

1 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-PCCRR]:
Peer Content Caching and Retrieval:
Retrieval Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

12/05/2008 0.1 Major Initial Availability

01/16/2009 0.1.1 Editorial Revised and edited the technical content.

02/27/2009 0.1.2 Editorial Revised and edited the technical content.

04/10/2009 0.2 Minor Updated the technical content.

05/22/2009 1.0 Major Updated and revised the technical content.

07/02/2009 1.1 Minor Updated the technical content.

08/14/2009 2.0 Major Updated and revised the technical content.

09/25/2009 2.1 Minor Updated the technical content.

11/06/2009 2.2 Minor Updated the technical content.

12/18/2009 2.2.1 Editorial Revised and edited the technical content.

01/29/2010 2.3 Minor Updated the technical content.

03/12/2010 2.3.1 Editorial Revised and edited the technical content.

04/23/2010 2.4 Minor Updated the technical content.

06/04/2010 3.0 Major Updated and revised the technical content.

07/16/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Date

Revision

History

Revision

Class Comments

06/17/2011 3.1 Minor Clarified the meaning of the technical content.

09/23/2011 3.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 4.0 Major Significantly changed the technical content.

03/30/2012 5.0 Major Significantly changed the technical content.

07/12/2012 6.0 Major Significantly changed the technical content.

10/25/2012 7.0 Major Significantly changed the technical content.

01/31/2013 7.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 8.0 Major Significantly changed the technical content.

11/14/2013 8.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments .. 10

2 Messages.. 11
2.1 Transport .. 11

2.1.1 Peer Download Transport .. 11
2.1.2 Transport Security .. 11

2.2 Message Syntax .. 11
2.2.1 Common Data Types .. 11

2.2.1.1 BLOCK_RANGE ... 12
2.2.1.2 SEGMENT_RANGE ... 12
2.2.1.3 BLOCK_RANGE_ARRAY .. 12
2.2.1.4 SEGMENT_RANGE_ARRAY.. 13
2.2.1.5 ENCODED_SEGMENT_AGE ... 13

2.2.2 TRANSPORT_RESPONSE_HEADER .. 13
2.2.3 MESSAGE_HEADER ... 14
2.2.4 Request Message ... 16

2.2.4.1 MSG_NEGO_REQ .. 16
2.2.4.2 MSG_GETBLKLIST .. 17
2.2.4.3 MSG_GETBLKS ... 18
2.2.4.4 MSG_GETSEGLIST .. 19

2.2.5 Response Message ... 20
2.2.5.1 MSG_NEGO_RESP ... 21
2.2.5.2 MSG_BLKLIST .. 21
2.2.5.3 MSG_BLK .. 22
2.2.5.4 MSG_SEGLIST .. 24

2.2.6 Extensible BLOB ... 25
2.2.6.1 Extensible Blob Version 1... 25

2.2.6.1.1 Extensible Blob Version 1 Restrictions and Validation 26

3 Protocol Details .. 27
3.1 Client Details ... 27

3.1.1 Abstract Data Model ... 27
3.1.2 Timers .. 28
3.1.3 Initialization .. 28
3.1.4 Higher-Layer Triggered Events ... 28

3.1.4.1 MSG_NEGO_REQ Request .. 28
3.1.4.2 MSG_GETBLKLIST Initiation ... 28
3.1.4.3 MSG_GETBLKS Initiation ... 28
3.1.4.4 MSG_GETSEGLIST Initiation... 29

5 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.5 Message Processing Events and Sequencing Rules .. 29
3.1.5.1 MSG_NEGO_RESP Received ... 29
3.1.5.2 MSG_BLKLIST Response Received .. 30
3.1.5.3 MSG_BLK Response Received ... 30
3.1.5.4 MSG_SEGLIST Response Received .. 30
3.1.5.5 Other Messages Received .. 31

3.1.6 Timer Events ... 31
3.1.6.1 Request Timer Expiration ... 31

3.1.7 Other Local Events ... 31
3.2 Server Details ... 31

3.2.1 Abstract Data Model ... 31
3.2.2 Timers .. 32
3.2.3 Initialization .. 32
3.2.4 Higher-Layer Triggered Events ... 32
3.2.5 Message Processing Events and Sequencing Rules .. 32

3.2.5.1 MSG_NEGO_REQ Received... 32
3.2.5.2 MSG_GETBLKLIST Request Received ... 32
3.2.5.3 MSG_GETBLKS Request Received ... 33
3.2.5.4 MSG_GETSEGLIST Request Received .. 33
3.2.5.5 Other Messages Received .. 34

3.2.6 Timer Events ... 34
3.2.6.1 Upload Timer Expiration .. 34

3.2.7 Other Local Events ... 34

4 Protocol Examples .. 35
4.1 Download with GetBlockList and GetBlocks Exchanges .. 35
4.2 Simple Download with GetBlocks Download Sub-Sessions only 36

5 Security .. 37
5.1 Security Considerations for Implementers ... 37
5.2 Index of Security Parameters .. 37

6 Appendix A: Product Behavior .. 38

7 Change Tracking... 40

8 Index ... 41

6 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

The Peer Content Caching and Retrieval: Retrieval Protocol reduces bandwidth consumption on
branch-office wide-area-network (WAN) links by having clients retrieve content from distributed
caches when available instead of the content servers, which are often located remotely from
branch offices over the WAN links. It is based on a peer-to-peer discovery and distribution model,
where the peers themselves act as caches from which they serve other requesting peers. The
framework also supports the mode of using pre-provisioned hosted caches in place of peer-based
caching. The main benefit of the framework is to reduce operation costs by reducing WAN link

utilization, while providing faster downloads from the local area networks (LANs) in the branch
offices.

The Retrieval Framework defines four protocol message exchanges: for querying the protocol
version of the server, for querying the server for the availability of certain content (two message
exchanges), and for retrieving content from a server. The framework incorporates both the Retrieval
Protocol and the Discovery Protocol [MS-PCCRD] together to enable a client to discover and retrieve
content from multiple peers that have the content instead of the original content server.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

encryption key

The following terms are defined in [MS-PCCRC]:

block
block hash
segment

segment ID (HoHoDk)
segment secret

The following terms are specific to this document:

block range: A set of consecutive blocks within a segment described by a pair of integers, the
first being the index of the first blocks in the range, and the second the number of
consecutive blocks in the range.

client (client-role peer): For the Peer Content Caching and Retrieval Framework, a peer

that is looking for content, either from the server or from other peers or hosted caches. In
the context of the Retrieval Protocol, a client is a peer that requests a block-range from a
server_role_peer.

content server: The original source of the content that peers subsequently retrieve from each
other.

distributed mode: A mode of operation for the client-role peer in the Peer Content Caching

and Retrieval Framework, in which it discovers and obtains content blocks from other
peers, and shares content blocks it has with other peers in the network.

%5bMS-PCCRD%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf

7 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

download schedule session: The session invoked by a client instance of the Peer Content
Caching and Retrieval Framework within a segment retrieval session that schedules

block downloads with available servers.

higher-layer application: The applications that use the Peer Content Caching and Retrieval:

Retrieval Protocol, either by itself or as part of the Peer Content Caching and Retrieval
Framework or other applications.

hosted cache mode: A mode of operation for the client-role peer in the Peer Content
Caching and Retrieval Framework, in which it obtains and shares content (only) with a
single server whose location is preconfigured on the client-role peer.

index: The block number within a segment.

initialization vector: A data block that some modes of AES cipher block operation require as an

additional initial data input. Refer to [SP800-38A] for detailed definition and usage.

peer: An instance of the Retrieval Protocol for the Peer Content Caching and Retrieval

Framework running on a host. A peer can be both a client and a server in the Retrieval
Protocol operations.

Peer Content Caching and Retrieval Framework (or Framework): The framework that
creates Peer Content Caching and Retrieval Discovery Protocol instances to discover client-

role peers and download the content blocks from either client-role peers (distributed
mode) or hosted cache (hosted-cache mode).

Retrieval Protocol exchange: The request/response communication initiated by a client-role
peer issuing a request to a given server-role peer, and concluded by the server-role peer
responding to the request.

segment retrieval session: A session that defines a set of operations on a client-role peer
that use the Discovery Protocol (in distributed mode) and the Retrieval Protocol to discover

and retrieve ranges of blocks (partial or complete) of a segment.

server (server-role peer): A peer that listens for incoming block-range requests from client-
role peers, and responds to the requests.

simple download: A GetBlocks request/response that is carried out without an associated
GetBlockList request/response.

target segment: The segment for which the client-role peer is requesting the desired block
range in a segment retrieval session, identified by the segment ID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because

links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=128809
%5bMS-PCCRD%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx

8 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-PCCRC] Microsoft Corporation, "Peer Content Caching and Retrieval: Content Identification".

[MS-PCCRD] Microsoft Corporation, "Peer Content Caching and Retrieval: Discovery Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

[SP800-38A] National Institute of Standards and Technology. "Special Publication 800-38A,

Recommendation for Block Cipher Modes of Operation: Methods and Techniques", December 2001,
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

1.3 Overview

The Retrieval Protocol defines four request/response exchanges between a client and a server on

top of an HTTP [RFC2616] transport to query the supported version range of the server, to query
the availability of specific content, and to retrieve specific content. The protocol assumes that the
client identifies both the specific content it is looking for and the server it will contact. The discovery
of the content information and the server address is outside the scope of the Retrieval Protocol. The
request/response exchanges are:

Content Availability Request: The client initiates a query to the server for the availability of the

specified content. The server responds with the ranges (subsets or all) of the requested content it
has. There are two types of content availability requests:

Segment Availability Request: The client initiates a query to the server for the availability of a

set of segments of content. The server responds with the ranges (subsets or all) of the
requested segments of content available in the server’s local cache.

Block Availability Request: The client initiates a query to the server for the availability of a set

of ranges of blocks within a single segment of content. The server responds with the ranges

(subsets or all) of the requested block of content it has within the specified segment.

Content Retrieval Request: The client initiates a request to the server for the specified content.

The server either replies with the requested content or with content of zero length when the
requested content is not available.

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89870
%5bMS-DTYP%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=128809
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372

9 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Version Negotiation Request: The client initiates a request to the server to query the supported

Retrieval Protocol version range. The server replies with its supported Retrieval Protocol version

range.

The exchanges can be utilized in conjunction or independently, as described in the following
examples:

The client can query the server for the availability of the content, identify what content the server

has, and then retrieve only the available content from the server; or

The client can query the server for the availability of the content, identify what content the server

has, and decide not to retrieve the content; or

The client can retrieve the content directly from the server without querying for the availability of

the content first.

For all scenarios described earlier, the client can optionally query the server for its supported

version range first before querying for content availability or retrieving blocks.

The Retrieval Protocol does not mandate the relationship between these exchanges, as shown in the
examples. As a result, in the case where they are used in conjunction, the higher-layer

applications invoking the Retrieval Protocol must be able to retain the availability list from the
availability query and use it to retrieve part or all of the available content in the subsequent retrieval
request(s).

Peers within the Peer Content Caching and Retrieval Framework use the Retrieval Protocol in one of
two ways, depending on whether they are in distributed mode, retrieving content from each other,
or hosted cache mode, retrieving it only from a single preconfigured server. In the distributed

mode case, a peer uses the framework’s Discovery Protocol (see [MS-PCCRD]) to locate peers who
have the desired content, and then initiates exchanges with the discovered peers to obtain the
content. In hosted cache mode, a peer directly initiates exchanges with the hosted cache to obtain
the desired content.

1.4 Relationship to Other Protocols

The Retrieval Protocol uses HTTP [RFC2616] as a transport.

The Peer Content Caching and Retrieval Framework uses the Retrieval Protocol [MS-PCCRR] and
Discovery Protocol [MS-PCCRD] to discover peers when in distributed mode, and query and
download content from other peers. The framework also uses the data structures as described in
[MS-PCCRC].

Figure 1: Protocol stack diagram

1.5 Prerequisites/Preconditions

A higher-layer application using the protocol must have the Content Information (see [MS-

PCCRC] section 2.3) for the block ranges and segments that it is retrieving from the server. The
Content Information contains all the relevant information necessary for discovering and verifying
the content blocks.

%5bMS-PCCRC%5d.pdf
%5bMS-PCCRD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-PCCRD%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf

10 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The client must be able to identify and use the encryption algorithm and key used by the server

to encrypt the content.

1.6 Applicability Statement

The Retrieval Protocol is designed to handle the content availability query and content retrieval parts
of the operation. It is also suitable for other types of content or object retrieval tasks because it
does not assume any characteristics of the content.

The Peer Content Caching and Retrieval Framework, which uses the Retrieval Protocol, is best suited
when there is a need to reduce load on a content server or reduce bandwidth usage on the link
between the peers and the content server. This is because the protocol enables downloading data

from peers on the high speed link instead of the content server, which may be behind a slow link or
may be heavily loaded.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: This protocol must be implemented on top of HTTP as discussed in

section 2.1.

Protocol Versions: The protocol version is 2.0. Supported versions are 1.0 and 2.0. Messages

defined in version 1.0 are sent with version specification 1.0, and messages defined in version
2.0 are sent with version specification 2.0.

Security and Authentication Methods: There is no authentication or authorization in the

protocol. The blocks served by the server-role peer, however, are encrypted as described in

section 3.2.5.3.

Localization: The protocol does not contain locale-dependent information.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

11 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Messages

The Retrieval Protocol is made up of a limited number of fully defined messages sent on top of the
Peer Download Transport. <1>

2.1 Transport

2.1.1 Peer Download Transport

The Peer Download Transport is a peer-to-peer transport built on top of HTTP [RFC2616]. The

client/server HTTP protocol is turned into a peer-to-peer transport by having each peer implement
both a client and a server role. In a given transport session between two peers P1 and P2, the
initiator peer acts as client, and the other peer acts as server. If P1 is the initiator of the transport
session, P1 sends an HTTP request, and P2 replies by sending an HTTP response. Both the Retrieval
Protocol request and response message types are included in the body of the HTTP messages. The
payload of each such HTTP request or response consists solely of a single Retrieval Protocol
message, with the response message prefixed with an additional length field (as defined in section

2.2.2) for reassembly purposes. A transport session between any two peers spans a single request-
response sequence, and no context is kept within the transport across different transport sessions
between those two peers.

Each peer implements the server role by reserving the URL under the root path of /116B50EB-ECE2-
41ac-8429-9F9E963361B7/ and listening for POST requests on it.

The initiating/client-role peer P1 at IP address A1 initiates the transport of a given request-type Peer
Retrieval Protocol message to peer P2 at IP address A2, by sending an HTTP POST request to the

root path of /116B50EB-ECE2-41ac-8429-9F9E963361B7/.

2.1.2 Transport Security

The Peer Download Transport does not implement any security. There is no peer authentication or
authorization, and messages are sent in clear text. At the transport level, peers accept and process

all messages coming from any other peer.

2.2 Message Syntax

Messages are formed by headers and a message body. Both headers and body are formed by a
sequence of fields. Each field is aligned according to the current protocol version’s default alignment,
currently 4 bytes.

All Retrieval Protocol messages are variable size messages. The valid range of the total message
size MUST be from 16 bytes to 98,304 bytes (or 96 KB).

2.2.1 Common Data Types

The protocol supports four field types:

Integer (DWORD fields as defined in [MS-DTYP] section 2.2.9, transmitted in network byte

order).

BLOCK_RANGE_ARRAY ((Integer [2])[count], a count-sized array of BLOCK_RANGE fields).

SEGMENT_RANGE_ARRAY ((Integer [2])[count], a count-sized array of SEGMENT_RANGE

fields).

http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

12 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

BYTE array (BYTE[count], a count-sized array of bytes).

2.2.1.1 BLOCK_RANGE

A BLOCK_RANGE is an array of two integers that defines a consecutive array of blocks.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Index

Count

Index (4 bytes): The index of the first block in the range.

Count (4 bytes): Count of consecutive adjacent blocks in that range, including the block at the

Index location. The value of this field MUST be greater than 0.

Index and Count are both integer fields in the range of 0x00000000 to 0xFFFFFFFF, but contain a
value in the range from 0 to 511 inclusive for the Index field, and 1 to (512–Index) inclusive for the
Count field. For example, a BLOCK_RANGE of [42, 7] represents all the blocks starting from block

index 42 to block index 48, including the last one.

2.2.1.2 SEGMENT_RANGE

A SEGMENT_RANGE is an array of two integers that defines a consecutive array of segments.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Index

Count

Index (4 bytes): The index of the first segment in the range.

Count (4 bytes): Count of consecutive adjacent segments in that range, including the segment
at the Index location. The value of this field MUST be greater than 0.

Index and Count are both integer fields in the range of 0x00000000 to 0xFFFFFFFF.

2.2.1.3 BLOCK_RANGE_ARRAY

Variable-size array containing BLOCK_RANGE entries.

This type is declared as follows:

typedef BLOCK_RANGE BLOCK_RANGE_ARRAY[];

%5bMS-DTYP%5d.pdf

13 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.1.4 SEGMENT_RANGE_ARRAY

A variable-size array containing SEGMENT_RANGE entries.

This type is declared as follows:

typedef SEGMENT_RANGE SEGMENT_RANGE_ARRAY[];

2.2.1.5 ENCODED_SEGMENT_AGE

An ENCODED_SEGMENT_AGE is an array of four bytes that describes the age of a segment of data
involved in a Peer Content Caching and Retrieval: Retrieval Protocol message exchange. The age
refers to the amount of time that has elapsed since the specified segment was first created in the

local BranchCache cache.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SegmentIndex SegmentAgeLowPart SegmentAgeMidPart SegmentAgeHighPart

SegmentIndex (1 byte): Index of a segment among all of the segments involved in the
current message exchange. The index is relative to the first segment addressed in the
message containing the specific current ENCODED_SEGMENT_AGE structure.

SegmentAgeLowPart (1 byte): Low part of the age of the segment.

SegmentAgeMidPart (1 byte): Mid part of the age of the segment.

SegmentAgeHighPart (1 byte): High part of the age of the segment.

The actual age of the segment is calculated as: SegmentAgeLowPart + 256 *
SegmentAgeMidPart + 256 * 256 * SegmentAgeHighPart.

The age of the segment is expressed according to the unit specified in the enclosing

object/message. If no enclosing object/message is available, the age MUST be specified (and is
assumed to be specified) in hundredths of milliseconds.

2.2.2 TRANSPORT_RESPONSE_HEADER

The transport adds the following header in front of response-type protocol messages for reassembly
purposes:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

Size (4 bytes): Total message size, in bytes, excluding this field. The valid range of the total
message size MUST be from 16 bytes to 98,304 bytes (or 96 KB).

14 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.3 MESSAGE_HEADER

All Retrieval Protocol messages are prefixed by a message header.

Messages can be one of two types: request-type or response-type. Request-type messages include

MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2), MSG_GETBLKS (section
2.2.4.3), and MSG_GETSEGLIST (section 2.2.4.4). Response-type messages include
MSG_NEGO_RESP (section 2.2.5.1), MSG_BLKLIST (section 2.2.5.2), MSG_BLK (section 2.2.5.3),
and MSG_SEGLIST (section 2.2.5.4). Request-type messages initiate a communication session
between two peers. Response-type messages are sent only on response to a Request-type one (see
Protocol Details (section 3) for more details).

A request-type message can be delivered only as an HTTP request. A response-type message can be

delivered only as an HTTP response to an incoming HTTP request.

The layout of the message header is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ProtVer

MsgType

MsgSize

CryptoAlgoId

ProtVer (4 bytes): Protocol version number, formed by concatenating the protocol major
version number and protocol minor version number, encoded as follows (where MSB is Most
Significant Byte and LSB is Least Significant Byte):

1st Byte (Addr: X) 2nd Byte (Addr: X+1) 3rd Byte (Addr: X+2) 4th Byte (Addr: X+3)

Minor version MSB Minor version LSB Major version MSB Major version LSB

The major version number is encoded in the least significant word of the protocol version's
DWORD.

The minor version number is encoded in the most significant word of the protocol version's
DWORD.

Both the major and minor version number can express the version range of 0x0000 to

0xFFFF. Currently, the protocol version number MUST be set to {major=1 (0x0001), minor=0
(0x0000)}.

MsgType (4 bytes): The type of message in the message body, expressed as a binary integer.

MUST be set to one of the following values.

Value Meaning

MSG_NEGO_REQ

0x00000000

A protocol version negotiation request. The request declares the minimum and

maximum version numbers supported by the requesting client-role peer.<2>

15 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

MSG_NEGO_RESP

0x00000001

A protocol version negotiation response. It is sent in response to any protocol

version negotiation request or to any other request with protocol version not

supported by the server-role peer.

The response declares the minimum and maximum version numbers

supported by the responding server-role peer.

MSG_GETBLKLIST

0x00000002

A request for a list of block hashes of blocks in the target segment that are

possessed by the destination server-role peer (list expressed as a block

range array), and intersecting the list of block hashes specified in the

request itself.

MSG_GETBLKS

0x00000003

A request for an array of block hashes (specified by a block range array).

Since only one block will be returned, a MSG_GETBLKS message SHOULD

specify only a single range containing only a single block.

MSG_BLKLIST

0x00000004

A response message containing a list of block hashes of blocks in the target

segment that are possessed by the destination server-role peer (list

expressed as a block range array), and intersecting the list of block hashes

specified in the previous request from the client-role peer.

MSG_BLK

0x00000005

A response message containing the (first) actual block requested by the

client-role peer via a block range array in a MSG_GETBLKLIST message.

MSG_GETSEGLIST

0x0000006

A request for a list of segments IDs that are possessed by the destination

server-role peer and intersecting the list of segments IDs specified in the

request itself.

MSG_SEGLIST

0x0000007

A response message containing a list of segments IDs possessed by the

destination server-role peer and intersecting the list of segment IDs in the

previous request from the client-role peer.

MsgSize (4 bytes): Protocol message total size including the MESSAGE_HEADER, but not

including the TRANSPORT_RESPONSE_HEADER. The valid range of the total message size
MUST be from 16 bytes to 98,304 bytes (or 96 KB) for request messages, or from 16 bytes to
393,216 bytes (or 384 KB) for response messages.

CryptoAlgoId (4 bytes): The encryption algorithm used by the server-role peer to encrypt
data. In the request message to the server-role peer, the client-role peer SHOULD indicate

AES_128 as the preferred encryption algorithm; however, the server-role peer can ignore this
value. The CryptoAlgoId field MUST be set to one of the following values. Refer to [FIPS197]
for the AES standard and [SP800-38A] for the supported block cipher modes listed in the
following table.

Value Meaning

0x00000000 No encryption.

AES_128

0x00000001

AES 128-bit, CBC-mode encryption.

AES_192

0x00000002

AES 192-bit, CBC-mode encryption.

AES_256

0x00000003

AES 256-bit, CBC-mode encryption.

%5bMS-PCCRC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=128809

16 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4 Request Message

The Retrieval Protocol defines four request messages sent by the clients to the servers:
MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2), MSG_GETBLKS (section

2.2.4.3), and MSG_GETSEGLIST (section 2.2.4.4). The complete layout of a request-type Peer
Content Caching and Retrieval: Retrieval Protocol message is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MESSAGE_HEADER

...

...

...

MESSAGE_BODY (variable)

...

MESSAGE_HEADER (16 bytes): Message header.

MESSAGE_BODY (variable): Message body, which contains one of the following: Negotiation
Request (MSG_NEGO_REQ), GetBlockList (MSG_GETBLKLIST), GetBlocks (MSG_GETBLKS), or
GetSegmentList (MSG_GETSEGLIST) request message.

2.2.4.1 MSG_NEGO_REQ

The MSG_NEGO_REQ (Negotiation Request) message is a request for the minimum and maximum
protocol version supported by the target server-role peer. The message contains the minimum and
maximum protocol version supported by the requesting client-role peer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MinSupportedProtocolVersion

MaxSupportedProtocolVersion

MinSupportedProtocolVersion (4 bytes): Minimum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in

section 2.2.3.

MaxSupportedProtocolVersion (4 bytes): Maximum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in
section 2.2.3.

17 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.2 MSG_GETBLKLIST

The MSG_GETBLKLIST (GetBlockList) message contains a request for a download block list. It is
used when retrieving a set of blocks defined by one or more BLOCK_ARRAY_RANGE items.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

NeededBlocksRangeCount

NeededBlockRanges (variable)

...

SizeOfSegmentID (4 bytes): Size, in bytes. of the subsequent SegmentID field. The
syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The actual value of this field
depends on the hashing algorithm used as defined in [MS-PCCRC]. Implementations SHOULD
support all allowed SegmentID lengths, and MUST support content with 32-byte
SegmentIDs.<3>

SegmentID (variable): Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for a description of contents, segments, blocks, and

identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment,
relative to the beginning of this message. The value of each byte MUST be set to zero. This
field is 0 to 3 bytes in length, as required.

NeededBlocksRangeCount (4 bytes): Number of items in the subsequent block range array.
The syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The effective range of this

field MUST be between 1 and 256 inclusive, because there cannot be more than 256 non-
overlapping and non-contiguous ranges in a maximum segment size of 512 blocks.

NeededBlockRanges (variable): Block range array listing the block hashes of the blocks
within the target segment that the client-role peer is interested in. The server-role peer will

reply with a block range array representing the intersection between the list of block hashes in
the NeededBlockRanges array and the block range array set of blocks within the target
segment currently available for sharing in the local cache of the server-role peer.<4>

%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf

18 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.3 MSG_GETBLKS

The MSG_GETBLKS (GetBlocks) message contains a request for blocks of content. It is used to
retrieve a set of blocks defined by a single BLOCK_ARRAY_RANGE.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

ReqBlockRangeCount

ReqBlockRanges (variable)

...

SizeOfDataForVrfBlock

DataForVrfBlock (variable)

...

SizeOfSegmentID (4 bytes): Size in bytes of the subsequent SegmentID field. The syntactic
range of this field is from 0x00000000 to 0xFFFFFFFF. The actual value of this field depends
on the hashing algorithm used as defined in [MS-PCCRC]. Implementations SHOULD support

all allowed SegmentID lengths, and MUST support content with 32-byte SegmentIDs.<5>

SegmentID (variable): Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for a description of contents, segment, blocks, and
identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment,
relative to the beginning of this message. The value of each byte MUST be set to zero. This
field is 0 to 3 bytes in length, as required.

ReqBlockRangeCount (4 bytes): Number of items in the subsequent block range array. The

syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The effective range of this
field MUST be between 1 and 256 inclusive, because there cannot be more than 256 non-
overlapping and non-contiguous ranges in a maximum segment size of 512 blocks.

ReqBlockRanges (variable): Block range array representing the blocks requested for the
target segment. RegBlockRanges MUST specify a single block range containing only one
block.

%5bMS-PCCRC%5d.pdf

19 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

SizeOfDataForVrfBlock (4 bytes): Size in bytes of the subsequent DataForVrfBlock field.
This field SHOULD be zero.

DataForVrfBlock (variable): Not used by the protocol. This field SHOULD be empty.

2.2.4.4 MSG_GETSEGLIST

The MSG_GETSEGLIST (GetSegmentList) message contains a request for a download segment list.
It is used when retrieving a set of segments. This message MUST be formatted as follows:<6>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RequestID

...

...

...

CountOfSegmentIDs

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

SizeOfExtensibleBlob

ExtensibleBlob (variable)

...

RequestID (16 bytes): Unique identifier among all outstanding GetSegmentList Requests from
this peer.

CountOfSegmentIDs (4 bytes): Count of the Segment IDs in the current GetSegmentList

Request.

The following three fields are repeated N times where N is equal to CountOfSegmentIDs.

SizeOfSegmentID (4 bytes): Size, in bytes of the first SegmentID, immediately subsequent to
this field. Implementations MUST support all allowed SegmentID lengths, and MUST support

content with 32-byte SegmentIDs.

20 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

SegmentID (variable): Public Segment Identifier for the first target segment of content (also
known as HoHoDk). See [MS-PCCRC] section 2.2 for a description of segment identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment,
relative to the beginning of this message. The value of each byte MUST be set to zero. This

field is 0 to 3 bytes in length, as required.

SizeOfExtensibleBlob (4 bytes): Size, in bytes, of the ExtensibleBlob field. Implementations
MAY support extensible blobs in MSG_GETSEGLIST messages. Implementations that do not
support extensible blobs in MSG_GETSEGLIST messages MUST set SizeOfExtensibleBlob to
zero and omit the ExtensibleBlob field.

ExtensibleBlob (variable): An extensible binary large object (BLOB). See Extensible BLOB
(section 2.2.6) for the definition of currently defined extensible BLOBs. Implementations MAY

support extensible BLOBs in MSG_GETSEGLIST messages. Implementations that do not
support extensible BLOBs in MSG_GETSEGLIST messages MUST set SizeOfExtensibleBlob to
zero and omit the ExtensibleBlob field. Relative indexes contained in the extensible BLOB
are relative to the first segment in the first SegmentRange carried by the current

MSG_GETSEGLIST message.

2.2.5 Response Message

The Retrieval Protocol defines four response messages sent by the servers in response to client
requests: MSG_NEGO_RESP (section 2.2.5.1), MSG_BLKLIST (section 2.2.5.2), MSG_BLK (section
2.2.5.3), and MSG_SEGLIST (section 2.2.4.4). The complete layout of a response-type Peer Content
Caching and Retrieval: Retrieval Protocol message is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

TRANSPORT_RESPONSE_HEADER

MESSAGE_HEADER

...

...

...

MESSAGE_BODY (variable)

...

TRANSPORT_RESPONSE_HEADER (4 bytes): Transport response header.

MESSAGE_HEADER (16 bytes): Message header.

MESSAGE_BODY (variable): Message body, which may contain one of the following:
MSG_NEGO_RESP, MSG_BLKLIST, MSG_BLK, or a MSG_SEGLIST message.

%5bMS-PCCRC%5d.pdf

21 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.5.1 MSG_NEGO_RESP

The MSG_NEGO_RESP (Negotiation Response) message is the response message containing the
minimum and maximum protocol version supported by the responding server-role peer. The

message is sent in response to a Negotiation Request message or to any other request message
with a protocol version not supported by the server-role peer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MinSupportedProtocolVersion

MaxSupportedProtocolVersion

MinSupportedProtocolVersion (4 bytes): Minimum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in

section 2.2.3.

MaxSupportedProtocolVersion (4 bytes): Maximum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in

section 2.2.3.

2.2.5.2 MSG_BLKLIST

The MSG_BLKLIST message is the response message containing the download block ranges
available on the responding server-role peer. The message is sent by the server-role peer in
response to a MSG_GETBLKLIST message from a requesting client-role peer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentId

SegmentId (variable)

...

ZeroPad (variable)

...

BlockRangeCount

BlockRanges (variable)

...

NextBlockIndex

SizeOfSegmentId (4 bytes): The size, in bytes, of the subsequent SegmentId field.

22 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

SegmentId (variable): The Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for details.

ZeroPad (variable): A sequence of N bytes added (only as needed) to restore 4-byte
alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

BlockRangeCount (4 bytes): Number of items in the subsequent block range array. The
server MUST set the BlockRangeCount field to 0 if it does not have any of the requested
block ranges.

BlockRanges (variable): A block range array describing the blocks currently available for
download from the current server-role peer for the target segment, within the boundaries of
the list of block ranges of interest (NeededBlockRanges) specified by the client-role peer in
the previously received GetBlockList request message (MSG_GETBLKLIST (section 2.2.4.2)).

<7>

NextBlockIndex (4 bytes): The index of the first block after the block sent in the current
message, currently available for download from this server-role peer. If no such next block is

available, this index MUST be zero.

2.2.5.3 MSG_BLK

The MSG_BLK message is the response message containing a download block. This message is sent
by the server-role peer in response to a MSG_GETBLKS message from a requesting client-role peer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentId

SegmentId (variable)

...

ZeroPad (variable)

...

BlockIndex

NextBlockIndex

SizeOfBlock

Block (variable)

...

ZeroPad_2 (variable)

%5bMS-PCCRC%5d.pdf

23 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

SizeOfVrfBlock

VrfBlock (variable)

...

ZeroPad_3 (variable)

...

SizeOfIVBlock

IVBlock (variable)

...

SizeOfSegmentId (4 bytes): The size, in bytes, of the subsequent SegmentId field.

SegmentId (variable): The Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for details.

ZeroPad (variable): A sequence of N bytes added (only as needed) to restore 4-byte
alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

BlockIndex (4 bytes): The index in the target segment of the block sent in the current

message.

NextBlockIndex (4 bytes): The index of the first block after the block sent in the current
message, currently available for download from this server-role peer. If no such next block is
available, this index MUST be zero.

SizeOfBlock (4 bytes): The size, in bytes, of the subsequent Block field. The server MUST set
the SizeOfBlock field to zero if it does not have the requested block.

Block (variable): The actual block of data, encrypted according to the cryptographic algorithm

specified in the header of the message itself, not including the initialization vector.

ZeroPad_2 (variable): A sequence of N bytes added (only as needed) to restore 4-byte
alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

SizeOfVrfBlock (4 bytes): The size, in bytes, of the subsequent VrfBlock field, which SHOULD
be zero.

VrfBlock (variable): Currently not used, and SHOULD be empty.

ZeroPad_3 (variable): A sequence of N bytes added (only as needed) to restore 4-byte
alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

SizeOfIVBlock (4 bytes): The size, in bytes, of the subsequent IVBlock field.

%5bMS-PCCRC%5d.pdf

24 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

IVBlock (variable): The initialization vector used by the server-role peer when encrypting the
block of data (Block field) sent with this message.

2.2.5.4 MSG_SEGLIST

The MSG_SEGLIST message is the response message containing the segment range array describing
the segments currently available for download. This message is sent by the server-role peer in
response to a MSG_GETSEGLIST (section 2.2.4.4) message from a requesting client-role peer.

The MSG_SEGLIST MUST be formatted as follows:<8>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RequestID

...

...

...

SegmentRangeCount

SegmentRanges (variable)

...

SizeOfExtensibleBlob

ExtensibleBlob (variable)

...

RequestID (16 bytes): Unique identifier matching the RequestID received in the associated
GetSegmentList Request.

SegmentRangeCount (4 bytes): Number of items in the SegmentRanges field. The server

MUST set the SegmentRangeCount field to 0 if it does not have any of the requested
segments.

SegmentRanges (variable): A SEGMENT_RANGE ARRAY (section 2.2.1.4) that describes
the segments (full or partial) currently available for download from the current server-role
peer. The indexes specified in each range in the response are the relative indexes of the

segment in the original array of segment IDs specified in the associated GetSegmentList

message.

SizeOfExtensibleBlob (4 bytes): The size in bytes of the ExtensibleBlob field.

ExtensibleBlob (variable): An extensible binary large object (BLOB). For the definitions of
extensible BLOBs that are currently defined, see section 2.2.6. The relative indexes contained

25 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

in the extensible BLOB are relative to the first segment in the first SEGMENT_RANGE (section
2.2.1.2) carried by the current MSG_SEGLIST message.

2.2.6 Extensible BLOB

Extensible binary large objects (BLOBs) are optional BLOBs that SHOULD be included in
MSG_SEGLIST responses and MAY be included in MSG_GETSEGLIST requests.

Extensible BLOBs carry more information about the specific segments associated to the
MSG_GETSEGLIST/MSG_SEGLIST exchange.

Extensible BLOBs are versioned, and for each version there is a well-known definition. Currently the
only defined extensible BLOB version is extensible BLOB version 1. Future protocol versions may
define new extensible BLOB versions.

The version of the extensible BLOB is encoded as a network-byte-order unsigned short integer in the
first two bytes of the extensible BLOB itself.

Any extensible BLOB smaller than 2 bytes is invalid and MUST be discarded.

Implementations that do not support the specific extensible BLOB version encoded in the first two
bytes of the BLOB itself MUST discard the BLOB.

Implementations that do support the specific extensible BLOB version encoded in the first two bytes

of the BLOB itself MUST make sure that the size of the BLOB reported through
SizeOfExtensibleBlob is compatible with the size restrictions for that specific BLOB version; if not,
the BLOB MUST be discarded.

2.2.6.1 Extensible Blob Version 1

The Extensible Blob Version 1 MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ExtensibleBlobVersion SegmentAgeUnits SegmentAgeCount

SegmentAges (variable)

...

ExtensibleBlobVersion (2 bytes): Network-byte-order unsigned short integer that contains
the version of the extensible blob. It must be equal to 1.

SegmentAgeUnits (1 byte):

Unit used to specify the age of the segments in the following ENCODED_SEGMENT_AGE

structures. Valid values are:

1=seconds

2=tenths of a second

3=hundredths of a second

26 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4=milliseconds

When sending a message containing an extensible blob version 1, implementations SHOULD
use a value of 3 (hundredths of a second). When receiving a message containing a blob,

implementations MUST be able to process any of the above valid values.

SegmentAgeCount (1 byte): Count of ENCODED_SEGMENT_AGE structures encoded right
after this field (acceptable range: 0 - 255).

SegmentAges (variable): SegmentAgeCount ENCODED_SEGMENT_AGE structures.

2.2.6.1.1 Extensible Blob Version 1 Restrictions and Validation

Before parsing the data in the blob, implementations MUST verify its validity as follows:

1. The blob size MUST be at least four bytes.

2. The blob MUST have a SegmentAgeUnits value in the range of 1 to 4.

3. The blob size specified by the enclosing message MUST be equal to or larger than the size
needed in order to accommodate the number of ENCODED_SEGMENT_AGE structures specified
by SegmentAgeCount, plus four bytes for the above-described blob layout. That is:

Specified_size >= 4 + SegmentAgeCount * sizeof(ENCODED_SEGMENT_AGE) = 4 +
SegmentAgeCount * 4 = 4 * (SegmentAgeCount + 1)

The above validations MUST be carried out in the specified order and MUST be aborted at the first
failure. If validation fails, the blob MUST be discarded.

27 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Protocol Details

The Retrieval Protocol consists of four types of exchanges: the Negotiation request/response, the
BlockList request/response, the Block request/response, and the SegmentList request/response.
(See section 2 for message formats and field definitions.)

Protocol Version Negotiation: A client-role peer (referred to here simply as "client") initiates a

protocol version negotiation with a server-role peer (referred to here simply as "server") by
sending a Negotiation Request message (MSG_NEGO_REQ (section 2.2.4.1)), declaring the

minimum and maximum protocol versions it supports. The server responds with a Negotiation
Response message (MSG_NEGO_RESP (section 2.2.5.1)), declaring the minimum and maximum
protocol versions it supports. Implementation of the client side of the protocol version negotiation
is optional. The server side of the protocol version negotiation MUST be implemented.

BlockList request/response: A client initiates a GetBlockList request (MSG_GETBLKLIST

(section 2.2.4.2)) to a server in order to query the list of content blocks available on the server
for a given segment ID, and a list of block ranges within the segment, by sending a

MSG_GETBLKLIST request. The server responds with a BlockList response (MSG_BLKLIST
(section 2.2.5.2)) containing the list of block ranges for the specific segment ID that are within
the ranges of the request. If the server does not support the client's protocol version, it treats
the request as a Negotiation Request and responds accordingly (see section 3.2.5.1).

Blocks request/response: A client initiates a GetBlocks request (MSG_GETBLKS (section

2.2.4.3)) to a server to retrieve a specific block of a given segment, which is identified by the

segment ID and the index of the block in the segment. It does this by sending a MSG_GETBLKS
request. The server responds with the requested content blocks in a Block response (MSG_BLK
(section 2.2.5.3)). If the server does not support the client's protocol version, it treats the
request as a Negotiation Request, and responds accordingly (see section 3.2.5.1).

SegmentList request/response: SegmentList exchanges are restricted to Hosted Cache

client/server interaction only. A SegmentList request MUST be sent only by a Hosted Cache Client

and it MUST always be directed to a Hosted Cache Server. A client initiates a SegmentList
request (MSG_GETSEGLIST (section 2.2.4.4)) to a server in order to query the availability on the

server of an array of segments, each of them identified by its segment ID. The server responds
with a SegmentList response (MSG_SEGLIST (section 2.2.5.4)) containing the list of segment
ranges for the specific segment IDs that are within the requested array. The indexes specified in
the ranges are the indexes of segments in an array of Segment IDs in the originating
MSG_GETSEGLIST request. If the server does not support the client's protocol version, it treats

the request as a Negotiation Request and responds accordingly (see section 3.2.5.1).<9>

The Peer Content Caching and Retrieval Framework (also referred to as simply "the framework")
then uses the Retrieval Protocol to retrieve and assemble complete segments of a content from a
combination of sources, including either a set of server peers or a hosted cache, plus the original
content server if the former does not have the complete content.

3.1 Client Details

3.1.1 Abstract Data Model

The Retrieval Protocol client maintains the following data:

Outstanding Request List: A list of request messages sent for which responses have not yet

been received, along with the addresses of the peers to which they were sent.

28 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.2 Timers

Request Timer: A per-request-message timer set by the client whenever it sends a

MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2), MSG_GETBLKS (section
2.2.4.3), or MSG_GETSEGLIST (section 2.2.4.4) request message. When the timer expires before
the exchange is completed, the client MUST cancel the current exchange. The default timeout
value MUST be set to 2 seconds.<10>

3.1.3 Initialization

The Retrieval Protocol requires no explicit initialization for clients.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 MSG_NEGO_REQ Request

An implementation of the Retrieval Protocol MAY support the sending of a Protocol Version

Negotiation Request message (MSG_NEGO_REQ (section 2.2.4.1)), when triggered by a higher-layer
application. The following description only applies to the implementations that support this feature.

When initiating a Retrieval Protocol query for the supported protocol versions, the higher-layer
applications MUST specify a server address. The Retrieval Protocol implementation MUST:

1. Construct an MSG_NEGO_REQ message (as specified in section 2.2.4.1).

2. Fill in the minimum and maximum protocol versions it supports.

3. Send the message to the server.

4. Store the message in the Outstanding Request List.

5. Start the Request Timer.

3.1.4.2 MSG_GETBLKLIST Initiation

To initiate a Retrieval Protocol query for the list of block ranges on a server, the higher-layer
applications MUST specify a server address, a segment ID, and a set of block ranges within the
segment identified by the segment ID. The client instance of the Retrieval Protocol instantiation
MUST construct and send a GetBlockList message (MSG_GETBLKLIST (section 2.2.4.2)) to the
server, store it in the Outstanding Request List (3.1.1), and start the Request Timer (3.1.2).

The SegmentID and NeededBlocksRanges fields of the GetBlockList message correspond to the
segment ID and the set of block ranges supplied by the higher-layer applications.

3.1.4.3 MSG_GETBLKS Initiation

To initiate a Retrieval Protocol request for specific block ranges, the higher-layer applications MUST
specify a server address, a segment ID, and a set of block ranges with the segment identified by the
segment ID. The client instance of the Retrieval Protocol MUST construct and send a GetBlocks

message (MSG_GETBLKS (section 2.2.4.3)) to the server, store it in the Outstanding Request List

(3.1.1), and start the Request Timer (3.1.2). The SegmentID and ReqBlockRanges fields
correspond to the segment ID and the block ranges of the request.

The Retrieval Protocol MUST only request and retrieve one block per exchange of MSG_GETBLKS
request and MSG_BLK (section 2.2.5.3) response messages. If the higher-layer applications need to
retrieve more than one block, multiple GetBlocks messages MUST be sent with one block per

request.

29 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

A peer SHOULD perform a simple download if it involves a limited number of consecutive blocks in
a single block range.<11> This implies that the blocks are consecutive in the segment.

3.1.4.4 MSG_GETSEGLIST Initiation

To initiate a Retrieval Protocol request for an array of segment IDs, the higher-layer application
MUST generate a sequential or random non-repeating Request ID, and it MUST specify a server
address and an array of segment IDs. The client instance of the Retrieval Protocol MUST construct
and send a GetSegmentList message (MSG_GETSEGLIST (section 2.2.4.4)) to the server, store it in
the Outstanding Request List (3.1.1), and start the Request Timer (3.1.2). The RequestID and
SegmentID fields correspond to the ID of the current request and to the segment IDs contained in
the request.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 MSG_NEGO_RESP Received

On receiving a MSG_NEGO_RESP (section 2.2.5.1) response message from a server, the client
MUST first determine if this is a response to a previously sent request by checking the Outstanding
Request List for the address of the server. If it is a response to either a MSG_GETBLKLIST (section

2.2.4.2) or MSG_GETBLKS (section 2.2.4.3) message, the client MUST compare the ranges of
protocol versions and select a protocol version based on the rules described later in this section. It
must then resend the original MSG_GETBLKLIST or MSG_GETBLKS message, using the selected
version.

If it is a response to an MSG_NEGO_REQ (section 2.2.4.1), the client MUST return the highest
protocol version supported by both the client and the server to the higher-layer applications.

If the client and server are incompatible, then the client MUST silently discard the MSG_NEGO_RESP
message and MUST abort any current exchange with the server, including exchanges for previously
sent MSG_GETBLKLIST, MSG_GETBLKS, or MSG_NEGO_REQ messages.

The rules for determining compatibility and selecting a version are listed below:

1. The client’s and the server’s major version ranges are calculated from the MSG_NEGO_REQ and
MSG_NEGO_RESP messages, respectively. In both cases, they are defined as the inclusive range
between the major version from the MinSupportedProtocolVersion field and the major version

from the MaxSupportedProtocolVersion field. The highest common major version is the
highest value that is included in both ranges. If these ranges do not contain any common values,
then no highest common major version exists.

2. The minor versions within the same major version do not affect protocol compatibility. For
instance, a client sending a version 3.2 request message and a server replying with version 3.0
message are fully compatible. The client and the server MUST each select their own highest
minor version supported within the highest common major version. For example, if the client

supports protocol version range [3.2, 5.0] and the server supports protocol version range [2.0,
4.3], then the highest common major version is 4, and the client will be sending messages with
version 4.8 (assuming the highest minor version number for major version 4 is 4.8), whereas the

server will be replying with messages with version 4.3. Another example: a client with a
supported version range of [1.0, 2.1] and a server with a supported range of [2.5, 2.9] will result
in a highest common major version of 2, with the client using version 2.1 and the server using

version 2.9.

3. If no highest common major version exists, then the client and the server are incompatible.

30 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If there is no existing request message previously sent to the server stored in the Outstanding
Request List, the client MUST silently discard the received message.

3.1.5.2 MSG_BLKLIST Response Received

On receiving a MSG_BLKLIST (section 2.2.5.2) response message from a server, the client MUST
verify that it is well-formed and corresponds to a GetBlockList request message (MSG_GETBLKLIST
(section 2.2.4.2)) in its Outstanding Request List. The client then performs the following checks:

The client SHOULD verify if the segment ID matches any request in the Outstanding Request

List. If the client performs the segment ID check, it MUST silently discard the MSG_BLKLIST
message and abort the exchange if the segment ID does not match the segment ID of any

request.<12>

The client MUST check if the block ranges overlap with the ranges specified in any request with a

matching segment ID in the Outstanding Request List. The client MUST silently discard the
MSG_BLKLIST message and abort the exchange if the check fails.

If this verification is successful, then the peer MUST:

Delete the corresponding request message from the Outstanding Request List, and cancel its

Request Timer.

Return the segment ID and block range from the MSG_BLKLIST message, as well as the server

address, to the higher-layer applications.

Otherwise, the response message MUST be silently discarded.

3.1.5.3 MSG_BLK Response Received

On receiving a MSG_BLK (section 2.2.5.3) response message from a discovered peer, the client
MUST verify that it is well-formed and corresponds to a GetBlocks request message (MSG_GETBLKS
(section 2.2.4.3)) in its Outstanding Request List (the segment ID and block index would match
that of an outstanding GetBlocks request). The client MUST silently discard the message if this

verification is unsuccessful. Otherwise, it MUST:

Delete the corresponding request message from the Outstanding Request List, and cancel its

Request Timer.

If an encryption algorithm is specified in the MSG_BLK message (the CryptoAlgoId field does

not equal 0x00000000 as specified in section 2.2.3), decrypt the block using the pre-provisioned
key.

Pass the segment ID, block index, and (decrypted) block up to the higher-layer applications.

Otherwise, the response message MUST be silently discarded and the exchange aborted.

3.1.5.4 MSG_SEGLIST Response Received

On receiving a MSG_SEGLIST (section 2.2.5.4) response message from a server, the client MUST
verify that it is a well-formed GetSegmentList request message (per section 2.2.4.4) in its
Outstanding Request List. The client then performs the following checks:

The client MUST verify that the RequestID matches any request in the Outstanding Request

List. If a request with a matching RequestID is not found in the Outstanding Request List,
the client MUST silently discard the MSG_SEGLIST message and abort the exchange.

31 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The client MUST make sure that the all index entries from the ranges reported in the

MSG_SEGLIST received are contained within the array of segment IDs specified in the request

matching the RequestID in the Outstanding Request List. The client MUST silently discard the

MSG_SEGLIST message and abort the exchange if the check fails.

If this verification is successful, then the peer MUST do the following:

Delete the corresponding request message from the Outstanding Request List, and cancel its

Request Timer.

Return the list of segment IDs identified by the ranges from the MSG_SEGLIST message, as well

as the server address, to the higher-layer applications.

Otherwise, the response message MUST be silently discarded.

3.1.5.5 Other Messages Received

All malformed messages received by the client and messages of unknown type sent to the Retrieval

Protocol URLs specified in section 2.1.1 MUST be silently discarded.

3.1.6 Timer Events

3.1.6.1 Request Timer Expiration

When the Request Timer expires before the exchange (GetBlockList (MSG_GETBLKLIST (section
2.2.4.2)), GetBlocks (MSG_GETBLKS (section 2.2.4.3)), Negotiation Request (MSG_NEGO_REQ
(section 2.2.4.1)), or GetSegmentList (MSG_GETSEGLIST (section 2.2.4.4))) is completed, the client
MUST abort the current exchange.

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

Content Cache: This is the local content cache on the server. It consists of a list of segment IDs

and associated block ranges, along with their Content Information (see [MS-PCCRC] section 2.3)
and corresponding content blocks that the client or server has previously obtained either from
other peers or from the content server. The server replies to client queries with the information
and content blocks stored in its content cache; the client retrieves the content from the server
using the Core Retrieval Protocol.

Active Client Count: This counter keeps the number of active clients the server is currently

serving. The counter is incremented by 1 when the server receives a request (GetBlockList
(MSG_GETBLKLIST (section 2.2.4.2)) or GetBlocks (MSG_GETBLKS (section 2.2.4.3))), and is
decremented by 1 when the server sends back a response or discards the request. This counter is

used to limit the number of concurrent clients for a server to a maximum value. The default
maximum threshold SHOULD be set to 64<13><14>, and it MUST be configurable. The system
administrators should configure this value based on the processing capability of the server. If this

counter reaches the threshold, the server will send back an empty response (empty block range
in BlockList (MSG_BLKLIST (section 2.2.5.2)) or empty block in Block (MSG_BLK (section
2.2.5.3))) to the client.

%5bMS-PCCRC%5d.pdf

32 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.2 Timers

Upload Timer: A per-instantiation timer set by a server when the protocol is instantiated. The

server MUST abort the protocol instance when the timer expires before the request/response
exchange is completed. The default timeout value MUST be set to 15 seconds.<15>

3.2.3 Initialization

The server is initialized by starting to listen for incoming HTTP requests on the URL specified in
section 2.1.1. The server MUST set the Active Client Count to zero.

3.2.4 Higher-Layer Triggered Events

There are no explicit higher-layer triggered events for the server, other than waiting for the client
messages as enabled by the initialization.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 MSG_NEGO_REQ Received

On receiving a valid MSG_NEGO_REQ (section 2.2.4.1) message from a client, the server MUST
construct a MSG_NEGO_RESP (section 2.2.5.1) message with the maximum and minimum protocol
versions that it supports, set the Upload Timer, and send the response message back to the client.

3.2.5.2 MSG_GETBLKLIST Request Received

On receiving a valid MSG_GETBLKLIST (section 2.2.4.2) request message from a client, the server
MUST perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range
comparison rules specified in section 3.1.5.1. If the major protocol version is outside the range of
the server implementation, the server MUST construct an MSG_NEGO_RESP (section 2.2.5.1)

message, fill it in with the maximum and minimum protocol versions it supports, and send the
MSG_NEGO_RESP message back to the client.

2. If the major version is supported by the server, the server MUST select a compatible protocol
version based on the same rules specified in section 3.1.5.1 for the following reply message.

3. The server MUST check if its Active Client Count is greater than or equal to the maximum
number allowed. If the server is already serving more than or equal to the maximum number of
clients, the server MUST reply to the client using a MSG_BLKLIST (section 2.2.5.2) message with
an empty block range.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer,
and compute the intersection of the block ranges (for the segment specified) in the
MSG_GETBLKLIST request with the block ranges for the same segment in the server's Content

Cache. The server MUST then send the client a MSG_BLKLIST response message containing the
segment ID listed in the MSG_GETBLKLIST request message, and the computed intersection

block ranges (possibly empty).

5. Once the MSG_BLKLIST response message is sent, the server MUST decrement the Active
Client Count by 1.

33 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.5.3 MSG_GETBLKS Request Received

On receiving a valid MSG_GETBLKS (section 2.2.4.3) request message from a client, the server
MUST perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range
comparison rules specified in section 3.1.5.1. If the major version is outside the range of the
server implementation, the server MUST construct a MSG_NEGO_RESP (section 2.2.5.1)
message, fill in the maximum and minimum protocol versions it supports, and send the
MSG_NEGO_RESP message back to the client.

2. If the major version is supported by the server, the server MUST select a compatible protocol
version based on the same rules specified in section 3.1.5.1 for the following reply message.

3. The server MUST check if its Active Client Count (Abstract Data Model, section 3.2.1) is greater
than or equal to the maximum number allowed. If the server is already serving more than or
equal to the maximum number of clients, the server MUST reply to the client using a MSG_BLK
(section 2.2.5.3) message with an empty block.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer
(Timers, section 2.2.5.3), and construct and send the client a MSG_BLK response message

containing a block that is selected based on the following rules:

If the block ranges in the MSG_GETBLKS request message contain only one block, the server

MUST select the requested block.

If the block ranges contain more than one block, the server SHOULD select the first (smallest-

index) block from the block ranges and the segment that is specified in the request message.

The server then MUST check whether the selected block exists in the server’s Content Cache

(Abstract Data Model section 2.2.5.1). If it does, then the server MUST include this block in the
MSG_BLK response message it sends. Otherwise, the response MUST contain an empty MSG_BLK
response message. The SegmentID field in the response message MUST be set to the segment
ID of the request, and the BlockIndex field MUST be set to the index of the block sent in this

message. The server MUST also calculate the value of the NextBlockIndex field (section
2.2.5.3).

The server MUST apply the encryption algorithm chosen by the upper-layer application to the

block in MSG_BLK response message. The list of permissible encryption algorithms is given by
the CryptoAlgoID value table in section 2.2.3.

5. Once the MSG_BLK message is sent, the server MUST decrement the Active Client Count by 1.
If the resulting value is negative, the server MUST set the counter to zero.

3.2.5.4 MSG_GETSEGLIST Request Received

On receiving a valid MSG_GETSEGLIST (section 3.1.5.4) request message from a client, the server

MUST perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range

comparison rules specified in section 3.1.5.1. If the major protocol version is outside the range of
the server implementation, the server MUST construct an MSG_NEGO_RESP (section 2.2.5.1)
message, including the maximum and minimum protocol versions it supports, and send the
MSG_NEGO_RESP message back to the client.

2. If the major version is supported by the server, the server MUST select a compatible protocol
version based on the same rules specified in section 3.1.5.1 for the following reply message.

34 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3. The server MUST check if its Active Client Count is greater than or equal to the maximum number
allowed. If the server is already serving the maximum number of clients or more, the server

MUST reply to the client using a MSG_SEGLIST (section 2.2.5.4) message with an empty
segment range.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer, and
retrieve the availability in the server's Content Cache for each of the segments specified in the
GetSegmentList request. Based on the availability of these segments, the server MUST build an
array of ranges identifying the segments partially or fully available in the local cache, by
identifying each segment with the index of its segment ID in the array of segment IDs contained
in the originating GetSegmentList request. The server MUST then send the client a MSG_SEGLIST
response message containing the array of segment ranges just calculated (possibly empty).

5. Once the MSG_SEGLIST response message is sent, the server MUST decrement the Active Client
Count by 1.

3.2.5.5 Other Messages Received

All malformed messages received by the server and messages of unknown types sent to the
Retrieval Protocol URLs specified in section 2.1.1 MUST be silently discarded.

3.2.6 Timer Events

3.2.6.1 Upload Timer Expiration

When the Upload Timer expires, the server-role peer MUST abort the protocol instance.

3.2.7 Other Local Events

None.

35 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Protocol Examples

4.1 Download with GetBlockList and GetBlocks Exchanges

Scenario: Peer P1 is trying to download blocks BN0 -:- BN1 and BN2 -:- BN3 of segment S1 from
peer P2.

Figure 2: Download using GetBlockList and GetBlocks request/response pairs

Sequence of events:

1. Peer P1 sends a GetBlockList message (MSG_GETBLKLIST (section 2.2.4.2)) to P2, specifying two
block ranges of interest, one for BN0 -:- BN1 and one for BN2 -:- BN3.

2. Upon receiving the GetBlockList message, P2 gathers the list of blocks it currently has for the
target segment S1, it intersects that with the list of needed blocks specified by P1 in the

GetBlockList message, and it sends back to P1 a BlockList message (MSG_BLKLIST (section
2.2.5.2)) containing the set resulting from the previous intersection.

3. Upon receiving the BlockList message from P2, P1 starts downloading blocks by sending a
GetBlocks message (MSG_GETBLKS (section 2.2.4.3)) for one block at a time.

4. Upon receiving the GetBlocks message for a given block, P2 replies with a Block message
(MSG_BLK (section 2.2.5.3)) containing the actual block of data encrypted using the crypto
algorithm selected locally on the server-role peer P2. The encryption key must be provisioned

on both P1 and P2. Refer to section 5.1 for the detailed requirements on encryption and
initialization vector generation.

%5bMS-GLOS%5d.pdf

36 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The encrypted block and initialization vector are added to the Block message and sent back to
the client-role peer. The requesting peer will be able to decrypt the data only if it knows the hash

of data of the segment.

4.2 Simple Download with GetBlocks Download Sub-Sessions only

Scenario: Peer P1 is trying to download two consecutive blocks, BN and BN + 1, of segment S1 from
peer P2.

Figure 3: Simple Download using GetBlocks request/response

Sequence of events:

1. Since the download involves only two blocks, P1 decides to skip the GetBlockList message
(MSG_GETBLKLIST (section 2.2.4.2)). It sends a GetBlocks message (MSG_GETBLKS (section
2.2.4.3)) for BN, and later for BN+1.

2. Upon receiving the GetBlocks message, P2 replies with a Block message (MSG_BLK (section
2.2.5.3)) containing the encrypted block of data and the initialization vector used during the
encryption.

3. Once received the Block message, P1 decrypts and stores it, then it proceeds asking for the

second block by sending a new GetBlocks message.

37 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Security

5.1 Security Considerations for Implementers

A higher-layer application provides the server-role peer with the encryption algorithm, key size and
the encryption key. The choice of the encryption algorithm and key size must be one of the
CryptoAlgoId field values specified in section 2.2.3.

The server-role peer generates an initialization vector suitable for the chosen encryption algorithm
and uses the encryption key to encrypt the block using the chosen encryption algorithm. The server-

role peer then records the chosen algorithm and the initialization vector in the message, as
described in section 2.2.5.3.

Server-role peers and client-role peers never exchange/share/send each other the encryption key.

The client-role peer must have a-priori knowledge of the encryption key. Using the encryption
algorithm and initialization vector it received from the server-role peer, it decrypts the block.

There is no other explicit authentication or authorization built into the protocol, except for the Utility
Index strategies above described that may lead to deny service to peers currently considered

untrustworthy.

5.2 Index of Security Parameters

None.

38 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2: For Windows Vista and Windows Server 2008, support for the client-side elements
of this protocol is available only via the optional installation of the Background Intelligent Transfer
Service via Windows Management Framework. Support for the server-side elements of this protocol

is not available for Windows Vista or Windows Server 2008.

<2> Section 2.2.3: This message is never sent by Windows, but it is handled by the code if

received, by responding with an MSG_NEGO_RESP (section 2.2.5.1) message.

<3> Section 2.2.4.2: By default, Windows implementations use SHA-256 as the hashing algorithm
to generate the SegmentID, which corresponds to a SegmentID length of 32 bytes. Windows
Server 2008 R2 is capable of generating SegmentIDs using SHA-384 and SHA-512 in addition to
SHA-256, but the Windows implementation of the Retrieval Protocol only supports SegmentIDs
generated using SHA-256.

<4> Section 2.2.4.2: Windows implementations normalize the ranges in the array of block ranges in

the MSG_GETBLKLIST and MSG_BLKLIST messages, using the following rules:

Ranges in the array never overlap with each other.

Overlapped or adjacent ranges in the array are always combined into a single range.

Ranges in the array are always sorted by Index.

Windows implementations always send block ranges normalized with these rules, but can accept

non-normalized ranges in received messages.

39 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<5> Section 2.2.4.3: By default, Windows implementations use SHA-256 as the hashing algorithm
to generate the SegmentID, which corresponds to a SegmentID length of 32 bytes. Windows

Server 2008 R2 is capable of generating SegmentIDs using SHA-384 and SHA-512 in addition to
SHA-256, but the Windows implementation of the Retrieval Protocol only supports SegmentIDs

generated using SHA-256.

<6> Section 2.2.4.4: Windows Vista, Windows Server 2008, Windows 7 and Windows
Server 2008 R2 do not support the MSG_GETSEGLIST message.

<7> Section 2.2.5.2: Windows implementations normalize the ranges in the array of block ranges in
the MSG_GETBLKLIST and MSG_BLKLIST messages, using the following rules:

Ranges in the array never overlap with each other.

Overlapped or adjacent ranges in the array are always combined into a single range.

Ranges in the array are always sorted by Index.

Windows implementations always send block ranges normalized with these rules, but can accept
non-normalized ranges in received messages.

<8> Section 2.2.5.4: Windows Vista, Windows Server 2008, Windows 7 and Windows
Server 2008 R2 do not support the MSG_SEGLIST message.

<9> Section 3: Windows Vista, Windows Server 2008, Windows 7 and Windows Server 2008 R2 do
not support the MSG_SEGLIST message.

<10> Section 3.1.2: Windows uses a 2 second timeout for each request message. The timeout is
configurable between 1 millisecond and 1 minute.

<11> Section 3.1.4.3: Windows performs a simple download when it involves less than 4
consecutive blocks in a single block range. When Internet Explorer is used for content retrieval, it

reads into 64K buffers. Therefore, in general each read generates a segment retrieval session for
a single block; in some cases the read could span two blocks if it is not block aligned. This results in

a simple download, and no MSG_GETBLKLIST is generated.

<12> Section 3.1.5.2: Windows implementations do not perform the segment ID verification for any
MSG_BLKLIST message received. Windows implementations rely on the binding handle of the
transport from which the MSG_BLKLIST is received in order to identify which request (and,
implicitly, the corresponding segment ID) the MSG_BLKLIST is for.

<13> Section 3.2.1: By default the server-role peer Windows implementation serves up to 64
simultaneous Upload Sessions per serving-role peer; this limit is configurable between 1 and
16,384.

<14> Section 3.2.1: By default the server-role peer Windows implementation serves up to 1,024
simultaneous Upload Sessions per hosted cache server; this limit is configurable between 1 and
4,294,967,295.

<15> Section 3.2.2: Windows uses a 15 second timeout for each incoming request. The timeout

value is configurable between 100 milliseconds and 1 hour.

40 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

41 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

8 Index

A

Abstract data model
client - Retrieval Protocol 27
server - Retrieval Protocol 31

Applicability 10

B

BLOCK_RANGE packet 12
BLOCK_RANGE_ARRAY 12

C

Capability negotiation 10
Change tracking 40
Client - Retrieval Protocol

abstract data model 27
higher-layer triggered events

MSG_GETBLKLIST Initiation 28
MSG_GETBLKS Initiation 28
MSG_NEGO_REQ request 28

initialization 28
local events 31
message processing

MSG_BLK response received 30
MSG_BLKLIST response received 30
MSG_NEGO_RESP received 29
other messages received 31

sequencing rules
MSG_BLK response received 30
MSG_BLKLIST response received 30

MSG_NEGO_RESP received 29
other messages received 31

timer events - Request Timer expiration 31
timers 28

Common data types 11

D

Data model - abstract
client - Retrieval Protocol 27
server - Retrieval Protocol 31

Data types 11
Download with GetBlockList and GetBlocks

exchanges example 35

E

ENCODED_SEGMENT_AGE packet 13
Examples

download with GetBlockList and GetBlocks
exchanges 35

simple download with GetBlocks download sub-
sessions only 36

Extensible Blob Version 1 packet 25

F

Fields - vendor-extensible 10

G

Glossary 6

H

Higher-layer triggered events
client - Retrieval Protocol

MSG_GETBLKLIST Initiation 28
MSG_GETBLKS Initiation 28
MSG_NEGO_REQ request 28

server - Retrieval Protocol 32

I

Implementer - security considerations 37
Index of security parameters 37
Informative references 8
Initialization

Client - Retrieval Protocol 28
server - Retrieval Protocol 32

Introduction 6

L

Local events
client - Retrieval Protocol 31

server - Retrieval Protocol 34

M

Message processing
client - Retrieval Protocol

MSG_BLK response received 30
MSG_BLKLIST response received 30
MSG_NEGO_RESP received 29
other messages received 31

server - Retrieval Protocol
MSG_GETBLKLIST request received 32
MSG_GETBLKS request received 33
MSG_NEGO_REQ received 32
other messages received 34

MESSAGE_HEADER packet 14
Messages

data types 11
syntax 11
transport

peer download 11
security 11

MSG_BLK packet 22
MSG_BLKLIST packet 21
MSG_GETBLKLIST packet 17
MSG_GETBLKS packet 18
MSG_GETSEGLIST packet 19
MSG_NEGO_REQ packet 16
MSG_NEGO_RESP packet 21
MSG_SEGLIST packet 24

42 / 42

[MS-PCCRR] — v20131025
 Peer Content Caching and Retrieval: Retrieval Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

N

Normative references 8

O

Overview (synopsis) 8

P

Parameters - security index 37

Peer download transport 11
Preconditions 9
Prerequisites 9
Product behavior 38

R

References
informative 8
normative 8

Relationship to other protocols 9
Request Message packet 16
Response Message packet 20
Retrieval Protocol

message processing
server 32

sequencing rules
server 32

S

Security
implementer considerations 37
parameter index 37

SEGMENT_RANGE packet 12
SEGMENT_RANGE_ARRAY 13
Sequencing rules

client - Retrieval Protocol
MSG_BLK response received 30
MSG_BLKLIST response received 30
MSG_NEGO_RESP received 29
other messages received 31

server - Retrieval Protocol
MSG_GETBLKLIST request received 32
MSG_GETBLKS request received 33
MSG_NEGO_REQ received 32
other messages received 34

Server - Retrieval Protocol
abstract data model 31
higher-layer triggered events 32
initialization 32
local events 34
message processing

MSG_GETBLKLIST request received 32
MSG_GETBLKS request received 33
MSG_NEGO_REQ received 32
other messages received 34

sequencing rules
MSG_GETBLKLIST request received 32
MSG_GETBLKS request received 33
MSG_NEGO_REQ received 32

other messages received 34
timer events - Upload Timer expiration 34
timers 32

Simple download with GetBlocks download sub-
sessions only example 36

Standards assignments 10
Syntax 11

T

Timer events
client - Retrieval Protocol - Request Timer

expiration 31
server - Retrieval Protocol - Upload Timer

expiration 34
Timers

client - Retrieval Protocol 28
server - Retrieval Protocol 32

Tracking changes 40

Transport
peer download 11
security 11

TRANSPORT_RESPONSE_HEADER packet 13
Triggered events - higher-layer

client - Retrieval Protocol
MSG_GETBLKLIST Initiation 28
MSG_GETBLKS Initiation 28
MSG_NEGO_REQ request 28

server - Retrieval Protocol 32

V

Vendor-extensible fields 10
Versioning 10

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Peer Download Transport
	2.1.2 Transport Security

	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 BLOCK_RANGE
	2.2.1.2 SEGMENT_RANGE
	2.2.1.3 BLOCK_RANGE_ARRAY
	2.2.1.4 SEGMENT_RANGE_ARRAY
	2.2.1.5 ENCODED_SEGMENT_AGE

	2.2.2 TRANSPORT_RESPONSE_HEADER
	2.2.3 MESSAGE_HEADER
	2.2.4 Request Message
	2.2.4.1 MSG_NEGO_REQ
	2.2.4.2 MSG_GETBLKLIST
	2.2.4.3 MSG_GETBLKS
	2.2.4.4 MSG_GETSEGLIST

	2.2.5 Response Message
	2.2.5.1 MSG_NEGO_RESP
	2.2.5.2 MSG_BLKLIST
	2.2.5.3 MSG_BLK
	2.2.5.4 MSG_SEGLIST

	2.2.6 Extensible BLOB
	2.2.6.1 Extensible Blob Version 1
	2.2.6.1.1 Extensible Blob Version 1 Restrictions and Validation

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 MSG_NEGO_REQ Request
	3.1.4.2 MSG_GETBLKLIST Initiation
	3.1.4.3 MSG_GETBLKS Initiation
	3.1.4.4 MSG_GETSEGLIST Initiation

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 MSG_NEGO_RESP Received
	3.1.5.2 MSG_BLKLIST Response Received
	3.1.5.3 MSG_BLK Response Received
	3.1.5.4 MSG_SEGLIST Response Received
	3.1.5.5 Other Messages Received

	3.1.6 Timer Events
	3.1.6.1 Request Timer Expiration

	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 MSG_NEGO_REQ Received
	3.2.5.2 MSG_GETBLKLIST Request Received
	3.2.5.3 MSG_GETBLKS Request Received
	3.2.5.4 MSG_GETSEGLIST Request Received
	3.2.5.5 Other Messages Received

	3.2.6 Timer Events
	3.2.6.1 Upload Timer Expiration

	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Download with GetBlockList and GetBlocks Exchanges
	4.2 Simple Download with GetBlocks Download Sub-Sessions only

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

