
1 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-PNRP]:

Peer Name Resolution Protocol (PNRP) Version 4.0

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

12/18/2006 0.1 New Version 0.1 release

3/2/2007 1.0 Major Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major MLonghorn+90

7/20/2007 2.0.1 Editorial Changed language and formatting in the technical content.

8/10/2007 2.0.2 Editorial Changed language and formatting in the technical content.

9/28/2007 2.0.3 Editorial Changed language and formatting in the technical content.

10/23/2007 2.0.4 Editorial Changed language and formatting in the technical content.

11/30/2007 2.0.5 Editorial Changed language and formatting in the technical content.

1/25/2008 2.0.6 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 4.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 4.0.3 Editorial Changed language and formatting in the technical content.

12/5/2008 5.0 Major Updated and revised the technical content.

1/16/2009 5.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 5.1 Minor Clarified the meaning of the technical content.

4/10/2009 5.1.1 Editorial Changed language and formatting in the technical content.

5/22/2009 6.0 Major Updated and revised the technical content.

7/2/2009 6.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 6.0.2 Editorial Changed language and formatting in the technical content.

9/25/2009 6.1 Minor Clarified the meaning of the technical content.

11/6/2009 6.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.1.2 Editorial Changed language and formatting in the technical content.

1/29/2010 7.0 Major Updated and revised the technical content.

3/12/2010 8.0 Major Updated and revised the technical content.

3 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

4/23/2010 8.1 Minor Clarified the meaning of the technical content.

6/4/2010 8.1.1 Editorial Changed language and formatting in the technical content.

7/16/2010 8.1.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 8.2 Minor Clarified the meaning of the technical content.

10/8/2010 8.2 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 8.3 Minor Clarified the meaning of the technical content.

1/7/2011 8.4 Minor Clarified the meaning of the technical content.

2/11/2011 9.0 Major Updated and revised the technical content.

3/25/2011 10.0 Major Updated and revised the technical content.

5/6/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 10.1 Minor Clarified the meaning of the technical content.

9/23/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 11.0 Major Updated and revised the technical content.

3/30/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 12.0 Major Updated and revised the technical content.

10/25/2012 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 Major Updated and revised the technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 15.0 Major Updated and revised the technical content.

5/15/2014 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 16.0 Major Significantly changed the technical content.

10/16/2015 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.3.1 Identifiers .. 10

1.3.1.1 Peer Names .. 10
1.3.1.2 PNRP IDs ... 11
1.3.1.3 Certified Peer Addresses .. 12

1.3.2 Delegation ... 12
1.3.3 Clouds ... 13

1.3.3.1 Discovering a Cloud ... 14
1.3.3.2 Joining a Cloud ... 15
1.3.3.3 Active Participation in the Cloud .. 15
1.3.3.4 Leaving a Cloud .. 16

1.4 Relationship to Other Protocols .. 16
1.5 Prerequisites/Preconditions ... 16
1.6 Applicability Statement ... 16
1.7 Versioning and Capability Negotiation ... 16
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments ... 16

2 Messages ... 17
2.1 Transport .. 17
2.2 Message Syntax ... 17

2.2.1 PNRP Header .. 18
2.2.2 PNRP Messages .. 19

2.2.2.1 SOLICIT ... 19
2.2.2.2 ADVERTISE .. 21
2.2.2.3 REQUEST ... 22
2.2.2.4 FLOOD ... 23
2.2.2.5 INQUIRE .. 25
2.2.2.6 AUTHORITY .. 26

2.2.2.6.1 AUTHORITY_BUFFER .. 26
2.2.2.7 ACK... 29
2.2.2.8 LOOKUP ... 30

2.2.3 Data Structures .. 32
2.2.3.1 Encoded CPA .. 32

2.2.3.1.1 Service Address List ... 35
2.2.3.1.2 PAYLOAD .. 35
2.2.3.1.3 IPV6_APP_ENDPOINT ... 35
2.2.3.1.4 CPA Public Key .. 36

2.2.3.2 SIGNATURE .. 36
2.2.3.3 EXTENDED_PAYLOAD .. 37
2.2.3.4 ROUTE_ENTRY .. 39
2.2.3.5 Certificate Chain ... 39

2.2.3.5.1 Certificate Extensions... 40
2.2.3.5.1.1 PnrpCertificateType .. 40
2.2.3.5.1.2 PnrpCertificateVersion .. 41
2.2.3.5.1.3 PnrpPeerName ... 41
2.2.3.5.1.4 PnrpRole ... 41
2.2.3.5.1.5 PnrpClassifiersList .. 42

2.2.3.5.1.5.1 Classifier Delegation ... 42
2.2.3.6 IPV6_ENDPOINT ... 43

5 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.4 Peer Names ... 43

3 Protocol Details ... 45
3.1 Resolver Details ... 45

3.1.1 Abstract Data Model .. 45
3.1.2 Timers .. 47
3.1.3 Initialization ... 47
3.1.4 Higher-Layer Triggered Events ... 47

3.1.4.1 Opening a Cloud ... 47
3.1.4.2 Discovering Other Nodes in a Cloud ... 48

3.1.4.2.1 Using Seed Servers ... 48
3.1.4.2.2 Multicast Cloud Discovery ... 48

3.1.4.3 Initiating a PNRP Synchronization Conversation .. 49
3.1.4.4 Resolving a Peer Name .. 49

3.1.4.4.1 Constructing a PNRP ID .. 49
3.1.4.4.2 Resolving a PNRP ID .. 50

3.1.4.5 Closing a Cloud ... 51
3.1.5 Message Processing Events and Sequencing Rules .. 51

3.1.5.1 Receiving an SSDP Response .. 51
3.1.5.2 Receiving a PNRP Message ... 52
3.1.5.3 Receiving an ADVERTISE Message .. 52
3.1.5.4 Receiving an ACK Message ... 52
3.1.5.5 Receiving a FLOOD Message ... 53
3.1.5.6 Receiving an AUTHORITY Message .. 53

3.1.5.6.1 Receiving an AUTHORITY_BUFFER ... 53
3.1.5.6.1.1 Receiving a Response to an INQUIRE Message 54
3.1.5.6.1.2 Completing a Route Entry Cache Addition 55

3.1.5.7 Validating a CPA ... 55
3.1.5.8 Validating an Extended Payload .. 56
3.1.5.9 Validating a SIGNATURE Structure .. 56
3.1.5.10 Validating a Certificate Chain .. 56
3.1.5.11 Receiving a New ROUTE_ENTRY Message ... 57

3.1.6 Timer Events .. 57
3.1.6.1 Cloud Cleanup Timer Expiry ... 57
3.1.6.2 Maintenance Timer Expiry .. 57
3.1.6.3 Message Retransmission Timer Expiry ... 58

3.1.7 Other Local Events .. 58
3.1.7.1 Processing Address Change Notifications .. 58

3.2 Publisher Details .. 58
3.2.1 Abstract Data Model .. 58

3.2.1.1 Cache .. 59
3.2.2 Timers .. 59
3.2.3 Initialization ... 59
3.2.4 Higher-Layer Triggered Events ... 59

3.2.4.1 Registering a Peer Name .. 59
3.2.4.2 Unregistering a Peer Name ... 60

3.2.5 Message Processing Events and Sequencing Rules .. 61
3.2.5.1 Receiving a New ROUTE_ENTRY .. 61
3.2.5.2 Receiving a LOOKUP Message ... 61
3.2.5.3 Receiving a SOLICIT Message ... 62
3.2.5.4 Receiving a REQUEST Message ... 62
3.2.5.5 Receiving a FLOOD Message ... 63
3.2.5.6 Receiving an INQUIRE Message .. 63
3.2.5.7 Constructing a CPA ... 63
3.2.5.8 Constructing an Extended Payload .. 63
3.2.5.9 Generating a Signature .. 63
3.2.5.10 Sending an AUTHORITY_BUFFER ... 64
3.2.5.11 Receiving an AUTHORITY Message .. 64

6 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.5.11.1 Receiving an AUTHORITY_BUFFER ... 64
3.2.6 Timer Events .. 65

3.2.6.1 Conversation Timer Expiry ... 65
3.2.6.2 Maintenance Timer Expiry .. 65

3.2.6.2.1 Detection of Cloud Splits .. 65
3.2.6.2.1.1 Cloud Size Estimation ... 66

3.2.6.3 Message Retransmission Timer Expiry ... 66
3.2.7 Other Local Events .. 66

3.2.7.1 Resolving a PNRP ID .. 66
3.2.7.2 Processing Address Change Notifications .. 67

4 Protocol Examples ... 68
4.1 Resolving a Peer Name ... 68

4.1.1 Opening a Cloud ... 68
4.1.2 Cache Synchronization .. 68
4.1.3 Peer Name Resolution ... 70

4.2 Registering a Name .. 72
4.3 Unregistering a Name ... 73
4.4 Flooding a New Leaf Set Member ... 73

5 Security ... 76
5.1 Security Considerations for Implementers ... 76
5.2 Index of Security Parameters .. 76

6 Appendix A: Product Behavior ... 77

7 Change Tracking .. 78

8 Index ... 79

7 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The Peer Name Resolution Protocol (PNRP) Version 4 is a protocol that is used for resolving a name to
a set of information, such as IP addresses. This protocol is used to maintain a network of nodes
(referred to as a cloud) and to resolve names to their endpoint information when requested by a
node within the cloud.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

authority: The first portion of a peer name. For secure peer names, this is a hash of a public key
represented as 40 hexadecimal characters in printable form. For unsecured peer names, this is
"0".

certified peer address (CPA): A secured mapping of a key, such as a Peer Name, to a set of
network endpoints and an optional extended payload. For Secure Peer Names, this also
contains the public key and a signed certificate.

classifier: A Unicode string used in conjunction with an authority to form a Peer Name.

cloud: A group of Peer Name Resolution Protocol (PNRP) nodes that communicate with each
other to resolve names into addresses.

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of
domain names to various types of data, such as IP addresses. DNS enables the location of
computers and services by user-friendly names, and it also enables the discovery of other
information stored in the database.

endpoint: A tuple (composed of an IP address, port, and protocol number) that uniquely identifies

a communication endpoint.

extended payload: An arbitrary BLOB of data associated with a Peer Name and published by an
application.

leaf set: A set of PNRP IDs numerically close to a node's own PNRP ID, consisting of the five
numerically closest PNRP IDs that are less than the node's own PNRP ID and the five
numerically closest PNRP IDs that are greater than the node's own PNRP ID.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

LocalOOB (Local Out of Band): An implementation-specific means of retrieving the addresses
necessary to bootstrap a cloud. Implementers may fetch addresses from any source that they
wish.

network endpoint: A tuple (composed of an Ipv6 address and port) that uniquely identifies a
protocol communication endpoint.

node: An instance of PNRP running on a machine.

nonce: A number that is used only once. This is typically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in
authentication protocols to prevent replay attacks. For more information, see [RFC2617].

https://go.microsoft.com/fwlink/?LinkId=90373

8 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

object identifier (OID): In the context of Abstract Syntax Notation One (ASN.1), an object
identifier, as specified in [ITUX680].

peer identity: A public/private key pair used by the Peer Name Resolution Protocol (PNRP).

peer name: A string composed of an authority and a classifier. This is the string used by

applications to resolve to a list of endpoints and/or an extended payload. A peer name is
not required to be unique. For example, several nodes that provide the same service can
register the same Peer Name.

Peer-To-Peer ID (P2P ID): A 128-bit binary representation of a Peer Name.

PNRP ID: A 256-bit unsigned integer used internally by PNRP to identify a resource. A PNRP ID is
derived from a Peer Name and an IP endpoint used by PNRP on the node publishing the Peer
Name.

secure peer name: A peer name that has a nonzero authority and is tied to a Peer Identity.

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

unsecured peer name: A Peer Name that has a "0" authority and is therefore not tied to a

Peer Identity. Any node can claim ownership of any Unsecured Peer Name.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IANA-PROTO-NUM] IANA, "Protocol Numbers", February 2007,
http://www.iana.org/assignments/protocol-numbers

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,

November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 2279, January 1998,
http://www.rfc-editor.org/rfc/rfc2279.txt

[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, March 1998,

http://www.ietf.org/rfc/rfc2315.txt

https://go.microsoft.com/fwlink/?LinkId=89923
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89889
https://go.microsoft.com/fwlink/?LinkId=89888
https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90331
https://go.microsoft.com/fwlink/?LinkId=90334

9 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC2459] Housley, R., Ford, W., Polk, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and CRL Profile", RFC 2459, January 1999, http://www.rfc-editor.org/rfc/rfc2459.txt

[RFC2732] Hinden, R., Carpenter, B., and Masinter, L., "Format for Literal IPv6 Addresses in URL's",
RFC 2732, December 1999, http://www.ietf.org/rfc/rfc2732.txt

[RFC3174] Eastlake III, D., and Jones, P., "US Secure Hash Algorithm 1 (SHA1)", RFC 3174,
September 2001, http://www.ietf.org/rfc/rfc3174.txt

[RFC3447] Jonsson, J. and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC3484] Draves, R., "Default Address Selection for Internet Protocol version 6 (IPv6)", RFC 3484,
February 2003, http://www.ietf.org/rfc/rfc3484.txt

[RFC4007] Deering, S., Haberman, B., Jinmei, T., et al., "IPv6 Scoped Address Architecture", RFC
4007, March 2005, http://www.ietf.org/rfc/rfc4007.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980, http://www.rfc-
editor.org/rfc/rfc768.txt

[UPNPARCH1] UPnP Forum, "UPnP Device Architecture 1.0", October 2008,
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

[X509] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: Public-Key
and Attribute Certificate Frameworks", Recommendation X.509, August 2005,
http://www.itu.int/rec/T-REC-X.509/en

1.2.2 Informative References

[PAST] Castro, M., Druschel, P., Hu, Y.C., and Rowstron, A., "Proximity Neighbor Selection in Tree-
based Structured Peer-to-Peer Overlays", 2003, http://research.microsoft.com/~antr/PAST/location-
msrtr-2003-52.pdf

[RFC4795] Aboba, B., Thaler, D., and Esibov, L., "Link-Local Multicast Name Resolution (LLMNR)", RFC
4795, January 2007, http://www.ietf.org/rfc/rfc4795.txt

[RFC5280] Cooper, D., Santesson, S., Farrell, S., et al., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008,

http://www.ietf.org/rfc/rfc5280.txt

1.3 Overview

The Peer Name Resolution Protocol (PNRP) Version 4.0 uses messages to maintain a cloud of peer

nodes, to maintain a distributed cache of network endpoint information, and to transfer requests

for Peer Name resolutions between nodes. Together these messages allow applications to use
registered Peer Names to obtain corresponding endpoint information such as IP addresses and ports.

PNRP does not provide any mechanism for finding or browsing Peer Names; they are distributed by
other means.

There are two primary roles in PNRP:

https://go.microsoft.com/fwlink/?LinkId=90356
https://go.microsoft.com/fwlink/?LinkId=90375
https://go.microsoft.com/fwlink/?LinkId=90408
https://go.microsoft.com/fwlink/?LinkId=90422
https://go.microsoft.com/fwlink/?LinkId=90424
https://go.microsoft.com/fwlink/?LinkId=90454
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=90490
https://go.microsoft.com/fwlink/?LinkId=90490
https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=90590
https://go.microsoft.com/fwlink/?LinkId=90243
https://go.microsoft.com/fwlink/?LinkId=90243
https://go.microsoft.com/fwlink/?LinkId=90489
https://go.microsoft.com/fwlink/?LinkId=131034

10 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Resolver: A node seeking to obtain endpoint information for a given Peer Name by sending (and,
when appropriate, resending) resolution requests to other nodes within a cloud

 Publisher: A node that provides endpoint information to a Resolver

In addition, PNRP defines the concept of a "seed server", which is a Publisher known by a PNRP node

prior to the node joining the cloud.

The PNRP registration and resolution mechanism does not rely on the existence of servers, except
during initialization. When a PNRP node is initialized, a discovery process locates addresses of other
nodes with which to exchange data. If no other way is available, a seed server is used to obtain a list
of addresses of other nodes.

1.3.1 Identifiers

PNRP uses Peer Names and PNRP IDs to refer to resources within a cloud, as illustrated in the
following diagram.

Figure 1: PNRP resource dependencies

1.3.1.1 Peer Names

A Peer Name is composed of an authority and classifier, in the form "authority.classifier", and it is
created by an application before publishing a name using the PNRP. After it is registered, the Peer

Name can be used by other applications to obtain the IP endpoints and extended payload for the
name.

There are two types of Peer Names: secure and unsecured. A Secure Peer Name has an associated
Peer Identity that is used to prove ownership of the name. The authority element of a Secure Peer
Name is algorithmically derived from the associated public key, described as follows:

1. The public key of the Peer Identity is first represented according to the format of the
SubjectPublicKeyInfo field specified in [RFC5280] section 4.1.2.7.

https://go.microsoft.com/fwlink/?LinkId=131034

11 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. A SHA-1 [RFC3174] hash [h] AuthorityHash is generated from the public key of the Peer Identity.

3. Each byte in [h] is represented as its two-digit hexadecimal representation.

4. Each hexadecimal digit is then converted into a Unicode character in the ranges ("0"-"9") and
("a"-"f"). (For example, the hex value 0x64 becomes the sequence of Unicode characters "6", "4",

and the hex value 0x0c becomes the sequence "0", "c").

5. All the characters generated in the previous step are then concatenated in order to form the
Authority string.

An Unsecured Peer Name does not have a relationship to a Peer Identity (therefore any node can
claim ownership of it), and its Authority string is always set to "0". For example, in the Peer Name
"0.MyApplication", the Authority is "0", and the Classifier is "MyApplication".

The Classifier element for a Peer Name is specified by the application registering the resource, and can

be any Unicode string up to 150 characters long (counting the terminating null character).

1.3.1.2 PNRP IDs

PNRP defines a numerical namespace for PNRP IDs. Each Peer Name is converted to a number, and

the numbers are compared to determine proximity within the namespace.

Peer Names are first converted to 128-bit numbers called Peer-To-Peer IDs (P2P IDs) by means of
the following hashing function:

 P2P ID = first 128 bits of SHA-1(SHA-1(Classifier) | AuthorityHash | SHA-1(Classifier) | Goo)

Where:

 Classifier is the Classifier element of the Peer Name.

 AuthorityHash is the hash calculated in step 2 of section 1.3.1.1 for Secure Peer Names, or 160

zero bits if the originating Peer Name is an Unsecured Peer Name.

 Goo is a 32-bit number with value: 0x504e5250 (ASCII encoding of "PNRP").

A specific instance of a Peer Name registration also has a 128-bit number called a Service Location,
which makes the specific instance of the Peer Name registration unique in the network.

PNRP uses a service location suffix to ensure that each registered instance has a unique PNRP ID. A
service location is a 128-bit number that is derived from an IP endpoint of the PNRP node. When two
service locations are compared, the length of the common prefix for each can be used as a (very)
rough measure of network proximity.

 Service Location = (SL Upper << 64) | (SL Lower)

Where:

 SL Upper = Upper 64 bits of the IPv6 address used by the service, OR a 64-bit hint provided by
the application.

 SL Lower = First 64 bits of SHA-1(Public Key of the CPA | list of application service addresses
contained in the CPA | 8-bit random number)

Together, the numbers make up a 256-bit number called the PNRP ID:

https://go.microsoft.com/fwlink/?LinkId=90408

12 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 PNRP ID = (P2P ID << 128) | (Service Location)

1.3.1.3 Certified Peer Addresses

For a Secure Peer Name, the certified peer address (CPA) is a self-signed certificate that
provides authentication protection for a PNRP ID and contains application endpoint information such
as addresses, protocol numbers, and port numbers. An Unsecured Peer Name also includes a CPA,

as well as both a public key and a signature, but no protection is provided.

The information in a CPA includes:

 AuthorityHash

 SHA-1 Hash of the Classifier string

 Service Location part of PNRP ID

 Comment (40-character text field filled by application)

 Validity Interval for CPA

 Public Key of Identity registering the Peer Name

 Endpoints for reaching the application service

 Endpoints for reaching the PNRP service

 Signature of CPA based on Public/Private key pair

1.3.2 Delegation

PNRP also allows one Peer Identity to delegate to another Peer Identity permission to advertise its
Peer Names. The following figure shows the resulting relationship between concepts in this case.

13 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: PNRP delegation process

As illustrated, the CPA contains a public key other than the one from which the Peer Name was

derived; for example, the public key of the Peer Identity, which has been delegated permission to
advertise the Peer Name. Delegating permission to advertise a name allows a service to be distributed
among multiple nodes without distributing the private key (which would be needed to do the same
without delegation).

Subdelegation is allowed. A delegate receives a certificate chain that can be used to prove its
authority. The certificate chain also indicates whether there is a restriction on what classifier can be

used to construct delegated Peer Names, as well as (not shown) whether the delegate is granted
permission to subdelegate.

1.3.3 Clouds

A PNRP node can participate in one or more clouds. A cloud is a group of nodes that can

communicate with each other to resolve names into addresses. Each node maintains a cache of PNRP

14 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ID-to-endpoint mappings (called route entries). A node is required to cache its Leaf Set (the five
PNRP IDs on each side that are numerically closest to each of the node's own PNRP IDs), plus any

others it knows of. Messages are exchanged between nodes to distribute information about PNRP IDs.
For purposes of determining numerical closeness, the PNRP ID numbering space is considered to be

circular (for example, 2^256-1 is adjacent to 0 in a numbering space of size 2^256).

A cloud has a scope property that can be Global, Site Local, or Link Local, as illustrated by the
following diagram. A node can be connected to the Global cloud, multiple Site Local cloud, and
multiple Link Local clouds. Communication between nodes never crosses from one cloud to another.

Figure 3: Node scoping (Link Local, Site Local, Global)

Participation in clouds involves a number of distinct tasks:

 Cloud discovery

 Joining the cloud

 Active participation in the cloud

 Leaving a cloud

1.3.3.1 Discovering a Cloud

Cloud discovery is the process by which a node outside the cloud finds an existing node within the
cloud.

15 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

To discover nodes on the same link, a node uses the Simple Service Discovery Protocol (SSDP) (as
specified in [UPNPARCH1], section 1) to discover other nearby nodes that are already in the cloud. If

there are no other nodes in the cloud of interest that exist on the node's link, then the discovering
node uses a seed server to find some. To discover some nodes in the Global PNRP cloud, the

discovering node contacts one of two well-known seed servers whose addresses are resolved via a
Domain Name System (DNS) lookup. To discover some nodes in a Site cloud, the discovering node
obtains the name or address of a seed server via some other method (for example, manual
configuration, or supplied by an application).

1.3.3.2 Joining a Cloud

The joining node then engages in a "synchronization conversation" with the existing node to obtain an
initial set of PNRP cache entries. The existing node provides the joining node with a selection of entries
from its cache. On completing the synchronization, the joining node can access the cloud; the joining
node now has enough information to perform resolves of PNRP IDs.

1.3.3.3 Active Participation in the Cloud

After a PNRP node is fully initialized, it has the ability to initiate PNRP ID resolution for remote
nodes. An application can ask to resolve a Peer Name to an address in a given cloud. A P2P ID is
first derived from the Peer Name, and a service location of the local PNRP node is then appended to
form a target PNRP ID. Messages are sent toward that PNRP ID to locate a node that has the P2P ID

registered.

The Resolver picks the node in its cache with the PNRP ID numerically closest to the target PNRP ID,
and then asks that node for an entry numerically closer to the target PNRP ID, excluding any that it
consulted previously. As it learns of nodes numerically closer, it will add them to its own cache and
then ask those nodes for even closer nodes.

The resolution continues until it reaches a node with a PNRP ID containing a matching P2P ID (or, if

the resolving application wishes, until the numerically closest P2P ID is found). The Resolver can
continue resolution until it finds the closest PNRP ID that includes the service location bits, thereby
finding the topologically "closest" (generally speaking) publisher of the Peer Name.

After a publisher is reached, its CPA (and certificate chain, if the Peer Name was delegated as
specified in section 1.3.2), is returned to the original Resolver. The CPA signature and certificate chain
are then validated.

In addition, the PNRP node can optionally participate in the following set of activities. Nodes that do

not participate in these activities are known as "Resolve-only" nodes.

 Register and un-register Peer Names. When a Peer Name is registered, the PNRP node creates a
PNRP ID and CPA. These are entered into a table of locally registered PNRP IDs, and a PNRP
resolution is initiated for [PNRP ID + 1] to find the closest match. This request is processed by a
number of nodes with PNRP IDs that are very similar to the registered ID. Each recipient that finds
that the new PNRP ID falls within its own Leaf Set adds the entry for the new PNRP ID to its
cache. When the resolve completes, the registering node will learn about an existing node that is

numerically close to the registered PNRP ID. From the existing node, it can get the entries for the
five numerically closest PNRP IDs on either side of the new PNRP ID (for example, the Leaf Set for

that PNRP ID).

When a PNRP ID is unregistered, a "Revoke CPA" is sent to two entries from the Leaf Set of the
PNRP ID being unregistered. One entry is the numerically closest PNRP ID greater than the local
PNRP ID, and the other one is the numerically closest ID less than the local ID. Each recipient

checks its cache to determine whether an entry exists for the PNRP ID. If one is found, the
recipient removes the entry from its cache. If the entry was in a Leaf Set of a locally registered
PNRP ID, the node sends the revoke CPA on to two other members of its Leaf Set.

https://go.microsoft.com/fwlink/?LinkId=90554

16 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Participate in PNRP ID resolutions by other nodes. A node will, upon request, compare a target
PNRP ID with entries in its cache to find the entry that is numerically closer to the desired PNRP ID

than any that the Resolver has previously used. The node then sends a response to the requester
with the associated addresses.

 Honor cache synchronization requests. Each node responds to requests for cache entries by new
nodes joining the cloud, as specified in section 1.3.3.2.

 Test for cloud splits. Each node occasionally tests for splits in the cloud to ensure that it has not
become isolated from the cloud.

1.3.3.4 Leaving a Cloud

To leave the cloud, the PNRP node unregisters all registered PNRP IDs and then terminates.

1.4 Relationship to Other Protocols

PNRP is used instead of the Domain Name System (DNS), as specified in [RFC1035], or the Link-
Local Multicast Name Resolution [RFC4795].

PNRP uses UDP [RFC768] as a transport, and it uses the SSDP (as specified in [UPNPARCH1], section
1) and DNS [RFC1035] to initially locate some members of a cloud.

1.5 Prerequisites/Preconditions

 It is assumed that a PNRP node that wants to participate in a given Site Local cloud already knows
the name or addresses of a seed server for that cloud.

1.6 Applicability Statement

The PNRP is suitable only for publishing a limited amount of information about a resource, and only
when the information to be published is independent of which node requests the information.

1.7 Versioning and Capability Negotiation

PNRP has no version-negotiation or capability-negotiation behavior, although it carries a protocol
version number in its messages.

1.8 Vendor-Extensible Fields

PNRP defines a syntax for Peer Names that can be used by vendors to construct their own names. The
legal syntax for a Peer Name is specified in section 2.2.4.

1.9 Standards Assignments

PNRP uses the assignments shown in the following table.

Parameter Value Reference

Port number 3540 [IANAPORT]

https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=90489
https://go.microsoft.com/fwlink/?LinkId=90490
https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=89888

17 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

PNRP messages MUST be transported over the User Datagram Protocol (UDP), as specified in

[RFC768]. A node MUST use a UDP port of 1024 or greater, and SHOULD use port 3540. There is no
requirement that two PNRP nodes use the same port number because the port number is discovered
dynamically.

2.2 Message Syntax

PNRP messages were designed for future extensibility such that each "message element" (for
example, field or set of fields) of each message is self-describing. As a result, the messages defined in
this section have a number of FieldID/Length pairs that occur throughout the messages. Although
each field is specified in the individual messages, it is helpful to explain the convention used.

The pattern used looks similar to the following.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID Length

FieldID (2 bytes): The type of message element. FieldIDs used in this document are defined in a
common numbering space as follows.

Value Meaning

PNRP_HEADER

0x0010

Part of a PNRP Header.

PNRP_HEADER_ACKED

0x0018

An Acked Message ID follows.

PNRP_ID

0x0030

A PNRP ID follows.

TARGET_PNRP_ID

0x0038

A target PNRP ID follows.

VALIDATE_PNRP_ID

0x0039

A Validate PNRP ID follows.

FLAGS_FIELD

0x0040

A flags field follows. The meaning of the individual flags is message-
specific.

FLOOD_CONTROLS

0x0043

Flood criteria follows.

SOLICIT_CONTROLS

0x0044

Solicit criteria follows.

LOOKUP_CONTROLS

0x0045

Lookup criteria follows.

EXTENDED_PAYLOAD Extended payload follows.

https://go.microsoft.com/fwlink/?LinkId=90490

18 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x005A

PNRP_ID_ARRAY

0x0060

An array of PNRP IDs follows.

CERT_CHAIN

0x0080

A Certificate Chain follows.

WCHAR

0x0084

A Unicode character follows.

CLASSIFIER

0x0085

A classifier string follows.

HASHED_NONCE

0x0092

A hashed nonce follows.

NONCE

0x0093

A nonce follows.

SPLIT_CONTROLS

0x0098

Buffer fragmentation information follows.

ROUTING_ENTRY

0x009A

A ROUTE_ENTRY follows.

VALIDATE_CPA

0x009B

An Encoded CPA structure follows, containing a CPA to validate.

REVOKE_CPA

0x009C

An Encoded CPA structure follows, containing a CPA to revoke.

IPV6_ENDPOINT

0x009D

An IPV6_ENDPOINT structure follows.

IPV6_ENDPOINT_ARRAY

0x009E

An array of IPV6_ENDPOINT structures follows.

Length (2 bytes): The length of the message element in bytes, including the FieldID and Length

fields.

Furthermore, the FieldID fields in each message defined by PNRP always start on a 4-byte
boundary from the beginning of the PNRP message. Padding fields will be included in a message to
ensure this.

Finally, unless specified otherwise, all 2-byte and 4-byte integer fields are defined in network byte
order.

2.2.1 PNRP Header

All PNRP Messages use the common header as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID Length

19 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Identifier VersionMajor VersionMinor MessageType

Message ID

FieldID (2 bytes): The type of message. MUST be set to 0x0010 (PNRP_HEADER).

Length (2 bytes): The length, in bytes, of the PNRP Header. MUST be set to 0x000C.

Identifier (1 byte): MUST be set to 0x51.

VersionMajor (1 byte): Major version of protocol. MUST be set to 0x04.

VersionMinor (1 byte): Minor version of protocol. MUST be set to 0x00.

MessageType (1 byte): The type of message following the PNRP Header. MUST be one of the
following.

Value Meaning

0x01 SOLICIT

0x02 ADVERTISE

0x03 REQUEST

0x04 FLOOD

0x07 INQUIRE

0x08 AUTHORITY

0x09 ACK

0x0B LOOKUP

Message ID (4 bytes): An arbitrary 32-bit value used for acknowledgment tracking. This value is
generated by the protocol; the algorithm used to generate the Message ID value MUST minimize
the probability of generating duplicate Message ID values within a window of time at least as large
as the round-trip latency of a protocol message.

2.2.2 PNRP Messages

2.2.2.1 SOLICIT

The SOLICIT message is sent by a Resolver to a Publisher to request a list of PNRP IDs in a cloud.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 (optional) Length1 (optional)

Reserved (optional) SolicitType (optional) Padding1 (optional)

FieldID2 (optional) Length2 (optional)

RouteEntry (variable)

20 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

Padding2 (variable)

...

FieldID3 Length3

HashedNonce (20 bytes)

...

...

FieldID1 (2 bytes): If present, MUST be set to 0x0044 (SOLICIT_CONTROLS). Note that a receiver

can determine whether this field is present or absent based on the value at this location.

Length1 (2 bytes): MUST be present if and only if FieldID1 is present. If present, it MUST be set to

0x0006.

Reserved (1 byte): MUST be present if and only if FieldID1 is present. If present, it MUST be set to
zero when sent and MUST be ignored on receipt.

SolicitType (1 byte): MUST be present if and only if FieldID1 is present. If present, it MUST be one
of the following.

Value Meaning

SOLICIT_TYPE_ANY

0x00

The sender wants any route entries available, both local and cached remote
ones.

SOLICIT_TYPE_LOCAL

0x01

The sender only wants route entries for locally registered IDs.

Padding1 (2 bytes): MUST be present if and only if FieldID1 is present. If present, it MUST be set
to zero when sent and MUST be ignored on receipt.

FieldID2 (2 bytes): If present, MUST be set to 0x009A (ROUTING_ENTRY). Note that a receiver can
determine whether this field is present or absent based on the presence of this value either at
bytes 0 and 1, if FieldID1 is not present, or at bytes 8 and 9 if FieldID1 is present. MUST NOT
be present if the node has no locally registered PNRP IDs.

Length2 (2 bytes): MUST be present if and only if FieldID2 is present. If present, it MUST be set to
the size in bytes of the RouteEntry field, plus 4.

RouteEntry (variable): Route entry for a locally registered PNRP ID on the node sending the

SOLICIT message. MUST be present if and only if FieldID2 is present.

Padding2 (variable): A number of bytes from 0 through 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID2 is
present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID3 (2 bytes): MUST be set to 0x0092 (HASHED_NONCE).

Length3 (2 bytes): MUST be set to 0x0018.

21 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

HashedNonce (20 bytes): A 20-byte hash of the nonce value for the conversation.

2.2.2.2 ADVERTISE

The ADVERTISE message is sent by a Publisher to a Resolver in response to a SOLICIT message, in
order to provide a list of PNRP IDs in the cloud.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

Acked Message ID

FieldID2 Length2

NumEntries ArrayLength

ElementFieldType EntryLength

IDList (variable)

...

FieldID3 Length3

HashedNonce (20 bytes)

...

...

FieldID1 (2 bytes): MUST be set to 0x0018 (PNRP_HEADER_ACKED).

Length1 (2 bytes): MUST be set to 0x0008.

Acked Message ID (4 bytes): The value of the Message ID field in the PNRP Header of the
SOLICIT message to which this is a response.

FieldID2 (2 bytes): MUST be set to 0x0060 (PNRP_ID_ARRAY).

Length2 (2 bytes): MUST be set to 12+(NumEntries*EntryLength).

NumEntries (2 bytes): The number of PNRP IDs in the IDList field. MUST be in the range 0x0000 to
0x7FFF.

ArrayLength (2 bytes): The length of the entries in the array. MUST be set to

8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): The type of entries in the array. This field MUST be set to 0x0030
(PNRP_ID).

EntryLength (2 bytes): The length, in bytes, of each array element. MUST be set to 0x20 (32
bytes).

22 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IDList (variable): A set of 32-byte PNRP IDs.

FieldID3 (2 bytes): MUST be set to 0x0092 (HASHED_NONCE).

Length3 (2 bytes): MUST be set to 0x0018.

HashedNonce (20 bytes): The value of the HashedNonce field in the SOLICIT message to which

this is a response.

2.2.2.3 REQUEST

The REQUEST message is sent by a Resolver to a Publisher to request a route entry for a given PNRP

ID in the Publisher's cache, as seen in an ADVERTISE message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

Nonce (16 bytes)

...

...

FieldID2 Length2

NumEntries ArrayLength

ElementFieldType EntryLength

IDList (variable)

...

FieldID1 (2 bytes): MUST be set to 0x0093 (NONCE).

Length1 (2 bytes): MUST be set to 0x0014 (20 bytes).

Nonce (16 bytes): The nonce for the conversation.

FieldID2 (2 bytes): MUST be set to 0x0060 (PNRP_ID_ARRAY).

Length2 (2 bytes): MUST be set to 12+(NumEntries*EntryLength).

NumEntries (2 bytes): The number of PNRP IDs in the IDList field. MUST be in the range 0x0000 to

0x7FFF.

ArrayLength (2 bytes): The length of the array of entries. MUST be set to
8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): The type of entries in the array. This field MUST be set to 0x0030
(PNRP_ID).

EntryLength (2 bytes): The length, in bytes, of each array element. MUST be set to 0x20 (32

bytes).

23 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IDList (variable): A set of 32-byte PNRP IDs.

2.2.2.4 FLOOD

The FLOOD message is sent by a Publisher to a Resolver in response to a REQUEST message, in order
to provide a route entry or to revoke a CPA.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

Reserved1 D Reserved2 Padding1

FieldID2 Length2

Validate PNRP ID (32 bytes)

...

...

FieldID3 (optional) Length3 (optional)

Revoke CPA (variable)

...

Padding3 (variable)

...

FieldID4 (optional) Length4 (optional)

Route Entry (variable)

...

Padding4 (variable)

...

FieldID5 Length5

NumEntries ArrayLength

ElementFieldType EntryLength

Already Flooded List (variable)

...

24 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FieldID1 (2 bytes): MUST be set to 0x0043 (FLOOD_CONTROLS).

Length1 (2 bytes): MUST be set to 0x0007.

Reserved1 (15 bits): MUST be set to zero when sent and MUST be ignored on receipt.

D (1 bit): If set, indicates that the sender does not want the receiver to send an ACK message.

Reserved2 (1 byte): Can be sent to any arbitrary value when sent and MUST be ignored on receipt.

Padding1 (1 byte): MUST be set to zero when sent and MUST be ignored on receipt.

FieldID2 (2 bytes): MUST be set to 0x0039 (Validate PNRP ID).

Length2 (2 bytes): MUST be set to 0x0024.

Validate PNRP ID (32 bytes): If the FLOOD message is being sent to provide a route entry or
revoke a CPA, this field MUST specify the PNRP ID of the destination node; otherwise this field
MUST be set to zero when sent and MUST be ignored on receipt.

FieldID3 (2 bytes): If present, MUST be set to 0x009C (Revoke CPA).

Length3 (2 bytes): If present, MUST be set to 4 plus the length in bytes of the Revoke CPA field.

Revoke CPA (variable): If present, an Encoded CPA structure that contains the CPA to revoke.

Padding3 (variable): A number of bytes between 0 and 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID3 is
present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID4 (2 bytes): If present, MUST be set to 0x009A (ROUTING_ENTRY). This field MUST be
present if the node is flooding a route entry to its neighbors. Note that a receiver can tell whether
this field is present or absent based on the value at this location.

Length4 (2 bytes): MUST be present if and only if FieldID4 is present. If present, it MUST be set to
4 plus the length in bytes of the Route Entry field.

Route Entry (variable): A ROUTE_ENTRY structure that contains an entry that the source node
wants to send to the destination node. This field MUST be present if and only if FieldID4 is

present.

Padding4 (variable): A number of bytes between 0 and 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID4 is
present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID5 (2 bytes): MUST be set to 0x009E.

Length5 (2 bytes): MUST be set to 12+(NumEntries*EntryLength).

NumEntries (2 bytes): The number of entries in the Already Flooded List. MUST be in the range 0

to 22.

ArrayLength (2 bytes): MUST be set to 8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): MUST be set to 0x009D (IPV6_ENDPOINT).

EntryLength (2 bytes): MUST be set to 0x12 (18 bytes).

Already Flooded List (variable): A list of IPV6_ENDPOINT structures for PNRP nodes that have
seen this FLOOD message so far.

25 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.5 INQUIRE

The INQUIRE message is sent by a Resolver to a Publisher to obtain a CPA, or sent from one Publisher
to another to verify that the latter is still in the cloud.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

Reserved1 A X C Reser
ved2

Padding

FieldID2 Length2

Validate PNRP ID (32 bytes)

...

...

FieldID3 (optional) Length3 (optional)

Nonce (16 bytes, optional)

...

...

FieldID1 (2 bytes): MUST be set to 0x0040 (FLAGS_FIELD).

Length1 (2 bytes): MUST be set to 0x0006.

Reserved1 (11 bits): MUST be set to zero when sent and MUST be ignored on receipt.

A (1 bit): If set, the sender is requesting that a CPA appear in the AUTHORITY message response.

X (1 bit): If set, the sender is requesting that an EXTENDED_PAYLOAD message (if any exists)
appear in the AUTHORITY message response.

C (1 bit): If set, the sender is requesting that a Certificate Chain (if any exists) appear in the
AUTHORITY message response.

Reserved2 (2 bits): MUST be set to zero when sent and MUST be ignored on receipt.

Padding (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

FieldID2 (2 bytes): MUST be set to 0x0039 (Validate PNRP ID).

Length2 (2 bytes): MUST be set to 0x0024.

Validate PNRP ID (32 bytes): The PNRP ID to validate.

FieldID3 (2 bytes): If present, MUST be set to 0x0093 (NONCE).

Length3 (2 bytes): This field MUST be present if and only if FieldID3 is present. If present, this
field MUST be set to 0x0014 (20 bytes).

26 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Nonce (16 bytes): A nonce value that the sender wants to be copied into a CPA before it is signed,
in order to prevent replay attacks. This field MUST be present if and only if FieldID3 is present.

2.2.2.6 AUTHORITY

The AUTHORITY message is sent by a Publisher to a Resolver in response to an INQUIRE or LOOKUP
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

Acked Message ID

FieldID2 Length2

Size Offset

Buffer (variable)

...

FieldID1 (2 bytes): MUST be set to 0x0018 (PNRP_HEADER_ACKED).

Length1 (2 bytes): MUST be set to 0x0008.

Acked Message ID (4 bytes): The value of the Message ID field in the PNRP Header of the
message to which this is a response.

FieldID2 (2 bytes): MUST be set to 0x0098 (SPLIT_CONTROLS).

Length2 (2 bytes): MUST be set to 0x0008.

Size (2 bytes): Size, in bytes, of the original AUTHORITY_BUFFER. MUST NOT be greater than
0x91E4 (37348), which is large enough to hold a Certificate Chain and a maximum-sized

extended payload.

Offset (2 bytes): Byte offset, in network byte order, of the message fragment in the original
message. It MUST be a multiple of 1,188.

Buffer (variable): The portion of AUTHORITY_BUFFER starting at a byte offset specified in Offset.

2.2.2.6.1 AUTHORITY_BUFFER

The AUTHORITY_BUFFER structure is contained within a logical message containing the CPA and

extended payload information associated with a Peer Name. Parts of this logical message appear in

AUTHORITY messages.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

000000 L 00000 B 00 N Padding1

27 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FieldID2 (optional) Length2 (optional)

Certificate Chain (variable)

...

Padding2 (variable)

...

FieldID3 (optional) Length3 (optional)

NumEntries Array Length

Element Field Type Entry Length

Classifier (variable)

...

Padding3 (variable)

...

FieldID4 (optional) Length4 (optional)

Extended Payload (variable)

...

Padding4 (variable)

...

FieldID5 (optional) Length5 (optional)

Route Entry (variable)

...

Padding5 (variable)

...

FieldID6 (optional) Length6 (optional)

CPA (variable)

...

28 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FieldID1 (2 bytes): MUST be set to 0x0040 (FLAGS_FIELD).

Length1 (2 bytes): MUST be set to 0x0006.

000000 (6 bits): These bits are all reserved. MUST be set to zero when sent and MUST be ignored
on receipt.

L (1 bit): Leaf Set. If set, this flag indicates that the target PNRP ID is unknown to the sender, but
would be in the sender's Leaf Set were it known.

00000 (5 bits): These bits are all reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

B (1 bit): Busy. If set, indicates that the sender is too busy to handle a LOOKUP message request.

00 (2 bits): These bits are all reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

N (1 bit): Not Found. If set, indicates that the requested Validate PNRP ID in the LOOKUP or INQUIRE

message is not known to the sender.

Padding1 (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

FieldID2 (2 bytes): If present, MUST be set to 0x0080 (CERT_CHAIN). Note that a receiver can tell
whether this field is present or absent based on the value at this location.

Length2 (2 bytes): MUST be present if and only if FieldID2 is present. If present, it MUST be set to

4 plus the length in bytes of the Certificate Chain field.

Certificate Chain (variable): A Certificate Chain, containing the public key used to sign the CPA and
its Certificate Chain. MUST be present if and only if FieldID2 is present.

Padding2 (variable): A number of bytes between 0 and 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID2 is
present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID3 (2 bytes): If present, MUST be set to 0x0085 (CLASSIFIER).

Length3 (2 bytes): If present, MUST be set to 12 plus the length in bytes of the Classifier field.

NumEntries (2 bytes): Number of Unicode characters in the Classifier string. MUST be in the range
0x000 to 0x7FFF.

Array Length (2 bytes): MUST be 8+(NumEntries*EntryLength).

Element Field Type (2 bytes): MUST be set to 0x0084 (WCHAR).

Entry Length (2 bytes): MUST be set to 0x0002.

Classifier (variable): If present, a non-NULL-terminated Unicode string containing the classifier

part of the Peer Name used to create the PNRP ID.

Padding3 (variable): A number of bytes between 0 and 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID3 is
present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID4 (2 bytes): If present, MUST be set to 0x005A (EXTENDED PAYLOAD). Note that a receiver
can tell whether this field is present or absent based on the value at this location.

Length4 (2 bytes): MUST be present if and only if FieldID4 is present. If present, it MUST be set to
4, plus the length, in bytes, of the Extended Payload field.

29 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Extended Payload (variable): An EXTENDED_PAYLOAD structure. MUST be present if and only if
FieldID4 is present.

Padding4 (variable): A number of bytes between 0 and 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID4 is

present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID5 (2 bytes): If present, MUST be set to 0x009A (ROUTING_ENTRY). Note that a receiver can
tell whether this field is present or absent based on the value at this location.

Length5 (2 bytes): MUST be present if and only if FieldID5 is present. If present, it MUST be set to
4 plus the length in bytes of the Route Entry field.

Route Entry (variable): A ROUTE_ENTRY structure. MUST be present if and only if FieldID5 is
present. For a response to a LOOKUP message, this MUST be the route entry that is the closest to

the target PNRP ID in the LOOKUP message, as seen by the remote node.

Padding5 (variable): A number of bytes between 0 and 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID5 is

present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID6 (2 bytes): If present, MUST be set to 0x009B (VALIDATE_CPA). Note that a receiver can
tell whether this field is present or absent based on the value at this location.

Length6 (2 bytes): MUST be present if and only if FieldID6 is present. If present, it MUST be set to
4 plus the length in bytes of the CPA field.

CPA (variable): An Encoded CPA structure.

2.2.2.7 ACK

The ACK message is sent from one node to another to acknowledge receipt of a REQUEST or FLOOD
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

Acked Message ID

FieldID2 (optional) Length2 (optional)

Reserved (optional) N

FieldID1 (2 bytes): MUST be set to 0x0018 (PNRP_HEADER_ACKED).

Length1 (2 bytes): MUST be set to 0x0008.

Acked Message ID (4 bytes): The value of the Message ID field in the PNRP Header of the

message to which this is a response.

FieldID2 (2 bytes): If present, MUST be set to 0x0040 (FLAGS_FIELD).

Length2 (2 bytes): If present, MUST be set to 0x0006.

Reserved (15 bits): If present, MUST be set to zero when sent and MUST be ignored on receipt.

30 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

N (1 bit): Not Found. If present, indicates that there is no PNRP ID registered on the sender that
corresponds to the Validate PNRP ID field in the FLOOD message to which this ACK is a

response.

2.2.2.8 LOOKUP

The LOOKUP message is sent by a Resolver to a Publisher to resolve a PNRP ID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FieldID1 Length1

Reserved1 A 0 Precision

ResolveCriteria ResolveReasonCode Reserved2

FieldID2 Length2

Target PNRP ID (32 bytes)

...

...

FieldID3 Length3

Validate PNRP ID (32 bytes)

...

...

FieldID4 (optional) Length4 (optional)

Route Entry (variable)

...

Padding4 (variable)

...

FieldID5 Length5

NumEntries ArrayLength

ElementFieldType EntryLength

Flagged Path (variable)

31 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

FieldID1 (2 bytes): MUST be set to 0x0045 (LOOKUP_CONTROLS).

Length1 (2 bytes): MUST be set to 0x000C.

Reserved1 (14 bits): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

A (1 bit): If set, indicates that the sender is willing to accept returned nodes that are not closer to
the target ID than the Validate PNRP ID.

0 (1 bit): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

Precision (2 bytes): Number of significant bits to match. When ResolveCriteria is not set to
SEARCH_OPCODE_UPPER_BITS, the Precision field MAY be set to any arbitrary value and MUST
be ignored upon receipt.

ResolveCriteria (1 byte): The type of PNRP ID matching that the sender is requesting, which is

chosen based on higher-layer requirements. MUST be one of the following (for example, although
the values are powers of two, they are not bits that can be combined).

Value Meaning

SEARCH_OPCODE_NONE

0x00

Compare all 256 bits of the PNRP ID.

SEARCH_OPCODE_ANY_PEERNAME

0x01

Compare only the first 128 bits of the PNRP ID.

SEARCH_OPCODE_NEAREST_PEERNAME

0x02

Compare all 256 bits of the PNRP ID and return the closest
possible match.

SEARCH_OPCODE_NEAREST64_PEERNAME

0x04

Compare only the first 192 bits of the PNRP ID and return the
closest possible match.

SEARCH_OPCODE_UPPER_BITS

0x08

Compare a number of bits equal to the value in the Precision
field.

ResolveReasonCode (1 byte): The reason for the LOOKUP request. This value is ignored by the

recipient. MUST be one of the following.

Value Meaning

REASON_APP_REQUEST

0x00

The LOOKUP was sent in response to an application request.

REASON_REGISTRATION

0x01

The LOOKUP was sent in response to a completed registration that is
being announced.

REASON_CACHE_MAINTENANCE

0x02

The LOOKUP was sent because the node is performing cache
maintenance.

REASON_SPLIT_DETECTION

0x03

The LOOKUP was sent because the node is testing for a split cloud.

Reserved2 (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

FieldID2 (2 bytes): MUST be set to 0x0038 (Target PNRP ID).

32 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Length2 (2 bytes): MUST be set to 0x0024 (36 bytes).

Target PNRP ID (32 bytes): The PNRP ID to look up.

FieldID3 (2 bytes): MUST be set to 0x0039 (Validate PNRP ID).

Length3 (2 bytes): MUST be set to 0x0024 (36 bytes).

Validate PNRP ID (32 bytes): A PNRP ID of the destination machine.

FieldID4 (2 bytes): If present, MUST be set to 0x009A (ROUTING_ENTRY).

Length4 (2 bytes): If present, MUST be set to 4 plus the size in bytes of the Route Entry field.

Route Entry (variable): If present, a ROUTE_ENTRY structure for the best match so far.

Padding4 (variable): A number of bytes between 0 and 3, such that the offset from the start of the
message to the end of this field is a multiple of 4. MUST be present if and only if FieldID4 is
present. MUST be set to zero when sent and MUST be ignored on receipt.

FieldID5 (2 bytes): MUST be set to 0x009E (IPV6_ENDPOINT_ARRAY).

Length5 (2 bytes): MUST be set to 12+(NumEntries*EntryLength).

NumEntries (2 bytes): Number of entries in the Flagged Path field. MUST be in the range 1 to 22.

ArrayLength (2 bytes): MUST be set to 8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): MUST be set to 0x009D (IPV6_ENDPOINT).

EntryLength (2 bytes): MUST be set to 0x0012 (18 bytes).

Flagged Path (variable): A list of IPV6_ENDPOINT structures for PNRP node that have seen this
LOOKUP request so far.

2.2.3 Data Structures

2.2.3.1 Encoded CPA

The Encoded CPA structure contains information about an endpoint.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CPA Length Cpa MinorVersion Cpa MajorVersion

PnrpMinorVersion PnrpMajorVersion 00 X F C A U R Reserved

Not After

...

Service Location (16 bytes)

...

...

33 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Nonce (16 bytes)

...

...

BinaryAuthority (20 bytes, optional)

...

...

ClassifierHash (20 bytes, optional)

...

...

FriendlyName Len (optional) FriendlyName (variable)

...

Service Address List (variable)

...

NumPayloads Total Bytes

Payload (variable)

...

Public Key (variable)

...

Signature (variable)

...

CPA Length (2 bytes): The total number, in little-endian byte order, of bytes in the Encoded CPA

structure.

Cpa MinorVersion (1 byte): The minor version of the Encoded CPA structure. MUST be set to 0x00.

Cpa MajorVersion (1 byte): The major version of the Encoded CPA structure. MUST be set to 0x02.

PnrpMinorVersion (1 byte): The minor version of PNRP that constructed the CPA. MUST be set to
0x00.

PnrpMajorVersion (1 byte): The major version of PNRP that constructed the CPA. MUST be set to
0x04.

34 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

00 (2 bits): MUST be set to zero when sent and MUST be ignored on receipt

X (1 bit): If set, indicates the CPA has an associated Extended Payload.

F (1 bit): If set, indicates the CPA contains the FriendlyNameLen and FriendlyName fields.

C (1 bit): If set, indicates the CPA contains a ClassifierHash field. Either the A bit or the C bit (or

both) MUST be set.

A (1 bit): If set, indicates the CPA contains a BinaryAuthority field.

U (1 bit): If set, indicates the FriendlyName field is encoded as UTF-8 [RFC2279] instead of
Unicode. This bit MUST be set to 0 if F is 0.

R (1 bit): If set, indicates that this is a Revoke CPA. That is, it indicates an ID registered at a node
is being unregistered.

Reserved (1 byte): MUST be set to zero when sent and MUST be ignored on receipt

Not After (8 bytes): The number, in little-endian byte order, of 100-nanosecond intervals since
January 1, 1601 (UTC), after which the CPA expires. The value SHOULD be from 12 hours in the
future up to one week in the future.

Service Location (16 bytes): A service location, with the least significant byte first.

Nonce (16 bytes): If the R flag is set, this MUST be zero. If the R flag is clear, this MUST be the
value of the Nonce field from the INQUIRE message that caused this Encoded CPA structure to be

constructed.

BinaryAuthority (20 bytes): If present, a 160-bit binary representation of the authority, with the
least significant byte first. For Secure Peer Names, the BinaryAuthority MUST be a 160-bit
SHA-1 [RFC3174] hash of the PublicKey Data field of the CPA Public Key structure in the Public
Key field. For Unsecured Peer Names, the BinaryAuthority field MUST NOT be present. Its
presence is specified by the A flag.

ClassifierHash (20 bytes): If a classifier is present, this field MUST contain a 160-bit SHA-1 hash

of the classifier text. Its presence is specified by the C flag.

FriendlyName Len (2 bytes): If present, the count, in little-endian byte order, of bytes in the
FriendlyName field. Its presence is specified by the F flag. If present, it MUST be in the range 1
to 78.

FriendlyName (variable): A human-readable label identifying the PNRP ID. The FriendlyName
field's presence is specified by the F flag. If present, this MUST be a non-NULL-terminated string,
either Unicode or UTF-8 [RFC2279], depending on the value of the U flag.

Service Address List (variable): A Service Address List structure.

NumPayloads (2 bytes): The number, in little-endian byte order, of payloads that follow this field.
MUST be in the range 0 to 1, inclusive. A Revoke CPA (for example, a CPA with the R flag set)
SHOULD have 0 payloads.

Total Bytes (2 bytes): The number, in little-endian byte order, of bytes in the NumPayloads,
TotalBytes, and Payload fields. MUST be in the range 4 to 210, inclusive.

Payload (variable): A PAYLOAD structure containing application-supplied data. The length of
PAYLOAD MUST NOT exceed 206 bytes.

Public Key (variable): A CPA Public Key (section 2.2.3.1.4) structure.

Signature (variable): A SIGNATURE structure.

https://go.microsoft.com/fwlink/?LinkId=90331
https://go.microsoft.com/fwlink/?LinkId=90408

35 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.3.1.1 Service Address List

The Service Address List is an encoding of the IPv6 Addresses and ports that are used by PNRP on a
node publishing a PNRP ID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumServiceAddresses ServiceAddressLength

Service Addresses (variable)

...

NumServiceAddresses (2 bytes): The number of service addresses, in little-endian byte order, in
the Service Addresses field. MUST be in the range 0 to 4. A CPA with the R flag clear (for
example, not a Revoke CPA) MUST have at least one address.

ServiceAddressLength (2 bytes): Number of bytes, in little-endian byte order, per address entry.
MUST be set to 0x0012 (18 bytes).

Service Addresses (variable): An array of IPV6_ENDPOINT (section 2.2.3.6) structures.

2.2.3.1.2 PAYLOAD

The PAYLOAD structure has the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

DataLength Data (variable)

...

Type (4 bytes): Type of PAYLOAD, in little-endian byte order. The only defined type is an array of
IPv6 endpoints. This type is defined as 0x00000001.

DataLength (2 bytes): Number, in little-endian byte order, of bytes of the Data field. MUST be a
multiple of 20, and MUST be from 20 through 200.

Data (variable): PAYLOAD data. This MUST be an array of IPV6_APP_ENDPOINT (section 2.2.3.1.3)
structures.

2.2.3.1.3 IPV6_APP_ENDPOINT

The IPV6_APP_ENDPOINT structure holds application-supplied IPv6 endpoint information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

sin6_addr (16 bytes)

...

36 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

sin6_port Protocol

sin6_addr (16 bytes): The IPv6 Address supplied by an application.

sin6_port (2 bytes): The port number supplied by an application.

Protocol (2 bytes): The Protocol Number [IANA-PROTO-NUM], in little-endian byte order, supplied

by an application.

2.2.3.1.4 CPA Public Key

The CPA Public Key structure contains an encoding of the public key used to sign the certified peer
address (CPA).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Field Length Algorithm ObjId Length

Reserved PublicKey cbData

PublicKey Unused Algorithm ObjId (variable)

...

PublicKey Data (variable)

...

Field Length (2 bytes): The size, in little-endian byte order, of the structure in bytes.

Algorithm ObjId Length (2 bytes): The size, in little-endian byte order, of the Algorithm ObjId
string in bytes. MUST be set to 0x0014 (20 bytes).

Reserved (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

PublicKey cbData (2 bytes): The size, in little-endian byte order, of the PublicKey Data field, in
bytes. MUST be 0x008C.

PublicKey Unused (1 byte): MUST be set to zero when sent and MUST be ignored on receipt.

Algorithm ObjId (variable): An ASCII ASN.1-encoded object identifier (OID) indicating the public
key format, MUST be the same as the rsaEncryption, as specified in [RFC3447] section A.1.

PublicKey Data (variable): An ASN.1-encoded 1024-bit RSA public key, as specified in [RFC3447]
section A.1.1.

2.2.3.2 SIGNATURE

The SIGNATURE structure carries the encoding of a signature for a CPA or an EXTENDED_PAYLOAD
structure.

https://go.microsoft.com/fwlink/?LinkId=89889
https://go.microsoft.com/fwlink/?LinkId=90422

37 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Field Length Signature Length

ALG_ID

Signature Data (variable)

...

Field Length (2 bytes): Number of bytes, in little-endian byte order, in the CPA structure. MUST
be set to 0x0088.

Signature Length (2 bytes): Number of bytes, in little-endian byte order, in the Signature Data

field. MUST be set to 0x0080.

ALG_ID (4 bytes): Hash algorithm identifier, in little-endian byte order. MUST be set to
0x00008004, indicating the RSASSA-PKCS1-v1_5 ([RFC3447] section 8.2) algorithm.

Signature Data (variable): Signature created when signing the CPA.

2.2.3.3 EXTENDED_PAYLOAD

The EXTENDED_PAYLOAD structure holds arbitrary data supplied by the application for a Peer Name.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length Minor Version Major Version

Reserved Signature Offset

Not After

...

PNRP ID (32 bytes)

...

...

Nonce (16 bytes)

...

...

Number of Payloads Total Payload Bytes

Payload Type

https://go.microsoft.com/fwlink/?LinkId=90422

38 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Payload Length String Type (optional)

Payload (variable)

...

Signature (variable)

...

Length (2 bytes): Length, in little-endian byte order, of the entire EXTENDED_PAYLOAD structure.

Minor Version (1 byte): The minor version of the EXTENDED_PAYLOAD structure. MUST be set to
0x00.

Major Version (1 byte): The major version of the EXTENDED_PAYLOAD structure. MUST be set to

0x02.

Reserved (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Signature Offset (2 bytes): Byte offset, in little-endian byte order, from the beginning of the
EXTENDED_PAYLOAD structure to the Signature field.

Not After (8 bytes): The number, in little-endian byte order, of 100-nanosecond intervals, since

January 1, 1601 (UTC) until the CPA expires.

PNRP ID (32 bytes): The PNRP ID with which this EXTENDED PAYLOAD message is associated,
transmitted in reverse byte order (that is, the least significant byte is transmitted first).

Nonce (16 bytes): The value of the Nonce field from the INQUIRE message of the node requesting
this extended CPA.

Number of Payloads (2 bytes): Number, in little-endian byte order, of Payloads to follow. MUST be
set to 0x0001.

Total Payload Bytes (2 bytes): Total number, in little-endian byte order, of bytes between the end
of the Nonce field and the beginning of the Signature field. This field MUST be 10 plus the value
of the Payload Length field.

Payload Type (4 bytes): The type of Payload, in little-endian byte order. MUST be one of the
following.

Value Meaning

0x80000002 Payload field contains a NULL-terminated string.

0x80000003 Payload field contains binary data.

Payload Length (2 bytes): Number, in little-endian byte order, of bytes in the String Type and
Payload fields. For a binary payload, the value MUST be from 1 through 4096. For a string
payload, the value MUST be from 6 through 4098.

String Type (2 bytes): The encoding format of the string, in little-endian byte order. This field MUST
be present if and only if PayloadType is 0x80000002. If present, the value MUST be one of the
following.

39 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x0000 Unicode

0x0001 UTF-8

Payload (variable): A NULL-terminated string (if PayloadType is 0x80000002) or binary data (if
PayloadType is 0x80000003) supplied by the application or higher-layer protocol.

Signature (variable): A SIGNATURE structure.

2.2.3.4 ROUTE_ENTRY

The ROUTE_ENTRY represents the basic critical information about a node to the other members of the
cloud. The key elements are a 32-byte PNRP ID and an array of IPv6 Addresses on which PNRP on

the node is listening.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PNRP ID (32 bytes)

...

...

PNRP Major Version PNRP Minor Version Port Number

Flags Address Count IPv6 Addresses (variable)

...

PNRP ID (32 bytes): A 32 byte PNRP ID.

PNRP Major Version (1 byte): MUST be set to 0x04.

PNRP Minor Version (1 byte): MUST be set to 0x00.

Port Number (2 bytes): The UDP port number on which the PNRP node represented by this route

entry is listening. MUST be greater than 1024.

Flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

Address Count (1 byte): Number of IPv6 Addresses that follow. MUST be in the range 1 to 20.

IPv6 Addresses (variable): An array of IPv6 Addresses on which the PNRP node represented by
this route entry is listening.

2.2.3.5 Certificate Chain

A Certificate Chain is a PKCS 7 Version 1.5 message of type SignedData as specified in [RFC2315]
section 9.1. It consists of a list of [X509] version 3 certificates with delegation information stored in
extension properties.

The total number of certificates in a Certificate Chain MUST NOT be more than 25.

https://go.microsoft.com/fwlink/?LinkId=90334
https://go.microsoft.com/fwlink/?LinkId=90590

40 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Each certificate in the chain MUST be an [X509] version 3 [RFC2459] format certificate, with the
following constraints on the fields defined in [RFC2459]:

1. The version ([RFC2459] section 4.1.2.1) MUST be set to 2 (version 3).

2. The signatureAlgorithm ([RFC2459] section 4.1.1.2) MUST be set to the OID

1.2.840.113549.1.1.5.

3. The serialNumber ([RFC2459] section 4.1.2.2) MUST be present and MUST be exactly 16 bytes
long.

4. The subjectUniqueID and issuerUniqueID ([RFC2459] section 4.1.2.8) MUST be empty with a
length of 0 bytes.

5. The subjectPublicKeyInfo ([RFC2459] section 4.1.2.7) MUST conform to the syntax as specified
in section 2.2.3.1.4.

6. The subject ([RFC2459] section 4.1.2.6) MUST be a null-terminated Unicode string that MUST
NOT be longer than 255 characters.

7. The issuer ([RFC2459] section 4.1.2.4) MUST be a null-terminated Unicode string that MUST NOT
be longer than 255 characters.

2.2.3.5.1 Certificate Extensions

As specified in [RFC2459] section 4.2, there is a mechanism for creating Certificate Extensions, where
each extension includes an object identifier (OID) and an ASN.1 structure. As specified in [RFC2459],
there are several standard extensions for which PNRP uses additional constraints as follows.

The SubjectAltName ([RFC2459] section 4.2.1.7) and IssuerAltName ([RFC2459] section 4.2.1.8)
MUST be Unicode strings and MUST NOT be longer than 255 characters.

For use in certificate extensions, PNRP defines the following OID values.

 id-microsoft OBJECT IDENTIFIER ::=
 { iso (1) identified-organization(3) dod (6) internet(1)
 private(4) enterprise (1) microsoft(311) }
 id-microsoftp2p OBJECT IDENTIFIER ::= { id-microsoft 44 }
 id-microsoftp2pgeneral OBJECT IDENTIFIER ::= { id-microsoftp2p 0 }
 id-microsoftp2ppnrp OBJECT IDENTIFIER ::= { id-microsoftp2p 3 }

PNRP specifies the following additional certificate extensions. All of the following properties are
"critical" (as specified in [RFC2459] section 4.2), which means that if the receiver does not understand
a critical property, it MUST reject that certificate.

2.2.3.5.1.1 PnrpCertificateType

 pnrpCertificateType EXTENSION ::= {
 SYNTAX PnrpCertificateType
 IDENTIFIED BY id-microsoftp2pgeneral-pnrpCertificateType }
 id-microsoftp2pgeneral-pnrpCertificateType OBJECT IDENTIFIER ::=
 { id-microsoftp2pgeneral 1}
 PnrpCertificateType ::= OCTET STRING (SIZE(4))

PnrpCertificateType: The PNRP Certificate type. Every certificate in the chain MUST have this extension
and MUST be a 4-byte integer in little-endian byte order. For the first certificate, the
PnrpCertificateType MUST be certTypeRoot (0x00000002), and for all other certificates, the
PnrpCertificateType MUST be certTypeMember (0x00000001).

https://go.microsoft.com/fwlink/?LinkId=90356
https://go.microsoft.com/fwlink/?LinkId=90356

41 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

certTypeMember

0x00000001

The certificate is one that has been delegated permissions from the previous certificate in the
chain.

certTypeRoot

0x00000002

The certificate is the first certificate of a chain.

2.2.3.5.1.2 PnrpCertificateVersion

 pnrpCertificateVersion EXTENSION ::= {
 SYNTAX PnrpCertificateVersion
 IDENTIFIED BY id-microsoftp2pgeneral-pnrpCertificateVersion }
 id-microsoftp2pgeneral-pnrpCertificateVersion OBJECT IDENTIFIER ::=
 { id-microsoftp2pgeneral 4 }
 PnrpCertificateVersion ::= OCTET STRING (SIZE(4))

PnrpCertificateVersion: The PNRP Certificate version number. MUST be set to 0x01000200 (in network
byte order), meaning version 1.2. Every certificate in the Certificate Chain MUST have this extension.

2.2.3.5.1.3 PnrpPeerName

 pnrpPeerName EXTENSION ::= {
 SYNTAX PnrpPeerName
 IDENTIFIED BY id-microsoftp2pgeneral-pnrpPeerName }
 id-microsoftp2pgrouping-pnrpPeerName OBJECT IDENTIFIER ::=
 { id-microsoftp2ppnrp 1 }
 PnrpPeerName ::= SEQUENCE SIZE (1) OF GeneralName

PnrpPeerName: A Peer Name, encoded as a GeneralName, as specified in [RFC2459] section
4.2.1.7, which allows a choice of types. The type choice MUST be otherName(0), indicating a subtype
of AnotherName ([RFC2459] section A.2). The type-id of AnotherName MUST be set to id-
microsoftp2pgeneral-PeerName, and the value MUST be a PnrpPeerNameString as shown in the
following formal language specification. The last certificate in the chain MUST have this extension.

 id-microsoftp2pgeneral-PeerName OBJECT_IDENTIFIER ::=
 { id-microsoftp2pgeneral 2 }
 PnrpPeerNameString ::= UniversalString (SIZE (1..192))

PnrpPeerNameString: An arbitrary Peer Name string. This string is not used by PNRP, except to

verify that it exists in the last certificate in the chain and that the value is the same in the first and
last certificates in the chain. The PnrpPeerNameString value MUST conform to the syntax of a
Peer Name, as specified in section 2.2.4.

2.2.3.5.1.4 PnrpRole

 pnrpRole EXTENSION ::= {
 SYNTAX PnrpRole
 IDENTIFIED BY id-microsoftp2pgrouping-pnrpRole }
 id-microsoftp2pgrouping-pnrpRole OBJECT IDENTIFIER ::=
 { id-microsoftp2ppnrp 3 }
 RoleUuid ::= OCTET STRING
 { roleAdmin (04387127aa56450a8ce54f565c6790f4),

https://go.microsoft.com/fwlink/?LinkId=90356

42 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 roleMember (f12dc4c708574ca093fcb1bb19a3d8c2),
 roleInvitingMember (dd15f41ffc4e4922b0354c06a754d01d) }
 PnrpRole ::= SEQUENCE SIZE (1..MAX) OF RoleUuid

PnrpRole: This property MUST exist in all certificates except the first certificate in the chain. Each
RoleUuid MUST be one of the following.

Value Meaning

roleAdmin All classifiers in the PnrpClassifiersList extension have some classifier in the previous
certificate's classifiers list (if any) as a prefix.

roleMember All classifiers in the PnrpClassifiersList extension are equal to some classifier in the previous
certificate's classifiers list (if any).

roleInvitingMember Same as roleAdmin. An application or higher-layer protocol decides this, and can use either
value.

2.2.3.5.1.5 PnrpClassifiersList

 pnrpClassifiersList EXTENSION ::= {
 SYNTAX PnrpClassifiersList
 IDENTIFIED BY id-microsoftp2pgeneral-PeerClassifiers }
 id-microsoftp2pgrouping-pnrpClassifersList OBJECT IDENTIFIER ::=
 { id-microsoftp2ppnrp 5 }
 PnrpClassifiersList ::= GeneralNames

PnrpClassifiersList: A set of 0 or more classifiers, each encoded as a GeneralName (as specified in
[RFC2459] section 4.2.1.7), which allows a choice of types. The type choice for each name MUST be
otherName(0), indicating a subtype of AnotherName, as specified in [RFC2459] section A.2. The type-

id of AnotherName MUST be id-microsoftp2pgeneral-PeerClassifiers, and the value MUST be a
PnrpClassifier as shown in the following formal language specification. This property MUST exist in all
certificates except the first certificate in the chain. A list of 0 classifiers (that is, an empty list) means
that all classifiers are legal. The list MUST NOT be empty unless the PnrpRole extension (as specified

in section 2.2.3.5.1.4) has a value of either roleAdmin or roleInvitingMember and the previous
certificate's classifier list contains an empty classifier ("").

 id-microsoftp2pgeneral-PeerClassifiers OBJECT_IDENTIFIER ::=
 { id-microsoftp2pgeneral 3 }
 PnrpClassifier ::= UniversalString (SIZE (1..150))

PnrpClassifier: A classifier string for which permission is delegated to the next certificate in the
chain. For every certificate in the chain other than the first certificate, each classifier MUST be one
that is a legal delegate (as specified in section 2.2.3.5.1.5.1) based on the same certificate's role,

and the previous certificate's classifier list.

2.2.3.5.1.5.1 Classifier Delegation

The following rules MUST be used to determine whether a given classifier and role are legal based on
a delegator's classifier list:

 If the delegator's classifier list is empty, then any given classifier and role are legal.

https://go.microsoft.com/fwlink/?LinkId=90356

43 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Otherwise, if the specified role is either roleAdmin or roleInvitingMember, the given classifier
MUST either match a classifier in the delegator's classifier list or begin with a classifier in the

delegator's classifier list.

 Otherwise, the given classifier MUST match a classifier in the delegator's classifier list exactly.

The following table shows some examples.

Delegator's
classifier list

Specified role is either roleAdmin or
roleInvitingMember? Valid classifiers Invalid classifiers

<empty> Either Yes or No All classifiers (including
<empty list>)

None

"", "fish" Yes All classifiers (including
<empty list>)

None

"", "fish" No "", "fish" <empty list>, "fish
food"

"fish", "cheese" Yes "fish", "fish food",
"cheese", "cheese-like"

<empty list>,
"cheese", "ham"

"fish", "cheese" No "fish", "cheese" <empty list>, "fish
food", "cheese-like"

2.2.3.6 IPV6_ENDPOINT

The IPV6_ENDPOINT structure contains information about an IPV6_ENDPOINT of a PNRP node.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Port Address (16 bytes)

...

...

...

Port (2 bytes): IPv6 port. MUST be greater than 1024.

Address (16 bytes): IPv6 address.

2.2.4 Peer Names

Protocols and higher-layer applications use Peer Names for publishing endpoint information and to
resolve them to endpoint information. A Peer Name MUST be a Unicode string conforming to the
following syntax (specified here using Augmented Backus-Naur Form (ABNF) [RFC5234]).

 peername = authority "." classifier
 authority = "0" / secureauthority
 secureauthority = 40auchar
 auchar = DIGIT / %d97-102
 classifier = 0*149clchar

https://go.microsoft.com/fwlink/?LinkId=123096

44 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 clchar = %x0001-FFFF ; any non-NULL Unicode character

45 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

PNRP nodes use eight specific message types. These messages can be split into two distinctive
classes: request messages (SOLICIT, REQUEST, FLOOD, LOOKUP, and INQUIRE) and acknowledge
messages (ADVERTISE, ACK, and AUTHORITY_BUFFER). Request messages are initiated by one node
and sent to another. Acknowledge messages are sent in reply to received request messages.

Specific relationships of messages sent by a Resolver are shown in the following table.

Message sent by Resolver Acknowledgment sent by Publisher

SOLICIT ADVERTISE

REQUEST ACK

LOOKUP AUTHORITY_BUFFER (contained in an AUTHORITY)

INQUIRE AUTHORITY_BUFFER (contained in an AUTHORITY)

Specific relationships of messages sent to a Resolver are shown in the following table.

Message sent by Publisher Acknowledgment sent by Resolver

FLOOD with D flag clear ACK

3.1 Resolver Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

 Cloud Table: A set of state for each cloud in which the node can perform resolutions. Each entry
in the cloud table has the following state:

 Open Count: The number of times an application or higher-layer protocol has opened this
cloud.

 Conversation Table: A table of state for synchronization conversations in progress, if any.
Each entry has the following state:

 Nonce: The nonce being used in the current synchronization conversation in progress, if
any.

 SolicitMessageId: Message ID of the SOLICIT message sent.

 Local Endpoint List: The list of network endpoints on which this PNRP node is listening for
messages for this cloud.

 Outstanding Resolves Table: A table of state for resolutions in progress. Each entry has the

following state:

 Target PNRP ID: The PNRP ID being resolved.

46 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 ResolveReasonCode: The resolve reason code (as specified in section 2.2.2.8) for this
resolve.

 ResolvePath: A list of network endpoints of PNRP nodes that have already been asked
about this request.

 NextHopStack: A last-in, first-out stack of entries for nodes that can be consulted to find
closer matches. Each entry contains the following:

 RouteEntry: Route entry for the PNRP node.

 UseCount: A count of the number of times a LOOKUP message has been sent to this
node.

 BestMatchStack: A last-in, first-out stack of the route entries closest to the target. This
maintains a history of route entries that were previously stored at CurrentBestMatch.

 CurrentBestMatch: The route entry that is the Best Match so far.

 CurrentNextHop: The entry of the same type as used in NextHopStack that contains the
route entry for the node to which the current LOOKUP message has been sent.

 NewNextHop: Temporary storage for a route entry received during AUTHORITY message
processing.

 SuspiciousCount: A count of hops that returned an AUTHORITY_BUFFER message with

the L flag set.

 TotalUsefulHops: Total number of nodes that were sent LOOKUP messages (both to and
from) and from which an AUTHORITY_BUFFER message was received in reply.

 LastSentMessageId: The Message ID of the last sent LOOKUP or INQUIRE message
sent. Used to match up received AUTHORITY messages.

 Pending List: A set of messages that have been sent and are awaiting acknowledgment or

retransmission. Each entry in the queue has the message, a Retry Count, and a Message

Retransmission Timer, as specified in section 3.1.2.

 Pending Route Entry Add List: A list of route entries in the process of being added to the
Route Entry Cache. Each entry has the following state:

 RouteEntry: The route entry being pended.

 NeedCpa: Flag indicating whether a CPA was requested.

 InquireMessageId: Message ID of the INQUIRE message sent to validate this route
entry.

 AlreadyFloodedAddressList: If the route entry is being added because it was received
via a FLOOD (section 2.2.2.4) message, then this list is a copy of the AlreadyFloodedList
contained in the message.

 Reassembly List: A list of AUTHORITY_BUFFER messages currently in the process of being
reassembled. Each entry has the following state:

 Message ID: The Message ID value in the PNRP Header for the AUTHORITY messages

being reassembled.

 Source IP address and port: The IP address and port of the peer from which
AUTHORITY_BUFFER message fragments were received.

47 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Size: Expected size of the final buffer.

 Buffer: A buffer into which fragments are placed.

 Route Entry Cache: A cache of route entries. Each route entry in the cache contains a PNRP
ID and a list of network endpoints.

 CurrentSeedServerAddressIndex: Index into a list of addresses for seed server nodes.

 CloudDiscoveryMode: Current discovery method being used. The modes are defined as
SeedServer, Simple Service Discovery Protocol (as specified in [UPNPARCH1], section 1), and
LocalOOB.

 CloudDiscoverySSDPTargetCount: The number of SSDP nodes to which the node has sent
a SOLICIT message. SSDP is specified in [UPNPARCH1], section 1.

 SSDPResponseRequestIdentifier: A unique URI used to match SSDP responses to

requests. SSDP is specified in [UPNPARCH1], section 1.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementer is at liberty to implement such data in any manner as required.

3.1.2 Timers

Each entry in the Cloud Table has the following timers:

 Cloud Cleanup Timer: This one-shot timer is used to remove state for a cloud after the state is
no longer needed. The duration SHOULD be 15 minutes.

 Maintenance Timer: A periodic timer used to perform periodic cache maintenance. The period
SHOULD<1> be 15 seconds to keep the cache functional.

 Message Retransmission Timer: This conceptual timer exists for each entry in the Pending List,

and is used for retransmission. The period SHOULD be one second.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

A Resolver MUST provide to higher-layer applications and protocols three logical operations that can
be invoked: Opening a Cloud, Resolving a Peer Name, and Closing a Cloud.

3.1.4.1 Opening a Cloud

When a higher-layer application or protocol asks PNRP to open a given cloud (optionally specifying
one or more seed servers for the cloud), the node MUST first check whether the cloud already exists
in the Cloud Table. If the cloud exists, the node MUST increment the Open Count. Otherwise, the node

MUST attempt to create a new entry in the Cloud Table, and if it cannot, it MUST return a failure to

the application or higher-layer protocol.

If a new entry is created, the node MUST carry out the following procedures when initializing.

1. Choose a port and a set of four IPv6 Addresses, or as many as the local system has, not
exceeding four, which the node will use for PNRP communication. The addresses MUST all be of
the same scope and scope zone (as specified in [RFC4007] section 5). The same port number
MUST be used for all addresses. Each address/port combination MUST NOT be in the Local

https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=90454

48 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Endpoint List of any other entry in the Cloud Table. If no addresses are available, the open
attempt MUST report a failure. Otherwise, store the chosen addresses in the Local Endpoint List.

2. Begin listening for incoming messages on the UDP port and IPv6 Addresses chosen.

3. Set CurrentSeedServerAddressIndex to 0, set CloudDiscoveryMode to LocalOOB and initiate the

cloud discovery process as specified in section 3.1.4.2.

4. Start the Maintenance Timer for the cloud.

3.1.4.2 Discovering Other Nodes in a Cloud

If CloudDiscoveryMode is LocalOOB, the node MAY<2> initiate the synchronization conversation
against a list of endpoints provided via an implementation-specific means. If any such addresses are
available, the node MUST initiate a synchronization conversation to each one (as specified in section
3.1.4.3), set CloudDiscoveryMode to SSDP, and then SHOULD end processing (the node MAY instead
continue below, for example, after an implementation-specific period of time waiting for responses
from the chosen addresses). Otherwise, set CloudDiscoveryMode to SSDP, and continue processing as

follows.

If CloudDiscoveryMode is SSDP, the PNRP node MUST initiate the multicast discovery (as specified in
section 3.1.4.2.2) and change the CloudDiscoveryMode to SeedServer. The node SHOULD then end
processing for this mode (it MAY instead continue below, for example, after an implementation-specific
period of time waiting for Simple Service Discovery Protocol responses, as specified in [UPNPARCH1],
section 1).

If CloudDiscoveryMode is SeedServer, the node MUST carry out the process as specified in section
3.1.4.2.1 to obtain a list of nodes acting as seed servers.

3.1.4.2.1 Using Seed Servers

If the application or higher-layer protocol specified one or more seed server, then the PNRP node
SHOULD use those seed servers. Otherwise, the PNRP node SHOULD use any seed servers it is
configured with for the cloud, and if none exist, it MUST set CloudDiscoveryMode to LocalOOB.

Microsoft provides machines with the DNS names PNRPV2.IPV6.MICROSOFT.COM and
PNRPV21.IPV6.MICROSOFT.COM, which act as seed servers to the Microsoft Global PNRP Cloud. The

IPv6 Addresses of these machines MUST be determined via DNS lookups. A PNRP node SHOULD first
perform a DNS lookup of PNRPV2.IPV6.MICROSOFT.COM and PNRPV21.IPV6.MICROSOFT.COM. The
node SHOULD<3> then combine the results from the two queries, and sort the resulting address list
by using the algorithm as specified in [RFC3484] section 6.

If CurrentSeedServerAddressIndex is greater than the number of addresses in the list,
CurrentSeedServerAddressIndex MUST be set to zero. The node MUST select the address in the list at

the index equal to CurrentSeedServerAddressIndex, increment CurrentSeedServerAddressIndex,
initiate a synchronization conversation (as specified in section 3.1.4.3) to the address selected by
using UDP port 3540, and finally set CloudDiscoveryMode to LocalOOB.

3.1.4.2.2 Multicast Cloud Discovery

To initiate multicast cloud discovery, PNRP MUST do the following:

1. Set CloudDiscoverySSDPTargetCount to zero.

2. If the Simple Service Discovery Protocol (SSDP) (as specified in [UPNPARCH1], section 1) is
available, issue an SSDP M-SEARCH ([UPNPARCH1], section 1.2.2) for PNRP in the preferred
cloud by using the following search target string in the search message.

https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=90424
https://go.microsoft.com/fwlink/?LinkId=90554

49 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 "urn:Microsoft Windows Peer Name Resolution Protocol: V4:IPV6:<Scope>"

<Scope> MUST be replaced by either "Global", "SiteLocal", or "LinkLocal" (without the quotation
marks).

3. Set SSDPResponseRequestIdentifier to the search target string used in the M-SEARCH.

3.1.4.3 Initiating a PNRP Synchronization Conversation

A synchronization conversation allows a node to exchange resource information in the form of
ROUTE_ENTRY structures with another given node in a given cloud.

The PNRP node MUST generate a random 16-byte nonce value, save it in its local Conversation nonce
state, and then send to the given node a SOLICIT message that includes an SHA-1 [RFC3174] hash of
the Conversation nonce in the Hashed Nonce field.

The node MUST save the Message ID of the SOLICIT message in the entry in the conversation table.

The node MUST also put the SOLICIT message in the Pending List, set its Retry Count to 2, and start

its Message Retransmission Timer.

3.1.4.4 Resolving a Peer Name

In a resolution operation, five inputs are provided by the application or higher layer protocol:

 A Peer Name;

 A ServiceLocationPrefix which is a 64-bit integer used to form the top 64 bits of the service
location;

 A ResolveCriteria corresponding to the OpCode values as specified in section 2.2.2.8, which is
used by the higher-layer protocol to resolve specific service records for a given authority and

classifier as defined by the higher-layer protocol semantics;

 A flag indicating whether to consider locally-registered PNRP IDs; and

 An indication in which cloud the resolution is to be done.

If the cloud has not been opened (for example, no state in the Cloud Table exists), the node MUST fail
the request. Otherwise, the Resolver MUST validate that the Peer Name conforms to the syntax as
specified in section 2.2.4, and fail the request if it does not conform.

If there are no addresses in the Local Endpoint List, the node MUST fail the request.

The Resolver MUST then construct a PNRP ID (as specified in section 3.1.4.4.1) from the Peer Name
and ServiceLocationPrefix provided by the application or higher-layer protocol, and from the 64-bit

Service Location Suffix (in network byte order) 0x8000000000000000.

The Resolver MUST then attempt to resolve the PNRP ID (as specified in section 3.1.4.4.2) with

ResolveReasonCode set to REASON_APP_REQUEST, InitialBestMatchRouteEntry and
InitialNextHopRouteEntry set to empty, and PickBestMatchFromLocalIds set to true if the calling code
requests locally registered IDs to be considered.

3.1.4.4.1 Constructing a PNRP ID

The Resolver MUST first separate the Peer Name into its authority and classifier parts. The
authority MUST then be converted to the 160-bit binary number (which is called the BinaryAuthority)
that corresponds to the 40 hexadecimal digits in the Authority string.

https://go.microsoft.com/fwlink/?LinkId=90408

50 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A ServiceLocation MUST then be constructed by concatenating the 64-bit ServiceLocationPrefix, and
then the 64-bit ServiceLocationSuffix value.

Finally, the BinaryAuthority, Classifier, and ServiceLocation MUST then be converted to a PNRP ID by
using the following formulas

 ClassifierHash = SHA-1(Classifier)
 P2PID = First 16 bytes(SHA-1(ClassifierHash, BinaryAuthority, ClassifierHash, "PNRP"))
 PNRP ID = (P2PID << 128) | ServiceLocation

where SHA-1() indicates an SHA-1 hash as specified in [RFC3174], and "PNRP" is a 4-byte ASCII
string. (Note that SHA-1 provides a 20-byte value, from which the P2PID formula drops the final 4
bytes to produce a result which is 128 bits in length.)

3.1.4.4.2 Resolving a PNRP ID

All nodes taking part in PNRP will carry out the resolve process from time to time. Resolve-only nodes

use the resolve process to handle requests from higher-layer applications to resolve a Peer Name.
The process is also used in cache maintenance operations. Publishers use the resolve operation to
advertise published IDs to the rest of the cloud. Publishers also use the resolve operation to attempt
to detect splits in the cloud.

The following parameters MUST be supplied to the resolving logic:

1. Target PNRP ID, which is mapped to the PNRP_ID obtained in section 3.1.4.4.1.

2. ResolveCriteria, which maps to ResolveCriteria provided by the application or higher-layer protocol
as defined in section 3.1.4.4.

3. PickBestMatchFromLocalIds, which maps to PickBestMatchFromLocalIds provided by the
application or higher-layer protocol as defined in 3.1.4.4.

4. ResolveReasonCode, which maps to ResolveReasonCode provided by the application or higher-

level protocol.

And optionally:

5. InitialBestMatchRouteEntry, which is a ROUTE_ENTRY structure used by the protocol during
PeerName registration. See section 3.2.4.1 for details.

6. InitialNextHopRouteEntry, which is a ROUTE_ENTRY structure used by the protocol during
maintenance. See section 3.2.6.2.1 for details.

A Resolver MUST then perform the following steps:

1. Attempt to create a new entry in the Outstanding Resolves Table, and fail the request if one
cannot be created. If one was created, initialize the fields as follows.

2. Initialize SuspiciousCount and TotalUsefulHops to 0.

3. The resolve entry's ResolvePath MUST be initialized to contain any one of the endpoints in the
Local Endpoint List.

4. Save the supplied Target PNRP ID and ResolveReasonCode in the corresponding fields of the

resolve entry.

5. If InitialNextHopRouteEntry was supplied, push it onto NextHopStack. Otherwise, select the route
entry from the cache for the PNRP ID numerically closest to the Target PNRP ID and push this
route entry onto the resolve entry's NextHopStack. In both cases the UseCount for the entry on
the stack MUST be set to zero.

https://go.microsoft.com/fwlink/?LinkId=90408

51 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6. If an InitialBestMatchRouteEntry was supplied, push it onto the resolve entry's BestMatchStack.

7. If the resolve entry's CurrentBestMatch is not empty and the PNRP ID of the most recently pushed

entry in BestMatchStack is sufficiently close (per the ResolveCriteria) to the Target PNRP ID, then:

Create an INQUIRE message with the Validate PNRP ID field set to the PNRP ID of

CurrentBestMatch, and the Request CPA, Certificate Chain, Classifier, and Extended Payload
flags set. Set LastSentMessageID to the message ID of the INQUIRE message. Then choose an
address from the CurrentBestMatch route entry's address list by using the algorithm as specified
in [RFC3484] section 6, and send the INQUIRE message to that address. Finally, put the INQUIRE
message in the Pending List, set the message Retry Count to 2, and start its Message
Retransmission Timer. If the timer expires and the message Retry Count is reduced to 0,
reattempt the process starting from step 7 (i.e., If the resolve entry's CurrentBestMatch is not

empty…).

Otherwise (for example, if the resolve entry's CurrentBestMatch is empty or the most recently
pushed entry in BestMatchStack is not sufficiently close to the Target PNRP ID), continue
processing as follows.

8. Attempt to pop a route entry off NextHopStack and store this route entry in the resolve entry's
CurrentNextHop. If CurrentNextHop is empty, SuspiciousCount is greater than 6, or

TotalUsefulHops is greater than 22, the Resolver MUST do the following:

If the resolve entry's CurrentBestMatch is not empty, check to see whether the CurrentBestMatch
is sufficiently close (per the ResolveCriteria) to the Target PNRP ID. If it is not, or the
CurrentBestMatch is empty, return no results to caller because no adequate match was found; the
Resolve operation is now complete. Otherwise, send an INQUIRE message as in the previous step.

If NextHopStack is not empty, SuspiciousCount is less than or equal to 6, and TotalUsefulHops is
less than or equal to 22, then continue processing as follows.

9. Prepare a LOOKUP message with the Validate PNRP ID field set to the PNRP ID from the route
entry in the CurrentNextHop, and the Flagged Path field filled with the entries from the
ResolvePath. If the number of entries in the cache is less than 8, the Resolver SHOULD set the A

flag in the LOOKUP message.

10. Choose an address from the list of addresses in the route entry in CurrentNextHop state, using the
algorithm as specified in [RFC3484] section 6, send the LOOKUP message to it, and then
increment the UseCount in the CurrentNextHop state. Set LastSentMessageID to the message ID

of the LOOKUP message. Put the LOOKUP message in the Pending List, set the message Retry
Count to 2, and start its Message Retransmission Timer.

3.1.4.5 Closing a Cloud

When an application or higher-layer protocol closes a cloud, the PNRP node MUST verify that it has
the cloud state for the cloud with a nonzero Open Count, and fail the request if not. Otherwise, the
PNRP node MUST decrement the Open Count. If the Open Count is then zero, the PNRP node MUST
start the Cloud Cleanup Timer.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Receiving an SSDP Response

When an SSDP response (as specified in [UPNPARCH1], section 1) is received, the PNRP node MUST

handle it as follows:

https://go.microsoft.com/fwlink/?LinkId=90424
https://go.microsoft.com/fwlink/?LinkId=90554

52 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

First, it finds the entry in the Cloud Table corresponding to the request (for example, based on the
SSDPResponseRequestIdentifier URI in the cloud entry to the ST field of the response). If no match is

found, the node MUST drop the SSDP response.

The format of the text in the AL field MUST be in the form of an IPv6 Addresses and port in the

format as specified in [RFC2732] (for example, the format of the host name of a URL). If it is not
correctly formatted, the response MUST be discarded.

If CloudDiscoverySSDPTargetCount is less than 5, initiate the synchronization as specified in section
3.1.4.3 to the address and port indicated in the AL Element of the SSDP response.
CloudDiscoverySSDPTargetCount MUST then be incremented.

Otherwise, it discards the SSDP response.

3.1.5.2 Receiving a PNRP Message

When a node receives a PNRP Message, it MUST first check whether the message starts with a PNRP
Header that conforms to the syntax as specified in section 2.2.1, and silently drop the message if not.

If the UDP source port of the message is less than or equal to 1024, it MUST silently drop the

message.

The node MUST then determine the cloud to which the message applies (based on the local address
and port to which the message was sent).

The node MUST then check the Message Type field, and handle additional type-specific processing in
accordance with its message type. Messages with types other than those specified in this document
MUST be dropped.

3.1.5.3 Receiving an ADVERTISE Message

When a Resolver receives an ADVERTISE message, it MUST perform the following steps:

1. Match Acked Message ID in the ADVERTISE message against any SOLICIT messages in the

Pending List. If no match is found, the Resolver MUST silently discard the ADVERTISE message.

Otherwise the Resolver MUST remove the SOLICIT message from the Pending List and continue
processing as follows.

2. Use the hashed nonce in the message to verify that a corresponding SOLICIT message was sent.

3. Check the array of PNRP IDs in the ADVERTISE message. If the array is empty (for example,
NumEntries is 0x0000), silently discard the message.

4. Select a set of PNRP IDs in the array to request. The node SHOULD select all PNRP IDs in the
array.

5. Prepare a REQUEST message with the desired PNRP IDs and send it to the remote node. The node
MUST also add the REQUEST message to the Pending List, set its Retry Count to 2, and start its
Message Retransmission Timer.

3.1.5.4 Receiving an ACK Message

When an ACK message is received, the receiving node MUST attempt to match the Acked Message
ID field with the Message ID of an entry in the Pending List. If a match is not found, the message
MUST be silently discarded with no further action.

Alternatively, if a match is found, the entry in the Pending List MUST be removed. If the matching
message is a FLOOD (section 2.2.2.4) message and the ACK (section 2.2.2.7) message has the N bit
set, the receiver MUST also remove the PNRP ID contained in the FLOOD message Validate PNRP ID

field from the Route Entry Cache because the PNRP ID is no longer registered in the network.

https://go.microsoft.com/fwlink/?LinkId=90375

53 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.5 Receiving a FLOOD Message

Upon receiving a FLOOD message, a PNRP node MUST perform the following steps:

1. Check whether the FLOOD message conforms to the syntax as specified in section 2.2.2.4, and

drop the message if not. Otherwise, continue processing as follows.

2. If the D flag is clear, reply with an ACK message to the sending node.

3. If a ROUTE_ENTRY is supplied in the FLOOD message, begin validating the ROUTE_ENTRY as
specified in Receiving a New ROUTE_ENTRY (section 3.1.5.11).

4. If a Revoke CPA is supplied in the FLOOD message, validate the CPA (as specified in section
3.1.5.7) as a Revoke CPA and, if not valid, discard.

5. Extract the ClassifierHash, BinaryAuthority, and ServiceLocation values from the CPA and

use them to calculate the PNRP ID for the CPA by using the formulas for P2PID and PNRP ID in
section 3.1.4.4.1.

6. Remove the ROUTE_ENTRY (if any) for the PNRP ID of the Revoke CPA from the cache.

3.1.5.6 Receiving an AUTHORITY Message

On receipt of an AUTHORITY message, the PNRP node MUST first check whether the AUTHORITY
message conforms to the syntax as specified in section 2.2.2.6, and drop the message if not.
Otherwise, look in the Pending List for a LOOKUP message or INQUIRE message whose Message ID
matches the Acked Message ID in the AUTHORITY message. If none is found, drop the message.

The PNRP node MUST then check whether the AUTHORITY_BUFFER message is fragmented by
comparing the Size field in the AUTHORITY message and the received message size. If the

AUTHORITY_BUFFER message is not fragmented, it MUST be processed as specified in section
3.1.5.6.1. Otherwise, the PNRP node MUST start the reassembly process as follows:

To reassemble fragmented packets into the original AUTHORITY message, a PNRP node MUST use the

Message ID from the PNRP Header and the source IP address and Port to look for an existing
entry in the Reassembly List. If no entry exists, the node MUST attempt to create one and drop the
message if it cannot create one. Otherwise, continue processing as follows.

Check whether the length of the Buffer field (as computed from the UDP message size) plus the

Offset value is greater than the Size value, and if so, drop the message and delete the existing
reassembly state.

Check if the Size in the AUTHORITY message received matches the Size in the reassembly entry, and
if not, drop the message and delete the existing reassembly state. Otherwise, continue processing as
follows:

For all fragments, a PNRP node MUST copy the AUTHORITY_BUFFER message at the offset as specified

in the AUTHORITY message.

If the AUTHORITY_BUFFER message is still not completely reassembled, no further processing is

necessary. After the last fragment is received, processing MUST be done on the reassembled
AUTHORITY_BUFFER message.

3.1.5.6.1 Receiving an AUTHORITY_BUFFER

When a PNRP node has a fully-formed AUTHORITY_BUFFER message, the PNRP node MUST first check

whether the AUTHORITY_BUFFER message conforms to the syntax as specified in section 2.2.2.6.1,
and ignore the buffer if not.

54 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Otherwise, the PNRP node MUST remove the entry (as specified in section 3.1.5.6) from the Pending
List.

The Outstanding Resolves Table MUST then be checked to find an entry that sent a LOOKUP message
during a resolution. The ACKed Packet ID of the AUTHORITY message is compared against

LastSentMessageID in the resolved entries to find a match. If no entry is found, the node MUST follow
the steps as specified in section 3.1.5.6.1.1. Otherwise, continue processing as follows:

1. Add the address used when sending the previous LOOKUP message to the resolve entry's
ResolvePath.

2. Increment the entry's TotalUsefulHops.

3. If the L flag in the AUTHORITY_BUFFER message is set, increment the resolve entry's
SuspiciousCount.

4. If the N flag in the AUTHORITY_BUFFER message is clear, begin validating the route entry in the
resolve entry's CurrentNextHop, as specified in section 3.1.5.11. Otherwise clear CurrentNextHop
because the PNRP ID is no longer registered at that node and remove this node from the cache.

In either case, continue processing as follows.

5. If CurrentNextHop is not empty and if the PNRP ID of the route entry in the resolve entry's
CurrentNextHop is numerically closer to the Target PNRP ID than the PNRP ID of the resolve

entry's CurrentBestMatch, push CurrentBestMatch onto BestMatchStack, create a copy of the
resolve entry's CurrentNextHop, and then save the copy in the resolve entry's CurrentBestMatch.

6. If the resolve entry's CurrentNextHop is not empty and the UseCount of the entry is 3, then clear
the resolve entry's CurrentNextHop.

7. If the Route Entry field is present in the AUTHORITY_BUFFER message then create a route entry
and store it in the resolve entry's NewNextHop.

8. If the resolve entry's CurrentNextHop is not empty, push it back onto NextHopStack and clear the

resolve entry's CurrentNextHop.

9. If the resolve entry's NewNextHop is not empty, check the addresses in the route entry to ensure
that none of them appear in the resolve entry's ResolvePath except for the last entry in the path.
If the address appears, clear the resolve entry's NewNextHop.

10. If the resolve entry's NewNextHop is not empty, check to see if the resolve entry's NewNextHop is
numerically closer to the Target PNRP ID than the node from which the NewNextHop was
obtained. If the resolve entry's NewNextHop is closer, push it onto the resolve entry's

NextHopStack. If it is not closer, but the cache contains fewer than eight entries, push it onto the
resolve entry's NextHopStack. If the cache has more than eight entries, pop the Previous hop off
of the resolve entry's NextHopStack if it was pushed on in step 8. Clear the resolve entry's
NewNextHop.

11. Resume at step 7 in section 3.1.4.4.2.

3.1.5.6.1.1 Receiving a Response to an INQUIRE Message

The Outstanding Resolve table MUST be checked to find an entry that sent an INQUIRE message
during a resolution. If one is not found, proceed to section 3.1.5.6.1.2. Otherwise, continue processing
as follows.

If the AUTHORITY message contains a CPA, then the node MUST attempt to validate the CPA, as
specified in section 3.1.5.7.

If validation fails, then the node MUST discard the AUTHORITY message, attempt to pop a new entry

from BestMatchStack, and place this entry (if any) in the node's CurrentBestMatch variable. If there is

55 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

no new CurrentBestMatch, the node MUST return a failure to the higher-layer application or protocol;
otherwise, the node MUST repeat the LOOKUP message procedure starting at step 7 of section

3.1.4.4.2.

If the resolve entry's ResolveReasonCode is equal to REASON_APP_REQUEST, the node MUST then

return the endpoint information to the higher-layer application or protocol.

3.1.5.6.1.2 Completing a Route Entry Cache Addition

The following processing MUST be done when the AUTHORITY_BUFFER message is acknowledging an
INQUIRE message sent while adding a route entry to the cache:

1. Check the Pending Route Entry Add List. If an entry is not found that has an InquireMessageId
corresponding to the Acked Message ID of the AUTHORITY message, ignore the AUTHORITY

message. Otherwise, continue processing as follows.

2. If the AUTHORITY_BUFFER message has the N flag set (indicating that the PNRP ID in the route
entry is not currently registered on that node), then the Route Entry MUST be removed from the

Pending Route Entry Add List.

3. If the entry's NeedCpa flag is not set, the check for whether the entry is reachable is now
complete and the entry SHOULD be stored in the cache. The processing of the Route Entry is

complete. Otherwise, continue processing as follows.

4. If a CPA was requested but one was not included in the AUTHORITY_BUFFER message, the Route
Entry MUST be silently discarded.

5. The node MUST validate the CPA as specified in section 3.1.5.7. If validation fails, or if a required
Certificate Chain was not received, the Route Entry MUST be silently discarded.

6. The PNRP ID in the Route Entry MUST be compared against the PNRP ID of the CPA, and the
addresses in the Route Entry MUST be compared against the service addresses in the CPA. If they

do not match, the Route Entry MUST be silently discarded.

7. Add the Route Entry to the Route Entry Cache.

3.1.5.7 Validating a CPA

To validate a CPA, a PNRP node MUST perform the following checks. If any assertion in the following

is not true, the CPA MUST be rejected as invalid.

Verify that the CPA conforms to the syntax as specified in section 2.2.3.1.

If a nonzero BinaryAuthority is present in the CPA, then verify that either a Certificate Chain is
present in the CPA or the BinaryAuthority is a SHA-1 hash of the public key included in the CPA. If a
Certificate Chain exists, then validate the Certificate Chain as specified in section 3.1.5.10.

If the X flag bit in CPA is set, then validate the Extended Payload field as specified in section

3.1.5.8.

Retrieve the current UTC time for the local PNRP node. Verify that it is not greater than the value in
the Not After field.

Verify that the value of the Nonce field in the CPA matches the value of the Nonce field in the
original INQUIRE message.

Using the BinaryAuthority, ClassifierHash, and ServiceLocation in the CPA, construct the PNRP
ID as specified in section 3.1.4.4.1. Verify that the computed PNRP ID matches the PNRP ID in the

ROUTE_ENTRY message in the AUTHORITY_BUFFER message.

56 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Verify (using the rules in section 3.1.5.9) that the SIGNATURE structure contains the correct signature
of the Encoded CPA structure (minus the Signature field).

3.1.5.8 Validating an Extended Payload

To validate an EXTENDED_PAYLOAD message, a PNRP node MUST perform the following checks. If any
of the assertions that follow is not true, the EXTENDED_PAYLOAD message MUST be rejected as
invalid.

Verify that the EXTENDED_PAYLOAD message conforms to the syntax as specified in section 2.2.3.3.

Retrieve the current UTC time for the local PNRP node. Verify that the current UTC time is not after
the Not After field in the EXTENDED_PAYLOAD message.

Verify that the value of the PNRP ID field in the EXTENDED_PAYLOAD message matches the PNRP
ID in the Route Entry field in the AUTHORITY_BUFFER message.

Verify that the value of the Nonce field in the EXTENDED_PAYLOAD message matches the value of

the Nonce field in the original INQUIRE message.

Verify (using the rules as specified in section 3.1.5.9) that the SIGNATURE structure contains the

correct signature of the EXTENDED_PAYLOAD structure (minus the Signature field).

3.1.5.9 Validating a SIGNATURE Structure

To validate that a SIGNATURE structure contains the correct signature of a given buffer, a PNRP node
MUST perform the following checks. If any assertion is not true, the SIGNATURE structure MUST be

rejected as invalid.

Verify that the SIGNATURE structure conforms to the syntax as specified in section 2.2.3.2.

A PNRP node MUST read the ALG_ID field from the SIGNATURE structure, and then hash the buffer
by using the algorithm as specified in ALG_ID. The node MUST decrypt the Signature Data field by
using the public key received as a part of the CPA. Finally, verify that the decrypted signature matches

the previously mentioned hash.

3.1.5.10 Validating a Certificate Chain

To validate a Certificate Chain, a node MUST perform the following checks. If any of the following
assertions is not true, the Certificate Chain MUST be rejected as invalid.

1. Verify that the Certificate Chain conforms to the syntax as specified in section 2.2.3.5.

2. Construct the Publisher's BinaryAuthority, which is the 160-bit SHA-1 [RFC3174] hash of the
public key that is received within the CPA.

3. For all x in {1, n–1} (where n is the number of certificates in the chain), verify that the
SubjectAltName in certificate x is the same as the IssuerAltName extension of certificate x+1.

4. For each certificate in the chain, verify that the current time is within the certificate's validity time
(for more information, see [RFC2459] section 4.1.2.5).

5. For each certificate in the chain with a nonzero number of classifiers in the PnrpClassifiersList,

verify that all classifiers conform to the classifier syntax as specified in section 2.2.4.

6. For all x in {1, n–1}, verify that the list of classifiers specified in the PnrpClassifiersList for
certificate x+1 is delegated from the list of classifiers specified in the PnrpClassifiersList extension
of certificate x, as specified in section 2.2.3.5.1.5. (There is no restriction on the list of classifiers
as specified in the PnrpClassifiersList extension of certificate x=1.)

https://go.microsoft.com/fwlink/?LinkId=90408
https://go.microsoft.com/fwlink/?LinkId=90356

57 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7. Verify that the first certificate in the chain is a self-signed certificate (for more information, see
[RFC2459] section 6.1).

8. Verify that the first certificate in the chain has a PnrpCertificateType extension with a value of
certTypeRoot (0x00000002).

9. Verify that, for the first certificate in the chain, the 160-bit SHA-1 [RFC3174] hash of its public key
matches the BinaryAuthority field from the received CPA.

10. Verify that for the last certificate in the chain, the 160-bit SHA-1 [RFC3174] hash of its public key
matches the BinaryAuthority calculated in step 2 above.

11. Verify that the last certificate in the chain has the PnrpPeerName extension with the same value of
the PnrpPeerName extension of the first certificate in the chain.

12. Verify that the Classifier in the AUTHORITY_BUFFER message is delegated from the list of

classifiers specified in the PnrpClassifiersList extension of the last certificate in the chain, as
specified in section 2.2.3.5.1.5.

3.1.5.11 Receiving a New ROUTE_ENTRY Message

After a ROUTE_ENTRY message has been extracted from a received message, the receiving node
MUST follow these steps to submit it to the cache for inclusion. If the PortNumber field of the
ROUTE_ENTRY message is less than 1024, the entry MUST be ignored.

Otherwise, the node MUST attempt to add the ROUTE_ENTRY message to the Pending Route Entry
Add List, with the NeedCpa field set to false. If it cannot be added, the ROUTE_ENTRY message MUST
be ignored.

The ROUTE_ENTRY message MUST then be tested for return routability by composing an INQUIRE

message with the Validate PNRP ID field set to the PNRP ID in the ROUTE_ENTRY message. The
node MUST then select one of the addresses included in the ROUTE_ENTRY message, using the
algorithm in [RFC3484] section 6, and send the INQUIRE message to the selected address, using the
port indicated in the ROUTE_ENTRY message.

The node MUST then set InquireMessageId to the Message ID of the INQUIRE message sent, in the
entry added to the Pending Route Entry Add List.

3.1.6 Timer Events

3.1.6.1 Cloud Cleanup Timer Expiry

When the Cloud Cleanup Timer expires for a given cloud, the PNRP node MUST delete all state for the
cloud.

3.1.6.2 Maintenance Timer Expiry

The node MUST check to see if it knows of any other members of the cloud. If it does not, it MUST

invoke the process as specified in section 3.1.4.2 to attempt to discover the cloud.

In addition, the PNRP node MAY<4> resolve any PNRP IDs that it wants to learn additional route
entries (for example, to ensure that the Route Cache contains entries roughly evenly distributed
across the PNRP ID numbering space in order to reduce the time it takes to do a resolve on behalf of
an application or higher-layer protocol). If it does so, then the ResolveReasonCode MUST be set to

REASON_CACHE_MAINTENANCE.

https://go.microsoft.com/fwlink/?LinkId=90424

58 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.6.3 Message Retransmission Timer Expiry

When the Message Retransmission Timer expires for an entry in the Pending List, the PNRP node
MUST decrement the entry's Retry Count. If the Retry Count is nonzero, the message MUST be resent

and the timer restarted. If the Retry Count is zero, a failure result MUST be reported to the higher-
layer application or protocol and the entry MUST be removed from the Pending List.

Additional actions are required for specific message types, as specified later in this document.

If the Retry Count is zero and the message was stored as a LOOKUP message or an INQUIRE
message, the PNRP node MUST cleanup any outstanding reassembly context that matches the
Message ID, source IP address, and port by removing the corresponding entry from the Reassembly
List.

3.1.7 Other Local Events

3.1.7.1 Processing Address Change Notifications

The PNRP node MUST monitor changes in IPv6 Addresses field available on the host machine. If a
change in the set of addresses is detected, then the node MUST construct a new list of addresses
following the restrictions as specified in step 1 of section 3.1.4.1. If this is different from the current
list in the Local Endpoint List, then the node MUST replace the old list with the new one. If the new list
is empty, the node indicates a failure to the application or higher-layer protocol.

3.2 Publisher Details

All Publishers MUST follow the rules for Resolvers as well. This section specifies additional rules
beyond those in section 3.1.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Each entry in the Cloud Table (as specified in section 3.1.1) is extended to have the following
additional information:

 Conversation Table: A table of active synchronization conversations from new nodes in the
process of joining the cloud. Each entry has the following state:

 Peer's IP Address and Port: The IP address and port number of the peer.

 Hashed Nonce: The Hashed Nonce value received in a SOLICIT message from the node.

 Locally Registered PNRP ID List: A list of all PNRP IDs registered by the PNRP node itself or

on behalf of protocols or higher-layer applications publishing Peer Names. Each entry in the list
has the following fields:

 PNRP ID: The locally registered PNRP ID.

 Leaf Set: A list of the route entries for the five numerically closest PNRP IDs that are less than

the locally registered PNRP ID and the five numerically closest PNRP IDs that are greater than
the locally registered PNRP ID.

59 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Note The previously conceptual data can be implemented by using a variety of techniques. An
implementer is at liberty to implement such data in any way that it pleases.

3.2.1.1 Cache

To respond to LOOKUP messages when a neighbor is searching for a particular PNRP ID, a PNRP
node is required to maintain a Route Entry Cache. A PNRP cloud has no scale limitation, and could
consist of millions of registrations; because it would be prohibitively expensive, both in bandwidth and
memory, for every node to cache every single registration in a cloud of this size, the selection of

neighbors to cache is of critical importance to ensure a reasonable trade-off among search time,
bandwidth, and memory consumption.

The specific cache organization is an implementation detail<5> but the following are requirements
that MUST be met by a cache implementation:

1. It MUST be such that a search for a single registration in the cloud can be implemented on the
order of Log10(n) LOOKUP message operations, where n is the total number of registrations in the
cloud. (For example, the cache structure specified in [PAST] has this property.)

2. The cache MUST logically include all entries in each of the node's Leaf Sets.

This constraint on the cache ensures that there is always a discoverable path to a registered PNRP
ID. PNRP nodes, which are also Publishers, also use this constraint to detect and repair partitions
in the cloud, as specified in section 3.2.6.2.1.

3. A PNRP node MUST maintain a cache of at least 10 route entries (or all route entries in the cloud if
there are fewer than 10), of the PNRP IDs of which are evenly distributed around the number
space.

This constraint ensures that when a neighbor is performing a bootstrap operation and solicits
entries (using SOLICIT messages) for this node's cache, it is possible to advertise (using
ADVERTISE messages) an even distribution of candidates.

3.2.2 Timers

Conversation Timer: A one-shot timer per Conversation Table entry, which is used to expire the
conversation entry. The time-out value SHOULD be 15 seconds.

3.2.3 Initialization

The Publisher performs no initialization beyond that specified in section 3.1.3.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Registering a Peer Name

To register a Peer Name, the application or higher-layer protocol MUST provide:

 An indication of which cloud that the name is to be registered in.

 The elements to form a Peer Name:

 For an Unsecured Peer Name, a classifier and optionally, a Peer Identity.

 For a Secure Peer Name, a Peer Identity and an optional classifier.

 For a delegated Peer Name, a Peer Identity, Certificate Chain, and an optional classifier.

https://go.microsoft.com/fwlink/?LinkId=90243

60 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Optionally, a ServiceLocationPrefix value

 Optionally, a FriendlyName string

 Optionally, an Extended Payload

 An Endpoint list. Optional if an Extended Payload is supplied.

If there are no addresses currently available in the Local Endpoint List, a failure MUST be returned to
the application or higher-layer protocol.

To register a Peer Name in a given cloud, a node MUST perform the following steps:

1. Verify that an entry for the cloud exists in the Cloud Table. If not, return a failure.

2. Verify that the Peer Name conforms to the syntax as specified in section 2.2.4.

3. If the application or higher-layer protocol did not specify a ServiceLocationPrefix value, select
any one of the addresses in the Local Endpoint List, and select the first 64 bits as the

ServiceLocationPrefix.

4. Create a PNRP ID from the Peer Name provided by the application or higher-layer protocol and
the Service Location Prefix, using the process specified in section 3.1.4.4.1, where the 64-bit
ServiceLocationSuffix MUST be set to a random value.

5. The node MUST add the PNRP ID to its Locally Registered PNRP ID List.

The node MUST then initiate the procedure as specified in section 3.1.4.4.2 to resolve the PNRP ID

equal to the new PNRP ID + 1. ResolveCritera MUST be set to SEARCH_OPCODE_NONE,
ResolveReasonCode MUST be set to REASON_REGISTRATION, PickBestMatchFromLocalIds
MUST be set to FALSE, and InitialBestMatchRouteEntry MUST be a ROUTE_ENTRY structure
holding the PNRP ID and the endpoints in the Local Endpoint List.

(Note that because the previously mentioned route entry is in each LOOKUP message sent, the
nodes receiving the LOOKUP will have the opportunity to learn of the existence of the new node.)

6. If this is the first locally registered PNRP ID, publish an address used by the node to SSDP (as

specified in [UPNPARCH1], section 1). The format of the text in the AL field MUST be in the form
of an IPv6 Addresses and port in the format as specified in [RFC2732] (for example, the format
of the hostname portion of a URL).

3.2.4.2 Unregistering a Peer Name

To unregister a Peer Name, a node MUST carry out the following steps:

1. Create a Revoke CPA for the Peer Name. This CPA MUST have the R field set to indicate that this
is a revoke CPA.

2. The Revoke CPA MUST be sent via a FLOOD message with the D flag clear to the two nodes in
the Leaf Set with PNRP IDs that are closest to the locally registered PNRP ID. That is, the
numerically closest PNRP ID that is greater than the local PNRP ID and the numerically closest

PNRP ID that is less than the PNRP ID MUST be used.

3. The node MUST select the node that has the PNRP ID immediately greater than the Local PNRP ID.
The node MUST send the PNRP ID via a FLOOD message (with the D flag clear) to the node with a
PNRP ID that is the fifth closest and smaller than the local PNRP ID. The process is also reversed.
The node MUST select the PNRP ID that is immediately less than the local PNRP ID. This entry will
be sent via a FLOOD message (with the D flag clear) to the fifth closest and larger PNRP ID that
the node knows about.

https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=90375

61 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4. In this manner, the Leaf Sets of the nodes at the edge of this node's Leaf Set will know fully about
the existing neighbors.

5. If there are no longer any locally registered PNRP IDs, stop publishing the address used by the
node in SSDP (as specified in [UPNPARCH1], section 1).

Whenever a FLOOD message with the D flag clear is sent, the node MUST also put the FLOOD
message in the Pending List, set its Retry Count to 2, and start its Message Retransmission Timer.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Receiving a New ROUTE_ENTRY

SOLICIT, LOOKUP, FLOOD and AUTHORITY messages contain route entries. The processing required
when receiving a new ROUTE_ENTRY structure is specified in section 3.1.5.11. Publishers MUST follow
the same rules, with the following additions:

If the PNRP ID of the ROUTE_ENTRY message falls within one of the node's PNRP ID Leaf Sets, it
MUST set the A and C flags in the INQUIRE message to request a CPA and Certificate Chain, and
NeedCpa MUST be set to true for the entry added to the Pending Route Entry Add List.

3.2.5.2 Receiving a LOOKUP Message

When a LOOKUP message is received, a node MUST take the following steps:

1. The receiving node MUST parse the received message to ensure that it is properly structured, that
all required fields are present, and that all fields are in the correct order. Individual fields MUST
also be parsed for correctness. If the message fails validation, it MUST be silently discarded. The
ResolveReasonCode field is required, but MUST be ignored by the receiving node.

2. If the LOOKUP message contains a ROUTE_ENTRY message, the ROUTE_ENTRY message SHOULD

be submitted to the cache (as specified in section 3.2.5.1) for consideration for inclusion.

3. If the Validate PNRP ID field contains a nonzero value, the protocol MUST check the Locally
Registered PNRP ID List to see if this PNRP ID is registered or not. If the ID is not currently
registered, the protocol MUST set a flag to indicate that the Validate PNRP ID field is not present
on this node. This flag will be referred to as ValidateNotLocal.

4. The node MUST compare the addresses in the Flagged Path field against the addresses being used
by this node. If none of these node addresses appear in the list, the node MUST search its Locally

Registered PNRP ID List and select the one numerically closest to the Target PNRP ID (a tie can be
broken in any implementation-specific manner). This will be referred to as ClosestLocalMatch. If
the ValidateNotLocal flag is not set, the returned PNRP ID MUST be closer to the Target PNRP ID
than the Validate PNRP ID field.

5. The node MUST search its cache of remote nodes looking for the closest match to the Target PNRP
ID. The Search MUST not return any nodes having addresses that appear in the Flagged Path
field. If the A flag in the LOOKUP message (as specified in section 2.2.2.8) is not set, any remote

node found MUST also be numerically closer to Target PNRP ID than the Validate PNRP ID field.
If multiple nodes are located, the node MUST make a random choice between the nodes, giving
more weight to the nodes that are closest to Target PNRP ID. The result, if any, will be referred to
as ClosestRemoteMatch.

6. If no ClosestRemoteMatch was found and the Target PNRP ID would have fallen within one the
Leaf Set of one of the locally registered IDs, the node SHOULD note this is a flag to be referred to

as TargetSuspicious.

https://go.microsoft.com/fwlink/?LinkId=90554

62 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7. If both ClosestLocalMatch and ClosestRemoteMatch were found, the node MUST now prepare an
AUTHORITY_BUFFER message to send back to the sender of the LOOKUP message. If both a

ClosestLocalMatch and a ClosestRemoteMatch were found, the one closest to the Target PNRP ID
MUST be placed in the ROUTE_ENTRY message in the AUTHORITY message. Otherwise, the match

that was found MUST be used.

8. If ValidateNotLocal is set, the N flag in the AUTHORITY_BUFFER message MUST be set.

9. If TargetSuspicious is set, the L flag in the AUTHORITY_BUFFER message MUST be set.

10. The AUTHORITY_BUFFER message MUST now be sent back to the sender of the LOOKUP
message, as specified in section 3.2.5.10.

3.2.5.3 Receiving a SOLICIT Message

Upon receiving a SOLICIT message for a given cloud, a PNRP node MUST take the following steps:

1. Check whether the SOLICIT message conforms to the syntax as specified in section 2.2.2.1, and

drop the message if not. Otherwise, continue processing as follows.

2. Look for an entry in the cloud's Conversation Table with the same source address and port and

Hashed Nonce. If an entry is found in the table, its Conversation Timer MUST be restarted.
Otherwise, attempt to create a new entry and start its Conversation Timer. If a new entry cannot
be created (or the node deems itself too busy for any other reason), it MUST respond with an
ADVERTISE message whose IDList contains no PNRP IDs; otherwise, continue processing as
follows.

3. The node SHOULD select a set of five PNRP IDs from its Route Entry Cache, which is roughly
evenly spread around the number space. The PNRP IDs MAY be selected by random selection. If

the cache does not contain at least five entries, the node MUST include its own locally registered
PNRP IDs as well.

4. Construct an ADVERTISE message with the selected PNRP IDs in the IDList, and send it to back
to the source of the SOLICIT message.

5. The node SHOULD also begin validating the ROUTE_ENTRY from the SOLICIT message as specified
in section 3.2.5.1.

3.2.5.4 Receiving a REQUEST Message

When the REQUEST message is received for a given cloud, the receiving node MUST perform the
following steps:

1. Check whether the REQUEST message conforms to the syntax as specified in section 2.2.2.3, and

drop the message if not. Otherwise, continue processing as follows.

2. Look for an entry in the cloud's Conversation Table corresponding to the sender's IP address and
port. If none is found, ignore the REQUEST message. Otherwise, continue processing as follows.

3. Attempt to verify that the value of the Nonce field in the REQUEST message is valid. This MUST

be done by performing an SHA-1 [RFC3174] hash on the Nonce and comparing it with the
Hashed Nonce stored in the conversation entry. If they do not match, further processing MUST
be stopped and the message MUST be silently dropped. Otherwise, continue processing as follows.

4. Reply with an ACK message to the sender of the REQUEST message to indicate receipt and to
avoid retransmission of the REQUEST message.

5. The node MUST then send a FLOOD message, with the D flag set, for each PNRP ID that was
listed in the REQUEST message, and delete the entry from the Conversation Table.

https://go.microsoft.com/fwlink/?LinkId=90408

63 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.5.5 Receiving a FLOOD Message

Section 3.1.5.5 specifies the rules for handling received FLOOD messages. In addition to those rules,
when sending an ACK message in response to a FLOOD message with a nonzero Validate PNRP ID

field, a Publisher MUST check its Locally Registered PNRP ID List. If the Validate PNRP ID is not in
the list, the Publisher MUST set the N flag in the ACK message.

3.2.5.6 Receiving an INQUIRE Message

When a PNRP node receives an INQUIRE message, it MUST perform the following steps:

1. Check whether the INQUIRE message conforms to the syntax as specified in section 2.2.2.5, and
drop the message if not. Otherwise, continue processing as follows.

2. Check the Locally Registered PNRP ID List for the presence of the PNRP ID in the Validate PNRP
ID field. If the PNRP ID is not found, the node MUST construct an AUTHORITY_BUFFER message
with the N flag set, return it to the sender, and take no further action. Otherwise, continue
processing as follows.

3. If the PNRP ID is in the Locally Registered PNRP ID List, the node MUST construct an
AUTHORITY_BUFFER message.

4. If the A flag in the INQUIRE message is set, construct a CPA (as specified in section 3.2.5.7) for
the locally registered PNRP ID, including the INQUIRE message. Nonce if supplied or assume the
NONCE to be all zeros.

5. If the C flag in the INQUIRE message is set, retrieve the Certificate Chain, if any, for the CPA
message, and insert it into the AUTHORITY_BUFFER message.

6. If the X flag in the INQUIRE message is set, retrieve the Extended Payload, if any, for the ID
and insert it into the AUTHORITY_BUFFER message.

7. Send the AUTHORITY_BUFFER message to the source of the INQUIRE message, as specified in
section 3.2.5.10.

3.2.5.7 Constructing a CPA

To construct a CPA, a PNRP node MUST compose an Encoded CPA structure as specified in section
2.2.3.1, with the NONCE copied from the INQUIRE message received. The Service Address List
structure MUST be filled with the endpoints in the Local Endpoint List. Finally, the PNRP node MUST fill
in the Signature as specified in section 3.2.5.9.

3.2.5.8 Constructing an Extended Payload

To construct an EXTENDED PAYLOAD message, a PNRP node MUST compose an EXTENDED_PAYLOAD
structure as specified in section 2.2.3.3, and fill in the Signature as specified in section 3.2.5.9.

3.2.5.9 Generating a Signature

To generate a signature over an Encoded CPA or EXTENDED_PAYLOAD structure (minus the
Signature field), the PNRP node MUST first generate an SHA-1 hash of the structure (minus the
Signature field). The PNRP node MUST then generate a signature over the SHA-1 hash by using the
RSASSA-PKCS1-V1_5 algorithm as specified in [RFC3447] section 8.2, and fill in the SIGNATURE

structure, putting the computed signature in the Signature Data field.

https://go.microsoft.com/fwlink/?LinkId=90422

64 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.5.10 Sending an AUTHORITY_BUFFER

To send an AUTHORITY_BUFFER message to a given node, a PNRP node MUST construct AUTHORITY
messages as follows:

If the AUTHORITY_BUFFER message is less than or equal to 1188 bytes long, the PNRP node MUST
construct a single AUTHORITY message with the Offset field set to 0.

If the AUTHORITY_BUFFER message is more than 1188 bytes long, the PNRP node MUST fragment the
original AUTHORITY_BUFFER message into multiple fragments where every fragment except that last
fragment MUST be 1,188 bytes long, and the last fragment MUST be less than or equal to 1,188 bytes
long. Each fragment MUST then be placed into its own AUTHORITY message, where every AUTHORITY
message MUST contain the same PNRP Header values.

The PNRP node MUST then send the AUTHORITY message(s) to the specified node.

3.2.5.11 Receiving an AUTHORITY Message

Section 3.1.5.6.1 specifies the rules for handling received AUTHORITY messages. In addition to those

rules, when a Route Entry completes validation and is added to the Route Entry Cache (as specified in
3.1.5.6.1.2), the Publisher MUST also check, for each locally registered PNRP ID, whether the PNRP
ID in the Route Entry would fall within the Publisher's Leaf Set. If so, it MUST do the following:

1. Add the Route Entry to the Leaf Set (removing the farthest entry on the same side of the locally
registered PNRP ID, if there were already five entries in the Leaf Set on that side).

2. Build a list of Leaf Set neighbors to which to forward the new Route Entry. It MUST pick the
nearest cached PNRP ID greater than the route entry's PNRP ID and the nearest cached PNRP ID

less than the route entry's PNRP ID. If the Route Entry is being added because of a FLOOD
message, any nodes with endpoints in the Already Flooded List of the FLOOD message MUST be
excluded when looking for the nearest PNRP ID.

3. Construct a FLOOD message with the D flag clear containing the new Route Entry. The Already
Flooded List MUST contain one of the endpoints from each of the two nodes chosen earlier (the

choice of which endpoint can be arbitrary). If the route entry was received in a FLOOD message,
then the Already Flooded List MUST also contain any addresses in the Already Flooded List of the

original FLOOD message.

4. Send the FLOOD message to the two nodes previously chosen.

5. If the Route Entry was received from a FLOOD and the source address of the FLOOD message is
not in the received Route Entry, the local node MUST send a FLOOD message with the D flag clear
back to the sender, containing a Route Entry for the local PNRP ID to whose Leaf Set the Route
Entry was added.

Whenever a FLOOD message with the D flag clear is sent, the node MUST also put the FLOOD
message in the Pending List, set its Retry Count to 2, and start its Message Retransmission Timer.

3.2.5.11.1 Receiving an AUTHORITY_BUFFER

The rules of the processing of an AUTHORITY_BUFFER message are as specified in section 3.1.5.6.1.1,
with the following addition at the end. If the ResolveReasonCode value is
REASON_SPLIT_DETECTION, and this AUTHORITY_BUFFER message was received in response to an

INQUIRE message, then the PNRP node MUST do the following processing to determine whether or not
the cloud is split.

In the following list, the "best match PNRP ID" refers to the PNRP ID in the Route Entry of the
AUTHORITY_BUFFER message, and "Target PNRP ID" is the Target PNRP ID in the resolve entry.

65 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following are the three possibilities:

 The best match PNRP ID exists in the local cache of this node and there are no cache entries with

PNRP ID between the best match PNRP ID and the Target PNRP ID. This means there is no
evidence of a cloud split.

 The best match PNRP ID exists in the local cache of this node and there is at least one Route Entry
with a PNRP ID between the best match PNRP ID and the Target PNRP ID. This tends to suggest
that the cloud is split with the local node being part of the bigger cloud.

 The best match PNRP ID is not part of the local cache of this node. This indicates that the cloud is
likely split, because the best match PNRP ID is the locally published PNRP_ID. If the best match
PNRP ID is closer to the Target PNRP ID than any other entry in the local cache, this suggests that
the local node is part of the smaller cloud piece. Otherwise, if the local node has a cache entry

that is closer to the Target PNRP ID than the best match PNRP ID, this indicates that the local
node is part of the bigger cloud piece.

 If the indication is that the local node is part of a small cloud, a PNRP node SHOULD repeat the split

detection process, as specified in section 3.2.6.2.1, for each locally published PNRP ID except the
Target PNRP ID (which it just completed). This will help to get as many parts of the number space
merged as possible.

3.2.6 Timer Events

3.2.6.1 Conversation Timer Expiry

When a Conversation Timer expires for a given Conversation Table entry, the PNRP node MUST delete
the entry.

3.2.6.2 Maintenance Timer Expiry

When the Maintenance Timer expires, the PNRP node MUST attempt to detect cloud splits (as specified

in section 3.2.6.2.1).

If a node finds that it has no entries in its cache, it SHOULD also try to resynchronize with the nodes it
knows in order to obtain more entries. Synchronization is initiated when the node sends a SOLICIT
message, as specified in section 3.1.4.3.

The PNRP node MAY<6> also resolve any PNRP IDs that it wants in order to ensure that the cache

requirements, as specified in section 3.2.1.1, continue to be met. If it does resolve, then the
ResolveReasonCode MUST be set to REASON_CACHE_MAINTENANCE.

3.2.6.2.1 Detection of Cloud Splits

PNRP nodes MUST periodically test to determine whether they have become isolated or split off from
the main cloud. For performance reasons, the frequency of split detections SHOULD be roughly
constant over the entire cloud. This prevents tests from occurring too frequently. It means that for a

single node, the test frequency is inversely proportional to the cloud's estimated size as specified in

section 3.2.6.2.1.1. If, therefore, a node estimates that the cloud is large, the probability of that node
initiating the split detection decreases.

To initiate split detection, a PNRP node MUST initiate a PNRP ID resolve process as specified in section
3.1.4.4.2, with following parameters:

 Target PNRP ID: A node MUST randomly select a locally registered PNRP ID and then add 1 to

get a Target PNRP ID.

 ResolveCriteria: SEARCH_OPCODE_NONE.

66 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 PickBestMatchFromLocalIds: False.

 ResolveReasonCode: REASON_SPLIT_DETECTION.

 InitialBestMatchRouteEntry: NULL.

 InitialNextHopRouteEntry: A Route Entry with PNRP ID set to zero and the first address set to

the address of a seed server that was selected as specified in section 3.1.4.2.1.

3.2.6.2.1.1 Cloud Size Estimation

To calculate the estimated cloud size, a PNRP node SHOULD repeat the following process for every
locally registered PNRP ID.

Select the numerically closest Leaf Set entry on each side (call their PNRP IDs A and B). If no such
entries exist, skip this locally registered PNRP ID. Otherwise, compute a cloud size estimate as

2*(2256)/(B-A). If the cloud size estimate is greater than or equal to 232 (which can happen if the
same Peer Name is registered multiple times), the node MUST ignore those values.

At the completion of the preceding process for all locally registered names, a PNRP node MUST take
the average of all the cloud size estimates that were not ignored. This will be the estimated cloud size
in terms of the number of PNRP IDs in the cloud. To find the estimated cloud size in terms of the
number of PNRP nodes, a PNRP node SHOULD divide the preceding estimated cloud size by the

number of locally registered PNRP IDs.

3.2.6.3 Message Retransmission Timer Expiry

When the Message Retransmission Timer expires, the PNRP node MUST follow the rules as specified in
section 3.1.6.3. In addition to those rules, a Publisher MUST also take additional actions for specific

message types, which are specified as follows.

If the message stored was an INQUIRE message and the Retry Count is decremented to 0, the Route
Entry MUST be found in the Pending Route Entry Add List based on the Message ID of the timed-out
INQUIRE message and MUST be silently discarded.

If the message stored was a SOLICIT message and the Retry Count is decremented to 0, the
conversation MUST be located in the Conversation table by using the SolicitMessageId field. If
found, the conversation state MUST be released.

If the message stored was a FLOOD message, the Retry Count is decremented to 0, and the Route
Entry for the PNRP ID in the Validate PNRP ID field of the FLOOD message is in the route cache,
the route MUST be removed to prevent future attempts to send messages to the unresponsive node.

3.2.7 Other Local Events

3.2.7.1 Resolving a PNRP ID

The rules for resolving a PNRP ID are specified in section 3.1.4.4.2. In addition, whenever a Publisher

resolves a PNRP ID and its Locally Registered PNRP ID List is not empty, it MUST do the following.

If no InitialBestMatchRouteEntry was supplied and PickBestMatchFromLocalIds is set to true, the
Resolver MUST generate a Route Entry for the nearest locally registered PNRP ID and store it as the
CurrentBestMatch when initializing the resolve entry.

The first entry in the ResolvePath MUST be (any) one of the network endpoints in the Publisher's
Local Endpoint List. This prevents other nodes from referring this node back to itself.

67 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.7.2 Processing Address Change Notifications

A Publisher MUST follow the same procedure as specified in section 3.1.7.1 for processing address
changes. In addition, for every entry in its Locally Registered PNRP ID List, a Publisher MUST

advertise a Route Entry with the new address list via the procedure as specified in step 5 of section
3.2.4.1.

68 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

4.1 Resolving a Peer Name

An application asks a PNRP node (hereafter, the Resolver) to resolve a Peer Name. The Resolver, in

turn, takes the steps discussed in the following topics.

4.1.1 Opening a Cloud

The Resolver, not yet a member of any clouds, first joins one by performing the following steps:

1. The Resolver checks to see if the cloud already exists in its Cloud Table. When it does not, the
Resolver creates a new entry. It does this by selecting a port and a set of four IPv6 Addresses,
or as many as the local system has, not exceeding four, to use for PNRP communication, ensuring
that none of the address/port combinations are to be found in the Local Endpoint List of any other
Cloud Table entry.

2. The Resolver begins listening for incoming UDP messages on the chosen port, looking for
messages sent to the chosen IPv6 Addresses.

3. The Resolver sets CurrentSeedServerAddressIndex to 0, and sets CloudDiscoveryMode to
LocalOOB.

4. The Resolver initiates cloud discovery by using the address supplied by the application.
CloudDiscoveryMode is set to "LocalOOB", and it now initiates a synchronization conversation.

4.1.2 Cache Synchronization

Having successfully opened a cloud, the PNRP node first synchronizes its cache before initiating Peer
Name resolution.

The Resolver sends a SOLICIT message to another node within the cloud (the "Discovered Node"). The

two nodes then use PNRP IDs to negotiate which route entries to exchange. The Discovered Node
returns a Route Entry for each node that the Resolver is interested in.

A synchronization conversation includes SOLICIT, ADVERTISE, REQUEST, ACK, and FLOOD messages.
The following figure shows the sequence of messages sent between the Resolver and the Discovered
Node.

69 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 4: Node communication with Discovered Node

Note The FLOOD messages in this conversation are not synchronous; the Discovered Node can send

a second or third FLOOD message before it has received an ACK message for a previous FLOOD
message.

The following is an example of what happens during a sample synchronization conversation:

1. The Resolver sends a SOLICIT message to the Discovered Node to initiate the conversation. The
SOLICIT message contains the following data:

 Hashed nonce used to identify the conversation.

 Route Entry for a locally registered PNRP ID, if any.

2. The Discovered Node responds with an ADVERTISE message that contains an array of node PNRP
IDs that it selected from its own cache.

The Discovered Node keeps track of the hashed nonce that identifies the conversation.

The Discovered Node also adds the Route Entry from the SOLICIT message to its own cache.

3. When the Resolver receives the ADVERTISE message, it uses the Acked Message ID and the
hashed nonce in the message to verify that it sent a corresponding SOLICIT message.

70 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Resolver then goes through the array of PNRP IDs in the ADVERTISE message and selects the
ones that it wants to include in its own cache. Say it selects all of them. Thus, it returns a

REQUEST message to specify which PNRP IDs it would like to obtain.

After the REQUEST message is sent, any state or context information held for the conversation is

released.

4. When the REQUEST message is received, the Discovered Node immediately returns an ACK
message to indicate receipt and to avoid retransmission of the REQUEST message by the Resolver.

5. The Discovered Node attempts to verify that the nonce in the REQUEST message is valid. This is
done by hashing the nonce and comparing it with the state information saved from the SOLICIT
message (see step 2). Because they match, the nonce is valid and the receiving node sends a
FLOOD message for each PNRP ID that was listed in the REQUEST message.

6. The Resolver inspects each FLOOD message as it is received. If the D bit is clear (as specified in
section 2.2.2.4), the Resolver returns an ACK message to indicate that it has received the FLOOD
message. The Resolver then adds to its cache the Route Entry in the message.

4.1.3 Peer Name Resolution

The Resolver now attempts Peer Name resolution via the following steps.

71 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 5: Peer Name resolution

1. The Resolver, seeking endpoint information for a Peer Name registered by Node 3, creates a

LOOKUP message. To do so, the Resolver first computes a corresponding PNRP ID (which is
called 3 in this example), specifies 3 as the Target PNRP ID, and sets itself as the first entry in the
path. It then sets the Validate PNRP ID field to be the (numerically) closest PNRP ID it has in its

cache to the Target PNRP ID, and sends the packet to the corresponding node (in this case, Node
1).

2. Upon receiving the LOOKUP message, Node 1 first looks in its cache to see if it contains the PNRP

ID found in the Validate PNRP ID field. It does not, so Node 1 instead finds three route entries
that are closer to the Target PNRP ID than the Validate PNRP ID. It creates an AUTHORITY
message and randomly selects one of the three route entries to put in the Route Entry field of
the AUTHORITY_BUFFER. It then returns the AUTHORITY message to the Resolver.

72 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3. The Resolver extracts the PNRP ID (node 2) from the Route Entry field in the returned
AUTHORITY message, and creates a new LOOKUP message, adding Node 1 to the path. The

Resolver sets the Validate PNRP ID field to the PNRP found in the Route Entry field of the
AUTHORITY message, and sends it to the corresponding node (Node 2).

4. Upon receiving the LOOKUP message, Node 2 first looks in its cache and to see if it contains the
PNRP ID found in the Validate PNRP ID field. It does not, and also has no PNRP IDs in its cache
that are closer to the Target PNRP ID than the Validate PNRP ID. It returns an AUTHORITY
message with the Route Entry field set to NULL.

5. Finding the Route Entry field in the returned AUTHORITY message empty, the Resolver
backtracks by creating a new LOOKUP message, adding Node 2 to the path, and sending it to the
previous node in the path (Node 1).

6. Upon receiving the LOOKUP message, Node 1 responds exactly as it did in step 2, making certain
not to return any PNRP IDs that were already in the path (for example, Node 2 will not be
returned). In this case, it returns Node 2a.

7. The Resolver extracts the PNRP ID from the Route Entry field in the returned AUTHORITY
message. Because Node 2 was already added to the path in step 7, it is not added to the path a
second time. The Resolver creates a LOOKUP message, setting the Validate PNRP ID field to the

PNRP ID found in the Route Entry field of the AUTHORITY message, and sends it to the
corresponding node (Node 2a).

8. Upon receiving the LOOKUP message, Node 2a first looks in its cache and to see if it contains the
PNRP ID found in the Validate PNRP ID field. It does, and it creates an AUTHORITY message
with the Route Entry field set to the target node (Node 3). Node 2a then returns the AUTHORITY
message to the Resolver.

9. The Resolver, finding the PNRP ID in the Route Entry field of the returned AUTHORITY message

equal to the Target PNRP ID, initiates validation by sending an INQUIRE message to Node 3.

Node 3 checks its Locally Registered PNRP ID List for the presence of the Target PNRP ID. Finding
it, Node 3 constructs an AUTHORITY_BUFFER message containing a CPA for the Target PNRP ID.

The classifier portion of the Peer Name is added to the AUTHORITY_BUFFER message.

Because the AUTHORITY_BUFFER message is 2,000 bytes long (exceeding the 1,188-byte limit),
the buffer is split into two fragments: the first is 1,188 bytes long; and the second is 812 bytes
long. Each fragment is sent in a separate AUTHORITY message.

10. The Resolver, determining that the value of the Size field (2,000) exceeds 1,188, knows that the
AUTHORITY_BUFFER message will arrive in multiple AUTHORITY messages. After receiving all the
AUTHORITY messages, reassembling the AUTHORITY_BUFFER message, and validating that the
CPA corresponds to the Peer Name of interest, the Resolver reports the endpoint information back
to the application.

4.2 Registering a Name

To register a Peer Name, a node performs the resolve operation as specified in section 4.1.3, with
the Target ID set to the PNRP ID to be registered + 1. For example, if PNRP ID 6 were being

registered, it would perform a resolve operation seeking PNRP ID 7.

As other nodes receive LOOKUP messages from the registering node, they add the registering node's

PNRP ID to their Leaf Sets when appropriate. Likewise, the registering node will populate its own Leaf
Set with the PNRP IDs that it finds in the received AUTHORITY messages.

73 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.3 Unregistering a Name

When a PNRP ID is unregistered, a Revoke CPA is sent to two entries from the Leaf Set of the ID
being unregistered. One entry is the numerically closest ID greater than the local ID and the other

entry is the numerically closest ID less than the local ID. Each recipient checks its cache to see if an
entry exists for the PNRP ID. If one is found, the recipient removes it from its cache. If the entry was
in a Leaf Set of a locally registered ID, the node FLOODs the Revoke CPA on to other members of its
Leaf Set.

Figure 6: PNRP name revocation process

1. The unregistering node (Node 6) creates a Revoke CPA for the Peer Name. The R field of the
CPA is set to indicate that this is a Revoke CPA. It puts the Revoke CPA in a FLOOD message
and sends it to the node in its Leaf Set with the numerically closest registered PNRP ID lower than
its own (for example, Node 5). Upon receiving the FLOOD message, Node 5 removes the PNRP ID

of the unregistering node from its local cache. If Node 5 has the PNRP ID of the unregistering node
in its Leaf Set, it forwards the Revoke CPA to the node in its Leaf Set with the closest registered
PNRP ID lower than its own (for example, Node 4), where it is processed exactly as described
here. This continues until the Revoke CPA reaches a node that does not have the PNRP ID of the
unregistering node in either its cache or its Leaf Set, at which point possessing (and forwarding) of
the Revoke CPA ceases.

2. Node 6 sends an identical FLOOD message to the node in its Leaf Set with the closest registered

PNRP ID greater than its own (for example, Node 7). Node 7 processes the Revoke CPA exactly
as described in step 1, except that all Revoke CPA forwards will be made to nodes with
numerically greater PNRP IDs.

3. The unregistration of Node 6 produces gaps in the Leaf Sets of its nearby nodes. Node 6
therefore sends a FLOOD message to the node in its Leaf Set with the smallest PNRP ID (for
example, Node 1). The FLOOD message informs the recipient of the node with the next greater
PNRP ID than the unregistering node (for example, Node 7). Node 1 will place the Node 7 PNRP ID

in its Leaf Set where the Node 6 PNRP ID used to reside.

4. Node 6 repeats step 3, notifying the node in its Leaf Set with the greatest PNRP ID (for example,
Node 11) of the node with the next lower PNRP ID than the unregistering node (for example, Node
5), allowing Node 11 to repair its Leaf Set as well.

4.4 Flooding a New Leaf Set Member

Assume that there is a registered node with a Local ID of Y and that its Leaf Set consists of {B, C, D,
E, F} on one side and {G, H, I ,J, K} on the other. Assume that Node Y learns about a new Route
Entry with the ID of X, which is closer than G currently is.

74 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 7: Leaf Set node arrangement example

The following will now take place.

Note This sequence illustrates the cascading flood activity when a new ID is learned. Prior to any

node propagating a FLOOD message, the node will send an INQUIRE message to the new node that it
has just learned about. The node will propagate the FLOOD message only when an AUTHORITY
message has been received back from the new node.

1. X displaces K in Y's Leaf Set. This is the first wave of flooding.

2. Y selects the two nearest route entries in its cache with one being less than Y and one being
greater than Y. In this case, nodes F and G are chosen.

3. Y builds a FLOOD message with an Already Flooded List containing an address that Y is using and

one of the addresses of both F and G. The FLOOD message will now be sent to F and G.

4. When F receives the FLOOD message from Y of node X, Y checks to see whether it already knows
about X. If Y does, it drops the FLOOD message with no further action. It does not, so it adds X to
its Leaf Set.

5. F selects the two nearest route entries to its local ID, which do not have addresses in the Already
Flooded List, with one being less than F and one being greater than F. E and H will be chosen.

6. F builds a FLOOD message with the Already Flooded List having an address of E and H appended

to it. The list will now contain {Y, F, G, E, H}.

7. F now sends the FLOOD message of X to E and H.

8. When G receives the FLOOD message from Y of Node X, Y checks to see if it already knows about
X. If it did, it would drop the FLOOD message with no further action. It does not, so it adds X to its

Leaf Set.

9. G selects the two nearest route entries to its local PNRP ID, which do not have addresses in the

Already Flooded List with one being less than F and one being greater than F. E and H will be
chosen.

10. G builds a FLOOD message with the Already Flooded List having an address of E and H appended
to it. The list now contains {Y, F, G, E, H}.

11. G now sends the FLOOD message of X to E and H.

75 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

12. The second wave of flooding for Node X begins.

13. Both Node E and Node H receive two copies of the FLOOD message of X, one forwarded from F

and one forwarded from G. When processing the second instance of the flood, E and H ignore the
second one because X will be either in their Leaf Set or in a list of route entries being checked.

14. E and H repeat the process, Flooding to D and I. The Already Flooded List will contain {Y, F, G, E,
H, D, I}.

15. The third wave of flooding for Node X begins.

16. Nodes D and I receive the FLOOD message of X. Both D and I forward the FLOOD message to two
neighbors, but because the Already Flooded List will already contain all the nodes in half or each
node's Leaf Set, one of the flood targets will likely not be the next nearest neighbor in that
direction.

17. D forwards to C, which is in its Leaf Set, but does not necessarily flood to J because J is outside its
Leaf Set. In this example, it forwards to L because it does not know about J or K. The Already
Flooded List contains {Y, F, G, H, D, I, C, L}.

18. I forwards to J, which is in its Leaf Set, but does not necessarily forward to C because C is outside
its Leaf Set. In this example, it forwards to A because it does not know about B and C. The
Already Flooded List contains {Y, F, G, H, D, I, A, J }.

19. The fourth wave of flooding for Node X begins.

20. Nodes A, C, J, and L receive the FLOOD message of X. A and L do not forward the FLOOD message
because X falls outside their Leaf Sets.

21. Nodes C and J forward the FLOOD message because X is still in their Leaf Sets.

22. C sends a FLOOD message to B and to some other node falling outside the Leaf Set.

23. J sends a FLOOD message to K and some other node falling outside the Leaf Set.

24. The fifth wave of flooding of X begins.

25. B does not forward the FLOOD message because X does not fall in its Leaf Set.

26. K ends forwarding of the FLOOD message because X still falls within its Leaf Set. K sends a FLOOD
to L and some other node that is outside its Leaf Set.

27. The sixth wave of flooding begins.

28. L does not forward the FLOOD message because X does not fall within its Leaf Set. Any of the
other more remote nodes will also not forward the FLOOD message.

29. Additionally, all of the nodes that added X to their Leaf Set will send FLOOD messages to with

their own route entry back to X. In this way, X learns of all the nodes that consider X to be in their
Leaf Set. These transactions are not included in the figure to reduce the clutter.

76 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

Public/private key pairs are assumed to be generated in a way that can be trusted, and to be stored in

a reliable way.

No security whatsoever is provided for Unsecured Peer Names. Therefore, there is no guarantee
that resolving an Unsecured Peer Name will succeed or resolve to a non-malicious node. Any use
requiring such assurance does not use Unsecured Peer Names.

Denial-of-service (DoS) attacks from on-link nodes are less important, because many other DoS
mechanisms exist (for example, duplicate address detection or switch port map poisoning) beyond

PNRP. This class of attacks is dealt with at layer 2, or dealt with administratively (socially).

PNRP provides less confidentiality about who is resolving one's published name than DNS does (where
only the DNS servers and those on the path to the DNS servers can observe this). Therefore,

applications that are extremely concerned about such information are advised to not publish their
name in PNRP.

Section 3.2.5.3 includes mitigation against DoS attacks where an attacker sends SOLICIT messages to
cause a PNRP node to create state.

Another potential threat is pollution of a node's Route Entry Cache with bad entries. PNRP mitigates
this by doing a return routability check to ensure that the PNRP node with the address it will use in the
Route Entry actually claims to be publishing the PNRP ID in each new Route Entry, before adding it to
the cache.

5.2 Index of Security Parameters

Security parameter Section

Public key type identifier Service Address List

Hash algorithm identifier SIGNATURE

77 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows XP operating system Service Pack 3 (SP3)

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 3.1.2: Windows performs periodic cache maintenance every 15 seconds when the
number of cache entries is more than two; otherwise, it performs periodic cache maintenance every
10 seconds.

<2> Section 3.1.4.2: Windows picks the 10 (or as many as exist if fewer than 10) most recently used

nodes that were previously in the cache.

<3> Section 3.1.4.2.1: Windows sorts each list individually and then concatenates the result.

<4> Section 3.1.6.2: Windows attempts to maintain a cache of at least 10 route entries (or all route
entries in the cloud if there are fewer than 10), whose PNRP IDs are evenly distributed around the
number space.

<5> Section 3.2.1.1: Windows achieves Requirement 1 by implementing a multi-level cache where

each cache level contains a fixed number of route entries that covers a progressively smaller fragment
of the total key space. The lowest level of the cache (which is the Leaf Set) is the densest and it is
centered on a PNRP ID published by the local node.

<6> Section 3.2.6.2: Windows attempts to "balance" its cache. Balancing the cache involves checking
each cache level to determine that no large gaps exist between entries. The allowable gap size
depends on the cache level; it is expected to be smaller for each level down. If a large gap is found,
an attempt is made to fill it by sending a LOOKUP message for a PNRP ID in the middle of the gap.

The precision level of the LOOKUP message match is set to be just sufficient to fill the gap.

78 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

79 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Index

A

Abstract data model
 Publisher 58
 Resolver 45
ACK packet 29
Active participation in the cloud 15
ADVERTISE packet 21
Applicability 16
AUTHORITY packet 26
AUTHORITY_BUFFER packet 26

C

Cache synchronization example 68
Capability negotiation 16
Certificate Chain 39
Certificate Extensions 40

Certified Peer Address 12
Change tracking 78
Classifier delegation 42
Cloud discovery 14
Clouds (section 1.3.3 13, section 4.1.1 68)
CPA_Public_Key packet 36

D

Data model - abstract
 Publisher 58
 Resolver 45
Data structures 32
Delegation 12

E

Encoded_CPA packet 32
Examples 68
EXTENDED_PAYLOAD packet 37
Extensions - Certificate 40

F

Fields - vendor-extensible 16
FLOOD packet 23

G

Glossary 7

H

Header 18
Higher-layer triggered events
 Publisher 59
 Resolver 47

I

Identifiers 10
Implementer - security considerations 76
Implementers - security considerations 76
Index of security parameters 76

Informative references 9
Initialization
 Publisher 59
 Resolver 47
INQUIRE packet 25
Introduction 7
IPV6_APP_ENDPOINT packet 35
IPV6_ENDPOINT packet 43

J

Joining a cloud 15

L

Leaving a cloud 16
Local events
 Publisher 66

 Resolver 58
LOOKUP packet 30

M

Message processing
 Publisher 61
 Resolver 51
Message_Syntax packet 17
Messages
 Peer Names 43
 PNRP Header 18
 syntax 17
 transport 17

N

Normative references 8

O

Overview 9
Overview (synopsis) 9

P

Parameters - security 76
Parameters - security index 76
Participation - cloud 15
PAYLOAD packet 35
Peer Names (section 1.3.1.1 10, section 2.2.4 43,

section 4.1 68, section 4.1.3 70)
Peer Names message 43
PNRP Header message 18
PNRP IDs 11
PNRP_Header packet 18
PnrpCertificateType 40
PnrpCertificateVersion 41
PnrpClassifiersList 42
PnrpPeerName 41
PnrpRole 41
Preconditions 16
Prerequisites 16
Product behavior 77

80 / 80

[MS-PNRP] - v20170601
Peer Name Resolution Protocol (PNRP) Version 4.0
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Protocol Details
 overview 45
Publisher
 abstract data model 58
 higher-layer triggered events 59
 initialization 59
 local events 66
 message processing 61
 overview 58
 sequencing rules 61
 timer events 65
 timers 59

R

References 8
 informative 9

 normative 8
Registering names - example 72
Relationship to other protocols 16
REQUEST packet 22
Resolver
 abstract data model 45
 higher-layer triggered events 47
 initialization 47
 local events 58
 message processing 51
 sequencing rules 51
 timer events 57
 timers 47
Resolving names - example 68
ROUTE_ENTRY packet 39

S

Security 76
 implementer considerations 76
 parameter index 76
Sequencing rules
 Publisher 61
 Resolver 51
Service_Address_List packet 35
SIGNATURE packet 36
SOLICIT packet 19
Standards assignments 16
Syntax - message 17

T

Timer events
 Publisher 65

 Resolver 57
Timers
 Publisher 59
 Resolver 47
Tracking changes 78
Transport 17
Transport - message 17
Triggered events - higher-layer
 Publisher 59
 Resolver 47

U

Unregistering names - example 73

V

Vendor-extensible fields 16
Versioning 16

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Identifiers
	1.3.1.1 Peer Names
	1.3.1.2 PNRP IDs
	1.3.1.3 Certified Peer Addresses

	1.3.2 Delegation
	1.3.3 Clouds
	1.3.3.1 Discovering a Cloud
	1.3.3.2 Joining a Cloud
	1.3.3.3 Active Participation in the Cloud
	1.3.3.4 Leaving a Cloud

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 PNRP Header
	2.2.2 PNRP Messages
	2.2.2.1 SOLICIT
	2.2.2.2 ADVERTISE
	2.2.2.3 REQUEST
	2.2.2.4 FLOOD
	2.2.2.5 INQUIRE
	2.2.2.6 AUTHORITY
	2.2.2.6.1 AUTHORITY_BUFFER

	2.2.2.7 ACK
	2.2.2.8 LOOKUP

	2.2.3 Data Structures
	2.2.3.1 Encoded CPA
	2.2.3.1.1 Service Address List
	2.2.3.1.2 PAYLOAD
	2.2.3.1.3 IPV6_APP_ENDPOINT
	2.2.3.1.4 CPA Public Key

	2.2.3.2 SIGNATURE
	2.2.3.3 EXTENDED_PAYLOAD
	2.2.3.4 ROUTE_ENTRY
	2.2.3.5 Certificate Chain
	2.2.3.5.1 Certificate Extensions
	2.2.3.5.1.1 PnrpCertificateType
	2.2.3.5.1.2 PnrpCertificateVersion
	2.2.3.5.1.3 PnrpPeerName
	2.2.3.5.1.4 PnrpRole
	2.2.3.5.1.5 PnrpClassifiersList
	2.2.3.5.1.5.1 Classifier Delegation

	2.2.3.6 IPV6_ENDPOINT

	2.2.4 Peer Names

	3 Protocol Details
	3.1 Resolver Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Opening a Cloud
	3.1.4.2 Discovering Other Nodes in a Cloud
	3.1.4.2.1 Using Seed Servers
	3.1.4.2.2 Multicast Cloud Discovery

	3.1.4.3 Initiating a PNRP Synchronization Conversation
	3.1.4.4 Resolving a Peer Name
	3.1.4.4.1 Constructing a PNRP ID
	3.1.4.4.2 Resolving a PNRP ID

	3.1.4.5 Closing a Cloud

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Receiving an SSDP Response
	3.1.5.2 Receiving a PNRP Message
	3.1.5.3 Receiving an ADVERTISE Message
	3.1.5.4 Receiving an ACK Message
	3.1.5.5 Receiving a FLOOD Message
	3.1.5.6 Receiving an AUTHORITY Message
	3.1.5.6.1 Receiving an AUTHORITY_BUFFER
	3.1.5.6.1.1 Receiving a Response to an INQUIRE Message
	3.1.5.6.1.2 Completing a Route Entry Cache Addition

	3.1.5.7 Validating a CPA
	3.1.5.8 Validating an Extended Payload
	3.1.5.9 Validating a SIGNATURE Structure
	3.1.5.10 Validating a Certificate Chain
	3.1.5.11 Receiving a New ROUTE_ENTRY Message

	3.1.6 Timer Events
	3.1.6.1 Cloud Cleanup Timer Expiry
	3.1.6.2 Maintenance Timer Expiry
	3.1.6.3 Message Retransmission Timer Expiry

	3.1.7 Other Local Events
	3.1.7.1 Processing Address Change Notifications

	3.2 Publisher Details
	3.2.1 Abstract Data Model
	3.2.1.1 Cache

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Registering a Peer Name
	3.2.4.2 Unregistering a Peer Name

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving a New ROUTE_ENTRY
	3.2.5.2 Receiving a LOOKUP Message
	3.2.5.3 Receiving a SOLICIT Message
	3.2.5.4 Receiving a REQUEST Message
	3.2.5.5 Receiving a FLOOD Message
	3.2.5.6 Receiving an INQUIRE Message
	3.2.5.7 Constructing a CPA
	3.2.5.8 Constructing an Extended Payload
	3.2.5.9 Generating a Signature
	3.2.5.10 Sending an AUTHORITY_BUFFER
	3.2.5.11 Receiving an AUTHORITY Message
	3.2.5.11.1 Receiving an AUTHORITY_BUFFER

	3.2.6 Timer Events
	3.2.6.1 Conversation Timer Expiry
	3.2.6.2 Maintenance Timer Expiry
	3.2.6.2.1 Detection of Cloud Splits
	3.2.6.2.1.1 Cloud Size Estimation

	3.2.6.3 Message Retransmission Timer Expiry

	3.2.7 Other Local Events
	3.2.7.1 Resolving a PNRP ID
	3.2.7.2 Processing Address Change Notifications

	4 Protocol Examples
	4.1 Resolving a Peer Name
	4.1.1 Opening a Cloud
	4.1.2 Cache Synchronization
	4.1.3 Peer Name Resolution

	4.2 Registering a Name
	4.3 Unregistering a Name
	4.4 Flooding a New Leaf Set Member

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

