 154
TS_LOGON_ERRORS_INFO packet 219
TS_LOGON_INFO packet 215
TS_LOGON_INFO_EXTENDED packet 217
TS_LOGON_INFO_FIELD packet 218
TS_LOGON_INFO_VERSION_2 packet 216
TS_MONITOR_ATTRIBUTES packet 59
TS_MONITOR_DEF packet 57
TS_MULTIFRAGMENTUPDATE_CAPABILITYSET packet 154
TS_OFFSCREEN_CAPABILITYSET packet 149
TS_ORDER_CAPABILITYSET packet 137
TS_PALETTE_ENTRY packet 186
TS_PLAIN_NOTIFY packet 217
TS_PLAY_SOUND_PDU_DATA packet 199
TS_POINT16 packet 195
TS_POINTER_CAPABILITYSET packet 145
TS_POINTER_EVENT packet 169
TS_POINTER_PDU packet 194
TS_POINTERATTRIBUTE packet 197
TS_POINTERPOSATTRIBUTE packet 196
TS_POINTERX_EVENT packet 171
TS_RECTANGLE16 packet 220

432 / 432

[MS-RDPBCGR-Diff] - v20220429
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2022 Microsoft Corporation
Release: April 29, 2022

TS_REFRESH_RECT_PDU packet 222
TS_SAVE_SESSION_INFO_PDU_DATA packet 214
TS_SECURITY_HEADER packet 163
TS_SECURITY_HEADER1 packet 165
TS_SECURITY_HEADER2 packet 165
TS_SECURITY_PACKET packet 72
TS_SET_ERROR_INFO_PDU packet 119
TS_SET_KEYBOARD_IME_STATUS_PDU packet 182
TS_SET_KEYBOARD_INDICATORS_PDU packet 180
TS_SHARE_CAPABILITYSET packet 153
TS_SHARECONTROLHEADER packet 159
TS_SHAREDATAHEADER packet 160
TS_SHUTDOWN_DENIED_PDU packet 112
TS_SHUTDOWN_REQ_PDU packet 111
TS_SOUND_CAPABILITYSET packet 151
TS_Standard_Security_Server_Redirection_PDU packet 232
TS_SUPPRESS_OUTPUT_PDU packet 223
TS_SURFCMD packet 208
TS_SURFCMD_SET_SURF_BITS packet 210
TS_SURFCMD_STREAM_SURF_BITS packet 212
TS_SURFCMDS_CAPABILITYSET packet 156
TS_SYNC_EVENT packet 171
TS_SYNCHRONIZE_PDU packet 96

TS_SYSTEMPOINTERATTRIBUTE packet 196
TS_SYSTEMTIME packet 82
TS_TIME_ZONE_INFORMATION packet 81
TS_UD_CS_CLUSTER packet 55
TS_UD_CS_CORE packet 46
TS_UD_CS_MCS_MSGCHANNEL packet 57
TS_UD_CS_MONITOR packet 56
TS_UD_CS_MONITOR_EX packet 58
TS_UD_CS_MULTITRANSPORT packet 58
TS_UD_CS_NET packet 53
TS_UD_CS_SEC packet 52
TS_UD_HEADER packet 45
TS_UD_SC_CORE packet 62
TS_UD_SC_MCS_MSGCHANNEL packet 68
TS_UD_SC_MULTITRANSPORT packet 69
TS_UD_SC_NET packet 68
TS_UD_SC_SEC1 packet 64
TS_UNICODE_KEYBOARD_EVENT packet 169
TS_UPDATE_BITMAP packet 186
TS_UPDATE_BITMAP_DATA packet 187
TS_UPDATE_PALETTE packet 185
TS_UPDATE_PALETTE_DATA packet 186
TS_UPDATE_SYNC packet 193
TS_VIRTUALCHANNEL_CAPABILITYSET packet 150
TS_WINDOWACTIVATION_CAPABILITYSET packet 152

U

User-initiated on client disconnection sequence 27
User-initiated on server disconnection sequence 28

V

Vendor-extensible fields 36

Versioning 35
Virtual_Channel_PDU packet 130

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Message Flows
	1.3.1.1 Connection Sequence
	1.3.1.2 Security-Enhanced Connection Sequence
	1.3.1.3 Deactivation-Reactivation Sequence
	1.3.1.4 Disconnection Sequences
	1.3.1.4.1 User-Initiated on Client
	1.3.1.4.2 User-Initiated on Server
	1.3.1.4.3 Administrator-Initiated on Server

	1.3.1.5 Automatic Reconnection

	1.3.2 Server Error Reporting and Status Updates
	1.3.3 Static Virtual Channels
	1.3.4 Data Compression
	1.3.5 Keyboard and Mouse Input
	1.3.6 Basic Server Output
	1.3.7 Controlling Server Graphics Output
	1.3.8 Server Redirection
	1.3.8.1 RDSTLS

	1.3.9 Connect-Time and Continuous Network Characteristics Detection
	1.3.10 Connection Health Monitoring

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Connection Sequence
	2.2.1.1 Client X.224 Connection Request PDU
	2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ)
	2.2.1.1.2 RDP Correlation Info (RDP_NEG_CORRELATION_INFO)

	2.2.1.2 Server X.224 Connection Confirm PDU
	2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)
	2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)

	2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request
	2.2.1.3.1 User Data Header (TS_UD_HEADER)
	2.2.1.3.2 (Updated Section) Client Core Data (TS_UD_CS_CORE)
	2.2.1.3.3 Client Security Data (TS_UD_CS_SEC)
	2.2.1.3.4 Client Network Data (TS_UD_CS_NET)
	2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)

	2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER)
	2.2.1.3.6 Client Monitor Data (TS_UD_CS_MONITOR)
	2.2.1.3.6.1 Monitor Definition (TS_MONITOR_DEF)

	2.2.1.3.7 Client Message Channel Data (TS_UD_CS_MCS_MSGCHANNEL)
	2.2.1.3.8 Client Multitransport Channel Data (TS_UD_CS_MULTITRANSPORT)
	2.2.1.3.9 Client Monitor Extended Data (TS_UD_CS_MONITOR_EX)
	2.2.1.3.9.1 Monitor Attributes (TS_MONITOR_ATTRIBUTES)

	2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response
	2.2.1.4.1 User Data Header (TS_UD_HEADER)
	2.2.1.4.2 (Updated Section) Server Core Data (TS_UD_SC_CORE)
	2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1)
	2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE)
	2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)
	2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)

	2.2.1.4.4 Server Network Data (TS_UD_SC_NET)
	2.2.1.4.5 Server Message Channel Data (TS_UD_SC_MCS_MSGCHANNEL)
	2.2.1.4.6 Server Multitransport Channel Data (TS_UD_SC_MULTITRANSPORT)

	2.2.1.5 Client MCS Erect Domain Request PDU
	2.2.1.6 Client MCS Attach User Request PDU
	2.2.1.7 Server MCS Attach User Confirm PDU
	2.2.1.8 Client MCS Channel Join Request PDU
	2.2.1.9 Server MCS Channel Join Confirm PDU
	2.2.1.10 Client Security Exchange PDU
	2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET)

	2.2.1.11 Client Info PDU
	2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)
	2.2.1.11.1.1 Info Packet (TS_INFO_PACKET)
	2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET)
	2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION)
	2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)

	2.2.1.12 Server License Error PDU - Valid Client
	2.2.1.12.1 Valid Client License Data (LICENSE_VALID_CLIENT_DATA)
	2.2.1.12.1.1 Licensing Preamble (LICENSE_PREAMBLE)
	2.2.1.12.1.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)
	2.2.1.12.1.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)

	2.2.1.13 Mandatory Capability Exchange
	2.2.1.13.1 Server Demand Active PDU
	2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU)
	2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET)

	2.2.1.13.2 Client Confirm Active PDU
	2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU)

	2.2.1.14 Client Synchronize PDU
	2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)

	2.2.1.15 Client Control PDU - Cooperate
	2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU)

	2.2.1.16 Client Control PDU - Request Control
	2.2.1.17 Client Persistent Key List PDU
	2.2.1.17.1 Persistent Key List PDU Data (TS_BITMAPCACHE_PERSISTENT_LIST_PDU)
	2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)

	2.2.1.18 Client Font List PDU
	2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU)

	2.2.1.19 Server Synchronize PDU
	2.2.1.20 Server Control PDU - Cooperate
	2.2.1.21 Server Control PDU - Granted Control
	2.2.1.22 Server Font Map PDU
	2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU)

	2.2.2 Disconnection Sequences
	2.2.2.1 Client Shutdown Request PDU
	2.2.2.1.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)

	2.2.2.2 Server Shutdown Request Denied PDU
	2.2.2.2.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU)

	2.2.2.3 MCS Disconnect Provider Ultimatum PDU

	2.2.3 Deactivation-Reactivation Sequence
	2.2.3.1 Server Deactivate All PDU
	2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)

	2.2.4 Auto-Reconnect Sequence
	2.2.4.1 Server Auto-Reconnect Status PDU
	2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)

	2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET)
	2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)

	2.2.5 Server Error Reporting and Status Updates
	2.2.5.1 Server Set Error Info PDU
	2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)

	2.2.5.2 Server Status Info PDU

	2.2.6 Static Virtual Channels
	2.2.6.1 Virtual Channel PDU
	2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)

	2.2.7 Capability Sets
	2.2.7.1 Mandatory Capability Sets
	2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)
	2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET)
	2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET)
	2.2.7.1.4 Bitmap Cache Capability Set
	2.2.7.1.4.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET)
	2.2.7.1.4.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)
	2.2.7.1.4.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)

	2.2.7.1.5 Pointer Capability Set (TS_POINTER_CAPABILITYSET)
	2.2.7.1.6 Input Capability Set (TS_INPUT_CAPABILITYSET)
	2.2.7.1.7 Brush Capability Set (TS_BRUSH_CAPABILITYSET)
	2.2.7.1.8 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET)
	2.2.7.1.8.1 Cache Definition (TS_CACHE_DEFINITION)

	2.2.7.1.9 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)
	2.2.7.1.10 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET)
	2.2.7.1.11 Sound Capability Set (TS_SOUND_CAPABILITYSET)

	2.2.7.2 Optional Capability Sets
	2.2.7.2.1 Bitmap Cache Host Support Capability Set (TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET)
	2.2.7.2.2 Control Capability Set (TS_CONTROL_CAPABILITYSET)
	2.2.7.2.3 Window Activation Capability Set (TS_WINDOWACTIVATION_CAPABILITYSET)
	2.2.7.2.4 Share Capability Set (TS_SHARE_CAPABILITYSET)
	2.2.7.2.5 Font Capability Set (TS_FONT_CAPABILITYSET)
	2.2.7.2.6 Multifragment Update Capability Set (TS_MULTIFRAGMENTUPDATE_CAPABILITYSET)
	2.2.7.2.7 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)
	2.2.7.2.8 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET)
	2.2.7.2.9 Surface Commands Capability Set (TS_SURFCMDS_CAPABILITYSET)
	2.2.7.2.10 Bitmap Codecs Capability Set (TS_BITMAPCODECS_CAPABILITYSET)
	2.2.7.2.10.1 Bitmap Codecs (TS_BITMAPCODECS)
	2.2.7.2.10.1.1 Bitmap Codec (TS_BITMAPCODEC)
	2.2.7.2.10.1.1.1 Globally Unique Identifier (GUID)

	2.2.8 Keyboard and Mouse Input
	2.2.8.1 Input PDU Packaging
	2.2.8.1.1 Slow-Path (T.128) Formats
	2.2.8.1.1.1 Share Headers
	2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)
	2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)

	2.2.8.1.1.2 Security Headers
	2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER)
	2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1)
	2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2)

	2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU)
	2.2.8.1.1.3.1 Client Input Event PDU Data (TS_INPUT_PDU_DATA)
	2.2.8.1.1.3.1.1 Slow-Path Input Event (TS_INPUT_EVENT)
	2.2.8.1.1.3.1.1.1 Keyboard Event (TS_KEYBOARD_EVENT)
	2.2.8.1.1.3.1.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)
	2.2.8.1.1.3.1.1.3 Mouse Event (TS_POINTER_EVENT)
	2.2.8.1.1.3.1.1.4 Extended Mouse Event (TS_POINTERX_EVENT)
	2.2.8.1.1.3.1.1.5 Synchronize Event (TS_SYNC_EVENT)
	2.2.8.1.1.3.1.1.6 Unused Event (TS_UNUSED_EVENT)

	2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)
	2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)
	2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT)
	2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT)
	2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event (TS_FP_UNICODE_KEYBOARD_EVENT)
	2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)
	2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT)
	2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT)
	2.2.8.1.2.2.6 Fast-Path Quality of Experience (QoE) Timestamp Event (TS_FP_QOETIMESTAMP_EVENT)

	2.2.8.2 Keyboard Status PDUs
	2.2.8.2.1 Server Set Keyboard Indicators PDU
	2.2.8.2.1.1 Set Keyboard Indicators PDU Data (TS_SET_KEYBOARD_INDICATORS_PDU)

	2.2.8.2.2 Server Set Keyboard IME Status PDU
	2.2.8.2.2.1 Set Keyboard IME Status PDU Data (TS_SET_KEYBOARD_IME_STATUS_PDU)

	2.2.9 Basic Output
	2.2.9.1 Output PDU Packaging
	2.2.9.1.1 Slow-Path (T.128) Format
	2.2.9.1.1.1 Share Headers
	2.2.9.1.1.2 Security Headers
	2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)
	2.2.9.1.1.3.1 Slow-Path Graphics Update (TS_GRAPHICS_UPDATE)
	2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE)
	2.2.9.1.1.3.1.1.1 Palette Update Data (TS_UPDATE_PALETTE_DATA)
	2.2.9.1.1.3.1.1.2 RGB Palette Entry (TS_PALETTE_ENTRY)

	2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP)
	2.2.9.1.1.3.1.2.1 Bitmap Update Data (TS_UPDATE_BITMAP_DATA)
	2.2.9.1.1.3.1.2.2 Bitmap Data (TS_BITMAP_DATA)
	2.2.9.1.1.3.1.2.3 Compressed Data Header (TS_CD_HEADER)
	2.2.9.1.1.3.1.2.4 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)

	2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC)

	2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU)
	2.2.9.1.1.4.1 Point (TS_POINT16)
	2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE)
	2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE)
	2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)
	2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)
	2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)

	2.2.9.1.1.5 Server Play Sound PDU
	2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA)

	2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)
	2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)
	2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)
	2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP)
	2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)
	2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)
	2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update (TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)
	2.2.9.1.2.1.6 Fast-Path System Pointer Default Update (TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)
	2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)
	2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)
	2.2.9.1.2.1.9 Fast-Path Cached Pointer Update (TS_FP_CACHEDPOINTERATTRIBUTE)
	2.2.9.1.2.1.10 Fast-Path Surface Commands Update (TS_FP_SURFCMDS)
	2.2.9.1.2.1.10.1 Surface Command (TS_SURFCMD)

	2.2.9.1.2.1.11 Fast-Path Large Pointer Update (TS_FP_LARGEPOINTERATTRIBUTE)

	2.2.9.2 Surface Commands
	2.2.9.2.1 Set Surface Bits Command (TS_SURFCMD_SET_SURF_BITS)
	2.2.9.2.1.1 Extended Bitmap Data (TS_BITMAP_DATA_EX)
	2.2.9.2.1.1.1 Extended Compressed Bitmap Header (TS_COMPRESSED_BITMAP_HEADER_EX)

	2.2.9.2.2 Stream Surface Bits Command (TS_SURFCMD_STREAM_SURF_BITS)
	2.2.9.2.3 Frame Marker Command (TS_FRAME_MARKER)

	2.2.10 Logon and Authorization Notifications
	2.2.10.1 Server Save Session Info PDU
	2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA)
	2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)
	2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)
	2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY)
	2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED)
	2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD)
	2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO)

	2.2.10.2 Early User Authorization Result PDU

	2.2.11 Controlling Server Graphics Output
	2.2.11.1 Inclusive Rectangle (TS_RECTANGLE16)
	2.2.11.2 Client Refresh Rect PDU
	2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU)

	2.2.11.3 Client Suppress Output PDU
	2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU)

	2.2.12 Display Update Notifications
	2.2.12.1 Monitor Layout PDU

	2.2.13 Server Redirection
	2.2.13.1 Server Redirection Packet (RDP_SERVER_REDIRECTION_PACKET)
	2.2.13.1.1 Target Net Addresses (TARGET_NET_ADDRESSES)
	2.2.13.1.1.1 Target Net Address (TARGET_NET_ADDRESS)

	2.2.13.1.2 Target Certificate Container (TARGET_CERTIFICATE_CONTAINER)
	2.2.13.1.2.1 Certificate Meta Element (CERTIFICATE_META_ELEMENT)

	2.2.13.2 Standard RDP Security
	2.2.13.2.1 Standard Security Server Redirection PDU (TS_STANDARD_SECURITY_SERVER_REDIRECTION)

	2.2.13.3 Enhanced RDP Security
	2.2.13.3.1 Enhanced Security Server Redirection PDU (TS_ENHANCED_SECURITY_SERVER_REDIRECTION)

	2.2.14 Network Characteristics Detection
	2.2.14.1 Server-to-Client Request Messages
	2.2.14.1.1 RTT Measure Request (RDP_RTT_REQUEST)
	2.2.14.1.2 Bandwidth Measure Start (RDP_BW_START)
	2.2.14.1.3 Bandwidth Measure Payload (RDP_BW_PAYLOAD)
	2.2.14.1.4 Bandwidth Measure Stop (RDP_BW_STOP)
	2.2.14.1.5 Network Characteristics Result (RDP_NETCHAR_RESULTS)

	2.2.14.2 Client-to-Server Response Messages
	2.2.14.2.1 RTT Measure Response (RDP_RTT_RESPONSE)
	2.2.14.2.2 Bandwidth Measure Results (RDP_BW_RESULTS)
	2.2.14.2.3 Network Characteristics Sync (RDP_NETCHAR_SYNC)

	2.2.14.3 Server Auto-Detect Request PDU
	2.2.14.4 Client Auto-Detect Response PDU

	2.2.15 Multitransport Bootstrapping
	2.2.15.1 Server Initiate Multitransport Request PDU
	2.2.15.2 Client Initiate Multitransport Response PDU

	2.2.16 Connection Health Monitoring
	2.2.16.1 Server Heartbeat PDU

	2.2.17 RDSTLS PDUs
	2.2.17.1 RDSTLS Capabilities PDU
	2.2.17.2 RDSTLS Authentication Request PDU with Password Credentials
	2.2.17.3 RDSTLS Authentication Request PDU with Auto-Reconnect Cookie
	2.2.17.4 RDSTLS Authentication Response PDU

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Disconnection Sequences
	3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU
	3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDU

	3.1.5.2 Static Virtual Channels
	3.1.5.2.1 Sending of Virtual Channel PDU
	3.1.5.2.2 Processing of Virtual Channel PDU
	3.1.5.2.2.1 Reassembly of Chunked Virtual Channel Data

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.8 MPPC-Based Bulk Data Compression
	3.1.8.1 Abstract Data Model
	3.1.8.2 Compressing Data
	3.1.8.2.1 Setting the Compression Flags
	3.1.8.2.2 Operation of the Bulk Compressor
	3.1.8.2.3 Data Compression Example

	3.1.8.3 Decompressing Data
	3.1.8.4 Compression Types
	3.1.8.4.1 RDP 4.0
	3.1.8.4.1.1 Literal Encoding
	3.1.8.4.1.2 Copy-Tuple Encoding
	3.1.8.4.1.2.1 Copy-Offset Encoding
	3.1.8.4.1.2.2 Length-of-Match Encoding

	3.1.8.4.2 RDP 5.0
	3.1.8.4.2.1 Literal Encoding
	3.1.8.4.2.2 Copy-Tuple Encoding
	3.1.8.4.2.2.1 Copy-Offset Encoding
	3.1.8.4.2.2.2 Length-of-Match Encoding

	3.1.9 Interleaved RLE-Based Bitmap Compression

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Received Server Data
	3.2.1.2 Static Virtual Channel IDs
	3.2.1.3 I/O Channel ID
	3.2.1.4 Message Channel ID
	3.2.1.5 User Channel ID
	3.2.1.6 Server Channel ID
	3.2.1.7 Server Capabilities
	3.2.1.8 Share ID
	3.2.1.9 Automatic Reconnection Cookie
	3.2.1.10 Server Licensing Encryption Ability
	3.2.1.11 Pointer Image Cache
	3.2.1.12 Session Keys
	3.2.1.13 Bitmap Caches
	3.2.1.14 Persistent Bitmap Caches
	3.2.1.15 Persisted Bitmap Keys
	3.2.1.16 Connection Start Time
	3.2.1.17 Network Characteristics Byte Count
	3.2.1.18 Network Characteristics Sequence Number

	3.2.2 Timers
	3.2.2.1 Connection Sequence Timeout Timer
	3.2.2.2 Network Characteristics Timer

	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Constructing a Client-to-Server Slow-Path PDU
	3.2.5.2 Processing a Server-to-Client Slow-Path PDU
	3.2.5.3 Connection Sequence
	3.2.5.3.1 Sending X.224 Connection Request PDU
	3.2.5.3.2 Processing X.224 Connection Confirm PDU
	3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request
	3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create Response
	3.2.5.3.5 Sending MCS Erect Domain Request PDU
	3.2.5.3.6 Sending MCS Attach User Request PDU
	3.2.5.3.7 Processing MCS Attach User Confirm PDU
	3.2.5.3.8 (Updated Section) Sending MCS Channel Join Request PDU(s)
	3.2.5.3.9 Processing MCS Channel Join Confirm PDU(s)
	3.2.5.3.10 Sending Security Exchange PDU
	3.2.5.3.11 Sending Client Info PDU
	3.2.5.3.12 Processing License Error PDU - Valid Client
	3.2.5.3.13 Mandatory Capability Exchange
	3.2.5.3.13.1 Processing Demand Active PDU
	3.2.5.3.13.2 Sending Confirm Active PDU

	3.2.5.3.14 Sending Synchronize PDU
	3.2.5.3.15 Sending Control PDU - Cooperate
	3.2.5.3.16 Sending Control PDU - Request Control
	3.2.5.3.17 Sending Persistent Key List PDU(s)
	3.2.5.3.18 Sending Font List PDU
	3.2.5.3.19 Processing Synchronize PDU
	3.2.5.3.20 Processing Control PDU - Cooperate
	3.2.5.3.21 Processing Control PDU - Granted Control
	3.2.5.3.22 Processing Font Map PDU

	3.2.5.4 Disconnection Sequences
	3.2.5.4.1 Sending Shutdown Request PDU
	3.2.5.4.2 Processing Shutdown Request Denied PDU

	3.2.5.5 Deactivation-Reconnection Sequence
	3.2.5.5.1 Processing Deactivate All PDU

	3.2.5.6 Auto-Reconnect Sequence
	3.2.5.6.1 Processing Auto-Reconnect Status PDU

	3.2.5.7 Server Error Reporting and Status Updates
	3.2.5.7.1 Processing Set Error Info PDU
	3.2.5.7.2 Processing Status Info PDU

	3.2.5.8 Keyboard and Mouse Input
	3.2.5.8.1 Input Event Notifications
	3.2.5.8.1.1 Sending Input Event PDU
	3.2.5.8.1.2 Sending Fast-Path Input Event PDU

	3.2.5.8.2 Keyboard Status PDUs
	3.2.5.8.2.1 Processing Set Keyboard Indicators PDU
	3.2.5.8.2.2 Processing Set Keyboard IME Status PDU

	3.2.5.9 Basic Output
	3.2.5.9.1 Processing Slow-Path Graphics Update PDU
	3.2.5.9.2 Processing Slow-Path Pointer Update PDU
	3.2.5.9.3 Processing Fast-Path Update PDU
	3.2.5.9.3.1 Processing Fast-Path Update Fragments

	3.2.5.9.4 Sound
	3.2.5.9.4.1 Processing Play Sound PDU

	3.2.5.10 Logon and Authorization Notifications
	3.2.5.10.1 Processing Save Session Info PDU
	3.2.5.10.2 Processing Early User Authorization Result PDU

	3.2.5.11 Controlling Server Graphics Output
	3.2.5.11.1 Sending Refresh Rect PDU
	3.2.5.11.2 Sending Suppress Output PDU

	3.2.5.12 Display Update Notifications
	3.2.5.12.1 Processing Monitor Layout PDU

	3.2.5.13 Server Redirection
	3.2.5.13.1 Processing of the Server Redirection PDUs

	3.2.5.14 Network Characteristics Detection
	3.2.5.15 Multitransport Bootstrapping
	3.2.5.15.1 Processing the Initiate Multitransport Request PDU
	3.2.5.15.2 Sending the Initiate Multitransport Response PDU

	3.2.6 Timer Events
	3.2.6.1 Client-Side Connection Sequence Timeout

	3.2.7 Other Local Events
	3.2.7.1 Disconnection Due to Network Error

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 Received Client Data
	3.3.1.2 User Channel ID
	3.3.1.3 I/O Channel ID
	3.3.1.4 Message Channel ID
	3.3.1.5 Server Channel ID
	3.3.1.6 Client Licensing Encryption Ability
	3.3.1.7 Client Capabilities
	3.3.1.8 Cached Bitmap Keys
	3.3.1.9 Pointer Image Cache
	3.3.1.10 Session Keys
	3.3.1.11 Automatic Reconnection Cookie
	3.3.1.12 Connection Start Time
	3.3.1.13 RTT Measure Request Data
	3.3.1.14 Multitransport Request Data

	3.3.2 Timers
	3.3.2.1 Connection Sequence Timeout Timer

	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Constructing a Server-to-Client Slow-Path PDU
	3.3.5.2 Processing a Client-to-Server Slow-Path PDU
	3.3.5.3 Connection Sequence
	3.3.5.3.1 Processing X.224 Connection Request PDU
	3.3.5.3.2 Sending X.224 Connection Confirm PDU
	3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request
	3.3.5.3.3.1 Handling Errors in the GCC Conference Create Request Data

	3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response
	3.3.5.3.5 Processing MCS Erect Domain Request PDU
	3.3.5.3.6 Processing MCS Attach User Request PDU
	3.3.5.3.7 Sending MCS Attach User Confirm PDU
	3.3.5.3.8 (Updated Section) Processing MCS Channel Join Request PDU(s)
	3.3.5.3.9 Sending MCS Channel Join Confirm PDU(s)
	3.3.5.3.10 Processing Security Exchange PDU
	3.3.5.3.11 Processing Client Info PDU
	3.3.5.3.12 Sending License Error PDU - Valid Client
	3.3.5.3.13 Mandatory Capability Exchange
	3.3.5.3.13.1 Sending Demand Active PDU
	3.3.5.3.13.2 Processing Confirm Active PDU

	3.3.5.3.14 Processing Synchronize PDU
	3.3.5.3.15 Processing Control PDU - Cooperate
	3.3.5.3.16 Processing Control PDU - Request Control
	3.3.5.3.17 Processing Persistent Key List PDU(s)
	3.3.5.3.18 Processing Font List PDU
	3.3.5.3.19 Sending Synchronize PDU
	3.3.5.3.20 Sending Control PDU - Cooperate
	3.3.5.3.21 Sending Control PDU - Granted Control
	3.3.5.3.22 Sending Font Map PDU

	3.3.5.4 Disconnection Sequences
	3.3.5.4.1 Processing Shutdown Request PDU
	3.3.5.4.2 Sending Shutdown Request Denied PDU

	3.3.5.5 Deactivation-Reconnection Sequence
	3.3.5.5.1 Sending Deactivate All PDU

	3.3.5.6 Auto-Reconnect Sequence
	3.3.5.6.1 Sending Auto-Reconnect Status PDU

	3.3.5.7 Server Error Reporting and Status Updates
	3.3.5.7.1 Sending Set Error Info PDU
	3.3.5.7.1.1 User Authorization Failures

	3.3.5.7.2 Sending Status Info PDU

	3.3.5.8 Keyboard and Mouse Input
	3.3.5.8.1 Input Event Notifications
	3.3.5.8.1.1 Processing Input Event PDU
	3.3.5.8.1.2 Processing Fast-Path Input Event PDU

	3.3.5.8.2 Keyboard Status PDUs
	3.3.5.8.2.1 Sending Set Keyboard Indicators PDU
	3.3.5.8.2.2 Sending Set Keyboard IME Status PDU

	3.3.5.9 Basic Output
	3.3.5.9.1 Sending Slow-Path Graphics Update PDU
	3.3.5.9.2 Sending Slow-Path Pointer Update PDU
	3.3.5.9.3 Sending Fast-Path Update PDU
	3.3.5.9.4 Sound
	3.3.5.9.4.1 Sending Play Sound PDU

	3.3.5.10 Logon and Authorization Notifications
	3.3.5.10.1 Sending Save Session Info PDU
	3.3.5.10.2 Sending Early User Authorization Result PDU

	3.3.5.11 Controlling Server Graphics Output
	3.3.5.11.1 Processing Refresh Rect PDU
	3.3.5.11.2 Processing Suppress Output PDU

	3.3.5.12 Display Update Notifications
	3.3.5.12.1 Sending Monitor Layout PDU

	3.3.5.13 Server Redirection
	3.3.5.13.1 Sending of the Server Redirection PDUs

	3.3.5.14 Network Characteristics Detection
	3.3.5.15 Multitransport Bootstrapping
	3.3.5.15.1 Sending the Initiate Multitransport Request PDU
	3.3.5.15.2 Processing the Initiate Multitransport Response PDU

	3.3.6 Timer Events
	3.3.6.1 Server-Side Connection Sequence Timeout
	3.3.6.2 Auto-Reconnect Cookie Update

	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Annotated Connection Sequence
	4.1.1 Client X.224 Connection Request PDU
	4.1.2 Server X.224 Connection Confirm PDU
	4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request
	4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response
	4.1.5 Client MCS Erect Domain Request PDU
	4.1.6 Client MCS Attach User Request PDU
	4.1.7 Server MCS Attach-User Confirm PDU
	4.1.8 MCS Channel Join Request and Confirm PDUs
	4.1.8.1 Channel 1007
	4.1.8.1.1 Client Join Request PDU for Channel 1007 (User Channel)
	4.1.8.1.2 Server Join Confirm PDU for Channel 1007 (User Channel)

	4.1.8.2 Channel 1003
	4.1.8.2.1 Client Join Request PDU for Channel 1003 (I/O Channel)
	4.1.8.2.2 Server Join Confirm PDU for Channel 1003 (I/O Channel)

	4.1.8.3 Channel 1004
	4.1.8.3.1 Client Join Request PDU for Channel 1004 (rdpdr Channel)
	4.1.8.3.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel)

	4.1.8.4 Channel 1005
	4.1.8.4.1 Client Join Request PDU for Channel 1005 (cliprdr Channel)
	4.1.8.4.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel)

	4.1.8.5 Channel 1006
	4.1.8.5.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel)
	4.1.8.5.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel)

	4.1.9 Client Security Exchange PDU
	4.1.10 Client Info PDU
	4.1.11 Server License Error PDU - Valid Client
	4.1.12 Server Demand Active PDU
	4.1.13 Client Confirm Active PDU
	4.1.14 Client Synchronize PDU
	4.1.15 Client Control PDU - Cooperate
	4.1.16 Client Control PDU - Request Control
	4.1.17 Client Persistent Key List PDU
	4.1.18 Client Font List PDU
	4.1.19 Server Synchronize PDU
	4.1.20 Server Control PDU - Cooperate
	4.1.21 Server Control PDU - Granted Control
	4.1.22 Server Font Map PDU

	4.2 Annotated User-Initiated (on Client) Disconnection Sequence
	4.2.1 Client Shutdown Request PDU
	4.2.2 Server Shutdown Request Denied PDU
	4.2.3 MCS Disconnect Provider Ultimatum PDU

	4.3 Annotated Save Session Info PDU
	4.3.1 Logon Info Version 2
	4.3.2 Plain Notify
	4.3.3 Logon Info Extended

	4.4 Annotated Server-to-Client Virtual Channel PDU
	4.5 Annotated Standard Security Server Redirection PDU
	4.6 Annotated Enhanced Security Server Redirection PDU
	4.7 Annotated Fast-Path Input Event PDU
	4.8 Java Code to Encrypt and Decrypt a Sample Client Random
	4.9 Java Code to Sign a Sample Proprietary Certificate Hash
	4.10 Specifying the Active Keyboard Layout and Language

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters
	5.3 Standard RDP Security
	5.3.1 Encryption Levels
	5.3.2 Negotiating the Cryptographic Configuration
	5.3.2.1 Cryptographic Negotiation Failures

	5.3.3 Server Certificates
	5.3.3.1 Proprietary Certificates
	5.3.3.1.1 Terminal Services Signing Key
	5.3.3.1.2 Signing a Proprietary Certificate
	5.3.3.1.3 Validating a Proprietary Certificate

	5.3.3.2 X.509 Certificate Chains

	5.3.4 Client and Server Random Values
	5.3.4.1 Encrypting Client Random
	5.3.4.2 Decrypting Client Random

	5.3.5 Initial Session Key Generation
	5.3.5.1 Non-FIPS
	5.3.5.2 FIPS

	5.3.6 Encrypting and Decrypting the I/O Data Stream
	5.3.6.1 Non-FIPS
	5.3.6.1.1 Salted MAC Generation

	5.3.6.2 FIPS

	5.3.7 Session Key Updates
	5.3.7.1 Non-FIPS
	5.3.7.2 FIPS

	5.3.8 Packet Layout in the I/O Data Stream

	5.4 Enhanced RDP Security
	5.4.1 Encryption Levels
	5.4.2 Security-Enhanced Connection Sequence
	5.4.2.1 Negotiation-Based Approach
	5.4.2.2 Direct Approach
	5.4.2.3 Changes to the Security Commencement Phase
	5.4.2.4 Disabling Forced Encryption of Licensing Packets

	5.4.3 Encrypting and Decrypting the I/O Data Stream
	5.4.4 Packet Layout in the I/O Data Stream
	5.4.5 External Security Protocols Used By RDP
	5.4.5.1 Transport Layer Security (TLS)
	5.4.5.2 CredSSP
	5.4.5.2.1 User Authorization Failures
	5.4.5.2.2 TLS Fatal Alerts

	5.4.5.3 RDSTLS Security
	5.4.5.3.1 RDSTLS Connection Sequence

	5.5 Automatic Reconnection

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

