[MS-RDPBCGR]:

Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

1/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

Revision Summary

Date Revision History | Revision Class | Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.1 Minor Minor technical content changes.

7/20/2007 1.2 Minor Made technical and editorial changes based on feedback.
8/10/2007 1.3 Minor Updated content based on feedback.

9/28/2007 1.4 Minor Made technical and editorial changes based on feedback.
10/23/2007 | 1.4.1 Editorial Changed language and formatting in the technical content.
11/30/2007 | 1.5 Minor Made technical and editorial changes based on feedback.
1/25/2008 2.0 Major Updated and revised the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.
6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 4.1 Minor Clarified the meaning of the technical content.
8/29/2008 5.0 Major Updated and revised the technical content.

10/24/2008 | 6.0 Major Updated and revised the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 9.0.1 Editorial Changed language and formatting in the technical content.
5/22/2009 10.0 Major Updated and revised the technical content.

7/2/2009 11.0 Major Updated and revised the technical content.

8/14/2009 12.0 Major Updated and revised the technical content.

9/25/2009 13.0 Major Updated and revised the technical content.

11/6/2009 14.0 Major Updated and revised the technical content.

12/18/2009 | 15.0 Major Updated and revised the technical content.

1/29/2010 16.0 Major Updated and revised the technical content.

3/12/2010 17.0 Major Updated and revised the technical content.

4/23/2010 18.0 Major Updated and revised the technical content.

6/4/2010 19.0 Major Updated and revised the technical content.

7/16/2010 20.0 Major Updated and revised the technical content.

8/27/2010 21.0 Major Updated and revised the technical content.

2/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Date Revision History | Revision Class | Comments

10/8/2010 22.0 Major Updated and revised the technical content.
11/19/2010 | 23.0 Major Updated and revised the technical content.
1/7/2011 24.0 Major Updated and revised the technical content.
2/11/2011 25.0 Major Updated and revised the technical content.
3/25/2011 26.0 Major Updated and revised the technical content.
5/6/2011 27.0 Major Updated and revised the technical content.
6/17/2011 28.0 Major Updated and revised the technical content.
9/23/2011 29.0 Major Updated and revised the technical content.
12/16/2011 | 30.0 Major Updated and revised the technical content.
3/30/2012 31.0 Major Updated and revised the technical content.
7/12/2012 32.0 Major Updated and revised the technical content.
10/25/2012 | 33.0 Major Updated and revised the technical content.
1/31/2013 34.0 Major Updated and revised the technical content.
8/8/2013 35.0 Major Updated and revised the technical content.
11/14/2013 | 36.0 Major Updated and revised the technical content.
2/13/2014 37.0 Major Updated and revised the technical content.
5/15/2014 38.0 Major Updated and revised the technical content.
6/30/2015 39.0 Major Significantly changed the technical content.
10/16/2015 | 40.0 Major Significantly changed the technical content.
3/2/2016 41.0 Major Significantly changed the technical content.
7/14/2016 42.0 Major Significantly changed the technical content.

[MS-RDPBCGR] - v20160714
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3/417

Table of Contents

B N 15 o T L1 T ot f ' 1 4 S 15
1.1 (C [0 T1== 1 PPN 15
1.2] =T =] g Lol PP 17

1.2.1 NOrMative RefEIENCES . oviiiii i e r e e e eaes 17
1.2.2 INfOrmative REFEIENCES .. .viviiiiii i e e aans 18
1.3 L Y] YT 20
1.3.1 MESSAGE FlOWS ettt e ettt 20
1.3.1.1 (@0eT] g =Tt u[o] I ST =Ta [U1 o ol P 20
1.3.1.2 Security-Enhanced Connection SEqUENCEiviiiiiiiiiiiiii i 25
1.3.1.3 Deactivation-Reactivation SeqUENCEccvviiiiiiiiii e 25
1.3.1.4 [DI[Yole]] l=Totu o] g ISY=To [U L= ool =T P 25
1.3.1.4.1 User-Initiated on Clientc.oieiiii e e s 25
1.3.1.4.2 User-Initiated 0N SerVer .. .ciiii i e 26
1.3.1.4.3 Administrator-Initiated on Server ... 26
1.3.1.5 Automatic RECONNECHION. .. e e e e aneens 26
1.3.2 Server Error Reporting and Status Updates.........coooviiiiiiiiiiiiiiiii e 27
1.3.3 Static Virtual Channels ... e s 27
1.3.4 D) ot= [@e] g aY o] £=T=1=] (o] o H R PP 27
1.3.5 Keyboard and Mouse INPUL ..o e e 28
1.3.6 BasiC Server QUEPUL ... 28
1.3.7 Controlling Server Graphics OUEPULiiiiiii i e 28
1.3.8 Y= V=l =T 11 =Tt o o PP 28
1.3.9 Connect-Time and Continuous Network Characteristics Detection 30
1.3.10 Connection Health MONItOrNG......oiieiiii s 31
1.4 Relationship to Other ProtoCoIS ..uvuiieiiiii i e 31
1.5 Prerequisites/PreCconditionscovieiiiiiii s 32
1.6 Applicability Statemento e 33
1.7 Versioning and Capability Negotiationc.coiiiiiiiii e 33
1.8 Vendor-EXtensible Fields ... e e 34
1.9 S =] ale b= e AN [[o o g <) 0 =T PP 34

7 =TT T« 35
2.1 I r= 1 1157 oo] o o Y 35
2.2 LTSS T LI Y o = bGP 35

2.2.1 (o]] g LYot (o] d I SY=Te [U 1= o o =P 35
2.2.1.1 Client X.224 Connection Request PDU.......ccoiiiiiiiiiiiiiii e 35
2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ) ...cciviviiiiiiiiiiiiiiiiieeeeen 36
2.2.1.1.2 RDP Correlation Info (RDP_NEG_CORRELATION_INFO)ccvvvvvivinennnnnnn. 37
2.2.1.2 Server X.224 Connection Confirm PDU......cciiiiiiiiiiiiiiii i ne s 38
2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)ccccivviiiiiiiiiiiiiiiiieneeen 38
2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)ccivviiiiiiiiieiiiiiiiieneeen 39
2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request 40
2.2.1.3.1 User Data Header (TS_UD_HEADER)....cicciiiiiiiii i 42
2.2.1.3.2 Client Core Data (TS_UD_CS_CORE) ...ictiitiitiiteiiie i iieinesanensennsnnennens 43
2.2.1.3.3 Client Security Data (TS_UD_CS_SEC) ...iiiiiiiiiiiiii i iiiriece s e 50
2.2.1.3.4 Client Network Data (TS_UD_CS_NET) .iciiiiiiiiiiiiiiiiieii v nae e 51
2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)cccovviiiiiiiiiiiannes 51
2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER) ..civiiiiiiiiiiiiiii e e 52
2.2.1.3.6 Client Monitor Data (TS_UD_CS_MONITOR)coviiiiiiiiiiiieiiiinaiienaeenn 53
2.2.1.3.6.1 Monitor Definition (TS_MONITOR_DEF).....ccccviiiiiiiiiiiiiiiinienee e 54
2.2.1.3.7 Client Message Channel Data (TS_UD_CS_MCS_MSGCHANNEL) 55
2.2.1.3.8 Client Multitransport Channel Data (TS_UD_CS_MULTITRANSPORT) 55
2.2.1.3.9 Client Monitor Extended Data (TS_UD_CS_MONITOR_EX) ...cccvvvivvinnnnnn. 56
2.2.1.3.9.1 Monitor Attributes (TS_MONITOR_ATTRIBUTES)covvvviviiiiiiieneennen 57
2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response . 58

4/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.1.4.1 User Data Header (TS_UD_HEADER)......cooiiiiiiiiii e 59
2.2.1.4.2 Server Core Data (TS_UD_SC_CORE) ...ciiviiiiiiiiiiiiiiiiiinie e enee e 59
2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1)....cciiiiiiiiiiiiiiniiieiiiase e 60
2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE) ...c.vviviiiiiiieieiiinenienenenas 62
2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)
63

2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)...iivitiiieiieneiiiieienennenns 64
2.2.1.4.4 Server Network Data (TS_UD_SC_NET) +icviiiiiiiiieiierievierneeneennennennens 65
2.2.1.4.5 Server Message Channel Data (TS_UD_SC_MCS_MSGCHANNEL)........... 65
2.2.1.4.6 Server Multitransport Channel Data (TS_UD_SC_MULTITRANSPORT)..... 66
2.2.1.5 Client MCS Erect Domain Request PDUccoiiiiiiiiiiiiiii i 66
2.2.1.6 Client MCS Attach User Request PDUcociiiiiiiiiiiiicici i ae e 67
2.2.1.7 Server MCS Attach User Confirm PDUcvviiiiiiiiiiii e ee e 67
2.2.1.8 Client MCS Channel Join Request PDUcciiiiiiiiiiiiiiii e 68
2.2.1.9 Server MCS Channel Join Confirm PDUoiiiiiiiiiiii i 68
2.2.1.10 Client Security EXChange PDU.......cciiiiiiiiiii i it aea 69
2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET)ccvvvinineiiinninnnes 69
2.2.1.11 CHENt INTO PDU ..iiuiitiiiiiiiii it ettt et e e e e et e e e e et a e e e e aane e 70
2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)...ccciiiiiiiiiiiiiiiieiiiinneneeens 70
2.2.1.11.1.1 Info Packet (TS_INFO_PACKET) .iiiititiiiiiiiiiiiiiie e ieeieievaeienaaenans 71
2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET) 75
2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION) 78
2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)ccvvvvviiiiiiiiiiieneeene 79

2.2.1.12 Server License Error PDU - Valid Clientccviviiiiiiii i 81
2.2.1.12.1 Valid Client License Data (LICENSE_VALID_CLIENT_DATA).....cccvvvvvnnne. 82
2.2.1.12.1.1 Licensing Preamble (LICENSE_PREAMBLE)cccvviiiiiiiiniiinnnnennns 82
2.2.1.12.1.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)c.ccvvvviviiiiininennns 84
2.2.1.12.1.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)................... 85
2.2.1.13 Mandatory Capability EXChangec.coooiiiiiiii e 86
2.2.1.13.1 Server Demand ACEIVE PDU.......iiiiiiiiiiiiiirs i ene e 86
2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU).........ccevuvnee. 87
2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET) ...iiiiiiiiiiiiiiiiiiiiene e 88
2.2.1.13.2 Client Confirm ACEIVE PDUciviiiiiiiiiiiiiiii i e e e 90
2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU)c...u.. 91
2.2.1.14 Client SYNChronize PDU.....ciciiiiiiiiiiii i e aeas 92
2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)covviviiiiiniiennnnns. 93
2.2.1.15 Client Control PDU - CoOPerate . ..iiiiiiiiii it aeas 93
2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU) ..icviiiiiiiiiiieiiiiiiiieneeieneae e 94
2.2.1.16 Client Control PDU - Request CONrol.......cocoiviiiiiiiiiiiiiriee e 95
2.2.1.17 Client Persistent Key LiSt PDUiciiiiiiiiiiiii it 96
2.2.1.17.1 Persistent Key List PDU Data (TS_BITMAPCACHE_PERSISTENT_LIST_PDU)
... 97

2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY) 99
2.2.1.18 Client FONT LIST PDU.. ..ttt ettt et e e e e e as e r e s e s e na e e nane e 99
2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU) ...citiiiiiiiiiiiiiiieieieeeienaeens 100
2.2.1.19 Server Synchronize PDUcciuiiiiiiiiiiii et et e e 101
2.2.1.20 Server Control PDU - COOPerate...ciiiiiiiiiiiiiiiiiiie i e ea s 102
2.2.1.21 Server Control PDU - Granted Control.......c.coviiiiiiiiiiiiii e ee s 103
2.2.1.22 Server FONt Map PDUiuiiiiiiiiiii s e 105
2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU) ...ciciitiiiiiiiiiiiiii e naeens 106
2.2.2 DiSCONNECLION SEQUENCES. ...ttt aeaeas 106
2.2.2.1 Client Shutdown Request PDUoiiiiiiiiiiiii e e e e 106
2.2.2.1.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)ccvvvuens 107
2.2.2.2 Server Shutdown Request Denied PDUccoeieiiiiiiiiiiiiiiiiie e, 108
2.2.2.2.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU) ..109
2.2.2.3 MCS Disconnect Provider Ultimatum PDUccccviiiiiiiiiiiiiienene e 109
2.2.3 Deactivation-Reactivation SEQUENCE.......cvvviiiiiiiiii e 110
2.2.3.1 Server Deactivate All PDU ..o st a e ea s 110

5/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)ocovvvvivnininnnnn, 111

2.2.4 FAYU) o B al=Tolo] o] g =Tt fl Y <o [U L= o Lo = P 111
2.2.4.1 Server Auto-Reconnect Status PDUcviiviiiiiiii i re e e e 111
2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)112
2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET) ...ccoovviviiiinnnnn. 113
2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)ccvvivviivnnrnnnnn. 114
2.2.5 Server Error Reporting and Status Updates........ccoeviiiiiiiiiiiiiici e 114
2.2.5.1 Server Set Error INFO PDU ...viuiiiii i e re e e aaens 114
2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)cccvvvivvieinnnnns 115
2.2.5.2 Server Status INFO PDU ...t e e aa e 124
2.2.6 Static Virtual Channelso.iiiii e 126
2.2.6.1 Virtual Channel PDU ...t e s e e e e e 126
2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)ccocoviiiiiiiiiiiieinanens 127
2.2.7 Capabilily SEES vttt 129
2.2.7.1 Mandatory Capability Sets.......cviiiiiiii 129
2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)ccvvivvnviinnnens 129
2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET) .c.vvvvvviiiiiiieinenenn, 132
2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET) ..ovvviiiiiiiiiiiiieinanens 134
2.2.7.1.4 Bitmap Cache Capability Setcciviiiiiii e 138
2.2.7.1.4.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET) .ecvvviiviiiiiiiieiieenn, 138
2.2.7.1.4.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)......cccevvvnene. 139
2.2.7.1.4.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)140
2.2.7.1.5 Pointer Capability Set (TS_POINTER_CAPABILITYSET) ..cocvvvvvviniiennnnenn. 141
2.2.7.1.6 Input Capability Set (TS_INPUT_CAPABILITYSET) . cciiiiiiiiiiiiiiiiiiieinnnens 142
2.2.7.1.7 Brush Capability Set (TS_BRUSH_CAPABILITYSET) ...cccvvviiiiiiiiiieiienenn, 144
2.2.7.1.8 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET) 144
2.2.7.1.8.1 Cache Definition (TS_CACHE_DEFINITION) ..c.ocviviiiiiiiiiiiniieiaanens 145
2.2.7.1.9 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)
.. 146
2.2.7.1.10 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET) 146
2.2.7.1.11 Sound Capability Set (TS_SOUND_CAPABILITYSET)....ccviviviriiiinieinnnens 147
2.2.7.2 Optional Capability Sets.......ooiiiiiii 148
2.2.7.2.1 Bitmap Cache Host Support Capability Set
(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET) ..ovvviviiiiiiiecienenn, 148
2.2.7.2.2 Control Capability Set (TS_CONTROL_CAPABILITYSET) ...vcvvviiiiiiiinnnens 148
2.2.7.2.3 Window Activation Capability Set
(TS_WINDOWACTIVATION_CAPABILITYSET) +iuviviiiiriieiiieeieieieneenanenns 149
2.2.7.2.4 Share Capability Set (TS_SHARE_CAPABILITYSET) ..ovvvviiiiiiiiiiiiiieinanens 149
2.2.7.2.5 Font Capability Set (TS_FONT_CAPABILITYSET) .cocvvvvviiiiiiiiiiieieeeen, 150
2.2.7.2.6 Multifragment Update Capability Set
(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET) ..cciiviiiiiieiiiiieieeieenn, 150
2.2.7.2.7 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)..... 150
2.2.7.2.8 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET) .151
2.2.7.2.9 Surface Commands Capability Set (TS_SURFCMDS_CAPABILITYSET)....152
2.2.7.2.10 Bitmap Codecs Capability Set (TS_BITMAPCODECS_CAPABILITYSET) ...152
2.2.7.2.10.1 Bitmap Codecs (TS_BITMAPCODECS)coviiiiiiiiiiiiiiee e 153
2.2.7.2.10.1.1 Bitmap Codec (TS_BITMAPCODEQC)cctvviiiiiiiiiiiiiiieaienaaens 153
2.2.7.2.10.1.1.1 Globally Unique Identifier (GUID).......ccooviiiiiiiiiieiiiennenene, 154
2.2.8 Keyboard and MouSe INPULceiieiiiii e 155
2.2.8.1 INPUL PDU PacCKaging . .covueieiiiiiii ittt et s e e e e e s ae e e neenaenens 155
2.2.8.1.1 Slow-Path (T.128) FOrmats......cviiiii e 155
2.2.8.1.1.1 Share HEaderS. .ot 155
2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)............... 155
2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)c.cocvuvnenene. 156
2.2.8.1.1.2 SecUrity HEAAEIS ..o 159
2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER) ..ccviiiiiiiiii i eae e 159
2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADERL) ...ccvviiiiiiiiiiii e 161
2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2) ..iviiiiiiiiiii i 161
6/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU) ...ciiiiiiiiiiiieie e, 162
2.2.8.1.1.3.1 Client Input Event PDU Data (TS_INPUT_PDU_DATA) 163
2.2.8.1.1.3.1.1 Slow-Path Input Event (TS_INPUT_EVENT)cocvvvvininnnnnnn. 163
2.2.8.1.1.3.1.1.1 Keyboard Event (TS_KEYBOARD_EVENT)cccvcvivivnene. 164
2.2.8.1.1.3.1.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)
... 165
2.2.8.1.1.3.1.1.3 Mouse Event (TS_POINTER_EVENT) ..ccovvvviiiiiiiiiinenenn, 165
2.2.8.1.1.3.1.1.4 Extended Mouse Event (TS_POINTERX_EVENT) 167
2.2.8.1.1.3.1.1.5 Synchronize Event (TS_SYNC_EVENT)cccvvvviiiiiinnnen. 167
2.2.8.1.1.3.1.1.6 Unused Event (TS_UNUSED_EVENT) ...ccoevvivininininnnnnnn. 168
2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)cocvvvivviinnnns 168
2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)ccovvvviiiieinnnnnn. 170
2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT) ...ccvovviiiiiiiiiiieienenn, 171
2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT) 172
2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event
(TS_FP_UNICODE_KEYBOARD_EVENT) ..evviiiiiiiieiiiienenenienes 172
2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)ccccceevanens 173
2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT) ...173
2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT) 174
2.2.8.1.2.2.6 Fast-Path Quality of Experience (QoE) Timestamp Event
(TS_FP_QOETIMESTAMP_EVENT) tviiitiieitiiiiiiene i seneeneneanes 174
2.2.8.2 Keyboard Status PDUS.......coiiiiiiii e e e 175
2.2.8.2.1 Server Set Keyboard Indicators PDUcccviiiiiiiiiiiiiiiiieii e 175
2.2.8.2.1.1 Set Keyboard Indicators PDU Data
(TS_SET_KEYBOARD_INDICATORS_PDU) ..civiiiiiiiiiiiiiiiieie e 176
2.2.8.2.2 Server Set Keyboard IME Status PDU......ccvviiiiiiiiiiiiciiiini e 177
2.2.8.2.2.1 Set Keyboard IME Status PDU Data
(TS_SET_KEYBOARD_IME_STATUS_PDU) .cciviiiiiiiiiiiiieieneie e 178
2.2.9 BasiC OUEPUL .. e 179
2.2.9.1 OUutput PDU PacKagingueiuiiiiiiiiiiiisi it e e s e e e e n e aeenaneenanens 179
2.29.1.1 Slow-Path (T.128) FOrmatccoviiiiiiiii s 179
2.2.9.1.1.1 1) 1= L (=T= [= ol P 179
2.2.9.1.1.2 SeCUNtY HEBAAEIS vt e 179
2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)cccvvviinnnens 179
2.2.9.1.1.3.1 Slow-Path Graphics Update (TS_GRAPHICS_UPDATE) 180
2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE) ...ccccvviviiiiieeenenen 181
2.2.9.1.1.3.1.1.1 Palette Update Data (TS_UPDATE_PALETTE_DATA) 182
2.2.9.1.1.3.1.1.2 RGB Palette Entry (TS_PALETTE_ENTRY)....cccvvvvvinnenn. 182
2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP) ...cccvviiiiiiiiiiiieen, 182
2.2.9.1.1.3.1.2.1 Bitmap Update Data (TS_UPDATE_BITMAP_DATA) 183
2.2.9.1.1.3.1.2.2 Bitmap Data (TS_BITMAP_DATA) ...ioiviiiiiiiiiieie e, 183
2.2.9.1.1.3.1.2.3 Compressed Data Header (TS_CD_HEADER)................ 185
2.2.9.1.1.3.1.2.4 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)
... 185
2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC).....cccvovviiiiiiiiinnnns 189
2.29.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU)cccvovvviiiiiiiinnnens 190
2.2.9.1.1.4.1 POINE (TS_POINTL6) . ueitiiitiiiieiii ettt e aereeaeeraeaaanens 191
2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE) 192
2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE) 192
2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)............. 192
2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)ccovveenennnnns 193
2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)........ 194
2.2.9.1.1.5 Server Play Sound PDUcouiiiiiiiiii i eas 194
2.29.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA)c.ccevvvens 195
2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)cocvvvvvninenenene. 195
2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)ouiuiiiiiiiiieine e 197
2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)ccevvvens 199
2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP)cccevvvnens 199
7/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)200
2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)
200
2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update
(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)ocviviveieininenns 201
2.2.9.1.2.1.6 Fast-Path System Pointer Default Update
(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)ovvviveieininenns 201
2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)
202
2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)..... 202
2.2.9.1.2.1.9 Fast-Path Cached Pointer Update
(TS_FP_CACHEDPOINTERATTRIBUTE)viviiiieiieieiiiieeeneeeeaaes 203
2.2.9.1.2.1.10 Fast-Path Surface Commands Update (TS_FP_SURFCMDS)....... 203
2.2.9.1.2.1.10.1 Surface Command (TS_SURFCMD).......ccvciviiiiiiieiiiiinnnnns. 204
2.2.9.2 SUMACE COMMIANAS « .ttt ettt et e e e e e e e e aaanens 204
2.2.9.2.1 Set Surface Bits Command (TS_SURFCMD_SET_SURF_BITS)............... 204
2.29.2.1.1 Extended Bitmap Data (TS_ BITMAP_DATA_EX) ..ooiviiiiiiiiiiiiienen, 205
2.2.9.2.1.1.1 Extended Compressed Bitmap Header
(TS_COMPRESSED_BITMAP_HEADER_EX) ...vvviiiiiiiiiiieneiiienes 206
2.2.9.2.2 Stream Surface Bits Command (TS_SURFCMD_STREAM_SURF_BITS)...207
2.2.9.2.3 Frame Marker Command (TS_FRAME_MARKER)c.ccoiiiiiiiiiiiiiiiininns 207
2.2.10 Logon and Authorization NoOtifications..........coiiiiiiiii e 208
2.2.10.1 Server Save Session INFO PDUcoviiiiiiiiiiiiiie i e ne e e e e e 208
2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA) ...209
2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)coviiiiieiererniinnneneeenenes 210
2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)ccvvunene. 211
2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY) ..ttt e eae e 212
2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED)ccvvunene. 212
2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD)cccvvvvuiiiininiinnnens 213
2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO) 213
2.2.10.2 Early User Authorization Result PDUcocoiiiiiiiiiir e 214
2.2.11 Controlling Server Graphics OUEPULoiiiiiii e 215
2.2.11.1 Inclusive Rectangle (TS_RECTANGLELG)cciiiiiiiiiiiiiiiiiicicci e 215
2.2.11.2 Client Refresh RECE PDUicviiiiiiiiii i re e e e nan e nanes 215
2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU)cccovvviiiiiiiiniinnnnns 216
2.2.11.3 Client Suppress OUEPUL PDUcouiiiiiiiiiii e e 217
2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU).........ccvvuuens 218
2.2.12 Display Update Notifications.......cciiiiiiiii i e e 219
2.2.12.1 MoONitor LAYOUL PDU....cuiiiiiiieiiii it ettt st e e e e e e e ae e e 219
2.2.13 Server Redir@ChiON ..uu it 220
2.2.13.1 Server Redirection Packet (RDP_SERVER_REDIRECTION_PACKET)............. 220
2.2.13.1.1 Target Net Addresses (TARGET_NET_ADDRESSES)......cccocvvviiiriiennnnnns 223
2.2.13.1.1.1 Target Net Address (TARGET_NET_ADDRESS)cccoccviviiiiiiinnnnnn. 224
2.2.13.2 Standard RDP SECUMLY ..iiuiiiiiiiiiiii i e e e aea s 224
2.2.13.2.1 Standard Security Server Redirection PDU
(TS_STANDARD_SECURITY_SERVER_REDIRECTION)......ccvvviiinienninenn. 224
2.2.13.3 Enhanced RDP SECUMtY . ..iiiiiiiiii i e e e 225
2.2.13.3.1 Enhanced Security Server Redirection PDU
(TS_ENHANCED_SECURITY_SERVER_REDIRECTION)......ccvvvivinieininenn. 225
2.2.14 Network Characteristics DeteCtion.....c.oiviiiiiiiiii i eas 226
2.2.14.1 Server-to-Client Request MEeSSagesoviuiriniiiiiii e 226
2.2.14.1.1 RTT Measure Request (RDP_RTT_REQUEST)cciviviriiiiiiiiieieieeeeeeennn 226
2.2.14.1.2 Bandwidth Measure Start (RDP_BW_START)civiiiiiiiiiiiiieiiiiieiiieiaenens 227
2.2.14.1.3 Bandwidth Measure Payload (RDP_BW_PAYLOAD)cccevviiiiininininnnnnn. 228
2.2.14.1.4 Bandwidth Measure Stop (RDP_BW_STOP)icviiiiiiiiiiiiiiiiiniinaeens 228
2.2.14.1.5 Network Characteristics Result (RDP_NETCHAR_RESULT)c.cccvvvvvnnenn. 229
2.2.14.2 Client-to-Server ReSponse MESSAGESuvviuiieiiiiiiiiiiiiteieiaeaerenerneaeaneenes 230
2.2.14.2.1 RTT Measure Response (RDP_RTT_RESPONSE)ccoviiiiiiiiiiiieinennn, 230
8/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.14.2.2 Bandwidth Measure Results (RDP_BW_RESULTS)cccoiviiiiinininininnnnnn. 230
2.2.14.2.3 Network Characteristics Sync (RDP_NETCHAR_SYNC)cccvvivvivininnnnn. 231
2.2.14.3 Server Auto-Detect ReqUESE PDUociiiiiiiiiiiiiiiiiiine e 232
2.2.14.4 Client Auto-Detect ReSponse PDUc.ciiiiiiiiiiiiii i e ee e 233
2.2.15 Multitransport BoOtStrapPing c.oiueiiiiiiiie i e 234
2.2.15.1 Server Initiate Multitransport Request PDU...........cciiviiiiiiiiiiiiiiee 234
2.2.15.2 Client Initiate Multitransport Response PDU.........cociiiiiiiiiiiiiii e ce 236
2.2.16 Connection Health MONItOrNGcciiuiiiiii e 237
2.2.16.1 Server Heartbeat PDUc.iiiiiiiiiii it e e e e e e 237
C N 4 o 1 oo T ole] I 0 1= - | S 239
3.1 ComMMON DELAIIS «.veieiii i 239
3.1.1 AbStract Data Model.....oviiiiii i e 239
3.1.2 LT 1= 239
3.1.3 | T 1 4= o o o I PP 239
3.1.4 Higher-Layer Triggered EVENES ..o 239
3.1.5 Message Processing Events and Sequencing Rulesccoviiiiiiiiiiiiciic i 239
3.1.5.1 DiscONNECtiON SEQUENCES .. .uutiiiiiii i e e e 239
3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU...........c.covivieinenens 239
3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDUueee. 239
3.1.5.2 Static Virtual Channels ..o e 240
3.1.5.2.1 Sending of Virtual Channel PDU.......c.cciiiiiiiiiic i 240
3.1.5.2.2 Processing of Virtual Channel PDUc..cociiiiiiiiiiiiiieeieeeneneneneeeas 241
3.1.5.2.2.1 Reassembly of Chunked Virtual Channel Data.........c.cocviviieiiiinnnn. 242
3.1.6 LT L= 2=) o= 242
3.1.7 (O a1 il W Tr= 1 B =T o | = P 242
3.1.8 MPPC-Based Bulk Data CompPreSSIiON ..uuuii it iiiieeie ettt ee s e e seaeas 243
3.1.8.1 Abstract Data Modelcooviiiiiiii e 243
3.1.8.2 ComMPressSiNg Data.....ccvieiiiiiiiiii e 243
3.1.8.2.1 Setting the Compression FIagsc.ccvviiiiiiiii s 244
3.1.8.2.2 Operation of the Bulk Compressor ...ovviiii i e 245
3.1.8.2.3 Data Compression EXample ..o 246
3.1.8.3 Decompressing Dataoovviiiiiiiiiiii e 249
3.1.8.4 (0] 1 0] o] g1 (o] o T IV 0 1= P 250
3.1.8.4.1 RDP 4.0 ettt 250
3.1.8.4.1.1 Literal ENCOAING .ouvieiiiiiiiiii e e e 250
3.1.8.4.1.2 Copy-Tuple ENCOAING ... viuiiiiiiiiiii e e 250
3.1.84.1.2.1 Copy-Offset ENCOAING.....viviiiriiiiiiiii it eees 250
3.1.8.4.1.2.2 Length-of-Match ENCOdingovviviiiiiiiiiiii i 250
3.1.8.4.2 2 = O PP 251
3.1.8.4.2.1 Literal ENCOAING .ouvieiiiiiiiiii e e e 251
3.1.8.4.2.2 Copy-Tuple ENCOAING ... viuiiiiiiiiiii e e 251
3.1.8.4.2.2.1 Copy-Offset ENCOAING.....viuiiiiiiiiiiiiei i e e 251
3.1.8.4.2.2.2 Length-of-Match ENcodingcoovvviiiiiiiiiii e 252
3.1.9 Interleaved RLE-Based Bitmap CompresSioncvvviiiiiiiiiiiiiiicie e eaee e 252
3.2 (O 11T o1l B 7= = | {3 PP 267
3.2.1 Abstract Data MOdel.......ciiiiiii i e 267
3.2.1.1 Received Server Data ..ocvv i 267
3.2.1.2 Static Virtual Channel IDS ...c.viiiiiiiii i e e e 267
3.2.1.3 L@ @ 5 7= o 1= 1 L 267
3.2.1.4 Message Channel IDieiiie i et e e e 267
3.2.1.5 USEr Channel ID .iuviviieiiiiiii ettt e e e eees 267
3.2.1.6 Server Channel ID. ... i e 267
3.2.1.7 Server Capabilities ... 267
3.2.1.8 ST D ittt e 268
3.2.1.9 Automatic Reconnection COOKIE ...uvviiiiiiiiiiii i e e e e e 268
3.2.1.10 Server Licensing Encryption Ability.......c.cooiiiiiiiii 268
3.2.1.11 Pointer IMage Cache ...t 268
9/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.2.1.12 SESSION KOYS ottt ittt 268
3.2.1.13 Bitmap CaCh@S...cuiiiiiiiiiiiiiiii 268
3.2.1.14 Persistent Bitmap Caches......coviiiiiiiiiii 268
3.2.1.15 Persisted Bitmap KEYS «iuiiiiiiiiiii i e e 268
3.2.1.16 Connection Start TimMe ...coiceiiiiiiii e e ea s 269
3.2.1.17 Network Characteristics Byte Count.........cooiiiiiiiiiiii e 269
3.2.1.18 Network Characteristics Sequence NUmMber........ccoviiiiiiiiiiiiii e 269
3.2.2 L1 1= P 269
3.2.2.1 Connection Sequence TimeoUt TimMer...ccviii i i e e ns 269
3.2.2.2 Network Characteristics Timer ... e 269
3.2.3 | T 1 4= o o o I PP 269
3.2.4 Higher-Layer Triggered EVENTSc.iiiiiiiiiiiiii i e e e 269
3.2.5 Message Processing Events and Sequencing Rulescocoviiiiiiiiiiiiiiiiiiinens 269
3.2.5.1 Constructing a Client-to-Server Slow-Path PDU.........ccccoviiiiiiiiiiciiecea 269
3.2.5.2 Processing a Server-to-Client Slow-Path PDU.........c.ccviiiiiiiii e 270
3.2.5.3 (o]] aT=Toiu[o] g ISY=To 181 o ol P 271
3.2.5.3.1 Sending X.224 Connection Request PDU........ccccviiiiiiiiiiiiiiinniiaeens 271
3.2.5.3.2 Processing X.224 Connection Confirm PDUcccoeiiiiiiiiiiiiiiiieneeeeenns 271
3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request 272
3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create
[T oo] g =] < PP 274
3.2.5.3.5 Sending MCS Erect Domain Request PDUccoviiiiiiiiiiiiiiiiaeens 275
3.2.5.3.6 Sending MCS Attach User Request PDUccviiiiiiiiiiiiiii e 275
3.2.5.3.7 Processing MCS Attach User Confirm PDU.......ccoovviiiiiiiiiiiiiiieie e, 275
3.2.5.3.8 Sending MCS Channel Join Request PDU(S).....covuiiiieiiiniiiiiniiiiiieiaenens 276
3.2.5.3.9 Processing MCS Channel Join Confirm PDU(S) ...ocvvviviiiiiiiiiiiiiiie e, 276
3.2.5.3.10 Sending Security Exchange PDU........c.cooiiiiiiiiiiiiiiini e 277
3.2.5.3.11 Sending Client INfo PDUiiiiiiiiiiiiii e e ea e 277
3.2.5.3.12 Processing License Error PDU - Valid Client...........cooiiiiiiiiiiiiiiiiens 278
3.2.5.3.13 Mandatory Capability EXChange.......ccociiiiiiiiiiiiic e 279
3.2.5.3.13.1 Processing Demand Active PDUcccoiiiiiiiiiiiiiineie e 279
3.2.5.3.13.2 Sending Confirm ACtiVe PDU.......cociiiiiiiiiiiiiiieiereee e eeenes 279
3.2.5.3.14 Sending Synchronize PDU........ciiiiiiiiiii e 280
3.2.5.3.15 Sending Control PDU - CoOperatec.cooiiuiiiiiiiiiiiiiiieeie e e e 280
3.2.5.3.16 Sending Control PDU - Request CONtrol.......cocvviiriiiiiiiiiiiiinieiienaanens 280
3.2.5.3.17 Sending Persistent Key LiSt PDU(S) ...civiiiiiiiiiiiiii e 280
3.2.5.3.18 Sending FONt LISt PDU......iiviiiiiiiiiii e e e e an e naeens 281
3.2.5.3.19 Processing Synchronize PDUc.ciiiiiiiiiiiiiiiieii i ieee e naaens 281
3.2.5.3.20 Processing Control PDU - Cooperate.........cooeiuiiiiiiieiiiiiiiieieeeieneeens 281
3.2.5.3.21 Processing Control PDU - Granted Controlcocoviiiiiiiiiiiiiiiineens 281
3.2.5.3.22 Processing FONt Map PDUciuiiiiiiiiiiiiiiii et e e 281
3.2.5.4 (DYEYolo]al pl=Tot o] WY =Ta [UT=T o Lol == P 281
3.2.5.4.1 Sending Shutdown Request PDUcocoiiiiiiiiiiiiiin e 281
3.2.5.4.2 Processing Shutdown Request Denied PDUcocviviiiiiiiiiiiiiiieen, 281
3.2.5.5 Deactivation-Reconnection SeqUEeNCEeccviiiiiiiiiii i e 282
3.2.5.5.1 Processing Deactivate All PDUc.ociiiiiiiiiiic e 282
3.2.5.6 AULO-RECONNECE SEQUENCE. ...ttt e e e e aeas 282
3.2.5.6.1 Processing Auto-Reconnect Status PDUccooviiiiiiiiiiiici i vieeieeeens 282
3.2.5.7 Server Error Reporting and Status Updatescooooviiiiiiiiiiiee, 282
3.2.5.7.1 Processing Set Error INfO PDUouiiiiiiiiiiiii et 282
3.2.5.7.2 Processing Status INfo PDU.......cociuiiiiiiiiiiiiiii e 282
3.2.5.8 Keyboard and Mouse INPUL......cocieiiiiieii e 282
3.2.5.8.1 Input Event Notificationsccvviiiiiii s 282
3.2.5.8.1.1 Sending Slow-Path Input Event PDU.........ccoooiiiiiiiiiiie e, 282
3.2.5.8.1.2 Sending Fast-Path Input Event PDUcoooiiiiiiiiiiiiiiieeens 283
3.2.5.8.2 Keyboard Status PDUScoiiiiiiiieiiii e e e 284
3.2.5.8.2.1 Processing Set Keyboard Indicators PDU.........c.ccoiiiiiiiiiiiiienns, 284
3.2.5.8.2.2 Processing Set Keyboard IME Status PDU..........ccccviviiiiiiiiiicinenne, 284
10/ 417

3.2.5.9 BasSiC OULPUL .oueieii e e 284
3.2.5.9.1 Processing Slow-Path Graphics Update PDUccccviviiiiiiiiiiiiiieiens 284
3.2.5.9.2 Processing Slow-Path Pointer Update PDUccccviiiiiiiiiiiiiiinee, 284
3.2.5.9.3 Processing Fast-Path Update PDUccoiiiiiiiiiiiiiiccni e 285
3.2.5.9.4 SOUNA ettt 286

3.2.5.9.4.1 Processing Play Sound PDUccoiiiiiiiiiiiiiii e 286
3.2.5.10 Logon and Authorization Notifications..........cccoiiiiiiiiiiiiii 286
3.2.5.10.1 Processing Save Session INfO PDUccciiiiiiieiiiiiiiiiiiiieie e e e 286
3.2.5.10.2 Processing Early User Authorization Result PDU..........cccovviviiiiiinnennn. 286
3.2.5.11 Controlling Server Graphics OUtpULtcoviiiiiii e 286
3.2.5.11.1 Sending Refresh ReCE PDUciiiiiiiiiiiii i ea e 286
3.2.5.11.2 Sending Suppress Output PDUcciiiiiiiiiii i 287
3.2.5.12 Display Update NotifiCationsccoeimieiniiii e 287
3.2.5.12.1 Processing Monitor Layout PDUcociiiiiiii i neeeae e 287
3.2.5.13 Server Redir@Clion ..o 287
3.2.5.13.1 Processing of the Server Redirection PDUS........c.cciviiiiiiiiiiiiici e 287
3.2.5.14 Network Characteristics Detectioncooviiiiiiiiiiii e 287
3.2.5.15 Multitransport Bootstrappingccovoeieiiiiii 289
3.2.5.15.1 Processing the Initiate Multitransport Request PDU...........c.cocviviiiinnnnns 289
3.2.5.15.2 Sending the Initiate Multitransport Response PDUccocviiiiiiinnnns 289
3.2.6 LI L 8 =2 = V2= L 290
3.2.6.1 Client-Side Connection Sequence TimeoULt........ccvviiiiiiiiiii e 290
3.2.7 (O T=T ol W Tor= Y I V=T o | =P 290
3.2.7.1 Disconnection Due to NetWOrk Errorouivviiiiiiiiiiiei e 290
3.3 Y= V=T gl =] = | £ 290
3.3.1 AbSEract Data Model.....oviiiiii e 290
3.3.1.1 Received CHent Dataocvvieiiiiiii e e e 290
3.3.1.2 U= T o @l g =1 | o =] I 1 T PP 291
3.3.1.3 7@ T o= o1 1= 15 291
3.3.1.4 Message Channel ID . ..iiieieiiiiii i e e e e e e e as 291
3.3.1.5 Y= V7= g @ =T o U= 1 291
3.3.1.6 Client Licensing Encryption ADilityooiiiiiiii e 291
3.3.1.7 Client Capabilities ...oiiiiii 291
3.3.1.8 Cached Bitmap KeYS. ...t e e aeaeas 291
3.3.1.9 Pointer IMage CacChe ... e 291
3.3.1.10 SESSION KOYS o .uitiitii ittt ettt 291
3.3.1.11 Automatic Reconnection COOKIEcciviiiiiiiiiiiiii e 292
3.3.1.12 Connection Start Time ..o e e e 292
3.3.1.13 RTT Measure Request Dataccoviiiiiiiiiiiiin et 292
3.3.1.14 Multitransport Request Data......cccooiiiiiiiiiiii e 292
3.3.2 LT P 292

3.3.2.1 Connection Sequence TimeoUt TimMer...cciiii i e 292
3.3.3 | T T= | = [o P 292
3.3.4 Higher-Layer Triggered EVENES ...icciiii it et ae e e e 292
3.3.5 Message Processing Events and Sequencing Rulesc.cooiiiiiiiiiiiiiniiiineens 292

3.3.5.1 Constructing a Server-to-Client Slow-Path PDU.........ccocoviiiiiiiiiciiee e 292

3.3.5.2 Processing a Client-to-Server Slow-Path PDUcccoiiiiiiiiiiiiiiinee, 293

3.3.5.3 (@fo]] aT=Toiu (o] d WSY=Ta [B1] o Lol = PP 294
3.3.5.3.1 Processing X.224 Connection Request PDUccccvvviiiiiiiiiiininienen, 294
3.3.5.3.2 Sending X.224 Connection Confirm PDUc.cocoiiiiiiiiiiiciceineens 295
3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request

.. 295

3.3.5.3.3.1 Handling Errors in the GCC Conference Create Request Data.......... 298
3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response
.. 299

3.3.5.3.5 Processing MCS Erect Domain Request PDUcccvvviiiiiiiiiiiiiniennns, 299
3.3.5.3.6 Processing MCS Attach User Request PDUcccovviiiiiiiiiiiniiieieneen, 300
3.3.5.3.7 Sending MCS Attach User Confirm PDUcocoiiiiiiiiiiiiiceeeeeens 300

11/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.3.5.3.8 Processing MCS Channel Join Request PDU(S) ..covivieieininiiiiiiiiiieneeaans 300
3.3.5.3.9 Sending MCS Channel Join Confirm PDU(S) ...coieiiiiiiiiiiiii i eiee e 301
3.3.5.3.10 Processing Security EXchange PDUccciiiiiiiiiiiiiiiii e 301
3.3.5.3.11 Processing Client INfo PDUciiiiiiiiiiiii i e e 302
3.3.5.3.12 Sending License Error PDU - Valid Clientc.ccvviiiiiiiiiiiiiiciciece 302
3.3.5.3.13 Mandatory Capability EXChange........c.cooiiiiiiiiii s 303
3.3.5.3.13.1 Sending Demand Active PDUcccoiiiiiiiiiiiiii e 303
3.3.5.3.13.2 Processing Confirm ACtiVe PDUcoiiiiiiiiiiiie e 304
3.3.5.3.14 Processing Synchronize PDUcciiiiiiiiiiiiii i ea e 304
3.3.5.3.15 Processing Control PDU - Cooperate.........cocvuiiiiiiiiiiiiiiiiiiinnie e 304
3.3.5.3.16 Processing Control PDU - Request Controlc.covviiiiiiiiiicii e, 304
3.3.5.3.17 Processing Persistent Key LiSt PDU(S) c.ivvviiiiiiiiiiiiiiiiiiii i sieenea 305
3.3.5.3.18 Processing FONt LISt PDUc.oiiiiiiiiiiiiiiniii e e nae e 305
3.3.5.3.19 Sending Synchronize PDU........ciiiiiiiiiiii i e 305
3.3.5.3.20 Sending Control PDU - COOPEeratecooiiuiiiiiiiiiiiiiiiiniiie i naeaens 305
3.3.5.3.21 Sending Control PDU - Granted Control........ccocoviiiiiiiiiiiiiic e 305
3.3.5.3.22 Sending FONt Map PDUcciiiiiiiiiiiii e 305
3.3.5.4 DiscoONNECtiON SEQUENCES .. .ottt e e e 306
3.3.5.4.1 Processing Shutdown Request PDUocivviiiiniiiiiiiiiiiii e eeee 306
3.3.5.4.2 Sending Shutdown Request Denied PDU.........cccvviiiiiiiiiiiiiiniieiaeaens 306
3.3.5.5 Deactivation-Reconnection SeqUEeNCEccviiiiiiii i e 306
3.3.5.5.1 Sending Deactivate All PDUcooiiiiiiiiiiiin e e 306
3.3.5.6 AUtO-RECONNECE SEQUENCE. ...ttt i i e e e eaeeas 306
3.3.5.6.1 Sending Auto-Reconnect Status PDU.......c.cocoiviiiiiiiiiiiieee e 306
3.3.5.7 Server Error Reporting and Status Updatescoviiiiiiiiiiioiieiieens 306
3.3.5.7.1 Sending Set Error INfo PDU ..o e 306
3.3.5.7.1.1 User Authorization Failures........c.ooviiiiiiiii e 307
3.3.5.7.2 Sending Status INfo PDU ...oouiiiiiiiiicc e e 307
3.3.5.8 Keyboard and Mouse INPUL.......cooviiiiiiii e 307
3.3.5.8.1 Input Event Notifications ..o 307
3.3.5.8.1.1 Processing Slow-Path Input Event PDUcooviiiiiiiiiiiiiiineee, 307
3.3.5.8.1.2 Processing Fast-Path Input Event PDUcccoiviiiiiiiiiiiieeeee 308
3.3.5.8.2 Keyboard Status PDUSc.iiiiiiiiii i e e ae s 308
3.3.5.8.2.1 Sending Set Keyboard Indicators PDUcccvoeiiiiiiiiiiiiiiiiiieiaenens 308
3.3.5.8.2.2 Sending Set Keyboard IME Status PDUcocoviiiiiiiiiiiiiieneens 309
3.3.5.9 BasSiC OUEPUL .ove i et e 309
3.3.5.9.1 Sending Slow-Path Graphics Update PDU.........ccooviiiiiiiiiiiiiicieceeens 309
3.3.5.9.2 Sending Slow-Path Pointer Update PDU.........cooiiiiiiiiiiiiiiceieeaeens 309
3.3.5.9.3 Sending Fast-Path Update PDUcccoooiiiiiiiii s 310
3.3.5.9.4 150 U o T N 310
3.3.5.9.4.1 Sending Play Sound PDU.......coiiiiiiiiiiie e 311
3.3.5.10 Logon and Authorization Notificationscocviiiiiiiiii 311
3.3.5.10.1 Sending Save Session INfO PDU.......ccoiiiiiiiiiiiiiiiin e 311
3.3.5.10.2 Sending Early User Authorization Result PDUc.cocoviiiiiiiiiiiiieinnnens 311
3.3.5.11 Controlling Server Graphics OUEPULcovviiiiiiii e 311
3.3.5.11.1 Processing Refresh ReCt PDUcocoiiiiiiiiiiiiiii e 311
3.3.5.11.2 Processing Suppress OUtpULt PDUooviiiiiiiiiiiiii e e eas 312
3.3.5.12 Display Update Notificationsccouiiiiiiii e 312
3.3.5.12.1 Sending Monitor Layout PDU.........oiiiiiiiiiii e e e e 312
3.3.5.13 Server Redir@CliON ...o.cieiiiii e 312
3.3.5.13.1 Sending of the Server Redirection PDUSc.cccoiiiiiiiiiiiieiiieeenn, 312
3.3.5.14 Network Characteristics Detectioncoooiiiiiiiiii s 312
3.3.5.15 Multitransport BootsStrappingccouveiiiiiiiii e 313
3.3.5.15.1 Sending the Initiate Multitransport Request PDUccccovviininininnnnn. 313
3.3.5.15.2 Processing the Initiate Multitransport Response PDU.............ccoveennens 313
3.3.6 T EVENES et e 313
3.3.6.1 Server-Side Connection Sequence TIMeEOULccvviiiiiiiiiiiiii e 313
3.3.6.2 Auto-Reconnect Cookie Updateccvuviiiiiiiiiiiiii e 314
12 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.3.7 (O 1 T ol o Yor= | V7= 1 314

4 Protocol EXamples ..icuiciiiiimiemimie i masmasmssmsamsessassasmsssasssasssssassansasssnsanssnssnssnnnansa 315
4.1 Annotated ConNection SEQUENCEiiuiiiiii e e e 315
4.1.1 Client X.224 Connection Request PDUc.ciiiiiiiiiii i s 315
4.1.2 Server X.224 Connection Confirm PDUo.iiiiiiiiiiiiii i ae e 315
4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request............... 315
4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response. 320
4.1.5 Client MCS Erect Domain Request PDUccoviiiiiiiiiiiiii e 324
4.1.6 Client MCS Attach User Request PDU.......cciiiiiiiiiiiiii it aea e 325
4.1.7 Server MCS Attach-User Confirm PDUc.iciiiiiiiiiiiii i ees 325
4.1.8 MCS Channel Join Request and Confirm PDUSccociiiiiiiiiiiiiiiicie e 326
4.1.8.1 (OF =1 0T o = I 010 PP 326
4.1.8.1.1 Client Join Request PDU for Channel 1007 (User Channel) 326
4.1.8.1.2 Server Join Confirm PDU for Channel 1007 (User Channel) 327
4.1.8.2 Channel 1003 ... i e 328
4.1.8.2.1 Client Join Request PDU for Channel 1003 (I/O Channel).........c.ccvuvneee. 328
4.1.8.2.2 Server Join Confirm PDU for Channel 1003 (I/O Channel).................... 329
4.1.8.3 (01 T=T o T 1= I 0 329
4.1.8.3.1 Client Join Request PDU for Channel 1004 (rdpdr Channel).................. 329
4.1.8.3.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel)................. 329
4.1.8.4 Channel 1005 ...ttt 329
4.1.8.4.1 Client Join Request PDU for Channel 1005 (cliprdr Channel)................. 329
4.1.8.4.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel)................ 329
4.1.8.5 (01 T=T o T 1= I 001 P 330
4.1.8.5.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel)................ 330
4.1.8.5.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel)............... 330
4.1.9 Client Security EXChange PDUoiiiiiiiiiiiiii et 330
L I O I O 11T oL ol N o T = B 1 O PP 332
4.1.11 Server License Error PDU - Valid Client.......ccoiviiiiiii i neneenenes 335
4.1.12 Server Demand ACEIVE PDUciiiiiiiiiiiiii it as e sa s s s e e aennanes 336
4.1.13 Client Confirm ACtIVE PDU ...ttt e aaaes 342
4.1.14 Client SYNChronize PDUciuiiiiiiiiiiiii i e e eeenes 350
4.1.15 Client Control PDU - COOPErate. ittt e e aea s 351
4.1.16 Client Control PDU - Request CONtrol.......ccouiiiiiiiiiiiiiiiiiie e e 352
4.1.17 Client Persistent Key LiSt PDUciuiiiiiiiiiiiiii i ea e 352
4.1.18 CHent FONE LISE PDU ..uiiuiiiiiiiiie ettt ne e e re s e s e s e e e s e e e reaeanennes 355
4.1.19 Server SYNChronize PDUcuiiiiii i e e e e 355
4.1.20 Server Control PDU - CoOPerate cuuiiiiiiiiiiii it e ae e 356
4.1.21 Server Control PDU - Granted CONrolceiiviiiiiiiiiii i seee e e enea e 357
4.1.22 Server FONE Map PDU ..o i s e e et e et 358
4.2 Annotated User-Initiated (on Client) Disconnection Sequence...........ccooviviiiieinnenn. 359
4.2.1 Client Shutdown ReqUESE PDUuiiuiiiiiiii i aea s 359
4.2.2 Server Shutdown Request Denied PDUccoviiiiiiiiiiiiiii e 360
4.2.3 MCS Disconnect Provider UItimatum PDU........coiiiiiiiiiiiiiirie e naaens 360
4.3 Annotated Save Session INfO PDU ...i.iieiiiiiiiiiii it ae e e 361
4.3.1 [WoTo o) T (o {o BV A =T =] To] o 1 PP 361
4.3.2 Plain N O Y Lottt e e 364
4.3.3 Logon INfO EXtENAEd .. .cnviiiiii i e 367
4.4 Annotated Server-to-Client Virtual Channel PDUccciiiiiiiiiiiiiiicic e 370
4.5 Annotated Standard Security Server Redirection PDUcocoviiiiiiiiiiiiiiii e 371
4.6 Annotated Enhanced Security Server Redirection PDUccoiiiiiiiiiiiiiiiiiiiieeene 374
4.7 Annotated Fast-Path Input EVENt PDU........oiiiiiiiiii e 376
4.8 Java Code to Encrypt and Decrypt a Sample Client Randomc.covvvviiiiiiiiiennens 377
4.9 Java Code to Sign a Sample Proprietary Certificate Hash.........c.cocoiiiiiiiiiiiinene, 381
4.10 Specifying the Active Keyboard Layout and Language.........c.cocviiiiiiiiiiniiieinenens 385
L =Y oL ¥ o 3 386
5.1 Security Considerations for Implementerscviiiiiiii e 386
13 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

5.2 Index of Security Parameterso.ieiiiiiiiiie et e e e e e 386
5.3 Standard RDP SeCUNEY ..ttt e ea e e e e e aeaaes 386
5.3.1 ENCryplion LEVEIS ... 386
5.3.2 Negotiating the Cryptographic Configurationccciiiiiiiiiiiiiiii e 386
5.3.2.1 Cryptographic Negotiation Failuresc.cooiiiiiiiiiiiii e 387
5.3.3 Server CertifiCates .ovii ittt e 387
5.3.3.1 Proprietary CertifiCates ...oovviiiiiiii e 387
5.3.3.1.1 Terminal Services Signing Keycoooiiiiiiiiiii e 387
5.3.3.1.2 Signing a Proprietary Certificatec.oovviiiiiiiiic 388
5.3.3.1.3 Validating a Proprietary Certificate.......cccoveiiiiiiii e, 390
5.3.3.2 X.509 Certificate Chains....ciouiiieiiiiiii e 390
5.3.4 Client and Server Random ValUesovviiiiiiiiiiiiieieirere e e e e 391
5.3.4.1 Encrypting Client RanNdOmciuiiiiiiiii e 391
5.3.4.2 Decrypting Client RaNdOmM .. .iiuiiiii i e e e e 392
5.3.5 Initial Session Key Generationccvviiieiiiiiii e e 392
5.3.5.1 NON=FIPS i e e 392
5.3.5.2 I P S ottt 394
5.3.6 Encrypting and Decrypting the I/O Data Streamccoiviiiiiiiiiiiieens 396
5.3.6.1 NON=F P S Lttt e 396
5.3.6.1.1 Salted MAC GeNeEration ...o.viiie i re e 397
5.3.6.2 Bl P S ittt 397
5.3.7 SesSioN KeY UpPdates. ... e 398
5.3.7.1 NON=F P S Lttt e e 398
5.3.7.2 Bl P S ittt 399
5.3.8 Packet Layout in the I/O Data Streamcvviviiiiii i eneeea 399
5.4 ENhanced RDP SeCUMTY «.uiitiiiii i e ettt ee e 400
54.1 ENCryplion LEVEIS ... e 400
5.4.2 Security-Enhanced Connection SEQUENCE....c.iiiiii it e 401
5.4.2.1 Negotiation-Based ApProach........cccoviiiiiiiiiii e 401
5.4.2.2 Direct AP ProacCh .o e 402
5.4.2.3 Changes to the Security Commencement Phase........coocviiiiiiiiiiiniiiinenens 403
5.4.2.4 Disabling Forced Encryption of Licensing Packetsccceeviviiiiieinininnnnnnn. 403
5.4.3 Encrypting and Decrypting the I/O Data Streamcocviiiiiiiiiiii s 404
5.4.4 Packet Layout in the I/O Data Streamo.viiieiiiiii e 404
5.4.5 External Security Protocols Used By RDPccciiiiiiiiiiiiiiciicc e 404
5.4.5.1 Transport Layer SeCUrity (TLS) .ouviriiieiiiiii et 404
5.4.5.2 (01 5=Ta 1S3 = PPN 404
5.4.5.2.1 User Authorization Failurescvviiiiiiiiiic e 405
5.4.5.2.2 B R =) = | I 1] o P 405
5.5 AUutomMatiC RECONNECHION ... i e e e e e e 405
6 Appendix A: Product BehavVior ...cuicvermmmiemiesiessesmsssasssssssssassassasssnsasssnssnssnssnssannas 407
7 Change TracCKiNg . .ccicieiraeierammaranseranmarsnsersssassnsassssassnsassssassnsassnsassnsasansassnsasansassnsans 411
2 N 1 3 e 1= T 414
14 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

1 Introduction

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting facilitates user interaction
with a remote computer system by transferring graphics display data from the remote computer to the
user and transporting input commands from the user to the remote computer, where the input
commands are replayed on the remote computer. RDP also provides an extensible transport
mechanism which allows specialized communication to take place between components on the user
computer and components running on the remote computer.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:
ANSI character: An 8-bit Windows-1252 character set unit.

ASN.1: Abstract Syntax Notation One. ASN.1 is used to describe Kerberos datagrams as a
sequence of components, sent in messages. ASN.1 is described in the following specifications:
ITUX660] for general procedures; [ITUX680] for syntax specification, and [ITUX690] for the
Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules

(DER) encoding rules.

Basic Encoding Rules (BER): A set of encoding rules for ASN.1 notation. These encoding
schemes allow the identification, extraction, and decoding of data structures. These encoding
rules are defined in [ITUX690].

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

certification authority (CA): A third party that issues public key certificates (1). Certificates
serve to bind public keys to a user identity. Each user and certification authority (CA) can decide
whether to trust another user or CA for a specific purpose, and whether this trust should be
transitive. For more information, see [RFC3280].

Client Data Block: A collection of related client settings that are encapsulated within the user data
of a Generic Conference Control (GCC) Conference Create Request. Only four Client Data Blocks
exist: Core Data, Security Data, Network Data, and Cluster Data. The set of Client Data Blocks is
designed to remain static.

Connection Broker: A service that allows users to reconnect to their existing sessions, enables
the even distribution of session loads among servers, and provides access to virtual desktops
and remote programs. Further background information about Connection Broker is available in
[Anderson].

desktop scale factor: The scale factor (as a percentage) applied to Windows Desktop
Applications.

device scale factor: The scale factor (as a percentage) applied to Windows Store Applications.
domain name: A domain name or a NetBIOS name that identifies a domain.

Dynamic DST: Dynamic daylight saving time (DST) provides support for time zones whose
boundaries for daylight saving time change from year to year.

Extended Client Data Block: A collection of related client settings that are encapsulated within
the user data of a Generic Conference Control (GCC) Conference Create Request. In contrast to
the static set of Client Data Blocks, the set of Extended Client Data Blocks is designed to be
expanded over time.

15/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=89922
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89924
http://go.microsoft.com/fwlink/?LinkId=90414

input method editor (IME): A process that maps keyboard input to phonetic components (or
other language elements) that are specific to a selected language. IMEs are typically used with
languages for which conventional keyboard representation is difficult or impossible. For
example, East Asian languages are made up of thousands of distinct characters, which makes it
impossible to show all of the characters on a single keyboard. To facilitate composition, the IME
converts keystrokes into the characters of the target language (such as Japanese Katakana or
Simplified Chinese).

MD5 hash: A hashing algorithm, as described in [REC1321], that was developed by RSA Data
Security, Inc. An MD5 hash is used by the File Replication Service (FRS) to verify that a file on
each replica member is identical.

Message Authentication Code (MAC): A message authenticator computed through the use of a
symmetric key. A MAC algorithm accepts a secret key and a data buffer, and outputs a MAC.
The data and MAC can then be sent to another party, which can verify the integrity and
authenticity of the data by using the same secret key and the same MAC algorithm.

Multipoint Communication Service (MCS): A data transmission protocol and set of services
defined by the ITU T.120 standard, specifically [T122] and [T125].

Network Level Authentication (NLA): Refers to the usage of CredSSP (as defined in [MS-
CSSP]) within the context of an RDP connection to authenticate the identity of a user at the
network layer before the initiation of the RDP handshake. The use of NLA ensures that server
resources are only committed to authenticated users.

Packed Encoding Rules (PER): A set of encoding rules for ASN.1 notation, specified in
ITUX691]. These rules enable the identification, extraction, and decoding of data structures.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that may contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

Quality of Experience (QOE): A subjective measure of a user's experiences with a media service.

RC4: A variable key-length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

Remote Desktop: See Remote Desktop Protocol (RDP).

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

server authentication: The act of proving the identity of a server to a client, while providing key
material that binds the identity to subsequent communications.

Server Data Block: A collection of related server settings that are encapsulated within the user
data of a Generic Conference Control (GCC) Conference Create Response. Three Server Data
Blocks exist: Core Data, Security Data, and Network Data.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

16 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=90543
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
http://go.microsoft.com/fwlink/?LinkId=192078
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89868

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of
messages in client and server applications communicating over open networks. TLS supports
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group. See [RFC4346].

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[International] Dr. International, "Developing International Software (2nd Edition)", Microsoft Press,
2003, ISBN: 0735615837.

[MS-CSSP] Microsoft Corporation, "Credential Security Support Provider (CredSSP) Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RDPEA] Microsoft Corporation, "Remote Desktop Protocol: Audio Output Virtual Channel
Extension".

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)
Acceleration Extensions".

[MS-RDPELE] Microsoft Corporation, "Remote Desktop Protocol: Licensing Extension".

[MS-RDPEMT] Microsoft Corporation, "Remote Desktop Protocol: Multitransport Extension".

[MS-RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS-RDPEUDP] Microsoft Corporation, "Remote Desktop Protocol: UDP Transport Extension".

[MS-RDPNSC] Microsoft Corporation, "Remote Desktop Protocol: NSCodec Extension".

[MS-RDPRFX] Microsoft Corporation, "Remote Desktop Protocol: RemoteFX Codec Extension".

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

17/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90590
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPNSC%5d.pdf#Section_543fd1f18074412289441017261810ca
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549
http://go.microsoft.com/fwlink/?LinkId=90314

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editor.org/rfc/rfc2246.txt

[RFC4346] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.1",
RFC 4346, April 2006, http://www.ietf.org/rfc/rfc4346.txt

[RFC5246] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.2",
RFC 5246, August 2008, http://www.ietf.org/rfc/rfc5246.txt

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

[SSL3] Netscape, "SSL 3.0 Specification", http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00

[T122] ITU-T, "Multipoint communication service - Service definition", Recommendation T.122,
February 1998, http://www.itu.int/rec/T-REC-T.122/en

Note There is a charge to download the specification.

[T123] ITU-T, "Network-Specific Data Protocol Stacks for Multimedia Conferencing", Recommendation
T.123, May 1999, http://www.itu.int/rec/T-REC-T.123/en

Note There is a charge to download the specification.

[T124] ITU-T, "Generic Conference Control", Recommendation T.124, February 1998,
http://www.itu.int/rec/T-REC-T.124/en

Note There is a charge to download the specification.

[T125] ITU-T, "Multipoint Communication Service Protocol Specification", Recommendation T.125,
February 1998, http://www.itu.int/rec/T-REC-T.125-199802-1/en

Note There is a charge to download the specification.

[T128] ITU-T, "Multipoint Application Sharing", Recommendation T.128, February 1998,
http://www.itu.int/rec/T-REC-T.128-199802-S/en

Note There is a charge to download the specification.

[X224] ITU-T, "Information technology - Open Systems Interconnection - Protocol for Providing the
Connection-Mode Transport Service", Recommendation X.224, November 1995,
http://www.itu.int/rec/T-REC-X.224-199511-1/en

Note There is a charge to download the specification.

1.2.2 Informative References

[ERRTRANS] Microsoft Corporation, "How to Translate NTSTATUS Error Codes to Message Strings",
June 2005, http://support.microsoft.com/kb/259693

[MS-RDPCR2] Microsoft Corporation, "Remote Desktop Protocol: Composited Remoting V2".

[MS-RDPEAI] Microsoft Corporation, "Remote Desktop Protocol: Audio Input Redirection Virtual
Channel Extension".

[MS-RDPECLIP] Microsoft Corporation, "Remote Desktop Protocol: Clipboard Virtual Channel
Extension".

18/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=129803
http://go.microsoft.com/fwlink/?LinkId=817338
http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=89860
%5bMS-RDPCR2%5d.pdf#Section_04c2c5e73e234a7fb319835f7d049822
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPECLIP%5d.pdf#Section_fb9b7e0b6db441c2b83cf889c1ee7688
%5bMS-RDPECLIP%5d.pdf#Section_fb9b7e0b6db441c2b83cf889c1ee7688

[MS-RDPEDC] Microsoft Corporation, "Remote Desktop Protocol: Desktop Composition Virtual Channel
Extension".

[MS-RDPEDISP] Microsoft Corporation, "Remote Desktop Protocol: Display Update Virtual Channel
Extension".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS-RDPEECO] Microsoft Corporation, "Remote Desktop Protocol: Virtual Channel Echo Extension".

[MS-RDPEFS] Microsoft Corporation, "Remote Desktop Protocol: File System Virtual Channel
Extension".

[MS-RDPEGFX] Microsoft Corporation, "Remote Desktop Protocol: Graphics Pipeline Extension".

[MS-RDPEGT] Microsoft Corporation, "Remote Desktop Protocol: Geometry Tracking Virtual Channel
Protocol Extension".

[MS-RDPEI] Microsoft Corporation, "Remote Desktop Protocol: Input Virtual Channel Extension".

[MS-RDPEMC] Microsoft Corporation, "Remote Desktop Protocol: Multiparty Virtual Channel
Extension".

[MS-RDPEPC] Microsoft Corporation, "Remote Desktop Protocol: Print Virtual Channel Extension".

[MS-RDPEPNP] Microsoft Corporation, "Remote Desktop Protocol: Plug and Play Devices Virtual
Channel Extension".

[MS-RDPEPS] Microsoft Corporation, "Remote Desktop Protocol: Session Selection Extension".

[MS-RDPESC] Microsoft Corporation, "Remote Desktop Protocol: Smart Card Virtual Channel
Extension".

[MS-RDPESP] Microsoft Corporation, "Remote Desktop Protocol: Serial and Parallel Port Virtual
Channel Extension".

[MS-RDPEUSB] Microsoft Corporation, "Remote Desktop Protocol: USB Devices Virtual Channel
Extension".

[MS-RDPEVOR] Microsoft Corporation, "Remote Desktop Protocol: Video Optimized Remoting Virtual
Channel Extension".

[MS-RDPEV] Microsoft Corporation, "Remote Desktop Protocol: Video Redirection Virtual Channel
Extension".

[MS-RDPEXPS] Microsoft Corporation, "Remote Desktop Protocol: XML Paper Specification (XPS) Print
Virtual Channel Extension".

[MS-TSGU] Microsoft Corporation, "Terminal Services Gateway Server Protocol".

[MSDN-CP] Microsoft Corporation, "Code Page Identifiers", http://msdn.microsoft.com/en-
us/library/dd317756(VS.85).aspx

[MSDN-MUI] Microsoft Corporation, "Language Identifier Constants and Strings",
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318693(v=vs.85).aspx

[MSDN-SCHANNEL] Microsoft Corporation, "Creating a Secure Connection Using Schannel",
http://msdn.microsoft.com/en-us/library/aa374782.aspx

19/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPEDISP%5d.pdf#Section_d2954508f48748bc873139743e0854a9
%5bMS-RDPEDISP%5d.pdf#Section_d2954508f48748bc873139743e0854a9
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEECO%5d.pdf#Section_dd36d1eb2e974b24b4a30ca68d500521
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0
%5bMS-RDPEGT%5d.pdf#Section_64dd47427a1c47a7ad23d1f696d8781d
%5bMS-RDPEGT%5d.pdf#Section_64dd47427a1c47a7ad23d1f696d8781d
%5bMS-RDPEI%5d.pdf#Section_72a8cb657f6c407ca21a3d970721fed0
%5bMS-RDPEMC%5d.pdf#Section_1c867b2b40b8459a9af6906b6e0096fc
%5bMS-RDPEMC%5d.pdf#Section_1c867b2b40b8459a9af6906b6e0096fc
%5bMS-RDPEPC%5d.pdf#Section_f36d96c2c0f7418696b116c8e2e1e47c
%5bMS-RDPEPNP%5d.pdf#Section_7463a339d9c04dd1ac3e04ffa73f6932
%5bMS-RDPEPNP%5d.pdf#Section_7463a339d9c04dd1ac3e04ffa73f6932
%5bMS-RDPEPS%5d.pdf#Section_83aeefd1c4a1480780722a597c8cf19b
%5bMS-RDPESC%5d.pdf#Section_0428ca28b4dc46a397c301887fa44a90
%5bMS-RDPESC%5d.pdf#Section_0428ca28b4dc46a397c301887fa44a90
%5bMS-RDPESP%5d.pdf#Section_04ae8f6ba2fe4989931409bff11fa086
%5bMS-RDPESP%5d.pdf#Section_04ae8f6ba2fe4989931409bff11fa086
%5bMS-RDPEUSB%5d.pdf#Section_a1004d0e99e94968894b0b924ef2f125
%5bMS-RDPEUSB%5d.pdf#Section_a1004d0e99e94968894b0b924ef2f125
%5bMS-RDPEVOR%5d.pdf#Section_a9947d5594084cf8b113555b436bd3ce
%5bMS-RDPEVOR%5d.pdf#Section_a9947d5594084cf8b113555b436bd3ce
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-TSGU%5d.pdf#Section_0007d661a86d4e8f89f77f77f8824188
http://go.microsoft.com/fwlink/?LinkId=89981
http://go.microsoft.com/fwlink/?LinkId=89981
http://go.microsoft.com/fwlink/?LinkId=90048
http://go.microsoft.com/fwlink/?LinkId=90121

[MSFT-DIL] Microsoft Corporation, "Default Input Locales", http://technet.microsoft.com/en-
us/library/cc766503(WS.10).aspx

[MSFT-SDLBTS] Microsoft Corporation, "Session Directory and Load Balancing Using Terminal Server",
September 2002, http://download.microsoft.com/download/8/6/2/8624174c-8587-4a37-8722-
00139613a5bc/TS Session Directory.doc

[RFC2118] Pall, G., "Microsoft Point-To-Point Compression (MPPC) Protocol", RFC 2118, March 1997,
http://www.ietf.org/rfc/rfc2118.txt

1.3 Overview

This protocol is designed to facilitate user interaction with a remote computer system by transferring
graphics display information from the remote computer to the user and transporting input commands
from the user to the remote computer, where the input commands are replayed on the remote
computer. This protocol also provides an extensible transport mechanism which allows specialized
communication to take place between components on the user computer and components running on
the remote computer.

The following subsections present overviews of the protocol operation as well as sequencing
information.

1.3.1 Message Flows

1.3.1.1 Connection Sequence

The goal of the RDP Connection Sequence is to exchange client and server settings and to specify
common settings to use for the duration of the connection so that input, graphics, and other data can
be exchanged and processed between client and server. The RDP Connection Sequence is described in
following figure. All of the message exchanges in this diagram are strictly sequential, except where
noted in the text that follows.

20/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=202824
http://go.microsoft.com/fwlink/?LinkId=202824
http://go.microsoft.com/fwlink/?LinkId=90204
http://go.microsoft.com/fwlink/?LinkId=90204
http://go.microsoft.com/fwlink/?LinkId=90316

Client

——MCS Connect Initial PDU with GCC Conference Create Request——»-
-——MCS Connect Response PDU with GCC Conference Create Response

MCS Attach User Request PDU

Server

X.224 Connection Request PDU

X.224 Connection Confirm PDU

»-

Connection Initiation

MCS Erect Domain Request PDU

>
-

MCS Attach User Confirm PDU

Basic Settings Exchange

MCS Channel Join Request PDU(s)

Channel Connection

MCS Channel Join Confirm PDU(s)

Security Exchange PDU

Client Info PDU

-

Auto-Detect Request PDU(s)

- Ju JLJ

} RDP Security Commencement
} Secure Settings Exchange

-

Auto-Detect Response PDU(s)

——Initiate Multitransport Request PDU
Initiate Multitransport Response PDU—>

License Error PDU - Valid Client

Optional Connect-Time
Auto-Detection

} Licensing

Optlonal Multitransport
Bootstrapping

Demand Active PDU

)
-

Monitor Layout PDU

Confirm Active PDU

Synchronize PDU

Control PDU - Cooperate

Control PDU - Request Control

Capabilities Exchange

Persistent Key List PDU(s)
Font List PDU

LYYyvvywy

Synchronize PDU

Control PDU - Cooperate

Control PDU - Granted Control

AL AL

Font Map PDU

> Connection Finalization

Figure 1: Remote Desktop Protocol (RDP) connection sequence

The connection sequence can be broken up into ten distinct phases:

1. Connection Initiation: The client initiates the connection by sending the server a Class 0 X.224
Connection Request PDU (section 2.2.1.1). The server responds with a Class 0 X.224 Connection
Confirm PDU (section 2.2.1.2).

From this point, all subsequent data sent between client and server is wrapped in an X.224 Data
Protocol Data Unit (PDU) (1).

2. Basic Settings Exchange: Basic settings are exchanged between the client and server by using the
MCS Connect Initial PDU (section 2.2.1.3) and MCS Connect Response PDU (section 2.2.1.4). The

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

21/417

Connect Initial PDU contains a Generic Conference Control (GCC) Conference Create Request,

while the Connect Response PDU contains a GCC Conference Create Response.

These two GCC packets contain concatenated blocks of settings data (such as core data, security
data, and network data) which are read by client and server.

Connect Initial
Fields

GCC Conference Create Request

—~
Client Data Block 1

Client Data Block 2

Client Data Block N

Conference Create
Request Fields

Conference Create

> Request

User Data

>

Connect Initial User
Data

Figure 2: MCS Connect Initial PDU

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

22 /417

Connect Response
Fields

GCC Conference Create Response)

Conference Create
Response Fields

~

Server Data Block 1

\ Connect Response

Server Data Block 2 User Data

Conference Create
> Response
User Data

Server Data Block N

Figure 3: MCS Connect Response PDU

3. Channel Connection: The client sends an MCS Erect Domain Request PDU (section 2.2.1.5),
followed by an MCS Attach User Request PDU (section 2.2.1.6) to attach the primary user identity
to the MCS domain. The server responds with an MCS Attach User Confirm PDU (section 2.2.1.7)
containing the User Channel ID. The client then proceeds to join the user channel, the
input/output (I/0) channel, and all of the static virtual channels (the I/O and static virtual channel
IDs are obtained from the data embedded in the GCC packets) by using multiple MCS Channel Join
Request PDUs (section 2.2.1.8). The server confirms each channel with an MCS Channel Join
Confirm PDU (section 2.2.1.9). (RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, and 8.0 clients send a
Channel Join Request to the server only after the Channel Join Confirm for a previously sent
request has been received. RDP 8.1, 10.0, and 10.1 clients send all of the Channel Join Requests
to the server in a single batch to minimize the overall connection sequence time.)

From this point, all subsequent data sent from the client to the server is wrapped in an MCS Send
Data Request PDU, while data sent from the server to the client is wrapped in an MCS Send Data
Indication PDU. This is in addition to the data being wrapped by an X.224 Data PDU.

4. RDP Security Commencement: If Standard RDP Security mechanisms (section 5.3) are being
employed and encryption is in force (this is determined by examining the data embedded in the
GCC Conference Create Response packet) then the client sends a Security Exchange PDU (section
2.2.1.10) containing an encrypted 32-byte random number to the server. This random number is
encrypted with the public key of the server as described in section 5.3.4.1 (the server's public key,
as well as a 32-byte server-generated random number, are both obtained from the data
embedded in the GCC Conference Create Response packet). The client and server then utilize the
two 32-byte random numbers to generate session keys which are used to encrypt and validate the
integrity of subsequent RDP traffic.

From this point, all subsequent RDP traffic can be encrypted and a security header is included with
the data if encryption is in force. (The Client Info PDU (section 2.2.1.11) and licensing PDUs ([MS-
RDPELE] section 2.2.2) are an exception in that they always have a security header). The Security

23/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

10.

Header follows the X.224 and MCS Headers and indicates whether the attached data is encrypted.
Even if encryption is in force, server-to-client traffic cannot always be encrypted, while client-to-
server traffic will always be encrypted (encryption of licensing PDUs is optional, however).

Secure Settings Exchange: Secure client data (such as the username, password, and auto-
reconnect cookie) is sent to the server by using the Client Info PDU (section 2.2.1.11).

Optional Connect-Time Auto-Detection: During the Optional Connect-Time Auto-Detection phase,
the goal is to determine characteristics of the network, such as the round-trip latency time and the
bandwidth of the link between the server and client. This is accomplished by exchanging a
collection of PDUs (specified in section 2.2.14) over a predetermined period of time with enough
data to ensure that the results are statistically relevant.

Licensing: The goal of the licensing exchange is to transfer a license from the server to the client.
The client stores this license and on subsequent connections sends the license to the server for
validation. However, in some situations the client cannot be issued a license to store. In effect, the
packets exchanged during this phase of the protocol depend on the licensing mechanisms
employed by the server. Within the context of this document, it is assumed that the client will not
be issued a license to store. For details regarding more advanced licensing scenarios that take
place during the Licensing phase, see [MS-RDPELE] section 1.3.

Optional Multitransport Bootstrapping: After the connection has been secured and the Licensing
phase has run to completion, the server can choose to initiate multitransport connections ([MS-
RDPEMT] section 1.3). The Initiate Multitransport Request PDU (section 2.2.15.1) is sent by the
server to the client and results in the out-of-band creation of a multitransport connection using
messages from the RDP-UDP, TLS, DTLS, and multitransport protocols ([MS-RDPEMT] section
1.3.1). The client sends the Multitransport Response PDU (section 2.2.15.2) to the server if the
multitransport connection could not be established or if the server indicated support for Soft-Sync
in the Server Multitransport Channel Data (section 2.2.1.4.6)

Capabilities Exchange: The server sends the set of capabilities it supports to the client in a
Demand Active PDU (section 2.2.1.13.1). The optional Monitor Layout PDU (section 2.2.12.1) is
sent by the server after the Demand Active PDU. The client responds to the Demand Active PDU
with its capabilities by sending a Confirm Active PDU (section 2.2.1.13.2).

Connection Finalization: The client and server exchange PDUs to finalize the connection details.
The client-to-server PDUs sent during this phase have no dependencies on any of the server-to-
client PDUs; they can be sent as a single batch, provided that sequencing is maintained.

= The Client Synchronize PDU (section 2.2.1.14) is sent after transmitting the Confirm Active
PDU.

= The Client Control (Cooperate) PDU (section 2.2.1.15) is sent after transmitting the Client
Synchronize PDU.

= The Client Control (Request Control) PDU (section 2.2.1.16) is sent after transmitting the
Client Control (Cooperate) PDU.

= The optional Persistent Key List PDUs (section 2.2.1.17) are sent after transmitting the Client
Control (Request Control) PDU.

= The Font List PDU (section 2.2.1.18) is sent after transmitting the Persistent Key List PDUs or,
if the Persistent Key List PDUs were not sent, it is sent after transmitting the Client Control
(Request Control) PDU (section 2.2.1.16).

The server-to-client PDUs sent during the Connection Finalization phase have dependencies on
the client-to-server PDUs.

= The Server Synchronize PDU (section 2.2.1.19) is sent in response to the Confirm Active PDU.

24 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

= The Server Control (Cooperate) PDU (section 2.2.1.20) is sent after transmitting the Server
Synchronize PDU.

= The Server Control (Granted Control) PDU (section 2.2.1.21) is sent in response to the Client
Control (Request Control) PDU.

= The Font Map PDU (section 2.2.1.22) is sent in response to the Font List PDU.

Once the client has sent the Confirm Active PDU, it can start sending mouse and keyboard
input to the server, and upon receipt of the Font List PDU the server can start sending graphics
output to the client.

Besides input and graphics data, other data that can be exchanged between client and server after the
connection has been finalized includes connection management information and virtual channel
messages (exchanged between client-side plug-ins and server-side applications).

1.3.1.2 Security-Enhanced Connection Sequence

The RDP Connection Sequence does not provide any mechanisms which ensure that the identity of the
server is authenticated, and as a result it is vulnerable to man-in-the-middle attacks (these attacks
can compromise the confidentiality of the data sent between client and server).

The goal of the Security-Enhanced Connection Sequence is to provide an extensible mechanism within
RDP so that well-known and proven security protocols (such as Secure Socket Layer (SSL) or
Kerberos) can be used to fulfill security objectives and to wrap RDP traffic. There are two variations of
the Security-Enhanced Connection Sequence. The negotiation-based approach aims to provide
backward-compatibility with previous RDP implementations, while the Direct Approach favors more
rigorous security over interoperability.

Negotiation-Based Approach: The client advertises the security packages which it supports (by
appending a negotiation request structure to the X.224 Connection Request PDU) and the server
selects the package to use (by appending a negotiation response structure to the X.224 Connection
Confirm PDU). After the client receives the X.224 Connection Confirm PDU the handshake messages
defined by the negotiated security package are exchanged and then all subsequent RDP traffic is
secured by using the cryptographic techniques specified by the negotiated security package.

Direct Approach: Instead of negotiating a security package, the client and server immediately execute
a predetermined security protocol (for example, the CredSSP Protocol [MS-CSSP]) prior to any RDP
traffic being exchanged on the wire. This approach results in all RDP traffic being secured using the
hard-coded security package. However, it has the disadvantage of not working with servers that
expect the connection sequence to be initiated by an X.224 Connection Request PDU.

For more details about Enhanced RDP Security, see section 5.4.

1.3.1.3 Deactivation-Reactivation Sequence

After the connection sequence has run to completion, the server can determine that the client has to
be connected to an existing session. To accomplish this task the server signals the client with a
Deactivate All PDU. A Deactivate All PDU implies that the connection will be dropped or that a
capability re-exchange will occur. If a capability re-exchange is required, then the Capability Exchange
and Connection Finalization phases of the connection sequence (section 1.3.1.1) are re-executed.

The sending and processing of the Deactivate All PDU is described in sections 3.3.5.5.1 and 3.2.5.5.1
respectively.

1.3.1.4 Disconnection Sequences

1.3.1.4.1 User-Initiated on Client

25/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

The user can initiate a client-side disconnect by closing the RDP client application. To implement this
type of disconnection the client can initiate an immediate disconnect by sending the MCS Disconnect
Provider Ultimatum PDU (with the reason code set to "user requested") and then closing the
connection. Alternatively, the client can first notify the server of the intent to disconnect by sending
the Shutdown Request PDU and then waiting for a response. The server response to this PDU is
determined by whether the session is associated with a logged-on user account.

= If a logged-on user account is associated with the session, the server always denies the shutdown
request and sends the client a Shutdown Request Denied PDU. At this point the client behavior is
implementation-dependent (the client can, for example, choose to display a dialog box specifying
that the session will be disconnected). If the decision is made to proceed with the disconnection,
the client sends the server an MCS Disconnect Provider Ultimatum PDU (with the reason code set
to "user requested") and closes the connection.

= If a logged-on user account is not associated with the session, the server closes the connection
immediately after receiving the Shutdown Request PDU.

The sending and processing of the Shutdown Request PDU is described in sections 3.2.5.4.1 and
3.3.5.4.1 respectively. The sending and processing of the Shutdown Request Denied PDU is described
in sections 3.3.5.4.2 and 3.2.5.4.2 respectively.

1.3.1.4.2 User-Initiated on Server

The user can initiate a server-side disconnect by ending the session hosted on the server. To
implement this type of disconnection, the server first sends the client a Deactivate All PDU followed by
an optional MCS Disconnect Provider Ultimatum PDU (with the reason code set to "user requested").
The connection is then closed by the server.

The sending of the Deactivate All and MCS Disconnect Provider Ultimatum PDUs is described in section
3.3.5.5.1.

1.3.1.4.3 Administrator-Initiated on Server

The administrator of a server can force a user to be logged off from a session or disconnect sessions
outside of the user's control. To implement this type of disconnection, the server first sends the client
a Deactivate All PDU followed by an optional MCS Disconnect Provider Ultimatum PDU (with the reason
code set to "provider initiated"). The connection is then closed by the server.

The sending of the Deactivate All and MCS Disconnect Provider Ultimatum PDUs is described in section
3.3.5.5.1.

1.3.1.5 Automatic Reconnection

The Automatic Reconnection feature allows a client to reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server.

After a successful log on, the server sends the client an "auto-reconnect cookie" in the Save Session
Info PDU. This cookie is bound to the current user's session and is stored by the client. In the case of
a disconnection due to a network error, the client can try to automatically reconnect to the server. If it
can connect, it sends a cryptographically modified version of the cookie to the server in the Client Info
PDU (the Secure Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1).
The server uses the modified cookie to confirm that the client requesting auto-reconnection is the last
client that was connected to the session. If this check passes, then the client is automatically
connected to the desired session upon completion of the connection sequence.

The auto-reconnect cookie associated with a given session is flushed and regenerated whenever a
client connects to the session or the session is reset. This ensures that if a different client connects to
the session, then any previous clients that were connected can no longer use the auto-reconnect

26 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

mechanism to connect. Furthermore, the server invalidates and updates the cookie at hourly intervals,
sending the new cookie to the client in the Save Session Info PDU.

1.3.2 Server Error Reporting and Status Updates

A server can send detailed error codes to a client by using the Set Error Info PDU (the client indicates
during the Basic Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1,
that it supports this PDU). This PDU can be sent when a phase in the connection sequence fails or
when the client is about to be disconnected. Error codes allow the client to give much clearer failure
explanations to the user. If a server chooses not to send error codes to a client that supports receiving
these codes, then the client will be unable to report a clear diagnosable reason for any server-side
initiated disconnections.

Status updates can be sent to a client by using the Status Info PDU (the client indicates during the
Basic Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1, that it
supports this PDU). This PDU can be sent by the server to allow the client to give feedback to a user
when the server is performing processing that can take some time to complete.

The sending and processing of the Set Error Info PDU is described in sections 3.3.5.7.1 and 3.2.5.7.1
respectively, while the sending and processing of the Status Info PDU is described in sections
3.3.5.7.2 and 3.2.5.7.2 respectively.

1.3.3 Static Virtual Channels

Static Virtual Channels allow lossless communication between client and server components over the
main RDP data connection. Virtual channel data is application-specific and opaque to RDP. A maximum
of 31 static virtual channels can be created at connection time.

The list of desired virtual channels is requested and confirmed during the Basic Settings Exchange
phase of the connection sequence (as specified in section 1.3.1.1) and the endpoints are joined during
the Channel Connection phase (as specified in section 1.3.1.1). Once joined, the client and server
endpoints do not exchange data until the connection sequence has completed.

Static Virtual Channel data is broken up into chunks before being transmitted. The maximum size of
an individual chunk is determined by the settings exchanged in the Virtual Channel Capability Set
described in section 2.2.7.1.10 (the chunk size does not include RDP headers). Each virtual channel
acts as an independent data stream. The client and server examine the data received on each virtual
channel and route the data stream to the appropriate endpoint for further processing. A particular
client or server implementation can decide whether to pass on individual chunks of data as they are
received, or to assemble the separate chunks of data into a complete block before passing it on to the
endpoint.

1.3.4 Data Compression

RDP uses a bulk compressor to compress virtual channel data and some data in PDUs sent from server
to client. Capability advertising for various versions of the bulk compressor occurs in the Client Info
PDU (the Secure Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1).

One version of the bulk compressor (the RDP 4.0 bulk compressor) is based on the Microsoft Point-To-
Point Compression (MPPC) Protocol, as described in [RFC2118], and uses an 8 kilobyte history buffer.
A more advanced version of the compressor (the RDP 5.0 bulk compressor) is derived from the RDP
4.0 bulk compressor, but uses a 64 kilobyte history buffer and modified Huffman-style encoding rules.

Besides employing bulk compression for generic data, RDP also uses variations of run length encoding
(RLE) rules to implement compression of bitmap data sent from server to client. All clients have to be
capable of decompressing compressed bitmap data; this capability is not negotiable.

27/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90316

1.3.5 Keyboard and Mouse Input

The client sends mouse and keyboard input PDUs in two types: slow-path and fast-path. Slow-path is
similar to T.128 input formats for input PDUs, with some modifications for RDP input requirements.
Fast-path was introduced to take advantage of the fact that in RDP there are no extended Multipoint
Communication Services (MCS) topologies, just one top-level node and one leaf-node per socket.
Fast-path also uses reduced or removed headers and alternate bytestream-orientated encoding
formats to reduce bandwidth and CPU cycles for encode and decode.

Client-to-server Input Event PDUs convey keyboard and mouse data to the server so that it can inject
input as needed. The client can also periodically synchronize the state of the toggle keys (for example,
NUM LOCK and CAPS LOCK) using the Synchronize Event PDU. This is necessary when the client loses
input focus and then later gets the focus back (possibly with new toggle key states). In a similar vein,
the server can also force an update of the local keyboard toggle keys or the local input method
editor (IME) being used to ensure that synchronization with the session is maintained.

1.3.6 Basic Server Output

In a similar style to input-related PDUs (as specified in section 1.3.5), server output-related PDUs
come in two types: slow-path and fast-path. Slow-path output is similar to T.128 output and is not
optimized in any way. Fast-path output uses reduced or removed headers to save bandwidth and
reduce encoding and decoding latency by reducing the required CPU cycles.

The most fundamental output that a server can send to a connected client is bitmap images of the
user's session using Bitmap Updates. This allows the client to render the working space and enables a
user to interact with the session running on the server. The global palette information for a session is
sent to the client using Palette Updates.

The client can choose to render the mouse cursor locally (if it is not included in the graphics updates
sent by the server). In this case, the server sends updates of the current cursor image to ensure that
it can be drawn with the correct shape (the Pointer Update PDUs are used to accomplish this task).
Furthermore, if the mouse is programmatically moved in the user's session, the server informs the
client of the new position using the Pointer Position PDU.

Other basic output which a server sends to a connected client includes the Play Sound PDU, which
instructs a client to play rudimentary sounds (by specifying a frequency and its duration) and
Connection Management PDUs, as specified in section 2.2.10.

1.3.7 Controlling Server Graphics Output

A client connected to a server and displaying graphics data might need to request that the server
resend the graphics data for a collection of rectangular regions of the session screen area, or stop
sending graphics data for a period of time (perhaps when the client is minimized). These two tasks are
accomplished by having the client send the Refresh Rect PDU and Suppress Output PDUs,
respectively.

1.3.8 Server Redirection

A client connection can be redirected to a specific session on another server by using the Server
Redirection PDU (section 2.2.13). This enables basic load-balancing scenarios, as shown in the
following figure.

28/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Connection
Broker

Client "
c !

Figure 4: Basic server redirection

Assume that User A has an existing session on Server S1 (Session #3). Both Server S1 and Server S2
are able to communicate with a Connection Broker.

1. User A uses Client C to connect to Server S2 and authenticate.

2. Server S2 communicates with the Connection Broker and is informed that User A has an existing
session on Server S1 (Session #3).

3. Server S2 sends a Redirection PDU to Client C, which contains:
= The name of the target server (S1).
*» The target Session ID (Session #3).
= The login credentials to use for Server S1 (if necessary).

4. Client C closes the connection to Server S2 and initiates a connection to Server S1. As part of the
connection initialization data sent to Server S1, Client C sends the login credentials and requests a
connection to Session #3.

29/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

5. Server S1 validates the login credentials, and, if they are correct, connects Client C to Session #3.

If Client C cannot connect directly to Server S1, the Redirection PDU is supposed to contain a variable-
length routing token that contains the information required by Server S2 to redirect the client
connection appropriately. The client places this token into the X.224 Connection Request

PDU (section 2.2.1.1) of the RDP Connection Sequence and then reconnects it back to Server S2.
Server S2 reads the routing token and then redirects the X.224 Connection Request and all future
traffic from Client C to Server S1.

For more information about load balancing of Remote Desktop sessions and the routing token
format, see [MSFT-SDLBTS] sections "Load-Balanced Configurations", "Revectoring Clients", and
"Routing Token Format".

1.3.9 Connect-Time and Continuous Network Characteristics Detection

Connect-Time Auto-Detection occurs once during the RDP Connection Sequence (section 1.3.1.1), and
is accomplished by sending request and response messages over the main RDP connection during the
Optional Connect-Time Auto-Detection phase.

The following messages are encapsulated in the server-to-client Auto-Detect Request PDU (section
2.2.14.3) and flow over the main RDP connection, implementing Connect-Time Auto-Detection:

= RTT Message Request (section 2.2.14.1.1)

= Bandwidth Measure Start (section 2.2.14.1.2)

= Bandwidth Measure Payload (section 2.2.14.1.3)

= Bandwidth Measure Stop (section 2.2.14.1.4)

= Network Characteristics Result (section 2.2.14.1.5)

The following messages are encapsulated in the client-to-server Auto-Detect Response PDU (section
2.2.14.2) and flow over the main RDP connection as part of Connect-Time Auto-Detection:

= RTT Measure Response (section 2.2.14.2.1)
= Bandwidth Measure Results (section 2.2.14.2.2)
= Network Characteristics Sync (section 2.2.14.2.3)

Continuous Auto-Detection occurs on a constant basis after the RDP Connection Sequence has
completed, and is implemented by sending request and response messages over the main RDP
connection and any created sideband channels ([MS-RDPEMT] section 1.3.2).

The following messages are encapsulated in the server-to-client Auto-Detect Request PDU and flow
over the main RDP connection, implementing Continuous Auto-Detection:

= RTT Message Request (section 2.2.14.1.1)
= Bandwidth Measure Start (section 2.2.14.1.2)
= Bandwidth Measure Stop (section 2.2.14.1.4)

The following messages are encapsulated in the client-to-server Auto-Detect Response PDU and flow
over the main RDP connection as part of Continuous Auto-Detection:

= RTT Measure Response (section 2.2.14.2.1)

= Bandwidth Measure Results (section 2.2.14.2.2)

30/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90204
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

The following messages are encapsulated in the RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section
2.2.1.1.1) structure and are used to implement Continuous Auto-Detection over the sideband channels
that are in active use:

= Bandwidth Measure Start (section 2.2.14.1.2)
= Bandwidth Measure Stop (section 2.2.14.1.4)
= Network Characteristics Result (section 2.2.14.1.5)

= Bandwidth Measure Results (section 2.2.14.2.2)

1.3.10 Connection Health Monitoring

The Heartbeat PDU (section 2.2.16.1) allows a client to monitor the state of the connection to the
server in real time. If the client and server both support connection health monitoring, then the server
will send Heartbeat PDUs to the client at a regular cadence when no other data is sent. If no data has
been received over a predetermined number of heartbeat intervals by the client, then the server might
be down or the network link might be in a disconnected state. If this is the case, the client can
respond by displaying a warning or initiating a reconnection attempt.

1.4 Relationship to Other Protocols

[MS-RDPBCGR] is based on the ITU (International Telecommunication Union) T.120 series of
protocols. The T.120 standard is composed of a suite of communication and application-layer protocols
that enable implementers to create compatible products and services for real-time, multipoint data
connections and conferencing.

= Protocol for Providing the Connection-Mode Transport Service [X224]

= Multipoint communication service - Service definition [T122]

= Network-Specific Data Protocol Stacks for Multimedia Conferencing [T123]
= Generic Conference Control [T124]

» Multipoint Communication Service Protocol Specification [T125]

= Multipoint Application Sharing [T128]

The following protocols are tunneled within an [MS-RDPBCGR] static virtual channel:
= Multiparty Virtual Channel Extension [MS-RDPEMC

= Clipboard Virtual Channel Extension [MS-RDPECLIP

= Audio Output Virtual Channel Extension [MS-RDPEA

= Remote Programs Virtual Channel Extension [MS-RDPERP

= Dynamic Channel Virtual Channel Extension [MS-RDPEDYC

* File System Virtual Channel Extension [MS-RDPEFS

= Serial Port Virtual Channel Extension [MS-RDPESP

»= Print Virtual Channel Extension [MS-RDPEPC

= Smart Card Virtual Channel Extension [MS-RDPESC

[MS-RDPEDYC] tunnels the following protocols:

31/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPEMC%5d.pdf#Section_1c867b2b40b8459a9af6906b6e0096fc
%5bMS-RDPECLIP%5d.pdf#Section_fb9b7e0b6db441c2b83cf889c1ee7688
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPESP%5d.pdf#Section_04ae8f6ba2fe4989931409bff11fa086
%5bMS-RDPEPC%5d.pdf#Section_f36d96c2c0f7418696b116c8e2e1e47c
%5bMS-RDPESC%5d.pdf#Section_0428ca28b4dc46a397c301887fa44a90

= XPS Printing Virtual Channel Extension [MS-RDPEXPS

*= Plug and Play Devices Virtual Channel Extension [MS-RDPEPNP

» Video Virtual Channel Extension [MS-RDPEV

= Audio Input Virtual Channel Extension [MS-RDPEAI

= Composited Remoting V2 Extension [MS-RDPCR2

= USB Devices Virtual Channel Extension [MS-RDPEUSB

= Graphics Pipeline Extension [MS-RDPEGFX

= Input Virtual Channel Extension [MS-RDPEI

= Video Optimized Remoting Virtual Channel Extension [MS-RDPEVOR
= Virtual Channel Echo Extension [MS-RDPEECO

= Geometry Tracking Virtual Channel Protocol Extension [MS-RDPEGT

= Display Control Virtual Channel Extension [MS-RDPEDISP]

The following protocols extend [MS-RDPBCGR]:

= Licensing Extension [MS-RDPELE

= Session Selection Extension [MS-RDPEPS

= Graphics Device Interface (GDI) Acceleration Extensions [MS-RDPEGDI
= Desktop Composition Extension [MS-RDPEDC

= Remote Programs Virtual Channel Extension [MS-RDPERP]
= NSCodec Extension [MS-RDPNSC

= RemoteFX Codec Extension [MS-RDPRFX

The following protocol tunnels [MS-RDPEDYC]:

= Multitransport Extension [MS-RDPEMT

The following protocol tunnels [MS-RDPEMT]:

= UDP Transport Extension [MS-RDPEUDP

The following protocol tunnels [MS-RDPBCGR]:

= Gateway Server Protocol [MS-TSGU

1.5 Prerequisites/Preconditions

This protocol assumes that the client and server systems both have an IP address and are able to
communicate over a computer network. It also assumes that the initiator (or "client") has already
obtained the IP address of the server, that the server has registered a port, and that the server is
actively listening for client connections on that port.<1>

32/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-RDPEPNP%5d.pdf#Section_7463a339d9c04dd1ac3e04ffa73f6932
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPCR2%5d.pdf#Section_04c2c5e73e234a7fb319835f7d049822
%5bMS-RDPEUSB%5d.pdf#Section_a1004d0e99e94968894b0b924ef2f125
%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0
%5bMS-RDPEI%5d.pdf#Section_72a8cb657f6c407ca21a3d970721fed0
%5bMS-RDPEVOR%5d.pdf#Section_a9947d5594084cf8b113555b436bd3ce
%5bMS-RDPEECO%5d.pdf#Section_dd36d1eb2e974b24b4a30ca68d500521
%5bMS-RDPEGT%5d.pdf#Section_64dd47427a1c47a7ad23d1f696d8781d
%5bMS-RDPEDISP%5d.pdf#Section_d2954508f48748bc873139743e0854a9
%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
%5bMS-RDPEPS%5d.pdf#Section_83aeefd1c4a1480780722a597c8cf19b
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPNSC%5d.pdf#Section_543fd1f18074412289441017261810ca
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-TSGU%5d.pdf#Section_0007d661a86d4e8f89f77f77f8824188

1.6 Applicability Statement

This protocol is applicable in scenarios where interactions with a session or application hosted on a
remote server are required. In this context, the graphical user interface of a session or application
running on a remote machine is transmitted to the client machine. The client, in turn, sends keyboard
and mouse input to be processed by the server allowing the client to interact with the session or
application on the server.

In scenarios in which more specialized communication between client and server components is
needed, Virtual Channels (section 1.3.3) provide an extensible transport mechanism. Examples of
more specialized communication include redirection of client-side devices (for example, printers,
drives, smart card readers, or Plug and Play devices) and synchronization of the local and remote
clipboards.

1.7 Versioning and Capability Negotiation

Capability negotiation for RDP is essentially the same as for T.128. The server advertises its
capabilities in a Demand Active PDU sent to the client, and the client advertises its capabilities in the
follow-up Confirm Active PDU (see the Capability Exchange phase in section 1.3.1.1). Capability sets
are packaged in a combined capability set structure. This structure contains a count of the number of
capability sets, followed by the contents of the individual capability sets.

Mumber of
capability sets
which
follow = N

Capability Set 1 Capability Set 2 e Capability Set M

Figure 5: Combined Capability Set structure

Information exchanged in the capability sets includes data such as supported PDUs and drawing
orders, desktop dimensions, and allowed color depths, input device support, cache structures and
feature support. The client and server do not violate any peer capabilities when sending data on the
wire. This ensures that all RDP traffic on the wire is consistent with expectations and can be processed
by each party.

Early capability information (in the form of a bitmask) is advertised by the client as part of the data
which it sends to the server during the Basic Settings Exchange phase. This information is intended for
capabilities that need to be advertised prior to the actual Capability Exchange phase. For example,
support for the Set Error Info PDU is established before the Licensing phase of the connection
sequence, which occurs before the Capability Exchange phase (section 1.3.1.1). This is necessary
because the server has to be aware of how errors can be communicated back to the client.

The client and server data exchanged during the Basic Settings Exchange phase in the RDP
Connection Sequence (section 1.3.1.1) includes an RDP version number (consisting of a major and
minor field). However, this version information does not accurately reflect the version of RDP being
used by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, and 8.1 clients because they all advertise a minor
version of "4").

The build number of the client is also available as part of the data the client sends to the server during
the Basic Settings Exchange phase. However, this value is implementation-dependent and is not
necessarily consistent across the spectrum of RDP clients manufactured by different vendors.

33/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

1.8 Vendor-Extensible Fields

This protocol uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors are free to choose
their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a customer
code.

1.9 Standards Assignments

None.

34 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

2 Messages

2.1 Transport

The [MS-RDPBCGR] packets are encapsulated in the Transmission Control Protocol (TCP). The
TCP packets MUST be encapsulated in version 4 or 6 of the IP protocol.

There is no officially assigned TCP port for [MS-RDPBCGR], but protocol servers listen by default on
TCP port 3389 for client requests.
2.2 Message Syntax

All multiple-byte fields within a message MUST be marshaled in little-endian byte order, unless
otherwise specified.

This protocol references commonly used data types as defined in [MS-DTYP].
Version 2 MCS Encoding Rules (defined in [T125] section 9) are used when encoding MCS structures
defined in [T125].

2.2.1 Connection Sequence

2.2.1.1 Client X.224 Connection Request PDU

The X.224 Connection Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Connection Initiation phase of the RDP Connection Sequence (section 1.3.1.1 for an
overview of the RDP Connection Sequence phases).

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Crq

routingToken (variable)

cookie (variable)

rdpNegReq (optional)

rdpCorrelationInfo (36 bytes, optional)

35/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
http://go.microsoft.com/fwlink/?LinkId=90543

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Crq (7 bytes): An X.224 Class 0 Connection Request transport protocol data unit (TPDU), as
specified in [X224] section 13.3.

routingToken (variable): An optional and variable-length routing token (used for load balancing)
terminated by a 0xODOA two-byte sequence. For more information about the routing token
format, see [MSFT-SDLBTS] "Routing Token Format". The length of the routing token and CR+LF
sequence is included in the X.224 Connection Request Length Indicator field. If this field is
present, then the cookie field MUST NOT be present.

cookie (variable): An optional and variable-length ANSI character string terminated by a OxODOA
two-byte sequence. This text string MUST be "Cookie: mstshash=IDENTIFIER", where IDENTIFIER
is an ANSI character string (an example cookie string is shown in section 4.1.1). The length of the
entire cookie string and CR+LF sequence is included in the X.224 Connection Request Length
Indicator field. This field MUST NOT be present if the routingToken field is present.

rdpNegReq (8 bytes): An optional RDP Negotiation Request (section 2.2.1.1.1) structure. The
length of this field is included in the X.224 Connection Request Length Indicator field.

rdpCorrelationInfo (36 bytes): An optional Correlation Info (section 2.2.1.1.2) structure. The
length of this field is included in the X.224 Connection Request Length Indicator field. This
field MUST be present if the CORRELATION_INFO_PRESENT (0x08) flag is set in the flags field of
the RDP Negotiation Request structure, encapsulated within the optional rdpNegReq field. If
the CORRELATION_INFO_PRESENT (0x08) flag is not set, then this field MUST NOT be present.

2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ)

The RDP Negotiation Request structure is used by a client to advertise the security protocols which it
supports.

—
N
w

type flags length

requestedProtocols

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x01 (TYPE_RDP_NEG_REQ).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags.

Flag Meaning
RESTRICTED_ADMIN_MODE_REQUIRED Indicates that the client requires credential-less
0x01 logon over CredSSP (also known as "restricted

admin mode"). If the server supports this mode then
it is acceptable for the client to send empty
credentials in the TSPasswordCreds structure
defined in [MS-CSSP] section 2.2.1.2.1.<2>

REDIRECTED_AUTHENTICATION_MODE_REQUIRED | Indicates that the client requires credential-less
0x02 logon over CredSSP with redirected authentication
over CredSSP (also known as "Remote Credential
Guard"). If the server supports this mode, the client
can send a redirected logon buffer in the
TSRemoteGuardCreds structure defined in [MS-
CSSP] section 2.2.1.2.3.

36/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90204
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

Flag Meaning

CORRELATION_INFO_PRESENT The optional rdpCorrelationInfo field of the 224
0x08 Connection Request PDU (section 2.2.1.1) is
present.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0008 (8 bytes).

requestedProtocols (4 bytes): A 32-bit, unsigned integer that contains flags indicating the
supported security protocols.

Flag Meaning

PROTOCOL_RDP Standard RDP Security (section 5.3).

0x00000000

PROTOCOL_SSL TLS 1.0, 1.1, or 1.2 (section 5.4.5.1).

0x00000001

PROTOCOL_HYBRID Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2). If
0x00000002 this flag is set, then the PROTOCOL_SSL (0x00000001) flag SHOULD also be set

because Transport Layer Security (TLS) is a subset of CredSSP.

PROTOCOL_HYBRID_EX | Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2)
0x00000008 coupled with the Early User Authorization Result PDU (section 2.2.10.2). If this
flag is set, then the PROTOCOL_HYBRID (0x00000002) flag SHOULD also be
set. For more information on the sequencing of the CredSSP messages and the
Early User Authorization Result PDU, see sections 5.4.2.1 and 5.4.2.2.

2.2.1.1.2 RDP Correlation Info (RDP_NEG_CORRELATION_INFO)

The RDP Correlation Info structure is used by a client to propagate connection correlation information
to the server. This information allows diagnostic tools on the server to track and monitor a specific
connection as it is handled by Terminal Services components.

-
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

type flags length

correlationld (16 bytes)

reserved (16 bytes)

37/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x06 (TYPE_RDP_CORRELATION_INFO).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags. There are currently no defined
flags, so this field MUST be set to 0x00.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0024 (36 bytes).

correlationId (16 bytes): An array of sixteen 8-bit, unsigned integers that specifies a unique
identifier to associate with the connection. The first byte in the array SHOULD NOT have a value of
0x00 or 0xF4 and the value 0xOD SHOULD NOT be contained in any of the bytes.

reserved (16 bytes): An array of sixteen 8-bit, unsigned integers reserved for future use. All sixteen
integers within this array MUST be set to zero.

2.2.1.2 Server X.224 Connection Confirm PDU

The X.224 Connection Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Connection Initiation phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the X.224 Connection
Request PDU (section 2.2.1.1).

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Ccf

rdpNegData (optional)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Ccf (7 bytes): An X.224 Class 0 Connection Confirm TPDU, as specified in [X224] section 13.4.
rdpNegData (8 bytes): An optional RDP Negotiation Response (section 2.2.1.2.1) structure or an

optional RDP Negotiation Failure (section 2.2.1.2.2) structure. The length of this field is
included in the X.224 Connection Confirm Length Indicator field.

2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)

The RDP Negotiation Response structure is used by a server to inform the client of the security
protocol which it has selected to use for the connection.

—
N
w

type flags length

selectedProtocol

38/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x02 (TYPE_RDP_NEG_RSP).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags.

Flag Meaning

EXTENDED_CLIENT_DATA_SUPPORTED The server supports Extended Client Data

0x01 Blocks in the GCC Conference Create Request user
data (section 2.2.1.3).

DYNVC_GFX_PROTOCOL_SUPPORTED The server supports the Graphics Pipeline

0x02 Extension Protocol described in [MS-RDPEGFX
sections 1, 2, and 3.

NEGRSP_FLAG_RESERVED An unused flag that is reserved for future use.

0x04

RESTRICTED_ADMIN_MODE_SUPPORTED Indicates that the server supports credential-less

0x08 logon over CredSSP (also known as "restricted

admin mode") and it is acceptable for the client to
send empty credentials in the TSPasswordCreds
structure defined in [MS-CSSP] section
2.2.1.2.1.<3>

REDIRECTED_AUTHENTICATION_MODE_SUPPORTED | Indicates that the server supports credential-less
0x10 logon over CredSSP with credential redirection
(also known as "Remote Credential Guard"). The
client can send a redirected logon buffer in the
TSRemoteGuardCreds structure defined in [MS-
CSSP] section 2.2.1.2.3.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0008 (8 bytes)

selectedProtocol (4 bytes): A 32-bit, unsigned integer that specifies the selected security protocol.

Value Meaning

PROTOCOL_RDP Standard RDP Security (section 5.3)

0x00000000

PROTOCOL_SSL TLS 1.0, 1.1 or 1.2 (section 5.4.5.1)

0x00000001

PROTOCOL_HYBRID CredSSP (section 5.4.5.2)

0x00000002

PROTOCOL_HYBRID_EX | Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2)
0x00000008 coupled with the Early User Authorization Result PDU (section 2.2.10.2).

2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)

The RDP Negotiation Failure structure is used by a server to inform the client of a failure that has
occurred while preparing security for the connection.

39/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

type flags length

failureCode

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x03 (TYPE_RDP_NEG_FAILURE).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags. There are currently no defined
flags, so the field MUST be set to 0x00.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0008 (8 bytes).

failureCode (4 bytes): A 32-bit, unsigned integer that specifies the failure code.

Value Meaning
SSL_REQUIRED_BY_SERVER The server requires that the client support Enhanced
0x00000001 RDP Security (section 5.4) with either TLS 1.0, 1.1 or

1.2 (section 5.4.5.1) or CredSSP (section 5.4.5.2). If
only CredSSP was requested then the server only
supports TLS.

SSL_NOT_ALLOWED_BY_SERVER The server is configured to only use Standard RDP
0x00000002 Security mechanisms (section 5.3) and does not
support any External Security Protocols (section 5.4.5).
SSL_CERT_NOT_ON_SERVER The server does not possess a valid authentication
0x00000003 certificate and cannot initialize the External Security
Protocol Provider (section 5.4.5).
INCONSISTENT_FLAGS The list of requested security protocols is not
0x00000004 consistent with the current security protocol in effect.

This error is only possible when the Direct Approach
(sections 5.4.2.2 and 1.3.1.2) is used and an External
Security Protocol (section 5.4.5) is already being used.

HYBRID_REQUIRED_BY_SERVER The server requires that the client support Enhanced
0x00000005 ;RIZPSS;)curity (section 5.4) with CredSSP (section

SSL_WITH_USER_AUTH_REQUIRED_BY_SERVER | The server requires that the client support Enhanced
0x00000006 RDP Security (section 5.4) with TLS 1.0, 1.1 or 1.2
(section 5.4.5.1) and certificate-based client
authentication.<4>

2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request

The MCS Connect Initial PDU is an RDP Connection Sequence PDU sent from client to server during the
Basic Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview
of the RDP Connection Sequence phases). It is sent after receiving the X.224 Connection Confirm PDU
(section 2.2.1.2). The MCS Connect Initial PDU encapsulates a GCC Conference Create Request, which
encapsulates concatenated blocks of settings data. A basic high-level overview of the nested structure
for the Client MCS Connect Initial PDU is illustrated in section 1.3.1.1, in the figure specifying MCS
Connect Initial PDU. Note that the order of the settings data blocks is allowed to vary from that shown

40/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

in the previously mentioned figure and the message syntax layout that follows. This is possible
because each data block is identified by a User Data Header structure (section 2.2.1.3.1).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

tpktHeader

x224Data mcsCi (variable)

gccCCrq (variable)

clientCoreData (variable)

clientSecurityData

clientNetworkData (variable)

clientClusterData (optional)

clientMonitorData (variable)

clientMessageChannelData (optional)

clientMultitransportChannelData (optional)

clientMonitorExtendedData (variable)

41/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCi (variable): Variable-length Basic Encoding Rules encoded (BER-encoded) MCS Connect
Initial structure (using definite-length encoding) as described in [T125] section 11.1 (the ASN.1
structure definition is detailed in [T125] section 7, part 2). The userData field of the MCS Connect
Initial encapsulates the GCC Conference Create Request data (contained in the gccCCrq and
subsequent fields). If the server did not advertise support for extended client data (section
2.2.1.2.1), then the maximum allowed size of the userData field is 1024 bytes, and the combined
size of the gccCCrq and subsequent fields MUST be less than 1024 bytes. However, if the server
did advertise support for extended client data, then the maximum allowed size of the userData
field is 4096 bytes and the gccCCrq and subsequent fields MUST be less than 4096 bytes.

gccCCrq (variable): Variable-length Packed Encoding Rules encoded (PER-encoded) GCC Connect
Data structure, which encapsulates a Connect GCC PDU that contains a GCC Conference Create
Request structure as described in [T124] (the ASN.1 structure definitions are detailed in [T124]
section 8.7) appended as user data to the MCS Connect Initial (using the format described in
[T124] sections 9.5 and 9.6). The userData field of the GCC Conference Create Request contains
one user data set consisting of concatenated Client Data Blocks.

clientCoreData (variable): Variable-length Client Core Data structure (section 2.2.1.3.2).

clientSecurityData (12 bytes): Client Security Data structure (section 2.2.1.3.3).

clientNetworkData (variable): Variable-length Client Network Data structure (section 2.2.1.3.4).

clientClusterData (12 bytes): Optional Client Cluster Data structure (section 2.2.1.3.5).

clientMonitorData (variable): Variable-length Client Monitor Data structure (section 2.2.1.3.6). This
field MUST NOT be included if the server did not advertise support for Extended Client Data Blocks
by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as described in section
2.2.1.2.1.

clientMessageChannelData (8 bytes): Optional Client Message Channel Data structure (section
2.2.1.3.7). This field MUST NOT be included if the server did not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

clientMultitransportChannelData (8 bytes): Optional Client Multitransport Channel Data structure
(section 2.2.1.3.8). This field MUST NOT be included if the server did not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag
(0x00000001) as described in section 2.2.1.2.1.

clientMonitorExtendedData (variable): Variable-length Client Monitor Extended Data structure
(section 2.2.1.3.9). This field MUST NOT be included if the server did not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag
(0x00000001) as described in 2.2.1.2.1.

2.2.1.3.1 User Data Header (TS_UD_HEADER)

The TS_UD_HEADER precedes all data blocks in the client and server GCC user data.

42 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542

7|8

0(1(2|3|4(5|6|7(8|9|0|1(2|3|4|5|6|7[8|9|0]1

type

length

type (2 bytes): A 16-bit, unsigned integer. The type of the data block that this header precedes.

Value Meaning

CS_CORE The data block that follows contains Client Core Data (section 2.2.1.3.2).
0xC001

CS_SECURITY The data block that follows contains Client Security Data (section 2.2.1.3.3).
0xC002

CS_NET The data block that follows contains Client Network Data (section 2.2.1.3.4).
0xC003

CS_CLUSTER The data block that follows contains Client Cluster Data (section 2.2.1.3.5).
0xC004

CS_MONITOR The data block that follows contains Client Monitor Data (section 2.2.1.3.6).
0xC005

0xC006

CS_MCS_MSGCHANNEL

The data block that follows contains Client Message Channel Data (section
2.2.1.3.7).

CS_MONITOR_EX
0xCO008

The data block that follows contains Client Monitor Extended Data (section
2.2.1.3.9).

CS_MULTITRANSPORT

The data block that follows contains Client Multitransport Channel Data (section

SC_CORE The data block that follows contains Server Core Data (section 2.2.1.4.2).
0x0C01

SC_SECURITY The data block that follows contains Server Security Data (section 2.2.1.4.3).
0x0C02

SC_NET The data block that follows contains Server Network Data (section 2.2.1.4.4).
0x0C03

0x0C04

SC_MCS_MSGCHANNEL

The data block that follows contains Server Message Channel Data (section
2.2.1.4.5).

0x0C08

SC_MULTITRANSPORT

The data block that follows contains Server Multitransport Channel Data (section
2.2.1.4.6).

length (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data block, including this

header.

2.2.1.3.2 Client Core Data (TS_UD_CS_CORE)

The TS_UD_CS_CORE data block contains core client connection-related information.

[MS-RDPBCGR] - v20160714
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

43/ 417

w

0|1|{2|3|4|5|6|7|8|9|0|1]|2 5(6(7(8[9(0(1]2]3 5/6{7|8|9|0]|1
header
version
desktopWidth desktopHeight
colorDepth SASSequence
keyboardLayout
clientBuild

clientName (32 bytes)

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName (64 bytes)

postBeta2ColorDepth (optional)

clientProductId (optional)

serialNumber (optional)

highColorDepth (optional)

supportedColorDepths (optional)

earlyCapabilityFlags (optional)

clientDigProductld (64 bytes, optional)

connectionType (optional)

padloctet (optional)

serverSelectedProtocol (optional)

desktopPhysicalWidth (optional)

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

44 /417

desktopPhysicalHeight (optional)

desktopOrientation (optional) desktopScaleFactor (optional)

deviceScaleFactor (optional)

header (4 bytes): A GCC user data block header, as specified in section 2.2.1.3.1. The User Data
Header type field MUST be set to CS_CORE (0xC001).

version (4 bytes): A 32-bit, unsigned integer. Client version number for the RDP. The major version
number is stored in the high 2 bytes, while the minor version number is stored in the low 2 bytes.

Value Meaning

0x00080001 | RDP 4.0 clients

0x00080004 | RDP 5.0, 5.1, 5.2, 6.0,6.1, 7.0, 7.1, 8.0, and 8.1 clients

0x00080005 | RDP 10.0 clients

0x00080006 | RDP 10.1 clients

0x00080007 | RDP 10.2 clients

desktopWidth (2 bytes): A 16-bit, unsigned integer. The requested desktop width in pixels
(validation of this field is described in section 3.3.5.3.3).

desktopHeight (2 bytes): A 16-bit, unsigned integer. The requested desktop height in pixels
(validation of this field is described in section 3.3.5.3.3).

colorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth. Values in this field
MUST be ignored if the postBeta2ColorDepth field is present.

Value Meaning

RNS_UD_COLOR_4BPP | 4 bits-per-pixel (bpp)
0xCAO00

RNS_UD_COLOR_8BPP | 8 bpp
0xCAO01

SASSequence (2 bytes): A 16-bit, unsigned integer. Secure access sequence. This field SHOULD be
set to RNS_UD_SAS_DEL (0xAA03).

keyboardLayout (4 bytes): A 32-bit, unsigned integer. The active input locale identifier, also known
as the "HKL" (for example, 0x00010409 for a "United States-Dvorak" keyboard layout and
0x00020418 for a "Romanian (Programmers)" keyboard layout). For a list of input locale
identifiers, see [MSFT-DIL].<5> If the keyboardLayout field is set to zero, then the server
SHOULD use the default active input locale identifier and active language identifier (see the
CodePage field in section 2.2.1.11.1.1) associated with the user account.<6>

clientBuild (4 bytes): A 32-bit, unsigned integer. The build number of the client.

clientName (32 bytes): Name of the client computer. This field contains up to 15 Unicode
characters plus a null terminator.

45/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=202824

keyboardType (4 bytes): A 32-bit, unsigned integer. The keyboard type.

Value Meaning

0x00000001 | IBM PC/XT or compatible (83-key) keyboard

0x00000002 | Olivetti "ICO" (102-key) keyboard

0x00000003 | IBM PC/AT (84-key) and similar keyboards

0x00000004 | IBM enhanced (101-key or 102-key) keyboard

0x00000005 | Nokia 1050 and similar keyboards

0x00000006 | Nokia 9140 and similar keyboards

0x00000007 | Japanese keyboard

keyboardSubType (4 bytes): A 32-bit, unsigned integer. The keyboard subtype (an original
equipment manufacturer-dependent value).

keyboardFunctionKey (4 bytes): A 32-bit, unsigned integer. The number of function keys on the
keyboard.

imeFileName (64 bytes): A 64-byte field. The input method editor (IME) file name associated with
the active input locale. This field contains up to 31 Unicode characters plus a null terminator.

postBeta2ColorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth. Values in
this field MUST be ignored if the highColorDepth field is present.

Value Meaning

RNS_UD_COLOR_4BPP 4 bits-per-pixel (bpp)

0xCA00

RNS_UD_COLOR_8BPP 8 bpp

0xCAO01

RNS_UD_COLOR_16BPP_555 | 15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for
0xCAO02 blue)

RNS_UD_COLOR_16BPP_565 | 16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for
0xCAO03 blue)

RNS_UD_COLOR_24BPP 24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)
0xCA04

If this field is not present, all of the subsequent fields MUST NOT be present.

clientProductld (2 bytes): A 16-bit, unsigned integer. The client product ID. This field SHOULD be
initialized to 1. If this field is present, then the postBeta2ColorDepth field MUST also be present.
If this field is not present, all of the subsequent fields MUST NOT be present.

serialNumber (4 bytes): A 32-bit, unsigned integer. Serial number. This field SHOULD be initialized
to zero. If this field is present, then the clientProductId field MUST also be present. If this field is
not present, all of the subsequent fields MUST NOT be present.

highColorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth.

46 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Value Meaning

HIGH_COLOR_4BPP 4 bpp
0x0004

HIGH_COLOR_8BPP | 8 bpp
0x0008

HIGH_COLOR_15BPP | 15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for blue)
0x000F

HIGH_COLOR_16BPP | 16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for blue)
0x0010

HIGH_COLOR_24BPP | 24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)
0x0018

If this field is present, then the serialNumber field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

supportedColorDepths (2 bytes): A 16-bit, unsigned integer. Specifies the high color depths that
the client is capable of supporting.

Flag Meaning

RNS_UD_24BPP_SUPPORT | 24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)
0x0001

RNS_UD_16BPP_SUPPORT | 16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for blue)
0x0002

RNS_UD_15BPP_SUPPORT | 15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for blue)
0x0004

RNS_UD_32BPP_SUPPORT | 32-bit RGB mask (8 bits for the alpha channel, 8 bits for red, 8 bits for green,
0x0008 and 8 bits for blue)

If this field is present, then the highColorDepth field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

earlyCapabilityFlags (2 bytes): A 16-bit, unsigned integer that specifies capabilities early in the
connection sequence.

Flag Meaning

RNS_UD_CS_SUPPORT_ERRINFO_PDU Indicates that the client supports the Set Error Info
0x0001 PDU (section 2251)
RNS_UD_CS_WANT_32BPP_SESSION Indicates that the client is requesting a session color
0x0002 depth of 32 bpp. This flag is necessary because the

highColorDepth field does not support a value of 32.
If this flag is set, the highColorDepth field SHOULD
be set to 24 to provide an acceptable fallback for the
scenario where the server does not support 32 bpp

color.
RNS_UD_CS_SUPPORT_STATUSINFO_PDU Indicates that the client supports the Server Status
0x0004 Info PDU (section 2.2.5.2).

47/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag

Meaning

RNS_UD_CS_STRONG_ASYMMETRIC_KEYS
0x0008

Indicates that the client supports asymmetric keys
larger than 512 bits for use with the Server Certificate
(section 2.2.1.4.3.1) sent in the Server Security Data
block (section 2.2.1.4.3).

RNS_UD_CS_UNUSED
0x0010

An unused flag that MUST be ignored by the server.

RNS_UD_CS_VALID_CONNECTION_TYPE
0x0020

Indicates that the connectionType field contains valid
data.

RNS_UD_CS_SUPPORT_MONITOR_LAYOUT_PDU
0x0040

Indicates that the client supports the Monitor Layout
PDU (section 2.2.12.1).

RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT
0x0080

Indicates that the client supports network
characteristics detection using the structures and PDUs
described in section 2.2.14.

RNS_UD_CS_SUPPORT_DYNVC_GFX_PROTOCOL
0x0100

Indicates that the client supports the Graphics Pipeline
Extension Protocol described in [MS-RDPEGFX] sections
1, 2, and 3.

RNS_UD_CS_SUPPORT_DYNAMIC_TIME_ZONE
0x0200

Indicates that the client supports Dynamic DST.
Dynamic DST information is provided by the client in
the cbDynamicDSTTimeZoneKeyName,
dynamicDSTTimeZoneKeyName and
dynamicDaylightTimeDisabled fields of the
Extended Info Packet (section 2.2.1.11.1.1.1).

RNS_UD_CS_SUPPORT_HEARTBEAT_PDU
0x0400

Indicates that the client supports the Heartbeat PDU
(section 2.2.16.1).

If this field is present, then the supportedColorDepths field MUST also be present. If this field is
not present, all of the subsequent fields MUST NOT be present.

clientDigProductld (64 bytes): Contains a value that uniquely identifies the client. If this field is
present, then the earlyCapabilityFlags field MUST also be present. If this field is not present, all

of the subsequent fields MUST NOT be present.

connectionType (1 byte): An 8-bit unsigned integer. Hints at the type of network connection being
used by the client. This field only contains valid data if the
RNS_UD_CS_VALID_CONNECTION_TYPE (0x0020) flag is present in the earlyCapabilityFlags

field.

Value

Meaning

CONNECTION_TYPE_MODEM
0x01

Modem (56 Kbps)

CONNECTION_TYPE_BROADBAND_LOW
0x02

Low-speed broadband (256 Kbps - 2 Mbps)

CONNECTION_TYPE_SATELLITE
0x03

Satellite (2 Mbps - 16 Mbps with high latency)

CONNECTION_TYPE_BROADBAND_HIGH
0x04

High-speed broadband (2 Mbps - 10 Mbps)

[MS-RDPBCGR] - v20160714

48/ 417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0

Value Meaning

CONNECTION_TYPE_WAN WAN (10 Mbps or higher with high latency)

0x05

CONNECTION_TYPE_LAN LAN (10 Mbps or higher)

0x06

CONNECTION_TYPE_AUTODETECT The server SHOULD attempt to detect the connection type. If the
0x07 connection type can be successfully determined then the

performance flags, sent by the client in the performanceFlags
field of the Extended Info Packet (section 2.2.1.11.1.1.1),
SHOULD be ignored and the server SHOULD determine the
appropriate set of performance flags to apply to the remote
session (based on the detected connection type). If the
RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT (0x0080) flag is
not set in the earlyCapabilityFlags field, then this value
SHOULD be ignored.

If this field is present, then the clientDigProductld field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

padiloctet (1 byte): An 8-bit, unsigned integer. Padding to align the serverSelectedProtocol field
on the correct byte boundary. If this field is present, then the connectionType field MUST also be
present. If this field is not present, all of the subsequent fields MUST NOT be present.

serverSelectedProtocol (4 bytes): A 32-bit, unsigned integer that contains the value returned by
the server in the selectedProtocol field of the RDP Negotiation Response (section 2.2.1.2.1). In
the event that an RDP Negotiation Response was not received from the server, this field MUST be
initialized to PROTOCOL_RDP (0). This field MUST be present if an RDP Negotiation Request
(section 2.2.1.1.1) was sent to the server. If this field is present, then the padloctet field MUST
also be present. If this field is not present, all of the subsequent fields MUST NOT be present.

desktopPhysicalWidth (4 bytes): A 32-bit, unsigned integer. The requested physical width of the
desktop, in millimeters (mm). This value MUST be ignored if it is less than 10 mm or greater than
10,000 mm or desktopPhysicalHeight is less than 10 mm or greater than 10,000 mm. If this
field is present, then the serverSelectedProtocol and desktopPhysicalHeight fields MUST also
be present. If this field is not present, all of the subsequent fields MUST NOT be present. If the
desktopPhysicalHeight field is not present, this field MUST be ignored.

desktopPhysicalHeight (4 bytes): A 32-bit, unsigned integer. The requested physical height of the
desktop, in millimeters. This value MUST be ignored if it is less than 10 mm or greater than
10,000 mm or desktopPhysicalWidth is less than 10 mm or greater than 10,000 mm. If this
field is present, then the desktopPhysicalWidth field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

desktopOrientation (2 bytes): A 16-bit, unsigned integer. The requested orientation of the
desktop, in degrees.

Value Meaning

ORIENTATION_LANDSCAPE The desktop is not rotated.

0

ORIENTATION_PORTRAIT The desktop is rotated clockwise by 90 degrees.
90

ORIENTATION_LANDSCAPE_FLIPPED | The desktop is rotated clockwise by 180 degrees.
180

49 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Value

Meaning

270

ORIENTATION_PORTRAIT_FLIPPED The desktop is rotated clockwise by 270 degrees.

This value MUST be ignored if it is invalid. If this field is present, then the

desktopPhysicalHeight field MUST also be present. If this field is not present, all of the

subsequent fields MUST NOT be present.

desktopScaleFactor (4 bytes): A 32-bit, unsigned integer. The requested desktop scale factor.
This value MUST be ignored if it is less than 100% or greater than 500% or deviceScaleFactor is
not 100%, 140%, or 180%. If this field is present, then the desktopOrientation and
deviceScaleFactor fields MUST also be present. If this field is not present, all of the subsequent
fields MUST NOT be present. If the deviceScaleFactor field is not present, this field MUST be

ignored.

deviceScaleFactor (4 bytes): A 32-bit, unsigned integer. The requested device scale factor . This
value MUST be ignored if it is not set to 100%, 140%, or 180% or desktopScaleFactor is less
than 100% or greater than 500%. If this field is present, then the desktopScaleFactor field

MUST also be present.

2.2.1.3.3 Client Security Data (TS_UD_CS_SEC)

The TS_UD_CS_SEC data block contains security-related information used to advertise client

cryptographic support. This information is only relevant when Standard RDP Security mechanisms
(section 5.3) will be used. See sections 3 and 5.3.2 for a detailed discussion of how this information is

used.

112|3|4|5(6(7(8[9|0(1|2|3|4|5|/6|7|8|9|0

header

encryptionMethods

extEncryptionMethods

header (4 bytes): A GCC user data block header as described in User Data Header (section

2.2.1.3.1). The User Data Header type field MUST be set to CS_SECURITY (0xC002).

encryptionMethods (4 bytes): A 32-bit unsigned integer. Cryptographic encryption methods

supported by the client and used in conjunction with Standard RDP Security. The client MUST
specify at least one encryption method, and the server MUST select one of the methods specified

by the client.

Flag

Meaning

40BIT_ENCRYPTION_FLAG
0x00000001

40-bit session keys MUST be used to encrypt data (with RC4) and
generate Message Authentication Codes (MAC).

128BIT_ENCRYPTION_FLAG
0x00000002

128-bit session keys MUST be used to encrypt data (with RC4) and
generate MACs.

56BIT_ENCRYPTION_FLAG
0x00000008

56-bit session keys MUST be used to encrypt data (with RC4) and generate

MACs.

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

50/ 417

Flag Meaning

FIPS_ENCRYPTION_FLAG All encryption and Message Authentication Code generation routines MUST
0x00000010 be Federal Information Processing Standard (FIPS) 140-1 compliant.

Section 5.3.2 describes how the client and server negotiate the security parameters for a given
connection.

extEncryptionMethods (4 bytes): A 32-bit unsigned integer. This field is used exclusively for the
French locale. In French locale clients, encryptionMethods MUST be set to zero and
extEncryptionMethods MUST be set to the value to which encryptionMethods would have
been set. For non-French locale clients, this field MUST be set to zero.

2.2.1.3.4 Client Network Data (TS_UD_CS_NET)

The TS_UD_CS_NET packet contains a list of requested virtual channels.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

header

channelCount

channelDefArray (variable)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_NET (0xC003).

channelCount (4 bytes): A 32-bit, unsigned integer. The number of requested static virtual
channels (the maximum allowed is 31).

channelDefArray (variable): A variable-length array containing the information for requested static
virtual channels encapsulated in CHANNEL DEF structures (section 2.2.1.3.4.1). The number of
CHANNEL_DEF structures which follows is given by the channelCount field.

2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)

The CHANNEL_DEF packet contains information for a particular static virtual channel.

name

options

name (8 bytes): An 8-byte array containing a null-terminated collection of seven ANSI characters
that uniquely identify the channel.

options (4 bytes): A 32-bit, unsigned integer. Channel option flags.

51/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag Meaning

CHANNEL_OPTION_INITIALIZED Absence of this flag indicates that this channel is a placeholder
0x80000000 and that the server MUST NOT set it up.
CHANNEL_OPTION_ENCRYPT_RDP This flag is unused and its value MUST be ignored by the server.
0x40000000

CHANNEL_OPTION_ENCRYPT_SC This flag is unused and its value MUST be ignored by the server.
0x20000000

CHANNEL_OPTION_ENCRYPT_CS This flag is unused and its value MUST be ignored by the server.
0x10000000

CHANNEL_OPTION_PRI_HIGH Channel data MUST be sent with high MCS priority.
0x08000000

CHANNEL_OPTION_PRI_MED Channel data MUST be sent with medium MCS priority.
0x04000000

CHANNEL_OPTION_PRI_LOW Channel data MUST be sent with low MCS priority.

0x02000000

CHANNEL_OPTION_COMPRESS_RDP Virtual channel data MUST be compressed if RDP data is being
0x00800000 compressed.

CHANNEL_OPTION_COMPRESS Virtual channel data MUST be compressed, regardless of RDP
0x00400000 compression settings.

CHANNEL_OPTION_SHOW_PROTOCOL | The value of this flag MUST be ignored by the server. The
0x00200000 visibility of the Channel PDU Header (section 2.2.6.1.1) is
determined by the CHANNEL_FLAG_SHOW_PROTOCOL
(0x00000010) flag as defined in the flags field (section
2.2.6.1.1).

REMOTE_CONTROL_PERSISTENT Channel MUST be persistent across remote control transactions.
0x00100000

2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER)

The TS_UD_CS_CLUSTER data block is sent by the client to the server either to advertise that it can
support the Server Redirection PDUs (sections 2.2.13.2 and 2.2.13.3) or to request a connection to a
given session identifier.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

header

Flags

RedirectedSessionID

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_CLUSTER (0xC004).

52/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flags (4 bytes): A 32-bit, unsigned integer. Cluster information flags.

Flag Meaning

REDIRECTION_SUPPORTED The client can receive server session redirection packets. If this

0x00000001 flag is set, the ServerSessionRedirectionVersionMask MUST
contain the server session redirection version that the client
supports.

ServerSessionRedirectionVersionMask The server session redirection version that the client supports.

0x0000003C See the discussion which follows this table for more
information.

REDIRECTED_SESSIONID_FIELD_VALID | The RedirectedSessionID field contains an ID that identifies a

0x00000002 session on the server to associate with the connection.
REDIRECTED_SMARTCARD The client logged on with a smart card.
0x00000040

The ServerSessionRedirectionVersionMask is a 4-bit enumerated value containing the server
session redirection version supported by the client. The following are possible version values.

Value Meaning

REDIRECTION_VERSION1 | If REDIRECTION_SUPPORTED is set, server session redirection version 1 is
0x00 supported by the client.<7>

REDIRECTION_VERSION2 | If REDIRECTION_SUPPORTED is set, server session redirection version 2 is
0x01 supported by the client.<8>

REDIRECTION_VERSION3 | If REDIRECTION_SUPPORTED is set, server session redirection version 3 is
0x02 supported by the client.<9>

REDIRECTION_VERSION4 | If REDIRECTION_SUPPORTED is set, server session redirection version 4 is
0x03 supported by the client.<10>

REDIRECTION_VERSIONS | If REDIRECTION_SUPPORTED is set, server session redirection version 5 is
0x04 supported by the client.<11>

REDIRECTION_VERSIONG6 | If REDIRECTION_SUPPORTED is set, server session redirection version 6 is
0x05 supported by the client.<12>

The version values cannot be combined; only one value MUST be specified if the
REDIRECTED_SESSIONID_FIELD_VALID (0x00000002) flag is present in the Flags field.

RedirectedSessionID (4 bytes): A 32-bit unsigned integer. If the
REDIRECTED_SESSIONID_FIELD_VALID flag is set in the Flags field, then the
RedirectedSessionlD field contains a valid session identifier to which the client requests to
connect.

2.2.1.3.6 Client Monitor Data (TS_UD_CS_MONITOR)

The TS_UD_CS_MONITOR packet describes the client-side display monitor layout. This packet is an
Extended Client Data Block and MUST NOT be sent to a server which does not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001)
as described in section 2.2.1.2.1.

The maximum width of the virtual desktop resulting from the union of the monitors contained in the
monitorDefArray field MUST NOT exceed 32,766 pixels. Similarly, the maximum height of the virtual

53/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

desktop resulting from the union of the monitors contained in the monitorDefArray field MUST NOT
exceed 32,766 pixels. The minimum permitted size of the virtual desktop is 200 x 200 pixels.

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

header

flags

monitorCount

monitorDefArray (variable)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MONITOR (0xC005).

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of display monitor definitions in
the monitorDefArray field (the maximum allowed is 16).

monitorDefArray (variable): A variable-length array containing a series of TS_MONITOR_DEF
structures (section 2.2.1.3.6.1) which describe the display monitor layout of the client. The
number of TS_MONITOR_DEF structures is given by the monitorCount field.

2.2.1.3.6.1 Monitor Definition (TS_MONITOR_DEF)

The TS_MONITOR_DEF packet describes the configuration of a client-side display monitor. The x and y
coordinates used to describe the monitor position MUST be relative to the upper-left corner of the
monitor designated as the "primary display monitor" (the upper-left corner of the primary monitor is
always (0, 0)).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

left

top

right

bottom

flags

left (4 bytes): A 32-bit, signed integer. Specifies the x-coordinate of the upper-left corner of the
display monitor.

top (4 bytes): A 32-bit, signed integer. Specifies the y-coordinate of the upper-left corner of the
display monitor.

54/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

right (4 bytes): A 32-bit, signed integer. Specifies the inclusive x-coordinate of the lower-right
corner of the display monitor.

bottom (4 bytes): A 32-bit, signed integer. Specifies the inclusive y-coordinate of the lower-right
corner of the display monitor.

flags (4 bytes): A 32-bit, unsigned integer. Monitor configuration flags.

Flag Meaning

TS_MONITOR_PRIMARY | The top, left, right, and bottom fields describe the position of the primary
0x00000001 monitor.

2.2.1.3.7 Client Message Channel Data (TS_UD_CS_MCS_MSGCHANNEL)

The TS_UD_CS_MCS_MSGCHANNEL packet indicates support for the message channel which is used
to transport the Initiate Multitransport Request PDU (section 2.2.15.1). This packet is an Extended
Client Data Block and MUST NOT be sent to a server which does not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MCS_MSGCHANNEL (0xC006).

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

2.2.1.3.8 Client Multitransport Channel Data (TS_UD_CS_MULTITRANSPORT)

The TS_UD_CS_MULTITRANSPORT packet is used to indicate support for the RDP Multitransport Layer
([MS-RDPEMT] section 1.3) and to specify multitransport characteristics. This packet is an Extended
Client Data Block and MUST NOT be sent to a server which does not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MULTITRANSPORT (0xCOO0A).

flags (4 bytes): A 32-bit, unsigned integer that specifies protocols supported by the client-side
multitransport layer.

55/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

Value Meaning

TRANSPORTTYPE_UDPFECR RDP-UDP Forward Error Correction (FEC) reliable transport ([MS-
0x01 RDPEUDP] sections 1 to 3).

TRANSPORTTYPE_UDPFECL RDP-UDP FEC lossy transport ([MS-RDPEUDP] sections 1 to 3).
0x04

TRANSPORTTYPE_UDP_PREFERRED | Indicates that tunneling of static virtual channel traffic over UDP is
0x100 supported.

SOFTSYNC_TCP_TO_UDP Indicates that switching dynamic virtual channels from the TCP to
0x200 UDP transport is supported.

2.2.1.3.9 Client Monitor Extended Data (TS_UD_CS_MONITOR_EX)

The TS_UD_CS_MONITOR_EX packet describes extended attributes of the client-side display monitor
layout defined by the Client Monitor Data block (section 2.2.1.3.6). This packet is an Extended Client
Data Block and MUST NOT be sent to a server which does not advertise support for Extended Client
Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as described in
section 2.2.1.2.1.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

header

flags

monitorAttributeSize

monitorCount

monitorAttributesArray (variable)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MONITOR_EX (0xC008).

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

monitorAttributeSize (4 bytes): A 32-bit, unsigned integer. The size, in bytes, of a single element
in the monitorAttributesArray field. This field MUST be set to 20 bytes, which is the size of the
Monitor Attributes structure (section 2.2.1.3.9.1).

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of elements in the
monitorAttributesArray field. This value MUST be the same as the monitorCount field specified
in the Client Monitor Data block.

monitorAttributesArray (variable): A variable-length array containing a series of Monitor Attribute
structures (section 2.2.1.3.9.1) which describe extended attributes of each display monitor

56 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

specified in the Client Monitor Data block. The humber of Monitor Attribute structures is specified
by the monitorCount field.

2.2.1.3.9.1 Monitor Attributes (TS_MONITOR_ATTRIBUTES)

The TS_MONITOR_ATTRIBUTES packet describes extended attributes of a client-side display monitor.

=
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

physicalWidth

physicalHeight

orientation

desktopScaleFactor

deviceScaleFactor

physicalWidth (4 bytes): A 32-bit, unsigned integer. The physical width of the monitor, in
millimeters (mm). This value MUST be ignored if it is less than 10 mm or greater than 10,000 mm
or physicalHeight is less than 10 mm or greater than 10,000 mm.

physicalHeight (4 bytes): A 32-bit, unsigned integer. The physical height of the monitor, in
millimeters. This value MUST be ignored if it is less than 10 mm or greater than 10,000 mm or
physicalWidth is less than 10 mm or greater than 10,000 mm.

orientation (4 bytes): A 32-bit, unsigned integer. The orientation of the monitor, in degrees. This
value MUST be ignored if it is invalid.

Value Meaning

ORIENTATION_LANDSCAPE The desktop is not rotated.

0

ORIENTATION_PORTRAIT The desktop is rotated clockwise by 90 degrees.
90

ORIENTATION_LANDSCAPE_FLIPPED | The desktop is rotated clockwise by 180 degrees.
180

ORIENTATION_PORTRAIT_FLIPPED The desktop is rotated clockwise by 270 degrees.
270

desktopScaleFactor (4 bytes): A 32-bit, unsigned integer. The desktop scale factor of the monitor.
This value MUST be ignored if it is less than 100% or greater than 500% or deviceScaleFactor is
not 100%, 140% or 180%.

deviceScaleFactor (4 bytes): A 32-bit, unsigned integer. The device scale factor of the monitor.
This value MUST be ignored if it is not set to 100%, 140% or 180% or desktopScaleFactor is
less than 100% or greater than 500%.

57/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response

The MCS Connect Response PDU is an RDP Connection Sequence PDU sent from server to client during
the Basic Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Connect Initial
PDU (section 2.2.1.3). The MCS Connect Response PDU encapsulates a GCC Conference Create
Response, which encapsulates concatenated blocks of settings data. A basic high-level overview of the
nested structure for the Server MCS Connect Response PDU is illustrated in section 1.3.1.1, in the
figure specifying MCS Connect Response PDU. Note that the order of the settings data blocks is
allowed to vary from that shown in the previously mentioned figure and the message syntax layout
that follows. This is possible because each data block is identified by a User Data Header structure
(section 2.2.1.4.1).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|(6[|7(8]9|0]|1

tpktHeader

x224Data mcsCrsp (variable)

gccCCrsp (variable)

serverCoreData (variable)

serverNetworkData (variable)

serverSecurityData (variable)

serverMessageChannelData (optional)

serverMultitransportChannelData (optional)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCrsp (variable): Variable-length BER-encoded MCS Connect Response structure (using definite-
length encoding) as described in [T125] section 11.2 (the ASN.1 structure definition is detailed in

58/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

[T125] section 7, part 2). The userData field of the MCS Connect Response encapsulates the GCC
Conference Create Response data (contained in the gccCCrsp and subsequent fields).

gccCCrsp (variable): Variable-length PER-encoded GCC Connect Data structure which encapsulates
a Connect GCC PDU that contains a GCC Conference Create Response structure as described in
T1247 (the ASN.1 structure definitions are specified in [T124] section 8.7) appended as user data
to the MCS Connect Response (using the format specified in [T124] sections 9.5 and 9.6). The
userData field of the GCC Conference Create Response contains one user data set consisting of
concatenated Server Data Blocks.

serverCoreData (variable): Variable-length Server Core Data structure (section 2.2.1.4.2).

serverNetworkData (variable): Variable-length Server Network Data structure (section 2.2.1.4.4).

serverSecurityData (variable): Variable-length Server Security Data structure (section 2.2.1.4.3).

serverMessageChannelData (6 bytes): Optional Server Message Channel Data structure (section
2.2.1.4.5). This field MUST NOT be included if the client did not populate the optional
clientMessageChannelData field in the MCS Connect Initial PDU (section 2.2.1.3).

serverMultitransportChannelData (8 bytes): Optional Server Multitransport Channel Data
structure (section 2.2.1.4.6). This field MUST NOT be included if the client did not populate the

optional clientMultitransportChannelData field in the MCS Connect Initial PDU (section
2.2.1.3).

2.2.1.4.1 User Data Header (TS_UD_HEADER)

See section 2.2.1.3.1 for a description of the User Data Header.

2.2.1.4.2 Server Core Data (TS_UD_SC_CORE)

The TS_UD_SC_CORE data block contains core server connection-related information.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[|7|8|9|0/(1

header

version

clientRequestedProtocols (optional)

earlyCapabilityFlags (optional)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_CORE (0x0C01).

version (4 bytes): A 32-bit, unsigned integer. The server version number for the RDP. The major
version number is stored in the high two bytes, while the minor version number is stored in the
low two bytes.

Value Meaning

0x00080001 | RDP 4.0 servers

0x00080004 | RDP 5.0, 5.1, 5.2, 6.0,6.1, 7.0, 7.1, 8.0, and 8.1 servers

0x00080005 | RDP 10.0 servers

59/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90542

Value Meaning

0x00080006 | RDP 10.1 servers

0x00080007 | RDP 10.2 servers

If the server advertises a version number greater than or equal to 0x00080004, it MUST support a
maximum length of 512 bytes for the UserName field in the Info Packet (section 2.2.1.11.1.1).

clientRequestedProtocols (4 bytes): A 32-bit, unsigned integer that contains the flags sent by the
client in the requestedProtocols field of the RDP Negotiation Request (section 2.2.1.1.1). In the
event that an RDP Negotiation Request was not received from the client, this field MUST be
initialized to PROTOCOL_RDP (0). If this field is not present, all of the subsequent fields MUST NOT

be present.

earlyCapabilityFlags (4 bytes): A 32-bit, unsigned integer that specifies capabilities early in the

connection sequence.

Value

Meaning

RNS_UD_SC_EDGE_ACTIONS_SUPPORTED_V1
0x00000001

Indicates that the following key combinations are reserved
by the server operating system:

= WIN + Z

. WIN + CTRL + TAB

= WIN + C

= WIN + .

. WIN + SHIFT + .

In addition, the monitor boundaries of the remote session

are employed by the server operating system to trigger
user interface elements via touch or mouse gestures.

RNS_UD_SC_DYNAMIC_DST_SUPPORTED
0x00000002

Indicates that the server supports Dynamic DST. Dynamic
DST information is provided by the client in the
cbDynamicDSTTimeZoneKeyName,
dynamicDSTTimeZoneKeyName, and
dynamicDaylightTimeDisabled fields of the Extended
Info Packet (section 2.2.1.11.1.1.1).

RNS_UD_SC_EDGE_ACTIONS_SUPPORTED_V2
0x00000004

Indicates that the following key combinations are reserved
by the server operating system:

= WIN+Z

= WIN + TAB

= WIN+A

In addition, the monitor boundaries of the remote session

are employed by the server operating system to trigger
user interface elements via touch.

If this field is present, all of the preceding fields MUST also be present.

2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1)

[MS-RDPBCGR] - v20160714

60/ 417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The TS_UD_SC_SEC1 data block returns negotiated security-related information to the client. See
section 5.3.2 for a detailed discussion of how this information is used.

2/13|4|5|6|7|8|9|0(1(2(3[(4|5|/6|7|8|9|0]|1

header

encryptionMethod

encryptionLevel

S

erverRandomLen (optional)

serverCertLen (optional)

serverRandom (variable)

serverCertificate (variable)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_SECURITY (0x0C02).

encryptionMethod (4 bytes): A 32-bit, unsigned integer. The selected cryptographic method to use
for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST be set to

ENCRYPTION_METHOD_NONE (0).

Value

Meaning

ENCRYPTION_METHOD_NONE
0x00000000

No encryption or Message Authentication Codes (MACs) will be used.

ENCRYPTION_METHOD_40BIT
0x00000001

40-bit session keys will be used to encrypt data (with RC4) and generate
MACs.

ENCRYPTION_METHOD_128BIT
0x00000002

128-bit session keys will be used to encrypt data (with RC4) and generate
MACs.

ENCRYPTION_METHOD_56BIT
0x00000008

56-bit session keys will be used to encrypt data (with RC4) and generate
MACs.

ENCRYPTION_METHOD_FIPS
0x00000010

All encryption and Message Authentication Code generation routines will be
FIPS 140-1 compliant.

encryptionLevel (4 bytes): A 32-

bit, unsigned integer that describes the encryption behavior to use

for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST be set to

ENCRYPTION_LEVEL_NONE (0).

Name

Value

ENCRYPTION_LEVEL_NONE

0x00000000

[MS-RDPBCGR] - v20160714

61/417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Name Value

ENCRYPTION_LEVEL_LOW 0x00000001

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE | 0x00000002

ENCRYPTION_LEVEL_HIGH 0x00000003

ENCRYPTION_LEVEL_FIPS 0x00000004

See section 5.3.1 for a description of each of the low, client-compatible, high, and FIPS encryption
levels.

serverRandomLen (4 bytes): An optional 32-bit, unsigned integer that specifies the size in bytes of
the serverRandom field. If the encryptionMethod and encryptionLevel fields are both set to
zero, then this field MUST NOT be present and the length of the serverRandom field MUST be
zero. If either the encryptionMethod or encryptionLevel field is non-zero, this field MUST be
set to 0x00000020.

serverCertLen (4 bytes): An optional 32-bit, unsigned integer that specifies the size in bytes of the
serverCertificate field. If the encryptionMethod and encryptionLevel fields are both set to
zero, then this field MUST NOT be present and the length of the serverCertificate field MUST be
zero.

serverRandom (variable): The variable-length server random value used to derive session keys
(sections 5.3.4 and 5.3.5). The length in bytes is given by the serverRandomLen field. If the
encryptionMethod and encryptionLevel fields are both set to zero, then this field MUST NOT be
present.

serverCertificate (variable): The variable-length certificate containing the server's public key

information. The length in bytes is given by the serverCertLen field. If the encryptionMethod
and encryptionLevel fields are both set to zero, then this field MUST NOT be present.

2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE)

The SERVER_CERTIFICATE structure describes the generic server certificate structure to which all
server certificates present in the Server Security Data (section 2.2.1.4.3) conform.

-
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

dwVersion

certData (variable)

dwVersion (4 bytes): A 32-bit, unsigned integer. The format of this field is described by the
following bitmask diagram.

—
N
w

0(1/2|3(4|(5|6(7(8|9(0(1|2|3(4|5|6|7|8|9(0(1]|2|3|4|5|6[7|8|9|0(1

certChainVersion t

certChainVersion (31 bits): A 31-bit, unsigned integer that contains the certificate version.

62/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Value (31 bits) Meaning

CERT_CHAIN_VERSION_1 | The certificate contained in the certData field is a Server Proprietary

0x00000001 Certificate (section 2.2.1.4.3.1.1).

0x00000002 (section 5.3.3.2).

CERT_CHAIN_VERSION_2 | The certificate contained in the certData field is an X.509 Certificate

t (1 bit): A 1-bit field that indicates whether the certificate contained in the certData field has

been permanently or temporarily issued to the server.

Value (1 bit) | Meaning

0 The certificate has been permanently issued to the server.

1 The certificate has been temporarily issued to the server.

certData (variable): Certificate data. The format of this certificate data is determined by the

dwVersion field.

2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)

The PROPRIETARYSERVERCERTIFICATE structure describes a signed certificate containing the server's
public key and conforming to the structure of a Server Certificate (section 2.2.1.4.3.1). For a detailed

description of Proprietary Certificates, see section 5.3.3.1.

-
N

0(1(2|3|4|5|/6|7|8|9(0(1({2|3|4|5|6|7|8|9]|0

dwVersion

dwSigAlgld

dwKeyAlgld

wPublicKeyBlobType

wPublicKeyBlobLen

PublicKeyBlob (variable)

wSignatureBlobType

wSignatureBlobLen

SignatureBlob (variable)

dwVersion (4 bytes): A 32-bit, unsigned integer. The certificate version number. This field MUST be

set to CERT_CHAIN_VERSION_1 (0x00000001).

dwsSigAlglId (4 bytes): A 32-bit, unsigned integer. The signature algorithm identifier. This field MUST

be set to SIGNATURE_ALG_RSA (0x00000001).

dwKeyAlgld (4 bytes): A 32-bit, unsigned integer. The key algorithm identifier. This field MUST be

set to KEY_EXCHANGE_ALG_RSA (0x00000001).

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

63/417

wPublicKeyBlobType (2 bytes): A 16-bit, unsigned integer. The type of data in the PublicKeyBlob
field. This field MUST be set to BB_RSA_KEY_BLOB (0x0006).

wPublicKeyBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the PublicKeyBlob
field.

PublicKeyBlob (variable): Variable-length server public key bytes, formatted using the Rivest-
Shamir-Adleman (RSA) Public Key structure (section 2.2.1.4.3.1.1.1). The length in bytes is given
by the wPublicKeyBlobLen field.

wSignatureBlobType (2 bytes): A 16-bit, unsigned integer. The type of data in the SignatureBlob
field. This field is set to BB_RSA_SIGNATURE_BLOB (0x0008).

wSignatureBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the SignatureBlob
field.

SignatureBlob (variable): Variable-length signature of the certificate created with the Terminal
Services Signing Key (sections 5.3.3.1.1 and 5.3.3.1.2). The length in bytes is given by the
wSignatureBlobLen field.

2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)

The structure used to describe a public key in a Proprietary Certificate (section 2.2.1.4.3.1.1).

0({1(2|3|4|5|6|7|8|9|(0(1|(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

magic

keylen

bitlen

datalen

pubExp

modulus (variable)

magic (4 bytes): A 32-bit, unsigned integer. The sentinel value. This field MUST be set to
0x31415352.

keylen (4 bytes): A 32-bit, unsigned integer. The size in bytes of the modulus field. This value is
directly related to the bitlen field and MUST be ((bitlen / 8) + 8) bytes.

bitlen (4 bytes): A 32-bit, unsigned integer. The number of bits in the public key modulus.

datalen (4 bytes): A 32-bit, unsigned integer. The maximum number of bytes that can be encoded
using the public key. This value is directly related to the bitlen field and MUST be ((bitlen / 8) - 1)
bytes.

pubExp (4 bytes): A 32-bit, unsigned integer. The public exponent of the public key.

modulus (variable): A variable-length array of bytes containing the public key modulus. The length
in bytes of this field is given by the keylen field. The modulus field contains all (bitlen / 8) bytes

64 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

of the public key modulus and 8 bytes of zero padding (which MUST follow after the modulus

bytes).

2.2.1.4.4 Server Network Data (TS_UD_SC_NET)

The TS_UD_SC_NET data block is a reply to the static virtual channel list presented in the Client

Network Data structure (section 2.2.1.3.4).

—
N

w

header

MCSChannelld

channelCount

channelldArray (variable)

Pad (optional)

header (4 bytes): A GCC user data block header, as specified in section User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_NET (0x0C03).

MCSChannelld (2 bytes): A 16-bit, unsigned integer. The MCS channel identifier of the I/O channel.

channelCount (2 bytes): A 16-bit, unsigned integer. The number of 16-bit, unsigned integer MCS

channel IDs in the channelldArray field.

channelldArray (variable): A variable-length array of MCS channel IDs (each channel ID is a 16-
bit, unsigned integer) which have been allocated (the number is given by the channelCount

field). Each MCS channel ID corresponds in position to the channels requested in the Client
Network Data structure. A channel value of 0 indicates that the channel was not allocated.

Pad (2 bytes): A 16-bit, unsigned integer. Optional padding. Values in this field MUST be ignored.
The size in bytes of the Server Network Data structure MUST be a multiple of 4. If the
channelCount field contains an odd value, then the size of the channelldArray (and by
implication the entire Server Network Data structure) will not be a multiple of 4. In this scenario,
the Pad field MUST be present and it is used to add an additional 2 bytes to the size of the Server
Network Data structure. If the channelCount field contains an even value, then the Pad field is

not required and MUST NOT be present.

2.2.1.4.5 Server Message Channel Data (TS_UD_SC_MCS_MSGCHANNEL)

The TS_UD_SC_MCS_MSGCHANNEL packet is used to specify the ID of the MCS channel which

transports the Multitransport Bootstrapping PDUs (sections 2.2.15.1 and 2.2.15.2) and Network

Characteristics Detection PDUs (sections 2.2.14.3 and 2.2.14.4).

-
N

w

header

MCSChannelID

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

65/417

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.4.1). The User Data Header type field MUST be set to SC_MCS_MSGCHANNEL (0x0C04).

MCSChannellID (2 bytes): A 16-bit, unsigned integer that specifies the MCS channel identifier of the
MCS message channel. If this value is zero, then the channel MUST NOT be joined (section
3.2.5.3.8), and the PDUs which are transported on this channel cannot be transmitted.

2.2.1.4.6 Server Multitransport Channel Data (TS_UD_SC_MULTITRANSPORT)

The TS_UD_CS_MULTITRANSPORT packet is used to indicate support for the RDP Multitransport Layer
([MS-RDPEMT] section 1.3) and to specify multitransport characteristics.

=
N
w

0(1|2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_MULTITRANSPORT (0x0C08).

flags (4 bytes): A 32-bit, unsigned integer that specifies protocols supported by the server-side
multitransport layer.

Value Meaning

TRANSPORTTYPE_UDPFECR RDP-UDP Forward Error Correction (FEC) reliable transport ([MS-
0x01 RDPEUDP] sections 1 to 3).

TRANSPORTTYPE_UDPFECL RDP-UDP FEC lossy transport ([MS-RDPEUDP] sections 1 to 3).<13>
0x04

TRANSPORTTYPE_UDP_PREFERRED | Indicates that tunneling of static virtual channel traffic over UDP is
0x100 supported.

SOFTSYNC_TCP_TO_UDP Indicates that switching dynamic virtual channels from the TCP to
0x200 UDP transport is supported.

If the server advertises the SOFTSYNC_TCP_TO_UDP flag, then the
server MUST support processing success responses in the Initiate
Multitransport Response PDU (section 2.2.15.2).

2.2.1.5 Client MCS Erect Domain Request PDU

The MCS Erect Domain Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after receiving the MCS Connect
Response PDU (section 2.2.1.4).

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

66 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

x224Data mcsEDrq

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsEDrq (5 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Erect Domain
Request structure, as specified in [T125] section 11.8 (the ASN.1 structure definitions are given in
[T125] section 7, parts 3 and 10).

2.2.1.6 Client MCS Attach User Request PDU

The MCS Attach User Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence to request a User Channel ID
(see section 1.3.1.1 for an overview of the RDP Connection Sequence phases). It is sent after
transmitting the MCS Erect Domain Request PDU (section 2.2.1.5).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsAUrq

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsAUrq (1 byte): PER-encoded MCS Domain PDU that encapsulates an MCS Attach User Request
structure, as specified in [T125] section 11.17 (the ASN.1 structure definitions are given in [T125]
section 7, parts 5 and 10).

2.2.1.7 Server MCS Attach User Confirm PDU

The MCS Attach User Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Attach User
Request PDU (section 2.2.1.6).

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsAUcf

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in section [X224] 13.7.

67/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

mcsAUcf (4 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Attach User Confirm
structure, as specified in [T125] sections 11.18 (the ASN.1 structure definitions are given in
[T125] section 7, parts 5 and 10).

2.2.1.8 Client MCS Channel Join Request PDU

The MCS Channel Join Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after receiving the MCS Attach User
Confirm PDU (section 2.2.1.7). The client uses the MCS Channel Join Request PDU to join the user
channel obtained from the Attach User Confirm PDU, the I/O channel (section 2.2.1.4.4), the message
channel (section 2.2.1.4.5), and all of the static virtual channels obtained from the Server Network
Data structure (section 2.2.1.4.4).

=
N
w

0(1|2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsCJrg

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCJIrq (5 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Channel Join
Request structure as specified in [T125] section 11.21 (the ASN.1 structure definitions are given in
[T125] section 7, parts 6 and 10).

2.2.1.9 Server MCS Channel Join Confirm PDU

The MCS Channel Join Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Channel Join
Request PDU (section 2.2.1.8).

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

tpktHeader

x224Data mcsCJcf

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

68 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

mcsClcf (8 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Channel Join Confirm
PDU structure, as specified in [T125] section 11.22 (the ASN.1 structure definitions are given in
[T125] section 7, parts 6 and 10).

2.2.1.10 Client Security Exchange PDU

The Security Exchange PDU is an optional RDP Connection Sequence PDU that is sent from client to
server during the RDP Security Commencement phase of the RDP Connection Sequence (see section
1.3.1.1 for an overview of the RDP Connection Sequence phases). It is sent after all of the requested
MCS Channel Join Confirm PDUs (section 2.2.1.9) have been received.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityExchangePduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Exchange
PDU Data (section 2.2.1.10.1) structure.

securityExchangePduData (variable): The actual contents of the Security Exchange PDU, as
specified in section 2.2.1.10.1.

2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET)

The TS_SECURITY_PACKET structure contains the encrypted client random value which is used
together with the server random (section 2.2.1.4.3) to derive session keys to secure the connection
(sections 5.3.4 and 5.3.5).

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

basicSecurityHeader

length

encryptedClientRandom (variable)

69 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

basicSecurityHeader (4 bytes): A Basic Security Header (section 2.2.8.1.1.2.1). The flags field of
the security header MUST contain the SEC_EXCHANGE_PKT flag (0x0001).

length (4 bytes): A 32-bit, unsigned integer. The size in bytes of the buffer containing the encrypted
client random value, not including the header length.

encryptedClientRandom (variable): The client random value encrypted with the public key of the
server (section 5.3.4).

2.2.1.11 Client Info PDU

The Client Info PDU is an RDP Connection Sequence PDU sent from client to server during the Secure
Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of the
RDP Connection Sequence phases). It is sent after transmitting a Security Exchange

PDU (section 2.2.1.10) or, if the Security Exchange PDU was not sent, it is transmitted after receiving
all requested MCS Channel Join Confirm PDUs (section 2.2.1.9).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDrq (variable)

clientInfoPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Client Info PDU
Data (section 2.2.1.11.1) structure.

clientInfoPduData (variable): The contents of the Client Info PDU, as specified in section
2.2.1.11.1.

2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)

The CLIENT_INFO_PDU structure serves as a wrapper for a Security Header (section 2.2.8.1.1.2) and
the actual client information contained in a TS _INFO PACKET structure (section 2.2.1.11.1.1).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

securityHeader (variable)

70/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

infoPacket (variable)

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

The flags field of the security header MUST contain the SEC_INFO_PKT flag (section
2.2.8.1.1.2.1).

infoPacket (variable): Client information, as specified in TS_INFO_PACKET.
2.2.1.11.1.1 Info Packet (TS_INFO_PACKET)
The TS_INFO_PACKET structure contains extra information not passed to the server during the Basic

Settings Exchange phase (section 1.3.1.1) of the RDP Connection Sequence, primarily to ensure that it
gets encrypted (as auto-logon password data and other sensitive information is passed here).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

CodePage
flags
cbDomain cbUserName
cbPassword cbAlternateShell
cbWorkingDir Domain (variable)

UserName (variable)

Password (variable)

AlternateShell (variable)

71/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

WorkingDir (variable)

extralnfo (variable)

CodePage (4 bytes): A 32-bit, unsigned integer. If the flags field does not contain the

INFO_UNICODE flag (0x00000010), then this field MUST contain the ANSI code page descriptor
being used by the client (for a list of code pages, see [MSDN-CP]) to encode the character fields in
the Info Packet and Extended Info Packet (section 2.2.1.11.1.1.1). However, if the flags field
contains the INFO_UNICODE flag, then the CodePage field MUST contain the active language
identifier in the low-word<14> (for a list of language identifiers, see [MSDN-MUI]); the contents
of the high-word MUST be ignored by the server. The active language identifier SHOULD be
ignored by the server if the keyboardLayout field of the Client Core Data structure (section

2.2.1.3.2) is set to zero.<15>

flags (4 bytes): A 32-bit unsigned integer. Option flags.

Flag Meaning
INFO_MOUSE Indicates that the client machine has a mouse attached.
0x00000001

0x00000002

INFO_DISABLECTRLALTDEL

Indicates that the CTRL+ALT+DEL (or the equivalent) secure access
keyboard sequence is not required at the logon prompt.

INFO_AUTOLOGON
0x00000008

The client requests auto logon using the included user name,
password and domain.

INFO_UNICODE
0x00000010

Indicates that the character set for strings in the Info Packet and
Extended Info Packet (section 2.2.1.11.1.1.1) is Unicode. If this flag
is absent, then the ANSI character set that is specified by the ANSI
code page descriptor in the CodePage field is used for strings in the
Info Packet and Extended Info Packet.

INFO_MAXIMIZESHELL
0x00000020

Indicates that the alternate shell (specified in the AlternateShell
field of the Info Packet structure) MUST be started in a maximized
state.

INFO_LOGONNOTIFY
0x00000040

Indicates that the client wants to be informed of the user name and
domain used to log on to the server, as well as the ID of the session
to which the user connected. The Save Session Info

PDU (section 2.2.10.1) is sent from the server to notify the client of
this information using a Logon Info Version 1 (section 2.2.10.1.1.1)
or Logon Info Version 2 (section 2.2.10.1.1.2) structure.

INFO_COMPRESSION
0x00000080

Indicates that the CompressionTypeMask is valid and contains the
highest compression package type supported by the client.

CompressionTypeMask
0x00001E00

Indicates the highest compression package type supported. See the
discussion which follows this table for more information.

INFO_ENABLEWINDOWSKEY

Indicates that the client uses the Windows key on Windows-
compatible keyboards.

72/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=89981
http://go.microsoft.com/fwlink/?LinkId=90048

Flag

Meaning

0x00000100

INFO_REMOTECONSOLEAUDIO
0x00002000

Requests that audio played in a session hosted on a remote server be
played on the server.

INFO_FORCE_ENCRYPTED_CS_PDU

Indicates that all client-to-server traffic is encrypted when encryption
is in force. Setting this flag prevents the server from processing

0x00004000 ; ;) - .
unencrypted packets in man-in-the-middle attack scenarios. This flag
is not understood by RDP 4.0, 5.0, and 5.1 servers.

INFO_RAIL Indicates that the remote connection being established is for the

0x00008000 purpose of launching remote programs using the protocol defined in

MS-RDPERP] sections 2 and 3. This flag is not understood by RDP
4.0, 5.0, 5.1, and 5.2 servers.

INFO_LOGONERRORS
0x00010000

Indicates a request for logon error notifications using the Save
Session Info PDU. This flag is not understood by RDP 4.0, 5.0, 5.1,
and 5.2 servers.

INFO_MOUSE_HAS_WHEEL
0x00020000

Indicates that the mouse which is connected to the client machine
has a scroll wheel. This flag is not understood by RDP 4.0, 5.0, 5.1,
and 5.2 servers.

INFO_PASSWORD_IS_SC_PIN
0x00040000

Indicates that the Password field in the Info Packet contains a smart
card personal identification number (PIN). This flag is not understood
by RDP 4.0, 5.0, 5.1, and 5.2 servers.

INFO_NOAUDIOPLAYBACK
0x00080000

Indicates that audio redirection (using the protocol defined in [MS-
RDPEA] sections 2 and 3) MUST NOT take place. This flag is not
understood by RDP 4.0, 5.0, 5.1, and 5.2 servers. If the
INFO_NOAUDIOPLAYBACK flag is not set, then audio redirection
SHOULD take place if the INFO_REMOTECONSOLEAUDIO
(0x00002000) flag is also not set.

INFO_USING_SAVED_CREDS
0x00100000

Any user credentials sent on the wire during the RDP Connection
Sequence (sections 1.3.1.1 and 1.3.1.2) have been retrieved from a
credential store and were not obtained directly from the user. This
flag is not understood by RDP 4.0, 5.0, 5.1, 5.2, and 6.0 servers.

INFO_AUDIOCAPTURE
0x00200000

Indicates that the redirection of client-side audio input to a session
hosted on a remote server is supported using the protocol defined in
MS-RDPEAI] sections 2 and 3. This flag is not understood by RDP
4.0,5.0,5.1, 5.2, 6.0, and 6.1 servers.

INFO_VIDEO_DISABLE
0x00400000

Indicates that video redirection or playback (using the protocol
defined in [MS-RDPEV] sections 2 and 3) MUST NOT take place. This
flag is not understood by RDP 4.0, 5.0, 5.1, 5.2, 6.0, and 6.1 servers.

INFO_HIDEF_RAIL_SUPPORTED
0x02000000

Indicates that the client supports Enhanced RemoteApp ([MS-
RDPERP] section 1.3.3). The INFO_HIDEF_RAIL_SUPPORTED flag
MUST be ignored if the INFO_RAIL (0x00008000) flag is not specified.
Furthermore, a client that specifies the
INFO_HIDEF_RAIL_SUPPORTED flag MUST send the Remote
Programs Capability Set ([MS-RDPERP] section 2.2.1.1.1) to the
server. The INFO_HIDEF_RAIL_SUPPORTED flag is not understood by
RDP 4.0, 5.0, 5.1, 5.2,6.0, 6.1, 7.0, 7.1, and 8.0 servers.

The CompressionTypeMask is a 4-bit enumerated value containing the highest compression
package support available on the client. The packages codes are:

73/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b

Value Meaning

PACKET_COMPR_TYPE_8K RDP 4.0 bulk compression (section 3.1.8.4.1).
0x0

PACKET_COMPR_TYPE_64K RDP 5.0 bulk compression (section 3.1.8.4.2).
0x1

PACKET_COMPR_TYPE_RDP6 RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).
0x2

PACKET_COMPR_TYPE_RDP61 | RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).
0x3

If a client supports compression package n then it MUST support packages 0...(n - 1).

cbDomain (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
Domain field. This size excludes the length of the mandatory null terminator.

cbUserName (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
UserName field. This size excludes the length of the mandatory null terminator.

cbPassword (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
Password field. This size excludes the length of the mandatory null terminator.

cbAlternateShell (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in
the AlternateShell field. This size excludes the length of the mandatory null terminator.

cbWorkingDir (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
WorkingDir field. This size excludes the length of the mandatory null terminator.

Domain (variable): Variable-length logon domain of the user (the length in bytes is given by the
cbDomain field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is 52 bytes
(including the mandatory null terminator), while all other versions of RDP servers allow a
maximum length of 512 bytes (including the mandatory null terminator). The field MUST contain
at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

UserName (variable): Variable-length logon user name of the user (the length in bytes is given by
the cbUserName field). The maximum length allowed by RDP 4.0 servers is 44 bytes (including

the mandatory null terminator), while all other versions of RDP servers allow a maximum length of

512 bytes (including the mandatory null terminator). The field MUST contain at least a null
terminator character in Windows-1252 or Unicode format (depending on the presence of the
INFO_UNICODE flag). The contents of the UserName field SHOULD be ignored if the
INFO_PASSWORD_IS_SC_PIN (0x00040000) flag is specified in the flags field.

Password (variable): Variable-length logon password of the user (the length in bytes is given by the

cbPassword field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is 32 bytes
(including the mandatory null terminator), while all other versions of RDP servers allow a
maximum length of 512 bytes (including the mandatory null terminator). The field MUST contain
at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

AlternateShell (variable): Variable-length path to the executable file of an alternate shell, e.g.
"c:\dir\prog.exe" (the length in bytes is given by the cbAlternateShell field). The maximum
allowed length is 512 bytes (including the mandatory null terminator). This field MUST only be

initialized if the client is requesting a shell other than the default. The field MUST contain at least a
null terminator character in Windows-1252 or Unicode format (depending on the presence of the
INFO_UNICODE flag).

74 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

WorkingDir (variable): Variable-length directory that contains the executable file specified in the
AlternateShell field or any related files (the length in bytes is given by the cbWorkingDir field).
The maximum allowed length is 512 bytes (including the mandatory null terminator). This field
MAY be initialized if the client is requesting a shell other than the default. The field MUST contain
at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

extralnfo (variable): Optional and variable-length extended information used in RDP 5.0, 5.1, 5.2,
6.0,6.1,7.0,7.1, 8.0, 8.1, 10.0, and 10.1, and specified in section 2.2.1.11.1.1.1.

2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET)

The TS_EXTENDED_INFO_PACKET structure contains user information specific to RDP 5.0, 5.1, 5.2,
6.0,6.1,7.0,7.1, 8.0, 8.1, 10.0, and 10.1.

1 2
0(1|2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

w

clientAddressFamily cbClientAddress

clientAddress (variable)

cbClientDir clientDir (variable)

clientTimeZone (172 bytes, optional)

clientSessionld (optional)

performanceFlags (optional)

cbAutoReconnectCookie (optional) autoReconnectCookie (28 bytes, optional)

reservedl (optional)

reserved2 (optional) cbDynamicDSTTimeZoneKeyName (optional)

dynamicDSTTimeZoneKeyName (variable)

75/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

dynamicDaylightTimeDisabled (optional)

clientAddressFamily (2 bytes): A 16-bit, unsigned integer. The numeric socket descriptor for the
client address type.

Value Meaning

AF_INET The clientAddress field contains an IPv4 address.
0x00002

AF_INET6 | The clientAddress field contains an IPv6 address.
0x0017

cbClientAddress (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
clientAddress field. This size includes the length of the mandatory null terminator.

clientAddress (variable): Variable-length textual representation of the client IPv4 or IPv6 address.
The maximum allowed length (including the mandatory null terminator) is 64 bytes for RDP 5.0,
5.1, 5.2, and 6.0, and 80 bytes for all other RDP versions.

cbClientDir (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
clientDir field. This size includes the length of the mandatory null terminator.

clientDir (variable): Variable-length directory that contains either (a) the folder path on the client
machine from which the client software is being run, or (b) the full path of the software module
implementing the client (see section 4.1.10 for an example). The maximum allowed length is 512
bytes (including the mandatory null terminator).

clientTimeZone (172 bytes): ATS TIME ZONE INFORMATION structure (section 2.2.1.11.1.1.1.1)
that contains time zone information for a client. This field is not read by RDP 5.0 and 5.1 servers.
If this field is not present, then all of the subsequent fields MUST NOT be present.

clientSessionld (4 bytes): A 32-bit, unsigned integer. This field was added in RDP 5.1 and is
currently ignored by the server. It SHOULD be set to zero. If this field is present, then the
clientTimeZone field MUST also be present. If this field is not present, then all of the subsequent
fields MUST NOT be present.

performanceFlags (4 bytes): A 32-bit, unsigned integer. It specifies a list of server desktop shell
features to enable or disable in the session (with the goal of optimizing bandwidth usage). This
field is not read by RDP 5.0 servers. If this field is present, then the clientSessionld field MUST
also be present. If this field is not present, then all of the subsequent fields MUST NOT be present.

Flag Meaning

PERF_DISABLE_WALLPAPER Disable desktop wallpaper.

0x00000001

PERF_DISABLE_FULLWINDOWDRAG Disable full-window drag (only the window outline is displayed
0x00000002 when the window is moved).
PERF_DISABLE_MENUANIMATIONS Disable menu animations.

0x00000004

PERF_DISABLE_THEMING Disable user interface themes.

0x00000008

PERF_RESERVED1 Reserved for future use.

76 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag Meaning
0x00000010

PERF_DISABLE_CURSOR_SHADOW Disable mouse cursor shadows.
0x00000020

PERF_DISABLE_CURSORSETTINGS Disable cursor blinking.
0x00000040

PERF_ENABLE_FONT_SMOOTHING Enable font smoothing.<16>
0x00000080

PERF_ENABLE_DESKTOP_COMPOSITION | Enable Desktop Composition ([MS-RDPEDC] sections 1, 2 and 3;
0x00000100 and [MS-RDPCR2] sections 1, 2 and 3). The usage of Desktop
Composition in a remote session requires that the color depth be
32 bits per pixel (bpp). (See the description of the
highColorDepth, supportedColorDepths and
earlyCapabilityFlags (specifically the
RNS_UD_CS_WANT_32BPP_SESSION (0x0002) flag) fields in
section 2.2.1.3.2 for background on setting the remote session
color depth to 32 bpp.)<17>

PERF_RESERVED?2 Reserved for future use.
0x80000000

If the connectionType field of the Client Core Data (section 2.2.1.3.2) is set to
CONNECTION_TYPE_AUTODETECT (0x07), and the client indicates support for network
characteristics detection by specifying the RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT
(0x0080) flag in the earlyCapabilityFlags field of the Client Core Data, then the server SHOULD
ignore the contents of the performanceFlags field if the connection type can be determined
(using the PDUs specified in section 2.2.14) and SHOULD instead determine an appropriate set of
performance flags to apply to the remote session based on the detected connection type.

cbAutoReconnectCookie (2 bytes): A 16-bit, unsigned integer. The size in bytes of the cookie
specified by the autoReconnectCookie field. This field MUST be set to zero or 0x001C. The
cbAutoReconnectCookie field is not read by RDP 5.0 and 5.1 servers. If this field is present,
then the performanceFlags field MUST also be present. If this field is not present, then all of the
subsequent fields MUST NOT be present.

autoReconnectCookie (28 bytes): Buffer containing an ARC CS PRIVATE PACKET structure
(section 2.2.4.3). This buffer is a unique cookie that allows a disconnected client to seamlessly
reconnect to a previously established session (see section 5.5 for more details). The
autoReconnectCookie field is not read by RDP 5.0 and 5.1 servers. This field MUST be present if
the cbAutoReconnectCookie field is nonzero.

reservedl (2 bytes): This field is reserved for future use and has no effect on RDP wire traffic. It
SHOULD<18> be set to zero. If this field is present, the cbAutoReconnectCookie and
reserved?2 fields MUST also be present. If this field is not present, then all of the subsequent
fields MUST NOT be present.

reserved2 (2 bytes): This field is reserved for future use and has no effect on RDP wire traffic. It
MUST be set to zero. If this field is present, then the reserved1 field MUST also be present. If this
field is not present, then all of the subsequent fields MUST NOT be present.

cbDynamicDSTTimeZoneKeyName (2 bytes): A 16-bit, unsigned integer. The size, in bytes, of the
dynamicDSTTimeZoneKeyName field. This field is not read by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0,
and 7.1 servers. If this field is present, then the reserved2 and dynamicDaylightTimeDisabled
fields MUST also be present. If this field is not present, then all of the subsequent fields MUST NOT
be present.<19>

77 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPCR2%5d.pdf#Section_04c2c5e73e234a7fb319835f7d049822

dynamicDSTTimeZoneKeyName (variable): A variable-length array of Unicode characters with no
terminating null, containing the descriptive name of the Dynamic DST time zone on the client. This
field is not read by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 servers. The maximum allowed length

is 254 bytes. This field MUST be present if the cbDynamicDSTTimeZoneKeyName field is
nonzero.<20>

dynamicDaylightTimeDisabled (2 bytes): A 16-bit, unsigned integer that specifies whether

Dynamic DST MUST be disabled in the remote session. This field is not read by RDP 5.0, 5.1, 5.2,
6.0, 6.1, 7.0, and 7.1 servers.

Value Meaning

FALSE Dynamic DST MUST be enabled in the remote session if the feature is supported.
0x0000

TRUE Dynamic DST MUST be disabled in the remote session.
0x0001

If this field is present, then the cbDynamicDSTTimeZoneKeyName field MUST also be present.
If this field is not present, then all of the subsequent fields MUST NOT be present.<21>

2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION)

The TS_TIME_ZONE_INFORMATION structure contains client time zone information.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Bias

StandardName (64 bytes)

StandardDate (16 bytes)

StandardBias

DaylightName (64 bytes)

DaylightDate (16 bytes)

78/ 417
[MS-RDPBCGR] - v20160714
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DaylightBias

Bias (4 bytes): A 32-bit, unsigned integer that contains the current bias for local time translation on
the client. The bias is the difference, in minutes, between Coordinated Universal Time (UTC) and
local time. All translations between UTC and local time are based on the following formula:

UTC = local time + bias

StandardName (64 bytes): An array of 32 Unicode characters. The descriptive hame for standard
time on the client.

StandardDate (16 bytes): ATS SYSTEMTIME (section 2.2.1.11.1.1.1.1.1) structure that contains
the date and local time when the transition from daylight saving time to standard time occurs on
the client. If this field contains a valid date and time, then the DaylightDate field MUST also
contain a valid date and time. If the wYear, wMonth, wDayOfWeek, wDay, wHour, wMinute,
wSecond, and wMilliseconds fields are all set to zero, then the client does not support daylight
saving time.

StandardBias (4 bytes): A 32-bit, unsigned integer that contains the bias value to be used during
local time translations that occur during standard time. This value is added to the value of the
Bias field to form the bias used during standard time. This field MUST be ignored if a valid date
and time is not specified in the StandardDate field or the wYear, wMonth, wDayOfWeek,
wDay, wHour, wMinute, wSecond, and wMilliseconds fields of the StandardDate field are all
set to zero.

DaylightName (64 bytes): An array of 32 Unicode characters. The descriptive name for daylight
saving time on the client.

DaylightDate (16 bytes): A TS_SYSTEMTIME (section 2.2.1.11.1.1.1.1.1) structure that contains a
date and local time when the transition from standard time to daylight saving time occurs on the
client. If this field contains a valid date and time, then the StandardDate field MUST also contain
a valid date and time. If the wYear, wMonth, wDayOfWeek, wDay, wHour, wMinute,
wSecond, and wMilliseconds fields are all set to zero, then the client does not support daylight
saving time.

DaylightBias (4 bytes): A 32-bit, unsigned integer that contains the bias value to be used during
local time translations that occur during daylight saving time. This value is added to the value of
the Bias field to form the bias used during daylight saving time. This field MUST be ignored if a
valid date and time is not specified in the DaylightDate field or the wYear, wMonth,
wDayOfWeek, wDay, wHour, wMinute, wSecond, and wMilliseconds fields of the
DaylightDate field are all set to zero.

2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)

The TS_SYSTEMTIME structure contains a date and local time when the transition occurs between
daylight saving time to standard time occurs or standard time to daylight saving time.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

wYear wMonth

wDayOfWeek wDay

79/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

wHour

wMinute

wSecond

wMilliseconds

wYear (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

wMonth (2 bytes): A 16-bit, unsigned integer. The month when transition occurs.

Value | Meaning
1 January

2 February
3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

wDayOfWeek (2 bytes): A 16-bit, unsigned integer. The day of the week when transition occurs.

Value | Meaning

0 Sunday

1 Monday

2 Tuesday

3 Wednesday
4 Thursday

5 Friday

6 Saturday

wDay (2 bytes): A 16-bit, unsigned integer. The occurrence of wDayOfWeek within the month
when the transition takes place.

Value | Meaning
1 First occurrence of wDayOfWeek
2 Second occurrence of wDayOfWeek

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

80/ 417

Value | Meaning

3 Third occurrence of wDayOfWeek
4 Fourth occurrence of wDayOfWeek
5 Last occurrence of wDayOfWeek

wHour (2 bytes): A 16-bit, unsigned integer. The hour when transition occurs (0 to 23).
wMinute (2 bytes): A 16-bit, unsigned integer. The minute when transition occurs (0 to 59).
wSecond (2 bytes): A 16-bit, unsigned integer. The second when transition occurs (0 to 59).

wMilliseconds (2 bytes): A 16-bit, unsigned integer. The millisecond when transition occurs (0 to
999).

2.2.1.12 Server License Error PDU - Valid Client

The License Error (Valid Client) PDU is an RDP Connection Sequence PDU sent from server to client
during the Licensing phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). This licensing PDU indicates that the server will not issue the
client a license to store and that the Licensing Phase has ended successfully. This is one possible
licensing PDU that can be sent during the Licensing Phase (see [MS-RDPELE] section 2.2.2 for a list of
all permissible licensing PDUSs).

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

validClientLicenseData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Valid Client License Data (section 2.2.1.12.1) structure.

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

81/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security
header does not contain the SEC_ENCRYPT (0x0008) flag (the licensing PDU is not encrypted),
then the field MUST contain a Basic Security Header. This MUST be the case if
SEC_LICENSE_ENCRYPT_SC (0x0200) flag was not set on the Security Exchange

PDU (section 2.2.1.10).

The flags field of the security header MUST contain the SEC_LICENSE_PKT (0x0080) flag (section
2.2.8.1.1.2.1).

validClientLicenseData (variable): The actual contents of the License Error (Valid Client) PDU, as
specified in section 2.2.1.12.1.

2.2.1.12.1 Valid Client License Data (LICENSE_VALID_CLIENT_DATA)

The LICENSE_VALID_CLIENT_DATA structure contains information which indicates that the server will
not issue the client a license to store and that the Licensing Phase has ended successfully.

—
N
w

0({1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

preamble

validClientMessage (variable)

preamble (4 bytes): Licensing Preamble (section 2.2.1.12.1.1) structure containing header
information. The bMsgType field of the preamble structure MUST be set to ERROR_ALERT (0xFF).

validClientMessage (variable): A Licensing Error Message (section 2.2.1.12.1.3) structure. The
dwStateTransition field MUST be set to ST_NO_TRANSITION (0x00000002). The bbErrorInfo
field MUST contain an empty binary large object (BLOB) of type BB_ERROR_BLOB (0x0004).

2.2.1.12.1.1 Licensing Preamble (LICENSE_PREAMBLE)

The LICENSE_PREAMBLE structure precedes every licensing packet sent on the wire.

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6[|7|8|9|0(1

bMsgType flags wMsgSize

82 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

bMsgType (1 byte): An 8-bit, unsigned integer. A type of the licensing packet. For more details
about the different licensing packets, see [MS-RDPELE] section 2.2.2.

Sent by server:

Value Meaning
LICENSE_REQUEST Indicates a License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x01

PLATFORM_CHALLENGE | Indicates a Platform Challenge PDU ([MS-RDPELE] section 2.2.2.4).

0x02

NEW_LICENSE Indicates a New License PDU ([MS-RDPELE] section 2.2.2.7).
0x03

UPGRADE_LICENSE Indicates an Upgrade License PDU ([MS-RDPELE] section 2.2.2.6).
0x04

Sent by client:

Value

LICENSE_INFO
0x12

Indicates a License Information PDU ([MS-RDPELE] section 2.2.2.3).

NEW_LICENSE_REQUEST
0x13

Indicates a New License Request PDU ([MS-RDPELE] section
2.2.2.2).

PLATFORM_CHALLENGE_RESPONSE
0x15

Indicates a Platform Challenge Response PDU ([MS-RDPELE] section
2.2.2.5).

Sent by either client or server:

Value Meaning

ERROR_ALERT | Indicates a Licensing Error Message PDU (section 2.2.1.12.1.3).

OxFF

flags (1 byte): An 8-bit unsigned integer. License preamble flags.

Value

Meaning

LicenseProtocolVersionMask
OxO0F

The license protocol version. See the discussion which follows this table
for more information.

EXTENDED_ERROR_MSG_SUPPORTED
0x80

Indicates that extended error information using the License Error
Message (section 2.2.1.12.1.3) is supported.

The LicenseProtocolVersionMask is a 4-bit value containing the supported license protocol version.
The following are possible version values.

Value Meaning

PREAMBLE_VERSION_2_0 | RDP 4.0
0x2

[MS-RDPBCGR] - v20160714

83 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

Value Meaning

PREAMBLE_VERSION_3_0 | RDP 5.0, 5.1, 5.2, 6.0,6.1,7.0, 7.1, 8.0, 8.1, 10.0, and 10.1
0x3

wMsgSize (2 bytes): An 16-bit, unsigned integer. The size in bytes of the licensing packet (including
the size of the preamble).

2.2.1.12.1.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)

The LICENSE_BINARY_BLOB structure is used to encapsulate arbitrary length binary licensing data.

=
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

wBlobType wBlobLen

blobData (variable)

wBlobType (2 bytes): A 16-bit, unsigned integer. The data type of the binary information. If
wBIloblLen is set to 0, then the contents of this field SHOULD be ignored.

Value Meaning

BB_DATA_BLOB Used by License Information PDU and Platform Challenge
0x0001 Response PDU ([MS-RDPELE] sections 2.2.2.3 and 2.2.2.5).
BB_RANDOM_BLOB Used by License Information PDU and New License Request PDU
0x0002 ([MS-RDPELE] sections 2.2.2.3 and 2.2.2.2).
BB_CERTIFICATE_BLOB Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x0003

BB_ERROR_BLOB Used by License Error PDU (section 2.2.1.12).

0x0004

BB_ENCRYPTED_DATA_BLOB Used by Platform Challenge Response PDU and Upgrade License
0x0009 PDU ([MS-RDPELE] sections 2.2.2.5 and 2.2.2.6).
BB_KEY_EXCHG_ALG_BLOB Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x000D

BB_SCOPE_BLOB Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x000E

BB_CLIENT_USER_NAME_BLOB Used by New License Request PDU ([MS-RDPELE] section
BB_CLIENT_MACHINE_NAME_BLOB | Used by New License Request PDU ([MS-RDPELE] section

wBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the binary information in the
blobData field. If wBlobLen is set to 0, then the blobData field is not included in the Licensing
Binary BLOB structure and the contents of the wBlobType field SHOULD be ignored.

84 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

blobData (variable): Variable-length binary data. The size of this data in bytes is given by the
wBlobLen field. If wBlobLen is set to 0, then this field is not included in the Licensing Binary

BLOB structure.

2.2.1.12.1.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)

The LICENSE_ERROR_MESSAGE structure is used to indicate that an error occurred during the
licensing protocol. Alternatively, it is also used to notify the peer of important status information.

e

112|3|4|5/6(7|8(9

dwErrorCode

dwStateTransition

bbErrorInfo (variable)

dwErrorCode (4 bytes): A 32-bit, unsigned integer. The error or status code.

Sent by client:

Name

Value

ERR_INVALID_SERVER_CERTIFICATE | 0x00000001

ERR_NO_LICENSE 0x00000002
Sent by server:

Name Value
ERR_INVALID_SCOPE 0x00000004
ERR_NO_LICENSE_SERVER 0x00000006
STATUS_VALID_CLIENT 0x00000007
ERR_INVALID_CLIENT 0x00000008
ERR_INVALID_PRODUCTID 0x0000000B
ERR_INVALID_MESSAGE_LEN | 0x0000000C

Sent by client and se

rver.

Name

Value

ERR_INVALID_MAC

0x00000003

dwStateTransition (4 bytes): A 32-bit, unsigned integer. The licensing state to transition into upon
receipt of this message. For more details about how this field is used, see [MS-RDPELE] section

3.1.5.2.

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

85/417

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

Name Value

ST_TOTAL_ABORT 0x00000001

ST_NO_TRANSITION 0x00000002

ST_RESET_PHASE_TO_START | 0x00000003

ST_RESEND_LAST_MESSAGE | 0x00000004

bbErrorInfo (variable): A LICENSE BINARY BLOB (section 2.2.1.12.1.2) structure which MUST
contain a BLOB of type BB_ERROR_BLOB (0x0004) that includes information relevant to the error
code specified in dwErrorCode.

2.2.1.13 Mandatory Capability Exchange

2.2.1.13.1 Server Demand Active PDU

The Demand Active PDU is an RDP Connection Sequence PDU sent from server to client during the
Capabilities Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent upon successful completion of the Licensing phase of
the RDP Connection Sequence.

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

demandActivePduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Demand Active PDU Data (section 2.2.1.13.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

86 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

demandActivePduData (variable): The contents of the Demand Active PDU, as specified in section
2.2.1.13.1.1.

2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU)

The TS_DEMAND_ACTIVE_PDU structure is a standard T.128 Demand Active PDU ([T128] section
8.4.1).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareControlHeader

shareld

lengthSourceDescriptor

lengthCombinedCapabilities sourceDescriptor (variable)

numberCapabilities pad20ctets

capabilitySets (variable)

sessionld

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be
set to PDUTYPE_DEMANDACTIVEPDU (1).

shareld (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet ([T128] section
8.4.2 for more information regarding share IDs).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit, unsigned integer. The combined size in bytes of
the numberCapabilities, pad20ctets, and capabilitySets fields.

87/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

sourceDescriptor (variable): A variable-length array of bytes containing a source descriptor (see
[T128] section 8.4.1 for more information regarding source descriptors).

numberCapabilities (2 bytes): A 16-bit, unsigned integer. The number of capability sets included in
the Demand Active PDU.

pad20ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

capabilitySets (variable): An array of Capability Set (section 2.2.1.13.1.1.1) structures. The
number of capability sets is specified by the numberCapabilities field.

sessionId (4 bytes): A 32-bit, unsigned integer. The session identifier. This field is ignored by the
client.

2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET)

The TS_CAPS_SET structure is used to describe the type and size of a capability set exchanged
between clients and servers. All capability sets conform to this basic structure (section 2.2.7).

1 2 3
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

capabilitySetType lengthCapability

capabilityData (variable)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type identifier of the capability set.

Value Meaning

CAPSTYPE_GENERAL General Capability Set (section 2.2.7.1.1)

0x0001

CAPSTYPE_BITMAP Bitmap Capability Set (section 2.2.7.1.2)

0x0002

CAPSTYPE_ORDER Order Capability Set (section 2.2.7.1.3)

0x0003

CAPSTYPE_BITMAPCACHE Revision 1 Bitmap Cache Capability Set (section 2.2.7.1.4.1

0x0004

CAPSTYPE_CONTROL Control Capability Set (section 2.2.7.2.2)

0x0005

CAPSTYPE_ACTIVATION Window Activation Capability Set (section 2.2.7.2.3)

0x0007

CAPSTYPE_POINTER Pointer Capability Set (section 2.2.7.1.5)

0x0008

CAPSTYPE_SHARE Share Capability Set (section 2.2.7.2.4)

0x0009

CAPSTYPE_COLORCACHE Color Table Cache Capability Set ([MS-RDPEGDI] section
2.2.1.1)

88/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value

Meaning

0x000A

CAPSTYPE_SOUND
0x000C

Sound Capability Set (section 2.2.7.1.11)

CAPSTYPE_INPUT
0x000D

Input Capability Set (section 2.2.7.1.6)

CAPSTYPE_FONT
0x000E

Font Capability Set (section 2.2.7.2.5)

CAPSTYPE_BRUSH
0x000F

Brush Capability Set (section 2.2.7.1.7)

CAPSTYPE_GLYPHCACHE
0x0010

Glyph Cache Capability Set (section 2.2.7.1.8)

CAPSTYPE_OFFSCREENCACHE
0x0011

Offscreen Bitmap Cache Capability Set (section 2.2.7.1.9)

0x0012

CAPSTYPE_BITMAPCACHE_HOSTSUPPORT

Bitmap Cache Host Support Capability Set (section 2.2.7.2.1)

CAPSTYPE_BITMAPCACHE_REV2
0x0013

Revision 2 Bitmap Cache Capability Set (section 2.2.7.1.4.2)

CAPSTYPE_VIRTUALCHANNEL
0x0014

Virtual Channel Capability Set (section 2.2.7.1.10)

CAPSTYPE_DRAWNINEGRIDCACHE
0x0015

DrawNineGrid Cache Capability Set ([MS-RDPEGDI] section
2.2.1.2)

CAPSTYPE_DRAWGDIPLUS
0x0016

Draw GDI+ Cache Capability Set ([MS-RDPEGDI] section
2.2.1.3)

CAPSTYPE_RAIL
0x0017

Remote Programs Capability Set ([MS-RDPERP] section
2.2.1.1.1)

CAPSTYPE_WINDOW
0x0018

Window List Capability Set ([MS-RDPERP] section 2.2.1.1.2)

CAPSETTYPE_COMPDESK
0x0019

Desktop Composition Extension Capability
Set (section 2.2.7.2.8)

0x001A

CAPSETTYPE_MULTIFRAGMENTUPDATE

Multifragment Update Capability Set (section 2.2.7.2.6)

CAPSETTYPE_LARGE_POINTER
0x001B

Large Pointer Capability Set (section 2.2.7.2.7)

CAPSETTYPE_SURFACE_COMMANDS
0x001C

Surface Commands Capability Set (section 2.2.7.2.9)

CAPSETTYPE_BITMAP_CODECS
0x001D

Bitmap Codecs Capability Set (section 2.2.7.2.10)

CAPSSETTYPE_FRAME_ACKNOWLEDGE

Frame Acknowledge Capability Set ([MS-RDPRFX] section

[MS-RDPBCGR] - v20160714

89 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549

Value Meaning

0x001E 2.2.1.3)

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

capabilityData (variable): Capability set data which conforms to the structure of the type given by
the capabilitySetType field.

2.2.1.13.2 Client Confirm Active PDU

The Confirm Active PDU is an RDP Connection Sequence PDU sent from client to server during the
Capabilities Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent as a response to the Demand Active

PDU (section 2.2.1.13.1). Once the Confirm Active PDU has been sent, the client can start sending
input PDUs (section 2.2.8) to the server.

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

confirmActivePduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Confirm Active PDU Data (section 2.2.1.13.2) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

90/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

confirmActivePduData (variable): The contents of the Confirm Active PDU, as specified in section
2.2.1.13.2.1.

2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU)

The TS_CONFIRM_ACTIVE_PDU structure is a standard T.128 Confirm Active PDU ([T128] section
8.4.1).

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

shareControlHeader

shareld

originatorld

lengthSourceDescriptor lengthCombinedCapabilities

sourceDescriptor (variable)

numberCapabilities pad20ctets

capabilitySets (variable)

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be
set to PDUTYPE_CONFIRMACTIVEPDU (3).

shareld (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet (see [T128] section
8.4.2 for more information regarding share IDs).

originatorIld (2 bytes): A 16-bit, unsigned integer. The identifier of the packet originator. This field
MUST be set to the server channel ID (0Ox03EA).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit, unsigned integer. The combined size in bytes of
the numberCapabilities, pad20ctets and capabilitySets fields.

sourceDescriptor (variable): A variable-length array of bytes containing a source descriptor (see
[T128] section 8.4.1 for more information regarding source descriptors).

91/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

numberCapabilities (2 bytes): A 16-bit, unsigned integer. Number of capability sets included in the
Confirm Active PDU.

pad20ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

capabilitySets (variable): An array of Capability Set (section 2.2.1.13.1.1.1) structures. The
number of capability sets is specified by the numberCapabilities field.

2.2.1.14 Client Synchronize PDU

The Client Synchronize PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after transmitting the Confirm Active

PDU (section 2.2.1.13.2).

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

synchronizePduData (22 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Synchronize PDU Data (section 2.2.1.14.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

92 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

synchronizePduData (22 bytes): The contents of the Synchronize PDU, as specified in section
2.2.1.14.1.

2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)

The TS_SYNCHRONIZE_PDU structure is a standard T.128 Synchronize PDU ([T128] section 8.6.1).

=
N
w

0(1|/2|3(4|(5|6[(7|8|9|0(1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

messageType

targetUser

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Data Header MUST be set
to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SYNCHRONIZE (31).

messageType (2 bytes): A 16-bit, unsigned integer. The message type. This field MUST be set to
SYNCMSGTYPE_SYNC (1).

targetUser (2 bytes): A 16-bit, unsigned integer. The MCS channel ID of the target user.

2.2.1.15 Client Control PDU - Cooperate

The Client Control (Cooperate) PDU is an RDP Connection Sequence PDU sent from client to server
during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after transmitting the Client Synchronize
PDU (section 2.2.1.14).

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

93/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

controlPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The actual contents of the Control PDU, as specified in section

2.2.1.15.1. The grantId and controlld fields of the Control PDU Data MUST both be set to zero,
while the action field MUST be set to CTRLACTION_COOPERATE (0x0004).

2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU)

The TS_CONTROL_PDU structure is a standard T.128 Synchronize PDU ([T128] section 8.12).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

action

94 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90544

grantld

controlld

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_CONTROL (20).

action (2 bytes): A 16-bit, unsigned integer. The action code.

Value

Meaning

0x0001

CTRLACTION_REQUEST_CONTROL | Request control

CTRLACTION_GRANTED_CONTROL | Granted control

0x0004

0x0002

CTRLACTION_DETACH Detach
0x0003

CTRLACTION_COOPERATE Cooperate

grantld (2 bytes): A 16-bit, unsigned integer. The grant identifier.

controlld (4 bytes): A 32-bit, unsigned integer. The control identifier.

2.2.1.16 Client Control PDU - Request Control

The Client Control (Request Control) PDU is an RDP Connection Sequence PDU sent from client to
server during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence phases). It is sent after transmitting the Client
Control (Cooperate) PDU (section 2.2.1.15).

-
N

0[{1|2|3|4|5|6|7(8[9(0

tpktHeader

x224Data

mcsSDrq (variable)

securityHeader (variable)

controlPduData (26 bytes)

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

95/417

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU, as specified in section 2.2.1.15.1. The
grantld and controlld fields of the Control PDU Data MUST both be set to zero, while the action
field MUST be set to CTRLACTION_REQUEST_CONTROL (0x0001).

2.2.1.17 Client Persistent Key List PDU

The Persistent Key List PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). A single Persistent Key List PDU or a sequence of Persistent
Key List PDUs MUST be sent after transmitting the Client Control (Request Control)

PDU (section 2.2.1.16) if the client has bitmaps that were stored in a Persistent Bitmap

Cache (section 3.2.1.14), the server advertised support for the Bitmap Host Cache Support Capability
Set (section 2.2.7.2.1), and a Deactivation-Reactivation Sequence is not in progress (see section
1.3.1.3 for an overview of the Deactivation-Reactivation Sequence).

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

96 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

securityHeader (variable)

persistentKeyListPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU), which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Persistent Key List PDU Data (section 2.2.1.17.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

persistentKeyListPduData (variable): The contents of the Persistent Key List PDU, as specified in
section 2.2.1.17.1.

2.2.1.17.1 Persistent Key List PDU Data
(TS_BITMAPCACHE_PERSISTENT_LIST_PDU)

The TS_BITMAPCACHE_PERSISTENT_LIST_PDU structure contains a list of cached bitmap keys saved
from Cache Bitmap (Revision 2) Orders ([MS-RDPEGDI] section 2.2.2.2.1.2.3) that were sent in
previous sessions. By including a key in the Persistent Key List PDU Data the client indicates to the
server that it has a local copy of the bitmap associated with the key, which means that the server
does not need to retransmit the bitmap to the client (for more details about the Persistent Bitmap
Cache, see [MS-RDPEGDI] section 3.1.1.1.1). The bitmap keys can be sent in more than one
Persistent Key List PDU, with each PDU being marked using flags in the bBitMask field. The number
of bitmap keys encapsulated within the Persistent Key List PDU Data SHOULD be limited to 169.

—
N
w

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

97/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

numEntriesCache0

numEntriesCachel numEntriesCache2

numEntriesCache3 numEntriesCache4

totalEntriesCache0 totalEntriesCachel

totalEntriesCache2 totalEntriesCache3
totalEntriesCache4 bBitMask Pad2

Pad3 entries (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST (43).

numEntriesCacheO (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 0
in the current Persistent Key List PDU.

numEntriesCachel (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 1
in the current Persistent Key List PDU.

numEntriesCache2 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 2
in the current Persistent Key List PDU.

numEntriesCache3 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 3
in the current Persistent Key List PDU.

numEntriesCache4 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 4
in the current Persistent Key List PDU.

totalEntriesCacheO (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 0 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntriesO, totalEntries1, totalEntries2,
totalEntries3, and totalEntries4 fields MUST NOT exceed 262,144.

totalEntriesCachel (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 1 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntries0O, totalEntries1, totalEntries2,
totalEntries3, and totalEntries4 fields MUST NOT exceed 262,144,

totalEntriesCache2 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 2 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntries0O, totalEntries1, totalEntries2,
totalEntries3, and totalEntries4 fields MUST NOT exceed 262,144,

totalEntriesCache3 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 3 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain

98/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

unchanged across the sequence. The sum of the totalEntries0O, totalEntries1, totalEntries2,
totalEntries3, and totalEntries4 fields MUST NOT exceed 262,144,

totalEntriesCache4 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 4 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence.

bBitMask (1 byte): An 8-bit, unsigned integer. The sequencing flag.

Flag Meaning

PERSIST_FIRST_PDU | Indicates that the PDU is the first in a sequence of Persistent Key List PDUs.
0x01

PERSIST_LAST_PDU Indicates that the PDU is the last in a sequence of Persistent Key List PDUs.
0x02

If neither PERSIST_FIRST_PDU (0x01) nor PERSIST_LAST_PDU (0x02) are set, then the current
PDU is an intermediate packet in a sequence of Persistent Key List PDUs.

Pad2 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.
Pad3 (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

entries (variable): An array of TS BITMAPCACHE PERSISTENT LIST ENTRY structures which
describe 64-bit bitmap keys. The keys MUST be arranged in order from low cache number to high
cache number. For instance, if a PDU contains one key for Bitmap Cache 0 and two keys for
Bitmap Cache 1, then numEntriesCacheO will be set to 1, numEntriesCachel will be set to 2,
and numEntriesCache2, numEntriesCache3, and numEntriesCache4 will all be set to zero.
The keys will be arranged in the following order: (Bitmap Cache 0, Key 1), (Bitmap Cache 1, Key
1), (Bitmap Cache 1, Key 2).

2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)

The TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY structure contains a 64-bit bitmap key to be sent
back to the server.

-
N
w

0(1|/2|3(4|(5|6|(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Keyl

Key?2

Key1 (4 bytes): Low 32 bits of the 64-bit persistent bitmap cache key.

Key2 (4 bytes): A 32-bit, unsigned integer. High 32 bits of the 64-bit persistent bitmap cache key.

2.2.1.18 Client Font List PDU

The Font List PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after transmitting the Persistent Key List

PDUs (section 2.2.1.17) or, if the Persistent Key List PDUs were not sent, it is sent after transmitting
the Client Control (Request Control) PDU (section 2.2.1.16).

99/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

fontListPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request PDU contains a Security
Header and a Font List PDU Data (section 2.2.1.18.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

fontListPduData (26 bytes): The contents of the Font List PDU, as specified in section 2.2.1.18.1.

2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU)

The TS_FONT_LIST_PDU structure contains the contents of the Font List PDU, which is a Share Data
Header (section 2.2.8.1.1.1.2) and four fields.

100/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

numberFonts

totalNumFonts listFlags

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_FONTLIST (39).

numberFonts (2 bytes): A 16-bit, unsigned integer. The number of fonts. This field SHOULD be set
to zero.

totalNumFonts (2 bytes): A 16-bit, unsigned integer. The total number of fonts. This field SHOULD
be set to zero.

listFlags (2 bytes): A 16-bit, unsigned integer. The sequence flags. This field SHOULD be set to
0x0003, which is the logical OR'd value of FONTLIST_FIRST (0x0001) and FONTLIST_LAST
(0x0002).

entrySize (2 bytes): A 16-bit, unsigned integer. The entry size. This field SHOULD be set to 0x0032
(50 bytes).

2.2.1.19 Server Synchronize PDU

The Server Synchronize PDU is an RDP Connection Sequence PDU sent from server to client during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after receiving the Confirm Active

PDU (section 2.2.1.13.2).

-
N
w

0(1|/2|3(4|(5|6|(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

synchronizePduData (22 bytes)

101 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in section 7, parts 7
and 10 of [T125]). The userData field of the MCS Send Data Indication contains a Security
Header and a Synchronize PDU Data (section 2.2.1.14.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

synchronizePduData (22 bytes): The contents of the Synchronize PDU as described in section
2.2.1.14.1.

2.2.1.20 Server Control PDU - Cooperate

The Server Control (Cooperate) PDU is an RDP Connection Sequence PDU sent from server to client
during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after transmitting the Server
Synchronize PDU (section 2.2.1.19).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

102 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

securityHeader (variable)

controlPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU as described in section 2.2.1.15.1. The
grantId and controlId fields of the Control PDU Data MUST both be set to zero, while the action
field MUST be set to CTRLACTION_COOPERATE (0x0004).

2.2.1.21 Server Control PDU - Granted Control

The Server Control (Granted Control) PDU is an RDP Connection Sequence PDU sent from server to
client during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence phases). It is sent after receiving the Client Control
(Request Control) PDU (section 2.2.1.16).

103 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

controlPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU as described in section 2.2.1.15.1. The
action field MUST be set to CTRLACTION_GRANTED_CONTROL (0x0002). The grantId field MUST
be set to the User Channel ID (sections 2.2.1.6 and 2.2.1.7), while the controlld field MUST be
set to the server channel ID (0x03EA).

104 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

2.2.1.22 Server Font Map PDU

The Font Map PDU is an RDP Connection Sequence PDU sent from server to client during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after receiving the Font List PDU (section 2.2.1.18).
The Font Map PDU is the last PDU in the connection sequence.

-
N
w

0(1|/2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

fontMapPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Font Map PDU Data (section 2.2.1.22.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

105/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

fontMapPduData (26 bytes): The contents of the Font Map PDU, as specified in section 2.2.1.22.1.

2.2.1.22,.1 Font Map PDU Data (TS_FONT_MAP_PDU)

The TS_FONT_MAP_PDU structure contains the contents of the Font Map PDU, which is a Share Data
Header (section 2.2.8.1.1.1.2) and four fields.

-
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3[4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

shareDataHeader (18 bytes)

numberEntries

totalNumEntries mapFlags

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2). The type subfield of the
pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be set to
PDUTYPE_DATAPDU (7). The pduType?2 field of the Share Data Header MUST be set to
PDUTYPE2_FONTMAP (40).

numberEntries (2 bytes): A 16-bit, unsigned integer. The number of fonts. This field SHOULD be
set to zero.

totalNumEntries (2 bytes): A 16-bit, unsigned integer. The total humber of fonts. This field
SHOULD be set to zero.

mapFlags (2 bytes): A 16-bit, unsigned integer. The sequence flags. This field SHOULD be set to
0x0003, which is the logical OR'ed value of FONTMAP_FIRST (0x0001) and FONTMAP_LAST
(0x0002).

entrySize (2 bytes): A 16-bit, unsigned integer. The entry size. This field SHOULD be set to 0x0004
(4 bytes).

2.2.2 Disconnection Sequences

2.2.2.1 Client Shutdown Request PDU

The Shutdown Request PDU is sent by the client as part of the User-Initiated on Client Disconnection
Sequence (see section 1.3.1.4.1 for an overview of the User-Initiated on Client Disconnection
Sequence).

106 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

shutdownRequestPduData (18 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Shutdown Request PDU Data (section 2.2.2.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shutdownRequestPduData (18 bytes): The contents of the Shutdown Request PDU, as specified in
section 2.2.2.1.1.

2.2.2.1.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)

The TS_SHUTDOWN_REQ_PDU structure contains the contents of the Shutdown Request PDU (section
2.2.2.1), which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

107 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SHUTDOWN_REQUEST (36).

2.2.2.2 Server Shutdown Request Denied PDU

The Shutdown Request Denied PDU is sent by the server as part of the User-Initiated on Client
Disconnection Sequence (see section 1.3.1.4.1 for an overview of the User-Initiated on Client
Disconnection Sequence).

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

shutdownRequestDeniedPduData (18 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Shutdown Request Denied PDU Data (section 2.2.2.2.1) structure.

108 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shutdownRequestDeniedPduData (18 bytes): The contents of the Shutdown Request Denied
PDU, as specified in section 2.2.2.2.1.

2.2.2.2.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU)

The TS_SHUTDOWN_DENIED_PDU structure contains the contents of the Shutdown Request Denied
PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

shareDataHeader (18 bytes)

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SHUTDOWN_DENIED (37).

2.2.2.3 MCS Disconnect Provider Ultimatum PDU

The MCS Disconnect Provider Ultimatum PDU is an MCS PDU sent as part of the Disconnection
Sequences, described in section 1.3.1.4.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsDPum

109 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsDPum (8 bytes): PER-encoded MCS Disconnect Provider Ultimatum PDU, as specified in [T125
section 11.15 (the ASN.1 structure definition is given in [T125] section 7, part 4).

2.2.3 Deactivation-Reactivation Sequence

2.2.3.1 Server Deactivate All PDU

The Deactivate All PDU is sent from server to client to indicate that the connection will be dropped or
that a capability re-exchange using a Deactivation-Reactivation Sequence will occur (see section
1.3.1.3 for an overview of the Deactivation-Reactivation Sequence).

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

deactivateAllPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Deactivate All PDU Data (section 2.2.3.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

110/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

deactivateAllPduData (variable): The contents of the Deactivate All PDU, as specified in section
2.2.3.1.1.

2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)

The TS_DEACTIVATE_ALL_PDU structure is a standard T.128 Deactivate All PDU ([T128] section
8.4.1).

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareControlHeader

shareld

lengthSourceDescriptor

sourceDescriptor (variable)

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet.

The type subfield of the pduType field of the Share Control Header MUST be set to
PDUTYPE_DEACTIVATEALLPDU (6).

shareld (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet (see [T128] section
8.4.2 for more information regarding share IDs).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

sourceDescriptor (variable): Variable number of bytes. The source descriptor. This field SHOULD
be set to 0x00.

2.2.4 Auto-Reconnect Sequence

2.2.4.1 Server Auto-Reconnect Status PDU

The Auto-Reconnect Status PDU is sent by the server to the client to indicate that automatic
reconnection using the Client Auto-Reconnection Packet (section 2.2.4.3), sent as part of the extended
information of the Client Info PDU (section 2.2.1.11.1), has failed.

111 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

arcStatusPduData (22 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and an Auto-Reconnect Status PDU Data (section 2.2.4.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

arcStatusPduData (22 bytes): The contents of the Auto-Reconnect Status PDU, as specified in
section 2.2.4.1.1.

2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)

112 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The TS_AUTORECONNECT_STATUS_PDU structure contains the contents of the Auto-Reconnect Status
PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with a status field.

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

shareDataHeader (18 bytes)

arcStatus

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_ARC_STATUS_PDU (50), and the pduSource field MUST be set to zero.

arcStatus (4 bytes): A 32-bit, unsigned integer. This field MUST be set to zero.

2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET)

The ARC_SC_PRIVATE_PACKET structure contains server-supplied information used to seamlessly re-
establish a connection to a server after network interruption. It is sent as part of the Save Session
Info PDU logon information (section 2.2.10.1.1.4).

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

cbLen

Version

LogonId

ArcRandomBits (16 bytes)

cbLen (4 bytes): A 32-bit, unsigned integer. The length in bytes of the Server Auto-Reconnect
Packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit, unsigned integer. The value representing the auto-reconnect version.

Value Meaning

AUTO_RECONNECT_VERSION_1 | Version 1 of auto-reconnect.
0x00000001

113 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

LogonId (4 bytes): A 32-bit, unsigned integer. The session identifier for reconnection.

ArcRandomBits (16 bytes): Byte buffer containing a 16-byte, random number generated as a key
for secure reconnection (section 5.5).

2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)

The ARC_CS_PRIVATE_PACKET structure contains the client response cookie used to seamlessly re-
establish a connection to a server after network interruption. It is sent as part of the extended
information of the Client Info PDU (section 2.2.1.11.1.1.1).

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

cbLen

Version

LogonId

SecurityVerifier (16 bytes)

cbLen (4 bytes): A 32-bit, unsigned integer. The length in bytes of the Client Auto-Reconnect
Packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit, unsigned integer. The value representing the auto-reconnect version.

Value Meaning

AUTO_RECONNECT_VERSION_1 | Version 1 of auto-reconnect.
0x00000001

Logonld (4 bytes): A 32-bit, unsigned integer. The session identifier for reconnection.

SecurityVerifier (16 bytes): Byte buffer containing a 16-byte verifier value derived using
cryptographic methods (as specified in section 5.5) from the ArcRandomBits field of the Server
Auto-Reconnect Packet (section 2.2.4.2).

2.2.5 Server Error Reporting and Status Updates

2.2.5.1 Server Set Error Info PDU

The Set Error Info PDU is sent by the server when there is a connection or disconnection failure. This
PDU is only sent to clients which have indicated that they are capable of handling error reporting using
the RNS_UD_CS_SUPPORT_ERRINFO_PDU flag in the Client Core Data (section 2.2.1.3.2).

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

114 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

x224Data mcsSDin (variable)

securityHeader (variable)

errorInfoPduData (22 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Error Info PDU Data (section 2.2.5.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

errorInfoPduData (22 bytes): The contents of the Set Error Info PDU, as specified in section
2.2.5.1.1.

2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)

The TS_SET_ERROR_INFO_PDU structure contains the contents of the Set Error Info PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) with an error value field.

115/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

1/2(3|4|5(6|7|8[9(0|1|2(|3|4|5(6|7

8(9(0|1(2(3|4|5(6|7|8|9|0]|1

shareDataHeader (18 bytes)

errorInfo

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The

type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SET_ERROR_INFO_PDU (47), and the pduSource field MUST be set to zero.

Protocol-independent codes:

errorInfo (4 bytes): A 32-bit, unsigned integer. Error code.

Value

Meaning

ERRINFO_RPC_INITIATED_DISCONNECT
0x00000001

The disconnection was initiated by an
administrative tool on the server in another session.

ERRINFO_RPC_INITIATED_LOGOFF
0x00000002

The disconnection was due to a forced logoff
initiated by an administrative tool on the server in
another session.

ERRINFO_IDLE_TIMEOUT
0x00000003

The idle session limit timer on the server has
elapsed.

ERRINFO_LOGON_TIMEOUT
0x00000004

The active session limit timer on the server has
elapsed.

ERRINFO_DISCONNECTED_BY_OTHERCONNECTION
0x00000005

Another user connected to the server, forcing the
disconnection of the current connection.

ERRINFO_OUT_OF_MEMORY
0x00000006

The server ran out of available memory resources.

ERRINFO_SERVER_DENIED_CONNECTION
0x00000007

The server denied the connection.

ERRINFO_SERVER_INSUFFICIENT_PRIVILEGES
0x00000009

The user cannot connect to the server due to
insufficient access privileges.

ERRINFO_SERVER_FRESH_CREDENTIALS_REQUIRED
0x0000000A

The server does not accept saved user credentials
and requires that the user enter their credentials for
each connection.

ERRINFO_RPC_INITIATED_DISCONNECT_BYUSER
0x0000000B

The disconnection was initiated by an
administrative tool on the server running in the
user's session.

ERRINFO_LOGOFF_BY_USER

The disconnection was initiated by the user logging

[MS-RDPBCGR] - v20160714
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

116 /417

Value Meaning

0x0000000C off his or her session on the server.

Protocol-independent licensing codes:

Value Meaning
ERRINFO_LICENSE_INTERNAL An internal error has occurred in the Terminal
0x00000100 Services licensing component.
ERRINFO_LICENSE_NO_LICENSE_SERVER A Remote Desktop License Server ([MS-RDPELE
0x00000101 section 1.1) could not be found to provide a
license.
ERRINFO_LICENSE_NO_LICENSE There are no Client Access Licenses ([MS-RDPELE]
0x00000102 section 1.1) available for the target remote
computer.
ERRINFO_LICENSE_BAD_CLIENT_MSG The remote computer received an invalid licensing
0x00000103 message from the client.
ERRINFO_LICENSE_HWID_DOESNT_MATCH_LICENSE | The Client Access License ([MS-RDPELE] section
0x00000104 1.1) stored by the client has been modified.
ERRINFO_LICENSE_BAD_CLIENT_LICENSE The Client Access License ([MS-RDPELE] section
0x00000105 1.1) stored by the client is in an invalid format
ERRINFO_LICENSE_CANT_FINISH_PROTOCOL Network problems have caused the licensing
0x00000106 protocol ([MS-RDPELE] section 1.3.3) to be
terminated.
ERRINFO_LICENSE_CLIENT_ENDED_PROTOCOL The client prematurely ended the licensing protocol
0x00000107 ([MS-RDPELE] section 1.3.3).
ERRINFO_LICENSE_BAD_CLIENT_ENCRYPTION A licensing message ([MS-RDPELE] sections 2.2
0x00000108 and 5.1) was incorrectly encrypted.
ERRINFO_LICENSE_CANT_UPGRADE_LICENSE The Client Access License ([MS-RDPELE] section
0x00000109 1.1) stored by the client could not be upgraded or
renewed.
ERRINFO_LICENSE_NO_REMOTE_CONNECTIONS The remote computer is not licensed to accept
0x0000010A remote connections.

Protocol-independent codes generated by Connection Broker:

Value Meaning
ERRINFO_CB_DESTINATION_NOT_FOUND The target endpoint could not be found.
0x0000400
ERRINFO_CB_LOADING_DESTINATION The target endpoint to which the client is being
0x0000402 redirected is disconnecting from the Connection
Broker.
ERRINFO_CB_REDIRECTING_TO_DESTINATION An error occurred while the connection was
0x0000404 being redirected to the target endpoint.
ERRINFO_CB_SESSION_ONLINE_VM_WAKE An error occurred while the target endpoint (a

117 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

Value

Meaning

0x0000405

virtual machine) was being awakened.

0x0000406

ERRINFO_CB_SESSION_ONLINE_VM_BOOT

An error occurred while the target endpoint (a
virtual machine) was being started.

0x0000407

ERRINFO_CB_SESSION_ONLINE_VM_NO_DNS

The IP address of the target endpoint (a virtual
machine) cannot be determined.

0x0000408

ERRINFO_CB_DESTINATION_POOL_NOT_FREE

There are no available endpoints in the pool
managed by the Connection Broker.

0x0000409

ERRINFO_CB_CONNECTION_CANCELLED

Processing of the connection has been canceled.

0x0000410

ERRINFO_CB_CONNECTION_ERROR_INVALID_SETTINGS | The settings contained in the routingToken

field of the X.224 Connection Request PDU
(section 2.2.1.1) cannot be validated.

0x0000411

ERRINFO_CB_SESSION_ONLINE_VM_BOOT_TIMEOUT

A time-out occurred while the target endpoint
(a virtual machine) was being started.

ERRINFO_CB_SESSION_ONLINE_VM_SESSMON_FAILED A session monitoring error occurred while the

target endpoint (a virtual machine) was being

0x0000412
started.
RDP specific codes:
Value Meaning

ERRINFO_UNKNOWNPDUTYPE2
0x000010C9

Unknown pduType2 field in a received Share Data
Header (section 2.2.8.1.1.1.2).

ERRINFO_UNKNOWNPDUTYPE
0x000010CA

Unknown pduType field in a received Share Control
Header (section 2.2.8.1.1.1.1).

ERRINFO_DATAPDUSEQUENCE
0x000010CB

An out-of-sequence Slow-Path Data PDU (section
2.2.8.1.1.1.1) has been received.

ERRINFO_CONTROLPDUSEQUENCE
0x000010CD

An out-of-sequence Slow-Path Non-Data PDU
(section 2.2.8.1.1.1.1) has been received.

ERRINFO_INVALIDCONTROLPDUACTION
0x000010CE

A Control PDU (sections 2.2.1.15 and 2.2.1.16) has
been received with an invalid action field.

ERRINFO_INVALIDINPUTPDUTYPE
0x000010CF

One of two possible errors:

= A Slow-Path Input Event (section
2.2.8.1.1.3.1.1) has been received with an
invalid messageType field.

= A Fast-Path Input Event (section 2.2.8.1.2.2)
has been received with an invalid eventCode
field.

ERRINFO_INVALIDINPUTPDUMOUSE
0x000010D0

One of two possible errors:

= A Slow-Path Mouse Event (section
2.2.8.1.1.3.1.1.3) or Extended Mouse Event
(section 2.2.8.1.1.3.1.1.4) has been received

[MS-RDPBCGR] - v20160714

118 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value

Meaning

with an invalid pointerFlags field.

= A Fast-Path Mouse Event (section 2.2.8.1.2.2.3)
or Fast-Path Extended Mouse Event (section
2.2.8.1.2.2.4) has been received with an invalid
pointerFlags field.

ERRINFO_INVALIDREFRESHRECTPDU
0x000010D1

An invalid Refresh Rect PDU (section 2.2.11.2) has
been received.

ERRINFO_CREATEUSERDATAFAILED
0x000010D2

The server failed to construct the GCC Conference
Create Response user data (section 2.2.1.4).

ERRINFO_CONNECTFAILED
0x000010D3

Processing during the Channel Connection phase of
the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence
phases) has failed.

ERRINFO_CONFIRMACTIVEWRONGSHAREID
0x000010D4

A Confirm Active PDU (section 2.2.1.13.2) was
received from the client with an invalid shareld
field.

ERRINFO_CONFIRMACTIVEWRONGORIGINATOR
0x000010D5

A Confirm Active PDU (section 2.2.1.13.2) was
received from the client with an invalid
originatorld field.

ERRINFO_PERSISTENTKEYPDUBADLENGTH
0x000010DA

There is not enough data to process a Persistent
Key List PDU (section 2.2.1.17).

ERRINFO_PERSISTENTKEYPDUILLEGALFIRST
0x000010DB

A Persistent Key List PDU (section 2.2.1.17) marked
as PERSIST_PDU_FIRST (0x01) was received after
the reception of a prior Persistent Key List PDU also
marked as PERSIST_PDU_FIRST.

ERRINFO_PERSISTENTKEYPDUTOOMANYTOTALKEYS
0x000010DC

A Persistent Key List PDU (section 2.2.1.17) was
received which specified a total number of bitmap
cache entries larger than 262144.

ERRINFO_PERSISTENTKEYPDUTOOMANYCACHEKEYS
0x000010DD

A Persistent Key List PDU (section 2.2.1.17) was
received which specified an invalid total number of
keys for a bitmap cache (the number of entries that
can be stored within each bitmap cache is specified
in the Revision 1 or 2 Bitmap Cache Capability Set
(section 2.2.7.1.4) that is sent from client to
server).

ERRINFO_INPUTPDUBADLENGTH
0x000010DE

There is not enough data to process Input Event
PDU Data (section 2.2.8.1.1.3.1) or a Fast-Path
Input Event PDU (section 2.2.8.1.2).

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH
0x000010DF

There is not enough data to process the
shareDataHeader, NumInfoBlocks, Pad1l, and
Pad2 fields of the Bitmap Cache Error PDU Data
(IMS-RDPEGDI] section 2.2.2.3.1.1).

ERRINFO_SECURITYDATATOOSHORT
0x000010EO

One of two possible errors:

= The dataSignature field of the Fast-Path Input
Event PDU (section 2.2.8.1.2) does not contain
enough data.

= The fipsInformation and dataSignature

119 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value

Meaning

fields of the Fast-Path Input Event PDU (section
2.2.8.1.2) do not contain enough data.

ERRINFO_VCHANNELDATATOOSHORT
0x000010E1

One of two possible errors:

= There is not enough data in the Client Network
Data (section 2.2.1.3.4) to read the virtual
channel configuration data.

= There is not enough data to read a complete
Channel PDU Header (section 2.2.6.1.1).

ERRINFO_SHAREDATATOOSHORT
0x000010E2

One of four possible errors:

= There is not enough data to process Control
PDU Data (section 2.2.1.15.1).

= There is not enough data to read a complete
Share Control Header (section 2.2.8.1.1.1.1).

= There is not enough data to read a complete
Share Data Header (section 2.2.8.1.1.1.2) of a
Slow-Path Data PDU (section 2.2.8.1.1.1.1).

= There is not enough data to process Font List
PDU Data (section 2.2.1.18.1).

ERRINFO_BADSUPRESSOUTPUTPDU
0x000010E3

One of two possible errors:

= There is not enough data to process Suppress
Output PDU Data (section 2.2.11.3.1).

= The allowDisplayUpdates field of the
Suppress Output PDU Data (section 2.2.11.3.1)
is invalid.

ERRINFO_CONFIRMACTIVEPDUTOOSHORT
0x000010E5

One of two possible errors:

= There is not enough data to read the
shareControlHeader, shareld, originatorld,
lengthSourceDescriptor, and
lengthCombinedCapabilities fields of the
Confirm Active PDU Data (section 2.2.1.13.2.1).

= There is not enough data to read the
sourceDescriptor, numberCapabilities,
pad2O0ctets, and capabilitySets fields of the
Confirm Active PDU Data (section 2.2.1.13.2.1).

ERRINFO_CAPABILITYSETTOOSMALL
0x000010E7

There is not enough data to read the
capabilitySetType and the lengthCapability
fields in a received Capability Set (section
2.2.1.13.1.1.1).

ERRINFO_CAPABILITYSETTOOLARGE
0x000010E8

A Capability Set (section 2.2.1.13.1.1.1) has been
received with a lengthCapability field that contains
a value greater than the total length of the data
received.

ERRINFO_NOCURSORCACHE

One of two possible errors:

[MS-RDPBCGR] - v20160714

120/ 417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value

Meaning

0x000010E9

L] Both the colorPointerCacheSize and
pointerCacheSize fields in the Pointer
Capability Set (section 2.2.7.1.5) are set to
zero.

= The pointerCacheSize field in the Pointer
Capability Set (section 2.2.7.1.5) is not
present, and the colorPointerCacheSize field
is set to zero.

ERRINFO_BADCAPABILITIES
0x000010EA

The capabilities received from the client in the
Confirm Active PDU (section 2.2.1.13.2) were not
accepted by the server.

ERRINFO_VIRTUALCHANNELDECOMPRESSIONERR
0x000010EC

An error occurred while using the bulk compressor
(section 3.1.8 and [MS-RDPEGDI] section 3.1.8) to
decompress a Virtual Channel PDU (section 2.2.6.1)

ERRINFO_INVALIDVCCOMPRESSIONTYPE
0x000010ED

An invalid bulk compression package was specified
in the flags field of the Channel PDU Header
(section 2.2.6.1.1).

ERRINFO_INVALIDCHANNELID
0x000010EF

An invalid MCS channel ID was specified in the
mcsPdu field of the Virtual Channel PDU (section
2.2.6.1).

ERRINFO_VCHANNELSTOOMANY
0x000010F0

The client requested more than the maximum
allowed 31 static virtual channels in the Client
Network Data (section 2.2.1.3.4).

ERRINFO_REMOTEAPPSNOTENABLED
0x000010F3

The INFO_RAIL flag (0x00008000) MUST be set in
the flags field of the Info Packet (section
2.2.1.11.1.1) as the session on the remote server
can only host remote applications.

ERRINFO_CACHECAPNOTSET
0x000010F4

The client sent a Persistent Key List PDU (section
2.2.1.17) without including the prerequisite Revision
2 Bitmap Cache Capability Set (section 2.2.7.1.4.2)
in the Confirm Active PDU (section 2.2.1.13.2).

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH2
0x000010F5

The NumInfoBlocks field in the Bitmap Cache
Error PDU Data is inconsistent with the amount of
data in the Info field ([MS-RDPEGDI] section
2.2.2.3.1.1).

ERRINFO_OFFSCRCACHEERRORPDUBADLENGTH
0x000010F6

There is not enough data to process an Offscreen
Bitmap Cache Error PDU ([MS-RDPEGDI] section
2.2.2.3.2).

ERRINFO_DNGCACHEERRORPDUBADLENGTH
0x000010F7

There is not enough data to process a DrawNineGrid
Cache Error PDU ([MS-RDPEGDI] section 2.2.2.3.3).

ERRINFO_GDIPLUSPDUBADLENGTH
0x000010F8

There is not enough data to process a GDI+ Error
PDU ([MS-RDPEGDI] section 2.2.2.3.4).

ERRINFO_SECURITYDATATOOSHORT2
0x00001111

There is not enough data to read a Basic Security
Header (section 2.2.8.1.1.2.1).

ERRINFO_SECURITYDATATOOSHORT3
0x00001112

There is not enough data to read a Non-FIPS
Security Header (section 2.2.8.1.1.2.2) or FIPS
Security Header (section 2.2.8.1.1.2.3).

121 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Value

Meaning

0x00001113

ERRINFO_SECURITYDATATOOSHORT4

There is not enough data to read the
basicSecurityHeader and length fields of the
Security Exchange PDU Data (section 2.2.1.10.1).

0x00001114

ERRINFO_SECURITYDATATOOSHORTS

There is not enough data to read the CodePage,
flags, cbDomain, cbUserName, cbPassword,
cbAlternateShell, cbWorkingDir, Domain,
UserName, Password, AlternateShell, and
WorkingDir fields in the Info Packet (section
2.2.1.11.1.1).

0x00001115

ERRINFO_SECURITYDATATOOSHORT6

There is not enough data to read the CodePage,
flags, cbDomain, cbUserName, cbPassword,
cbAlternateShell, and cbWorkingDir fields in the
Info Packet (section 2.2.1.11.1.1).

0x00001116

ERRINFO_SECURITYDATATOOSHORT?

There is not enough data to read the
clientAddressFamily and cbClientAddress fields
in the Extended Info Packet (section
2.2.1.11.1.1.1).

0x00001117

ERRINFO_SECURITYDATATOOSHORTS

There is not enough data to read the clientAddress
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

0x00001118

ERRINFO_SECURITYDATATOOSHORT9

There is not enough data to read the cbClientDir
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

0x00001119

ERRINFO_SECURITYDATATOOSHORT10

There is not enough data to read the clientDir field
in the Extended Info Packet (section
2.2.1.11.1.1.1).

0x0000111A

ERRINFO_SECURITYDATATOOSHORT11

There is not enough data to read the
clientTimeZone field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

0x0000111B

ERRINFO_SECURITYDATATOOSHORT12

There is not enough data to read the
clientSessionld field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

0x0000111C

ERRINFO_SECURITYDATATOOSHORT13

There is not enough data to read the
performanceFlags field in the Extended Info
Packet (section 2.2.1.11.1.1.1).

0x0000111D

ERRINFO_SECURITYDATATOOSHORT14

There is not enough data to read the
cbAutoReconnectCookie field in the Extended
Info Packet (section 2.2.1.11.1.1.1).

0x0000111E

ERRINFO_SECURITYDATATOOSHORT15

There is not enough data to read the
autoReconnectCookie field in the Extended Info
Packet (section 2.2.1.11.1.1.1).

0x0000111F

ERRINFO_SECURITYDATATOOSHORT16

The cbAutoReconnectCookie field in the Extended
Info Packet (section 2.2.1.11.1.1.1) contains a value
which is larger than the maximum allowed length of
128 bytes.

0x00001120

ERRINFO_SECURITYDATATOOSHORT17

There is not enough data to read the
clientAddressFamily and cbClientAddress fields
in the Extended Info Packet (section
2.2.1.11.1.1.1).

[MS-RDPBCGR] - v20160714

122 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value

Meaning

ERRINFO_SECURITYDATATOOSHORT18
0x00001121

There is not enough data to read the clientAddress
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT19
0x00001122

There is not enough data to read the cbClientDir
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT20
0x00001123

There is not enough data to read the clientDir field
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT21
0x00001124

There is not enough data to read the
clientTimeZone field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT22
0x00001125

There is not enough data to read the
clientSessionld field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT23
0x00001126

There is not enough data to read the Client Info PDU
Data (section 2.2.1.11.1).

ERRINFO_BADMONITORDATA
0x00001129

The monitorCount field in the Client Monitor Data
(section 2.2.1.3.6) is invalid.

ERRINFO_VCDECOMPRESSEDREASSEMBLEFAILED
0x0000112A

The server-side decompression buffer is invalid, or
the size of the decompressed VC data exceeds the
chunking size specified in the Virtual Channel
Capability Set (section 2.2.7.1.10).

ERRINFO_VCDATATOOLONG
0x0000112B

The size of a received Virtual Channel PDU (section
2.2.6.1) exceeds the chunking size specified in the
Virtual Channel Capability Set (section 2.2.7.1.10).

ERRINFO_BAD_FRAME_ACK_DATA
0x0000112C

There is not enough data to read a
TS_FRAME_ACKNOWLEDGE_PDU ([MS-RDPRFX
section 2.2.3.1).

ERRINFO_GRAPHICSMODENOTSUPPORTED
0x0000112D

The graphics mode requested by the client is not
supported by the server.

ERRINFO_GRAPHICSSUBSYSTEMRESETFAILED
0x0000112E

The server-side graphics subsystem failed to reset.

ERRINFO_GRAPHICSSUBSYSTEMFAILED
0x0000112F

The server-side graphics subsystem is in an error
state and unable to continue graphics encoding.

ERRINFO_TIMEZONEKEYNAMELENGTHTOOSHORT
0x00001130

There is not enough data to read the
cbDynamicDSTTimeZoneKeyName field in the
Extended Info Packet (section 2.2.1.11.1.1.1).

ERRINFO_TIMEZONEKEYNAMELENGTHTOOLONG
0x00001131

The length reported in the
cbDynamicDSTTimeZoneKeyName field of the
Extended Info Packet (section 2.2.1.11.1.1.1) is too
long.

ERRINFO_DYNAMICDSTDISABLEDFIELDMISSING
0x00001132

The dynamicDaylightTimeDisabled field is not
present in the Extended Info Packet (section
2.2.1.11.1.1.1).

[MS-RDPBCGR] - v20160714

123 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549

Value Meaning

ERRINFO_VCDECODINGERROR An error occurred when processing dynamic virtual

0x00001133 channel data ([MS-RDPEDYC] section 3.3.5).

ERRINFO_UPDATESESSIONKEYFAILED An attempt to update the session keys while using

0x00001191 Standard RDP Security mechanisms (section 5.3.7)
failed.

ERRINFO_DECRYPTFAILED One of two possible error conditions:

0x00001192

] Decryption using Standard RDP Security
mechanisms (section 5.3.6) failed.

= Session key creation using Standard RDP
Security mechanisms (section 5.3.5) failed.

ERRINFO_ENCRYPTFAILED Encryption using Standard RDP Security
0x00001193 mechanisms (section 5.3.6) failed.
ERRINFO_ENCPKGMISMATCH Failed to find a usable Encryption Method (section
0x00001194 5.3.2) in the encryptionMethods field of the Client
Security Data (section 2.2.1.4.3).
ERRINFO_DECRYPTFAILED2 Unencrypted data was encountered in a protocol
0x00001195 stream which is meant to be encrypted with

Standard RDP Security mechanisms (section 5.3.6).

2.2.5.2 Server Status Info PDU

The Status Info PDU is sent by the server to update the client with status information. This PDU is only
sent to clients that have indicated that they are capable of status updates using the
RNS_UD_CS_SUPPORT_STATUSINFO_PDU flag in the Client Core Data (section 2.2.1.3.2).

-
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

shareDataHeader (18 bytes)

statusCode

124 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header,
a Share Data Header, and a status code.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shareDataHeader (18 bytes): A Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_STATUS_INFO_PDU (54), and the pduSource field MUST be set to zero.

statusCode (4 bytes): A 32-bit, unsigned integer. Status code.

Value Meaning

TS_STATUS_FINDING_DESTINATION The destination computer is being located.
0x00000401

TS_STATUS_LOADING_DESTINATION The destination computer is being prepared for use.
0x00000402

TS_STATUS_BRINGING_SESSION_ONLINE The destination computer is being prepared to accept a
0x00000403 remote connection.

TS_STATUS_REDIRECTING_TO_DESTINATION | The client is being redirected to the destination computer.

0x00000404

TS_STATUS_VM_LOADING The destination virtual machine image is being loaded.
0x00000501

TS_STATUS_VM_WAKING The destination virtual machine is being resumed from
0x00000502 sleep or hibernation.

125 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

Value Meaning

TS_STATUS_VM_STARTING The destination virtual machine is being started.
0x00000503

TS_STATUS_VM_STARTING_MONITORING Monitoring of the destination virtual machine is being
0x00000504 initiated.

TS_STATUS_VM_RETRYING_MONITORING Monitoring of the destination virtual machine is being
0x00000505 reinitiated.

2.2.6 Static Virtual Channels

2.2.6.1 Virtual Channel PDU

The Virtual Channel PDU is sent from client to server or from server to client and is used to transport
data between static virtual channel endpoints.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsPdu (variable)

securityHeader (variable)

channelPduHeader

virtualChannelData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsPdu (variable): If the PDU is being sent from client to server, this field MUST contain a variable-
length, PER-encoded MCS Domain PDU (DomainMCSPDU) which encapsulates an MCS Send Data
Request structure (SDrq, choice 25 from DomainMCSPDU), as specified in [T125] section 11.32
(the ASN.1 structure definition is given in [T125] section 7, parts 7 and 10). The userData field of
the MCS Send Data Request contains a Security Header and the static virtual channel data.

If the PDU is being sent from server to client, this field MUST contain a variable-length, PER-
encoded MCS Domain PDU (DomainMCSPDU) which encapsulates an MCS Send Data Indication
structure (SDin, choice 26 from DomainMCSPDU), as specified in [T125] section 11.33 (the ASN.1

126 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

structure definition is given in [T125] section 7, parts 7 and 10). The userData field of the MCS
Send Data Indication contains a Security Header and the static virtual channel data.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the security headers
described in section 2.2.8.1.1.2.

If the PDU is being sent from client to server:

= The securityHeader field MUST contain a Non-FIPS Security Header (section 2.2.8.1.1.2.2) if
the Encryption Method selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

If the PDU is being sent from server to client:

] The securityHeader field MUST contain a Basic Security Header (section 2.2.8.1.1.2.1) if the
Encryption Level selected by the server is ENCRYPTION_LEVEL_LOW (1).

= The securityHeader field MUST contain a Non-FIPS Security Header (section 2.2.8.1.1.2.2) if
the Encryption Method selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

If the Encryption Method selected by the server is ENCRYPTION_METHOD_FIPS (0x00000010) the
securityHeader field MUST contain a FIPS Security Header (section 2.2.8.1.1.2.3).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

channelPduHeader (8 bytes): A Channel PDU Header (section 2.2.6.1.1) structure, which contains
control flags and describes the size of the opaque channel data.

virtualChannelData (variable): Variable-length data to be processed by the static virtual channel
protocol handler. This field MUST NOT be larger than CHANNEL_CHUNK_LENGTH (1600) bytes in
size unless the maximum virtual channel chunk size is specified in the optional VCChunkSize field
of the Virtual Channel Capability Set (section 2.2.7.1.10).

2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)

The CHANNEL_PDU_HEADER MUST precede all opaque static virtual channel traffic chunks transmitted
via RDP between a client and server.

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

length

flags

length (4 bytes): A 32-bit, unsigned integer. The total length in bytes of the uncompressed channel
data, excluding this header. The data can span multiple Virtual Channel PDUs and the individual
chunks will need to be reassembled in that case (section 3.1.5.2.2).

flags (4 bytes): A 32-bit, unsigned integer. The channel control flags.

127 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag

Meaning

CHANNEL_FLAG_FIRST
0x00000001

Indicates that the chunk is the first in a sequence.

CHANNEL_FLAG_LAST
0x00000002

Indicates that the chunk is the last in a sequence.

CHANNEL_FLAG_SHOW_PROTOCOL
0x00000010

The Channel PDU Header MUST be visible to the application endpoint
(section 2.2.1.3.4.1).

CHANNEL_FLAG_SUSPEND
0x00000020

All virtual channel traffic MUST be suspended. This flag is only valid in
server-to-client virtual channel traffic. It MUST be ignored in client-to-
server data.

CHANNEL_FLAG_RESUME
0x00000040

All virtual channel traffic MUST be resumed. This flag is only valid in
server-to-client virtual channel traffic. It MUST be ignored in client-to-
server data.

CHANNEL_PACKET_COMPRESSED
0x00200000

The virtual channel data is compressed. This flag is equivalent to MPPC
bit C (for more information see [RFC2118] section 3.1).

CHANNEL_PACKET_AT_FRONT
0x00400000

The decompressed packet MUST be placed at the beginning of the
history buffer. This flag is equivalent to MPPC bit B (for more
information see [RFC2118] section 3.1).

CHANNEL_PACKET_FLUSHED
0x00800000

The decompressor MUST reinitialize the history buffer (by filling it with
zeros) and reset the HistoryOffset to zero. After it has been
reinitialized, the entire history buffer is immediately regarded as valid.
This flag is equivalent to MPPC bit A (for more information see
[RFC2118] section 3.1). If the CHANNEL_PACKET_COMPRESSED
(0x00200000) flag is also present, then the
CHANNEL_PACKET_FLUSHED flag MUST be processed first.

CompressionTypeMask
0x000F0000

Indicates the compression package which was used to compress the
data. See the discussion which follows this table for a list of
compression packages.

If neither the CHANNEL_FLAG_FIRST (0x00000001) nor the CHANNEL_FLAG_LAST (0x00000002)
flag is present, the chunk is from the middle of a sequence.

Instructions specifying how to set the compression flags can be found in section 3.1.8.2.1.

Possible compression types are as follows.

Value Meaning
PACKET_COMPR_TYPE_8K RDP 4.0 bulk compression (section 3.1.8.4.1).
0x0

0Ox1

PACKET_COMPR_TYPE_64K RDP 5.0 bulk compression (section 3.1.8.4.2).

0x2

PACKET_COMPR_TYPE_RDP6 RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

0x3

PACKET_COMPR_TYPE_RDP61 | RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

Instructions detailing how to compress a data stream are listed in section 3.1.8.2, while
decompression of a data stream is described in section 3.1.8.3.

[MS-RDPBCGR] - v20160714

128 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90316
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

2.2.7 Capability Sets

2.2.7.1 Mandatory Capability Sets

2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)

The TS_GENERAL_CAPABILITYSET structure is used to advertise general characteristics and is based
on the capability set specified in [T128] section 8.2.3. This capability is sent by both client and server.

1
0(1(2|3|4|5|6|7|8|9(0(1(2|3|4]|5

6|7/8|9|0|1|2|3|4|5|(6(7(8[9|0]|1

capabilitySetType

lengthCapability

osMajorType osMinorType
protocolVersion pad2octetsA
generalCompressionTypes extraFlags

updateCapabilityFlag

remoteUnshareFlag

generalCompressionLevel

refreshRectSupport suppressOutputSupport

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field

MUST be set to CAPSTYPE_GENERAL (1).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

osMajorType (2 bytes): A 16-bit, unsigned integer. The type of platform.

Value Meaning

OSMAJORTYPE_UNSPECIFIED | Unspecified platform

0x0000

OSMAJORTYPE_WINDOWS Windows platform
0x0001

OSMAJORTYPE_0OS2 0S/2 platform
0x0002

OSMAJORTYPE_MACINTOSH Macintosh platform

0x0003

OSMAJORTYPE_UNIX UNIX platform
0x0004

OSMAIJORTYPE_IOS iOS platform
0x0005

OSMAJORTYPE_OSX OS X platform
0x0006

OSMAJORTYPE_ANDROID Android platform

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

129 /417

http://go.microsoft.com/fwlink/?LinkId=90544

Value Meaning

0x0007

OSMAJORTYPE_CHROME_QOS Chrome OS platform
0x0008

osMinorType (2 bytes): A 16-bit, unsigned integer. The version of the platform specified in the
osMajorType field.

Value Meaning
OSMINORTYPE_UNSPECIFIED Unspecified version
0x0000

OSMINORTYPE_WINDOWS_31X Windows 3.1x
0x0001

OSMINORTYPE_WINDOWS_95 Windows 95
0x0002

OSMINORTYPE_WINDOWS_NT Windows NT
0x0003

OSMINORTYPE_0S2_V21 0S/2 2.1
0x0004

OSMINORTYPE_POWER_PC PowerPC
0x0005

OSMINORTYPE_MACINTOSH Macintosh
0x0006

OSMINORTYPE_NATIVE_XSERVER | Native X Server
0x0007

OSMINORTYPE_PSEUDO_XSERVER | Pseudo X Server
0x0008

OSMINORTYPE_WINDOWS RT Windows RT
0x0009

protocolVersion (2 bytes): A 16-bit, unsigned integer. The protocol version. This field MUST be set
to TS_CAPS_PROTOCOLVERSION (0x0200).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

generalCompressionTypes (2 bytes): A 16-bit, unsigned integer. General compression types. This
field MUST be set to zero.

extraFlags (2 bytes): A 16-bit, unsigned integer. General capability information.

RDP 5.0, 5.1, 5.2,6.0,6.1, 7.0, 7.1, 8.0, 8.1, 10.0, and 10.1 support the following flags.

Flag Meaning

FASTPATH_OUTPUT_SUPPORTED | Advertiser supports fast-path output.<22>
0x0001

130/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag

Meaning

NO_BITMAP_COMPRESSION_HDR
0x0400

Advertiser supports excluding the 8-byte Compressed Data

Header (section 2.2.9.1.1.3.1.2.3) from the Bitmap Data (section
2.2.9.1.1.3.1.2.2) structure or the Cache Bitmap (Revision 2) Secondary
Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

RDP 5.1, 5.2,6.0,6.1, 7.0, 7.1, 8.0, 8.1, 10.0, and 10.1 support the following additional flags.

Flag

Meaning

LONG_CREDENTIALS_SUPPORTED
0x0004

Advertiser supports long-length credentials for the user name,
password, or domain name in the Save Session Info PDU (section
2.2.10.1).<23>

RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, and 10.1 support the following additional flags.

Flag Meaning

0x0008

AUTORECONNECT_SUPPORTED | Advertiser supports auto-reconnection (section 5.5).

0x0010

ENC_SALTED_CHECKSUM Advertiser supports salted MAC generation (section 5.3.6.1.1).

updateCapabilityFlag (2 bytes): A 16-bit, unsigned integer. Support for update capability. This field

MUST be set to zero.

remoteUnshareFlag (2 bytes): A 16-bit, unsigned integer. Support for remote unsharing. This field

MUST be set to zero.

generalCompressionLevel (2 bytes): A 16-bit, unsigned integer. General compression level. This

field MUST be set to zero.

refreshRectSupport (1 byte): An 8-bit, unsigned integer. Server-only flag that indicates whether
the Refresh Rect PDU (section 2.2.11.2) is supported.

Value | Meaning

0x00

FALSE | Server does not support Refresh Rect PDU.

0x01

TRUE Server supports Refresh Rect PDU.

suppressOutputSupport (1 byte): An 8-bit, unsigned integer. Server-only flag that indicates
whether the Suppress Output PDU (section 2.2.11.3) is supported.

Value | Meaning

0x00

FALSE | Server does not support Suppress Output PDU.

0x01

TRUE Server supports Suppress Output PDU.

[MS-RDPBCGR] - v20160714

131 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET)

The TS_BITMAP_CAPABILITYSET structure is used to advertise bitmap-orientated characteristics and is
based on the capability set specified in [T128] section 8.2.4. This capability is sent by both client and
server.

0123456789(1)1234567893123456789(3)1
capabilitySetType lengthCapability
preferredBitsPerPixel receivelBitPerPixel
receive4BitsPerPixel receive8BitsPerPixel
desktopWidth desktopHeight
pad2octets desktopResizeFlag
bitmapCompressionFlag highColorFlags drawingFlags
multipleRectangleSupport pad2octetsB

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAP (2).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

preferredBitsPerPixel (2 bytes): A 16-bit, unsigned integer. The server MUST set this field to the
color depth of the session, while the client SHOULD set this field to the color depth requested in
the Client Core Data (section 2.2.1.3.2).

receivelBitPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
1 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

receive4BitsPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
4 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

receive8BitsPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
8 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

desktopWidth (2 bytes): A 16-bit, unsigned integer. The width of the desktop in the session.
desktopHeight (2 bytes): A 16-bit, unsigned integer. The height of the desktop in the session.
pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopResizeFlag (2 bytes): A 16-bit, unsigned integer. Indicates whether resizing the desktop by
using a Deactivation-Reactivation Sequence is supported (see section 1.3.1.3 for an overview of
the Deactivation-Reactivation Sequence).

Value Meaning

FALSE Desktop resizing is not supported.
0x0000

132 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

Value Meaning

TRUE Desktop resizing is supported.
0x0001

bitmapCompressionFlag (2 bytes): A 16-bit, unsigned integer. Indicates whether bitmap
compression is supported. This field MUST be set to TRUE (0x0001) because support for
compressed bitmaps is required for a connection to proceed.

highColorFlags (1 byte): An 8-bit, unsigned integer. Client support for 16 bpp color modes. This
field is ignored and SHOULD be set to zero.

drawingFlags (1 byte): An 8-bit, unsigned integer. Flags describing support for 32 bpp bitmaps.

Flag Meaning

DRAW_ALLOW_DYNAMIC_COLOR_FIDELITY | Indicates support for lossy compression of 32 bpp bitmaps

0x02 by reducing color-fidelity on a per-pixel basis ([MS-
RDPEGDI] section 3.1.9.1.4).

DRAW_ALLOW_COLOR_SUBSAMPLING Indicates support for chroma subsampling when

0x04 compressing 32 bpp bitmaps ([MS-RDPEGDI] section
3.1.9.1.3).

DRAW_ALLOW_SKIP_ALPHA Indicates that the client supports the removal of the alpha-

0x08 channel when compressing 32 bpp bitmaps. In this case the
alpha is assumed to be OxFF, meaning the bitmap is
opaque.

DRAW_UNUSED_FLAG An unused flag that MUST be ignored by the client if it is

0x10 present in the server-to-client Bitmap Capability Set.

Compression of 32 bpp bitmaps is specified in [MS-RDPEGDI] section 3.1.9.

multipleRectangleSupport (2 bytes): A 16-bit, unsigned integer. Indicates whether the use of
multiple bitmap rectangles is supported in the Bitmap Update (section 2.2.9.1.1.3.1.2). This field
MUST be set to TRUE (0x0001) because multiple rectangle support is required for a connection to
proceed.

pad2octetsB (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET)

The TS_ORDER_CAPABILITYSET structure advertises support for primary drawing order-related
capabilities and is based on the capability set specified in [T128] section 8.2.5 (for more information
about primary drawing orders, see [MS-RDPEGDI] section 2.2.2.2.1.1). This capability is sent by both
client and server.

N
w

1
0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

terminalDescriptor (16 bytes)

133 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
http://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

pad4octetsA

desktopSaveXGranularity desktopSaveYGranularity
pad2octetsA maximumOrderLevel
numberFonts orderFlags

orderSupport (32 bytes)

textFlags orderSupportExFlags

pad4octetsB

desktopSaveSize

pad2octetsC pad2octetsD

textANSICodePage pad2octetsE

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_ORDER (3).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

terminalDescriptor (16 bytes): A 16-element array of 8-bit, unsigned integers. Terminal descriptor.
This field is ignored and SHOULD be set to all zeros.

pad4octetsA (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopSaveXGranularity (2 bytes): A 16-bit, unsigned integer. X granularity used in conjunction
with the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.12). This value
is ignored and assumed to be 1.

desktopSaveYGranularity (2 bytes): A 16-bit, unsigned integer. Y granularity used in conjunction
with the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.12). This value
is ignored and assumed to be 20.

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

maximumOrderLevel (2 bytes): A 16-bit, unsigned integer. Maximum order level. This value is
ignored and SHOULD be set to ORD_LEVEL_1_ORDERS (1).

numberFonts (2 bytes): A 16-bit, unsigned integer. Number of fonts. This value is ignored and
SHOULD be set to zero.

orderFlags (2 bytes): A 16-bit, unsigned integer. A 16-bit unsigned integer. Support for drawing
order options.

134 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag

Meaning

NEGOTIATEORDERSUPPORT
0x0002

Indicates support for specifying supported drawing orders in the
orderSupport field. This flag MUST be set.

ZEROBOUNDSDELTASSUPPORT

Indicates support for the TS_ZERO_BOUNDS_DELTAS (0x20) flag

0x0008 ([IMS-RDPEGDI] section 2.2.2.2.1.1.2). The client MUST set this flag.
COLORINDEXSUPPORT Indicates support for sending color indices (not RGB values) in orders.
0x0020

SOLIDPATTERNBRUSHONLY Indicates that this party can receive only solid and pattern brushes.
0x0040

ORDERFLAGS_EXTRA_FLAGS
0x0080

Indicates that the orderSupportExFlags field contains valid data.

orderSupport (32 bytes): An array of 32 bytes indicating support for various primary drawing
orders. The indices of this array are the negotiation indices for the primary orders specified in
[MS-RDPEGDI] section 2.2.2.2.1.1.2.

Negotiation index

Primary drawing order or orders

TS_NEG_DSTBLT_INDEX
0x00

DstBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.1).

TS_NEG_PATBLT_INDEX
0x01

PatBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.3) and OpaqueRect Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.5).

TS_NEG_SCRBLT_INDEX
0x02

ScrBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.7).<24>

TS_NEG_MEMBLT_INDEX
0x03

MemBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.9).<25>

TS_NEG_MEM3BLT_INDEX

Mem3BIt Primary Drawing Order ([MS-RDPEGDI] section

0x04 2.2.2.2.1.1.2.10).

UnusedIndex1 The contents of the byte at this index MUST be ignored.
0x05

UnusedIndex2 The contents of the byte at this index MUST be ignored.
0x06

TS_NEG_DRAWNINEGRID_INDEX
0x07

DrawNineGrid Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.21).

TS_NEG_LINETO_INDEX
0x08

LineTo Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.11).

TS_NEG_MULTI_DRAWNINEGRID_INDEX | MultiDrawNineGrid Primary Drawing Order ([MS-RDPEGDI]

0x09 section 2.2.2.2.1.1.2.22).
UnusedIndex3 The contents of the byte at this index MUST be ignored.
0Ox0A

TS_NEG_SAVEBITMAP_INDEX

SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.12).

[MS-RDPBCGR] - v20160714

135/417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Negotiation index

Primary drawing order or orders

0x0B

UnusedIndex4
0x0C

The contents of the byte at this index MUST be ignored.

UnusedIndex5
0x0D

The contents of the byte at this index MUST be ignored.

UnusedIndex6
Ox0E

The contents of the byte at this index MUST be ignored.

TS_NEG_MULTIDSTBLT_INDEX
0xO0F

MultiDstBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.2).

TS_NEG_MULTIPATBLT_INDEX
0x10

MultiPatBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.4).

TS_NEG_MULTISCRBLT_INDEX
Ox11

MultiScrBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.8).

TS_NEG_MULTIOPAQUERECT_INDEX
0x12

MultiOpaqueRect Primary Drawing Order ([MS-RDPEGDI]
section 2.2.2.2.1.1.2.6).

TS_NEG_FAST_INDEX_INDEX
0x13

FastIndex Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.14).

TS_NEG_POLYGON_SC_INDEX
0x14

PolygonSC Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.16) and PolygonCB Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.17).

TS_NEG_POLYGON_CB_INDEX
0x15

PolygonCB Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.17) and PolygonSC Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.16).

TS_NEG_POLYLINE_INDEX
0x16

Polyline Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.18).

UnusedIndex?7
0x17

The contents of the byte at this index MUST be ignored.

TS_NEG_FAST_GLYPH_INDEX
0x18

FastGlyph Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.15).

TS_NEG_ELLIPSE_SC_INDEX
0x19

EllipseSC Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.19) and EllipseCB Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.20).

TS_NEG_ELLIPSE_CB_INDEX
Ox1A

EllipseCB Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.20) and EllipseSC Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.19).

TS_NEG_INDEX_INDEX

GlyphIndex Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.13).

0x1B
UnusedIndex8 The contents of the byte at this index MUST be ignored.
0x1C
UnusedIndex9 The contents of the byte at this index MUST be ignored.
0x1D

136 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Negotiation index Primary drawing order or orders

UnusedIndex10 The contents of the byte at this index MUST be ignored.
Ox1E

UnusedIndex11 The contents of the byte at this index MUST be ignored.
Ox1F

If an order is supported, the byte at the given index MUST contain the value 0x01. Any order not
supported by the client causes the server to spend more time and bandwidth using workarounds,
such as other primary orders or simply sending screen bitmap data in a Bitmap Update (sections
2.2.9.1.1.3.1.2 and 2.2.9.1.2.1.2). If no primary drawing orders are supported, this array MUST
be initialized to all zeros.

textFlags (2 bytes): A 16-bit, unsigned integer. Values in this field MUST be ignored.

orderSupportExFlags (2 bytes): A 16-bit, unsigned integer. Extended order support flags.

Flag Meaning

ORDERFLAGS_EX_CACHE_BITMAP_REV3_SUPPORT The Cache Bitmap (Revision 3) Secondary Drawing

0x0002 Order ([MS-RDPEGDI] section 2.2.2.2.1.2.8) is
supported.

ORDERFLAGS_EX_ALTSEC_FRAME_MARKER_SUPPORT | The Frame Marker Alternate Secondary Drawing

0x0004 Order ([MS-RDPEGDI] section 2.2.2.2.1.3.7) is
supported.

pad4octetsB (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopSaveSize (4 bytes): A 32-bit, unsigned integer. The maximum usable size of bitmap space
for bitmap packing in the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.12). This field is ignored by the client and assumed to be 230400 bytes (480 * 480).

pad2octetsC (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad2octetsD (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

textANSICodePage (2 bytes): A 16-bit, unsigned integer. ANSI code page descriptor being used by
the client (for a list of code pages, see [MSDN-CP]). This field is ignored by the client and SHOULD
be set to zero by the server.

pad2octetsE (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.
2.2.7.1.4 Bitmap Cache Capability Set

2.2.7.1.4.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET)

The TS_BITMAPCACHE_CAPABILITYSET structure is used to advertise support for Revision 1 bitmap
caches ([MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to server.

In addition to specifying bitmap caching parameters in the Revision 1 Bitmap Cache Capability Set, a
client MUST also support the MemBIt and Mem3BIt Primary Drawing Orders ([MS-RDPEGDI] sections
2.2.2.2.1.1.2.9 and 2.2.2.2.1.1.2.10, respectively) in order to receive the Cache Bitmap (Revision 1)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.2).

137 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=89981
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

0(1(2|3|4|5|6|7|8]|9 é 112|3|4|5|/6(7|8|9 5 112|3|4|5|6|7|8|9 g 1
capabilitySetType lengthCapability
padl
pad2
pad3
pad4
pad5
pad6
CacheOEntries CacheOMaximumCellSize
CachelEntries CachelMaximumCellSize
Cache2Entries Cache2MaximumCellSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE (4).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

pad1l (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad2 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad3 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad4 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad5 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad6 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

CacheOEntries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 0
(maximum allowed value is 200 entries).

CacheOMaximumcCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 0.

CachelEntries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 1
(maximum allowed value is 600 entries).

CacheilMaximumcCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 1.

Cache2Entries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 2
(maximum allowed value is 65535 entries).

138 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Cache2MaximumcCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 2.

2.2.7.1.4.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)

The TS_BITMAPCACHE_CAPABILITYSET_REV?2 structure is used to advertise support for Revision 2
bitmap caches ([MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to server.

In addition to specifying bitmap caching parameters in the Revision 2 Bitmap Cache Capability Set, a
client MUST also support the MemBIt and Mem3BIt Primary Drawing Orders ([MS-RDPEGDI] sections
2.2.2.2.1.1.2.9 and 2.2.2.2.1.1.2.10, respectively) in order to receive the Cache Bitmap (Revision 2)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

1 2 3}
0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

capabilitySetType lengthCapability

CacheFlags pad2 NumcCellCaches

BitmapCacheOCellInfo

BitmapCache1lCellInfo

BitmapCache2CellInfo

BitmapCache3CellInfo

BitmapCache4CellInfo

Pad3

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE_REV2 (19).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

CacheFlags (2 bytes): A 16-bit, unsigned integer. Properties which apply to all the bitmap caches.

Flag Meaning

PERSISTENT_KEYS_EXPECTED_FLAG Indicates that the client will send a Persistent Key List PDU during
0x0001 the Connection Finalization phase of the RDP Connection Sequence
(see section 1.3.1.1 for an overview of the RDP Connection
Sequence phases).

ALLOW_CACHE_WAITING_LIST_FLAG | Indicates that the client supports a cache waiting list. If a waiting
0x0002 list is supported, new bitmaps are cached on the second hit rather
than the first (that is, a bitmap is sent twice before it is cached).

pad2 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

139 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

NumcCellCaches (1 byte): An 8-bit, unsigned integer. Number of bitmap caches (with a maximum
allowed value of 5).

BitmapCacheOCellInfo (4 bytes): ATS BITMAPCACHE CELL CACHE INFO structure. Contains
information about the structure of Bitmap Cache 0. The maximum number of entries allowed in
this cache is 600. This field is only valid if NumCellCaches is greater than or equal to 1.

BitmapCache1CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 1. The maximum number of entries allowed in
this cache is 600. This field is only valid if NumCellCaches is greater than or equal to 2.

BitmapCache2CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 2. The maximum number of entries allowed in
this cache is 65536. This field is only valid if NumCellCaches is greater than or equal to 3.

BitmapCache3CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 3. The maximum number of entries allowed in
this cache is 4096. This field is only valid if NumCellCaches is greater than or equal to 4.

BitmapCache4CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 4. The maximum number of entries allowed in
this cache is 2048. This field is only valid if NumCellCaches is equal to 5.

Pad3 (12 bytes): A 12-element array of 8-bit, unsigned integers. Padding. Values in this field MUST
be ignored.

2.2.7.1.4.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)

The TS_BITMAPCACHE_CELL_CACHE_INFO structure contains information about a bitmap cache on
the client.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Celllnfo

CellInfo (4 bytes): A 32-bit unsigned integer that contains information about a bitmap cache on the
client. The format of the CellInfo field is described by the following bitmask diagram.

0[{1(2|3|4|5|6|7|8|9(0(1({2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1

NumEntries k

NumEntries (31 bits): A 31-bit unsigned integer that contains the number of entries in the
cache.

k (1 bit): A 1-bit field that indicates that the bitmap cache is persistent across RDP connections
and that the client expects to receive a unique 64-bit bitmap key in the Cache Bitmap
(Revision 2) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3) for every bitmap
inserted into this cache. If this bit is set, 64-bit keys MUST be sent by the server.

2.2.7.1.5 Pointer Capability Set (TS_POINTER_CAPABILITYSET)

The TS_POINTER_CAPABILITYSET structure advertises pointer cache sizes and flags and is based on
the capability set specified in [T128] section 8.2.11. This capability is sent by both client and server.

140/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
http://go.microsoft.com/fwlink/?LinkId=90544

1 2
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

w

capabilitySetType lengthCapability

colorPointerFlag colorPointerCacheSize

pointerCacheSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_POINTER (8).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

colorPointerFlag (2 bytes): A 16-bit, unsigned integer. Indicates support for color pointers. Since
RDP supports monochrome cursors by using Color Pointer Updates and New Pointer Updates
(sections 2.2.9.1.1.4.4 and 2.2.9.1.1.4.5 respectively), the value of this field is ignored and is
always assumed to be TRUE (at a minimum the Color Pointer Update MUST be supported by an
RDP client).

Value Meaning

FALSE Monochrome mouse cursors are supported.
0x0000

TRUE Color mouse cursors are supported.
0x0001

colorPointerCacheSize (2 bytes): A 16-bit, unsigned integer. The number of available slots in the
24 bpp color pointer cache used to store data received in the Color Pointer Update (section
2.2.9.1.1.4.4).

pointerCacheSize (2 bytes): A 16-bit, unsigned integer. The number of available slots in the pointer
cache used to store pointer data of arbitrary bit depth received in the New Pointer Update (section
2.2.9.1.1.4.5).

If the value contained in this field is zero or the Pointer Capability Set sent from the client does
not include this field, the server will not use the New Pointer Update.

2.2.7.1.6 Input Capability Set (TS_INPUT_CAPABILITYSET)

The TS_INPUT_CAPABILITYSET structure is used to advertise support for input formats and devices.
This capability is sent by both client and server. The keyboardLayout, keyboardType,
keyboardSubType, and keyboardFunctionKey fields of the server-to-client
TS_INPUT_CAPABILITYSET structure SHOULD<26> be set to zero, and the imeFileName field of the
server-to-client TS_INPUT_CAPABILITYSET structure SHOULD<27> be filled with zeros.

1 2
0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

w

capabilitySetType lengthCapability

inputFlags pad2octetsA

141 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

keyboardLayout

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName (64 bytes)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_INPUT (13).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

inputFlags (2 bytes): A 16-bit, unsigned integer. Input support flags.

Flag

Meaning

INPUT_FLAG_SCANCODES
0x0001

Indicates support for using scancodes in the Keyboard Event
notifications (sections 2.2.8.1.1.3.1.1.1 and 2.2.8.1.2.2.1).

INPUT_FLAG_MOUSEX
0x0004

Indicates support for Extended Mouse Event notifications (sections
2.2.8.1.1.3.1.1.4 and 2.2.8.1.2.2.4).

INPUT_FLAG_FASTPATH_INPUT
0x0008

Advertised by RDP 5.0 and 5.1 servers. RDP 5.2, 6.0, 6.1, 7.0, 7.1,
8.0, 8.1, 10.0, and 10.1 servers advertise the
INPUT_FLAG_FASTPATH_INPUT2 flag to indicate support for fast-
path input.

INPUT_FLAG_UNICODE
0x0010

Indicates support for Unicode Keyboard Event notifications (sections
2.2.8.1.1.3.1.1.2 and 2.2.8.1.2.2.2).

INPUT_FLAG_FASTPATH_INPUT2
0x0020

Advertised by RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, and 10.1

servers. Clients that do not support this flag will not be able to use

fast-path input when connecting to RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0,
8.1, 10.0, and 10.1 servers.

INPUT_FLAG_UNUSED1
0x0040

An unused flag that MUST be ignored by the client if it is present in
the server-to-client Input Capability Set.

INPUT_FLAG_UNUSED2
0x0080

An unused flag that MUST be ignored by the server if it is present in
the client-to-server Input Capability Set.

TS_INPUT_FLAG_MOUSE_HWHEEL
0x0100

Indicates support for horizontal mouse wheel notifications (sections
2.2.8.1.1.3.1.1.3 and 2.2.8.1.2.2.3).

TS_INPUT_FLAG_QOE_TIMESTAMPS
0x0200

Indicates support for Quality of Experience (QoE) timestamp
notifications (section 2.2.8.1.2.2.6). There is no slow-path support
for Quality of Experience (QoE) timestamps.

[MS-RDPBCGR] - v20160714

142 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

At a minimum, the INPUT_FLAG_SCANCODES flag MUST be set, as server-side RDP keyboard
input handling is restricted to keyboard scancodes and Unicode input (unlike the code-point or
virtual codes supported in [T128]).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

keyboardLayout (4 bytes): A 32-bit, unsigned integer. The active input locale identifier, also known
as the "HKL" (for example, 0x00000409 for a "US" keyboard layout and 0x00010407 for a
"German (IBM)" keyboard layout). For a list of input locale identifiers, see [MSFT-DIL]. The active
input locale identifier is only specified in the client Input Capability Set and SHOULD be the same
as the keyboard layout specified in the Client Core Data (section 2.2.1.3.2).<28>

keyboardType (4 bytes): A 32-bit, unsigned integer. Keyboard type.

Value Meaning

0x00000001 | IBM PC/XT or compatible (83-key) keyboard

0x00000002 | Olivetti "ICO" (102-key) keyboard

0x00000003 | IBM PC/AT (84-key) or similar keyboard

0x00000004 | IBM enhanced (101- or 102-key) keyboard

0x00000005 | Nokia 1050 and similar keyboards

0x00000006 | Nokia 9140 and similar keyboards

0x00000007 | Japanese keyboard

This value is only specified in the client Input Capability Set and SHOULD correspond with that
sent in the Client Core Data.

keyboardSubType (4 bytes): A 32-bit, unsigned integer. Keyboard subtype (an original equipment
manufacturer-dependent value). This value is only specified in the client Input Capability Set and
SHOULD correspond with that sent in the Client Core Data.

keyboardFunctionKey (4 bytes): A 32-bit, unsigned integer. Number of function keys on the
keyboard. This value is only specified in the client Input Capability Set and SHOULD correspond
with that sent in the Client Core Data.

imeFileName (64 bytes): A 64-byte field, containing the input method editor (IME) file name
associated with the input locale. This field contains up to 31 Unicode characters plus a null
terminator and is only specified in the client Input Capability Set and its contents SHOULD
correspond with that sent in the Client Core Data.

2.2.7.1.7 Brush Capability Set (TS_BRUSH_CAPABILITYSET)

The TS_BRUSH_CAPABILITYSET advertises client brush support. This capability is only sent from client
to server.

1
0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

N
w

capabilitySetType lengthCapability

brushSupportLevel

143 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=202824

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BRUSH (15).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

brushSupportLevel (4 bytes): A 32-bit, unsigned integer. The maximum brush level supported by

the client.
Value Meaning
BRUSH_DEFAULT Support for solid-color and monochrome pattern brushes with no caching. This is an
0x00000000 RDP 4.0 implementation.

BRUSH_COLOR_8x8 Ability to handle color brushes (4-bit or 8-bit in RDP 5.0; RDP 5.1, 5.2, 6.0, 6.1, 7.0,
0x00000001 7.1, 8.0, 8.1, 10.0, and 10.1 also support 16-bit and 24-bit) and caching. Brushes
are limited to 8-by-8 pixels.

BRUSH_COLOR_FULL | Ability to handle color brushes (4-bit or 8-bit in RDP 5.0; RDP 5.1, 5.2, 6.0, 6.1, 7.0,
0x00000002 7.1, 8.0, 8.1, 10.0, and 10.1 also support 16-bit and 24-bit) and caching. Brushes
can have arbitrary dimensions.

2.2.7.1.8 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET)

The TS_GLYPHCACHE_CAPABILITYSET structure advertises the glyph support level and associated
cache sizes. This capability is only sent from client to server.

1 2
0[{1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

w

capabilitySetType lengthCapability

GlyphCache (40 bytes)

FragCache

GlyphSupportLevel pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_GLYPHCACHE (16).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

GlyphCache (40 bytes): An array of 10 TS CACHE DEFINITION structures. An ordered specification
of the layout of each of the glyph caches with IDs 0 through to 9 ([MS-RDPEGDI] section
3.1.1.1.2).

FragCache (4 bytes): Fragment cache data. The maximum number of entries allowed in the cache is
256, and the largest allowed maximum size of an element is 256 bytes.

144 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

GlyphSupportLevel (2 bytes): A 16-bit, unsigned integer. The level of glyph support.

Value Meaning

GLYPH_SUPPORT_NONE The client does not support glyph caching. All text output will be sent to the

0x0000 client as expensive Bitmap Updates (sections 2.2.9.1.1.3.1.2 and
2.2.9.1.2.1.2).

GLYPH_SUPPORT_PARTIAL | Indicates support for Revision 1 Cache Glyph Secondary Drawing Orders ([MS-

0x0001 RDPEGDI] section 2.2.2.2.1.2.5).

GLYPH_SUPPORT_FULL Indicates support for Revision 1 Cache Glyph Secondary Drawing Orders ([MS-

0x0002 RDPEGDI] section 2.2.2.2.1.2.5).

GLYPH_SUPPORT_ENCODE | Indicates support for Revision 2 Cache Glyph Secondary Drawing Orders ([MS-
0x0003 RDPEGDI] section 2.2.2.2.1.2.6).

If the GlyphSupportLevel is greater than GLYPH_SUPPORT_NONE (0), the client MUST support
the GlyphIndex Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.13) or the FastIndex
Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.14). If the FastIndex Primary
Drawing Order is not supported, then support for the GlyphIndex Primary Drawing Order is
assumed by the server (order support is specified in the Order Capability Set, as described in
section 2.2.7.1.3).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.
2.2.7.1.8.1 Cache Definition (TS_CACHE_DEFINITION)

The TS_CACHE_DEFINITION structure specifies details about a particular cache in the Glyph Capability
Set (section 2.2.7.1.8) structure.

2 3
0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

e

CacheEntries CacheMaximumCellSize

CacheEntries (2 bytes): A 16-bit, unsigned integer. The number of entries in the cache. The
maximum number of entries allowed in a cache is 254, and the largest allowed maximum size of
an element is 2048 bytes.

CacheMaximumcCellSize (2 bytes): A 16-bit, unsigned integer. The maximum size in bytes of an
entry in the cache.

2.2.7.1.9 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)

The TS_OFFSCREEN_CAPABILITYSET structure is used to advertise support for offscreen bitmap
caching ([MS-RDPEGDI] section 3.1.1.1.5). This capability is only sent from client to server.

N
w

1
0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

offscreenSupportLevel

offscreenCacheSize offscreenCacheEntries

145 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_OFFSCREENCACHE (17).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

offscreenSupportLevel (4 bytes): A 32-bit, unsigned integer. Offscreen bitmap cache support level.

Value Meaning

FALSE Offscreen bitmap cache is not supported.
0x00000000

TRUE Offscreen bitmap cache is supported.
0x00000001

offscreenCacheSize (2 bytes): A 16-bit, unsigned integer. The maximum size, in kilobytes, of the
client-side offscreen bitmap cache.

offscreenCacheEntries (2 bytes): A 16-bit, unsigned integer. The maximum number of cache
entries allowed in the client-side offscreen bitmap cache.

2.2.7.1.10 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET)

The TS_VIRTUALCHANNEL_CAPABILITYSET structure is used to advertise virtual channel support
characteristics. This capability is sent by both client and server.

1 2
0[{1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[|7(8]|9|0]|1

w

capabilitySetType lengthCapability

flags

VCChunkSize (optional)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_VIRTUALCHANNEL (20).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

flags (4 bytes): A 32-bit, unsigned integer. Virtual channel compression flags.

Flag Meaning

VCCAPS_NO_COMPR Virtual channel compression is not supported.

0x00000000

VCCAPS_COMPR_SC Indicates to the server that virtual channel compression is supported by the
0x00000001 client for server-to-client traffic. The highest compression level supported by the

client is advertised in the Client Info PDU (section 2.2.1.11).

VCCAPS_COMPR_CS_8K | Indicates to the client that virtual channel compression is supported by the
0x00000002 server for client-to-server traffic (the compression level is limited to RDP 4.0
bulk compression).

146 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

VCChunksSize (4 bytes): A 32-bit unsigned integer. When sent from server to client, this field
contains the maximum allowed size of a virtual channel chunk. When sent from client to server,
the value in this field is ignored by the server; the server determines the maximum virtual channel
chunk size. This value MUST be greater than or equal to CHANNEL_CHUNK_LENGTH and less than
or equal to 16256.

2.2.7.1.11 Sound Capability Set (TS_SOUND_CAPABILITYSET)

The TS_SOUND_CAPABILITYSET structure advertises the ability to play a "beep" sound. This capability
is sent only from client to server.

1 2 3
0({1(2|3|4|5|6|7|8|9|0(1|2[|3|4|5|6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]1
capabilitySetType lengthCapability
soundFlags pad2octetsA

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_SOUND (12).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

soundFlags (2 bytes): A 16-bit, unsigned integer. Support for sound options.

Flag Meaning

SOUND_BEEPS_FLAG | Playing a beep sound is supported.
0x0001

If the client advertises support for beeps, it MUST support the Play Sound PDU (section
2.2.9.1.1.5).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2 Optional Capability Sets

2.2.7.2.1 Bitmap Cache Host Support Capability Set
(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET)

The TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET structure is used to advertise support for
persistent bitmap caching ([MS-RDPEGDI] section 3.1.1.1.1). This capability set is only sent from
server to client.

1 2
0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

w

capabilitySetType lengthCapability

cacheVersion padil pad2

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE_HOSTSUPPORT (18).

147 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

cacheVersion (1 byte): An 8-bit, unsigned integer. Cache version. This field MUST be set to
TS_BITMAPCACHE_REV2 (0x01), which indicates support for the Revision 2 bitmap caches ([MS-
RDPEGDI] section 3.1.1.1.1).

pad1l (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad2 (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.2 Control Capability Set (TS_CONTROL_CAPABILITYSET)

The TS_CONTROL_CAPABILITYSET structure is used by the client to advertise control capabilities and
is fully described in [T128] section 8.2.10. This capability is only sent from client to server and the
server ignores its contents.

1 2
0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

w

capabilitySetType lengthCapability
controlFlags remoteDetachFlag
controllnterest detachlnterest

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_CONTROL (5).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

controlFlags (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to zero.

remoteDetachFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

controlInterest (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to
CONTROLPRIORITY_NEVER (0x0002).

detachInterest (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to
CONTROLPRIORITY_NEVER (0x0002).

2.2.7.2.3 Window Activation Capability Set
(TS_WINDOWACTIVATION_CAPABILITYSET)

The TS_WINDOWACTIVATION_CAPABILITYSET structure is used by the client to advertise window
activation characteristics capabilities and is fully specified in [T128] section 8.2.9. This capability is
only sent from client to server and the server ignores its contents.

1 2 3
0|1(2|3(4|5/6|7|8[9|0(1]|2(3|4(5|6(7|8(9|0(1[|2|3(4|5(6|7|8|9|0]|1
capabilitySetType lengthCapability
helpKeyFlag helpKeyIndexFlag

148 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

helpExtendedKeyFlag windowManagerKeyFlag

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_ACTIVATION (7).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

helpKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE (0x0000).

helpKeyIndexFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

helpExtendedKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

windowManagerKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

2.2.7.2.4 Share Capability Set (TS_SHARE_CAPABILITYSET)

The TS_SHARE_CAPABILITYSET structure is used to advertise the channel ID of the sender and is fully
specified in [T128] section 8.2.12. This capability is sent by both client and server.

1 2 3
0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

nodeld pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_SHARE (9).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

nodeld (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to zero by the client and to
the server channel ID by the server (Ox03EA).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.5 Font Capability Set (TS_FONT_CAPABILITYSET)

The TS_FONT_CAPABILITYSET structure is used to advertise font support options. This capability is
sent by both client and server.

1 2 3
0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[7|8|9|0(1
capabilitySetType lengthCapability
fontSupportFlags pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_FONT (14).

149 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

fontSupportFlags (2 bytes): A 16-bit, unsigned integer. The font support options. This field
SHOULD be set to FONTSUPPORT_FONTLIST (0x0001).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.6 Multifragment Update Capability Set
(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET)

The TS_MULTIFRAGMENTUPDATE_CAPABILITYSET structure is used to specify capabilities related to
the fragmentation and reassembly of Fast-Path Updates (section 2.2.9.1.2.1). This capability is sent
by both client and server.

1 2
0(1|2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

w

capabilitySetType lengthCapability

MaxRequestSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. Type of the capability set. This field MUST
be set to CAPSETTYPE_MULTIFRAGMENTUPDATE (26).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

MaxRequestSize (4 bytes): A 32-bit, unsigned integer. The size of the buffer used to reassemble
the fragments of a Fast-Path Update (section 2.2.9.1.2.1). The size of this buffer places a cap on
the size of the largest Fast-Path Update that can be fragmented (there MUST always be enough
buffer space to hold all of the related Fast-Path Update fragments for reassembly).

2.2.7.2.7 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)

The TS_LARGE_POINTER_CAPABILITYSET structure is used to specify capabilities related to large
mouse pointer shape support. This capability is sent by both client and server.

To support large pointer shapes, the client and server MUST support multifragment updates and
indicate this support by exchanging the Multifragment Update Capability Set (section 2.2.7.2.6). The
MaxRequestSize field of the Multifragment Update Capability Set MUST be set to at least 38,055
bytes (so that a 96 x 96 pixel 32bpp pointer can be transported).

1
0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

N
w

capabilitySetType lengthCapability

largePointerSupportFlags

capabilitySetType (2 bytes): A 16-bit, unsigned integer. Type of the capability set. This field MUST
be set to CAPSETTYPE_LARGE_POINTER (27).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

largePointerSupportFlags (2 bytes): Support for large pointer shapes.

150 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag Meaning

LARGE_POINTER_FLAG_96x96 | 96-pixel by 96-pixel mouse pointer shapes are supported.
0x00000001

Mouse pointer shapes are used by the following pointer updates:
= Color Pointer Update (section 2.2.9.1.1.4.4)

= New Pointer Update (section 2.2.9.1.1.4.5)

= Fast-Path Color Pointer Update (section 2.2.9.1.2.1.7)

= Fast-Path New Pointer Update (section 2.2.9.1.2.1.8)

The pointer shape data is contained within the Color Pointer Update structure (section
2.2.9.1.1.4.4) encapsulated by each of these updates.

2.2.7.2.8 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET)

The TS_COMPDESK_CAPABILITYSET structure is used to support desktop composition. This capability
is sent by both client and server.

1 2 3
0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

capabilitySetType lengthCapability

CompDeskSupportLevel

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x0019 (CAPSETTYPE_COMPDESK).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

CompDeskSupportLevel (2 bytes): A 16-bit, unsigned integer. The desktop composition support
level.

Value Meaning

COMPDESK_NOT_SUPPORTED | Desktop composition services are not supported.
0x0000

COMPDESK_SUPPORTED Desktop composition services are supported.
0x0001

2.2.7.2.9 Surface Commands Capability Set (TS_SURFCMDS_CAPABILITYSET)

The TS_SURFCMDS_CAPABILITYSET structure advertises support for Surface
Commands (section 2.2.9.2). This capability is sent by both the client and the server.

1
0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

N
w

capabilitySetType lengthCapability

151 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

cmdFlags

reserved

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x001C (CAPSETTYPE_SURFACE_COMMANDS).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

cmdFlags (4 bytes): A 32-bit, unsigned integer. Flags indicating which Surface Commands are
supported.

Flag Meaning

SURFCMDS_SETSURFACEBITS The Set Surface Bits Command (section 2.2.9.2.1) is supported.
0x00000002

SURFCMDS_FRAMEMARKER The Frame Marker Command (section 2.2.9.2.3) is supported.
0x00000010

SURFCMDS_STREAMSURFACEBITS | The Stream Surface Bits Command (section 2.2.9.2.2) is
0x00000040 supported.

If the client advertises support for surface commands, it MUST also indicate support for fast-path
output by setting the FASTPATH_OUTPUT_SUPPORTED (0x0001) flag in the extraFlags field of
the General Capability Set (section 2.2.7.1.1).

reserved (4 bytes): This field is reserved for future use and has no effect on the RDP wire traffic. It
MUST be set to zero.

2.2.7.2.10 Bitmap Codecs Capability Set (TS_BITMAPCODECS_CAPABILITYSET)

The TS_BITMAPCODECS_CAPABILITYSET structure advertises support for bitmap encoding and
decoding codecs used in conjunction with the Set Surface Bits Surface Command (section 2.2.9.2.1)
and Cache Bitmap (Revision 3) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.8). This
capability is sent by both the client and server.

w

1 2
0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

capabilitySetType lengthCapability

supportedBitmapCodecs (variable)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x001D (CAPSETTYPE_BITMAP_CODECS).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

supportedBitmapCodecs (variable): A variable-length field containing a TS_BITMAPCODECS
structure (section 2.2.7.2.10.1).

2.2.7.2.10.1 Bitmap Codecs (TS_BITMAPCODECS)

152 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

The TS_BITMAPCODECS structure contains an array of bitmap codec capabilities.

2 3
0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

e

bitmapCodecCount bitmapCodecArray (variable)

bitmapCodecCount (1 byte): An 8-bit, unsigned integer. The number of bitmap codec capability
entries contained in the bitmapCodecArray field (the maximum allowed is 255).

bitmapCodecArray (variable): A variable-length array containing a series of TS_BITMAPCODEC
structures (section 2.2.7.2.10.1.1) that describes the supported bitmap codecs. The number of
TS_BITMAPCODEC structures contained in the array is given by the bitmapCodecCount field.

2.2.7.2,10.1.1 Bitmap Codec (TS_BITMAPCODEC)
The TS_BITMAPCODEC structure is used to describe the encoding parameters of a bitmap codec.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

codecGUID (16 bytes)

codecID codecPropertiesLength codecProperties (variable)

codecGUID (16 bytes): A Globally Unique Identifier (section 2.2.7.2.10.1.1.1) that functions as a
unique ID for each bitmap codec.

Value Meaning

CODEC_GUID_NSCODEC The Bitmap Codec structure defines encoding parameters for the
{0xCA8D1BB9, 0x000F, 0x154F, 0x58, NSCodec Bitmap Codec ([MS-RDPNSC] sections 2 and 3). The
0X9F, OXAE, 0x2D, Ox1A, 0x87, OXE2, codecProperties field MUST contain an NSCodec Capability Set
0xD6} ([MS-RDPNSC] section 2.2.1) structure.

CODEC_GUID_REMOTEFX The Bitmap Codec structure defines encoding parameters for the
{0x76772F12, 0xBD72, 0x4463, OXAF, RemoteFX Bitmap Codec ([MS-RDPRFX] sections 2 and 3). The

0xB3, 0xB7. 0x3C, 0x9C, OX6F, 0x78 codecProperties field MUST contain a
OX%’} ! ! ! ! " | TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)

structure or a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure.

CODEC_GUID_IMAGE_REMOTEFX The Bitmap Codec structure defines encoding parameters for the
{0x2744CCD4, 0x9D8A, 0x4E74, RemoteFX Bitmap Codec ([MS-RDPRFX] sections 2 and 3)

0x80, 0x3C, OXOE, OXCB, OXEE, OxA1l, operating in image mode ([MS-RDPRFX] section 2.2.1.1.1.1). The
0x9C, 0x54} codecProperties field MUST contain a

TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)
structure or a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure.<29>

153 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPNSC%5d.pdf#Section_543fd1f18074412289441017261810ca
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549

Value Meaning

CODEC_GUID_IGNORE The Bitmap Codec structure MUST be ignored.
{0x9C4351A6, 0x3535, 0x42AE, 0x91,
0x0C, 0xCD, OxFC, OxE5, 0x76, 0x0B,
0x58}

codecID (1 byte): An 8-bit unsigned integer. When sent from the client to the server, this field
contains a unique 8-bit ID that can be used to identify bitmap data encoded using the codec in
wire traffic associated with the current connection - this ID is used in subsequent Set Surface Bits
commands (section 2.2.9.2.1) and Cache Bitmap (Revision 3) orders ([MS-RDPEGDI] section
2.2.2.2.1.2.8). When sent from the server to the client, the value in this field is ignored by the
client - the client determines the 8-bit ID to use for the codec. If the codecGUID field contains
the CODEC_GUID_NSCODEC GUID, then this field MUST be set to 0x01 (the codec ID 0x01 MUST
NOT be associated with any other bitmap codec).

codecPropertiesLength (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
codecProperties field.

codecProperties (variable): A variable-length array of bytes containing data that describes the
encoding parameter of the bitmap codec. If the codecGUID field is set to
CODEC_GUID_NSCODEC, this field MUST contain an NSCodec Capability Set ([MS-RDPNSC]
section 2.2.1) structure. Otherwise, if the codecGUID field is set to CODEC_GUID_REMOTEFX,
this field MUST contain a TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)
structure when sent from client to server, and a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure when sent from server to client.

2.2.7.2.10.1.1.1 Globally Unique Identifier (GUID)

The GUID structure contains 128 bits that represent a globally unique identifier that can be used to
provide a distinctive reference number, as specified in [MS-DTYP] section 2.3.4.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

codecGUID1

codecGUID2 codecGUID3

codecGUID4 codecGUID5S codecGUID6 codecGUID7

codecGUIDS8 codecGUID9 codecGUID10 codecGUID11

codecGUID1 (4 bytes): A 32-bit, unsigned integer. The first GUID component.
codecGUID2 (2 bytes): A 16-bit, unsigned integer. The second GUID component.
codecGUID3 (2 bytes): A 16-bit, unsigned integer. The third GUID component.
codecGUID4 (1 byte): An 8-bit, unsigned integer. The fourth GUID component.
codecGUIDS5 (1 byte): An 8-bit, unsigned integer. The fifth GUID component.
codecGUIDG6 (1 byte): An 8-bit, unsigned integer. The sixth GUID component.
codecGUID7 (1 byte): An 8-bit, unsigned integer. The seventh GUID component.
codecGUIDS8 (1 byte): An 8-bit, unsigned integer. The eighth GUID component.

154 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

codecGUID9 (1 byte): An 8-bit, unsigned integer. The ninth GUID component.
codecGUID10 (1 byte): An 8-bit, unsigned integer. The tenth GUID component.

codecGUID11 (1 byte): An 8-bit, unsigned integer. The eleventh GUID component.

2.2.8 Keyboard and Mouse Input

2.2.8.1 Input PDU Packaging

2.2.8.1.1 Slow-Path (T.128) Formats
2.2.8.1.1.1

2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)

Share Headers

The TS_SHARECONTROLHEADER header is a T.128 header ([T128] section 8.3) that MUST be present
in the following PDUs.

Demand Active PDU (section 2.2.1.13.1).
Confirm Active PDU (section 2.2.1.13.2).
Deactivate All PDU (section 2.2.3.1).

Enhanced Security Server Redirection PDU (section 2.2.13.3.1).

All Data PDUs (section 2.2.8.1.1.1.2).

A definitive list of all Data PDUs is given in section 2.2.8.1.1.1.2 in the description of the pduType2
field.

6

7

8

9

e

N

34

w

totalLength

pduType

pduSource

totalLength (2 bytes): A 16-bit unsigned integer. The total length of the packet in bytes (the length
includes the size of the Share Control Header). If the totalLength field equals 0x8000, then the
Share Control Header and any data that follows MAY be interpreted as a T.128 FlowPDU as
described in [T128] section 8.5 (the ASN.1 structure definition is detailed in [T128] section 9.1)

pduType (2 bytes): A 16-bit unsigned integer. It contains the PDU type and protocol version

and MUST be ignored.

information. The format of the pduType field is described by the following bitmask diagram.

[MS-RDPBCGR] - v20160714

1 2 3
0|12 8|19(0]|1 0|1(2]|3 0|1
type PDUVersion
type (4 bits): A 4-bit unsigned integer that specifies the PDU type.
155 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

Value (4 bits) Meaning

PDUTYPE_DEMANDACTIVEPDU | Demand Active PDU (section 2.2.1.13.1).
Ox1

PDUTYPE_CONFIRMACTIVEPDU | Confirm Active PDU (section 2.2.1.13.2).
0x3

PDUTYPE_DEACTIVATEALLPDU | Deactivate All PDU (section 2.2.3.1).

0x6
PDUTYPE_DATAPDU Data PDU (actual type is revealed by the pduType2 field in the
0x7 Share Data Header (section 2.2.8.1.1.1.2) structure).

PDUTYPE_SERVER_REDIR_PKT | Enhanced Security Server Redirection PDU (section 2.2.13.3.1).
OxA

PDUVersion (12 bits): A 12-bit unsigned integer that specifies the PDU version. This field MUST
be set to TS_PROTOCOL_VERSION (0x1).

pduSource (2 bytes): A 16-bit unsigned integer. The channel ID that is the transmission source of
the PDU.

2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)

The TS_SHAREDATAHEADER header is a T.128 header ([T128] section 8.3) that MUST be present in
all Data PDUs. A definitive list of all Data PDUs is given in the description of the pduType?2 field.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

shareControlHeader

shareld

padl streamId

uncompressedLength pduType2 compressedType

compressedLength

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet.

shareld (4 bytes): A 32-bit, unsigned integer. Share identifier for the packet (see [T128] section
8.4.2 for more information about share IDs).

pad1l (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

streamld (1 byte): An 8-bit, unsigned integer. The stream identifier for the packet.

Value Meaning

STREAM_UNDEFINED | Undefined stream priority. This value might be used in the Server Synchronize PDU
0x00 (section 2.2.1.19) due to a server-side RDP bug. It MUST NOT be used in
conjunction with any other PDUs.

156 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

Value Meaning
STREAM_LOW Low-priority stream.
0x01

STREAM_MED Medium-priority stream.
0x02

STREAM_HI High-priority stream.
0x04

uncompressedLength (2 bytes): A 16-bit, unsigned integer. The uncompressed length of the

packet in bytes.

pduType2 (1 byte): An 8-bit, unsigned integer. The type of Data PDU.

Value

Meaning

PDUTYPE2_UPDATE
0x02

Graphics Update PDU (section 2.2.9.1.1.3)

PDUTYPE2_CONTROL
0x14

Control PDU (section 2.2.1.15.1)

PDUTYPE2_POINTER
0x1B

Pointer Update PDU (section 2.2.9.1.1.4)

PDUTYPE2_INPUT
0x1C

Input Event PDU (section 2.2.8.1.1.3)

PDUTYPE2_SYNCHRONIZE
Ox1F

Synchronize PDU (section 2.2.1.14.1)

PDUTYPE2_REFRESH_RECT
0x21

Refresh Rect PDU (section 2.2.11.2.1)

PDUTYPE2_PLAY_SOUND
0x22

Play Sound PDU (section 2.2.9.1.1.5.1)

PDUTYPE2_SUPPRESS_OUTPUT
0x23

Suppress Output PDU (section 2.2.11.3.1)

PDUTYPE2_SHUTDOWN_REQUEST
0x24

Shutdown Request PDU (section 2.2.2.1.1)

PDUTYPE2_SHUTDOWN_DENIED
0x25

Shutdown Request Denied PDU (section 2.2.2.2.1)

PDUTYPE2_SAVE_SESSION_INFO
0x26

Save Session Info PDU (section 2.2.10.1.1)

PDUTYPE2_FONTLIST
0x27

Font List PDU (section 2.2.1.18.1)

PDUTYPE2_FONTMAP
0x28

Font Map PDU (section 2.2.1.22.1)

PDUTYPE2_SET_KEYBOARD_INDICATORS

Set Keyboard Indicators PDU (section 2.2.8.2.1.1)

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

157 /417

Value Meaning

0x29

PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST | Persistent Key List PDU (section 2.2.1.17.1)

0x2B

PDUTYPE2_BITMAPCACHE_ERROR_PDU Bitmap Cache Error PDU ([MS-RDPEGDI] section 2.2.2.3.1)
0x2C

PDUTYPE2_SET_KEYBOARD_IME_STATUS Set Keyboard IME Status PDU (section 2.2.8.2.2.1)
0x2D

PDUTYPE2_OFFSCRCACHE_ERROR_PDU Offscreen Bitmap Cache Error PDU ([MS-RDPEGDI] section
Ox2E 2.2.2.3.2)

PDUTYPE2_SET_ERROR_INFO_PDU Set Error Info PDU (section 2.2.5.1.1)

Ox2F

PDUTYPE2_DRAWNINEGRID_ERROR_PDU DrawNineGrid Cache Error PDU ([MS-RDPEGDI] section
0x30 2.2.2.3.3)

PDUTYPE2_DRAWGDIPLUS_ERROR_PDU GDI+ Error PDU ([MS-RDPEGDI] section 2.2.2.3.4)
0x31

PDUTYPE2_ARC_STATUS_PDU Auto-Reconnect Status PDU (section 2.2.4.1.1)

0x32

PDUTYPE2_STATUS_INFO_PDU Status Info PDU (section 2.2.5.2)

0x36

PDUTYPE2_MONITOR_LAYOUT_PDU Monitor Layout PDU (section 2.2.12.1)

0x37

compressedType (1 byte): An 8-bit, unsigned integer. The compression type and flags specifying
the data following the Share Data Header (section 2.2.8.1.1.1.2).

Flag

Meaning

CompressionTypeMask
0xO0F

Indicates the package which was used for compression. See the table which follows
for a list of compression packages.

PACKET_COMPRESSED
0x20

The payload data is compressed. This flag is equivalent to MPPC bit C (for more
information see [RFC2118] section 3.1).

PACKET_AT_FRONT
0x40

The decompressed packet MUST be placed at the beginning of the history buffer.
This flag is equivalent to MPPC bit B (for more information see [RFC2118] section
3.1).

PACKET_FLUSHED
0x80

The decompressor MUST reinitialize the history buffer (by filling it with zeros) and
reset the HistoryOffset to zero. After it has been reinitialized, the entire history
buffer is immediately regarded as valid. This flag is equivalent to MPPC bit A (for
more information see [RFC2118] section 3.1). If the PACKET_COMPRESSED (0x20)
flag is also present, then the PACKET_FLUSHED flag MUST be processed first.

Instructions specifying how to set the compression flags can be found in section 3.1.8.2.1.

Possible compression types are as follows.

[MS-RDPBCGR] - v20160714

158 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
http://go.microsoft.com/fwlink/?LinkId=90316

Value

Meaning

PACKET_COMPR_TYPE_8K
0x0

RDP 4.0 bulk compression (section 3.1.8.4.1).

PACKET_COMPR_TYPE_64K
Ox1

RDP 5.0 bulk compression (section 3.1.8.4.2).

PACKET_COMPR_TYPE_RDP6
0x2

RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

PACKET_COMPR_TYPE_RDP61
0x3

RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

Instructions specifying how to compress a data stream are listed in section 3.1.8.2, while
decompression of a data stream is described in section 3.1.8.3.

compressedLength (2 bytes):

bytes.

A 16-bit, unsigned integer. The compressed length of the packet in

2.2.8.1.1.2 Security Headers

2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER)

The TS_SECURITY_HEADER structure is used to store security flags.

=

0[(1(2|3|4|5|6|7|8|9|0

N
w

112|3|/4|5|(6(7(8[9(0(1|2|3|4|5|6|7|8(9|0|1

flags

flagsHi

flags (2 bytes): A 16-bit, unsigned integer that contains security flags.

Flag

Meaning

SEC_EXCHANGE_PKT
0x0001

Indicates that the packet is a Security Exchange PDU (section 2.2.1.10). This
packet type is sent from client to server only. The client only sends this
packet if it will be encrypting further communication and Standard RDP
Security mechanisms (section 5.3) are in effect.

SEC_TRANSPORT_REQ
0x0002

Indicates that the packet is an Initiate Multitransport Request PDU (section
2.2.15.1). This flag MUST NOT be present if the PDU containing the security
header is being sent from client to server.

This flag MUST NOT be present if the PDU containing the security header is

not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

RDP_SEC_TRANSPORT_RSP
0x0004

Indicates that the packet is an Initiate Multitransport Response PDU (section
2.2.15.2). This flag MUST NOT be present if the PDU containing the security
header is being sent from server to client.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

SEC_ENCRYPT
0x0008

Indicates that the packet is encrypted.

SEC_RESET_SEQNO

This flag is not processed by any RDP clients or servers and MUST be ignored.

[MS-RDPBCGR] - v20160714

159 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag Meaning

0x0010

SEC_IGNORE_SEQNO This flag is not processed by any RDP clients or servers and MUST be ignored.

0x0020

SEC_INFO_PKT Indicates that the packet is a Client Info PDU (section 2.2.1.11). This packet

0x0040 type is sent from client to server only. If Standard RDP Security mechanisms
are in effect, then this packet MUST also be encrypted.

SEC_LICENSE_PKT Indicates that the packet is a Licensing PDU (section 2.2.1.12).

0x0080

SEC_LICENSE_ENCRYPT_CS | Indicates to the client that the server is capable of processing encrypted
0x0200 licensing packets. It is sent by the server together with any licensing PDUs
(section 2.2.1.12).

SEC_LICENSE_ENCRYPT_SC | Indicates to the server that the client is capable of processing encrypted

0x0200 licensing packets. It is sent by the client together with the
SEC_EXCHANGE_PKT flag when sending a Security Exchange PDU (section
2.2.1.10).

SEC_REDIRECTION_PKT Indicates that the packet is a Standard Security Server Redirection PDU

0x0400 (section 2.2.13.2.1) and that the PDU is encrypted.

SEC_SECURE_CHECKSUM Indicates that the MAC for the PDU was generated using the "salted MAC
0x0800 generation" technique (section 5.3.6.1.1). If this flag is not present, then the
standard technique was used (sections 2.2.8.1.1.2.2 and 2.2.8.1.1.2.3).

SEC_AUTODETECT_REQ Indicates that the packet is an Auto-Detect Request PDU (section 2.2.14.3).
0x1000 This flag MUST NOT be present if the PDU containing the security header is
being sent from client to server.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

SEC_AUTODETECT_RSP Indicates that the packet is an Auto-Detect Response PDU (section 2.2.14.4).
0x2000 This flag MUST NOT be present if the PDU containing the security header is
being sent from server to client.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (2.2.1.4.5).

SEC_HEARTBEAT Indicates that the packet is a Heartbeat PDU (section 2.2.16.1). This flag
0x4000 MUST NOT be present if the PDU containing the security header is not being
sent on the MCS message channel. The ID of the message channel is specified
in the Server Message Channel Data (2.2.1.4.5).

SEC_FLAGSHI_VALID Indicates that the flagsHi field contains valid data. If this flag is not set, then
0x8000 the contents of the flagsHi field MUST be ignored.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the
SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1)

The TS_SECURITY_HEADER1 structure extends the Basic Security Header (section 2.2.8.1.1.2.1) and
is used to store a 64-bit Message Authentication Code.

160 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

flags flagsHi

dataSignature

flags (2 bytes): A 16-bit, unsigned integer that contains security flags as specified in section
2.2.8.1.1.2.1.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the
SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

dataSignature (8 bytes): A 64-bit Message Authentication Code generated by using one of the
techniques described in section 5.3.6.1.

2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2)

The TS_SECURITY_HEADER?2 structure extends the Basic Security Header (section 2.2.8.1.1.2.1) and
is used to store padding information and a 64-bit Message Authentication Code.

flags flagsHi

length version padlen

dataSignature

flags (2 bytes): A 16-bit, unsigned integer that contains security flags as specified in section
2.2.8.1.1.2.1.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the
SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

length (2 bytes): A 16-bit, unsigned integer. The length of the FIPS security header. This field MUST
be set to 0x0010 (16 bytes).

version (1 byte): An 8-bit, unsigned integer. The version of the FIPS header. This field SHOULD be
set to TSFIPS_VERSION1 (0x01).

padlen (1 byte): An 8-bit, unsigned integer. The number of padding bytes of padding appended to
the end of the packet prior to encryption to make sure that the data to be encrypted is a multiple
of the 3DES block size (that is, a multiple of 8 because the block size is 64 bits).

dataSignature (8 bytes): A 64-bit Message Authentication Code generated by using the techniques
specified in section 5.3.6.2.

161 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU)

The slow-path Input Event PDU is used to transmit input events from client to server.<30><31>

=
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

clientInputEventData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Client Input Event PDU Data (section 2.2.8.1.1.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

clientInputEventData (variable): The actual contents of the Client Input Event PDU, as specified in
section 2.2.8.1.1.3.1.

2.2.8.1.1.3.1 Client Input Event PDU Data (TS_INPUT_PDU_DATA)

The TS_INPUT_PDU_DATA structure contains a collection of slow-path input events generated by the
client and intended to be processed by the server.

162 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

numEvents

pad20ctets slowPathInputEvents (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_INPUT (28).

numEvents (2 bytes): A 16-bit, unsigned integer. The number of slow-path input events packed
together in the slowPathInputEvents field.

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

slowPathInputEvents (variable): A collection of Slow-Path Input Events (section 2.2.8.1.1.3.1.1)
to be processed by the server. The number of events present in this array is given by the
numEvents field.

2.2.8.1.1.3.1.1 Slow-Path Input Event (TS_INPUT_EVENT)

The TS_INPUT_EVENT structure is used to wrap event-specific information for all slow-path input
events.

-
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

eventTime

messageType slowPathInputData (variable)

eventTime (4 bytes): A 32-bit, unsigned integer. The 32-bit time stamp for the input event. This
value is ignored by the server.

messageType (2 bytes): A 16-bit, unsigned integer. The input event type.

Value Meaning

INPUT_EVENT_SYNC Indicates a Synchronize Event (section 2.2.8.1.1.3.1.1.5).
0x0000

INPUT_EVENT_UNUSED Indicates an Unused Event (section 2.2.8.1.1.3.1.1.6).
0x0002

163 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Value Meaning

INPUT_EVENT_SCANCODE | Indicates a Keyboard Event (section 2.2.8.1.1.3.1.1.1).
0x0004

INPUT_EVENT_UNICODE Indicates a Unicode Keyboard Event (section 2.2.8.1.1.3.1.1.2).
0x0005

INPUT_EVENT_MOUSE Indicates a Mouse Event (section 2.2.8.1.1.3.1.1.3).
0x8001

INPUT_EVENT_MOUSEX Indicates an Extended Mouse Event (section 2.2.8.1.1.3.1.1.4).
0x8002

slowPathInputData (variable): TS_KEYBOARD_EVENT, TS_UNICODE_KEYBOARD_EVENT,
TS_POINTER_EVENT, TS_POINTERX_EVENT, or TS_SYNC_EVENT. The actual contents of the slow-
path input event (sections 2.2.8.1.1.3.1.1.1 through 2.2.8.1.1.3.1.1.5).

2.2.8.1.1.3.1.1.1 Keyboard Event (TS_KEYBOARD_EVENT)

The TS_KEYBOARD_EVENT structure is a standard T.128 Keyboard Event ([T128] section 8.18.2). RDP
keyboard input is restricted to keyboard scancodes, unlike the code-point or virtual codes supported in
T.128 (a scancode is an 8-bit value specifying a key location on the keyboard). The server accepts a
scancode value and translates it into the correct character depending on the language locale and
keyboard layout used in the session.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

keyboardFlags keyCode

pad20ctets

keyboardFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the keyboard event.

Flag Meaning

KBDFLAGS_EXTENDED Indicates that the keystroke message contains an extended scancode. For
0x0100 enhanced 101-key and 102-key keyboards, extended keys include the right ALT
and right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN and ARROW keys in the clusters to the left of the
numeric keypad; and the Divide ("/") and ENTER keys in the numeric keypad.

KBDFLAGS_EXTENDED1 | Used to send keyboard events triggered by the PAUSE key.

0x0200 A PAUSE key press and release MUST be sent as the following sequence of
keyboard events:

» CTRL (0x1D) DOWN

» NUMLOCK (0x45) DOWN
= CTRL (0x1D) UP

» NUMLOCK (0x45) UP

The CTRL DOWN and CTRL UP events MUST both include the
KBDFLAGS_EXTENDEDL1 flag.

KBDFLAGS_DOWN Indicates that the key was down prior to this event.

164 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

Flag Meaning

0x4000
KBDFLAGS_RELEASE The absence of this flag indicates a key-down event, while its presence indicates a
0x8000 key-release event.

keyCode (2 bytes): A 16-bit, unsigned integer. The scancode of the key which triggered the event.

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.8.1.1.3.1.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)

The TS_UNICODE_KEYBOARD_EVENT structure is used to transmit a Unicode input code, as opposed
to a keyboard scancode. Support for the Unicode Keyboard Event is advertised in the Input Capability
Set (section 2.2.7.1.6).

1 2 3
0({1(2|3|4|5|6|7|8|9|0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1
keyboardFlags unicodeCode

pad20ctets

keyboardFlags (2 bytes): A 16-bit unsigned integer. The flags describing the Unicode keyboard
event.

Flag Meaning

KBDFLAGS_RELEASE | The absence of this flag indicates a key-down event, whereas its presence indicates
0x8000 a key-release event.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

pad20ctets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field MUST be ignored.

2.2.8.1.1.3.1.1.3 Mouse Event (TS_POINTER_EVENT)

The TS_POINTER_EVENT structure is a standard T.128 Keyboard Event ([T128] section 8.18.1). RDP
adds flags to deal with wheel mice and extended mouse buttons.

1 2 3
0({1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6[7|8|9|0(1|2|3(4|5|6[|7|8|9|0(1
pointerFlags xPos

yPos

pointerFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the pointer event.

Mouse wheel event:

Flag Meaning
PTRFLAGS_HWHEEL The event is a horizontal mouse wheel rotation. The only valid flags in a
0x0400 horizontal wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the

165/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

Flag Meaning

WheelRotationMask; all other pointer flags are ignored. This flag MUST NOT
be sent to a server that does not indicate support for horizontal mouse
wheel events in the Input Capability Set (section 2.2.7.1.6).

PTRFLAGS_WHEEL The event is a vertical mouse wheel rotation. The only valid flags in a
0x0200 vertical wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the
WheelRotationMask; all other pointer flags are ignored.

PTRFLAGS_WHEEL_NEGATIVE | The wheel rotation value (contained in the WheelRotationMask bit field) is

0x0100 negative and MUST be sign-extended before injection at the server.

WheelRotationMask The bit field describing the number of rotation units the mouse wheel was

OXO1FF rotated. The value is negative if the PTRFLAGS_WHEEL_NEGATIVE flag is
set.

If both PTRFLAGS_WHEEL and PTRFLAGS_HWHEEL are specified, then PTRFLAGS_WHEEL takes
precedence.

Mouse movement event:

Flag Meaning

PTRFLAGS_MOVE | Indicates that the mouse position MUST be updated to the location specified by the xPos
0x0800 and yPos fields.

Mouse button events:

Flag Meaning
PTRFLAGS_DOWN Indicates that a click event has occurred at the position specified by the xPos and
0x8000 yPos fields. The button flags indicate which button has been clicked and at least one

of these flags MUST be set.

PTRFLAGS_BUTTON1 | Mouse button 1 (left button) was clicked or released. If the PTRFLAGS_DOWN flag is
0x1000 set, then the button was clicked, otherwise it was released.

PTRFLAGS_BUTTONZ2 | Mouse button 2 (right button) was clicked or released. If the PTRFLAGS_DOWN flag
0x2000 is set, then the button was clicked, otherwise it was released.

PTRFLAGS_BUTTON3 | Mouse button 3 (middle button or wheel) was clicked or released. If the
0x4000 PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it was released.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

2.2.8.1.1.3.1.1.4 Extended Mouse Event (TS_POINTERX_EVENT)

The TS_POINTERX_EVENT structure has the same format as the
TS POINTER EVENT (section 2.2.8.1.1.3.1.1.3). The fields and possible field values are all the same,

166 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

except for the pointerFlags field. Support for the Extended Mouse Event is advertised in the Input
Capability Set (section 2.2.7.1.6).

0(1(2|3|4|5|6|7|8]|9

w

pointerFlags

xPos

yPos

pointerFlags (2 bytes): A 16-bit unsigned integer. The flags describing the extended mouse event.

one of these flags MUST be set.

Flag Meaning
PTRXFLAGS_DOWN Indicates that a click event has occurred at the position specified by the xPos and
0x8000 yPos fields. The button flags indicate which button has been clicked and at least

PTRXFLAGS_BUTTON1 | Extended mouse button 1 (also referred to as button 4) was clicked or released. If
0x0001 the PTRXFLAGS_DOWN flag is set, the button was clicked; otherwise, it was
released.

PTRXFLAGS_BUTTONZ2 | Extended mouse button 2 (also referred to as button 5) was clicked or released. If
0x0002 the PTRXFLAGS_DOWN flag is set, the button was clicked; otherwise, it was
released.

xPos (2 bytes): A 16-bit unsigned integer. The x-coordinate of the pointer.

yPos (2 bytes): A 16-bit unsigned integer. The y-coordinate of the pointer.

2.2.8.1.1.3.1.1.5 Synchronize Event (TS_SYNC_EVENT)

The TS_SYNC_EVENT structure is a standard T.128 Input Synchronize Event ([T128] section 8.18.6).
In RDP this event is used to synchronize the values of the toggle keys (for example, Caps Lock) and to
reset the server key state to all keys up. This event is sent by the client to communicate the state of
the toggle keys. The synchronize event SHOULD be followed by key-down events to communicate

which keyboard and mouse keys are down.

0(1|2|3(4|5|6|7|8]|9

e

2(3(4]|5

pad20ctets

toggleFlags

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

toggleFlags (4 bytes): A 32-bit, unsigned integer. Flags indicating the "on" status of the keyboard

toggle keys.

Flag

Meaning

TS_SYNC_SCROLL_LOCK
0x00000001

Indicates that the Scroll Lock indicator light SHOULD be on.

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

167 /417

http://go.microsoft.com/fwlink/?LinkId=90544

Flag Meaning

TS_SYNC_NUM_LOCK Indicates that the Num Lock indicator light SHOULD be on.
0x00000002

TS_SYNC_CAPS_LOCK Indicates that the Caps Lock indicator light SHOULD be on.
0x00000004

TS_SYNC_KANA_LOCK Indicates that the Kana Lock indicator light SHOULD be on.
0x00000008

2.2.8.1.1.3.1.1.6 Unused Event (TS_UNUSED_EVENT)

The TS_UNUSED_EVENT structure is sent by RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 clients if
the server erroneously did not indicate support for scancodes in the Input Capability Set
(TS _INPUT CAPABILITYSET) (section 2.2.7.1.6).

—
N
w

pad20ctets

pad4Octets (4 bytes): A 32-bit, unsigned integer. This field is padding, and the values in this field
MUST be ignored.

pad2O0ctets (2 bytes): A 32-bit, unsigned integer. This field is padding, and the values in this field
MUST be ignored.

2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)

The Fast-Path Input Event PDU is used to transmit input events from client to server.<32> Fast-path
revises client input packets from the first byte with the goal of improving bandwidth. The TPKT Header
([T123] section 8), X.224 Class 0 Data TPDU ([X224] section 13.7), and MCS Send Data Request
([T125] section 11.32) are replaced; the Security Header (section 2.2.8.1.1.2) is collapsed into the
fast-path input header, and the Share Data Header (section 2.2.8.1.1.1.2) is replaced by a new fast-
path format. The contents of the input notification events (section 2.2.8.1.1.3.1.1) are also changed
to reduce their size, particularly by removing or reducing headers. Support for fast-path input is
advertised in the Input Capability Set (section 2.2.7.1.6).

2 3
0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

e

fpInputHeader lengthl length2 (optional) fipsInformation (optional)

dataSignature (optional)

numEvents (optional)

fpInputEvents (variable)

168 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

fpInputHeader (1 byte): An 8-bit, unsigned integer. One-byte, bit-packed header. This byte
coincides with the first byte of the TPKT Header ([T123] section 8). Three pieces of information

are collapsed into this byte:

= Security flags

= Number of events in the fast-path input PDU

= Action code

The format of the fpInputHeader byte is described by the following bitmask diagram.

e

0(1|2|3(4|5|6|7|8|9|0(1]|2]|3

N
w

action| numEvents |secFla

action (2 bits): A 2-bit, unsigned integer that indicates whether the PDU is in fast-path or slow-

path format.

Value (2 bits)

Meaning

FASTPATH_INPUT_ACTION_FASTPATH
0x0

Indicates the PDU is a fast-path input PDU.

FASTPATH_INPUT_ACTION_X224
0x3

Indicates the presence of a TPKT Header initial version byte,
which indicates that the PDU is a slow-path input PDU (in this
case the full value of the initial byte MUST be 0x03).

numEvents (4 bits): A 4-bit, unsigned integer that collapses the number of fast-path input
events packed together in the fpInputEvents field into 4 bits if the number of events is in the
range 1 to 15. If the number of input events is greater than 15, then the numEvents bit field
in the fast-path header byte MUST be set to zero, and the numEvents optional field inserted
after the dataSignature field. This allows up to 255 input events in one PDU.

secFlags (2 bits): A 2-bit, unsigned integer that contains the flags describing the cryptographic

parameters of the PDU.

Flag (2 bits)

Meaning

FASTPATH_INPUT_SECURE_CHECKSUM
Ox1

Indicates that the MAC signature for the PDU was generated
using the "salted MAC generation" technique (section
5.3.6.1.1). If this bit is not set, then the standard technique
was used (sections 2.2.8.1.1.2.2 and 2.2.8.1.1.2.3).

FASTPATH_INPUT_ENCRYPTED
0x2

Indicates that the PDU contains an 8-byte MAC signature
after the optional length2 field (that is, the dataSignature
field is present) and the contents of the PDU are encrypted
using the negotiated encryption package (sections 5.3.2 and

5.3.6).

lengthl (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not
set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains the
overall PDU length (the length2 field is not present in this case). However, if the most significant
bit of the length1 field is set, then the overall PDU length is given by the low 7 bits of the length1l

[MS-RDPBCGR] - v20160714

169 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

field concatenated with the 8 bits of the length2 field, in big-endian order (the length2 field
contains the low-order bits).

length2 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not
set, then the length2 field is not present. If the most significant bit of the length1 field is set,
then the overall PDU length is given by the low 7 bits of the length1 field concatenated with the 8
bits of the length2 field, in big-endian order (the length2 field contains the low-order bits).

fipsInformation (4 bytes): Optional FIPS header information, present when the Encryption Method
selected by the server (sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_FIPS
(0x00000010). The Fast-Path FIPS Information structure is specified in section 2.2.8.1.2.1.

dataSignature (8 bytes): MAC generated over the packet using one of the techniques described in
section 5.3.6 (the FASTPATH_INPUT_SECURE_CHECKSUM flag, which is set in the
fpInputHeader field, describes the method used to generate the signature). This field MUST be
present if the FASTPATH_INPUT_ENCRYPTED flag is set in the fpInputHeader field.

numEvents (1 byte): An 8-bit, unsigned integer. The number of fast-path input events packed
together in the fpInputEvents field (up to 255). This field is present if the numEvents bit field in
the fast-path header byte is zero.

fpInputEvents (variable): An array of Fast-Path Input Event (section 2.2.8.1.2.2) structures to be
processed by the server. The number of events present in this array is given by the numEvents
bit field in the fast-path header byte, or by the numEvents field in the Fast-Path Input Event PDU
(if it is present).

2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)

The TS_FP_FIPS_INFO structure contains FIPS information for inclusion in a fast-path header.

e

2
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

w

length version padlen

length (2 bytes): A 16-bit, unsigned integer. The length of the FIPS Security Header (section
2.2.8.1.1.2.3). This field MUST be set to 0x0010 (16 bytes).

version (1 byte): An 8-bit, unsigned integer. The version of the FIPS Header. This field SHOULD be
set to TSFIPS_VERSION1 (0x01).

padlen (1 byte): An 8-bit, unsigned integer. The number of padding bytes of padding appended to
the end of the packet prior to encryption to make sure that the data to be encrypted is a multiple
of the 3DES block size (that is, a multiple of 8 because the block size is 64 bits).

2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT)

The TS_FP_INPUT_EVENT structure is used to describe the type and encapsulate the data for a fast-
path input event sent from client to server. All fast-path input events conform to this basic structure
(sections 2.2.8.1.2.2.1 t0 2.2.8.1.2.2.6).

[y

2
0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

w

eventHeader eventData (variable)

170/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

eventHeader (1 byte): An 8-bit, unsigned integer. One byte bit-packed event header. Two pieces of
information are collapsed into this byte:

= Fast-path input event type
= Flags specific to the input event

The format of the eventHeader field is described by the following bitmask diagram.

0(1/2|3(4|5|6(7(8|9(0(1|2|3(4|5|6|7|8|9(0(1]|2|3|4|5|6[7|8|9|0(1

eventFlags |eventCod

eventFlags (5 bits): A 5-bit, unsigned integer that contains flags specific to the input event.

eventCode (3 bits): A 3-bit, unsigned integer that specifies the type code of the input event.

Value (3 bits) Meaning
FASTPATH_INPUT_EVENT_SCANCODE Indicates a Fast-Path Keyboard

0x0 Event (section 2.2.8.1.2.2.1).
FASTPATH_INPUT_EVENT_MOUSE Indicates a Fast-Path Mouse

ox1 Event (section 2.2.8.1.2.2.3).
FASTPATH_INPUT_EVENT_MOUSEX Indicates a Fast-Path Extended Mouse
0x2 Event (section 2.2.8.1.2.2.4).
FASTPATH_INPUT_EVENT_SYNC Indicates a Fast-Path Synchronize

0x3 Event (section 2.2.8.1.2.2.5).
FASTPATH_INPUT_EVENT_UNICODE Indicates a Fast-Path Unicode Keyboard
Ox4 Event (section 2.2.8.1.2.2.2).
FASTPATH_INPUT_EVENT_QOE_TIMESTAMP | Indicates a Fast-Path Quality of Experience (QoE)
0x6 Timestamp Event (section 2.2.8.1.2.2.6).

eventData (variable): Optional and variable-length data specific to the input event.

2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT)

The TS_FP_KEYBOARD_EVENT structure is the fast-path variant of the
TS KEYBOARD EVENT (section 2.2.8.1.1.3.1.1.1).

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

eventHeader keyCode

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field described in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_SCANCODE (0). The eventFlags bitfield (5 bits in size)
contains flags describing the keyboard event.

171 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

5-Bit Codes Meaning

FASTPATH_INPUT_KBDFLAGS_RELEASE The absence of this flag indicates a key-down event, while its
0x01 presence indicates a key-release event.

FASTPATH_INPUT_KBDFLAGS_EXTENDED Indicates that the keystroke message contains an extended
0x02 scancode. For enhanced 101-key and 102-key keyboards,
extended keys include the right ALT and right CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE
UP, PAGE DOWN and ARROW keys in the clusters to the left of
the numeric keypad; and the Divide ("/") and ENTER keys in
the numeric keypad.

FASTPATH_INPUT_KBDFLAGS_EXTENDED1 | Used to send keyboard events triggered by the PAUSE key.

0x04 A PAUSE key press and release MUST be sent as the following
sequence of keyboard events:

» CTRL (0x1D) DOWN

» NUMLOCK (0x45) DOWN
= CTRL (0x1D) UP

» NUMLOCK (0x45) UP

The CTRL DOWN and CTRL UP events MUST both include the
FASTPATH_INPUT_KBDFLAGS_EXTENDED1 flag.

keyCode (1 byte): An 8-bit, unsigned integer. The scancode of the key which triggered the event.

2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event
(TS_FP_UNICODE_KEYBOARD_EVENT)

The TS_FP_UNICODE_KEYBOARD_EVENT structure is the fast-path variant of the
TS UNICODE KEYBOARD EVENT (section 2.2.8.1.1.3.1.1.2) structure. Support for the Unicode
Keyboard Event is advertised in the Input Capability Set (section 2.2.7.1.6).

-
N
w

0(1|/2|3(4|5|6|(7|8|9|0|1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6[7|8|9|0(1

eventHeader unicodeCode

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_UNICODE (4). The eventFlags bitfield (5 bits in size)
contains flags describing the keyboard event.

5-Bit Codes Meaning

FASTPATH_INPUT_KBDFLAGS_RELEASE | The absence of this flag indicates a key-down event, whereas its
0x01 presence indicates a key-release event.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)

The TS_FP_POINTER_EVENT structure is the fast-path variant of the
TS POINTER EVENT (section 2.2.8.1.1.3.1.1.3) structure.

172 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

eventHeader pointerFlags xPos

yPos

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_MOUSE (1). The eventFlags bitfield (5 bits in size)
MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the pointer event. The
possible flags are identical to those found in the pointerFlags field of the TS_POINTER_EVENT
structure.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT)

The TS_FP_POINTERX_EVENT structure is the fast-path variant of the
TS POINTERX EVENT (section 2.2.8.1.1.3.1.1.4) structure. Support for the Extended Mouse Event is
advertised in the Input Capability Set (section 2.2.7.1.6).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

eventHeader pointerFlags xPos

yPos

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_MOUSEX (2). The eventFlags bitfield (5 bits in size)
MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the pointer event. The
possible flags are identical to those found in the pointerFlags field of the TS_POINTERX_EVENT
structure.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer.

2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT)

The TS_FP_SYNC_EVENT structure is the fast-path variant of the
TS SYNC EVENT (section 2.2.8.1.1.3.1.1.5) structure.

173 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7(8|9(0(1]|2|3(4|5|6|7|8|9|0(1

eventHeader

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_SYNC (3). The eventFlags bitfield (5 bits in size)
contains flags indicating the "on" status of the keyboard toggle keys.

5-Bit Codes Meaning

FASTPATH_INPUT_SYNC_SCROLL_LOCK | Indicates that the Scroll Lock indicator light SHOULD be on.
0x01

FASTPATH_INPUT_SYNC_NUM_LOCK Indicates that the Num Lock indicator light SHOULD be on.
0x02

FASTPATH_INPUT_SYNC_CAPS_LOCK Indicates that the Caps Lock indicator light SHOULD be on.
0x04

FASTPATH_INPUT_SYNC_KANA_LOCK Indicates that the Kana Lock indicator light SHOULD be on.
0x08

2.2.8.1.2.2.6 Fast-Path Quality of Experience (QoE) Timestamp Event
(TS_FP_QOETIMESTAMP_EVENT)

The TS_FP_QOETIMESTAMP_EVENT structure is used to enable the calculation of Quality of Experience
(QoE) metrics. This event is sent solely for informational and debugging purposes and MUST NOT be
transmitted to the server if the TS_INPUT_FLAG_QOE_TIMESTAMPS (0x0200) flag was not received in
the Input Capability Set (section 2.2.7.1.6).

e

2 3
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

eventHeader timestamp

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_QOE_TIMESTAMP (6). The eventFlags bitfield (5 bits in
size) MUST be zeroed out.

timestamp (4 bytes): A 32-bit, unsigned integer. A client-generated timestamp, in milliseconds,
that indicates when the current input batch was encoded by the client. The value of the first

timestamp sent by the client implicitly defines the origin for all subsequent timestamps. The
server is responsible for handling roll-over of the timestamp.

2.2.8.2 Keyboard Status PDUs

2.2.8.2.1 Server Set Keyboard Indicators PDU

174 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

The Set Keyboard Indicators PDU is sent by the server to synchronize the state of the keyboard toggle
keys (Scroll Lock, Num Lock, and so on). It is similar in operation to the Client Synchronize Input

Event Notification (sections 2.2.8.1.1.3.1.1.5 and 2.2.8.1.2.2.5), but flows in the opposite direction.

-
N

0(1|/2|3(4|5|/6|7|8|9|0(1|2|3[{4|5|6|7|8|9]|0

w

tpktHeader

x224Data

mcsSDin (variable)

securityHeader (variable)

setKeyBdIndicatorsPduData (22 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Keyboard Indicators PDU Data (section 2.2.8.2.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

175/417

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

setKeyBdIndicatorsPduData (22 bytes): The actual contents of the Set Keyboard Indicators PDU,
as specified in section 2.2.8.2.1.1.

2.2.8.2.1.1 Set Keyboard Indicators PDU Data
(TS_SET_KEYBOARD_INDICATORS_PDU)

The TS_SET_KEYBOARD_INDICATORS_PDU structure contains the actual contents of the Set
Keyboard Indicators PDU (section 2.2.8.2.1). The contents of the LedFlags field is identical to the

flags used in the Client Synchronize Input Event Notification (section 2.2.8.1.1.3.1.1.5).

=
N
w

0({1(2|3|4(5|6|7(8|9|0|1(2|3|4|5|6|7[8|9]|0]1

shareDataHeader (18 bytes)

Unitld

LedFlags

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SET_KEYBOARD_INDICATORS (41).

Unitld (2 bytes): A 16-bit, unsigned integer. Hardware related value. This field SHOULD be ignored
by the client and as a consequence SHOULD be set to zero by the server.

LedFlags (2 bytes): A 16-bit, unsigned integer. The flags indicating the "on" status of the keyboard

toggle keys.

Flag

Meaning

TS_SYNC_SCROLL_LOCK
0x0001

Indicates that the Scroll Lock indicator light SHOULD be on.

TS_SYNC_NUM_LOCK
0x0002

Indicates that the Num Lock indicator light SHOULD be on.

TS_SYNC_CAPS_LOCK
0x0004

Indicates that the Caps Lock indicator light SHOULD be on.

TS_SYNC_KANA_LOCK
0x0008

Indicates that the Kana Lock indicator light SHOULD be on.

2.2.8.2.2 Server Set Keyboard IME Status PDU

The Set Keyboard IME Status PDU is used to request that the client set the state of the input method
editor (IME) and is sent by the server<33> when the user's session employs at least one IME. This
PDU is accepted and ignored by non-IME-aware clients.

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

176 / 417

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

setKeyBdImeStatusPduData (28 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Keyboard IME Status PDU Data (section 2.2.8.2.2.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

» Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

setKeyBdImeStatusPduData (28 bytes): The actual contents of the Set Keyboard IME Status PDU,
as specified in section 2.2.8.2.2.1.

2.2.8.2.2.1 Set Keyboard IME Status PDU Data
(TS_SET_KEYBOARD_IME_STATUS_PDU)

177 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The TS_SET_KEYBOARD_IME_STATUS_PDU structure contains the actual contents of the Set
Keyboard IME Status PDU (section 2.2.8.2.2). The ImeState and ImeConvMode fields are used as

input parameters to a Fujitsu Oyayubi-specific IME control function on Far East IME clients.

For more information on input method editors (IMEs), see [International], section "Input Method

Editors" in chapter 5.

112(3|4|5({6(7|8]|9

w

shareDataHeader (18 bytes)

Unitld

ImeState

ImeConvMode

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SET_KEYBOARD_IME_STATUS (45).

Unitld (2 bytes): A 16-bit, unsigned integer. The unit identifier for which the IME message is
intended. This field SHOULD be ignored by the client and as a consequence SHOULD be set to zero

by the server.

ImeState (4 bytes): A 32-bit, unsigned integer. Indicates the open or closed state of the IME.

Value Meaning

0x00000000

IME_STATE_CLOSED | The IME state is closed.

0x00000001

IME_STATE_OPEN The IME state is open.

ImeConvMode (4 bytes): A 32-bit, unsigned integer. Indicates the IME conversion mode.

Flag

Meaning

IME_CMODE_NATIVE
0x00000001

The input mode is native. If not set, the input mode is alphanumeric.

IME_CMODE_KATAKANA
0x00000002

The input mode is Katakana. If not set, the input mode is Hiragana.

IME_CMODE_FULLSHAPE
0x00000008

The input mode is full-width. If not set, the input mode is half-width.

IME_CMODE_ROMAN
0x00000010

The input mode is Roman.

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

178 /417

Flag

Meaning

IME_CMODE_CHARCODE
0x00000020

Character-code input is in effect.

IME_CMODE_HANJACONVERT
0x00000040

Hanja conversion mode is in effect.

IME_CMODE_SOFTKBD
0x00000080

A soft (on-screen) keyboard is being used.

IME_CMODE_NOCONVERSION
0x00000100

IME conversion is inactive (that is, the IME is closed).

IME_CMODE_EUDC
0x00000200

End-User Defined Character (EUDC) conversion mode is in effect.

IME_CMODE_SYMBOL
0x00000400

Symbol conversion mode is in effect.

IME_CMODE_FIXED
0x00000800

Fixed conversion mode is in effect.

2.2.9 Basic Output

2.2.9.1 Output PDU Packaging

2.2.9.1.1 Slow-Path (T.128) Format

2.2.9.1.1.1 Share Headers

The Share Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.1.

2.2.9.1.1.2 Security Headers

The Security Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.2.

2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)

The Slow-Path Graphics Update PDU is used to transmit graphics updates from server to client.

2/13|4|5|6|7|8|9|0(1(2(3[(4|5|/6|7|8|9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

179 /417

slowPathGraphicsUpdates (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Slow-Path Graphics Update (section 2.2.9.1.1.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

slowPathGraphicsUpdates (variable): A variable-length array of Slow-Path Graphics Updates
(section 2.2.9.1.1.3.1) to be processed by the client.

2.2.9.1.1.3.1 Slow-Path Graphics Update (TS_GRAPHICS_UPDATE)

The TS_GRAPHICS_UPDATE structure is used to describe the type and encapsulate the data for a
slow-path graphics update sent from server to client.<34> All slow-path graphic updates conform to
this basic structure (section 2.2.9.1.1.3.1.1).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

updateType

180 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

updateData (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

updateType (2 bytes): A 16-bit, unsigned integer. Type of the graphics update.

Value Meaning

UPDATETYPE_ORDERS Indicates an Orders Update ([MS-RDPEGDI] section 2.2.2.2).
0x0000

UPDATETYPE_BITMAP Indicates a Bitmap Graphics Update (section 2.2.9.1.1.3.1.2).
0x0001

UPDATETYPE_PALETTE Indicates a Palette Update (section 2.2.9.1.1.3.1.1).

0x0002

UPDATETYPE_SYNCHRONIZE | Indicates a Synchronize Update (section 2.2.9.1.1.3.1.3).
0x0003

updateData (variable): Variable-length data specific to the graphics update.

2.2,9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE)

The TS_UPDATE_PALETTE structure contains global palette information that covers the entire session's
palette ([T128] section 8.18.6). Only 256-color palettes are sent in this update.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

paletteData (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

paletteData (variable): The actual palette update data, as specified in section 2.2.9.1.1.3.1.1.1.

2.2.9.1.1.3.1.1.1 Palette Update Data (TS_UPDATE_PALETTE_DATA)

181 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
http://go.microsoft.com/fwlink/?LinkId=90544

The TS_UPDATE_PALETTE_DATA encapsulates the palette data that defines a Palette
Update (section 2.2.9.1.1.3.1.1).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

updateType pad20ctets

numberColors

paletteEntries (variable)

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_PALETTE (0x0002).

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

numberColors (4 bytes): A 32-bit, unsigned integer. The number of RGB triplets in the paletteData
field. This field MUST be set to 256 (the number of entries in an 8 bpp palette).

paletteEntries (variable): An array of palette entries in RGB triplet format (section
2.2.9.1.1.3.1.1.2) packed on byte boundaries. The number of triplet entries is given by the
numbercColors field.

2.2,9.1.1.3.1.1.2 RGB Palette Entry (TS_PALETTE_ENTRY)

The TS_PALETTE_ENTRY structure is used to express the red, green, and blue components necessary
to reproduce a color in the additive RGB space.

=

2
0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

w

red green blue

red (1 byte): An 8-bit, unsigned integer. The red RGB color component.
green (1 byte): An 8-bit, unsigned integer. The green RGB color component.

blue (1 byte): An 8-bit, unsigned integer. The blue RGB color component.

2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP)

The TS_UPDATE_BITMAP structure contains one or more rectangular clippings taken from the server-
side screen frame buffer ([T128] section 8.17).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

shareDataHeader (18 bytes)

182 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

bitmapData (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

bitmapData (variable): The actual bitmap update data, as specified in section 2.2.9.1.1.3.1.2.1.

2.2.9.1.1.3.1.2.1 Bitmap Update Data (TS_UPDATE_BITMAP_DATA)

The TS_UPDATE_BITMAP_DATA structure encapsulates the bitmap data that defines a Bitmap
Update (section 2.2.9.1.1.3.1.2).

—
N
w

0[{1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

updateType numberRectangles

rectangles (variable)

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_BITMAP (0x0001).

numberRectangles (2 bytes): A 16-bit, unsigned integer. The number of screen rectangles present
in the rectangles field.

rectangles (variable): Variable-length array of TS BITMAP DATA (section 2.2.9.1.1.3.1.2.2)
structures, each of which contains a rectangular clipping taken from the server-side screen frame
buffer. The number of screen clippings in the array is specified by the numberRectangles field.

2.2.9.1.1.3.1.2.2 Bitmap Data (TS_BITMAP_DATA)

The TS_BITMAP_DATA structure wraps the bitmap data for a screen area rectangle containing a
clipping taken from the server-side screen frame buffer.

0123456789(1)123456789512345678981
destlLeft destTop
destRight destBottom
width height
bitsPerPixel flags
bitmapLength bitmapComprHdr (optional)

183 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

bitmapDataStream (variable)

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the rectangle.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the rectangle.

destRight (2 bytes): A 16-bit, unsigned integer. Inclusive right bound of the rectangle.
destBottom (2 bytes): A 16-bit, unsigned integer. Inclusive bottom bound of the rectangle.
width (2 bytes): A 16-bit, unsigned integer. The width of the rectangle.

height (2 bytes): A 16-bit, unsigned integer. The height of the rectangle.

bitsPerPixel (2 bytes): A 16-bit, unsigned integer. The color depth of the rectangle data in bits-per-
pixel.

flags (2 bytes): A 16-bit, unsigned integer. The flags describing the format of the bitmap data in the
bitmapDataStream field.

Flags Meaning
BITMAP_COMPRESSION Indicates that the bitmap data is compressed. The bitmapComprHdr
0x0001 field MUST be present if the NO_BITMAP_COMPRESSION_HDR

(0x0400) flag is not set.

NO_BITMAP_COMPRESSION_HDR | Indicates that the bitmapComprHdr field is not present (removed for
0x0400 bandwidth efficiency to save 8 bytes).

bitmapLength (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data in the
bitmapComprHdr and bitmapDataStream fields.

bitmapComprHdr (8 bytes): Optional Compressed Data Header structure (section 2.2.9.1.1.3.1.2.3)
specifying the bitmap data in the bitmapDataStream. This field MUST be present if the
BITMAP_COMPRESSION (0x0001) flag is present in the flags field, but the
NO_BITMAP_COMPRESSION_HDR (0x0400) flag is not.

bitmapDataStream (variable): A variable-length array of bytes describing a bitmap image. Bitmap
data is either compressed or uncompressed, depending on whether the BITMAP_COMPRESSION
flag is present in the flags field. Uncompressed bitmap data is formatted as a bottom-up, left-to-
right series of pixels. Each pixel is a whole number of bytes. Each row contains a multiple of four
bytes (including up to three bytes of padding, as necessary). Compressed bitmaps not in 32 bpp
format are compressed using Interleaved RLE and encapsulated in an RLE Compressed Bitmap
Stream structure (section 2.2.9.1.1.3.1.2.4), while compressed bitmaps at a color depth of 32 bpp
are compressed using RDP 6.0 Bitmap Compression and stored inside an RDP 6.0 Bitmap
Compressed Stream structure ([MS-RDPEGDI] section 2.2.2.5.1).

2.2.9.1.1.3.1.2.3 Compressed Data Header (TS_CD_HEADER)

The TS_CD_HEADER structure is used to describe compressed bitmap data.

184 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

cbCompFirstRowSize cbCompMainBodySize

cbScanWidth cbUncompressedSize

cbCompFirstRowSize (2 bytes): A 16-bit, unsigned integer. The field MUST be set to 0x0000.

cbCompMainBodySize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the compressed
bitmap data (which follows this header).

cbScanWidth (2 bytes): A 16-bit, unsigned integer. The width of the bitmap (which follows this
header) in pixels (this value MUST be divisible by 4).

cbUncompressedSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the bitmap data
(which follows this header) after it has been decompressed.

2.2.9.1.1.3.1.2.4 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)

The RLE_BITMAP_STREAM structure contains a stream of bitmap data compressed using Interleaved
Run-Length Encoding (RLE). Bitmap data compressed by the server MUST follow a Compressed Data
Header (section 2.2.9.1.1.3.1.2.3) structure unless the exclusion of this header has been specified in
the General Capability Set (section 2.2.7.1.1).

A compressed bitmap is sent as a series of compression orders that instruct the decoder how to
reassemble a compressed bitmap (a particular bitmap can have many valid compressed
representations). A compression order consists of an order header, followed by an optional encoded
run length, followed by optional data associated with the compression order. Some orders require the
decoder to refer to the previous scanline of bitmap data and because of this fact the first scanline
sometimes requires special cases for decoding.

Standard Compression Orders begin with a one-byte order header. The high order bits of this header
contain a code identifier, while the low order bits store the unsigned length of the associated run
(unless otherwise specified). There are two forms of Standard Compression Orders:

= The regular form contains a 3-bit code identifier and a 5-bit run length.
= The lite form contains a 4-bit code identifier and a 4-bit run length.

For both the regular and lite forms a run length of zero indicates an extended run (a MEGA run),
where the byte following the order header contains the encoded length of the associated run. The
encoded run length is calculated using the following formula (unless otherwise specified):

EncodedMegaRunLength = RunLength - (MaximumNonMegaRunLength + 1)

The maximum run length that can be stored in a non-MEGA regular order is 31, while a non-MEGA lite
order can only store a maximum run length of 15.

Extended Compression Orders begin with a one-byte order header which contains an 8-bit code
identifier. There are two types of Extended Compression Orders:

= The MEGA_MEGA type stores the unsigned length of the associated run in the two bytes following
the order header (in little-endian order).

= The single-byte type is used to encode short, commonly occurring foreground/background
sequences and single black or white pixels.

185/417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Pseudo-code describing how to decompress a compressed bitmap stream can be found in section
3.1.9.

w

1 2
0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

rleCompressedBitmapStream (variable)

rleCompressedBitmapStream (variable): An array of compression codes describing compressed
structures in the bitmap.

Background Run Orders

A Background Run Order encodes a run of pixels where each pixel in the run matches the
uncompressed pixel on the previous scanline. If there is no previous scanline then each pixel in the
run MUST be black.

When encountering back-to-back background runs, the decompressor MUST write a one-pixel
foreground run to the destination buffer before processing the second background run if both runs
occur on the first scanline or after the first scanline (if the first run is on the first scanline, and the
second run is on the second scanline, then a one-pixel foreground run MUST NOT be written to the
destination buffer). This one-pixel foreground run is counted in the length of the run.

The run length encodes the number of pixels in the run. There is no data associated with Background
Run Orders.

Code Identifier Meaning
REGULAR_BG_RUN The compression order encodes a regular-form background run. The run length is stored
0x0 in the five low-order bits of the order header byte. If this value is zero, then the run

length is encoded in the byte following the order header and MUST be incremented by
32 to give the final value.

MEGA_MEGA_BG_RUN | The compression order encodes a MEGA_MEGA background run. The run length is stored
OXFO in the two bytes following the order header (in little-endian format).

Foreground Run Orders

A Foreground Run Order encodes a run of pixels where each pixel in the run matches the
uncompressed pixel on the previous scanline XOR'd with the current foreground color. The initial
foreground color MUST be white. If there is no previous scanline, then each pixel in the run MUST be
set to the current foreground color.

The run length encodes the number of pixels in the run.

If the order is a "set" variant, then in addition to encoding a run of pixels, the order also encodes a
new foreground color (in little-endian format) in the bytes following the optional run length. The
current foreground color MUST be updated with the new value before writing the run to the
destination buffer.

Code Identifier Meaning
REGULAR_FG_RUN The compression order encodes a regular-form foreground run. The run length is
0x1 stored in the five low-order bits of the order header byte. If this value is zero, then

the run length is encoded in the byte following the order header and MUST be
incremented by 32 to give the final value.

186 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Code Identifier Meaning

MEGA_MEGA_FG_RUN The compression order encodes a MEGA_MEGA foreground run. The run length is
OxF1 stored in the two bytes following the order header (in little-endian format).
LITE_SET_FG_FG_RUN The compression order encodes a "set" variant lite-form foreground run. The run
0xC length is stored in the four low-order bits of the order header byte. If this value is

zero, then the run length is encoded in the byte following the order header and
MUST be incremented by 16 to give the final value.

MEGA_MEGA_SET_FG_RUN | The compression order encodes a "set" variant MEGA_MEGA foreground run. The
OxF6 run length is stored in the two bytes following the order header (in little-endian
format).

Dithered Run Orders

A Dithered Run Order encodes a run of pixels which is composed of two alternating colors. The two
colors are encoded (in little-endian format) in the bytes following the optional run length.

The run length encodes the number of pixel-pairs in the run (not pixels).

Code Identifier Meaning
LITE_DITHERED_RUN The compression order encodes a lite-form dithered run. The run length is stored
OxE in the four low-order bits of the order header byte. If this value is zero, then the

run length is encoded in the byte following the order header and MUST be
incremented by 16 to give the final value.

MEGA_MEGA_DITHERED_RUN | The compression order encodes a MEGA_MEGA dithered run. The run length is
OXF8 stored in the two bytes following the order header (in little-endian format).

Color Run Orders

A Color Run Order encodes a run of pixels where each pixel is the same color. The color is encoded (in
little-endian format) in the bytes following the optional run length.

The run length encodes the number of pixels in the run.

Code Identifier Meaning
REGULAR_COLOR_RUN The compression order encodes a regular-form color run. The run length is stored in
0x3 the five low-order bits of the order header byte. If this value is zero, then the run

length is encoded in the byte following the order header and MUST be incremented
by 32 to give the final value.

MEGA_MEGA_COLOR_RUN | The compression order encodes a MEGA_MEGA color run. The run length is stored in
OxF3 the two bytes following the order header (in little-endian format).

Foreground / Background Image Orders

A Foreground/Background Image Order encodes a binary image where each pixel in the image that is
not on the first scanline fulfills exactly one of the following two properties:

(a) The pixel matches the uncompressed pixel on the previous scanline XOR'ed with the current
foreground color.

(b) The pixel matches the uncompressed pixel on the previous scanline.

If the pixel is on the first scanline then it fulfills exactly one of the following two properties:

187 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

(c) The pixel is the current foreground color.
(d) The pixel is black.

The binary image is encoded as a sequence of byte-sized bitmasks which follow the optional run
length (the last bitmask in the sequence can be smaller than one byte in size). If the order is a "set"
variant then the bitmasks MUST follow the bytes which specify the new foreground color. Each bit in
the encoded bitmask sequence represents one pixel in the image. A bit that has a value of 1
represents a pixel that fulfills either property (a) or (c), while a bit that has a value of 0 represents a
pixel that fulfills either property (b) or (d). The individual bitmasks MUST each be processed from the
low-order bit to the high-order bit.

The run length encodes the number of pixels in the run.

If the order is a "set" variant, then in addition to encoding a binary image, the order also encodes a
new foreground color (in little-endian format) in the bytes following the optional run length. The
current foreground color MUST be updated with the new value before writing the run to the
destination buffer.

Code Identifier Meaning
REGULAR_FGBG_IMAGE The compression order encodes a regular-form foreground/background image.
0x2 The run length is encoded in the five low-order bits of the order header byte

and MUST be multiplied by 8 to give the final value. If this value is zero, then
the run length is encoded in the byte following the order header and MUST be
incremented by 1 to give the final value.

MEGA_MEGA_FGBG_IMAGE The compression order encodes a MEGA_MEGA foreground/background image.

OxF2 The run length is stored in the two bytes following the order header (in little-
endian format).

LITE_SET_FG_FGBG_IMAGE The compression order encodes a "set" variant lite-form

0xD foreground/background image. The run length is encoded in the four low-

order bits of the order header byte and MUST be multiplied by 8 to give the
final value. If this value is zero, then the run length is encoded in the byte

following the order header and MUST be incremented by 1 to give the final

value.

MEGA_MEGA_SET_FGBG_IMAGE | The compression order encodes a "set" variant MEGA_MEGA
OxF7 foreground/background image. The run length is stored in the two bytes
following the order header (in little-endian format).

Color Image Orders
A Color Image Order encodes a run of uncompressed pixels.

The run length encodes the number of pixels in the run. So, to compute the actual number of bytes
which follow the optional run length, the run length MUST be multiplied by the color depth (in bits-
per-pixel) of the bitmap data.

Code Identifier Meaning
REGULAR_COLOR_IMAGE The compression order encodes a regular-form color image. The run length is
0x4 stored in the five low-order bits of the order header byte. If this value is zero,

then the run length is encoded in the byte following the order header and MUST
be incremented by 32 to give the final value.

MEGA_MEGA_COLOR_IMAGE | The compression order encodes a MEGA_MEGA color image. The run length is
OxF4 stored in the two bytes following the order header (in little-endian format).

Special Orders

188 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Code Identifier Meaning

SPECIAL_FGBG_1 | The compression order encodes a foreground/background image with an 8-bit bitmask of
0xF9 0x03.

SPECIAL_FGBG_2 | The compression order encodes a foreground/background image with an 8-bit bitmask of
OxFA 0x05.

WHITE The compression order encodes a single white pixel.
OxFD
BLACK The compression order encodes a single black pixel.
OxFE
2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC)

The TS_UPDATE_SYNC structure is an artifact of the T.128 protocol ([T128] section 8.6.2) and
SHOULD be ignored.

0[{1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

updateType

pad20ctets

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_SYNCHRONIZE (0x0003).

pad20ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU)

The Pointer Update PDU is sent from server to client and is used to convey pointer information,
including pointers' bitmap images, use of system or hidden pointers, use of cached cursors and
position updates.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

189 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544

x224Data mcsSDin (variable)

securityHeader (variable)

shareDataHeader (18 bytes)

messageType

pad20ctets pointerAttributeData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and the Pointer Update PDU data.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_POINTER (27).

190/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

messageType (2 bytes): A 16-bit, unsigned integer. Type of pointer update.

Value Meaning

TS_PTRMSGTYPE_SYSTEM Indicates a System Pointer Update (section 2.2.9.1.1.4.3).
0x0001

TS_PTRMSGTYPE_POSITION | Indicates a Pointer Position Update (section 2.2.9.1.1.4.2).
0x0003

TS_PTRMSGTYPE_COLOR Indicates a Color Pointer Update (section 2.2.9.1.1.4.4).
0x0006

TS_PTRMSGTYPE_CACHED Indicates a Cached Pointer Update (section 2.2.9.1.1.4.6).
0x0007

TS_PTRMSGTYPE_POINTER Indicates a New Pointer Update (section 2.2.9.1.1.4.5).
0x0008

T.128 Monochrome Pointer updates ([T128] section 8.14.2) are not used in RDP and are not
planned for a future version. Monochrome pointers are translated into 24 bpp cursors using the
Color Pointer Update (section 2.2.9.1.1.4.4) when the New Pointer Update (section 2.2.9.1.1.4.5)
is not supported, or sent as 1 bpp using the New Pointer Update.

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pointerAttributeData (variable): A Pointer Position Update (section 2.2.9.1.1.4.2), System Pointer
Update (section 2.2.9.1.1.4.3), Color Pointer Update (section 2.2.9.1.1.4.4), New Pointer Update
(section 2.2.9.1.1.4.5), or Cached Pointer Update (section 2.2.9.1.1.4.6). The actual contents of
the slow-path pointer update.

2.2.9.1.1.4.1 Point (TS_POINT16)

The TS_POINT16 structure specifies a point relative to the top-left corner of the server's desktop.

-
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

xPos yPos

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate relative to the top-left corner of the
server's desktop.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate relative to the top-left corner of the
server's desktop.

2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE)

The TS_POINTERPOSATTRIBUTE structure is used to indicate that the client pointer MUST be moved to
the specified position relative to the top-left corner of the server's desktop ([T128] section 8.14.4).

—
N
w

0(1|2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6[|7|8|9|0(1

position

191 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

position (4 bytes): Point (section 2.2.9.1.1.4.1) structure containing the new x-coordinates and y-
coordinates of the pointer.

2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE)

The TS_SYSTEMPOINTERATTRIBUTE structure is used to hide the pointer or to set its shape to the
operating system default ([T128] section 8.14.1).

-
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

systemPointerType

systemPointerType (4 bytes): A 32-bit, unsigned integer. The type of system pointer.

Value Meaning
SYSPTR_NULL The hidden pointer.
0x00000000

SYSPTR_DEFAULT | The default system pointer.
0x00007F00

2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)

The TS_COLORPOINTERATTRIBUTE structure represents a regular T.128 24 bpp color pointer, as
specified in [T128] section 8.14.3. This pointer update is used for both monochrome and color pointers
in RDP.

0123456789(1)123456789312345678931
cachelndex hotSpot
width
height lengthAndMask
lengthXorMask xorMaskData (variable)

andMaskData (variable)

pad (optional)

cachelIndex (2 bytes): A 16-bit, unsigned integer. The zero-based cache entry in the pointer cache
in which to store the pointer image. The number of cache entries is specified using the Pointer
Capability Set (section 2.2.7.1.5).

192 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

hotSpot (4 bytes): Point (section 2.2.9.1.1.4.1) structure containing the x-coordinates and y-
coordinates of the pointer hotspot.

width (2 bytes): A 16-bit, unsigned integer. The width of the pointer in pixels. The maximum
allowed pointer width is 96 pixels if the client indicated support for large pointers by setting the
LARGE_POINTER_FLAG (0x00000001) in the Large Pointer Capability Set (section 2.2.7.2.7). If
the LARGE_POINTER_FLAG was not set, the maximum allowed pointer width is 32 pixels.

height (2 bytes): A 16-bit, unsigned integer. The height of the pointer in pixels. The maximum
allowed pointer height is 96 pixels if the client indicated support for large pointers by setting the
LARGE_POINTER_FLAG (0x00000001) in the Large Pointer Capability Set (section 2.2.7.2.7). If
the LARGE_POINTER_FLAG was not set, the maximum allowed pointer height is 32 pixels.

lengthAndMask (2 bytes): A 16-bit, unsigned integer. The size in bytes of the andMaskData field.
lengthXorMask (2 bytes): A 16-bit, unsigned integer. The size in bytes of the xorMaskData field.

xorMaskData (variable): A variable-length array of bytes. Contains the 24-bpp, bottom-up XOR
mask scan-line data. The XOR mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 3x3 pixel cursor is being sent, then each scan-line will consume 10 bytes (3
pixels per scan-line multiplied by 3 bytes per pixel, rounded up to the next even number of bytes).

andMaskData (variable): A variable-length array of bytes. Contains the 1-bpp, bottom-up AND
mask scan-line data. The AND mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 7x7 pixel cursor is being sent, then each scan-line will consume 2 bytes (7 pixels
per scan-line multiplied by 1 bpp, rounded up to the next even number of bytes).

pad (1 byte): An optional 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)

The TS_POINTERATTRIBUTE structure is used to send pointer data at an arbitrary color depth.
Support for the New Pointer Update is advertised in the Pointer Capability Set (section 2.2.7.1.5).

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

xorBpp colorPtrAttr (variable)

xorBpp (2 bytes): A 16-bit, unsigned integer. The color depth in bits-per-pixel of the XOR mask
contained in the colorPtrAttr field.

colorPtrAttr (variable): Encapsulated Color Pointer Update (section 2.2.9.1.1.4.4) structure which
contains information about the pointer. The Color Pointer Update fields are all used, as specified in
section 2.2.9.1.1.4.4; however color XOR data is presented in the color depth described in the
xorBpp field (for 8 bpp, each byte contains one palette index; for 4 bpp, there are two palette
indices per byte).

2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)

The TS_CACHEDPOINTERATTRIBUTE structure is used to instruct the client to change the current
pointer shape to one already present in the pointer cache.

193 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

cachelndex

cachelIndex (2 bytes): A 16-bit, unsigned integer. A zero-based cache entry containing the cache
index of the cached pointer to which the client's pointer MUST be changed. The pointer data MUST
have already been cached using either the Color Pointer Update (section 2.2.9.1.1.4.4) or New
Pointer Update (section 2.2.9.1.1.4.5).

2.2.9.1.1.5 Server Play Sound PDU

The Play Sound PDU instructs the client to play a "beep" sound.

1 2 3
0({1|2|3(4|5|6|7|8|9|0|1|2|3(|4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9|0(1
tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

playSoundPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Play Sound PDU Data (section 2.2.9.1.1.5.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

194 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

playSoundPduData (26 bytes): The actual contents of the Play Sound PDU, as specified in section
2.2.9.1.1.5.1.

2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA)

The TS_PLAY_SOUND_PDU_DATA structure contains the contents of the Play Sound PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) and two fields.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareDataHeader (18 bytes)

duration

frequency

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_PLAY_SOUND (34).

duration (4 bytes): A 32-bit, unsigned integer. Duration of the beep the client MUST play.

frequency (4 bytes): A 32-bit, unsigned integer. Frequency of the beep the client MUST play.

2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)

Fast-path revises server output packets from the first byte with the goal of improving bandwidth. The
TPKT Header ([T123] section 8), X.224 Class 0 Data TPDU ([X224] section 13.7), and MCS Send Data
Indication ([T125] section 11.33) are replaced; the Security Header (section 2.2.8.1.1.2) is collapsed
into the fast-path output header; and the Share Data Header (section 2.2.8.1.1.1.2) is replaced by a
new fast-path format. The contents of the graphics and pointer updates (sections 2.2.9.1.1.3 and
2.2.9.1.1.4) are also changed to reduce their size, particularly by removing or reducing headers.
Support for fast-path output is advertised in the General Capability Set (section 2.2.7.1.1).

195 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

1 2 3
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

fpOutputHeader lengthl length2 (optional) fipsInformation (optional)

dataSignature (optional)

fpOutputUpdates
(variable)

fpOutputHeader (1 byte): An 8-bit, unsigned integer. One-byte, bit-packed header. This byte
coincides with the first byte of the TPKT Header ([T123] section 8). Two pieces of information are
collapsed into this byte:

= Security flags
= Action code

The format of the fpOutputHeader byte is described by the following bitmask diagram.

0[{1(2|3|4|5|6|7|8|9(0(1({2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1

action| reserved |[secFla

action (2 bits): A 2-bit, unsigned integer that indicates whether the PDU is in fast-path or slow-
path format.

Value (2 bits) Meaning

FASTPATH_OUTPUT_ACTION_FASTPATH | Indicates that the PDU is a fast-path output PDU.

0x0
FASTPATH_OUTPUT_ACTION_X224 Indicates the presence of a TPKT Header ([T123] section 8)
0x3 initial version byte which indicates that the PDU is a slow-

path output PDU (in this case the full value of the initial byte
MUST be 0x03).

reserved (4 bits): A 4-bit, unsigned integer that is unused and reserved for future use. This field
MUST be set to zero.

secFlags (2 bits): A 2-bit, unsigned integer that contains flags describing the cryptographic
parameters of the PDU.

Flag (2 bits) Meaning

FASTPATH_OUTPUT_SECURE_CHECKSUM | Indicates that the MAC signature for the PDU was

ox1 generated using the "salted MAC generation" technique
(section 5.3.6.1.1). If this bit is not set, then the standard
technique was used (sections 2.2.8.1.1.2.2 and
2.2.8.1.1.2.3).

FASTPATH_OUTPUT_ENCRYPTED Indicates that the PDU contains an 8-byte MAC signature

196 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag (2 bits) Meaning

0x2 after the optional length2 field (that is, the
dataSignature field is present), and the contents of the
PDU are encrypted using the negotiated encryption
package (sections 5.3.2 and 5.3.6).

lengthl (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not
set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains the
overall PDU length (the length2 field is not present in this case). However, if the most significant
bit of the length1 field is set, then the overall PDU length is given by the low 7 bits of the
length1 field concatenated with the 8 bits of the length2 field, in big-endian order (the length2
field contains the low-order bits).

length2 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not
set, then the length2 field is not present. If the most significant bit of the length1 field is set,
then the overall PDU length is given by the low 7 bits of the length1 field concatenated with the 8
bits of the length2 field, in big-endian order (the length2 field contains the low-order bits).

fipsInformation (4 bytes): Optional FIPS header information, present when the Encryption Method
selected by the server (sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_FIPS
(0x00000010). The Fast-Path FIPS Information structure is specified in section 2.2.8.1.2.1.

dataSignature (8 bytes): MAC generated over the packet using one of the techniques specified in
section 5.3.6 (the FASTPATH_OUTPUT_SECURE_CHECKSUM flag, which is set in the
fpOutputHeader field, describes the method used to generate the signature). This field MUST be
present if the FASTPATH_OUTPUT_ENCRYPTED flag is set in the fpOutputHeader field.

fpOutputUpdates (variable): An array of Fast-Path Update (section 2.2.9.1.2.1) structures to be
processed by the client.

2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)

The TS_FP_UPDATE structure is used to describe and encapsulate the data for a fast-path update sent
from server to client. All fast-path updates conform to this basic structure (sections 2.2.9.1.2.1.1 to
2.2.9.1.2.1.10).

1 2 3
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

compressionFlags
(optional)

updateHeader size

updateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. Three pieces of information are collapsed into
this byte:

= Fast-path update type
= Fast-path fragment sequencing
= Compression usage indication

The format of the updateHeader byte is described by the following bitmask diagram.

197 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

1/2(3|4|5(6(7|8|9(0|1]2]3

updateCode

fragm
entati
on

compr
ession

updateCode (4 bits): A 4-bit, unsigned integer that specifies the type code of the update.

Value (4 bits)

Meaning

FASTPATH_UPDATETYPE_ORDERS
0x0

Indicates a Fast-Path Orders Update ([MS-RDPEGDI
section 2.2.2.2).

FASTPATH_UPDATETYPE_BITMAP
0Ox1

2.2.9.1.2.1.2).

Indicates a Fast-Path Bitmap Update (section

FASTPATH_UPDATETYPE_PALETTE
0x2

Indicates a Fast-Path Palette Update (section
2.2.9.1.2.1.1).

FASTPATH_UPDATETYPE_SYNCHRONIZE
0x3

Indicates a Fast-Path Synchronize Update (section
2.2.9.1.2.1.3).

FASTPATH_UPDATETYPE_SURFCMDS
0x4

Indicates a Fast-Path Surface Commands Update (section
2.2.9.1.2.1.10).

FASTPATH_UPDATETYPE_PTR_NULL
0x5

Indicates a Fast-Path System Pointer Hidden Update
(section 2.2.9.1.2.1.5).

FASTPATH_UPDATETYPE_PTR_DEFAULT
0x6

Indicates a Fast-Path System Pointer Default Update
(section 2.2.9.1.2.1.6).

FASTPATH_UPDATETYPE_PTR_POSITION
0x8

Indicates a Fast-Path Pointer Position Update (section
2.2.9.1.2.1.4).

FASTPATH_UPDATETYPE_COLOR
0x9

Indicates a Fast-Path Color Pointer Update (section
2.2.9.1.2.1.7).

FASTPATH_UPDATETYPE_CACHED
OxA

Indicates a Fast-Path Cached Pointer Update (section
2.2.9.1.2.1.9).

FASTPATH_UPDATETYPE_POINTER
0xB

Indicates a Fast-Path New Pointer Update (section
2.2.9.1.2.1.8).

fragmentation (2 bits): A 2-bit, unsigned integer that specifies the fast-path fragment

sequencing information. Support for fast-path fragmentation is specified in the Multifragment
Update Capability Set (section 2.2.7.2.6).

Flag (2 bits)

Meaning

FASTPATH_FRAGMENT_SINGLE
0x0

The fast-path data in the updateData field is not part of a sequence
of fragments.

FASTPATH_FRAGMENT_LAST
0Ox1

The fast-path data in the updateData field contains the last
fragment in a sequence of fragments.

FASTPATH_FRAGMENT_FIRST

The fast-path data in the updateData field contains the first

[MS-RDPBCGR] - v20160714

198 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Flag (2 bits) Meaning

0x2 fragment in a sequence of fragments.

FASTPATH_FRAGMENT_NEXT The fast-path data in the updateData field contains the second or
0x3 subsequent fragment in a sequence of fragments.

compression (2 bits): A 2-bit, unsigned integer that specifies compression parameters.

Flag (2 bits) Meaning

FASTPATH_OUTPUT_COMPRESSION_USED | Indicates that the compressionFlags field is present.
0x2

compressionFlags (1 byte): An 8-bit, unsigned integer. Optional compression flags. The flags used
in this field are exactly the same as the flags used in the compressedType field in the Share
Data Header (section 2.2.8.1.1.1.2) and have the same meaning.

size (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data in the updateData field.

updateData (variable): Optional and variable-length data specific to the update.

2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)

The TS_FP_UPDATE_PALETTE structure is the fast-path variant of the
TS UPDATE PALETTE (section 2.2.9.1.1.3.1.1) structure.

w

1 2
0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

compressionFlags

(optional) size

updateHeader

paletteUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field, specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PALETTE (2).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

paletteUpdateData (variable): Variable-length palette data. Both slow-path and fast-path utilize
the same data format, a Palette Update Data (section 2.2.9.1.1.3.1.1.1) structure, to represent
this information.

2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP)

The TS_FP_UPDATE_BITMAP structure is the fast-path variant of the
TS UPDATE BITMAP (section 2.2.9.1.1.3.1.2) structure.

199 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

1 2
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

w

compressionFlags

size
(optional) 'z

updateHeader

bitmapUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_BITMAP (1).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

bitmapUpdateData (variable): Variable-length bitmap data. Both slow-path and fast-path utilize
the same data format, a Bitmap Update Data (section 2.2.9.1.1.3.1.2.1) structure, to represent
this information.

2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)

The TS_FP_UPDATE_SYNCHRONIZE structure is the fast-path variant of the
TS UPDATE SYNCHRONIZE PDU DATA (section 2.2.9.1.1.3.1.3) structure.

1 2 3
0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

compressionFlags size

updateHeader >
(optional)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field described in the Fast-Path Update (section 2.2.9.1.2.1). The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_SYNCHRONIZE (3).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field described in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)

The TS_FP_POINTERPOSATTRIBUTE structure is the fast-path variant of the
TS_POINTERPOSATTRIBUTE structure (section 2.2.9.1.1.4.2).

1 2 3
0(1|2|3(4|5|6[7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

compressionFlags

(optional) size

updateHeader

200/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

pointerPositionUpdateData

updateHeader (1 byte): The format of this field is the same as the updateHeader byte field
specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The updateCode bitfield (4 bits
in size) MUST be set to FASTPATH_UPDATETYPE_PTR_POSITION (8).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

pointerPositionUpdateData (4 bytes): Pointer coordinates. Both slow-path and fast-path utilize the
same data format, a Pointer Position Update (section 2.2.9.1.1.4.2) structure, to represent this
information.

2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update
(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)

The TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE structure is used to hide the pointer.

1 2 3
0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

compressionFlags

(optional) size

updateHeader

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_NULL (5).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.6 Fast-Path System Pointer Default Update
(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)

The TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE structure is used to set the shape of the pointer to
the operating system default.

1 2 3
0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

compressionFlags

size
(optional) 'z

updateHeader

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_DEFAULT (6).

201 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.
2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)

The TS_FP_COLORPOINTERATTRIBUTE structure is the fast-path variant of the
TS COLORPOINTERATTRIBUTE (section 2.2.9.1.1.4.4) structure.

N
w

1
0[{1(2|3|4|5|6|7|8|9|0(1(2[3[4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

updateHeader compressionFlags size
(optional)

colorPointerUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_COLOR (9).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

colorPointerUpdateData (variable): Color pointer data. Both slow-path and fast-path utilize the
same data format, a Color Pointer Update (section 2.2.9.1.1.4.4) structure, to represent this
information.

2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)

The TS_FP_POINTERATTRIBUTE structure is the fast-path variant of the
TS POINTERATTRIBUTE (section 2.2.9.1.1.4.5) structure.

1 2 3
0(1(2|3|4|5|6|7|8|9(0(1(2|3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

compressionFlags
(optional)

updateHeader size

newPointerUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_POINTER (11).

202 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

newPointerUpdateData (variable): Color pointer data at arbitrary color depth. Both slow-path and
fast-path utilize the same data format, a New Pointer Update (section 2.2.9.1.1.4.5) structure, to
represent this information.

2.2.9.1.2.1.9 Fast-Path Cached Pointer Update (TS_FP_CACHEDPOINTERATTRIBUTE)

The TS_FP_CACHEDPOINTERATTRIBUTE structure is the fast-path variant of the
TS CACHEDPOINTERATTRIBUTE (section 2.2.9.1.1.4.6) structure.

1 2 3
0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|(6[|7(8]9|0]|1

compressionFlags

(optional) size

updateHeader

cachedPointerUpdateData

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_CACHED (10).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

cachedPointerUpdateData (2 bytes): Cached pointer data. Both slow-path and fast-path utilize
the same data format, a Cached Pointer Update (section 2.2.9.1.1.4.6) structure, to represent this
information.

2.2.9.1.2.1.10 Fast-Path Surface Commands Update (TS_FP_SURFCMDS)

The TS_FP_SURFCMDS structure encapsulates one or more Surface Command (section
2.2.9.1.2.1.10.1) structures.

N
w

1
0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

updateHeader compressionFlags size
(optional)

surfaceCommands (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_SURFCMDS (4).

203/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
(section 2.2.9.1.2.1) structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

surfaceCommands (variable): An array of Surface Command (section 2.2.9.1.2.1.10.1) structures
containing a collection of commands to be processed by the client.

2.2.9.1.2.1.10.1 Surface Command (TS_SURFCMD)

The TS_SURFCMD structure is used to specify the Surface Command type and to encapsulate the data
for a Surface Command sent from a server to a client. All Surface Commands in section 2.2.9.2
conform to this structure.

=
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|(6[|7(8]9|0]|1

cmdType cmdData (variable)

cmdType (2 bytes): A 16-bit unsigned integer. Surface Command type.

Value Meaning

CMDTYPE_SET_SURFACE_BITS Indicates a Set Surface Bits Command (section 2.2.9.2.1).
0x0001

CMDTYPE_FRAME_MARKER Indicates a Frame Marker Command (section 2.2.9.2.3).
0x0004

CMDTYPE_STREAM_SURFACE_BITS | Indicates a Stream Surface Bits Command (section 2.2.9.2.2).
0x0006

cmdData (variable): Variable-length data specific to the Surface Command.

2.2.9.2 Surface Commands

Surface Commands all conform to the layout of the Surface Command (section 2.2.9.1.2.1.10.1)
structure and MUST be wrapped in a Fast-Path Surface Commands Update (section 2.2.9.1.2.1.10).

2.2.9.2.1 Set Surface Bits Command (TS_SURFCMD_SET_SURF_BITS)

The Set Surface Bits Command is used to transport encoded bitmap data destined for a rectangular
region of the primary drawing surface from an RDP server to an RDP client.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

cmdType destlLeft

destTop destRight

204 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

destBottom bitmapData (variable)

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_SET_SURFACE_BITS (0x0001).

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the destination rectangle that will
contain the decoded bitmap data.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the destination rectangle that will
contain the decoded bitmap data.

destRight (2 bytes): A 16-bit, unsigned integer. Exclusive right bound of the destination rectangle
that will contain the decoded bitmap data. This field SHOULD be ignored, as the width of the
encoded bitmap image is specified in the Extended Bitmap Data (section 2.2.9.2.1.1) present in
the variable-length bitmapData field.

destBottom (2 bytes): A 16-bit, unsigned integer. Exclusive bottom bound of the destination
rectangle that will contain the decoded bitmap data. This field SHOULD be ignored, as the height
of the encoded bitmap image is specified in the Extended Bitmap Data present in the variable-
length bitmapData field.

bitmapData (variable): An Extended Bitmap Data structure that contains an encoded bitmap image.

2.2.9.2.1.1 Extended Bitmap Data (TS_ BITMAP_DATA_EX)

The TS_BITMAP_DATA_EX structure is used to encapsulate encoded bitmap data.

=

2
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

w

bpp flags reserved codecID

width height

bitmapDatalLength

exBitmapDataHeader (variable)

bitmapData (variable)

bpp (1 byte): An 8-bit, unsigned integer. The color depth of the bitmap data in bits-per-pixel.

flags (1 byte): An 8-bit, unsigned integer that contains flags.

Flag Meaning

EX_COMPRESSED_BITMAP_HEADER_PRESENT
- - - - Indicates that the optional exBitmapDataHeader

205/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Flag Meaning

0x01 field is present.

reserved (1 byte): An 8-bit, unsigned integer. This field is reserved for future use. It MUST be set to
zero.

codecID (1 byte): An 8-bit, unsigned integer. The client-assigned ID that identifies the bitmap codec
that was used to encode the bitmap data. Bitmap codec parameters are exchanged in the Bitmap
Codecs Capability Set (section 2.2.7.2.10). If this field is 0, then the bitmap data is not encoded
and can be used without performing any decoding transformation.

width (2 bytes): A 16-bit, unsigned integer. The width of the decoded bitmap image in pixels.
height (2 bytes): A 16-bit, unsigned integer. The height of the decoded bitmap image in pixels.

bitmapDatalLength (4 bytes): A 32-bit, unsigned integer. The size in bytes of the bitmapData
field.

exBitmapDataHeader (variable): An optional Extended Compressed Bitmap Header (section
2.2.9.2.1.1.1) structure that contains nonessential information associated with bitmap data in the
bitmapData field. This field MUST be present if the
EX_COMPRESSED_BITMAP_HEADER_PRESENT (0x01) flag is present.

bitmapData (variable): A variable-length array of bytes containing bitmap data encoded using the
codec identified by the ID in the codecID field.

2.2.9.2.1.1.1 Extended Compressed Bitmap Header
(TS_COMPRESSED_BITMAP_HEADER_EX)

The TS_COMPRESSED_BITMAP_HEADER_EX structure is used to encapsulate nonessential
information associated with bitmap data being transported in an Extended Bitmap Data (section
2.2.9.2.1.1) structure.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

highUniqueld

lowUniqueld

tmMilliseconds

tmSeconds

highUniqueld (4 bytes): A 32-bit, unsigned integer that contains the high-order bits of a unique 64-
bit identifier for the bitmap data.

lowUniqueld (4 bytes): A 32-bit, unsigned integer that contains the low-order bits of a unique 64-
bit identifier for the bitmap data.

206 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

tmMilliseconds (8 bytes): A 64-bit, unsigned integer that contains the milliseconds component of
the timestamp that indicates when the bitmap data was generated. The timestamp (composed of
the tmMilliseconds and tmSeconds fields), denotes the period of time that has elapsed since
January 1, 1970 (midnight UTC/GMT), not counting leap seconds.

tmSeconds (8 bytes): A 64-bit, unsigned integer that contains the seconds component of the
timestamp that indicates when the bitmap data was generated. The timestamp (composed of the
tmMilliseconds and tmSeconds fields), denotes the period of time that has elapsed since
January 1, 1970 (midnight UTC/GMT), not counting leap seconds.

2.2.9.2.2 Stream Surface Bits Command (TS_SURFCMD_STREAM_SURF_BITS)

The Stream Surface Bits Command is used to transport encoded bitmap data destined for a
rectangular region of the primary drawing surface from an RDP server to an RDP client.

0(1|2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

cmdType destLeft
destTop destRight
destBottom bitmapData (variable)

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_STREAM_SURFACE_BITS (0x0006).

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the destination rectangle that will
contain the decoded bitmap data.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the destination rectangle that will
contain the decoded bitmap data.

destRight (2 bytes): A 16-bit, unsigned integer. Exclusive right bound of the destination rectangle
that will contain the decoded bitmap data.

destBottom (2 bytes): A 16-bit, unsigned integer. Exclusive bottom bound of the destination
rectangle that will contain the decoded bitmap data.

bitmapData (variable): An Extended Bitmap Data (section 2.2.9.2.1.1) structure that contains an
encoded bitmap image.

2.2.9.2.3 Frame Marker Command (TS_FRAME_MARKER)

The Frame Marker Command is used to group multiple surface commands so that these commands
can be processed and presented to the user as a single entity, a frame.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

cmdType frameAction

frameld

207/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_FRAME_MARKER (0x0004).

frameAction (2 bytes): A 16-bit, unsigned integer. Identifies the beginning and end of a frame.

Value Meaning

SURFACECMD_FRAMEACTION_BEGIN | Indicates the start of a new frame.
0x0000

SURFACECMD_FRAMEACTION_END Indicates the end of the current frame.
0x0001

frameld (4 bytes): A 32-bit, unsigned integer. The ID identifying the frame.
2.2.10 Logon and Authorization Notifications

2.2.10.1 Server Save Session Info PDU

The Save Session Info PDU is used by the server to transmit session and user logon information back
to the client after the user has logged on.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

saveSessionInfoPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Save Session Info PDU Data (section 2.2.10.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

208 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is

ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

saveSessionInfoPduData (variable): The actual contents of the Save Session Info PDU, as

specified in section 2.2.10.1.1.

2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA)

The TS_SAVE_SESSION_INFO_PDU_DATA structure is a wrapper around different classes of user

logon information.

=

2

N
w

3(4(5(6|7|8|9|0|1]|2|3|4|5(6(|7(8|9|0]|1

shareDataHeader (18 bytes)

infoType

infoData (variable)

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SAVE_SESSION_INFO (38).

infoType (4 bytes): A 32-bit, unsigned integer. The type of logon information.

Value

Meaning

INFOTYPE_LOGON
0x00000000

This is a notification that the user has logged on. The infoData
field which follows contains a Logon Info Version 1 (section
2.2.10.1.1.1) structure.

INFOTYPE_LOGON_LONG
0x00000001

This is a notification that the user has logged on. The infoData
field which follows contains a Logon Info Version 2 (section
2.2.10.1.1.2) structure. This type is supported by RDP 5.1, 5.2,
6.0,6.1,7.0,7.1, 8.0, 8.1, 10.0, and 10.1 and SHOULD be used if
the LONG_CREDENTIALS_SUPPORTED (0x00000004) flag is set in
the General Capability Set (section 2.2.7.1.1).

[MS-RDPBCGR] - v20160714

209/ 417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Value Meaning

INFOTYPE_LOGON_PLAINNOTIFY This is a notification that the user has logged on. The infoData
0x00000002 field which follows contains a Plain Notify structure which contains
576 bytes of padding (section 2.2.10.1.1.3). This type is supported
by RDP 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, and 10.1.

INFOTYPE_LOGON_EXTENDED_INFO | The infoData field which follows contains a Logon Info
0x00000003 Extended (section 2.2.10.1.1.4) structure. This type is supported
by RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, and 10.1.

infoData (variable): A Logon Info Version 1 (section 2.2.10.1.1.1), Logon Info Version 2 (section
2.2.10.1.1.2), Plain Notify (section 2.2.10.1.1.3), or Logon Info Extended (section 2.2.10.1.1.4)
structure. The type of data that follows depends on the value of the infoType field.

2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)

TS_LOGON_INFO is a fixed-length structure that contains logon information intended for the client.

—
N
w

0(1|/2|3(4|5|6|(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

cbDomain

Domain (52 bytes)

cbUserName

UserName (512 bytes)

Sessionld

cbDomain (4 bytes): A 32-bit, unsigned integer. The size of the Unicode character data (including
the mandatory null terminator) in bytes present in the fixed-length Domain field.

Domain (52 bytes): An array of 26 Unicode characters: Null-terminated Unicode string containing
the name of the domain to which the user is logged on. The length of the character data in bytes
is given by the cbDomain field.

cbUserName (4 bytes): A 32-bit, unsigned integer. Size of the Unicode character data (including the
mandatory null terminator) in bytes present in the fixed-length UserName field.

UserName (512 bytes): An array of 256 Unicode characters: Null-terminated Unicode string
containing the username which was used to log on. The length of the character data in bytes is
given by the cbUserName field.

210/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Sessionld (4 bytes): A 32-bit, unsigned integer. Optional ID of the session on the remote server
according to the server. Sent by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, and 10.1
servers.

2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)

TS_LOGON_INFO_VERSION_2 is a variable-length structure that contains logon information intended
for the client.

=
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Version Size

Sessionld

cbDomain

cbUserName

Pad (558 bytes)

Domain (variable)

UserName (variable)

Version (2 bytes): A 16-bit, unsigned integer. The logon version.

Value Meaning

SAVE_SESSION_PDU_VERSION_ONE | Version 1
0x0001

Size (4 bytes): A 32-bit, unsigned integer. The total size in bytes of this structure, excluding the
Domain and UserName variable-length fields.

Sessionld (4 bytes): A 32-bit, unsigned integer. The ID of the session on the remote server
according to the server.

cbDomain (4 bytes): A 32-bit, unsigned integer. The size in bytes of the Domain field (including the
mandatory null terminator).

cbUserName (4 bytes): A 32-bit, unsigned integer. The size in bytes of the UserName field
(including the mandatory null terminator).

Pad (558 bytes): 558 bytes. Padding. Values in this field MUST be ignored.

211 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Domain (variable): Variable-length null-terminated Unicode string containing the name of the
domain to which the user is logged on. The size of this field in bytes is given by the cbDomain

field.

UserName (variable): Variable-length

null-terminated Unicode string containing the user name

which was used to log on. The size of this field in bytes is given by the cbUserName field.

2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY)

TS_PLAIN_NOTIFY is a fixed-length structure that contains 576 bytes of padding.

=

0[{1(2|3|4|5|6|7|8|9|0(1(2[3[4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

N
w

Pad (576 bytes)

Pad (576 bytes): 576 bytes. Padding. Values in this field MUST be ignored.

2.2,10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED)

The TS_LOGON_INFO_EXTENDED structure contains RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0,

and 10.1 extended logon information.

e

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Length

FieldsPresent

LogonFields (variable)

Pad (570 bytes)

Length (2 bytes): A 16-bit, unsigned integer. The total size in bytes of this structure, including the

variable LogonFields field.

FieldsPresent (4 bytes): A 32-bit, unsigned integer. The flags indicating which fields are present in

the LogonFields field.

Flag

Meaning

LOGON_EX_AUTORECONNECTCOOKIE
0x00000001

An auto-reconnect cookie field is present. The LogonFields field of
the associated Logon Info (section 2.2.10.1.1.4.1) structure MUST

[MS-RDPBCGR] - v20160714

212 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Flag Meaning

contain a Server Auto-Reconnect Packet (section 2.2.4.2) structure.

LOGON_EX_LOGONERRORS A logon error field is present. The LogonFields field of the
0x00000002 associated Logon Info MUST contain a Logon Errors

Info (section 2.2.10.1.1.4.1.1) structure.

LogonFields (variable): Extended logon information fields encapsulated in Logon Info Field (section
2.2.10.1.1.4.1) structures. The presence of an information field is indicated by the flags within the
FieldsPresent field of the Logon Info Extended structure. The ordering of the fields is implicit and
is as follows:

1. Auto-reconnect cookie data
2. Logon notification data
If a field is not present, the next field which is present is read.

Pad (570 bytes): 570 bytes. Padding. Values in this field MUST be ignored.

2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD)

The TS_LOGON_INFO_FIELD structure is used to encapsulate extended logon information field data of
variable length.

—
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

cbFieldData

FieldData (variable)

cbFieldData (4 bytes): A 32-bit, unsigned integer. The size in bytes of the variable-length data in
the FieldData field.

FieldData (variable): Variable-length data conforming to the structure for the type given in the
FieldsPresent field of the Logon Info Extended (section 2.2.10.1.1.4) structure.

2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO)

The TS_LOGON_ERRORS_INFO structure contains information that describes a logon error notification.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

ErrorNotificationType

ErrorNotificationData

ErrorNotificationType (4 bytes): A 32-bit, unsigned integer that specifies an NTSTATUS value (see
ERRTRANS] for information about translating NTSTATUS error codes to usable text strings), or
one of the following values.

213/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=89860

Value

Meaning

OXFFFFFFFO

LOGON_MSG_DISCONNECT_REFUSED

The"Disconnection Refused" dialog is being displayed by Winlogon.
The session identifier is specified by the ErrorNotificationData
field.

LOGON_MSG_NO_PERMISSION
OXFFFFFFFA

The "No Permission" dialog is being displayed by Winlogon. The
session identifier is specified by the ErrorNotificationData field.

LOGON_MSG_BUMP_OPTIONS
OXFFFFFFFB

The "Session Contention" dialog is being displayed by Winlogon.
The session identifier is specified by the ErrorNotificationData
field.

OXFFFFFFFC

LOGON_MSG_ RECONNECT_OPTIONS

The "Session Reconnection" dialog is being displayed by Winlogon.
The session identifier is specified by the ErrorNotificationData
field.

OXFFFFFFFD

LOGON_MSG_SESSION_TERMINATE

The session is being terminated. The session identifier is specified
by the ErrorNotificationData field.

LOGON_MSG_SESSION_CONTINUE
OXFFFFFFFE

The logon process is continuing. The session identifier is specified
by the ErrorNotificationData field.

ErrorNotificationData (4 bytes): A 32-bit, unsigned integer that specifies the session identifier, or

one of the following values.

Value

Meaning

LOGON_FAILED_BAD_PASSWORD
0x00000000

The logon process failed. The logon credentials which were supplied
are invalid. The user's focus SHOULD be directed to the WinLogon
screen.

0x00000001

LOGON_FAILED_UPDATE_PASSWORD

The logon process failed. The user cannot continue with the logon
process until the password is changed. The user's focus SHOULD be
directed to the WinLogon screen.

LOGON_FAILED_OTHER
0x00000002

The logon process failed. The user's focus SHOULD be directed to
the WinLogon screen.

LOGON_WARNING
0x00000003

The logon process has displayed a warning. The user's focus
SHOULD be directed to the WinLogon screen.

2.2.10.2

Early User Authorization Result PDU

The Early User Authorization Result PDU is sent from server to client and is used to convey
authorization information to the client. This PDU is only sent by the server if the client advertised
support for it by specifying the PROTOCOL_HYBRID_EX (0x00000008) flag in the
requestedProtocols field of the RDP Negotiation Request (section 2.2.1.1.1) structure and it MUST
be sent immediately after the CredSSP handshake (section 5.4.5.2) has completed.

[y

3

4/5(6(7|8(9(0|1(2(3|4|5(6|7|8|9|0]|1

authorizationResult

authorizationResult (4 bytes): A 32-bit unsigned integer. Specifies the authorization result.

[MS-RDPBCGR] - v20160714

214 /417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

AUTHZ_SUCCESS The user has permission to access the server.
0x00000000

AUTHZ_ACCESS_DENIED | The user does not have permission to access the server.
0x00000005

2.2.11 Controlling Server Graphics Output

2.2.11.1 Inclusive Rectangle (TS_RECTANGLE16)

The TS_RECTANGLE16 structure describes a rectangle expressed in inclusive coordinates (the right
and bottom coordinates are included in the rectangle bounds).

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

left top

right bottom

left (2 bytes): A 16-bit, unsigned integer. The leftmost bound of the rectangle.
top (2 bytes): A 16-bit, unsigned integer. The upper bound of the rectangle.
right (2 bytes): A 16-bit, unsigned integer. The rightmost bound of the rectangle.

bottom (2 bytes): A 16-bit, unsigned integer. The lower bound of the rectangle.

2.2.11.2 Client Refresh Rect PDU

The Refresh Rect PDU allows the client to request that the server redraw one or more rectangles of
the session screen area. The client can use it to repaint sections of the client window that were
obscured by local applications.<35> Server support for this PDU is indicated in the General Capability
Set (section 2.2.7.1.1).

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

refreshRectPduData (variable)

215/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given [T125] in section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Refresh Rect PDU Data (section 2.2.11.2.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

refreshRectPduData (variable): The actual contents of the Refresh Rect PDU, as specified in
section 2.2.11.2.1.

2.2.11.2,.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU)

The TS_REFRESH_RECT_PDU structure contains the contents of the Refresh Rect PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) and two fields.

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

numberOfAreas pad3Octects

areasToRefresh (variable)

shareDataHeader (18 bytes): A Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_REFRESH_RECT (33).

216 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

numberOfAreas (1 byte): An 8-bit, unsigned integer. The number of Inclusive Rectangle (section
2.2.11.1) structures in the areasToRefresh field.

pad3Octects (3 bytes): A 3-element array of 8-bit, unsigned integer values. Padding. Values in this
field MUST be ignored.

areasToRefresh (variable): An array of TS_RECTANGLE16 structures (variable number of bytes).
Array of screen area Inclusive Rectangles to redraw. The number of rectangles is given by the
numberOfAreas field.

2.2.11.3 Client Suppress Output PDU

The Suppress Output PDU is sent by the client to toggle all display updates from the server. This
packet does not end the session or socket connection. Typically, a client sends this packet when its
window is either minimized or restored. Server support for this PDU is indicated in the General
Capability Set (section 2.2.7.1.1).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

suppressOutputPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Client Suppress Output PDU Data (section 2.2.11.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

217/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

suppressOutputPduData (variable): TS_SUPPRESS_OUTPUT_PDU (variable number of bytes):

The actual contents of the Suppress Output PDU, as specified in section 2.2.11.3.1.

2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU)

The TS_SUPPRESS_OUTPUT_PDU structure contains the contents of the Suppress Output PDU, which
is @ Share Data Header (section 2.2.8.1.1.1.2) and two fields.

0[{1(2|3|4|5|6|7|8|9|0(1(2[3[4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

allowDisplayUpdates pad3Octets

desktopRect

shareDataHeader (18 bytes): A Share Data Header containing information about the packet
(section 2.2.8.1.1.1.2). The type subfield of the pduType field of the Share Control Header
(section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share
Data Header MUST be set to PDUTYPE2_SUPPRESS_OUTPUT (35).

allowDisplayUpdates (1 byte): An 8-bit, unsigned integer. Indicates whether the client wants to
receive display updates from the server.

Value Meaning

SUPPRESS_DISPLAY_UPDATES | Turn off display updates from the server.
0x00

ALLOW_DISPLAY_UPDATES Turn on display updates from the server.
0x01

pad3Octets (3 bytes): A 3-element array of 8-bit, unsigned integer values. Padding. Values in this
field MUST be ignored.

desktopRect (8 bytes): An Inclusive Rectangle (section 2.2.11.1) which contains the coordinates of
the desktop rectangle if the allowDisplayUpdates field is set to ALLOW_DISPLAY_UPDATES (1).
If the allowDisplayUpdates field is set to SUPPRESS_DISPLAY_UPDATES (0), this field MUST
NOT be included in the PDU.

218/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

2.2.12 Display Update Notifications

2.2.12.1 Monitor Layout PDU

The Monitor Layout PDU is used by the server to notify the client of the monitor layout in the session
on the remote server.

=
N
w

0(1|/2|3(4(5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

shareDataHeader (18 bytes)

monitorCount

monitorDefArray (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header,
Share Data Header, monitor count, and a monitor definition array.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

219/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shareDataHeader (18 bytes): A Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType?2 field of the Share Data Header MUST be set to
PDUTYPE2_MONITOR_LAYOUT_PDU (55), and the pduSource field MUST be set to zero.

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of display monitor definitions in
the monitorDefArray field.

monitorDefArray (variable): A variable-length array containing a series of TS MONITOR DEF
structures (section 2.2.1.3.6.1), which describe the display monitor layout of the session on the
remote server. The number of TS_MONITOR_DEF structures that follows is given by the
monitorCount field.

2.2.13 Server Redirection

2.2.13.1 Server Redirection Packet (RDP_SERVER_REDIRECTION_PACKET)

The RDP_SERVER_REDIRECTION_PACKET structure contains information to enable a client to
reconnect to a session on a specified server. This data is sent to a client in a Redirection PDU to
enable load-balancing of Remote Desktop sessions across a collection of machines. For more
information about the load balancing of Remote Desktop sessions, see [MSFT-SDLBTS] "Load-
Balanced Configurations" and "Revectoring Clients".

—
N
w

Flags Length

SessionID

RedirFlags

TargetNetAddressLength (optional)

TargetNetAddress (variable)

LoadBalancelnfoLength (optional)

LoadBalancelnfo (variable)

UserNameLength (optional)

UserName (variable)

220/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90204

DomainLength (optional)

Domain (variable)

PasswordLength (optional)

Password (variable)

TargetFQDNLength (optional)

TargetFQDN (variable)

TargetNetBiosNamelLength (optional)

TargetNetBiosName (variable)

TsvUrlLength (optional)

TsvUrl (variable)

TargetNetAddressesLength (optional)

TargetNetAddresses (variable)

Pad (optional)

Flags (2 bytes): A 16-bit unsigned integer. The server redirection identifier. This field MUST be set to
SEC_REDIRECTION_PKT (0x0400).

Length (2 bytes): A 16-bit unsigned integer. The overall length, in bytes, of the Server Redirection
Packet structure.

SessionID (4 bytes): A 32-bit unsigned integer. The session identifier to which the client MUST
reconnect. This identifier MUST be specified in the RedirectedSessionlD field of the Client

221 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Cluster Data (section 2.2.1.3.5) if a reconnect attempt takes place. The Client Cluster Data is
transmitted as part of the MCS Connect Initial PDU (section 2.2.1.3).

RedirFlags (4 bytes): A 32-bit unsigned integer. A bit field that contains redirection information
flags, some of which indicate the presence of additional data at the end of the packet.

Flag

Meaning

0x00000001

LB_TARGET_NET_ADDRESS

Indicates that the TargetNetAddressLength and TargetNetAddress
fields are present.

LB_LOAD_BALANCE_INFO
0x00000002

Indicates that the LoadBalanceInfoLength and LoadBalancelnfo fields
are present.

LB_USERNAME
0x00000004

Indicates that the UserNameLength and UserName fields are present.

LB_DOMAIN
0x00000008

Indicates that the DomainLength and Domain fields are present.

LB_PASSWORD
0x00000010

Indicates that the PasswordLength and Password fields are present.

0x00000020

LB_DONTSTOREUSERNAME

Indicates that when reconnecting, the client MUST send the username
specified in the UserName field to the server in the Client Info
PDU (section 2.2.1.11.1.1).

LB_SMARTCARD_LOGON
0x00000040

Indicates that the user can use a smart card for authentication.

LB_NOREDIRECT
0x00000080

Indicates that the contents of the PDU are for informational purposes only.
No actual redirection is required.

LB_TARGET_FQDN
0x00000100

Indicates that the TargetFQDNLength and TargetFQDN fields are
present.

0x00000200

LB_TARGET_NETBIOS_NAME

Indicates that the TargetNetBiosNameLength and TargetNetBiosName
fields are present.

0x00000800

LB_TARGET_NET_ADDRESSES

Indicates that the TargetNetAddressesLength and
TargetNetAddresses fields are present.

LB_CLIENT_TSV_URL
0x00001000

Indicates that the TsvUrlLength and TsvUrl fields are present.<36>

0x00002000

LB_SERVER_TSV_CAPABLE

Indicates that the server supports redirection based on the TsvUrl present
in the LoadBalancelInfo sent by the client.<37>

TargetNetAddressLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the

TargetNetAddress field.

TargetNetAddress (variable): A variable-length array of bytes containing the IP address of the
server (for example, "192.168.0.1" using dotted decimal notation) in Unicode format, including a

null-terminator.

LoadBalanceInfoLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the

LoadBalancelnfo field.

LoadBalancelInfo (variable): A variable-length array of bytes containing load balancing information
that MUST be treated as opaque data by the client and passed to the server if the

[MS-RDPBCGR] - v20160714

222 / 417

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

LB_TARGET_NET_ADDRESS (0x00000001) flag is not present in the RedirFlags field and a
reconnection takes place. See section 3.2.5.3.1 for details on populating the routingToken field
of the X.224 Connection Request PDU (section 2.2.1.1).

UserNamelLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the UserName
field.

UserName (variable): A variable-length array of bytes containing the username of the user in
Unicode format, including a null-terminator.

DomainLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the Domain field.

Domain (variable): A variable-length array of bytes containing the domain to which the user
connected in Unicode format, including a null-terminator.

PasswordLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the Password field.

Password (variable): A variable-length array of bytes containing the password used by the user in
Unicode format, including a null-terminator or a cookie value that MUST be passed to the target
server on successful connection.

TargetFQDNLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the TargetFQDN
field.

TargetFQDN (variable): A variable-length array of bytes containing the fully qualified domain name
(FQDN) of the target machine, including a null-terminator.

TargetNetBiosNamelLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the
TargetNetBiosName field.

TargetNetBiosName (variable): A variable-length array of bytes containing the NETBIOS name of
the target machine, including a null-terminator.

TsvUriLength (4 bytes): The length, in bytes, of the TsvUrl field.<38>

TsvUrl (variable): A variable-length array of bytes.<39> If the client has previously sent a TsvUrl
field in the LoadBalancelInfo to the server in the expected format, then the server will return the
same TsvUrl to the client in this field. The client verifies that it is the same as the one that it
previously passed to the server and if they don't match, the client immediately disconnects the
connection.

TargetNetAddressesLength (4 bytes): A 32-bit unsigned integer. The length, in bytes, of the
TargetNetAddresses field.

TargetNetAddresses (variable): A variable-length array of bytes containing the target IP addresses
of the server to connect against, stored in a Target Net Addresses structure (section 2.2.13.1.1).

Pad (8 bytes): An optional 8-element array of 8-bit unsigned integers. Padding. Values in this field
MUST be ignored.

2.2.13.1.1 Target Net Addresses (TARGET_NET_ADDRESSES)

The TARGET_NET_ADDRESSES structure is used to hold a collection of IP addresses in Unicode
format.

—
N
w

0(1|/2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

addressCount

223 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

addresses (variable)

addressCount (4 bytes): A 32-bit, unsigned integer. The number of IP addresses present in the
address field.

addresses (variable): An array of Target Net Address (section 2.2.13.1.1.1) structures, each
containing an IP address.

2.2.13.1.1.1 Target Net Address (TARGET_NET_ADDRESS)

The Target Net Address structure holds a Unicode text representation of an IP address.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

addressLength

address (variable)

addressLength (4 bytes): A 32-bit, unsigned integer. The length in bytes of the address field.

address (variable): A variable-length array of bytes containing an IP address in Unicode format,
including a null-terminator.

2.2.13.2 Standard RDP Security

2.2.13.2.1 Standard Security Server Redirection PDU
(TS_STANDARD_SECURITY_SERVER_REDIRECTION)

The Standard Security Server Redirection PDU is sent by the server to the client to instruct it to
reconnect to an existing session on another server. The information required to perform the
reconnection is contained in an embedded Server Redirection Packet (section 2.2.13.1). This PDU
MUST NOT be sent if the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0);
the Enhanced Security Server Redirection PDU (section 2.2.13.3.1) MUST be used instead. Because
the Standard Security Server Redirection PDU can contain confidential information, it MUST always be
encrypted using Standard RDP Security mechanisms (section 5.3).

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

224 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

serverRedirectionPDU (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are specified in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and the Server Redirection PDU data.

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

The flags field of the security header MUST contain the SEC_REDIRECTION_PKT (0x0400) flag
(section 2.2.8.1.1.2.1).

serverRedirectionPDU (variable): Information required by the client to initiate a reconnection to a
given session on a target server encapsulated in a Server Redirection Packet (section 2.2.13.1)
structure.

2.2.13.3 Enhanced RDP Security

2.2.13.3.1 Enhanced Security Server Redirection PDU
(TS_ENHANCED_SECURITY_SERVER_REDIRECTION)

The Enhanced Security Server Redirection PDU is sent by the server to the client to instruct it to
reconnect to an existing session on another server. The information required to perform the
reconnection is contained in an embedded Server Redirection Packet (section 2.2.13.1). This PDU
MUST NOT be sent if Standard RDP Security (section 5.3) is in effect. The Standard Security Server
Redirection PDU (section 2.2.13.2.1) MUST be used instead. Because this PDU can contain confidential
information, it MUST always be encrypted by the External Security Protocol layer (section 5.4).

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

shareControlHeader

225/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

pad20ctets

serverRedirectionPDU (variable)

pad1Octet (optional)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are specified in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Share Control
Header and the Server Redirection PDU data.

shareControlHeader (6 bytes): A Share Control Header (as specified in section 2.2.8.1.1.1.1)
containing information on the packet. The type subfield of the pduType field of the Share Control
Header MUST be set to PDUTYPE_SERVER_REDIR_PKT (10). The PDUVersion subfield MUST be
set to zero.

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

serverRedirectionPDU (variable): Information required by the client to initiate a reconnection to a
given session on a target server encapsulated in a Server Redirection Packet (section 2.2.13.1)
structure.

pad1Octet (1 byte): An optional 8-bit, unsigned integer. Padding. Values in this field MUST be
ignored.

2.2.14 Network Characteristics Detection

2.2.14.1 Server-to-Client Request Messages

2.2.14.1.1 RTT Measure Request (RDP_RTT_REQUEST)

The RDP_RTT_REQUEST structure is used to initiate a round-trip time measurement operation.

1 2 3
0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

headerLength headerTypeld sequenceNumber

requestType

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06.

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

226 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to one of the following values.

Value Meaning

0x0001 | The RTT Measure Request message is encapsulated in the autoDetectReqPduData field of an
Auto-Detect Request PDU (section 2.2.14.3) sent after the RDP Connection Sequence (section
1.3.1.1) has completed.

0x1001 | The RTT Measure Request message is encapsulated in the autoDetectReqPduData field of an
Auto-Detect Request PDU sent during the Optional Connect-Time Auto-Detection phase of the
RDP Connection Sequence.

2.2.14.1.2 Bandwidth Measure Start (RDP_BW_START)

The RDP_BW_START structure is used to start a bandwidth measurement operation.

1 2 3
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

headerLength headerTypeld sequenceNumber

requestType

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06.

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to one of the following values.

Value Meaning

0x0014 | One of two possible meanings:

= The Bandwidth Measure Start message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled
over a reliable UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

= The Bandwidth Measure Start message is encapsulated in the autoDetectReqPduData field
of an Auto-Detect Request PDU (section 2.2.14.3) sent after the RDP Connection Sequence
(section 1.3.1.1) has completed.

0x0114 | The Bandwidth Measure Start message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled over
a lossy UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

0x1014 | The Bandwidth Measure Start message is encapsulated in the autoDetectReqPduData field of an
Auto-Detect Request PDU sent during the Optional Connect-Time Auto-Detection phase of the RDP
Connection Sequence.

227 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

2.2.14.1.3 Bandwidth Measure Payload (RDP_BW_PAYLOAD)

The RDP_BW_PAYLOAD structure is used to transfer data associated with a bandwidth measurement
operation that occurs during the Optional Connect-Time Auto-Detection phase of the RDP Connection
Sequence (see section 1.3.1.1 for an overview of the RDP Connection Sequence phases).

1 2 3
0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

headerLength headerTypeld sequenceNumber

requestType payloadLength

payload (variable)

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x08.

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to 0x0002.

payloadLength (2 bytes): A 16-bit unsigned integer that specifies the size, in bytes, of the payload
field.

payload (variable): A variable-length array of bytes that contains random data. The number of
bytes in this array is specified by the payloadLength field.

2.2.14.1.4 Bandwidth Measure Stop (RDP_BW_STOP)

The RDP_BW_STOP structure is used to stop a bandwidth measurement operation.

1 2 3
0(1|/2|3(4|(5|6|(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

headerLength headerTypeld sequenceNumber

requestType payloadLength (optional)

payload (variable)

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06 if the requestType field is not set to 0x002B and 0x08 if the
requestType field is set to 0x002B.

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

228 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to one of the following values.

Value Meaning

0x002B | The Bandwidth Measure Stop message is encapsulated in the autoDetectReqPduData field of
an Auto-Detect Request PDU (section 2.2.14.3) sent during the Optional Connect-Time Auto-
Detection phase of the RDP Connection Sequence (section 1.3.1.1). The payloadLength field is
present and has a value greater than zero.

0x0429 | One of two possible meanings:

= The Bandwidth Measure Stop message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled
over a reliable UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

= The Bandwidth Measure Stop message is encapsulated in the autoDetectReqPduData field
of an Auto-Detect Request PDU sent after the RDP Connection Sequence has completed.

0x0629 | The Bandwidth Measure Stop message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is being tunneled
over a lossy UDP multitransport connection ([MS-RDPEMT] sections 1.3 and 2.1).

payloadLength (2 bytes): An optional 16-bit unsigned integer that specifies the size, in bytes, of
the payload field. If this field is not present, then the size of the payload field is zero bytes. The
payloadLength field MUST NOT be present if the value of the requestType field is not set to
0x002B. It MUST be present (and have a value greater than zero) if the value of the requestType
field is set to 0x002B.

payload (variable): A variable-length array of bytes that contains random data. The number of
bytes in this array is specified by the payloadLength field.

2.2.14.1.5 Network Characteristics Result (RDP_NETCHAR_RESULT)

The RDP_NETCHAR_RESULTS structure is used by the server to send detected network characteristics
to the client.

N
w

1
0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

headerLength headerTypeld sequenceNumber

requestType baseRTT (optional)

bandwidth (optional)

averageRTT (optional)

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to OxOE if the requestType field is not set to 0x08C0 and 0x12 if the
requestType field is set to 0x08CO

229 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_REQUEST (0x00).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number.

requestType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field MUST
be set to one of the following values.

Value Meaning

0x0840 | The baseRTT and averageRTT fields are present in the Network Characteristics Result message
(the bandwidth field is not present).

0x0880 | The bandwidth and averageRTT fields are present in the Network Characteristics Result
message (the baseRTT field is not present).

0x08C0 | The baseRTT, bandwidth and averageRTT fields are present in the Network Characteristics
Result message.

baseRTT (4 bytes): An optional 32-bit unsigned integer that specifies the lowest detected round-trip
time in milliseconds.

bandwidth (4 bytes): An optional 32-bit unsigned integer that specifies the current bandwidth in
kilobits per second.

averageRTT (4 bytes): An optional 32-bit unsigned integer that specifies the current average round-
trip time in milliseconds.

2.2.14.2 Client-to-Server Response Messages

2.2.14.2.1 RTT Measure Response (RDP_RTT_RESPONSE)

The RDP_RTT_RESPONSE structure is used to respond to round-trip time measurement operations
initiated by the RTT Measure Request (section 2.2.14.1.1) message.

1 2 3
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

headerLength headerTypeld sequenceNumber

responseType

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to 0x06.

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_RESPONSE (0x01).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number. This field SHOULD be set to the same value as the sequenceNumber field of the most
recent RTT Measure Request (section 2.2.14.1.1) message received from the server.

responseType (2 bytes): A 16-bit unsigned integer that specifies a response type code. This field
MUST be set to 0x0000.

2.2.14.2.2 Bandwidth Measure Results (RDP_BW_RESULTS)

230/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

The RDP_BW_RESULTS structure is used to send the results of a bandwidth measurement operation to
the initiating end-point. Bandwidth measurement is started by the initiating end-point using the
Bandwidth Measure Start (section 2.2.14.1.2) message and stopped by the same end-point using the
Bandwidth Measure Stop (section 2.2.14.1.4) message. During the RDP Connection Sequence (section
1.3.1.1) payloads of random data are transmitted by the initiating end-point using a sequence of
Bandwidth Measure Payload (section 2.2.14.1.3) messages (sent between the start and stop
messages). After the RDP Connection Sequence, the PDUs sent from server to client (between start
and stop messages) replace the payload messages.

1
0(1|/2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

N
w

headerLength headerTypeld sequenceNumber
responseType timeDelta
byteCount

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to OxOE.

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_RESPONSE (0x01).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number. This field SHOULD be set to the same value as the sequenceNumber field of the most
recent Bandwidth Measure Stop (section 2.2.14.1.4) message received from the server.

responseType (2 bytes): A 16-bit unsigned integer that specifies a response type code. This field
MUST be set to one of the following values.

Value Meaning

0x0003 | The Bandwidth Measure Results message is encapsulated in the autoDetectReqPduData field of
an Auto-Detect Request PDU (section 2.2.14.3) sent during the Optional Connect-Time Auto-
Detection phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of the RDP
Connection Sequence phases).

0x000B | One of two possible meanings:

= The Bandwidth Measure Results message is encapsulated in the autoDetectReqPduData
field of an Auto-Detect Request PDU (section 2.2.14.3) sent after the RDP Connection
Sequence has completed.

= The Bandwidth Measure Results message is encapsulated in the SubHeaderData field of an
RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure.

timeDelta (4 bytes): A 32-bit unsigned integer that specifies the time delta, in milliseconds,
between the receipt of the Bandwidth Measure Start and the Bandwidth Measure Stop messages.

byteCount (4 bytes): A 32-bit unsigned integer that specifies the total data received in the
Bandwidth Measure Payload messages.

2.2.14.2.3 Network Characteristics Sync (RDP_NETCHAR_SYNC)

231 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

The RDP_NETCHAR_SYNC structure is sent in response to the RTT Measure Request (section
2.2.14.1.1) message or Bandwidth Measure Start (section 2.2.14.1.2) message and is used to short-
circuit connect-time network characteristics detection in the case of an auto-reconnect (section 1.3.1.5
and 2.2.4).

1
0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

N
w

headerLength headerTypeld sequenceNumber

responseType bandwidth

rtt

headerLength (1 byte): An 8-bit unsigned integer that specifies the size, in bytes, of the header
data. This field MUST be set to OxOE.

headerTypeld (1 byte): An 8-bit unsigned integer that specifies the high-level type. This field MUST
be set to TYPE_ID_AUTODETECT_RESPONSE (0x01).

sequenceNumber (2 bytes): A 16-bit unsigned integer that specifies the message sequence
number. This field SHOULD be set to the same value as the sequenceNumber field of the most
recent RTT Measure Request (section 2.2.14.1.1) or Bandwidth Measure Stop (section 2.2.14.1.4)
message received from the server.

responseType (2 bytes): A 16-bit unsigned integer that specifies a request type code. This field
MUST be set to 0x0018.

bandwidth (4 bytes): A 32-bit unsigned integer that specifies the previously detected bandwidth in
kilobits per second.

rtt (4 bytes): A 32-bit unsigned integer that specifies the previously detected round-trip time in
milliseconds.
2.2.14.3 Server Auto-Detect Request PDU

The Auto-Detect Request PDU is sent by server to the client and is used to detect network
characteristics such as bandwidth and round-trip time.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5).

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

232 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

autoDetectRegPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and auto-detect request data.

securityHeader (variable): A security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security
header does not contain the SEC_ENCRYPT (0x0008) flag (the PDU is not encrypted), then the
field MUST contain a Basic Security Header.

The flags field of the security header MUST contain the SEC_AUTODETECT_REQ (0x1000) flag
(2.2.8.1.1.2.1).

autoDetectReqPduData (variable): A variable-length field that contains auto-detect request data,
specifically one of the five messages described in sections 2.2.14.1.1, 2.2.14.1.2, 2.2.14.1.3,
2.2.14.1.4 and 2.2.14.1.5.

2.2.14.4 Client Auto-Detect Response PDU

The Auto-Detect Response PDU is sent by the client to the server and is used to detect network
characteristics such as bandwidth and round-trip time.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

233/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

x224Data mcsSDrq (variable)

securityHeader (variable)

autoDetectRspPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and auto-detect response data.

securityHeader (variable): An optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

The flags field of the security header MUST contain the SEC_AUTODETECT_RSP (0x2000) flag
(2.2.8.1.1.2.1).

autoDetectRspPduData (variable): A variable-length field that contains auto-detect response data,
specifically one of the three messages described in sections 2.2.14.2.1, 2.2.14.2.2 and 2.2.14.2.3.

2.2.15 Multitransport Bootstrapping

2.2.15.1 Server Initiate Multitransport Request PDU

The Initiate Multitransport Request PDU is sent by the server to the client and is used to bootstrap the
creation of a sideband channel ([MS-RDPEMT] section 1.3). Upon receiving and successfully decoding
the Initiate Multitransport Request PDU, the client SHOULD create the requested channel using the
specified transport protocol ([MS-RDPEUDP] sections 1.3.2.1 and 3.1.5.2) and then secure the channel
using TLS or DTLS ([MS-RDPEMT] sections 1.4 and 5.1). After the channel has been successfully
created and secured, the client MUST send the Tunnel Create Request PDU ([MS-RDPEMT] section
2.2.2.1) to the server over the newly created channel ([MS-RDPEMT] section 1.3.1).

234 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5).

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

requestld

requestedProtocol reserved

securityCookie (16 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header,
ID, transport protocol, and a security cookie.

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security

235/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

header does not contain the SEC_ENCRYPT (0x0008) flag (the PDU is not encrypted), then the

field MUST contain a Basic Security Header.

The flags field of the security header MUST contain the SEC_TRANSPORT_REQ (0x0002) flag

(section 2.2.8.1.1.2.1).

requestld (4 bytes): A 32-bit unsigned integer that specifies a unique ID that the server MUST use
to associate this Initiate Multitransport Request PDU with the Tunnel Create Request PDU ([MS-
RDPEMT] section 2.2.2.1) sent by the client after the transport has been established.

requestedProtocol (2 bytes): A 16-bit unsigned integer that specifies the protocol to use in the

transport.
Value Meaning
INITITATE_REQUEST_PROTOCOL_UDPFECR RDP-UDP Forward Error Correction (FEC) reliable
0x01 transport ([MS-RDPEUDP] sections 1 to 3).
INITITATE_REQUEST_PROTOCOL_UDPFECL RDP-UDP FEC lossy transport ([MS-RDPEUDP]
0x02 sections 1 to 3).<40>

reserved (2 bytes): A 16-bit unsigned integer. This field is unused and reserved for future use. It

MUST be set to zero.

securityCookie (16 bytes): A 16-element array of 8-bit unsigned integers that contains randomly
generated data. This array MUST be retransmitted by the client in the Tunnel Create Request PDU
([MS-RDPEMT] section 2.2.2.1) after the channel has been created and is used by the server to

validate the channel setup ([MS-RDPEMT] section 3.2.5.1).

2.2.15.2 Client Initiate Multitransport Response PDU

The Initiate Multitransport Response PDU is sent by the client to the server and is used to indicate to
the server whether the client was able to complete the multitransport initiation request associated

with the ID specified in the requestld field.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is

specified in the Server Message Channel Data (section 2.2.1.4.5).

-
N

0(1(2|3|4|5|6|7|8(9(0(1({2|3|4|5|6|7|8|9|0|1|2(3

w

tpktHeader

x224Data

mcsSDrq (variable)

securityHeader (variable)

requestld

hrResponse

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

236 /417

http://go.microsoft.com/fwlink/?LinkId=90541

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header

and a Control PDU Data structure (section 2.2.1.15.1).

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).

This field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the

server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

The flags field of the security header MUST contain the SEC_TRANSPORT_RSP (0x0004) flag
(section 2.2.8.1.1.2.1).

requestld (4 bytes): A 32-bit unsigned integer that MUST contain the ID that was sent to the client
in the requestld field of the associated Initiate Multitransport Request PDU (section 2.2.15.1).

hrResponse (4 bytes): A 32-bit unsigned integer that specifies a response code.

Value Meaning
E_ABORT Indicates that the client was unable to successfully establish the multitransport connection.
0x80004004
S_OK Indicates that the client was able to successfully complete the multitransport initiation
0x00000000 | request.
This response code MUST only be sent to a server that advertises the
SOFTSYNC_TCP_TO_UDP (0x200) flag in the Server Multitransport Channel Data (section
2.2.1.4.6).

2.2.16 Connection Health Monitoring

2.2.16.1

Server Heartbeat PDU

The Heartbeat PDU is sent by the server to the client and allows the client to monitor the state of the
connection to the server in real time.

This PDU MUST only be sent over the MCS message channel. The ID of the message channel is
specified in the Server Message Channel Data (section 2.2.1.4.5). It SHOULD only be sent when no

other PDUs have been sent to the client in a given heartbeat interval.

[y

6(7|8|9|0(1|2|3|4

5

6

7

N

w

tpktHeader

[MS-RDPBCGR] - v20160714
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

237 /417

http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

x224Data mcsSDin (variable)

securityHeader (variable)

reserved period countl count2

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): A variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) that
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a security header
and heartbeat information.

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.1 and 2.2.1.4.3).
This field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security
header does not contain the SEC_ENCRYPT (0x0008) flag (meaning the PDU is not encrypted),
then the field MUST contain a Basic Security Header.

The flags field of the security header MUST contain the SEC_HEARTBEAT (0x4000) flag (section
2.2.8.1.1.2.1).

reserved (1 byte): An 8-bit unsigned integer reserved for future use. This field MUST be set to zero.

period (1 byte): An 8-bit unsigned integer that specifies the time (in seconds) between Heartbeat
PDUs.

countl (1 byte): An 8-bit unsigned integer that specifies how many missed heartbeats SHOULD
trigger a client-side warning. The client MAY ignore this value.

count2 (1 byte): An 8-bit unsigned integer that specifies how many missed heartbeats after the
warning SHOULD trigger a client-side reconnection attempt. The client MAY ignore this value.

238/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

3 Protocol Details
3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.
3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Disconnection Sequences

3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU

The structure and fields of the MCS Disconnect Provider Ultimatum PDU are specified in section
2.2.2.3.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Disconnect Provider Ultimatum PDU (embedded within the mesDPum field) is specified in
T125] section 7, part 4. Only the rn-provider-initiated (1) or rn-user-requested (3) reason codes
MUST be used in the reason field.

= In the case of a user-initiated client-side disconnection (section 1.3.1.4.1), the reason code set by
the client MUST be rn-user-requested (3).

= In the case of a user-initiated server-side disconnection (section 1.3.1.4.2), the reason code set
by the server MUST be rn-user-requested (3).

= In the case of an administrator-initiated server-side disconnection (section 1.3.1.4.3), the reason
code set by the server MUST be rn-provider-initiated (1).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

Once the MCS Disconnect Provider Ultimatum PDU has been sent, the network connection MUST be
closed.

3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDU

239 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The structure and fields of the MCS Disconnect Provider Ultimatum PDU are specified in section
2.2.2.3.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol MUST be used to
decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Disconnect Provider Ultimatum PDU (embedded within the mcsDPum field) is specified in
T125] section 7, part 4.

= Servers MUST ignore the reason field within the MCS Disconnect Provider Ultimatum PDU.

= Clients MAY use the value in the reason field to present an appropriate message to the user to
indicate the cause of the disconnection that will follow. If the reason code was not set to either rn-
provider-initiated (1) or rn-user-requested (3), the client MUST ignore the reason code.

After receiving an MCS Disconnect Provider Ultimatum PDU, the recipient MUST expect the network
connection to be closed by the sender.

3.1.5.2 Static Virtual Channels

3.1.5.2.1 Sending of Virtual Channel PDU

The Virtual Channel PDU is transmitted by both the client and the server. Its structure and fields are
specified in section 2.2.6.1.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

As specified in section 2.2.6.1, the mcsPdu field encapsulates either an MCS Send Data Request PDU
(if the PDU is being sent from client to server) or an MCS Send Data Indication PDU (if the PDU is
being sent from server to client), and is initialized as specified in [T125] sections 11.32 and 11.33,
respectively. In both of these cases, the embedded channelld field MUST contain the server-assigned
virtual channel ID. Static virtual channels are requested by name in the Client Network Data (section
2.2.1.3.4), and the server-assigned IDs for each of those channels are enumerated in the Server
Network Data (section 2.2.1.4.4). The embedded initiator field for a client-to-server Virtual Channel
PDU MUST be set to the User Channel ID held in the User Channel ID store (section 3.2.1.5). For a
server-to-client Virtual Channel PDU, the embedded initiator field MUST be set to the MCS server
channel ID held in the Server Channel ID store (section 3.3.1.5). The remaining fields of the Virtual
Channel PDU are encapsulated inside the userData field of the mcsPdu.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol MUST be used to
encrypt the entire PDU and generate a verification digest before the PDU is transmitted over the wire.
Also, in this scenario, the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field is encrypted and signed (using the methods and techniques specified in section
5.3.6) based on the values of the Encryption Level and Encryption Method selected by the server as
part of the negotiation specified in section 5.3.2. The format of the securityHeader field is selected
as specified in section 2.2.6.1, and the fields populated with appropriate security data. If the data is to
be encrypted, the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT
(0x0008) flag.

The usage of compression for virtual channel traffic is specified in the Virtual Channel Capability Set
(section 2.2.7.1.10), while the highest compression level supported by the client is advertised in the
Client Info PDU (section 3.2.5.3.11). If compression of the opaque virtual channel traffic has been
requested, the sending entity SHOULD compress the data before it is encrypted.

240/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

If compression is to be applied to client-to-server traffic, RDP 4.0 bulk compression (section 3.1.8.4.1)
MUST be used, while the compression type to apply to server-to-client traffic MUST be the highest
type advertised by the client in the Client Info PDU (section 2.2.1.11.1.1) and supported by the
server. Data compression is discussed in section 3.1.8.2 (the Virtual Channel PDU compression flags
are specified in section 2.2.6.1.1).

If the optional VCChunksSize field is not present in either the client or the server Virtual Channel
Capability Set (section 2.2.7.1.10), the resultant virtual channel data sent on the wire (contained in
the virtualChannelData field) MUST be less than or equal to 1,600 bytes in length. If the maximum
virtual channel chunk size is specified by the server in the optional VCChunkSize field of the Virtual
Channel Capability Set and the VCChunkSize field is present in the Virtual Channel Capability Set
sent by the client, the virtual channel data sent on the wire MUST be less than or equal to the value
specified in the server-to-client VCChunkSize field.

If the total size of the virtual channel data is larger than the chunk size, then each chunk MUST be
sent in a separate Virtual Channel PDU. If a given chunk is the first or last in the sequence of chunks,
the CHANNEL_FLAG_FIRST (0x00000001) flag or CHANNEL_FLAG_LAST (0x00000002) flag MUST be
set appropriately in the embedded flags field of the channelPduHeader field (the Channel PDU
Header structure is specified in section 2.2.6.1.1). Virtual channel data that fits in a single Virtual
Channel PDU MUST specify both flags, and chunked data that is not the first or last chunk in a
sequence of chunks MUST NOT specify either of these two flags. Chunks of virtual channel data MUST
be sent in order, because there is no way to specify the position of a chunk. Furthermore, all Virtual
Channel PDUs that contain chunked data MUST specify the CHANNEL_FLAG_SHOW_PROTOCOL
(0x00000010) flag so that the recipient can correctly reassemble the data.

3.1.5.2.2 Processing of Virtual Channel PDU

The Virtual Channel PDU is received by both the client and the server. Its structure and fields are
specified in section 2.2.6.1.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsPdu ([T125] section 7,
parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The mcsPdu field encapsulates either an MCS Send Data Request PDU (if the PDU is being sent from
client to server) or an MCS Send Data Indication PDU (if the PDU is being sent from server to client).
In both of these cases, the embedded channelld field MUST contain the server-assigned virtual
channel ID. This ID MUST be used to route the data in the virtualChannelData field to the
appropriate virtual channel endpoint after decryption of the PDU and any necessary decompression of
the payload has been conducted.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in section 2.2.6.1. If the securityHeader field is
present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT (0x0008)
flag (section 2.2.8.1.1.2.1), and, if it is present, the data following the securityHeader field MUST be
verified and decrypted using the methods and techniques specified in section 5.3.6. If the MAC
signature is incorrect, or the data cannot be decrypted correctly, the connection SHOULD be dropped.

If the data in the virtualChannelData field is compressed, then the data MUST be decompressed
using the techniques detailed in section 3.1.8.3 (the Virtual Channel PDU compression flags are
specified in section 2.2.6.1.1).

If the embedded flags field of the channelPduHeader field (the Channel PDU Header structure is
specified in section 2.2.6.1.1) does not contain the CHANNEL_FLAG_FIRST (0x00000001) flag or
CHANNEL_FLAG_LAST (0x00000002) flag, and the data is not part of a chunked sequence (that is, a

241 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543

start chunk has not been received), then the data in the virtualChannelData field can be dispatched
to the appropriate virtual channel endpoint (no reassembly is required by the endpoint). If the
CHANNEL_FLAG_SHOW_PROTOCOL (0x00000010) flag is specified in the Channel PDU Header, then
the channelPduHeader field MUST also be dispatched to the virtual channel endpoint.

If the virtual channel data is part of a sequence of chunks, then the instructions in section 3.1.5.2.2.1
MUST be followed to reassemble the stream.

3.1.5.2.2.1 Reassembly of Chunked Virtual Channel Data

Virtual channel data can span multiple Virtual Channel PDUs (section 3.1.5.2.1). If this is the case, the
embedded length field of the channelPduHeader field (the Channel PDU Header structure is
specified in section 2.2.6.1.1) specifies the total length of the uncompressed virtual channel data
spanned across all of the associated Virtual Channel PDUs. This length is referred to as totalLength.
For example, assume that the virtual channel chunking size specified in the Virtual Channel Capability
Set (section 2.2.7.1.10) is 1,000 bytes and that 2,062 bytes need to be transmitted on a given virtual
channel. In this example, the following sequence of Virtual Channel PDUs will be sent (only relevant
fields are listed):

Virtual Channel PDU 1:

CHANNEL PDU HEADER::length = 2062 bytes
CHANNEL PDU HEADER::flags = CHANNEL FLAG FIRST

Actual virtual channel data is 1000 bytes (the chunking size).

Virtual Channel PDU 2:

CHANNEL PDU HEADER::length = 2062 bytes
CHANNEL PDU HEADER::flags = 0

Actual virtual channel data is 1000 bytes (the chunking size).

Virtual Channel PDU 3:
CHANNEL PDU HEADER::length = 2062 bytes
CHANNEL PDU HEADER::flags = CHANNEL FLAG LAST
Actual virtual channel data is 62 bytes.

The size of the virtual channel data in the last PDU (the data in the virtualChannelData field) is
determined by subtracting the offset of the virtualChannelData field in the encapsulating Virtual
Channel PDU from the total size specified in the tpktHeader field. This length is referred to as
chunkLength.

Upon receiving each Virtual Channel PDU, the server MUST dispatch the virtual channel data to the
appropriate virtual channel endpoint. The sequencing of the chunk (whether it is first, intermediate, or
last), totalLength, chunkLength, and the virtualChannelData fields MUST be dispatched to the
virtual channel endpoint so that the data can be correctly reassembled. If the
CHANNEL_FLAG_SHOW_PROTOCOL (0x00000010) flag is specified in the Channel PDU Header, then
the channelPduHeader field MUST also be dispatched to the virtual channel endpoint.

A reassembly buffer MUST be created by the virtual channel endpoint using the size specified by
totalLength when the first chunk is received. After the reassembly buffer has been created the first
chunk MUST be copied into the front of the buffer. Subsequent chunks MUST then be copied into the
reassembly buffer in the order in which they are received. Upon receiving the last chunk of virtual
channel data, the reassembled data is processed by the virtual channel endpoint.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

242 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.1.8 MPPC-Based Bulk Data Compression

RDP uses a modified form of the Microsoft Point-to-Point Compression (MPPC) Protocol to perform bulk
compression of the PDU contents. This protocol is described in [RFC2118]. There are two forms of bulk
compression used at the server and client:

= RDP 4.0: Based on the original MPPC Protocol, with an 8,192 byte history buffer (section
3.1.8.4.1).

= RDP 5.0: A modified version of RDP 4.0 that uses a 65,536 byte history buffer and implements
rearranged Huffman style encoding for the bitstream formats (section 3.1.8.4.2).

Both the server and client can operate as the sender of compressed data. Server-to-client
compression can be used for fast-path output data (section 2.2.9.1.2.1), slow-path output data
(section 2.2.9.1.1) or virtual channel data (section 2.2.6.1). Client-to-server compression can
currently only be used for virtual channel data.

The client advertises the maximum compression type it supports in the Client Info PDU (section
2.2.1.11). In response the server selects a compression type within the range advertised by the client.
This compression type is then used when performing all subsequent server-to-client and client-to-
server bulk compression.

The compression type usage is indicated on a per-PDU basis by compression flags which are set in the
header flags associated with each PDU. Besides being used to indicate the compression type, the
compression flags are also used to communicate compression state changes which are required to
maintain state synchronization. The header used to transmit the compression flags will depend on the
type of data payload, such as fast-path output data (section 2.2.9.1.2.1), virtual channel data (section
2.2.6.1) or slow-path data (section 2.2.9.1.1).

3.1.8.1 Abstract Data Model

The shared state necessary to support the transmission and reception of compressed data between a
client and server requires a history buffer and a current offset into the history buffer (HistoryOffset).
The size of the history buffer depends on the compression type being used (8 kilobytes for RDP 4.0
and 64 kilobytes for RDP 5.0). Any data that is being compressed MUST be smaller in size than the
history buffer. The HistoryOffset MUST start initialized to zero while the history buffer MUST be filled
with zeros. After it has been initialized, the entire history buffer is immediately regarded as valid.

When compressing data, the sender MUST first check that the uncompressed data can be inserted into
the history buffer at the position in the history buffer given by the HistoryOffset. If the data will not
fit into the history buffer (the sum of the HistoryOffset and the size of the uncompressed data
exceeds the size of the history buffer), the HistoryOffset MUST be reset to the start of the history
buffer (offset 0). If the data will fit into the history buffer, the sender endpoint inserts the
uncompressed data at the position in the history buffer given by the HistoryOffset, and then
advances the HistoryOffset by the amount of data added.

As the receiver endpoint decompresses the data, it inserts the decompressed data at the position in
the history buffer given by its local copy HistoryOffset. If a reset occurs, the sender endpoint MUST
notify the target receiver so it can reset its local state. In this way, the sender and receiver endpoints
maintain an exact replica of the history buffer and HistoryOffset.

3.1.8.2 Compressing Data

The uncompressed data is first inserted into the local history buffer at the position indicated by
HistoryOffset by the sender. The compressor then runs through the length of newly added
uncompressed data to be sent and produces as output a sequence of literals (bytes to be sent
uncompressed) or copy-tuples which consists of a <copy-offset, length-of-match> pair.

243 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90316

The copy-offset component of the copy-tuple is an index into HistoryBuffer (counting backwards from
the current byte being compressed in the history buffer towards the start of the buffer) where there is
a match to the data to be sent. The length-of-match component is the length of that match in bytes,
and MUST be larger than 2 (section 3.1.8.4.1.2.2 and 3.1.8.4.2.2.2). If the resulting data is not
smaller than the original bytes (that is, expansion instead of compression results), then this results in
a flush and the data is sent uncompressed so as never to send more data than the original
uncompressed bytes.

In this way the compressor aims to reduce the size of data that needs to be transmitted. For example,
consider the following string.

0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

The compressor produces the following:

for.whom.the.bell.tolls,<16,15>.<40,4><19,3>e!

The <16,15> tuple is the compression of '.the.bell.tolls' and <40,4> is 'for.", <19,3> gives 'the'.

The expansion of a copy-tuple MUST use a "replicating copy". A replicating copy is implemented using
the following pseudocode.

SrcPtr = HistoryPtr - CopyOffset;
while (LengthOfMatch > 0)
{

*HistoryPtr = *SrcPtr;

SrcPtr = SrcPtr + 1;
HistoryPtr = HistoryPtr + 1;

LengthOfMatch = LengthOfMatch - 1;

For example, consider the following compressed stream.

Xcd<2,4>YZ

Using a replicating copy, this is correctly decompressed to

XcdcdedYZ

Literals and copy-tuples are encoded using the scheme described in section 3.1.8.4.1 or 3.1.8.4.2 (the
scheme used depends on whether RDP 4.0 or 5.0 bulk compression is being used).

3.1.8.2.1 Setting the Compression Flags

The sender MUST always specify the compression flags associated with a compressed payload. These
flags MUST be set in the header field appropriate to the type of data payload, such as fast-path output
data (section 2.2.9.1.2.1), virtual channel data (section 2.2.6.1), or slow-path output data (section
2.2.9.1.1).

244 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

The compression flags are produced by performing a logical OR operation of the compression type
with one or more of the following flags.

Compression flag Meaning

PACKET_COMPRESSED | Used to indicate that the data is compressed. This flag is equivalent to MPPC bit C (for
0x20 more information see [RFC2118] section 3.1). This flag MUST be set when compression
of the data was successful.

PACKET_AT_FRONT Used to indicate that the decompressed data MUST be placed at the beginning of the
0x40 local history buffer. This flag is equivalent to MPPC bit B (for more information see
[RFC2118] section 3.1). This flag MUST be set in conjunction with the
PACKET_COMPRESSED (0x20) flag.

There are two conditions on the "compressor-side" that generate this scenario: (1) this

is the first packet to be compressed, and (2) the data to be compressed will not fit at
the end of the history buffer but instead needs to be placed at the start of the history

buffer.
PACKET_FLUSHED Used to indicate that the decompressor MUST reinitialized the history buffer (by filling it
0x80 with zeros) and reset the HistoryOffset to zero. After it has been reinitialized, the entire

history buffer is immediately regarded as valid. This flag is equivalent to MPPC bit A (for
more information see [RFC2118] section 3.1).

If the PACKET_COMPRESSED (0x20) flag is also present, then the PACKET_FLUSHED
flag MUST be processed first.

Data that is tagged as compressed (using the PACKET_COMPRESSED flag) MUST NOT be larger in size
than the original data. This implies that in @ minority of cases it is possible for compressed data to be
the same size as the original data, and still be regarded as compressed. In effect, the statement that
"data is compressed" simply implies that the data is encoded using a particular scheme, and that a
decoder (or decompressor) is required to obtain the original data.

3.1.8.2.2 Operation of the Bulk Compressor

The flowchart in the following figure illustrates the general operation of the bulk compressor and the
production of the compression flags described in section 3.1.8.2.1.

The constructs that follow are used throughout the flowchart.

= Flags: The compression flags.

= SrcData: The source bytes to be passed to the compressor.

= HistoryBuffer: The history buffer as described in section 3.1.8.1.

= HistoryOffset: The current offset into the history buffer as described in section 3.1.8.1.
= HistoryPtr: A pointer to the current byte in the history buffer which is being encoded.

= OutputBuffer: The output buffer that will contain the encoded bytes.

245 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90316

Start
Compress Data

Flags = PACKET COMPR_TYPE

SrcData
fits into
HistoryBuffer?

HistaryOffset = 0
Add PACKET AT FRONT to Flags

Copy SrcData to HistoryBuffer at HistoryOffset

HistoryPtr = HistoryOffset
Advance HistoryOffset by size of SrcData

A

Add
PACKET COMPRESSED
to Flags

HistoryPtr <
HistoryOffset?

'

Send
OutputBuffer

Finished
Comnpress Data

Search for a match of at least 3 bytes
from the start of HistoryBuffer to
{HistoryPtr - 1) for the data that

immediately follows HistoryPtr

Advance HistoryPtr
by size of match

larger than
SrcData?

copy-tuple

match

Create an encoded

describing the

Add encoded
copy-tuple to
QutputBuffer

Advance
HistaryPtr
by size of literal

Create an encoded
literal from the byte
at HistoryPtr

at HistoryPtr
f

Encoded
literal fits into

Encoded
copy-tuple fits into
OutputBuffer?

-
-

QutputBuffer?

Y
Add

Add encoded literal
to OutputBuffer

M

+
M Compress Data

of OutputBuffer ¥
larger than
SrcDatay

Figure 6: Operation of the bulk compressor

3.1.8.2.3 Data Compression Example

This example is based on the flowchart in the preceding figure that describes the operation of the bulk

compressor.

Source Data

(ANSI characters):

| PACKET FLUSHED |-
to Flags

!

Send
SrcData

for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

HistoryPtr = 0O

[MS-RDPBCGR] - v20160714
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

HistoryOffset = 0

(1) Copy the source data to the history buffer.

History Buffer:

0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 0)

HistoryOffset = 49

Output Buffer:
<empty>

(2) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('f') to the output buffer and advance HistoryPtr.

History Buffer:

0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 1)

Output Buffer:
£

(3) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('0') to the output buffer and advance HistoryPtr.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls,.the.bell.tolls.for.thee!

~ (HistoryPtr = 2)

Output Buffer:
fo

(4) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('r') to the output buffer and advance HistoryPtr.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls,.the.bell.tolls.for.thee!

~ (HistoryPtr = 3)

Output Buffer:
for

(5) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('.") to the output buffer and advance HistoryPtr.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890

247 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

for.whom.the.bell.tolls, .the.bell.tolls.for.thee!
~ (HistoryPtr = 4)

Output Buffer:
for.

For the sake of brevity, we skip the next 19 steps where we just add ANSI characters to the output
buffer.

(6) Current value of HistoryPtr is 23. No match larger than 2 characters found at the current position.
Add the ANSI character at HistoryPtr (',") to the output buffer and advance HistoryPtr.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 24)

Output Buffer:
for.whom.the.bell.tolls,

(7) We find a match in the history buffer at position 8 of length 15 characters (".the.bell.tolls").

Encode the copy-tuple and add it to the output buffer and advance HistoryPtr by the size of the match.

Recall from section 3.1.8.2 that the copy-offset component of the copy-tuple is an index into

HistoryBuffer (counting backwards from the HistoryPtr towards the start of the buffer) where there is
a match to the data to be sent.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 39)

Output Buffer:
for.whom.the.bell.tolls,<16,15>

(8) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('.") to the output buffer and advance HistoryPtr.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls,.the.bell.tolls.for.thee!

~ (HistoryPtr = 40)

Output Buffer:
for.whom.the.bell.tolls,<16,15>.

(9) We find a match in the history buffer at position 0 of length 4 characters ("for."). Encode the copy-
tuple and add it to the output buffer and advance HistoryPtr by the size of the match.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 44)

Output Buffer:

248 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

for.whom.the.bell.tolls,<16,15>.<40,4>

(10) We find a match in the history buffer at position 25 of length 3 characters ("the"). Encode the
copy-tuple and add it to the output buffer and advance HistoryPtr by the size of the match.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 47)

Output Buffer:
for.whom.the.bell.tolls,<16,15>.<40,4><19, 3>

(11) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr (‘e') to the output buffer and advance HistoryPtr.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 48)

Output Buffer:
for.whom.the.bell.tolls,<16,15>.<40,4><19, 3>e

(12) No match larger than 2 characters found at the current position. Add the ANSI character at
HistoryPtr ('!") to the output buffer and advance HistoryPtr.

History Buffer:
0 1 2 3 4
012345678901234567890123456789012345678901234567890
for.whom.the.bell.tolls, .the.bell.tolls.for.thee!

~ (HistoryPtr = 49)

Output Buffer:
for.whom.the.bell.tolls,<16,15>.<40,4><19,3>e!

(13) HistoryPtr (49) is not less than HistoryOffset (49), so we add the PACKET_COMPRESSED flag to
the output packet and send the Output Buffer.

3.1.8.3 Decompressing Data

An endpoint which receives compressed data MUST decompress the data and store the resultant data
at the end of the history buffer. The order of actions depends on the compression flags associated with
the compressed data.

Compression flag Meaning
PACKET_FLUSHED If this flag is set, the decompressor MUST reinitialize the history buffer (by filling it with
0x80 zeros) and reset the HistoryOffset to zero. Once the history buffer has been reinitialized,

its entire contents are immediately regarded as valid.

If the PACKET_COMPRESSED (0x20) flag is also present, then the PACKET_FLUSHED
flag MUST be processed first.

PACKET_AT_FRONT If this flag is set, the decompressor MUST start decompressing to the start of the
history buffer, by resetting the HistoryOffset to zero. Otherwise, the decompressor

249 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

Compression flag Meaning

0x40 MUST append the decompressed data to the end of the history buffer.

PACKET_COMPRESSED | If this flag is set, the decompressor MUST decompress the data, appending the
0x20 decompressed data to the history buffer and advancing the HistoryOffset by the size of
the resulting decompressed data.

3.1.8.4 Compression Types
3.1.8.4.1 RDP 4.0

3.1.8.4.1.1 Literal Encoding

Literals are bytes sent uncompressed. If the value of a literal is below 0x80, it is not encoded in any
special manner. If the literal has a value greater than 0x7F it is sent as the bits 10 followed by the
lower 7 bits of the literal. For example, 0x56 is transmitted as the binary value 01010110, while OxE7
is transmitted as the binary value 101100111.

3.1.8.4.1.2 Copy-Tuple Encoding

Copy-tuples consist of a <copy-offset> and <length-of-match> pair (see section 3.1.8.2 for more
details).

3.1.8.4.1.2.1 Copy-Offset Encoding

Encoding of the copy-offset value is performed according to the following table.

Copy-offset range | Encoding (binary header + copy-offset bits)

0...63 1111 + lower 6 bits of copy-offset
64...319 1110 + lower 8 bits of (copy-offset — 64)
320...8191 110 + lower 13 bits of (copy-offset = 320)

For example:

= A copy-offset value of 3 is encoded as the binary value 1111 000011.

= A copy-offset value of 128 is encoded as the binary value 1110 01000000.

= A copy-offset value of 1024 is encoded as the binary value 110 0001011000000.

A copy-offset value MUST be followed by a length-of-match (L-0-M) value.

3.1.8.4.1.2.2 Length-of-Match Encoding

Encoding of the length-of-match (L-0-M) value is performed according to the following table.

L-o-M range | Encoding (binary header + L-0-M bits)

3 0
4...7 10 + 2 lower bits of L-0-M
8...15 110 + 3 lower bits of L-0-M

250/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

L-o-M range | Encoding (binary header + L-0-M bits)

16...31 1110 + 4 lower bits of L-0-M
32...63 11110 + 5 lower bits of L-0-M
64...127 111110 + 6 lower bits of L-0-M
128...255 1111110 + 7 lower bits of L-0-M
256...511 11111110 + 8 lower bits of L-0-M

512...1023 111111110 + 9 lower bits of L-0-M

1024...2047 1111111110 + 10 lower bits of L-0-M

2048...4095 11111111110 + 11 lower bits of L-0-M

4096...8191 111111111110 + 12 lower bits of L-0-M

For example:
= A length-of-match value of 15 is encoded as the binary value 110 111.
= A length-of-match value of 120 is encoded as the binary value 111110 111000.

= A length-of-match value of 4097 is encoded as the binary value 111111111110 000000000001.

3.1.8.4.2 RDP 5.0

The rules for RDP 5.0 are very similar to those of RDP 4.0 (section 3.1.8.4.1). RDP 5.0 has a history
buffer size of 64 kilobytes, thus both endpoints MUST maintain a 64 kilobyte window.

3.1.8.4.2.1 Literal Encoding

Literals are bytes sent uncompressed. If the value of a literal is below 0x80, it is not encoded in any
special manner. If the literal has a value greater than 0x7F it is sent as the bits 10 followed by the
lower 7 bits of the literal. For example, 0x56 is transmitted as the binary value 01010110, while OXE7
is transmitted as the binary value 101100111.

3.1.8.4.2.2 Copy-Tuple Encoding

Copy-tuples consist of a <copy-offset> and <length-of-match> pair (see section 3.1.8.2 for more
details).

3.1.8.4.2.2.1 Copy-Offset Encoding

Encoding of the copy-offset value is performed according to the following table.

Copy-offset range | Encoding (binary header + copy-offset bits)
0...63 11111 + lower 6 bits of copy-offset

64...319 11110 + lower 8 bits of (copy-offset - 64)
320...2367 1110 + lower 11 bits of (copy-offset — 320)
2368+ 110 + lower 16 bits of (copy-offset — 2368)

A copy-offset value MUST be followed by a length-of-match value.

251 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.1.8.4.2.2.2 Length-of-Match Encoding

Encoding of the length-of-match (L-0-M) value is performed according to the following table.

L-o0-M range

Encoding (binary header + L-0-M bits)

3 0

4..7 10 + 2 lower bits of L-0-M

8..15 110 + 3 lower bits of L-0-M

16..31 1110 + 4 lower bits of L-0-M

32..63 11110 + 5 lower bits of L-0-M

64..127 111110 + 6 lower bits of L-0-M
128..255 1111110 + 7 lower bits of L-0-M
256..511 11111110 + 8 lower bits of L-0-M
512..1023 111111110 + 9 lower bits of L-0-M
1024..2047 1111111110 + 10 lower bits of L-0-M
2048..4095 11111111110 + 11 lower bits of L-0-M
4096..8191 111111111110 + 12 lower bits of L-0-M
8192..16383 1111111111110 + 13 lower bits of L-0-M

16384..32767

11111111111110 + 14 lower bits of L-0-M

32768..65535

111111111111110 + 15 lower bits of L-0-M

3.1.9 Interleaved RLE-Based Bitmap Compression

Bitmap data sent from server to client can be compressed using Interleaved RLE as described in
section 2.2.9.1.1.3.1.2.4. The pseudo-code which follows shows how to decompress a compressed

bitmap stream.

//

// Bitmasks

//

BYTE g MaskBitO
BYTE g MaskBitl
BYTE g MaskBit2
BYTE g MaskBit3
BYTE g MaskBit4
BYTE g MaskBit5
BYTE g MaskBit6
BYTE g MaskBit7

0x01; // Least significant bit
0x02;
0x04;
0x08;
0x10;
0x20;
0x40;
0x80; // Most significant bit

BYTE g MaskRegularRunLength = 0x1F;
BYTE g MaskLiteRunLength = 0xO0F;

BYTE g MaskSpecialFgBgl
BYTE g MaskSpecialFgBg2

//

0x03;
0x05;

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

252 /417

// Returns the color depth (in bytes per pixel) that was selected
// for the RDP connection.

//

UINT

GetColorDepth () ;

//

// PIXEL is a dynamic type that is sized based on the current color
// depth being used for the RDP connection.

//

// 1f (GetColorDepth() == 8) then PIXEL is an 8-bit unsigned integer
// 1f (GetColorDepth() == 15) then PIXEL is a 16-bit unsigned integer
// 1f (GetColorDepth() == 16) then PIXEL is a 16-bit unsigned integer
// 1f (GetColorDepth() == 24) then PIXEL is a 24-bit unsigned integer
//

//
// Writes a pixel to the specified buffer.
//
VOID
WritePixel (
BYTE* pbBuffer,
PIXEL pixel
)7

//
// Reads a pixel from the specified buffer.
//
PIXEL
ReadPixel (
BYTE* pbBuffer
)7

//
// Returns the size of a pixel in bytes.
//
UINT
GetPixelSize ()
{
UINT colorDepth = GetColorDepth() ;

if (colorDepth == 8)
{
return 1;
}
else if (colorDepth == 15 || colorDepth == 16)
{
return 2;
}
else if (colorDepth == 24)
{
return 3;
}
}

//
// Returns a pointer to the next pixel in the specified buffer.
//
BYTE*
NextPixel (
BYTE* pbBuffer
)
{
return pbBuffer + GetPixelSize();
}

//

// Reads the supplied order header and extracts the compression

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

253 /417

// order code ID.

//

UINT

ExtractCodeId(
BYTE bOrderHdr
)i

//
// Returns a pointer to the data that follows the compression
// order header and optional run length.
//
BYTE*
AdvanceOverOrderHeader (
UINT codeld,
BYTE* pbOrderHdr
)i

//
// Returns TRUE if the supplied code identifier is for a regular-form
// standard compression order. For example IsRegularCode (0x01) returns
// TRUE as 0x01 is the code ID for a Regular Foreground Run Order.
//
BOOL
IsRegularCode (
UINT codeId
)i

//
// Returns TRUE if the supplied code identifier is for a lite-form
// standard compression order. For example IsLiteCode (0x0OE) returns
// TRUE as OxOE is the code ID for a Lite Dithered Run Order.
//
BOOL
IsLiteCode (
UINT codeId
)i

//
// Returns TRUE if the supplied code identifier is for a MEGA MEGA
// type extended compression order. For example IsMegaMegaCode (0xFO0)
// returns TRUE as OxF0 is the code ID for a MEGA MEGA Background
// Run Order.
//
BOOL
IsMegaMegaCode (

UINT codeId

)7

//
// Returns a black pixel.
//
PIXEL
GetColorBlack ()
{
UINT colorDepth = GetColorDepth() ;

if (colorDepth == 8)

{ return (PIXEL) 0x00;
;lse if (colorDepth == 15)
{ return (PIXEL) 0x0000;
;lse if (colorDepth == 16)
{ return (PIXEL) 0x0000;
}

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

254 /417

else if (colorDepth ==
{

24)

return (PIXEL) 0x000000;

}
}

//
// Returns a white pixel.
//
PIXEL
GetColorWhite ()
{
UINT colorDepth = GetColorDepth() ;
if (colorDepth == 8)
{
//
// Palette entry #255 holds black.
//
return (PIXEL) OxFF;
}
else if (colorDepth == 15)
{
//
// 5 bits per RGB component:
// 0111 1111 1111 1111 (binary)
//
return (PIXEL) Ox7FFF;
}
else if (colorDepth == 16)
{
//
// 5 bits for red, 6 bits for green,
// 1111 1111 1111 1111 (binary)
//
return (PIXEL) OxFFFF;
}
else if (colorDepth == 24)
{
//
// 8 bits per RGB component:
// 1111 1111 1111 1111 1111 1111
//
return (PIXEL) OxFFFFFF;
}
}
//

// Extract the run length of a Regular-Form Foreground/Background

// Image Order.

//
UINT

ExtractRunLengthRegularFgBg (

BYTE* pbOrderHdr
)

UINT runLength;

5 bits for green:

(binary)

runLength = *pbOrderHdr AND g MaskRegularRunLength;

if (runLength == 0)
{

runLength = * (pbOrderHdr + 1) + 1;

}
else

{

runLength = runLength * 8;

}

return runlLength;

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

255/ 417

}

//
// Extract the run length of a Lite-Form Foreground/Background
// Image Order.
//
UINT
ExtractRunLengthLiteFgBg (
BYTE* pbOrderHdr
)

UINT runLength;

runLength = *pbOrderHdr AND g MaskLiteRunLength;
if (runLength == 0)
{
runLength = * (pbOrderHdr + 1) + 1;
}

else

{
runLength = runLength * 8;
}

return runlLength;

}
//

// Extract the run length of a regular-form compression order.
//
UINT
ExtractRunLengthRegular (
BYTE* pbOrderHdr
)

UINT runLength;

runLength = *pbOrderHdr AND g MaskRegularRunLength;

if (runLength == 0)

{
//
// An extended (MEGA) run.
//

runLength = * (pbOrderHdr + 1) + 32;
}

return runlLength;

}
//

// Extract the run length of a lite-form compression order.
//
UINT
ExtractRunLengthLite (
BYTE* pbOrderHdr
)

UINT runLength;

runLength = *pbOrderHdr AND g MaskLiteRunLength;
if (runLength == 0)
{
//
// An extended (MEGA) run.
//
runLength = * (pbOrderHdr + 1) + 16;
}

return runLength;

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

256 / 417

//
// Extract the run length of a MEGA MEGA-type compression order.
//
UINT
ExtractRunLengthMegaMega (
BYTE* pbOrderHdr
)

UINT runLength;

pbOrderHdr = pbOrderHdr + 1;
runLength = ((UINT16) pbOrderHdr[0]) OR ((UINT16) pbOrderHdr[l] << 8);

return runLength;

}

//
// Extract the run length of a compression order.
//
UINT
ExtractRunLength (
UINT code,
BYTE* pbOrderHdr
)
{
UINT runLength;
if (code == REGULAR FGBG IMAGE)
{
runLength = ExtractRunLengthRegularFgBg (pbOrderHdr) ;
}
else if (code == LITE SET FG FGBG IMAGE)
{
runlength = ExtractRunLengthLiteFgBg (pbOrderHdr) ;
}
else if (IsRegularCode (code))
{
runLength = ExtractRunLengthRegular (pbOrderHdr) ;
}
else if (IsLiteCode (code))
{
runLength = ExtractRunLengthLite (pbOrderHdr) ;
}
else if (IsMegaMegaCode (code))
{
runLength = ExtractRunLengthMegaMega (pbOrderHdr) ;
}
else
{
runLength = 0;
}
return runlLength;
}
//
// Write a foreground/background image to a destination buffer.
//
BYTE*
WriteFgBgImage (

BYTE* pbDest,
UINT rowDelta,
BYTE bitmask,
PIXEL fgPel,
UINT cBits

)

PIXEL xorPixel;

257/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

xorPixel = ReadPixel (pbDest - rowDelta);
if (bitmask AND g MaskBitO)
{
WritePixel (pbDest, xorPixel XOR fgPel) ;
}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
xorPixel = ReadPixel (pbDest - rowDelta);
if (bitmask AND g MaskBitl)
{
WritePixel (pbDest, xorPixel XOR fgPel) ;
}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{

xorPixel ReadPixel (pbDest - rowDelta);
if (bitmask AND g MaskBit2)
{
WritePixel (pbDest, xorPixel XOR fgPel) ;
}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
xorPixel = ReadPixel (pbDest - rowDelta):;
if (bitmask AND g MaskBit3)
{
WritePixel (pbDest, xorPixel XOR fgPel) ;
}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
xorPixel = ReadPixel (pbDest - rowDelta);
if (bitmask AND g MaskBit4)
{
WritePixel (pbDest, xorPixel XOR fgPel) ;
}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

258 /417

if
{

}

return pbDest;

}
//

(cBits > 0)

xorPixel = ReadPixel (pbDest - rowDelta);
if (bitmask AND g MaskBit5)
{
WritePixel (pbDest, xorPixel XOR fgPel) ;
}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
xorPixel = ReadPixel (pbDest - rowDelta);
if (bitmask AND g MaskBit6)
{
WritePixel (pbDest, xorPixel XOR fgPel);
}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)

{
xorPixel = ReadPixel (pbDest - rowDelta);
if (bitmask AND g MaskBit7)
{

WritePixel (pbDest, xorPixel XOR fgPel) ;

}
else
{
WritePixel (pbDest, xorPixel);
}
pbDest = NextPixel (pbDest) ;

// Write a foreground/background image to a destination buffer
// for the first line of compressed data.

//
BYTE*
WriteFirstLineFgBgImage (
BYTE* pbDest,
BYTE bitmask,
PIXEL fgPel,
UINT cBits
)

if (bitmask AND g MaskBitO)

{

WritePixel (pbDest, fgPel);

}

else

{

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

259 /417

WritePixel (pbDest, GetColorBlack());
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
if (bitmask AND g MaskBitl)
{
WritePixel (pbDest, fgPel);
}
else
{
WritePixel (pbDest, GetColorBlack());
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
if (bitmask AND g MaskBit2)
{
WritePixel (pbDest, fgPel);
}
else
{
WritePixel (pbDest, GetColorBlack());
}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
if (bitmask AND g MaskBit3)
{
WritePixel (pbDest, fgPel);
}
else

{

WritePixel (pbDest, GetColorBlack()):;

}
pbDest = NextPixel (pbDest) ;

cBits = cBits - 1;

if (cBits > 0)
{
if (bitmask AND g MaskBit4)
{
WritePixel (pbDest, fgPel);
}
else

{

WritePixel (pbDest, GetColorBlack());

}
pbDest = NextPixel (pbDest) ;

cBits = cBits - 1;

if (cBits > 0)
{
if (bitmask AND g MaskBit5)
{
WritePixel (pbDest, fgPel);
}
else

{

WritePixel (pbDest, GetColorBlack());

}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

260/ 417

if (cBits > 0)
{
if (bitmask AND g MaskBit6)
{
WritePixel (pbDest, fgPel);
}
else
{

WritePixel (pbDest, GetColorBlack());

}
pbDest = NextPixel (pbDest) ;
cBits = cBits - 1;

if (cBits > 0)
{
if (bitmask AND g MaskBit7)
{
WritePixel (pbDest, fgPel);
}
else

{

WritePixel (pbDest, GetColorBlack());

}
pbDest = NextPixel (pbDest) ;

}

return pbDest;

}
//

// Decompress an RLE compressed bitmap.
//

VOID

RleDecompress (

BYTE* pbSrcBuffer, // Source buffer containing compressed bitmap

UINT cbSrcBuffer, // Size of source buffer in bytes
BYTE* pbDestBuffer, // Destination buffer

UINT rowDelta // Scanline length in bytes

)

BYTE* pbSrc = pbSrcBuffer;
BYTE* pbEnd = pbSrcBuffer + cbSrcBuffer;
BYTE* pbDest = pbDestBuffer;

PIXEL fgPel = GetColorWhite();
BOOL fInsertFgPel = FALSE;
BOOL fFirstLine = TRUE;

BYTE bitmask;
PIXEL pixelA, pixelB;

UINT runLength;
UINT code;

while (pbSrc < pbEnd)
{
//
// Watch out for the end of the first scanline.
//
if (fFirstLine)
{
if (pbDest - pbDestBuffer >= rowDelta)

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

261 /417

fFirstLine = FALSE;
fInsertFgPel = FALSE;

}
//

// Extract the compression order code ID from the compression
// order header.

//
code = ExtractCodeld (*pbSrc);

//
// Handle Background Run Orders.
//
if (code == REGULAR BG RUN OR
code == MEGA MEGA BG RUN)
{
runLength = ExtractRunLength (code, pbSrc);
pbSrc = AdvanceOverOrderHeader (code, pbSrc);
if (fFirstLine)
{
if (fInsertFgPel)
{
WritePixel (pbDest, fgPel);
pbDest = NextPixel (pbDest) ;
runLength = runLength - 1;
}
while (runLength > 0)
{
WritePixel (pbDest, GetColorBlack());
pbDest = NextPixel (pbDest) ;
runLength = runLength - 1;
}
}
else
{
if (fInsertFgPel)
{
WritePixel (
pbDest,
ReadPixel (pbDest - rowDelta) XOR fgPel
)i
pbDest = NextPixel (pbDest) ;
runLength = runLength - 1;
}
while (runLength > 0)
{
WritePixel (pbDest, ReadPixel (pbDest - rowDelta)):;
pbDest = NextPixel (pbDest) ;
runLength = runLength - 1;
}
}
//
// A follow-on background run order will need a
// foreground pel inserted.
//
fInsertFgPel = TRUE;
continue;
}
//

// For any of the other run-types a follow-on background run
// order does not need a foreground pel inserted.

//
fInsertFgPel = FALSE;

262 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

//

// Handle Foreground Run Orders.

//

if (code == REGULAR_FG_RUN OR
code == MEGA MEGA FG RUN OR
code == LITE SET FG FG RUN OR
code == MEGA MEGA SET FG RUN)

runLength = ExtractRunLength (code, pbSrc);
pbSrc = AdvanceOverOrderHeader (code, pbSrc);

if (code == LITE SET FG FG RUN OR
code == MEGA MEGA SET FG RUN)

fgPel = ReadPixel (pbSrc);
pbSrc = NextPixel (pbSrc);
}

while (runLength > 0)
{
if (fFirstLine)
{
WritePixel (pbDest, fgPel);
pbDest = NextPixel (pbDest) ;
}
else
{
WritePixel (
pbDest,
ReadPixel (pbDest - rowDelta) XOR fgPel
)i
pbDest = NextPixel (pbDest) ;
}

runLength = runLength - 1;
}

continue;

}

//

// Handle Dithered Run Orders.

//

if (code == LITE DITHERED_RUN OR
code == MEGA MEGA DITHERED RUN)

runLength = ExtractRunLength (code, pbSrc);
pbSrc = AdvanceOverOrderHeader (code, pbSrc);

pixelA = ReadPixel (pbSrc);
pbSrc = NextPixel (pbSrc);
pixelB = ReadPixel (pbSrc);
pbSrc = NextPixel (pbSrc);

while (runLength > 0)
{

WritePixel (pbDest, pixeld);
pbDest = NextPixel (pbDest) ;
)
)

7

WritePixel (pbDest, pixelB
pbDest = NextPixel (pbDest

7

runlLlength = runLength - 1;
}

continue;

//

263/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

// Handle Color Run Orders.

//
if (code == REGULAR COLOR RUN OR
code == MEGA MEGA COLOR RUN)
{
runLength = ExtractRunLength (code, pbSrc);
pbSrc = AdvanceOverOrderHeader (code, pbSrc);
pixelA = ReadPixel (pbSrc);
pbSrc = NextPixel (pbSrc);
while (runLength > 0)
{
WritePixel (pbDest, pixelA);
pbDest = NextPixel (pbDest) ;
runLength = runLength - 1;
}
continue;
}
//
// Handle Foreground/Background Image Orders.
//
if (code == REGULAR_FGBG_IMAGE OR
code == MEGA MEGA FGBG IMAGE OR
code == LITE SET FG FGBG IMAGE OR
code == MEGA MEGA SET FGBG IMAGE)

runLength = ExtractRunLength (code, pbSrc);
pbSrc = AdvanceOverOrderHeader (code, pbSrc);

if (code == LITE SET FG FGBG IMAGE OR
code == MEGA MEGA SET FGBG IMAGE)

fgbPel = ReadPixel (pbSrc);
pbSrc = NextPixel (pbSrc);
}

while (runLength > 8)
{
bitmask = *pbSrc;
pbSrc = pbSrc + 1;

if (fFirstLine)
{
pbDest = WriteFirstLineFgBgImage (
pbDest,
bitmask,
fgPel,
8
)7
}
else
{
pbDest = WriteFgBgImage (
pbDest,
rowDelta,
bitmask,
fgbel,
8
)7
}

runLength = runLength - 8;
}

if (runLength > 0)

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

264 /417

bitmask = *pbSrc;
pbSrc = pbSrc + 1;

if (fFirstLine)
{
pbDest = WriteFirstLineFgBgImage (
pbDest,
bitmask,
fgPel,
runLength
)i
}
else
{
pbDest = WriteFgBgImage (
pbDest,
rowDelta,
bitmask,
fgbel,
runLength
)i

}

continue;

}

//

// Handle Color Image Orders.

//

if (code == REGULAR COLOR IMAGE OR
code == MEGA MEGA COLOR IMAGE)

UINT byteCount;

runLength = ExtractRunLength (code, pbSrc);
pbSrc = AdvanceOverOrderHeader (code, pbSrc);

byteCount = runLength * GetColorDepth () ;

while (byteCount > 0)

{
*pbDest = *pbSrc;
pbDest = pbDest + 1;
pbSrc = pbSrc + 1;

byteCount = byteCount - 1;
}

continue;

}

//
// Handle Special Order 1.
//
if (code == SPECIAL FGBG 1)
{
if (fFirstLine)
{
pbDest = WriteFirstLineFgBgImage (
pbDest,
g MaskSpecialFgBgl,
fgbel,
8
)7

else

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

265/ 417

pbDest = WriteFgBgImage (

pbDest,
rowDelta,
g MaskSpecialFgBgl,
fgPel,
8
)
}
continue;
}
//
// Handle Special Order 2.
//
if (code == SPECIAL FGBG 2)
{
if (fFirstLine)
{
pbDest = WriteFirstLineFgBgImage (
pbDest,
g _MaskSpecialFgBg2,
fgPel,
8
)i
}
else
{
pbDest = WriteFgBgImage (
pbDest,
rowDelta,
g MaskSpecialFgBg2,
fgbel,
8
)i
}
continue;
}
//
// Handle White Order.
//
if (code == WHITE)
{
WritePixel (pbDest, GetColorWhite());
pbDest = NextPixel (pbDest) ;
continue;
}
//
// Handle Black Order.
//
if (code == BLACK)

{
WritePixel (pbDest, GetColorBlack()):;
pbDest = NextPixel (pbDest) ;

continue;

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

266 / 417

3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

3.2.1.1 Received Server Data

The Received Server Data store contains data received from the server during execution of the
Remote Desktop Protocol. This store is initialized when processing the MCS Connect Response PDU
with GCC Conference Create Response (sections 2.2.1.4 and 3.2.5.3.4).

3.2.1.2 Static Virtual Channel IDs

The Static Virtual Channel IDs store contains the MCS channel identifiers of the static virtual channels.
This data store is initialized when processing the Server Network Data (sections 2.2.1.4.4 and
3.2.5.3.4).

3.2.1.3 I/0 Channel ID

The I/0O Channel ID store contains the MCS channel identifier of the I/O channel. This data store is
initialized when processing the Server Network Data (sections 2.2.1.4.4 and 3.2.5.3.4).

3.2.1.4 Message Channel ID

The Message Channel ID store contains the MCS channel identifier of the message channel. This data
store is initialized when processing the Server Message Channel Data (sections 2.2.1.4.5 and
3.2.5.3.4).

3.2.1.5 User Channel ID

The User Channel ID store contains the MCS channel identifier of the user channel. This data store is
initialized when processing the MCS Attach User Confirm PDU (sections 2.2.1.7 and 3.2.5.3.7).

3.2.1.6 Server Channel ID

The Server Channel ID store contains the MCS channel identifier of the server channel. This data store
is initialized when processing the Demand Active PDU (sections 2.2.1.13.1.1 and 3.2.5.3.13.1).

3.2.1.7 Server Capabilities

The Server Capabilities store contains capability sets (section 1.7) received from the server in the
Demand Active PDU (sections 2.2.1.13.1 and 3.2.5.3.13.1).

267/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.2.1.8 Share ID

The Share ID store holds the share identifier selected by the server ([T128] section 8.4.2 for more
information regarding share IDs). This data store is initialized when processing the Demand Active
PDU (sections 2.2.1.13.1 and 3.2.5.3.13.1) and is used to initialize the shareld field of the Share
Data Header when sending basic client-to-server slow-path PDUs (section 3.2.5.1).

3.2.1.9 Automatic Reconnection Cookie

The Automatic Reconnection Cookie store contains a cookie received from the server that enables
seamless reconnections in cases where the connection has been broken due to short-term transient
network failure (section 5.5). The cookie is sent by the server to the client in the Save Session Info
PDU (sections 2.2.10.1 and 3.2.5.10.1), and sent by the client to the server in the Client Info PDU
(sections 2.2.1.11.1.1.1 and 3.3.5.3.11).

3.2.1.10 Server Licensing Encryption Ability

The Server Licensing Encryption Ability store determines whether the server has the ability to handle
encrypted licensing packets when using Standard RDP Security mechanisms (see the discussion of the
SEC_LICENSE_ENCRYPT_CS flag in section 2.2.8.1.1.2.1). This fact is communicated to the client by
setting the SEC_LICENSE_ENCRYPT_CS (0x0200) flag in all licensing PDUs sent from the server.

3.2.1.11 Pointer Image Cache

The Pointer Image Cache contains a collection of pointer images saved from Color Pointer Updates
(sections 2.2.9.1.2.1.7, 3.2.5.9.2, and 3.2.5.9.3) and New Pointer Updates (sections 2.2.9.1.2.1.8,
3.2.5.9.2, and 3.2.5.9.3). The images stored in the cache are used to set the shape of the pointer
when processing a Cached Pointer Update (sections 2.2.9.1.1.4.6, 3.2.5.9.2, and 3.2.5.9.3). The size
and color depth (either variable or fixed at 24 bpp) of the cache is specified in the Pointer Capability
Set (section 2.2.7.1.5).

3.2.1.12 Session Keys

The Session Keys store holds the symmetric keys (sections 5.3.5 to 5.3.7) used to encrypt, decrypt,
and sign RDP packets.

3.2.1.13 Bitmap Caches

A Bitmap Cache is a store that contains bitmap images that were sent to the client using the Cache
Bitmap (Revision 2) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

3.2.1.14 Persistent Bitmap Caches

A Persistent Bitmap Cache is a store that contains bitmap images that were sent to the client by using
the Cache Bitmap (Revision 2) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).
Unlike the Bitmap Caches described in section 3.2.1.13, Persistent Bitmap Caches are not bound to
the lifetime of a given RDP connection and their contents are persisted even after the RDP connection
is closed.

3.2.1.15 Persisted Bitmap Keys

The Persisted Bitmap Keys store holds a collection of 64-bit bitmap keys, each of which uniquely
identifies a bitmap image that is present in a Persistent Bitmap Cache (section 3.2.1.14). The lifetime
of this store is bound to the lifetime of the Persistent Bitmap Caches.

268 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

3.2.1.16 Connection Start Time

The Connection Start Time store contains the time at which the client first sent network traffic to the
server.

3.2.1.17 Network Characteristics Byte Count

The Network Characteristics Byte Count store is a byte counter that is used when determining the
network characteristics by using the messages defined in section 2.2.14.1.

3.2.1.18 Network Characteristics Sequence Number

The Network Characteristics Sequence Number store is used to correlate bandwidth measurement
operations when determining network characteristics by using the bandwidth measurement messages
defined in sections 2.2.14.2 and 2.2.14.4.

3.2.2 Timers

3.2.2.1 Connection Sequence Timeout Timer
The Connection Sequence Timeout Timer stores the amount of time that has elapsed since the client

first sent network traffic to the server. The connection start time is stored in the Connection Start
Time store (section 3.2.1.16).

3.2.2.2 Network Characteristics Timer

The Network Characteristics Timer store is a millisecond-resolution timer that is used when
determining the network characteristics using the messages defined in 2.2.14.1.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.
3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Constructing a Client-to-Server Slow-Path PDU

The majority of client-to-server slow-path PDUs have the same basic structure (sections 5.3.8 and
5.4.4):

= tpktHeader: TPKT Header ([T123] section 8)
» x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)
= mcsSDrq: MCS Send Data Request PDU ([T125] section 7, Part 7)
= securityHeader: Optional Security Header (section 2.2.8.1.1.2)
= shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)

= PDU Contents (see the section describing the PDU structure and fields in section 2.2)

269 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field is
initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as specified in [T125] section 11.32. The embedded initiator field
MUST be set to the User Channel ID held in the User Channel ID store (section 3.2.1.5) and the
embedded channelld field MUST be set to the MCS I/O channel ID held in the I/O Channel ID store
(section 3.2.1.3). The embedded userData field contains the remaining fields of the PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario, the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field is encrypted and signed (using the methods and techniques specified in section
5.3.6) based on the values of the Encryption Level and Encryption Method selected by the server as
part of the negotiation specified in section 5.3.2. The format of the securityHeader field is selected
as specified in the section describing the PDU structure and fields in section 2.2, and the fields
populated with the appropriate security data. If the data is to be encrypted, the embedded flags field
of the securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The shareDataHeader field contains a Share Data Header structure as described in section
2.2.8.1.1.1.2. The pduSource field of the embedded Share Control Header (section 2.2.8.1.1.1.1)
MUST be set to the User Channel ID held in the User Channel ID store (section 3.2.1.5). If the
contents of the PDU are to be compressed (this MUST be done before any MAC signature is
constructed and encryption methods applied), the embedded compressedType field of the
shareDataHeader MUST be initialized as specified in section 2.2.8.1.1.1.2. The remaining Share Data
Header and Share Control Header fields MUST be populated as specified in sections 2.2.8.1.1.1.1,
2.2.8.1.1.1.2, and the section describing the PDU structure and fields in section 2.2.

Any remaining fields are populated as specified in the section describing the PDU structure and fields
in section 2.2.

3.2.5.2 Processing a Server-to-Client Slow-Path PDU

The majority of server-to-client slow-path PDUs have the same basic structure (sections 5.3.8 and
5.4.4):

= tpktHeader: TPKT Header ([T123] section 8)
» x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)
= mcsSDin: MCS Send Data Indication PDU ([T125] section 7, part 7)
= securityHeader: Optional Security Header (section 2.2.8.1.1.2)
» shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)
= PDU Contents (see the section describing the PDU structure and fields in section 2.2)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsSDin ([T125] section
7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The embedded channelld field within the mcsSDin is used to route the PDU to the appropriate target
channel.

270/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in the section describing the PDU structure and
fields in section 2.2. If the securityHeader field is present, the embedded flags field MUST be
examined for the presence of the SEC_ENCRYPT (0x0008) flag (section 2.2.8.1.1.2.1), and, ifit is
present, the data following the securityHeader field MUST be verified and decrypted using the
methods and techniques specified in section 5.3.6. If the MAC signature is incorrect, or the data
cannot be decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in
effect and the SEC_ENCRYPT flag is present, the connection SHOULD be dropped because double-
encryption is never used in this scenario.

The shareDataHeader field (which contains the Share Control Header and Share Data Header
described in sections 2.2.8.1.1.1.1 and 2.2.8.1.1.1.2 respectively) MUST be examined to determine
the PDU type (from the pduType and pduType2 fields), as well as the compression usage
information (from the compressedType field). If the data following the Share Data Header is
compressed, then decompression using the techniques specified in section 3.1.8.3 MUST be
performed. The value of the totalLength field MUST also be examined for consistency with the
received data. If there is any discrepancy, the connection SHOULD be dropped. The remaining Share
Control Header and Share Data Header fields MAY be ignored.

Any remaining PDU fields MUST be interpreted and processed in accordance with the section
describing the PDU structure and fields in section 2.2.

3.2.5.3 Connection Sequence

3.2.5.3.1 Sending X.224 Connection Request PDU
The structure and fields of the X.224 Connection Request PDU are specified in section 2.2.1.1.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Crq field is
initialized as specified in [X224] section 13.3 (the Destination reference and Source reference fields
are both set to zero, and the Class and options fields are both set to zero). Parameter fields MUST
NOT be specified in the variable part of the Connection Request PDU. This implies that the default
maximum size of an X.224 Data PDU payload (65528 bytes) is used because the maximum TPDU size
and preferred maximum TPDU size are not present.

The routingToken field is optional. If the client is in possession of a routing token, it MUST populate
the routingToken field. The primary source of a routing token is the LoadBalanceInfo field of the
Server Redirection PDU (section 2.2.13.1). However other methods, such as scriptable APIs or file
input, can be used to provide a client with a routing token before a connection to an RDP server is
initiated. For more information about load balancing of Remote Desktop sessions and the routing
token format, see [MSFT-SDLBTS] sections "Load-Balanced Configurations", "Revectoring Clients", and
"Routing Token Format".

The cookie field is optional and MUST NOT be present if the routingToken field is present.<41>

The optional rdpNegData field contains an RDP Negotiation Request structure, as specified in section
2.2.1.1.1. The requestedProtocols field is initialized with flags describing the security protocols
which the client supports (see section 5.4 for more details on Enhanced RDP Security).

Upon successfully transmitting the X.224 Connection Request PDU, the client MUST update the
Connection Start Time store (section 3.2.1.16).

3.2.5.3.2 Processing X.224 Connection Confirm PDU
The structure and fields of the X.224 Connection Confirm PDU are specified in section 2.2.1.2.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

271/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90204
http://go.microsoft.com/fwlink/?LinkId=90541

The Destination reference, Source reference, and Class and options fields within the x224Ccf field
MAY be ignored.

If the rdpNegData field is not present, it is assumed that the server does not support Enhanced RDP
Security (section 5.4) and the protocol selected by the server is implicitly assumed to be
PROTOCOL_RDP (0x00000000). If the rdpNegData is present, then it MUST contain either an RDP
Negotiation Response (section 2.2.1.2.1) structure or RDP Negotiation Failure (section 2.2.1.2.2)
structure. If any other structure is present, the connection SHOULD be dropped.

If an RDP Negotiation Failure structure is present, the failure code is extracted from the failureCode
field and the connection SHOULD be dropped (see section 2.2.1.2.2 for a list of failure codes). If an
RDP Negotiation Response structure is present, the selectedProtocol field is parsed to extract the
selected protocol identifier (see section 2.2.1.2.1 for a list of identifiers).

If an External Security Protocol (section 5.4.5) will be used for the duration of the connection, and the
Negotiation-Based Approach (section 5.4.2.1) is being used, the client MUST execute the selected
protocol at this stage by calling into the relevant External Security Protocol provider. Once the
External Security Protocol handshake has successfully run to completion and all authentication
requirements have been fulfilled, the client SHOULD continue with the connection sequence by
sending the MCS Connect Initial PDU (section 2.2.1.3) to the server over the newly established secure
channel (section 3.2.5.3.3).

If Standard RDP Security mechanisms (section 5.3) are to be used, that is, the protocol selected by
the server is PROTOCOL_RDP (0x00000000), then the client SHOULD do either of the following:

= Continue with the connection sequence by sending the Client MCS Connect Initial
PDU (section 2.2.1.3) to the server.

= Disconnect and then restart the connection sequence, specifying only the PROTOCOL_RDP flag
(0x00000000) in the requestedProtocols field of the RDP Negotiation Request structure (section
2.2.1.1.1).

Both of these actions will result in a session that is secured using Standard RDP Security mechanisms.
However, the second option makes it possible for a client application to prompt the user and wait for a
response before continuing with the connection.

3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request

The structure and fields of the MCS Connect Initial PDU with GCC Conference Create Request are
specified in section 2.2.1.3. A basic high-level overview of the nested structure for the MCS Connect
Initial PDU is illustrated in section 1.3.1.1, in the figure specifying MCS Connect Initial PDU.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Connect Initial PDU (embedded within the mcsCi field) is specified in [T125] section 7, part
2. The client SHOULD initialize the fields of the MCS Connect Initial PDU as follows.

Connect initial field Value

calledDomainSelector 0x01.

callingDomainSelector | 0x01.

upwardFlag TRUE.

targetParameters See the following table.

minimumParameters See the following table.

272 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

Connect initial field

Value

maximumParameters

See the following table.

userData

GCC Conference Create Request.

The targetParameters, minimumParameters, and maximumParameters domain parameter
structures SHOULD be initialized as follows.

Domain parameter | targetParameters | minimumParameters | maximumParameters
maxChannellds 34 1 65535

maxUserlds 2 1 65535

maxTokenlds 0 1 65535

numpPriorities 1 1 1

minThroughput 0 0 0

maxHeight 1 1 1

maxMCSPDUsize 65535 1056 65535

protocolVersion 2 2 2

The userData field of the MCS Connect Initial PDU contains the GCC Conference Create Request
(embedded within the gccCCrq field). The GCC Conference Create Request is specified in [T124
section 8.7 and appended as user data to the MCS Connect Initial PDU using the format specified in
[T124] sections 9.5 and 9.6. The client SHOULD initialize the fields of the GCC Conference Create

Request as follows.

Conference create request field | Value
conferenceName "

convenerPassword Optional field, not used
password Optional field, not used
lockedConference FALSE
listedConference FALSE
conductibleConference FALSE

terminationMethod

automatic (0)

conductorPrivileges

Optional field, not used

conductedPrivileges

Optional field, not used

nonConductedPrivileges

Optional field, not used

conferenceDescription

Optional field, not used

callerIdentifier

Optional field, not used

userData

Basic client settings data blocks

[MS-RDPBCGR] - v20160714
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

273/ 417

http://go.microsoft.com/fwlink/?LinkId=90542

The userData field of the GCC Conference Create Request MUST be initialized with basic client
settings data blocks (sections 2.2.1.3.2 through 2.2.1.3.5). The client-to-server H.221 nonstandard
key which MUST be embedded at the start of the userData field ([T124] section 8.7 for a description
of the structure of user data) MUST be the ANSI character string "Duca".

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create
Response

The structure and fields of the MCS Connect Response PDU with GCC Conference Create Response are
specified in section 2.2.1.4. A basic high-level overview of the nested structure for the MCS Connect
Response PDU is illustrated in section 1.3.1.1, in the figure specifying MCS Response Initial PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Connect Response PDU (embedded within the mcsCrsp field) is specified in [T125] section
7, part 2. The client ignores the calledConnectld and domainParameters fields of this PDU. If the
result field is set to rt-successful (0) the client MUST send the MCS Erect Domain Request PDU to the
server (section 3.2.5.3.5). If the result field is set to any other value, the client SHOULD drop the
connection.

The mcsCrsp field of the MCS Connect Response PDU contains the GCC Conference Create Response
data (embedded within the gccCCrsp field). The GCC Conference Create Response is described in
T124] section 8.7 and appended as user data to the MCS Connect Response PDU using the format
specified in [T124] sections 9.5 and 9.6. The client MUST ignore the specified length of the MCS
Connect Response PDU user data.

The client ignores all of the GCC Conference Create Response fields, except for the userData field.
The userData field of the GCC Conference Create Response MUST contain basic server settings data
blocks (sections 2.2.1.4.2 through 2.2.1.4.4). The client MUST check that the server-to-client H.221
nonstandard key embedded at the start of the x224Data field ([T124] section 8.7 for a description of
the structure of user data) MUST be the ANSI character string "McDn". If this is not the case, the
connection SHOULD be dropped.

All of the encoded lengths within the MCS Connect Response PDU and the GCC Conference Create
Response (except for those already noted) MUST also be examined for consistency with the received
data. If there is any discrepancy, the connection SHOULD be dropped.

Once the mcsCrsp and gccCCrsp fields have been successfully parsed the client examines the basic
server settings data blocks and stores the received data in the Received Server Data store (section
3.2.1.1). However, before the data is stored the Basic Server Settings Data Blocks are checked for
validity.

The clientRequestedProtocols field in the Server Core Data (section 2.2.1.4.2) is examined to
ensure that it contains the same flags that the client sent to the server in the RDP Negotiation
Request (section 2.2.1.1.1). If this is not the case, the client SHOULD drop the connection. In the
event that this optional field is not present, the value PROTOCOL_RDP (0) MUST be assumed.

Select settings in the Server Security Data (section 2.2.1.4.3) are validated using the following rules.

274 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542

Server security
data field Validation rule

encryptionMethod If this field does not contain a valid Encryption Method identifier, the client SHOULD drop
the connection. If the client does not support the selected Encryption Method it SHOULD
disconnect because further communication with the server will not be possible.

encryptionLevel If this field contains a nonzero value and there is not enough data to read the data in the
serverRandom or serverCertificate fields, the client SHOULD drop the connection.

serverRandomlLen If this field does not contain a value of 32, the client SHOULD drop the connection.

serverCertificate If this field does not contain a valid certificate, the client SHOULD drop the connection.
Proprietary certificates (sections 3.2.5.3.1 and 5.3.3.1) SHOULD be tested for validity
using the techniques specified in section 5.3.3.1.3.

The channelCount and channelIdArray fields in the Server Network Data (section 2.2.1.4.4) MUST
be examined for consistency to ensure that the packet contains enough data to extract the specified
number of channel IDs. If there is not enough data, the client SHOULD drop the connection. The MCS
channel IDs returned in the channelIdArray MUST be saved in the Static Virtual Channel IDs store
(section 3.2.1.2), while the MCSChannelld field MUST be saved in the I/O Channel ID store (section
3.2.1.3). The MCSChannelId field in the Server Message Channel Data (section 2.2.1.4.5) MUST be
saved in the Message Channel ID store (section 3.2.1.4). These IDs MUST be used by the client when
sending MCS Channel Join Request PDUs (sections 2.2.1.8 and 3.2.5.3.8).

Once the basic server settings data blocks have been processed successfully, the client MUST send the
MCS Attach User Request PDU (section 3.2.5.3.6) to the server.

3.2.5.3.5 Sending MCS Erect Domain Request PDU

The structure and fields of the MCS Erect Domain Request PDU are specified in section 2.2.1.5.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Erect Domain Request PDU (embedded within the mecsEDrq field) is specified in [T125
section 7, parts 3 and 10. The client SHOULD initialize both the subHeight and subinterval fields of
the MCS Erect Domain Request PDU to zero.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.2.5.3.6 Sending MCS Attach User Request PDU

The structure and fields of the MCS Attach User Request PDU are specified in section 2.2.1.6.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Attach User Request PDU (embedded within the mecsAUrq field) is specified in [T125
section 7, parts 5 and 10.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.2.5.3.7 Processing MCS Attach User Confirm PDU

The structure and fields of the MCS Attach User Confirm PDU are specified in section 2.2.1.7.

275/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Attach User Confirm PDU (embedded within the mecsAUCcf field) is specified in [T125] section
7, parts 5 and 10. If the result field is not set to rt-successful (0), the client SHOULD drop the
connection. If the result field is set to rt-successful (0) but the initiator field is not present, the client
SHOULD drop the connection. If the initiator field is present, the client stores the value of the
initiator in the User Channel ID store (section 3.2.1.5), because the initiator specifies the User
Channel ID.

Once the User Channel ID has been extracted, the client MUST send an MCS Channel Join Request
PDU for the user channel (section 3.2.5.3.8).

3.2.5.3.8 Sending MCS Channel Join Request PDU(s)

The structure and fields of the MCS Channel Join Request PDU are specified in section 2.2.1.8.

Multiple MCS Channel Join Request PDUs are sent to join the following channels:

1. User Channel (the MCS channel ID is stored in the User Channel ID store (section 3.2.1.5)).

2. I/0O channel (the MCS channel ID is stored in the I/O Channel ID store (section 3.2.1.3)).

3. Message channel, if the Message Channel ID is non-zero (the MCS channel ID is stored in the
Message Channel ID store (section 3.2.1.4)).

4. Static Virtual Channels (the MCS channel IDs are stored in the Static Virtual Channel IDs store
(section 3.2.1.2)).

The MCS Channel Join Request PDUs are sent sequentially. The first PDU is sent after receiving the
MCS Attach User Confirm PDU (section 2.2.1.7) and subsequent PDUs are sent after receiving the MCS
Channel Join Confirm PDU (section 2.2.1.9) for the previous request. Sending of the MCS Channel Join
Request PDUs MUST continue until all channels have been successfully joined.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Channel Join Request PDU (embedded within the mecsCJlrq field) is specified in [T125
section 7, parts 6 and 10. The initiator field is initialized with the User Channel ID obtained during
the processing of the MCS Attach User Confirm PDU and stored in the User Channel ID store. The
channelld field is initialized with the MCS channel ID of the channel that is being joined.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.2.5.3.9 Processing MCS Channel Join Confirm PDU(s)

The structure and fields of the MCS Channel Join Confirm PDU are specified in section 2.2.1.9.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

276 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541

The MCS Channel Join Confirm PDU (embedded within the mcsCIcf field) is specified in [T125] section
7, parts 6 and 10. If the optional channelld field is not present, the client SHOULD drop the
connection. Furthermore, if the result field is not set to rt-successful (0), the client SHOULD also drop
the connection. The initiator and requested fields MAY be ignored, however, the channelld field
MUST be examined. If the value of the channelld field does not correspond with the value of the
channelld field sent in the previous MCS Channel Join Request PDU (section 2.2.1.8) the connection
SHOULD be dropped.

Once the client has successfully processed the MCS Channel Join Confirm PDU, it MUST send a new
MCS Channel Join Request PDU to the server containing the ID of the next channel which has not yet
been joined. If all channels have been joined, the client MUST proceed to send one of the following
PDUs:

= The Security Exchange PDU (section 2.2.1.10) if Standard RDP Security mechanisms (section 5.3)
are in effect and the Encryption Level (section 5.3.1) and Encryption Method returned from the
server in the Server Security Data (sections 2.2.1.4.2 and 3.2.5.3.4) are both greater than zero.

= The Client Info PDU (section 2.2.1.11) if the Encryption Level and Encryption Method returned
from the server are both zero.

3.2.5.3.10 Sending Security Exchange PDU

The structure and fields of the Security Exchange PDU are specified in section 2.2.1.10.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as specified in [T125] section 11.32. The embedded initiator field
MUST be set to the User Channel ID (held in the User Channel ID store (section 3.2.1.5)) and the
embedded channelld field MUST be set to the MCS I/0 channel ID (held in the I/O Channel ID store
(section 3.2.1.3). The embedded userData field contains the remaining fields of the Security
Exchange PDU.

The embedded flags field of the basicSecurityHeader MUST contain the SEC_EXCHANGE_PKT
(0x0001) flag (specified in section 2.2.8.1.1.2.1) to indicate the PDU type. If the client can handle
encrypted licensing packets from the server and Standard RDP Security mechanisms (sections 5.3 and
5.4) are being used, then the SEC_LICENSE_ENCRYPT_SC (0x0200) flag SHOULD also be included in
the flags subfield of the basicSecurityHeader field.

A 32-byte random number MUST be generated and then encrypted using the public key of the server
and the techniques specified in section 5.3.4.1. The public key of the server is embedded in the
server's certificate, which is held in the serverCertificate field of the Server Security Data (section
2.2.1.4.3) sent in the MCS Connect Response PDU with GCC Conference Response (section 3.2.5.3.4).
Once the 32-byte random number has been successfully encrypted, it MUST be copied into the
encryptedClientRandom field. The size of the encryptedClientRandom field MUST be derived as
specified in section 5.3.4.1. After the encrypted client random has been copied into the
encryptedClientRandom buffer, 8 bytes of padding (which MUST be filled with zeroes) will remain.

Once the client has sent the Security Exchange PDU, it MUST generate the session keys which will be
used to encrypt, decrypt, and sign data sent on the wire. The 32-byte client random and server
random (transmitted in the Server Security Data (section 2.2.1.4.3)) are used to accomplish this task
by employing the techniques specified in section 5.3.5. On successful generation of the session keys,
the client MUST send the Client Info PDU to the server (section 3.2.5.3.11) and store the session keys
in the Session Keys store (section 3.2.1.12).

3.2.5.3.11 Sending Client Info PDU

The structure and fields of the Client Info PDU are specified in section 2.2.1.11.

277 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as specified in [T125] section 11.32. The embedded initiator field
MUST be set to the User Channel ID (held in the User Channel ID store (section 3.2.1.5)) and the
embedded channelld field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID
(section 3.2.1.3)). The embedded userData field contains the remaining fields of the Client Info PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest. The securityHeader field MUST
be present; however, it will contain a Basic Security Header structure (section 2.2.8.1.1.2.1).

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the
securityHeader field can be encrypted and signed (depending on the values of the Encryption Level
(section 5.3.1) and Encryption Method selected by the server as part of the negotiation specified in
section 5.3.2) using the methods and techniques described in 5.3.6. The format of the
securityHeader field is selected as described in the section detailing the PDU structure and fields
(section 2.2) and the fields populated with appropriate security data. If the data is to be encrypted,
the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The embedded flags field of the securityHeader field (which is always present) MUST contain the
SEC_INFO_PKT (0x0040) flag (specified in section 2.2.8.1.1.2.1) to indicate the PDU type.

If the client is in the process of attempting an automatic reconnection operation using a cookie stored
in the Automatic Reconnection Cookie store (section 3.2.1.9), then it MUST populate the
autoReconnectCookie field of the Extended Info Structure (section 2.2.1.11.1.1.1) with the contents
of the cookie. The remainder of the PDU MUST be populated with client settings according to the
structure and type definition in section 2.2.1.11.1.1.

3.2.5.3.12 Processing License Error PDU - Valid Client

The structure and fields of the License Error (Valid Client) PDU are specified in section 2.2.1.12.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsSDin ([T125] section
7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The embedded channelld field within the mcsSDin is used to route the PDU to the appropriate target
channel.

The securityHeader field MUST always be present and it MUST contain at least a Basic Security
Header structure (section 2.2.8.1.1.2.1). The embedded flags field of the securityHeader MUST
contain the SEC_LICENSE_PKT (0x0080) flag (section 2.2.8.1.1.2.1). If this flag is not present then
the packet cannot be handled as a licensing PDU, and the connection SHOULD be dropped.

If the SEC_LICENSE_ENCRYPT_CS (0x0200) flag is present, then the server is able to accept
encrypted licensing packets when using Standard RDP Security mechanisms (section 5.3). This fact is
stored in the Server Licensing Encryption Ability store (section 3.2.1.10).

If the SEC_ENCRYPT (0x0008) flag is present, then the data following the securityHeader field is
encrypted and it MUST be verified and decrypted using the methods and techniques described in
section 5.3.6. If the MAC signature is incorrect or the data cannot be decrypted correctly, the
connection SHOULD be dropped.

The remaining PDU fields MUST be interpreted and processed according to the description in section
2.2.1.12. If the bMsgType field is not set to ERROR_ALERT (0xFF) then the message is not a License
Error PDU and the client MAY drop the connection. However, if the client is able to process licensing

278/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543

PDUs, as specified in [MS-RDPELE] section 2.2.2, it MUST determine if the message is another type of
licensing PDU enumerated in [MS-RDPELE] section 2.2.2 and if so, process it accordingly. If the PDU is
a License Error PDU, the client MUST examine the remaining fields and ensure that they conform to
the structure and values listed in section 2.2.1.12. If this is not the case, the client SHOULD drop the
connection.

3.2.5.3.13 Mandatory Capability Exchange

3.2.5.3.13.1 Processing Demand Active PDU

The structure and fields of the Demand Active PDU are specified in section 2.2.1.13.1.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mcsSDin ([T125] section
7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The embedded channelld field within the mcsSDin is used to route the PDU to the appropriate target
channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in section 2.2.1.13.1. If the securityHeader field
is present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT
(0x0008) flag (section 2.2.8.1.1.2.1), and if it is present the data following the securityHeader field
MUST be verified and decrypted using the methods and techniques described in section 5.3.6. If the
MAC signature is incorrect or the data cannot be decrypted correctly, the connection SHOULD be
dropped.

The shareControlHeader field (which contains a Share Control Header as specified in section
2.2.8.1.1.1.1) MUST be examined to ensure that the PDU type (present in the pduType field) has the
value PDUTYPE_DEMANDACTIVEPDU (1). If this is not the case the received PDU SHOULD be ignored.
The value of the totalLength field MUST also be examined for consistency with the received data. If
there is any discrepancy, the connection SHOULD be dropped. If there is no length discrepancy, the
server MCS channel ID (present in the pduSource field) MUST be stored in the Server Channel ID
store (section 3.2.1.6).

The remaining PDU fields and capability data MUST be interpreted and processed according to sections
2.2.1.13.1.1 and 2.2.7. The capabilities received from the server MUST be stored in the Server
Capabilities store (section 3.2.1.7) and MUST be used to determine what subset of RDP to send to the
server. The contents of the shareld field MUST be stored in the Share ID store (section 3.2.1.8).

After successfully processing the Demand Active PDU, the client MUST send the Confirm Active PDU
(section 2.2.1.13.2) to the server. If processing of the Demand Active PDU was unsuccessful, the
connection SHOULD be dropped.

3.2.5.3.13.2 Sending Confirm Active PDU

The structure and fields of the Confirm Active PDU are specified in section 2.2.1.13.2.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDrq field is initialized as described in [T125] section 11.32. The embedded initiator field
MUST be set to the User Channel ID (held in the User Channel ID store (section 3.2.1.5) described in
section 3.3.1.6) and the embedded channelld field MUST be set to the MCS I/O channel ID (held in

279/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

the I/O Channel ID store (section 3.2.1.3)) described in section 3.3.1.5). The embedded userData
field contains the remaining fields of the Confirm Active PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field can be encrypted and signed (depending on the values of the Encryption Level
(section 5.3.1) and Encryption Method selected by the server as part of the negotiation specified in
section 5.3.2) using the methods and techniques described in 5.3.6. The format of the
securityHeader field is selected as specified in section 2.2.1.13.2 and the fields populated with
appropriate security data. If the data is to be encrypted, the embedded flags field of the
securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The remaining fields are populated as described in section 2.2.1.13.2.1, with the combined capability
set data being inserted into the capabilitySets field.

After sending the Confirm Active PDU, the client MUST send the Synchronize PDU (section 3.2.5.3.14)
to the server.

Once the client has successfully transmitted this PDU, input PDUs (section 2.2.8) SHOULD be sent to
the server (section 3.3.5.8).

3.2.5.3.14 Sending Synchronize PDU

The structure and fields of the Synchronize PDU are specified in section 2.2.1.14 and the techniques
specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The targetUser
field SHOULD be set to the MCS server channel ID that is held in the Server Channel ID store (section
3.2.1.6). The contents of this PDU MUST NOT be compressed.

After sending the Synchronize PDU, the client MUST send the Control (Cooperate) PDU (section
3.2.5.3.15) to the server.

3.2.,5.3.15 Sending Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are specified in section 2.2.1.15, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
grantId and controlId fields SHOULD be set to zero. The contents of this PDU MUST NOT be
compressed.

After sending the Control (Cooperate) PDU, the client MUST send the Control (Request Control) PDU
(section 3.2.5.3.16) to the server.

3.2.5.3.16 Sending Control PDU - Request Control

The structure and fields of the Control (Request Control) PDU are specified in section 2.2.1.16, and
the techniques described in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
grantld and controlld fields SHOULD be set to zero. The contents of this PDU MUST NOT be
compressed.

After sending the Control (Request Control) PDU, the client MUST send the Persistent Key List PDU
(section 3.2.5.3.17) to the server if the server supports the Revision 2 bitmap caches (section
2.2.7.2.1 and [MS-RDPEGDI] section 3.1.1.1.1) and a Deactivation-Reactivation

Sequence (section 1.3.1.3) is not in progress. If the server does not support the Revision 2 bitmap
caches, the client MUST proceed to send the Font List PDU (section 3.2.5.3.18).

3.2.5.3.17 Sending Persistent Key List PDU(s)

280/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

The structure and fields of the Persistent Key List PDU are specified in section 2.2.1.17, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU MUST NOT be compressed.

Each of the keys sent in a Persistent Key List PDU is encapsulated in a Persistent List Entry (section
2.2.1.17.1.1) and is obtained from the Persisted Bitmap Keys store (section 3.2.1.15).

After sending a single Persistent Key List PDU or a sequence of Persistent Key List PDUs, the client
MUST send the Font List PDU (section 3.2.5.3.18) to the server.

3.2.5.3.18 Sending Font List PDU

The structure and fields of the Font List PDU are specified in section 2.2.1.18, and the techniques
specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU MUST NOT be compressed.

3.2.5.3.19 Processing Synchronize PDU

The structure and fields of the Synchronize PDU are specified in section 2.2.1.19, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The contents of the
targetUser field MUST be ignored.

3.2.5.3.20 Processing Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are specified in section 2.2.1.20, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlld and grantld fields MUST be ignored.

3.2.5.3.21 Processing Control PDU - Granted Control

The structure and fields of the Control (Granted Control) PDU are specified in section 2.2.1.21, and
the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlld and grantld fields MUST be ignored.

3.2.5.3.22 Processing Font Map PDU

The structure and fields of the Font Map PDU are specified in section 2.2.1.22, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The contents of the
numberEntries, totalNumEntries, mapFlags, and entrySize fields MUST be ignored.

3.2.5.4 Disconnection Sequences

3.2.5.4.1 Sending Shutdown Request PDU

The structure and fields of the Shutdown Request PDU are specified in section 2.2.2.1, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU MUST NOT be compressed.

3.2.5.4.2 Processing Shutdown Request Denied PDU

The structure and fields of the Shutdown Request Denied PDU are specified in section 2.2.2.2, and the
techniques described in section 3.2.5.2 demonstrate how to process the contents of the PDU.

After this PDU has been processed, the client MAY prompt the user to determine whether a
disconnection is required. If the user chooses to disconnect the client SHOULD send an MCS
Disconnect Provider Ultimatum PDU (section 3.1.5.1.1) to the server and thereafter MUST drop the
connection.

281 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.2.5.5 Deactivation-Reconnection Sequence

3.2.5.5.1 Processing Deactivate All PDU

The structure and fields of the Deactivate All PDU are specified in section 2.2.3.1, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client MUST disable its graphics and input protocol handlers
and prepare either for a capability re-exchange (which will employ a Deactivation-Reactivation
Sequence as described in section 1.3.1.3) or a disconnection (the client MUST be prepared to process
the optional MCS Disconnect Provider Ultimatum PDU (section 3.1.5.1.2) after receiving the
Deactivate All PDU, but prior to the actual disconnection).

3.2.5.6 Auto-Reconnect Sequence

3.2.5.6.1 Processing Auto-Reconnect Status PDU

The structure and fields of the Auto-Reconnect Status PDU are specified in section 2.2.4.1, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD discard the Automatic Reconnection Cookie
(section 3.2.1.9) and continue with the connection by prompting the user to manually enter
credentials for the reconnection attempt.

3.2.5.7 Server Error Reporting and Status Updates

3.2.5.7.1 Processing Set Error Info PDU

The structure and fields of the Set Error Info PDU are specified in section 2.2.5.1, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

The Set Error Info PDU is sent as a precursor to a server-side disconnect and informs the client of the
reason for the disconnection which will follow. Once this PDU has been processed, the client MUST
store the error code so that the reason for the server disconnect which will follow can be accurately
reported to the user.

3.2.5.7.2 Processing Status Info PDU

The structure and fields of the Status Info PDU are specified in section 2.2.5.2, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client can use the status code to give feedback to a user to
ensure that it is evident that server-side processing is taking place and that the connection is
progressing.

3.2.5.8 Keyboard and Mouse Input
3.2.5.8.1 Input Event Notifications

3.2.5.8.1.1 Sending Slow-Path Input Event PDU

The structure and fields of the Slow-Path Input Event PDU are specified in 2.2.8.1.1.3.1.1, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU.

The slowPathInputEvents field encapsulates a collection of input events and is populated with the
following input event data:

282 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

= Keyboard Event (section 2.2.8.1.1.3.1.1.1)

= Unicode Keyboard Event (section 2.2.8.1.1.3.1.1.2)

= Mouse Event (section 2.2.8.1.1.3.1.1.3)

= Extended Mouse Event (section 2.2.8.1.1.3.1.1.4)

= Synchronize Event (section 2.2.8.1.1.3.1.1.5)

= Unused Event (section 2.2.8.1.1.3.1.1.6)

The contents of this PDU MUST NOT be compressed.

If the client has sent a Synchronize Event, it SHOULD subsequently send key-down events for all of
the keyboard and mouse keys that are down.

3.2.5.8.1.2 Sending Fast-Path Input Event PDU

The Fast-Path Input Event PDU (section 2.2.8.1.2) has the following basic structure (sections 5.3.8
and 5.4.4):

= fpInputHeader: Fast-Path Input Header (section 2.2.8.1.2)
= lengthl and length2: Packet Length (section 2.2.8.1.2)
= fipsInformation: Optional FIPS Information (section 2.2.8.1.2)
= dataSignature: Optional Data Signature (section 2.2.8.1.2)
= numEvents: Optional Number of Events (section 2.2.8.1.2)
= PDU Contents (collection of fast-path input events):
= Keyboard Event (section 2.2.8.1.2.2.1)
» Unicode Keyboard Event (section 2.2.8.1.2.2.2)
= Mouse Event (section 2.2.8.1.2.2.3)
= Extended Mouse Event (section 2.2.8.1.2.2.4)
= Synchronize Event (section 2.2.8.1.2.2.5)
= Quality Of Experience (QOE) Timestamp Event (section 2.2.8.1.2.2.6)

The fpInputHeader, lengthl, length2, and numEvents fields MUST be initialized as described in
2.2.8.1.2. Because the PDU is in fast-path format, the embedded action field of the fpInputHeader
field MUST be set to FASTPATH_INPUT_ACTION_FASTPATH (0).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario the fipsInformation and dataSignature fields MUST NOT be
present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
dataSignature field can be encrypted and signed (depending on the values of the Encryption Level
(section 5.3.1) and Encryption Method selected by the server as part of the negotiation described in
section 5.3.2), using the methods and techniques described in section 5.3.6. If the data is to be
encrypted, the embedded secFlags field of the fpInputHeader field MUST contain the
FASTPATH_INPUT_ENCRYPTED (2) flag.

283/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

The actual PDU contents, which encapsulates a collection of input events, is populated with fast-path
event data as described from 2.2.8.1.2.2.1 to 2.2.8.1.2.2.5.

3.2.5.8.2 Keyboard Status PDUs

3.2.5.8.2.1 Processing Set Keyboard Indicators PDU

The structure and fields of the Set Keyboard Indicators PDU are specified in section 2.2.8.2.1 and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD update the local keyboard indictors.

3.2.5.8.2.2 Processing Set Keyboard IME Status PDU

The structure and fields of the Set Keyboard IME Status PDU are specified in section 2.2.8.2.2, and
the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD update the state of the local input method
editor (IME). Non-IME aware clients MAY ignore this PDU.

3.2.5.9 Basic Output

3.2.5.9.1 Processing Slow-Path Graphics Update PDU

The structure and fields of the Slow-Path Graphics Update PDU are specified in section 2.2.9.1.1.3,
and the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

The slowPathGraphicsUpdate field contains a single graphics update structure, which MUST be one
of the following types:

= Orders Update ([MS-RDPEGDI] section 2.2.2.2)
» Palette Update (section 2.2.9.1.1.3.1.1)
» Bitmap Update (section 2.2.9.1.1.3.1.2)

= Synchronize Update (section 2.2.9.1.1.3.1.3)

If a slow-path update structure is received which does not match one of the known types, the client
SHOULD ignore the data in the update.

Once this PDU has been processed, the client MUST carry out any operations necessary to complete
the update. In the case of a Palette Update, the client MUST update the global palette on all drawing
surfaces. Processing of the Bitmap Update requires that the client render the attached bitmap data on
the primary drawing surface as specified by the update parameters. The Synchronize Update MAY be
ignored by the client. Processing of the Orders Update (which contains Optimized RDP Drawing
Orders) is specified in [MS-RDPEGDI] section 3.2.5.

3.2.5.9.2 Processing Slow-Path Pointer Update PDU

The structure and fields of the Slow-Path Pointer Update PDU are specified in section 2.2.9.1.1.4, and
the techniques specified in section 3.2.5.9.2 demonstrate how to process the contents of the PDU.

The messageType field contains an identifier that describes the type of Pointer Update data (see
section 2.2.9.1.1.4 for a list of possible values) present in the pointerAttributeData field:

= Pointer Position Update (section 2.2.9.1.1.4.2)

= System Pointer Update (section 2.2.9.1.1.4.3)

284 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

= Color Pointer Update (section 2.2.9.1.1.4.4)

= New Pointer Update (section 2.2.9.1.1.4.5)

= Cached Pointer Update (section 2.2.9.1.1.4.6)

If a slow-path update structure is received which does not match one of the known types, the client
SHOULD ignore the data in the update.

Once this PDU has been processed, the client MUST carry out any operations necessary to update the
local pointer position (in the case of the Position Update) or change the shape (in the case of the
System, Color, New, and Cached Pointer Updates). In the case of the Color and New Pointer Updates
the new pointer image MUST also be stored in the Pointer Image Cache (section 3.2.1.11), in the slot
specified by the cacheIndex field. This necessary step ensures that the client is able to correctly
process future Cached Pointer Updates.

3.2.5.9.3 Processing Fast-Path Update PDU
The Fast-Path Update PDU has the following basic structure (sections 5.3.8 and 5.4.4):
= fpOutputHeader: Fast-Path Output Header (section 2.2.9.1.2)
= lengthl and length2: Packet Length (section 2.2.9.1.2)
= fipsInformation: Optional FIPS Information (section 2.2.9.1.2)
= dataSignature: Optional Data Signature (section 2.2.9.1.2)
= PDU Contents (collection of fast-path output updates):

= Orders Update ([MS-RDPEGDI] section 2.2.2.2)

= Palette Update (section 2.2.9.1.2.1.1)

= Bitmap Update (section 2.2.9.1.2.1.2)

= Synchronize Update (section 2.2.9.1.2.1.3)

= Pointer Position Update (section 2.2.9.1.2.1.4)

= System Pointer Hidden Update (section 2.2.9.1.2.1.5)

= System Pointer Default Update (section 2.2.9.1.2.1.6)

= Color Pointer Update (section 2.2.9.1.2.1.7)

= New Pointer Update (section 2.2.9.1.2.1.8)

= Cached Pointer Update (section 2.2.9.1.2.1.9)

= Surface Commands Update (section 2.2.9.1.2.1.10)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The contents of the embedded action field of the fpOutputHeader field MUST be set to
FASTPATH_OUTPUT_ACTION_FASTPATH (0). If it is not set to this value, the PDU is not a Fast-Path
Update PDU and MUST be processed as a slow-path PDU (section 3.2.5.2).

If the embedded secFlags field of the fpOutputHeader field contains the
FASTPATH_OUTPUT_ENCRYPTED (2) flag, then the data following the optional dataSignature field

285/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

(which in this case MUST be present) MUST be verified and decrypted using the methods and
techniques described in section 5.3.6. If the MAC signature is incorrect or the data cannot be
decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in effect and the
FASTPATH_OUTPUT_ENCRYPTED (2) flag is present the connection SHOULD be dropped because
double-encryption is not used within RDP in the presence of an External Security Protocol provider.

The update structures present in the fpOutputUpdates field MUST be interpreted and processed
according to the descriptions detailed from section 2.2.9.1.2.1.1 to section 2.2.9.1.2.1.10. The
contents of each individual update MAY have been compressed by the server. If this is the case, the
embedded compression field of the common updateHeader field MUST contain the
FASTPATH_OUTPUT_COMPRESSION_USED flag and the optional compressionFlags field will be
initialized with the compression usage information. Once this PDU has been processed, the client
MUST carry out the operation appropriate to the update type, as specified in the slow-path versions of
this PDU (sections 3.2.5.9.1 and 3.2.5.9.2).

3.2.5.9.4 Sound

3.2.5.9.4.1 Processing Play Sound PDU

The structure and fields of the Play Sound PDU are specified in section 2.2.9.1.1.5, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD play a sound using the frequency and duration
specified by the PDU.<42>

3.2.5.10 Logon and Authorization Notifications

3.2,5.10.1 Processing Save Session Info PDU

The structure and fields of the Save Session Info PDU are specified in section 2.2.10.1, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD respond to the type of data contained in the
PDU:

= In the case of a logon notification being present in the PDU, the client MAY carry out some
implementation-dependent action, and if wanted, save the new user name and domain (if
received) that were used to log on.

= In the case of an auto-reconnect cookie being received in the PDU, the client SHOULD save the
cookie in the Automatic Reconnection Cookie store (section 3.2.1.9) for possible use during an
automatic reconnection sequence.

= In the case of a logon error or warning notification being present in the PDU, the client SHOULD
carry out some implementation-dependent action to respond to the notification.

3.2.5.10.2 Processing Early User Authorization Result PDU
The structure and fields of the Early User Authorization Result PDU are specified in section 2.2.10.2. If
the authorizationResult field is set to AUTHZ_ACCESS_DENIED (0x0000052E), the client SHOULD

drop the connection as user authorization has failed and login to the remote session will not be
possible.

3.2,5.11 Controlling Server Graphics Output

3.2,5.11.1 Sending Refresh Rect PDU

286 / 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

The structure and fields of the Refresh Rect PDU are specified in section 2.2.11.2, and the techniques
specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU MUST NOT be compressed.

3.2.,5.11.2 Sending Suppress Output PDU

The structure and fields of the Suppress Output PDU are specified in section 2.2.11.3, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU MUST NOT be compressed.

3.2.5.12 Display Update Notifications

3.2.5.12.1 Processing Monitor Layout PDU

The structure and fields of the Monitor Layout PDU are specified in section 2.2.12.1, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client can use the monitor layout information to determine
whether the local monitor configuration matches the remote configuration (as a precursor to possibly
enabling full-screen viewing), or provide some form of high-level navigation among the remoted
monitors.

3.2.5.13 Server Redirection

3.2.5.13.1 Processing of the Server Redirection PDUs

An overview of the principles behind server redirection and an example of how it operates within the
context of an RDP connection is presented in section 1.3.3.

Two variants of the Server Redirection PDU can be received by the client to indicate that it MUST
terminate the current connection and reconnect to another server. The Standard Security variant
(section 2.2.13.2.1) of the Server Redirection PDU MUST be received when Enhanced RDP Security
(section 5.4) is not in effect. When Enhanced RDP Security is being used to secure the connection, the
Enhanced Security variant (section 2.2.13.3.1) of the PDU MUST be received.

The actual contents of the Server Redirection PDU (embedded in the Standard Security or Enhanced
Security variant) are contained in a Server Redirection Packet (section 2.2.13.1). The information
required by the client to connect to a new target server MUST be specified in this PDU.

The techniques described in section 3.2.5.2 describe how to process the two variants of this PDU (the
instructions regarding the Share Data Header MUST be ignored because it is not present in either
PDU).

Once the client has completed processing the appropriate variant of this PDU, it MUST terminate the
current connection to the server that transmitted the PDU and initiate a new connection to the target
server specified in the Server Redirection Packet.

3.2.5.14 Network Characteristics Detection

The steps that follow describe how a client SHOULD respond when receiving the server-to-client
network characteristics request detection messages described in section 2.2.14.1.

= When receiving an RTT Measure Request (section 2.2.14.1.1):

Immediately send an RTT Measure Response (section 2.2.14.2.1), embedded in an Auto-Detect
Response PDU (section 2.2.14.4), to the server.

* When receiving a Bandwidth Measure Start (section 2.2.14.1.2):

287/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

= If the requestType field equals 0x0014:

1. Clear the Network Characteristics Byte Count store (section 3.2.1.17) and the Network
Characteristics Timer (section 3.2.2.2).

2. Start the Network Characteristics Timer (section 3.2.2.2).

3. When receiving any data from the server, add the number of bytes received to the
Network Characteristics Byte Count store (section 3.2.1.17). If an RDP Security Header
(section 2.2.8.1.1.2) is present in the data, then only the bytes following the Security
Header MUST be included in the count. If an RDP_TUNNEL_HEADER ([MS-RDPEMT
section 2.2.1.1) structure is present in the data, then only the data following the Tunnel
PDU Header MUST be included in the count. Continue doing this until a Bandwidth Measure
Stop (section 2.2.14.1.4) is received.

4. If a Bandwidth Measure Start (section 2.2.14.1.2) is received before receiving a Bandwidth
Measure Stop (section 2.2.14.1.4), jump to step 1.

= If the requestType field equals 0x0114:

1. Clear the Network Characteristics Byte Count store (section 3.2.1.17) and the Network
Characteristics Timer (section 3.2.2.2), and save the contents of the sequenceNumber
field to the Network Characteristics Sequence Number store (section 3.2.1.18).

2. Start the Network Characteristics Timer (section 3.2.2.2).

3. When receiving any data from the server, add the number of bytes received to the
Network Characteristics Byte Count store (section 3.2.1.17). Only the data following the
Tunnel PDU Header ([MS-RDPEMT] section 2.2.1.1) MUST be included in the count.
Continue doing this until a Bandwidth Measure Stop is received.

4. If a Bandwidth Measure Start (section 2.2.14.1.2) is received before receiving a Bandwidth
Measure Stop (section 2.2.14.1.4), jump to step 1.

= If the requestType field equals 0x1014:

1. Clear the Network Characteristics Byte Count store (section 3.2.1.17) and the Network
Characteristics Timer (section 3.2.2.2); or send the Network Characteristics Sync,
embedded in an Auto-Detect Response PDU (section 2.2.14.4), to the server and then skip
step 2.

2. Start the Network Characteristics Timer (section 3.2.2.2).
= When receiving a Bandwidth Measure Payload (section 2.2.14.1.3):

Increment the Network Characteristics Byte Count store (section 3.2.1.17) by the value specified
in the payloadLength field plus the size of the header fields (8 bytes).

= When receiving a Bandwidth Measure Stop (section 2.2.14.1.4):
= If the requestType field equals 0x002B:

1. Increment the Network Characteristics Byte Count store (section 3.2.1.17) by the value
specified in the payloadLength field plus the size of the header fields (8 bytes).

2. Stop the Network Characteristics Timer.

3. Immediately send the contents of the Network Characteristics Timer and the Network
Characteristics Byte Count store (section 3.2.1.17) to the server in a Bandwidth Measure
Results (section 2.2.14.2.2) with a responseType of 0x0003. The Bandwidth Measure
Results MUST be encapsulated in an Auto-Detect Response PDU (section 2.2.14.4) and be

288 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

sent on the main RDP channel, as opposed to a multitransport channel ([MS-RDPEMT]
section 1.3.2).

= If the requestType field equals 0x0429:
1. Stop the Network Characteristics Timer (section 3.2.2.2).

2. Send the contents of the Network Characteristics Timer and the Network Characteristics
Byte Count store (section 3.2.1.17) to the server in a Bandwidth Measure Results (section
2.2.14.2.2) with a responseType of 0x000B.

= If the Bandwidth Measure Stop message is encapsulated in the SubHeaderData field
of an RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1) structure that is
being tunneled over a reliable UDP multitransport connection, then the Bandwidth
Measure Results MUST be encapsulated in an RDP_TUNNEL_SUBHEADER structure
and be sent over the reliable UDP multitransport channel ([MS-RDPEMT] section
1.3.2).

= If the Bandwidth Measure Stop message is encapsulated in the
autoDetectReqPduData field of an Auto-Detect Request PDU (section 2.2.14.3),
then the Bandwidth Measure Results MUST be encapsulated in an Auto-Detect
Response PDU (section 2.2.14.4) and sent on the main RDP channel, as opposed to a
multitransport channel ([MS-RDPEMT] section 1.3.2).

= If the requestType field equals 0x0629:

1. Verify that the sequence number stored in the Network Characteristics Sequence Number
store (section 3.2.1.18) is the same as the contents of the sequenceNumber field. If it is
not the same, skip step 2.

2. Send the contents of the Network Characteristics Timer and the Network Characteristics
Byte Count store (section 3.2.1.17) to the server in a Bandwidth Measure Results (section
2.2.14.2.2) with a responseType of 0x000B. The Bandwidth Measure Results MUST be
encapsulated in an RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section 2.2.1.1.1)
structure and be sent over the lossy UDP multitransport channel ([MS-RDPEMT] section
1.3.2).

= When receiving a Network Characteristics Result (section 2.2.14.1.5):

Extract the network metrics from the PDU.

3.2.5.15 Multitransport Bootstrapping

3.2.5.15.1 Processing the Initiate Multitransport Request PDU

The structure and fields of the Initiate Multitransport Request PDU are described in section 2.2.14.1.
Upon successfully decoding this PDU the client MUST attempt to establish a sideband channel ([MS-
RDPEMT] sections 1.3 and 3) using the transport protocol requested in the requestedProtocol field
(for reliable or lossy UDP). If the client is unable to initiate the creation of a sideband channel, then

the Initiate Multitransport Response PDU SHOULD be sent to the server (section 3.2.5.15.2).

If Soft-Sync (switching dynamic virtual channels from the TCP to the UDP transport) is supported by
the client and server, as indicated by the SOFTSYNC_TCP_TO_UDP (0x200) flag in the Client
Multitransport Channel Data (section 2.2.1.3.8) and Server Multitransport Channel Data (section
2.2.1.4.6), the Initiate Multitransport Response PDU MUST be sent to the server regardless of whether
the sideband channel creation succeeded or failed. For more information on Soft-Sync see [MS-
RDPEDYC] section 3.1.5.3.

3.2.5.15.2 Sending the Initiate Multitransport Response PDU

289 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

The structure and fields of the Initiate Multitransport Response PDU are described in section 2.2.15.2,
and the PDU MUST be initialized according to this specification. The embedded initiator field of the
mcsSDrq field MUST be set to the User Channel ID held in the User Channel ID store (section
3.2.1.4), while the embedded channelld field MUST be set to the MCS message channel ID held in
the Message Channel ID store (section 3.2.1.3). Furthermore, the embedded flags field of the
securityHeader MUST contain the SEC_TRANSPORT_RSP (0x0004) flag (section 2.2.8.1.1.2.1).

This Initiate Multitransport Response PDU indicates to the server that a sideband initiation request
succeeded or failed. If the hrResponse field indicates a failure, the client MUST NOT attempt to
create a sideband channel after sending this PDU.

3.2.6 Timer Events

3.2.6.1 Client-Side Connection Sequence Timeout

The Client-Side Connection Sequence Timeout fires if more than 300 seconds have elapsed on the
client-side Connection Sequence Timeout Timer (section 3.2.2.1). In this event the client MAY
terminate the connection to the server.

3.2.7 Other Local Events

None.

3.2.7.1 Disconnection Due to Network Error

If the client detects that a disconnection which has taken place is due to a network error, it MAY
attempt to automatically reconnect to the server using the technique specified in section 5.5.
Automatic reconnection allows the client to seamlessly reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server.

3.3 Server Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

3.3.1.1 Received Client Data

The Received Client Data store contains data received from the client during execution of the Remote
Desktop Protocol. This store is initialized when processing the X.224 Connection Request

PDU (section 2.2.1.1), MCS Connect Initial PDU with GCC Conference Create Request (sections 2.2.1.3
and 3.3.5.3.3), and Client Info PDU (sections 2.2.1.11 and 3.3.5.3.11).

290/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.3.1.2 User Channel ID

The User Channel ID store contains the MCS channel identifier allocated by the server to identify the
user channel. This value MUST be in the range 1001 to 65536, inclusive, as required by the T.125
ASN.1 definitions of the Userld and DynamicChannelld types ([T125] section 7, part 1).

3.3.1.3 I/0 Channel ID

The I/O Channel ID store contains the MCS channel identifier selected by the server to identify the I/O
channel. This ID is communicated to the client in the Server Network Data (sections 2.2.1.4.4 and
3.2.5.3.4).

3.3.1.4 Message Channel ID

The Message Channel ID store contains the MCS channel identifier selected by the server to identify
the message channel. This ID is communicated to the client in the Server Message Channel Data
(sections 2.2.1.4.5 and 3.2.5.3.4).

3.3.1.5 Server Channel ID

The Server Channel ID store contains the MCS channel identifier of the server channel, which is
defined as the arbitrarily chosen but fixed value 0x03EA (1002). This value is in the range 1001 to
65536, inclusive, as required by the T.125 ASN.1 definitions of the Userld and DynamicChannelld
types ([T125] section 7, part 1).

3.3.1.6 Client Licensing Encryption Ability

The Client Licensing Encryption Ability store determines whether the client has the ability to handle
encrypted licensing packets when using RDP Security mechanisms (see section 5.3 and the discussion
of the SEC_LICENSE_ENCRYPT_SC flag in section 2.2.8.1.1.2.1). This fact is communicated to the
server as part of the Security Exchange PDU (sections 2.2.1.10 and 3.2.5.3.10).

3.3.1.7 Client Capabilities

The Client Capabilities store contains the capability sets (sections 1.4 and 2.2.6) received from the
client in the Confirm Active PDU (sections 2.2.1.13.2 and 3.3.5.3.13.2).

3.3.1.8 Cached Bitmap Keys

The Cached Bitmap Keys store holds a collection of 64-bit bitmap keys, each of which uniquely
identifies a bitmap image that was sent to the client by using a Cache Bitmap (Revision 2) Secondary
Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

3.3.1.9 Pointer Image Cache

The Pointer Image Cache contains a collection of pointer images sent to the client in Color Pointer
Updates (sections 2.2.9.1.2.1.7, 3.3.5.9.2, and 3.3.5.9.3) and New Pointer Updates (sections
2.2.9.1.2.1.8, 3.3.5.9.2, and 3.3.5.9.3). The size and color depth (either variable or fixed at 24 bpp)
of the cache is specified in the Pointer Capability Set (section 2.2.7.1.5).

3.3.1.10 Session Keys

The Session Keys store holds the symmetric keys (sections 5.3.5 to 5.3.7) used to encrypt, decrypt,
and sign RDP packets.

291 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

3.3.1.11 Automatic Reconnection Cookie

The Automatic Reconnection Cookie store holds the cookie received from the client in the Client Info
PDU (sections 2.2.1.11.1.1.1 and 3.3.5.3.11).

3.3.1.12 Connection Start Time

The Connection Start Time store holds the time at which the server first received network traffic from
the client.

3.3.1.13 RTT Measure Request Data

The RTT Measure Request Data store contains the timestamp and sequence number associated with
each RTT Measure Request (section 2.2.14.1.1) message that has been sent to the client.

3.3.1.14 Multitransport Request Data
The Multitransport Request Data store contains the request ID, requested protocol, and 16-byte

security cookie for each Initiate Multitransport Request PDU (section 2.2.15.1) that has been sent to
the client.

3.3.2 Timers

3.3.2.1 Connection Sequence Timeout Timer
The Connection Sequence Timeout Timer stores the amount of time that has elapsed since the server

first received network traffic from the client. The connection start time is stored in the Connection
Start Time store (section 3.3.1.12).

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

None.
3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Constructing a Server-to-Client Slow-Path PDU

The majority of server-to-client slow-path PDUs have the same basic structure (sections 5.3.7.2 and
5.4.4):

= tpktHeader: TPKT Header ([T123] section 8)
= x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)
= mcsSDin: MCS Send Data Indication PDU ([T125] section 7, Part 7)
= securityHeader: Optional Security Header (section 2.2.9.1.1.2)

= shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)

= PDU Contents (see the section describing the PDU structure and fields in section 2.2)

292 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Data field is
initialized as specified in [X224] section 13.7.

The mcsSDin field is initialized as specified in [T125] section 11.33. The embedded initiator field
MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5) and
the embedded channelld field MUST be set to the MCS I/O channel ID held in the I/O Channel ID
store (section 3.2.1.3). The embedded userData field contains the remaining fields of the PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario, the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field is encrypted and signed (using the methods and techniques specified in section
5.3.6) based on the values of the Encryption Level and Encryption Method selected by the server as
part of the negotiation specified in section 5.3.2. The format of the securityHeader field is selected
as specified in the section describing the PDU structure and fields in section 2.2, and the fields
populated with the appropriate security data. If the data is to be encrypted, the embedded flags field
of the securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The shareDataHeader field contains a Share Data Header structure as described in section
2.2.8.1.1.1.2. The pduSource field of the embedded Share Control Header (section 2.2.8.1.1.1.1)
MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5). If the
contents of the PDU are to be compressed (this MUST be done before any MAC signature is
constructed and encryption methods applied), the embedded compressedType field of the
shareDataHeader MUST be initialized as specified in section 2.2.8.1.1.1.2. The remaining Share Data
Header and Share Control Header fields MUST be populated as specified in sections 2.2.8.1.1.1.1,
2.2.8.1.1.1.2, and the section describing the PDU structure and fields in section 2.2.

Any remaining fields are populated as specified in the section describing the PDU structure and fields
in section 2.2.

3.3.5.2 Processing a Client-to-Server Slow-Path PDU

The majority of client-to-server slow-path PDUs have the same basic structure (sections 5.3.8 and
5.4.4):

= tpktHeader: TPKT Header ([T123] section 8)
» x224Data: X.224 Class 0 Data TPDU ([X224] section 13.7)
= mcsSDrq: MCS Send Data Request PDU ([T125] section 7, part 7)
= securityHeader: Optional Security Header (section 2.2.8.1.1.2)

» shareDataHeader: Share Data Header (section 2.2.8.1.1.1.2)

= PDU Contents (see the section describing the PDU structure and fields in section 2.2)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and mecsSDrq ([T125] section
7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is any
discrepancy, the connection SHOULD be dropped.

The embedded channelld field within the mecsSDrq is used to route the PDU to the appropriate
target channel.

293 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in the section describing the PDU structure and
fields in section 2.2. If the securityHeader field is present, the embedded flags field MUST be
examined for the presence of the SEC_ENCRYPT (0x0008) flag (section 2.2.8.1.1.2.1), and, ifit is
present the data following the securityHeader field MUST be verified and decrypted using the
methods and techniques specified in section 5.3.6. If the MAC signature is incorrect, or the data
cannot be decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in
effect and the SEC_ENCRYPT flag is present, the connection SHOULD be dropped because double-
encryption is never used in this scenario.

The shareDataHeader field (which contains the Share Control Header and Share Data Header
described in sections 2.2.8.1.1.1.1 and 2.2.8.1.1.1.2 respectively) MUST be examined to determine
the PDU type (from the pduType and pduType2 fields), as well as the compression usage
information (from the compressedType field). If the data following the Share Data Header is
compressed, then decompression using the techniques specified in section 3.1.8.3 MUST be
performed. The value of the totalLength field MUST also be examined for consistency with the
received data. If there is any discrepancy, the connection SHOULD be dropped. The remaining Share
Control Header and Share Data Header fields MAY be ignored.

Any remaining PDU fields MUST be interpreted and processed in accordance with the section
describing the PDU structure and fields in section 2.2.

3.3.5.3 Connection Sequence

3.3.5.3.1 Processing X.224 Connection Request PDU
The structure and fields of the X.224 Connection Request PDU are specified in section 2.2.1.1.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.
Other reasons for dropping the connection include:

= The length of the X.224 Connection Request PDU is less than 11 bytes.
= The X.224 Connection Request PDU is not Class 0 ([X224] section 13.7).

The Destination reference, Source reference, and Class and options fields within the x224Crq field
SHOULD be ignored.

If the optional routingToken field exists, it MUST be ignored because the routing token is intended to
be inspected and parsed by external networking hardware along the connection path (for more
information about load balancing of Remote Desktop sessions and the routing token format, see
[MSFT-SDLBTS] "Load-Balanced Configurations", "Revectoring Clients", and "Routing Token Format").

If the optional cookie field is present, it MUST be ignored.

If both the routingToken and cookie fields are present, the server SHOULD continue with the
connection. Since the server does not process either the routingToken or cookie fields, a client
violation of the protocol specification in section 2.2.1.1 is not an issue. However, including both the
routingToken and the cookie fields will most likely result in problems when the X.224 Connection
Request is inspected and parsed by networking hardware that is used for load balancing Remote
Desktop sessions.

If the rdpNegData field is not present, it is assumed that the client does not support Enhanced RDP
Security (section 5.4) and negotiation data MUST NOT be sent to the client as part of the X.224
Connection Confirm PDU (section 2.2.1.2). If the rdpNegData field is present, it is parsed to check
that it contains an RDP Negotiation Request structure, as specified in section 2.2.1.1.1. If this is the
case, the flags describing the supported security protocols in the requestedProtocols field are saved
in the Received Client Data store (section 3.3.1.1).

294 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90204

Once the X.224 Connection Request PDU has been processed successfully, the server MUST send the
X.224 Connection Confirm PDU to the client (section 3.3.5.3.2) and update the Connection Start Time
store (section 3.3.1.12).

3.3.5.3.2 Sending X.224 Connection Confirm PDU
The structure and fields of the X.224 Connection Confirm PDU are specified in section 2.2.1.2.

The tpktHeader field is initialized as specified in [T123] section 8, while the x224Ccf field is
initialized as detailed in [X224] section 13.4 (the Destination reference is set to zero, the Source
reference is set to 0x1234, and the Class and options are set to zero). Parameter fields MUST NOT be
specified in the variable part of the Connection Response PDU.

The rdpNegData field is left empty if the client did not append any negotiation data to the X.224
Connection Request PDU (section 2.2.1.1). If the client did append negotiation data to the X.224
Connection Request PDU, the rdpNegData field SHOULD contain an RDP Negotiation Response
(section 2.2.1.2.1) or RDP Negotiation Failure (section 2.2.1.2.2) structure.

The RDP Negotiation Response structure is sent if the server supports (and is configured to use) one
of the client-requested security protocols specified in the X.224 Connection Request PDU and saved in
the Received Client Data store (section 3.3.1.1). The selectedProtocol field is initialized with the
selected protocol identifier (see section 2.2.1.2.2 for a list of identifiers). If the server decides to use
Standard RDP Security mechanisms (section 5.3), it MUST set the selectedProtocol field to
PROTOCOL_RDP (0x00000000).

The RDP Negotiation Failure structure is sent if it is not possible to continue the connection with any of
the client-requested External Security Protocol (section 5.4.5). The possible failure codes and a reason
for sending each of them are listed in section 2.2.1.2.2. After sending the RDP Negotiation Failure
structure the server MUST close the connection.

If an External Security Protocol, such as TLS (section 5.4.5.1) or CredSSP (section 5.4.5.2), will be
used for the duration of the connection, the server MUST prepare to execute the selected protocol by
calling into the relevant External Security Protocol Provider after the X.224 Connection Confirm PDU
(with RDP Negotiation Response) has been sent to the client.

3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request

The structure and fields of the MCS Connect Initial PDU with GCC Conference Create Request are
specified in section 2.2.1.3. A basic high-level overview of the nested structure for the MCS Connect
Initial PDU is illustrated in section 1.3.1.1, in the figure specifying MCS Connect Initial PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Connect Initial PDU (embedded within the mcsCi field) is specified in [T125] section 7, part
2. The server SHOULD ignore the calledDomainSelector, callingDomainSelector, and
upwardFlag fields of this PDU.

The domain parameters (contained in the targetParameters, minimumParameters, and
maximumParameters fields) received in the MCS Connect Initial PDU are examined and the
resultant parameters determined. The following pseudo-code describes the process employed by the
server to merge the domain parameters. If the server is unable to successfully merge the domain
parameters, the connection SHOULD be dropped.

//

// Merges the fields contained in the targetParameters, minimumParameters, and

295/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543

// maximumParameters fields. Returns TRUE if the domain parameters were
// merged, FALSE otherwise.
//
BOOL
MergeDomainParameters (
DomainParameters targetParameters,
DomainParameters minimumParameters,
DomainParameters maximumParameters,
DomainParameters* pOutParameters

)

//
// maxChannelIds
//
if (targetParameters.maxChannellIds >= 4)
{
pOutParameters->maxChannelIds = targetParameters.maxChannellds;
}
else if (maximumParameters.maxChannelIds >= 4)
{
pOutParameters->maxChannelIds = 4;
}
else
{
return FALSE;
}

//
// maxUserIds
//
if (targetParameters.maxUserIds >= 3)
{
pOutParameters->maxUserIds = targetParameters.maxUserIds;
}
else if (maximumParameters.maxUserIds >= 3)
{
pOutParameters->maxUserIds = 3;
}
else
{
return FALSE;
}

//
// maxTokenIds
//
pOutParameters->maxTokenIds = targetParameters.maxTokenIds;
//
// numPriorities
//
if (minimumParameters.numPriorities <= 1)
{
pOutParameters->numPriorities = 1;
}
else

{
return FALSE;

//
// minThroughput
//

pOutParameters->minThroughput = targetParameters.minThroughput;

//
// maxHeight
//

successfully

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

296 / 417

if ((targetParameters.maxHeight == 1) ||
(minimumParameters.maxHeight <= 1))
{
pOutParameters->maxHeight = 1;
}
else
{
return FALSE;
}

//
// maxMCSPDUsize
//
if (targetParameters.maxMCSPDUsize >= 124)
{
if (targetParameters.maxMCSPDUsize <= 65528)
{
pOutParameters->maxMCSPDUsize = targetParameters.maxMCSPDUsize;
}
else if (minimumParameters.maxMCSPDUsize >= 124 &&
minimumParameters.maxMCSPDUsize <= 65528)
{
pOutParameters->maxMCSPDUsize = 65528;
}
else

{
return FALSE;

if (maximumParameters.maxMCSPDUsize >= 124)

pOutParameters->maxMCSPDUsize = maximumParameters.maxMCSPDUsize;
}
else
{
return FALSE;
}
}

//
// protocolVersion
!/
if ((targetParameters.protocolVersion == 2) ||
(minimumParameters.protocolVersion <= 2 && maximumParameters.protocolVersion >= 2))
{
pOutParameters->protocolVersion = 2;
}
else

{
return FALSE;

}

return TRUE;

The userData field of the MCS Connect Initial PDU contains the GCC Conference Create Request
(embedded within the gccCCrq field). The GCC Conference Create Request is described in [T124
section 8.7 and appended as user data to the MCS Connect Initial PDU using the format specified in
[T124] sections 9.5 and 9.6.

The server MUST ensure that the size of the GCC Conference Create Request data is within bounds. If
Extended Client Data Blocks are not supported (section 2.2.1.2.1), then the maximum allowed size of
the GCC Conference Create Request data is 1024 bytes. If Extended Client Data Blocks are supported,

297/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90542

then the maximum allowed size is 4096 bytes. If the size of the GCC Conference Create Request data
is invalid, the server MUST close the connection as specified in section 3.3.5.3.3.1.

If the size of the GCC Conference Create Request data is valid, processing MUST continue. The server
MAY ignore all of the GCC Conference Create Request fields, except for the userData field. The
userData field of the GCC Conference Create Request MUST contain basic client settings data blocks
(sections 2.2.1.3.2 through 2.2.1.3.5). The server MUST check that the client-to-server H.221
nonstandard key embedded at the start of the userData field ([T124] section 8.7 for a description of
the structure of user data) is the ANSI character string "Duca". If this is not the case, the server MUST
close the connection as specified in section 3.3.5.3.3.1.

All of the encoded lengths within the MCS Connect Initial PDU and the GCC Conference Create Request
MUST also be examined for consistency with the received data. If there is any discrepancy, the server
MUST close the connection as specified in section 3.3.5.3.3.1.

Once the mcsCi and gccCCrq fields have been successfully parsed the server examines the basic
client settings data blocks in the GCC Conference Create Request user data and stores this data in the
Received Client Data store (section 3.3.1.1). However, before the data is stored, the basic client
settings data blocks are checked for validity.

Select settings in the Client Core Data (section 2.2.1.3.2) are validated using the following rules.

Client core data
field Validation rule

desktopWidth If this field contains a value greater than the maximum allowed width,<43> it is
implicitly assumed to equal the maximum allowed width.

desktopHeight If this field contains a value greater than the maximum allowed height,<44> it is
implicitly assumed to equal the maximum allowed height.

colorDepth If this field does not contain a valid color-depth and the postBeta2ColorDepth field is not
present, the server MUST close the connection as specified in section 3.3.5.3.3.1.

postBeta2ColorDepth If this field does not contain a valid color-depth and the highColorDepth field is not
present, the server MUST close the connection as specified in section 3.3.5.3.3.1.

highColorDepth If this field does not contain a valid color-depth, a value of 8 bits per pixel is implicitly
assumed.

serverSelectedProtocol | If this field does not contain the same value that the server transmitted to the client in
the RDP Negotiation Response (section 3.3.5.3.2), the server SHOULD drop the
connection. In the event that this optional field is not present, the value
PROTOCOL_RDP (0) MUST be assumed.

The encryptionMethods and extEncryptionMethods fields in the Client Security Data (section
2.2.1.3.3) are examined to ensure that they contain at least one valid flag. If no valid flags are
present, the server MUST close the connection as specified in section 3.3.5.3.3.1.

If the Client Network Data (section 2.2.1.3.4) is included in the Settings Data, the server MUST check
that the channelCount field is within bounds. Furthermore, the data supplied in the
channelDefArray MUST be complete. If these two conditions are not met, the server MUST close the
connection as specified in section 3.3.5.3.3.1.

Once the basic client settings data blocks have been processed successfully, the server MUST send the
MCS Connect Response PDU with GCC Conference Create Response (section 2.2.1.4) to the client.

3.3.5.3.3.1 Handling Errors in the GCC Conference Create Request Data

If there is invalid data in the GCC Conference Create Request data then the server MUST follow one of
the following courses of action:

298 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

= Send an MCS Connect Response PDU (section 2.2.1.4) to the client containing only a result field
set to the value rt-unspecified-failure (14), and then close the connection.

= Close the connection without sending an MCS Connect Response PDU containing the rt-
unspecified-failure (14) code (in this case the client will not be able to determine that the
disconnection is due to invalid GCC Conference Create Request data).

3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response

The structure and fields of the MCS Connect Response PDU with GCC Conference Create Response are
described in section 2.2.1.4. A basic high-level overview of the nested structure for the MCS Connect
Response PDU is illustrated in section 1.3.1.1, in the figure specifying MCS Connect Response PDU.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Connect Response PDU (embedded within the mcsCrsp field) is described in [T125] section
7, part 2. The fact that the MCS Connect Response PDU will contain a GCC Conference Create
Response as user data implies that processing of the MCS Connect Initial PDU with GCC Conference
Create Request (section 3.3.5.3.3) was successful, and hence the server MUST set the result field of
the MCS Connect Response PDU to rt-successful (0). The calledConnectld field SHOULD be set to
zero, while the domainParameters field MUST be initialized with the parameters which were derived
from processing of the MCS Connect Initial PDU (see section 3.3.5.3.3 for a description of the
negotiation rules).

The userData field of the MCS Connect Response PDU contains the GCC Conference Create Response
(embedded within the gccCCrsp field). The GCC Conference Create Response is described in [T124
section 8.7 and appended as user data to the MCS Connect Response PDU using the format described
in [T124] sections 9.5 and 9.6. The server SHOULD initialize the fields of the GCC Conference Create
Response as follows.

Conference Create Response field | Value

tag 1 (length of 1 byte)
result success (0)
userData Basic Server Settings Data Blocks

The nodelD field of the GCC Conference Create Response MUST be initialized with a value in the
range 1001 to 65536, inclusive, as required by the T.124 ASN.1 definitions of the UserID and
DynamicChannellD types ([T124] section 8.7, parts 1 and 2).

The userData field of the GCC Conference Create Response MUST be initialized with basic server
settings data blocks (sections 2.2.1.4.2 through to 2.2.1.4.4). The server-to-client H.221 nonstandard
key which MUST be embedded at the start of the userData field ([T124] section 8.7 for a description
of the structure of user data) is the ANSI character string "McDn".

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.3.5.3.5 Processing MCS Erect Domain Request PDU

The structure and fields of the MCS Erect Domain Request PDU are described in section 2.2.1.5.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

299 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Erect Domain Request PDU (embedded within the mcsEDrq field) is described in [T125
section 7, parts 3 and 10. The server MUST ensure that the subHeight and subinterval fields are
contained within the PDU. If this is not the case, the connection SHOULD be dropped.

3.3.5.3.6 Processing MCS Attach User Request PDU

The structure and fields of the MCS Attach User Request PDU are described in section 2.2.1.6.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Attach User Request PDU (embedded within the mcsAUrq field) is described in [T125
section 7, parts 5 and 10.

Upon receiving the MCS Attach User Request PDU the server MUST send the MCS Attach User Confirm
PDU (section 3.3.5.3.7) to the client.

3.3.5.3.7 Sending MCS Attach User Confirm PDU

The structure and fields of the MCS Attach User Confirm PDU are described in section 2.2.1.7.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Connect Response PDU (embedded within the mcsCrsp field (section 2.2.1.4)) is described
in [T125] section 7, parts 5 and 10.

If processing of the MCS Attach User Request was successful (section 3.3.5.3.6), the result field
MUST be set to rt-successful (0), and the optional initiator field MUST be present and MUST contain
an integer identifier that will be used to identify the user channel (this identifier MUST be stored in the
User Channel ID store (section 3.3.1.2)). If processing of the MCS Attach User Request was not
successful, then the optional initiator field SHOULD NOT be present and the result field MUST be set
to rt-unspecified-failure (14).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.3.5.3.8 Processing MCS Channel Join Request PDU(s)

The structure and fields of the MCS Channel Join Request PDU are described in section 2.2.1.8.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader field ([T123] section 8) MUST be examined for
consistency with the received data. If there is any discrepancy, the connection SHOULD be dropped.

The MCS Channel Join Request PDU (embedded within the mecsCIrq field) is described in detail in
T125] section 7, parts 6 and 10.

Upon receiving the MCS Channel Join Request PDU the server MUST carry out any necessary
processing to mark the channel as "joined" and MUST then send the MCS Channel Join Confirm PDU
(section 3.3.5.3.9) to the client to indicate the result of the join operation.

300/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543

3.3.5.3.9 Sending MCS Channel Join Confirm PDU(s)

The structure and fields of the MCS Channel Join Confirm PDU are described in section 2.2.1.9.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The MCS Channel Join Confirm PDU (embedded within the mcsCIJcf field) is described in [T125
section 7, parts 6 and 10. The result field MUST be set to rt-successful (0) if the MCS channel ID in
the corresponding MCS Channel Join Reguest PDU (section 3.3.5.3.8) was successfully joined. If an
error occurred during the join (for example, too many channels, no such MCS channel ID, or a
memory allocation error), the server MUST set the result field to rt-unspecified-failure (14). The
remaining fields MUST be initialized as follows (these fields are essentially copied over from the MCS
Channel Join Request PDU).

Channel Join Confirm

field Value

initiator The initiator value which was sent in the corresponding MCS Channel Join Request
PDU.

requested The MCS channel ID which was sent in the corresponding MCS Channel Join

Request PDU.

channelld The MCS channel ID which was sent in the corresponding MCS Channel Join
Request PDU.

The optional channelld field MUST be included in the MCS Channel Join Confirm PDU sent to the
client.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire.

3.3.5.3.10 Processing Security Exchange PDU

The structure and fields of the Security Exchange PDU are described in section 2.2.1.10.

The embedded length fields within the tpktHeader ([T123] section 8) and the mcsSDrq ([T125
section 7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is
any discrepancy, the connection SHOULD be dropped.

The embedded channelld field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The embedded flags field of the basicSecurityHeader MUST contain the SEC_EXCHANGE_PKT
(0x0001) flag (described in section 2.2.8.1.1.2.1). If this flag is not present then the packet cannot be
interpreted as a Security Exchange PDU, and the connection SHOULD be dropped. If the
SEC_LICENSE_ENCRYPT_SC (0x0200) flag is present, then the client is able to accept encrypted
licensing packets when using Standard RDP Security mechanisms (section 5.3). This fact is stored in
the Client Licensing Encryption Ability store (section 3.3.1.6).

The encrypted client random value is extracted from the encryptedClientRandom field using the
length field to determine the size of the data. If the value of the length field is inconsistent with the
size of the received data, the connection SHOULD be dropped. The encrypted client random value is
then decrypted using the methods and techniques described in section 5.3.4.2.

Once the server has extracted and decrypted the client random it MUST generate the session keys
which will be used to encrypt, decrypt, and sign data sent on the wire. The 32-byte client random and
server random (transmitted in the Server Security Data described in section 2.2.1.4.3) are used to

301 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543

accomplish this task by employing the techniques described in section 5.3.5. On successful generation
of the session keys, the server MUST store the session keys in the Session Keys store (section
3.3.1.10).

3.3.5.3.11 Processing Client Info PDU
The structure and fields of the Client Info PDU are specified in section 2.2.1.11.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to decrypt and verify the integrity of the entire PDU prior to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and the mcsSDrq ([T125
section 7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is
any discrepancy, the connection SHOULD be dropped.

The embedded channelld field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The securityHeader field MUST always be present and it MUST contain at least a Basic Security
Header structure (section 2.2.8.1.1.2.1). The embedded flags field of the securityHeader MUST
contain the SEC_INFO_PKT (0x0040) flag (described in section 2.2.8.1.1.2.1). If this flag is not
present then the packet cannot be interpreted as a Client Info PDU (section 2.2.1.11), and the
connection SHOULD be dropped. If the SEC_ENCRYPT (0x0008) flag is present, then the data
following the securityHeader field is encrypted and it MUST be verified and decrypted using the
methods and techniques specified in section 5.3.6. If the Encryption Level (section 5.3.1) selected by
the server (sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_NONE (0) the SEC_ENCRYPT flag
MAY<45> be set incorrectly. In this case the Encryption Level setting MUST be respected and the
value of the flag MUST be ignored. If the MAC signature is incorrect or the data cannot be decrypted
correctly, the connection SHOULD be dropped.

Before reading the client settings fields, the format of the character data MUST be determined by
testing for the presence of the INFO_UNICODE (0x00000010) flag (section 2.2.1.11.1.1). If the flag is
present, all character data MUST be interpreted as Unicode; otherwise, it MUST be treated as ANSI
characters.

All of the received client settings are stored in the Received Client Data store (section 3.3.1.1). When
storing character data, the server SHOULD only save the maximum allowed sizes specified in section
2.2.1.11.1.1. For example, the maximum specified size for the AlternateShell field is 512 bytes. If
received data is larger than this size, it SHOULD be truncated to 512 bytes in length (including the
mandatory null terminator) when it is stored.

If there is not enough received data to completely read a variable-length field, the connection SHOULD
be dropped. For example, if the cbAlternateShell field contains a value of 44 bytes, but only 30
bytes remain to be parsed, the connection SHOULD be dropped.

If an auto-reconnect cookie exists in the autoReconnectCookie field, the server SHOULD store the
cookie in the Automatic Reconnection Cookie store (section 3.3.1.10)and use it to log on the user once
the connection sequence completes (for a description of how automatic reconnection works, see
section 5.5). If logon with the cookie fails, the credentials supplied in the Client Info PDU SHOULD be
used, or alternatively the user MAY enter credentials at a server-side prompt remoted using RDP.

Once the server has successfully processed the Client Info PDU, it can enter the Licensing phase of the
RDP Connection Sequence and carry out a licensing exchange with the client (see section 1.3.1.1 for
an overview of the RDP Connection Sequence phases).

3.3.5.3.12 Sending License Error PDU - Valid Client

The structure and fields of the License Error (Valid Client) PDU are described in section 2.2.1.12.

302 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDin field is initialized as described in [T125] section 11.33. The embedded initiator field
MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5) and
the embedded channelld field MUST be set to the MCS I/0 channel ID held in the I/O Channel ID
store (section 3.3.1.3). The embedded userData field contains the remaining fields of the Valid Client
PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest. The securityHeader field MUST
be present; however, it will contain a Basic Security Header structure (section 2.2.8.1.1.2.1).

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the
securityHeader field can be encrypted and signed (depending on the values of the Encryption Level
and Encryption Method selected by the server as part of the negotiation described in section 5.3.2 and
the contents of the Client Licensing Encryption Ability store (section 3.3.1.6) using the methods and
techniques described in section 5.3.6). The format of the securityHeader field is selected as
described in section 2.2.1.12 and the fields populated with appropriate security data. If the data is to
be encrypted, the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT
(0x0008) flag.

The embedded flags field of the securityHeader field (which is always present) MUST contain the
SEC_LICENSE_PKT (0x0080) flag (described in section 2.2.8.1.1.2.1) to indicate that the message is a
licensing PDU. If the server can handle encrypted licensing packets from the client and Standard RDP
Security mechanisms are being used, then the SEC_LICENSE_ENCRYPT_CS (0x0200) flag SHOULD
also be included in the flags subfield of the securityHeader field.

The remainder of the PDU MUST be populated according to the structure and type definition in section
2.2.1.12.

After sending the License Error (Valid Client) PDU, the server MUST send the Demand Active PDU
(section 3.3.5.3.13.1) to the client.

3.3.5.3.13 Mandatory Capability Exchange

3.3.5.3.13.1 Sending Demand Active PDU

The structure and fields of the Demand Active PDU are described in section 2.2.1.13.1.

The tpktHeader field is initialized as described in [T123] section 8, while the x224Data field (which
contains an X.224 Class 0 Data TPDU) is initialized as specified in [X224] section 13.7.

The mcsSDin field is initialized as described in [T125] section 11.33. The embedded initiator field
MUST be set to the MCS server channel ID held in the Server Channel ID store (section 3.3.1.5) and
the embedded channelld field MUST be set to the MCS 1I/O channel ID held in the I/O Channel ID
store (section 3.3.1.3). The embedded userData field contains the remaining fields of the Demand
Active PDU.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario the securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
securityHeader field can be encrypted and signed (depending on the values of the Encryption Level
and Encryption Method selected by the server as part of the negotiation described in section 5.3.2)
using the methods and techniques described in 5.3.6. The format of the securityHeader field is
selected as described in section 2.2.1.13.1 and the fields populated with appropriate security data. If

303/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

the data is to be encrypted, the embedded flags field of the securityHeader field MUST contain the
SEC_ENCRYPT (0x0008) flag.

The remaining fields are populated as described in section 2.2.1.13.1.1, with the combined capability
set data being inserted into the capabilitySets field.

3.3.5.3.13.2 Processing Confirm Active PDU

The structure and fields of the Confirm Active PDU are described in section 2.2.1.13.2.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The embedded length fields within the tpktHeader ([T123] section 8) and the mcsSDrq ([T125
section 7, parts 7 and 10) fields MUST be examined for consistency with the received data. If there is
any discrepancy, the connection SHOULD be dropped.

The embedded channelld field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in section 2.2.1.13.2. If the securityHeader field
is present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT
(0x0008) flag (section 2.2.8.1.1.2.1), and if it is present the data following the securityHeader field
MUST be verified and decrypted using the methods and techniques described in section 5.3.6. If the
MAC signature is incorrect or the data cannot be decrypted correctly, the connection SHOULD be
dropped.

The shareControlHeader field (which contains a Share Control Header as described in section
2.2.8.1.1.1.1) MUST be examined to ensure that the PDU type (present in the pduType field) has the
value PDUTYPE_CONFIRMACTIVEPDU (3).

The remaining PDU fields and capability data MUST be interpreted and processed according to sections
2.2.1.13.2.1 and 2.2.7. The capabilities received from the client MUST be stored in the Client
Capabilities store (section 3.3.1.7) and MUST be used to determine what subset of RDP to send to the
client.

After successfully processing the Confirm Active PDU, the server MUST send the Synchronize PDU
(section 3.3.5.3.14) to the client. If processing of the Confirm Active PDU was unsuccessful, the
connection SHOULD be dropped.

3.3.5.3.14 Processing Synchronize PDU

The structure and fields of the Synchronize PDU are described in section 2.2.1.14, and the techniques
described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The contents of the
targetUser field MUST be ignored.

3.3.5.3.15 Processing Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are described in section 2.2.1.15, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlld and grantld fields MUST be ignored.

After successfully processing the client-to-server Control (Cooperate) PDU, the server MUST send the
Control (Cooperate) PDU (section 3.3.5.3.20) to the client. If processing of the client-to-server Control
(Cooperate) PDU was unsuccessful, the connection SHOULD be dropped.

3.3.5.3.16 Processing Control PDU - Request Control

304 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90543

The structure and fields of the Control (Request Control) PDU are described in section 2.2.1.16, and
the techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlId and grantld fields MUST be ignored.

After successfully processing the Control (Request Control) PDU, the server MUST send the Control
(Granted Control) PDU (section 3.3.5.3.21) to the client. If processing of the Control (Request Control)
PDU was unsuccessful, the connection SHOULD be dropped.

3.3.5.3.17 Processing Persistent Key List PDU(s)

The structure and fields of the Persistent Key List PDU are described in section 2.2.1.17, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. Note
that multiple Persistent Key List PDUs can be sent in succession. The bBitMask flag indicates the
sequencing.

After the server has successfully processed the Persistent Key List PDU (or sequence of Persistent Key
List PDUs), it MUST store the 64-bit bitmap keys received from the client in the Cached Bitmap Keys
store (section 3.3.1.8).

3.3.5.3.18 Processing Font List PDU

The structure and fields of the Font List are described in section 2.2.1.18, and the techniques
described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The contents of the
numberFonts, totalNumFonts, listFlags, and entrySize fields MUST be ignored.

After successfully processing the Font List PDU, the server MUST send the Font Map PDU (section
3.3.5.3.22) to the client. If processing of the Font List PDU was unsuccessful, the connection SHOULD
be dropped.

3.3.5.3.19 Sending Synchronize PDU

The structure and fields of the Synchronize PDU are described in section 2.2.1.19, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The targetUser
field SHOULD<46> be set to zero. The contents of this PDU SHOULD NOT be compressed.

3.3.5.3.20 Sending Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are described in section 2.2.1.20, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
grantId and controlId fields SHOULD be set to zero. The contents of this PDU SHOULD NOT be
compressed.

3.3.5.3.21 Sending Control PDU - Granted Control

The structure and fields of the Control (Granted Control) PDU are described in section 2.2.1.21, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
grantld field SHOULD be set to the User Channel ID (held in the User Channel ID store (3.3.1.2)),
while the controlId field SHOULD be set to the MCS server channel ID (held in the Server Channel ID
store (section 3.3.1.5)). The contents of this PDU SHOULD NOT be compressed.

3.3.5.3.22 Sending Font Map PDU

The structure and fields of the Font Map PDU are described in section 2.2.1.22, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU SHOULD NOT be compressed.

Once the server has successfully sent this PDU, graphics and pointer updates (section 2.2.9) SHOULD
be sent to the client (section 3.3.5.9).

305/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

3.3.5.4 Disconnection Sequences

3.3.5.4.1 Processing Shutdown Request PDU

The structure and fields of the Shutdown Request PDU are described in section 2.2.2.1, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

After the server has successfully processed the Shutdown Request PDU, it MUST send the Shutdown
Request Denied PDU (section 3.3.5.4.2) to the client if a logged-on user account is associated with the
session. If a logged-on user account is not associated with the session, the server MUST close the
connection.

3.3.5.4.2 Sending Shutdown Request Denied PDU

The structure and fields of the Shutdown Request Denied PDU are described in section 2.2.2.2, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

3.3.5.5 Deactivation-Reconnection Sequence

3.3.5.5.1 Sending Deactivate All PDU

The structure and fields of the Deactivate All PDU are described in section 2.2.3.1, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.

The Deactivate All PDU is sent from server to client to indicate that the connection will be closed or
that a capability re-exchange will occur. After sending the Deactivate All PDU the server MUST follow
one of the following courses of action.

= Send an MCS Disconnect Provider Ultimatum PDU (section 3.1.5.1.1) to notify the client of the
source of the disconnection ("user requested" or "provider initiated"), and then close the
connection.

» Close the connection without sending an MCS Disconnect Provider Ultimatum (in this case the
client will not be informed of the source of the disconnection).

= Initiate a capability re-exchange by re-executing the connection sequence, starting with the
Demand Active PDU (section 3.3.5.3.13.1).

3.3.5.6 Auto-Reconnect Sequence

3.3.5.6.1 Sending Auto-Reconnect Status PDU

The structure and fields of the Auto-Reconnect Status PDU are described in section 2.2.4.1, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

3.3.5.7 Server Error Reporting and Status Updates

3.3.5.7.1 Sending Set Error Info PDU

The structure and fields of the Set Error Info PDU are described in section 2.2.5.1, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU SHOULD NOT be compressed.

306 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

This PDU MUST NOT be sent to a client which has not indicated support for it by setting the
RNS_UD_CS_SUPPORT_ERRINFO_PDU flag (0x0001) in the earlyCapabilityFlags field of the Client
Core Data (section 2.2.1.3.2).

After the PDU has been sent the server MUST disconnect the client (since the Set Error Info PDU has
been sent, the client will be aware of the reason for the disconnect).

3.3.5.7.1.1 User Authorization Failures

The process of user authorization ensures that a user has sufficient permission to access a server
remotely via RDP. User authorization MUST only take place after the credentials for a user have been
received.

When Enhanced RDP Security (section 5.4) with CredSSP (section 5.4.5.2) is used, the user
credentials will be accessible by the time the MCS Connect Initial PDU (section 3.3.5.3.3) and MCS
Connect Response PDU (section 3.3.5.3.4) have been exchanged (sections 5.4.2.1 and 5.4.2.2). In
this scenario, user authorization MUST take place after all the MCS Channel Join Request PDUs
(section 3.3.5.3.8) and MCS Channel Join Confirm PDUs (section 3.3.5.3.9) have been exchanged.

If the process of user authorization fails, and the client has indicated support for the Set Error Info
PDU (section 2.2.5.1) by setting the RNS_UD_CS_SUPPORT_ERRINFO_PDU flag (0x0001) in the
earlyCapabilityFlags field of the Client Core Data (section 2.2.1.3.2), then the server MUST send a
Set Error Info PDU to the client with the error code ERRINFO_SERVER_INSUFFICIENT_PRIVILEGES
(0x00000009) and close the connection. If the client does not support the Set Error Info PDU, the
server MUST close the connection without sending a Set Error Info PDU.

3.3.5.7.2 Sending Status Info PDU

The structure and fields of the Status Info PDU are described in section 2.2.5.2, and the techniques
specified in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The contents of this
PDU SHOULD NOT be compressed.

This PDU MUST NOT be sent to a client which has not indicated support for it by setting the
RNS_UD_CS_SUPPORT_STATUSINFO_PDU (0x0004) in the earlyCapabilityFlags field of the Client
Core Data (section 2.2.1.3.2).

3.3.5.8 Keyboard and Mouse Input
3.3.5.8.1 Input Event Notifications

3.3.5.8.1.1 Processing Slow-Path Input Event PDU

The structure and fields of the Slow-Path Input Event PDU are described in section 2.2.8.1.1.3, and
the techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

The slowPathInputEvents field encapsulates a collection of input events and is populated with the
following input event data:

= Keyboard Event (section 2.2.8.1.1.3.1.1.1)

= Unicode Keyboard Event (section 2.2.8.1.1.3.1.1.2)

= Mouse Event (section 2.2.8.1.1.3.1.1.3)

= Extended Mouse Event (section 2.2.8.1.1.3.1.1.4)

= Synchronize Event (section 2.2.8.1.1.3.1.1.5)

= Unused Event (section 2.2.8.1.1.3.1.1.6)

307/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

If a slow-path input event structure is received that does not match one of the known types, the
server SHOULD drop the connection.

Once this PDU has been processed, the server MUST inject the input event into the user's session.

3.3.5.8.1.2 Processing Fast-Path Input Event PDU

The Fast-Path Input Event PDU has the following basic structure (sections 5.3.8 and 5.4.4):

= fpInputHeader: Fast-Path Input Header (section 2.2.8.1.2)
= lengthl and length2: Packet Length (section 2.2.8.1.2)
= fipsInformation: Optional FIPS Information (section 2.2.8.1.2)
= dataSignature: Optional Data Signature (section 2.2.8.1.2)
= numEvents: Optional Number of Events (section 2.2.8.1.2)
= PDU Contents (collection of input events):
= Keyboard Event (section 2.2.8.1.2.2.1)
» Unicode Keyboard Event (section 2.2.8.1.2.2.2)
= Mouse Event (section 2.2.8.1.2.2.3)
= Extended Mouse Event (section 2.2.8.1.2.2.4)
* Synchronize Event (section 2.2.8.1.2.2.5)
= Quality Of Experience (QOE) Timestamp Event (section 2.2.8.1.2.2.6)

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) being
used to secure the connection MUST be used to decrypt and verify the integrity of the entire PDU prior
to any processing taking place.

The contents of the embedded action field of the fpInputHeader field MUST be set to
FASTPATH_INPUT_ACTION_FASTPATH (0). If it is not set to this value the PDU is not a Fast-Path
Input Event PDU and MUST be processed as a slow-path PDU (section 3.3.5.2).

If the embedded secFlags field of the fpInputHeader field contains the
FASTPATH_INPUT_ENCRYPTED (2) flag, then the data following the optional dataSignature field
(which in this case MUST be present) MUST be verified and decrypted using the methods and
techniques described in section 5.3.6. If the MAC signature is incorrect or the data cannot be
decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in effect and the
FASTPATH_INPUT_ENCRYPTED (2) flag is present the connection SHOULD be dropped because
double-encryption is not used within RDP in the presence of an External Security Protocol Provider.

The numEvents field details the number of input events present in the fpInputEvents field. The
input events present in this field MUST be interpreted and processed according to the descriptions
detailed from sections 2.2.8.1.2.2.1 through 2.2.8.1.2.2.5. If a Fast-Path Input Event structure is
received that does not match one of the known types, the server SHOULD drop the connection.

Once this PDU has been processed, the server MUST inject the input event into the user's session.
3.3.5.8.2 Keyboard Status PDUs

3.3.5.8.2.1 Sending Set Keyboard Indicators PDU

308 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

The structure and fields of the Set Keyboard Indicators PDU are described in section 2.2.8.2.1, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

3.3.5.8.2.2 Sending Set Keyboard IME Status PDU

The structure and fields of the Set Keyboard IME Status PDU are described in section 2.2.8.2.2, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

3.3.5.9 Basic Output

3.3.5.9.1 Sending Slow-Path Graphics Update PDU

The structure and fields of the Slow-Path Graphics Update PDU are described in section 2.2.9.1.1.3,
and the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.

The slowPathGraphicsUpdate field contains a single graphics update structure, which MUST be one
of the following types:

= Orders Update ([MS-RDPEGDI] section 2.2.2.2)

= Palette Update (section 2.2.9.1.1.3.1.1)

= Bitmap Update (section 2.2.9.1.1.3.1.2)

= Synchronize Update (section 2.2.9.1.1.3.1.3)

The contents of this PDU SHOULD be compressed by the server before any MAC signature is
constructed and encryption methods applied if the size of the data payload exceeds 50 bytes. The
Share Data Header MUST be initialized with the compression usage information (section 3.3.5.1).

3.3.5.9.2 Sending Slow-Path Pointer Update PDU

The structure and fields of the Slow-Path Pointer Update PDU are described in section 2.2.9.1.1.4, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.

The messageType field MUST be initialized with the identifier describing the type of the Pointer
Update (see section 2.2.9.1.1.4 for a list of possible values), while the pointerAttributeData field
MUST be initialized with the actual update data contained in one of the following structures:

= Pointer Position Update (section 2.2.9.1.1.4.2)

= System Pointer Update (section 2.2.9.1.1.4.3)

= Color Pointer Update (section 2.2.9.1.1.4.4)

= New Pointer Update (section 2.2.9.1.1.4.5)

= Cached Pointer Update (section 2.2.9.1.1.4.6)

When sending a Color or New Pointer Update, the server MUST save the pointer image in the Pointer
Image Cache (section 3.3.1.9) and initialize the cacheIndex field with the index of the cache entry
which was used. If the pointer image has to be changed and the image is already present in the cache
the server SHOULD send the client a Cached Pointer Update to save bandwidth that would have been
used to resend the image.

The contents of this PDU SHOULD be compressed by the server before any MAC signature is
constructed and encryption methods applied if the size of the data payload exceeds 50 bytes. The
Share Data Header MUST be initialized with the compression usage information (section 3.3.5.1).

309 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

3.3.5.9.3 Sending Fast-Path Update PDU

The Fast-Path Update PDU has the following basic structure (sections 5.3.8 and 5.4.4):

= fpOutputHeader: Fast-Path Output Header (section 2.2.9.1.2)
= lengthl and length2: Packet Length (section 2.2.9.1.2)
= fipsInformation: Optional FIPS Information (section 2.2.9.1.2)
= dataSignature: Optional Data Signature (section 2.2.9.1.2)
= PDU Contents (collection of fast-path output updates):

= Orders Update ([MS-RDPEGDI] section 2.2.2.2)

= Palette Update (section 2.2.9.1.2.1.1)

= Bitmap Update (section 2.2.9.1.2.1.2)

» Synchronize Update (section 2.2.9.1.2.1.3)

»= Pointer Position Update (section 2.2.9.1.2.1.4)

= System Pointer Hidden Update (section 2.2.9.1.2.1.5)

= System Pointer Default Update (section 2.2.9.1.2.1.6)

= Color Pointer Update (section 2.2.9.1.2.1.7)

= New Pointer Update (section 2.2.9.1.2.1.8)

= Cached Pointer Update (section 2.2.9.1.2.1.9)

= Surface Commands Update (section 2.2.9.1.2.1.10)

The fpOutputHeader, lengthl, and length2 fields MUST be initialized as described in section
2.2.9.1.2. Because the PDU is in fast-path format, the embedded action field of the fpOutputHeader
field MUST be set to FASTPATH_OUTPUT_ACTION_FASTPATH (0).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5) MUST
be used to encrypt the entire PDU and generate a verification digest before the PDU is transmitted
over the wire. Also, in this scenario the fipsInformation and dataSignature fields MUST NOT be
present.

If Standard RDP Security mechanisms (section 5.3) are in effect, the PDU data following the optional
dataSignature field can be encrypted and signed (depending on the values of the Encryption Level
and Encryption Method selected by the server as part of the negotiation described in section 5.3.2)
using the methods and techniques described in section 5.3.6. If the data is to be encrypted, the
embedded secFlags field of the fpOutputHeader field MUST contain the
FASTPATH_OUTPUT_ENCRYPTED (2) flag.

The PDU contents, which encapsulate a collection of output events, is populated with fast-path update
data as described in sections 2.2.9.1.2.1.1 through 2.2.9.1.2.1.10. The contents of each individual
update SHOULD be compressed by the server before any MAC signature is constructed and encryption
methods applied if the size of the data payload exceeds 50 bytes. If this is the case, the embedded
compression field of the common updateHeader field MUST contain the
FASTPATH_OUTPUT_COMPRESSION_USED flag and the optional compressionFlags field MUST be
initialized with the compression usage information.

3.3.5.9.4 Sound

310/ 417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

3.3.5.9.4.1 Sending Play Sound PDU
The structure and fields of the Play Sound PDU are described in section 2.2.9.1.1.5, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The

Play Sound PDU SHOULD<47> be sent to instruct a client to play a sound by specifying its frequency
and duration. The contents of this PDU SHOULD NOT be compressed.

3.3.5.10 Logon and Authorization Notifications

3.3.5.10.1 Sending Save Session Info PDU

The structure and fields of the Save Session Info PDU are described in section 2.2.10.1.

The three reasons for sending this PDU are:

1. Notifying the client that the user has logged on (the username and domain which were used, as
well as the ID of the session to which the user connected, can be included in this notification).

2. Transmitting an auto-reconnect cookie to the client (see section 1.3.1.5 for an overview of
automatic reconnection).

3. Informing the client of an error or warning that occurred while the user was logging on.

The client SHOULD always be notified after the user has logged on. The INFOTYPE_LOGON
(0x00000000), INFOTYPE_LOGON_LONG (0x00000001), or INFOTYPE_LOGON_PLAINNOTIFY
(0x00000002) notification types MUST be used to accomplish this task.

A logon notification of type INFOTYPE_LOGON or INFOTYPE_LOGON_LONG SHOULD<48> be sent if
the INFO_LOGONNOTIFY (0x00000040) flag was set by the client in the Client Info PDU (sections
2.2.1.11 and 3.3.5.3.1) or if the username or domain used to log on to the session is different from
what was sent in the Client Info PDU (the original username or domain might have been invalid,
resulting in the user having to re-enter its credentials at a remoted logon prompt). The
LONG_CREDENTIALS_SUPPORTED (0x00000004) flag, in the extraFlags field of the General
Capability Set (section 2.2.7.1.1) received from the client (section 3.3.5.3.13.2), determines whether
the INFOTYPE_LOGON or INFOTYPE_LOGON_LONG type is used.

A logon notification of type INFOTYPE_LOGON_PLAINNOTIFY SHOULD be sent whenever a notification
of type INFOTYPE_LOGON or INFOTYPE_LOGON_LONG would not be sent.

The techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU SHOULD NOT be compressed.

3.3.5.10.2 Sending Early User Authorization Result PDU

The structure and fields of the Early User Authorization Result PDU are described in section 2.2.10.2.
If the PROTOCOL_HYBRID_EX (0x00000008) flag was specified in the requestedProtocols field of
the RDP Negotiation Request (section 2.2.1.1.1) structure, and the server set the selectedProtocol
field of the RDP Negotiation Response (section 2.2.1.2.1) to PROTOCOL_HYBRID_EX, then the server
SHOULD authorize the user (once the CredSSP (section 5.4.5.2) handshake has completed) and then
indicate the result of the authorization by using the Early User Authorization Result PDU. If it is to be
sent to the client, the Early User Authorization Result PDU MUST be sent before any post-handshake
PDUs are transmitted (section 5.4.2.1 and 5.4.2.2).

3.3.5.11 Controlling Server Graphics Output

3.3.5.11.1 Processing Refresh Rect PDU

311 /417

[MS-RDPBCGR] - v20160714

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2016 Microsoft Corporation

Release: July 14, 2016

The structure and fields of the Refresh Rect PDU are described in section 2.2.11.2, and the techniques
described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the server MUST send updated graphics data for the region
specified by the PDU.

3.3.5.11.2 Processing Suppress Output PDU

The structure and fields of the Suppress Output PDU are described in section 2.2.11.3, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the server M