
1 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-PAR]:

Print System Asynchronous Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content.

7/20/2007 1.0.2 Editorial Changed language and formatting in the technical content.

8/10/2007 1.0.3 Editorial Changed language and formatting in the technical content.

9/28/2007 1.1 Minor Clarified the meaning of the technical content.

10/23/2007 1.2 Minor Clarified the meaning of the technical content.

11/30/2007 1.2.1 Editorial Changed language and formatting in the technical content.

1/25/2008 1.2.2 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0 Major Updated and revised the technical content.

5/16/2008 3.0 Major Updated and revised the technical content.

6/20/2008 3.1 Minor Clarified the meaning of the technical content.

7/25/2008 4.0 Major Updated and revised the technical content.

8/29/2008 4.1 Minor Clarified the meaning of the technical content.

10/24/2008 5.0 Major Updated and revised the technical content.

12/5/2008 5.1 Minor Clarified the meaning of the technical content.

1/16/2009 5.2 Minor Clarified the meaning of the technical content.

2/27/2009 6.0 Major Updated and revised the technical content.

4/10/2009 7.0 Major Updated and revised the technical content.

5/22/2009 7.0.1 Editorial Changed language and formatting in the technical content.

7/2/2009 7.0.2 Editorial Changed language and formatting in the technical content.

8/14/2009 7.1 Minor Clarified the meaning of the technical content.

9/25/2009 7.2 Minor Clarified the meaning of the technical content.

11/6/2009 7.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 7.2.2 Editorial Changed language and formatting in the technical content.

1/29/2010 7.3 Minor Clarified the meaning of the technical content.

3/12/2010 7.4 Minor Clarified the meaning of the technical content.

4/23/2010 7.5 Minor Clarified the meaning of the technical content.

6/4/2010 8.0 Major Updated and revised the technical content.

7/16/2010 8.1 Minor Clarified the meaning of the technical content.

3 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Date
Revision
History

Revision
Class Comments

8/27/2010 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0 Major Updated and revised the technical content.

11/19/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 9.0 None
No changes to the meaning, language, or formatting of the

technical content.

5/6/2011 9.0.1 Editorial Changed language and formatting in the technical content.

6/17/2011 9.1 Minor Clarified the meaning of the technical content.

9/23/2011 9.2 Minor Clarified the meaning of the technical content.

12/16/2011 10.0 Major Updated and revised the technical content.

3/30/2012 11.0 Major Updated and revised the technical content.

7/12/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 12.0 Major Updated and revised the technical content.

11/14/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 13.0 Major Significantly changed the technical content.

10/16/2015 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 13.1 Minor Clarified the meaning of the technical content.

6/1/2017 13.2 Minor Clarified the meaning of the technical content.

9/15/2017 14.0 Major Significantly changed the technical content.

4 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 12

1.2.1 Normative References ... 12
1.2.2 Informative References ... 12

1.3 Overview .. 13
1.3.1 Management of the Print System .. 13
1.3.2 Communication of Print Job Data .. 14
1.3.3 Notification of Print System Changes ... 15

1.4 Relationship to Other Protocols .. 17
1.5 Prerequisites/Preconditions ... 17
1.6 Applicability Statement ... 17
1.7 Versioning and Capability Negotiation ... 18
1.8 Vendor-Extensible Fields ... 18
1.9 Standards Assignments ... 18

2 Messages ... 19
2.1 Transport .. 19
2.2 Common Data Types .. 19

2.2.1 EPrintPropertyType ... 20
2.2.2 RpcPrintPropertyValue ... 20
2.2.3 RpcPrintNamedProperty ... 21
2.2.4 RpcPrintPropertiesCollection ... 22
2.2.5 RMTNTFY_HANDLE .. 23
2.2.6 NOTIFY_OPTIONS_CONTAINER .. 23
2.2.7 NOTIFY_REPLY_CONTAINER ... 23
2.2.8 CORE_PRINTER_DRIVER.. 24

3 Protocol Details ... 25
3.1 IRemoteWinspool Server Details .. 25

3.1.1 Abstract Data Model .. 25
3.1.2 Timers .. 26
3.1.3 Initialization ... 26
3.1.4 Message Processing Events and Sequencing Rules .. 26

3.1.4.1 Printer Management Methods ... 33
3.1.4.1.1 RpcAsyncOpenPrinter (Opnum 0) .. 36
3.1.4.1.2 RpcAsyncAddPrinter (Opnum 1) .. 36
3.1.4.1.3 RpcAsyncDeletePrinter (Opnum 7) ... 37
3.1.4.1.4 RpcAsyncSetPrinter (Opnum 8) ... 37
3.1.4.1.5 RpcAsyncGetPrinter (Opnum 9) ... 38
3.1.4.1.6 RpcAsyncGetPrinterData (Opnum 16)... 38
3.1.4.1.7 RpcAsyncGetPrinterDataEx (Opnum 17) ... 39
3.1.4.1.8 RpcAsyncSetPrinterData (Opnum 18) ... 40
3.1.4.1.9 RpcAsyncSetPrinterDataEx (Opnum 19) ... 40
3.1.4.1.10 RpcAsyncClosePrinter (Opnum 20) .. 41
3.1.4.1.11 RpcAsyncEnumPrinterData (Opnum 27) ... 41
3.1.4.1.12 RpcAsyncEnumPrinterDataEx (Opnum 28) .. 42
3.1.4.1.13 RpcAsyncEnumPrinterKey (Opnum 29) ... 42
3.1.4.1.14 RpcAsyncDeletePrinterData (Opnum 30) .. 43
3.1.4.1.15 RpcAsyncDeletePrinterDataEx (Opnum 31) ... 43
3.1.4.1.16 RpcAsyncDeletePrinterKey (Opnum 32) .. 43
3.1.4.1.17 RpcAsyncSendRecvBidiData (Opnum 34) .. 44
3.1.4.1.18 RpcAsyncCreatePrinterIC (Opnum 35) .. 44
3.1.4.1.19 RpcAsyncPlayGdiScriptOnPrinterIC (Opnum 36) 45
3.1.4.1.20 RpcAsyncDeletePrinterIC (Opnum 37) .. 45

5 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.21 RpcAsyncEnumPrinters (Opnum 38) ... 46
3.1.4.1.22 RpcAsyncAddPerMachineConnection (Opnum 55) 46
3.1.4.1.23 RpcAsyncDeletePerMachineConnection (Opnum 56) 47
3.1.4.1.24 RpcAsyncEnumPerMachineConnections (Opnum 57) 47
3.1.4.1.25 RpcAsyncResetPrinter (Opnum 69) .. 48

3.1.4.2 Printer-Driver Management Methods ... 48
3.1.4.2.1 RpcAsyncGetPrinterDriver (Opnum 26) .. 50
3.1.4.2.2 RpcAsyncAddPrinterDriver (Opnum 39) .. 50
3.1.4.2.3 RpcAsyncEnumPrinterDrivers (Opnum 40) .. 51
3.1.4.2.4 RpcAsyncGetPrinterDriverDirectory (Opnum 41) 51
3.1.4.2.5 RpcAsyncDeletePrinterDriver (Opnum 42) .. 52
3.1.4.2.6 RpcAsyncDeletePrinterDriverEx (Opnum 43) 52
3.1.4.2.7 RpcAsyncInstallPrinterDriverFromPackage (Opnum 62) 53
3.1.4.2.8 RpcAsyncUploadPrinterDriverPackage (Opnum 63) 55
3.1.4.2.9 RpcAsyncGetCorePrinterDrivers (Opnum 64) 57
3.1.4.2.10 RpcAsyncCorePrinterDriverInstalled (Opnum 65) 58
3.1.4.2.11 RpcAsyncGetPrinterDriverPackagePath (Opnum 66) 60
3.1.4.2.12 RpcAsyncDeletePrinterDriverPackage (Opnum 67) 61

3.1.4.3 Printer-Port Management Methods .. 62
3.1.4.3.1 RpcAsyncXcvData (Opnum 33) .. 63
3.1.4.3.2 RpcAsyncEnumPorts (Opnum 47) .. 63
3.1.4.3.3 RpcAsyncAddPort (Opnum 49) .. 64
3.1.4.3.4 RpcAsyncSetPort (Opnum 50) ... 64

3.1.4.4 Print-Processor Management Methods ... 65
3.1.4.4.1 RpcAsyncAddPrintProcessor (Opnum 44) .. 65
3.1.4.4.2 RpcAsyncEnumPrintProcessors (Opnum 45) .. 66
3.1.4.4.3 RpcAsyncGetPrintProcessorDirectory (Opnum 46) 66
3.1.4.4.4 RpcAsyncDeletePrintProcessor (Opnum 53) .. 67
3.1.4.4.5 RpcAsyncEnumPrintProcessorDatatypes (Opnum 54) 67

3.1.4.5 Port Monitor Management Methods ... 68
3.1.4.5.1 RpcAsyncEnumMonitors (Opnum 48) ... 68
3.1.4.5.2 RpcAsyncAddMonitor (Opnum 51) ... 69
3.1.4.5.3 RpcAsyncDeleteMonitor (Opnum 52) .. 69

3.1.4.6 Form Management Methods ... 70
3.1.4.6.1 RpcAsyncAddForm (Opnum 21) ... 70
3.1.4.6.2 RpcAsyncDeleteForm (Opnum 22) ... 71
3.1.4.6.3 RpcAsyncGetForm (Opnum 23) ... 71
3.1.4.6.4 RpcAsyncSetForm (Opnum 24) ... 72
3.1.4.6.5 RpcAsyncEnumForms (Opnum 25) ... 72

3.1.4.7 Job Management Methods .. 73
3.1.4.7.1 RpcAsyncSetJob (Opnum 2) .. 73
3.1.4.7.2 RpcAsyncGetJob (Opnum 3) ... 74
3.1.4.7.3 RpcAsyncEnumJobs (Opnum 4) ... 74
3.1.4.7.4 RpcAsyncAddJob (Opnum 5) ... 75
3.1.4.7.5 RpcAsyncScheduleJob (Opnum 6) .. 75

3.1.4.8 Job Printing Methods ... 76
3.1.4.8.1 RpcAsyncStartDocPrinter (Opnum 10) .. 76
3.1.4.8.2 RpcAsyncStartPagePrinter (Opnum 11) .. 77
3.1.4.8.3 RpcAsyncWritePrinter (Opnum 12)... 77
3.1.4.8.4 RpcAsyncEndPagePrinter (Opnum 13) .. 78
3.1.4.8.5 RpcAsyncEndDocPrinter (Opnum 14) ... 78
3.1.4.8.6 RpcAsyncAbortPrinter (Opnum 15) .. 79
3.1.4.8.7 RpcAsyncReadPrinter (Opnum 68) ... 79

3.1.4.9 Printing-Related Notification Methods .. 80
3.1.4.9.1 RpcSyncRegisterForRemoteNotifications (Opnum 58) 80
3.1.4.9.2 RpcSyncUnRegisterForRemoteNotifications (Opnum 59) 81
3.1.4.9.3 RpcSyncRefreshRemoteNotifications (Opnum 60) 82
3.1.4.9.4 RpcAsyncGetRemoteNotifications (Opnum 61) 83

6 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.10 Job Named Property Management Methods .. 84
3.1.4.10.1 RpcAsyncGetJobNamedPropertyValue (Opnum 70) 84
3.1.4.10.2 RpcAsyncSetJobNamedProperty (Opnum 71) 85
3.1.4.10.3 RpcAsyncDeleteJobNamedProperty (Opnum 72) 85
3.1.4.10.4 RpcAsyncEnumJobNamedProperties (Opnum 73) 86

3.1.4.11 Branch Office Print Remote Logging Methods .. 86
3.1.4.11.1 RpcAsyncLogJobInfoForBranchOffice (Opnum 74) 87

3.1.5 Timer Events .. 87
3.1.6 Other Local Events .. 87

3.2 IRemoteWinspool Client Details ... 87
3.2.1 Abstract Data Model .. 87
3.2.2 Timers .. 88
3.2.3 Initialization ... 88
3.2.4 Message Processing Events and Sequencing Rules .. 88
3.2.5 Timer Events .. 89
3.2.6 Other Local Events .. 89

4 Protocol Examples ... 90
4.1 Adding a Printer to a Server .. 90
4.2 Adding a Printer Driver to a Server ... 91
4.3 Enumerating Printers on a Server ... 91
4.4 Enumerating Print Jobs on a Server .. 92
4.5 Receiving Notifications from a Server ... 93

5 Security Considerations ... 97

6 Appendix A: Full IDL .. 98

7 Appendix B: Product Behavior ... 121

8 Change Tracking .. 125

9 Index ... 126

7 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1 Introduction

This is a specification of the Print System Asynchronous Remote Protocol. It is based on the Remote
Procedure Call (RPC) protocol ([C706] and [MS-RPCE]).

The Print System Asynchronous Remote Protocol supports printing and spooling operations between a
client and server, including print job control and print system management. It is designed to be
used asynchronously by clients whose implementations permit them to continue execution without

waiting for an RPC method call to return. This protocol is parallel to the Print System Remote Protocol
[MS-RPRN], but the two protocols support slightly different functionality.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

access control entry (ACE): An entry in an access control list (ACL) that contains a set of user
rights and a security identifier (SID) that identifies a principal for whom the rights are
allowed, denied, or audited.

access level: The type of access that the client requests for an object, such as read access, write

access, or administrative access.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

bidirectional: The ability to move, transfer, or transmit in two directions.

branch office print remote logging: An operating mode in which a print client logs printing-
related Windows Events on the print server. Branch office print remote logging occurs only

when the print client is in branch office print mode.

CAB file: See cabinet file.

cabinet file: A file that has the suffix .cab and that acts as a container for other files. It serves as
a compressed archive for a group of files. For more information, including the format of CAB
files, see [MSDN-CAB].

class printer driver: Any printer driver declared by its manufacturer to be one from which a

derived printer driver can derive. A class printer driver cannot itself be a derived printer
driver. Typically, class printer drivers are generic and work with a variety of devices, while
derived printer drivers work with a particular device and support features specific to that
device.

core printer driver: A printer driver that other printer drivers depend on. This term includes the
Unidrv and Pscript printer drivers. For more information, see [MSDN-UNIDRV] and [MSDN-

PSCRIPT] respectively.

derived printer driver: A printer driver declared by its manufacturer to depend on a particular
class printer driver by sharing modules with the class printer driver.

device: Any peripheral or part of a computer system that can send or receive data.

discretionary access control list (DACL): An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the
object.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=226293
https://go.microsoft.com/fwlink/?LinkId=184749
https://go.microsoft.com/fwlink/?LinkId=184750
https://go.microsoft.com/fwlink/?LinkId=184750

8 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating

a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

driver package: A collection of the files needed to successfully load a driver. This includes the
device information (.inf) file, the catalog file, and all of the binaries that are copied by the .inf
file. Multiple drivers packaged together for deployment purposes.

driver store: A secure location on the local hard disk where the entire driver package is copied.

enhanced metafile spool format (EMFSPOOL): A format that specifies a structure of enhanced

metafile format (EMF) records used for defining application and device-independent printer
spool files.

event channel: A collection of Windows Events that is provided by the system. Also referred to as

an event log. The name of an event channel is composed of an event provider name combined
with a channel type string. Valid channel types are "Admin", "Analytic", "Debug", and
"Operational". For more information, see [MSDN-WINEV].

failover: A backup operation that automatically switches to a standby database, server, or
network if the primary system fails or is temporarily shut down for servicing. Failover is an
important fault tolerance function of mission-critical systems that rely on constant accessibility.
To the user, failover automatically and transparently redirects requests from the failed or down
system to the backup system that mimics the operations of the primary system. A failover
operation is always followed by a failback operation, which is the process of returning production
to its original location.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8

hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one
group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in
[RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a
curly braced GUID string, a GUIDString is not enclosed in braces.

HRESULT: An integer value that indicates the result or status of an operation. A particular
HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF]

section 2.1 and specific protocol documents for further details.

INF file: A file providing Setup with the information required to set up a device, such as a list of
valid logical configurations for the device and the names of driver files associated with the
device.

information context: A special-purpose printer object that can only be used to obtain information
about fonts that are supported by a printer. For more information, see [MSDN-FONTS].

Interface Definition Language (IDL): The International Standards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Microsoft-Windows-PrintService: An event provider for printing services on operating systems.

%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
https://go.microsoft.com/fwlink/?LinkId=90161
https://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90008

9 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

monitor module: An executable object that provides a communication path between the print
system and the printers on a server.

multisz: A data type that defines an array of null-terminated, 16-bit Unicode UTF-16LE-encoded
strings, with an additional null after the final string.

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

object UUID: A UUID that is used to represent a resource available on the remote procedure call

(RPC) servers. For more information, see [C706].

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]

section 12.5.2.12 or [MS-RPCE].

package: A conceptual set of commands that can be spread over multiple messages.

page description language (PDL): The language for describing the layout and contents of a

printed page. Common examples are PostScript and Printer Control Language (PCL).

port: A logical name that represents a connection to a device. A port can represent a network
address (for example, a TCP/IP address) or a local connection (for example, a USB port).

port monitor: A plug-in that communicates with a device that is connected to a port. A port
monitor can interact with the device locally, remotely over a network, or through some other
communication channel. The data that passes through a port monitor is in a form that can be
understood by the destination device, such as page description language (PDL).

port monitor module: A monitor module for a port monitor.

principal name: The computer or user name that is maintained and authenticated by the Active
Directory directory service.

print client: The application or user that is trying to apply an operation on the print system either
by printing a job or by managing the data structures or devices maintained by the print system.

print job: The rendered page description language (PDL) output data sent to a print device for
a particular application or user request.

print processor: A plug-in that runs on the print server and processes print job data before it is
sent to a print device.

print provider: A plug-in that runs on the print server and routes print system requests. Print
providers are an implementation detail and are not required by this protocol.

print queue: The logical entity to which jobs can be submitted for a particular print device.
Associated with a print queue is a print driver, a user's print configuration in the form of a

DEVMODE structure, and a system print configuration stored in the system registry.

print server: A machine that hosts the print system and all its different components.

print system: A system component that is responsible for coordinating and controlling the
operation of print queues, printer drivers, and print jobs.

10 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

printer driver: The interface component between the operating system and the printer device. It
is responsible for processing the application data into a page description language (PDL)

that can be interpreted by the printer device.

printer driver manifest: A file that is installed with a printer driver and lists attributes of the

printer driver. The formatting of printer driver manifests is specific to the print server
implementation.

printer driver upgrade: An upgrade operation where a newer printer driver is installed,
replacing an older printer driver.

printer form: A preprinted blank paper form, or a print job's virtual representation of this form,
that enables a printer to position form elements in their physical location on the page.

RAW format: A data type consisting of PDL data that can be sent to a device without further

processing.

registry: A local system-defined database in which applications and system components store and
retrieve configuration data. It is a hierarchical data store with lightly typed elements that are

logically stored in tree format. Applications use the registry API to retrieve, modify, or delete
registry data. The data stored in the registry varies according to the version of the operating
system.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The

preferred usage for this term is "RPC message". For more information about RPC, see [C706].

RPC context handle: A representation of state maintained between a remote procedure call (RPC)
client and server. The state is maintained on the server on behalf of the client. An RPC context

handle is created by the server and given to the client. The client passes the RPC context handle
back to the server in method calls to assist in identifying the state. For more information, see
[C706].

RPC dynamic endpoint: A network-specific server address that is requested and assigned at run

time, as described in [C706].

RPC endpoint: A network-specific address of a server process for remote procedure calls (RPCs).
The actual name of the RPC endpoint depends on the RPC protocol sequence being used. For
example, for the NCACN_IP_TCP RPC protocol sequence an RPC endpoint might be TCP port
1025. For more information, see [C706].

security descriptor: A data structure containing the security information associated with a

securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are

allowed or denied access. Applications use this structure to set and query an object's security
status. The security descriptor is used to guard access to an object as well as to control which
type of auditing takes place when the object is accessed. The security descriptor format is
specified in [MS-DTYP] section 2.4.6; a string representation of security descriptors, called

SDDL, is specified in [MS-DTYP] section 2.5.1.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority,
termed the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

11 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

string representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section
1.1.1.2.

security provider: A pluggable security module that is specified by the protocol layer above the
remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure

messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS-RPCE].

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO): An authentication
mechanism that allows Generic Security Services (GSS) peers to determine whether their
credentials support a common set of GSS-API security mechanisms, to negotiate different
options within a given security mechanism or different options from several security
mechanisms, to select a service, and to establish a security context among themselves using

that service. SPNEGO is specified in [RFC4178].

spool file: A representation of application content data than can be processed by a printer
driver. Common examples are enhanced metafile format and XML Paper Specification (XPS)
[MSDN-XMLP]. For more information, see [MSDN-META].

spool file format: The specific representation that is used in an instance of a spool file. Common
examples for spool file formats are enhanced metafile spool format (EMFSPOOL) [MS-

EMFSPOOL] and XML Paper Specification (XPS) [MSDN-XMLP]. For more information, see
[MSDN-SPOOL].

string resource: A string that is stored in a resource file and that can be retrieved with a key. A
string resource is localizable into multiple languages. It is up to an AsyncUI client
implementation to determine which language string to retrieve for a given key.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in

the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

UTF-16: A standard for encoding Unicode characters, defined in the Unicode standard, in which the
most commonly used characters are defined as double-byte characters. Unless specified

otherwise, this term refers to the UTF-16 encoding form specified in [UNICODE5.0.0/2007]
section 3.9.

UTF-16LE: The Unicode Transformation Format - 16-bit, Little Endian encoding scheme. It is used
to encode Unicode characters as a sequence of 16-bit codes, each encoded as two 8-bit bytes

with the least-significant byte first.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e
https://go.microsoft.com/fwlink/?LinkId=90461
https://go.microsoft.com/fwlink/?LinkId=90172
https://go.microsoft.com/fwlink/?LinkId=90040
%5bMS-EMFSPOOL%5d.pdf#Section_3d8cd6cc528742e8925f4a53afd04534
%5bMS-EMFSPOOL%5d.pdf#Section_3d8cd6cc528742e8925f4a53afd04534
https://go.microsoft.com/fwlink/?LinkId=90134
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317

12 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-RPRN] Microsoft Corporation, "Print System Remote Protocol".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2781] Hoffman, P., and Yergeau, F., "UTF-16, an encoding of ISO 10646", RFC 2781, February
2000, http://www.rfc-editor.org/rfc/rfc2781.txt

1.2.2 Informative References

[DEVMODE] Microsoft Corporation, "DEVMODE structure", http://msdn.microsoft.com/en-
us/library/dd183565(VS.85).aspx

[MS-EMFSPOOL] Microsoft Corporation, "Enhanced Metafile Spool Format".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-WUSP] Microsoft Corporation, "Windows Update Services: Client-Server Protocol".

[MSDN-AUTHN] Microsoft Corporation, "Authentication-Service Constants",
http://msdn.microsoft.com/en-us/library/aa373556.aspx

[MSDN-CAB] Microsoft Corporation, "Microsoft Cabinet Format", March 1997,

http://msdn.microsoft.com/en-us/library/bb417343.aspx

[MSDN-INFS] Microsoft Corporation, "INF Files", https://msdn.microsoft.com/en-
us/windows/hardware/drivers/install/inf-files

[MSDN-MUI] Microsoft Corporation, "Language Identifier Constants and Strings",
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318693(v=vs.85).aspx

[MSDN-PRNINF] Microsoft Corporation, "Printer INF Files", https://msdn.microsoft.com/en-
us/windows/hardware/drivers/print/printer-inf-files

https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-SPNG%5d.pdf#Section_f377a379c24f4a0fa3eb0d835389e28a
%5bMS-SPNG%5d.pdf#Section_f377a379c24f4a0fa3eb0d835389e28a
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90380
https://go.microsoft.com/fwlink/?LinkId=89844
https://go.microsoft.com/fwlink/?LinkId=89844
%5bMS-EMFSPOOL%5d.pdf#Section_3d8cd6cc528742e8925f4a53afd04534
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-WUSP%5d.pdf#Section_b8a2ad1d11c44b64a2cc12771fcb079b
https://go.microsoft.com/fwlink/?LinkId=89957
https://go.microsoft.com/fwlink/?LinkId=226293
https://go.microsoft.com/fwlink/?linkid=842371
https://go.microsoft.com/fwlink/?linkid=842371
https://go.microsoft.com/fwlink/?LinkId=90048
https://go.microsoft.com/fwlink/?LinkId=90066
https://go.microsoft.com/fwlink/?LinkId=90066

13 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MSDN-SPOOL] Microsoft Corporation, "Print Spooler Components", http://msdn.microsoft.com/en-
us/library/ff561109.aspx

[MSDN-UINF] Microsoft Corporation, "Using INF Files", http://msdn.microsoft.com/en-
us/library/Aa741213.aspx

[MSDN-XMLP] Microsoft Corporation, "A First Look at APIs For Creating XML Paper Specification
Documents", January 2006, http://msdn.microsoft.com/en-us/magazine/cc163664.aspx

Note The 2006 archive is located further down the page.

1.3 Overview

The Print System Asynchronous Remote Protocol provides the following functions:

 Management of the print system of a print server from a client.

 Communication of print job data from a client to a print server.

 Notifications to the client of changes in the print server's print system.

Server processing instructions are specified by the parameters that are used in the protocol methods.
These parameters include:

 Printer driver configuration information.

 The spool file format for the print data that is sent by the client.

 The access level of the connection.

 The target print queue name for name-based methods.

 A handle to the target print queue for handle-based methods.

Status information is communicated back to the client in the return codes from calls that are made to

the print server.

The following sections give an overview of these functions.

1.3.1 Management of the Print System

A client can use this protocol to perform remote management operations on a print server. With

server access credentials, client applications can manipulate the print server state and print server
components, such as printer driver configuration and print queue configuration, or adding printer
drivers and printers; they can monitor the print queue status; and they can perform general print
server administration.

These operations are supported in the protocol by a set of container structures that are used by
different print system components, specifically: DEVMODE_CONTAINER, DRIVER_CONTAINER,
FORM_CONTAINER, JOB_CONTAINER, PORT_CONTAINER, SECURITY_CONTAINER,

PRINTER_CONTAINER, and SPLCLIENT_CONTAINER. These print system components are supported as
specified in [MS-RPRN] section 2.2.1.

To produce printed output that is the same, regardless of the configuration, the printer driver that is
installed on the client computer must be identical to or compatible with the printer driver that is
installed on the print server. This protocol provides the methods that the client can use after it
connects to a printer on a print server to obtain the information about the printer driver that is
associated with the printer. If necessary, the client computer can use this information to download the

printer driver from the print server.

https://go.microsoft.com/fwlink/?LinkId=90134
https://go.microsoft.com/fwlink/?LinkId=90134
https://go.microsoft.com/fwlink/?LinkId=90152
https://go.microsoft.com/fwlink/?LinkId=90152
https://go.microsoft.com/fwlink/?LinkId=90172
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

14 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The client can also use this protocol to obtain detailed information about the settings of the printer
and the printer driver that are installed on the server. The client application can use this information

to perform layout and to make device-specific choices about paper formats, resolution, and color
handling. After the client connects to a printer, this protocol provides the methods that the client can

use to query these settings.

The following diagram illustrates this interaction using the scenario of adding a new printer:

Figure 1: Adding a new printer

1.3.2 Communication of Print Job Data

Communication of print job data enables a client to print to devices that are hosted by the print
server.

In one configuration, a client uses a printer driver that is installed on the client computer in order to
convert a graphical representation of application content and layout into device-specific page
description language (PDL) data. It then sends the data, also called RAW data, to the print server

15 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

using methods this protocol provides. The print server can temporarily store the RAW data from the
client in a spool file, or it can print it immediately. As the print server sends the data to the target

printer, the print processor on the print server that is associated with the target printer can post-
process the RAW data in an implementation-specific way.

In another configuration, a client sends data to the print server in an intermediate format that
contains graphics primitives and layout information as well as processing instructions for the print
server. The print server can temporarily store this intermediate data in a spool file, or it can print it
immediately. As the data is sent to the printer, the print processor on the print server that is
associated with the printer converts the data from the intermediate spool file to device-specific PDL
data, typically by using the printer driver that is installed on the print server.<1>

The following diagram illustrates this interaction.

Figure 2: Communication of print job data

1.3.3 Notification of Print System Changes

This protocol also provides the methods that the client can use to register for incremental change
notifications. These notifications enable the client application to maintain an accurate local view of the

printer and printer driver settings by enabling the client application to synchronize the local view
with the actual settings of those components on the print server, without having to repeatedly query
the server for its complete configuration information.

A client can register with the print server to receive notifications of changes in a print queue. As long
as the client is connected to the print server, it can poll the print server for the current status after it
receives a notification.

16 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The application calls RpcAsyncGetRemoteNotifications (section 3.1.4.9.4) to receive notification that
something has changed. The server suspends the processing of this call until there are new

notifications available on the print server, at which time the server prepares a response and returns
from the outstanding RpcAsyncGetRemoteNotifications call.

Notifications include status changes of print server resources, for example when a print queue goes
online, goes offline, or enters an error state.

The following diagram illustrates this interaction.

Figure 3: Notification of print system changes

In addition to composing and returning the notifications, the print server maintains a change identifier
that changes whenever the server-side printing configuration changes; for example, changes to user-

configurable settings, to print queue items, to print job status, or to the printer driver would cause
this identifier to change. The client can query this change identifier by calling

17 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RpcAsyncGetPrinterData (section 3.1.4.1.6) with the pValueName parameter pointing to the string
"ChangeID".

When a disconnected client reconnects to the print server, the client can query the change identifier
again; if the change identifier is different from the one returned before the client was disconnected,

the client can retrieve the complete configuration and update its view of the server configuration. The
client retrieves the complete configuration by using the functions for Management of the Print
System (section 1.3.1).

1.4 Relationship to Other Protocols

The Print System Asynchronous Remote Protocol is dependent on RPC [MS-RPCE] running on TCP/IP.
These protocol relationships are shown in the following figure:

Figure 4: Protocol Relationships

The Print System Asynchronous Remote Protocol references the Print System Remote Protocol [MS-
RPRN]. Many of the data structures that are used in the Print System Asynchronous Remote Protocol
are specified in [MS-RPRN] sections 2.2.1 and 2.2.2.

Note The implementation of the Print System Remote Protocol is required for all print servers, but a
print server can additionally implement the Print System Asynchronous Remote Protocol.

This protocol does not specify methods for file transfer between client and server. The [MS-SMB2]

protocol can be used to transfer files between client and server, as in driver download operations.

No protocols are dependent on the Print System Asynchronous Remote Protocol.

1.5 Prerequisites/Preconditions

The Print System Asynchronous Remote Protocol is a remote procedure call (RPC) interface, and
therefore it has the prerequisites that are specified in [MS-RPCE] section 1.5, as common to RPC
interfaces.

A print client must obtain the name of a print server that supports this protocol before this protocol

is invoked. How a client does that is not addressed in this specification.

1.6 Applicability Statement

The Print System Asynchronous Remote Protocol is applicable only for printing operations between a
system functioning as a client and a system functioning as a print server. This protocol scales from
home use; to print device sharing between computers; to an enterprise-use scenario that has
multiple print servers that are employed in a cluster configuration and client configurations that are
managed by a directory access protocol.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

18 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

 Supported Transports: The Print System Asynchronous Remote Protocol uses remote

procedure call (RPC) over TCP/IP only (section 2.1).

 Protocol Versions: This protocol has only one interface version (section 3.1.4).

Versioning of data structures is controlled through the use of information levels specified in
container structures ([MS-RPRN] section 2.2.1). Data in a container that is identified by a given
information level is typically a superset of the data identified by a lower level. This mechanism is
also used in capability negotiation, as described below.

 Security and Authentication Methods: This protocol uses Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) [MS-SPNG] and RPC packet authentication levels for
security and authentication (section 2.1). The parameters that are sent from client to server
include a "token" ([MS-RPCE] section 2.2.2.12) that defines user credentials. The print server
processes that token to verify access permissions.

 Localization: This protocol specifies languages and localizable string resources for printer
forms (section 3.1.4.6.1) and printer driver packages (section 3.1.4.2.11).

Localization: The protocol does not contain locale-dependent information.

 Return Values: The methods comprising this RPC interface return zero to indicate successful
completion and nonzero values to indicate failure. A server implementation of this protocol can
return any nonzero value to signify an error condition (section 1.8); however, the client does not
interpret it, but simply returns the error code to the invoking application without taking any
protocol action.

 Capability Negotiation: Functional negotiation in this protocol is supported through the use of

information levels ([MS-RPRN] section 2.2.1). On connection to a server, a client requests an
information level. If the level is supported by the server, the request is processed; otherwise, the
server returns an error, and the client repeats the request with a lower level.

1.8 Vendor-Extensible Fields

The methods defined in the Print System Asynchronous Remote Protocol specify either the DWORD or
HRESULT data type for return values.

DWORD return values are error codes as specified in [MS-ERREF] section 2.3. Implementers MUST
reuse those values with their indicated meanings. Choosing any other value runs the risk of collisions.

HRESULT method return values are used as defined in [MS-ERREF] section 2.3. Implementers MAY
choose their own HRESULT values, but the C bit (0x20000000) MUST be set, indicating that it is a

customer code.

1.9 Standards Assignments

Parameter Value Reference

UUID 76F03F96-CDFD-44FC-A22C-
64950A001209

Section 2.1 and [C706] Appendix
A

Object UUID for all method
calls

9940CA8E-512F-4C58-88A9-
61098D6896BD

[C706] section 2.3

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-SPNG%5d.pdf#Section_f377a379c24f4a0fa3eb0d835389e28a
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

19 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2 Messages

2.1 Transport

The Print System Asynchronous Remote Protocol specifies the following transport requirements:

 This protocol MUST use:

 The transport remote procedure call (RPC) over TCP/IP ([MS-RPCE] section 2.1.1.1).

 RPC dynamic endpoints ([C706] section 4).

 The UUID that is specified in section 1.9.

 A server of this protocol MUST use:

 A Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) [MS-SPNG]

security provider ([MS-RPCE] section 3).

 The default server principal name for the security provider, which is the authentication-
service constant RPC_C_AUTHN_GSS_NEGOTIATE.<2>

 A client of this protocol MUST use:

 A SPNEGO [MS-SPNG] security provider.

 A principal name constructed by appending the name of the print server to the string "host/".

 Packet authentication level ([MS-RPCE] section 3).

 A server of this protocol SHOULD impersonate the client while processing a method.<3>

2.2 Common Data Types

In addition to the remote procedure call (RPC) base types and definitions that are specified in
[C706] and [MS-DTYP], additional data types are defined in this section.

The Print System Asynchronous Remote Protocol MUST indicate to the RPC runtime that it is to
support both the NDR and NDR64 transfer syntaxes and provide a negotiation mechanism for
determining which transfer syntax is used, as specified in [MS-RPCE] section 3.

This protocol MUST enable the ms_union extension, as specified in [MS-RPCE] section 2.2.4.

The Print System Asynchronous Remote Protocol employs a combination of the following data
representations:

 Interface Definition Language (IDL) data structures that are used with RPC methods,
including structures used as containers for custom C data, as specified in [MS-RPRN] section
2.2.1.

 Custom C data structures and their wire formats as used in custom-marshaled data streams, as
specified in [MS-RPRN] section 2.2.2.

The following statements apply to the entire specification, unless noted otherwise:

 All strings that are defined in this protocol MUST consist of characters encoded in Unicode UTF-

16LE, and MUST be null terminated. Each UTF-16 code point in a string, including null
terminating characters, MUST occupy 16 bits. The details of these strings are as specified in
[RFC2781] section 2.1.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-SPNG%5d.pdf#Section_f377a379c24f4a0fa3eb0d835389e28a
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
https://go.microsoft.com/fwlink/?LinkId=90380

20 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 A list of strings is referred to as a multisz structure, in which the characters making up the
string N+1 MUST directly follow the terminating null character of string N. The last string in a

multisz structure MUST be terminated by two null-terminated characters.

 All method parameters and structure members that specify the number of characters in a string

or multisz structure include the number of terminating null characters.

 The term "NULL" means "a NULL pointer", and "zero" means the number 0.

 All method parameters and structure members that specify the size of a buffer that is pointed to
by another parameter or member MUST be zero if the pointer parameter or member is NULL.

 The term "empty string" means a "string" containing only the terminating null character.

2.2.1 EPrintPropertyType

The EPrintPropertyType enumeration defines the data types for different printing properties.

 typedef enum
 {
 kPropertyTypeString = 1,
 kPropertyTypeInt32,
 kPropertyTypeInt64,
 kPropertyTypeByte,
 kPropertyTypeTime,
 kPropertyTypeDevMode,
 kPropertyTypeSD,
 kPropertyTypeNotificationReply,
 kPropertyTypeNotificationOptions
 } EPrintPropertyType;

kPropertyTypeString: The data type is string.

kPropertyTypeInt32: The data type is a 32-bit signed integer.

kPropertyTypeInt64: The data type is a 64-bit signed integer.

kPropertyTypeByte: The data type is a BYTE.

kPropertyTypeTime: The data type is SYSTEMTIME_CONTAINER, as specified in [MS-RPRN]
section 2.2.1.2.16.

kPropertyTypeDevMode: The data type is DEVMODE_CONTAINER, as specified in [MS-RPRN]
section 2.2.1.2.1.

kPropertyTypeSD: The data type is SECURITY_CONTAINER, as specified in [MS-RPRN] section
2.2.1.2.13.

kPropertyTypeNotificationReply: The data type is NOTIFY_REPLY_CONTAINER, as specified in
section 2.2.7.

kPropertyTypeNotificationOptions: The data type is NOTIFY_OPTIONS_CONTAINER, as
specified in section 2.2.6.

2.2.2 RpcPrintPropertyValue

The RpcPrintPropertyValue structure specifies a data type and its value. Data types are members of
the enumeration EPrintPropertyType, specified in section 2.2.1.

 typedef struct {

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

21 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 EPrintPropertyType ePropertyType;
 [switch_type(EPrintPropertyType), switch_is(ePropertyType)]
 union {
 [case(kPropertyTypeString)]
 [string] wchar_t* propertyString;
 [case(kPropertyTypeInt32)]
 long propertyInt32;
 [case(kPropertyTypeInt64)]
 __int64 propertyInt64;
 [case(kPropertyTypeByte)]
 BYTE propertyByte;
 [case(kPropertyTypeTime)]
 SYSTEMTIME_CONTAINER propertyTimeContainer;
 [case(kPropertyTypeDevMode)]
 DEVMODE_CONTAINER propertyDevModeContainer;
 [case(kPropertyTypeSD)]
 SECURITY_CONTAINER propertySDContainer;
 [case(kPropertyTypeNotificationReply)]
 NOTIFY_REPLY_CONTAINER propertyReplyContainer;
 [case(kPropertyTypeNotificationOptions)]
 NOTIFY_OPTIONS_CONTAINER propertyOptionsContainer;
 } value;
 } RpcPrintPropertyValue;

ePropertyType: This member MUST be a value from the EPrintPropertyType enumeration and
MUST specify the data type of the variable.

value: This member MUST specify an information structure that corresponds to the type of property
specified by the ePropertyType parameter. Information containers and structures are defined in

[MS-RPRN] sections 2.2.1 and 2.2.2.

propertyString: Value is a string.

propertyInt32: Value is a 32-bit signed integer.

propertyInt64: Value is a 64-bit signed integer.

propertyByte: Value is a BYTE.

propertyTimeContainer: Value is a SYSTEMTIME_CONTAINER, specified in [MS-RPRN] section
2.2.1.2.16.

propertyDevModeContainer: Value is a DEVMODE_CONTAINER, specified in [MS-RPRN] section
2.2.1.2.1.

propertySDContainer: Value is a SECURITY_CONTAINER, specified in [MS-RPRN] section
2.2.1.2.13.

propertyReplyContainer: Value is a NOTIFY_REPLY_CONTAINER, specified in section 2.2.7.

propertyOptionsContainer: Value is a NOTIFY_OPTIONS_CONTAINER, specified in section

2.2.6.

2.2.3 RpcPrintNamedProperty

The RpcPrintNamedProperty structure specifies a name/typed-value pair that defines a single
property.

 typedef struct {
 [string] wchar_t* propertyName;
 RpcPrintPropertyValue propertyValue;

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

22 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 } RpcPrintNamedProperty;

propertyName: A pointer to a string that specifies the name of the property.

propertyValue: Specifies the value of the property.

When used as an input parameter, the propertyName and the ePropertyType member of
propertyValue MUST be one of the following pairs:

propertyName propertyValue

 ePropertyType value

"RemoteNotifyFilter Flags" kPropertyTypeInt32 Same as fdwFlags, as specified in [MS-RPRN]
section 3.1.4.10.4.

"RemoteNotifyFilter
Options"

kPropertyTypeInt32 Same as fdwOptions, as specified in [MS-
RPRN] section 3.1.4.10.4.

"RemoteNotifyFilter
NotifyOptions"

kPropertyTypeNotificationOptions Same as pOptions, as specified in [MS-RPRN]
section 3.1.4.10.4.

"RemoteNotifyFilter Color" kPropertyTypeInt32 Same as dwColor, as specified in [MS-RPRN]
section 3.1.4.10.5.

 When used as an output parameter, the propertyName and the ePropertyType member of
propertyValue MUST be one of the following pairs:

propertyName propertyValue

 ePropertyType value

"RemoteNotifyData
Flags"

kPropertyTypeInt32 Same as fdwFlags, as specified in [MS-RPRN] section
3.2.4.1.4.

"RemoteNotifyData
Info"

kPropertyTypeNotificationReply

Same as the pInfo member of the Reply union, as
specified in [MS-RPRN] section 3.2.4.1.4.

"RemoteNotifyData
Color"

kPropertyTypeInt32 Same as dwColor, as specified in [MS-RPRN] section
3.2.4.1.4.

2.2.4 RpcPrintPropertiesCollection

The RpcPrintPropertiesCollection structure MUST hold a collection of name/typed-value pairs.

 typedef struct {
 [range(0,50)] DWORD numberOfProperties;
 [size_is(numberOfProperties), unique]
 RpcPrintNamedProperty* propertiesCollection;
 } RpcPrintPropertiesCollection;

numberOfProperties: MUST contain a value that specifies the number of properties in the
collection, and it MUST be between 0 and 50, inclusive.

propertiesCollection: MUST be a pointer to an array of RpcPrintNamedProperty values.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

23 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

When used as input to specify notification filter settings, the following properties MUST be present in
the collection pointed to by the propertiesCollection member:

 "RemoteNotifyFilter Flags"

 "RemoteNotifyFilter Options"

 "RemoteNotifyFilter NotifyOptions"

 "RemoteNotifyFilter Color"

When used as output to return notification data, the following properties MUST be present in the
collection pointed to by the propertiesCollection member:

 "RemoteNotifyData Flags"

 "RemoteNotifyData Info"

 "RemoteNotifyData Color"

2.2.5 RMTNTFY_HANDLE

The RMTNTFY_HANDLE serves as a remote procedure call (RPC) context handle for methods that
take an RMTNTFY_HANDLE parameter. RPC context handles are specified in [C706] sections 2

and 6.

This type is declared as follows:

 typedef [context_handle] void* RMTNTFY_HANDLE;

The RMTNTFY_HANDLE context handle is returned by RpcSyncRegisterForRemoteNotifications.

2.2.6 NOTIFY_OPTIONS_CONTAINER

The NOTIFY_OPTIONS_CONTAINER structure encapsulates an RPC_V2_NOTIFY_OPTIONS
structure, which specifies options for a change notification object that monitors a printer or print
server for changes in state. For details, see [MS-RPRN] section 2.2.1.13.1.

 typedef struct _NOTIFY_OPTIONS_CONTAINER {
 RPC_V2_NOTIFY_OPTIONS* pOptions;
 } NOTIFY_OPTIONS_CONTAINER;

pOptions: A pointer to an RPC_V2_NOTIFY_OPTIONS structure, as specified in [MS-RPRN] section
2.2.1.13.1.

2.2.7 NOTIFY_REPLY_CONTAINER

The NOTIFY_REPLY_CONTAINER structure encapsulates an RPC_V2_NOTIFY_INFO structure,
which provides printer information members and current data for those members. For details, see
[MS-RPRN] section 2.2.1.13.3.

 typedef struct _NOTIFY_REPLY_CONTAINER {
 RPC_V2_NOTIFY_INFO* pInfo;
 } NOTIFY_REPLY_CONTAINER;

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

24 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pInfo: A pointer to an RPC_V2_NOTIFY_INFO structure, as specified in [MS-RPRN] section
2.2.1.13.3.

2.2.8 CORE_PRINTER_DRIVER

The CORE_PRINTER_DRIVER structure specifies information that identifies a specific core printer
driver. See the RpcAsyncGetCorePrinterDrivers (section 3.1.4.2.9) method for an example of its
use.

 typedef struct _CORE_PRINTER_DRIVER {
 GUID CoreDriverGUID;
 FILETIME ftDriverDate;
 DWORDLONG dwlDriverVersion;
 wchar_t szPackageID[260];
 } CORE_PRINTER_DRIVER;

CoreDriverGUID: A GUID, as defined in [MS-DTYP] sections 2.3.4, 2.3.4.2, and 2.3.4.3, value that

uniquely identifies the package.

ftDriverDate: A FILETIME value that specifies the date this package was published.

dwlDriverVersion: A 64-bit value that specifies the version of the core printer driver. This version
number MAY be used to match the driver version in the driver installation control file.<4>

szPackageID: A string that specifies the package name. The server MUST generate a unique
package name when the package is uploaded using the

RpcAsyncUploadPrinterDriverPackage (section 3.1.4.2.8) method. The length of the string
MUST not exceed the maximum path size, which is 260 characters, including a null-terminated
character.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

25 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3 Protocol Details

3.1 IRemoteWinspool Server Details

The Print System Asynchronous Remote protocol server interface, IRemoteWinspool, is identified by

UUID 76F03F96-CDFD-44FC-A22C-64950A001209. The server implementation MUST only accept
remote procedure call (RPC) method calls with the object UUID 9940CA8E-512F-4C58-88A9-
61098D6896BD and reject all other method calls.

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
might need to maintain in order to participate in this protocol. The organization that is described in
this section is provided to facilitate the explanation of how the protocol behaves. This specification
does not mandate that implementations adhere to this model as long as their external behavior is
consistent with the behavior described in this specification.

This protocol depends on an abstract data model that maintains information about printers and related

objects. These objects represent physical output devices, and they are used in the protocol to
communicate with those devices, to print to them, and to manage their configurations.

A print server behaves as if it hosted the following objects in the hierarchy specified in the abstract
data model for the Print System Remote Protocol ([MS-RPRN] section 3.1.1). Each of the following
objects is described in more detail in [MS-RPRN] section 3.1.1.

Note A print server maintains only one copy of the data underlying the implementation that exposes
[MS-RPRN] or [MS-PAR].

 List of Print Server Names

 List of Form Objects

 List of Printers

 List of Printer Drivers

 List of Core Printer Drivers

 List of Language Monitors

 List of Port Monitors

 List of Ports

 List of Print Providers

 List of Print Processors

 List of Known Printers

 List of Notification Clients

 Job Named Properties<5>

 Branch Office Print Remote Log Entries<6>

The abstract data model associates each printer with a single printer driver, a single printer port,
and exactly one print processor. Every object stored in the abstract data model defines an

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

26 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

associated set of attributes, as specified in [MS-RPRN] IDL Data Types (section 2.2.1) and Custom-
Marshaled Data Types (section 2.2.2).

Note The previous conceptual data can be implemented using a variety of techniques. A print server
can implement such data as needed.

3.1.2 Timers

No protocol timers are required on the server other than those that are used internally by remote
procedure call (RPC) to implement resiliency to network outages, as specified in [MS-RPCE] section

3.2.3.2.

3.1.3 Initialization

The server SHOULD listen on well-known endpoints that are defined for this remote procedure
call (RPC) interface. For details, see section 2.1.

3.1.4 Message Processing Events and Sequencing Rules

An implementation of the Print System Asynchronous Remote Protocol MUST indicate the following to
the remote procedure call (RPC) runtime ([MS-RPCE] section 3).

 It is to perform a strict NDR data consistency check at target level 6.0.

 It is to reject a NULL unique or full pointer with nonzero conformant value, as specified in [MS-
RPCE] section 3.

 Using the strict_context_handle attribute, it is to reject the use of context handles that are
created by the methods of a different RPC interface (see [MS-RPCE] section 2.2.4.15).

The methods that are defined by this protocol are grouped into functional categories, and their syntax
and behavior are specified in sections, as shown in the following table. Most methods described in

these sections have functional equivalents in the Print System Remote Protocol ([MS-RPRN] section

3.1.4).

Functional category Description Section

Printer management Methods used for discovering and obtaining access to supported
printers.

3.1.4.1

Printer driver management Methods for discovering and installing printer drivers. 3.1.4.2

Printer port management Methods for discovering and communicating with printer ports. 3.1.4.3

Print-processor management Methods for discovering and manipulating print-processor objects. 3.1.4.4

Port monitor management Methods for discovering and installation of port monitor modules. 3.1.4.5

Form management Methods for discovering and configuring printer forms. 3.1.4.6

Job management Methods for discovering, defining, and scheduling print jobs. 3.1.4.7

Job printing Methods for adding documents, pages, and data to print jobs. 3.1.4.8

Printing-related notifications Methods for obtaining notifications of printing events. 3.1.4.9

Job named property
management

Methods for creating, updating, deleting, and enumerating Job
Named Properties (section 3.1.1).<7>

3.1.4.10

Branch office print Methods for processing Branch Office Print Remote Log Entries 3.1.4.11

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

27 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Functional category Description Section

remote logging (section 3.1.1).<8>

The following table lists all the methods of the Print System Asynchronous Remote Protocol in
ascending order of their opnums.

Methods in RPC Opnum Order

Method Description

RpcAsyncOpenPrinter RpcAsyncOpenPrinter retrieves a handle to a specified printer,
port, print job or print server. A client uses this method to
obtain a print handle to an existing printer on a remote
computer.

The counterpart of this method in the Print System Remote
Protocol is RpcOpenPrinterEx. All parameters not defined
below are specified in [MS-RPRN] section 3.1.4.2.14.

Opnum: 0

RpcAsyncAddPrinter RpcAsyncAddPrinter installs a printer on the print server.

The counterpart of this method in the Print System Remote
Protocol is RpcAddPrinterEx. All parameters not defined below

are specified in [MS-RPRN] section 3.1.4.2.15.

Opnum: 1

RpcAsyncSetJob RpcAsyncSetJob pauses, resumes, cancels, or restarts a print
job on a specified printer. This method also can set print job
parameters, including the job priority and document name.

Opnum: 2

RpcAsyncGetJob RpcAsyncGetJob retrieves information about a specified print
job on a specified printer.

Opnum: 3

RpcAsyncEnumJobs RpcAsyncEnumJobs retrieves information about a specified set
of print jobs on a specified printer.

Opnum: 4

RpcAsyncAddJob RpcAsyncAddJob returns ERROR_INVALID_PARAMETER.

Opnum: 5

RpcAsyncScheduleJob RpcAsyncScheduleJob returns ERROR_SPL_NO_ADDJOB.

Opnum: 6

RpcAsyncDeletePrinter RpcAsyncDeletePrinter deletes the specified printer object.

The client MUST still call
RpcAsyncClosePrinter (section 3.1.4.1.10) with the same
PRINTER_HANDLE after calling RpcAsyncDeletePrinter.

Opnum: 7

RpcAsyncSetPrinter RpcAsyncSetPrinter sets the state of a specified printer.

Opnum: 8

RpcAsyncGetPrinter RpcAsyncGetPrinter retrieves information about a specified
printer.

Opnum: 9

RpcAsyncStartDocPrinter RpcAsyncStartDocPrinter notifies a specified printer that a
document is being spooled for printing.

28 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

Opnum: 10

RpcAsyncStartPagePrinter RpcAsyncStartPagePrinter notifies a specified printer that a
page is about to be printed.

Opnum: 11

RpcAsyncWritePrinter RpcAsyncWritePrinter adds data to the file representing the
spool file for a specified printer, if the spooling option is turned
on; or it sends data to the device directly, if the printer is
configured for direct printing.

Opnum: 12

RpcAsyncEndPagePrinter RpcAsyncEndPagePrinter notifies a specified printer that the
application is at the end of a page in a print job.

Opnum: 13

RpcAsyncEndDocPrinter RpcAsyncEndDocPrinter signals the completion of the current
print job on a specified printer.

Opnum: 14

RpcAsyncAbortPrinter RpcAsyncAbortPrinter aborts the current document on a
specified printer.

Opnum: 15

RpcAsyncGetPrinterData RpcAsyncGetPrinterData retrieves configuration data from a
specified printer or print server.

Opnum: 16

RpcAsyncGetPrinterDataEx RpcAsyncGetPrinterDataEx retrieves configuration data for
the specified printer or print server. This method extends
RpcAsyncGetPrinterData (section 3.1.4.1.6) and can
retrieve values stored under a specified key by
RpcAsyncSetPrinterDataEx (section 3.1.4.1.9).

Opnum: 17

RpcAsyncSetPrinterData RpcAsyncSetPrinterData sets the configuration data for a
printer or print server.

Opnum: 18

RpcAsyncSetPrinterDataEx RpcAsyncSetPrinterDataEx sets the configuration data for a
printer or print server. This method is similar to
RpcAsyncSetPrinterData (section 3.1.4.1.8) but also allows
the caller to specify the registry key under which to store the
data.

Opnum: 19

RpcAsyncClosePrinter RpcAsyncClosePrinter closes a handle to a printer object,
server object, job object, or port object, which is opened by
calling RpcAsyncOpenPrinter (section 3.1.4.1.1) or
RpcAsyncAddPrinter (section 3.1.4.1.2).

Opnum: 20

RpcAsyncAddForm RpcAsyncAddForm adds a form name to the list of supported
forms.

Opnum: 21

RpcAsyncDeleteForm RpcAsyncDeleteForm removes a form name from the list of
supported forms.

Opnum: 22

29 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

RpcAsyncGetForm RpcAsyncGetForm retrieves information about a specified
form.

Opnum: 23

RpcAsyncSetForm RpcAsyncSetForm sets the form information for the specified
printer.

Opnum: 24

RpcAsyncEnumForms RpcAsyncEnumForms enumerates the forms that the specified
printer supports.

Opnum: 25

RpcAsyncGetPrinterDriver RpcAsyncGetPrinterDriver retrieves data about a specified
printer driver on a specified printer.

Opnum: 26

RpcAsyncEnumPrinterData RpcAsyncEnumPrinterData enumerates configuration data for
a specified printer.

Opnum: 27

RpcAsyncEnumPrinterDataEx RpcAsyncEnumPrinterDataEx enumerates all value names
and data for a specified printer and key. This method extends
RpcAsyncEnumPrinterData (section 3.1.4.1.11) by
retrieving several values in a single call.

Opnum: 28

RpcAsyncEnumPrinterKey RpcAsyncEnumPrinterKey enumerates the subkeys of a
specified key for a specified printer.

Opnum: 29

RpcAsyncDeletePrinterData RpcAsyncDeletePrinterData deletes a specified value from
the configuration of a specified printer.

Opnum: 30

RpcAsyncDeletePrinterDataEx RpcAsyncDeletePrinterDataEx deletes a specified value from
the configuration of a specified printer. This method is similar to
RpcAsyncDeletePrinterData (section 3.1.4.1.14) but
accesses the configuration data using a set of named and typed
values that are stored in a hierarchy of registry keys.

Opnum: 31

RpcAsyncDeletePrinterKey RpcAsyncDeletePrinterKey deletes a specified key and all its
subkeys from the configuration of a specified printer.

Opnum: 32

RpcAsyncXcvData RpcAsyncXcvData provides the means by which a port
monitor client component can communicate with its server-side
counterpart, the actual port monitor that is hosted by the
server.

Opnum: 33

RpcAsyncSendRecvBidiData RpcAsyncSendRecvBidiData sends and receives
bidirectional data. This method is used to communicate with
print monitors that support such data.

Opnum: 34

RpcAsyncCreatePrinterIC RpcAsyncCreatePrinterIC creates an information context
on a specified printer.

30 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

Opnum: 35

RpcAsyncPlayGdiScriptOnPrinterIC RpcAsyncPlayGdiScriptOnPrinterIC queries fonts for printer
connections.

Opnum: 36

RpcAsyncDeletePrinterIC RpcAsyncDeletePrinterIC deletes a printer information
context.

Opnum: 37

RpcAsyncEnumPrinters RpcAsyncEnumPrinters enumerates available local printers,
printers on a specified print server, printers in a specified
domain, or print providers.

Opnum: 38

RpcAsyncAddPrinterDriver RpcAsyncAddPrinterDriver installs a specified local or a
remote printer driver on a specified print server, and it links the
configuration, data, and driver files.

Opnum: 39

RpcAsyncEnumPrinterDrivers RpcAsyncEnumPrinterDrivers enumerates the printer drivers
installed on a specified print server.

Opnum: 40

RpcAsyncGetPrinterDriverDirectory RpcAsyncGetPrinterDriverDirectory retrieves the path of the
printer-driver directory on a specified print server.

Opnum: 41

RpcAsyncDeletePrinterDriver RpcAsyncDeletePrinterDriver removes the specified printer
driver from the list of supported drivers for a specified print
server.

Opnum: 42

RpcAsyncDeletePrinterDriverEx RpcAsyncDeletePrinterDriverEx removes the specified printer
driver from the list of supported drivers on a specified print
server, and deletes the files associated with the driver. This
method is similar to
RpcAsyncDeletePrinterDriver (section 3.1.4.2.5) but can
also delete specific versions of the driver.

Opnum: 43

RpcAsyncAddPrintProcessor RpcAsyncAddPrintProcessor installs a specified print
processor on the specified server and adds its name to an
internal list of supported print processors.

Opnum: 44

RpcAsyncEnumPrintProcessors RpcAsyncEnumPrintProcessors enumerates the print
processors installed on a specified server.

Opnum: 45

RpcAsyncGetPrintProcessorDirectory RpcAsyncGetPrintProcessorDirectory retrieves the path for
the print processor on the specified server.

Opnum: 46

RpcAsyncEnumPorts RpcAsyncEnumPorts enumerates the ports that are available
for printing on a specified server.

Opnum: 47

RpcAsyncEnumMonitors RpcAsyncEnumMonitors retrieves information about the port

31 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

monitors installed on a specified server.

Opnum: 48

RpcAsyncAddPort RpcAsyncAddPort adds a specified port name to the list of
supported ports on a specified server.

Opnum: 49

RpcAsyncSetPort RpcAsyncSetPort sets the status associated with a specified
port on a specified print server.

Opnum: 50

RpcAsyncAddMonitor RpcAsyncAddMonitor installs a specified local port monitor,
and links the configuration, data, and monitor files on a specified
print server.

Opnum: 51

RpcAsyncDeleteMonitor RpcAsyncDeleteMonitor removes a specified port monitor
from a specified print server.

Opnum: 52

RpcAsyncDeletePrintProcessor RpcAsyncDeletePrintProcessor removes a specified print
processor from a specified server.

Opnum: 53

RpcAsyncEnumPrintProcessorDatatypes RpcAsyncEnumPrintProcessorDatatypes enumerates the
data types that a specified print processor supports.

Opnum: 54

RpcAsyncAddPerMachineConnection RpcAsyncAddPerMachineConnection persistently saves the
configuration information for a connection, including the print
server name and the name of the print providers for a specified
connection.

Opnum: 55

RpcAsyncDeletePerMachineConnection RpcAsyncDeletePerMachineConnection deletes the stored
connection configuration information that corresponds to the
pPrinterName parameter value.

Opnum: 56

RpcAsyncEnumPerMachineConnections RpcAsyncEnumPerMachineConnections enumerates each of
the per-machine connections into a specified buffer.

Opnum: 57

RpcSyncRegisterForRemoteNotifications RpcSyncRegisterForRemoteNotifications opens a
notification handle by using a printer handle or print server
handle, to listen for remote printer change notifications.

Opnum: 58

RpcSyncUnRegisterForRemoteNotificatio
ns

RpcSyncUnRegisterForRemoteNotifications closes a
notification handle that is opened by calling
RpcSyncRegisterForRemoteNotifications (section 3.1.4.9.
1).

Opnum: 59

RpcSyncRefreshRemoteNotifications RpcSyncRefreshRemoteNotifications gets notification
information for all requested members. This is called by a client
if the "RemoteNotifyData Flags" property in the
RpcPrintPropertiesCollection (section 2.2.4) instance,
which was returned as part of the notification from an

32 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

RpcAsyncGetRemoteNotifications (section 3.1.4.9.4) call,
has the PRINTER_NOTIFY_INFO_DISCARDED bit set ([MS-
RPRN] section 2.2.3.2).

Opnum: 60

RpcAsyncGetRemoteNotifications RpcAsyncGetRemoteNotifications is used to poll the print
server for specified change notifications. A call to this method is
suspended until the server has a new change notification for the
client. Subsequently, the client calls this method again to poll for
additional notifications from the server.

Opnum: 61

RpcAsyncInstallPrinterDriverFromPackag

e

RpcAsyncInstallPrinterDriverFromPackage installs a printer

driver from a driver package.

Opnum: 62

RpcAsyncUploadPrinterDriverPackage RpcAsyncUploadPrinterDriverPackage uploads a driver
package so it can be installed with
RpcAsyncInstallPrinterDriverFromPackage.

Opnum: 63

RpcAsyncGetCorePrinterDrivers RpcAsyncGetCorePrinterDrivers retrieves the globally
unique identifier (GUID), the version, the date of the
specified core printer drivers, and the path to their packages.

Opnum: 64

RpcAsyncCorePrinterDriverInstalled RpcAsyncCorePrinterDriverInstalled determines if a specific
core printer driver is installed.

Opnum: 65

RpcAsyncGetPrinterDriverPackagePath RpcAsyncGetPrinterDriverPackagePath gets the path to the
specified printer driver package.

Opnum: 66

RpcAsyncDeletePrinterDriverPackage RpcAsyncDeletePrinterDriverPackage deletes a specified
printer driver package.

Opnum: 67

RpcAsyncReadPrinter RpcAsyncReadPrinter retrieves data from the specified job
object.

Opnum: 68

RpcAsyncResetPrinter RpcAsyncResetPrinter resets the data type and device mode
values to use for printing documents that are submitted by the
RpcAsyncStartDocPrinter (section 3.1.4.8.1) method.

Opnum: 69

RpcAsyncGetJobNamedPropertyValue RpcAsyncGetJobNamedPropertyValue retrieves the value of
the specified Job Named Property (section 3.1.1) for the
specified print job.

Opnum: 70

RpcAsyncSetJobNamedProperty RpcAsyncSetJobNamedProperty creates a new Job Named
Property or changes the value of an existent Job Named
Property for the specified print job.

Opnum: 71

RpcAsyncDeleteJobNamedProperty RpcAsyncDeleteJobNamedProperty deletes a Job Named
Property for the specified print job.

33 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

Opnum: 72

RpcAsyncEnumJobNamedProperties RpcAsyncEnumJobNamedProperties enumerates the Job
Named Properties for the specified print job.

Opnum: 73

RpcAsyncLogJobInfoForBranchOffice RpcAsyncLogJobInfoForBranchOffice processes one or more
Branch Office Print Remote Log Entries (section 3.1.1) by
writing them to the Microsoft-Windows-PrintService/Admin
and Microsoft-Windows-PrintService/Operations event
channels.

Opnum: 74

All methods that are defined in this protocol are request/response RPC methods. Each method
specifies either a DWORD or HRESULT data type for its return value. DWORD return values are error
codes specified in section 2.2 of [MS-ERREF]. A return value of zero indicates successful completion,

and a nonzero value indicates failure, with exceptions specified later in this section.

A non-negative HRESULT return value indicates successful completion, and a negative value indicates
failure ([MS-ERREF] section 2.1).

"ERROR_MORE_DATA" and "ERROR_INSUFFICIENT_BUFFER" are two nonzero return codes that have
specific meanings in this protocol. When a method declaration in this specification has an output
parameter that returns a required buffer size, the method can return one of the values from the
following table. When calling a method that has one of these output parameters, the caller SHOULD
NOT treat these return values as errors. The caller SHOULD use the data returned by the method, to
learn the required buffer size and to resize the buffers. The caller SHOULD call the method again by

using the resized buffers. These cases are noted in the method definitions in this section or in their
corresponding method definitions of [MS-RPRN] section 3.1.4.

 Name/Value Meaning

ERROR_INSUFFICIENT_BUFFER

0x0000007A

The buffer size specified in a method call is too small.

ERROR_MORE_DATA

0x000000EA

More data is available.

3.1.4.1 Printer Management Methods

The Printer Management methods support the discovery, access, and configuration of printer and
print server objects. The following table presents a list of printer management methods and their
counterparts in the Print System Remote Protocol [MS-RPRN]. All methods are specified in sections
that follow.

Parameter descriptions, parameter validation, and processing and response requirements that are not

specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the
corresponding methods of the Print System Remote protocol [MS-RPRN].

[MS-PAR] method Description
Corresponding [MS-
RPRN] method

RpcAsyncOpenPrinter RpcAsyncOpenPrinter retrieves a
handle to a specified printer or print
server. A client uses this method to obtain

RpcOpenPrinterEx

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

34 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-PAR] method Description
Corresponding [MS-
RPRN] method

a print handle to an existing printer on a
remote machine.

Opnum 0

RpcAsyncAddPrinter RpcAsyncAddPrinter installs a printer on
the print server.

The counterpart of this method in the
Print System Remote Protocol is
RpcAddPrinterEx. All parameters not
defined below are specified in [MS-RPRN]
RpcAddPrinterEx.

Opnum 1

RpcAddPrinterEx

RpcAsyncDeletePrinter RpcAsyncDeletePrinter deletes the
specified printer object.

The client MUST still call
RpcAsyncClosePrinter (section 3.1.4.1
.10) with the same PRINTER_HANDLE
after calling RpcAsyncDeletePrinter.

Opnum 7

RpcDeletePrinter

RpcAsyncSetPrinter RpcAsyncSetPrinter sets the state of a
specified printer, optionally by performing
an action to change the state.

Opnum 8

RpcSetPrinter

RpcAsyncGetPrinter RpcAsyncGetPrinter retrieves
information about a specified printer.

Opnum 9

RpcGetPrinter

RpcAsyncGetPrinterData RpcAsyncGetPrinterData retrieves
printer data from a specified printer or
print server.

Opnum 16

RpcGetPrinterData

RpcAsyncGetPrinterDataEx RpcAsyncGetPrinterDataEx retrieves
configuration data for the specified printer
or print server.

Opnum 17

RpcGetPrinterDataEx

RpcAsyncSetPrinterData RpcAsyncSetPrinterData sets the
configuration data for a printer or print
server.

Opnum 18

RpcSetPrinterData

RpcAsyncSetPrinterDataEx RpcAsyncSetPrinterDataEx sets the
configuration data for a printer or print
server.

Opnum 19

RpcSetPrinterDataEx

RpcAsyncClosePrinter RpcAsyncClosePrinter closes a handle
to a printer object, server object, job
object or port object, opened by calling
RpcAsyncOpenPrinter or
RpcAsyncAddPrinter.

Opnum 20

RpcClosePrinter

RpcAsyncEnumPrinterData RpcAsyncEnumPrinterData enumerates RpcEnumPrinterData

35 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-PAR] method Description
Corresponding [MS-
RPRN] method

configuration data for a specified printer.

Opnum 27

RpcAsyncEnumPrinterDataEx RpcAsyncEnumPrinterDataEx
enumerates all value names and data for
a specified printer and key.

Opnum 28

RpcEnumPrinterDataEx

RpcAsyncEnumPrinterKey RpcAsyncEnumPrinterKey enumerates
the subkeys of a specified key for a
specified printer.

Opnum 29

RpcEnumPrinterKey

RpcAsyncDeletePrinterData RpcAsyncDeletePrinterData deletes a
specified value from the configuration of a
specified printer.

Opnum 30

RpcDeletePrinterData

RpcAsyncDeletePrinterDataEx RpcAsyncDeletePrinterDataEx deletes
a specified value from the configuration
data of a specified printer, which consists
of a set of named and typed values stored
in a hierarchy of registry keys.

Opnum 31

RpcDeletePrinterDataEx

RpcAsyncDeletePrinterKey RpcAsyncDeletePrinterKey deletes a
specified key and all of its subkeys from
the configuration of a specified printer.

Opnum 32

RpcDeletePrinterKey

RpcAsyncSendRecvBidiData RpcAsyncSendRecvBidiData sends and
receives bidirectional data. This method
is used to communicate with print
monitors that support such data.

Opnum 34

RpcSendRecvBidiData

RpcAsyncCreatePrinterIC RpcAsyncCreatePrinterIC creates an
information context on a specified
printer.

Opnum 35

RpcCreatePrinterIC

RpcAsyncPlayGdiScriptOnPrinterI
C

RpcAsyncPlayGdiScriptOnPrinterIC
queries fonts for printer connections.

Opnum 36

RpcPlayGdiScriptOnPrinterI
C

RpcAsyncDeletePrinterIC RpcAsyncDeletePrinterIC deletes a
printer information context.

Opnum 37

RpcDeletePrinterIC

RpcAsyncEnumPrinters RpcAsyncEnumPrinters enumerates
available local printers, printers on a
specified print server, printers in a
specified domain, or print providers.

Opnum 38

RpcEnumPrinters

RpcAsyncAddPerMachineConnecti
on

RpcAsyncAddPerMachineConnection
persistently saves the configuration
information for a connection, including
the print server name and the name of

RpcAddPerMachineConnecti
on

36 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-PAR] method Description
Corresponding [MS-
RPRN] method

the print provider for a specified
connection.

Opnum 55

RpcAsyncDeletePerMachineConn
ection

RpcAsyncDeletePerMachineConnectio
n deletes the stored connection
configuration information that corresponds
to the pPrinterName parameter value.

Opnum 56

RpcDeletePerMachineConne
ction

RpcAsyncEnumPerMachineConne
ctions

RpcAsyncEnumPerMachineConnection
s enumerates each of the per-machine

connections into a specified buffer.

Opnum 57

RpcEnumPerMachineConnec
tions

RpcAsyncResetPrinter RpcAsyncResetPrinter resets the data
type and device mode values to use for
printing documents submitted by the
RpcAsyncStartDocPrinter (section 3.1.
4.8.1) method.

Opnum 69

RpcResetPrinter

3.1.4.1.1 RpcAsyncOpenPrinter (Opnum 0)

RpcAsyncOpenPrinter retrieves a handle to a specified printer, port, print job or print server. A
client uses this method to obtain a print handle to an existing printer on a remote computer.

The counterpart of this method in the Print System Remote Protocol is RpcOpenPrinterEx. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.14.

 DWORD RpcAsyncOpenPrinter(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pPrinterName,
 [out] PRINTER_HANDLE* pHandle,
 [in, string, unique] wchar_t* pDatatype,
 [in] DEVMODE_CONTAINER* pDevModeContainer,
 [in] DWORD AccessRequired,
 [in] SPLCLIENT_CONTAINER* pClientInfo
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.14.

3.1.4.1.2 RpcAsyncAddPrinter (Opnum 1)

RpcAsyncAddPrinter installs a printer on the print server.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

37 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcAddPrinterEx. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.15.

 DWORD RpcAsyncAddPrinter(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] PRINTER_CONTAINER* pPrinterContainer,
 [in] DEVMODE_CONTAINER* pDevModeContainer,
 [in] SECURITY_CONTAINER* pSecurityContainer,
 [in] SPLCLIENT_CONTAINER* pClientInfo,
 [out] PRINTER_HANDLE* pHandle
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.15.

3.1.4.1.3 RpcAsyncDeletePrinter (Opnum 7)

RpcAsyncDeletePrinter deletes the specified printer object.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.4.

The client MUST still call RpcAsyncClosePrinter with the PRINTER_HANDLE represented by the
hPrinter parameter after calling RpcAsyncDeletePrinter.

 DWORD RpcAsyncDeletePrinter(
 [in] PRINTER_HANDLE hPrinter
);

hPrinter: A handle to a printer object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.4.

3.1.4.1.4 RpcAsyncSetPrinter (Opnum 8)

RpcAsyncSetPrinter sets configuration information, initialization data, and security information of

the specified printer to the values contained in the method parameters. It can also perform an action
to change the active status of the printer.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

38 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcSetPrinter. All parameters
not defined below are specified in [MS-RPRN] section 3.1.4.2.5.

 DWORD RpcAsyncSetPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in] PRINTER_CONTAINER* pPrinterContainer,
 [in] DEVMODE_CONTAINER* pDevModeContainer,
 [in] SECURITY_CONTAINER* pSecurityContainer,
 [in] DWORD Command
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.5.

3.1.4.1.5 RpcAsyncGetPrinter (Opnum 9)

RpcAsyncGetPrinter retrieves information about a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcGetPrinter. All parameters
not defined below are specified in [MS-RPRN] section 3.1.4.2.6.

 DWORD RpcAsyncGetPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pPrinter,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

hPrinter: A handle to a printer object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.2.6.

3.1.4.1.6 RpcAsyncGetPrinterData (Opnum 16)

RpcAsyncGetPrinterData retrieves configuration data for the specified printer or print server.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

39 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcGetPrinterData. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.7.

 DWORD RpcAsyncGetPrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pValueName,
 [out] DWORD* pType,
 [out, size_is(nSize)] unsigned char* pData,
 [in] DWORD nSize,
 [out] DWORD* pcbNeeded
);

hPrinter: A handle to a printer object or server object that has been opened using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal

error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.7.

3.1.4.1.7 RpcAsyncGetPrinterDataEx (Opnum 17)

RpcAsyncGetPrinterDataEx retrieves configuration data for the specified printer or print server.
This method extends RpcAsyncGetPrinterData (section 3.1.4.1.6) and can retrieve values stored

under the specified key by RpcAsyncSetPrinterDataEx (section 3.1.4.1.9).

The counterpart of this method in the Print System Remote Protocol is RpcGetPrinterDataEx. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.19.

 DWORD RpcAsyncGetPrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [in, string] const wchar_t* pValueName,
 [out] DWORD* pType,
 [out, size_is(nSize)] unsigned char* pData,
 [in] DWORD nSize,
 [out] DWORD* pcbNeeded
);

hPrinter: A handle to a printer object or server object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return

values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.19.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

40 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.8 RpcAsyncSetPrinterData (Opnum 18)

RpcAsyncSetPrinterData sets configuration data for the specified printer or print server.

The counterpart of this method in the Print System Remote Protocol is RpcSetPrinterData. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.8.

 DWORD RpcAsyncSetPrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pValueName,
 [in] DWORD Type,
 [in, size_is(cbData)] unsigned char* pData,
 [in] DWORD cbData
);

hPrinter: A handle to a printer object or server object that has been opened using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.2.8.

3.1.4.1.9 RpcAsyncSetPrinterDataEx (Opnum 19)

RpcAsyncSetPrinterDataEx sets configuration data for the specified printer or print server. This
method is similar to RpcAsyncSetPrinterData (section 3.1.4.1.8) but also allows the caller to
specify the registry key under which to store the data.

The counterpart of this method in the Print System Remote Protocol is RpcSetPrinterDataEx. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.18.

 DWORD RpcAsyncSetPrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [in, string] const wchar_t* pValueName,
 [in] DWORD Type,
 [in, size_is(cbData)] unsigned char* pData,
 [in] DWORD cbData
);

hPrinter: A handle to a printer object or server object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements
specified in [MS-RPRN] section 3.1.4.2.18.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

41 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.10 RpcAsyncClosePrinter (Opnum 20)

RpcAsyncClosePrinter closes a handle to a printer object, server object, job object, or port object,
opened by calling RpcAsyncOpenPrinter or RpcAsyncAddPrinter.

The counterpart of this method in the Print System Remote Protocol is RpcClosePrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.9.

 DWORD RpcAsyncClosePrinter(
 [in, out] PRINTER_HANDLE* phPrinter
);

phPrinter: A pointer to a handle to a printer object, server object, job object, or port object that has

been opened using either RpcAsyncOpenPrinter (section 3.1.4.1.1) or
RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.9.

3.1.4.1.11 RpcAsyncEnumPrinterData (Opnum 27)

RpcAsyncEnumPrinterData enumerates configuration data for a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcEnumPrinterData. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.16.

 DWORD RpcAsyncEnumPrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD dwIndex,
 [out, size_is(cbValueName/sizeof(wchar_t))]
 wchar_t* pValueName,
 [in] DWORD cbValueName,
 [out] DWORD* pcbValueName,
 [out] DWORD* pType,
 [out, size_is(cbData)] unsigned char* pData,
 [in] DWORD cbData,
 [out] DWORD* pcbData
);

hPrinter: A handle to a printer object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return

values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.16.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

42 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.12 RpcAsyncEnumPrinterDataEx (Opnum 28)

RpcAsyncEnumPrinterDataEx enumerates all registry value names and data under the key for the
specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcEnumPrinterDataEx. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.20.

 DWORD RpcAsyncEnumPrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [out, size_is(cbEnumValues)] unsigned char* pEnumValues,
 [in] DWORD cbEnumValues,
 [out] DWORD* pcbEnumValues,
 [out] DWORD* pnEnumValues
);

hPrinter: A handle to a printer object that has been opened using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return

values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.20.

3.1.4.1.13 RpcAsyncEnumPrinterKey (Opnum 29)

RpcAsyncEnumPrinterKey enumerates the subkeys of a specified key for a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcEnumPrinterKey. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.21.

 DWORD RpcAsyncEnumPrinterKey(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [out, size_is(cbSubkey/sizeof(wchar_t))]
 wchar_t* pSubkey,
 [in] DWORD cbSubkey,
 [out] DWORD* pcbSubkey
);

hPrinter: A handle to a printer object that has been opened using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

43 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.21.

3.1.4.1.14 RpcAsyncDeletePrinterData (Opnum 30)

RpcAsyncDeletePrinterData deletes a specified value from the configuration of a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrinterData. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.17.

 DWORD RpcAsyncDeletePrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pValueName
);

hPrinter: A handle to a printer object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.17.

3.1.4.1.15 RpcAsyncDeletePrinterDataEx (Opnum 31)

RpcAsyncDeletePrinterDataEx deletes a specified value from the configuration data of a specified
printer, which consists of a set of named and typed values stored in a hierarchy of registry keys.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrinterDataEx. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.22.

 DWORD RpcAsyncDeletePrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [in, string] const wchar_t* pValueName
);

hPrinter: A handle to a printer object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.22.

3.1.4.1.16 RpcAsyncDeletePrinterKey (Opnum 32)

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

44 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RpcAsyncDeletePrinterKey deletes a specified key and all of its subkeys from the configuration of a
specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrinterKey. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.23.

 DWORD RpcAsyncDeletePrinterKey(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName
);

hPrinter: A handle to a printer object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.23.

3.1.4.1.17 RpcAsyncSendRecvBidiData (Opnum 34)

RpcAsyncSendRecvBidiData sends and receives bidirectional data. This method is used to
communicate with print monitors that support such data.

The counterpart of this method in the Print System Remote Protocol is RpcSendRecvBidiData. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.27.

 DWORD RpcAsyncSendRecvBidiData(
 [in] PRINTER_HANDLE hPrinter,
 [in, string, unique] const wchar_t* pAction,
 [in] RPC_BIDI_REQUEST_CONTAINER* pReqData,
 [out] RPC_BIDI_RESPONSE_CONTAINER** ppRespData
);

hPrinter: A handle to a printer object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.27.

3.1.4.1.18 RpcAsyncCreatePrinterIC (Opnum 35)

RpcAsyncCreatePrinterIC creates an information context for a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcCreatePrinterIC. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.10.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

45 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD RpcAsyncCreatePrinterIC(
 [in] PRINTER_HANDLE hPrinter,
 [out] GDI_HANDLE* pHandle,
 [in] DEVMODE_CONTAINER* pDevModeContainer
);

hPrinter: A handle to a printer object ([MS-RPRN] section 2.2.1.1.4) that has been opened using
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.10.

3.1.4.1.19 RpcAsyncPlayGdiScriptOnPrinterIC (Opnum 36)

RpcAsyncPlayGdiScriptOnPrinterIC returns font information for a printer connection.

The counterpart of this method in the Print System Remote Protocol is

RpcPlayGdiScriptOnPrinterIC. All parameters not defined below are specified in [MS-RPRN] section
3.1.4.2.11.

 DWORD RpcAsyncPlayGdiScriptOnPrinterIC(
 [in] GDI_HANDLE hPrinterIC,
 [in, size_is(cIn)] unsigned char* pIn,
 [in] DWORD cIn,
 [out, size_is(cOut)] unsigned char* pOut,
 [in] DWORD cOut,
 [in] DWORD ul
);

hPrinterIC: A printer information context handle ([MS-RPRN] section 2.2.1.1.2) that has been
returned by RpcAsyncCreatePrinterIC (section 3.1.4.1.18).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.11.

3.1.4.1.20 RpcAsyncDeletePrinterIC (Opnum 37)

RpcAsyncDeletePrinterIC deletes a printer information context.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrinterIC. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.12.

 DWORD RpcAsyncDeletePrinterIC(
 [in, out] GDI_HANDLE* phPrinterIC

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

46 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

phPrinterIC: A non-NULL pointer to a printer information context handle ([MS-RPRN] section
2.2.1.1.2) that has been returned by RpcAsyncCreatePrinterIC (section 3.1.4.1.18).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.12.

3.1.4.1.21 RpcAsyncEnumPrinters (Opnum 38)

RpcAsyncEnumPrinters enumerates available local printers, printers on a specified print server,
printers in a specified domain, or print providers.

The counterpart of this method in the Print System Remote Protocol is RpcEnumPrinters. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.1.

 DWORD RpcAsyncEnumPrinters(
 [in] handle_t hRemoteBinding,
 [in] DWORD Flags,
 [in, string, unique] wchar_t* Name,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pPrinterEnum,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.1.

3.1.4.1.22 RpcAsyncAddPerMachineConnection (Opnum 55)

RpcAsyncAddPerMachineConnection persistently saves the configuration information for a
connection, including the print server name and the name of the print providers for the specified
connection.

The counterpart of this method in the Print System Remote Protocol is
RpcAddPerMachineConnection. All parameters not defined below are specified in [MS-RPRN]
section 3.1.4.2.24.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

47 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD RpcAsyncAddPerMachineConnection(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pServer,
 [in, string] const wchar_t* pPrinterName,
 [in, string] const wchar_t* pPrintServer,
 [in, string] const wchar_t* pProvider
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.2.24.

3.1.4.1.23 RpcAsyncDeletePerMachineConnection (Opnum 56)

RpcAsyncDeletePerMachineConnection deletes the stored connection configuration information
that corresponds to the pPrinterName parameter value.

The counterpart of this method in the Print System Remote Protocol is

RpcDeletePerMachineConnection. All parameters not defined below are specified in [MS-RPRN]
section 3.1.4.2.25.

 DWORD RpcAsyncDeletePerMachineConnection(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pServer,
 [in, string] const wchar_t* pPrinterName
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.2.25.

3.1.4.1.24 RpcAsyncEnumPerMachineConnections (Opnum 57)

RpcAsyncEnumPerMachineConnections enumerates each of the per-machine connections into a
specified buffer.

The counterpart of this method in the Print System Remote Protocol is
RpcEnumPerMachineConnections. All parameters not defined below are specified in [MS-RPRN]

section 3.1.4.2.26.

 DWORD RpcAsyncEnumPerMachineConnections(
 [in] handle_t hRemoteBinding,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

48 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, string, unique] wchar_t* pServer,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pPrinterEnum,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.26.

3.1.4.1.25 RpcAsyncResetPrinter (Opnum 69)

RpcAsyncResetPrinter resets the data type and device mode (For more information, see
[DEVMODE]) values to use for printing documents submitted by the

RpcAsyncStartDocPrinter (section 3.1.4.8.1) method.

The counterpart of this method in the Print System Remote Protocol is RpcResetPrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.2.13.

 DWORD RpcAsyncResetPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in, string, unique] wchar_t* pDatatype,
 [in] DEVMODE_CONTAINER* pDevModeContainer
);

hPrinter: A handle to a printer object that has been opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.2.13.

3.1.4.2 Printer-Driver Management Methods

The Printer-Driver Management methods support the discovery, access, and installation of printer
drivers. The following table presents a list of printer-driver management methods and their
counterparts, if any, in the Print System Remote Protocol [MS-RPRN]. All methods are specified in
sections that follow.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89844
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

49 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Parameter descriptions, parameter validation, and processing and response requirements that are not
specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the

corresponding methods of the Print System Remote protocol [MS-RPRN].

 [MS-PAR] method Description [MS-RPRN] method

RpcAsyncGetPrinterDriver RpcAsyncGetPrinterDriver retrieves
data about a specified printer driver on
a specified printer.

Opnum 26

RpcGetPrinterDriver2

RpcAsyncAddPrinterDriver RpcAsyncAddPrinterDriver installs a
specified local or a remote printer driver

on a specified print server, and it links
the configuration, data, and driver files.

Opnum 39

RpcAddPrinterDriverEx

RpcAsyncEnumPrinterDrivers RpcAsyncEnumPrinterDrivers
enumerates the printer drivers installed
on a specified print server.

Opnum 40

RpcEnumPrinterDrivers

RpcAsyncGetPrinterDriverDirectory RpcAsyncGetPrinterDriverDirectory
retrieves the path of the printer-driver
directory on a specified print server.

Opnum 41

RpcGetPrinterDriverDirecto
ry

RpcAsyncDeletePrinterDriver RpcAsyncDeletePrinterDriver
removes the specified printer driver
from the list of supported drivers for a
specified print server.

Opnum 42

RpcDeletePrinterDriver

RpcAsyncDeletePrinterDriverEx RpcAsyncDeletePrinterDriverEx
removes the specified printer driver
from the list of supported drivers on a
specified print server, and deletes the
files associated with the driver. This
method also can delete specific versions
of the driver.

Opnum 43

RpcDeletePrinterDriverEx

RpcAsyncInstallPrinterDriverFromP
ackage

RpcAsyncInstallPrinterDriverFromP
ackage installs a printer driver from a
driver package.

Opnum 62

None.

RpcAsyncUploadPrinterDriverPacka
ge

RpcAsyncUploadPrinterDriverPacka
ge uploads a driver package so that it
can be installed with
RpcAsyncInstallPrinterDriverFromP
ackage.

Opnum 63

None.

RpcAsyncGetCorePrinterDrivers RpcAsyncGetCorePrinterDrivers gets
the GUID, version, and date of the
specified core printer drivers and the
path to their packages.

Opnum 64

RpcGetCorePrinterDrivers

RpcAsyncCorePrinterDriverInstalle RpcAsyncCorePrinterDriverInstalled
determines if a specific core printer

None.

50 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [MS-PAR] method Description [MS-RPRN] method

d driver is installed.

Opnum 65

RpcAsyncGetPrinterDriverPackageP
ath

RpcAsyncGetPrinterDriverPackageP
ath gets the path to the specified
printer driver package.

Opnum 66

RpcGetPrinterDriverPackag
ePath

RpcAsyncDeletePrinterDriverPacka
ge

RpcAsyncDeletePrinterDriverPackag
e deletes a specified printer driver
package.

Opnum 67

None.

3.1.4.2.1 RpcAsyncGetPrinterDriver (Opnum 26)

RpcAsyncGetPrinterDriver retrieves data about a specified printer driver on a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcGetPrinterDriver2. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.4.6.

 DWORD RpcAsyncGetPrinterDriver(
 [in] PRINTER_HANDLE hPrinter,
 [in, string, unique] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pDriver,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [in] DWORD dwClientMajorVersion,
 [in] DWORD dwClientMinorVersion,
 [out] DWORD* pdwServerMaxVersion,
 [out] DWORD* pdwServerMinVersion
);

hPrinter: A handle to a printer object that has been opened by using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.4.6.

3.1.4.2.2 RpcAsyncAddPrinterDriver (Opnum 39)

RpcAsyncAddPrinterDriver installs a specified local or a remote printer driver on a specified print
server, and it links the configuration, data, and driver files.

The counterpart of this method in the Print System Remote Protocol is RpcAddPrinterDriverEx. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.4.8.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

51 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD RpcAsyncAddPrinterDriver(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] DRIVER_CONTAINER* pDriverContainer,
 [in] DWORD dwFileCopyFlags
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.4.8.

3.1.4.2.3 RpcAsyncEnumPrinterDrivers (Opnum 40)

RpcAsyncEnumPrinterDrivers enumerates the printer drivers installed on a specified print
server.

The counterpart of this method in the Print System Remote Protocol is RpcEnumPrinterDrivers. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.4.2.

 DWORD RpcAsyncEnumPrinterDrivers(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string, unique] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pDrivers,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal

error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.4.2.

3.1.4.2.4 RpcAsyncGetPrinterDriverDirectory (Opnum 41)

RpcAsyncGetPrinterDriverDirectory retrieves the path of the printer driver directory on a
specified print server.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

52 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is
RpcGetPrinterDriverDirectory. All parameters not defined below are specified in [MS-RPRN] section

3.1.4.4.4.

 DWORD RpcAsyncGetPrinterDriverDirectory(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string, unique] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pDriverDirectory,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.4.4.

3.1.4.2.5 RpcAsyncDeletePrinterDriver (Opnum 42)

RpcAsyncDeletePrinterDriver removes the specified printer driver from the list of supported
drivers for a specified print server.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrinterDriver. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.4.5.

 DWORD RpcAsyncDeletePrinterDriver(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string] wchar_t* pEnvironment,
 [in, string] wchar_t* pDriverName
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.4.5.

3.1.4.2.6 RpcAsyncDeletePrinterDriverEx (Opnum 43)

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

53 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RpcAsyncDeletePrinterDriverEx removes the specified printer driver from the list of supported
drivers on a specified print server, and deletes the files associated with the driver. This method also

can delete specific versions of the driver.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrinterDriverEx.

All parameters not defined below are specified in [MS-RPRN] section 3.1.4.4.7.

 DWORD RpcAsyncDeletePrinterDriverEx(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string] wchar_t* pEnvironment,
 [in, string] wchar_t* pDriverName,
 [in] DWORD dwDeleteFlag,
 [in] DWORD dwVersionNum
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.4.7.

3.1.4.2.7 RpcAsyncInstallPrinterDriverFromPackage (Opnum 62)

RpcAsyncInstallPrinterDriverFromPackage installs a printer driver from a driver package.

 HRESULT RpcAsyncInstallPrinterDriverFromPackage(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string, unique] const wchar_t* pszInfPath,
 [in, string] const wchar_t* pszDriverName,
 [in, string] const wchar_t* pszEnvironment,
 [in] DWORD dwFlags
);

hRemoteBinding: An RPC explicit binding handle.

pszServer: A pointer to a string that specifies the name of the print server on which to install the
printer driver.

This string MUST contain the server name that was used to create the hRemoteBinding
parameter. For RPC bind handles, refer to [MS-RPCE]. For rules governing server names, refer to
[MS-RPRN] section 2.2.4.16.

pszInfPath: A pointer to a string that specifies the path to a driver installation control file that
specifies the printer driver.

This control file MAY<9> be used to install the driver on a target system. For rules governing path
names, refer to [MS-RPRN] section 2.2.4.9.

pszDriverName: A pointer to a string that specifies the name of the printer driver.

pszEnvironment: A pointer to a string that specifies the environment name for which the printer

driver is installed. For rules governing environment names, refer to [MS-RPRN] section 2.2.4.4.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

54 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwFlags: A bitfield that specifies the options for installing printer driver files from a driver package.

Value Meaning

0x00000000 Only the files that will not overwrite files with a newer version SHOULD be
installed.

IPDFP_COPY_ALL_FILES

0x00000001

All files SHOULD be installed, even if doing so would overwrite some newer
versions.

All other bits SHOULD be set to 0 by the client and MUST be ignored by the server upon receipt.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section
2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST validate
parameters as follows:

 The string pointed to by the pszInfPath parameter MUST contain a valid path name; otherwise

the server MUST return ERROR_INVALID PARAMETER.

 The string pointed to by the pszEnvironment parameter MUST specify one of the supported
environment names on this server for that type of driver; otherwise the server MUST return
ERROR_INVALID_ENVIRONMENT.

The print server SHOULD perform the following additional validation steps:<10>

 Validate that, if the printer driver specified by the client has a driver version of 0x00000004 (see

cVersion in [MS-RPRN] section 2.2.1.3.1), the driver package specified by the printer client
contains exactly one printer driver manifest for the printer driver and the printer driver
manifest conforms to the implementation-specific rules governing the format of printer driver

manifests; otherwise, the server MUST return ERROR_INVALID_PRINTER_DRIVER_MANIFEST.

 Validate that, if the printer driver specified by the client is a derived printer driver, either the
class printer driver on which the derived printer driver depends is already installed on the print
server, or a driver package containing the class printer driver is installed in the print server's

driver store, or the print server can locate a driver package containing the class printer driver
through some other implementation-specific mechanism;<11> otherwise, the server MUST return
ERROR_UNKNOWN_PRINTER_DRIVER.

 Validate that any files referenced in the driver installation control file specified by the print client
or in the printer driver manifest in the driver package specified by the print client are present on
the print server; otherwise, the server MUST return ERROR_FILE_NOT_FOUND.

 Validate that, if the printer driver specified by the client has a driver version of 0x00000003 (see

cVersion in [MS-RPRN] section 2.2.1.3.1), the string pointed to by the pszEnvironment parameter
is not "Windows ARM"; otherwise, the server MUST return ERROR_NOT_SUPPORTED.

If the installation requested by the print client is a printer driver upgrade and the new printer driver
has a driver version of 0x00000003, the print server SHOULD perform the following additional
validation steps:

 Validate that the currently installed printer driver is not a class printer driver.

 Validate that if the currently installed printer driver has a driver version of 0x00000004, the
currently installed printer driver does not have a newer driver date, or if the driver dates are the

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

55 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

same, the currently installed printer driver does not have a newer manufacturer-provided driver
version number.

 Validate that if the currently installed printer driver has a driver version of 0x00000004, there are
no printers on the print server that are shared and also use the currently installed printer driver.

If this validation fails, the print server MUST return ERROR_PRINTER_DRIVER_BLOCKED.<12>

If the installation requested by the print client is a printer driver upgrade and the new printer driver
has a driver version of 0x00000004, the print server SHOULD perform the following additional
validation steps:

 Validate that, if the currently installed printer driver is a class printer driver, the new printer driver
is also a class printer driver.

 Validate that, unless the currently installed printer driver is not a class printer driver and the new

printer driver is a class printer driver, the currently installed printer driver does not have a newer
driver date than the new printer driver, or, if the driver dates are the same, that the currently
installed printer driver does not have a newer manufacturer-provided driver version number.

 Validate that, if there are one or more printers on the print server that are shared and also use
the currently installed printer driver, the new printer driver does not indicate that printers using
that printer driver cannot be shared.

If this validation fails, the print server MUST return S_FALSE.<13>

If parameter validation fails, the server MUST fail the operation immediately and return a nonzero
error response to the client.

For general information about driver installation control files, see [MSDN-INFS]. For printer-specific
information about printer-driver installation control files, see [MSDN-PRNINF].

Processing and Response Requirements: If parameter validation succeeds, the server MUST
process the method call by:

 Installing a printer driver from the driver package that is located in the print server's driver store,
using an implementation-specific mechanism to determine the Boolean values of each of the
attributes of the printer driver object.<14> If the printer driver is a derived printer driver and the
class printer driver on which the derived printer driver depends is not currently installed, the print
server MUST first install the class printer driver. If a driver package containing the class printer
driver on which the derived printer driver depends is also located in the print server's driver store,
the print server SHOULD install the class printer driver from the driver package that contains it. If

a driver package containing the class printer driver is not located in the print server's driver store
but the print server can locate a driver package containing the class printer driver through some
other implementation-specific mechanism,<15> the print server SHOULD install the driver
package containing the class printer driver and then SHOULD install the class printer driver from
that driver package.<16>

 Returning the status of the operation.

If the operation is successful, the server MUST install the printer driver from the driver package before

returning the response.

3.1.4.2.8 RpcAsyncUploadPrinterDriverPackage (Opnum 63)

RpcAsyncUploadPrinterDriverPackage uploads a driver package so it can be installed with
RpcAsyncInstallPrinterDriverFromPackage (section 3.1.4.2.7).

 HRESULT RpcAsyncUploadPrinterDriverPackage(
 [in] handle_t hRemoteBinding,

https://go.microsoft.com/fwlink/?linkid=842371
https://go.microsoft.com/fwlink/?LinkId=90066

56 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszInfPath,
 [in, string] const wchar_t* pszEnvironment,
 [in] DWORD dwFlags,
 [in, out, unique, size_is(*pcchDestInfPath)]
 wchar_t* pszDestInfPath,
 [in, out] DWORD* pcchDestInfPath
);

hRemoteBinding: An RPC explicit binding handle.

pszServer: A pointer to a string that specifies the name of the print server to which this method
will upload the printer driver package.

This string contains the server name that was used to create the hRemoteBinding parameter.
For RPC bind handles, refer to [MS-RPCE]. For rules governing server names, refer to [MS-RPRN]
section 2.2.4.16.

pszInfPath: A pointer to a string that specifies the path to a driver installation control file that
specifies the printer driver.

This control file MAY be used to install the driver on a target system.<17> For rules governing

path names, see [MS-RPRN] section 2.2.4.9.

The path specified by pszInfPath MUST be accessible by the server.<18>

pszEnvironment: A pointer to a string that specifies the environment name for which the driver
package is uploaded. For rules governing environment names, see [MS-RPRN] section 2.2.4.4.

dwFlags: A bitfield that specifies the options for uploading a driver package.

Value Meaning

0x00000000 This method uploads the driver package that is named by the string pointed
to by the pszInfPath parameter to the print server, but only if that driver
package is not already present on the server.

UPDP_UPLOAD_ALWAYS

0x00000002

This method uploads the driver package files specified by the pszInfPath
parameter even if the driver package is already present on the print server.

UPDP_CHECK_DRIVERSTORE

0x00000004

This method only checks the print server's driver store to see if the driver
package specified by the pszInfPath parameter is already present on the
print server. If the driver package is not present on the print server, this
method returns ERROR_NOT_FOUND; otherwise, the method returns zero.

This flag is ignored if the UPDP_UPLOAD_ALWAYS flag is set.

All other bits are set to zero by the client and ignored by the server upon receipt.

pszDestInfPath: A pointer to a buffer that receives a string that specifies the full path of the
directory to which the driver installation control file was copied. For rules governing path names,

see [MS-RPRN] section 2.2.4.9.

The value of the string is ignored by the server upon input.

pcchDestInfPath: On input, this parameter is a pointer to a variable that specifies the size, in
characters, of the buffer that is referenced by the pszDestInfPath parameter. The specified size
is at least 260 characters.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

57 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

On output, the variable to which this parameter points receives the size, in characters, of the path
string. The path string includes the terminating null character that was written into the buffer

referenced by the pszDestInfPath parameter.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section

2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST validate
parameters as follows:

 The string pointed to by the pszInfPath parameter MUST contain a valid path name; otherwise
the server MUST return ERROR_INVALID_PARAMETER.

 The string pointed to by the pszEnvironment parameter MUST specify one of the supported
environment names on this server for that type of driver; otherwise the server MUST return
ERROR_INVALID_ENVIRONMENT.

 The size specified by the variable pointed to by pcchDestInfPath MUST be at least 260
characters; otherwise the server MUST return ERROR_INVALID_PARAMETER.

If parameter validation fails, the server MUST fail the operation immediately and return a nonzero

error response to the client.

Processing and Response Requirements: If parameter validation succeeds, the server MUST
process the method call as follows:

 If the dwFlags parameter is 0x00000000 and the driver package does not exist already in the
server's driver store, upload the signed driver package to the driver store of the print server so
that it can be installed with RpcAsyncInstallPrinterDriverFromPackage.

 If the dwFlags parameter is 0x00000002, upload the signed driver package to the driver store of

the print server, even if it already exists in the server's driver store, so that it can be installed with

RpcAsyncInstallPrinterDriverFromPackage.

 Return the driver store path name of the file that describes the printer driver in the buffer pointed
to by the output parameter pszDestInfPath.<19>

 Set the contents of the output parameter pcchDestInfPath to the size of the data in the buffer.

 If the dwFlags parameter is 0x00000004, check whether the driver package already exists in the
server's driver store. If the driver package exists, return zero; otherwise, return

ERROR_FILE_NOT_FOUND.

 Return a response that contains the specified output parameters and the status of the operation.

If the operation is successful, the server MUST upload the driver package into the system driver store
before returning the response.

3.1.4.2.9 RpcAsyncGetCorePrinterDrivers (Opnum 64)

RpcAsyncGetCorePrinterDrivers gets the GUID, versions, and publish dates of the specified core
printer drivers, and the paths to their packages.

The counterpart of this method in the Print System Remote Protocol is RpcGetCorePrinterDrivers.

 HRESULT RpcAsyncGetCorePrinterDrivers(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

58 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, string] const wchar_t* pszEnvironment,
 [in] DWORD cchCoreDrivers,
 [in, size_is(cchCoreDrivers)] const wchar_t* pszzCoreDriverDependencies,
 [in] DWORD cCorePrinterDrivers,
 [out, size_is(cCorePrinterDrivers)]
 CORE_PRINTER_DRIVER* pCorePrinterDrivers
);

hRemoteBinding: An RPC explicit binding handle.

pszServer: A pointer to a string that specifies the name of the print server from which to get the
core printer driver information. This string contains a server name that is identical to the server
name that was used to create the hRemoteBinding parameter. For details on RPC bind handles,
see [MS-RPCE]. For rules governing print server names, see [MS-RPRN] section 2.2.4.16.

pszEnvironment: A pointer to a string that specifies the environment name for which the core printer

driver information will be returned. For rules governing environment names, and Windows
behaviors, see [MS-RPRN] section 2.2.4.4.

cchCoreDrivers: The size, in bytes, of the buffer that is referenced by the
pszzCoreDriverDependencies parameter.

pszzCoreDriverDependencies: A pointer to a multisz that contains a list of IDs <20> of the core
printer drivers to be retrieved.

A print client SHOULD obtain this list of IDs as follows:

1. Call RpcAsyncGetPrinterDriver (section 3.1.4.2.1) with a Level parameter value of
0x00000008.

2. A _DRIVER_INFO_8 custom-marshaled structure ([MS-RPRN] section 2.2.2.4.8) is returned in
the pDriver parameter.

3. In the _DRIVER_INFO_8 structure, the szzCoreDependenciesOffset field contains an offset

to a multisz that contains the list of IDs.

cCorePrinterDrivers: The count of CORE_PRINTER_DRIVER (section 2.2.8) structures that are

contained in the buffer that is pointed to by the pCorePrinterDrivers parameter. It equals the
number of IDs that are specified in the multisz that is pointed to by the
pszzCoreDriverDependencies parameter.

pCorePrinterDrivers: A pointer to a buffer that receives an array of CORE_PRINTER_DRIVER
structures.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section

2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.4.9.

3.1.4.2.10 RpcAsyncCorePrinterDriverInstalled (Opnum 65)

RpcAsyncCorePrinterDriverInstalled determines if a specific core printer driver is installed.

 HRESULT RpcAsyncCorePrinterDriverInstalled(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

59 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, string] const wchar_t* pszEnvironment,
 [in] GUID CoreDriverGUID,
 [in] FILETIME ftDriverDate,
 [in] DWORDLONG dwlDriverVersion,
 [out] int* pbDriverInstalled
);

hRemoteBinding: An RPC explicit binding handle.

pszServer: A pointer to a string that contains the name of the print server to check and determine if
a core printer driver is installed. This string MUST contain a server name that is identical to the

server name that was used to create the hRemoteBinding parameter. For details on RPC bind
handles, see [MS-RPCE]. For rules governing print server names, see [MS-RPRN] section 2.2.4.16.

pszEnvironment: A pointer to a string that contains the environment name of the core printer driver.
For rules governing environment names and behaviors, see [MS-RPRN] section 2.2.4.4.

CoreDriverGUID: The GUID of the core printer driver.

ftDriverDate: The date of the core printer driver.<21>

dwlDriverVersion: The version<22> of the core printer driver.

pbDriverInstalled: A pointer to a variable that receives one of the following values.

Value Meaning

0 The driver, or a newer version of the driver, is not installed.

1 The driver, or a newer version of the driver, is installed.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section
2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST validate
parameters as follows:

 The string pointed to by the pszEnvironment parameter MUST specify one of the supported
environment names on the server for that type of driver; otherwise the server MUST return
ERROR_INVALID_ENVIRONMENT.

 The pbDriverInstalled parameter MUST NOT be NULL; otherwise the server MUST return

ERROR_INVALID_PARAMETER.

If parameter validation fails, the server MUST fail the operation immediately, and return a nonzero
error response to the client.

Processing and Response Requirements: If parameter validation succeeds, the server MUST
process the method call by:

 Searching for the core printer driver with the specified CoreDriverGUID, ftDriverDate, and
dwlDriverVersion in the list of installed core printer drivers on the print server.

 Setting the value of the variable pointed to by pbDriverInstalled to 1 if the search succeeded or
to zero if not.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

60 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Returning a response that MUST contain the output parameters mentioned above and the status
of the operation.

The server MUST NOT change the List of Core Printer Drivers as part of processing this method
call.

3.1.4.2.11 RpcAsyncGetPrinterDriverPackagePath (Opnum 66)

RpcAsyncGetPrinterDriverPackagePath gets the path to the specified printer driver package.

The counterpart of this method in the Print System Remote Protocol is
RpcGetPrinterDriverPackagePath, [MS-RPRN] section 3.1.4.4.10.

 HRESULT RpcAsyncGetPrinterDriverPackagePath(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszEnvironment,
 [in, string, unique] const wchar_t* pszLanguage,
 [in, string] const wchar_t* pszPackageID,
 [in, out, unique, size_is(cchDriverPackageCab)]
 wchar_t* pszDriverPackageCab,
 [in] DWORD cchDriverPackageCab,
 [out] DWORD* pcchRequiredSize
);

hRemoteBinding: An RPC explicit binding handle.

pszServer: A pointer to a string that contains the name of the print server from which to get the
printer driver package path. This string MUST contain a server name that is identical to the server

name that was used to create the hRemoteBinding parameter. For details on RPC bind handles,
see [MS-RPCE]. For rules governing print server names, see [MS-RPRN] section 2.2.4.16.

pszEnvironment: A pointer to a string that contains the environment name for which the driver
package path is returned. For rules governing environment names and behaviors, see [MS-RPRN]

section 2.2.4.4.

pszLanguage: A pointer to a string that contains the language for which the driver package path is
returned.<23> Providing this pointer is optional. If the pointer is not provided, the value of this

parameter MUST be NULL.

pszPackageID: A pointer to a string that contains package name. The package name is obtained by
calling RpcAsyncGetCorePrinterDrivers.

pszDriverPackageCab: A pointer to a string that contains the path name of the driver package
file.<24> For rules governing path names, see [MS-RPRN] section 2.2.4.9.
pszDriverPackageCab MUST NOT be NULL unless cchDriverPackageCab is zero.

cchDriverPackageCab: The size, in characters, of the buffer that is referenced by the

pszDriverPackageCab parameter. The value of this parameter MAY<25> be zero.

pcchRequiredSize: A pointer to a variable that receives the required size of the buffer that is pointed

to by the pszDriverPackageCab parameter.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section
2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

61 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Parameter Validation Requirements: Upon receiving this method call, the server MUST validate
parameters as follows:

 The string pointed to by the pszEnvironment parameter MUST specify one of the supported
environment names on the server for that type of driver; otherwise the server MUST return

ERROR_INVALID_ENVIRONMENT.

 The value of the pszPackageID parameter MUST NOT be NULL; otherwise the server MUST
return ERROR_INVALID_PARAMETER.

 The value of the pcchRequiredSize parameter MUST NOT be NULL; otherwise the server MUST
return ERROR_INVALID_PARAMETER.

 The size specified by cchDriverPackageCab MUST be sufficient to hold the path name of the
driver package file; otherwise the server MUST calculate the required number of characters and

write this number to the variable pointed to by the pcchRequiredSize output parameter, and
return ERROR_INSUFFICIENT_BUFFER.

If parameter validation fails, the server MUST fail the operation immediately and return a nonzero

error response to the client.

Processing and Response Requirements: If parameter validation succeeds, the server MUST
process the method call by:

 Searching for the driver-package cab file for the specified pszPackageID.

 Returning the driver package cab path for package ID in the output parameter
pszDriverPackageCab.

 Setting the contents of the parameter pcchRequiredSize to the size of the string buffer required
to hold the driver package cab.

 Returning a response that MUST contain the output parameters mentioned above and the status
of the operation.

The server MUST NOT change the list of driver package cabs as part of processing this method call.

3.1.4.2.12 RpcAsyncDeletePrinterDriverPackage (Opnum 67)

RpcAsyncDeletePrinterDriverPackage deletes a specified printer driver package.

 HRESULT RpcAsyncDeletePrinterDriverPackage(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszInfPath,
 [in, string] const wchar_t* pszEnvironment
);

hRemoteBinding: An RPC explicit binding handle.

pszServer: A non-NULL pointer to a string that specifies the name of the print server from which to

delete the printer driver package. This string contains a server name that is identical to the
server name that was used to create the hRemoteBinding parameter. For details on RPC bind
handles, see [MS-RPCE]. For rules governing print server names, see [MS-RPRN] section 2.2.4.16.

pszInfPath: A non-NULL pointer to a string that specifies the path name of a driver installation
control file that specifies the printer driver and MAY<26> be used to delete the driver from the
print server. For rules governing path names, see [MS-RPRN] section 2.2.4.9.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

62 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pszEnvironment: A non-NULL pointer to a string that specifies the environment name for which the
driver will be deleted. For rules governing environment names, see [MS-RPRN] section 2.2.4.4.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section
2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST validate
parameters as follows:

 The string pointed to by the pszInfPath parameter MUST contain an existing path name;
otherwise the server MUST return ERROR_INVALID_PARAMETER.

 The string pointed to by the pszEnvironment parameter MUST specify one of the supported

environment names on the server for that type of driver; otherwise the server MUST return
ERROR_INVALID_ENVIRONMENT.

Additional validation SHOULD<27> be performed.

If parameter validation fails, the server MUST fail the operation immediately and return a nonzero
error response to the client.

Processing and Response Requirements: If parameter validation succeeds, the server MUST

search for the driver package based on pszInfPath and determine if the driver package is in use on
the print server. A driver package is in use on a server if at least one printer driver on the server has
been installed from the driver package as specified in section 3.1.4.2.7, or if the driver package
contains a core printer driver on which other printer drivers on the server depend. If the driver
package is in use on the server, the server MUST return ERROR_PRINTER_DRIVER_PACKAGE_IN_USE.
If the driver package is not in use, the server MUST delete it from the driver store of the print server.

If the operation is successful, the server MUST delete the driver package from the driver store of the

print server, before returning a response that contains the status of the operation.

3.1.4.3 Printer-Port Management Methods

The Printer-Port Management methods support the discovery and communication with printer ports.

The following table presents a list of printer-port management methods and their counterparts in the
Print System Remote Protocol [MS-RPRN]. All methods are specified in sections that follow.

Parameter descriptions, parameter validation, and processing and response requirements that are not
specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the
corresponding methods of the Print System Remote protocol [MS-RPRN].

 [MS-PAR] method Description
 [MS-RPRN]
method

RpcAsyncXcvData RpcAsyncXcvData provides the means by which a port monitor
client component can communicate with its server-side counterpart,
the actual port-monitor hosted by the server.

Opnum 33

RpcXcvData

RpcAsyncEnumPorts RpcAsyncEnumPorts enumerates the ports that are available for
printing on a specified server.

Opnum 47

RpcEnumPorts

RpcAsyncAddPort RpcAsyncAddPort adds a specified port name to the list of
supported ports on a specified print server.

RpcAddPortEx

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

63 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [MS-PAR] method Description
 [MS-RPRN]
method

Opnum 49

RpcAsyncSetPort RpcAsyncSetPort sets the status associated with a specified port
on a specified print server.

Opnum 50

RpcSetPort

3.1.4.3.1 RpcAsyncXcvData (Opnum 33)

RpcAsyncXcvData provides the means by which a port monitor client component can communicate
with its server-side counterpart, the actual port monitor hosted by the server.

The counterpart of this method in the Print System Remote Protocol is RpcXcvData. All parameters
not defined below are specified in [MS-RPRN] section 3.1.4.6.5.

 DWORD RpcAsyncXcvData(
 [in] PRINTER_HANDLE hXcv,
 [in, string] const wchar_t* pszDataName,
 [in, size_is(cbInputData)] unsigned char* pInputData,
 [in] DWORD cbInputData,
 [out, size_is(cbOutputData)] unsigned char* pOutputData,
 [in] DWORD cbOutputData,
 [out] DWORD* pcbOutputNeeded,
 [in, out] DWORD* pdwStatus
);

hXcv: A handle to a port object that has been opened by using
RpcAsyncOpenPrinter (section 3.1.4.1.1).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.6.5.

3.1.4.3.2 RpcAsyncEnumPorts (Opnum 47)

RpcAsyncEnumPorts enumerates the ports that are available for printing on a specified server.

The counterpart of this method in the Print System Remote Protocol is RpcEnumPorts. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.6.1.

 DWORD RpcAsyncEnumPorts(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pPort,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

64 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.6.1.

3.1.4.3.3 RpcAsyncAddPort (Opnum 49)

RpcAsyncAddPort adds a specified port name to the list of supported ports on a specified print
server.

The counterpart of this method in the Print System Remote Protocol is RpcAddPortEx. All parameters

not defined below are specified in [MS-RPRN] section 3.1.4.6.3.

 DWORD RpcAsyncAddPort(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] PORT_CONTAINER* pPortContainer,
 [in] PORT_VAR_CONTAINER* pPortVarContainer,
 [in, string] wchar_t* pMonitorName
);

hRemoteBinding: An RPC explicit binding handle. RPC binding handles are specified in [C706]

section 2.3.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.6.3.

3.1.4.3.4 RpcAsyncSetPort (Opnum 50)

RpcAsyncSetPort sets the status associated with a specified port on a specified print server.

The counterpart of this method in the Print System Remote Protocol is RpcSetPort. All parameters
not defined below are specified in [MS-RPRN] section 3.1.4.6.4.

 DWORD RpcAsyncSetPort(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string, unique] wchar_t* pPortName,
 [in] PORT_CONTAINER* pPortContainer
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

65 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.6.4.

3.1.4.4 Print-Processor Management Methods

The Print-Processor Management methods support the discovery and manipulation of print processor
objects. The following table presents a list of print processor management methods and their
counterparts in the Print System Remote Protocol [MS-RPRN]. All methods are specified in sections
that follow.

Parameter descriptions, parameter validation, and processing and response requirements that are not

specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the
corresponding methods of the Print System Remote protocol [MS-RPRN].

 [MS-PAR] method Description [MS-RPRN] method

RpcAsyncAddPrintProcessor RpcAsyncAddPrintProcessor installs
a specified print processor on the

specified server and adds its name to
an internal list of supported print
processors.

Opnum 44

RpcAddPrintProcessor

RpcAsyncEnumPrintProcessors RpcAsyncEnumPrintProcessors
enumerates the print processors
installed on a specified server.

Opnum 45

RpcEnumPrintProcessors

RpcAsyncGetPrintProcessorDirecto
ry

RpcAsyncGetPrintProcessorDirecto
ry retrieves the path for the print
processor on the specified server.

Opnum 46

RpcGetPrintProcessorDirector
y

RpcAsyncDeletePrintProcessor RpcAsyncDeletePrintProcessor
removes a specified print processor
from a specified server.

Opnum 53

RpcDeletePrintProcessor

RpcAsyncEnumPrintProcessorDatat
ypes

RpcAsyncEnumPrintProcessorDatat
ypes enumerates the data types that a
specified print processor supports.

Opnum 54

RpcEnumPrintProcessorDatat
ypes

3.1.4.4.1 RpcAsyncAddPrintProcessor (Opnum 44)

RpcAsyncAddPrintProcessor installs a specified print processor on the specified server and adds
its name to an internal list of supported print processors.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

66 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcAddPrintProcessor. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.8.1.

 DWORD RpcAsyncAddPrintProcessor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string] wchar_t* pEnvironment,
 [in, string] wchar_t* pPathName,
 [in, string] wchar_t* pPrintProcessorName
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.8.1.

3.1.4.4.2 RpcAsyncEnumPrintProcessors (Opnum 45)

RpcAsyncEnumPrintProcessors enumerates the print processors installed on a specified server.

The counterpart of this method in the Print System Remote Protocol is RpcEnumPrintProcessors. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.8.2.

 DWORD RpcAsyncEnumPrintProcessors(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string, unique] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pPrintProcessorInfo,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.8.2.

3.1.4.4.3 RpcAsyncGetPrintProcessorDirectory (Opnum 46)

RpcAsyncGetPrintProcessorDirectory retrieves the path for the print processor on the specified
server.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

67 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is
RpcGetPrintProcessorDirectory. All parameters not defined below are specified in [MS-RPRN]

section 3.1.4.8.3.

 DWORD RpcAsyncGetPrintProcessorDirectory(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string, unique] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pPrintProcessorDirectory,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.8.3.

3.1.4.4.4 RpcAsyncDeletePrintProcessor (Opnum 53)

RpcAsyncDeletePrintProcessor removes a specified print processor from a specified server.

The counterpart of this method in the Print System Remote Protocol is RpcDeletePrintProcessor. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.8.4.

 DWORD RpcAsyncDeletePrintProcessor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* Name,
 [in, string, unique] wchar_t* pEnvironment,
 [in, string] wchar_t* pPrintProcessorName
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.8.4.

3.1.4.4.5 RpcAsyncEnumPrintProcessorDatatypes (Opnum 54)

RpcAsyncEnumPrintProcessorDatatypes enumerates the data types that a specified print
processor supports.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

68 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is
RpcEnumPrintProcessorDatatypes. All parameters not defined below are specified in [MS-RPRN]

section 3.1.4.8.5.

 DWORD RpcAsyncEnumPrintProcessorDatatypes(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string, unique] wchar_t* pPrintProcessorName,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pDatatypes,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return

values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.8.5.

3.1.4.5 Port Monitor Management Methods

The Port Monitor Management methods support the discovery and installation of port monitor
modules. The following table presents a list of port monitor management methods and their
counterparts in the Print System Remote Protocol [MS-RPRN]. All methods are specified in sections

that follow.

Parameter descriptions, parameter validation, and processing and response requirements that are not
specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the
corresponding methods of the Print System Remote protocol [MS-RPRN].

 [MS-PAR] method Description
 [MS-RPRN]
method

RpcAsyncEnumMonitors RpcAsyncEnumMonitors retrieves information about the
port monitors installed on a specified server.

Opnum 48

RpcEnumMonitors

RpcAsyncAddMonitor RpcAsyncAddMonitor installs a specified local port monitor,
and links the configuration, data, and monitor files on a
specified print server.

Opnum 51

RpcAddMonitor

RpcAsyncDeleteMonitor RpcAsyncDeleteMonitor removes a specified port monitor
from a specified print server.

Opnum 52

RpcDeleteMonitor

3.1.4.5.1 RpcAsyncEnumMonitors (Opnum 48)

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

69 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RpcAsyncEnumMonitors retrieves information about the port monitors installed on a specified
server.

The counterpart of this method in the Print System Remote Protocol is RpcEnumMonitors. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.7.1.

 DWORD RpcAsyncEnumMonitors(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pMonitor,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.7.1.

3.1.4.5.2 RpcAsyncAddMonitor (Opnum 51)

RpcAsyncAddMonitor installs a specified local port monitor, and links the configuration, data, and

monitor files on a specified print server.

The counterpart of this method in the Print System Remote Protocol is RpcAddMonitor. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.7.2.

 DWORD RpcAsyncAddMonitor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* Name,
 [in] MONITOR_CONTAINER* pMonitorContainer
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.7.2.

3.1.4.5.3 RpcAsyncDeleteMonitor (Opnum 52)

RpcAsyncDeleteMonitor removes a specified port monitor from a specified print server.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

70 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcDeleteMonitor. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.7.3.

 DWORD RpcAsyncDeleteMonitor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* Name,
 [in, string, unique] wchar_t* pEnvironment,
 [in, string] wchar_t* pMonitorName
);

hRemoteBinding: An RPC explicit binding handle.

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.7.3.

3.1.4.6 Form Management Methods

The Form Management methods support the discovery and configuration of printer forms. The
following table presents a list of form management methods and their counterparts in the Print

System Remote Protocol [MS-RPRN]. All methods are specified in sections that follow.

Parameter descriptions, parameter validation, and processing and response requirements that are not
specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the
corresponding methods of the Print System Remote protocol [MS-RPRN].

 [MS-PAR] method Description
 [MS-RPRN]
method

RpcAsyncAddForm RpcAsyncAddForm adds a form name to the list of supported
forms.

Opnum 21

RpcAddForm

RpcAsyncDeleteForm RpcAsyncDeleteForm removes a form name from the list of
supported forms.

Opnum 22

RpcDeleteForm

RpcAsyncGetForm RpcAsyncGetForm retrieves information about a specified
form.

Opnum 23

RpcGetForm

RpcAsyncSetForm RpcAsyncSetForm sets the form information for the specified
printer.

Opnum 24

RpcSetForm

RpcAsyncEnumForms RpcAsyncEnumForms enumerates the forms that the
specified printer supports.

Opnum 25

RpcEnumForms

3.1.4.6.1 RpcAsyncAddForm (Opnum 21)

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

71 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RpcAsyncAddForm adds a form name to the list of supported printer forms.

The counterpart of this method in the Print System Remote Protocol is RpcAddForm. All parameters

not defined below are specified in [MS-RPRN] section 3.1.4.5.1.

 DWORD RpcAsyncAddForm(
 [in] PRINTER_HANDLE hPrinter,
 [in] FORM_CONTAINER* pFormInfoContainer
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.5.1.

3.1.4.6.2 RpcAsyncDeleteForm (Opnum 22)

RpcAsyncDeleteForm removes a form name from the list of supported printer forms.

The counterpart of this method in the Print System Remote Protocol is RpcDeleteForm. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.5.2.

 DWORD RpcAsyncDeleteForm(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pFormName
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.5.2.

3.1.4.6.3 RpcAsyncGetForm (Opnum 23)

RpcAsyncGetForm retrieves information about a specified printer form.

The counterpart of this method in the Print System Remote Protocol is RpcGetForm. All parameters

not defined below are specified in [MS-RPRN] section 3.1.4.5.3.

 DWORD RpcAsyncGetForm(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pFormName,

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

72 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pForm,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.5.3.

3.1.4.6.4 RpcAsyncSetForm (Opnum 24)

RpcAsyncSetForm sets the printer form information for the specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcSetForm. All parameters
not defined below are specified in [MS-RPRN] section 3.1.4.5.4.

 DWORD RpcAsyncSetForm(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pFormName,
 [in] FORM_CONTAINER* pFormInfoContainer
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.5.4.

3.1.4.6.5 RpcAsyncEnumForms (Opnum 25)

RpcAsyncEnumForms enumerates the printer forms that the specified printer supports.

The counterpart of this method in the Print System Remote Protocol is RpcEnumForms. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.5.5.

 DWORD RpcAsyncEnumForms(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pForm,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

73 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.5.5.

3.1.4.7 Job Management Methods

The Job Management methods support the discovery, definition, and scheduling of print jobs. The
following table presents a list of job management methods and their counterparts in the Print System
Remote Protocol [MS-RPRN]. All methods are specified in sections that follow.

Parameter descriptions, parameter validation, and processing and response requirements that are not
specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the
corresponding methods of the Print System Remote protocol [MS-RPRN].

 [MS-PAR] method Description
 [MS-RPRN]
method

RpcAsyncSetJob RpcAsyncSetJob pauses, resumes, cancels, or restarts a print
job on a specified printer. This method can also set print job
parameters, including the job priority and document name.

Opnum 2

RpcSetJob

RpcAsyncGetJob RpcAsyncGetJob retrieves information about a specified print job
on a specified printer.

Opnum 3

RpcGetJob

RpcAsyncEnumJobs RpcAsyncEnumJobs retrieves information about a specified set
of print jobs on a specified printer.

Opnum 4

RpcEnumJobs

RpcAsyncAddJob RpcAsyncAddJob returns ERROR_INVALID_PARAMETER

Opnum 5

RpcAddJob

RpcAsyncScheduleJob RpcAsyncScheduleJob returns ERROR_SPL_NO_ADDJOB.

Opnum 6

RpcScheduleJob

3.1.4.7.1 RpcAsyncSetJob (Opnum 2)

RpcAsyncSetJob pauses, resumes, cancels, or restarts a print job on a specified printer. This
method can also set print job parameters, including the job priority and document name.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

74 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcSetJob. All parameters not
defined below are specified in [MS-RPRN] section 3.1.4.3.1.

 DWORD RpcAsyncSetJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in, unique] JOB_CONTAINER* pJobContainer,
 [in] DWORD Command
);

hPrinter: A handle to a printer object that has been opened by using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.3.1.

3.1.4.7.2 RpcAsyncGetJob (Opnum 3)

RpcAsyncGetJob retrieves information about a specified print job on a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcGetJob. All parameters not
defined below are specified in [MS-RPRN] section 3.1.4.3.2.

 DWORD RpcAsyncGetJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pJob,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

hPrinter: A handle to a printer object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return
values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.3.2.

3.1.4.7.3 RpcAsyncEnumJobs (Opnum 4)

RpcAsyncEnumJobs retrieves information about a specified set of print jobs on a specified printer.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

75 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcEnumJobs. All parameters
not defined below are specified in [MS-RPRN] section 3.1.4.3.3.

 DWORD RpcAsyncEnumJobs(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD FirstJob,
 [in] DWORD NoJobs,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pJob,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

hPrinter: A handle to a printer object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. Aside from the specific nonzero return

values documented in section 3.1.4, the client MUST treat any nonzero return value as a fatal
error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.3.3.

3.1.4.7.4 RpcAsyncAddJob (Opnum 5)

RpcAsyncAddJob does not perform any function, but returns ERROR_INVALID_PARAMETER.

The counterpart of this method in the Print System Remote Protocol is RpcAddJob. All parameters

not defined below are specified in [MS-RPRN] section 3.1.4.3.4.

 DWORD RpcAsyncAddJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)]
 unsigned char* pAddJob,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

hPrinter: A handle to a printer object that was opened using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return ERROR_INVALID_PARAMETER ([MS-ERREF] section
2.2).

This method MUST be implemented to ensure compatibility with protocol clients.

3.1.4.7.5 RpcAsyncScheduleJob (Opnum 6)

RpcAsyncScheduleJob does not perform any function, but returns ERROR_SPL_NO_ADDJOB.

The counterpart of this method in the Print System Remote Protocol is RpcScheduleJob. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.3.5.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

76 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD RpcAsyncScheduleJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId
);

hPrinter: A handle to a printer object that was opened using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return ERROR_SPL_NO_ADDJOB ([MS-ERREF] section 2.2).

This method MUST be implemented to ensure compatibility with protocol clients.

3.1.4.8 Job Printing Methods

The Job Printing methods support the adding of documents, pages, and text to print jobs. The
following table presents a list of job printing methods and their counterparts in the Print System

Remote Protocol [MS-RPRN]. All methods are specified in sections that follow.

Parameter descriptions, parameter validation, and processing and response requirements that are not
specified in methods of the Print System Asynchronous Remote protocol [MS-PAR] are specified in the
corresponding methods of the Print System Remote protocol [MS-RPRN].

 [MS-PAR] method Description
 [MS-RPRN]
method

RpcAsyncStartDocPrinter RpcAsyncStartDocPrinter notifies a specified printer
that a document is being spooled for printing.

Opnum 10

RpcStartDocPrinter

RpcAsyncStartPagePrinter RpcAsyncStartPagePrinter notifies a specified printer
that a page is about to be printed.

Opnum 11

RpcStartPagePrinter

RpcAsyncWritePrinter RpcAsyncWritePrinter adds data to the file representing
the spool file for a specified printer, if the spooling option
is turned on; or it sends data to the device directly, if the
printer is configured for direct printing.

Opnum 12

RpcWritePrinter

RpcAsyncEndPagePrinter RpcAsyncEndPagePrinter notifies a specified printer
that the application is at the end of a page in a print job.

Opnum 13

RpcEndPagePrinter

RpcAsyncEndDocPrinter RpcAsyncEndDocPrinter signals the completion of the
current print job on a specified printer.

Opnum 14

RpcEndDocPrinter

RpcAsyncAbortPrinter The RpcAsyncAbortPrinter method aborts the current
document on a specified printer.

Opnum 15

RpcAbortPrinter

RpcAsyncReadPrinter RpcAsyncReadPrinter retrieves data from the specified
job object.

Opnum 68

RpcReadPrinter

3.1.4.8.1 RpcAsyncStartDocPrinter (Opnum 10)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

77 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RpcStartDocPrinter notifies a specified printer that a document is being spooled for printing.

The counterpart of this method in the Print System Remote Protocol is RpcStartDocPrinter. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.9.1.

 DWORD RpcAsyncStartDocPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in] DOC_INFO_CONTAINER* pDocInfoContainer,
 [out] DWORD* pJobId
);

hPrinter: A handle to a printer object that was opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.9.1.

3.1.4.8.2 RpcAsyncStartPagePrinter (Opnum 11)

RpcAsyncStartPagePrinter notifies a specified printer that a page is about to be printed.

The counterpart of this method in the Print System Remote Protocol is RpcStartPagePrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.9.2.

 DWORD RpcAsyncStartPagePrinter(
 [in] PRINTER_HANDLE hPrinter
);

hPrinter: A handle to a printer object that was opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.9.2.

3.1.4.8.3 RpcAsyncWritePrinter (Opnum 12)

RpcAsyncWritePrinter adds data to the file representing the spool file for a specified printer, if the
spooling option is turned on; or it sends data to the device directly, if the printer is configured for

direct printing.

The counterpart of this method in the Print System Remote Protocol is RpcWritePrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.9.3.

 DWORD RpcAsyncWritePrinter(

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

78 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] PRINTER_HANDLE hPrinter,
 [in, size_is(cbBuf)] unsigned char* pBuf,
 [in] DWORD cbBuf,
 [out] DWORD* pcWritten
);

hPrinter: A handle to a printer object or port object that was opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.9.3.

3.1.4.8.4 RpcAsyncEndPagePrinter (Opnum 13)

RpcAsyncEndPagePrinter notifies a specified printer that the application is at the end of a page in a
print job.

The counterpart of this method in the Print System Remote Protocol is RpcEndPagePrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.9.4.

 DWORD RpcAsyncEndPagePrinter(
 [in] PRINTER_HANDLE hPrinter
);

hPrinter: A handle to a printer object that was opened by using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.9.4.

3.1.4.8.5 RpcAsyncEndDocPrinter (Opnum 14)

RpcAsyncEndDocPrinter signals the completion of the current print job on a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcEndDocPrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.9.7.

 DWORD RpcAsyncEndDocPrinter(
 [in] PRINTER_HANDLE hPrinter
);

hPrinter: A handle to a printer object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

79 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.9.7.

3.1.4.8.6 RpcAsyncAbortPrinter (Opnum 15)

RpcAsyncAbortPrinter aborts the current document on a specified printer.

The counterpart of this method in the Print System Remote Protocol is RpcAbortPrinter. All

parameters not defined below are specified in [MS-RPRN] section 3.1.4.9.5.

 DWORD RpcAsyncAbortPrinter(
 [in] PRINTER_HANDLE hPrinter
);

hPrinter: A handle to a printer object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that

are specified in [MS-RPRN] section 3.1.4.9.5.

3.1.4.8.7 RpcAsyncReadPrinter (Opnum 68)

RpcAsyncReadPrinter retrieves data from the specified job object.

The counterpart of this method in the Print System Remote Protocol is RpcReadPrinter. All
parameters not defined below are specified in [MS-RPRN] section 3.1.4.9.6.

 DWORD RpcAsyncReadPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [out, size_is(cbBuf)] unsigned char* pBuf,
 [in] DWORD cbBuf,
 [out] DWORD* pcNoBytesRead
);

hPrinter: A handle to a job object that has been opened by using either

RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

80 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.9.6.

3.1.4.9 Printing-Related Notification Methods

The Printing-Related Notification methods support the registration for and receipt of notification events
concerning a specific print job. The following table presents a list of printing-related notification
methods and indicates that they have no counterparts in the Print System Remote Protocol [MS-
RPRN]. All methods are specified in sections that follow.

 [MS-PAR] method Description

 [MS-
RPRN]
metho
d

RpcSyncRegisterForRemoteNotificati
ons

RpcSyncRegisterForRemoteNotifications opens a
notification handle by using a printer handle or print
server handle, to listen for remote printer change
notifications.

Opnum 58

None.

RpcSyncUnRegisterForRemoteNotific
ations

RpcSyncUnRegisterForRemoteNotifications closes a
notification handle opened by calling
RpcSyncRegisterForRemoteNotifications (section 3.1
.4.9.1).

Opnum 59

None.

RpcSyncRefreshRemoteNotifications RpcSyncRefreshRemoteNotifications gets notification
information for all requested members. This is called by a
client if the "RemoteNotifyData Flags" key in the
RpcPrintPropertiesCollection instance, which was
returned as part of the notification from an
RpcAsyncGetRemoteNotifications call, has the
PRINTER_NOTIFY_INFO_DISCARDED bit set.
PRINTER_NOTIFY_INFO_DISCARDED is defined in
[MS-RPRN] section 2.2.3.2.

Opnum 60

None.

RpcAsyncGetRemoteNotifications A client uses RpcAsyncGetRemoteNotifications to poll
the print server for specified change notifications. A call
to this method is suspended until the server has a new
change notification for the client. Subsequently, the client
calls this method again to poll for additional notifications
from the server.

Opnum 61

None.

3.1.4.9.1 RpcSyncRegisterForRemoteNotifications (Opnum 58)

RpcSyncRegisterForRemoteNotifications opens a notification handle by using a printer handle or

print server handle, to listen for remote printer change notifications.

 HRESULT RpcSyncRegisterForRemoteNotifications(
 [in] PRINTER_HANDLE hPrinter,
 [in] RpcPrintPropertiesCollection* pNotifyFilter,
 [out] RMTNTFY_HANDLE* phRpcHandle
);

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

81 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hPrinter: A handle to a printer object or print server object opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

pNotifyFilter: A pointer to an RpcPrintPropertiesCollection (section 2.2.4) instance that contains
the caller-specified notification filter settings.

phRpcHandle: A pointer to a variable that receives the remote notification handle.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section
2.1) to indicate successful completion, or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST validate
parameters as follows:

 The hPrinter printer object or server object handle MUST NOT be NULL and MUST point to a
printer object or server object that can be monitored for notifications.

 The printer handle MUST be authorized to monitor printer objects for notifications.<28>

 The pNotifyFilter parameter MUST point to an RpcPrintPropertiesCollection instance that has
all the name-value pairs required to register for notifications.

If parameter validation fails, the server MUST return immediately with a failure indication in its

response to the client.

Processing and Response Requirements: If parameter validation succeeds, the server MUST
process the method call by:

 Creating a notification object that points to the printer object or server object and contains
notification filter data sent by the client.

 Adding the notification object to the list of notification clients for the printer object or server

object.

 Associating the notification object with an RPC handle and returning the handle to the user.

If the operation is successful, when the client calls
RpcAsyncGetRemoteNotifications (section 3.1.4.9.4) with the RPC handle returned from this
method, the server MUST return the changes to the object indicated by the notification filter settings
since the previous call to the same method.

3.1.4.9.2 RpcSyncUnRegisterForRemoteNotifications (Opnum 59)

RpcSyncUnRegisterForRemoteNotifications closes a notification handle opened by calling
RpcSyncRegisterForRemoteNotifications (section 3.1.4.9.1).

 HRESULT RpcSyncUnRegisterForRemoteNotifications(
 [in, out] RMTNTFY_HANDLE* phRpcHandle
);

phRpcHandle: A pointer to the remote notification handle from which the user no longer wants to

receive notifications.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section
2.1) to indicate successful completion or an HRESULT error value to indicate failure.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

82 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST verify that
the phRpcHandle parameter is not NULL, and that it points to a non-NULL RMTNTFY_HANDLE that

is associated with a valid notification object created by a call to
RpcSyncRegisterForRemoteNotifications (section 3.1.4.9.1).

If parameter validation fails, the server MUST return immediately, with a failure indication in its
response to the client.

Processing and Response Requirements: If the operation is successful, the server MUST execute
the following steps before returning:

 Remove the client from the list of notification clients associated with the printer object or server.

 Delete the notification object associated with the RMTNTFY_HANDLE specified by the
phRpcHandle parameter.

3.1.4.9.3 RpcSyncRefreshRemoteNotifications (Opnum 60)

RpcSyncRefreshRemoteNotifications gets notification information for all requested members. This
SHOULD be called by a client if the "RemoteNotifyData Flags" key in the

RpcPrintPropertiesCollection instance, which was returned as part of the notification from an
RpcAsyncGetRemoteNotifications call, has the PRINTER_NOTIFY_INFO_DISCARDED bit set.
PRINTER_NOTIFY_INFO_DISCARDED is defined in [MS-RPRN] section 2.2.3.2.

 HRESULT RpcSyncRefreshRemoteNotifications(
 [in] RMTNTFY_HANDLE hRpcHandle,
 [in] RpcPrintPropertiesCollection* pNotifyFilter,
 [out] RpcPrintPropertiesCollection** ppNotifyData
);

hRpcHandle: A remote notification handle that was opened by using

RpcSyncRegisterForRemoteNotifications (section 3.1.4.9.1).

pNotifyFilter: A pointer to an RpcPrintPropertiesCollection (section 2.2.4) instance that contains
the caller-specified notification filter settings.

ppNotifyData: A pointer to a variable that receives a pointer to an RpcPrintPropertiesCollection
instance that contains the notification data.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section

2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST validate
parameters as follows:

 The hRpcHandle parameter MUST NOT be NULL and MUST be associated with a valid notification

object created by a call to RpcSyncRegisterForRemoteNotifications (section 3.1.4.9.1).

 The pNotifyFilter parameter MUST point to an RpcPrintPropertiesCollection instance that has
all the name-value pairs required to get notification data.

If parameter validation fails, the server MUST return immediately, with a failure indication in its
response to the client.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

83 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Processing and Response Requirements: If parameter validation succeeds, the server MUST
process the method call by:

 Storing the notification data requested by the client in the RpcPrintPropertiesCollection
structure pointed to by ppNotifyData.

 Returning a response that contains the status of the operation.

If the operation is successful, the server MUST make the following changes to printer object data
before returning the response:

 Store the notification synchronization value in the RpcPrintPropertiesCollection instance
pointed to by pNotifyFilter, which corresponds to the "RemoteNotifyFilter Color" key. Store this
value with the client information in the list of notification clients for the printer object or server so
that the client can use it in RpcAsyncGetRemoteNotifications calls.

 Delete the notification data associated with the notification handle that has been successfully sent.

3.1.4.9.4 RpcAsyncGetRemoteNotifications (Opnum 61)

A print client uses RpcAsyncGetRemoteNotifications to poll the print server for specified change
notifications. A call to this method is suspended until the server has a new change notification for the
client. Subsequently, the client calls this method again to poll for additional notifications from the

server.

 HRESULT RpcAsyncGetRemoteNotifications(
 [in] RMTNTFY_HANDLE hRpcHandle,
 [out] RpcPrintPropertiesCollection** ppNotifyData
);

hRpcHandle: A remote notification handle that was opened by using
RpcSyncRegisterForRemoteNotifications (section 3.1.4.9.1).

ppNotifyData: A pointer to a variable that receives a pointer to an

RpcPrintPropertiesCollection (section 2.2.4) instance that contains the notification data.

Return Values: This method MUST return zero or an HRESULT success value ([MS-ERREF] section

2.1) to indicate successful completion or an HRESULT error value to indicate failure.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

Parameter Validation Requirements: Upon receiving this method call, the server MUST verify that
the hRpcHandle parameter is not NULL, and that it is associated with a valid notification object
created by a call to RpcSyncRegisterForRemoteNotifications (section 3.1.4.9.1).

If parameter validation fails, the server MUST return immediately, with a failure indication in its

response to the client.

Processing and Response Requirements: If parameter validation succeeds, the server MUST

process the method call by:

 Checking whether any change notification data is available on the notification object associated
with this notification handle.

 If the change notification data is not available, waiting until the specified printer object or server
changes and notification data becomes available.

 Returning a response that contains the status of the operation.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

84 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

If the operation is successful, the server MUST process the message and compose a response to the
client as follows:

 Create an RpcPrintPropertiesCollection object as follows:

 Store the notification data requested by the client in the "RemoteNotifyData Info" key in the

RpcPrintPropertiesCollection object.

 Store the notification synchronization value in the "RemoteNotifyData Color" key in the
RpcPrintPropertiesCollection object. The latest synchronization value was sent by the client in
a prior call to RpcSyncRefreshRemoteNotifications.

 Store a value specifying the members that have changed in the "RemoteNotifyData Flags" key in
the RpcPrintPropertiesCollection object.

 Store this RpcPrintPropertiesCollection object in the ppNotifyData parameter.

 Delete the notification data associated with the notification handle that has been successfully sent.

3.1.4.10 Job Named Property Management Methods

The Job Named Property Management methods support the creation, update, deletion, and

enumeration of Job Named Properties (section 3.1.1). The following table presents a list of the Job
Named Property management methods and their counterparts in the Print System Remote Protocol
[MS-RPRN]. All methods are specified in the sections that follow.

[MS-PAR] method Description [MS-RPRN] method

RpcAsyncGetJobNamedPropertyValue (
section 3.1.4.10.1)

RpcAsyncGetJobNamedPr
opertyValue retrieves the
value of the specified Job
Named Property for the
specified print job.

Opnum: 70

RpcGetJobNamedPropertyValue (se
ction 3.1.4.12.1)

RpcAsyncSetJobNamedProperty (sectio
n 3.1.4.10.2)

RpcAsyncSetJobNamedPr
operty creates a new Job
Named Property or
changes the value of an
existent Job Named
Property for the specified
print job.

Opnum: 71

RpcSetJobNamedProperty (section
3.1.4.12.2)

RpcAsyncDeleteJobNamedProperty (se
ction 3.1.4.10.3)

RpcAsyncDeleteJobName
dProperty deletes a Job
Named Property for the
specified print job.

Opnum: 72

RpcDeleteJobNamedProperty (secti
on 3.1.4.12.3)

RpcAsyncEnumJobNamedProperties (s
ection 3.1.4.10.4)

RpcAsyncEnumJobNamed
Properties enumerates the
Job Named Properties for
the specified print job.

Opnum: 73

RpcEnumJobNamedProperties (sect
ion 3.1.4.12.4)

3.1.4.10.1 RpcAsyncGetJobNamedPropertyValue (Opnum 70)

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

85 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RpcAsyncGetJobNamedPropertyValue retrieves the current value of the specified Job Named
Property (section 3.1.1).<29>

The counterpart of this method in the Print System Remote Protocol ([MS-RPRN]) is
RpcGetJobNamedPropertyValue. All parameters not defined below are specified in [MS-RPRN] section

3.1.4.12.1.

 DWORD RpcAsyncGetJobNamedPropertyValue(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in, string] const wchar_t* pszName,
 [out] RPC_PrintPropertyValue* pValue
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol specified in [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.12.1.

3.1.4.10.2 RpcAsyncSetJobNamedProperty (Opnum 71)

RpcAsyncSetJobNamedProperty creates a new Job Named Property (section 3.1.1), or changes
the value of an existing Job Named Property for the specified print job.<30>

The counterpart of this method in the Print System Remote Protocol is RpcSetJobNamedProperty.
All parameters not defined below are specified in [MS-RPRN] section 3.1.4.12.2.

 DWORD RpcAsyncSetJobNamedProperty(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in] RPC_PrintNamedProperty* pProperty
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown

by the underlying RPC protocol specified in [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.12.2.

3.1.4.10.3 RpcAsyncDeleteJobNamedProperty (Opnum 72)

RpcAsyncDeleteJobNamedProperty deletes an existing Job Named Property (section 3.1.1) for the
specified print job.<31>

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

86 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The counterpart of this method in the Print System Remote Protocol is RpcDeleteJobNamedProperty.
All parameters not defined below are specified in [MS-RPRN] section 3.1.4.12.3.

 DWORD RpcAsyncDeleteJobNamedProperty(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in, string] const wchar_t* pszName
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol specified in [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.12.3.

3.1.4.10.4 RpcAsyncEnumJobNamedProperties (Opnum 73)

RpcAsyncEnumJobNamedProperties enumerates the Job Named Property (section 3.1.1) for the
specified print job.<32>

The counterpart of this method in the Print System Remote Protocol is
RpcEnumJobNamedProperties (section 3.1.4.12.4). All parameters not defined below are specified in
[MS-RPRN] section 3.1.4.12.4.

 DWORD RpcAsyncEnumJobNamedProperties(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [out] DWORD* pcProperties,
 [out, size_is, (*pcProperties)]
 RPC_PrintNamedProperty** ppProperties
);

hPrinter: A handle to a printer object or server object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32
error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return

value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.12.4.

3.1.4.11 Branch Office Print Remote Logging Methods

The Branch Office Print Remote Logging methods support the processing of Branch Office Print
Remote Log Entries (section 3.1.1) for a specified printer. The following table presents a list of
branch office print remote logging methods and their counterparts in the Print System Remote
Protocol [MS-RPRN]. All methods are specified in the sections that follow.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

87 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-PAR] method Description [MS-RPRN] method

RpcAsyncLogJobInfoForBranchOffice (s
ection 3.1.4.11.1)

RpcAsyncLogJobInfoForB
ranchOffice processes one
or more Branch Office
Print Remote Log Entries
by writing them to the
Microsoft-Windows-
PrintService/Admin and
Microsoft-Windows-
PrintService/Operations
event channels.

Opnum: 74

RpcLogJobInfoForBranchOffice (sec
tion 3.1.4.13.1)

3.1.4.11.1 RpcAsyncLogJobInfoForBranchOffice (Opnum 74)

RpcAsyncLogJobInfoForBranchOffice processes one or more Branch Office Print Remote Log
Entries (section 3.1.1).<33>

The counterpart of this method in the Print System Remote Protocol is RpcLogJobInfoForBranchOffice.
All parameters not defined below are specified in [MS-RPRN] section 3.1.4.13.1.

 DWORD RpcAsyncLogJobInfoForBranchOffice(
 [in] PRINTER_HANDLE hPrinter,
 [in, ref] RPC_BranchOfficeJobDataContainer* pBranchOfficeJobDataContainer
);

hPrinter: A handle to a printer object that has been opened by using either
RpcAsyncOpenPrinter (section 3.1.4.1.1) or RpcAsyncAddPrinter (section 3.1.4.1.2).

Return Values: This method MUST return zero to indicate successful completion or a nonzero Win32

error code ([MS-ERREF] section 2.2) to indicate failure. The client MUST treat any nonzero return
value as a fatal error.

Exceptions Thrown: This method MUST NOT throw any exceptions other than those that are thrown
by the underlying RPC protocol specified in [MS-RPCE].

This method MUST adhere to the parameter validation, processing, and response requirements that
are specified in [MS-RPRN] section 3.1.4.13.1.

3.1.5 Timer Events

No protocol timer events are required on the server other than the timers that are required in the
underlying RPC protocol.

3.1.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

3.2 IRemoteWinspool Client Details

3.2.1 Abstract Data Model

No abstract data model is required.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

88 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2.2 Timers

No protocol timers are required on the client—other than the timers that are required in the
underlying RPC protocol.

3.2.3 Initialization

The Print System Asynchronous Remote client MUST perform the following initialization actions:

 To call RPC methods, create an RPC binding handle ([C706] section 2.3) to the server RPC
endpoint with an impersonation type of RPC_C_IMPL_LEVEL_IMPERSONATE ([MS-RPCE]

section 2.2.1.1.9). Binding handles are either context handles that are used across multiple calls
to the server or handles that are bound to a single call to the server.

 Reuse a binding handle for multiple invocations when creating a print job, as in a call to
RpcAsyncOpenPrinter (section 3.1.4.1.1) followed by multiple calls to
RpcAsyncStartPagePrinter (section 3.1.4.8.2) and
RpcAsyncWritePrinter (section 3.1.4.8.3).

For methods that expect an RPC binding handle, the server assumes that the binding handle has been
derived from the server name parameter of the method or from the server name portion of the printer
name parameter of the method. This assumption is analogous to requirements of the same kind
expressed in [MS-RPRN] sections 2.2.1.1.7, 3.1.4.1.4, and 3.1.4.1.5. A server implementation
MAY<34> choose to support server names that are not identical to the server name used to create
the RPC binding handle and, as a result, effectively route the call to another server.

The print client SHOULD perform the following initialization actions:

 Reuse a binding handle for multiple invocations, as in a call to RpcAsyncOpenPrinter followed by
multiple calls to RpcAsyncGetPrinter (section 3.1.4.1.5),
RpcAsyncGetPrinterData (section 3.1.4.1.6), or RpcAsyncSetPrinter (section 3.1.4.1.4).
However, for name-based calls, the client SHOULD create a separate binding handle for each
method invocation.

The print client MUST perform the following actions for all method calls:

 Specify the object UUID 9940CA8E-512F-4C58-88A9-61098D6896BD.

 Ensure that the call occurs with causal ordering ([MS-RPCE] section 3.1.1.4.1).

 Either reuse an existing authenticated RPC binding handle in the cases described above, or create
an authenticated RPC binding handle using the SPNEGO security provider ([MS-SPNG]) and packet
authentication ([MS-RPCE] section 2.2.1.1.8), as specified in section 2.1.<35>

3.2.4 Message Processing Events and Sequencing Rules

The Print System Asynchronous Remote Protocol MUST indicate the following to the RPC runtime
([MS-RPCE] section 3):

 That it is to perform a strict NDR data consistency check at target level 6.0.

 That it is to reject a NULL unique or full pointer with nonzero conformant value.

The client SHOULD NOT make any decisions based on the errors that are returned from the RPC

server, but SHOULD notify the application invoker of the error received in the higher layer. Otherwise,
no special message processing is required on the client except for what is required in the underlying
RPC protocol.<36>

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-SPNG%5d.pdf#Section_f377a379c24f4a0fa3eb0d835389e28a
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

89 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2.5 Timer Events

No protocol timer events are required on the client other than the timers that are required in the
underlying RPC protocol.

3.2.6 Other Local Events

No local events are maintained on the client other than the events that are maintained in the
underlying RPC protocol.

90 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4 Protocol Examples

Examples 4.1 through 4.4 are functionally equivalent to examples 4.1 through 4.4 in [MS-RPRN],
respectively, and therefore are not duplicated here in detail. Only the sequence diagrams with
substituted method names are contained here.

Example 4.5 is different, and details are contained in this document.

4.1 Adding a Printer to a Server

A client adds a printer to a server by following the steps shown below, which are described in [MS-
RPRN] section 4.1; and by applying the parameter substitutions that are specified in [MS-RPRN]
section 3.1.4.1.

Figure 5: Adding a printer to a server

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

91 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.2 Adding a Printer Driver to a Server

A client adds a printer driver to a server by following the steps shown below, which are described in
[MS-RPRN] section 4.2; and by applying the parameter substitutions that are specified in [MS-RPRN]

section 3.1.4.1.

Figure 6: Adding a printer driver to a server

4.3 Enumerating Printers on a Server

A client enumerates printers on a server by following the steps shown below, which are described in
[MS-RPRN] section 4.3; and by applying the parameter substitutions that are specified in [MS-RPRN]
section 3.1.4.1.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

92 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 7: Enumerating printers on a server and accessing information about one of them

4.4 Enumerating Print Jobs on a Server

The client enumerates print jobs on a server by following the steps shown below, which are described
in [MS-RPRN] section 4.4; and by applying the parameter substitutions that are specified in [MS-

RPRN] section 3.1.4.1.

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

93 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 8: Enumerating jobs on a server and modifying one of them

4.5 Receiving Notifications from a Server

A client ("TESTCLT") receives notifications from a server ("CORPSERV") about changes in the states of
printers, print servers, and print jobs by following these steps:

1. The client opens the print server or printer using RpcAsyncOpenPrinter.

 RpcAsyncOpenPrinter(L"\\\\CORPSERV\\My Printer", &hPrinter, L"RAW", &devmodeContainer,
PRINTER_ACCESS_USE);

The server allocates the printer handle, writes it to hPrinter, and returns 0 (success).

2. The client registers for change notifications using RpcSyncRegisterForRemoteNotifications

and specifies the type of notifications the client is interested in.

 The client allocates and initializes an RpcPrintPropertiesCollection structure as follows:

 RpcPrintPropertiesCollection notifyFilter;
 RpcPrintNamedProperty property[4];

 WORD notifyFieldsJob[] = { 0x000A /*JOB_NOTIFY_FIELD_STATUS*/, 0x000D
/*JOB_NOTIFY_FIELD_DOCUMENT*/ };

 RPC_V2_NOTIFY_OPTIONS_TYPE notifyTypes[1] = {{1 /*JOB_NOTIFY_TYPE*/, 0, 0, 0, 2,
notifyFieldsJob }};

 RPC_V2_NOTIFY_OPTIONS notifyOptions = {0x00000002,0x00000000,1,notifyTypes};

94 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 notifyFilter.numberOfProperties = 4;
 notifyFilter.propertiesCollection = property;

 property[0].propertyName = L"RemoteNotifyFilter Flags";
 property[0].propertyValue.ePropertyType = kPropertyTypeInt32;
 property[0].propertyValue.propertyInt32 = 0x00000100; /* PRINTER_CHANGE_ADD_JOB */

 property[1].propertyName = L"RemoteNotifyFilter Options";
 property[1].propertyValue.ePropertyType = kPropertyTypeInt32;
 property[1].propertyValue.propertyInt32 = 0;

 property[2].propertyName = L"RemoteNotifyFilter NotifyOptions";
 property[2].propertyValue.ePropertyType = kPropertyTypeNotificationOptions;
 property[2].propertyValue.propertyOptionsContainer.pOptions = ¬ifyOptions;

 property[3].propertyName = L"RemoteNotifyFilter Color";
 property[3].propertyValue.ePropertyType = kPropertyTypeInt32;
 property[3].propertyValue.propertyInt32 = 1; /* Pass a unique, monotonically incremented
value so that later on we can understand order of notifications */

 The client registers for change notifications.

 RpcSyncRegisterForRemoteNotifications(hPrinter, ¬ifyFilter, &hNotifyHandle);

 The server creates a notification context to keep track of the filter settings, writes the handle
to hNotifyHandle, and returns 0 (success).

3. To receive state change notifications, the client calls the server's
RpcAsyncGetRemoteNotifications method. That method call will not return until there is a new
state change notification.

 Client registers for state change notifications.

 RpcPrintPropertiesCollection *pNotifyData = NULL;
 RpcAsyncGetRemoteNotifications(hNotifyHandle, &pNotifyData);

 The server responds when a change occurs that matches a filter condition that was specified
by the client when the client registered for notifications.

 The server allocates and initializes an RpcPrintPropertiesCollection, returns the address in
pNotifyData, and returns 0 (success).

 The server initializes pNotifyData as follows (note that memory allocations are not spelled
out in this example):

 notifyFilter.numberOfProperties = 3;
 notifyFilter.propertiesCollection = property;

 RPC_V2_NOTIFY_INFO notifyInfo; /* Note: Pseudo-code only, assumes sufficient
 memory has been allocated for aData[] array at end of structure */
 notifyInfo.Version = 2;
 notifyInfo.Flags = 0;
 notifyInfo.Count = 1;
 notifyInfo.aData[0].Type = 1; /* JOB_NOTIFY_TYPE */
 notifyInfo.aData[0].Field = 0xD; /* JOB_NOTIFY_FIELD_DOCUMENT */
 notifyInfo.aData[0].String.pszString = L"My Test Print Job Name";
 notifyInfo.aData[0].Id = 12; /* This is print job with ID 12 */

95 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 property[0].propertyName = L"RemoteNotifyData Flags";
 property[0].propertyValue.ePropertyType = kPropertyTypeInt32;
 property[0].propertyValue.propertyInt32 = 0x00000100; /* PRINTER_CHANGE_ADD_JOB */

 property[1].propertyName = L"RemoteNotifyData Info";
 property[1].propertyValue.ePropertyType = kPropertyTypeNotificationReply;
 property[1].propertyValue.propertyOptionsReplyContainer.pInfo = ¬ifyInfo;

 property[2].propertyName = L"RemoteNotifyData Color";
 property[2].propertyValue.ePropertyType = kPropertyTypeInt32;
 property[2].propertyValue.propertyInt32 = 1; /* Passes back the value passed in by the
client */

 The client inspects pNotifyData and notifies any applications of the state change.

 The client repeats as necessary for the implementation; for example, until shutdown or the

user specifies a different printer.

4. If the server sets the PRINTER_NOTIFY_INFO_DISCARDED flag in the data returned from
RpcAsyncGetRemoteNotifications, the client calls RpcSyncRefreshRemoteNotifications to
obtain updated state information.

 The client allocates and initializes an RpcPrintPropertiesCollection notifyFilter structure.
This can be identical to the filter used in initial registration, or it can specify different settings.
The client increases the value of the "RemoteNotifyFilter Color" property.

 The client calls RpcSyncRefreshRemoteNotifications to get updated state information.

 RpcSyncRefreshRemoteNotification(hNotifyHandle, ¬ifyFilter, &pNotifyData);

 The server prepares notification data as it would from RpcAsyncGetRemoteNotifications,
returns the data, and returns 0 (success).

5. To stop receiving state notifications, the client cancels any outstanding
RpcAsyncGetRemoteNotifications calls and then unregisters from change notifications by
calling RpcSyncUnRegisterForRemoteNotifications with the handle previously obtained from
RpcSyncRegisterForRemoteNotifications.

 The client cancels outstanding RpcAsyncGetRemoteNotifications calls on hNotifyHandle
using the RPC-provided cancel call method.

 The client unregisters from change notifications on hNotifyHandle.

 RpcSyncUnregisterForRemoteNotifications(&hNotifyHandle);

 The server frees the notification context, writes NULL to hNotifyHandle, and returns 0
(success).

6. The client closes the printer or print server handle by calling RpcAsyncClosePrinter.

 RpcAsyncClosePrinter(&hPrinter);

96 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The server frees the memory associated with the print queue handle, sets hPrinter to NULL, and
returns 0 (success).

Figure 9: Receiving notifications from a server

97 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5 Security Considerations

Security considerations for both authenticated and unauthenticated RPC are specified in [C706]
sections 2 and 13.

A Print System Asynchronous Remote Protocol client can failover to unauthenticated RPC by using
the [MS-RPRN] protocol when authenticated RPC fails for backward compatibility.<37>
Unauthenticated RPC is not as secure as authenticated RPC; the client either audits or supports this
automatic failover only when it is explicitly specified.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

98 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

6 Appendix A: Full IDL

For ease of implementation the full IDL for the IRemoteWinspool interface (section 3.1.4) is
provided below. The syntax uses IDL syntax extensions defined in [MS-RPCE]. Some of the data types
and structures used by this interface are defined in other specifications, including [MS-DTYP] and [MS-
RPRN].

 // [MS-PAR] interface
 [
 uuid(76F03F96-CDFD-44fc-A22C-64950A001209),
 version(1.0),
 #ifdef __midl
 ms_union,
 #endif // __midl
 pointer_default(unique)
]
 interface IRemoteWinspool {

 import "ms-dtyp.idl";

 #if __midl < 700
 #define disable_consistency_check
 #endif

 // [MS-RPRN] common constants
 #define TABLE_DWORD 0x1
 #define TABLE_STRING 0x2
 #define TABLE_DEVMODE 0x3
 #define TABLE_TIME 0x4
 #define TABLE_SECURITYDESCRIPTOR 0x5

 #define SPLFILE_CONTENT_TYPE_PROP_NAME L"Spool File Contents"

 // [MS-RPRN] common enumerations
 typedef enum {
 BIDI_NULL = 0,
 BIDI_INT = 1,
 BIDI_FLOAT = 2,
 BIDI_BOOL = 3,
 BIDI_STRING = 4,
 BIDI_TEXT = 5,
 BIDI_ENUM = 6,
 BIDI_BLOB = 7
 } BIDI_TYPE;

 typedef enum {
 kRpcPropertyTypeString = 1,
 kRpcPropertyTypeInt32,
 kRpcPropertyTypeInt64,
 kRpcPropertyTypeByte,
 kRpcPropertyTypeBuffer
 } RPC_EPrintPropertyType;

 typedef enum {
 kInvalidJobState = 0,
 kLogJobPrinted,
 kLogJobRendered,
 kLogJobError,
 kLogJobPipelineError,
 kLogOfflineFileFull
 } EBranchOfficeJobEventType;

 // [MS-RPRN] common data types
 typedef unsigned short LANGID;
 typedef [context_handle] void* GDI_HANDLE;
 typedef [context_handle] void* PRINTER_HANDLE;
 typedef [handle] wchar_t* STRING_HANDLE;

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1

99 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 // [MS-RPRN] common utility structures
 typedef struct {
 long cx;
 long cy;
 } SIZE;

 typedef struct {
 long left;
 long top;
 long right;
 long bottom;
 } RECTL;

 // [MS-RPRN] common device state structure
 typedef struct _devicemode {
 wchar_t dmDeviceName[32];

 unsigned short dmSpecVersion;
 unsigned short dmDriverVersion;
 unsigned short dmSize;
 unsigned short dmDriverExtra;

 DWORD dmFields;

 short dmOrientation;
 short dmPaperSize;
 short dmPaperLength;
 short dmPaperWidth;
 short dmScale;
 short dmCopies;
 short dmDefaultSource;
 short dmPrintQuality;
 short dmColor;
 short dmDuplex;
 short dmYResolution;
 short dmTTOption;
 short dmCollate;

 wchar_t dmFormName[32];

 unsigned short reserved0;

 DWORD reserved1;
 DWORD reserved2;
 DWORD reserved3;
 DWORD dmNup;
 DWORD reserved4;
 DWORD dmICMMethod;
 DWORD dmICMIntent;
 DWORD dmMediaType;
 DWORD dmDitherType;
 DWORD reserved5;
 DWORD reserved6;
 DWORD reserved7;
 DWORD reserved8;
 } DEVMODE;

 // [MS-RPRN] common info structures
 typedef struct _DOC_INFO_1 {
 [string] wchar_t* pDocName;
 [string] wchar_t* pOutputFile;
 [string] wchar_t* pDatatype;
 } DOC_INFO_1;

 typedef struct _DRIVER_INFO_1 {
 [string] wchar_t* pName;
 } DRIVER_INFO_1;

100 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct _DRIVER_INFO_2 {
 DWORD cVersion;
 [string] wchar_t* pName;
 [string] wchar_t* pEnvironment;
 [string] wchar_t* pDriverPath;
 [string] wchar_t* pDataFile;
 [string] wchar_t* pConfigFile;
 } DRIVER_INFO_2;

 typedef struct _RPC_DRIVER_INFO_3 {
 DWORD cVersion;
 [string] wchar_t* pName;
 [string] wchar_t* pEnvironment;
 [string] wchar_t* pDriverPath;
 [string] wchar_t* pDataFile;
 [string] wchar_t* pConfigFile;
 [string] wchar_t* pHelpFile;
 [string] wchar_t* pMonitorName;
 [string] wchar_t* pDefaultDataType;
 DWORD cchDependentFiles;
 [size_is(cchDependentFiles), unique]
 wchar_t* pDependentFiles;
 } RPC_DRIVER_INFO_3;

 typedef struct _RPC_DRIVER_INFO_4 {
 DWORD cVersion;
 [string] wchar_t* pName;
 [string] wchar_t* pEnvironment;
 [string] wchar_t* pDriverPath;
 [string] wchar_t* pDataFile;
 [string] wchar_t* pConfigFile;
 [string] wchar_t* pHelpFile;
 [string] wchar_t* pMonitorName;
 [string] wchar_t* pDefaultDataType;
 DWORD cchDependentFiles;
 [size_is(cchDependentFiles), unique]
 wchar_t* pDependentFiles;
 DWORD cchPreviousNames;
 [size_is(cchPreviousNames), unique]
 wchar_t* pszzPreviousNames;
 } RPC_DRIVER_INFO_4;

 typedef struct _RPC_DRIVER_INFO_6 {
 DWORD cVersion;
 [string] wchar_t* pName;
 [string] wchar_t* pEnvironment;
 [string] wchar_t* pDriverPath;
 [string] wchar_t* pDataFile;
 [string] wchar_t* pConfigFile;
 [string] wchar_t* pHelpFile;
 [string] wchar_t* pMonitorName;
 [string] wchar_t* pDefaultDataType;
 DWORD cchDependentFiles;
 [size_is(cchDependentFiles), unique]
 wchar_t* pDependentFiles;
 DWORD cchPreviousNames;
 [size_is(cchPreviousNames), unique]
 wchar_t* pszzPreviousNames;
 FILETIME ftDriverDate;
 DWORDLONG dwlDriverVersion;
 [string] wchar_t* pMfgName;
 [string] wchar_t* pOEMUrl;
 [string] wchar_t* pHardwareID;
 [string] wchar_t* pProvider;
 } RPC_DRIVER_INFO_6;

 typedef struct _RPC_DRIVER_INFO_8 {
 DWORD cVersion;
 [string] wchar_t* pName;

101 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [string] wchar_t* pEnvironment;
 [string] wchar_t* pDriverPath;
 [string] wchar_t* pDataFile;
 [string] wchar_t* pConfigFile;
 [string] wchar_t* pHelpFile;
 [string] wchar_t* pMonitorName;
 [string] wchar_t* pDefaultDataType;
 DWORD cchDependentFiles;
 [size_is(cchDependentFiles), unique]
 wchar_t* pDependentFiles;
 DWORD cchPreviousNames;
 [size_is(cchPreviousNames), unique]
 wchar_t* pszzPreviousNames;
 FILETIME ftDriverDate;
 DWORDLONG dwlDriverVersion;
 [string] wchar_t* pMfgName;
 [string] wchar_t* pOEMUrl;
 [string] wchar_t* pHardwareID;
 [string] wchar_t* pProvider;
 [string] wchar_t* pPrintProcessor;
 [string] wchar_t* pVendorSetup;
 DWORD cchColorProfiles;
 [size_is(cchColorProfiles), unique]
 wchar_t* pszzColorProfiles;
 [string] wchar_t* pInfPath;
 DWORD dwPrinterDriverAttributes;
 DWORD cchCoreDependencies;
 [size_is(cchCoreDependencies), unique]
 wchar_t* pszzCoreDriverDependencies;
 FILETIME ftMinInboxDriverVerDate;
 DWORDLONG dwlMinInboxDriverVerVersion;
 } RPC_DRIVER_INFO_8;

 typedef struct _FORM_INFO_1 {
 DWORD Flags;
 [string] wchar_t* pName;
 SIZE Size;
 RECTL ImageableArea;
 } FORM_INFO_1;

 typedef struct _RPC_FORM_INFO_2 {
 DWORD Flags;
 [string, unique] const wchar_t* pName;
 SIZE Size;
 RECTL ImageableArea;
 [string, unique] const char* pKeyword;
 DWORD StringType;
 [string, unique] const wchar_t* pMuiDll;
 DWORD dwResourceId;
 [string, unique] const wchar_t* pDisplayName;
 LANGID wLangID;
 } RPC_FORM_INFO_2;

 typedef struct _JOB_INFO_1 {
 DWORD JobId;
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pMachineName;
 [string] wchar_t* pUserName;
 [string] wchar_t* pDocument;
 [string] wchar_t* pDatatype;
 [string] wchar_t* pStatus;
 DWORD Status;
 DWORD Priority;
 DWORD Position;
 DWORD TotalPages;
 DWORD PagesPrinted;
 SYSTEMTIME Submitted;
 } JOB_INFO_1;

102 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct _JOB_INFO_2 {
 DWORD JobId;
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pMachineName;
 [string] wchar_t* pUserName;
 [string] wchar_t* pDocument;
 [string] wchar_t* pNotifyName;
 [string] wchar_t* pDatatype;
 [string] wchar_t* pPrintProcessor;
 [string] wchar_t* pParameters;
 [string] wchar_t* pDriverName;
 DEVMODE* pDevMode;
 [string] wchar_t* pStatus;
 SECURITY_DESCRIPTOR* pSecurityDescriptor;
 DWORD Status;
 DWORD Priority;
 DWORD Position;
 DWORD StartTime;
 DWORD UntilTime;
 DWORD TotalPages;
 DWORD Size;
 SYSTEMTIME Submitted;
 DWORD Time;
 DWORD PagesPrinted;
 } JOB_INFO_2;

 typedef struct _JOB_INFO_3 {
 DWORD JobId;
 DWORD NextJobId;
 DWORD Reserved;
 } JOB_INFO_3;

 typedef struct _JOB_INFO_4 {
 DWORD JobId;
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pMachineName;
 [string] wchar_t* pUserName;
 [string] wchar_t* pDocument;
 [string] wchar_t* pNotifyName;
 [string] wchar_t* pDatatype;
 [string] wchar_t* pPrintProcessor;
 [string] wchar_t* pParameters;
 [string] wchar_t* pDriverName;
 DEVMODE* pDevMode;
 [string] wchar_t* pStatus;
 SECURITY_DESCRIPTOR* pSecurityDescriptor;
 DWORD Status;
 DWORD Priority;
 DWORD Position;
 DWORD StartTime;
 DWORD UntilTime;
 DWORD TotalPages;
 DWORD Size;
 SYSTEMTIME Submitted;
 DWORD Time;
 DWORD PagesPrinted;
 long SizeHigh;
 } JOB_INFO_4;

 typedef struct _MONITOR_INFO_1 {
 [string] wchar_t* pName;
 } MONITOR_INFO_1;

 typedef struct _MONITOR_INFO_2 {
 [string] wchar_t* pName;
 [string] wchar_t* pEnvironment;
 [string] wchar_t* pDLLName;
 } MONITOR_INFO_2;

103 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct _PORT_INFO_1 {
 [string] wchar_t* pPortName;
 } PORT_INFO_1;

 typedef struct _PORT_INFO_2 {
 [string] wchar_t* pPortName;
 [string] wchar_t* pMonitorName;
 [string] wchar_t* pDescription;
 DWORD fPortType;
 DWORD Reserved;
 } PORT_INFO_2;

 typedef struct _PORT_INFO_3 {
 DWORD dwStatus;
 [string] wchar_t* pszStatus;
 DWORD dwSeverity;
 } PORT_INFO_3;

 typedef struct _PORT_INFO_FF {
 [string] wchar_t* pPortName;
 DWORD cbMonitorData;
 BYTE* pMonitorData;
 } PORT_INFO_FF;

 typedef struct _PRINTER_INFO_STRESS {
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pServerName;
 DWORD cJobs;
 DWORD cTotalJobs;
 DWORD cTotalBytes;
 SYSTEMTIME stUpTime;
 DWORD MaxcRef;
 DWORD cTotalPagesPrinted;
 DWORD dwGetVersion;
 DWORD fFreeBuild;
 DWORD cSpooling;
 DWORD cMaxSpooling;
 DWORD cRef;
 DWORD cErrorOutOfPaper;
 DWORD cErrorNotReady;
 DWORD cJobError;
 DWORD dwNumberOfProcessors;
 DWORD dwProcessorType;
 DWORD dwHighPartTotalBytes;
 DWORD cChangeID;
 DWORD dwLastError;
 DWORD Status;
 DWORD cEnumerateNetworkPrinters;
 DWORD cAddNetPrinters;
 unsigned short wProcessorArchitecture;
 unsigned short wProcessorLevel;
 DWORD cRefIC;
 DWORD dwReserved2;
 DWORD dwReserved3;
 } PRINTER_INFO_STRESS;

 typedef struct _PRINTER_INFO_1 {
 DWORD Flags;
 [string] wchar_t* pDescription;
 [string] wchar_t* pName;
 [string] wchar_t* pComment;
 } PRINTER_INFO_1;

 typedef struct _PRINTER_INFO_2 {
 [string] wchar_t* pServerName;
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pShareName;
 [string] wchar_t* pPortName;
 [string] wchar_t* pDriverName;

104 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [string] wchar_t* pComment;
 [string] wchar_t* pLocation;
 DEVMODE* pDevMode;
 [string] wchar_t* pSepFile;
 [string] wchar_t* pPrintProcessor;
 [string] wchar_t* pDatatype;
 [string] wchar_t* pParameters;
 SECURITY_DESCRIPTOR* pSecurityDescriptor;
 DWORD Attributes;
 DWORD Priority;
 DWORD DefaultPriority;
 DWORD StartTime;
 DWORD UntilTime;
 DWORD Status;
 DWORD cJobs;
 DWORD AveragePPM;
 } PRINTER_INFO_2;

 typedef struct _PRINTER_INFO_3 {
 SECURITY_DESCRIPTOR* pSecurityDescriptor;
 } PRINTER_INFO_3;

 typedef struct _PRINTER_INFO_4 {
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pServerName;
 DWORD Attributes;
 } PRINTER_INFO_4;

 typedef struct _PRINTER_INFO_5 {
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pPortName;
 DWORD Attributes;
 DWORD DeviceNotSelectedTimeout;
 DWORD TransmissionRetryTimeout;
 } PRINTER_INFO_5;

 typedef struct _PRINTER_INFO_6 {
 DWORD dwStatus;
 } PRINTER_INFO_6;

 typedef struct _PRINTER_INFO_7 {
 [string] wchar_t* pszObjectGUID;
 DWORD dwAction;
 } PRINTER_INFO_7;

 typedef struct _PRINTER_INFO_8 {
 DEVMODE* pDevMode;
 } PRINTER_INFO_8;

 typedef struct _PRINTER_INFO_9 {
 DEVMODE* pDevMode;
 } PRINTER_INFO_9;

 typedef struct _SPLCLIENT_INFO_1 {
 DWORD dwSize;
 [string] wchar_t* pMachineName;
 [string] wchar_t* pUserName;
 DWORD dwBuildNum;
 DWORD dwMajorVersion;
 DWORD dwMinorVersion;
 unsigned short wProcessorArchitecture;
 } SPLCLIENT_INFO_1;

 typedef struct _SPLCLIENT_INFO_2 {
 LONG_PTR notUsed;
 } SPLCLIENT_INFO_2;

 typedef struct _SPLCLIENT_INFO_3 {
 unsigned int cbSize;

105 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD dwFlags;
 DWORD dwSize;
 [string] wchar_t* pMachineName;
 [string] wchar_t* pUserName;
 DWORD dwBuildNum;
 DWORD dwMajorVersion;
 DWORD dwMinorVersion;
 unsigned short wProcessorArchitecture;
 unsigned __int64 hSplPrinter;
 } SPLCLIENT_INFO_3;

 // [MS-RPRN] common info container structures
 typedef struct _DEVMODE_CONTAINER {
 DWORD cbBuf;
 [size_is(cbBuf), unique] BYTE* pDevMode;
 } DEVMODE_CONTAINER;

 typedef struct _DOC_INFO_CONTAINER {
 DWORD Level;
 [switch_is(Level)] union {
 [case(1)]
 DOC_INFO_1* pDocInfo1;
 } DocInfo;
 } DOC_INFO_CONTAINER;

 typedef struct _DRIVER_CONTAINER {
 DWORD Level;
 [switch_is(Level)] union {
 [case(1)]
 DRIVER_INFO_1* Level1;
 [case(2)]
 DRIVER_INFO_2* Level2;
 [case(3)]
 RPC_DRIVER_INFO_3* Level3;
 [case(4)]
 RPC_DRIVER_INFO_4* Level4;
 [case(6)]
 RPC_DRIVER_INFO_6* Level6;
 [case(8)]
 RPC_DRIVER_INFO_8* Level8;
 } DriverInfo;
 } DRIVER_CONTAINER;

 typedef struct _FORM_CONTAINER {
 DWORD Level;
 [switch_is(Level)] union {
 [case(1)]
 FORM_INFO_1* pFormInfo1;
 [case(2)]
 RPC_FORM_INFO_2* pFormInfo2;
 } FormInfo;
 } FORM_CONTAINER;

 typedef struct _JOB_CONTAINER {
 DWORD Level;
 [switch_is(Level)] union {
 [case(1)]
 JOB_INFO_1* Level1;
 [case(2)]
 JOB_INFO_2* Level2;
 [case(3)]
 JOB_INFO_3* Level3;
 [case(4)]
 JOB_INFO_4* Level4;
 } JobInfo;
 } JOB_CONTAINER;

 typedef struct _MONITOR_CONTAINER {
 DWORD Level;

106 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [switch_is(Level)] union {
 [case(1)]
 MONITOR_INFO_1* pMonitorInfo1;
 [case(2)]
 MONITOR_INFO_2* pMonitorInfo2;
 } MonitorInfo;
 } MONITOR_CONTAINER;

 typedef struct _PORT_CONTAINER {
 DWORD Level;
 [switch_is(0x00FFFFFF & Level)]
 union {
 [case(1)]
 PORT_INFO_1* pPortInfo1;
 [case(2)]
 PORT_INFO_2* pPortInfo2;
 [case(3)]
 PORT_INFO_3* pPortInfo3;
 [case(0x00FFFFFF)]
 PORT_INFO_FF* pPortInfoFF;
 } PortInfo;
 } PORT_CONTAINER;

 typedef struct _PORT_VAR_CONTAINER {
 DWORD cbMonitorData;
 [size_is(cbMonitorData), unique, disable_consistency_check]
 BYTE* pMonitorData;
 } PORT_VAR_CONTAINER;

 typedef struct _PRINTER_CONTAINER {
 DWORD Level;
 [switch_is(Level)] union {
 [case(0)]
 PRINTER_INFO_STRESS* pPrinterInfoStress;
 [case(1)]
 PRINTER_INFO_1* pPrinterInfo1;
 [case(2)]
 PRINTER_INFO_2* pPrinterInfo2;
 [case(3)]
 PRINTER_INFO_3* pPrinterInfo3;
 [case(4)]
 PRINTER_INFO_4* pPrinterInfo4;
 [case(5)]
 PRINTER_INFO_5* pPrinterInfo5;
 [case(6)]
 PRINTER_INFO_6* pPrinterInfo6;
 [case(7)]
 PRINTER_INFO_7* pPrinterInfo7;
 [case(8)]
 PRINTER_INFO_8* pPrinterInfo8;
 [case(9)]
 PRINTER_INFO_9* pPrinterInfo9;
 } PrinterInfo;
 } PRINTER_CONTAINER;

 typedef struct _RPC_BINARY_CONTAINER {
 DWORD cbBuf;
 [size_is(cbBuf), unique] BYTE* pszString;
 } RPC_BINARY_CONTAINER;

 typedef struct _RPC_BIDI_DATA {
 DWORD dwBidiType;
 [switch_is(dwBidiType)] union {
 [case(BIDI_NULL, BIDI_BOOL)]
 int bData;
 [case(BIDI_INT)]
 long iData;
 [case(BIDI_STRING, BIDI_TEXT, BIDI_ENUM)]
 [string,unique] wchar_t* sData;

107 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [case(BIDI_FLOAT)]
 float fData;
 [case(BIDI_BLOB)]
 RPC_BINARY_CONTAINER biData;
 } u;
 } RPC_BIDI_DATA;

 typedef struct _RPC_BIDI_REQUEST_DATA {
 DWORD dwReqNumber;
 [string, unique] wchar_t* pSchema;
 RPC_BIDI_DATA data;
 } RPC_BIDI_REQUEST_DATA;

 typedef struct _RPC_BIDI_RESPONSE_DATA {
 DWORD dwResult;
 DWORD dwReqNumber;
 [string, unique] wchar_t* pSchema;
 RPC_BIDI_DATA data;
 } RPC_BIDI_RESPONSE_DATA;

 typedef struct _RPC_BIDI_REQUEST_CONTAINER {
 DWORD Version;
 DWORD Flags;
 DWORD Count;
 [size_is(Count), unique] RPC_BIDI_REQUEST_DATA aData[];
 } RPC_BIDI_REQUEST_CONTAINER;

 typedef struct _RPC_BIDI_RESPONSE_CONTAINER {
 DWORD Version;
 DWORD Flags;
 DWORD Count;
 [size_is(Count), unique] RPC_BIDI_RESPONSE_DATA aData[];
 } RPC_BIDI_RESPONSE_CONTAINER;

 typedef struct SECURITY_CONTAINER {
 DWORD cbBuf;
 [size_is(cbBuf), unique] BYTE* pSecurity;
 } SECURITY_CONTAINER;

 typedef struct _SPLCLIENT_CONTAINER {
 DWORD Level;
 [switch_is(Level)] union {
 [case(1)]
 SPLCLIENT_INFO_1* pClientInfo1;
 [case(2)]
 SPLCLIENT_INFO_2* pNotUsed;
 [case(3)]
 SPLCLIENT_INFO_3* pClientInfo3;
 } ClientInfo;
 } SPLCLIENT_CONTAINER;

 typedef struct _STRING_CONTAINER {
 DWORD cbBuf;
 [size_is(cbBuf/2), unique] WCHAR* pszString;
 } STRING_CONTAINER;

 typedef struct _SYSTEMTIME_CONTAINER {
 DWORD cbBuf;
 SYSTEMTIME* pSystemTime;
 } SYSTEMTIME_CONTAINER;

 typedef struct _RPC_V2_NOTIFY_OPTIONS_TYPE {
 unsigned short Type;
 unsigned short Reserved0;
 DWORD Reserved1;
 DWORD Reserved2;
 DWORD Count;
 [size_is(Count), unique] unsigned short* pFields;
 } RPC_V2_NOTIFY_OPTIONS_TYPE;

108 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct _RPC_V2_NOTIFY_OPTIONS {
 DWORD Version;
 DWORD Reserved;
 DWORD Count;
 [size_is(Count), unique] RPC_V2_NOTIFY_OPTIONS_TYPE* pTypes;
 } RPC_V2_NOTIFY_OPTIONS;

 typedef
 [switch_type (DWORD)]
 union _RPC_V2_NOTIFY_INFO_DATA_DATA {
 [case(TABLE_STRING)]
 STRING_CONTAINER String;
 [case(TABLE_DWORD)]
 DWORD dwData[2];
 [case(TABLE_TIME)]
 SYSTEMTIME_CONTAINER SystemTime;
 [case(TABLE_DEVMODE)]
 DEVMODE_CONTAINER DevMode;
 [case(TABLE_SECURITYDESCRIPTOR)]
 SECURITY_CONTAINER SecurityDescriptor;
 } RPC_V2_NOTIFY_INFO_DATA_DATA;

 typedef struct _RPC_V2_NOTIFY_INFO_DATA {
 unsigned short Type;
 unsigned short Field;
 DWORD Reserved;
 DWORD Id;
 [switch_is(Reserved & 0xffff)]
 RPC_V2_NOTIFY_INFO_DATA_DATA Data;
 } RPC_V2_NOTIFY_INFO_DATA;

 typedef struct _RPC_V2_NOTIFY_INFO {
 DWORD Version;
 DWORD Flags;
 DWORD Count;
 [size_is(Count), unique] RPC_V2_NOTIFY_INFO_DATA aData[];
 } RPC_V2_NOTIFY_INFO;

 typedef [switch_type(DWORD)] union _RPC_V2_UREPLY_PRINTER {
 [case (0)]
 RPC_V2_NOTIFY_INFO* pInfo;
 } RPC_V2_UREPLY_PRINTER;

 typedef struct {
 DWORD Status;
 [string] wchar_t* pDocumentName;
 [string] wchar_t* pUserName;
 [string] wchar_t* pMachineName;
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pPortName;
 LONGLONG Size;
 DWORD TotalPages;
 } RPC_BranchOfficeJobDataPrinted;

 typedef struct {
 LONGLONG Size;
 DWORD ICMMethod;
 short Color;
 short PrintQuality;
 short YResolution;
 short Copies;
 short TTOption;
 } RPC_BranchOfficeJobDataRendered;

 typedef struct {
 DWORD LastError;
 [string] wchar_t* pDocumentName;
 [string] wchar_t* pUserName;

109 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [string] wchar_t* pPrinterName;
 [string] wchar_t* pDataType;
 LONGLONG TotalSize;
 LONGLONG PrintedSize;
 DWORD TotalPages;
 DWORD PrintedPages;
 [string] wchar_t* pMachineName;
 [string] wchar_t* pJobError;
 [string] wchar_t* pErrorDescription;
 } RPC_BranchOfficeJobDataError;

 typedef struct {
 [string] wchar_t* pDocumentName;
 [string] wchar_t* pPrinterName;
 [string] wchar_t* pExtraErrorInfo;
 } RPC_BranchOfficeJobDataPipelineFailed;

 typedef struct {
 [string] wchar_t* pMachineName;
 } RPC_BranchOfficeLogOfflineFileFull;

 typedef struct {
 EBranchOfficeJobEventType eEventType;
 DWORD JobId;

 [switch_type(EBranchOfficeJobEventType), switch_is(eEventType)]
 union {
 [case(kLogJobPrinted)]
 RPC_BranchOfficeJobDataPrinted LogJobPrinted;
 [case(kLogJobRendered)]
 RPC_BranchOfficeJobDataRendered LogJobRendered;
 [case(kLogJobError)]
 RPC_BranchOfficeJobDataError LogJobError;
 [case(kLogJobPipelineError)]
 RPC_BranchOfficeJobDataPipelineFailed LogPipelineFailed;
 [case(kLogOfflineFileFull)]
 RPC_BranchOfficeLogOfflineFileFull LogOfflineFileFull;
 } JobInfo;
 } RPC_BranchOfficeJobData;

 typedef struct {
 DWORD cJobDataEntries;
 [size_is(cJobDataEntries), unique] RPC_BranchOfficeJobData JobData[];
 } RPC_BranchOfficeJobDataContainer;

 // [MS-PAR] enumerations
 typedef enum {
 kPropertyTypeString = 1,
 kPropertyTypeInt32,
 kPropertyTypeInt64,
 kPropertyTypeByte,
 kPropertyTypeTime,
 kPropertyTypeDevMode,
 kPropertyTypeSD,
 kPropertyTypeNotificationReply,
 kPropertyTypeNotificationOptions,
 } EPrintPropertyType;

 // [MS-PAR] data types
 typedef [context_handle] void *RMTNTFY_HANDLE;

 // [MS-PAR] structures
 typedef struct _NOTIFY_REPLY_CONTAINER {
 RPC_V2_NOTIFY_INFO* pInfo;
 } NOTIFY_REPLY_CONTAINER;

 typedef struct _NOTIFY_OPTIONS_CONTAINER {
 RPC_V2_NOTIFY_OPTIONS* pOptions;
 } NOTIFY_OPTIONS_CONTAINER;

110 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct {
 EPrintPropertyType ePropertyType;

 [switch_type(EPrintPropertyType), switch_is(ePropertyType)]
 union {
 [case(kPropertyTypeString)]
 [string] wchar_t* propertyString;
 [case(kPropertyTypeInt32)]
 long propertyInt32;
 [case(kPropertyTypeInt64)]
 __int64 propertyInt64;
 [case(kPropertyTypeByte)]
 BYTE propertyByte;
 [case(kPropertyTypeTime)]
 SYSTEMTIME_CONTAINER propertyTimeContainer;
 [case(kPropertyTypeDevMode)]
 DEVMODE_CONTAINER propertyDevModeContainer;
 [case(kPropertyTypeSD)]
 SECURITY_CONTAINER propertySDContainer;
 [case(kPropertyTypeNotificationReply)]
 NOTIFY_REPLY_CONTAINER propertyReplyContainer;
 [case(kPropertyTypeNotificationOptions)]
 NOTIFY_OPTIONS_CONTAINER propertyOptionsContainer;
 } value;
 } RpcPrintPropertyValue;

 typedef struct {
 [string] wchar_t* propertyName;
 RpcPrintPropertyValue propertyValue;
 } RpcPrintNamedProperty;

 typedef struct {
 [range(0, 50)]
 unsigned long numberOfProperties;

 [size_is(numberOfProperties),unique]
 RpcPrintNamedProperty* propertiesCollection;
 }RpcPrintPropertiesCollection;

 typedef struct _CORE_PRINTER_DRIVER {
 GUID CoreDriverGUID;
 FILETIME ftDriverDate;
 DWORDLONG dwlDriverVersion;
 wchar_t szPackageID[260];
 } CORE_PRINTER_DRIVER;

 typedef struct {
 RPC_EPrintPropertyType ePropertyType;
 [switch_is(ePropertyType)] union {
 [case(kRpcPropertyTypeString)] [string] wchar_t *propertyString;
 [case(kRpcPropertyTypeInt32)] LONG propertyInt32;
 [case(kRpcPropertyTypeInt64)] LONGLONG propertyInt64;
 [case(kRpcPropertyTypeByte)] BYTE propertyByte;
 [case(kRpcPropertyTypeBuffer)]
 struct {
 DWORD cbBuf;
 [size_is(cbBuf)] BYTE *pBuf;
 } propertyBlob;
 } value;
 } RPC_PrintPropertyValue;

 typedef struct {
 [string] wchar_t *propertyName;
 RPC_PrintPropertyValue propertyValue;
 } RPC_PrintNamedProperty;

 // [MS-PAR] methods
 DWORD

111 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 RpcAsyncOpenPrinter(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pPrinterName,
 [out] PRINTER_HANDLE*pHandle,
 [in, string, unique] wchar_t* pDatatype,
 [in] DEVMODE_CONTAINER* pDevModeContainer,
 [in] DWORD AccessRequired,
 [in] SPLCLIENT_CONTAINER* pClientInfo
);

 DWORD
 RpcAsyncAddPrinter(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] PRINTER_CONTAINER* pPrinterContainer,
 [in] DEVMODE_CONTAINER* pDevModeContainer,
 [in] SECURITY_CONTAINER* pSecurityContainer,
 [in] SPLCLIENT_CONTAINER* pClientInfo,
 [out] PRINTER_HANDLE*pHandle
);

 DWORD
 RpcAsyncSetJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in, unique] JOB_CONTAINER* pJobContainer,
 [in] DWORD Command
);

 DWORD
 RpcAsyncGetJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pJob,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncEnumJobs(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD FirstJob,
 [in] DWORD NoJobs,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pJob,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

 DWORD
 RpcAsyncAddJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pAddJob,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncScheduleJob(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId
);

 DWORD
 RpcAsyncDeletePrinter(
 [in] PRINTER_HANDLE hPrinter

112 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

 DWORD
 RpcAsyncSetPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in] PRINTER_CONTAINER* pPrinterContainer,
 [in] DEVMODE_CONTAINER* pDevModeContainer,
 [in] SECURITY_CONTAINER* pSecurityContainer,
 [in] DWORD Command
);

 DWORD
 RpcAsyncGetPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pPrinter,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncStartDocPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in] DOC_INFO_CONTAINER* pDocInfoContainer,
 [out] DWORD* pJobId
);

 DWORD
 RpcAsyncStartPagePrinter(
 [in] PRINTER_HANDLE hPrinter
);

 DWORD
 RpcAsyncWritePrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in, size_is(cbBuf)] unsigned char* pBuf,
 [in] DWORD cbBuf,
 [out] DWORD* pcWritten
);

 DWORD
 RpcAsyncEndPagePrinter(
 [in] PRINTER_HANDLE hPrinter
);

 DWORD
 RpcAsyncEndDocPrinter(
 [in] PRINTER_HANDLE hPrinter
);

 DWORD
 RpcAsyncAbortPrinter(
 [in] PRINTER_HANDLE hPrinter
);

 DWORD
 RpcAsyncGetPrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pValueName,
 [out] DWORD* pType,
 [out, size_is(nSize)] unsigned char* pData,
 [in] DWORD nSize,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncGetPrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,

113 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, string] const wchar_t* pValueName,
 [out] DWORD* pType,
 [out, size_is(nSize)] unsigned char* pData,
 [in] DWORD nSize,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncSetPrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pValueName,
 [in] DWORD Type,
 [in, size_is(cbData)] unsigned char* pData,
 [in] DWORD cbData
);

 DWORD
 RpcAsyncSetPrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [in, string] const wchar_t* pValueName,
 [in] DWORD Type,
 [in, size_is(cbData)] unsigned char* pData,
 [in] DWORD cbData
);

 DWORD
 RpcAsyncClosePrinter(
 [in, out] PRINTER_HANDLE* phPrinter
);

 DWORD
 RpcAsyncAddForm(
 [in] PRINTER_HANDLE hPrinter,
 [in] FORM_CONTAINER* pFormInfoContainer
);

 DWORD
 RpcAsyncDeleteForm(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pFormName
);

 DWORD
 RpcAsyncGetForm(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pFormName,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pForm,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncSetForm(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pFormName,
 [in] FORM_CONTAINER* pFormInfoContainer
);

 DWORD
 RpcAsyncEnumForms(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pForm,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

114 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD
 RpcAsyncGetPrinterDriver(
 [in] PRINTER_HANDLE hPrinter,
 [in, unique, string] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pDriver,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [in] DWORD dwClientMajorVersion,
 [in] DWORD dwClientMinorVersion,
 [out] DWORD* pdwServerMaxVersion,
 [out] DWORD* pdwServerMinVersion
);

 DWORD
 RpcAsyncEnumPrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD dwIndex,
 [out, size_is(cbValueName/sizeof(wchar_t))] wchar_t* pValueName,
 [in] DWORD cbValueName,
 [out] DWORD* pcbValueName,
 [out] DWORD* pType,
 [out, size_is(cbData)] unsigned char* pData,
 [in] DWORD cbData,
 [out] DWORD* pcbData
);

 DWORD
 RpcAsyncEnumPrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [out, size_is(cbEnumValues)] unsigned char* pEnumValues,
 [in] DWORD cbEnumValues,
 [out] DWORD* pcbEnumValues,
 [out] DWORD* pnEnumValues
);

 DWORD
 RpcAsyncEnumPrinterKey(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [out, size_is(cbSubkey/sizeof(wchar_t))] wchar_t* pSubkey,
 [in] DWORD cbSubkey,
 [out] DWORD* pcbSubkey
);

 DWORD
 RpcAsyncDeletePrinterData(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] wchar_t* pValueName
);

 DWORD
 RpcAsyncDeletePrinterDataEx(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName,
 [in, string] const wchar_t* pValueName
);

 DWORD
 RpcAsyncDeletePrinterKey(
 [in] PRINTER_HANDLE hPrinter,
 [in, string] const wchar_t* pKeyName
);

 DWORD
 RpcAsyncXcvData(
 [in] PRINTER_HANDLE hXcv,

115 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, string] const wchar_t* pszDataName,
 [in, size_is(cbInputData)] unsigned char* pInputData,
 [in] DWORD cbInputData,
 [out, size_is(cbOutputData)] unsigned char* pOutputData,
 [in] DWORD cbOutputData,
 [out] DWORD* pcbOutputNeeded,
 [in, out] DWORD* pdwStatus
);

 DWORD
 RpcAsyncSendRecvBidiData (
 [in] PRINTER_HANDLE hPrinter,
 [in,string,unique] const wchar_t* pAction,
 [in] RPC_BIDI_REQUEST_CONTAINER* pReqData,
 [out] RPC_BIDI_RESPONSE_CONTAINER** ppRespData);

 DWORD
 RpcAsyncCreatePrinterIC(
 [in] PRINTER_HANDLE hPrinter,
 [out] GDI_HANDLE *pHandle,
 [in] DEVMODE_CONTAINER* pDevModeContainer
);

 DWORD
 RpcAsyncPlayGdiScriptOnPrinterIC(
 [in] GDI_HANDLE hPrinterIC,
 [in, size_is(cIn)] unsigned char* pIn,
 [in] DWORD cIn,
 [out, size_is(cOut)] unsigned char* pOut,
 [in] DWORD cOut,
 [in] DWORD ul
);

 DWORD
 RpcAsyncDeletePrinterIC(
 [in, out] GDI_HANDLE* phPrinterIC
);

 DWORD
 RpcAsyncEnumPrinters(
 [in] handle_t hRemoteBinding,
 [in] DWORD Flags,
 [in, string, unique] wchar_t* Name,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pPrinterEnum,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

 DWORD
 RpcAsyncAddPrinterDriver(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] DRIVER_CONTAINER* pDriverContainer,
 [in] DWORD dwFileCopyFlags
);

 DWORD
 RpcAsyncEnumPrinterDrivers(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, unique, string] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pDrivers,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

116 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD
 RpcAsyncGetPrinterDriverDirectory(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, unique, string] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pDriverDirectory,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncDeletePrinterDriver(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string] wchar_t* pEnvironment,
 [in, string] wchar_t* pDriverName
);

 DWORD
 RpcAsyncDeletePrinterDriverEx(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string] wchar_t* pEnvironment,
 [in, string] wchar_t* pDriverName,
 [in] DWORD dwDeleteFlag,
 [in] DWORD dwVersionNum
);

 DWORD
 RpcAsyncAddPrintProcessor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string] wchar_t* pEnvironment,
 [in, string] wchar_t* pPathName,
 [in, string] wchar_t* pPrintProcessorName
);

 DWORD
 RpcAsyncEnumPrintProcessors(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, unique, string] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char*
 pPrintProcessorInfo,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

 DWORD
 RpcAsyncGetPrintProcessorDirectory(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, unique, string] wchar_t* pEnvironment,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char*
 pPrintProcessorDirectory,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded
);

 DWORD
 RpcAsyncEnumPorts(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] DWORD Level,

117 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, out, unique, size_is(cbBuf)] unsigned char* pPort,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

 DWORD
 RpcAsyncEnumMonitors(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pMonitor,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

 DWORD
 RpcAsyncAddPort(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in] PORT_CONTAINER* pPortContainer,
 [in] PORT_VAR_CONTAINER* pPortVarContainer,
 [in, string] wchar_t* pMonitorName
);

 DWORD
 RpcAsyncSetPort(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, string, unique] wchar_t* pPortName,
 [in] PORT_CONTAINER* pPortContainer
);

 DWORD
 RpcAsyncAddMonitor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* Name,
 [in] MONITOR_CONTAINER* pMonitorContainer
);

 DWORD
 RpcAsyncDeleteMonitor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* Name,
 [in, unique, string] wchar_t* pEnvironment,
 [in, string] wchar_t*pMonitorName
);

 DWORD
 RpcAsyncDeletePrintProcessor(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* Name,
 [in, unique, string] wchar_t* pEnvironment,
 [in, string] wchar_t*pPrintProcessorName
);

 DWORD
 RpcAsyncEnumPrintProcessorDatatypes(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pName,
 [in, unique, string] wchar_t* pPrintProcessorName,
 [in] DWORD Level,
 [in, out, unique, size_is(cbBuf)] unsigned char* pDatatypes,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

118 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD
 RpcAsyncAddPerMachineConnection(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pServer,
 [in, string] const wchar_t* pPrinterName,
 [in, string] const wchar_t* pPrintServer,
 [in, string] const wchar_t* pProvider
);

 DWORD
 RpcAsyncDeletePerMachineConnection(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pServer,
 [in, string] const wchar_t* pPrinterName
);

 DWORD
 RpcAsyncEnumPerMachineConnections(
 [in] handle_t hRemoteBinding,
 [in, string, unique] wchar_t* pServer,
 [in, out, unique, size_is(cbBuf)] unsigned char* pPrinterEnum,
 [in] DWORD cbBuf,
 [out] DWORD* pcbNeeded,
 [out] DWORD* pcReturned
);

 HRESULT
 RpcSyncRegisterForRemoteNotifications(
 [in] PRINTER_HANDLE hPrinter,
 [in] RpcPrintPropertiesCollection* pNotifyFilter,
 [out] RMTNTFY_HANDLE* phRpcHandle
);

 HRESULT
 RpcSyncUnRegisterForRemoteNotifications(
 [in, out] RMTNTFY_HANDLE* phRpcHandle
);

 HRESULT
 RpcSyncRefreshRemoteNotifications(
 [in] RMTNTFY_HANDLE hRpcHandle,
 [in] RpcPrintPropertiesCollection* pNotifyFilter,
 [out] RpcPrintPropertiesCollection** ppNotifyData
);

 HRESULT
 RpcAsyncGetRemoteNotifications(
 [in] RMTNTFY_HANDLE hRpcHandle,
 [out] RpcPrintPropertiesCollection** ppNotifyData
);

 HRESULT
 RpcAsyncInstallPrinterDriverFromPackage(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string, unique] const wchar_t* pszInfPath,
 [in, string] const wchar_t* pszDriverName,
 [in, string] const wchar_t* pszEnvironment,
 [in] DWORD dwFlags
);

 HRESULT
 RpcAsyncUploadPrinterDriverPackage(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszInfPath,
 [in, string] const wchar_t* pszEnvironment,
 [in] DWORD dwFlags,
 [in, out, unique, size_is(*pcchDestInfPath)]

119 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 wchar_t* pszDestInfPath,
 [in, out] DWORD* pcchDestInfPath
);

 HRESULT
 RpcAsyncGetCorePrinterDrivers(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszEnvironment,
 [in] DWORD cchCoreDrivers,
 [in, size_is(cchCoreDrivers)]
 const wchar_t* pszzCoreDriverDependencies,
 [in] DWORD cCorePrinterDrivers,
 [out, size_is(cCorePrinterDrivers)]
 CORE_PRINTER_DRIVER* pCorePrinterDrivers
);

 HRESULT
 RpcAsyncCorePrinterDriverInstalled(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszEnvironment,
 [in] GUID CoreDriverGUID,
 [in] FILETIME ftDriverDate,
 [in] DWORDLONG dwlDriverVersion,
 [out] int*pbDriverInstalled
);

 HRESULT
 RpcAsyncGetPrinterDriverPackagePath(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszEnvironment,
 [in, string, unique] const wchar_t* pszLanguage,
 [in, string] const wchar_t* pszPackageID,
 [in, out, unique, size_is(cchDriverPackageCab)]
 wchar_t* pszDriverPackageCab,
 [in] DWORD cchDriverPackageCab,
 [out] DWORD* pcchRequiredSize
);

 HRESULT
 RpcAsyncDeletePrinterDriverPackage(
 [in] handle_t hRemoteBinding,
 [in, string, unique] const wchar_t* pszServer,
 [in, string] const wchar_t* pszInfPath,
 [in, string] const wchar_t* pszEnvironment
);

 DWORD
 RpcAsyncReadPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [out, size_is(cbBuf)] unsigned char* pBuf,
 [in] DWORD cbBuf,
 [out] DWORD* pcNoBytesRead
);

 DWORD
 RpcAsyncResetPrinter(
 [in] PRINTER_HANDLE hPrinter,
 [in, string, unique] wchar_t* pDatatype,
 [in] DEVMODE_CONTAINER* pDevModeContainer
);
 }

 DWORD
 RpcAsyncGetJobNamedPropertyValue(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,

120 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, string] const wchar_t *pszName,
 [out] RPC_PrintPropertyValue *pValue
);

 DWORD
 RpcAsyncSetJobNamedProperty(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in] RPC_PrintNamedProperty *pProperty
);

 DWORD
 RpcAsyncDeleteJobNamedProperty(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [in, string] const wchar_t *pszName
);

 DWORD
 RpcAsyncEnumJobNamedProperties(
 [in] PRINTER_HANDLE hPrinter,
 [in] DWORD JobId,
 [out] DWORD *pcProperties,
 [out, size_is(,*pcProperties)] RPC_PrintNamedProperty **ppProperties
);

 DWORD
 RpcAsyncLogJobInfoForBranchOffice(
 [in] PRINTER_HANDLE hPrinter,
 [in, ref] RPC_BranchOfficeJobDataContainer *pBranchOfficeJobDataContainer
);

121 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.3.2: Windows uses various spool file formats, such as enhanced metafile spool
format (EMFSPOOL) or RAW format. On Windows Vista, Windows 7, Windows 8, Windows 8.1, and
Windows 10, the XML Paper Specification format can also be used. For more information about these

formats, see [MS-EMFSPOOL], [MSDN-SPOOL], and [MSDN-XMLP], respectively.

<2> Section 2.1: For information concerning Windows authentication-service constants, see [MSDN-
AUTHN].

<3> Section 2.1: Windows print servers impersonate clients when processing methods, and they
register SPNEGO [MS-SPNG] security providers.

<4> Section 2.2.8: For Windows implementations, the driver version is matched to the version portion

of the INF file DriverVer member. For information about INF file syntax, see [MSDN-UINF].

<5> Section 3.1.1: Job Named Properties are not supported by the following Windows versions:
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<6> Section 3.1.1: Branch Office Print Remote Log Entries are not supported by the following
Windows versions: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, and Windows Server 2012.

%5bMS-EMFSPOOL%5d.pdf#Section_3d8cd6cc528742e8925f4a53afd04534
https://go.microsoft.com/fwlink/?LinkId=90134
https://go.microsoft.com/fwlink/?LinkId=90172
https://go.microsoft.com/fwlink/?LinkId=89957
https://go.microsoft.com/fwlink/?LinkId=89957
%5bMS-SPNG%5d.pdf#Section_f377a379c24f4a0fa3eb0d835389e28a
https://go.microsoft.com/fwlink/?LinkId=90152

122 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<7> Section 3.1.4: The job named property management methods are not supported on the following
Windows versions: Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<8> Section 3.1.4: Branch office print remote logging methods are not supported on the following
Windows versions: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,

Windows 8, and Windows Server 2012.

<9> Section 3.1.4.2.7: All Windows versions: pszInfPath points to an INF file. For more information
on INF file structure, see [MSDN-UINF].

<10> Section 3.1.4.2.7: These validation steps are not performed on the following Windows versions:
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<11> Section 3.1.4.2.7: Windows print servers attempt to locate driver packages containing class
printer drivers using the Windows Update protocol described in [MS-WUSP].

<12> Section 3.1.4.2.7: These validation steps are not performed on the following Windows versions:
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<13> Section 3.1.4.2.7: These validation steps are not performed on the following Windows versions:
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<14> Section 3.1.4.2.7: When a print client installs a printer driver to a print server by using
RpcAsyncInstallPrinterDriverFromPackage (section 3.1.4.2.7), the print server determines how

to set the Boolean values representing each of the printer driver's attributes based on data that the
print server reads from the printer driver manifest (if present) and the driver installation control file.

<15> Section 3.1.4.2.7: Windows print servers attempt to locate driver packages containing class
printer drivers using the Windows Update protocol described in [MS-WUSP].

<16> Section 3.1.4.2.7: Class printer drivers and derived printer drivers are not supported on the
following Windows versions: Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2.

<17> Section 3.1.4.2.8: All Windows versions: pszInfPath points to an INF file. For more information

on INF file structure, see [MSDN-UINF].

<18> Section 3.1.4.2.8: Windows servers impersonate the client when processing this call, but the
impersonation token does not have delegation permission and therefore cannot be used to access files
not located on the server itself. Therefore, Windows clients create a unique directory under the
server's "print$" share and copy the driver files to that directory before invoking this method. The
server will copy the files from there to the final location in the driver store.

<19> Section 3.1.4.2.8: All Windows versions: Printer drivers are described by INF files. For more
information, see [MSDN-UINF].

<20> Section 3.1.4.2.9: All Windows versions: The IDs are the GUIDString representations of 128-
bit GUIDs.

<21> Section 3.1.4.2.10: All Windows versions: The driver date is matched to the date portion of the
INF DriverVer member. For information on INF file syntax, see [MSDN-UINF].

<22> Section 3.1.4.2.10: All Windows versions: The driver version is matched to the version portion
of the INF DriverVer member. For information on INF file syntax, see [MSDN-UINF].

<23> Section 3.1.4.2.11: All Windows versions: The Language string is specified using the identifiers
specified for the "Locale Name" in [MSDN-MUI].

<24> Section 3.1.4.2.11: All Windows versions: pszDriverPackageCab points to a string containing
the path name of a cabinet file for the driver package; for more information, see [MSDN-CAB].

%5bMS-WUSP%5d.pdf#Section_b8a2ad1d11c44b64a2cc12771fcb079b
https://go.microsoft.com/fwlink/?LinkId=90048
https://go.microsoft.com/fwlink/?LinkId=226293

123 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<25> Section 3.1.4.2.11: All Windows versions: If the parameter is zero, Windows fills in the variable
pointed to by pcchRequiredSize with the valid size.

<26> Section 3.1.4.2.12: In Windows implementations, pszInfPath points to a string containing the
path of an INF file. For more information on INF file structure, see [MSDN-UINF].

<27> Section 3.1.4.2.12: Windows verifies that the specified driver package is not a printer driver
package that ships with Windows. If this validation fails, the server returns ERROR_ACCESS_DENIED,
meaning that deletion of printer driver packages that ship with Windows is not allowed

<28> Section 3.1.4.9.1: In Windows, the server verifies that printer object handles have been opened
with an access level that includes PRINTER_ACCESS_USE ([MS-RPRN] section 2.2.3.1). No such
authorization check is performed on server object handles.

<29> Section 3.1.4.10.1: The RpcAsyncGetJobNamedPropertyValue method is not supported by

the following Windows versions: Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2.

<30> Section 3.1.4.10.2: The RpcAsyncSetJobNamedProperty method is not supported by the

following Windows versions: Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2.

<31> Section 3.1.4.10.3: The RpcAsyncDeleteJobNamedProperty method is not supported by the

following Windows versions: Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2.

<32> Section 3.1.4.10.4: The RpcAsyncEnumJobNamedProperties method is not supported by
the following Windows versions: Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2.

<33> Section 3.1.4.11.1: The RpcAsyncLogJobInfoForBranchOffice (section 3.1.4.11.1)
method is not supported on the following Windows versions: Windows Vista, Windows Server 2008,

Windows 7, Windows Server 2008 R2, Windows 8, and Windows Server 2012.

<34> Section 3.2.3: All Windows client implementations derive the RPC binding directly from the

respective server name or printer name parameter.

No Windows server implementations support RPC binding handles that are not derived from the
respective server name or printer name parameter, and the behavior resulting from receiving such an
RPC binding handle is undefined.

<35> Section 3.2.3: In the Windows implementation, the client creates the binding handle, verifies

the security capability of the remote server, and invokes the Print System Asynchronous Remote
method.

To verify the security capability of the server, the client invokes the rpc_mgmt_inq_princ_name
method of the Remote Management Interface ([C706] appendix Q and [MS-RPCE] section
2.2.1.3.4) to retrieve the principal name "princ_name" for the SPNEGO authentication service. This
invocation is done prior to every Print System Asynchronous Remote method call.

If this invocation succeeds, authentication with the remote peer is deemed possible, and the RPC

runtime is configured to use the SPNEGO security provider with the
RPC_C_AUTHN_GSS_NEGOTIATE and RPC_C_AUTHN_LEVEL_PKT_PRIVACY flags and the
retrieved principal name for subsequent RPC method calls to the server.

Because this protocol is only supported on Windows print servers, Windows Vista, Windows 7,
Windows 8, Windows 8.1, and Windows 10 print clients first attempt to connect using this protocol.
If the connection fails, clients revert to using the Print System Remote Protocol as specified in [MS-

RPRN].

%5bMS-RPRN%5d.pdf#Section_d42db7d5f14144668f470a4be14e2fc1
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

124 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<36> Section 3.2.4: All Windows versions: Clients ignore errors and pass them back to the invoker.

<37> Section 5: All Windows versions: The Windows print server follows a security model where the

print server, print queue, and print job are securable resources. Each of the previously mentioned
resources has an associated SECURITY_DESCRIPTOR structure ([MS-DTYP] section 2.4.6), which

contains the security information that is associated with a resource on the print server. The print
server checks the RPC client's access to resources by comparing the security information that is
associated with the caller against the security information that is represented by the resource's
security descriptor.

Each RPC client has an associated access token containing the security identifier of the user making
the RPC call. The security descriptor identifies the printing resource's owner and contains a
discretionary access control list (DACL). The DACL contains access control entries (ACEs) that

specify the security identifier (SID) that identifies a user or a group of users and the access rights
allowed, denied, or audited. For resources on a print server, the ACEs specify operations such as print,
manage printers, and manage documents in a print queue.

The security descriptor that is associated with the print server or print queue controls the creation of

the context handle that represents a PRINTER_HANDLE structure ([MS-RPRN] section 2.2.1.1.4). It
also controls the outcome of operations that use the PRINTER_HANDLE, from printing management to

listening for notifications.

The security descriptor of a Windows print server is used to control the creation and deletion of print
queues on the server and the installation of print system components, such as the printer driver,
print processors, port monitors, or resources on the print server. The Windows print server
security descriptor is not accessible to be modified by callers. In addition to being used to control the
caller's access to resources, the Windows print server security descriptor is also used as "parent" in
the creation of the print queue's security descriptor.

Note: The security descriptor of a Windows print server is different from the security descriptor that is
applied on the spoolss named pipe. The spoolss named pipe security descriptor controls the RPC
client's access to make RPC calls to the print server. The Windows print server security descriptor is
used to control the caller's permissions to perform various operations on the print server.

The print queue's security descriptor controls the setting of properties for the print queue, such as the
port and driver that are used for printing, device settings, sharing, and security. The user is allowed
to manage, print, and so on. The printer security descriptor allows auditing operations, such as print,

manage printers and documents, read and change permissions, and take ownership.

Each print job has an associated security descriptor, which is created by using the print queue's
security descriptor as parent. The user who submitted the document for printing is the owner for the
print job and has permissions to manage the print job during its lifetime.

When the caller opens a PRINTER_HANDLE structure for a specific printing resource, it specifies the
access that is needed for the operations for which the handle is being opened, such as "administrate

printer or server"; "use printer or print server for printing"; or "read, write, or administrate job". If the
caller has the requested permissions, the print handle is created and can be used in subsequent calls.

Besides handle-based operations, the security descriptor is used for access checks when
enumerations, driver package installation, or other non-handle-based operations are performed. The

access checks are primarily about testing whether the initiator of the operation has enough use or
administer privileges on the resource that is being targeted by that operation. For example, an access
check might be whether the initiator of the operation has the privilege to pause a printer.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

125 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior 7965 : Added Windows Server to applicability list. Major

mailto:dochelp@microsoft.com

126 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

9 Index

A

Abstract data model
 client 87
 server 25
Adding a printer driver to a server example 91
Adding a printer to a server example 90
Adding printer driver to server example 91
Adding printer to server example 90
Applicability 17

B

Branch Office Print Remote Logging Methods method

86

C

Capability negotiation 18
Change notification 15
Change tracking 125
Client
 abstract data model 87
 initialization 88
 local events 89
 message processing 88
 sequencing rules 88
 timer events 89
 timers 88
Common data types 19
Communicating print job data 14
CORE_PRINTER_DRIVER structure 24

D

Data model - abstract
 client 87
 server 25
Data types 19
 common - overview 19

E

Enumerating and managing printers example 91
Enumerating jobs and modifying job settings

example 92
Enumerating print jobs on a server example 92
Enumerating printers on a server example 91
EPrintPropertyType enumeration 20
Events
 local - client 89
 local - server 87
 timer - client 89
 timer - server 87
Examples
 adding a printer driver to a server 91
 adding a printer to a server 90
 adding printer driver to server 91
 adding printer to server 90
 enumerating and managing printers 91
 enumerating jobs and modifying job settings 92

 enumerating print jobs on a server 92
 enumerating printers on a server 91
 overview 90
 receiving notifications from a server 93
 receiving notifications from server 93

F

Fields - vendor-extensible 18
Form management methods 70
Form Management Methods method 70
Full IDL 98

G

Glossary 7

I

IDL 98
Implementer - security considerations 97
Informative references 12
Initialization
 client 88
 server 26
Interfaces - server
 iremotewinspool 25
Introduction 7
iremotewinspool interface 25

J

Job management methods 73
Job Management Methods method 73
Job named property management methods 84
Job Named Property Management Methods method

84
Job printing methods 76
Job Printing Methods method 76

L

Local events
 client 89
 server 87

M

Managing print system 13
Message processing
 client 88
 server 26
Messages
 common data types 19
 data types 19
 transport 19
Methods
 Branch Office Print Remote Logging Methods 86
 Form Management Methods 70
 Job Management Methods 73
 Job Named Property Management Methods 84

127 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 Job Printing Methods 76
 Port Monitor Management Methods 68
 Printer Management Methods 33
 Printer-Driver Management Methods 48
 Printer-Port Management Methods 62
 Printing-Related Notification Methods 80
 Print-Processor Management Methods 65

N

Normative references 12
NOTIFY_OPTIONS_CONTAINER structure 23
NOTIFY_REPLY_CONTAINER structure 23

O

Overview (synopsis) 13

P

Port Monitor Management Methods method 68
Port-monitor management methods 68
Preconditions 17
Prerequisites 17
Print job data 14
Print server change notification 15
Print system - managing 13
Printer management methods 33
Printer Management Methods method 33
Printer-driver management methods 48
Printer-Driver Management Methods method 48
Printer-port management methods 62
Printer-Port Management Methods method 62
Printing-related notification methods 80
Printing-Related Notification Methods method 80
Print-processor management methods 65
Print-Processor Management Methods method 65
Product behavior 121

R

Receiving notifications from a server example 93
Receiving notifications from server example 93
References 12
 informative 12

 normative 12
Relationship to other protocols 17
RpcAsyncAbortPrinter method 79
RpcAsyncAddForm method 70
RpcAsyncAddJob method 75
RpcAsyncAddMonitor method 69
RpcAsyncAddPerMachineConnection method 46
RpcAsyncAddPort method 64
RpcAsyncAddPrinter method 36
RpcAsyncAddPrinterDriver method 50
RpcAsyncAddPrintProcessor method 65
RpcAsyncClosePrinter method 41
RpcAsyncCorePrinterDriverInstalled method 58
RpcAsyncCreatePrinterIC method 44
RpcAsyncDeleteForm method 71
RpcAsyncDeleteJobNamedProperty method 85
RpcAsyncDeleteMonitor method 69
RpcAsyncDeletePerMachineConnection method 47
RpcAsyncDeletePrinter method 37
RpcAsyncDeletePrinterData method 43

RpcAsyncDeletePrinterDataEx method 43
RpcAsyncDeletePrinterDriver method 52
RpcAsyncDeletePrinterDriverEx method 52
RpcAsyncDeletePrinterDriverPackage method 61
RpcAsyncDeletePrinterIC method 45
RpcAsyncDeletePrinterKey method 43
RpcAsyncDeletePrintProcessor method 67
RpcAsyncEndDocPrinter method 78
RpcAsyncEndPagePrinter method 78
RpcAsyncEnumForms method 72
RpcAsyncEnumJobNamedProperties method 86
RpcAsyncEnumJobs method 74
RpcAsyncEnumMonitors method 68
RpcAsyncEnumPerMachineConnections method 47
RpcAsyncEnumPorts method 63
RpcAsyncEnumPrinterData method 41
RpcAsyncEnumPrinterDataEx method 42
RpcAsyncEnumPrinterDrivers method 51
RpcAsyncEnumPrinterKey method 42
RpcAsyncEnumPrinters method 46
RpcAsyncEnumPrintProcessorDatatypes method 67
RpcAsyncEnumPrintProcessors method 66
RpcAsyncGetCorePrinterDrivers method 57

RpcAsyncGetForm method 71
RpcAsyncGetJob method 74
RpcAsyncGetJobNamedPropertyValue method 84
RpcAsyncGetPrinter method 38
RpcAsyncGetPrinterData method 38
RpcAsyncGetPrinterDataEx method 39
RpcAsyncGetPrinterDriver method 50
RpcAsyncGetPrinterDriverDirectory method 51
RpcAsyncGetPrinterDriverPackagePath method 60
RpcAsyncGetPrintProcessorDirectory method 66
RpcAsyncGetRemoteNotifications method 83
RpcAsyncInstallPrinterDriverFromPackage method 53
RpcAsyncLogJobInfoForBranchOffice method 87
RpcAsyncOpenPrinter method 36
RpcAsyncPlayGdiScriptOnPrinterIC method 45
RpcAsyncReadPrinter method 79
RpcAsyncResetPrinter method 48
RpcAsyncScheduleJob method 75
RpcAsyncSendRecvBidiData method 44
RpcAsyncSetForm method 72
RpcAsyncSetJob method 73
RpcAsyncSetJobNamedProperty method 85
RpcAsyncSetPort method 64
RpcAsyncSetPrinter method 37
RpcAsyncSetPrinterData method 40
RpcAsyncSetPrinterDataEx method 40
RpcAsyncStartDocPrinter method 76
RpcAsyncStartPagePrinter method 77
RpcAsyncUploadPrinterDriverPackage method 55
RpcAsyncWritePrinter method 77
RpcAsyncXcvData method 63
RpcPrintNamedProperty structure 21
RpcPrintPropertiesCollection structure 22
RpcPrintPropertyValue structure 20
RpcSyncRefreshRemoteNotifications method 82
RpcSyncRegisterForRemoteNotifications method 80
RpcSyncUnRegisterForRemoteNotifications method

81

S

Security - implementer considerations 97

128 / 128

[MS-PAR] - v20170915
Print System Asynchronous Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Sequencing rules
 client 88
 server 26
Server
 abstract data model 25
 Branch Office Print Remote Logging Methods

method 86
 Form Management Methods method 70
 initialization 26
 iremotewinspool interface 25
 Job Management Methods method 73
 Job Named Property Management Methods method

84
 Job Printing Methods method 76
 local events 87
 message processing 26
 overview 25
 Port Monitor Management Methods method 68
 Printer Management Methods method 33
 Printer-Driver Management Methods method 48
 Printer-Port Management Methods method 62
 Printing-Related Notification Methods method 80
 Print-Processor Management Methods method 65

 sequencing rules 26
 timer events 87
 timers 26
Standards assignments 18

T

Timer events
 client 89
 server 87
Timers
 client 88
 server 26
Tracking changes 125
Transport 19

V

Vendor-extensible fields 18
Versioning 18

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Management of the Print System
	1.3.2 Communication of Print Job Data
	1.3.3 Notification of Print System Changes

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 EPrintPropertyType
	2.2.2 RpcPrintPropertyValue
	2.2.3 RpcPrintNamedProperty
	2.2.4 RpcPrintPropertiesCollection
	2.2.5 RMTNTFY_HANDLE
	2.2.6 NOTIFY_OPTIONS_CONTAINER
	2.2.7 NOTIFY_REPLY_CONTAINER
	2.2.8 CORE_PRINTER_DRIVER

	3 Protocol Details
	3.1 IRemoteWinspool Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Printer Management Methods
	3.1.4.1.1 RpcAsyncOpenPrinter (Opnum 0)
	3.1.4.1.2 RpcAsyncAddPrinter (Opnum 1)
	3.1.4.1.3 RpcAsyncDeletePrinter (Opnum 7)
	3.1.4.1.4 RpcAsyncSetPrinter (Opnum 8)
	3.1.4.1.5 RpcAsyncGetPrinter (Opnum 9)
	3.1.4.1.6 RpcAsyncGetPrinterData (Opnum 16)
	3.1.4.1.7 RpcAsyncGetPrinterDataEx (Opnum 17)
	3.1.4.1.8 RpcAsyncSetPrinterData (Opnum 18)
	3.1.4.1.9 RpcAsyncSetPrinterDataEx (Opnum 19)
	3.1.4.1.10 RpcAsyncClosePrinter (Opnum 20)
	3.1.4.1.11 RpcAsyncEnumPrinterData (Opnum 27)
	3.1.4.1.12 RpcAsyncEnumPrinterDataEx (Opnum 28)
	3.1.4.1.13 RpcAsyncEnumPrinterKey (Opnum 29)
	3.1.4.1.14 RpcAsyncDeletePrinterData (Opnum 30)
	3.1.4.1.15 RpcAsyncDeletePrinterDataEx (Opnum 31)
	3.1.4.1.16 RpcAsyncDeletePrinterKey (Opnum 32)
	3.1.4.1.17 RpcAsyncSendRecvBidiData (Opnum 34)
	3.1.4.1.18 RpcAsyncCreatePrinterIC (Opnum 35)
	3.1.4.1.19 RpcAsyncPlayGdiScriptOnPrinterIC (Opnum 36)
	3.1.4.1.20 RpcAsyncDeletePrinterIC (Opnum 37)
	3.1.4.1.21 RpcAsyncEnumPrinters (Opnum 38)
	3.1.4.1.22 RpcAsyncAddPerMachineConnection (Opnum 55)
	3.1.4.1.23 RpcAsyncDeletePerMachineConnection (Opnum 56)
	3.1.4.1.24 RpcAsyncEnumPerMachineConnections (Opnum 57)
	3.1.4.1.25 RpcAsyncResetPrinter (Opnum 69)

	3.1.4.2 Printer-Driver Management Methods
	3.1.4.2.1 RpcAsyncGetPrinterDriver (Opnum 26)
	3.1.4.2.2 RpcAsyncAddPrinterDriver (Opnum 39)
	3.1.4.2.3 RpcAsyncEnumPrinterDrivers (Opnum 40)
	3.1.4.2.4 RpcAsyncGetPrinterDriverDirectory (Opnum 41)
	3.1.4.2.5 RpcAsyncDeletePrinterDriver (Opnum 42)
	3.1.4.2.6 RpcAsyncDeletePrinterDriverEx (Opnum 43)
	3.1.4.2.7 RpcAsyncInstallPrinterDriverFromPackage (Opnum 62)
	3.1.4.2.8 RpcAsyncUploadPrinterDriverPackage (Opnum 63)
	3.1.4.2.9 RpcAsyncGetCorePrinterDrivers (Opnum 64)
	3.1.4.2.10 RpcAsyncCorePrinterDriverInstalled (Opnum 65)
	3.1.4.2.11 RpcAsyncGetPrinterDriverPackagePath (Opnum 66)
	3.1.4.2.12 RpcAsyncDeletePrinterDriverPackage (Opnum 67)

	3.1.4.3 Printer-Port Management Methods
	3.1.4.3.1 RpcAsyncXcvData (Opnum 33)
	3.1.4.3.2 RpcAsyncEnumPorts (Opnum 47)
	3.1.4.3.3 RpcAsyncAddPort (Opnum 49)
	3.1.4.3.4 RpcAsyncSetPort (Opnum 50)

	3.1.4.4 Print-Processor Management Methods
	3.1.4.4.1 RpcAsyncAddPrintProcessor (Opnum 44)
	3.1.4.4.2 RpcAsyncEnumPrintProcessors (Opnum 45)
	3.1.4.4.3 RpcAsyncGetPrintProcessorDirectory (Opnum 46)
	3.1.4.4.4 RpcAsyncDeletePrintProcessor (Opnum 53)
	3.1.4.4.5 RpcAsyncEnumPrintProcessorDatatypes (Opnum 54)

	3.1.4.5 Port Monitor Management Methods
	3.1.4.5.1 RpcAsyncEnumMonitors (Opnum 48)
	3.1.4.5.2 RpcAsyncAddMonitor (Opnum 51)
	3.1.4.5.3 RpcAsyncDeleteMonitor (Opnum 52)

	3.1.4.6 Form Management Methods
	3.1.4.6.1 RpcAsyncAddForm (Opnum 21)
	3.1.4.6.2 RpcAsyncDeleteForm (Opnum 22)
	3.1.4.6.3 RpcAsyncGetForm (Opnum 23)
	3.1.4.6.4 RpcAsyncSetForm (Opnum 24)
	3.1.4.6.5 RpcAsyncEnumForms (Opnum 25)

	3.1.4.7 Job Management Methods
	3.1.4.7.1 RpcAsyncSetJob (Opnum 2)
	3.1.4.7.2 RpcAsyncGetJob (Opnum 3)
	3.1.4.7.3 RpcAsyncEnumJobs (Opnum 4)
	3.1.4.7.4 RpcAsyncAddJob (Opnum 5)
	3.1.4.7.5 RpcAsyncScheduleJob (Opnum 6)

	3.1.4.8 Job Printing Methods
	3.1.4.8.1 RpcAsyncStartDocPrinter (Opnum 10)
	3.1.4.8.2 RpcAsyncStartPagePrinter (Opnum 11)
	3.1.4.8.3 RpcAsyncWritePrinter (Opnum 12)
	3.1.4.8.4 RpcAsyncEndPagePrinter (Opnum 13)
	3.1.4.8.5 RpcAsyncEndDocPrinter (Opnum 14)
	3.1.4.8.6 RpcAsyncAbortPrinter (Opnum 15)
	3.1.4.8.7 RpcAsyncReadPrinter (Opnum 68)

	3.1.4.9 Printing-Related Notification Methods
	3.1.4.9.1 RpcSyncRegisterForRemoteNotifications (Opnum 58)
	3.1.4.9.2 RpcSyncUnRegisterForRemoteNotifications (Opnum 59)
	3.1.4.9.3 RpcSyncRefreshRemoteNotifications (Opnum 60)
	3.1.4.9.4 RpcAsyncGetRemoteNotifications (Opnum 61)

	3.1.4.10 Job Named Property Management Methods
	3.1.4.10.1 RpcAsyncGetJobNamedPropertyValue (Opnum 70)
	3.1.4.10.2 RpcAsyncSetJobNamedProperty (Opnum 71)
	3.1.4.10.3 RpcAsyncDeleteJobNamedProperty (Opnum 72)
	3.1.4.10.4 RpcAsyncEnumJobNamedProperties (Opnum 73)

	3.1.4.11 Branch Office Print Remote Logging Methods
	3.1.4.11.1 RpcAsyncLogJobInfoForBranchOffice (Opnum 74)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 IRemoteWinspool Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Adding a Printer to a Server
	4.2 Adding a Printer Driver to a Server
	4.3 Enumerating Printers on a Server
	4.4 Enumerating Print Jobs on a Server
	4.5 Receiving Notifications from a Server

	5 Security Considerations
	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

