[MS-PKCA]:

Public Key Cryptography for Initial Authentication (PKINIT) in Kerberos Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

- Technical Documentation. Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies.
- Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the Open Specifications.
- **No Trade Secrets**. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft <u>Open Specification Promise</u> or the <u>Community Promise</u>. If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting <u>ipl@microsoft.com</u>.
- Trademarks. The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
- Fictitious Names. The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it.

Revision Summary

Date	Revision History	Revision Class	Comments	
3/2/2007	1.0		Version 1.0 release	
4/3/2007	1.1		Version 1.1 release	
5/11/2007	1.2		Version 1.2 release	
6/1/2007	1.2.1	Editorial	Changed language and formatting in the technical content.	
7/3/2007	1.2.2	Editorial	Changed language and formatting in the technical content.	
8/10/2007	1.2.3	Editorial	Changed language and formatting in the technical content.	
9/28/2007	1.2.4	Editorial	Changed language and formatting in the technical content.	
10/23/2007	2.0	Major	Converted document to unified format.	
1/25/2008	2.1	Minor	Clarified the meaning of the technical content.	
3/14/2008	2.1.1	Editorial	Changed language and formatting in the technical content.	
6/20/2008	2.1.2	Editorial	Changed language and formatting in the technical content.	
7/25/2008	2.1.3	Editorial	Changed language and formatting in the technical content.	
8/29/2008	2.1.4	Editorial	Changed language and formatting in the technical content.	
10/24/2008	2.1.5	Editorial	Changed language and formatting in the technical content.	
12/5/2008	2.2	Minor	Clarified the meaning of the technical content.	
1/16/2009	2.2.1	Editorial	Changed language and formatting in the technical content.	
2/27/2009	2.2.2	Editorial	Changed language and formatting in the technical content.	
4/10/2009	2.2.3	Editorial	Changed language and formatting in the technical content.	
5/22/2009	2.2.4	Editorial	Changed language and formatting in the technical content.	
7/2/2009	2.3	Minor	Clarified the meaning of the technical content.	
8/14/2009	2.4	Minor	Clarified the meaning of the technical content.	
9/25/2009	2.5	Minor	Clarified the meaning of the technical content.	
11/6/2009	3.0	Major	Updated and revised the technical content.	
12/18/2009	3.1	Minor	Clarified the meaning of the technical content.	
1/29/2010	3.2	Minor	Clarified the meaning of the technical content.	
3/12/2010	3.3	Minor	Clarified the meaning of the technical content.	
4/23/2010	4.0	Major	Updated and revised the technical content.	
6/4/2010	5.0	Major	Updated and revised the technical content.	
7/16/2010	5.1	Minor	Clarified the meaning of the technical content.	
8/27/2010	6.0	Major	Updated and revised the technical content.	

Date	Revision History	Revision Class	Comments	
10/8/2010	6.0	None	No changes to the meaning, language, or formatting of the technical content.	
11/19/2010	6.0	None	No changes to the meaning, language, or formatting of the technical content.	
1/7/2011	6.0	None	No changes to the meaning, language, or formatting of the technical content.	
2/11/2011	6.0	None	No changes to the meaning, language, or formatting of the technical content.	
3/25/2011	6.0	None	No changes to the meaning, language, or formatting of the technical content.	
5/6/2011	6.0	None	No changes to the meaning, language, or formatting of the technical content.	
6/17/2011	6.1	Minor	Clarified the meaning of the technical content.	
9/23/2011	6.1	None	No changes to the meaning, language, or formatting of the technical content.	
12/16/2011	7.0	Major	Updated and revised the technical content.	
3/30/2012	7.0	None	No changes to the meaning, language, or formatting of the technical content.	
7/12/2012	7.1	Minor	Clarified the meaning of the technical content.	
10/25/2012	7.1	None	No changes to the meaning, language, or formatting of the technical content.	
1/31/2013	7.1	None	No changes to the meaning, language, or formatting of the technical content.	
8/8/2013	8.0	Major	Updated and revised the technical content.	
11/14/2013	8.0	None	No changes to the meaning, language, or formatting of the technical content.	
2/13/2014	8.0	None	No changes to the meaning, language, or formatting of the technical content.	
5/15/2014	8.0	None	No changes to the meaning, language, or formatting of the technical content.	
6/30/2015	9.0	Major	Significantly changed the technical content.	

Table of Contents

1 Intr	oduction5			
1.1	1.1 Glossary			
1.2	References7			
1.2.				
1.2.	2 Informative References			
1.3	Overview			
1.4	Relationship to Other Protocols			
1.5	Prerequisites/Preconditions			
1.6	Applicability Statement			
1.7	Versioning and Capability Negotiation			
1.8	Vendor-Extensible Fields			
1.9	Standards Assignments			
2 Mes	sages			
2.1	Transport			
2.1	Message Syntax			
2.2				
2.2.				
2.2.				
2.2.				
3 Prot	cocol Details			
3.1	Common Details			
3.1.	1 Abstract Data Model			
3.1.				
3.1.	3 Initialization			
3.1.4				
3.1.				
3.	1.5.1 Client			
3.	1.5.2 KDC			
	3.1.5.2.1 Certificate Mapping 14			
	3.1.5.2.1.1 SAN DNSName field			
	3.1.5.2.1.2 SAN UPN field			
	3.1.5.2.1.3 Explicit Mapping 14			
	3.1.5.2.1.4 Key Trust			
3.1.				
3.1.	7 Other Local Events			
4 Prot	cocol Examples			
4.1	Interactive Logon Using Smart Cards			
4.2	Network Logon Using Smart Cards			
4.3	Non-RFC Kerberos Clients during AS-REQ			
	urity			
5.1	Security Considerations for Implementers			
5.2	Index of Security Parameters 20			
6 Арр	endix A: Product Behavior			
	nge Tracking			
8 Inde	ex27			

1 Introduction

The Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) protocol [RFC4556] enables the use of public **key** cryptography in the initial authentication exchange (that is, in the **Authentication Service (AS) exchange**) of the Kerberos protocol [MS-KILE]. This specification describes the Public Key Cryptography for Initial Authentication in Kerberos (PKINIT): Microsoft Extensions protocol (PKCA) and how the Windows implementation of PKINIT differs from what is specified in [RFC4556].

In an implementation of [RFC4120] or KILE, the security of the **AS exchange** depends on the strength of the password used to protect it. This also affects the security of subsequent protocol requests.

By using public key cryptography to protect the initial authentication, the Kerberos protocol [MS-KILE] is substantially strengthened and can be used with already existing public key authentication mechanisms such as smart cards.

This document references the PKINIT methods and data formats [RFC4556] and [RFC5349], that the client and the **KDC** can use both to mutually authenticate during the AS exchange with public and private key pairs and to negotiate the AS-REP key, which allows the KDC to encrypt the AS-REP key sent to the client.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also normative but do not contain those terms. All other sections and examples in this specification are informative.

1.1 Glossary

The following terms are specific to this document:

- Active Directory: A general-purpose network directory service. Active Directory also refers to the Windows implementation of a directory service. Active Directory stores information about a variety of objects in the network. Importantly, user accounts, computer accounts, groups, and all related credential information used by the Windows implementation of Kerberos are stored in Active Directory. Active Directory is either deployed as Active Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS] describes both forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight Directory Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.
- Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used for authenticating principals within the **realm** or domain served by the **Authentication** Service.
- Authentication Service (AS) exchange: The Kerberos subprotocol in which the Authentication Service (AS) component of the key distribution center (KDC) accepts an initial logon or authentication request from a client and provides the client with a ticket-granting ticket (TGT) and necessary cryptographic keys to make use of the ticket. This is specified in [RFC4120] section 3.1. The AS exchange is always initiated by the client, usually in response to the initial logon of a principal such as a user.
- **authorization data**: An extensible field within a Kerberos **ticket**, used to pass authorization data about the principal on whose behalf the **ticket** was issued to the application service.
- **certification authority (CA)**: A third party that issues public key certificates (1). Certificates serve to bind public keys to a user identity. Each user and certification authority (CA) can decide whether to trust another user or CA for a specific purpose, and whether this trust should be transitive. For more information, see [RFC3280].

- **elliptic curve cryptography (ECC)**: A public-key cryptosystem that is based on high-order elliptic curves over finite fields. For more information, see [IEEE1363].
- **key**: In cryptography, a generic term used to refer to cryptographic data that is used to initialize a cryptographic algorithm. **Keys** are also sometimes referred to as keying material.
- Key Distribution Center (KDC): The Kerberos service that implements the authentication (2) and ticket granting services specified in the Kerberos protocol. The service runs on computers selected by the administrator of the realm or domain; it is not present on every machine on the network. It must have access to an account database for the realm that it serves. Windows KDCs are integrated into the domain controller role of a Windows Server operating system acting as a Domain Controller. It is a network service that supplies tickets to clients for use in authenticating to services.
- **object identifier (OID)**: In the context of a directory service, a number identifying an object class or attribute (2). Object identifiers are issued by the ITU and form a hierarchy. An OID is represented as a dotted decimal string (for example, "1.2.3.4"). For more information on OIDs, see [X660] and [RFC3280] Appendix A. OIDs are used to uniquely identify certificate templates available to the **certification authority (CA)**. Within a certificate (1), OIDs are used to identify standard extensions, as described in [RFC3280] section 4.2.1.x, as well as non-standard extensions.
- **one-way function (OWF)**: The calculation of a hash of the password using the Rivest-Shamir-Adleman (RSA) MD4 function. **OWF** is used to refer to the resulting value of the hash operation.
- pre-authentication: In Kerberos, a state in which a key distribution center (KDC) demands that the requestor in the Authentication Service (AS) exchange demonstrate knowledge of the key associated with the account. If the requestor cannot demonstrate this knowledge, the KDC will not issue a ticket-granting ticket (TGT) ([RFC4120] sections 5.2.7 and 7.5.2).
- **privilege attribute certificate (PAC)**: A Microsoft-specific authorization data present in the authorization data field of a ticket. The **PAC** contains several logical components, including group membership data for authorization, alternate credentials for non-Kerberos authentication protocols, and policy control information for supporting interactive logon.
- **public key infrastructure (PKI)**: The laws, policies, standards, and software that regulate or manipulate certificates and public and private keys. In practice, it is a system of digital certificates, **certificate authorities (CAs)**, and other registration authorities that verify and authenticate the validity of each party involved in an electronic transaction (3). For more information, see [X509] section 6.
- **realm**: A collection of key distribution centers (KDCs) with a common set of principals, as described in [RFC4120] section 1.2.
- **service**: A process or agent that is available on the network, offering resources or services for clients. Examples of services include file servers, web servers, and so on.
- **ticket**: A record generated by the **key distribution center (KDC)** that helps a client authenticate to a service. It contains the client's identity, a unique cryptographic key for use with this ticket (the session key), a time stamp, and other information, all sealed using the service's secret key. It only serves to authenticate a client when presented along with a valid authenticator.
- **ticket-granting service (TGS)**: A service that issues **tickets** for admission to other services in its own domain or for admission to the ticket-granting service in another domain.
- ticket-granting ticket (TGT): A special type of ticket that can be used to obtain other tickets. The TGT is obtained after the initial authentication in the Authentication Service (AS) exchange; thereafter, users do not need to present their credentials, but can use the TGT to obtain subsequent tickets.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact <u>dochelp@microsoft.com</u>. We will assist you in finding the relevant information.

[FIPS140] FIPS PUBS, "Security Requirements for Cryptographic Modules", FIPS PUB 140, December 2002, <u>http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf</u>

[IETFDRAFT-PK-FRESH] Moore, S., Miller, P., and Short, M., Ed., "Public Key Cryptography for Initial Authentication in Kerberos (PKINIT), Freshness Extension", draft-short-pkinit-freshness-00, October 2014, <u>https://tools.ietf.org/html/draft-short-pkinit-freshness</u>

[ITUX680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation", Recommendation X.680, July 2002, <u>http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf</u>

[MS-ADA1] Microsoft Corporation, "<u>Active Directory Schema Attributes A-L</u>".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "<u>Active Directory Schema Attributes N-Z</u>".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-PAC] Microsoft Corporation, "Privilege Attribute Certificate Data Structure".

[MS-SPNG] Microsoft Corporation, "<u>Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)</u> <u>Extension</u>".

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996, http://www.rfc-editor.org/rfc/rfc1964.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, <u>http://www.rfc-editor.org/rfc/rfc2119.txt</u>

[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, March 1998, http://www.ietf.org/rfc/rfc2315.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC 2743, January 2000, <u>http://www.rfc-editor.org/rfc/rfc2743.txt</u>

[RFC3370] Housley, R., "Cryptographic Message Syntax (CMS) Algorithms", RFC 3370, August 2002, http://www.ietf.org/rfc/rfc3370.txt [RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852, July 2004, http://www.ietf.org/rfc/rfc3852.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication Service (V5)", RFC 4120, July 2005, <u>http://www.rfc-editor.org/rfc/rfc4120.txt</u>

[RFC4556] Zhu, L., and Tung, B., "Public Key Cryptography for Initial Authentication in Kerberos", RFC 4556, June 2006, <u>http://www.ietf.org/rfc/rfc4556.txt</u>

[RFC5349] Zhu, L., Jaganathan, K., and Lauter, K., "Elliptic Curve Cryptography (ECC) Support for Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)", RFC 5349, September 2008, <u>http://www.ietf.org/rfc/rfc5349.txt</u>

[X509] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: Public-Key and Attribute Certificate Frameworks", Recommendation X.509, August 2005, http://www.itu.int/rec/T-REC-X.509/en

1.2.2 Informative References

None.

1.3 Overview

The PKINIT protocol is a security protocol that authenticates entities on a network using public key cryptography. Kerberos is a security protocol that mutually authenticates entities on a network and can provide user credential delegation after authentication is complete. Kerberos is specified in [RFC4120] and [MS-KILE], and PKINIT is specified in [RFC4556]. [RFC5349] specifies the use of **elliptic curve cryptography (ECC)** within the framework of PKINIT. PKINIT is a **preauthentication** extension that extends the Kerberos Protocol to use public key cryptography and **ticket-granting ticket (TGT)** data signing during the initial AS exchange.

This specification indicates the variations from [RFC4556] and [RFC5349] in the Windows implementation of PKINIT.

1.4 Relationship to Other Protocols

PKCA is defined as a Kerberos pre-authentication extension ([RFC4120] section 3.1.1). This extension is used in the Kerberos AS exchange [RFC4556], and therefore PKCA relies on a working Kerberos infrastructure and a **certificate authority (CA)** for issuing [X509] certificates. PKCA includes the use of elliptic curve cryptography (ECC). ECC support [RFC5349] relies upon a CA issuing ECC certificates. Applications already using Kerberos can use PKCA without modifications.

In order to support NTLM authentication [MS-NLMP] for applications connecting to network **services** that do not support Kerberos authentication, when PKCA is used, the KDC returns the user's NTLM **one-way function (OWF)** in the **privilege attribute certificate (PAC)** PAC_CREDENTIAL_INFO buffer ([MS-PAC] section 2.6.1).

1.5 Prerequisites/Preconditions

PKCA assumes the following, in addition to any assumptions specified in [MS-KILE]:

The key distribution center (KDC) has an X.509 public key certificate [X509], issued by a certificate authority (CA) and trusted by the clients in the Kerberos realm. For ECC support, the KDC has an ECC public key certificate issued by a CA and trusted by clients in the Kerberos realm. The issuing of these [X509] certificates is not addressed in this protocol specification.

- 2. A cryptographic-strength random-number generator is available for generating keys and other cryptographically sensitive information.<1>
- 3. Each user has an [X509] certificate suitable for use with PKINIT. Details about such a certificate are specified in [RFC4556] Appendix C.

Details about general Kerberos assumptions are specified in [RFC4120] section 1.6.

1.6 Applicability Statement

PKCA is used only in environments that use Kerberos, and it requires the deployment of a **Public Key Infrastructure (PKI)** for issuing [X509] certificates.

1.7 Versioning and Capability Negotiation

PKCA does not have explicit versioning; it is tied to the Kerberos protocol [MS-KILE] versioning mechanisms, as specified in [RFC4120] section 7.5.6. Capability negotiation is as specified in [RFC4556] sections 3.3 and 3.4.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

There are no standards assignments in PKCA beyond what is specified in [RFC4556] and [RFC5349].

2 Messages

2.1 Transport

Messages are carried in the Kerberos AS exchange as pre-authentication data, as specified in [RFC4120] section 5.2.7.

2.2 Message Syntax

The message syntax is as specified in [RFC4556] section 3.2. <2>

PKCA MAY support these variations based on an earlier draft of [RFC4556] for interoperability.

An earlier draft of [RFC4556] supported a different pre-authentication data identifier:

PA-PK-AS-REP_OLD 15 <3>

The algorithm identifier in Cryptographic Message Syntax (CMS) messages, as specified in [RFC2315] and [RFC3852], is md5WithRSAEncryption instead of md5 ([RFC3370] sections 3.2 and 2.2).<4> The support of SHA-1WithRSAEncryption is added [RFC3370].<5> The support of ecdsa-with-Sha1, ecdsa-with-Sha256, ecdsa-with-Sha384, and ecdsa-with-Sha512 ([RFC5349] section 3) is also added.<6>

The following ECC curves ([RFC5349] section 5) are supported: <7>

- ECPRGF256Random | groupP-256 | secp256r1
- ECPRGF384Random | groupP-384 | secp384r1
- ECPRGF521Random | groupP-521 | secp521r1

2.2.1 PA-PK-AS-REP_OLD 1

The data for the PA-PK-AS-REP_OLD pre-authentication data identifiers is based on an earlier draft of [RFC4556]; therefore, there are some differences in the message format. The ASN.1 [ITUX680] description of the message that is used in place of the message format specified in [RFC4556] section 3.2.1 follows.<8><9>

```
PKINIT DEFINITIONS EXPLICIT TAGS ::=
BEGIN
--EXPORTS ALL--
IMPORTS
KerberosTime, PrincipalName, Realm, EncryptionKey
FROM KerberosV5Spec2
{ iso(1) identified-organization(3) dod(6) internet(1) security(5)
        kerberosV5(2) }
-- Different from [RFC4556] Appendix A
ContentInfo, EnvelopedData, SignedData, IssuerAndSerialNumber
FROM CryptographicMessageSyntax2004
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0) cms-
2004(24) }
-- Same as defined in [RFC3852]
AlgorithmIdentifier
FROM PKIX1Explicit88
{ iso(1) identified-organization(3) dod(6) internet(1) security(5)
         mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18) };
-- From [RFC3280] (Same as defined in [RFC4556] Appendix A)
---
-- PKINT data types
```

```
PA-PK-AS-REQ ::= SEQUENCE {
-- PA TYPE 15
signedAuthPack [0] IMPLICIT OCTET STRING
AuthPack::= SEOUENCE {
   pkAuthenticator [0] PKAuthenticator
ļ
-- PK-AUTHENTICATOR - Different from [RFC4556]
-- Appendix A, PKAuthenticator.
___
PKAuthenticator::= SEQUENCE {
   kdc-name [0] PRINCIPAL-NAME,
   kdc-realm [1] REALM,
-- name and realm of the KDC issuing the ticket
    cusec [2] INTEGER,
              [3] KerberosTime,
   ctime
             [4] INTEGER
   nonce
}
END
```

PA-PK-AS-REQ field:

 signedAuthPack: Contains content identical to the content of the signedAuthPack field, as specified in [RFC4556] section 3.2.1.

AuthPack field:

pkAuthenticator: Contains a PKAuthenticator structure, as defined in this document. This variation
of the AuthPack structure is different from the one specified in [RFC4556].

PKAuthenticator fields:

- kdc-name: Contains the name portion of the ticket-granting service (TGS) name of the KDC that will service the request, as specified in [RFC4120] section 7.3.
- kdc-realm: Contains the realm portion of the TGS name of the KDC that will service the request, as specified in [RFC4120] section 7.3.
- cusec: Contains the same content of the corresponding, identically named field in the type PKAuthenticator, as specified in [RFC4556] section 3.2.1.
- ctime: Contains the same content of the corresponding, identically named field in the type PKAuthenticator, as specified in [RFC4556] section 3.2.1.
- nonce: Contains the same content of the corresponding, identically named field in the type PKAuthenticator, as specified in [RFC4556] section 3.2.1.

2.2.2 PA-PK-AS-REP_OLD 2

The data for the PA-PK-AS-REP_OLD pre-authentication data identifiers is based on an earlier draft of [RFC4556]; therefore, there are some differences in the message format. The ASN.1 [ITUX680] description of the message that is used in place of the message format specified in [RFC4556] section 3.2.3 follows.<10>

```
-- KERB-REPLY-KEY-PACKAGE - Different from [RFC4556]
-- Appendix A, ReplyKeyPack
```

```
KERB-REPLY-KEY-PACKAGE ::= SEQUENCE {
    replyKey [0] EncryptionKey,
-- Contains the session key used to encrypt the enc-part
-- field in the AS-REP, for example, the AS reply key.
nonce [1] INTEGER,
-- binds response to the request; must be same as the nonce
-- passed in the PK-AUTHENTICATOR.
...
} --#public-
```

KERB-REPLY-KEY-PACKAGE fields:

- replyKey: Contains the same content of the identically named field in the type ReplyKeyPack, as specified in [RFC4556] section 3.2.3.2.
- nonce: Contains the nonce from the PKAuthenticator structure in the PA-PK-AS-REQ request.

However, if the AS-REQ message contains a padata of type KRB5-PADATA-AS-CHECKSUM(132) with no corresponding data field (padata-value is an empty OCTET STRING), then the PA-PK-AS-REP_OLD pre-authentication data contains the same data as specified in [RFC4556] section 3.2.3.2.

2.2.3 PA-PK-AS-REQ

The PA-PK-AS-REQ message format is specified in [RFC4556] section 3.2.1.<11>

2.2.4 PA-PK-AS-REP

The PA-PK-AS-REP message format is specified in [RFC4556] section 3.2.3.<12> The returned **ticket** does not include the AD-INITIAL-VERIFIED-CAS type in the **authorization data**. The content of the SignedData field in the content of EnvelopedData is encoded, as specified in [RFC2315] section 7, not as specified in [RFC3852]. Therefore, the data is not wrapped in OCTET STRING; rather, it is wrapped in an ANY DEFINED BY content specific type, as specified in [RFC2315] section 7.

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

The abstract data model follows what is specified in [RFC4556].

3.1.2 Timers

None.

3.1.3 Initialization

During initialization, the [FIPS140]-compliant random-number generator for keys and nonces is initialized.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

In addition to the required ([RFC4556] section 3.1.1) and recommended ([RFC4556] section 3.1.2) algorithms, PKCA supports the rc2-cbc ([RFC4556] section 3.1.4) algorithm. An implementer SHOULD specify des-ede3-cbc ([RFC4556] section 3.1.2) as the default algorithm. <13>

PKCA does not implement the id-pkinit-san algorithm ([RFC4556] section 3.2.2).

PKCA supports PKInit freshness extensions [IETFDRAFT-PK-FRESH].<14>

3.1.5.1 Client

The Kerberos client SHOULD send only a PA-PK-AS-REQ pre-authentication data identifier.<a><15><16>

Kerberos clients can process either the PA-PK-AS-REP_OLD or the PA-PK-AS-REP pre-authentication data identifier in the reply, but not both. $\underline{<17>}$

For computer AS-REQ, PKCA clients SHOULD fail unless all of the following conditions are met. <18>

- The computer certificate contains:
 - subjectAltName (SAN) DNSName field: <computer name>.<DNS domain name> where <computer name> matches the computer name and <DNS domain name> matches the computer's DNS domain name.
 - Enhance Key Usage (EKU): id-pkinit-KPClientAuth (1.3.6.1.5.2.3.4) or TLS/SSL Client Authentication (1.3.6.1.5.5.7.3.2).
- The KDC certificate contains:
 - SAN DNSName field: the DNS name of the domain
 - EKU: id-pkinit-KPkdc (1.3.6.1.5.2.3.5)

3.1.5.2 KDC

If the KDC receives both a PA-PK-AS-REQ and PA-PK-AS-REQ_OLD, the KDC should return KRB_ERROR_GENERIC.

The KDC SHOULD process the PA-PK-AS-REQ pre-authentication data identifier. $\underline{<19>}$ The KDC SHOULD respond with PA-PK-AS-REP. $\underline{<20>}$

The KDC MUST return the user's unicodePwd attribute ([MS-ADA3] section 2.332) in the NTLM_SUPPLEMENTAL_CREDENTIAL buffer ([MS-PAC] section 2.6.4).

3.1.5.2.1 Certificate Mapping

The KDC SHOULD look up the account using the cname. If the account is not found and the cname name-type is NT-X500-PRINCIPAL, the KDC SHOULD locate the account in the account database using the explicit mapping fields. Implementations of PKCA KDCs which use **Active Directory** for the account database when the userAccountControl attribute ([MS-ADA3] section 2.342) bit WT or ST ([MS-ADTS] section 2.2.16) is:

- TRUE: validate certificate mapping using the SAN DNSName field.
- Both FALSE: validate certificate mapping using the SAN UPNName field first, then try explicit mapping.

If the account is not found, the KDC SHOULD return KDC_ERR_C_PRINCIPAL_UNKNOWN.

3.1.5.2.1.1 SAN DNSName field

The KDC MUST confirm that the name of the account found matches the computer name in the **DNSName** field of the certificate terminated with "\$" and that the DNS domain name in the **DNSName** field of the certificate matches the DNS domain name of the realm. Implementations of PKCA KDCs which use Active Directory for the account database MUST use the **sAMAccountName** attribute (<u>IMS-ADA3</u>] section 2.222) for the computer name. If they do not match, the KDC SHOULD return KDC_ERR_CLIENT_NAME_MISMATCH.

3.1.5.2.1.2 SAN UPN field

The KDC MUST confirm that the account found matches that the account found when using the UPN in the **UPN** field of the certificate. If they do not match, the KDC SHOULD return KDC_ERR_CLIENT_NAME_MISMATCH.

3.1.5.2.1.3 Explicit Mapping

The KDC MUST confirm the explicit mapping of the account to a certificate. Implementations of PKCA KDCs which use Active Directory for the account database MUST confirm that the **altSecurityIdentities** attribute ([MS-ADA1] section 2.61) contains the string created by concatenating the following information from the certificate in the order shown:

- 1. Subject and Issuer Name fields: "X509:<I>" + Issuer Name field with "\r" and "\n" replaced with "," + "<S>" + Subject field with "\r" and "\n" replaced with ",".
- 2. Subject field: "X509:<S>" + Subject field with "\r" and "\n" replaced with ",".
- 3. Issuer and Serial Number fields: "X509:<I>" + Issuer Name field with "\r" and "\n" replaced with "," + "<SR>" + Serial Number field.
- 4. Subject Key Identifier field: "X509:<SKI>" + Subject Key Identifier field.
- 5. SHA1 hash of public key: "X509:<SHA1-PUKEY>" + SHA1 hash of public key.

6. 822 field: "X509: <RFC822>" + 822 Name field.

If they do not match, the KDC SHOULD return KDC_ERR_CLIENT_NAME_MISMATCH.

3.1.5.2.1.4 Key Trust

Note: All of the information in this section is subject to change because it applies to an unreleased, preliminary version of the Windows Server operating system, and thus may differ from the final version of the server software when released. All behavior notes that pertain to the unreleased, preliminary version of the Windows Server operating system contain specific references to Windows Server 2016 Technical Preview as an aid to the reader.

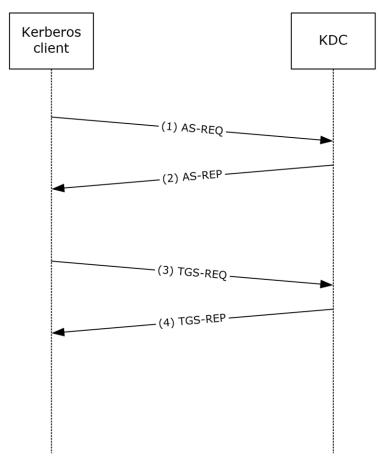
The KDC SHOULD look the account up using the public key. $\leq 22 >$ If an account is found with the public key that is trusted for the account, then the KDC SHOULD:

- If the account was also found using the cname but the accounts do not match, return KDC_ERR_CLIENT_NAME_MISMATCH.
- Ignore any certificate chain validation errors.

Implementations of PKCA KDCs that use Active Directory for the account database MUST confirm that the msDS-KeyMaterial attribute ([MS-ADA2] section 2.348) contains the same public key.

3.1.6 Timer Events

None.


3.1.7 Other Local Events

There are no local events other than what is specified in [RFC4556].

4 Protocol Examples

The following sections describe three common scenarios to illustrate the function of the KILE.

4.1 Interactive Logon Using Smart Cards

Figure 1: Interactive logon

Step 1: A user attempts to log on to a client. At the logon screen, the user selects the certificate and types the PIN. Using the PIN to unlock the smart card, the client generates an AS-REQ with PA-PK-AS-REQ pre-authentication data ([RFC4556] section 3.2.1) and sends the request to the KDC.

Step 2: The KDC validates the AS-REQ ([RFC4120] section 3.1.2), including verifying the user's signature and validating certificate ([RFC4556] section 3.2.2). If the AS-REQ is valid, the KDC generates an AS-REP ([RFC4556] section 3.2.3), with a PAC ([MS-KILE] section 3.3.5.3.2) in the authorization_data field of the TGT, and sends the reply to the client.

Step 3: The client validates the AS-REP ([RFC4556] section 3.2.4). For interactive logons, the client runtime requests authentication to host/hostname.domain, where hostname is the actual name of the client machine, and domain is the domain or realm of the client machine. If the AS-REP is valid, the client generates a TGS-REQ based on the TGT that is obtained in step 2 to obtain a service ticket for host/hostname.domain ([RFC4120] section 3.3.1) and sends the request to the KDC.

Step 4: The KDC validates the TGS-REQ ([RFC4120] section 3.3.2) ([MS-KILE] section 3.3.5.7.1). If the TGS-REQ is valid, the KDC adds Domain Local Groups to the PAC ([MS-KILE] section 3.3.5.7.3), generates a TGS-REP ([RFC4120] section 3.3.3), and sends the reply to the client.

The client validates the TGS-REP ([MS-KILE] section 3.3.4). If the TGS-REP is valid, the service ticket is then interpreted by the Kerberos runtime within the local workstation.

The following fields from the KERB_VALIDATION_INFO field of the PAC (<u>[MS-PAC]</u> Section 2.5) are required by the interactive logon client runtime to authorize the user for local interactive logon, and to establish the necessary management profile for the user:

- LogonTime
- LogoffTime
- KickOffTime
- PasswordLastSet
- PasswordCanChange
- EffectiveName
- FullName
- LogonScript
- ProfilePath
- HomeDirectory
- HomeDirectoryDrive
- LogonCount
- BadPasswordCount
- LogonServer
- LogonDomainName
- UserAccountControl

4.2 Network Logon Using Smart Cards

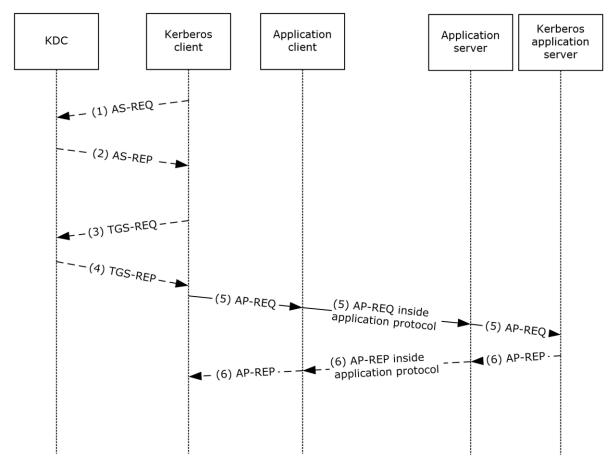


Figure 2: Network logon

When an application wants authentication, it calls GSS_Init_sec_context ([RFC2743] section 2.2.1) to either invoke KILE [MS-KILE] directly, or SPNEGO [MS-SPNG] which can invoke Kerberos.

Step 0: The application client calls GSS_Init_sec_context ([RFC2743] section 2.2.1).

When the client does not have a TGT, steps 1 through 2, as described in section 4.1, must be performed.

When the client does not have a service ticket for the application server, steps 3 and 4, as described in section 4.1, must be performed.

Step 5: The Kerberos client generates a GSS-API initial token (<u>[RFC1964]</u> section 1.1.1) containing an AP-REQ (<u>[RFC4120]</u> section 3.2.2) and returns it to the application.

Step 6: The application server calls GSS_Accept_sec_context ([RFC2743] section 2.2.2). The Kerberos application server validates the AP-REQ ([RFC4120] section 3.2.3). If the AP-REQ is valid and the client requested mutual authentication, the Kerberos application server generates a GSS-API response token ([RFC1964] section 1.1.2) containing an AP-REP ([RFC4120] section 3.2.4) and returns it to the application server. The Kerberos application server provides the authorization data from the ticket to the Windows system which creates a Windows-specific object that is known as an access token, which is used with the Windows system-provided authorization functions.

If mutual authentication was requested, the application client calls GSS_Init_sec_context ([RFC2743] section 2.2.1). The Kerberos client validates the AP-REP ([RFC4120] section 3.2.5). If the AP-REP is valid, the Kerberos client returns GSS_S_COMPLETE ([RFC2743] section 2.2.1).

4.3 Non-RFC Kerberos Clients during AS-REQ

PKCA clients developed prior to finalizing RFC 4556 support a PKInit pre-authentication data based on an earlier draft of [RFC4556].

Step 1: A user attempts to log on to a client. At the logon screen, the user selects the certificate and types the PIN. Using the PIN to unlock the smart card, the client generates an AS-REQ with PA-PK-AS-REP_OLD pre-authentication data (section 2.2.1) and sends the request to the KDC.

Step 2: The KDC validates the AS-REQ ([RFC4120] section 3.1.2) including verifying the user's signature and validating certificate ([RFC4556] section 3.2.2). Since the PA-PK-AS-REP_OLD version of the pre-authentication data does not contain a paChecksum, the KDC does not return a KRB-ERROR with the code KDC_ERR_PA_CHECKSUM_MUST_BE_INCLUDED ([RFC4556] section 3.2.3). If the AS-REQ is valid, with the exception of the paChecksum checks, the KDC generates an AS-REP ([RFC4556] section 3.2.3) using the PA-PK-AS-REP_OLD, instead of the PA-PK-AS-REP with a PAC ([MS-KILE] section 3.3.5.6.3) in the authorization_data field of the TGT, and sends the reply to the client.

5 Security

5.1 Security Considerations for Implementers

PKCA security considerations are specified in [RFC4556]. PA-PK-AS-REP_OLD is the earlier version of PA-PK-AS-REQ and PA-PK-AS-REP, and has the same security considerations.

5.2 Index of Security Parameters

PKCA security parameters are specified in [RFC4556].

Security parameter	Section	
PKAuthenticator	<u>2.2.1</u>	
KERB-REPLY-KEY-PACKAGE	<u>2.2.2</u>	

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include released service packs.

Note: Some of the information in this section is subject to change because it applies to an unreleased, preliminary version of the Windows Server operating system, and thus may differ from the final version of the server software when released. All behavior notes that pertain to the unreleased, preliminary version of the Windows Server operating system contain specific references to Windows Server 2016 Technical Preview as an aid to the reader.

- Windows 2000 operating system
- Windows XP operating system
- Windows Server 2003 operating system
- Windows Vista operating system
- Windows Server 2008 operating system
- Windows 7 operating system
- Windows Server 2008 R2 operating system
- Windows 8 operating system
- Windows Server 2012 operating system
- Windows 8.1 operating system
- Windows Server 2012 R2 operating system
- Windows 10 operating system
- Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears with the product version, behavior changed in that service pack or QFE. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not follow the prescription.

<<u>1> Section 1.5</u>: Windows contains a FIPS-140-validated random-number generator, as specified in [FIPS140].

<2> Section 2.2: [RFC4556] message syntax is not supported in Windows 2000, Windows XP, and Windows Server 2003.

<a>> Section 2.2: Windows 2000, Windows XP, and Windows Server 2003 sent PA-PK-AS-REP_OLD where [RFC4120] would have them send PA-PK-AS-REQ or PA-PK-AS-REP.

<4> Section 2.2: Supported by Windows 2000, Windows XP operating system Service Pack 2 (SP2), and Windows Server 2003 operating system with Service Pack 1 (SP1). In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the **object identifier (OID)** has been updated to match CMS algorithms, as specified in [RFC3370] sections 3.2 and 2.2. Windows 2000,

Windows XP, Windows XP operating system Service Pack 1 (SP1), and Windows Server 2003 do not accept the correct OID.

<5> Section 2.2: Not supported by Windows 2000, Windows XP, and Windows Server 2003.

<6> Section 2.2: ECC is not supported by Windows 2000, Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

<7> Section 2.2: ECC is not supported by Windows 2000, Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

<8> Section 2.2.1: In Windows 2000, Windows XP SP2, and Windows Server 2003 with SP1, SignedData (as specified in [RFC3852]) is encoded as specified in [RFC2315] section 9, not as specified in [RFC3852] section 5. Therefore, the data is not wrapped in OCTET STRING; rather, it is wrapped in an ANY, as specified in [RFC2315] section 7. However, in Windows Vista and subsequent versions of Windows according to the applicability list at the beginning of this section, the SignedData (as specified in [RFC3852]) is encoded as specified in [RFC3852]. Windows 2000, Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and subsequent versions of Windows accept the SignedData, as specified in [RFC3852]. In Windows 2000, Windows XP SP2, and Windows Server 2003 with SP1, the DHRepInfo form is not implemented; the Public Key Encryption style is used, as specified in [RFC4556] section 3.2.3.2. The Diffie-Hellman key delivery method, as specified in [RFC4556] section 3.2.3.1, is supported in Windows Vista and subsequent versions of Windows.

In Windows 2000, Windows XP SP2, and Windows Server 2003 with SP1, the content-type field of the SignedData in PA-PK-AS-REQ is id-data, as specified in [RFC3852] section 4, instead of id-pkinitauthData. However, in Windows Vista and subsequent versions of Windows according to the applicability list at the beginning of this section, the content-type field of the SignedData is id-pkinitauthData, as specified in [RFC4556] section 3.2.3.2. Windows 2000, Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and subsequent versions of Windows accept id-data in the PA-PK-AS-REQ_OLD pre-authentication data.

<9> Section 2.2.1: In Windows 2000, Windows XP SP2, and Windows Server 2003 with SP1, SignedData (as specified in [RFC3852]) is encoded as specified in [RFC315] section 9, not as specified in [RFC3852] section 5. Therefore, the data is not wrapped in OCTET STRING; rather, it is wrapped in an ANY, as specified in [RFC2315] section 7. However, in Windows Vista and subsequent versions of Windows according to the applicability list at the beginning of this section, the SignedData (as specified in [RFC3852]) is encoded as specified in [RFC3852]. Windows 2000, Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and subsequent versions of Windows accept the SignedData, as specified in [RFC3852]. In Windows 2000, Windows XP SP2, and Windows Server 2003 with SP1, the DHRepInfo form is not implemented; the Public Key Encryption style is used, as specified in [RFC4556] section 3.2.3.2. The Diffie-Hellman key delivery method, as specified in [RFC4556] section 3.2.3.1, is supported in Windows Vista and subsequent versions of Windows.

In Windows 2000, Windows XP SP2, and Windows Server 2003 with SP1, the content-type field of the SignedData in PA-PK-AS-REQ is id-data, as specified in [RFC3852] section 4, instead of id-pkinit-authData. However, in Windows Vista, and subsequent versions of Windows according to the applicability list at the beginning of this section, the content-type field of the SignedData is id-pkinit-authData, as specified in [RFC4556] section 3.2.3.2. Windows 2000, Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and subsequent versions of Windows accept id-data in the PA-PK-AS-REQ_OLD pre-authentication data.

<10> Section 2.2.2: In Windows 2000, Windows XP SP2, and Windows Server 2003 with SP1, the content-type field of the SignedData type inside the EnvelopedData type in the PA-PK-AS-REP_OLD pre-authentication data is id-data, as specified in [RFC3852] section 4, instead of id-pkinit-rkeyData, as specified in [RFC4556]. However, in Windows Vista and subsequent versions of Windows according to the applicability list at the beginning of this section, the content-type field is id-pkinit-rkeyData, as specified in [RFC4556]. Windows 2000, Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and subsequent versions of Windows all accept id-data in the **SignedData** contained in the PA-PK-AS-REP_OLD pre-authentication data.

In addition, Windows 2000, Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and subsequent versions of Windows according to the applicability list at the beginning of this section do not process id-pkinit-san in the client's [X509] certificate, if present, as specified in [RFC4556] section 3.2.4.

<<u>11> Section 2.2.3</u>: The PA-PK-AS-REQ message format is not supported in Windows 2000, Windows XP, and Windows Server 2003.

<<u>12> Section 2.2.4</u>: The RFC version of PA-PK-AS-REP is not supported in Windows 2000, Windows XP, and Windows Server 2003.

<<u>13> Section 3.1.5</u>: In Windows with PKCA, the KDC supports both des-ede3-cbc and rc2-cbc. If both des-ede3-cbc and rc2-cbc are present, the KDC uses des-ede3-cbc.

<14> Section 3.1.5: PKInit freshness extensions are not supported in Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, or Windows Server 2012 R2.

<15> Section 3.1.5.1: In Windows Vista and subsequent versions of Windows according to the applicability list at the beginning of this section, the PKINIT pre-authentication data identifiers have been updated to match what is specified in [RFC4556], with one addition (KRB5-PADATA-AS-CHECKSUM) as noted below. However, for backward-compatibility reasons, if the client is not detecting that the KDC is running Windows Server 2008 or subsequent versions of Windows Server operating system according to the applicability list at the beginning of this section, it sends both.

In Windows Vista and subsequent versions of Windows according to the applicability list at the beginning of this section, the client sends additional padata (KRB5-PADATA-AS-CHECKSUM) besides what is specified in [RFC4556]. This is padata that contains no data.

#define KRB5_PADATA_AS_CHECKSUM 132 /* AS checksum */

Clients running Windows XP and Windows 2000 also send this additional padata type.

<16> Section 3.1.5.1: Windows 2000, Windows XP, and Windows Server 2003 clients send a PA-PK-AS-REP_OLD pre-authentication data identifier. Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients send a PA-PK-AS-REP_OLD pre-authentication data identifier when all of the following are true:

- the user certificate has a smart card logon EKU, and
- the user certificate has a UPN in Subject Alternative Name.

<<u>17> Section 3.1.5.1</u>: Windows 2000 and Windows XP SP2 Kerberos clients can only process PA-PK-AS-REP-WINDOWS-OLD.

<<u>18> Section 3.1.5.1</u>: Computer logon is not supported by Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7 and Windows Server 2008 R2.

<19> Section 3.1.5.2: Windows 2000 and Windows Server 2003 KDCs always discard the PA-PK-AS-REQ data identifier and process the PA-PK-AS-REP_OLD data identifier, if present.

<20> Section 3.1.5.2: Windows 2000 and Windows Server 2003 KDCs respond with PA-PK-AS-REP_OLD.

<21> Section 3.1.5.2.1: SAN DNSName field is not supported by Windows 2000, Windows Server 2003, Windows Server 2008 and Windows Server 2008 R2.

<22> Section 3.1.5.2.1.4: Public key look up is not supported by Windows 2000, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, or Windows Server

2012 R2 KDCs. It is currently implemented by the unreleased preliminary version of Windows Server 2016 Technical Preview.

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are classified as New, Major, Minor, Editorial, or No change.

The revision class **New** means that a new document is being released.

The revision class **Major** means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:

- A document revision that incorporates changes to interoperability requirements or functionality.
- The removal of a document from the documentation set.

The revision class **Minor** means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class **Editorial** means that the formatting in the technical content was changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class **No change** means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the technical content of the document is identical to the last released version.

Major and minor changes can be described further using the following change types:

- New content added.
- Content updated.
- Content removed.
- New product behavior note added.
- Product behavior note updated.
- Product behavior note removed.
- New protocol syntax added.
- Protocol syntax updated.
- Protocol syntax removed.
- New content added due to protocol revision.
- Content updated due to protocol revision.
- Content removed due to protocol revision.
- New protocol syntax added due to protocol revision.
- Protocol syntax updated due to protocol revision.
- Protocol syntax removed due to protocol revision.
- Obsolete document removed.

Editorial changes are always classified with the change type **Editorially updated**.

Some important terms used in the change type descriptions are defined as follows:

- **Protocol syntax** refers to data elements (such as packets, structures, enumerations, and methods) as well as interfaces.
- **Protocol revision** refers to changes made to a protocol that affect the bits that are sent over the wire.

The changes made to this document are listed in the following table. For more information, please contact <u>dochelp@microsoft.com</u>.

Section	Tracking number (if applicable) and description	Major change (Y or N)	Change type
3.1.5 Message Processing Events and Sequencing Rules	Updated content for Windows 10 and Windows Server 2016 Technical Preview operating systems.	Y	Content update.
<u>3.1.5.2.1.4</u> Key Trust	Added section with content for Windows Server 2016 Technical Preview operating system.	Y	New content added.
<u>6</u> Appendix A: Product Behavior			Content update.
6 Appendix A: Product Behavior Updated product behavior notes for Windows Server 2016 Technical Preview operating system.		Y	Content update.

8 Index

Α

Abstract data model 13 Applicability 9 Applicability statement 9

С

Capability negotiation 9 Change tracking 25

D

Data model – abstract 13

Е

Examples <u>non-RFC Kerberos clients during AS-REQ</u> 19 <u>overview</u> 16 smart cards <u>interactive logon using</u> 16 <u>network logon using</u> 18

F

<u>Fields - vendor-extensible</u> 9 <u>Fields - vendor-extensible</u> 9

G

Glossary 5

Н

Higher-layer triggered events 13

Ι

Implementer - security considerations 20 Implementer - security considerations 20 Index of security parameters 20 Informative references 8 Initialization 13 Introduction 5

L

Local events 15

Μ

Message processing <u>client</u> 13 <u>KDC</u> 14 <u>overview</u> 13 Messages <u>PA-PK-AS-REP</u> 12 <u>PA-PK-AS-REP</u> 0LD 1 10 <u>PA-PK-AS-REP</u> 0LD 2 11 <u>PA-PK-AS-REO</u> 12 <u>syntax</u> 10 <u>transport</u> 10

Ν

<u>Non-RFC Kerberos clients during AS-REQ example</u> 19 <u>Normative references</u> 7

0

Overview (synopsis) 8

Ρ

PA-PK-AS-REP 12 PA-PK-AS-REP message 12 PA-PK-AS-REP OLD 11 PA-PK-AS-REP OLD 1 message 10 PA-PK-AS-REP OLD 2 message 11 PA-PK-AS-REQ 12 PA-PK-AS-REQ message 12 PA-PK-AS-REQ-WINDOWS-OLD 10 Parameter index – security 20 Parameters - security index 20 Preconditions 8 Prerequisites 8 Product behavior 21

R

References 7 informative 8 normative 7 Relationship to other protocols 8 S

Security implementer considerations 20 parameter index 20 Sequencing rules client 13 KDC 14 overview 13 Smart cards interactive logon using - example 16 network logon using - example 18 Standards assignments 9 Syntax - message 10

т

Timer events 15 Timers 13 Tracking changes 25 Transport 10 Triggered events – higher layer 13

V

<u>Vendor-extensible fields</u> 9 <u>Versioning</u> 9