

1 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-PCCRR-Diff]:

Peer Content Caching and Retrieval: Retrieval Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

12/5/2008 0.1 Major Initial Availability

1/16/2009 0.1.1 Editorial Changed language and formatting in the technical content.

2/27/2009 0.1.2 Editorial Changed language and formatting in the technical content.

4/10/2009 0.2 Minor Clarified the meaning of the technical content.

5/22/2009 1.0 Major Updated and revised the technical content.

7/2/2009 1.1 Minor Clarified the meaning of the technical content.

8/14/2009 2.0 Major Updated and revised the technical content.

9/25/2009 2.1 Minor Clarified the meaning of the technical content.

11/6/2009 2.2 Minor Clarified the meaning of the technical content.

12/18/2009 2.2.1 Editorial Changed language and formatting in the technical content.

1/29/2010 2.3 Minor Clarified the meaning of the technical content.

3/12/2010 2.3.1 Editorial Changed language and formatting in the technical content.

4/23/2010 2.4 Minor Clarified the meaning of the technical content.

6/4/2010 3.0 Major Updated and revised the technical content.

7/16/2010 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 3.1 Minor Clarified the meaning of the technical content.

9/23/2011 3.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 4.0 Major Updated and revised the technical content.

3 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

3/30/2012 5.0 Major Updated and revised the technical content.

7/12/2012 6.0 Major Updated and revised the technical content.

10/25/2012 7.0 Major Updated and revised the technical content.

1/31/2013 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 8.0 Major Updated and revised the technical content.

11/14/2013 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 9.0 Major Updated and revised the technical content.

5/15/2014 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 10.0 Major Significantly changed the technical content.

10/16/2015 10.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments ... 10

2 Messages ... 11
2.1 Transport .. 11

2.1.1 Peer Download Transport ... 11
2.1.2 Transport Security .. 11

2.2 Message Syntax ... 11
2.2.1 Common Data Types ... 11

2.2.1.1 BLOCK_RANGE ... 12
2.2.1.2 SEGMENT_RANGE ... 12
2.2.1.3 BLOCK_RANGE_ARRAY .. 12
2.2.1.4 SEGMENT_RANGE_ARRAY .. 12
2.2.1.5 ENCODED_SEGMENT_AGE ... 13

2.2.2 TRANSPORT_RESPONSE_HEADER ... 13
2.2.3 MESSAGE_HEADER ... 13
2.2.4 Request Message .. 15

2.2.4.1 MSG_NEGO_REQ .. 16
2.2.4.2 MSG_GETBLKLIST ... 16
2.2.4.3 MSG_GETBLKS ... 17
2.2.4.4 MSG_GETSEGLIST .. 18

2.2.5 Response Message .. 19
2.2.5.1 MSG_NEGO_RESP ... 20
2.2.5.2 MSG_BLKLIST .. 20
2.2.5.3 MSG_BLK ... 21
2.2.5.4 MSG_SEGLIST .. 22

2.2.6 Extensible BLOB ... 23
2.2.6.1 Extensible Blob Version 1 ... 24

2.2.6.1.1 Extensible Blob Version 1 Restrictions and Validation 24

3 Protocol Details ... 26
3.1 Client Details ... 26

3.1.1 Abstract Data Model .. 26
3.1.2 Timers .. 27
3.1.3 Initialization ... 27
3.1.4 Higher-Layer Triggered Events ... 27

3.1.4.1 MSG_NEGO_REQ Request .. 27
3.1.4.2 MSG_GETBLKLIST Initiation ... 27
3.1.4.3 MSG_GETBLKS Initiation .. 27
3.1.4.4 MSG_GETSEGLIST Initiation ... 28

3.1.5 Message Processing Events and Sequencing Rules .. 28
3.1.5.1 MSG_NEGO_RESP Received ... 28
3.1.5.2 MSG_BLKLIST Response Received ... 29
3.1.5.3 MSG_BLK Response Received ... 29
3.1.5.4 MSG_SEGLIST Response Received .. 29

5 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.5 Other Messages Received ... 30
3.1.6 Timer Events .. 30

3.1.6.1 Request Timer Expiration ... 30
3.1.7 Other Local Events .. 30

3.2 Server Details .. 30
3.2.1 Abstract Data Model .. 30
3.2.2 Timers .. 30
3.2.3 Initialization ... 31
3.2.4 Higher-Layer Triggered Events ... 31
3.2.5 Message Processing Events and Sequencing Rules .. 31

3.2.5.1 MSG_NEGO_REQ Received ... 31
3.2.5.2 MSG_GETBLKLIST Request Received ... 31
3.2.5.3 MSG_GETBLKS Request Received .. 31
3.2.5.4 MSG_GETSEGLIST Request Received ... 32
3.2.5.5 Other Messages Received ... 33

3.2.6 Timer Events .. 33
3.2.6.1 Upload Timer Expiration ... 33

3.2.7 Other Local Events .. 33

4 Protocol Examples ... 34
4.1 Download with GetBlockList and GetBlocks Exchanges .. 34
4.2 Simple Download with GetBlocks Download Sub-Sessions only 35

5 Security ... 36
5.1 Security Considerations for Implementers ... 36
5.2 Index of Security Parameters .. 36

6 Appendix A: Product Behavior ... 37

7 Change Tracking .. 39

8 Index ... 40

6 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Peer Content Caching and Retrieval: Retrieval Protocol reduces bandwidth consumption on
branch-office wide-area-network (WAN) links by having clients retrieve content from distributed
caches when available instead of the content servers, which are often located remotely from branch
offices over the WAN links. It is based on a peer-to-peer discovery and distribution model, where the
peers themselves act as caches from which they serve other requesting peers. The framework also

supports the mode of using pre-provisioned hosted caches in place of peer-based caching. The main
benefit of the framework is to reduce operation costs by reducing WAN link utilization, while providing
faster downloads from the local area networks (LANs) in the branch offices.

The Retrieval Framework defines four protocol message exchanges: for querying the protocol version
of the server, for querying the server for the availability of certain content (two message exchanges),
and for retrieving content from a server. The framework incorporates both the Retrieval Protocol and

the Discovery Protocol [MS-PCCRD] together to enable a client to discover and retrieve content from
multiple peers that have the content instead of the original content server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

block: A chunk of content that composes a segment. Each segment is divided into one or more
blocks. Every block belongs to a specific segment, and within a segment, blocks are
identified by their progressive index. (Block 0 is the first block in the segment, block 1 is the

second, and so on.) See [MS-PCCRC] for more details.

block hash: A hash of a content block within a segment. Also known as a block ID.

block range: A set of consecutive blocks within a segment described by a pair of integers, the
first being the index of the first blocks in the range, and the second the number of consecutive
blocks in the range.

client: For the Peer Content Caching and Retrieval Framework, a client is a client-role peer; that is,

a peer that is searching for content, either from the server or from other peers or hosted
cashes. In the context of the Retrieval Protocol, a client is a peer that requests a block-range
from a server_role_peer. It acts as a Web Services Dynamic Discovery (WS-Discovery) [WS-
Discovery] client.

client-role peer: A peer that is looking for content, either from the server or from other peers or
hosted caches.

content server: The original source of the content that peers subsequently retrieve from each

other.

distributed mode: A mode of operation for the client-role peer in the Peer Content Caching
and Retrieval Framework, in which it discovers and obtains content blocks from other peers,
and shares content blocks it has with other peers in the network.

encryption key: One of the input parameters to an encryption algorithm. Generally speaking, an
encryption algorithm takes as input a clear-text message and a key, and results in a cipher-text
message. The corresponding decryption algorithm takes a cipher-text message, and the key,

and results in the original clear-text message.

7 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

higher-layer application: An application that uses the Peer Content Caching and Retrieval:
Retrieval Protocol, either by itself or as part of the Peer Content Caching and Retrieval

Framework or other applications.

HoHoDk: A hash that represents the content-specific label or public identifier that is used to

discover content from other peers or from the hosted cache. This identifier is disclosed freely in
broadcast messages. Knowledge of this identifier does not prove authorization to access the
actual content.

hosted cache mode: A mode of operation for the client-role peer in the Peer Content Caching and
Retrieval Framework, in which it obtains and shares content (only) with a single server whose
location is preconfigured on the client-role peer.

index: The block number within a segment.

initialization vector: A data block that some modes of the AES cipher block operation require as
an additional initial data input. For more information, see [SP800-38A].

peer: An instance of the Retrieval Protocol for the Peer Content Caching and Retrieval Framework

running on a host. A peer can be both a client and a server in the Retrieval Protocol operations.

Peer Content Caching and Retrieval Framework (or Framework): The framework that
creates Peer Content Caching and Retrieval Discovery Protocol instances to discover client-role

peers and download the content blocks from either client-role peers (distributed mode) or
hosted cache (hosted-cache mode).

segment: A subdivision of content. In version 1.0 Content Information, each segment has a size of
32 megabytes, except the last segment which can be smaller if the content size is not a multiple
of the standard segment sizes. In version 2.0 Content Information, segments can vary in size.

segment ID (HoHoDk): A hash that represents the content-specific label or public identifier that
is used to discover content from other peers or from the hosted cache. This identifier is

disclosed freely in broadcast messages. Knowledge of this identifier does not prove authorization
to access the actual content.

segment retrieval session: A session that defines a set of operations on a client-role peer that
use the Discovery Protocol (in distributed mode) and the Retrieval Protocol to discover and
retrieve ranges of blocks (partial or complete) of a segment.

server: For the Peer Content Caching and Retrieval Framework, a server is a server-role peer; that
is, a peer that listens for incoming block-range requests from client-role peers and responds to

the requests.

server-role peer: A peer that listens for incoming block-range requests from client-role peers
and responds to the requests.

simple download: A GetBlocks request/response that is carried out without an associated
GetBlockList request/response.

target segment: The segment for which the client-role peer is requesting a particular block range

in a segment retrieval session, identified by the segment ID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

8 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-PCCRC] Microsoft Corporation, "Peer Content Caching and Retrieval: Content Identification".

[MS-PCCRD] Microsoft Corporation, "Peer Content Caching and Retrieval: Discovery Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

[SP800-38A] National Institute of Standards and Technology., "Special Publication 800-38A,
Recommendation for Block Cipher Modes of Operation: Methods and Techniques", December 2001,
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

1.2.2 Informative References

None.

1.3 Overview

The Retrieval Protocol defines four request/response exchanges between a client and a server on top
of an HTTP [RFC2616] transport to query the supported version range of the server, to query the
availability of specific content, and to retrieve specific content. The protocol assumes that the client
identifies both the specific content it is looking for and the server it will contact. The discovery of the
content information and the server address is outside the scope of the Retrieval Protocol. The
request/response exchanges are:

 Content Availability Request: The client initiates a query to the server for the availability of the

specified content. The server responds with the ranges (subsets or all) of the requested content it
has. There are two types of content availability requests:

 Segment Availability Request: The client initiates a query to the server for the availability of a
set of segments of content. The server responds with the ranges (subsets or all) of the
requested segments of content available in the server’sserver's local cache.

 Block Availability Request: The client initiates a query to the server for the availability of a set
of ranges of blocks within a single segment of content. The server responds with the ranges

(subsets or all) of the requested block of content it has within the specified segment.

 Content Retrieval Request: The client initiates a request to the server for the specified content.
The server either replies with the requested content or with content of zero length when the
requested content is not available.

9 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Version Negotiation Request: The client initiates a request to the server to query the supported
Retrieval Protocol version range. The server replies with its supported Retrieval Protocol version

range.

The exchanges can be utilized in conjunction or independently, as described in the following examples:

 The client can query the server for the availability of the content, identify what content the server
has, and then retrieve only the available content from the server; or

 The client can query the server for the availability of the content, identify what content the server
has, and decide not to retrieve the content; or

 The client can retrieve the content directly from the server without querying for the availability of
the content first.

 For all scenarios described earlier, the client can optionally query the server for its supported

version range first before querying for content availability or retrieving blocks.

The Retrieval Protocol does not mandate the relationship between these exchanges, as shown in the

examples. As a result, in the case where they are used in conjunction, the higher-layer applications
invoking the Retrieval Protocol must be able to retain the availability list from the availability query,
and use it to retrieve part or all of the available content in the subsequent retrieval request(s).

Peers within the Peer Content Caching and Retrieval Framework use the Retrieval Protocol in one of

two ways, depending on whether they are in distributed mode, retrieving content from each other,
or hosted cache mode, retrieving it only from a single preconfigured server. In the distributed mode
case, a peer uses the framework’sframework's Discovery Protocol (see [MS-PCCRD]) to locate peers
who have the desired content, and then initiates exchanges with the discovered peers to obtain the
content. In hosted cache mode, a peer directly initiates exchanges with the hosted cache to obtain the
desired content.

1.4 Relationship to Other Protocols

The Retrieval Protocol uses HTTP [RFC2616] as a transport.

The Peer Content Caching and Retrieval Framework uses the Retrieval Protocol [MS-PCCRR] and
Discovery Protocol [MS-PCCRD] to discover peers when in distributed mode, and query and download

content from other peers. The framework also uses the data structures as described in [MS-PCCRC].

Figure 1: Protocol stack diagram

1.5 Prerequisites/Preconditions

 A higher-layer application using the protocol musthas to have the Content Information (see [MS-
PCCRC] section 2.3) for the block ranges and segments that it is retrieving from the server. The
Content Information contains all the relevant information necessary for discovering and verifying

the content blocks.

 The client must be ablehas to identify and use the encryption algorithm and key used by the
server to encrypt the content.

10 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.6 Applicability Statement

The Retrieval Protocol is designed to handle the content availability query and content retrieval parts
of the operation. It is also suitable for other types of content or object retrieval tasks because it does

not assume any characteristics of the content.

The Peer Content Caching and Retrieval Framework, which uses the Retrieval Protocol, is best suited
when there is a need to reduce load on a content server or reduce bandwidth usage on the link
between the peers and the content server. This is because the protocol enables downloading data
from peers on the high speed link instead of the content server, which maymight be behind a slow link
or maymight be heavily loaded.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Supported Transports: This protocol must beis implemented on top of HTTP as discussed in
section 2.1.

 Protocol Versions: The protocol version is 2.0. Supported versions are 1.0 and 2.0. Messages
defined in version 1.0 are sent with version specification 1.0, and messages defined in version 2.0
are sent with version specification 2.0.

 Security and Authentication Methods: There is no authentication or authorization in the
protocol. The blocks served by the server-role peer, however, are encrypted as described in
section 3.2.5.3.

 Localization: The protocol does not contain locale-dependent information.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

11 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

The Retrieval Protocol is made up of a limited number of fully defined messages sent on top of the
Peer Download Transport. <1>

2.1 Transport

2.1.1 Peer Download Transport

The Peer Download Transport is a peer-to-peer transport built on top of HTTP [RFC2616]. The

client/server HTTP protocol is turned into a peer-to-peer transport by having each peer implement
both a client and a server role. In a given transport session between two peers P1 and P2, the initiator
peer acts as client, and the other peer acts as server. If P1 is the initiator of the transport session, P1
sends an HTTP request, and P2 replies by sending an HTTP response. Both the Retrieval Protocol
request and response message types are included in the body of the HTTP messages. The payload of
each such HTTP request or response consists solely of a single Retrieval Protocol message, with the

response message prefixed with an additional length field (as defined in section 2.2.2) for reassembly

purposes. A transport session between any two peers spans a single request-response sequence, and
no context is kept within the transport across different transport sessions between those two peers.

Each peer implements the server role by reserving the URL under the root path of /116B50EB-ECE2-
41ac-8429-9F9E963361B7/ and listening for POST requests on it.

The initiating/client-role peer P1 at IP address A1 initiates the transport of a given request-type Peer
Retrieval Protocol message to peer P2 at IP address A2, by sending an HTTP POST request to the root
path of /116B50EB-ECE2-41ac-8429-9F9E963361B7/.

2.1.2 Transport Security

The Peer Download Transport does not implement any security. There is no peer authentication or
authorization, and messages are sent in clear text. At the transport level, peers accept and process all

messages coming from any other peer.

2.2 Message Syntax

Messages are formed by headers and a message body. Both headers and body are formed by a
sequence of fields. Each field is aligned according to the current protocol version’s default alignment,

currently 4 bytes.

All Retrieval Protocol messages are variable size messages. The valid range of the total message size
MUST be from 16 bytes to 98,304 bytes (or 96 KB).

2.2.1 Common Data Types

The protocol supports four field types:

 Integer (DWORD fields as defined in [MS-DTYP] section 2.2.9, transmitted in network byte order).

 BLOCK_RANGE_ARRAY ((Integer [2])[count], a count-sized array of BLOCK_RANGE fields).

 SEGMENT_RANGE_ARRAY ((Integer [2])[count], a count-sized array of SEGMENT_RANGE fields).

 BYTE array (BYTE[count], a count-sized array of bytes).

12 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1.1 BLOCK_RANGE

A BLOCK_RANGE is an array of two integers that defines a consecutive array of blocks.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Index

Count

Index (4 bytes): The index of the first block in the range.

Count (4 bytes): Count of consecutive adjacent blocks in that range, including the block at the
Index location. The value of this field MUST be greater than 0.

Index and Count are both integer fields in the range of 0x00000000 to 0xFFFFFFFF, but contain a

value in the range from 0 to 511 inclusive for the Index field, and 1 to (512–Index) inclusive for the
Count field. For example, a BLOCK_RANGE of [42, 7] represents all the blocks starting from block
index 42 to block index 48, including the last one.

2.2.1.2 SEGMENT_RANGE

A SEGMENT_RANGE is an array of two integers that defines a consecutive array of segments.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Index

Count

Index (4 bytes): The index of the first segment in the range.

Count (4 bytes): Count of consecutive adjacent segments in that range, including the segment at
the Index location. The value of this field MUST be greater than 0.

Index and Count are both integer fields in the range of 0x00000000 to 0xFFFFFFFF.

2.2.1.3 BLOCK_RANGE_ARRAY

Variable-size array containing BLOCK_RANGE entries.

This type is declared as follows:

 typedef BLOCK_RANGE BLOCK_RANGE_ARRAY[];

2.2.1.4 SEGMENT_RANGE_ARRAY

A variable-size array containing SEGMENT_RANGE entries.

This type is declared as follows:

 typedef SEGMENT_RANGE SEGMENT_RANGE_ARRAY[];

13 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1.5 ENCODED_SEGMENT_AGE

An ENCODED_SEGMENT_AGE is an array of four bytes that describes the age of a segment of data
involved in a Peer Content Caching and Retrieval: Retrieval Protocol message exchange. The age

refers to the amount of time that has elapsed since the specified segment was first created in the local
BranchCache cache.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SegmentIndex SegmentAgeLowPart SegmentAgeMidPart SegmentAgeHighPart

SegmentIndex (1 byte): Index of a segment among all of the segments involved in the current
message exchange. The index is relative to the first segment addressed in the message containing
the specific current ENCODED_SEGMENT_AGE structure.

SegmentAgeLowPart (1 byte): Low part of the age of the segment.

SegmentAgeMidPart (1 byte): Mid part of the age of the segment.

SegmentAgeHighPart (1 byte): High part of the age of the segment.

The actual age of the segment is calculated as: SegmentAgeLowPart + 256 *
SegmentAgeMidPart + 256 * 256 * SegmentAgeHighPart.

The age of the segment is expressed according to the unit specified in the enclosing object/message.
If no enclosing object/message is available, the age MUST be specified (and is assumed to be

specified) in hundredths of milliseconds.

2.2.2 TRANSPORT_RESPONSE_HEADER

The transport adds the following header in front of response-type protocol messages for reassembly
purposes:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Size (4 bytes): Total message size, in bytes, excluding this field. The valid range of the total
message size MUST be from 16 bytes to 98,304 bytes (or 96 KB).

2.2.3 MESSAGE_HEADER

All messages associated with this protocol are prefixed by a message header.

Messages can be one of two types: request-type or response-type. Request-type messages include

MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2),
MSG_GETBLKS (section 2.2.4.3), and MSG_GETSEGLIST (section 2.2.4.4). Response-type messages
include MSG_NEGO_RESP (section 2.2.5.1), MSG_BLKLIST (section 2.2.5.2),
MSG_BLK (section 2.2.5.3), and MSG_SEGLIST (section 2.2.5.4). Request-type messages initiate a

communication session between two peers. Response-type messages are sent only on response to a
Request-type one (see Protocol Details (section 3) for more details).

A request-type message can be delivered only as an HTTP request. A response-type message can be
delivered only as an HTTP response to an incoming HTTP request.

14 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The layout of the message header is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtVer

MsgType

MsgSize

CryptoAlgoId

ProtVer (4 bytes): Protocol version number, formed by concatenating the protocol major version
number and protocol minor version number, encoded as follows (where MSB is Most Significant

Byte and LSB is Least Significant Byte):

1st Byte (Addr: X) 2nd Byte (Addr: X+1) 3rd Byte (Addr: X+2) 4th Byte (Addr: X+3)

Minor version MSB Minor version LSB Major version MSB Major version LSB

The major version number is encoded in the least significant word of the protocol version's
DWORD.

The minor version number is encoded in the most significant word of the protocol version's
DWORD.

Both the major and minor version number can express the version range of 0x0000 to 0xFFFF.
The value of the ProtVer field is determined by the message type specified in the MsgType field,

rather than the greatest version number supported by the client.

MsgType (4 bytes): The type of message in the message body, expressed as a binary integer. MUST

be set to one of the following values.

Value Meaning

MSG_NEGO_REQ

0x00000000

A protocol version negotiation request. The request declares the minimum and
maximum version numbers supported by the requesting client-role peer.<2>To use
the MSG_NEGO_REQ value, the value of the ProtVer field MUST be set to 1.0.

MSG_NEGO_RESP

0x00000001

A protocol version negotiation response. It is sent in response to any protocol version
negotiation request or to any other request with protocol version not supported by the
server-role peer.

The response declares the minimum and maximum version numbers supported by the
responding server-role peer. To use the MSG_NEGO_RESP value, the value of the
ProtVer field MUST be set to 1.0.

MSG_GETBLKLIST

0x00000002

A request for a list of block hashes of blocks in the target segment that are
possessed by the destination server-role peer (list expressed as a block range array),

and intersecting the list of block hashes specified in the request itself. To use the
MSG_GETBLKLIST value, the value of the ProtVer field MUST be set to 1.0.

MSG_GETBLKS

0x00000003

A request for an array of block hashes (specified by a block range array). Since only
one block will be returned, a MSG_GETBLKS message SHOULD specify only a single
range containing only a single block. To use the MSG_GETBLKS value, the value of the
ProtVer field MUST be set to 1.0.

MSG_BLKLIST A response message containing a list of block hashes of blocks in the target segment
that are possessed by the destination server-role peer (list expressed as a block range

15 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000004 array), and intersecting the list of block hashes specified in the previous request from
the client-role peer. To use the MSG_BLKLIST value, the value of the ProtVer field
MUST be set to 1.0.

MSG_BLK

0x00000005

A response message containing the (first) actual block requested by the client-role
peer via a block range array in a MSG_GETBLKLIST message. To use the MSG_BLK
value, the value of the ProtVer field MUST be set to 1.0.

MSG_GETSEGLIST

0x0000006

A request for a list of segments IDs that are possessed by the destination server-role
peer and intersecting the list of segments IDs specified in the request itself. To use the
MSG_GETSEGLIST value, the value of the ProtVer field MUST be set to 2.0.

MSG_SEGLIST

0x0000007

A response message containing a list of segments IDs possessed by the destination
server-role peer and intersecting the list of segment IDs in the previous request from
the client-role peer. To use the MSG_SEGLIST value, the value of the ProtVer field
MUST be set to 2.0.

MsgSize (4 bytes): Protocol message total size including the MESSAGE_HEADER, but not including
the TRANSPORT_RESPONSE_HEADER. The valid range of the total message size MUST be from 16
bytes to 98,304 bytes (or 96 KB) for request messages, or from 16 bytes to 393,216 bytes (or

384 KB) for response messages.

CryptoAlgoId (4 bytes): The encryption algorithm used by the server-role peer to encrypt data. In
the request message to the server-role peer, the client-role peer SHOULD indicate AES_128 as the
preferred encryption algorithm; however, the server-role peer can ignore this value. The
CryptoAlgoId field MUST be set to one of the following values. Refer to [FIPS197] for the AES
standard and [SP800-38A] for the supported block cipher modes listed in the following table.

Value Meaning

0x00000000 No encryption.

AES_128

0x00000001

AES 128-bit, CBC-mode encryption.

AES_192

0x00000002

AES 192-bit, CBC-mode encryption.

AES_256

0x00000003

AES 256-bit, CBC-mode encryption.

2.2.4 Request Message

This protocol specifies four request messages sent by the clients to the servers:
MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2),

MSG_GETBLKS (section 2.2.4.3), and MSG_GETSEGLIST (section 2.2.4.4). The complete layout of a

request-type Peer Content Caching and Retrieval: Retrieval Protocol message is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MESSAGE_HEADER (16 bytes)

...

16 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

MESSAGE_BODY (variable)

...

MESSAGE_HEADER (16 bytes): Message header.

MESSAGE_BODY (variable): Message body, which contains one of the following: Negotiation
Request (MSG_NEGO_REQ), GetBlockList (MSG_GETBLKLIST), GetBlocks (MSG_GETBLKS), or

GetSegmentList (MSG_GETSEGLIST) request message.

2.2.4.1 MSG_NEGO_REQ

The MSG_NEGO_REQ (Negotiation Request) message is a request for the minimum and maximum

protocol version supported by the target server-role peer. The message contains the minimum and

maximum protocol version supported by the requesting client-role peer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MinSupportedProtocolVersion

MaxSupportedProtocolVersion

MinSupportedProtocolVersion (4 bytes): Minimum protocol version supported by the requesting
peer. The protocol version is encoded identically to the ProtVer field defined in section 2.2.3.

MaxSupportedProtocolVersion (4 bytes): Maximum protocol version supported by the requesting
peer. The protocol version is encoded identically to the ProtVer field defined in section 2.2.3.

2.2.4.2 MSG_GETBLKLIST

The MSG_GETBLKLIST (GetBlockList) message contains a request for a download block list. It is used
when retrieving a set of blocks defined by one or more BLOCK_RANGE_ARRAY_RANGE items.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

NeededBlocksRangeCount

NeededBlockRanges (variable)

17 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

SizeOfSegmentID (4 bytes): Size, in bytes. of the subsequent SegmentID field. The syntactic
range of this field is from 0x00000000 to 0xFFFFFFFF. The actual value of this field depends on the
hashing algorithm used as defined in [MS-PCCRC]. Implementations SHOULD support all allowed

SegmentID lengths, and MUST support content with 32-byte SegmentIDs.<3>

SegmentID (variable): Public Segment Identifier for the target segment of content (also known as
HoHoDk). See [MS-PCCRC] for a description of contents, segments, blocks, and identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment, relative to
the beginning of this message. The value of each byte MUST be set to zero. This field is 0 to 3
bytes in length, as required.

NeededBlocksRangeCount (4 bytes): Number of items in the subsequent block range array. The
syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The effective range of this field
MUST be between 1 and 256 inclusive, because there cannot be more than 256 non-overlapping

and non-contiguous ranges in a maximum segment size of 512 blocks.

NeededBlockRanges (variable): Block range array listing the block hashes of the blocks within the
target segment that the client-role peer is interested in. The server-role peer will reply with a
block range array representing the intersection between the list of block hashes in the

NeededBlockRanges array and the block range array set of blocks within the target segment
currently available for sharing in the local cache of the server-role peer.<4>

2.2.4.3 MSG_GETBLKS

The MSG_GETBLKS (GetBlocks) message contains a request for blocks of content. It is used to

retrieve a set of blocks defined by a single BLOCK_RANGE_ARRAY_RANGE.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

ReqBlockRangeCount

ReqBlockRanges (variable)

...

SizeOfDataForVrfBlock

DataForVrfBlock (variable)

18 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

SizeOfSegmentID (4 bytes): Size in bytes of the subsequent SegmentID field. The syntactic range
of this field is from 0x00000000 to 0xFFFFFFFF. The actual value of this field depends on the
hashing algorithm used as defined in [MS-PCCRC]. Implementations SHOULD support all allowed

SegmentID lengths, and MUST support content with 32-byte SegmentIDs.<5>

SegmentID (variable): Public Segment Identifier for the target segment of content (also known as
HoHoDk). See [MS-PCCRC] for a description of contents, segment, blocks, and identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment, relative to
the beginning of this message. The value of each byte MUST be set to zero. This field is 0 to 3
bytes in length, as required.

ReqBlockRangeCount (4 bytes): Number of items in the subsequent block range array. The
syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The effective range of this field
MUST be between 1 and 256 inclusive, because there cannot be more than 256 non-overlapping

and non-contiguous ranges in a maximum segment size of 512 blocks.

ReqBlockRanges (variable): Block range array representing the blocks requested for the target
segment. RegBlockRanges MUST specify a single block range containing only one block.

SizeOfDataForVrfBlock (4 bytes): Size in bytes of the subsequent DataForVrfBlock field. This

field SHOULD be zero.

DataForVrfBlock (variable): Not used by the protocol. This field SHOULD be empty.

2.2.4.4 MSG_GETSEGLIST

The MSG_GETSEGLIST (GetSegmentList) message contains a request for a download segment list. It

is used when retrieving a set of segments. This message MUST be formatted as follows:<6>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RequestID (16 bytes)

...

...

CountOfSegmentIDs

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

SizeOfExtensibleBlob

19 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ExtensibleBlob (variable)

...

RequestID (16 bytes): Unique identifier among all outstanding GetSegmentList Requests from this
peer.

CountOfSegmentIDs (4 bytes): Count of the Segment IDs in the current GetSegmentList Request.

The following three fields are repeated N times where N is equal to CountOfSegmentIDs.

SizeOfSegmentID (4 bytes): Size, in bytes of the first SegmentID, immediately subsequent to this
field. Implementations MUST support all allowed SegmentID lengths, and MUST support content
with 32-byte SegmentIDs.

SegmentID (variable): Public Segment Identifier for the first target segment of content (also known
as HoHoDk). See [MS-PCCRC] section 2.2 for a description of segment identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment, relative to
the beginning of this message. The value of each byte MUST be set to zero. This field is 0 to 3
bytes in length, as required.

SizeOfExtensibleBlob (4 bytes): Size, in bytes, of the ExtensibleBlob field. Implementations MAY
support extensible blobs in MSG_GETSEGLIST messages. Implementations that do not support
extensible blobs in MSG_GETSEGLIST messages MUST set SizeOfExtensibleBlob to zero and
omit the ExtensibleBlob field.

ExtensibleBlob (variable): An extensible binary large object (BLOB). See Extensible BLOB (section
2.2.6) for the definition of currently defined extensible BLOBs. Implementations MAY support
extensible BLOBs in MSG_GETSEGLIST messages. Implementations that do not support extensible
BLOBs in MSG_GETSEGLIST messages MUST set SizeOfExtensibleBlob to zero and omit the
ExtensibleBlob field. Relative indexes contained in the extensible BLOB are relative to the first
segment in the first SegmentRange carried by the current MSG_GETSEGLIST message.

2.2.5 Response Message

The Retrieval Protocol defines four response messages sent by the servers in response to client
requests: MSG_NEGO_RESP (section 2.2.5.1), MSG_BLKLIST (section 2.2.5.2),
MSG_BLK (section 2.2.5.3), and MSG_SEGLIST (section 2.2.4.4). The complete layout of a response-

type Peer Content Caching and Retrieval: Retrieval Protocol message is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TRANSPORT_RESPONSE_HEADER

MESSAGE_HEADER (16 bytes)

...

...

MESSAGE_BODY (variable)

...

20 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TRANSPORT_RESPONSE_HEADER (4 bytes): Transport response header.

MESSAGE_HEADER (16 bytes): Message header.

MESSAGE_BODY (variable): Message body, which maycan contain one of the following:
MSG_NEGO_RESP, MSG_BLKLIST, MSG_BLK, or a MSG_SEGLIST message.

2.2.5.1 MSG_NEGO_RESP

The MSG_NEGO_RESP (Negotiation Response) message is the response message containing the
minimum and maximum protocol version supported by the responding server-role peer. The message

is sent in response to a Negotiation Request message or to any other request message with a protocol
version not supported by the server-role peer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MinSupportedProtocolVersion

MaxSupportedProtocolVersion

MinSupportedProtocolVersion (4 bytes): Minimum protocol version supported by the requesting
peer. The protocol version is encoded identically to the ProtVer field defined in section 2.2.3.

MaxSupportedProtocolVersion (4 bytes): Maximum protocol version supported by the requesting
peer. The protocol version is encoded identically to the ProtVer field defined in section 2.2.3.

2.2.5.2 MSG_BLKLIST

The MSG_BLKLIST message is the response message containing the download block ranges available
on the responding server-role peer. The message is sent by the server-role peer in response to a
MSG_GETBLKLIST message from a requesting client-role peer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfSegmentId

SegmentId (variable)

...

ZeroPad (variable)

...

BlockRangeCount

BlockRanges (variable)

...

NextBlockIndex

21 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SizeOfSegmentId (4 bytes): The size, in bytes, of the subsequent SegmentId field.

SegmentId (variable): The Public Segment Identifier for the target segment of content (also known

as HoHoDk). See [MS-PCCRC] for details.

ZeroPad (variable): A sequence of N bytes added (only as needed) to restore 4-byte alignment,

where 0 <= N <= 3. Each byte's value MUST be set to zero.

BlockRangeCount (4 bytes): Number of items in the subsequent block range array. The server
MUST set the BlockRangeCount field to 0 if it does not have any of the requested block ranges.

BlockRanges (variable): A block range array describing the blocks currently available for download
from the current server-role peer for the target segment, within the boundaries of the list of block
ranges of interest (NeededBlockRanges) specified by the client-role peer in the previously
received GetBlockList request message (MSG_GETBLKLIST (section 2.2.4.2)). <7>

NextBlockIndex (4 bytes): The index of the first block after the block sent in the current message,
currently available for download from this server-role peer. If no such next block is available, this
index MUST be zero.

2.2.5.3 MSG_BLK

The MSG_BLK message is the response message containing a download block. This message is sent by
the server-role peer in response to a MSG_GETBLKS message from a requesting client-role peer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfSegmentId

SegmentId (variable)

...

ZeroPad (variable)

...

BlockIndex

NextBlockIndex

SizeOfBlock

Block (variable)

...

ZeroPad_2 (variable)

...

SizeOfVrfBlock

22 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

VrfBlock (variable)

...

ZeroPad_3 (variable)

...

SizeOfIVBlock

IVBlock (variable)

...

SizeOfSegmentId (4 bytes): The size, in bytes, of the subsequent SegmentId field.

SegmentId (variable): The Public Segment Identifier for the target segment of content (also known
as HoHoDk). See [MS-PCCRC] for details.

ZeroPad (variable): A sequence of N bytes added (only as needed) to restore 4-byte alignment,
where 0 <= N <= 3. Each byte's value MUST be set to zero.

BlockIndex (4 bytes): The index in the target segment of the block sent in the current message.

NextBlockIndex (4 bytes): The index of the first block after the block sent in the current message,
currently available for download from this server-role peer. If no such next block is available, this
index MUST be zero.

SizeOfBlock (4 bytes): The size, in bytes, of the subsequent Block field. The server MUST set the
SizeOfBlock field to zero if it does not have the requested block.

Block (variable): The actual block of data, encrypted according to the cryptographic algorithm
specified in the header of the message itself, not including the initialization vector.

ZeroPad_2 (variable): A sequence of N bytes added (only as needed) to restore 4-byte alignment,
where 0 <= N <= 3. Each byte's value MUST be set to zero.

SizeOfVrfBlock (4 bytes): The size, in bytes, of the subsequent VrfBlock field, which SHOULD be

zero.

VrfBlock (variable): Currently not used, and SHOULD be empty.

ZeroPad_3 (variable): A sequence of N bytes added (only as needed) to restore 4-byte alignment,
where 0 <= N <= 3. Each byte's value MUST be set to zero.

SizeOfIVBlock (4 bytes): The size, in bytes, of the subsequent IVBlock field.

IVBlock (variable): The initialization vector used by the server-role peer when encrypting the block
of data (Block field) sent with this message.

2.2.5.4 MSG_SEGLIST

The MSG_SEGLIST message is the response message containing the segment range array describing
the segments currently available for download. This message is sent by the server-role peer in

response to a MSG_GETSEGLIST (section 2.2.4.4) message from a requesting client-role peer.

The MSG_SEGLIST MUST be formatted as follows:<8>

23 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RequestID (16 bytes)

...

...

SegmentRangeCount

SegmentRanges (variable)

...

SizeOfExtensibleBlob

ExtensibleBlob (variable)

...

RequestID (16 bytes): Unique identifier matching the RequestID received in the associated
GetSegmentList Request.

SegmentRangeCount (4 bytes): Number of items in the SegmentRanges field. The server MUST

set the SegmentRangeCount field to 0 if it does not have any of the requested segments.

SegmentRanges (variable): A SEGMENT_RANGE ARRAY (section 2.2.1.4) that describes the
segments (full or partial) currently available for download from the current server-role peer. The
indexes specified in each range in the response are the relative indexes of the segment in the

original array of segment IDs specified in the associated GetSegmentList message.

SizeOfExtensibleBlob (4 bytes): The size in bytes of the ExtensibleBlob field.

ExtensibleBlob (variable): An extensible binary large object (BLOB). For the definitions of
extensible BLOBs that are currently defined, see section 2.2.6. The relative indexes contained in
the extensible BLOB are relative to the first segment in the first SEGMENT_RANGE (section
2.2.1.2) carried by the current MSG_SEGLIST message.

2.2.6 Extensible BLOB

Extensible binary large objects (BLOBs) are optional BLOBs that SHOULD be included in MSG_SEGLIST
responses and MAYcan be included in MSG_GETSEGLIST requests.

Extensible BLOBs carry more information about the specific segments associated to the
MSG_GETSEGLIST/MSG_SEGLIST exchange.

Extensible BLOBs are versioned, and for each version there is a well-known definition. Currently the
only defined extensible BLOB version is extensible BLOB version 1. Future protocol versions maycan

define new extensible BLOB versions.

The version of the extensible BLOB is encoded as a network-byte-order unsigned short integer in the
first two bytes of the extensible BLOB itself.

Any extensible BLOB smaller than 2 bytes is invalid and MUST be discarded.

24 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Implementations that do not support the specific extensible BLOB version encoded in the first two
bytes of the BLOB itself MUST discard the BLOB.

Implementations that do support the specific extensible BLOB version encoded in the first two bytes of
the BLOB itself MUST make sure that the size of the BLOB reported through SizeOfExtensibleBlob is

compatible with the size restrictions for that specific BLOB version; if not, the BLOB MUST be
discarded.

2.2.6.1 Extensible Blob Version 1

The Extensible Blob Version 1 MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtensibleBlobVersion SegmentAgeUnits SegmentAgeCount

SegmentAges (variable)

...

ExtensibleBlobVersion (2 bytes): Network-byte-order unsigned short integer that contains the
version of the extensible blob. It must be equal to 1.

SegmentAgeUnits (1 byte):

Unit used to specify the age of the segments in the following ENCODED_SEGMENT_AGE
structures. Valid values are:

 1=seconds

 2=tenths of a second

 3=hundredths of a second

 4=milliseconds

When sending a message containing an extensible blob version 1, implementations SHOULD use a
value of 3 (hundredths of a second). When receiving a message containing a blob,
implementations MUST be able to process any of the above valid values.

SegmentAgeCount (1 byte): Count of ENCODED_SEGMENT_AGE structures encoded right after this
field (acceptable range: 0 - 255).

SegmentAges (variable): SegmentAgeCount ENCODED_SEGMENT_AGE structures.

2.2.6.1.1 Extensible Blob Version 1 Restrictions and Validation

Before parsing the data in the blob, implementations MUST verify its validity as follows:

1. The blob size MUST be at least four bytes.

2. The blob MUST have a SegmentAgeUnits value in the range of 1 to 4.

3. The blob size specified by the enclosing message MUST be equal to or larger than the size needed
in order to accommodate the number of ENCODED_SEGMENT_AGE structures specified by
SegmentAgeCount, plus four bytes for the above-described blob layout. That is:

25 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Specified_size >= 4 + SegmentAgeCount * sizeof(ENCODED_SEGMENT_AGE) = 4 +
SegmentAgeCount * 4 = 4 * (SegmentAgeCount + 1)

The above validations MUST be carried out in the specified order and MUST be aborted at the first
failure. If validation fails, the blob MUST be discarded.

26 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

The Retrieval Protocol consists of four types of exchanges: the Negotiation request/response, the
BlockList request/response, the Block request/response, and the SegmentList request/response. (See
section 2 for message formats and field definitions.)

 Protocol Version Negotiation: A client-role peer (referred to here simply as "client") initiates a
protocol version negotiation with a server-role peer (referred to here simply as "server") by

sending a Negotiation Request message (MSG_NEGO_REQ (section 2.2.4.1)), declaring the
minimum and maximum protocol versions it supports. The server responds with a Negotiation
Response message (MSG_NEGO_RESP (section 2.2.5.1)), declaring the minimum and maximum
protocol versions it supports. Implementation of the client side of the protocol version negotiation
is optional. The server side of the protocol version negotiation MUST be implemented.

 BlockList request/response: A client initiates a GetBlockList request

(MSG_GETBLKLIST (section 2.2.4.2)) to a server in order to query the list of content blocks
available on the server for a given segment ID, and a list of block ranges within the segment, by

sending a MSG_GETBLKLIST request. The server responds with a BlockList response
(MSG_BLKLIST (section 2.2.5.2)) containing the list of block ranges for the specific segment ID
that are within the ranges of the request. If the server does not support the client's protocol
version, it treats the request as a Negotiation Request and responds accordingly (see section
3.2.5.1).

 Blocks request/response: A client initiates a GetBlocks request
(MSG_GETBLKS (section 2.2.4.3)) to a server to retrieve a specific block of a given segment,
which is identified by the segment ID and the index of the block in the segment. It does this by
sending a MSG_GETBLKS request. The server responds with the requested content blocks in a
Block response (MSG_BLK (section 2.2.5.3)). If the server does not support the client's protocol
version, it treats the request as a Negotiation Request, and responds accordingly (see section
3.2.5.1).

 SegmentList request/response: SegmentList exchanges are restricted to Hosted Cache
client/server interaction only. A SegmentList request MUST be sent only by a Hosted Cache Client

and it MUST always be directed to a Hosted Cache Server. A client initiates a SegmentList request
(MSG_GETSEGLIST (section 2.2.4.4)) to a server in order to query the availability on the server of
an array of segments, each of them identified by its segment ID. The server responds with a
SegmentList response (MSG_SEGLIST (section 2.2.5.4)) containing the list of segment ranges for

the specific segment IDs that are within the requested array. The indexes specified in the ranges
are the indexes of segments in an array of Segment IDs in the originating MSG_GETSEGLIST
request. If the server does not support the client's protocol version, it treats the request as a
Negotiation Request and responds accordingly (see section 3.2.5.1).

The Peer Content Caching and Retrieval Framework (also referred to as simply "the framework") then
uses the Retrieval Protocol to retrieve and assemble complete segments of a content from a
combination of sources, including either a set of server peers or a hosted cache, plus the original

content server if the former does not have the complete content.

3.1 Client Details

3.1.1 Abstract Data Model

The Retrieval Protocol client maintains the following data:

 Outstanding Request List: A list of request messages sent for which responses have not yet
been received, along with the addresses of the peers to which they were sent.

27 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.2 Timers

 Request Timer: A per-request-message timer set by the client whenever it sends a
MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2),

MSG_GETBLKS (section 2.2.4.3), or MSG_GETSEGLIST (section 2.2.4.4) request message. When
the timer expires before the exchange is completed, the client MUST cancel the current exchange.
The default timeout value MUST be set to 2 seconds.<9>

3.1.3 Initialization

The Retrieval Protocol requires no explicit initialization for clients.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 MSG_NEGO_REQ Request

An implementation of the Retrieval Protocol MAY support the sending of a Protocol Version Negotiation
Request message (MSG_NEGO_REQ (section 2.2.4.1)), when triggered by a higher-layer application.
The following description only applies to the implementations that support this feature.

When initiating a Retrieval Protocol query for the supported protocol versions, the higher-layer

applications MUST specify a server address. The Retrieval Protocol implementation MUST:

1. Construct an MSG_NEGO_REQ message (as specified in section 2.2.4.1).

2. Fill in the minimum and maximum protocol versions it supports.

3. Send the message to the server.

4. Store the message in the Outstanding Request List.

5. Start the Request Timer.

3.1.4.2 MSG_GETBLKLIST Initiation

To initiate a Retrieval Protocol query for the list of block ranges on a server, the higher-layer
applications MUST specify a server address, a segment ID, and a set of block ranges within the
segment identified by the segment ID. The client instance of the Retrieval Protocol instantiation MUST

construct and send a GetBlockList message (MSG_GETBLKLIST (section 2.2.4.2)) to the server, store
it in the Outstanding Request List (3.1.1), and start the Request Timer (3.1.2). The SegmentID
and NeededBlocksRanges fields of the GetBlockList message correspond to the segment ID and the
set of block ranges supplied by the higher-layer applications.

3.1.4.3 MSG_GETBLKS Initiation

To initiate a Retrieval Protocol request for specific block ranges, the higher-layer applications MUST
specify a server address, a segment ID, and a set of block ranges with the segment identified by the

segment ID. The client instance of the Retrieval Protocol MUST construct and send a GetBlocks
message (MSG_GETBLKS (section 2.2.4.3)) to the server, store it in the Outstanding Request List
(3.1.1), and start the Request Timer (3.1.2). The SegmentID and ReqBlockRanges fields

correspond to the segment ID and the block ranges of the request.

The Retrieval Protocol MUST only request and retrieve one block per exchange of MSG_GETBLKS
request and MSG_BLK (section 2.2.5.3) response messages. If the higher-layer applications need to
retrieve more than one block, multiple GetBlocks messages MUST be sent with one block per request.

28 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A peer SHOULD perform a simple download if it involves a limited number of consecutive blocks in a
single block range.<10> This implies that the blocks are consecutive in the segment.

3.1.4.4 MSG_GETSEGLIST Initiation

To initiate a Retrieval Protocol request for an array of segment IDs, the higher-layer application MUST
generate a sequential or random non-repeating Request ID, and it MUST specify a server address and
an array of segment IDs. The client instance of the Retrieval Protocol MUST construct and send a
GetSegmentList message (MSG_GETSEGLIST (section 2.2.4.4)) to the server, store it in the

Outstanding Request List (3.1.1), and start the Request Timer (3.1.2). The RequestID and
SegmentID fields correspond to the ID of the current request and to the segment IDs contained in
the request.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 MSG_NEGO_RESP Received

On receiving a MSG_NEGO_RESP (section 2.2.5.1) response message from a server, the client MUST
first determine if this is a response to a previously sent request by checking the Outstanding
Request List for the address of the server. If it is a response to either a

MSG_GETBLKLIST (section 2.2.4.2) or MSG_GETBLKS (section 2.2.4.3) message, the client MUST
compare the ranges of protocol versions and select a protocol version based on the rules described
later in this section. It must then resend the original MSG_GETBLKLIST or MSG_GETBLKS message,
using the selected version.

If it is a response to an MSG_NEGO_REQ (section 2.2.4.1), the client MUST return the highest protocol
version supported by both the client and the server to the higher-layer applications.

If the client and server are incompatible, then the client MUST silently discard the MSG_NEGO_RESP
message and MUST abort any current exchange with the server, including exchanges for previously
sent MSG_GETBLKLIST, MSG_GETBLKS, or MSG_NEGO_REQ messages.

The rules for determining compatibility and selecting a version are listed below:

1. The client's and the server's major version ranges are calculated from the MSG_NEGO_REQ and
MSG_NEGO_RESP messages, respectively. In both cases, they are defined as the inclusive range
between the major version from the MinSupportedProtocolVersion field and the major version

from the MaxSupportedProtocolVersion field. The highest common major version is the highest
value that is included in both ranges. If these ranges do not contain any common values, then no
highest common major version exists.

2. The minor versions within the same major version do not affect protocol compatibility. For
instance, a client sending a version 3.2 request message and a server replying with version 3.0
message are fully compatible. The client and the server MUST each select their own highest minor
version supported within the highest common major version. For example, if the client supports

protocol version range [3.2, 5.0] and the server supports protocol version range [2.0, 4.3], then
the highest common major version is 4, and the client will be sending messages with version 4.8
(assuming the highest minor version number for major version 4 is 4.8), whereas the server will

be replying with messages with version 4.3. Another example: a client with a supported version
range of [1.0, 2.1] and a server with a supported range of [2.5, 2.9] will result in a highest
common major version of 2, with the client using version 2.1 and the server using version 2.9.

3. If no highest common major version exists, then the client and the server are incompatible.

If there is no existing request message previously sent to the server stored in the Outstanding
Request List, the client MUST silently discard the received message.

29 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.2 MSG_BLKLIST Response Received

On receiving a MSG_BLKLIST (section 2.2.5.2) response message from a server, the client MUST
verify that it is well-formed and corresponds to a GetBlockList request message

(MSG_GETBLKLIST (section 2.2.4.2)) in its Outstanding Request List. The client then performs the
following checks:

 The client SHOULD verify if the segment ID matches any request in the Outstanding Request
List. If the client performs the segment ID check, it MUST silently discard the MSG_BLKLIST
message and abort the exchange if the segment ID does not match the segment ID of any
request.<11>

 The client MUST check if the block ranges overlap with the ranges specified in any request with a

matching segment ID in the Outstanding Request List. The client MUST silently discard the
MSG_BLKLIST message and abort the exchange if the check fails.

If this verification is successful, then the peer MUST:

 Delete the corresponding request message from the Outstanding Request List, and cancel its
Request Timer.

 Return the segment ID and block range from the MSG_BLKLIST message, as well as the server

address, to the higher-layer applications.

Otherwise, the response message MUST be silently discarded.

3.1.5.3 MSG_BLK Response Received

On receiving a MSG_BLK (section 2.2.5.3) response message from a discovered peer, the client MUST

verify that it is well-formed and corresponds to a GetBlocks request message
(MSG_GETBLKS (section 2.2.4.3)) in its Outstanding Request List (the segment ID and block index
would match that of an outstanding GetBlocks request). The client MUST silently discard the message
if this verification is unsuccessful. Otherwise, it MUST:

 Delete the corresponding request message from the Outstanding Request List, and cancel its
Request Timer.

 If an encryption algorithm is specified in the MSG_BLK message (the CryptoAlgoId field does not

equal 0x00000000 as specified in section 2.2.3), decrypt the block using the pre-provisioned key.

 Pass the segment ID, block index, and (decrypted) block up to the higher-layer applications.

Otherwise, the response message MUST be silently discarded and the exchange aborted.

3.1.5.4 MSG_SEGLIST Response Received

On receiving a MSG_SEGLIST (section 2.2.5.4) response message from a server, the client MUST
verify that it is a well-formed GetSegmentList request message (per section 2.2.4.4) in its
Outstanding Request List. The client then performs the following checks:

 The client MUST verify that the RequestID matches any request in the Outstanding Request
List. If a request with a matching RequestID is not found in the Outstanding Request List, the
client MUST silently discard the MSG_SEGLIST message and abort the exchange.

 The client MUST make sure that the all index entries from the ranges reported in the
MSG_SEGLIST received are contained within the array of segment IDs specified in the request
matching the RequestID in the Outstanding Request List. The client MUST silently discard the
MSG_SEGLIST message and abort the exchange if the check fails.

30 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If this verification is successful, then the peer MUST do the following:

 Delete the corresponding request message from the Outstanding Request List, and cancel its

Request Timer.

 Return the list of segment IDs identified by the ranges from the MSG_SEGLIST message, as well

as the server address, to the higher-layer applications.

Otherwise, the response message MUST be silently discarded.

3.1.5.5 Other Messages Received

All malformed messages received by the client and messages of unknown type sent to the Retrieval
Protocol URLs specified in section 2.1.1 MUST be silently discarded.

3.1.6 Timer Events

3.1.6.1 Request Timer Expiration

When the Request Timer expires before the exchange (GetBlockList
(MSG_GETBLKLIST (section 2.2.4.2)), GetBlocks (MSG_GETBLKS (section 2.2.4.3)), Negotiation
Request (MSG_NEGO_REQ (section 2.2.4.1)), or GetSegmentList
(MSG_GETSEGLIST (section 2.2.4.4))) is completed, the client MUST abort the current exchange.

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

 Content Cache: This is the local content cache on the server. It consists of a list of segment IDs
and associated block ranges, along with their Content Information (see [MS-PCCRC] section 2.3)
and corresponding content blocks that the client or server has previously obtained either from
other peers or from the content server. The server replies to client queries with the information
and content blocks stored in its content cache; the client retrieves the content from the server
using the Core Retrieval Protocol.

 Active Client Count: This counter keeps the number of active clients the server is currently
serving. The counter is incremented by 1 when the server receives a request (GetBlockList
(MSG_GETBLKLIST (section 2.2.4.2)) or GetBlocks (MSG_GETBLKS (section 2.2.4.3))), and is
decremented by 1 when the server sends back a response or discards the request. This counter is
used to limit the number of concurrent clients for a server to a maximum value. The default
maximum threshold SHOULD be set to 64<12><13>, and it MUST be configurable. The system
administrators should configure this value based on the processing capability of the server. If this

counter reaches the threshold, the server will send back an empty response (empty block range in
BlockList (MSG_BLKLIST (section 2.2.5.2)) or empty block in Block (MSG_BLK (section 2.2.5.3)))
to the client.

3.2.2 Timers

 Upload Timer: A per-instantiation timer set by a server when the protocol is instantiated. The
server MUST abort the protocol instance when the timer expires before the request/response
exchange is completed. The default timeout value MUST be set to 15 seconds.<14>

31 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.3 Initialization

The server is initialized by starting to listen for incoming HTTP requests on the URL specified in section
2.1.1. The server MUST set the Active Client Count to zero.

3.2.4 Higher-Layer Triggered Events

There are no explicit higher-layer triggered events for the server, other than waiting for the client
messages as enabled by the initialization.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 MSG_NEGO_REQ Received

On receiving a valid MSG_NEGO_REQ (section 2.2.4.1) message from a client, the server MUST
construct a MSG_NEGO_RESP (section 2.2.5.1) message with the maximum and minimum protocol

versions that it supports, set the Upload Timer, and send the response message back to the client.

3.2.5.2 MSG_GETBLKLIST Request Received

On receiving a valid MSG_GETBLKLIST (section 2.2.4.2) request message from a client, the server
MUST perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range
comparison rules specified in section 3.1.5.1. If the major protocol version is outside the range of
the server implementation, the server MUST construct an MSG_NEGO_RESP (section 2.2.5.1)

message, fill it in with the maximum and minimum protocol versions it supports, and send the
MSG_NEGO_RESP message back to the client.

2. If the major version is supported by the server, the server MUST select a compatible protocol
version based on the same rules specified in section 3.1.5.1 for the following reply message.

3. The server MUST check if its Active Client Count is greater than or equal to the maximum
number allowed. If the server is already serving more than or equal to the maximum number of
clients, the server MUST reply to the client using a MSG_BLKLIST (section 2.2.5.2) message with

an empty block range.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer, and
compute the intersection of the block ranges (for the segment specified) in the MSG_GETBLKLIST
request with the block ranges for the same segment in the server's Content Cache. The server
MUST then send the client a MSG_BLKLIST response message containing the segment ID listed in
the MSG_GETBLKLIST request message, and the computed intersection block ranges (possibly
empty).

5. Once the MSG_BLKLIST response message is sent, the server MUST decrement the Active Client
Count by 1.

3.2.5.3 MSG_GETBLKS Request Received

On receiving a valid MSG_GETBLKS (section 2.2.4.3) request message from a client, the server MUST
perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range
comparison rules specified in section 3.1.5.1. If the major version is outside the range of the
server implementation, the server MUST construct a MSG_NEGO_RESP (section 2.2.5.1) message,
fill in the maximum and minimum protocol versions it supports, and send the MSG_NEGO_RESP
message back to the client.

32 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. If the major version is supported by the server, the server MUST select a compatible protocol
version based on the same rules specified in section 3.1.5.1 for the following reply message.

3. The server MUST check if its Active Client Count (Abstract Data Model, section 3.2.1) is greater
than or equal to the maximum number allowed. If the server is already serving more than or

equal to the maximum number of clients, the server MUST reply to the client using a
MSG_BLK (section 2.2.5.3) message with an empty block.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer
(Timers, section 2.2.5.3), and construct and send the client a MSG_BLK response message
containing a block that is selected based on the following rules:

 If the block ranges in the MSG_GETBLKS request message contain only one block, the server
MUST select the requested block.

 If the block ranges contain more than one block, the server SHOULD select the first (smallest-
index) block from the block ranges and the segment that is specified in the request message.

The server then MUST check whether the selected block exists in the server's Content Cache

(Abstract Data Model section 2.2.5.1). If it does, then the server MUST include this block in the
MSG_BLK response message it sends. Otherwise, the response MUST contain an empty
MSG_BLK response message. The SegmentID field in the response message MUST be set to

the segment ID of the request, and the BlockIndex field MUST be set to the index of the block
sent in this message. The server MUST also calculate the value of the NextBlockIndex field
(section 2.2.5.3).

The server MUST apply the encryption algorithm chosen by the upper-layer application to the
block in MSG_BLK response message. The list of permissible encryption algorithms is given by
the CryptoAlgoID value table in section 2.2.3.

5. Once the MSG_BLK message is sent, the server MUST decrement the Active Client Count by 1. If

the resulting value is negative, the server MUST set the counter to zero.

3.2.5.4 MSG_GETSEGLIST Request Received

On receiving a valid MSG_GETSEGLIST (section 3.1.5.4) request message from a client, the server

MUST perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range
comparison rules specified in section 3.1.5.1. If the major protocol version is outside the range of
the server implementation, the server MUST construct an MSG_NEGO_RESP (section 2.2.5.1)
message, including the maximum and minimum protocol versions it supports, and send the
MSG_NEGO_RESP message back to the client.

2. If the major version is supported by the server, the server MUST select a compatible protocol

version based on the same rules specified in section 3.1.5.1 for the following reply message.

3. The server MUST check if its Active Client Count is greater than or equal to the maximum number
allowed. If the server is already serving the maximum number of clients or more, the server MUST
reply to the client using a MSG_SEGLIST (section 2.2.5.4) message with an empty segment range.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer, and
retrieve the availability in the server's Content Cache for each of the segments specified in the
GetSegmentList request. Based on the availability of these segments, the server MUST build an

array of ranges identifying the segments partially or fully available in the local cache, by
identifying each segment with the index of its segment ID in the array of segment IDs contained
in the originating GetSegmentList request. The server MUST then send the client a MSG_SEGLIST
response message containing the array of segment ranges just calculated (possibly empty).

33 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5. Once the MSG_SEGLIST response message is sent, the server MUST decrement the Active Client
Count by 1.

3.2.5.5 Other Messages Received

All malformed messages received by the server and messages of unknown types sent to the Retrieval
Protocol URLs specified in section 2.1.1 MUST be silently discarded.

3.2.6 Timer Events

3.2.6.1 Upload Timer Expiration

When the Upload Timer expires, the server-role peer MUST abort the protocol instance.

3.2.7 Other Local Events

None.

34 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 Download with GetBlockList and GetBlocks Exchanges

Scenario: Peer P1 is trying to download blocks BN0 -:- BN1 and BN2 -:- BN3 of segment S1 from peer

P2.

Figure 2: Download using GetBlockList and GetBlocks request/response pairs

Sequence of events:

1. Peer P1 sends a GetBlockList message (MSG_GETBLKLIST (section 2.2.4.2)) to P2, specifying two

block ranges of interest, one for BN0 -:- BN1 and one for BN2 -:- BN3.

2. Upon receiving the GetBlockList message, P2 gathers the list of blocks it currently has for the
target segment S1, it intersects that with the list of needed blocks specified by P1 in the

GetBlockList message, and it sends back to P1 a BlockList message
(MSG_BLKLIST (section 2.2.5.2)) containing the set resulting from the previous intersection.

3. Upon receiving the BlockList message from P2, P1 starts downloading blocks by sending a
GetBlocks message (MSG_GETBLKS (section 2.2.4.3)) for one block at a time.

4. Upon receiving the GetBlocks message for a given block, P2 replies with a Block message
(MSG_BLK (section 2.2.5.3)) containing the actual block of data encrypted using the crypto
algorithm selected locally on the server-role peer P2. The encryption key must bewas previously

35 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

provisioned on both P1 and P2. Refer to section 5.1 for the detailed requirements on encryption
and initialization vector generation.

The encrypted block and initialization vector are added to the Block message and sent back to
the client-role peer. The requesting peer will be able to decrypt the data only if it knows the

hash of data of the segment.

4.2 Simple Download with GetBlocks Download Sub-Sessions only

Scenario: Peer P1 is trying to download two consecutive blocks, BN and BN + 1, of segment S1 from

peer P2.

Figure 3: Simple Download using GetBlocks request/response

Sequence of events:

1. Since the download involves only two blocks, P1 decides to skip the GetBlockList message
(MSG_GETBLKLIST (section 2.2.4.2)). It sends a GetBlocks message
(MSG_GETBLKS (section 2.2.4.3)) for BN, and later for BN+1.

2. Upon receiving the GetBlocks message, P2 replies with a Block message

(MSG_BLK (section 2.2.5.3)) containing the encrypted block of data and the initialization vector
used during the encryption.

3. Once received the Block message, P1 decrypts and stores it, then it proceeds asking for the
second block by sending a new GetBlocks message.

36 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

A higher-layer application provides the server-role peer with the encryption algorithm, key size and

the encryption key. The choice of the encryption algorithm and key size must beis one of the
CryptoAlgoId field values specified in section 2.2.3.

The server-role peer generates an initialization vector suitable for the chosen encryption algorithm and
uses the encryption key to encrypt the block using the chosen encryption algorithm. The server-role
peer then records the chosen algorithm and the initialization vector in the message, as described in
section 2.2.5.3.

Server-role peers and client-role peers never exchange/share/send each other the encryption key.

The client-role peer must havehas a-priori knowledge of the encryption key. Using the encryption
algorithm and initialization vector it received from the server-role peer, it decrypts the block.

There is no other explicit authentication or authorization built into the protocol, except for the Utility
Index strategies above described that maycan lead to deny service to peers currently considered
untrustworthy.

5.2 Index of Security Parameters

None.

37 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

Note: Some of the information in this section is subject to change because it applies to a preliminary
product version, and thus may differ from the final version of the software when released. All behavior
notes that pertain to the preliminary product version contain specific references to it as an aid to the

reader.

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2: For Windows Vista and Windows Server 2008, support for the client-side elements of

this protocol is available only via the optional installation of the Background Intelligent Transfer
Service via Windows Management Framework. Support for the server-side elements of this protocol is
not available for Windows Vista or Windows Server 2008.

<2> Section 2.2.3: This message is never sent by Windows, but it is handled by the code if received,
by responding with an MSG_NEGO_RESP (section 2.2.5.1) message.

<3> Section 2.2.4.2: By default, Windows implementations use SHA-256 as the hashing algorithm to

generate the SegmentID, which corresponds to a SegmentID length of 32 bytes. Windows Server

2008 R2 operating system is capable of generating SegmentIDs using SHA-384 and SHA-512 in
addition to SHA-256, but the Windows implementation of the Retrieval Protocol only supports
SegmentIDs generated using SHA-256.

<4> Section 2.2.4.2: Windows implementations normalize the ranges in the array of block ranges in
the MSG_GETBLKLIST and MSG_BLKLIST messages, using the following rules:

 Ranges in the array never overlap with each other.

 Overlapped or adjacent ranges in the array are always combined into a single range.

38 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Ranges in the array are always sorted by Index.

Windows implementations always send block ranges normalized with these rules, but can accept non-

normalized ranges in received messages.

<5> Section 2.2.4.3: By default, Windows implementations use SHA-256 as the hashing algorithm to

generate the SegmentID, which corresponds to a SegmentID length of 32 bytes. Windows Server
2008 R2 is capable of generating SegmentIDs using SHA-384 and SHA-512 in addition to SHA-256,
but the Windows implementation of the Retrieval Protocol only supports SegmentIDs generated
using SHA-256.

<6> Section 2.2.4.4: Windows Vista, Windows Server 2008, Windows 7 and Windows Server 2008 R2
do not support the MSG_GETSEGLIST message.

<7> Section 2.2.5.2: Windows implementations normalize the ranges in the array of block ranges in

the MSG_GETBLKLIST and MSG_BLKLIST messages, using the following rules:

 Ranges in the array never overlap with each other.

 Overlapped or adjacent ranges in the array are always combined into a single range.

 Ranges in the array are always sorted by Index.

Windows implementations always send block ranges normalized with these rules, but can accept non-
normalized ranges in received messages.

<8> Section 2.2.5.4: Windows Vista, Windows Server 2008, Windows 7 and Windows Server 2008 R2
do not support the MSG_SEGLIST message.

<9> Section 3.1.2: Windows uses a 2 second timeout for each request message. The timeout is
configurable between 1 millisecond and 1 minute.

<10> Section 3.1.4.3: Windows performs a simple download when it involves less than 4 consecutive
blocks in a single block range. When Internet Explorer is used for content retrieval, it reads into 64K
buffers. Therefore, in general each read generates a segment retrieval session for a single block; in

some cases the read could span two blocks if it is not block aligned. This results in a simple download,
and no MSG_GETBLKLIST is generated.

<11> Section 3.1.5.2: Windows implementations do not perform the segment ID verification for any
MSG_BLKLIST message received. Windows implementations rely on the binding handle of the
transport from which the MSG_BLKLIST is received in order to identify which request (and, implicitly,
the corresponding segment ID) the MSG_BLKLIST is for.

<12> Section 3.2.1: By default the server-role peer Windows implementation serves up to 64

simultaneous Upload Sessions per serving-role peer; this limit is configurable between 1 and 16,384.

<13> Section 3.2.1: By default the server-role peer Windows implementation serves up to 1,024
simultaneous Upload Sessions per hosted cache server; this limit is configurable between 1 and
4,294,967,295.

<14> Section 3.2.2: Windows uses a 15 second timeout for each incoming request. The timeout value

is configurable between 100 milliseconds and 1 hour.

39 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

40 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model
 client 26
 client - Retrieval Protocol 26
 server 30
 server - Retrieval Protocol 30
Applicability 10

B

BLOCK_RANGE packet 12
BLOCK_RANGE_ARRAY 12

C

Capability negotiation 10
Change tracking 39
Client
 abstract data model 26
 initialization 27
 other local events 30
 timers 27
Client - Retrieval Protocol
 abstract data model 26
 higher-layer triggered events
 MSG_GETBLKLIST Initiation 27
 MSG_GETBLKS Initiation 27
 MSG_NEGO_REQ request 27
 initialization 27
 local events 30
 message processing
 MSG_BLK response received 29
 MSG_BLKLIST response received 29
 MSG_NEGO_RESP received 28
 other messages received 30
 sequencing rules
 MSG_BLK response received 29
 MSG_BLKLIST response received 29
 MSG_NEGO_RESP received 28
 other messages received 30
 timer events - Request Timer expiration 30
 timers 27
Common data types 11
Common Data Types message 11

D

Data model - abstract
 client 26
 client - Retrieval Protocol 26

 server 30
 server - Retrieval Protocol 30
Data types 11
Download with GetBlockList and GetBlocks exchanges example 34

E

ENCODED_SEGMENT_AGE packet 13
Examples
 download with GetBlockList and GetBlocks exchanges 34
 simple download with GetBlocks download sub-sessions only 35

41 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Extensible BLOB message 23
Extensible Blob Version 1 packet 24

F

Fields - vendor-extensible 10

G

Glossary 6

H

Higher-layer triggered events
 client - Retrieval Protocol
 MSG_GETBLKLIST Initiation 27
 MSG_GETBLKS Initiation 27
 MSG_NEGO_REQ request 27
 server 31
 server - Retrieval Protocol 31

I

Implementer - security considerations 36
Index of security parameters 36
Informative references 8
Initialization
 client 27
 Client - Retrieval Protocol 27
 server 31
 server - Retrieval Protocol 31
Introduction 6

L

Local events
 client - Retrieval Protocol 30
 server - Retrieval Protocol 33

M

Message processing
 client - Retrieval Protocol
 MSG_BLK response received 29
 MSG_BLKLIST response received 29
 MSG_NEGO_RESP received 28
 other messages received 30
 server - Retrieval Protocol
 MSG_GETBLKLIST request received 31
 MSG_GETBLKS request received 31
 MSG_NEGO_REQ received 31
 other messages received 33
MESSAGE_HEADER message 13
MESSAGE_HEADER packet 13
Messages
 Common Data Types 11
 data types 11
 Extensible BLOB 23
 MESSAGE_HEADER 13
 Request Message 15
 Response Message 19
 syntax 11
 transport
 peer download 11

42 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 security 11
 TRANSPORT_RESPONSE_HEADER 13
MSG_BLK packet 21
MSG_BLKLIST packet 20
MSG_GETBLKLIST packet 16
MSG_GETBLKS packet 17
MSG_GETSEGLIST packet 18
MSG_NEGO_REQ packet 16
MSG_NEGO_RESP packet 20
MSG_SEGLIST packet 22

N

Normative references 8

O

Other local events
 client 30
 server 33
Overview (synopsis) 8

P

Parameters - security index 36
Peer download transport 11
Preconditions 9
Prerequisites 9
Product behavior 37
Protocol Details
 overview 26

R

References 7
 informative 8
 normative 8
Relationship to other protocols 9
Request Message message 15
Request Message packet 15
Response Message message 19
Response Message packet 19
Retrieval Protocol
 message processing
 server 31

 sequencing rules
 server 31

S

Security
 implementer considerations 36
 parameter index 36
SEGMENT_RANGE packet 12
SEGMENT_RANGE_ARRAY 12
Sequencing rules
 client - Retrieval Protocol
 MSG_BLK response received 29
 MSG_BLKLIST response received 29
 MSG_NEGO_RESP received 28
 other messages received 30
 server - Retrieval Protocol
 MSG_GETBLKLIST request received 31
 MSG_GETBLKS request received 31

43 / 43

[MS-PCCRR-Diff] - v20160714
Peer Content Caching and Retrieval: Retrieval Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 MSG_NEGO_REQ received 31
 other messages received 33
Server
 abstract data model 30
 higher-layer triggered events 31
 initialization 31
 other local events 33
 timers 30
Server - Retrieval Protocol
 abstract data model 30
 higher-layer triggered events 31
 initialization 31
 local events 33
 message processing
 MSG_GETBLKLIST request received 31
 MSG_GETBLKS request received 31
 MSG_NEGO_REQ received 31
 other messages received 33
 sequencing rules
 MSG_GETBLKLIST request received 31
 MSG_GETBLKS request received 31
 MSG_NEGO_REQ received 31
 other messages received 33

 timer events - Upload Timer expiration 33
 timers 30
Simple download with GetBlocks download sub-sessions only example 35
Standards assignments 10
Syntax 11

T

Timer events
 client - Retrieval Protocol - Request Timer expiration 30
 server - Retrieval Protocol - Upload Timer expiration 33
Timers
 client 27
 client - Retrieval Protocol 27
 server 30
 server - Retrieval Protocol 30
Tracking changes 39
Transport
 peer download 11
 security 11
TRANSPORT_RESPONSE_HEADER message 13
TRANSPORT_RESPONSE_HEADER packet 13
Triggered events - higher-layer
 client - Retrieval Protocol
 MSG_GETBLKLIST Initiation 27
 MSG_GETBLKS Initiation 27
 MSG_NEGO_REQ request 27
 server 31
 server - Retrieval Protocol 31

V

Vendor-extensible fields 10
Versioning 10

