

1 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-OAUT]:
OLE Automation Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

12/18/2006 0.1 MCPP Milestone 2 Initial Availability

03/02/2007 1.0 MCPP Milestone 2

04/03/2007 1.1 Monthly release

05/11/2007 1.2 Monthly release

06/01/2007 1.2.1 Editorial Revised and edited the technical content.

07/20/2007 2.0 Major Updated and revised the technical content.

08/10/2007 2.0.1 Editorial Revised and edited the technical content.

09/28/2007 2.1 Minor Updated the technical content.

10/23/2007 3.0 Major Updated and revised the technical content.

11/30/2007 4.0 Major Updated and revised the technical content.

01/25/2008 5.0 Major Updated and revised the technical content.

03/14/2008 6.0 Major Updated and revised the technical content.

05/16/2008 7.0 Major Updated and revised the technical content.

06/20/2008 8.0 Major Updated and revised the technical content.

07/25/2008 8.1 Minor Updated the technical content.

08/29/2008 8.1.1 Editorial Revised and edited the technical content.

10/24/2008 8.2 Minor Updated the technical content.

12/05/2008 8.3 Minor Added Windows 7 Applicability.

01/16/2009 8.3.1 Editorial Revised and edited the technical content.

02/27/2009 8.4 Minor Updated the technical content.

04/10/2009 8.4.1 Editorial Revised and edited the technical content.

05/22/2009 8.4.2 Editorial Revised and edited the technical content.

07/02/2009 9.0 Major Updated and revised the technical content.

08/14/2009 9.0.1 Editorial Revised and edited the technical content.

09/25/2009 9.1 Minor Updated the technical content.

11/06/2009 10.0 Major Updated and revised the technical content.

3 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Date

Revision

History

Revision

Class Comments

12/18/2009 11.0 Major Updated and revised the technical content.

01/29/2010 11.0.1 Editorial Revised and edited the technical content.

03/12/2010 12.0 Major Updated and revised the technical content.

04/23/2010 12.0.1 Editorial Revised and edited the technical content.

06/04/2010 12.0.2 Editorial Revised and edited the technical content.

07/16/2010 12.0.2 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 12.0.2 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 12.0.2 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 12.0.2 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 13.0 Major Significantly changed the technical content.

02/11/2011 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 13.1 Minor Clarified the meaning of the technical content.

09/23/2011 13.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 14.0 Major Significantly changed the technical content.

03/30/2012 14.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 14.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 14.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 14.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 15.0 Major Significantly changed the technical content.

4 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 12
1.1 Glossary ... 12
1.2 References .. 14

1.2.1 Normative References ... 14
1.2.2 Informative References ... 15

1.3 Overview .. 15
1.4 Relationship to Other Protocols .. 18
1.5 Prerequisites/Preconditions ... 18
1.6 Applicability Statement ... 18
1.7 Versioning and Capability Negotiation ... 18
1.8 Vendor-Extensible Fields ... 18
1.9 Standards Assignments .. 18

2 Messages.. 20
2.1 Transport .. 20
2.2 Common Data Types .. 20

2.2.1 BYTE... 20
2.2.2 IID ... 20
2.2.3 LPOLESTR ... 20
2.2.4 REFIID .. 21
2.2.5 REFGUID ... 21
2.2.6 PSAFEARRAY, LPSAFEARRAY .. 21
2.2.7 VARIANT Type Constants .. 21
2.2.8 SAFEARRAY Feature Constants ... 27
2.2.9 ADVFEATUREFLAGS Advanced Feature Flags .. 29
2.2.10 CALLCONV Calling Convention Constants ... 29
2.2.11 FUNCFLAGS Function Feature Constants .. 30
2.2.12 FUNCKIND Function Access Constants ... 31
2.2.13 IMPLTYPEFLAGS Feature Constants ... 31
2.2.14 INVOKEKIND Function Invocation Constants .. 32
2.2.15 PARAMFLAGS Parameter Feature Constants ... 33
2.2.16 TYPEFLAGS Type Feature Constants .. 33
2.2.17 TYPEKIND Type Kind Constants .. 35
2.2.18 VARFLAGS Variable Feature Constants .. 35
2.2.19 VARKIND Variable Kind Constants .. 37
2.2.20 LIBFLAGS Type Library Feature Constants ... 37
2.2.21 SYSKIND System Pointer Size Constants ... 38
2.2.22 DESCKIND Name Description Constants .. 38
2.2.23 BSTR .. 38

2.2.23.1 FLAGGED_WORD_BLOB ... 39
2.2.23.2 BSTR Type Definition ... 39
2.2.23.3 Mapping Between Presented and Transmitted BSTRs 40

2.2.24 CURRENCY... 40
2.2.25 DATE .. 40
2.2.26 DECIMAL ... 40
2.2.27 VARIANT_BOOL .. 41
2.2.28 User-Defined Data Types and BRECORD .. 42

2.2.28.1 User-Defined Data Types ... 42
2.2.28.2 BRECORD .. 42

2.2.28.2.1 _wireBRECORD ... 42

6 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.28.2.2 BRECORD ... 43
2.2.29 VARIANT ... 43

2.2.29.1 _wireVARIANT .. 43
2.2.29.2 VARIANT .. 45

2.2.30 SAFEARRAY ... 46
2.2.30.1 SAFEARRAYBOUND ... 46
2.2.30.2 SAFEARR_BSTR .. 46
2.2.30.3 SAFEARR_UNKNOWN .. 46
2.2.30.4 SAFEARR_DISPATCH ... 47
2.2.30.5 SAFEARR_VARIANT ... 47
2.2.30.6 SAFEARR_BRECORD .. 47
2.2.30.7 SAFEARR_HAVEIID ... 48
2.2.30.8 Scalar-Sized Arrays ... 48

2.2.30.8.1 BYTE_SIZEDARR ... 48
2.2.30.8.2 WORD_SIZEDARR ... 49
2.2.30.8.3 DWORD_SIZEDARR ... 49
2.2.30.8.4 HYPER_SIZEDARR ... 49

2.2.30.9 SAFEARRAYUNION .. 50
2.2.30.10 SAFEARRAY .. 50

2.2.31 RecordInfoData .. 52
2.2.32 DISPID .. 53

2.2.32.1 Reserved DISPIDs ... 53
2.2.33 DISPPARAMS ... 53
2.2.34 EXCEPINFO .. 54
2.2.35 MEMBERID .. 55

2.2.35.1 Reserved MEMBERIDs.. 55
2.2.36 HREFTYPE .. 55
2.2.37 TYPEDESC ... 56
2.2.38 ARRAYDESC ... 56
2.2.39 PARAMDESCEX ... 57
2.2.40 PARAMDESC .. 57
2.2.41 ELEMDESC ... 57
2.2.42 FUNCDESC .. 58
2.2.43 VARDESC .. 59
2.2.44 TYPEATTR .. 60
2.2.45 TLIBATTR .. 62
2.2.46 CUSTDATAITEM .. 63
2.2.47 CUSTDATA ... 63
2.2.48 SCODE .. 64
2.2.49 IDL Syntax Extensions .. 64

2.2.49.1 COM Server Categories .. 67
2.2.49.1.1 Aggregatable Servers ... 67
2.2.49.1.2 Connectable Servers .. 67
2.2.49.1.3 Bindable Servers ... 68

2.2.49.2 IDL Automation Scope ... 68
2.2.49.3 Automation-Compatible Types .. 70
2.2.49.4 Automation Interfaces ... 73

2.2.49.4.1 Automation-Compatible Interfaces ... 73
2.2.49.4.2 Dual Interfaces ... 74
2.2.49.4.3 Dispinterface Interfaces ... 74

2.2.49.5 Automation Members .. 74
2.2.49.5.1 Interfaces Automation Members .. 74
2.2.49.5.2 Bindable Properties .. 75

7 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.49.5.3 Dispinterfaces Automation Members .. 76
2.2.49.6 Automation Parameters ... 77
2.2.49.7 AIDL Interfaces and ODL Dispinterfaces ... 78

2.2.49.7.1 Property Equivalence ... 78
2.2.49.7.2 Method Equivalence ... 78

2.2.49.8 Coclass Specifications .. 78
2.2.49.9 Module Specifications .. 80
2.2.49.10 Referencing External Types .. 81

2.2.50 String Handling .. 81
2.2.50.1 String Equivalence .. 82
2.2.50.2 Globalization .. 82

2.2.51 Automation Hash Values .. 82
2.2.51.1 ComputeHash Method ... 82
2.2.51.2 ComputeHashDBCS Method.. 84
2.2.51.3 MapDBChar Method ... 87
2.2.51.4 Locale Names ... 87
2.2.51.5 Primary Lookup Tables .. 87
2.2.51.6 DBCS Substitution Tables... 92

3 Protocol Details .. 95
3.1 Automation Server Details .. 95

3.1.1 Abstract Data Model ... 95
3.1.2 Timers .. 95
3.1.3 Initialization .. 95
3.1.4 Message Processing Events and Sequencing Rules .. 96

3.1.4.1 IDispatch::GetTypeInfoCount (Opnum 3) .. 96
3.1.4.2 IDispatch::GetTypeInfo (Opnum 4) ... 97
3.1.4.3 IDispatch::GetIDsOfNames (Opnum 5) ... 97
3.1.4.4 IDispatch::Invoke (Opnum 6) .. 98

3.1.4.4.1 Invoke Consistency Checks ... 101
3.1.4.4.2 Invoke Argument-Parameter Mapping ... 101
3.1.4.4.3 Handling Default Value and Optional Arguments..................................... 101
3.1.4.4.4 Argument Coercion ... 102

3.1.5 Timer Events .. 102
3.1.6 Other Local Events .. 102

3.2 Automation Client Details .. 102
3.2.1 Abstract Data Model .. 102
3.2.2 Timers ... 102
3.2.3 Initialization ... 103
3.2.4 Message Processing and Sequencing Rules ... 103
3.2.5 Timer Events .. 103
3.2.6 Other Local Events .. 103

3.3 IEnumVARIANT Server Details .. 103
3.3.1 Abstract Data Model .. 103
3.3.2 Timers ... 104
3.3.3 Initialization ... 104
3.3.4 Message Processing and Sequencing Rules ... 104

3.3.4.1 IEnumVARIANT::Next (Opnum 3) .. 104
3.3.4.2 IEnumVARIANT::Skip (Opnum 4) .. 105
3.3.4.3 IEnumVARIANT::Reset (Opnum 5)... 106
3.3.4.4 IEnumVARIANT::Clone (Opnum 6) .. 106

3.3.5 Timer Events .. 106
3.3.6 Other Local Events .. 107

8 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4 IEnumVARIANT Client Details ... 107
3.4.1 Abstract Data Model .. 107
3.4.2 Timers ... 107
3.4.3 Initialization ... 107
3.4.4 Message Processing and Sequencing Rules ... 107
3.4.5 Timer Events .. 107
3.4.6 Other Local Events .. 107

3.5 ITypeComp Server Details ... 107
3.5.1 Abstract Data Model .. 107
3.5.2 Timers ... 108
3.5.3 Initialization ... 108
3.5.4 Message Processing Events and Sequencing Rules ... 108

3.5.4.1 ITypeComp::Bind (Opnum 3) .. 108
3.5.4.1.1 Binding Context ... 110

3.5.4.1.1.1 Automation Type Library Binding Context .. 110
3.5.4.1.1.2 Automation Type Description Binding Context 110

3.5.4.1.2 Types Returned with Bound Elements ... 111
3.5.4.1.2.1 Types Returned with ITypeLib Members .. 111
3.5.4.1.2.2 Types Returned with ITypeInfo Members ... 111

3.5.4.2 ITypeComp::BindType (Opnum 4) ... 112
3.5.5 Timer Events .. 112
3.5.6 Other Local Events .. 113

3.6 ITypeComp Client Details ... 113
3.6.1 Abstract Data Model .. 113
3.6.2 Timers ... 113
3.6.3 Initialization ... 113
3.6.4 Message Processing Events and Sequencing Rules ... 113
3.6.5 Timer Events .. 113
3.6.6 Other Local Events .. 113

3.7 ITypeInfo Server Details .. 113
3.7.1 Abstract Data Model .. 113

3.7.1.1 Common Automation Type Description Elements ... 113
3.7.1.2 TYPEKIND Dependent Automation Type Description Elements 115

3.7.2 Timers ... 116
3.7.3 Initialization ... 116
3.7.4 Message Processing Events and Sequencing Rules ... 116

3.7.4.1 ITypeInfo::GetTypeAttr (Opnum 3) .. 118
3.7.4.2 ITypeInfo::GetTypeComp (Opnum 4) ... 118
3.7.4.3 ITypeInfo::GetFuncDesc (Opnum 5) .. 119
3.7.4.4 ITypeInfo::GetVarDesc (Opnum 6) .. 119
3.7.4.5 ITypeInfo::GetNames (Opnum 7) .. 120
3.7.4.6 ITypeInfo::GetRefTypeOfImplType (Opnum 8) .. 121
3.7.4.7 ITypeInfo::GetImplTypeFlags (Opnum 9) ... 122
3.7.4.8 ITypeInfo::GetDocumentation (Opnum 12) ... 123
3.7.4.9 ITypeInfo::GetDllEntry (Opnum 13) ... 124
3.7.4.10 ITypeInfo::GetRefTypeInfo (Opnum 14) ... 125
3.7.4.11 ITypeInfo::CreateInstance (Opnum 16) .. 126
3.7.4.12 ITypeInfo::GetMops (Opnum 17) ... 126
3.7.4.13 ITypeInfo::GetContainingTypeLib (Opnum 18) .. 127

3.7.5 Timer Events .. 127
3.7.6 Other Local Events .. 127

3.8 ITypeInfo Client Details ... 127
3.8.1 Abstract Data Model .. 127

9 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.8.2 Timers ... 127
3.8.3 Initialization ... 127
3.8.4 Message Processing Events and Sequencing Rules ... 127
3.8.5 Timer Events .. 128
3.8.6 Other Local Events .. 128

3.9 ITypeInfo2 Server Details .. 128
3.9.1 Abstract Data Model .. 128
3.9.2 Timers ... 129
3.9.3 Initialization ... 129
3.9.4 Message Processing Events and Sequencing Rules ... 129

3.9.4.1 ITypeInfo2::GetTypeKind (Opnum 22) ... 130
3.9.4.2 ITypeInfo2::GetTypeFlags (Opnum 23) .. 131
3.9.4.3 ITypeInfo2::GetFuncIndexOfMemId (Opnum 24) ... 131
3.9.4.4 ITypeInfo2::GetVarIndexOfMemId (Opnum 25) ... 132
3.9.4.5 ITypeInfo2::GetCustData (Opnum 26) ... 132
3.9.4.6 ITypeInfo2::GetFuncCustData (Opnum 27) ... 133
3.9.4.7 ITypeInfo2::GetParamCustData (Opnum 28) .. 134
3.9.4.8 ITypeInfo2::GetVarCustData (Opnum 29)... 134
3.9.4.9 ITypeInfo2::GetImplTypeCustData (Opnum 30) .. 135
3.9.4.10 ITypeInfo2::GetDocumentation2 (Opnum 31) ... 136
3.9.4.11 ITypeInfo2::GetAllCustData (Opnum 32) .. 137
3.9.4.12 ITypeInfo2::GetAllFuncCustData (Opnum 33) .. 137
3.9.4.13 ITypeInfo2::GetAllParamCustData (Opnum 34) ... 138
3.9.4.14 ITypeInfo2::GetAllVarCustData (Opnum 35) ... 139
3.9.4.15 ITypeInfo2::GetAllImplTypeCustData (Opnum 36) 139

3.9.5 Timer Events .. 140
3.9.6 Other Local Events .. 140

3.10 ITypeInfo2 Client Details .. 140
3.10.1 Abstract Data Model ... 140
3.10.2 Timers ... 140
3.10.3 Initialization .. 140
3.10.4 Message Processing Events and Sequencing Rules ... 140
3.10.5 Timer Events .. 140
3.10.6 Other Local Events ... 140

3.11 ITypeLib Server Details .. 141
3.11.1 Abstract Data Model ... 141
3.11.2 Timers ... 142
3.11.3 Initialization .. 142
3.11.4 Message Processing Events and Sequencing Rules ... 142

3.11.4.1 ITypeLib::GetTypeInfoCount (Opnum 3) ... 143
3.11.4.2 ITypeLib::GetTypeInfo (Opnum 4) ... 144
3.11.4.3 ITypeLib::GetTypeInfoType (Opnum 5) .. 144
3.11.4.4 ITypeLib::GetTypeInfoOfGuid (Opnum 6).. 145
3.11.4.5 ITypeLib::GetLibAttr (Opnum 7) .. 146
3.11.4.6 ITypeLib::GetTypeComp (Opnum 8) ... 146
3.11.4.7 ITypeLib::GetDocumentation (Opnum 9) .. 146
3.11.4.8 ITypeLib::IsName (Opnum 10) .. 148
3.11.4.9 ITypeLib::FindName (Opnum 11) ... 148

3.11.5 Timer Events .. 149
3.11.6 Other Local Events ... 149

3.12 ITypeLib Client Details ... 149
3.12.1 Abstract Data Model ... 149
3.12.2 Timers ... 150

10 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.12.3 Initialization .. 150
3.12.4 Message Processing Events and Sequencing Rules ... 150
3.12.5 Timer Events .. 150
3.12.6 Other Local Events ... 150

3.13 ITypeLib2 Server Details .. 150
3.13.1 Abstract Data Model ... 150
3.13.2 Timers ... 150
3.13.3 Initialization .. 151
3.13.4 Message Processing Events and Sequencing Rules ... 151

3.13.4.1 ITypeLib2::GetCustData (Opnum 13) ... 151
3.13.4.2 ITypeLib2::GetLibStatistics (Opnum 14) ... 152
3.13.4.3 ITypeLib2::GetDocumentation2 (Opnum 15) ... 152
3.13.4.4 ITypeLib2::GetAllCustData (Opnum 16) .. 153

3.13.5 Timer Events .. 153
3.13.6 Other Local Events ... 153

3.14 ITypeLib2 Client Details ... 154
3.14.1 Abstract Data Model ... 154
3.14.2 Timers ... 154
3.14.3 Initialization .. 154
3.14.4 Message Processing Events and Sequencing Rules ... 154
3.14.5 Timer Events .. 154
3.14.6 Other Local Events ... 154

4 Protocol Examples .. 155
4.1 AIDL-ODL Property Equivalence .. 155
4.2 AIDL-ODL Method Equivalence ... 155
4.3 Invoke Argument Parameter Mapping .. 155
4.4 Getting the Value of a Property .. 156
4.5 Setting the Value of a Property ... 157
4.6 Calling a Method with Byref and Optional Arguments ... 158
4.7 IEnumVARIANT Example ... 159

4.7.1 IEnumVARIANT Next() Example .. 160
4.7.2 IEnumVARIANT Skip() Example .. 161
4.7.3 IEnumVARIANT Reset() Example ... 162
4.7.4 IEnumVARIANT Clone() Example ... 162

4.8 Reading Type Information .. 163
4.8.1 Getting ITypeLib Implementations from Automation Server 163
4.8.2 Enumerating on All Types in a Type Library .. 164
4.8.3 Enumerating on All Enumerations in a Type Library ... 164
4.8.4 Enumerating All Nonsource Interfaces in a Coclass .. 164
4.8.5 Enumerating All Methods in an Interface .. 165
4.8.6 Retrieving Type Information ... 166
4.8.7 Binding to a Member of a Default Nonsource Interface of an Appobject Coclass 167
4.8.8 Binding to a Member of a Partner Interface .. 168

5 Security .. 169
5.1 Security Considerations for Implementer ... 169
5.2 Index of Security Parameters ... 169

6 Appendix A: Full IDL ... 170

7 Appendix B: Product Behavior .. 187

8 Appendix C: Full ABNF .. 193

11 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

9 Change Tracking... 199

10 Index ... 201

12 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

The OLE Automation Protocol uses Distributed Component Object Model (DCOM) as its
transport layer. It provides support for an additional set of types, a late-bound calling mechanism,
and type description and discovery. The late-bound calling mechanism is based on dispatch
identifiers and a dispatching table that maps the identifiers to specific operations. The dispatch
identifiers and the dispatching table are specified by using IDL extensions specified in this
document. Type description and discovery are based on a set of IDL extensions and a set of
interfaces that are implemented by type library and type description servers.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

authentication level
Authentication Service (AS)
client
class identifier (CLSID)
Distributed Component Object Model (DCOM)

dynamic endpoint
endpoint
globally unique identifier (GUID)
interface
Interface Definition Language (IDL)
interface identifier (IID)
language code identifier (LCID)

Microsoft Interface Definition Language (MIDL)
Network Data Representation (NDR)
object
object reference
object remote procedure call (ORPC)
OBJREF
opnum

property
remote procedure call (RPC)
RPC protocol sequence
RPC transfer syntax
RPC transport
security provider

server
universally unique identifier (UUID)

well-known endpoint

The following terms are specific to this document:

aggregatable server: A COM server that can be contained by another COM server and can
allow its interfaces to be used as if they were defined by the containing server.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

automation client: An application that can manipulate objects exposed by other applications,
which are also called automation servers.

Automation Interface Definition Language (AIDL) interface: An automation interface
that is not defined with the syntax of properties and methods.

automation interface: An interface that supports the OLE Automation Protocol.

automation scope: An IDL scope that provides a context for automation types that are
defined or referenced.

automation scope family: A set of automation scopes that share the same GUID.

automation scope generation: A set of automation scopes that belong to the same
automation family and share the same version.

automation server: An application that exposes its functionality through COM interfaces to

other applications, which are also called automation clients.

automation type browser: A COM client that uses automation type descriptions to
examine the functionality provided by an automation type library or an automation
server.

automation type description: A COM server that describes and provides access to the
members of a type that is defined or referenced in an automation scope.

automation type library: A COM server that provides descriptions of the automation-
compatible types that are defined or referenced in an automation scope.

automation types: Types that support the OLE Automation Protocol.

bindable server: A server that is able to notify a client whenever the value of a specified
property is changed.

byref argument: An argument to be modified by the invoked automation method. Such an

argument is represented as a VARIANT with the VT_BYREF flag set.

coclass: A component object (an association between a class identifier (CLSID) and a set of
named implementations of IUnknown) that is defined using the coclass keyword.

COM server: A server that provides access to a component object (an association between a
CLSID and a set of named implementations of IUnknown).

connectable server: A server that uses specified source interfaces to communicate with
clients that implement those interfaces.

DCOM interface: An ORPC interface.

dispatch ID (DISPID): A 32-bit signed integer used in automation interfaces to identify
methods, properties, and arguments.

dispinterface: An automation interface defined by using the dispinterface keyword or as
part of a dual interface.

dual interface: An interface that can act either as a dispinterface or a DCOM interface.

named argument: An argument specified in a call both by its value and by its DISPID. Named

arguments always follow positional arguments.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

14 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ODL dispinterface: An Object Description Language (ODL) dispinterface defined using the
syntax of properties and methods.

partner dispinterface: An automation type description that exposes the members of a dual
interface as a dispinterface.

partner interface: An automation type description that exposes the members of a dual
interface as a DCOM interface.

reference dispinterface: A dispinterface defined by referencing a DCOM interface.

source interface: An interface that is defined by a connectable server, and implemented by
a client to enable the server to initiate communication with the client.

user-defined type (UDT): A group of related data items that is declared as one type of
information in an Interface Definition Language (IDL) file.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because

links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-UCODEREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90462

15 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MSDN] Microsoft Corporation, "MSDN Home Page", http://msdn.microsoft.com/en-us/default.aspx

[MSDN-CALLCONV] Microsoft Corporation, "C++ Calling Conventions",
http://msdn.microsoft.com/en-us/library/k2b2ssfy(VS.80).aspx

[MSDN-COM] Microsoft Corporation, "Component Object Model", http://msdn.microsoft.com/en-
us/library/aa286559.aspx

[MSDN-ErrorHandling] Microsoft Corporation, "Win32 and Com Development Error Handling",
http://msdn.microsoft.com/en-us/library/ms679320.aspx

[MSDN-SafeArrayAccessData] Microsoft Corporation, "SafeArrayAccessData",

http://msdn.microsoft.com/en-us/library/ms221620.aspx

[MSDN-WinHelp] Microsoft Corporation, "WinHelp function", http://msdn.microsoft.com/en-
us/library/ms647953.aspx

[SCODE] Microsoft Corporation, "SCODE", http://msdn.microsoft.com/en-us/library/ms527117.aspx

1.3 Overview

The OLE Automation Protocol extends the use of DCOM by providing support for marshaling an
additional set of types (known as automation types) and by providing support for exposing COM
components to automation clients (such as scripting engines) through a late-bound calling
alternative to the traditional COM calls. Additionally, the OLE Automation Protocol specifies how a
type browser can discover and interpret type information provided by a type description server.

The automation client and server can be present on the same machine, or on different machines
connected by a network. Automation takes advantage of functionality provided by the Microsoft

Component Object Model (for more information, see [MSDN-COM]) and the Microsoft Distributed

Component Object Model (as specified in [MS-DCOM]) for creating, activating, and managing the
lifetime of the objects exposed by an automation server.

To support late-bound calling, the OLE Automation Protocol specifies the following:

How a server defines a set of automation methods that can be dispatched, based on a dispatch

ID (DISPID).

How the server provides a way to map a method name to the DISPID.

How the server performs the late-bound call, based on the DISPID.

The automation methods are defined by using extensions to the IDL language specified in [C706]
sections 6, 7, 8, 9, 10, 11, 12, 13, and 14. These extensions provide the definition of automation
interfaces containing automation methods and properties. Each IDL definition of an automation
method and property can have a unique (per interface) integer value associated with it. This value

is defined as a DISPID and is statically discoverable (from the IDL specification of the method), and
dynamically discoverable (through a call to IDispatch::GetIDsOfNames (section 3.1.4.3)). This
value is then used by automation clients to invoke the automation method, or to set or retrieve an
automation property (through a call to IDispatch::Invoke).

To support this late-bound calling mechanism, Automation defines a set of types, VARIANT (section
2.2.29) being the most important of them. A VARIANT can be thought of as a discriminated union of

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=94981
http://go.microsoft.com/fwlink/?LinkId=89977
http://go.microsoft.com/fwlink/?LinkId=89977
http://go.microsoft.com/fwlink/?LinkId=94931
http://go.microsoft.com/fwlink/?LinkId=90119
http://go.microsoft.com/fwlink/?LinkId=90163
http://go.microsoft.com/fwlink/?LinkId=90163
http://go.microsoft.com/fwlink/?LinkId=90511
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89977
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
http://go.microsoft.com/fwlink/?LinkId=91364
http://go.microsoft.com/fwlink/?LinkId=91365
http://go.microsoft.com/fwlink/?LinkId=91369
http://go.microsoft.com/fwlink/?LinkId=91370
http://go.microsoft.com/fwlink/?LinkId=91372
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=89826
http://go.microsoft.com/fwlink/?LinkId=90712
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

16 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

all automation-supported types. The OLE Automation Protocol imposes the following restriction on
the automation interfaces: All types of method arguments and properties can be stored as VARIANT

structures.

The following illustration shows a generic automation call sequence:

Figure 1: Generic Automation call

This automation call response can be optimized if the automation client knows the DISPIDs
associated with an automation server's method at compile time, and forgoes the initial call to
GetIDsOfNames:

Figure 2: Optimized Automation call

To support type description and discovery, the OLE Automation Protocol specifies:

How the automation server supports queries for type-description support.

How to specify an extended set of capabilities and relationships using automation IDL extensions.

How a server can provide access to the information specified in the IDL.

An automation server specifies that it provides type information by implementing
IDispatch::GetTypeInfoCount (section 3.1.4.1), and exposes access to the type description

17 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

server that describes the server's dispinterface by implementing IDispatch::GetTypeInfo
(section 3.1.4.2).

The following diagram illustrates a generic query for type information.

Figure 3: Generic query for type information

To support exposing type information related to COM servers, the OLE Automation Protocol
specifies the set of types that are used to encapsulate semantic information associated with a COM
server, with the interfaces it implements, and with the methods and properties defined on those
interfaces (TYPEATTR (section 2.2.44), FUNCDESC (section 2.2.42), and VARDESC (section
2.2.43) being the most important), in addition to the set of interfaces that a server must implement

to provide COM clients with access to the type information (ITypeInfo being the central one).

Figure 4: Generic query for type information related to COM servers

18 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.4 Relationship to Other Protocols

The OLE Automation Protocol uses the DCOM Remote Protocol, as specified in [MS-DCOM].

1.5 Prerequisites/Preconditions

The DCOM Remote Protocol, as specified in [MS-DCOM], must be installed on both the automation
client and automation server.

1.6 Applicability Statement

The OLE Automation Protocol is useful for exposing application functionality to scripting languages
and across a distributed environment.

Exposing COM objects as automation servers offers several benefits:

Exposed objects from many applications are available in a single programming environment.

Software implementers can choose from these objects to create solutions that span applications.

Exposed objects are accessible from any scripting environment or programming tool that

implements automation. Systems integrators are not limited to the programming language in
which the objects were developed. Instead, they can choose the programming tool or scripting

language that best suits their needs and capabilities.

Object names can remain consistent across versions of an application and can conform

automatically to the user's language.

1.7 Versioning and Capability Negotiation

Supported Transports: This protocol uses the DCOM Remote Protocol, as specified in [MS-DCOM], as

its transport.

Protocol Version: This protocol comprises two DCOM interfaces: IDispatch and IEnumVARIANT,

which are both version 0.0.

1.8 Vendor-Extensible Fields

This protocol uses HRESULTs, as specified in [MS-ERREF]. Vendors can choose their own values for
this field as long as the C bit (0x20000000) is set, which indicates that it is a customer code.

This protocol uses Win32 error codes. These values are taken from the Windows error number
space, as specified in [MS-ERREF]. Vendors SHOULD<1> reuse those values with their indicated
meaning. Choosing any other value runs the risk of a collision.

This protocol uses DISPIDs, which are vendor-extensible. Vendors are free to choose their own
values, as long as the method and property DISPIDs are strictly positive 32-bit values. For more
information about DISPIDs, see section 2.2.32.

1.9 Standards Assignments

The following GUIDs are used by the OLE Automation Protocol.

Constant/value Description

CLSID_RecordInfo The OBJREF_CUSTOM unmarshaler CLSID for RecordInfoData

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

19 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Constant/value Description

{0000002F-0000-0000-C000-

000000000046}

(section 2.2.31).

IID_IRecordInfo

{0000002F-0000-0000-C000-

000000000046}

The value of the IID field of the pRecInfo OBJREF structure (see

section 2.2.28.2.1).

IID_IDispatch

{00020400-0000-0000-C000-

000000000046}

The GUID associated with the IDispatch interface (see section

3.1).

IID_ITypeComp

{00020403-0000-0000-C000-

000000000046}

The GUID associated with the ITypeComp interface (see section

3.5).

IID_ITypeInfo

{00020401-0000-0000-C000-

000000000046}

The GUID associated with the ITypeInfo interface (see section

3.7).

IID_ITypeInfo2

{00020412-0000-0000-C000-

000000000046}

The GUID associated with the ITypeInfo2 interface (see section

3.9).

IID_ITypeLib

{00020402-0000-0000-C000-

000000000046}

The GUID associated with the ITypeLib interface (see section

3.11).

IID_ITypeLib2

{00020411-0000-0000-C000-

000000000046}

The GUID associated with the ITypeLib2 interface (see section

3.13).

IID_IUnknown

{00000000-0000-0000-C000-

000000000046}

The GUID associated with the IUnknown interface.

IID_IEnumVARIANT

{00020404-0000-0000-C000-

000000000046}

The GUID associated with the IEnumVARIANT interface (see

section 3.3).

IID_NULL

{00000000-0000-0000-0000-

000000000000}

The GUID that identifies a NULL value (as specified in [C706]

section A1 nil UUID).

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89825
%5bMS-GLOS%5d.pdf

20 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Messages

The following sections specify how OLE Automation Protocol messages are encapsulated on the wire,
common OLE Automation Protocol data types, and the IDL extensions that support late-bound
calling.

2.1 Transport

This protocol uses remote procedure call (RPC) dynamic endpoints (as specified in [C706]
sections 6, 7, 8, 9, 10, 11, 12, 13, and 14) and the DCOM Remote Protocol, as specified in [MS-

DCOM].

To access an interface, the client MUST request a DCOM connection to its well-known object UUID
endpoint on the server, as specified in section 1.9.

The RPC version number for all interfaces MUST be 0.0.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support the Network Data

Representation (NDR) transfer syntax only, as specified in [C706] sections 6, 7, 8, 9, 10, 11, 12,
13, and 14.

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], additional data
types are defined in the following sections.

2.2.1 BYTE

A BYTE is an 8-bit, unsigned value that corresponds to a single octet in a network protocol.

This type is declared as follows:

typedef byte BYTE;

2.2.2 IID

The IID type specifies an interface identifier (IID).

A globally unique identifier (GUID), as specified in [MS-DTYP], section 2.3.4.

This type is declared as follows:

typedef GUID IID;

2.2.3 LPOLESTR

The following is the type definition for the LPOLESTR type.

This type is declared as follows:

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
http://go.microsoft.com/fwlink/?LinkId=91364
http://go.microsoft.com/fwlink/?LinkId=91365
http://go.microsoft.com/fwlink/?LinkId=91369
http://go.microsoft.com/fwlink/?LinkId=91370
http://go.microsoft.com/fwlink/?LinkId=91372
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=89826
http://go.microsoft.com/fwlink/?LinkId=90712
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
http://go.microsoft.com/fwlink/?LinkId=91364
http://go.microsoft.com/fwlink/?LinkId=91365
http://go.microsoft.com/fwlink/?LinkId=91369
http://go.microsoft.com/fwlink/?LinkId=91370
http://go.microsoft.com/fwlink/?LinkId=91372
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=89826
http://go.microsoft.com/fwlink/?LinkId=90712
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

21 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef [string] wchar_t* LPOLESTR;

2.2.4 REFIID

The following is the type definition for the REFIID type.

This type is declared as follows:

typedef IID* REFIID;

2.2.5 REFGUID

The following is the type definition for the REFGUID type.

This type is declared as follows:

typedef GUID* REFGUID;

2.2.6 PSAFEARRAY, LPSAFEARRAY

Definitions for the PSAFEARRAY and LPSAFEARRAY types follow:

This type is declared as follows:

typedef [unique] SAFEARRAY* PSAFEARRAY, *LPSAFEARRAY;

2.2.7 VARIANT Type Constants

The VARENUM enumeration constants are used in the discriminant field, vt, of the VARIANT type
specified in section 2.2.29.2. When present, the VT_BYREF flag MUST be in an OR relation with
another value to specify the byref argument for the VARIANT. The VT_EMPTY and VT_NULL values
MUST NOT be specified with the VT_BYREF bit flag.

The following values are also used in the discriminant field, vt, of the TYPEDESC structure specified
in section 2.2.37.

The meaning of each VARIANT type constant is specified as follows. The Context column specifies

the context in which each constant is used. A constant MUST NOT be used in a VARIANT unless it is
specified with a "V". A constant MUST NOT be used in a SAFEARRAY unless it is specified with an
"S". A constant MUST NOT be used in a TYPEDESC unless it is specified with a "T".

typedef enum tagVARENUM

{

 VT_EMPTY = 0x0000,

22 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VT_NULL = 0x0001,

 VT_I2 = 0x0002,

 VT_I4 = 0x0003,

 VT_R4 = 0x0004,

 VT_R8 = 0x0005,

 VT_CY = 0x0006,

 VT_DATE = 0x0007,

 VT_BSTR = 0x0008,

 VT_DISPATCH = 0x0009,

 VT_ERROR = 0x000A,

 VT_BOOL = 0x000B,

 VT_VARIANT = 0x000C,

 VT_UNKNOWN = 0x000D,

 VT_DECIMAL = 0x000E,

 VT_I1 = 0x0010,

 VT_UI1 = 0x0011,

 VT_UI2 = 0x0012,

 VT_UI4 = 0x0013,

 VT_I8 = 0x0014,

 VT_UI8 = 0x0015,

 VT_INT = 0x0016,

 VT_UINT = 0x0017,

 VT_VOID = 0x0018,

 VT_HRESULT = 0x0019,

 VT_PTR = 0x001A,

 VT_SAFEARRAY = 0x001B,

 VT_CARRAY = 0x001C,

 VT_USERDEFINED = 0x001D,

 VT_LPSTR = 0x001E,

 VT_LPWSTR = 0x001F,

 VT_RECORD = 0x0024,

 VT_INT_PTR = 0x0025,

 VT_UINT_PTR = 0x0026,

 VT_ARRAY = 0x2000,

 VT_BYREF = 0x4000

} VARENUM;

VT_EMPTY:

Context Description

V The type of the contained field is undefined. When this flag is specified, the VARIANT

MUST NOT contain a data field. The VARIANT definition is specified in section 2.2.29.2.

VT_NULL:

Context Description

V The type of the contained field is NULL. When this flag is specified, the VARIANT MUST

NOT contain a data field. The VARIANT definition is specified in section 2.2.29.2.

VT_I2:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 2-byte

23 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Context Description

signed integer.

VT_I4:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 4-byte

signed integer.

VT_R4:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 4-byte

IEEE floating-point number.

VT_R8:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be an 8-

byte IEEE floating-point number.

VT_CY:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be

CURRENCY (see section 2.2.24).

VT_DATE:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be DATE

(see section 2.2.25).

VT_BSTR:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be BSTR

(see section 2.2.23).

VT_DISPATCH:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a

pointer to IDispatch (see section 3.1.4).

24 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VT_ERROR:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be

HRESULT.

VT_BOOL:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be

VARIANT_BOOL (see section 2.2.27).

VT_VARIANT:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be

VARIANT (see section 2.2.29). It MUST appear with the bit flag VT_BYREF.

VT_UNKNOWN:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a

pointer to IUnknown.

VT_DECIMAL:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be

DECIMAL (see section 2.2.26).

VT_I1:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 1-byte

integer.

VT_UI1:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 1-byte

unsigned integer.

VT_UI2:

25 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 2-byte

unsigned integer.

VT_UI4:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 4-byte

unsigned integer.

VT_I8:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be an 8-

byte signed integer.

VT_UI8:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be an 8-

byte unsigned integer.

VT_INT:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 4-byte

signed integer.

VT_UINT:

Context Description

V, S, T Either the specified type, or the type of the element or contained field MUST be a 4-byte

unsigned integer.

VT_VOID:

Context Description

T The specified type MUST be void.

VT_HRESULT:

Context Description

T The specified type MUST be HRESULT.

VT_PTR:

26 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Context Description

T The specified type MUST be a unique pointer, as specified in [C706] section 4.2.20.2.

VT_SAFEARRAY:

Context Description

T The specified type MUST be SAFEARRAY (section 2.2.30).

VT_CARRAY:

Context Description

T The specified type MUST be a fixed-size array.

VT_USERDEFINED:

Context Description

T The specified type MUST be user defined.

VT_LPSTR:

Context Description

T The specified type MUST be a NULL-terminated string, as specified in [C706] section

14.3.4.

VT_LPWSTR:

Context Description

T The specified type MUST be a zero-terminated string of UNICODE characters, as

specified in [C706], section 14.3.4.

VT_RECORD:

Context Description

V, S The type of the element or contained field MUST be a BRECORD (see section 2.2.28.2).

VT_INT_PTR:

Context Description

T The specified type MUST be either a 4-byte or an 8-byte signed integer. The size of the

integer is platform specific and determines the system pointer size value, as specified in

section 2.2.21.

VT_UINT_PTR:

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

27 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Context Description

T The specified type MUST be either a 4 byte or an 8 byte unsigned integer. The size of

the integer is platform specific and determines the system pointer size value, as

specified in section 2.2.21.

VT_ARRAY:

Context Description

V, S The type of the element or contained field MUST be a SAFEARRAY (see section

2.2.30.10).

VT_BYREF:

Context Description

V, S The type of the element or contained field MUST be a pointer to one of the types listed

in the previous rows of this table. If present, this bit flag MUST appear in a VARIANT

discriminant (see section 2.2.28) with one of the previous flags.

2.2.8 SAFEARRAY Feature Constants

The SF_TYPE enumeration values are used in the discriminant field, sfType, of a
SAFEARRAYUNION structure.

The SAFEARRAY feature constants are defined in the SF_TYPE enumeration.

typedef [v1_enum] enum tagSF_TYPE

{

 SF_ERROR = VT_ERROR,

 SF_I1 = VT_I1,

 SF_I2 = VT_I2,

 SF_I4 = VT_I4,

 SF_I8 = VT_I8,

 SF_BSTR = VT_BSTR,

 SF_UNKNOWN = VT_UNKNOWN,

 SF_DISPATCH = VT_DISPATCH,

 SF_VARIANT = VT_VARIANT,

 SF_RECORD = VT_RECORD,

 SF_HAVEIID = VT_UNKNOWN | 0x8000

} SF_TYPE;

SF_ERROR: This value means that the SAFEARRAY was incorrectly marshaled. The receiver

MUST reject any call that has a SAFEARRAY argument with this flag specified, by raising an
RPC_X_BAD_STUB_DATA RPC exception.

Hex value is 0x0000000A.

Element marshaling size: N/A

SF_I1: The type of the elements contained in the SAFEARRAY MUST be a 1-byte integer.

Hex value is 0x00000010.

28 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Element marshaling size in bytes: 1

SF_I2: The type of the elements contained in the SAFEARRAY MUST be a 2-byte integer.

Hex value is 0x00000002.

Element marshaling size in bytes: 2

SF_I4: The type of the elements contained in the SAFEARRAY MUST be a 4-byte integer.

Hex value is 0x00000003.

Element marshaling size in bytes: 4

SF_I8: The type of the elements contained in the SAFEARRAY MUST be an 8-byte integer.

Hex value is 0x00000014.

Element marshaling size in bytes: 8

SF_BSTR: The type of the elements contained in the SAFEARRAY MUST be a BSTR.

Hex value is 0x00000008.

Element marshaling size in bytes: 4

SF_UNKNOWN: The type of the elements contained in the SAFEARRAY MUST be a pointer to
IUnknown.

Hex value is 0x0000000D.

Element marshaling size in bytes: 4

SF_DISPATCH: The type of the elements contained in the SAFEARRAY MUST be a pointer to
IDispatch (see section 3.1.4).

Hex value is 0x00000009.

Element marshaling size in bytes: 4

SF_VARIANT: The type of the elements contained in the SAFEARRAY MUST be VARIANT.

Hex value is 0x0000000C.

Element marshaling size in bytes: 16

SF_RECORD: The type of the elements contained in the SAFEARRAY is a user-defined type
(UDT) (as defined in section 2.2.28.1.

Hex value is 0x00000024.

Element marshaling size in bytes: 4

SF_HAVEIID: The type of the elements contained in the SAFEARRAY MUST be an
MInterfacePointer.

Hex value is 0x0000800D.

Element marshaling size in bytes: 4

%5bMS-DCOM%5d.pdf

29 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.9 ADVFEATUREFLAGS Advanced Feature Flags

The following values are used in the field fFeatures of a SAFEARRAY (section 2.2.30.10) data
type.

typedef enum tagADVFEATUREFLAGS

{

 FADF_AUTO = 0x0001,

 FADF_STATIC = 0x0002,

 FADF_EMBEDDED = 0x0004,

 FADF_FIXEDSIZE = 0x0010,

 FADF_RECORD = 0x0020,

 FADF_HAVEIID = 0x0040,

 FADF_HAVEVARTYPE = 0x0080,

 FADF_BSTR = 0x0100,

 FADF_UNKNOWN = 0x0200,

 FADF_DISPATCH = 0x0400,

 FADF_VARIANT = 0x0800

} ADVFEATUREFLAGS;

FADF_AUTO: MUST be set if the SAFEARRAY is allocated on the stack. This flag MUST be
ignored on receipt.

FADF_STATIC: MUST be set if the SAFEARRAY is statically allocated. This flag MUST be
ignored on receipt.

FADF_EMBEDDED: MUST be set if the SAFEARRAY is embedded in a structure. This flag MUST
be ignored on receipt.

FADF_FIXEDSIZE: MUST be set if the SAFEARRAY cannot be resized or reallocated. This flag
MUST be ignored on receipt.

FADF_RECORD: The SAFEARRAY MUST contain elements of a UDT (see section 2.2.28.1)

FADF_HAVEIID: The SAFEARRAY MUST contain MInterfacePointers elements.

FADF_HAVEVARTYPE: If this bit flag is set, the high word of the cLocks field of the
SAFEARRAY MUST contain a VARIANT type constant that describes the type of the array's
elements (see sections 2.2.7 and 2.2.30.10).

FADF_BSTR: The SAFEARRAY MUST contain an array of BSTR elements (see section 2.2.23).

FADF_UNKNOWN: The SAFEARRAY MUST contain an array of pointers to IUnknown.

FADF_DISPATCH: The SAFEARRAY MUST contain an array of pointers to IDispatch (see

section 3.1.4).

FADF_VARIANT: The SAFEARRAY MUST contain an array of VARIANT instances.

2.2.10 CALLCONV Calling Convention Constants

The CALLCONV enumeration values are used in the callconv field of a FUNCDESC to identify the
calling convention of a local method defined in the automation type library module, as specified in
sections 2.2.42 and 2.2.49.9 .

The following calling convention constants are defined in the CALLCONV enumeration:

30 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef [v1_enum] enum tagCALLCONV

{

 CC_CDECL = 1,

 CC_PASCAL = 2,

 CC_STDCALL = 4

} CALLCONV;

CC_CDECL: MUST be set if the method was declared with the cdecl keyword.

CC_PASCAL: MUST be set if the method was declared with the pascal keyword.

CC_STDCALL: MUST be set if the method was declared with the stdcall keyword.

2.2.11 FUNCFLAGS Function Feature Constants

The FUNCFLAGS enumeration values are used in the wFuncFlags field of a FUNCDESC to identify
features of a function, as specified in section 2.2.42.

The function feature constants are defined in the FUNCFLAGS enumeration.

typedef enum tagFUNCFLAGS

{

 FUNCFLAG_FRESTRICTED = 0x00000001,

 FUNCFLAG_FSOURCE = 0x00000002,

 FUNCFLAG_FBINDABLE = 0x00000004,

 FUNCFLAG_FREQUESTEDIT = 0x00000008,

 FUNCFLAG_FDISPLAYBIND = 0x00000010,

 FUNCFLAG_FDEFAULTBIND = 0x00000020,

 FUNCFLAG_FHIDDEN = 0x00000040,

 FUNCFLAG_FUSESGETLASTERROR = 0x00000080,

 FUNCFLAG_FDEFAULTCOLLELEM = 0x00000100,

 FUNCFLAG_FUIDEFAULT = 0x00000200,

 FUNCFLAG_FNONBROWSABLE = 0x00000400,

 FUNCFLAG_FREPLACEABLE = 0x00000800,

 FUNCFLAG_FIMMEDIATEBIND = 0x00001000

} FUNCFLAGS;

FUNCFLAG_FRESTRICTED: MUST be set if the method or property was declared with the
[restricted] attribute (as specified in section 2.2.49.5.1).

FUNCFLAG_FSOURCE: MUST be set if the method or property is a member of an interface
declared with the [source] attribute (as specified in section 2.2.49.8).

FUNCFLAG_FBINDABLE: MUST be set if the property was declared with the [bindable]
attribute (as specified in section 2.2.49.5.2).

FUNCFLAG_FREQUESTEDIT: MUST be set if the property was declared with the [requestedit]
attribute (as specified in section 2.2.49.5.2).

FUNCFLAG_FDISPLAYBIND: MUST be set if the property was declared with the
[displaybind] attribute (as specified in section 2.2.49.5.2).

FUNCFLAG_FDEFAULTBIND: MUST be set if the property was declared with the
[defaultbind] attribute (as specified in section 2.2.49.5.2).

31 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

FUNCFLAG_FHIDDEN: MUST be set if the method or property was declared with the [hidden]
attribute (as specified in section 2.2.49.5.1).

FUNCFLAG_FUSESGETLASTERROR: MUST be set if the method or property was declared with
the [usesgetlasterror] attribute (as specified in section 2.2.49.9) and MUST be ignored on

receipt.

FUNCFLAG_FDEFAULTCOLLELEM: MUST be set if the method or property was declared with
the [defaultcollelem] attribute (as specified in section 2.2.49.5.1).

FUNCFLAG_FUIDEFAULT: MUST be set if the method or property was declared with the
[uidefault] attribute (as specified in section 2.2.49.5.1).

FUNCFLAG_FNONBROWSABLE: MUST be set if the property was declared with the
[nonbrowsable] attribute (as specified in section 2.2.49.5.1).

FUNCFLAG_FREPLACEABLE: MUST be set if the property was declared with the [replaceable]
attribute (as specified in section 2.2.49.5.1). MUST be ignored on receipt.

FUNCFLAG_FIMMEDIATEBIND: MUST be set if the property was declared with the
[immediatebind] attribute (as specified in section 2.2.49.5.2).

2.2.12 FUNCKIND Function Access Constants

The FUNCKIND enumeration values are used in the funckind field of a FUNCDESC to specify the
way that a method is accessed, as specified in section 2.2.42.

The following function access constants are defined in the FUNCKIND enumeration.

typedef [v1_enum] enum tagFUNCKIND

{

 FUNC_PUREVIRTUAL = 0x00000001,

 FUNC_STATIC = 0x00000003,

 FUNC_DISPATCH = 0x00000004

} FUNCKIND;

FUNC_PUREVIRTUAL: MUST be set if the method described by the FUNCDESC structure is a

member of an interface whose associated TYPEKIND value is TKIND_INTERFACE (as specified
in section 2.2.17).

FUNC_STATIC: MUST be set if the method described by the FUNCDESC structure is a method
member of the module defined with the automation scope (as specified in section 2.2.49.9).

FUNC_DISPATCH: MUST be set if the method described by the FUNCDESC structure is a
member of an interface whose associated TYPEKIND value is TKIND_DISPATCH (as specified
in section 2.2.17). MUST NOT be set if the FUNC_PUREVIRTUAL flag is set.

2.2.13 IMPLTYPEFLAGS Feature Constants

The IMPLTYPEFLAGS enumeration values are stored in the pImplTypeFlags parameter of the
ITypeInfo::GetImplTypeFlags method to specify the implementation features of a COM server, as

specified in section 3.7.4.7.

The following implementation type feature constants are defined in IMPLTYPEFLAGS.

typedef enum tagIMPLTYPEFLAGS

32 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

{

 IMPLTYPEFLAG_FDEFAULT = 0x00000001,

 IMPLTYPEFLAG_FSOURCE = 0x00000002,

 IMPLTYPEFLAG_FRESTRICTED = 0x00000004,

 IMPLTYPEFLAG_FDEFAULTVTABLE = 0x00000008

} IMPLTYPEFLAGS;

IMPLTYPEFLAG_FDEFAULT: MUST be set if the interface was declared with the [default]

attribute (as specified in section 2.2.49.8).

IMPLTYPEFLAG_FSOURCE: MUST be set if the interface was declared with the [source] or
[defaultvtable] attributes (as specified in section 2.2.49.8).

IMPLTYPEFLAG_FRESTRICTED: MUST be set if the interface was declared with the

[restricted] attribute (as specified in section 2.2.49.8).

IMPLTYPEFLAG_FDEFAULTVTABLE: MUST be set if the interface was declared with the

[defaultvtable] attribute (as specified in section 2.2.49.8).

2.2.14 INVOKEKIND Function Invocation Constants

The INVOKEKIND enumeration values are used in the invkind field of a FUNCDESC (section
2.2.42) to specify the way that a method is invoked using IDispatch::Invoke (section 3.1.4.4).

They are also used in the ITypeInfo2::GetFuncIndexOfMemId, ITypeInfo::GetDllEntry and
ITypeComp::Bind methods to distinguish between properties and property accessor methods that
have the same MEMBERID (section 2.2.35) but are invoked differently.

Fields and parameters that contain function invocation constants MUST contain a single
INVOKEKIND value, and MUST NOT contain bitwise combinations of multiple INVOKEKIND
values.

The function invocation constants are defined in the INVOKEKIND enumeration.

typedef [v1_enum] enum tagINVOKEKIND

{

 INVOKE_FUNC = 0x00000001,

 INVOKE_PROPERTYGET = 0x00000002,

 INVOKE_PROPERTYPUT = 0x00000004,

 INVOKE_PROPERTYPUTREF = 0x00000008

} INVOKEKIND;

INVOKE_FUNC: MUST be set if the type member is a method declared without the [propget],
[propput], or [propputref] attributes, or to specify that a client method request MUST NOT

return a property.

INVOKE_PROPERTYGET: MUST be set if the type member is a property declared with the
[propget] attribute (as specified in section 2.2.49.5.1), or to specify that a client method
request MUST NOT return anything but an ODL dispinterface property (as specified in

section 2.2.49.5.3) or a property declared with the [propget] attribute.

INVOKE_PROPERTYPUT: MUST be set if the type member is a property declared with the
[propput] attribute (as specified in section 2.2.49.5.1), or to specify that a client method

request MUST NOT return anything but a property declared with the [propput] attribute.

33 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

INVOKE_PROPERTYPUTREF: MUST be set if the type member is a property declared with the
[propputref] attribute (as specified in section 2.2.49.5.1), or to specify that a client method

request MUST NOT return anything but a property declared with the [propputref] attribute.

2.2.15 PARAMFLAGS Parameter Feature Constants

The PARAMFLAGS enumeration values are used in the wParamFlags field of a PARAMFLAGS to
identify the features of a method parameter, as specified in section 2.2.40.

The following table specifies the meaning of each parameter feature constant.

typedef enum tagPARAMFLAGS

{

 PARAMFLAG_NONE = 0x00000000,

 PARAMFLAG_FIN = 0x00000001,

 PARAMFLAG_FOUT = 0x00000002,

 PARAMFLAG_FLCID = 0x00000004,

 PARAMFLAG_FRETVAL = 0x00000008,

 PARAMFLAG_FOPT = 0x00000010,

 PARAMFLAG_FHASDEFAULT = 0x00000020,

 PARAMFLAG_FHASCUSTDATA = 0x00000040

} PARAMFLAGS;

PARAMFLAG_NONE: The behavior of the parameter is not specified.

PARAMFLAG_FIN: MUST be set if the parameter was declared by using the [in] attribute (for

more information, see section 2.2.49.6).

PARAMFLAG_FOUT: MUST be set if the parameter was declared by using the [out] attribute
(for more information, see section 2.2.49.5).

PARAMFLAG_FLCID: MUST be set if the parameter was declared by using the [lcid] attribute
(for more information, see section 2.2.49.6).

PARAMFLAG_FRETVAL: MUST be set if the parameter was declared by using the [retval]
attribute (for more information, see section 2.2.49.6).

PARAMFLAG_FOPT: MUST be set if the parameter was declared by using the [optional]
attribute (for more information, see section 2.2.49.6). MUST be set if the
PARAMFLAG_FHASDEFAULT flag is set.

PARAMFLAG_FHASDEFAULT: MUST be set if the parameter was declared by using the
[defaultvalue] attribute (for more information, see section 2.2.49.6).

PARAMFLAG_FHASCUSTDATA: MAY<2> be set if the parameter was declared by using the
[custom] attribute (for more information, see section 2.2.49.2).

2.2.16 TYPEFLAGS Type Feature Constants

The TYPEFLAGS enumeration values are used in the wTypeFlags field of a TYPEATTR to specify
the features of a type, as specified in section 2.2.44. They also are used in the pTypeFlags
parameter of the ITypeInfo2::GetTypeFlags method.

The function invocation constants are defined in the TYPEFLAGS enumeration.

typedef enum tagTYPEFLAGS

34 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

{

 TYPEFLAG_FAPPOBJECT = 0x00000001,

 TYPEFLAG_FCANCREATE = 0x00000002,

 TYPEFLAG_FLICENSED = 0x00000004,

 TYPEFLAG_FPREDECLID = 0x00000008,

 TYPEFLAG_FHIDDEN = 0x00000010,

 TYPEFLAG_FCONTROL = 0x00000020,

 TYPEFLAG_FDUAL = 0x00000040,

 TYPEFLAG_FNONEXTENSIBLE = 0x00000080,

 TYPEFLAG_FOLEAUTOMATION = 0x00000100,

 TYPEFLAG_FRESTRICTED = 0x00000200,

 TYPEFLAG_FAGGREGATABLE = 0x00000400,

 TYPEFLAG_FREPLACEABLE = 0x00000800,

 TYPEFLAG_FDISPATCHABLE = 0x00001000,

 TYPEFLAG_FPROXY = 0x00004000

} TYPEFLAGS;

TYPEFLAG_FAPPOBJECT: MUST be set if the type was declared with the [appobject]
attribute (see section 2.2.49.8).

TYPEFLAG_FCANCREATE: MUST NOT be set if the type was declared with the [noncreatable]
attribute (see section 2.2.49.8). Otherwise, MUST be set.

TYPEFLAG_FLICENSED: MUST be set if the type was declared with the [licensed] attribute
(see section 2.2.49.8).

TYPEFLAG_FPREDECLID: MUST be set if the type was declared with the [predeclid] or
[appobject] attributes (see section 2.2.49.8).

TYPEFLAG_FHIDDEN: MUST be set if the type was declared with the [hidden] attribute (see
section 2.2.49.8).

TYPEFLAG_FCONTROL: MUST be set if the type was declared with the [control] attribute (see
section 2.2.49.8).

TYPEFLAG_FDUAL: MUST be set if the type was declared with the [dual] attribute (see section
2.2.49.4.2).

TYPEFLAG_FNONEXTENSIBLE: MUST be set if the type was declared with the

[nonextensible] attribute (see section 2.2.49.4).

TYPEFLAG_FOLEAUTOMATION: MUST be set if the type is a DCOM interface that was
declared with the [oleautomation] or [dual] attributes (see section 2.2.49.4). MUST NOT be
set if the type is a dispinterface.

TYPEFLAG_FRESTRICTED: MUST be set if the type was declared with the [restricted]
attribute (see section 2.2.49.5.1).

TYPEFLAG_FAGGREGATABLE: MUST be set if the type was declared with the [aggregatable]

attribute (see section 2.2.49.8).

TYPEFLAG_FREPLACEABLE: MUST be set if the type contains a member that was declared
with the [replaceable] attribute (see section 2.2.49.5.1). MUST be ignored on receipt.

TYPEFLAG_FDISPATCHABLE: MUST be set if the type derives from IDispatch, either directly
or indirectly. MUST be set if the type is a dispinterface or dual interface <3> (see section
2.2.49.4.2).

35 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TYPEFLAG_FPROXY: MUST be set if the type was declared with the [proxy] attribute (see
section 2.2.49.4). MUST be ignored on receipt.

2.2.17 TYPEKIND Type Kind Constants

The TYPEKIND enumeration values are used in the typekind field of a TYPEATTR to specify the
features of a type, as specified in section 2.2.44. They are also used in the pTypeKind parameter of
the ITypeInfo2::GetTypeKind method, as specified in section 3.9.4.1.

The type kind constants are defined in the TYPEKIND enumeration.

typedef [v1_enum] enum tagTYPEKIND

{

 TKIND_ENUM = 0x00000000,

 TKIND_RECORD = 0x00000001,

 TKIND_MODULE = 0x00000002,

 TKIND_INTERFACE = 0x00000003,

 TKIND_DISPATCH = 0x00000004,

 TKIND_COCLASS = 0x00000005,

 TKIND_ALIAS = 0x00000006,

 TKIND_UNION = 0x00000007

} TYPEKIND;

TKIND_ENUM: MUST be used if the type is an enumeration that was defined with the typedef
and enum keywords.

TKIND_RECORD: MUST be used if the type is a structure that was defined with the typedef
and struct keywords.

TKIND_MODULE: MUST be used if the type is a module that was defined with the module
keyword.

TKIND_INTERFACE: MUST be used if the type is a DCOM interface that was defined with the

interface keyword.

TKIND_DISPATCH: MUST be used if the type is a dispinterface that was defined with either the

dispinterface keyword or the interface keyword with the [dual] attribute.

TKIND_COCLASS: MUST be used if the type is a COM server that was defined with the coclass
keyword.

TKIND_ALIAS: MUST be used if the type is an alias for a predefined type that was defined with
the typedef keyword and added to the automation scope by using the [public] attribute as
specified in section 2.2.49.3.

TKIND_UNION: MUST be used if the type is a union that was defined with the typedef and

union keywords.

2.2.18 VARFLAGS Variable Feature Constants

The VARFLAGS enumeration values are used in the wVarFlags field of a VARDESC to specify the
features of a field, constant, or ODL dispinterface property, as specified in section 2.2.43.

The variable feature constants are defined in the VARFLAGS enumeration.

typedef enum tagVARFLAGS

36 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

{

 VARFLAG_FREADONLY = 0x00000001,

 VARFLAG_FSOURCE = 0x00000002,

 VARFLAG_FBINDABLE = 0x00000004,

 VARFLAG_FREQUESTEDIT = 0x00000008,

 VARFLAG_FDISPLAYBIND = 0x00000010,

 VARFLAG_FDEFAULTBIND = 0x00000020,

 VARFLAG_FHIDDEN = 0x00000040,

 VARFLAG_FRESTRICTED = 0x00000080,

 VARFLAG_FDEFAULTCOLLELEM = 0x00000100,

 VARFLAG_FUIDEFAULT = 0x00000200,

 VARFLAG_FNONBROWSABLE = 0x00000400,

 VARFLAG_FREPLACEABLE = 0x00000800,

 VARFLAG_FIMMEDIATEBIND = 0x000001000

} VARFLAGS;

VARFLAG_FREADONLY: MUST be set if the variable is an ODL dispinterface property that was

declared with the [readonly] attribute (see section 2.2.49.5.3).

VARFLAG_FSOURCE: MUST be set if the variable is a property member of an ODL interface
that was declared with the [source] attribute (see section 2.2.49.8).

VARFLAG_FBINDABLE: MUST be set if the variable is an ODL dispinterface property that was
declared with the [bindable] attribute (see section 2.2.49.5.2).

VARFLAG_FREQUESTEDIT: MUST be set if the variable is an ODL dispinterface property that

was declared with the [requestedit] attribute (see section 2.2.49.5.2).

VARFLAG_FDISPLAYBIND: MUST be set if the variable is an ODL dispinterface property that
was declared with the [displaybind] attribute (see section 2.2.49.5.2).

VARFLAG_FDEFAULTBIND: MUST be set if the variable is an ODL dispinterface property that
was declared with the [defaultbind] attribute (see section 2.2.49.5.2).

VARFLAG_FHIDDEN: MUST be set if the variable is a member of a type that was declared with
the [hidden] attribute (see section 2.2.49.5.1).

VARFLAG_FRESTRICTED: MUST be set if the variable is a member of a type that was declared
with the [restricted] attribute (see section 2.2.49.5.1).

VARFLAG_FDEFAULTCOLLELEM: MUST be set if the variable is an ODL dispinterface property
that was declared with the [defaultcollelem] attribute (see section 2.2.49.5.1).

VARFLAG_FUIDEFAULT: MUST be set if the variable is an ODL dispinterface property that was
declared with the [uidefault] attribute (see section 2.2.49.5.1).

VARFLAG_FNONBROWSABLE: MUST be set if the variable is an ODL dispinterface property

that was declared with the [nonbrowsable] attribute (see section 2.2.49.5.1).

VARFLAG_FREPLACEABLE: MUST be set if the variable is an ODL dispinterface property that

was declared with the [replaceable] attribute (see section 2.2.49.5.1). MUST be ignored on
receipt.

VARFLAG_FIMMEDIATEBIND: MUST be set if the variable is an ODL dispinterface property
that was declared with the [immediatebind] attribute (see section 2.2.49.5.2).

37 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.19 VARKIND Variable Kind Constants

The VARKIND enumeration values are used in the varkind field of a VARDESC to specify the kind
of element that is described by the VARDESC, as specified in section 2.2.43.

The variable kind constants are defined in the VARKIND enumeration:

typedef [v1_enum] enum tagVARKIND

{

 VAR_PERINSTANCE = 0x00000000,

 VAR_STATIC = 0x00000001,

 VAR_CONST = 0x00000002,

 VAR_DISPATCH = 0x00000003

} VARKIND;

VAR_PERINSTANCE: MUST be used if the VARDESC describes a member of a structure or

union.

VAR_STATIC: MUST be used if the VARDESC describes an appobject coclass (see section
2.2.49.8).

VAR_CONST: MUST be used if the VARDESC describes a member of a module or enumeration.

VAR_DISPATCH: MUST be used if the VARDESC describes an ODL dispinterface property (see
section 2.2.49.5.3).

2.2.20 LIBFLAGS Type Library Feature Constants

The LIBFLAGS enumeration values are used in the wLibFlags field of a TLIBATTR to specify the
features of the automation scope of an ITypeLib server, as specified in section 2.2.45.

The Type library feature constants are defined in the LIBFLAGS enumeration.

typedef [v1_enum] enum tagLIBFLAGS

{

 LIBFLAG_FRESTRICTED = 0x00000001,

 LIBFLAG_FCONTROL = 0x00000002,

 LIBFLAG_FHIDDEN = 0x00000004,

 LIBFLAG_FHASDISKIMAGE = 0x00000008

} LIBFLAGS;

LIBFLAG_FRESTRICTED: MUST be set if the automation scope was declared with the

[restricted] attribute (as specified in section 2.2.49.2).

LIBFLAG_FCONTROL: MUST be set if the automation scope was declared with the [control]
attribute (as specified in section 2.2.49.2).

LIBFLAG_FHIDDEN: MUST be set if the automation scope was declared with the [hidden]

attribute (as specified in section 2.2.49.2).

LIBFLAG_FHASDISKIMAGE: MAY be set <4>and MUST be ignored on receipt.

38 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.21 SYSKIND System Pointer Size Constants

SYSKIND are used in the syskind field of a TLIBATTR to specify the system pointer size value, as
specified in section 2.2.45.

The system pointer size constants are defined in the SYSKIND enumeration.

typedef [v1_enum] enum tagSYSKIND

{

 SYS_WIN32 = 0x00000001,

 SYS_WIN64 = 0x00000003

} SYSKIND;

SYS_WIN32: MUST be set if the automation type library uses 32 bits for pointer-sized values.

SYS_WIN64: MUST be set if the automation type library uses 64 bits for pointer-sized values.

2.2.22 DESCKIND Name Description Constants

The DESCKIND Name Description Constants enumeration values are used by the
ITypeComp::Bind method to indicate the kind of element to which a name has been bound, as

specified in section 3.5.4.1.

The name description constants are defined in the DESCKIND enumeration.

typedef [v1_enum] enum tagDESCKIND

{

 DESCKIND_NONE = 0x00000000,

 DESCKIND_FUNCDESC = 0x00000001,

 DESCKIND_VARDESC = 0x00000002,

 DESCKIND_TYPECOMP = 0x00000003,

 DESCKIND_IMPLICITAPPOBJ = 0x00000004

} DESCKIND;

DESCKIND_NONE: MUST be set if there is no element bound to the name.

DESCKIND_FUNCDESC: MUST be set if the name is bound to a method or property accessor

method. MUST NOT be set if the name is bound to an ODL dispinterface property.

DESCKIND_VARDESC: MUST be set if the name is bound to a data element or ODL
dispinterface property.

DESCKIND_TYPECOMP: MUST be set if the name is bound to an enumeration or module.

DESCKIND_IMPLICITAPPOBJ: MUST be set if the name is bound to an appobject coclass (see
section 2.2.49.8) or a member of its default nonsource interface (also see 2.2.49.8).

2.2.23 BSTR

BSTR is an OLE automation type for transferring length-prefixed strings, either Unicode or ANSI, as
well as length-prefixed binary data.

The BSTR type defined in this section specifies the wire representation of a length-prefixed data
block whose memory representation is specified in [MS-DTYP] section 2.2.5. To clarify, the memory

%5bMS-DTYP%5d.pdf

39 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

specification will be referred to as the presented BSTR, and the wire specification will be referred to
as the transmitted BSTR.

For any document referencing both [MS-DTYP] and [MS-OAUT], specifying BSTR in a wire
representation context MUST be considered as a reference to the transmitted BSTR type, while

specifying BSTR in a memory representation context MUST be considered as a reference to the
presented BSTR type ([MS-DTYP] section 2.2.5). Reflecting the terminology used for presented
BSTRs, a NULL BSTR, or NULL transmitted BSTR, is defined as the wire representation of a NULL
presented BSTR; and an empty BSTR, or empty transmitted BSTR, is defined as the wire
representation of a zero-length presented BSTR. Preserving this distinction in the wire
representation enables clients and servers to distinguish between NULL presented BSTRs and zero-
length presented BSTRs, and thus associate possibly different, application-specific semantics to

these two values.

2.2.23.1 FLAGGED_WORD_BLOB

The FLAGGED_WORD_BLOB structure defines a type for transferring length-prefixed data.

typedef struct _FLAGGED_WORD_BLOB {

 unsigned long cBytes;

 unsigned long clSize;

 [size_is(clSize)] unsigned short asData[];

} FLAGGED_WORD_BLOB;

cBytes: MUST be the size, in bytes, of the asData array.

Note A value of 0xFFFFFFFF MUST be considered as representing a null BSTR.

clSize: MUST be the total number of unsigned shorts in the asData array. This value MUST be
half the value of cBytes, rounded up, unless this is a null BSTR. In the latter case, a value of

0 MUST be used.

asData: An array of unsigned shorts. If clSize is 0, asData MUST not contain any elements.

Data of this type MUST be marshaled as specified in [C706], section 14, with the exception that it
MUST be marshaled by using a little-endian data representation regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

2.2.23.2 BSTR Type Definition

BSTR Type Definition is an OLE Automation type for transferring length-prefixed data.

This type is declared as follows:

typedef [unique] FLAGGED_WORD_BLOB* BSTR;

A null transmitted BSTR is a pointer to a FLAGGED_WORD_BLOB whose cBytes field MUST equal
0xFFFFFFFF, clSize field MUST equal 0, and asData MUST NOT contain any elements.An empty
transmitted BSTR is a pointer to a FLAGGED_WORD_BLOB whose cBytes and clSize fields MUST

both equal 0, and asData MUST NOT contain any elements.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

40 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.23.3 Mapping Between Presented and Transmitted BSTRs

The mapping from the memory representation of a BSTR to the wire representation MUST be
performed by setting the fields of FLAGGED_WORD_BLOB referred by the transmitted BSTR as

specified below:

cBytes: MUST be set to the value of the presented BSTR's length prefix, or 0xFFFFFFFF for a
NULL presented BSTR.

clSize: MUST be half the value of cBytes rounded up, or 0 for a NULL presented BSTR.

asData: MUST contain exactly clSize elements, and MUST be filled from the contents of the data
pointed to by the presented BSTR.

The mapping from the transmitted BSTR to the presented BSTR MUST be performed as follows:

The length prefix MUST be set to the value of the cBytes field of the transmitted BSTR's

FLAGGED_WORD_BLOB.

The data pointed to by the presented BSTR MUST be set to the contents of the asData field of

the transmitted BSTR's FLAGGED_WORD_BLOB.

2.2.24 CURRENCY

The CURRENCY type specifies currency information. It is represented as an 8-byte integer, scaled
by 10,000, to give a fixed-point number with 15 digits to the left of the decimal point, and four
digits to the right. This representation provides a range of 922337203685477.5807 to –
922337203685477.5808. For example, $5.25 is stored as the value 52500.

typedef struct tagCY {

 __int64 int64;

} CURRENCY;

2.2.25 DATE

The DATE structure is a type that specifies date and time information. It is represented as an 8-
byte floating-point number.

This type is declared as follows:

typedef double DATE;

The date information is represented by whole-number increments, starting with December 30, 1899
midnight as time zero. The time information is represented by the fraction of a day since the

preceding midnight. For example, 6:00 A.M. on January 4, 1900 would be represented by the value

5.25 (5 and 1/4 of a day past December 30, 1899).

2.2.26 DECIMAL

The DECIMAL structure specifies a sign and scale for a number. Decimal variables are represented
as 96-bit unsigned integers that are scaled by a variable power of 10.

41 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef struct tagDEC {

 WORD wReserved;

 BYTE scale;

 BYTE sign;

 ULONG Hi32;

 ULONGLONG Lo64;

} DECIMAL;

wReserved: MUST be set to 0 and MUST be ignored by the recipient.

scale: MUST be the power of 10 by which to divide the 96-bit integer represented by Hi32 *
2^64 + Lo64. The value MUST be in the range of 0 to 28, inclusive.

Value Meaning

0 — 28 Order of magnitude of the decimal number.

sign: MUST equal one of the following values.

Value Meaning

0 The decimal contains a positive value.

0x80 The decimal contains a negative value.

Hi32: MUST be the high 32 bits of the 96-bit integer that is scaled and signed to represent the
final DECIMAL value.

Lo64: MUST be the low 64 bits of the 96-bit integer that is scaled and signed to represent the
final DECIMAL value.

2.2.27 VARIANT_BOOL

The VARIANT_BOOL type specifies Boolean values.

This type is declared as follows:

typedef short VARIANT_BOOL;

The values MUST be defined as:

Value Meaning

VARIANT_TRUE

0xFFFF

MUST indicate a Boolean value of TRUE.

VARIANT_FALSE

0x0000

MUST indicate a Boolean value of FALSE.

42 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.28 User-Defined Data Types and BRECORD

2.2.28.1 User-Defined Data Types

The OLE Automation Protocol supports the specification of UDTs, in the form of structures of related
data elements. The data elements MUST consist of scalar and OLE automation types. The structure
is considered to be a single type and is referred to as a UDT.

In the IDL, a UDT MUST be identified by the uuid attribute (see section 2.2.49.2). The GUID from
this attribute MUST uniquely identify the UDT.

A UDT MUST be specified or referenced from an automation scope (see section 2.2.49.2). For more
information about the wire representation of the UDT, see sections 2.2.31 and 2.2.49.2.

2.2.28.2 BRECORD

A BRECORD is the type used for the representation of UDTs on the wire.

2.2.28.2.1 _wireBRECORD

The _wireBRECORD structure is the wire representation of a collection of UDTs of the same type.
This representation MUST be used when the UDTs appear inside a SAFEARRAY (section

2.2.30.10) or inside a VARIANT (section 2.2.29.2). Otherwise, the UDTs MUST be NDR-
marshaled as specified by their IDL. For more information, see [C706] section 14.

typedef struct _wireBRECORD {

 ULONG fFlags;

 ULONG clSize;

 MInterfacePointer* pRecInfo;

 [size_is(clSize)] byte* pRecord;

} wireBRECORDStr;

fFlags: MUST be 0 if pRecord is NULL. Otherwise, the value MUST be 1.

clSize: MUST be 0 if pRecord is NULL. Otherwise, the value MUST equal the size (in bytes) of
the UDTs contained in pRecord, plus 4 bytes to account for the prefix contained in pRecord.

pRecInfo: MUST specify an MInterfacePointer that MUST contain an OBJREF_CUSTOM with a
CLSID field set to CLSID_RecordInfo (1.9) and a pObjectData field that MUST contain a
RecordInfoData binary large object (BLOB) (2.2.31). The iid field of the OBJREF portion of the
structure MUST be set to IID_IRecordInfo (1.9). An implementation MAY use this value as the

IID of a local-only interface.<5>

pRecord: MUST be NULL if there are no UDTs. Otherwise, the value MUST contain the NDR-
marshaled representation of the UDTs, prefixed by a 4-byte unsigned integer that specifies the
size, in bytes. This integer MUST equal the value of clSize.

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that the
fields fFlags, clSize, and the 4-byte prefix in pRecord MUST be marshaled by using a little-endian

data representation, regardless of the data representation format label. For more information, see
[C706] section 14.2.5.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

43 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.28.2.2 BRECORD

The following is the type definition for the BRECORD type.

This type is declared as follows:

typedef [unique] struct _wireBRECORD* BRECORD;

2.2.29 VARIANT

VARIANT is a container for a union that can hold many types of data.

2.2.29.1 _wireVARIANT

The _wireVARIANT is a container for a union that in turn contains scalar and OLE Automation data

types.

typedef struct _wireVARIANT {

 DWORD clSize;

 DWORD rpcReserved;

 USHORT vt;

 USHORT wReserved1;

 USHORT wReserved2;

 USHORT wReserved3;

 [switch_type(ULONG), switch_is(vt)]

 union {

 [case(VT_I8)]

 LONGLONG llVal;

 [case(VT_I4)]

 LONG lVal;

 [case(VT_UI1)]

 BYTE bVal;

 [case(VT_I2)]

 SHORT iVal;

 [case(VT_R4)]

 FLOAT fltVal;

 [case(VT_R8)]

 DOUBLE dblVal;

 [case(VT_BOOL)]

 VARIANT_BOOL boolVal;

 [case(VT_ERROR)]

 HRESULT scode;

 [case(VT_CY)]

 CURRENCY cyVal;

 [case(VT_DATE)]

 DATE date;

 [case(VT_BSTR)]

 BSTR bstrVal;

 [case(VT_UNKNOWN)]

 IUnknown* punkVal;

 [case(VT_DISPATCH)]

 IDispatch* pdispVal;

 [case(VT_ARRAY)]

 PSAFEARRAY parray;

 [case(VT_RECORD, VT_RECORD|VT_BYREF)]

44 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 BRECORD brecVal;

 [case(VT_UI1|VT_BYREF)]

 BYTE* pbVal;

 [case(VT_I2|VT_BYREF)]

 SHORT* piVal;

 [case(VT_I4|VT_BYREF)]

 LONG* plVal;

 [case(VT_I8|VT_BYREF)]

 LONGLONG* pllVal;

 [case(VT_R4|VT_BYREF)]

 FLOAT* pfltVal;

 [case(VT_R8|VT_BYREF)]

 DOUBLE* pdblVal;

 [case(VT_BOOL|VT_BYREF)]

 VARIANT_BOOL* pboolVal;

 [case(VT_ERROR|VT_BYREF)]

 HRESULT* pscode;

 [case(VT_CY|VT_BYREF)]

 CURRENCY* pcyVal;

 [case(VT_DATE|VT_BYREF)]

 DATE* pdate;

 [case(VT_BSTR|VT_BYREF)]

 BSTR* pbstrVal;

 [case(VT_UNKNOWN|VT_BYREF)]

 IUnknown** ppunkVal;

 [case(VT_DISPATCH|VT_BYREF)]

 IDispatch** ppdispVal;

 [case(VT_ARRAY|VT_BYREF)]

 PSAFEARRAY* pparray;

 [case(VT_VARIANT|VT_BYREF)]

 VARIANT* pvarVal;

 [case(VT_I1)]

 CHAR cVal;

 [case(VT_UI2)]

 USHORT uiVal;

 [case(VT_UI4)]

 ULONG ulVal;

 [case(VT_UI8)]

 ULONGLONG ullVal;

 [case(VT_INT)]

 INT intVal;

 [case(VT_UINT)]

 UINT uintVal;

 [case(VT_DECIMAL)]

 DECIMAL decVal;

 [case(VT_I1|VT_BYREF)]

 CHAR* pcVal;

 [case(VT_UI2|VT_BYREF)]

 USHORT* puiVal;

 [case(VT_UI4|VT_BYREF)]

 ULONG* pulVal;

 [case(VT_UI8|VT_BYREF)]

 ULONGLONG* pullVal;

 [case(VT_INT|VT_BYREF)]

 INT* pintVal;

 [case(VT_UINT|VT_BYREF)]

 UINT* puintVal;

 [case(VT_DECIMAL|VT_BYREF)]

 DECIMAL* pdecVal;

45 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [case(VT_EMPTY)]

 ;

 [case(VT_NULL)]

 ;

 } _varUnion;

} wireVARIANTStr;

clSize: MUST be set to the size, in quad words (64 bits), of the structure.

rpcReserved: MUST be set to 0 and MUST be ignored by the recipient.

vt: MUST be set to one of the values specified with a "V" in the Context column of the table in
section 2.2.7.

wReserved1: MAY be set to 0 and MUST be ignored by the recipient.<6>

wReserved2: MAY be set to 0 and MUST be ignored by the recipient.<7>

wReserved3: MAY be set to 0 and MUST be ignored by the recipient.<8>

_varUnion: MUST contain an instance of the type, according to the value in the vt field.

Data of this type MUST be marshaled as specified in [C706] section 14, with the following additional
restrictions.

All fields except _varUnion MUST be marshaled using a little-endian data representation,

regardless of the data representation format label. For more information, see [C706] section

14.2.5.

If the vt field has the flag VT_ARRAY set, then _varUnion MUST be marshaled according to

2.2.30.

If the vt field has the flags VT_UNKNOWN or VT_DISPATCH set, then _varUnion MUST be

marshaled according to [MS-DCOM] section 1.3.2.

If the vt field has the flag VT_RECORD set, then _varUnion field MUST be marshaled according

to 2.2.28.

If the vt field has the flag VT_BSTR set, then _varUnion MUST be marshaled according to

2.2.23.

If none of the preceding flags is specified in the vt field, the _varUnion field MUST be marshaled

by using a little-endian data representation, regardless of the data representation format label.

2.2.29.2 VARIANT

The VARIANT type is defined as follows. Also, the definitions of the VARIANT data type provided in
this section correspond to the wire formats of these data types.<9>

This type is declared as follows:

typedef [unique] struct _wireVARIANT* VARIANT;

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf

46 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.30 SAFEARRAY

A SAFEARRAY specifies a multidimensional array of OLE Automation types.

2.2.30.1 SAFEARRAYBOUND

The SAFEARRAYBOUND structure specifies the bounds of one dimension of a SAFEARRAY.

typedef struct tagSAFEARRAYBOUND {

 ULONG cElements;

 LONG lLbound;

} SAFEARRAYBOUND,

 *LPSAFEARRAYBOUND;

cElements: MUST be set to the number of elements in the current dimension. MUST be

nonzero.

lLbound: MUST be set to the lower bound of the current dimension.

Data of this type MUST be marshaled as specified in [C706] section 14, except that it MUST be
marshaled by using a little-endian data representation, regardless of the data representation format
label. For more information, see [C706] section 14.2.5.

2.2.30.2 SAFEARR_BSTR

The SAFEARR_BSTR structure specifies an array of BSTRs (see section 2.2.23).

typedef struct _wireSAFEARR_BSTR {

 ULONG Size;

 [size_is(Size), ref] BSTR* aBstr;

} SAFEARR_BSTR;

Size: MUST be set to the total number of elements in the array.

aBstr: MUST be an array of BSTRs (see section 2.2.23).

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data

representation format label. For more information, see [C706] section 14.2.5.

2.2.30.3 SAFEARR_UNKNOWN

The SAFEARR_UNKNOWN structure specifies an array of MInterfacePointers elements (see [MS-
DCOM] section 2.2.14) whose IPID is IID_IUnknown (see section 1.9).

typedef struct _wireSAFEARR_UNKNOWN {

 ULONG Size;

 [size_is(Size), ref] IUnknown** apUnknown;

} SAFEARR_UNKNOWN;

Size: MUST be set to the total number of elements in the array.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

47 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

apUnknown: MUST be an array of MInterfacePointer (see [MS-DCOM], section 2.2.1.10). The
iid field in the OBJREF MUST be IID_IUnknown (see section 1.9).

The Size field of this type MUST be marshaled as specified in [C706] section 14, with the exception
that it MUST be marshaled by using a little-endian data representation, regardless of the data

representation format label. For more information, see [C706] section 14.2.5.

2.2.30.4 SAFEARR_DISPATCH

The SAFEARR_DISPATCH structure specifies an array of MInterfacePointer elements (see [MS-
DCOM] section 2.2.14) whose IPID is IID_IDispatch (see section 1.9).

typedef struct _wireSAFEARR_DISPATCH {

 ULONG Size;

 [size_is(Size), ref] IDispatch** apDispatch;

} SAFEARR_DISPATCH;

Size: MUST be set to the total number of elements in the array.

apDispatch: MUST be an array of MInterfacePointer elements (see [MS-DCOM] section 2.2.14).

The iid field in the OBJREF MUST be IID_IDispatch (see section 1.9).

The Size field of this type MUST be marshaled as specified in [C706] section 14, with the exception
that it MUST be marshaled by using a little-endian data representation, regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

2.2.30.5 SAFEARR_VARIANT

The SAFEARR_VARIANT structure specifies an array of VARIANT types.

typedef struct _wireSAFEARR_VARIANT {

 ULONG Size;

 [size_is(Size), ref] VARIANT* aVariant;

} SAFEARR_VARIANT;

Size: MUST be set to the total number of elements in the array. MUST be nonzero.

aVariant: MUST be an array of VARIANT types. For more information, see section 2.2.29.2.

The Size field of this type MUST be marshaled as specified in [C706] section 14, with the exception
that it MUST be marshaled by using a little-endian data representation, regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

2.2.30.6 SAFEARR_BRECORD

The SAFEARR_BRECORD structure specifies an array of UDTs.

typedef struct _wireSAFEARR_BRECORD {

 ULONG Size;

 [size_is(Size), ref] BRECORD* aRecord;

} SAFEARR_BRECORD;

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

48 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Size: The number of BRECORD elements in the aRecord array. This MUST be set to 1.

aRecord: MUST be the collection of UDTs as specified in BRECORD (see section 2.2.28.2).

The Size field of this type MUST be marshaled as specified in [C706] section 14, with the exception
that it MUST be marshaled by using a little-endian data representation, regardless of the data

representation format label. For more information, see [C706] section 14.2.5.

2.2.30.7 SAFEARR_HAVEIID

The SAFEARR_HAVEIID structure defines an array of MInterfacePointers (see [MS-DCOM] section
2.2.14

typedef struct _wireSAFEARR_HAVEIID {

 ULONG Size;

 [size_is(Size), ref] IUnknown** apUnknown;

 IID iid;

} SAFEARR_HAVEIID;

Size: MUST be set to the total number of elements in the array. This MUST be nonzero.

apUnknown: MUST be an array of MInterfacePointer elements. The OBJREF iid field MUST be
the same as the value of the iid.

iid: MUST specify the IID of each of the elements in the SAFEARRAY.

The Size and iid fields of this type MUST be marshaled as specified in [C706] section 14, with the
exception that it MUST be marshaled by using a little-endian data representation, regardless of the
data representation format label. For more information, see [C706] section 14.2.5.

2.2.30.8 Scalar-Sized Arrays

The following four types represent byte-sized, short-sized, long-sized, and hyper-sized arrays.

2.2.30.8.1 BYTE_SIZEDARR

The BYTE_SIZEDARR structure specifies a BYTE array.

typedef struct _BYTE_SIZEDARR {

 unsigned long clSize;

 [size_is(clSize)] byte* pData;

} BYTE_SIZEDARR;

clSize: MUST be set to the total number of elements in the array. This MUST be nonzero.

pData: MUST be an array of BYTEs.

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data

representation format label. For more information, see [C706] section 14.2.5.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

49 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.30.8.2 WORD_SIZEDARR

The WORD_SIZEDARR structure defines an array of unsigned 16-bit integers.

typedef struct _SHORT_SIZEDARR {

 unsigned long clSize;

 [size_is(clSize)] unsigned short* pData;

} WORD_SIZEDARR;

clSize: MUST be set to the total number of elements in the array. This MUST be nonzero.

pData: MUST be an array of WORD elements.

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

2.2.30.8.3 DWORD_SIZEDARR

The DWORD_SIZEDARR structure defines an array of unsigned 32-bit integers.

typedef struct _LONG_SIZEDARR {

 unsigned long clSize;

 [size_is(clSize)] unsigned long* pData;

} DWORD_SIZEDARR;

clSize: MUST be set to the number of elements within the array. This MUST be nonzero.

pData: MUST be an array of DWORD elements.

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

2.2.30.8.4 HYPER_SIZEDARR

The HYPER_SIZEDARR structure defines an array of 64-bit integers.

typedef struct _HYPER_SIZEDARR {

 unsigned long clSize;

 [size_is(clSize)] hyper* pData;

} HYPER_SIZEDARR;

clSize: MUST be set to the total number of elements in the array. This MUST be nonzero.

pData: MUST be an array of hyper elements.

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

50 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.30.9 SAFEARRAYUNION

The SAFEARRAYUNION union defines the mapping between the discriminant value and the
contained array data.

typedef

union _wireSAFEARRAY_UNION switch(unsigned long sfType) u {

 case SF_BSTR : SAFEARR_BSTR BstrStr;

 case SF_UNKNOWN : SAFEARR_UNKNOWN UnknownStr;

 case SF_DISPATCH : SAFEARR_DISPATCH DispatchStr;

 case SF_VARIANT : SAFEARR_VARIANT VariantStr;

 case SF_RECORD : SAFEARR_BRECORD RecordStr;

 case SF_HAVEIID : SAFEARR_HAVEIID HaveIidStr;

 case SF_I1 : BYTE_SIZEDARR ByteStr;

 case SF_I2 : WORD_SIZEDARR WordStr;

 case SF_I4 : DWORD_SIZEDARR LongStr;

 case SF_I8 : HYPER_SIZEDARR HyperStr;

} SAFEARRAYUNION;

_wireSAFEARRAY_UNION: MUST contain an instance of the type, according to the value of the union
discriminant.

The sfType field MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

2.2.30.10 SAFEARRAY

The SAFEARRAY structure defines a multidimensional array of OLE automation types. The

definitions of SAFEARRAY data types provided in this section correspond to the wire formats of these
data types.<10>

typedef[unique]

 struct _wireSAFEARRAY {

 USHORT cDims;

 USHORT fFeatures;

 ULONG cbElements;

 ULONG cLocks;

 SAFEARRAYUNION uArrayStructs;

 [size_is(cDims)] SAFEARRAYBOUND rgsabound[];

} *SAFEARRAY;

cDims: MUST be set to the number of dimensions of the array. cDims MUST NOT be set to 0.

fFeatures: MUST be set to a combination of the bit flags specified in section 2.2.9.

cbElements: MUST be set to the size, in bytes, of an element in the SAFEARRAY, as specified

in the table in section 2.2.8.

cLocks: If the fFeatures field contains FADF_HAVEVARTYPE (see section 2.2.9), the cLocks
field MUST contain a VARIANT (section 2.2.7) type constant in its high word that specifies
the type of the elements in the array. Otherwise, the high word of the cLocks field MUST be
set to 0.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

51 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The low word of the cLocks field MAY<11> be set to an implementation-specific value, and
MUST be ignored on receipt.

uArrayStructs: MUST be a SAFEARRAYUNION (section 2.2.30.9).

rgsabound: MUST contain an array of bounds, specifying the shape of the array. This array

MUST be represented in reverse order. That is, for an array [0:5][0:2][0:10], the bounds
would be represented as (10, 0), (2, 0), (5, 0).

The following consistency statements MUST hold, where sfType is the discriminant field in the
SAFEARRAYUNION data member.

If sfType equals fFeatures MUST be set to

SF_HAVEIID FADF_UNKNOWN | FADF_HAVEIID or

FADF_DISPATCH | FADF_HAVEIID

SF_BSTR FADF_BSTR or

FADF_BSTR | FADF_HAVEVARTYPE

SF_UNKNOWN FADF_UNKNOWN or

FADF_UNKNOWN | FADF_HAVEVARTYPE or

FADF_UNKNOWN | FADF_HAVEIID

SF_DISPATCH FADF_DISPATCH or

FADF_DISPATCH | FADF_HAVEVARTYPE or

FADF_DISPATCH | FADF_HAVEIID

SF_VARIANT FADF_VARIANT or

FADF_VARIANT | FADF_HAVEVARTYPE

SF_RECORD FADF_RECORD

If fFeatures field specifies FADF_HAVEVARTYPE, the following additional statements MUST hold,

where vt is the high word of the cLocks field.

If vt (the high word of cLocks) equals sfType MUST be set to

VT_I1

VT_UI1

SF_I1

VT_I2

VT_UI2

VT_BOOL

SF_I2

VT_ERROR

VT_I4

VT_UI4

VT_R4

VT_INT

VT_UINT

SF_I4

VT_I8 SF_I8

52 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If vt (the high word of cLocks) equals sfType MUST be set to

VT_UI8

VT_R8

VT_CY

VT_DATE

VT_BSTR SF_BSTR

VT_VARIANT SF_VARIANT

VT_UNKNOWN SF_UNKNOWN or SF_HAVEIID

VT_DISPATCH SF_DISPATCH or SF_HAVEIID

VT_RECORD SF_RECORD

In addition, the type of vt MUST NOT equal VT_DECIMAL.

If any of the consistency checks fail, the protocol implementation SHOULD<12>

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data
representation format label. For more information, see [C706] section 14.2.5.

2.2.31 RecordInfoData

This structure specifies information that is needed to identify the definition of a UDT, such as the
GUID and version of the automation scope that defines the UDT, and the GUID of the type itself.

typedef struct tagRecordInfo {

 GUID libraryGuid;

 DWORD verMajor;

 GUID recGuid;

 DWORD verMinor;

 DWORD Lcid;

} RecordInfo;

libraryGuid: MUST be set to a GUID that identifies the IDL automation scope of the UDT (see

section 2.2.49.2).

verMajor: MUST be set to the major version of the UDT automation scope (see section
2.2.49.2).

recGuid: MUST be set to the GUID of the UDT.

verMinor: MUST be set to the minor version of the UDT's automation scope (see section

2.2.49.2).

Lcid: MUST be set to the locale ID of the UDT's automation scope (see section 2.2.49.2).

RecordInfoData structures allow a client and a server to fully specify the identity of the UDT type
being marshaled in the containing BRECORD (section 2.2.28.2). The client and the server MUST be
able to reference the same type definition, by sharing through an unspecified mechanism a
consistent view of the IDL automation scope of the UDT.<13>

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

53 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Data of this type MUST be marshaled as specified in [C706] section 14, with the exception that it
MUST be marshaled by using a little-endian data representation, regardless of the data

representation format label. For more information, see [C706] section 14.2.5.

2.2.32 DISPID

The DISPID is used by IDispatch::Invoke to identify methods, properties, and named
arguments.

This type is declared as follows:

typedef LONG DISPID;

The DISPID values associated with methods, properties, and named arguments are retrieved as

specified in section 3.1.4.3.

2.2.32.1 Reserved DISPIDs

The following DISPIDs are defined by the OLE Automation Protocol. These DISPIDs are reserved and
are meant to provide common, well-known DISPIDs associated with methods that have similar
semantics across all automation server implementations. When an automation server needs to
provide access to methods or properties that have specific semantics that map to one from the set

below, they SHOULD use the DISPIDs specified in the following table.

Constant/value Description

DISPID_VALUE

0

This MUST designate the default member for the object. The default member is

the member that best represents the automation server.

DISPID_UNKNOWN

-1

The value MUST be returned by GetIDsOfNames (see section 3.1.4.3) to indicate

that a member or parameter name was not found.

DISPID_PROPERTYPUT

-3

This MUST designate the parameter that receives the value of an assignment in a

DISPATCH PROPERTYPUT or DISPATCH PROPERTYPUTREF invocation (see section

3.1.4.4).

DISPID_NEWENUM

-4

This MUST designate the DISPID associated with a _NewEnum method that

MUST have the following signature.

HRESULT _NewEnum([out,retval] IEnumVARIANT** ppenum);

OR:

HRESULT _NewEnum([out,retval] IUnknown** ppenum);

For more information about IEnumVARIANT, see section 3.3.

2.2.33 DISPPARAMS

The DISPPARAMS structure is used by the Invoke method (see section 3.1.4.4) to contain the
arguments passed to a method or property.

typedef struct tagDISPPARAMS {

 [size_is(cArgs)] VARIANT* rgvarg;

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

54 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [size_is(cNamedArgs)] DISPID* rgdispidNamedArgs;

 UINT cArgs;

 UINT cNamedArgs;

} DISPPARAMS;

rgvarg: MUST be the array of arguments passed to the method or property call.

rgdispidNamedArgs: MUST be the array of DISPIDs corresponding to the named arguments
(see section 3.1.4.4).

cArgs: MUST equal the number of arguments passed to the method.

cNamedArgs: MUST equal the number of named arguments passed to the method. This value
MUST be less than or equal to the value of cArgs.

The arguments passed in DISPPARAMS MUST be stored as specified in section 3.1.4.4.2.

2.2.34 EXCEPINFO

The EXCEPINFO structure is filled in by an automation server to describe an exception that
occurred during a call to Invoke (as specified in section 3.1.4.4). If no exception occurred, the

server MUST set both wCode and scode to 0.

typedef struct tagEXCEPINFO {

 WORD wCode;

 WORD wReserved;

 BSTR bstrSource;

 BSTR bstrDescription;

 BSTR bstrHelpFile;

 DWORD dwHelpContext;

 ULONG_PTR pvReserved;

 ULONG_PTR pfnDeferredFillIn;

 HRESULT scode;

} EXCEPINFO;

wCode: An implementation-specific<14> value that identifies an error.

Value Meaning

0 The value MUST be zero for either of the following conditions:

 This field does not contain an error code.

 The value in the scode field is nonzero.

1000 < value Implementation-specific error values MUST be greater than 1000.

wReserved: MUST be set to 0, and MUST be ignored on receipt.

bstrSource: MUST<15> be set to an implementation-specific string that identifies the source of
the exception.

55 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

bstrDescription: MUST<16> be set to an implementation-specific string, or to a NULL BSTR if
no description is available.

bstrHelpFile: MUST<17> be set to an implementation-specific string, or to a NULL BSTR if no
help is available.

dwHelpContext: MUST<18> be set to an implementation-specific integer. If bstrHelpFile is
NULL, this field MUST be set to 0, and MUST be ignored on receipt.

pvReserved: MUST be set to NULL, and MUST be ignored on receipt.

pfnDeferredFillIn: MAY be set to NULL, and MUST be ignored on receipt.<19>

scode: MUST be set to a failure HRESULT that describes the error, or to 0 to indicate that it
does not contain an error code. If wCode is nonzero, this field MUST be set to 0.

2.2.35 MEMBERID

A MEMBERID is a 32-bit value that identifies a data or method member of a type.

This type is declared as follows:

typedef DISPID MEMBERID;

The MEMBERID of an IDispatch interface MUST be the same as its DISPID.

A type MUST NOT have more than one member with the same MEMBERID, unless the members are

accessor methods for the same property. Property accessor methods with the same name and
MEMBERID MUST specify different INVOKEKIND constant values, as specified in section 2.2.14.

2.2.35.1 Reserved MEMBERIDs

The following MEMBERIDs are defined by the OLE Automation Protocol. These MEMBERIDs are
reserved and are meant to provide common, well-known MEMBERIDs that are associated with
methods that have similar semantics across all automation server implementations. When an

automation server needs to provide MEMBERID references that have specific semantics that map
to one from the set below, they MUST use the MEMBERIDs specified in the following table.

Constant/value Description

MEMBERID_NIL

-1

This MUST designate the containing type in a context where it is also possible

to refer to elements in its method or data member tables.

MEMBERID_DEFAULTINST

-2

This MUST designate an appobject coclass in a context where it is also

possible to refer to members of its default nonsource interface (as specified in

2.2.49.8).

2.2.36 HREFTYPE

An HREFTYPE is a 32-bit value that an automation type library server uses as a handle to associate

a type that is defined or referenced in its automation scope with an instance of an automation
type description server.

56 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This type is declared as follows:

typedef DWORD HREFTYPE;

2.2.37 TYPEDESC

The TYPEDESC structure is used in the ARRAYDESC, ELEMDESC, and TYPEATTR structures to
identify and describe the type of a data member, the return type of a method, or the type of a
method parameter.

typedef struct tagTYPEDESC {

 [switch_type(USHORT), switch_is(vt)]

 union {

 [case(VT_PTR, VT_SAFEARRAY)]

 struct tagTYPEDESC* lptdesc;

 [case(VT_CARRAY)]

 struct tagARRAYDESC* lpadesc;

 [case(VT_USERDEFINED)]

 HREFTYPE hreftype;

 [default] ;

 } _tdUnion;

 USHORT vt;

} TYPEDESC;

_tdUnion: MUST contain an instance of the type, according to the VARENUM value provided in

the vt field.

lptdesc: MUST refer to a TYPEDESC that specifies the element type. If the ELEMDESC is
contained in a VARDESC that describes an appobject coclass, the TYPEDESC MUST

specify the type of the coclass.

lpadesc: MUST refer to an ARRAYDESC that describes a fixed-length array.

hreftype: MUST be set to an HREFTYPE that identifies the UDT (see section 2.2.28).

vt: MUST be set to one of the values that are specified as available to a TYPEDESC and
identified with a "T" in the Context column of the table in 2.2.7. MUST be set to VT_PTR if the
ELEMDESC is contained in a VARDESC that describes an appobject coclass, as specified in
section 2.2.49.8.

2.2.38 ARRAYDESC

The ARRAYDESC structure is used in a TYPEDESC structure to specify the dimensions of an array
and the type of its elements.

typedef struct tagARRAYDESC {

 TYPEDESC tdescElem;

 USHORT cDims;

 [size_is(cDims)] SAFEARRAYBOUND rgbounds[];

} ARRAYDESC;

57 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

tdescElem: MUST contain a TYPEDESC that specifies the type of the elements in the array as

specified in section 2.2.37.

cDims: MUST be set to the number of dimensions in the array.

rgbounds: MUST refer to a SAFEARRAYBOUND that specifies the maximum index value for

each dimension of the array, as specified in section 2.2.30.1.

2.2.39 PARAMDESCEX

The PARAMDESCEX structure is used in a PARAMDESC (section 2.2.40) structure to specify
information about the default value of a parameter.

typedef struct tagPARAMDESCEX {

 ULONG cBytes;

 VARIANT varDefaultValue;

} PARAMDESCEX;

cBytes: MUST be set to an implementation-specific value.<20>

varDefaultValue: MUST contain a VARIANT that specifies the default value of the parameter.

2.2.40 PARAMDESC

The PARAMDESC structure is used in an ELEMDESC (section 2.2.41) structure to specify the
features of a method parameter.

typedef struct tagPARAMDESC {

 PARAMDESCEX* pparamdescex;

 USHORT wParamFlags;

} PARAMDESC;

pparamdescex: MUST refer to a PARAMDESCEX structure that specifies the default value of

the parameter if the PARAMFLAG_FHASDEFAULT flag is set in the wParamFlags field. MUST
be set to NULL otherwise.

wParamFlags: MUST be set to a combination of the PARAMFLAG (section 2.2.15) bit flags if
the PARAMDESC belongs to an element of the lprgelemdescParam array in a FUNCDESC
(section 2.2.42) structure. MUST be set to 0 otherwise.

2.2.41 ELEMDESC

The ELEMDESC structure is used in the FUNCDESC (section 2.2.42) and VARDESC (section
2.2.43) structures to describe a member of a structure, a parameter, or the return value of a

method.

typedef struct tagELEMDESC {

 TYPEDESC tdesc;

 PARAMDESC paramdesc;

} ELEMDESC;

58 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

tdesc: MUST contain a TYPEDESC (section 2.2.37) that describes the element, parameter, or

return value.

paramdesc: MUST contain a PARAMDESC that has the values as specified in section 2.2.40, if
the ELEMDESC is a member of the lprgelemdescParam array in a FUNCDESC (section

2.2.42) structure. Otherwise, it MUST contain a PARAMDESC that has the data fields
pparamdescex and wParamFlags set to NULL and 0 respectively.

2.2.42 FUNCDESC

The FUNCDESC structure is used by an ITypeComp server or ITypeInfo server to describe a
method, as specified in sections 3.5.4.1 and 3.7.4.3.

typedef struct tagFUNCDESC {

 MEMBERID memid;

 [size_is(cReserved2)] SCODE* lReserved1;

 [size_is(cParams)] ELEMDESC* lprgelemdescParam;

 FUNCKIND funckind;

 INVOKEKIND invkind;

 CALLCONV callconv;

 SHORT cParams;

 SHORT cParamsOpt;

 SHORT oVft;

 SHORT cReserved2;

 ELEMDESC elemdescFunc;

 WORD wFuncFlags;

} FUNCDESC,

 *LPFUNCDESC;

memid: MUST be set to the MEMBERID (section 2.2.35) of the method.

lReserved1: MUST be set to 0 and ignored on receipt. An HRESULT value is closely related, or

identical to an SCODE.

lprgelemdescParam: MUST refer to an array of ELEMDESC that contains one entry for each
element in the method's parameter table.

The lprgelemdescParam array MUST NOT include parameters that are declared with the [lcid]
or [retval] attributes if the value of funckind is FUNC_DISPATCH (as specified in section
3.1.4.4.2).

funckind: MUST be set to one of the values of the FUNCKIND (section 2.2.12) enumeration.

invkind: MUST be set to one of the values of the INVOKEKIND (section 2.2.14)
enumeration.

callconv: MUST be set to one of the values of the CALLCONV (section 2.2.10) enumeration.

cParams: MUST be set to the length of the lprgelemdescParam array.

cParamsOpt: SHOULD be set to the number of optional VARIANT parameters<21>. MUST be
set to -1 if the method was declared with the [vararg] attribute. Otherwise, MUST be set to 0.

oVft: MUST be set to either 0 or to the opnum of the interface method multiplied by the system
pointer size value (as specified in sections 2.2.44 and 3.11.1).

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

59 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

cReserved2: MUST be set to 0, and ignored on receipt.

elemdescFunc: MUST contain an ELEMDESC that specifies the return type of the method, as
specified in section 2.2.41.

wFuncFlags: MUST be set to a combination of the FUNCFLAGS bit flags (as specified in section

2.2.11), or set to 0.

2.2.43 VARDESC

The VARDESC structure is used by an ITypeInfo server or ITypeComp server to describe a data
member, constant, or ODL dispinterface property, as specified in sections 3.5.4.1 and 3.7.4.4.

typedef struct tagVARDESC {

 MEMBERID memid;

 LPOLESTR lpstrReserved;

 [switch_type(VARKIND), switch_is(varkind)]

 union {

 [case(VAR_PERINSTANCE, VAR_DISPATCH, VAR_STATIC)]

 ULONG oInst;

 [case(VAR_CONST)]

 VARIANT* lpVarValue;

 } _vdUnion;

 ELEMDESC elemdescVar;

 WORD wVarFlags;

 VARKIND varkind;

} VARDESC,

 *LPVARDESC;

memid: MUST be set to the MEMBERID (section 2.2.35) of the data member, the constant,

or the ODL dispinterface property. MUST be set to MEMBERID_DEFAULTINST if the VARDESC
describes an appobject coclass, as specified in section 2.2.49.8

lpstrReserved: MUST be set to NULL, and MUST be ignored by the recipient.

_vdUnion: MUST be set to an instance of the type, according to the value in the varkind field.

oInst:

VAR_PERINSTANCE: MUST be set to an implementation-specific value<22>

VAR_DISPATCH: MUST be set to 0.

VAR_STATIC: MUST be set to 0.

lpVarValue: MUST be set to a reference to a VARIANT that specifies the value of the
constant.

elemdescVar: MUST contain an ELEMDESC that describes the data member, constant, or ODL

dispinterface property and its type, as specified in section 2.2.41.

wVarFlags: MUST be set to a combination of the VARFLAGS bit flags (as specified in 2.2.18),
or set to 0. MUST be set to 0 if the VARDESC describes an appobject coclass, as specified in
section 2.2.49.8.

60 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

varkind: MUST be set to a value of the VARKIND enumeration. MUST be set to VAR_STATIC if
the VARDESC describes an appobject coclass, as specified in section 2.2.49.8.

2.2.44 TYPEATTR

The TYPEATTR structure is used by an ITypeInfo server to describe a type, as specified in section
3.7.4.1.

typedef struct tagTYPEATTR {

 GUID guid;

 LCID lcid;

 DWORD dwReserved1;

 DWORD dwReserved2;

 DWORD dwReserved3;

 LPOLESTR lpstrReserved4;

 ULONG cbSizeInstance;

 TYPEKIND typeKind;

 WORD cFuncs;

 WORD cVars;

 WORD cImplTypes;

 WORD cbSizeVft;

 WORD cbAlignment;

 WORD wTypeFlags;

 WORD wMajorVerNum;

 WORD wMinorVerNum;

 TYPEDESC tdescAlias;

 DWORD dwReserved5;

 WORD dwReserved6;

} TYPEATTR,

 *LPTYPEATTR;

guid: MUST be set to the GUID that is associated with the type, or to IID_NULL, if the type was

not declared with the [uuid] attribute (see section 2.2.49.2).

lcid: MUST be set to the locale ID of the type's member names and documentation strings (see

section 2.2.49.2).

dwReserved1: MUST be set to 0, and MUST be ignored on receipt.

dwReserved2: MUST be set to -1, and MUST be ignored on receipt.

dwReserved3: MUST be set to -1, and MUST be ignored on receipt.

lpstrReserved4: MUST be set to NULL, and MUST be ignored on receipt.

cbSizeInstance: MUST be set to a value that is specified by the value of typekind.

Value of

typekind Value of cbSizeInstance

TKIND_COCLASS MUST be set to the system pointer size (see section 3.7.1.2).

TKIND_DISPATCH MUST be set to the system pointer size (see section 3.7.1.2).

TKIND_INTERFACE MUST be set to the system pointer size (see section 3.7.1.2).

61 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value of

typekind Value of cbSizeInstance

TKIND_MODULE MUST be set to 2.

TKIND_ENUM MUST be set to an implementation-specific value<23> that specifies the size

of an integer.

TKIND_UNION MUST be set to an implementation-specific value<24> that specifies the size

of its largest element.

TKIND_RECORD MUST be set to an implementation-specific value<25> that specifies the size

in bytes, of the structure.

TKIND_ALIAS MUST be set to an implementation-specific value<26> that specifies the size,

in bytes, of the predefined type for which this type is an alias.

typeKind: MUST be set to a value of the TYPEKIND enumeration, as specified in section

2.2.17.

cFuncs: MUST be set to a value specified by the value of typekind.

Value of

typekind Value of cfuncs

TKIND_COCLASS MUST be set to 0.

TKIND_DISPATCH MUST be set to the number of elements in the dispatch method table, as

specified in section 3.7.1.2.

TKIND_INTERFACE MUST be set to the number of elements in the method table, as specified in

section 3.7.1.2.

TKIND_MODULE MUST be set to the number of elements in the method table, as specified in

section 3.7.1.2.

TKIND_ENUM MUST be set to 0.

TKIND_UNION MUST be set to 0.

TKIND_RECORD MUST be set to 0.

TKIND_ALIAS MUST be set to 0.

cVars: MUST be set to the number of elements in the data member table, as specified in section
3.7.1.2.

cImplTypes: MUST be set to the number of elements in the interface table, as specified in
section 3.7.1.2.

cbSizeVft: MUST be set to a value specified by the value of typekind.

Value of

typekind Value of cbSizeVft

TKIND_COCLASS MUST be set to 0.

TKIND_DISPATCH MUST be set to the system pointer size value (see section 2.2.45) multiplied

62 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value of

typekind Value of cbSizeVft

by seven.

TKIND_INTERFACE MUST be set to the system pointer size value multiplied by the number of

methods that are defined by the interface and all its inherited interfaces.

TKIND_MODULE MUST be set to 0.

TKIND_ENUM MUST be set to 0.

TKIND_UNION MUST be set to 0.

TKIND_RECORD MUST be set to 0.

TKIND_ALIAS MUST be set to 0.

cbAlignment: MUST be set to 0 or to an implementation-specific positive value.<27>

wTypeFlags: MUST be either a combination of the TYPEFLAGS bit flags that are specified in
section 2.2.16, or 0.

wMajorVerNum: MUST be set to the major version number of the automation scope that is
associated with the ITypeLib server, as specified in section 2.2.49.2.

wMinorVerNum: MUST be set to the minor version number of the automation scope that is
associated with the ITypeLib server, as specified in section 2.2.49.2.

tdescAlias: MUST contain a TYPEDESC (section 2.2.37) that describes the predefined type
for which this type is an alias, if typekind is set to TKIND_ALIAS. Otherwise, MUST contain a

TYPEDESC with the vt field set to VT_EMPTY.

dwReserved5: MUST be set to 0, and MUST be ignored on receipt.

dwReserved6: MUST be set to 0, and MUST be ignored on receipt.

2.2.45 TLIBATTR

The TLIBATTR structure is used to specify the attributes of an ITypeLib server, as specified in
section 3.11.4.

typedef struct tagTLIBATTR {

 GUID guid;

 LCID lcid;

 SYSKIND syskind;

 unsigned short wMajorVerNum;

 unsigned short wMinorVerNum;

 unsigned short wLibFlags;

} TLIBATTR,

 *LPTLIBATTR;

guid: MUST be set to the GUID of the automation scope that is associated with the ITypeLib

server, as specified in section 2.2.49.1.

63 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

lcid: MUST be set to the LCID of the automation scope that is associated with the ITypeLib
server, as specified in section 2.2.49.1.

syskind: MUST be set to a value of the SYSKIND enumeration, as specified in section 2.2.21.

The value of syskind specifies the system pointer-size value. If syskind is SYS_WIN32, the

system pointer-size value is 4. If syskind is SYS_WIN64, the system pointer-size value is 8.

The system pointer-size value MUST be the size, in bytes, of the VT_INT_PTR and
VT_UINT_PTR type variables created by the server (see section 2.2.7). It is used as a
multiplier in the oVft field of a FUNCDESC (see section 2.2.42) and in the cbSizeVft field of
a TYPEATTR (see section 2.2.44).

wMajorVerNum: MUST be set to the major version number of the automation scope that is
associated with the ITypeLib server, as specified in section 2.2.49.2.

wMinorVerNum: MUST be set to the minor version number of the automation scope that is
associated with the ITypeLib server, as specified in section 2.2.49.2.

wLibFlags: MUST be either a combination of the LIBFLAGS bit flags (as specified in section
2.2.20) or 0.

2.2.46 CUSTDATAITEM

The CUSTDATAITEM structure is used in a CUSTDATA structure to store custom data items, as
specified in section 2.2.47.

typedef struct tagCUSTDATAITEM {

 GUID guid;

 VARIANT varValue;

} CUSTDATAITEM;

guid: MUST be set to the GUID associated with the custom data item that uses the [custom]

attribute, as specified in section 2.2.49.5.1.

varValue: MUST be set to the value of the custom data item.

2.2.47 CUSTDATA

The CUSTDATA structure is used by an ITypeInfo2 server or ITypeLib2 server to retrieve custom

data items, as specified in sections 3.9.4 and 3.13.4.

typedef struct tagCUSTDATA {

 DWORD cCustData;

 [size_is(cCustData)] CUSTDATAITEM* prgCustData;

} CUSTDATA;

cCustData: MUST be set to the number of custom data items in prgCustData.

prgCustData: MUST refer to an array of CUSTDATAITEM structures that contain custom data
items, as specified in section 2.2.46.

%5bMS-GLOS%5d.pdf

64 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.48 SCODE

The SCODE data type is a 32-bit status value that is used to describe an error or warning.

This type is declared as follows:

typedef LONG SCODE;

On 32-bit platforms, the SCODE data type is the same as the HRESULT data type. On 16-bit

platforms, an SCODE value is used to generate an HRESULT value.

For more information, see [SCODE].

2.2.49 IDL Syntax Extensions

Automation provides a number of IDL extensions that support a seamless integration of automation
servers with generic automation clients, scripting languages, and various development
environments.<28> A client that uses automation type descriptions to examine the functionality
provided by an automation type library or an automation server is an automation type browser.

This section specifies the automation types and the IDL attributes and statements that have an
impact on the wire communication between an automation client and server. It also specifies the
attributes and statements that allow a client to discover rich type information regarding the

automation servers that it is calling.

The areas covered are:

COM server categories and behaviors that can be described by the IDL extensions:

aggregatable servers, connectable servers, and bindable servers.

Automation-compatible types, which are relevant to marshaling the arguments as part of the call

to IDispatch::Invoke (see section 3.1.4.4).

Automation library scope, which provides context for marshaling UDTs (see sections 2.2.28 and

2.2.31).

Automation DISPIDs, which provide the information needed for performing an automation call

through IDispatch::Invoke (see section 3.1.4.4).

Automation attributes and statements that specify a rich set of type information regarding an

automation server (see sections 3.5 through 3.14).

The extensions to the IDL that are specified by the OLE Automation Protocol are derived from the
now-obsolete Object Definition Language (ODL). The extensions take the following forms.

A set of attributes that specify additional semantic meaning for the language element they

decorate: version, lcid, oleautomation, dual, id, propget, propput, propputref, readonly,

defaultvalue, optional, vararg, and retval.

A set of statements that allow for additional information to be specified, or for an alternative way

to define language elements. The statements are introduced by the following keywords: library,
dispinterface, methods, and properties.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90511

65 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

A set of attributes that specify a rich group of properties of interest to the automation client:

control, source, default, defaultvtable, bindable, defaultbind, immediatebind, displaybind,

requestedit, public, uidefault, restricted, hidden, nonbrowsable, helpcontext, helpfile, helpstring,

helpstringcontext, helpstringdll, appobject, predeclid, aggregatable, defaultcollelem, licensed,
proxy, noncreatable, nonextensible, custom, and replaceable.

A statement that allows specifying an automation server coclass.

Extensions to the IDL syntax that support the OLE Automation Protocol are specified by using the
Augmented Backus-Naur Form (ABNF) notation, as specified in [RFC4234] section 2.2.

The DCE 1.1: Remote Procedure Call, as specified in [C706], specifies the syntax for IDL by using an
extended BNF notation. The following table specifies the DCE 1.1: Remote Procedure Call (as

specified in [C706]), the production names referenced later, and the corresponding ABNF name as it
will be used in this specification.

DCE 1.1: Remote Procedure Call production name Equivalent ABNF production name

<Uuid_rep> uuid-rep

<integer_const_exp> integer-const-exp

<param_attribute> param-attribute

<const_exp> const-exp

<type_attribute> type-attribute

<param_attribute> param-attribute

<operation_attributes> operation-attributes

<op_declarator> op-declarator

<interface_attribute> interface-attribute

<interface_attributes> interface-attributes

<interface> interface

<import> import

<export> export

<string> string

<param_declarators> param-declarators

In addition, the productions use LWSP as the linear whitespace production rpcidl-defined for any
production defined in [C706] section 4, and "kw-KEYWORD" as the production for the case-sensitive
keyword KEYWORD:

kw-aggregatable = %d97.103.103.114.101.103.97.116.97.98.108.101

kw-appobject = %d97.112.112.111.98.106.101.99.116

kw-bindable = %d98.105.110.100.97.98.108.101

kw-boolean = %d98.111.111.108.101.97.110

kw-BSTR = %d66.83.84.82

kw-cdecl = %d99.100.101.99.108

http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

66 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

kw-char = %d99.104.97.114

kw-coclass = %d99.111.99.108.97.115.115

kw-const = %d99.111.110.115.116

kw-control = %d99.111.110.116.114.111.108

kw-CURRENCY = %d67.85.82.82.69.78.67.89

kw-custom = %d99.117.115.116.111.109

kw-DATE = %d68.65.84.69

kw-Decimal = %d68.101.99.105.109.97.108

kw-default = %d100.101.102.97.117.108.116

kw-defaultbind = %d100.101.102.97.117.108.116.98.105.110.100

kw-defaultcollelem =

 %d100.101.102.97.117.108.116.99.111.108.108.101.108.101.109

kw-defaultvalue =

 %d100.101.102.97.117.108.116.118.97.108.117.101

kw-defaultvtable =

 %d100.101.102.97.117.108.116.118.116.97.98.108.101

kw-dispinterface =

 %d100.105.115.112.105.110.116.101.114.102.97.99.101

kw-displaybind =

 %d100.105.115.112.108.97.121.98.105.110.100

kw-dllname = %d100.108.108.110.97.109.101

kw-double = %d100.111.117.98.108.101

kw-dual = %d100.117.97.108

kw-entry = %d101.110.116.114.121

kw-float = %d102.108.111.97.116

kw-helpcontext = %d104.101.108.112.99.111.110.116.101.120.116

kw-helpfile = %d104.101.108.112.102.105.108.101

kw-helpstring = %d104.101.108.112.115.116.114.105.110.103

kw-helpstringcontext =

 %d104.101.108.112.115.116.114.105.110.103.99.111.110.116.101.120.116

kw-helpstringdll =

 %d104.101.108.112.115.116.114.105.110.103.100.108.108

kw-hidden = %d104.105.100.100.101.110

kw-id = %d105.100

kw-immediatebind =

 %d105.109.109.101.100.105.97.116.101.98.105.110.100

kw-importlib = %d105.109.112.111.114.116.108.105.98

kw-int = %d105.110.116

kw-interface = %d105.110.116.101.114.102.97.99.101

kw-lcid = %d108.99.105.100

kw-library = %d108.105.98.114.97.114.121

kw-licensed = %d108.105.99.101.110.115.101.100

kw-long = %d108.111.110.103

kw-methods = %d109.101.116.104.111.100.115

kw-module = %d109.111.100.117.108.101

kw-nonbrowsable = %d110.111.110.98.114.111.119.115.97.98.108.101

kw-noncreatable = %d110.111.110.99.114.101.97.116.97.98.108.101

kw-nonextensible =

 %d110.111.110.101.120.116.101.110.115.105.98.108.101

kw-oleautomation =

 %d111.108.101.97.117.116.111.109.97.116.105.111.110

kw-optional = %d111.112.116.105.111.110.97.108

kw-pascal = %d112.97.115.99.97.108

kw-predeclid = %d112.114.101.100.101.99.108.105.100

kw-properties = %d112.114.111.112.101.114.116.105.101.115

kw-propget = %d112.114.111.112.103.101.116

kw-propput = %d112.114.111.112.112.117.116

kw-propputref = %d112.114.111.112.112.117.116.114.101.102

kw-proxy = %d112.114.111.120.121

67 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

kw-public = %d112.117.98.108.105.99

kw-readonly = %d114.101.97.100.111.110.108.121

kw-replaceable = %d114.101.112.108.97.99.101.97.98.108.101

kw-requestedit = %d114.101.113.117.101.115.116.101.100.105.116

kw-restricted = %d114.101.115.116.114.105.99.116.101.100

kw-retval = %d114.101.116.118.97.108

kw-SAFEARRAY = %d83.65.70.69.65.82.82.65.89

kw-SCODE = %d83.67.79.68.69

kw-short = %d115.104.111.114.116

kw-source = %d115.111.117.114.99.101

kw-static = %d115.116.97.116.105.99

kw-stdcall = %d115.116.100.99.97.108.108

kw-uidefault = %d117.105.100.101.102.97.117.108.116

kw-unsigned = %d117.110.115.105.103.110.101.100

kw-uuid = %d117.117.105.100

kw-usesgetlasterror =

 %d117.115.101.115.103.101.116.108.97.115.116.101.114.114.111.114

kw-vararg = %d118.97.114.97.114.103

kw-version = %d118.101.114.115.105.111.110

For the full ABNF specification of the extensions provided in this section, see Appendix C.

2.2.49.1 COM Server Categories

The following are particular COM server categories that can be specified using the automation IDL
extensions described in this section. Clients can use automation type description interfaces to
identify servers that advertise their capabilities and to communicate with them according to the

categories they publicly support.

2.2.49.1.1 Aggregatable Servers

An aggregatable server is a COM server that can be contained by another COM server and that

allows its interfaces to be used as if they were defined by the containing server.

2.2.49.1.2 Connectable Servers

A connectable server is a COM server that enables bidirectional communication with clients.
Server-initiated communication MAY be specified using source interfaces (as specified in section
2.2.49.8) or bindable properties (as specified in section 2.2.49.1.3).

The automation IDL extensions allow a connectable server to define source interfaces for
communicating with clients. If the server does not define source interfaces, server-initiated
communication is limited to notifications related to bindable properties.

A connectable server provides the following functionality:<29>

Identifies itself as a connectable server.

Enables its clients to enumerate its available source interfaces.

Enables its clients to register and unregister a client-implemented interface with any of its

available source interfaces.

Enables its clients to enumerate the registered connections for each available source interface.

68 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

A client of the connectable server MUST implement one or more of the source interfaces that are
specified by the server.

A connectable server MUST have one or more interfaces that are declared with the [source]
attribute (as specified in section 2.2.49.8) or one or more properties that are declared with the

[bindable] attribute (as specified in section 2.2.49.5.2).

2.2.49.1.3 Bindable Servers

A bindable server extends the functionality of a connectable server. It associates clients with
bindable properties and notifies the clients whenever the value of the property is changed.

A bindable server provides the same functionality as a connectable server (see section 2.2.49.1.2)
and MUST have one or more properties declared with the [bindable] attribute (see section

2.2.49.5.2).

A client for a bindable server MUST provide the following functionality:<30>

The client MUST receive notifications that the value of the associated property has changed.

The client MUST specify whether it provides the functionality to determine whether a property

value can be changed. If it does provide this functionality, it either grants or denies permission to

change the value of the property upon request.

When the value of a bindable property is changed, the server notifies each registered client that the
value of the property was changed.

2.2.49.2 IDL Automation Scope

An IDL automation scope is defined by the library keyword, as in the following.

oa-scope =

 oa-library-header LWSP "{" oa-library-body "}" LWSP [";"]

oa-library-header =

 "[" LWSP library-attributes LWSP "]"

 LWSP kw-library LWSP Identifier

oa-library-body = *oa-library-declarator

library-attributes =

 library-attribute *("," LWSP library-attribute LWSP)

library-attribute = uuid-attr /

 version-attr /

 lcid-attr /

 help-attr /

 custom-attr /

 kw-control /

 kw-hidden /

 kw-restricted

uuid-attr = kw-uuid LWSP "(" LWSP uuid-rep LWSP ")"

version-attr =

 kw-version LWSP "(" LWSP 1*DIGIT *("." 1*DIGIT) LWSP ")"

lcid-attr = kw-lcid LWSP "(" LWSP integer-const-exp LWSP ")"

help-attr = helpcontext-attr /

 helpfile-attr /

 helpstring-attr /

 helpstringcontext-attr /

69 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 helpstringdll-attr

helpcontext-attr =

 kw-helpcontext LWSP "(" LWSP integer-const-exp LWSP ")"

helpfile-attr = kw-helpfile LWSP "(" LWSP string LWSP ")"

helpstring-attr = kw-helpstring LWSP "(" LWSP string LWSP ")"

helpstringcontext-attr = kw-helpstringcontext LWSP "("

 LWSP integer-const-exp LWSP ")"

helpstringdll-attr = kw-helpstringdll LWSP "(" LWSP string LWSP ")"

custom-attr = kw-custom LWSP

 "(" uuid-rep LWSP "," LWSP const-exp LWSP ")"

oa-library-declarator = interface /

 import /

 export /

 oa-importlib /

 oa-module /

 oa-dispinterface /

 oa-coclass

oa-scope: Specifies a new automation scope. There MUST be, at most, one automation scope
defined in an IDL file.

uuid-attr: Specifies a GUID that MUST identify the automation scope. This attribute MUST be
present in the library scope.

version-attr: Specifies the version of the automation scope. If this attribute is not specified, a
version of 0.0 MUST be assumed for the automation scope. Otherwise, it MUST contain a major
version that MUST be a decimal number between 0 and 65535 inclusive. If the minor version is
missing, it MUST be treated as 0. Otherwise, it MUST be a decimal number between 0 and 65535
inclusive.

lcid-attr: Specifies the locale ID of the automation scope. If this attribute is not specified, the locale
ID of 0x0409 MUST be used for the automation scope. Otherwise, this value MUST resolve to a valid

locale ID.

The combination (<guid>, <vMajor>, <vMinor>, <lcidValue>) MUST uniquely identify an
automation scope.

The <guid> value is the main component of the automation scope identity. Scopes with identical
<guid> values MUST belong to the same automation scope family.

The <vMajor> and <vMinor> values MUST be used to specify different versions of an automation
scope. automation scopes from the same automation scope family that also share the same version

numbers MUST belong to the same automation scope generation.

The <lcidValue> MUST be used to define multiple automation scopes within an automation scope
generation. Two such automation scopes MUST define the same automation interfaces, and the

70 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

interfaces MUST differ only in the names that are used for methods, properties, and parameter
names (see sections 2.2.49.5 and 2.2.49.6). The equivalent names from the two automation scopes

MUST map to the same DISPIDs. This enables an automation server to define multiple mappings
from method/property names to a determined set of DISPIDs, with one mapping for each supported

locale ID.

helpcontext-attr: Specifies an implementation-specific integer.<31> The value of this attribute
MUST be a 32-bit integer. When used on nonlibrary elements, the language element it decorates
MUST belong to an automation scope that is declared with the helpfile attribute.

helpfile-attr: Specifies an implementation-specific string.<32>

helpstring-attr: Specifies an implementation-specific string.<33>

helpstringcontext-attr: Specifies an implementation-specific integer.<34> The value of this

attribute MUST be a 32-bit integer.

helpstringdll-attr: Specifies an implementation-specific string.<35>

uuid-attr: Specifies a GUID that MUST identify the type. Any Automation-compatible constructed
types (enums, structs, or unions) that are not declared with a specifying GUID cannot be retrieved
by using ITypeLib::GetTypeInfoOfGuid.

kw-control: Specifies that all COM servers in the automation scope are visual controls. A type

browser client may limit the visibility of elements that have this attribute.

kw-hidden: Specifies that the automation scope elements are not intended to be displayed to
users. Type browser clients SHOULD NOT expose the functionality of elements with this attribute.

kw-restricted: Specifies that the element is not intended to be used under all conditions. Type
browser clients MAY<36> place restrictions on the visibility or usability of elements that have this
attribute. Elements that have the [restricted] attribute MUST NOT also have the [default]
attribute.

help-attr: Specifies information associated with language elements that can be retrieved by using
ITypeLib::GetDocumentation or ITypeInfo::GetDocumentation (as specified in section 3.11.4.7).

custom-attr: Specifies that the attribute is user-defined, and that its meaning depends on its
associated GUID.

Custom attributes are optional. If there is more than one custom attribute decorating an automation
scope, each one MUST have a different identifying GUID.

The constant value associated with a [custom] attribute MUST be a value that can be stored in a

_wireVARIANT, as specified in section 2.2.29.2.

2.2.49.3 Automation-Compatible Types

The OLE Automation Protocol restricts the types of parameters that can be used in the definition of
an automation interface (see section 2.2.49.4).

type-attribute = rpc-defined /

 uuid-attr /

 help-attr /

 custom-attr /

 kw-public /

 kw-restricted

71 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

oa-type-spec = oa-base-type-spec /

 oa-safearray-type-spec /

 oa-ptr-type-spec /

 Identifier

oa-base-type-spec = oa-base-nondecimal-type-spec / kw-Decimal

oa-base-nondecimal-type-spec = kw-boolean /

 [kw-unsigned] LWSP kw-char /

 [kw-unsigned] LWSP kw-short /

 [kw-unsigned] LWSP kw-int /

 [kw-unsigned] LWSP kw-long /

 kw-double /

 kw-float /

 kw-BSTR /

 kw-CURRENCY /

 kw-DATE /

 kw-SCODE

oa-safearray-type-spec =

 kw-SAFEARRAY "(" oa-base-nondecimal-type-spec ")" /

 kw-SAFEARRAY "(" oa-ptr-type-spec ")" /

 kw-SAFEARRAY "(" Identifier ")"

oa-ptr-type-spec = oa-base-nondecimal-type-spec "*" /

 oa-safearray-type-spec "*" /

 Identifier "*"

In the preceding productions, <Identifier> MUST be a type that is defined as an enumeration type,
a UDT, or an automation-compatible interface (see section 2.2.49.4.1 for details).

The restriction that defines the automation-compatible types is that they MUST be representable as
a field in a VARIANT (section 2.2.29.2).

The following table specifies the mapping between the IDL keyword and the associated VARIANT
type constant (see section 2.2.7) that MUST<37> be used when storing the type in a VARIANT.
These are the only types that are legal in an automation-compatible interface (see section
2.2.49.4.1).

Type keyword VARIANT type constant

boolean VT_BOOL

unsigned char VT_UI1

char VT_I1

double VT_R8

float VT_R4

unsigned int VT_UI4

int VT_I4

72 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Type keyword VARIANT type constant

unsigned long VT_UI4

long VT_I4

unsigned short VT_UI2

short VT_I2

BSTR VT_BSTR

CURRENCY VT_CY

VARIANT VT_BYREF|VT_VARIANT

DATE VT_DATE

Decimal VT_DECIMAL

SCODE VT_ERROR

HRESULT VT_ERROR

typedef enum myenum VT_I4

typedef struct myUDT VT_RECORD or

VT_BYREF|VT_RECORD

interface IDispatch* VT_DISPATCH

interface IUnknown* VT_UNKNOWN

dispinterface Typename* VT_DISPATCH

[oleautomation] interface Typename* VT_UNKNOWN

SAFEARRAY(Typename) VT_ARRAY

Typename* VT_BYREF | the variant type associated with Typename

[dual] interface Typename* VT_DISPATCH

The methods of an Automation Interface Definition Language (AIDL) interface MUST return

an HRESULT or SCODE. The methods and properties of an ODL dispinterface MUST return only the
types that are specified in the previous table. Otherwise, an automation interface MUST use types
from the previous table. See AIDL Interfaces and ODL Dispinterfaces (section 2.2.49.7) for more
information.

uuid-attr: Specifies a GUID that MUST identify the type. Any automation-compatible constructed
types (enums, structs, or unions) that are not declared with a specifying GUID cannot be retrieved

using ITypeLib::GetTypeInfoOfGuid (section 3.11.4.4).

help-attr: Specifies information associated with the type that can be retrieved using
ITypeLib::GetDocumentation (section 3.11.4.7) or ITypeInfo::GetDocumentation (section
3.7.4.8).

kw-public: Specifies that the element is an alias declared with the typedef keyword and explicitly
included in an automation scope.

73 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

kw-restricted: Specifies that the element is not intended to be used under all conditions. Type
browser clients MAY<38> place restrictions on the visibility or usability of elements that have this

attribute. Elements with the [restricted] attribute MUST NOT also have the [default] attribute.

kw-hidden: Specifies that the type is not intended to be displayed to users. Type browser clients

SHOULD NOT expose the functionality of elements that have this attribute.

2.2.49.4 Automation Interfaces

The OLE Automation Protocol allows interfaces to specify two degrees of Automation support:

Automation-compatible interfaces are interfaces whose methods use only automation-compatible

types.

automation interfaces are interfaces that define an automation behavior. That is, servers that

implement the automation interfaces MUST provide access to the automation functionality
through an implementation of IDispatch (see section 3.1.4).

In order for an interface to be used as an automation-compatible type (see section 2.2.49.3), it
MUST be defined as an automation-compatible interface.

All automation interfaces MUST be Automation-compatible.

The following attributes apply to interfaces defined in an automation scope:

interface-attribute = rpcidl-defined /

 kw-nonextensible /

 kw-proxy /

 attr-oleautomation /

 attr-dual /

 custom-attr

kw-nonextensible: Specifies that an interface or dispinterface implements IDispatch, but includes
only the properties and methods listed in the interface description. Interfaces and dispinterfaces

with this attribute MUST NOT be extended with additional members at run time.

kw-proxy: Specifies an implementation-specific local behavior of the interface<39>. This attribute
has no effect across the wire.

2.2.49.4.1 Automation-Compatible Interfaces

To define an interface as an automation-compatible interface, the oleautomation attribute MUST
be specified when defining the interface.

The following production extends the <interface_attribute> production from [C706]:

attr-oleautomation = kw-oleautomation

An automation-compatible interface MUST be derived from IDispatch or IUnknown, MUST have the
[oleautomation attribute, and all of its methods MUST have only automation-compatible

parameters and return types.

http://go.microsoft.com/fwlink/?LinkId=89824

74 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.49.4.2 Dual Interfaces

A dual interface is an automation interface that allows a server to expose its functionality both to
automation clients and to regular DCOM clients. A dual interface MUST derive from IDispatch (see

section 3.1.4), and be Automation compatible (that is, its methods MUST have only automation-
compatible parameters and return values).

To define an interface as a dual interface, the dual attribute MUST be specified when defining the
interface.

The following production extends the <interface_attribute> production from [C706]:

attr-dual = kw-dual

2.2.49.4.3 Dispinterface Interfaces

A dispinterface is an automation interface that specifies the properties and methods (see section

2.2.49.5) that the IDispatch implementation of the automation server MUST implement.

A dispinterface is specified as:

oa-dispinterface =

 oa-dispitf-header LWSP "{" LWSP oa-dispitf-body LWSP "}"

oa-dispitf-header = "[" interface-attributes "]"

 LWSP kw-dispinterface LWSP Identifier

oa-dispitf-body = oa-itf-ref / oa-odl-body

oa-itf-ref = kw-interface LWSP Identifier LWSP ";"

A dispinterface defined using the <oa-itf-ref> production is a reference dispinterface. The
interface referenced from the <oa-itf-ref> production (its "referenced interface") MUST be an

automation-compatible interface.

The oleautomation attribute MUST NOT be used on dispinterfaces.

2.2.49.5 Automation Members

Any automation interface defines one or more automation members, either methods or properties.
Methods and properties are specified differently, depending on whether they are defined in a
dispinterface, in a dual interface, or in a regular interface.

2.2.49.5.1 Interfaces Automation Members

An interface defined as "dual", or an interface referenced from the <oa-itf-ref> production, defines
the automation members by extending the <op_declarator> production from [C706] with a new set
of attributes:

operation-attribute = rpcidl-defined /

 kw-id LWSP "(" LWSP integer-const-exp LWSP ")" /

 kw-propget /

 kw-propput /

 kw-propputref /

 kw-vararg /

 kw-defaultcollelem /

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

75 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 kw-nonbrowsable /

 kw-replaceable /

 kw-restricted /

 kw-uidefault /

 kw-hidden /

 oa-bindable-attr /

 readonly-attr /

 help-attr /

 custom-attr

If the id attribute exists, it MUST represent the DISPID that any client MUST pass in as the

dispIdMember argument in calls to IDispatch::Invoke (see section 3.1.4.4) to execute the
automation method identified by this value.

An operation that specifies any of the propget, propput, or propputref attributes MUST be a

property accessor method. Two operations with the same property name MUST have the same
DISPID; one of them MUST have the propget attribute; the other MUST have either the propput or
propputref attribute.

If the attributes propget, propput, or propputref exist for a method, a client MUST set the values
DISPATCH_PROPERTYGET, DISPATCH_PROPERTYPUT, or DISPATCH_PROPERTYPUTREF,
respectively, into the wFlags argument in calls to IDispatch::Invoke (see section 3.1.4.4) to

disambiguate between the put and get semantics. The disambiguation is needed because the
DISPID identifies only the property to be accessed, not the operation to be executed.

kw-vararg: Specifies that the final parameter of the method MUST be a SAFEARRAY containing
VARIANTs or a pointer to a SAFEARRAY containing VARIANTs. This parameter MUST NOT be used on
an ODL dispinterface property or on a property accessor method. For further specifications on
handling "vararg" arguments, see section 3.1.4.4.3.

kw-defaultcollelem: Specifies that a property is available for compiler-specific optimizations<40>.

The [defaultcollelem] attribute refers to the property as a whole, and MUST be applied to both get
and set accessor methods, if they exist. A type SHOULD NOT contain more than one property with
this attribute<41>.

kw-nonbrowsable: Specifies that a property is not always safe to evaluate. The attribute MUST be
specified only for property accessor methods or properties. Type browser clients SHOULD display the
name of the property to users, but MUST NOT call the property's get accessor in order to display its

contents.

kw-replaceable: This attribute SHOULD NOT be used<42>.

kw-restricted: Specifies that the element is not intended to be used under all conditions, as specified
in section 2.2.49.3.

kw-uidefault: Specifies that the element is intended to be used to represent its containing type to
users. Type browser clients MUST display an element with this attribute whenever only one member

of a type can be displayed. A type MUST NOT contain more than one element with this attribute.

2.2.49.5.2 Bindable Properties

Bindable attributes are applied only to property accessor methods and properties.

76 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

oa-bindable-attr = kw-bindable /

 kw-immediatebind /

 kw-defaultbind /

 kw-displaybind /

 kw-requestedit

kw-bindable: Specifies that the property can act as a bindable server (see section 2.2.49.1.3). The

bindable attribute refers to the property as a whole, and is applied to both get and set accessor
methods, if they exist.

If the server is capable of distinguishing between temporary and permanent states when the value
of a property is changed (see the following entry for the immediatebind attribute), the server MUST

call clients that are bound to the property, each time the value of the property is permanently
changed. If the server is incapable of distinguishing between temporary and permanent states, the
server MUST call clients that are bound to the property each time the value of the property is
changed.

kw-immediatebind: Specifies that, if the server is capable of distinguishing between intermediate
and final states when the value of a property is changed,<43> the server MUST call clients that are
bound to the property each time the value of the property is temporarily or permanently changed.

Properties that have the immediatebind attribute MUST also have the bindable attribute.

kw-defaultbind: Specifies that the property acts as the default bindable server for clients that bind
to objects rather than to properties. Properties with the defaultbind attribute MUST also have the
bindable attribute.

kw-displaybind: Specifies that Type browser clients MUST indicate to users that the property is
bindable. Properties with the displaybind attribute MUST also have the bindable attribute.

kw-requestedit: Specifies that the server calls clients that are bound to the property before the

property value is changed, in order to determine whether the change can be allowed. The server
must not change the value of the property if any client specifies that the property cannot be

changed. Properties with the requestedit attribute MUST also have the bindable attribute.

2.2.49.5.3 Dispinterfaces Automation Members

When defining a dispinterface, the automation members can also be declared by using a split

properties/methods syntax:

oa-odl-body =

 kw-properties LWSP ":" LWSP *oa-odl-prop LWSP

 kw-methods LWSP ":" LWSP *oa-odl-method

oa-odl-prop =

 *(operation-attributes) LWSP oa-type-spec LWSP

 Identifier LWSP ";"

 oa-odl-method = op-declarator

readonly-attr = kw-readonly

The readonly attribute, if present, MUST be specified only in the context of an oa-odl-prop

production. If this attribute is specified for a property, the client MUST NOT set either
DISPATCH_PROPERTYPUT or DISPATCH_PROPERTYPUTREF into the wFlags argument in calls to
IDispatch::Invoke (see section 3.1.4.4).

77 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The automation properties MUST specify automation-compatible types. The automation methods
MUST have return types that are automation-compatible, as well as parameters that MUST be

automation-compatible.

2.2.49.6 Automation Parameters

The OLE Automation Protocol provides a number of attributes, specified in this section, that extend
the IDL syntax specified by the <param-attribute> production from [C706] chapter 4. When these
attributes are used, they specify how the client MUST pack the arguments when calling
IDispatch::Invoke (section 3.1.4.4).

The automation extensions to IDL expand the definition for the <param_attribute> production in
[C706]:

param-attribute = rpcidl-defined /

 kw-defaultvalue LWSP "(" LWSP integer-const-exp LWSP ")" /

 kw-optional /

 kw-lcid /

 kw-retval/

 custom-attr

The defaultvalue attribute is valid only if the parameter is a scalar type, an enum, or a BSTR
(section 2.2.23). The expression specified with defaultvalue MUST be a constant, or an expression

resolving to a constant, that can be represented by a VARIANT. The defaultvalue attribute MUST
NOT be used on a parameter of a method declared with the vararg attribute.

The optional attribute is valid only if the parameter is of type VARIANT or VARIANT*. The optional
attribute MUST NOT be used on a parameter of a method declared with the vararg attribute. For
information on handling optional arguments, see section 3.1.4.4.3.

When applied to a parameter, the lcid attribute lets you pass a locale identifier to a function. A
function MUST have at most one [lcid] parameter, which MUST be [in] only, and MUST have a type

of LONG.

The retval attribute designates the parameter that receives the return value of an interface member
that describes a method or get property. The attribute MUST appear on the last parameter of a
method that has the propget attribute. The parameter MUST have the [out] attribute, and MUST
be a pointer type.

The following parameter ordering (from left to right) MUST be respected when defining an

automation-compatible method.

1. Required parameters (parameters that do not have the defaultvalue or optional attributes)

2. Parameters with the defaultvalue attribute, if any

3. Parameters with the optional attribute, if any

4. lcid parameter, if present

5. retval parameter, if present

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

78 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.49.7 AIDL Interfaces and ODL Dispinterfaces

An ODL dispinterface is a dispinterface whose properties and methods are specified using the two
keywords: "properties" and "methods", as specified in 2.2.49.5.3. All other automation interfaces

(that is, dual interfaces and reference dispinterfaces) are AIDL interfaces.

This section explains how the methods defined in an AIDL interface map to properties and methods
in an equivalent conceptual ODL dispinterface.

The conceptual signature of an ODL operation (a method call, or setting or retrieving a property)
determines how an automation client MUST call IDispatch::Invoke (see section 3.1.4.4): how it
MUST pack the arguments in pDispParams and rgVarRef, as well as how pVarResult and pExcepInfo
MUST be filled in on return (see section 3.1.4.4.2):

The conceptual ODL arguments MUST be packed in pDispParams and rgVarRef.

The conceptual return value MUST be returned in pVarResult.

The actual HRESULT of an AIDL method MUST be set in pExcepInfo->scode.

2.2.49.7.1 Property Equivalence

Any AIDL interface method that has the "propget", "propput", or "propputref" method MUST map to
a conceptual ODL property. If only a "propget" method exists for the property, it MUST map to a
"readonly" conceptual ODL property.

For an example illustrating this, see section 4.1.

AIDL supports the definition of indexed properties, which MUST NOT be expressed as ODL

properties.

2.2.49.7.2 Method Equivalence

Any AIDL method that does not have any parameters with the lcid or retval attributes MUST map

to an ODL method with the same argument types, and a void return type.

An AIDL method with a parameter with the lcid attribute MUST map to an ODL method that is
equivalent to the AIDL method with the lcid parameter removed.

An AIDL method that has a parameter with the retval attribute MUST map to an ODL method whose

return type is the type of the retval parameter, with one level of indirection removed. The argument
types of the ODL method MUST correspond to the arguments in the AIDL method, with the retval
parameter and any lcid parameter removed.

For an example illustrating this, see section 4.2.

2.2.49.8 Coclass Specifications

The automation IDL extensions allow a COM server to expose a rich set of attributes and behaviors,
as specified below.

oa-coclass = "[" LWSP oa-coclass-attrs LWSP "]" LWSP

 kw-coclass LWSP Identifier

 LWSP "{" LWSP oa-coclass-body LWSP "}"

79 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

oa-coclass-attrs = oa-coclass-attr *(LWSP ","LWSP oa-coclass-attr)

oa-coclass-attr = uuid-attr /

 help-attr /

 version-attr /

 custom-attr /

 kw-aggregatable /

 kw-appobject /

 kw-control /

 kw-hidden /

 kw-licensed /

 kw-noncreatable /

 kw-predeclid

oa-coclass-body = *(oa-coclass-itf-decl)

oa-coclass-itf-decl = ["[" LWSP oa-cid-attrs LWSP "]" LWSP]

 (kw-interface / kw-dispinterface) LWSP Identifier

 LWSP ";"

oa-cid-attrs = oa-cid-attr *(LWSP "," LWSP oa-cid-attr)

oa-cid-attr = kw-source /

 kw-default /

 kw-defaultvtable /

 kw-restricted

A coclass statement MUST specify a UUID using the uuid-attr production. The other attributes in the
oa-coclass-attrs production are optional.

kw-aggregatable: Specifies that the COM server is aggregatable (see section 2.2.49.1.1).

kw-appobject: Specifies that the coclass is an "appobject coclass" and that its members MUST be
included in the binding context of the automation type library (see section 3.5.4.1.1). It also
specifies that ITypeInfo::CreateInstance MUST NOT create more than one instance of the coclass,
and MUST return a reference to an existing instance of the coclass if one has already been created.

kw-control: Specifies that the COM server it describes is a visual control and is not intended to be

used in a nonvisual environment. When applied to an automation scope, it specifies that all COM
servers in the scope are visual controls. A Type browser client MAY limit the visibility of elements
with this attribute<44>.

kw-hidden: Specifies that the coclass element is not intended to be displayed to users. Type browser
clients SHOULD NOT expose the functionality of elements with this attribute<45>.

kw-licensed: Specifies that the COM server is licensed, and can be instantiated only by using a
license-aware object creation method<46>. Calls to any object creation method requesting an

object of this type MUST fail if the creation method cannot validate licensing requirements at run
time.

kw-noncreatable: Specifies that the coclass can be instantiated only by using a custom object
creation method. Calls to any generic object creation method, including ITypeInfo::CreateInstance
(as specified in section 3.7.4.11), that request an object of this type MUST fail<47>.

kw-predeclid: Specifies that ITypeInfo::CreateInstance MUST NOT create more than one instance of
the coclass, and MUST return a reference to an existing instance of the coclass if one has already

been created.

80 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

kw-default: Specifies that the interface or dispinterface it decorates is a default interface, and can
be used in a context where it is not specified by name. Elements with the default attribute MUST

NOT also have the [restricted] attribute.

An interface with the [default] attribute and without the [source] attribute is a "default nonsource

interface" and defines the binding context of its coclass. Clients, such as macro languages, that can
refer to only one interface per coclass MUST use this interface. A coclass MUST NOT contain more
than one default nonsource interface.

An interface with both the [default] and [source] attributes behaves as specified by the [source] and
[defaultvtable] sections that follow.

kw-source: Specifies that the interface is a source interface for the COM server described by the oa-
coclass production. Such a COM server is a connectable server (as specified in section 2.2.49.1.2).

The interface MUST be implemented by a client in order to receive events raised by the connectable
server.

When combined with the [default] attribute, this attribute specifies that the interface is the default

source interface for clients that can refer to only one source interface per coclass. A coclass MUST
NOT contain more than one interface with both the [source] and [default] attributes.

kw-defaultvtable: Specifies that the interface is the default source DCOM interface for clients that

can refer to only one source DCOM interface per coclass. Interfaces with this attribute MUST also
have the [source] attribute. A coclass MUST NOT contain more than one interface with the
[defaultvtable] attribute.

An interface that is declared with the [dual], [source], [default], and [defaultvtable] attributes MUST
be both the default dispinterface and the default DCOM interface of its coclass.

kw-restricted: Specifies that the element is not intended to be used under all conditions, as specified
in section 2.2.49.3.

2.2.49.9 Module Specifications

The module statement is provided as a means to define non-enum symbolic constants.

oa-module = ["[" LWSP oa-module-attrs LWSP "]" LWSP]

 kw-module LWSP Identifier LWSP

 "{" oa-module-body "}"

oa-module-attrs = oa-module-attr *(LWSP "," LWSP oa-module-attr)

oa-module-attr = uuid-attr /

 version-attr /

 help-attr /

 kw-dllname LWSP "(" LWSP string LWSP ")" /

 kw-hidden

oa-module-body = *(oa-const-stmt / oa-mmethod-stmt)

oa-const-stmt = ["[" LWSP *(help-attr) LWSP "]" LWSP]

 (kw-const / kw-static) LWSP

 oa-base-type-spec LWSP Identifier LWSP

 "=" LWSP const-exp LWSP ";"

oa-mmethod-stmt = ["[" LWSP oa-mmethod-attrs LWSP "]" LWSP]

 oa-type-spec LWSP [oa-mmethod-cc LWSP]

 Identifier LWSP param-declarators LWSP ";"

oa-mmethod-attrs = oa-mmethod-attr *(LWSP "," LWSP oa-mmethod-attr)

81 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

oa-mmethod-attr =

 kw-entry LWSP "(" LWSP oa-entry-id LWSP ")" /

 kw-propget /

 kw-propput /

 kw-propputref /

 kw-usesgetlasterror /

 kw-vararg /

 help-attr

oa-entry-id = string / integer-const-exp

oa-mmethod-cc = kw-cdecl /

 kw-stdcall /

 kw-pascal

kw-usesgetlasterror: Specifies that the module method supports an implementation-specific

local error handling method<48>.

kw-vararg: Specifies that the final parameter of the method MUST be of type
SAFEARRAY(VARIANT) or SAFEARRAY(VARIANT)*. This attribute MUST NOT be used on an
ODL dispinterface property or on a property accessor method. For information on handling

vararg arguments, see section 3.1.4.4.3.

oa-mmethod-cc: Specifies an implementation-specific local calling convention for the
method<49>.

The statements within the scope of the module statement define constant symbols with the specified
type and values, and static entry points in the module are specified by the string argument of the
dllname attribute.

All oa-mmethod-stmt productions MUST have an entry attribute specified. If oa-entry-id is a string,

this is a named entry point. If oa-entry-id is an integer, the entry point is defined by an ordinal.

2.2.49.10 Referencing External Types

The automation IDL extensions allow elements defined inside an automation scope to reference
types defined in an external automation type library. This is done through the use of the importlib
statement:

oa-importlib = kw-importlib LWSP "(" LWSP string LWSP ")" LWSP ";"

The string specified in the importlib statement is an implementation-specific string<50> that MUST

allow an automation type library to locate the definitions of referenced types that are defined in
another automation type library.

2.2.50 String Handling

The following sections specify the ways in which strings are compared and stored in the

ITypeComp::Bind, ITypeComp::BindType, ITypeLib::IsName, and ITypeLib::FindName
methods.

82 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.50.1 String Equivalence

The OLE Automation Protocol interfaces MUST treat two strings as equivalent when a comparison of
their values with the CompareString method (see [MS-UCODEREF] section 1) returns CSTR_EQUAL.

All automation string comparisons MUST conform to the behavior of the CompareString method with
the following bit flags set in its dwCmpFlags parameter:

NORM_IGNORECASE

NORM_IGNOREWIDTH

NORM_IGNOREKANATYPE

2.2.50.2 Globalization

The OLE Automation Protocol interfaces MUST use the WideCharToMultiByte method (as specified in
[MS-UCODEREF] section 2) to preprocess strings before they are compared or stored.

Automation string preprocessing MUST conform to the behavior of the WideCharToMultiByte method
with the following parameter values:

CodePage: CP_ACP (zero – the current system Windows ANSI code page)

dwFlags: zero or NULL

lpDefaultChar: zero or NULL

lpUsedDefaultChar: zero or NULL

2.2.51 Automation Hash Values

An automation hash value is a numeric representation of a string that is used by an automation
server to perform implementation-specific optimizations<51> in methods that reference types and

type members by name.

Implementation of the hash function is optional. An automation hash value of zero MAY be used to
represent any string<52>. If an automation hash value is nonzero, it MUST be computed from the
specified string after it is preprocessed, as specified in section 2.2.50.2, using a hash algorithm that
MUST be consistent with the pseudocode specified in this section.

The values of [out] parameters returned by automation server methods MUST be the same for both
zero and matching nonzero automation hash values.

2.2.51.1 ComputeHash Method

The ComputeHash algorithm requires two externally specified values:

1. A string of no more than 255 characters, converted to the ANSI code page as specified in

2.2.50.2.

2. A language code identifier (LCID) that specifies the locale ID associated with the string.

The ComputeHash method uses the named constants defined in the LocaleNames (section 2.2.51.4)
and PrimaryLookupTables (section 2.2.51.5) sections.

Use alternative hash function if the locale ID uses DBCS-encoded strings.

%5bMS-UCODEREF%5d.pdf
%5bMS-UCODEREF%5d.pdf

83 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

SET PrimaryLocale to the bitwise AND of LocaleID and 0x000003FF

IF PrimaryLocale is LocaleChinese

 OR PrimaryLocale is LocaleJapanese

 OR PrimaryLocale is LocaleKorean THEN

 CALL ComputeHashDBCS

 WITH LocaleID, Name

 RETURNING HashValue

 RETURN HashValue as a 32-bit unsigned integer

ENDIF

COMMENT Set LookupTable and Encoding Mask based on Locale ID.

CASE LocaleID OF

 LocaleRussian: SET LookupTable to Eur_English_1251

 SET EncodingMask to 0x00300000

 LocaleGreek: SET LookupTable to WGreek

 SET EncodingMask to 0x00800000

 LocaleIceland: SET LookupTable to WIceland

 SET EncodingMask to 0x00900000

 LocaleTurkish: SET LookupTable to WTurkish

 SET EncodingMask to 0x00A00000

 LocaleNorway: SET LookupTable to WNorwegian

 SET EncodingMask to 0x00B00000

 LocaleIreland: SET LookupTable to WEngIreland

 SET EncodingMask to 0x00C00000

 LocaleHebrew: SET LookupTable to WHebrew

 SET EncodingMask to 0x00E00000

 LocaleCzech: SET LookupTable to Eur_English_1250

 SET EncodingMask to 0x00200000

 LocaleHungary: SET LookupTable to Eur_English_1250

 SET EncodingMask to 0x00200000

 LocalePoland: SET LookupTable to Eur_English_1250

 SET EncodingMask to 0x00200000

 LocaleSlovak: SET LookupTable to Eur_English_1250

 SET EncodingMask to 0x00200000

 OTHERS: IF LocaleID is LocaleFarsi

 OR the lower byte of LocaleID is

 SecondaryLocaleArabic THEN

 SET LookupTable to WArabic

 SET EncodingMask to 0x00D00000

 ELSE

 SET LookupTable to US_English_1252

 SET EncodingMask to 0x00100000

 ENDIF

ENDCASE

SET HashAccumulator to 0x0DEADBEE

COMMENT Step through the characters in the string,

 multiplying the accumulator by 37 at each step

 and adding a value specified by the value of the

 character.

FOR each Character in Name

 COMPUTE HashAccumulator as HashAccumulator multiplied by 37,

84 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 allowing unsigned 32 bit overflows

 COMPUTE HashAcculumator as LookupTable (Character) added to

 HashAccumulator, allowing unsigned 32 bit overflows

END FOR

COMPUTE HashAccumulator as the remainder when HashAccumulator is

 divided by 0x0001003F

COMPUTE HashAccumulator as the bitwise AND of HashAccumulator and

 0x0000FFFF

COMPUTE HashAccumulator as the bitwise OR of HashAccumulator and

 EncodingMask

RETURN HashAccumulator as a 32-bit unsigned integer

2.2.51.2 ComputeHashDBCS Method

The DBCS implementation of the hash algorithm uses the default lookup table for all locales.

The ComputeHashDBCS method uses the named constants defined in the LocaleNames (section
2.2.51.4), PrimaryLookupTables (section 2.2.51.5), and DBCS Substitution Tables (section 2.2.51.6)
sections.

Set the substitution table and the character range boundaries based on the locale ID and define the

character ranges that contain two-byte characters. The Korean and Chinese character tables have
two-byte characters only within a single range of character values, so the second range is empty.

SET LookupTable to US_English_1252

SET PrimaryLocale to the Logical AND of LocaleID and 0x000003FF

COMMENT This method MUST only be called when PrimaryLocale

 is LocaleJapanese, LocaleKorean, or LocaleChinese.

CASE PrimaryLocale OF

 LocaleJapanese: SET SubstitutionTable to WJapanese

 SET EncodingMask to 0x00400000

 SET LowerRangeStart to 0x80

 SET LowerRangeEnd to 0xA0

 SET UpperRangeStart to 0xE0

 SET UpperRangeEnd to 0xFF

 LocaleKorean: SET SubstitutionTable to WKorean

 SET EncodingMask to 0x00500000

 SET LowerRangeStart to 0x81

 SET LowerRangeEnd to 0xFE

 SET UpperRangeStart to 0xFE

 SET UpperRangeEnd to 0xFE

 LocaleChinese: SET UpperRangeStart to 0xFE

 SET UpperRangeEnd to 0xFE

 SET SecondaryLocale to the lower 16 bits of LocaleID

 COMPUTE SecondaryLocale AS SecondaryLocale divided by 1024

 IF SecondaryLocale is SecondaryLocaleChineseTraditional

85 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 OR SecondaryLocale is SecondaryLocaleChineseHongKong THEN

 SET SubstitutionTable to WChineseTraditional

 SET EncodingMask to 0x00700000

 SET LowerRangeStart to 0x81

 SET LowerRangeEnd to 0xFE

 ELSE

 SET SubstitutionTable to WChineseSimplified

 SET EncodingMask to 0x00600000

 SET LowerRangeStart to 0xA1

 SET LowerRangeEnd to 0xFE

 ENDIF

ENDCASE

COMMENT Initialize hash accumulator with a predefined value.

COMMENT Initialize byte index and loop flag.

SET HashAccumulator to 0x0DEADBEE

SET ByteIndex to refer to the first byte in Name

SET ByteInName to the value of the byte indexed by ByteIndex

SET Break to False

COMMENT Step through the characters in the string, multiplying

 the accumulator by 37 at each step and adding a value

 specified by the value of the character.

REPEAT

 COMMENT Store the current byte or exit the loop.

 IF the value of ByteInName is zero THEN

 SET Break to True

 ELSE

 SET TempChar to the value of ByteInName

 ENDIF

 COMMENT Increment the byte index. If the previous byte

 was the first byte of a DBCS two-byte character,

 compute the DBCS character value and increment

 the byte index again.

 IF Break is False THEN

 INCREMENT ByteIndex to refer to the next byte in Name

 SET ByteInName to

 the value of the byte indexed by ByteIndex

 IF (TempChar >= LowerRangeStart AND

 TempChar <= LowerRangeEnd)

 OR (TempChar >= UpperRangeStart AND

 TempChar <= UpperRangeEnd) THEN

 COMMENT If the second byte of the DBCS character

 is zero, ignore the character and

 exit the loop.

 IF the value of ByteInName is zero THEN

 SET Break to True

 ELSE

86 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 COMPUTE TempChar as TempChar

 multiplied by 256

 COMPUTE TempChar as the value of ByteInName

 added to TempChar

 INCREMENT ByteIndex to refer

 to the next byte in Name

 SET ByteInName to the value of the byte

 indexed by ByteIndex

 ENDIF

 ENDIF

 ENDIF

 IF Break is False THEN

 COMMENT If the character has an upper byte, replace

 its value with the appropriate value from a

 Locale-specified substitution table.

 COMMENT If the upper byte is nonzero after substitution,

 update the hash accumulator using its value.

 IF TempChar > 255

 CALL MapDBChar

 WITH TempChar, SubstitutionTable

 RETURNING TempChar

 SET HighByte to the upper byte of TempChar

 IF HighByte is not 0

 COMPUTE HashAccumulator as HashAccumulator

 multiplied by 37, allowing unsigned 32 bit

 overflows

 COMPUTE HashAcculumator as LookupTable

 (HighByte) added to HashAccumulator,

 allowing unsigned 32 bit overflows

 ENDIF

 ENDIF

 COMMENT Update the hash accumulator using the value of

 a one-byte character or the lower byte of a

 two-byte character.

 SET LowByte to the lower byte of TempChar

 COMPUTE HashAccumulator as HashAccumulator

 multiplied by 37, allowing unsigned

 32 bit overflows

 COMPUTE HashAcculumator as LookupTable

 (LowByte) added to HashAccumulator, allowing

 unsigned 32 bit overflows

 ENDIF

UNTIL Break is True

COMPUTE HashAccumulator as the remainder when HashAccumulator is

 divided by 0x0001003F

COMPUTE HashAccumulator as the bitwise AND of HashAccumulator and

 0x0000FFFF

COMPUTE HashAccumulator as the bitwise OR of HashAccumulator and

 EncodingMask

87 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

RETURN HashAccumulator as a 32-bit unsigned integer

2.2.51.3 MapDBChar Method

Loop through the table, returning a substitution character if a match is found. If no match is found,
return the original character.

FOR each Row in SubstitutionTable

 IF Row (0) is TempChar THEN

 RETURN Row (1)

 END IF

END FOR

RETURN TempChar

2.2.51.4 Locale Names

SET LocaleRussian to 0x0419

SET LocaleGreek to 0x0408

SET LocaleIceland to 0x040f

SET LocaleTurkish to 0x041f

SET LocaleNorway to 0x0814

SET LocaleIreland to 0x1809

SET LocaleHebrew to 0x040d

SET LocaleCzech to 0x0405

SET LocaleHungary to 0x040e

SET LocalePoland to 0x0415

SET LocaleSlovak to 0x041b

SET LocaleFarsi to 0x0429

SET LocaleChinese to 0x04

SET LocaleJapanese to 0x11

SET LocaleKorean to 0x12

SET SecondaryLocaleChineseTraditional to 0x01

SET SecondaryLocaleChineseHongKong to 0x03

SET SecondaryLocaleArabic to 0x01

2.2.51.5 Primary Lookup Tables

SET US_English_1252 (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 0,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 86, 88, 85, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 86, 88, 85, 90, 123, 124, 125, 126, 127,

127, 127, 130, 70, 132, 133, 134, 135, 127, 137, 83, 139, 140, 127,

 127, 127,

127, 145, 146, 147, 148, 149, 150, 150, 152, 153, 83, 155, 140, 127,

 127, 85,

88 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 65, 171, 172, 150,

 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 79, 187, 188, 189, 190,

 191,

65, 65, 65, 65, 65, 65, 65, 67, 69, 69, 69, 69, 73, 73, 73, 73,

68, 78, 79, 79, 79, 79, 79, 215, 79, 85, 85, 85, 85, 85, 222, 223,

65, 65, 65, 65, 65, 65, 65, 67, 69, 69, 69, 69, 73, 73, 73, 73,

68, 78, 79, 79, 79, 79, 79, 247, 79, 85, 85, 85, 85, 85, 222, 85

SET Eur_1250 (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 0,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 127,

127, 127, 130, 127, 132, 133, 134, 135, 127, 137, 83, 139, 83, 84,

 90, 90,

127, 145, 146, 147, 148, 149, 150, 150, 127, 153, 83, 155, 83, 84,

 90, 90,

160, 127, 162, 76, 164, 65, 166, 167, 168, 169, 83, 171, 172, 150,

 174, 90,

176, 177, 178, 76, 180, 181, 182, 183, 184, 65, 83, 187, 76, 189,

 76, 90,

82, 65, 65, 65, 65, 76, 67, 67, 67, 69, 69, 69, 69, 73, 73, 68,

208, 78, 78, 79, 79, 79, 79, 215, 82, 85, 85, 85, 85, 89, 84, 223,

82, 65, 65, 65, 65, 76, 67, 67, 67, 69, 69, 69, 69, 73, 73, 68,

208, 78, 78, 79, 79, 79, 79, 247, 82, 85, 85, 85, 85, 89, 84, 255

SET Eur_English_1251 (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 0,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 127,

127, 127, 130, 70, 132, 133, 134, 135, 127, 137, 83, 139, 140,

 127, 127, 127,

127, 145, 146, 147, 148, 149, 150, 150, 152, 153, 83, 155, 140,

 127, 127, 89,

160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 65, 171, 172,

 150, 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 79, 187, 188, 189,

 190, 191,

65, 65, 65, 65, 65, 65, 198, 67, 69, 69, 69, 69, 73, 73, 73, 73,

208, 78, 79, 79, 79, 79, 79, 215, 79, 85, 85, 85, 85, 89, 222,

 223,

65, 65, 65, 65, 65, 65, 198, 67, 69, 69, 69, 69, 73, 73, 73, 73,

 208, 78, 79, 79, 79, 79, 79, 247, 79, 85, 85, 85, 85, 89, 222, 89

SET WGreek (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

89 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 0,

0, 0, 130, 70, 132, 133, 134, 135, 0, 137, 0, 139, 0, 0, 0, 0,

0, 145, 146, 147, 148, 149, 45, 45, 0, 153, 0, 155, 0, 0, 0, 0,

9, 161, 162, 163, 164, 165, 166, 167, 168, 169, 0, 171, 172, 45,

 174, 45,

176, 177, 50, 51, 180, 181, 182, 183, 184, 185, 186, 187, 188,

 189, 190, 191,

186, 162, 194, 195, 196, 184, 198, 185, 200, 186, 202, 203, 204,

 205, 206, 188,

208, 209, 0, 211, 212, 190, 214, 215, 216, 191, 186, 190, 162,

 184, 185, 186,

190, 162, 194, 195, 196, 184, 198, 185, 200, 186, 202, 203, 204,

 205, 206, 188,

208, 209, 211, 211, 212, 190, 214, 215, 216, 191, 186, 190, 188,

 190, 191, 0

SET WIceland (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 0,

0, 0, 130, 70, 132, 133, 134, 135, 0, 137, 83, 139, 140, 0, 0,

 0,

0, 145, 146, 147, 148, 149, 45, 45, 152, 153, 83, 155, 140, 0,

 0, 89,

9, 161, 162, 163, 164, 165, 166, 167, 168, 169, 65, 171, 172, 45,

 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 79, 187, 188, 189,

 190, 191,

65, 193, 65, 65, 65, 65, 198, 67, 69, 201, 69, 69, 73, 205, 73,

 73,

208, 78, 79, 211, 79, 79, 214, 215, 214, 85, 218, 85, 85, 221,

 222, 223,

65, 193, 65, 65, 65, 65, 198, 67, 69, 201, 69, 69, 73, 205, 73,

 73,

208, 78, 79, 211, 79, 79, 214, 247, 214, 85, 218, 85, 85, 221,

 222, 89

SET WTurkish (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 0,

90 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

0, 0, 130, 70, 132, 133, 134, 135, 0, 137, 83, 139, 140, 0, 0,

 0,

0, 145, 146, 147, 148, 149, 45, 45, 152, 153, 83, 155, 140, 0, 0,

 89,

9, 161, 162, 163, 164, 165, 166, 167, 168, 169, 65, 171, 172, 45,

 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 79, 187, 188, 189,

 190, 191,

65, 65, 65, 65, 65, 65, 198, 199, 69, 69, 69, 69, 73, 73, 73,

 73,

208, 78, 79, 79, 79, 79, 214, 215, 79, 85, 85, 85, 220, 221, 222,

 223,

65, 65, 65, 65, 65, 65, 198, 199, 69, 69, 69, 69, 73, 73, 73,

 73,

208, 78, 79, 79, 79, 79, 214, 247, 79, 85, 85, 85, 220, 221, 222,

 89

SET WNorwegian (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 0,

0, 0, 130, 70, 132, 133, 134, 135, 0, 137, 83, 139, 140, 0, 0,

 0,

0, 145, 146, 147, 148, 149, 45, 45, 152, 153, 83, 155, 140, 0, 0,

 89,

9, 161, 162, 163, 164, 165, 166, 167, 168, 169, 65, 171, 172, 45,

 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 79, 187, 188, 189,

 190, 191,

65, 65, 65, 65, 196, 197, 196, 67, 69, 69, 69, 69, 73, 73, 73, 73,

68, 78, 79, 79, 79, 79, 214, 215, 214, 85, 85, 85, 89, 89, 222,

 223,

65, 65, 65, 65, 196, 197, 196, 67, 69, 69, 69, 69, 73, 73, 73, 73,

68, 78, 79, 79, 79, 79, 214, 247, 214, 85, 85, 85, 89, 89, 222, 89

SET WIreland (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 0,

0, 0, 130, 70, 132, 133, 134, 135, 0, 137, 83, 139, 140, 0, 0,

 0,

0, 145, 146, 147, 148, 149, 45, 45, 152, 153, 83, 155, 140, 0,

 0, 89,

9, 161, 162, 163, 164, 165, 166, 167, 168, 169, 65, 171, 172, 45,

 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 79, 187, 188, 189,

 190, 191,

91 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

65, 65, 65, 65, 65, 65, 198, 67, 69, 69, 69, 69, 73, 73, 73, 73,

208, 78, 79, 79, 79, 79, 79, 215, 79, 85, 85, 85, 85, 89, 222,

 223,

65, 65, 65, 65, 65, 65, 198, 67, 69, 69, 69, 69, 73, 73, 73, 73,

208, 78, 79, 79, 79, 79, 79, 247, 79, 85, 85, 85, 85, 89, 222, 89

SET WArabic (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 127,

128, 129, 130, 70, 132, 133, 134, 135, 94, 137, 138, 139, 140,

 141, 142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 140,

 157, 0, 159,

160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,

 173, 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 186, 187, 188, 189,

 190, 191,

192, 193, 194, 193, 193, 193, 193, 199, 200, 201, 201, 203, 204,

 205, 206, 207,

208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 0,

 221, 222, 223,

65, 225, 65, 227, 228, 229, 230, 67, 69, 69, 69, 69, 236, 236,

 73, 73,

240, 241, 242, 243, 79, 245, 246, 247, 248, 85, 250, 85, 85, 0,

 0, 255

SET WHebrew (256) to

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126,

 127,

128, 129, 130, 70, 132, 133, 134, 135, 94, 137, 138, 139, 140,

 141, 142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,

 157, 158, 159,

160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,

 173, 174, 175,

176, 177, 50, 51, 180, 181, 182, 183, 184, 49, 186, 187, 188, 189,

 190, 191,

192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,

 205, 206, 207,

208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,

 221, 222, 223,

224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 234, 236,

 237, 237, 239,

239, 241, 242, 243, 243, 245, 245, 247, 248, 249, 250, 251, 252,

 0, 0, 255

92 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.51.6 DBCS Substitution Tables

SET WJapanese (235)(2) to

(0x815C, 0x815C), (0x815B, 0x815B), (0x829F, 0x00A7),

 (0x82A0, 0x00B1),

(0x82A1, 0x00A8), (0x82A2, 0x00B2), (0x82A3, 0x00A9),

 (0x82A4, 0x00B3),

(0x82A5, 0x00AA), (0x82A6, 0x00B4), (0x82A7, 0x00AB),

 (0x82A8, 0x00B5),

(0x82A9, 0x00B6), (0x82AA, 0xB6DE), (0x82AB, 0x00B7),

 (0x82AC, 0xB7DE),

(0x82AD, 0x00B8), (0x82AE, 0xB8DE), (0x82AF, 0x00B9),

 (0x82B0, 0xB9DE),

(0x82B1, 0x00BA), (0x82B2, 0xBADE), (0x82B3, 0x00BB),

 (0x82B4, 0xBBDE),

(0x82B5, 0x00BC), (0x82B6, 0xBCDE), (0x82B7, 0x00BD),

 (0x82B8, 0xBDDE),

(0x82B9, 0x00BE), (0x82BA, 0xBEDE), (0x82BB, 0x00BF),

 (0x82BC, 0xBFDE),

(0x82BD, 0x00C0), (0x82BE, 0xC0DE), (0x82BF, 0x00C1),

 (0x82C0, 0xC1DE),

(0x82C1, 0x00AF), (0x82C2, 0x00C2), (0x82C3, 0xC2DE),

 (0x82C4, 0x00C3),

(0x82C5, 0xC3DE), (0x82C6, 0x00C4), (0x82C7, 0xC4DE),

 (0x82C8, 0x00C5),

(0x82C9, 0x00C6), (0x82CA, 0x00C7), (0x82CB, 0x00C8),

 (0x82CC, 0x00C9),

(0x82CD, 0x00CA), (0x82CE, 0xCADE), (0x82CF, 0xCADF),

 (0x82D0, 0x00CB),

(0x82D1, 0xCBDE), (0x82D2, 0xCBDF), (0x82D3, 0x00CC),

 (0x82D4, 0xCCDE),

(0x82D5, 0xCCDF), (0x82D6, 0x00CD), (0x82D7, 0xCDDE),

 (0x82D8, 0xCDDF),

(0x82D9, 0x00CE), (0x82DA, 0xCEDE), (0x82DB, 0xCEDF),

 (0x82DC, 0x00CF),

(0x82DD, 0x00D0), (0x82DE, 0x00D1), (0x82DF, 0x00D2),

 (0x82E0, 0x00D3),

(0x82E1, 0x00AC), (0x82E2, 0x00D4), (0x82E3, 0x00AD),

 (0x82E4, 0x00D5),

(0x82E5, 0x00AE), (0x82E6, 0x00D6), (0x82E7, 0x00D7),

 (0x82E8, 0x00D8),

(0x82E9, 0x00D9), (0x82EA, 0x00DA), (0x82EB, 0x00DB),

 (0x82EC, 0x838E),

(0x82ED, 0x00DC), (0x82EE, 0x8390), (0x82EF, 0x8391),

 (0x82F0, 0x00A6),

(0x82F1, 0x00DD), (0x8340, 0x00A7), (0x8341, 0x00B1),

 (0x8342, 0x00A8),

(0x8343, 0x00B2), (0x8344, 0x00A9), (0x8345, 0x00B3),

 (0x8346, 0x00AA),

(0x8347, 0x00B4), (0x8348, 0x00AB), (0x8349, 0x00B5),

 (0x834A, 0x00B6),

(0x834B, 0xB6DE), (0x834C, 0x00B7), (0x834D, 0xB7DE),

 (0x834E, 0x00B8),

(0x834F, 0xB8DE), (0x8350, 0x00B9), (0x8351, 0xB9DE),

 (0x8352, 0x00BA),

93 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

(0x8353, 0xBADE), (0x8354, 0x00BB), (0x8355, 0xBBDE),

 (0x8356, 0x00BC),

(0x8357, 0xBCDE), (0x8358, 0x00BD), (0x8359, 0xBDDE),

 (0x835A, 0x00BE),

(0x835B, 0xBEDE), (0x835C, 0x00BF), (0x835D, 0xBFDE),

 (0x835E, 0x00C0),

(0x835F, 0xC0DE), (0x8360, 0x00C1), (0x8361, 0xC1DE),

 (0x8362, 0x00AF),

(0x8363, 0x00C2), (0x8364, 0xC2DE), (0x8365, 0x00C3),

 (0x8366, 0xC3DE),

(0x8367, 0x00C4), (0x8368, 0xC4DE), (0x8369, 0x00C5),

 (0x836A, 0x00C6),

(0x836B, 0x00C7), (0x836C, 0x00C8), (0x836D, 0x00C9),

 (0x836E, 0x00CA),

(0x836F, 0xCADE), (0x8370, 0xCADF), (0x8371, 0x00CB),

 (0x8372, 0xCBDE),

(0x8373, 0xCBDF), (0x8374, 0x00CC), (0x8375, 0xCCDE),

 (0x8376, 0xCCDF),

(0x8377, 0x00CD), (0x8378, 0xCDDE), (0x8379, 0xCDDF),

 (0x837A, 0x00CE),

(0x837B, 0xCEDE), (0x837C, 0xCEDF), (0x837D, 0x00CF),

 (0x837E, 0x00D0),

(0x8380, 0x00D1), (0x8381, 0x00D2), (0x8382, 0x00D3),

 (0x8383, 0x00AC),

(0x8384, 0x00D4), (0x8385, 0x00AD), (0x8386, 0x00D5),

 (0x8387, 0x00AE),

(0x8388, 0x00D6), (0x8389, 0x00D7), (0x838A, 0x00D8),

 (0x838B, 0x00D9),

(0x838C, 0x00DA), (0x838D, 0x00DB), (0x838E, 0x838E),

 (0x838F, 0x00DC),

(0x8390, 0x8390), (0x8391, 0x8391), (0x8392, 0x00A6),

 (0x8393, 0x00DD),

(0x8394, 0xB3DE), (0x8395, 0x8395), (0x8396, 0x8396),

 (0x824F, 0x30),

(0x8250, 0x31), (0x8251, 0x32), (0x8252, 0x33), (0x8253, 0x34),

(0x8254, 0x35), (0x8255, 0x36), (0x8256, 0x37), (0x8257, 0x38),

(0x8258, 0x39), (0x8260, 0x41), (0x8261, 0x42), (0x8262, 0x43),

(0x8263, 0x44), (0x8264, 0x45), (0x8265, 0x46), (0x8266, 0x47),

(0x8267, 0x48), (0x8268, 0x49), (0x8269, 0x4A), (0x826A, 0x4B),

(0x826B, 0x4C), (0x826C, 0x4D), (0x826D, 0x4E), (0x826E, 0x4F),

(0x826F, 0x50), (0x8270, 0x51), (0x8271, 0x52), (0x8272, 0x53),

(0x8273, 0x54), (0x8274, 0x55), (0x8275, 0x56), (0x8276, 0x57),

(0x8277, 0x58), (0x8278, 0x59), (0x8279, 0x5A), (0x8151, 0x5F),

(0x8281, 0x61), (0x8282, 0x62), (0x8283, 0x63), (0x8284, 0x64),

(0x8285, 0x65), (0x8286, 0x66), (0x8287, 0x67), (0x8288, 0x68),

(0x8289, 0x69), (0x828A, 0x6A), (0x828B, 0x6B), (0x828C, 0x6C),

(0x828D, 0x6D), (0x828E, 0x6E), (0x828F, 0x6F), (0x8290, 0x70),

(0x8291, 0x71), (0x8292, 0x72), (0x8293, 0x73), (0x8294, 0x74),

(0x8295, 0x75), (0x8296, 0x76), (0x8297, 0x77), (0x8298, 0x78),

(0x8299, 0x79), (0x829A, 0x7A)

SET WKorean (64)(2) to

(0xA3B0, 0x30), (0xA3B1, 0x31), (0xA3B2, 0x32), (0xA3B3, 0x33),

(0xA3B4, 0x34), (0xA3B5, 0x35), (0xA3B6, 0x36), (0xA3B7, 0x37),

(0xA3B8, 0x38), (0xA3B9, 0x39), (0xA3C1, 0x41), (0xA3C2, 0x42),

(0xA3C3, 0x43), (0xA3C4, 0x44), (0xA3C5, 0x45), (0xA3C6, 0x46),

(0xA3C7, 0x47), (0xA3C8, 0x48), (0xA3C9, 0x49), (0xA3CA, 0x4A),

(0xA3CB, 0x4B), (0xA3CC, 0x4C), (0xA3CD, 0x4D), (0xA3CE, 0x4E),

(0xA3CF, 0x4F), (0xA3D0, 0x50), (0xA3D1, 0x51), (0xA3D2, 0x52),

94 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

(0xA3D3, 0x53), (0xA3D4, 0x54), (0xA3D5, 0x55), (0xA3D6, 0x56),

(0xA3D7, 0x57), (0xA3D8, 0x58), (0xA3D9, 0x59), (0xA3DA, 0x5A),

(0xA3DF, 0x5F), (0xA3E1, 0x61), (0xA3E2, 0x62), (0xA3E3, 0x63),

(0xA3E4, 0x64), (0xA3E5, 0x65), (0xA3E6, 0x66), (0xA3E7, 0x67),

(0xA3E8, 0x68), (0xA3E9, 0x69), (0xA3EA, 0x6A), (0xA3EB, 0x6B),

(0xA3EC, 0x6C), (0xA3ED, 0x6D), (0xA3EE, 0x6E), (0xA3EF, 0x6F),

(0xA3F0, 0x70), (0xA3F1, 0x71), (0xA3F2, 0x72), (0xA3F3, 0x73),

(0xA3F4, 0x74), (0xA3F5, 0x75), (0xA3F6, 0x76), (0xA3F7, 0x77),

(0xA3F8, 0x78), (0xA3F9, 0x79), (0xA3FA, 0x7A)

SET WChineseTraditional (64)(2) to

(0xA2AF, 0x30), (0xA2B0, 0x31), (0xA2B1, 0x32), (0xA2B2, 0x33),

(0xA2B3, 0x34), (0xA2B4, 0x35), (0xA2B5, 0x36), (0xA2B6, 0x37),

(0xA2B7, 0x38), (0xA2B8, 0x39), (0xA2CF, 0x41), (0xA2D0, 0x42),

(0xA2D1, 0x43), (0xA2D2, 0x44), (0xA2D3, 0x45), (0xA2D4, 0x46),

(0xA2D5, 0x47), (0xA2D6, 0x48), (0xA2D7, 0x49), (0xA2D8, 0x4A),

(0xA2D9, 0x4B), (0xA2DA, 0x4C), (0xA2DB, 0x4D), (0xA2DC, 0x4E),

(0xA2DD, 0x4F), (0xA2DE, 0x50), (0xA2DF, 0x51), (0xA2E0, 0x52),

(0xA2E1, 0x53), (0xA2E2, 0x54), (0xA2E3, 0x55), (0xA2E4, 0x56),

(0xA2E5, 0x57), (0xA2E6, 0x58), (0xA2E7, 0x59), (0xA2E8, 0x5A),

(0xA1C5, 0x5F), (0xA2E9, 0x61), (0xA2EA, 0x62), (0xA2EB, 0x63),

(0xA2EC, 0x64), (0xA2ED, 0x65), (0xA2EE, 0x66), (0xA2EF, 0x67),

(0xA2F0, 0x68), (0xA2F1, 0x69), (0xA2F2, 0x6A), (0xA2F3, 0x6B),

(0xA2F4, 0x6C), (0xA2F5, 0x6D), (0xA2F6, 0x6E), (0xA2F7, 0x6F),

(0xA2F8, 0x70), (0xA2F9, 0x71), (0xA2FA, 0x72), (0xA2FB, 0x73),

(0xA2FC, 0x74), (0xA2FD, 0x75), (0xA2FE, 0x76), (0xA340, 0x77),

(0xA341, 0x78), (0xA342, 0x79), (0xA343, 0x7A)

SET WChineseSimplified (64)(2) to

(0xA3B0, 0x30), (0xA3B1, 0x31), (0xA3B2, 0x32), (0xA3B3, 0x33),

(0xA3B4, 0x34), (0xA3B5, 0x35), (0xA3B6, 0x36), (0xA3B7, 0x37),

(0xA3B8, 0x38), (0xA3B9, 0x39), (0xA3C1, 0x41), (0xA3C2, 0x42),

(0xA3C3, 0x43), (0xA3C4, 0x44), (0xA3C5, 0x45), (0xA3C6, 0x46),

(0xA3C7, 0x47), (0xA3C8, 0x48), (0xA3C9, 0x49), (0xA3CA, 0x4A),

(0xA3CB, 0x4B), (0xA3CC, 0x4C), (0xA3CD, 0x4D), (0xA3CE, 0x4E),

(0xA3CF, 0x4F), (0xA3D0, 0x50), (0xA3D1, 0x51), (0xA3D2, 0x52),

(0xA3D3, 0x53), (0xA3D4, 0x54), (0xA3D5, 0x55), (0xA3D6, 0x56),

(0xA3D7, 0x57), (0xA3D8, 0x58), (0xA3D9, 0x59), (0xA3DA, 0x5A),

(0xA3DF, 0x5F), (0xA3E1, 0x61), (0xA3E2, 0x62), (0xA3E3, 0x63),

(0xA3E4, 0x64), (0xA3E5, 0x65), (0xA3E6, 0x66), (0xA3E7, 0x67),

(0xA3E8, 0x68), (0xA3E9, 0x69), (0xA3EA, 0x6A), (0xA3EB, 0x6B),

(0xA3EC, 0x6C), (0xA3ED, 0x6D), (0xA3EE, 0x6E), (0xA3EF, 0x6F),

(0xA3F0, 0x70), (0xA3F1, 0x71), (0xA3F2, 0x72), (0xA3F3, 0x73),

(0xA3F4, 0x74), (0xA3F5, 0x75), (0xA3F6, 0x76), (0xA3F7, 0x77),

(0xA3F8, 0x78), (0xA3F9, 0x79), (0xA3FA, 0x7A)

95 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Details

The following sections specify OLE Automation Protocol details, including abstract data models,
interface method syntax, and message processing rules.

3.1 Automation Server Details

An automation server is any COM server that exposes access to its functionality through an
implementation of IDispatch. This automation interface can be either an oleautomation interface or
a "dual" interface; but, for the server to qualify as an automation server, its clients need to be able
to access its functionality through calls to IDispatch::Invoke (section 3.1.4.4).

The distinguishing characteristic of IDispatch is that clients do not need to have specific type

information regarding the way the automation server exposes its functionality. Rather, clients can
use a looser approach in which they provide a name for the method that they need to call, and then
provide the arguments to be passed to this method in a format that allows for both named

arguments and more loosely typed arguments.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This specification does not mandate that implementations adhere to this model as
long as their external behavior is consistent with the behavior described in this specification.

The automation server needs to maintain a direct and consistent mapping for the DISPIDs that it
recognizes for specific name requests. This mapping is permanent if, and only if, the method
definition in the IDL file is marked with the id attribute (as specified in section 2.2.49.5) or if the
server documents the mapping in the component documentation. If the preceding conditions are not

satisfied, the automation server MAY<53> generate the mapping on the fly, but it maintains it for
the extent of its own lifetime.

The automation server maintains a dispatch mapping table that contains a list of mapping entries for
each supported locale ID. Automation clients calling servers that do not have their DISPIDs specified
in the IDL and that also do not have their DISPIDs specified in the server documentation cannot
assume that the mapping is permanent and always query for the current mapping.

Each mapping entry contains:

A list of names that identify the method or property and the named parameters that the server

supports for it.

A corresponding list of DISPIDs.

Note The preceding conceptual data can be implemented by using a variety of techniques. Any
data structure that stores this conceptual data may be used in the implementation.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST initialize its dispatch mapping tables.

96 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.4 Message Processing Events and Sequencing Rules

This is an overview of the four methods used by the IDispatch interface. The names and opnums
of each method follow, as well as a simple description of the method.

IDispatch derives from the IUnknown interface. IDispatch servers MUST implement the methods
that are defined in IUnknown, in the order in which and with the opnums with which they are
specified, in [MS-DCOM] Appendix A.

Methods in RPC Opnum Order

Method Description

GetTypeInfoCount The GetTypeInfoCount method specifies whether the automation server provides

type description information.

Opnum: 3

GetTypeInfo The GetTypeInfo method provides access to the type description information that

is exposed by the automation server.

Opnum: 4

GetIDsOfNames The GetIDsOfNames method maps a single member name (method or property

name), and an optional set of argument names, to a corresponding set of integer

DISPIDs, which can be used on subsequent calls to IDispatch::Invoke.

Opnum: 5

Invoke The Invoke method provides access to properties and methods that are exposed by

the automation server.

Opnum: 6

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; in
particular, a value of 0x00000000 indicates success, and any other return value indicates an error.
All error values are specified in [MS-ERREF] and MUST be treated the same, unless specified

otherwise.

3.1.4.1 IDispatch::GetTypeInfoCount (Opnum 3)

The GetTypeInfoCount method specifies whether the automation server provides Type description
information.

HRESULT GetTypeInfoCount(

 [out] UINT* pctinfo

);

pctinfo: MUST be set to 0 if the automation server does not provide Type description

information. Otherwise, it MUST be set to 1.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

97 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.4.2 IDispatch::GetTypeInfo (Opnum 4)

The GetTypeInfo method provides access to the Type description information exposed by the
automation server.

HRESULT GetTypeInfo(

 [in] UINT iTInfo,

 [in] LCID lcid,

 [out] ITypeInfo** ppTInfo

);

iTInfo: MUST be 0.

lcid: MUST equal the locale ID for the Type description information to be retrieved.

ppTInfo: MUST be set to reference an instance of an ITypeInfo server that corresponds to the
default nonsource interface of the coclass implementing IDispatch (see section 2.2.49.8).

MUST refer to the partner dispinterface if the default nonsource interface is a dual
interface. MUST be set to NULL if the coclass does not specify a default nonsource interface.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match the value in

the following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches the value in the

following table, a failure occurred.

Return

value/code Description

0x8002000B

DISP_E_BADINDEX

SHOULD be returned when the value of the passed in iTInfo argument was

not 0. See [MS-ERREF].

3.1.4.3 IDispatch::GetIDsOfNames (Opnum 5)

The GetIDsOfNames method maps a single member (method or property) name, and an optional
set of argument names, to a corresponding set of integer DISPIDs, which can be used on
subsequent calls to IDispatch::Invoke.

HRESULT GetIDsOfNames(

 [in] REFIID riid,

 [in, size_is(cNames)] LPOLESTR* rgszNames,

 [in, range(0,16384)] UINT cNames,

 [in] LCID lcid,

 [out, size_is(cNames)] DISPID* rgDispId

);

riid: MUST equal IID_NULL (see section 1.9).

rgszNames: MUST be the array of strings to be mapped. The first string in the array MUST
specify the name of a method or property that is supported by the server. Any additional

%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf

98 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

strings MUST contain the names of all arguments for the method or property that is specified
by the value in the first string. The mapping MUST be case-insensitive.

cNames: MUST equal the count of names to be mapped, and MUST<54> be between 0 and
16384.

lcid: MUST equal the locale ID in which to interpret the names.

rgDispId: MUST be an array of DISPIDs that are filled in by the server. Each DISPID
corresponds, by position, to one of the names passed in rgszNames.

Return Values: The method MUST return information in an HRESULT data structure, as defined
in [MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x80020006

DISP_E_UNKNOWNNAME

One or more names were not known. The returned array of

DISPIDs MUST contain at least one DISPID_UNKNOWN, and there

MUST be one DISPID_UNKNOWN for each entry that corresponds

to an unknown name. See [MS-ERREF].

0x80020001

DISP_E_UNKNOWNINTERFACE

The interface identifier passed in riid is not IID_NULL. See [MS-

ERREF].

Exceptions Thrown: No exceptions are thrown from this method except those that are thrown by the

underlying RPC Protocol specified in [MS-RPCE].

When GetIDsOfNames is called with more than one name, the first name (rgszNames[0])
corresponds to the member name, and subsequent names correspond to the names of member
parameters.

The same name may map to different DISPIDs, depending on context. For example, a name may
have a DISPID when it is used as: a member name with a particular interface, a different ID as a

member of a different interface, and a different mapping for each time it appears as a parameter.

The implementation of GetIDsOfNames MUST be case-insensitive.

An implementation of the OLE Automation Protocol MAY<55> choose to implement a mapping for
the parameter names that map to the index of the parameter in the member parameter list.

3.1.4.4 IDispatch::Invoke (Opnum 6)

The Invoke method provides access to properties and methods exposed by the automation server.

HRESULT Invoke(

 [in] DISPID dispIdMember,

 [in] REFIID riid,

 [in] LCID lcid,

 [in] DWORD dwFlags,

%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf

99 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] DISPPARAMS* pDispParams,

 [out] VARIANT* pVarResult,

 [out] EXCEPINFO* pExcepInfo,

 [out] UINT* pArgErr,

 [in] UINT cVarRef,

 [in, size_is(cVarRef)] UINT* rgVarRefIdx,

 [in, out, size_is(cVarRef)] VARIANT* rgVarRef

);

dispIdMember: MUST equal the DISPID of the method or property to call.

riid: MUST equal IID_NULL (see section 1.9).

lcid: MUST equal a locale ID supported by the automation server. This value SHOULD be used by
the automation server if any of the arguments are strings whose meaning is dependent on a
specific locale ID. If no such strings are present in the arguments the server SHOULD ignore
this value.

dwFlags: MUST be a combination of the bit flags specified in the following table.

Note The value MUST specify one and only one of the following bit flags:
DISPATCH_METHOD, DISPATCH_PROPERTYGET, DISPATCH_PROPERTYPUT, or
DISPATCH_PROPERTYPUTREF.

Value Meaning

DISPATCH_METHOD

0x00000001

The member is invoked as a method.

DISPATCH_PROPERTYGET

0x00000002

The member is retrieved as a property or data member.

DISPATCH_PROPERTYPUT

0x00000004

The member is changed as a property or data member.

DISPATCH_PROPERTYPUTREF

0x00000008

The member is changed by a reference assignment, rather than by

a value assignment. This flag is valid only when the property

accepts a reference to an object.

DISPATCH_zeroVarResult

0x00020000

MUST specify that the client is not interested in the actual

pVarResult [out] argument. On return the pVarResult argument

MUST point to a VT_EMPTY variant, with all reserved fields set to

0.

DISPATCH_zeroExcepInfo

0x00040000

MUST specify that the client is not interested in the actual

pExcepInfo [out] argument. On return pExcepInfo MUST point to

an EXCEPINFO structure, with all scalar fields set to 0 and all BSTR

fields set to NULL.

DISPATCH_zeroArgErr

0x00080000

MUST specify that the client is not interested in the actual pArgErr

[out] argument. On return, pArgErr MUST be set to 0.

pDispParams: MUST point to a DISPPARAMS structure that defines the arguments passed to

the method. Arguments MUST be stored in pDispParams->rgvarg in reverse order, so that

the first argument is the one with the highest index in the array. Byref arguments MUST be

marked in this array as VT_EMPTY entries, and stored in rgVarRef instead. For more
information, see section 2.2.33.

100 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pVarResult: MUST point to a VARIANT that will be filled with the result of the method or
property call.

pExcepInfo: If this value is not null and the return value is DISP_E_EXCEPTION, this structure
MUST be filled by the automation server. Otherwise, it MUST specify a 0 value for the scode

and wCode fields, and it MUST be ignored on receipt.

pArgErr: If this value is not null and the return value is DISP_E_TYPEMISMATCH or

DISP_E_PARAMNOTFOUND, this argument MUST equal the index (within pDispParams-

>rgvarg) of the first argument that has an error. Otherwise, it MUST be ignored on receipt.

cVarRef: MUST equal the number of byref arguments passed in pDispParams.

rgVarRefIdx: MUST contain an array of cVarRef unsigned integers that holds the indices of the

byref arguments marked as VT_EMPTY entries in pDispParams->rgvarg.

rgVarRef: MUST contain the byref arguments as set by the client at the time of the call, and by
the server on successful return from the call. Arguments in this array MUST also be stored in

reverse order, so that the first byref argument has the highest index in the array.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x80020009

DISP_E_EXCEPTION

The application needs to raise an exception. In this case, the

structure passed in pExcepInfo MUST be filled in with a nonzero

error code. See [MS-ERREF].

0x80020004

DISP_E_PARAMNOTFOUND

One of the parameter DISPIDs does not correspond to a

parameter on the method. In this case, pArgErr MUST be set to

the first argument that contains the error. See [MS-ERREF].

0x80020005

DISP_E_TYPEMISMATCH

One or more of the arguments could not be coerced into the type

of the corresponding formal parameter. The index within rgvarg

of the first parameter with the incorrect type MUST be returned in

the pArgErr parameter. For more information, see section

3.1.4.4.4 and [MS-ERREF].

0x8002000E

DISP_E_BADPARAMCOUNT

The number of elements provided to DISPPARAMS is different

from the number of arguments accepted by the method or

property. See [MS-ERREF].

0x80020008

DISP_E_BADVARTYPE

One of the arguments in rgvarg is not a valid variant type. See

[MS-ERREF].

0x80020003

DISP_E_MEMBERNOTFOUND

The requested member does not exist, or the call to Invoke tried

to set the value of a read-only property. See [MS-ERREF].

0x80020007 At least one named argument was provided for methods with a

%5bMS-ERREF%5d.pdf

101 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

DISP_E_NONAMEDARGS vararg parameter (see section 3.1.4.4.3), for which named

arguments are illegal. See [MS-ERREF].

0x8002000A

DISP_E_OVERFLOW

One of the arguments in rgvarg could not be coerced to the type

of its corresponding formal parameter. See [MS-ERREF].

0x80020001

DISP_E_UNKNOWNINTERFACE

The interface identifier passed in riid is not IID_NULL. See [MS-

ERREF].

0x8002000F

DISP_E_PARAMNOTOPTIONAL

A required parameter was omitted. See [MS-ERREF].

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC Protocol,
as specified in [MS-RPCE].

3.1.4.4.1 Invoke Consistency Checks

The following conditions MUST hold:

If pDispParams->cNamedArgs is nonzero, rgdispidNamedArgs MUST contain the DISPIDs

corresponding to the named arguments that are recognized by the server in the context of the
current method or property (identified by the dispIdMember argument passed to Invoke).

The last cArgs-cNamedArgs VARIANT values from rgvargs correspond to the positional

arguments passed to the method.

There are no VT_BYREF variant values in rgvargs.

All variant values in rgVarRef have the VT_BYREF bit flag set.

Each VARIANT contained within the pDispParams->rgvarg array, whose index corresponds to

an entry in rgVarRefIdx, is set to VT_EMPTY.

3.1.4.4.2 Invoke Argument-Parameter Mapping

The two arrays of VARIANTs that appear in this method, pDispParams->rgvarg and rgVarRef, are

two halves of the same whole.

The first array, pDispParams->rgvarg, MUST contain only the [in] argument values, whose

updates do not need to be reflected on the client side. The second array, rgVarRef, MUST contains
all the [in, out] or [out] arguments, passed by reference, which need to update client-side state

upon return. The elements in this array MUST be mapped to positional or named arguments through
rgVarRefIdx.

In addition, any parameters that have the lcid or retval attributes MUST NOT be packed in the
pDispParams->rgvarg or rgVarRef. Instead the "lcid" argument MUST be used to specify the third

argument (lcid) to IDispatch::Invoke. Also, the "retval" argument MUST be set from the sixth

argument (pVarResult) to IDispatch::Invoke.

3.1.4.4.3 Handling Default Value and Optional Arguments

For any arguments that the automation client does not semantically need to specify that correspond
to defaultvalue parameters, the automation client MUST<56> use the value specified in the
defaultvalue attribute.

%5bMS-RPCE%5d.pdf

102 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

For any arguments that the automation client does not semantically need to specify, that correspond
to optional parameters, the automation client MUST use the "optional argument marker". The

"optional argument marker" is a VARIANT value with the discriminant field set to VT_ERROR and
the scode field set to DISP_E_PARAMNOTFOUND.

A method with the vararg attribute does not specify optional arguments by position. To pass
arguments that do not correspond to positional arguments, the automation client MUST create a
one-dimensional SAFEARRAY of VARIANTs whose length is the number of additional arguments,
package the values of the arguments as VARIANTs in the SAFEARRAY, and pass the SAFEARRAY as
the first argument in pDispParams. The automation client MUST pass an empty SAFEARRAY as the
final argument of a vararg method if it does not need to specify any optional arguments.

3.1.4.4.4 Argument Coercion

The automation server MAY<57> attempt to convert the arguments passed in pDispParams to the
expected types of the formal parameters of the method or property that is called. If no possible
coercion exists, the server MUST return DISP_E_TYPEMISMATCH.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 Automation Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the

protocol behaves. This specification does not mandate that implementations adhere to this model as
long as their external behavior is consistent with the behavior described in this specification.

For every locale ID that an automation client is using, it MUST maintain a dispatch mapping table
that contains a list of mapping entries.

Each mapping entry MUST contain:

The list of names that identify the method or property, and the named parameters that the client

intends to use for calls to those operations.

A corresponding list of DISPIDs.

Note The preceding conceptual data can be implemented by using a variety of techniques. Any
data structure that stores this conceptual data may be used in the implementation.

3.2.2 Timers

None.

103 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.2.3 Initialization

If the client caches the mapping between the automation server's member names and the
corresponding DISPIDs, the client MUST initialize the cache at this time.

3.2.4 Message Processing and Sequencing Rules

If the client does not have prior knowledge of the server's DISPIDs, it MUST call
IDispatch::GetIDsOfNames (section 3.1.4.3) before calling IDispatch::Invoke (section
3.1.4.4). The client MUST call GetIDsOfNames at least once for each automation member (see
section 2.2.49.5) that it needs to call.

The sequence of events in this case MUST be as follows:

The automation client calls IDispatch::GetIDsOfNames to obtain the mapping between the

automation member name and any of its named arguments, and their corresponding DISPIDs
(see section 2.2.32).

The automation client potentially caches this mapping in the dispatch mapping table that

corresponds to the locale ID value it specified.

The automation client invokes the operation by using IDispatch::Invoke one or more times.

If the client uses the DISPIDs retrieved at compile time (from the documentation of the automation
server, or from the IDL that describes the Automation interface), there are no sequencing rules.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 IEnumVARIANT Server Details

By implementing the IEnumVARIANT interface, a server provides a method for enumerating a
collection of variants, including heterogeneous collections of objects. This interface SHOULD be
implemented by COM servers that expose collections of objects.

An automation server SHOULD expose this functionality by implementing a _NewEnum method with
a DISPID of DISPID_NEWENUM, as specified in section 2.2.32.1.

IEnumVARIANT MUST NOT impose restrictions on the semantics associated with the collection it
manages.

3.3.1 Abstract Data Model

An IEnumVARIANT server MUST maintain a sequence of elements and the current position in the

enumeration:

Static servers: MUST maintain a static sequence of elements throughout its lifetime, and the

current position in the sequence.

Semi-static servers: MUST maintain a static sequence of elements, and the current position in

the sequence. The sequence MUST be updated upon the call to Reset.

104 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Dynamic servers: MUST maintain the current position in the sequence and server-specific state

that allows it to dynamically retrieve the next elements requested by a client.

3.3.2 Timers

None.

3.3.3 Initialization

The server MUST initialize the current position. A static and semi-static server MUST initialize the
sequence of elements it manages.

3.3.4 Message Processing and Sequencing Rules

This is an overview of the four methods that are used by the IEnumVARIANT interface. The names
and opnums of each method are given as follows, as well as a simple description of the method.

The IEnumVARIANT derives from the IUnknown interface. IEnumVARIANT servers MUST implement
the methods defined in IUnknown in the order and with the opnums with which they are specified in
[MS-DCOM] Appendix A.

Methods in RPC Opnum Order

Method Description

Next The IEnumVARIANT::Next method returns the requested items that are next in the

enumeration sequence.

Opnum: 3

Skip The IEnumVARIANT::Skip method skips over the requested number of elements in the

enumeration sequence.

Opnum: 4

Reset The IEnumVARIANT::Reset method resets the enumeration sequence to the beginning.

Opnum: 5

Clone The IEnumVARIANT::Clone method creates a copy of the current state of the enumeration.

Opnum: 6

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; in
particular, a value of 0x00000000 indicates success, and any other return value indicates an error.
All error values are specified in [MS-ERREF] and MUST be treated the same unless specified

otherwise.

3.3.4.1 IEnumVARIANT::Next (Opnum 3)

The IEnumVARIANT::Next method returns up to the number of requested items that occur next in
the enumeration sequence.

HRESULT Next(

 [in] ULONG celt,

 [out, size_is(celt), length_is(*pCeltFetched)]

 VARIANT* rgVar,

 [out] ULONG* pCeltFetched

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf

105 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

);

celt: MUST be set to the maximum number of elements to return. The value MUST NOT be 0.

rgVar: MUST be set to an array of elements that are returned from the enumeration sequence.

pCeltFetched: MUST be set to the number of elements successfully returned. This number MUST
be equal to the value in celt, unless the end of the enumeration sequence is encountered.

Return Values: The method MUST return the information in an HRESULT data structure, which
is defined in [MS-ERREF] section 2.1. The severity bit in the structure identifies the following
conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

A static or semistatic IEnumVARIANT server MUST retrieve the next celt elements from the
sequence and fill in rgVar up to the celt elements or up to the remaining number of elements that
are not yet enumerated.

A dynamic server MUST use its server-specific state to retrieve the next elements.

In all cases, the server MUST:

Set pCeltFetched with the number retrieved.

Update the current position in the sequence.

Return a status of 1 (S_FALSE) if pCeltFetched is not equal to celt.

3.3.4.2 IEnumVARIANT::Skip (Opnum 4)

The IEnumVARIANT::Skip method skips over the requested number of elements in the
enumeration sequence.

HRESULT Skip(

 [in] ULONG celt

);

celt: MUST be set to the maximum number of elements to skip over.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

A static or semi-static IEnumVARIANT server MUST update the current position in the sequence by
either celt elements, or the number of elements remaining, whichever is smaller.

A dynamic server MUST use its server-specific state to affect the dynamic collection it manages, and

MUST update the current position in the sequence by either celt elements, or the number of
elements remaining, whichever is smaller.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

106 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

In all cases, the server MUST return 1 (S_FALSE), if the current position was updated by less than
celt elements.

3.3.4.3 IEnumVARIANT::Reset (Opnum 5)

The IEnumVARIANT::Reset method resets the enumeration sequence to the beginning.

HRESULT Reset();

This method has no parameters.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

A static server MUST reset its current position in the sequence.

A semi-static or dynamic server MUST update the sequence of elements it maintains and MUST reset
the current position in the sequence to the beginning.

3.3.4.4 IEnumVARIANT::Clone (Opnum 6)

The IEnumVARIANT::Clone method creates a copy of the current state of the enumeration.

HRESULT Clone(

 [out] IEnumVARIANT** ppEnum

);

ppEnum: MUST be set to an instance of the enumeration.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

The server MUST create a new COM server that implements IEnumVARIANT. The state of the newly
created IEnumVARIANT server MUST be set according to the type of the current server:

If the original server is a static or semi-static server, the state of the new COM server MUST be

based on the current state of the enumeration.

If the original server is a dynamic server, the state of the new COM server MUST be based on the

current state of the underlying collection, and the current position in the sequence.

3.3.5 Timer Events

None.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

107 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.6 Other Local Events

None.

3.4 IEnumVARIANT Client Details

An IEnumVARIANT client iterates over the elements of a collection managed by an IEnumVARIANT
server.

3.4.1 Abstract Data Model

None.

3.4.2 Timers

None.

3.4.3 Initialization

None.

3.4.4 Message Processing and Sequencing Rules

An IEnumVARIANT client MUST retrieve an instance of the server by:

Some DCOM server-specific method.

Calling _NewEnum (see section 2.2.32.1) on an automation server.

The client MUST call IEnumVARIANT::Next to enumerate over the elements of the collection.

The client MUST call IEnumVARIANT::Skip if it needs to omit collection elements from the
enumeration.

The client MUST call IEnumVARIANT::Reset if it needs to restart the enumeration.

The client MUST call IEnumVARIANT::Clone if it needs to save the current state of the
enumeration.

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.

3.5 ITypeComp Server Details

The ITypeComp interface defines methods that map names to types and type members.

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

108 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model so long as their external behavior is consistent with the behavior described in

this specification.

An ITypeComp server MUST maintain a "binding server" reference to either an ITypeLib server or an

ITypeInfo server. The binding context of the ITypeComp server (see section 3.5.4.1.1) MUST be the
same as the binding context of the binding server.

The reference to an ITypeLib server or ITypeInfo server MUST be permanent over the lifetime of the
ITypeComp server.

3.5.2 Timers

None.

3.5.3 Initialization

The server MUST initialize its ITypeLib or ITypeInfo reference and maintain the reference over its
lifetime. The ITypeLib or ITypeInfo instance referenced by the ITypeComp server MUST be initialized
as specified in section 3.11.3 or section 3.7.3.

3.5.4 Message Processing Events and Sequencing Rules

This is an overview of the two methods that are used by the ITypeComp interface. The names and
opnums of each method are given as follows, in addition to simple descriptions of the methods.

ITypeComp derives from the IUnknown interface. ITypeComp servers MUST implement the methods
that are defined in IUnknown, in the order in which and with the opnums with which they are
specified in [MS-DCOM] Appendix A.

Methods in RPC Opnum Order

Method Description

Bind The Bind method retrieves a type member whose name corresponds to a specified string.

Opnum: 3

BindType The BindType method retrieves a reference to an Automation type description whose name

corresponds to a specified string.

Opnum: 4

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; in

particular, a value of 0x00000000 indicates success, and any other return value indicates an error.
All error values are specified in [MS-ERREF] and MUST be treated the same, unless specified
otherwise.

3.5.4.1 ITypeComp::Bind (Opnum 3)

The Bind method retrieves automation type description server instances and related structures that
provide access to a method, property or data member whose name corresponds to a specified

string.

HRESULT Bind(

 [in] LPOLESTR szName,

 [in] ULONG lHashVal,

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf

109 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] WORD wFlags,

 [out] ITypeInfo** ppTInfo,

 [out] DESCKIND* pDescKind,

 [out] LPFUNCDESC* ppFuncDesc,

 [out] LPVARDESC* ppVarDesc,

 [out] ITypeComp** ppTypeComp,

 [out] DWORD* pReserved

);

szName: MUST be set to a string.

lHashVal: MUST be set to the hash value that corresponds to the value of szName (as specified
in section 2.2.51) or 0. Whether 0 or a computed hash value is specified for this argument,
the server MUST return the same values in ppTInfo, pDescKind, ppFuncDesc, ppVarDesc, and
ppTypeComp.

wFlags: MUST be set to a value of the INVOKEKIND enumeration, as specified in section

2.2.14, or 0.

ppTInfo: MUST be set to a reference to the ITypeInfo server instance that corresponds to the
element whose name matches the value of szName or NULL, as specified in sections 3.5.4.1.2
and 2.2.50. MUST be set to NULL if szName does not match the name of any element in the
binding context (see section 3.5.4.1.1).

pDescKind: MUST be set to one of the following values of the DESCKIND enumeration
(section 2.2.22):

MUST be set to DESCKIND_FUNCDESC if the values of szName and wFlags specify a

method or property accessor method in the binding context of the ITypeComp server.

MUST be set to DESCKIND_VARDESC if the values of szName and wFlags specify a data

member of an enumeration, module, or ODL dispinterface in the binding context of the
ITypeComp server, or if the binding server is an ITypeLib server and szName specifies the

name of an appobject coclass in the binding context of the ITypeComp server.

MUST be set to DESCKIND_TYPECOMP if the value of szName specifies an enumeration or

module in the binding context of the ITypeComp server.

MUST be set to DESCKIND_IMPLICITAPPOBJ if the binding server is an ITypeLib server, the

value of szName specifies an element in the binding context of an appobject coclass, and
the appobject coclass is in the binding context of the ITypeComp server.

Otherwise, MUST be set to DESCKIND_NONE.

ppFuncDesc: MUST be set to a FUNCDESC that describes the method or property whose name
matches the value of szName, if pDescKind is DESCKIND_FUNCDESC. Otherwise, MUST be set
to NULL.

ppVarDesc: MUST be set to a value that is specified by the value of pDescKind.

DESCKIND_VARDESC: MUST be set to a VARDESC that describes a data member of an

enumeration, module, or ODL dispinterface if the name of the data member matches

szName.

DESCKIND_IMPLICITAPPOBJ: MUST be set to a VARDESC that describes the appobject

coclass whose binding context contains a member whose name matches szName.

110 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

DESCKIND_FUNCDESC, DESCKIND_TYPECOMP, DESCKIND_NONE: MUST be set to NULL.

ppTypeComp: MUST be set to a reference to an ITypeComp server instance that provides access
to the binding context of the bound element, if pDescKind is DESCKIND_TYPECOMP or

DESCKIND_IMPLICITAPPOBJ. Otherwise, MUST be set to NULL.

pReserved: MUST be set to 0.

Return Values: The method MUST return information in an HRESULT data structure, which is
defined in [MS-ERREF] section 2.1. The severity bit in the structure identifies the following
conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802C

TYPE_E_AMBIGUOUSNAME

The values of szName and wFlags match more than one element in

the binding context. See [MS-ERREF].

0x80028CA0

TYPE_E_TYPEMISMATCH

The value of szName matched a single element in the binding

context, but the INVOKEKIND value that is associated with that

element did not match the value of wFlags. See [MS-ERREF].

3.5.4.1.1 Binding Context

The binding context of ITypeComp server is determined by its associated Automation type library or

Automation type description server. The binding context defines the set of members and members

of inherited types that can be referenced by name.

3.5.4.1.1.1 Automation Type Library Binding Context

The binding context of an Automation type library MUST consist of the following elements:

The names of all enum types of the module, if present, and of all appobject coclass types.

The data members of each enumeration member of its type information table.

The data and method members of the module member of its type information table, if there is

one.

The binding context of each coclass defined in the Automation scope, if the coclass was declared

with the [appobject] attribute (an appobject coclass).

3.5.4.1.1.2 Automation Type Description Binding Context

The binding context of an Automation type description MUST be specified by its associated
TYPEKIND value.

%5bMS-ERREF%5d.pdf

111 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TYPEKIND value Binding context

TKIND_ENUM,

TKIND_RECORD,

TKIND_UNION

The binding context MUST consist of the members of the data member table.

TKIND_MODULE The binding context MUST consist of the members of the method and data

member tables.

TKIND_COCLASS The binding context MUST consist of the binding context of the default

nonsource interface in the interface table (see section 2.2.49.8). A coclass

whose interface table does not include an interface declared with the [default]

attribute and without the [source] attribute (that is, a "default nonsource

interface") MUST have an empty binding context.

TKIND_DISPATCH The binding context MUST consist of the members of the dispatch method and

data member tables. The binding context of an ODL dispinterface also includes

the members of the method tables of IDispatch and IUnknown.

TKIND_INTERFACE The binding context MUST consist of the members of the method table, plus

the members of the binding context specified by the entry in the interface table

(if present).

TKIND_ALIAS The binding context MUST be empty.

3.5.4.1.2 Types Returned with Bound Elements

The following rules specify the ITypeInfo server instance that is returned with each element in the
binding context whose name matches a specified string according to the string-matching criteria
specified in section 2.2.50.

3.5.4.1.2.1 Types Returned with ITypeLib Members

The ITypeInfo server returned with a member of an automation type library MUST be specified by

the kind of element whose name was matched.

MUST be the ITypeInfo server instance that represents an enumeration, if the matched element

was a member of the enumeration's data member table.

MUST be the ITypeInfo server instance that represents the module declared with the automation

type library, if the matched element was a member of the module's method or data member

tables.

MUST be the ITypeInfo server instance that represents the coclass, if the matched element was

an appobject coclass with a default nonsource interface or a member of its default nonsource
interface.

MUST be NULL, if the matched element was an enumeration or the module declared with the

automation type library.

3.5.4.1.2.2 Types Returned with ITypeInfo Members

The ITypeInfo server reference returned with a member of an automation type description MUST be
specified by its associated TYPEKIND value.

112 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TYPEKIND value Returned type

TKIND_ENUM,

TKIND_RECORD,

TKIND_UNION,

TKIND_MODULE:

MUST be the ITypeInfo server instance whose corresponding Bind

method was called.

TKIND_COCLASS MUST be the ITypeInfo server instance that would be returned by the

Bind method associated with its default nonsource interface.

TKIND_DISPATCH MUST be the ITypeInfo server instance that represents IDispatch, if the

ITypeInfo server instance whose corresponding Bind method was called

represents an ODL dispinterface, and the bound element is a method

member of IDispatch or IUnknown.

MUST be the ITypeInfo server instance whose corresponding Bind

method was called in all other cases.

TKIND_INTERFACE MUST be the ITypeInfo server whose method table contains the

matching element.

TKIND_ALIAS: MUST be NULL.

3.5.4.2 ITypeComp::BindType (Opnum 4)

The BindType method retrieves a reference to an automation type description whose name
corresponds to a specified string.

HRESULT BindType(

 [in] LPOLESTR szName,

 [in] ULONG lHashVal,

 [out] ITypeInfo** ppTInfo

);

szName: MUST be set to a string.

lHashVal: MUST be the hash value associated with the value of szName as specified in section
2.2.51, or 0. The server MUST return the same values in ppTInfo in either case.

ppTInfo: MUST be set to a reference to an ITypeInfo server instance, or NULL.

If the ITypeComp server is associated with an ITypeLib server, ppTInfo MUST specify a type
defined in its automation scope whose name matches the value of szName according to the
string-matching criteria specified in section 2.2.50, or be set to NULL if no such type exists.

MUST be set to NULL if the ITypeComp server is associated with an ITypeInfo server.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.5.5 Timer Events

None.

%5bMS-ERREF%5d.pdf

113 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.5.6 Other Local Events

None.

3.6 ITypeComp Client Details

3.6.1 Abstract Data Model

None.

3.6.2 Timers

None.

3.6.3 Initialization

None.

3.6.4 Message Processing Events and Sequencing Rules

To retrieve a reference to an ITypeComp server, a client MUST call ITypeLib::GetTypeComp
(section 3.11.4.6), ITypeInfo::GetTypeComp (section 3.7.4.2), or ITypeComp::Bind

(section 3.5.4.1).

The protocol specifies no additional sequencing rules.

3.6.5 Timer Events

None.

3.6.6 Other Local Events

None.

3.7 ITypeInfo Server Details

An automation type description server is a COM server that provides access to an automation type
through an implementation of ITypeInfo.

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This specification does not mandate that implementations adhere to this model so
long as their external behavior is consistent with that described in this specification.

An automation type description server provides a concrete representation of a type element that has
been defined or referenced in an automation scope. An automation type description can describe the

following type elements: an enumeration, a data-only structure, a union, a typedef alias, an

interface, a dispinterface, a module, or a COM server.

3.7.1.1 Common Automation Type Description Elements

Every automation type description server maintains the following data elements:

114 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The name of the type.

A TYPEKIND value that specifies the type that the automation type description describes, as

specified in section 2.2.17.

A value or structure that specifies the attributes declared with the type in the IDL, as specified in

section 2.2.49.

A value that specifies the size, in bytes, of an instance of the type.

A reference to the automation type library that contains the automation type description in its

type information table.

A reference to an ITypeComp server whose binding context (see section 3.5.4.1.1) is specified by

the members of the automation type description.

A set of implementation-specific documentation values.<58>

An automation type description can include the following tables of member elements, as specified in
the remainder of this topic.

A method table specifies the methods that are defined by an interface. Each element of a method

table includes the following:

The name of the method.

The MEMBERID of the method.

A value or structure that specifies the attributes declared with the method in the IDL (as specified

in section 2.2.49) and other method information, as specified in section 2.2.42.

An ELEMDESC that specifies the return type of the method.

A parameter table (see below) that specifies the parameters declared with the method in the IDL,

as specified in section 2.2.49.5.

A data member table describes data-only members of the type. Each element of a data member
table includes the following:

The name of the data member.

The MEMBERID of the data member.

A value or structure that specifies the attributes declared with the data member in the IDL (as

specified in section 2.2.49.5) and other data member information, as specified in section 2.2.43.

An ELEMDESC that specifies the type of the data member.

An interface table contains references to interfaces and dispinterfaces. Each element of an interface
table includes the following:

The HREFTYPE of the referenced interface or dispinterface.

A reference to the automation type description of the interface or dispinterface.

A value or structure that specifies the attributes declared with the interface reference in the IDL

(as specified in section 2.2.49.8) and other information, as specified in section 2.2.13.

115 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

A parameter table contains references to method parameters. The order of the elements in the
parameter table follows the parameter ordering criteria specified in section 2.2.49.6. Each element

of a parameter table includes the following:

The name of the parameter.

An ELEMDESC that specifies the type of the parameter.

A value or structure that specifies the attributes declared with the parameter in the IDL (as

specified in section 2.2.49.6) and other data member information, as specified in section 2.2.40.

3.7.1.2 TYPEKIND Dependent Automation Type Description Elements

Every automation type description maintains the following data elements specified by its TYPEKIND
value.

TYPEKIND value Type description elements

TKIND_ENUM A data member table that specifies the values defined by the enumeration.

TKIND_RECORD and

TKIND_UNION

A data member table that specifies the fields of the structure or union.

TKIND_INTERFACE A method table that specifies the method members of the interface.

An interface table that specifies the interfaces inherited by the described

interface.

A reference to the partner dispinterface if the described type is a dual interface

(see section 2.2.49.4.2).

TKIND_DISPATCH A method table that specifies the method members defined by the dispinterface.

If the type is an ODL dispinterface, the method table includes the elements

defined with the "methods" keyword. If the type is a partner dispinterface, the

method table includes the methods defined by the dual interface. If the type is a

reference dispinterface, the method table is empty.

A "dispatch" method table that specifies the method members available through

ITypeComp::Bind. If the type is an ODL dispinterface, the dispatch method table

includes the elements defined with the "methods" keyword. If the type is a

reference dispinterface, the dispatch method table includes all members defined

by its referenced DCOM interface and its base interfaces (including IUnknown),

and includes separate entries for property accessor methods with the same

MEMBERID (see 2.2.35). If the type is a partner dispinterface, the dispatch

method table includes all members defined by the dual interface or its base

interfaces (including IUnknown), and includes separate entries for property

accessor methods with the same MEMBERID (see section 2.2.35).

A data member table that specifies the data members defined by the dispinterface

and available through IDispatch::Invoke. If the type is an ODL dispinterface,

the data member table includes the elements defined with the properties

keyword. Otherwise, it is empty.

An interface table that specifies a single interface. If the type is an ODL

dispinterface or a partner dispinterface, the specified interface is IDispatch. If the

type is a reference dispinterface, the specified interface is its referenced DCOM

interface (see section 2.2.49.4.3.)

A reference to the partner interface if the described type is a dual interface (see

section 2.2.49.4.2).

TKIND_COCLASS An interface table that specifies the interfaces and dispinterfaces defined or

referenced by the coclass.

116 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TYPEKIND value Type description elements

TKIND_MODULE A method table that specifies the local-only methods defined by the module.

A data member table that specifies the symbolic constants and static variables

defined by the module (see section 2.2.49.9).

TKIND_ALIAS A reference to the TYPEDESC that specifies the predefined type of the alias.

3.7.2 Timers

None.

3.7.3 Initialization

The server MUST initialize its name, TYPEKIND, automation type library reference, and ITypeComp
server reference, and specify the size of an instance of the type in bytes. These values MUST NOT
change over the server's lifetime.

The server MUST initialize the representation of the IDL attributes declared with the type and its
implementation-specific documentation values. The attribute representation and documentation
values MUST NOT change over the server's lifetime.

The server MUST initialize the following elements according to its TYPEKIND value, as specified in

the first paragraph of this section:

Data member table

Method tables (including parameter tables)

Interface table

Partner interface reference or partner dispinterface reference

Alias type reference

These tables and references MUST NOT change over the server's lifetime.

3.7.4 Message Processing Events and Sequencing Rules

The ITypeInfo interface derives from the IUnknown interface. ITypeInfo servers MUST implement
the methods that are defined in IUnknown in the order in which, and with the opnums with which,

they are specified in [MS-DCOM] Appendix A.

Methods in RPC Opnum Order

Method Description

GetTypeAttr The GetTypeAttr method retrieves a TYPEATTR structure that contains

information about the type described by the ITypeInfo server.

Opnum: 3

GetTypeComp The GetTypeComp method retrieves a reference to the ITypeComp server

instance associated with the ITypeInfo server.

Opnum: 4

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

117 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

GetFuncDesc The GetFuncDesc method retrieves a FUNCDESC structure that contains

information about a member of the ITypeInfo server's method or dispatch

method table.

Opnum: 5

GetVarDesc The GetVarDesc method retrieves a VARDESC structure that contains

information about a member of the ITypeInfo server’s data member table.

Opnum: 6

GetNames The GetNames method retrieves the data member name, or the method

and parameter names associated with a specified MEMBERID.

Opnum: 7

GetRefTypeOfImplType The GetRefTypeOfImplType method retrieves the HREFTYPE

corresponding to the automation type description of an interface that is

inherited, implemented, or referenced by the ITypeInfo server.

Opnum: 8

GetImplTypeFlags The GetImplTypeFlags method retrieves the IMPLTYPEFLAGS values

associated with an interface member of a coclass.

Opnum: 9

Opnum10NotUsedOnWire Reserved for local use.

Opnum: 10

Opnum11NotUsedOnWire Reserved for local use.

Opnum: 11

GetDocumentation The GetDocumentation method retrieves the documentation resources

associated with a type member.

Opnum: 12

GetDllEntry The GetDllEntry method retrieves values associated with a local-only

method defined in a module.

Opnum: 13

GetRefTypeInfo The GetRefTypeInfo method retrieves an automation type description

that describes a type that is inherited or referenced by the ITypeInfo

server.

Opnum: 14

Opnum15NotUsedOnWire Reserved for local use.

Opnum: 15

CreateInstance The CreateInstance method creates a new instance of a type that

describes a COM server (coclass).

Opnum: 16

GetMops The GetMops method has no effect when called across the wire.

Opnum: 17

GetContainingTypeLib The GetContainingTypeLib method retrieves the ITypeLib server instance

whose type information table contains the ITypeInfo instance, and the

118 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

index of the ITypeInfo instance within the type information table.

Opnum: 18

Opnum19NotUsedOnWire Reserved for local use.

Opnum: 19

Opnum20NotUsedOnWire Reserved for local use.

Opnum: 20

Opnum21NotUsedOnWire Reserved for local use.

Opnum: 21

In the preceding table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; in
particular, a value of 0x00000000 indicates success, and any other return value indicates an error.
All error values are specified in [MS-ERREF] and MUST be treated the same, unless specified

otherwise.

3.7.4.1 ITypeInfo::GetTypeAttr (Opnum 3)

The GetTypeAttr method retrieves a TYPEATTR structure that contains information about the type
described by the ITypeInfo server.

HRESULT GetTypeAttr(

 [out] LPTYPEATTR* ppTypeAttr,

 [out] DWORD* pReserved

);

ppTypeAttr: MUST be set to a TYPEATTR structure whose data values describe the type

associated with the ITypeInfo server, as specified in section 2.2.44.

pReserved: MUST be set to 0 and ignored on receipt.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.7.4.2 ITypeInfo::GetTypeComp (Opnum 4)

The GetTypeComp method retrieves a reference to the ITypeComp server instance associated with
the ITypeInfo server.

HRESULT GetTypeComp(

 [out] ITypeComp** ppTComp

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

119 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ppTComp: MUST be set to a reference to the ITypeComp server instance associated with the

ITypeInfo server (see section 3.5).

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the sevierty bit is set to 1, the method failed and encountered a fatal error.

3.7.4.3 ITypeInfo::GetFuncDesc (Opnum 5)

The GetFuncDesc method retrieves a FUNCDESC structure that contains information about a
member of the ITypeInfo server's method or dispatch method table.

HRESULT GetFuncDesc(

 [in] UINT index,

 [out] LPFUNCDESC* ppFuncDesc,

 [out] DWORD* pReserved

);

index: MUST equal the ordinal position in the method table (if the type describes a DCOM

interface or module) or the dispatch method table (if the type describes a dispinterface) of the
method whose description is to be returned. The value of index MUST be less than the value
of the cFuncs field in the TYPEATTR (section 2.2.44) structure returned by the
GetTypeAttr (section 3.7.4.1) method.

ppFuncDesc: MUST be set to a FUNCDESC structure (see section 2.2.42) that contains the data
values associated with the specified member of the method or dispatch method table, or NULL

if no such member exists.

pReserved: MUST be set to 0 and ignored on receipt.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the method table.

3.7.4.4 ITypeInfo::GetVarDesc (Opnum 6)

The GetVarDesc method retrieves a VARDESC structure that contains information about a member
of the ITypeInfo server's data member table.

HRESULT GetVarDesc(

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

120 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] UINT index,

 [out] LPVARDESC* ppVarDesc,

 [out] DWORD* pReserved

);

index: MUST equal the data member table index value of the data member whose description is

to be returned. The value of index MUST be less than the value of the cVars field in the
TYPEATTR structure returned by the GetTypeAttr method, as specified in 3.7.4.1 and 2.2.44.

ppVarDesc: MUST be set to a VARDESC structure (see section 2.2.43) that contains the data
values associated with the specified member of the data member table, or NULL if no such
member exists.

pReserved: MUST be set to 0 and ignored on receipt.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index and invKind did not specify the ordinal position

of an element in the method table. See [MS-ERREF].

3.7.4.5 ITypeInfo::GetNames (Opnum 7)

The GetNames method retrieves the data member name or the method and parameter names
associated with a specified MEMBERID.

HRESULT GetNames(

 [in] MEMBERID memid,

 [out, size_is(cMaxNames), length_is(*pcNames)]

 BSTR* rgBstrNames,

 [in] UINT cMaxNames,

 [out] UINT* pcNames

);

memid: MUST be a MEMBERID (section 2.2.35).

rgBstrNames: MUST be set to an array of BSTR. If pcNames is 0, rgBstrNames MUST be NULL.

cMaxNames: MUST specify the maximum length of the rgBstrNames array that the client can
accept.

pcNames: MUST be set to the length of the rgBstrNames array.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

121 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of memid did not specify the MEMBERID of a member

of the type. See [MS-ERREF].

If the memid field corresponds to multiple property accessor methods, the contents of rgBstrNames
MUST correspond to the [propget] property accessor.

If the ITypeInfo server represents an appobject coclass (see section 2.2.49.8) and memid is

MEMBERID_DEFAULTINST, the first element of rgBstrNames MUST be set to the name of the
coclass.

In all other cases, the first element of rgBstrNames MUST be set to the name of the method or data
element in the binding context of the ITypeInfo server that corresponds to the value of memid.

If memid specifies a method or property accessor method, the remaining elements of rgBstrNames

MUST be set to the names of entries in its parameter table, in the order in which they are stored in
the parameter table.

If memid specifies a put or putref property, the rgBstrNames array MUST NOT include the name of
the [retval] parameter. If memid specifies a member of a dispinterface, the rgBstrNames array
MUST NOT include the names of [lcid] or [retval] parameters (see section 3.1.4.4). In all other
cases, the rgBstrNames array MUST include all members of the parameter table.

3.7.4.6 ITypeInfo::GetRefTypeOfImplType (Opnum 8)

The GetRefTypeOfImplType method retrieves the HREFTYPE corresponding to the automation
type description of an interface that is inherited, implemented, or referenced by the ITypeInfo
server.

HRESULT GetRefTypeOfImplType(

 [in] UINT index,

 [out] HREFTYPE* pRefType

);

index: MUST be a nonnegative integer, or -1.

If the ITypeInfo server describes a dual interface (see sections 2.2.49.4.2 and 3.7.1), the

value of index MUST be 0 or -1.

If the ITypeInfo server describes a coclass, the value of index MUST be nonnegative and less
than the value of the cImplTypes field in the TYPEATTR (section 2.2.44) structure returned
by the GetTypeAttr (section 3.7.4.1) method.

For all other ITypeInfo servers, the value of index MUST be 0.

122 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pRefType: MUST be set to one of the following values, if index is -1 or specifies an interface
table entry.

If the ITypeInfo server describes a dual interface and index is -1, pRefType is specified by the
TYPEKIND value associated with the ITypeInfo server (see section 2.2.44):

TKIND_DISPATCH: MUST be set to the HREFTYPE of the partner interface.

TKIND_INTERFACE: MUST be set to the HREFTYPE of the partner dispinterface.

In all other cases, pRefType is specified by the interface table member whose ordinal position
is specified by index:

If the interface table member is a dual interface and the ITypeInfo server describes a

DCOM interface or partner interface, pRefType MUST be the HREFTYPE of the partner
interface of the interface table member.

Note This is the only case where an OLE Automation Protocol interface method returns

a partner interface by default.

If the interface table member is a dual interface and the ITypeInfo server describes a

coclass, pRefType MUST be the HREFTYPE of the partner dispinterface of the interface

table member.

MUST be set to the HREFTYPE of the interface table member in all other cases.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the interface table, or the value of index was -1 and the

type was not a dual interface. See [MS-ERREF].

3.7.4.7 ITypeInfo::GetImplTypeFlags (Opnum 9)

The GetImplTypeFlags method retrieves the IMPLTYPEFLAGS values associated with an
interface member of a coclass.

HRESULT GetImplTypeFlags(

 [in] UINT index,

 [out] INT* pImplTypeFlags

);

index: MUST be the ordinal position in the coclass interface table of the interface whose

associated IMPLTYPEFLAGS values are to be returned.

%5bMS-ERREF%5d.pdf

123 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pImplTypeFlags: MUST be set to either a combination of the IMPLTYPEFLAGS feature
constants specified in section 2.2.13, or 0.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the interface table. See [MS-ERREF].

3.7.4.8 ITypeInfo::GetDocumentation (Opnum 12)

The GetDocumentation method retrieves the documentation resources associated with a type
member.

HRESULT GetDocumentation(

 [in] MEMBERID memid,

 [in] DWORD refPtrFlags,

 [out] BSTR* pBstrName,

 [out] BSTR* pBstrDocString,

 [out] DWORD* pdwHelpContext,

 [out] BSTR* pBstrHelpFile

);

memid: MUST be either the MEMBERID of a method or data member in the binding context of

the ITypeInfo server (see section 3.5.4.1.1), or MEMBERID_NIL (see section 2.2.35.1).

refPtrFlags: MUST be a combination of the bit flags specified in the following table, or 0.

Value Meaning

TYPEINFO_NameArg

0x00000001

MUST specify that the client is interested in the actual pBstrName

[out] argument.

TYPEINFO_DocStringArg

0x00000002

MUST specify that the client is interested in the actual pBstrDocString

[out] argument.

TYPEINFO_HelpContextArg

0x00000004

MUST specify that the client is interested in the actual

pdwHelpContext [out] argument.

TYPEINFO_HelpFileArg

0x00000008

MUST specify that the client is interested in the actual pBstrHelpFile

[out] argument.

pBstrName: If the TYPEINFO_NameArg bit flag is set in refPtrFlags,pBstrName MUST be set to a
BSTR that contains the name of the type or specified type member. Othernwise, pBstrName

MUST be set to a NULL BSTR.

%5bMS-ERREF%5d.pdf

124 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pBstrDocString: MUST be set to the documentation string that was associated with the type or
specified type member using the [helpstring] attribute (see section 2.2.49.2), if the

TYPEINFO_DocStringArg bit flag is set in refPtrFlags. MAY be set to an implementation-specific
string<59> if no [helpstring] attribute is specified. MUST be set to a NULL BSTR otherwise.

pdwHelpContext: MUST be set to the value that was associated with the type or specified type
member using the [helpcontext] attribute (see section 2.2.49.2), if the
TYPEINFO_HelpContextArg bit flag is set in refPtrFlags. MUST be set to 0 otherwise.

pBstrHelpFile: MUST be set to the documentation string that was associated with the type or
specified type member using the [helpfile] attribute (see section 2.2.49.2), if the
TYPEINFO_HelpFileArg bit flag is set in refPtrFlags. MUST be set to a NULL BSTR otherwise.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

If memid is MEMBERID_NIL, the values of pBstrName, pBstrDocString, pdwHelpContext, and
pBstrHelpFile MUST correspond to the attributes declared with the type, as specified in section

2.2.49.3. Otherwise, they MUST correspond to the attributes declared with the specified member of
the type.

3.7.4.9 ITypeInfo::GetDllEntry (Opnum 13)

The GetDllEntry method retrieves values associated with a local-only method defined in a module.

HRESULT GetDllEntry(

 [in] MEMBERID memid,

 [in] INVOKEKIND invKind,

 [in] DWORD refPtrFlags,

 [out] BSTR* pBstrDllName,

 [out] BSTR* pBstrName,

 [out] WORD* pwOrdinal

);

memid: MUST be the MEMBERID of a method member of the module defined in the automation

type library.

invKind: MUST be a value of the INVOKEKIND (section 2.2.14) enumeration that specifies a
single property accessor method, if memid corresponds to a property with multiple accessors.

refPtrFlags: MUST be a combination of the bit flags specified in the following table, or 0.

Value Meaning

TYPEINFO_DLLNameArg

0x00000001

MUST specify that the client is interested in the actual pBstrDllName

[out] argument.

TYPEINFO_NameArg

0x00000002

MUST specify that the client is interested in the actual pBstrName [out]

argument.

TYPEINFO_OrdinalArg

0x00000004

MUST specify that the client is interested in the actual pwOrdinal [out]

argument.

%5bMS-ERREF%5d.pdf

125 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pBstrDllName: MUST be set to the value associated with the method using the [dllname]
attribute (see section 2.2.49.9) if the TYPEINFO_DllNameArg bit flag is set in refPtrFlags.

MUST be set to a NULL BSTR otherwise.

pBstrName: MUST be set to the value associated with the method using the [entry] attribute

(see section 2.2.49.9), if the associated value is a string and the TYPEINFO_NameArg bit flag
is set in refPtrFlags. MUST be set to a NULL BSTR otherwise.

pwOrdinal: MUST be set to the value associated with the method using the [entry] attribute
(see section 2.2.49.9), if the associated value is an integer and the TYPEINFO_OrdinalArg bit
flag is set in refPtrFlags. MUST be set to 0 otherwise.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x800288BD

TYPE_E_BADMODULEKIND

The type is not a module. See [MS-ERREF].

0x8002802C

TYPE_E_AMBIGUOUSNAME

The values of memid and invKind match more than one element in

the binding context. See [MS-ERREF].

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of memid and invKind did not specify the ordinal position

of an element in the interface table, or the type is not a coclass.

See [MS-ERREF].

3.7.4.10 ITypeInfo::GetRefTypeInfo (Opnum 14)

The GetRefTypeInfo method retrieves an automation type description that describes a type that is
inherited, implemented, or referenced by the ITypeInfo server.

HRESULT GetRefTypeInfo(

 [in] HREFTYPE hRefType,

 [out] ITypeInfo** ppTInfo

);

hRefType: MUST be an HREFTYPE (section 2.2.36) that has been provided by the ITypeInfo
server instance whose GetRefTypeInfo method is being called.

ppTInfo: MUST be set to a reference to an ITypeInfo server instance that provides an

automation type description of the inherited or referenced interface, or NULL if hRefType does
not specify an available interface.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

126 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.7.4.11 ITypeInfo::CreateInstance (Opnum 16)

The CreateInstance method creates a new instance of a type that describes a COM server
(coclass).

HRESULT CreateInstance(

 [in] REFIID riid,

 [out, iid_is(riid)] IUnknown** ppvObj

);

riid: MUST be an IID.

ppvObj: MUST be set to reference an existing instance of the coclass described by the ITypeInfo
server, if the coclass was declared with the [predeclid] or [appobject] attributes and an
instance of the coclass exists. MUST be set to NULL if the coclass was declared with the

[noncreatable] attribute. Otherwise, MUST be set to a new instance of the coclass described

by the ITypeInfo server or NULL if the class cannot be instantiated.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x80000004

TYPE_E_NOINTERFACE

The value of riid did not specify a known type. See [MS-ERREF].

0x800288BD

TYPE_E_BADMODULEKIND

The ITypeInfo server specified a non-coclass type. See [MS-ERREF].

3.7.4.12 ITypeInfo::GetMops (Opnum 17)

The GetMops method has no effect when called across the wire.

HRESULT GetMops(

 [in] MEMBERID memid,

 [out] BSTR* pBstrMops

);

memid: MUST be a nonzero MEMBERID.

pBstrMops: MUST be set to a NULL BSTR.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

127 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.7.4.13 ITypeInfo::GetContainingTypeLib (Opnum 18)

The GetContainingTypeLib method retrieves the ITypeLib server instance whose type information
table contains the ITypeInfo instance, and the index of the ITypeInfo instance within the type
information table.

HRESULT GetContainingTypeLib(

 [out] ITypeLib** ppTLib,

 [out] UINT* pIndex

);

ppTLib: MUST be set to a reference to an ITypeLib server instance (see section 3.11).

pIndex: MUST be set to the index value of the current automation type description within the

type information table (see section 3.11.1).

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.7.5 Timer Events

None.

3.7.6 Other Local Events

None.

3.8 ITypeInfo Client Details

3.8.1 Abstract Data Model

None.

3.8.2 Timers

None.

3.8.3 Initialization

None.

3.8.4 Message Processing Events and Sequencing Rules

To retrieve a reference to an ITypeInfo server, a client MUST do one of the following:

If the client holds a reference to an automation server IDispatch implementation, it can call

IDispatch::GetTypeInfo (see section 3.1.4.2)

%5bMS-ERREF%5d.pdf

128 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the client holds a reference to an ITypeComp server, it can call ITypeComp::Bind (see section

3.5.4.1) or ITypeComp::BindType (see section 3.5.4.2)

If the client holds a reference to another ITypeInfo server, it can call

ITypeInfo::GetRefTypeInfo (see section 3.7.4.10)

If the client holds a reference to an ITypeLib server, it can call ITypeLib::GetTypeInfo (see

section 3.11.4.2), ITypeLib::GetTypeInfoOfGuid (see section 3.11.4.4), or
ITypeLib::FindName (see section 3.11.4.9)

A client MUST call ITypeInfo::GetTypeAttr (section 3.7.4.1) to retrieve the essential
characteristics of the type. To iterate over the data and method members of the type, the client

MUST use the data retrieved in TYPEATTR and then call ITypeInfo::GetVarDesc (section
3.7.4.4) and ITypeInfo::GetFuncDesc (section 3.7.4.3).

To discover inheritance relationships for interfaces or the set of nonsource and source interfaces
supported by a coclass, a client MUST enumerate the referenced types of an ITypeInfo server using
ITypeInfo::GetRefTypeOfImplType (section 3.7.4.6) and ITypeInfo::GetRefTypeInfo

(section 3.7.4.10).

To retrieve string information related to the ITypeInfo server, the client MUST call

ITypeInfo::GetDocumentation (section 3.7.4.8) or ITypeInfo::GetNames (section 3.7.4.5).

3.8.5 Timer Events

None.

3.8.6 Other Local Events

None.

3.9 ITypeInfo2 Server Details

An ITypeInfo2 server MUST extend the functionality of ITypeInfo. The main extension present in
ITypeInfo2 is the support it provides for custom attributes as well as support for reverse mapping
between the MEMBERID of one of its members and its index in the corresponding member table.

3.9.1 Abstract Data Model

An ITypeInfo2 server (section 3.9) MUST implement the data model of an ITypeInfo server (section
3.7).

The automation type library reference maintained by an ITypeInfo2 server MUST refer to a server
that implements ITypeLib2.

An ITypeInfo2 server MUST maintain a collection of custom data items for the type, as well as a

collection of custom data items for each element in its method table, data member table, interface

table, and parameter tables.

Each entry in a custom data item collection corresponds to a custom data item that was declared
with the named element in the IDL, as specified by the custom-attr production throughout section
2.2.49. For each custom data item, the server MUST maintain the mapping between the GUID and
the value of the custom data item.

129 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The data value of all custom data items MUST be a value that can be stored in a _wireVARIANT
(section 2.2.29.1).

The custom data item mappings maintained by an ITypeInfo2 server MUST be permanent.

3.9.2 Timers

None.

3.9.3 Initialization

The server MUST initialize all data objects that are required of an ITypeInfo server, as specified in
section 3.7.3.

The server MUST initialize its collection of custom data items. The collection MUST NOT change over

the server's lifetime.

3.9.4 Message Processing Events and Sequencing Rules

The ITypeInfo2 interface derives from the ITypeInfo interface. ITypeInfo2 servers MUST
implement the methods defined in ITypeInfo in the order in which, and with the opnums with which,
they are specified in section 3.7.4.

Methods in RPC Opnum Order

Method Description

GetTypeKind The GetTypeKind method returns the TYPEKIND value that is associated

with the automation type description.

Opnum: 22

GetTypeFlags The GetTypeFlags method returns the TYPEFLAGS value that is associated

with the automation type description.

Opnum: 23

GetFuncIndexOfMemId The GetFuncIndexOfMemId method retrieves the location of an element

in the data member table, given the associated MEMBERID of the element.

Opnum: 24

GetVarIndexOfMemId The GetVarIndexOfMemId method retrieves the location of an element in

the data member table, given the associated MEMBERID of the element.

Opnum: 25

GetCustData The GetCustData method retrieves the value of a custom data item that is

associated with the type.

Opnum: 26

GetFuncCustData The GetFuncCustData method retrieves the value of a custom data item

that is associated with the specified method.

Opnum: 27

GetParamCustData The GetParamCustData method retrieves the value of a custom data item

that is associated with the specified method parameter.

Opnum: 28

130 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

GetVarCustData The GetVarCustData method retrieves the value of a custom data item

that is associated with the specified data member.

Opnum: 29

GetImplTypeCustData The GetImplTypeCustData method retrieves the value of a custom data

item that is associated with the specified interface.

Opnum: 30

GetDocumentation2 The GetDocumentation2 method retrieves the values that are associated

with a type member.

Opnum: 31

GetAllCustData The GetAllCustData method retrieves all the custom data items that are

associated with the automation type description.

Opnum: 32

GetAllFuncCustData The GetAllFuncCustData method retrieves all the custom data items that

are associated with the specified method.

Opnum: 33

GetAllParamCustData The GetAllParamCustData method retrieves all the custom data items that

are associated with the specified method parameter.

Opnum: 34

GetAllVarCustData The GetAllVarCustData method retrieves all the custom data items that

are associated with the specified data member.

Opnum: 35

GetAllImplTypeCustData The GetAllImplTypeCustData method retrieves all the custom data items

that are associated with the specified interface.

Opnum: 36

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; in
particular, a value of 0x00000000 indicates success, and any other return value indicates an error.
All error values are specified in [MS-ERREF] and MUST be treated the same, unless specified

otherwise.

3.9.4.1 ITypeInfo2::GetTypeKind (Opnum 22)

The GetTypeKind method returns the TYPEKIND value associated with the automation type
description.

HRESULT GetTypeKind(

 [out] TYPEKIND* pTypeKind

);

pTypeKind: MUST be set to the TYPEKIND value associated with the automation type

description, as specified in section 2.2.17.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

131 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.9.4.2 ITypeInfo2::GetTypeFlags (Opnum 23)

The GetTypeFlags method returns the TYPEFLAGS value associated with the automation type
description.

HRESULT GetTypeFlags(

 [out] ULONG* pTypeFlags

);

pTypeFlags: MUST be set either to a combination of the TYPEFLAGS type feature constants
specified in section 2.2.16, or to 0.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.9.4.3 ITypeInfo2::GetFuncIndexOfMemId (Opnum 24)

The GetFuncIndexOfMemId method retrieves the location of an element in the data member
table, given its associated MEMBERID.

HRESULT GetFuncIndexOfMemId(

 [in] MEMBERID memid,

 [in] INVOKEKIND invKind,

 [out] UINT* pFuncIndex

);

memid: MUST be a MEMBERID, as specified in section 2.2.35.

invKind: MUST be set to one of the values of the INVOKEKIND enumeration (as specified in
section 2.2.14) or to 0.

pFuncIndex: MUST be set to the ordinal position in the method table of the element specified by
the values of memid and invKind as described below, or to –1 if no such element exists.

If invKind is not 0, the specified element is the one whose MEMBERID matches the value of
memid, and whose associated INVOKEKIND constant (see FUNCDESC) matches the value of
invKind.

If invKind is 0, the specified element is the one with the lowest ordinal position in the method
table whose MEMBERID matches the value of memid.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

132 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The values of memid and invKind did not specify a member of the

type. See [MS-ERREF].

3.9.4.4 ITypeInfo2::GetVarIndexOfMemId (Opnum 25)

The GetVarIndexOfMemId method retrieves the location of an element in the data member table

by using the associated MEMBERID of the element.

The method is received by the server in an RPC_REQUEST packet.

HRESULT GetVarIndexOfMemId(

 [in] MEMBERID memid,

 [out] UINT* pVarIndex

);

memid: MUST be a MEMBERID, as specified in section 2.2.35. MUST NOT be MEMBERID_NIL.

pVarIndex: MUST be set to the ordinal position in the data member table of the element whose
MEMBERID is specified by memid, if such an element exists. If the method returns a failure
code, the value MUST be ignored on receipt.

Return Values: The method MUST return information in an HRESULT data structure that is

defined in [MS-ERREF] section 2.1. The severity bit in the structure identifies the following
conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of memid did not specify a member of the type. See

[MS-ERREF].

3.9.4.5 ITypeInfo2::GetCustData (Opnum 26)

The GetCustData method retrieves the value of a custom data item associated with the type.

HRESULT GetCustData(

 [in] REFGUID guid,

 [out] VARIANT* pVarVal

%5bMS-ERREF%5d.pdf

133 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

);

guid: MUST be a GUID associated with the custom data item.

pVarVal: MUST be set to the value associated with the GUID using the [custom] attribute (as
specified in section 2.2.49.3), or VT_EMPTY if the type does not have a value associated with
the GUID.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.9.4.6 ITypeInfo2::GetFuncCustData (Opnum 27)

The GetFuncCustData method retrieves the value of a custom data item associated with the
specified method.

HRESULT GetFuncCustData(

 [in] UINT index,

 [in] REFGUID guid,

 [out] VARIANT* pVarVal

);

index: MUST specify an ordinal position in the method table and MUST be less than the value of

the cFuncs field in the TYPEATTR structure of the associated type, as specified in sections
2.2.44 and 3.7.4.1.

guid: MUST be the GUID associated with the custom data item using the [custom] attribute, as
specified in section 2.2.49.5.1.

pVarVal: MUST be set to the value of the custom data item, or VT_EMPTY if index and guid do
not specify a custom data item.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the method table. See [MS-ERREF].

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

134 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.9.4.7 ITypeInfo2::GetParamCustData (Opnum 28)

The GetParamCustData method retrieves the value of a custom data item associated with the
specified method parameter.

HRESULT GetParamCustData(

 [in] UINT indexFunc,

 [in] UINT indexParam,

 [in] REFGUID guid,

 [out] VARIANT* pVarVal

);

indexFunc: MUST specify an ordinal position in the method table and MUST be less than the

value of the cFuncs field in the TYPEATTR structure of the associated type, as specified in
sections 2.2.44 and 3.7.4.1.

indexParam: MUST specify an ordinal position in the parameter table of the method specified by

indexFunc. The value of indexParam MUST be less than the value of the cParams field in the
FUNCDESC structure of the associated method, as specified in sections 2.2.42 and 3.7.4.3.

guid: MUST be the GUID associated with the custom data item using the [custom] attribute, as
specified in section 2.2.49.6.

pVarVal: MUST be set to the value of the custom data item, or to VT_EMPTY if the parameter
does not have an associated custom data item.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of indexFunc did not specify the ordinal position of an

element in the interface table, or the value of indexParam did not

specify the ordinal position of an element in the method's

parameter table. See [MS-ERREF].

3.9.4.8 ITypeInfo2::GetVarCustData (Opnum 29)

The GetVarCustData method retrieves the value of a custom data item associated with the

specified data member.

HRESULT GetVarCustData(

 [in] UINT index,

 [in] REFGUID guid,

 [out] VARIANT* pVarVal

);

%5bMS-ERREF%5d.pdf

135 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

index: MUST specify an ordinal position in the data member table and MUST be less than the

value of the cVars field in the TYPEATTR structure of the associated type, as specified in

sections 2.2.44 and 3.7.4.1.

guid: MUST be the GUID associated with the custom data item using the [custom] attribute, as

specified in section 2.2.49.5.

pVarVal: MUST be set to the value of the custom data item, or to VT_EMPTY if the type does not
have a value associated with the GUID.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the data member table. See [MS-ERREF].

3.9.4.9 ITypeInfo2::GetImplTypeCustData (Opnum 30)

The GetImplTypeCustData method retrieves the value of a custom data item associated with the
specified interface member of a coclass.

HRESULT GetImplTypeCustData(

 [in] UINT index,

 [in] REFGUID guid,

 [out] VARIANT* pVarVal

);

index: MUST specify an ordinal position in the interface table and MUST be less than the value of

the cImplTypes field in the TYPEATTR structure of the associated type, as specified in sections
2.2.44 and 3.7.4.1.

guid: MUST be the GUID associated with the custom data item using the [custom] attribute, as
specified in section 2.2.49.8.

pVarVal: MUST be set to the value of the custom data item, or to VT_EMPTY if the type does not
have a value associated with the GUID.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

136 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the interface table, or the type is not a coclass. See

[MS-ERREF].

3.9.4.10 ITypeInfo2::GetDocumentation2 (Opnum 31)

The GetDocumentation2 method retrieves values associated with a type member.

HRESULT GetDocumentation2(

 [in] MEMBERID memid,

 [in] LCID lcid,

 [in] DWORD refPtrFlags,

 [out] BSTR* pbstrHelpString,

 [out] DWORD* pdwHelpStringContext,

 [out] BSTR* pbstrHelpStringDll

);

memid: MUST be the MEMBERID of a member of the type (as specified in section 2.2.35), or

MEMBERID_NIL.

If memid is MEMBERID_NIL, the values of pBstrHelpString, pdwHelpStringContext, and
pBstrHelpStringDll MUST correspond to the attributes declared with the type as specified in

2.2.49.3. Otherwise, they MUST correspond to the attributes declared with the specified
member of the type.

lcid: MUST be the Locale ID associated with the specified type member.

refPtrFlags: MUST be 0, or a combination of the bit flags specified in the following table.

Value Meaning

TYPEINFO_HelpStringArg

0x00000001

MUST specify that the client is interested in the actual

pBstrHelpString [out] argument.

TYPEINFO_HelpStringContextArg

0x00000002

MUST specify that the client is interested in the actual

pdwHelpStringContext [out] argument.

TYPEINFO_HelpStringDllArg

0x00000004

MUST specify that the client is interested in the actual

pBstrHelpStringDll [out] argument.

pbstrHelpString: If the TYPEINFO_HelpStringContextArg and TYPEINFO_HelpStringDllArg bit
flags are set in refPtrFlags, pbstrHelpString MUST be set to an implementation-specific
BSTR<60> . Otherwise, MUST be set to a NULL BSTR.

pdwHelpStringContext: MUST be set to the value that was associated with the specified type
or type member using the [helpstringcontext] attribute (see IDL Automation Scope) if the

TYPEINFO_HelpStringContextArg bit flag is set in refPtrFlags. MUST be set to 0 otherwise.

pbstrHelpStringDll: MUST be set to the documentation string that was associated with the
specified type or type member using the [helpstringdll] attribute (see IDL Automation Scope)

137 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

if the TYPEINFO_HelpStringDllArg bit flag is set in refPtrFlags. MUST be set to a NULL BSTR
otherwise.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.9.4.11 ITypeInfo2::GetAllCustData (Opnum 32)

The GetAllCustData method retrieves all the custom data items associated with the automation
type description.

HRESULT GetAllCustData(

 [out] CUSTDATA* pCustData

);

pCustData: MUST be set to a CUSTDATA structure that contains an array of custom data items,

as specified in section 2.2.47. The structure's cCustData field MUST be set to 0 and its
prgCustData field set to NULL, if there are no custom data items associated with the
automation type description.

Return Values: The method MUST return information in an HRESULT data structure, defined in

[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.9.4.12 ITypeInfo2::GetAllFuncCustData (Opnum 33)

The GetAllFuncCustData method retrieves all of the custom data items associated with the

specified method.

HRESULT GetAllFuncCustData(

 [in] UINT index,

 [out] CUSTDATA* pCustData

);

index: MUST specify an ordinal position in the method table and MUST be less than the value of

the cFuncs field in the TYPEATTR structure of the associated type, as specified in sections
2.2.44 and 3.7.4.1.

pCustData: MUST be set to a CUSTDATA structure that contains an array of custom data items,
as specified in section 2.2.49.5.1. The structure's cCustData field MUST be set to 0 and its

prgCustData field set to NULL, if there are no custom data items associated with the method.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

138 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the data member table. See [MS-ERREF].

3.9.4.13 ITypeInfo2::GetAllParamCustData (Opnum 34)

The GetAllParamCustData method retrieves all of the custom data items associated with the

specified parameter.

HRESULT GetAllParamCustData(

 [in] UINT indexFunc,

 [in] UINT indexParam,

 [out] CUSTDATA* pCustData

);

indexFunc: MUST specify an ordinal position in the method table and MUST be less than the

value of the cFuncs field in the TYPEATTR structure of the associated type, as specified in
sections 2.2.44 and 3.7.4.1.

indexParam: MUST specify an ordinal position in the parameter table of the method specified by
indexFunc. The value of indexParam MUST be less than the value of the cParams field in the
FUNCDESC structure of the associated method, as specified in sections 2.2.42 and 3.7.4.3.

pCustData: MUST be set to a CUSTDATA structure that contains an array of custom data items,

as specified in section 2.2.49.6. The structure's cCustData field MUST be set to 0 and its

prgCustData field set to NULL, if there are no custom data items associated with the
parameter.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of indexFunc did not specify the ordinal position of an

element in the method table, or the value of indexParam did not

specify the ordinal position of an element in the parameter table.

%5bMS-ERREF%5d.pdf

139 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.9.4.14 ITypeInfo2::GetAllVarCustData (Opnum 35)

The GetAllVarCustData method retrieves all of the custom data items associated with the specified
data member.

HRESULT GetAllVarCustData(

 [in] UINT index,

 [out] CUSTDATA* pCustData

);

index: MUST specify an ordinal position in the data member table and MUST be less than the

value of the cVars field in the TYPEATTR structure of the associated type, as specified in
sections 2.2.44 and 3.7.4.1.

pCustData: MUST be set to a CUSTDATA structure that contains an array of custom data items,
as specified in section 2.2.49.5. The structure's cCustData field MUST be set to 0 and its
prgCustData field set to NULL, if there are no custom data items associated with the data

member.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the data member table. See [MS-ERREF].

3.9.4.15 ITypeInfo2::GetAllImplTypeCustData (Opnum 36)

The GetAllImplTypeCustData method retrieves all of the custom data items associated with the
specified data member.

HRESULT GetAllImplTypeCustData(

 [in] UINT index,

 [out] CUSTDATA* pCustData

);

index: MUST specify an ordinal position in the interface table and MUST be less than the value of

the cImplTypes field in the TYPEATTR structure of the associated type, as specified in

sections 2.2.44 and 3.7.4.1.

pCustData: MUST be set to a CUSTDATA structure that contains an array of custom data items,

as specified in section 2.2.49.8. The structure's cCustData field MUST be set to 0 and its
prgCustData field set to NULL if there are no custom data items associated with the
interface.

%5bMS-ERREF%5d.pdf

140 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in the

following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value ofindex did not specify the ordinal position of an element

in the interface table, or the type is not a coclass. See [MS-ERREF].

3.9.5 Timer Events

None.

3.9.6 Other Local Events

None.

3.10 ITypeInfo2 Client Details

3.10.1 Abstract Data Model

None.

3.10.2 Timers

None.

3.10.3 Initialization

None.

3.10.4 Message Processing Events and Sequencing Rules

To retrieve a reference to an ITypeInfo2 server, the client MUST first retrieve a reference to an
ITypeInfo server (as specified in section 3.7.4), and then call IUnknown::QueryInterface and

request IID_ITypeInfo2.

The protocol specifies no additional sequencing rules.

3.10.5 Timer Events

None.

3.10.6 Other Local Events

None.

%5bMS-ERREF%5d.pdf

141 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.11 ITypeLib Server Details

An automation type library server is a COM server that provides access to a collection of automation
type descriptions through an implementation of ITypeLib.

The types described in an automation type library are defined or referenced in a single IDL
Automation scope (section 2.2.49.2).

3.11.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This specification does not mandate that implementations adhere to this model,

as long as their external behavior is consistent with the behavior described in this specification.

An automation type library server provides a concrete representation of an IDL automation scope.

Every automation type library server MUST maintain the following data elements:

A string that MUST specify the name of the type library.

A value or structure that MUST specify the attributes declared with the type library in the IDL, as

specified in section 2.2.49.2.

A type information table (see below) that contains a list of automation type description mapping

entries for types that are defined in the automation scope.

A type reference table (see below) that contains a list of mappings between HREFTYPE values

and automation type descriptions.

A library reference table (see below) that contains a list of mappings between strings, as

specified by importlib statements (see section 2.2.49.10) and automation type libraries.

A reference to an ITypeComp server whose binding context (see section 3.5.4.1.1) is specified by

the members of the automation type library.

A system pointer size value that specifies the size of a pointer within the data structures used by

the automation type descriptions in its type information table. This value is determined when the

server is initialized, and is not specified as part of the IDL automation scope.

Each entry in the type information table MUST correspond to a type that is defined or referenced in
the automation scope. The entry that corresponds to a dual interface MUST be its partner
dispinterface. Each entry MUST contain:

An ordinal value. The ordinal position of automation type descriptions within the type information

table MUST be permanent.

A GUID. The GUID MUST be the GUID specified in the automation scope defining the type, or

IID_NULL if no GUID is specified. The mapping between a GUID and an automation type
description MUST be permanent and MUST be consistent among all servers that represent

automation scopes within the same automation scope family.

A string. The mapping between a type name and an automation type description MUST be

permanent and MUST be consistent among all servers that represent automation scopes with the

same LCID in the same automation scope family.

142 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The type reference table MUST contain one entry for each type defined or referenced in the
automation scope.

Each element of the type reference table MUST include the following:

An HREFTYPE.

A reference to the automation type description object corresponding to the HREFTYPE.

A reference to an entry in the library reference table (see below) if the automation type

description corresponds to a type that is defined by another automation type library.

The library reference table MUST contain one entry for each external automation type library that
defines types that are referenced by members of the type reference table.

Each element of the library reference table MUST include the following:

A string specified by an importlib statement (see section 2.2.49.10).

A reference to the automation type library instance that corresponds to the specified string.

3.11.2 Timers

None.

3.11.3 Initialization

The server MUST initialize its name and ITypeComp server reference, and specify the system pointer
size value. These values MUST NOT change over the server's lifetime.

The server MUST initialize its type information table, type reference table, and library reference
table. The tables MUST NOT change over the server's lifetime.

The server MUST initialize the representation of the attributes declared with its IDL Automation

scope. The attribute representation MUST NOT change over the server's lifetime.

3.11.4 Message Processing Events and Sequencing Rules

ITypeLib derives from the IUnknown interface. ITypeLib servers MUST implement the methods that
are defined in IUnknown, in the order in which, and with the opnums with which, they are specified
in [MS-DCOM] Appendix A.

Methods in RPC Opnum Order

Method Description

GetTypeInfoCount The GetTypeInfoCount method provides the number of automation type

descriptions in the type information table.

Opnum: 3

GetTypeInfo The GetTypeInfo method retrieves the automation type description that

has the specified ordinal position within the type information table.

Opnum: 4

GetTypeInfoType The GetTypeInfoType method retrieves the TYPEKIND value that is

associated with an automation type description.

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

143 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

Opnum: 5

GetTypeInfoOfGuid The GetTypeInfoOfGuid method retrieves the automation type

description with the specified GUID from the server's type information

table.

Opnum: 6

GetLibAttr The GetLibAttr method retrieves a structure that contains the attributes

that are declared with the type library.

Opnum: 7

GetTypeComp The GetTypeComp method retrieves a reference to the ITypeComp server

instance that is associated with the ITypeLib server.

Opnum: 8

GetDocumentation The GetDocumentation method retrieves the documentation resources

that are associated with the automation type library.

Opnum: 9

IsName The IsName method indicates whether the specified string matches the

name of a type or type member that is contained in the automation type

library or its binding context.

Opnum: 10

FindName The FindName method retrieves references to types or type members that

are contained in the automation type library and whose names match a

specified string.

Opnum: 11

Opnum12NotUsedOnWire This method is reserved for local use.

Opnum: 12

In the preceding table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; in

particular, a value of 0x00000000 indicates success, and any other return value indicates an error.
All error values are specified in [MS-ERREF] and MUST be treated the same, unless specified
otherwise.

3.11.4.1 ITypeLib::GetTypeInfoCount (Opnum 3)

The GetTypeInfoCount method provides the number of automation type descriptions in the type
information table.

HRESULT GetTypeInfoCount(

 [out] UINT* pcTInfo

);

pcTInfo: MUST be set to the number of automation type descriptions contained in the type

information table of the automation type library.

%5bMS-ERREF%5d.pdf

144 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.11.4.2 ITypeLib::GetTypeInfo (Opnum 4)

The GetTypeInfo method retrieves the automation type description that has the specified ordinal
position within the type information table.

HRESULT GetTypeInfo(

 [in] UINT index,

 [out] ITypeInfo** ppTInfo

);

index: MUST equal the ordinal position of the specified automation type description within the

type information table.

ppTInfo: MUST be set to a reference to the ITypeInfo server instance (see section 3.7) with the
specified position in the type information table, or to NULL if the value of index is greater than
or equal to the number of automation type descriptions in the type information table.

MUST refer to the partner dispinterface if index specifies a dual interface. To retrieve the
ITypeInfo server that corresponds to the partner interface, the client MUST call the
GetRefTypeOfImplType and GetRefTypeInfo methods of the ITypeInfo instance that

correspond to the partner dispinterface, as specified in sections 3.7.4.6 and 3.7.4.10.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in

the following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the type information table. See [MS-ERREF].

3.11.4.3 ITypeLib::GetTypeInfoType (Opnum 5)

The GetTypeInfoType method retrieves the TYPEKIND value associated with an automation type

description.

HRESULT GetTypeInfoType(

 [in] UINT index,

 [out] TYPEKIND* pTKind

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

145 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

index: MUST equal the ordinal position of the specified automation type description within the

type information table.

pTKind: MUST be set to the TYPEKIND value associated with the type description, as specified
in 2.2.17.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in

the following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index did not specify the ordinal position of an

element in the type information table. See [MS-ERREF].

3.11.4.4 ITypeLib::GetTypeInfoOfGuid (Opnum 6)

The GetTypeInfoOfGuid method retrieves the automation type description with the specified GUID

from the server's type information table.

HRESULT GetTypeInfoOfGuid(

 [in] REFGUID guid,

 [out] ITypeInfo** ppTInfo

);

guid: MUST be a GUID.

ppTInfo: MUST be set to an ITypeInfo server instance that represents the automation type
description associated with the specified GUID in the type information table (see section 3.7)
or to NULL. MUST be NULL if the value of guid is IID_NULL, or is not associated with an
automation type description.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in

the following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of guid did not correspond to any entry in the Type

information table, or the value of guid was IID_NULL. See [MS-

ERREF].

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

146 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.11.4.5 ITypeLib::GetLibAttr (Opnum 7)

The GetLibAttr method retrieves a structure that contains the attributes declared with the Type
library.

HRESULT GetLibAttr(

 [out] LPTLIBATTR* ppTLibAttr,

 [out] DWORD* pReserved

);

ppTLibAttr: MUST be set to a TLIBATTR (section 2.2.45) structure that specifies the

attributes declared with the Type library.

pReserved: MUST be set to 0 and ignored on receipt.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.11.4.6 ITypeLib::GetTypeComp (Opnum 8)

The GetTypeComp method retrieves a reference to the ITypeComp server instance associated with
the ITypeLib server.

HRESULT GetTypeComp(

 [out] ITypeComp** ppTComp

);

ppTComp: MUST be set to a reference to the ITypeComp server instance associated with the

automation type library, or to NULL if the automation type library does not have an associated
ITypeComp server instance.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.11.4.7 ITypeLib::GetDocumentation (Opnum 9)

The GetDocumentation method retrieves the documentation resources associated with the
automation type library.

HRESULT GetDocumentation(

 [in] INT index,

 [in] DWORD refPtrFlags,

 [out] BSTR* pBstrName,

 [out] BSTR* pBstrDocString,

 [out] DWORD* pdwHelpContext,

 [out] BSTR* pBstrHelpFile

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

147 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

);

index: MUST equal the ordinal position of an automation type description in the type information

table, or –1. If index is –1, the values of pBstrName, pBstrDocString, pdwHelpContext, and
pBstrHelpFile MUST correspond to the attributes declared with the Type library, as specified in
section 2.2.49.2. Otherwise, they MUST correspond to the attributes declared with the
specified type.

refPtrFlags: MUST be a combination of 0, or the bit flags specified in the following table.

Value Meaning

TYPELIB_NameArg

0x00000001

MUST specify that the client is interested in the actual pBstrName [out]

argument.

TYPELIB_DocStringArg

0x00000002

MUST specify that the client is interested in the actual pBstrDocString

[out] argument.

TYPELIB_HelpContextArg

0x00000004

MUST specify that the client is interested in the actual pdwHelpContext

[out] argument.

TYPELIB_HelpFileArg

0x00000008

MUST specify that the client is interested in the actual pBstrHelpFile

[out] argument.

pBstrName: MUST be set to a BSTR that contains the name of the specified type or Type library
if the TYPELIB_NameArg bit flag is set in refPtrFlags. MUST be set to a NULL BSTR otherwise.

pBstrDocString: MUST be set to the documentation string that was associated with the specified
type or Type library using the [helpstring] attribute (see section 2.2.49.2), if the
TYPELIB_DocStringArg bit flag is set in refPtrFlags. MAY be set to an implementation-specific
string<61> if no [helpstring] attribute is specified. MUST be set to a NULL BSTR otherwise.

pdwHelpContext: MUST be set to the value that was associated with the specified type or Type

library using the [helpcontext] attribute (see section 2.2.49.2), if the TYPELIB_HelpContextArg
bit flag is set in refPtrFlags. MUST be set to 0 otherwise.

pBstrHelpFile: MUST be set to the documentation string that was associated with the specified
type or Type library using the [helpfile] attribute (see section 2.2.49.2), if the
TYPELIB_HelpFileArg bit flag is set in refPtrFlags. MUST be set to a NULL BSTR otherwise.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1 and the entire HRESULT DWORD does not match a value in

the following table, a fatal failure occurred.

If the severity bit is set to 1 and the entire HRESULT DWORD matches a value in the

following table, a failure occurred.

Return value/code Description

0x8002802B

TYPE_E_ELEMENTNOTFOUND

The value of index was not –1 and did not specify the ordinal

position of an element in the type information table. See [MS-

%5bMS-ERREF%5d.pdf

148 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

ERREF].

3.11.4.8 ITypeLib::IsName (Opnum 10)

The IsName method indicates whether the specified string matches the name of a type or type
member that is contained in the automation type library or its binding context.

HRESULT IsName(

 [in] LPOLESTR szNameBuf,

 [in] ULONG lHashVal,

 [out] BOOL* pfName,

 [out] BSTR* pBstrNameInLibrary

);

szNameBuf: MUST be set to a string to be tested if it matches the name of a type or type

member.

lHashVal: MUST be either the hash value that corresponds to the value of szNameBuf (as
specified in section 2.2.51) or 0.

pfName: MUST be set to TRUE if the specified string matches the name of a type or member
that is contained in the automation type library (see section 3.11.4.9) or its binding context
(see section 3.5.4.1.1.1) according to the string-matching criteria, as specified in section
2.2.50. Otherwise, MUST be set to FALSE.

pBstrNameInLibrary: MUST be set to a string whose value matches the value of szNameBuf
according to the string-matching rules (as specified in section 2.2.50), if pfName is TRUE.
MUST be set to a NULL BSTR if pfName is FALSE.

Return Values: The method MUST return the information in an HRESULT data structure, which

is defined in [MS-ERREF] section 2.1. The severity bit in the structure identifies the following
conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.11.4.9 ITypeLib::FindName (Opnum 11)

The FindName method retrieves references to types, or type members, contained in the
automation type library whose names match a specified string.

HRESULT FindName(

 [in] LPOLESTR szNameBuf,

 [in] ULONG lHashVal,

 [out, size_is(*pcFound), length_is(*pcFound)]

 ITypeInfo** ppTInfo,

 [out, size_is(*pcFound), length_is(*pcFound)]

 MEMBERID* rgMemId,

 [in, out] USHORT* pcFound,

 [out] BSTR* pBstrNameInLibrary

);

%5bMS-ERREF%5d.pdf

149 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

szNameBuf: MUST be a string.

lHashVal: MUST be either the hash value corresponding to the value of szNameBuf (as specified
in section 2.2.51), or 0.

ppTInfo: MUST be set to an array of references to ITypeInfo server instances (see section

3.7.4). Each entry of ppTInfo MUST correspond to a type whose name matches the value of
szNameBuf according to the string matching criteria (as specified in section 2.2.50) or that
contains a member whose name matches the value of szNameBuf.

The array MUST be empty if there are no types or method or data members of types defined
in the automation scope whose names match the value of szNameBuf. Otherwise, the array
MUST contain one entry for each named nonparameter element defined in the automation
scope whose name matches szNameBuf. The array MAY contain entries for matching types or

type members that are referenced, but not defined in the automation scope. <62>

If szNameBuf matches the name of a dual interface or one of its members, the corresponding
entry in ppTInfo MUST refer to the partner dispinterface and MUST NOT refer to the partner

interface.

The length of the array MUST NOT be greater than the value of pcFound set by the client.

rgMemId: MUST be set to an array of MEMBERIDs (see section 2.2.35) corresponding to the

ITypeInfo instances in the ppTInfo array. For each entry in the ppTInfo array, the
corresponding value in the rgMemId array MUST specify the MEMBERID of the type member
whose name matches the value of szNameBuf, or MEMBERID_NIL to specify that the name of
the type matches the value of szNameBuf.

pcFound: The client MUST set pcFound to the maximum number of matches that can be
returned. The server MUST set pcFound to the number of elements in the ppTInfo and
rgMemId arrays.

pBstrNameInLibrary: MUST be set to a string whose value matches the value of szNameBuf
according to the string-matching rules (as specified in section 2.2.50), if the ppTInfo array is

not empty. MUST be set to a NULL BSTR otherwise.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.11.5 Timer Events

None.

3.11.6 Other Local Events

None.

3.12 ITypeLib Client Details

3.12.1 Abstract Data Model

None.

%5bMS-ERREF%5d.pdf

150 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.12.2 Timers

None.

3.12.3 Initialization

None.

3.12.4 Message Processing Events and Sequencing Rules

A client MUST retrieve a reference to an ITypeLib server by calling
ITypeInfo::GetContainingTypeLib.

To iterate over the server's collection of ITypeInfo server references, a client MUST first call

ITypeLib::GetTypeInfoCount to retrieve the count, and then call ITypeLib::GetTypeInfo,
repeatedly for each index value between 0 and one less than the count previously retrieved.

To retrieve an ITypeInfo reference, given the UUID associated with the type, the client MUST call

ITypeLib::GetTypeInfoOfGuid.

To retrieve all the ITypeInfo references associated with a string, the client MUST call
ITypeLib::FindName.

3.12.5 Timer Events

None.

3.12.6 Other Local Events

None.

3.13 ITypeLib2 Server Details

An ITypeLib2 server MUST extend the functionality of ITypeLib. The main extension present in
ITypeLib2 is the support it provides for custom attributes.

3.13.1 Abstract Data Model

An ITypeLib2 server MUST implement the data model of an ITypeLib server, as specified in 3.11.

An ITypeLib2 server MUST maintain a collection of the custom data items that were declared with
the library keyword in the IDL, as specified in section 2.2.49.2. For each custom data item, the

server MUST maintain the following mapping:

The mapping between the GUID and the value of the custom data item.

The data value of a custom data item MUST be a value that can be stored in a _wireVARIANT, as
specified in 2.2.29.1.

The custom data item mappings maintained by an ITypeLib2 server MUST be permanent.

3.13.2 Timers

None.

151 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.13.3 Initialization

The server MUST initialize all data objects that are required of an ITypeLib server, as specified in
section 3.11.3.

The server MUST initialize its collection of custom data items. The collection MUST NOT change over
the server's lifetime.

3.13.4 Message Processing Events and Sequencing Rules

ITypeLib2 derives from the ITypeLib interface. ITypeLib2 servers MUST implement the opnums with
which they are specified in section 3.11.4.

Methods in RPC Opnum Order

Method Description

GetCustData The GetCustData method retrieves the value of a custom data item that is

associated with the automation type library.

Opnum: 13

GetLibStatistics The GetLibStatistics method returns statistics about the unique names in the

automation type library.

Opnum: 14

GetDocumentation2 The GetDocumentation2 method retrieves the values that are associated with

the automation type library.

Opnum: 15

GetAllCustData The GetAllCustData method retrieves the values of all custom data items that

are associated with the automation type library.

Opnum: 16

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; in
particular, a value of 0x00000000 indicates success, and any other return value indicates an error.
All error values are specified in [MS-ERREF] and MUST be treated the same, unless specified
otherwise.

3.13.4.1 ITypeLib2::GetCustData (Opnum 13)

The GetCustData method retrieves the value of a custom data item associated with the automation
type library.

HRESULT GetCustData(

 [in] REFGUID guid,

 [out] VARIANT* pVarVal

);

guid: MUST be the GUID associated with the custom data item using the [custom] attribute, as

specified in section 2.2.49.2.

pVarVal: MUST be set to the value of the custom data item, or VT_EMPTY if there is no custom
data item associated with the specified GUID.

%5bMS-ERREF%5d.pdf

152 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.13.4.2 ITypeLib2::GetLibStatistics (Opnum 14)

The GetLibStatistics method returns statistics about the unique names in the automation type
library.

HRESULT GetLibStatistics(

 [out] ULONG* pcUniqueNames,

 [out] ULONG* pcchUniqueNames

);

pcUniqueNames: MUST be set to the number of unique names in the Type library.

pcchUniqueNames: MUST be set to the total length, in characters, of the unique names in the
library.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.13.4.3 ITypeLib2::GetDocumentation2 (Opnum 15)

The GetDocumentation2 method retrieves values associated with the automation type library.

HRESULT GetDocumentation2(

 [in] INT index,

 [in] LCID lcid,

 [in] DWORD refPtrFlags,

 [out] BSTR* pbstrHelpString,

 [out] DWORD* pdwHelpStringContext,

 [out] BSTR* pbstrHelpStringDll

);

index: MUST be equal to the index of an automation type description or to –1. If index is –1, the

values of pBstrHelpString, pdwHelpStringContext, and pBstrHelpStringDll MUST correspond to
the attributes declared with the Type library as specified in section 2.2.49.3. Otherwise, they
MUST correspond to the attributes declared with the specified type.

lcid: MUST be the locale ID of the specified type or type library.

refPtrFlags: MUST be 0, or a combination of the bit flags specified in the following table.

Value Meaning

TYPELIB_HelpStringArg

0x00000001

MUST specify that the client is interested in the actual pBstrHelpString

[out] argument.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

153 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Meaning

TYPELIB_HelpContextArg

0x00000002

MUST specify that the client is interested in the actual

pdwHelpStringContext [out] argument.

TYPELIB_HelpFileArg

0x00000004

MUST specify that the client is interested in the actual

pBstrHelpStringDll [out] argument.

pbstrHelpString: MUST be set to an implementation-specific BSTR type<63> if the

TYPELIB_HelpStringArg bit flag is set in refPtrFlags. MUST be set to a NULL BSTR otherwise.

pdwHelpStringContext: MUST be set to the value that was associated with the specified type
or type library using the [helpstringcontext] attribute (see section 2.2.49.2) if the
TYPELIB_HelpContextArg bit flag is set in refPtrFlags. MUST be set to 0 otherwise.

pbstrHelpStringDll: MUST be set to the documentation string that was associated with the
specified type or type library using the [helpstringdll] attribute (see section 2.2.49.2) if the

TYPELIB_HelpFileArg bit flag is set in refPtrFlags. MUST be set to a NULL BSTR otherwise.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.13.4.4 ITypeLib2::GetAllCustData (Opnum 16)

The GetAllCustData method retrieves the values of all custom data items associated with the
automation type library.

HRESULT GetAllCustData(

 [out] CUSTDATA* pCustData

);

pCustData: MUST be set to a CUSTDATA structure that contains an array of custom data items,
as specified in section 2.2.47. The structure's cCustData field MUST be set to 0 and its

prgCustData field set to NULL if there are no custom data items associated with the
automation type library.

Return Values: The method MUST return information in an HRESULT data structure, defined in
[MS-ERREF] section 2.1. The severity bit in the structure identifies the following conditions:

If the severity bit is set to 0, the method completed successfully.

If the severity bit is set to 1, the method failed and encountered a fatal error.

3.13.5 Timer Events

None.

3.13.6 Other Local Events

None.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

154 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.14 ITypeLib2 Client Details

3.14.1 Abstract Data Model

None.

3.14.2 Timers

None.

3.14.3 Initialization

None.

3.14.4 Message Processing Events and Sequencing Rules

To retrieve a reference to an ITypeLib2 server, the client MUST first retrieve a reference to an

ITypeLib server (as specified in section 3.12.4), and then call IUnknown::QueryInterface requesting
IID_ITypeLib2.

The protocol specifies no additional sequencing rules.

3.14.5 Timer Events

None.

3.14.6 Other Local Events

None.

155 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the OLE Automation Protocol.

4.1 AIDL-ODL Property Equivalence

This example shows how to map AIDL operations to their conceptual ODL equivalents.

For example, a property specified in AIDL as follows:

[id(1), propget] HRESULT prop1 ([out, retval] BSTR* bstr);

... is equivalent to:

[id(1), readonly] BSTR prop1;

Or, the following two methods specified in AIDL as:

[id(2), propget] HRESULT prop2 ([out, retval] BSTR* bstr);

[id(2), propput] HRESULT prop2 ([in] BSTR bstr);

... are equivalent to a:

[id(2)] BSTR prop2;

4.2 AIDL-ODL Method Equivalence

This example shows how to map an AIDL method to its conceptual ODL equivalent.

For example, a method specified in AIDL as follows:

[id(3)] HRESULT func1 ([in] int n, [in] BSTR ticker,

[lcid] DWORD lcid,

[out, retval] CURRENCY* cy);

... is equivalent to:

[id(3)] CURRENCY func1 ([in] int n, [in] BSTR ticker);

4.3 Invoke Argument Parameter Mapping

This example shows how automation method arguments map to IDispatch::Invoke arguments.

Consider a method that conceptually takes the following arguments.

test(vPos0, vPosByRef1, vPos2, vNamed3, vNamedByRef4);

156 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The call to the server must be structured as in the following figure.

Figure 5: Call to server

4.4 Getting the Value of a Property

This example shows a sequence of messages between an automation client and a server to get the

value of a property.

1. The client calls the GetIDsOfNames method on the server for a property named test. The
server returns the DISPID (see section 2.2.32) of the property in the pointer passed by the
client.

157 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2. The client calls the Invoke method on the server by using the DISPID returned from the server.
Other parameters may be filled as shown in the following diagram. The property value is returned

by the server in pVarResult. If an exception occurs during execution, or if there is an error in the
arguments passed to Invoke, it is indicated in pExcepInfo or in pArgErr, accordingly (see section

3.1.4.4).

Figure 6: Getting the value of a property

Note For brevity, the Invoke method's dispid, riid, and lcid parameters are not shown.

4.5 Setting the Value of a Property

This example shows a sequence of messages between an automation client and a server to set the

value of a property.

1. The client calls the GetIDsOfName method on the server for a property named test. The server
returns the DISPID (see section 2.2.32) of the property in the pointer passed by the client.

2. The client calls the Invoke method on the server by using the DISPID returned from the server.
The client passes the value of the property in the first VARIANT in rgVarg that is a member of

158 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pDispParams (see section 2.2.33). The remaining members of pDispParams must be filled as
shown in the following diagram. On the server side, if an exception occurs during execution, or if

there is an error in the arguments passed to Invoke, it is indicated in pExcepInfo or in pArgErr,
accordingly (see section 3.1.4.4).

Figure 7: Setting the value of a property

Note For brevity, the Invoke method's dispid, riid, and lcid parameters are not shown.

4.6 Calling a Method with Byref and Optional Arguments

This example shows a sequence of messages between an automation client and a server to call a
method with a byref and an optional argument. The signature of the function is:

HRESULT test ([in, optional] VARIANT A, [in, out, optional] VARIANT *B);

1. The client calls the GetIDsOfName method on the server for the method named test. The server
returns the DISPID (section 2.2.32) in the pointer passed by the client.

159 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2. The client calls the Invoke method, filling the parameters as shown in the following figure. In
the following example, the client is not passing any value for the first optional argument; thus,

the VARIANT in rgVarg[1] must have the field vt set to VT_ERROR and scode set to
DISP_E_PARAMNOTFOUND. rgVarg[0] has the vt field set to VT_EMPTY. rgVarRef[0] is a

VARIANT with the VT_BYREF bit flag set.

3. On return from Invoke, rgVarRef[0] with the server-updated value is passed back to the client.

Figure 8: Calling a method with Byref and optional arguments

Note For brevity, the Invoke method's dispid, riid, and lcid parameters are not shown.

4.7 IEnumVARIANT Example

An application implementer may choose to implement IEnumVARIANT to expose a collection of

homogeneous or heterogeneous data. Depending on the requirements of the application and the
nature of the data exposed, the implementer may choose to implement the collection either as a
static, semi-static, or dynamic server.

160 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the application exposes a rarely changing collection (such as the set of students that are enrolled
in a specific class), it may choose to do so by exposing a static IEnumVARIANT server.

If the application exposes data that may change more frequently, but that is meant to be read-only
(such as statistics on a set of currently running processes), it may choose to do so by exposing a

semi-static IEnumVARIANT server.

If the application exposes data that changes frequently and that should be as current as possible
(such as the set of files from a folder), it may choose to do so by exposing a dynamic
IEnumVARIANT server.

In all the examples that follow, the client may use either the _NewEnum method or the
QueryInterface method on the automation server object to get the IEnumVARIANT implementation.

In the examples, an array is maintained as a collection by the server, and the variable current

shows the first position in the enumeration that has not yet been returned to the client (see section
3.3.1).

4.7.1 IEnumVARIANT Next() Example

The following diagram illustrates a call to IEnumVARIANT::Next for a server that manages a
collection of seven elements. Before the call, the current position is 2. The call to Next(), requesting

two elements, causes the current position to be updated to 4, and results in the return by the server
to the client of elements with indices 2 and 3. The server also indicates that it filled two elements by
setting *pCeltFetched to 2, and returning 0 as the HRESULT.

Figure 9: Call to IEnumVARIANT::Next

The following diagram illustrates a call to IEnumVARIANT::Next for a server that manages a

collection of seven elements. Before the call, the current position is 3. The call to Next(), requesting
seven elements, causes the current position to be updated to 7, and results in the return by the

161 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

server to the client of elements with indices 3, 4, 5, and 6. The server also indicates that it filled
only four elements by setting *pCeltFetched to 4, and returning 1 as the HRESULT.

Figure 10: Call to IEnumVARIANT::Next

4.7.2 IEnumVARIANT Skip() Example

The following diagram illustrates a call to IEnumVARIANT::Skip for a server that manages a
collection of seven elements. Before the call, the current position is 2. The call to Skip(), requesting
that two elements be skipped, causes the current position to be updated to 4.

162 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 11: Call to IEnumVARIANT::Skip

4.7.3 IEnumVARIANT Reset() Example

The following diagram illustrates a call to IEnumVARIANT::Reset for a server that manages a

collection of seven elements. Before the call, the current position is 2. The call to Reset() causes the
current position to be updated to 0.

Figure 12: Call to IEnumVARIANT::Reset

4.7.4 IEnumVARIANT Clone() Example

The following diagram illustrates a call to IEnumVARIANT::Clone for a server that manages a
collection of seven elements. Before the call, the current position is 2. The call to Clone() causes a

new IEnumVARIANT server to be created. The new server manages a copy of the collection of seven
elements, and its current position is set to 2. An object reference to the new IEnumVARIANT
server is returned to the client.

163 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 13: Call to IEnumVARIANT::Clone

4.8 Reading Type Information

The type information exposed by an automation server can be read by an automation client using

the ITypeLib and ITypeInfo interfaces. The examples that follow show common scenarios.

4.8.1 Getting ITypeLib Implementations from Automation Server

Assuming that the automation client already has an IDispatch pointer from the automation server,
the following pseudocode shows how to get the ITypeLib implementation.

INPUT: IDispatch pointer from the Automation Server

CALL IDispatch::GetTypeInfoCount and OBTAIN pcTInfo

COMMENT see Section 3.1.4.1 for information on pcTInfo

IF pcTInfo = 0 THEN

 PRINT Automation Server does not support type information for this object

ELSE

 CALL IDispatch::GetTypeInfo with correct LocaleID and OBTAIN ITypeInfo pointer

 CALL ITypeInfo::GetContainingTypeLib and OBTAIN ITypeLib pointer

ENDIF

164 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4.8.2 Enumerating on All Types in a Type Library

Building on the previous example, it is assumed that the automation client has the ITypeLib
implementation of the automation server. The following pseudocode illustrates how to get type

information for all types defined in the type library.

INPUT: Reference to the ITypeLib server corresponding to the Automation Server

CALL ITypeLib::GetTypeInfoCount and OBTAIN pcTInfo

COMMENT see Section 3.11.4.1 for information on pcTInfo

FOR X = 0 to pctInfo -1

 CALL ITypeLib::GetTypeInfo with X and OBTAIN ITypeInfo pointer

END FOR

4.8.3 Enumerating on All Enumerations in a Type Library

This example illustrates how to get all enumerations in a type library, and the value represented by
each member within the enumeration.

INPUT: Reference to the ITypeLib server corresponding to the Automation Server

CALL ITypeLib::GetTypeInfoCount and OBTAIN pcTInfo

COMMENT see Section 3.11.4.1 for information on pcTInfo

FOR X = 0 to pctInfo -1

 CALL ITypeLib::GetTypeInfoType with X and OBTAIN pTKind

 COMMENT see Section 3.11.4.3 for more information on pTKind

 IF ptKind = TYPEKIND::TKIND_ENUM THEN

 CALL ITypeLib::GetTypeInfo with X and OBTAIN ITypeInfo pointer

 CALL ITypeInfo::GetDocumentation(MEMBERID_NIL, 1, &BstrName, NULL, NULL, NULL)

 PRINT Name of the Enumeration is BstrName

 CALL ITypeInfo::GetTypeAttr and OBTAIN TYPEATTR pointer

 FOR Y = 0 to TYPEATTR::cVars -1

 ITypeInfo::GetVarDesc with Y and OBTAIN VARDESC pointer

 CALL ITypeInfo::GetDocumentation(VARDESC::memid, 1, &BstrName, NULL, NULL,

 NULL)

 COMMENT BstrName will contain the name of the enumeration member

 PRINT BstrName =

 SET Z to the constant value from VARDESC::lpvarValue

 COMMENT On most platforms the constant value for enumerations would be in

 VARDESC::lpvarValue::intVal

 PRINT Z

 END FOR

 END IF

END FOR

4.8.4 Enumerating All Nonsource Interfaces in a Coclass

This example illustrates the identification of all coclasses in an automation server type library, and
the interfaces implemented by the coclasses.

165 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

INPUT: Reference to the ITypeLib server corresponding to the Automation Server

COMMENT See example in Section 4.8.1 for getting ITypeLib pointer

CALL ITypeLib::GetTypeInfoCount and OBTAIN pcTInfo

COMMENT see Section 3.11.4.1 for information on pcTInfo

FOR X = 0 to pctInfo -1

 CALL ITypeLib::GetTypeInfoType with X and OBTAIN pTKind

 COMMENT See Section 3.11.4.3 for more information on pTKind

 IF pTKind = TYPEKIND::TKIND_COCLASS THEN

 CALL ITypeLib::GetDocumentation(X, 1, &BstrName, NULL, NULL, NULL)

 PRINT Name of the CoClass is BstrName

 CALL ITypeLib::GetTypeInfo with X and OBTAIN ITypeInfo pointer

 CALL ITypeInfo::GetTypeAttr and OBTAIN TYPEATTR pointer

 FOR Y = 0 to TYPEATTR::cImplTypes -1

 ITypeInfo::GetRefTypeOfImplType with Y and OBTAIN HREFTYPE

 COMMENT HREFTYPE is a handle to the implemented interface

 ITypeInfo::GetRefTypeInfo with HREFTYPE and OBTAIN pInterfaceTypeInfo

 COMMENT pInterfaceTypeInfo is a ITypeInfo pointer for interface implemented

 by this CoClass

 CALL pInterfaceTypeInfo::GetDocumentation(MEMBERID_NIL, 1, &BstrName, NULL,

 NULL, NULL)

 PRINT Interface implemented is BstrName

 END FOR

 END IF

END FOR

4.8.5 Enumerating All Methods in an Interface

This example pseudocode shows how to enumerate on all the methods declared in an interface. It
assumes that the automation client has already obtained the IDispatch pointer from the automation

server.

INPUT: IDispatch pointer from the automation server

CALL IDispatch::GetTypeInfoCount and OBTAIN pcTInfo

COMMENT see Section 3.1.4.1 for information on pcTInfo

IF pcTInfo = 0 THEN

 PRINT Automation Server does not support type information for this object

ELSE

 CALL IDispatch::GetTypeInfo with correct LocaleID and OBTAIN ITypeInfo pointer

 CALL ITypeInfo::GetDocumentation(MEMBERID_NIL, 1, &BstrName, NULL,

 NULL, NULL)

 PRINT Name of the Interface is BstrName

 CALL ITypeInfo::GetTypeAttr and OBTAIN TYPEATTR pointer

 FOR X = 0 to TYPEATTR::cFuncs -1

 CALL ITypeInfo::GetFuncDesc with X and OBTAIN FUNCDESC pointer

 CALL ITypeInfo::GetNames with FUNCDESC::memid and appropriate values for

 rgBstrNames, cMaxNames and pcNames

 COMMENT see Section 3.7.4.5 for more information regarding the parameters

 to ITypeinfo::GetNames

 IF pcNames > 0 THEN

 PRINT Name of the method is rgBstrNames[0]

 PRINT Parameters to above method are following

166 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 FOR Y = 1 to pcNames -1

 PRINT rgBstrNames[Y]

 END FOR

 END IF

 END FOR

ENDIF

4.8.6 Retrieving Type Information

This example shows how to retrieve type information for method parameters or members of a
struct, a union, or an enumeration given a TYPEDESC (section 2.2.37) structure. A TYPEDESC
can be obtained from an ELEMDESC structure, which is a member of VARDESC or FUNCDESC.

COMMENT This is a recursive procedure and is called PrintTypeDesc.

INPUT: TYPEDESC pointer and reference to ITypeInfo server in the binding context

OUTPUT: Prints type described by the TYPEDESC

CASE TYPEDESC::vt OF

 VT_PTR:

 CALL PrintTypeDesc with TYPEDESC::lptdesc and ITypeInfo pointer

 PRINT *

 VT_SAFEARRAY:

 PRINT SAFEARRAY OF

 CALL PrintTypeDesc with TYPEDESC::lptdesc and ITypeInfo pointer

 VT_CARRAY:

 CALL PrintTypeDesc with TYPEDESC::lpadesc::tdescElem and ITypeInfo pointer

 COMMENT see Section 2.2.31 for more information on TYPEDESC::lpadesc

 FOR X = 0 to TYPEDESC::lpadesc::cDims -1

 PRINT [

 PRINT TYPEDESC::lpadesc::rgbounds[X].lLbound

 PRINT &

 SET Y to TYPEDESC::lpadesc::rgbounds[X].lLbound +

 TYPEDESC::lpadesc::rgbounds[X].cElements -1

 PRINT Y

 PRINT]

 END FOR

 VT_USERDEFINED:

 CALL ITypeInfo::GetRefTypeInfo with TYPEDESC::hreftype and OBTAIN

 pCustomTypeInfo which of type ITypeInfo pointer

 CALL pCustomTypeInfo::GetDocumentation(MEMBERID_NIL, 1, &BstrName, NULL,

 NULL, NULL)

 PRINT BstrName

 VT_I2: PRINT short

 VT_I4: PRINT int

 VT_R4: PRINT float

 VT_R8: PRINT double

 VT_CY: PRINT CY

 VT_DATE: PRINT DATE

 VT_BSTR: PRINT BSTR

 VT_DECIMAL: PRINT DECIMAL

167 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VT_DISPATCH: PRINT IDispatch

 VT_ERROR: PRINT SCODE

 VT_BOOL: PRINT VARIANT_BOOL

 VT_VARIANT: PRINT VARIANT

 VT_UNKNOWN: PRINT IUnknown

 VT_UI1: PRINT BYTE

 VT_I1: PRINT char

 VT_UI2: PRINT unsigned short

 VT_UI4: PRINT unsigned long

 VT_I8: PRINT __int64

 VT_UI8: PRINT unsigned __int64

 VT_INT: PRINT int

 VT_UINT: PRINT unsigned int

 VT_HRESULT: PRINT HRESULT

 VT_VOID: PRINT void

 VT_LPSTR: PRINT char *

 VT_LPWSTR: PRINT wchar *

 OTHERS: PRINT Error

ENDCASE

4.8.7 Binding to a Member of a Default Nonsource Interface of an Appobject

Coclass

This example shows how to bind to a member of a default nonsource interface of an appobject class.

The sample first tries to bind against the name by using the ITypeComp that corresponds to the
automation type library. The sample then uses the ITypeInfo reference thus retrieved,
corresponding to the coclass definition, to bind against the name again, retrieving the ITypeInfo
server that contains the name in its binding context and the element description (a FUNCDESC or a

VARDESC) that corresponds to the name passed in.

INPUT: A reference to an ITypeLib server and the name of the

 member to bind against

OUTPUT: A reference to the ITypeInfo server corresponding to the

 interface containing the member

CALL ITypeLib::GetTypeComp with pTypeLib and OBTAIN ITypeComp

 pointer pTLComp

CALL ITypeComp::Bind with pTLComp and name and OBTAIN ITypeInfo

 pointer pTIAppObj and DESCKIND value dk1

COMMENT If the name was a member of a default nonsource interface

 on an appobject coclass the Bind operation will return

 the coclass ITypeInfo, DESCKIND_IMPLICITAPPOBJ, and a

 VAR_STATIC VARDESC

IF dk1 = DESCKIND_IMPLICITAPPOBJ THEN

 CALL ITypeInfo::GetTypeComp with pTIAppObj

 and OBTAIN ITypeComp pointer pAppObjComp

 COMMENT The Bind operation below will return the default

 interface ITypeInfo, DESCKIND_VARDESC or DESCKIND_FUNCDESC,

 and a corresponding VARDESC or FUNCDESC

168 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 CALL ITypeComp::Bind with pAppObjComp and name

 and OBTAIN ITypeInfo pointer pTIDefItf and DESCKIND value dk2

END IF

4.8.8 Binding to a Member of a Partner Interface

This example shows how to bind to a member of a partner dispinterface given a reference to an
ITypeInfo server corresponding to a partner dispinterface.

The sample first retrieves the ITypeInfo reference corresponding to the partner interface by using
the special value –1 as an argument to ITypeInfo::GetRefTypeOfImpleType. Next, the sample
uses the ITypeInfo reference to complete a bind operation on the specified member name.

INPUT: A reference to an ITypeInfo server, and a name of a member

OUTPUT: A reference to the corresponding partner interface ITypeInfo server and the FUNCDESC

that describes the named member

COMMENT pass -1 to GetRefTypeOfImplType to retrieve the HREFTYPE

 Corresponding to the partner interface

CALL ITypeInfo::GetRefTypeOfImplType with pTIDispPartner and -1

 and OBTAIN HREFTYPE value hrefItfPartner

CALL ITypeInfo::GetRefTypeInfo with pTIDispPartner and hrefItfPartner

 and OBTAIN ITypeInfo pointer pTIItfPartner

CALL ITypeInfo::GetTypeComp with pTIItfPartner

 and OBTAIN ITypeComp pointer pItfPartnerComp

COMMENT The Bind operation below will return the ITypeInfo pointer

 corresponding to the interface in the inheritance hierarchy

 that defines "name"

CALL ITypeComp::Bind with pItfPartnerComp and name

 and OBTAIN ITypeInfo pointer pTIBindRes and FUNCDESC struct fd

169 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Security

The following sections specify security considerations for implementers of the OLE Automation
Protocol.

5.1 Security Considerations for Implementer

There are no security considerations for this protocol.

5.2 Index of Security Parameters

There are no protocol-specific security parameters.

170 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided where "ms-dcom.idl" is the IDL specified in [MS-
DCOM] Appendix A.

import "ms-dtyp.idl";

import "ms-dcom.idl";

// Begin: Extra definitions

// Use the next line in any IDL file that imports ms-oaut.idl

// that makes use of SAFEARRAYs.

// It is needed to bypass special assumptions MIDL compiler makes

// about the SAFEARRAY type in windows environment.

// #define SAFEARRAY(type) SAFEARRAY

// basic type aliases

typedef byte BYTE;

typedef LONG SCODE;

typedef IID *REFIID;

typedef GUID *REFGUID;

typedef [string] wchar_t *LPOLESTR;

typedef [string] const wchar_t *LPCOLESTR;

typedef [public] unsigned __int3264 ULONG_PTR, *PULONG_PTR;

typedef void *PVOID, *LPVOID;

// forward declarations

interface IDispatch;

interface ITypeLib;

interface ITypeInfo;

typedef [unique] SAFEARRAY * PSAFEARRAY, *LPSAFEARRAY;

typedef [unique] struct _wireVARIANT * VARIANT;

// End: Extra definitions

typedef enum tagVARENUM

{

 VT_EMPTY = 0x0000,

 VT_NULL = 0x0001,

 VT_I2 = 0x0002,

 VT_I4 = 0x0003,

 VT_R4 = 0x0004,

 VT_R8 = 0x0005,

 VT_CY = 0x0006,

 VT_DATE = 0x0007,

 VT_BSTR = 0x0008,

 VT_DISPATCH = 0x0009,

 VT_ERROR = 0x000A,

 VT_BOOL = 0x000B,

 VT_VARIANT = 0x000C,

 VT_UNKNOWN = 0x000D,

 VT_DECIMAL = 0x000E,

 VT_I1 = 0x0010,

 VT_UI1 = 0x0011,

 VT_UI2 = 0x0012,

 VT_UI4 = 0x0013,

 VT_I8 = 0x0014,

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

171 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VT_UI8 = 0x0015,

 VT_INT = 0x0016,

 VT_UINT = 0x0017,

 VT_VOID = 0x0018,

 VT_HRESULT = 0x0019,

 VT_PTR = 0x001A,

 VT_SAFEARRAY = 0x001B,

 VT_CARRAY = 0x001C,

 VT_USERDEFINED = 0x001D,

 VT_LPSTR = 0x001E,

 VT_LPWSTR = 0x001F,

 VT_RECORD = 0x0024,

 VT_INT_PTR = 0x0025,

 VT_UINT_PTR = 0x0026,

 VT_ARRAY = 0x2000,

 VT_BYREF = 0x4000

} VARENUM;

typedef enum tagADVFEATUREFLAGS

{

 FADF_AUTO = 0x0001,

 FADF_STATIC = 0x0002,

 FADF_EMBEDDED = 0x0004,

 FADF_FIXEDSIZE = 0x0010,

 FADF_RECORD = 0x0020,

 FADF_HAVEIID = 0x0040,

 FADF_HAVEVARTYPE = 0x0080,

 FADF_BSTR = 0x0100,

 FADF_UNKNOWN = 0x0200,

 FADF_DISPATCH = 0x0400,

 FADF_VARIANT = 0x0800

} ADVFEATUREFLAGS;

typedef [v1_enum] enum tagSF_TYPE {

 SF_ERROR = VT_ERROR,

 SF_I1 = VT_I1,

 SF_I2 = VT_I2,

 SF_I4 = VT_I4,

 SF_I8 = VT_I8,

 SF_BSTR = VT_BSTR,

 SF_UNKNOWN = VT_UNKNOWN,

 SF_DISPATCH = VT_DISPATCH,

 SF_VARIANT = VT_VARIANT,

 SF_RECORD = VT_RECORD,

 SF_HAVEIID = VT_UNKNOWN|0x8000

} SF_TYPE;

typedef [v1_enum] enum tagCALLCONV {

 CC_CDECL = 1,

 CC_PASCAL = 2,

 CC_STDCALL = 4

} CALLCONV;

typedef enum tagFUNCFLAGS {

 FUNCFLAG_FRESTRICTED = 1,

 FUNCFLAG_FSOURCE = 0x2,

 FUNCFLAG_FBINDABLE = 0x4,

 FUNCFLAG_FREQUESTEDIT = 0x8,

 FUNCFLAG_FDISPLAYBIND = 0x10,

172 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 FUNCFLAG_FDEFAULTBIND = 0x20,

 FUNCFLAG_FHIDDEN = 0x40,

 FUNCFLAG_FUSESGETLASTERROR = 0x80,

 FUNCFLAG_FDEFAULTCOLLELEM = 0x100,

 FUNCFLAG_FUIDEFAULT = 0x200,

 FUNCFLAG_FNONBROWSABLE = 0x400,

 FUNCFLAG_FREPLACEABLE = 0x800,

 FUNCFLAG_FIMMEDIATEBIND = 0x1000

} FUNCFLAGS;

typedef [v1_enum] enum tagFUNCKIND {

 FUNC_PUREVIRTUAL = 1,

 FUNC_STATIC = 3,

 FUNC_DISPATCH = 4

} FUNCKIND;

typedef enum tagIMPLTYPEFLAGS {

 IMPLTYPEFLAG_FDEFAULT = 0x1,

 IMPLTYPEFLAG_FSOURCE = 0x2,

 IMPLTYPEFLAG_FRESTRICTED = 0x4,

 IMPLTYPEFLAG_FDEFAULTVTABLE = 0x8

} IMPLTYPEFLAGS;

typedef [v1_enum] enum tagINVOKEKIND {

 INVOKE_FUNC = 0x1,

 INVOKE_PROPERTYGET = 0x2,

 INVOKE_PROPERTYPUT = 0x4,

 INVOKE_PROPERTYPUTREF = 0x8

} INVOKEKIND;

typedef enum tagPARAMFLAGS {

 PARAMFLAG_NONE = 0,

 PARAMFLAG_FIN = 0x1,

 PARAMFLAG_FOUT = 0x2,

 PARAMFLAG_FLCID = 0x4,

 PARAMFLAG_FRETVAL = 0x8,

 PARAMFLAG_FOPT = 0x10,

 PARAMFLAG_FHASDEFAULT = 0x20,

 PARAMFLAG_FHASCUSTDATA = 0x40

} PARAMFLAGS;

typedef enum tagTYPEFLAGS {

 TYPEFLAG_FAPPOBJECT = 0x1,

 TYPEFLAG_FCANCREATE = 0x2,

 TYPEFLAG_FLICENSED = 0x4,

 TYPEFLAG_FPREDECLID = 0x8,

 TYPEFLAG_FHIDDEN = 0x10,

 TYPEFLAG_FCONTROL = 0x20,

 TYPEFLAG_FDUAL = 0x40,

 TYPEFLAG_FNONEXTENSIBLE = 0x80,

 TYPEFLAG_FOLEAUTOMATION = 0x100,

 TYPEFLAG_FRESTRICTED = 0x200,

 TYPEFLAG_FAGGREGATABLE = 0x400,

 TYPEFLAG_FREPLACEABLE = 0x800,

 TYPEFLAG_FDISPATCHABLE = 0x1000,

 TYPEFLAG_FPROXY = 0x4000

} TYPEFLAGS;

typedef [v1_enum] enum tagTYPEKIND {

173 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 TKIND_ENUM = 0,

 TKIND_RECORD,

 TKIND_MODULE,

 TKIND_INTERFACE,

 TKIND_DISPATCH,

 TKIND_COCLASS,

 TKIND_ALIAS,

 TKIND_UNION

} TYPEKIND;

typedef enum tagVARFLAGS {

 VARFLAG_FREADONLY = 0x1,

 VARFLAG_FSOURCE = 0x2,

 VARFLAG_FBINDABLE = 0x4,

 VARFLAG_FREQUESTEDIT = 0x8,

 VARFLAG_FDISPLAYBIND = 0x10,

 VARFLAG_FDEFAULTBIND = 0x20,

 VARFLAG_FHIDDEN = 0x40,

 VARFLAG_FRESTRICTED = 0x80,

 VARFLAG_FDEFAULTCOLLELEM = 0x100,

 VARFLAG_FUIDEFAULT = 0x200,

 VARFLAG_FNONBROWSABLE = 0x400,

 VARFLAG_FREPLACEABLE = 0x800,

 VARFLAG_FIMMEDIATEBIND = 0x1000

} VARFLAGS;

typedef [v1_enum] enum tagVARKIND {

 VAR_PERINSTANCE,

 VAR_STATIC,

 VAR_CONST,

 VAR_DISPATCH

} VARKIND;

typedef [v1_enum] enum tagLIBFLAGS {

 LIBFLAG_FRESTRICTED = 0x01,

 LIBFLAG_FCONTROL = 0x02,

 LIBFLAG_FHIDDEN = 0x04,

 LIBFLAG_FHASDISKIMAGE = 0x08

} LIBFLAGS;

typedef [v1_enum] enum tagSYSKIND {

 SYS_WIN32 = 1,

 SYS_WIN64 = 3

} SYSKIND;

typedef [v1_enum] enum tagDESCKIND {

 DESCKIND_NONE = 0,

 DESCKIND_FUNCDESC = 1,

 DESCKIND_VARDESC = 2,

 DESCKIND_TYPECOMP = 3,

 DESCKIND_IMPLICITAPPOBJ = 4

} DESCKIND;

typedef struct _FLAGGED_WORD_BLOB {

 unsigned long cBytes;

 unsigned long clSize;

 [size_is(clSize)] unsigned short asData[];

} FLAGGED_WORD_BLOB;

174 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef [unique] FLAGGED_WORD_BLOB* BSTR;

typedef struct tagCY {

 __int64 int64;

} CURRENCY;

typedef double DATE;

typedef struct tagDEC {

 WORD wReserved;

 BYTE scale;

 BYTE sign;

 ULONG Hi32;

 ULONGLONG Lo64;

} DECIMAL;

typedef short VARIANT_BOOL;

#define VARIANT_TRUE ((VARIANT_BOOL)0xffff)

#define VARIANT_FALSE ((VARIANT_BOOL)0)

typedef struct _wireBRECORD {

 ULONG fFlags;

 ULONG clSize;

 MInterfacePointer * pRecInfo;

 [size_is(clSize)] byte* pRecord;

} wireBRECORDStr;

typedef [unique] struct _wireBRECORD* BRECORD;

typedef struct _wireVARIANT {

 DWORD clSize;

 DWORD rpcReserved;

 USHORT vt;

 USHORT wReserved1;

 USHORT wReserved2;

 USHORT wReserved3;

 [switch_type(ULONG), switch_is(vt)] union {

 [case(VT_I8)]

 LONGLONG llVal;

 [case(VT_I4)]

 LONG lVal;

 [case(VT_UI1)]

 BYTE bVal;

 [case(VT_I2)]

 SHORT iVal;

 [case(VT_R4)]

 FLOAT fltVal;

 [case(VT_R8)]

 DOUBLE dblVal;

 [case(VT_BOOL)]

 VARIANT_BOOL boolVal;

 [case(VT_ERROR)]

 HRESULT scode;

 [case(VT_CY)]

 CURRENCY cyVal;

 [case(VT_DATE)]

 DATE date;

 [case(VT_BSTR)]

175 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 BSTR bstrVal;

 [case(VT_UNKNOWN)]

 IUnknown* punkVal;

 [case(VT_DISPATCH)]

 IDispatch* pdispVal;

 [case(VT_ARRAY)]

 PSAFEARRAY parray;

 [case(VT_RECORD, VT_RECORD|VT_BYREF)]

 BRECORD brecVal;

 [case(VT_UI1|VT_BYREF)]

 BYTE* pbVal;

 [case(VT_I2|VT_BYREF)]

 SHORT* piVal;

 [case(VT_I4|VT_BYREF)]

 LONG* plVal;

 [case(VT_I8|VT_BYREF)]

 LONGLONG* pllVal;

 [case(VT_R4|VT_BYREF)]

 FLOAT* pfltVal;

 [case(VT_R8|VT_BYREF)]

 DOUBLE* pdblVal;

 [case(VT_BOOL|VT_BYREF)]

 VARIANT_BOOL* pboolVal;

 [case(VT_ERROR|VT_BYREF)]

 HRESULT* pscode;

 [case(VT_CY|VT_BYREF)]

 CURRENCY* pcyVal;

 [case(VT_DATE|VT_BYREF)]

 DATE* pdate;

 [case(VT_BSTR|VT_BYREF)]

 BSTR* pbstrVal;

 [case(VT_UNKNOWN|VT_BYREF)]

 IUnknown** ppunkVal;

 [case(VT_DISPATCH|VT_BYREF)]

 IDispatch** ppdispVal;

 [case(VT_ARRAY|VT_BYREF)]

 PSAFEARRAY* pparray;

 [case(VT_VARIANT|VT_BYREF)]

 VARIANT* pvarVal;

 [case(VT_I1)]

 CHAR cVal;

 [case(VT_UI2)]

 USHORT uiVal;

 [case(VT_UI4)]

 ULONG ulVal;

 [case(VT_UI8)]

 ULONGLONG ullVal;

 [case(VT_INT)]

 INT intVal;

 [case(VT_UINT)]

 UINT uintVal;

 [case(VT_DECIMAL)]

 DECIMAL decVal;

 [case(VT_I1|VT_BYREF)]

 CHAR* pcVal;

 [case(VT_UI2|VT_BYREF)]

 USHORT* puiVal;

 [case(VT_UI4|VT_BYREF)]

 ULONG* pulVal;

176 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [case(VT_UI8|VT_BYREF)]

 ULONGLONG* pullVal;

 [case(VT_INT|VT_BYREF)]

 INT* pintVal;

 [case(VT_UINT|VT_BYREF)]

 UINT* puintVal;

 [case(VT_DECIMAL|VT_BYREF)]

 DECIMAL* pdecVal;

 [case(VT_EMPTY)]

 /* nothing */ ;

 [case(VT_NULL)]

 /* nothing */ ;

 } _varUnion;

} wireVARIANTStr;

typedef struct tagSAFEARRAYBOUND {

 ULONG cElements;

 LONG lLbound;

} SAFEARRAYBOUND,

 *LPSAFEARRAYBOUND;

typedef struct _wireSAFEARR_BSTR {

 ULONG Size;

 [size_is(Size), ref] BSTR* aBstr;

} SAFEARR_BSTR;

typedef struct _wireSAFEARR_UNKNOWN {

 ULONG Size;

 [size_is(Size), ref] IUnknown** apUnknown;

} SAFEARR_UNKNOWN;

typedef struct _wireSAFEARR_DISPATCH {

 ULONG Size;

 [size_is(Size), ref] IDispatch** apDispatch;

} SAFEARR_DISPATCH;

typedef struct _wireSAFEARR_VARIANT {

 ULONG Size;

 [size_is(Size), ref] VARIANT* aVariant;

} SAFEARR_VARIANT;

typedef struct _wireSAFEARR_BRECORD {

 ULONG Size;

 [size_is(Size), ref] BRECORD* aRecord;

} SAFEARR_BRECORD;

typedef struct _wireSAFEARR_HAVEIID {

 ULONG Size;

 [size_is(Size), ref] IUnknown** apUnknown;

 IID iid;

} SAFEARR_HAVEIID;

typedef struct _BYTE_SIZEDARR {

 unsigned long clSize;

 [size_is(clSize)] byte* pData;

} BYTE_SIZEDARR;

typedef struct _SHORT_SIZEDARR {

 unsigned long clSize;

177 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [size_is(clSize)] unsigned short* pData;

} WORD_SIZEDARR;

typedef struct _LONG_SIZEDARR {

 unsigned long clSize;

 [size_is(clSize)] unsigned long* pData;

} DWORD_SIZEDARR;

typedef struct _HYPER_SIZEDARR {

 unsigned long clSize;

 [size_is(clSize)] hyper* pData;

} HYPER_SIZEDARR;

typedef union _wireSAFEARRAY_UNION

 switch(unsigned long sfType) u {

 case SF_BSTR: SAFEARR_BSTR BstrStr;

 case SF_UNKNOWN: SAFEARR_UNKNOWN UnknownStr;

 case SF_DISPATCH: SAFEARR_DISPATCH DispatchStr;

 case SF_VARIANT: SAFEARR_VARIANT VariantStr;

 case SF_RECORD: SAFEARR_BRECORD RecordStr;

 case SF_HAVEIID: SAFEARR_HAVEIID HaveIidStr;

 case SF_I1: BYTE_SIZEDARR ByteStr;

 case SF_I2: WORD_SIZEDARR WordStr;

 case SF_I4: DWORD_SIZEDARR LongStr;

 case SF_I8: HYPER_SIZEDARR HyperStr;

} SAFEARRAYUNION;

typedef

[unique]

struct _wireSAFEARRAY {

 USHORT cDims;

 USHORT fFeatures;

 ULONG cbElements;

 ULONG cLocks;

 SAFEARRAYUNION uArrayStructs;

 [size_is(cDims)] SAFEARRAYBOUND rgsabound[];

} *SAFEARRAY;

typedef struct tagRecordInfo {

 GUID libraryGuid;

 DWORD verMajor;

 GUID recGuid;

 DWORD verMinor;

 DWORD Lcid;

} RecordInfo;

typedef LONG DISPID;

typedef struct tagDISPPARAMS {

 [size_is(cArgs)] VARIANT* rgvarg;

 [size_is(cNamedArgs)] DISPID* rgdispidNamedArgs;

 UINT cArgs;

 UINT cNamedArgs;

} DISPPARAMS;

typedef struct tagEXCEPINFO {

 WORD wCode;

 WORD wReserved;

 BSTR bstrSource;

178 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 BSTR bstrDescription;

 BSTR bstrHelpFile;

 DWORD dwHelpContext;

 ULONG_PTR pvReserved;

 ULONG_PTR pfnDeferredFillIn;

 HRESULT scode;

} EXCEPINFO;

typedef DISPID MEMBERID;

typedef DWORD HREFTYPE;

typedef struct tagTYPEDESC {

 [switch_type(USHORT), switch_is(vt)] union {

 [case(VT_PTR, VT_SAFEARRAY)] struct tagTYPEDESC * lptdesc;

 [case(VT_CARRAY)] struct tagARRAYDESC * lpadesc;

 [case(VT_USERDEFINED)] HREFTYPE hreftype;

 [default] ;

 } _tdUnion;

 USHORT vt;

} TYPEDESC;

typedef struct tagARRAYDESC {

 TYPEDESC tdescElem;

 USHORT cDims;

 [size_is(cDims)] SAFEARRAYBOUND rgbounds[];

} ARRAYDESC;

typedef struct tagPARAMDESCEX {

 ULONG cBytes;

 VARIANT varDefaultValue;

} PARAMDESCEX;

typedef struct tagPARAMDESC {

 PARAMDESCEX *pparamdescex;

 USHORT wParamFlags;

} PARAMDESC;

typedef struct tagELEMDESC {

 TYPEDESC tdesc;

 PARAMDESC paramdesc;

} ELEMDESC;

typedef struct tagFUNCDESC {

 MEMBERID memid;

 [size_is(cReserved2)] SCODE * lReserved1;

 [size_is(cParams)] ELEMDESC * lprgelemdescParam;

 FUNCKIND funckind;

 INVOKEKIND invkind;

 CALLCONV callconv;

 SHORT cParams;

 SHORT cParamsOpt;

 SHORT oVft;

 SHORT cReserved2;

 ELEMDESC elemdescFunc;

 WORD wFuncFlags;

} FUNCDESC, *LPFUNCDESC;

typedef struct tagVARDESC {

179 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 MEMBERID memid;

 LPOLESTR lpstrReserved;

 [switch_type(VARKIND), switch_is(varkind)] union {

 [case(VAR_PERINSTANCE, VAR_DISPATCH, VAR_STATIC)] ULONG oInst;

 [case(VAR_CONST)] VARIANT * lpvarValue;

 } _vdUnion;

 ELEMDESC elemdescVar;

 WORD wVarFlags;

 VARKIND varkind;

} VARDESC, *LPVARDESC;

typedef struct tagTYPEATTR {

 GUID guid;

 LCID lcid;

 DWORD dwReserved1;

 DWORD dwReserved2;

 DWORD dwReserved3;

 LPOLESTR lpstrReserved4;

 ULONG cbSizeInstance;

 TYPEKIND typekind;

 WORD cFuncs;

 WORD cVars;

 WORD cImplTypes;

 WORD cbSizeVft;

 WORD cbAlignment;

 WORD wTypeFlags;

 WORD wMajorVerNum;

 WORD wMinorVerNum;

 TYPEDESC tdescAlias;

 DWORD dwReserved5;

 WORD wReserved6;

} TYPEATTR, *LPTYPEATTR;

typedef struct tagTLIBATTR {

 GUID guid;

 LCID lcid;

 SYSKIND syskind;

 unsigned short wMajorVerNum;

 unsigned short wMinorVerNum;

 unsigned short wLibFlags;

} TLIBATTR, *LPTLIBATTR;

typedef struct tagCUSTDATAITEM {

 GUID guid;

 VARIANT varValue;

} CUSTDATAITEM;

typedef struct tagCUSTDATA {

 DWORD cCustData;

 [size_is(cCustData)] CUSTDATAITEM * prgCustData;

} CUSTDATA;

[

 object,

 uuid(00020400-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface IDispatch : IUnknown

{

180 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 typedef [unique] IDispatch * LPDISPATCH;

 HRESULT GetTypeInfoCount(

 [out] UINT * pctinfo

);

 HRESULT GetTypeInfo(

 [in] UINT iTInfo,

 [in] LCID lcid,

 [out] ITypeInfo ** ppTInfo

);

 HRESULT GetIDsOfNames(

 [in] REFIID riid,

 [in, size_is(cNames)] LPOLESTR * rgszNames,

 [in, range(0, 16384)] UINT cNames,

 [in] LCID lcid,

 [out, size_is(cNames)] DISPID * rgDispId

);

 HRESULT Invoke(

 [in] DISPID dispIdMember,

 [in] REFIID riid,

 [in] LCID lcid,

 [in] DWORD dwFlags,

 [in] DISPPARAMS * pDispParams,

 [out] VARIANT * pVarResult,

 [out] EXCEPINFO * pExcepInfo,

 [out] UINT * pArgErr,

 [in] UINT cVarRef,

 [in, size_is(cVarRef)] UINT * rgVarRefIdx,

 [in, out, size_is(cVarRef)] VARIANT * rgVarRef

);

 const DWORD DISPATCH_METHOD = 0x00000001;

 const DWORD DISPATCH_PROPERTYGET = 0x00000002;

 const DWORD DISPATCH_PROPERTYPUT = 0x00000004;

 const DWORD DISPATCH_PROPERTYPUTREF = 0x00000008;

 const DWORD DISPATCH_zeroVarResult = 0x00020000;

 const DWORD DISPATCH_zeroExcepInfo = 0x00040000;

 const DISPID DISPID_VALUE = 0;

 const DISPID DISPID_UNKNOWN = -1;

 const DISPID DISPID_PROPERTYPUT = -3;

 const DISPID DISPID_NEWENUM = -4;

}

[

 object,

 uuid(00020404-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface IEnumVARIANT : IUnknown

{

 HRESULT Next(

 [in] ULONG celt,

 [out, size_is(celt), length_is(*pCeltFetched)]

 VARIANT * rgVar,

181 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [out] ULONG * pCeltFetched

);

 HRESULT Skip(

 [in] ULONG celt

);

 HRESULT Reset();

 HRESULT Clone(

 [out] IEnumVARIANT ** ppEnum

);

}

[

 object,

 uuid(00020403-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface ITypeComp : IUnknown

{

 HRESULT Bind(

 [in] LPOLESTR szName,

 [in] ULONG lHashVal,

 [in] WORD wFlags,

 [out] ITypeInfo ** ppTInfo,

 [out] DESCKIND * pDescKind,

 [out] LPFUNCDESC * ppFuncDesc,

 [out] LPVARDESC * ppVarDesc,

 [out] ITypeComp ** ppTypeComp,

 [out] DWORD * pReserved

);

 HRESULT BindType(

 [in] LPOLESTR szName,

 [in] ULONG lHashVal,

 [out] ITypeInfo ** ppTInfo

);

}

[

 object,

 uuid(00020401-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface ITypeInfo : IUnknown

{

 HRESULT GetTypeAttr(

 [out] LPTYPEATTR * ppTypeAttr,

 [out] DWORD * pReserved

);

 HRESULT GetTypeComp(

 [out] ITypeComp ** ppTComp

);

 HRESULT GetFuncDesc(

 [in] UINT index,

 [out] LPFUNCDESC * ppFuncDesc,

182 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [out] DWORD * pReserved

);

 HRESULT GetVarDesc(

 [in] UINT index,

 [out] LPVARDESC * ppVarDesc,

 [out] DWORD * pReserved

);

 HRESULT GetNames(

 [in] MEMBERID memid,

 [out,size_is(cMaxNames),length_is(*pcNames)]

 BSTR * rgBstrNames,

 [in] UINT cMaxNames,

 [out] UINT * pcNames

);

 HRESULT GetRefTypeOfImplType(

 [in] UINT index,

 [out] HREFTYPE * pRefType

);

 HRESULT GetImplTypeFlags(

 [in] UINT index,

 [out] INT * pImplTypeFlags

);

 HRESULT Opnum10NotUsedOnWire(

 void

);

 HRESULT Opnum11NotUsedOnWire(

 void

);

 HRESULT GetDocumentation(

 [in] MEMBERID memid,

 [in] DWORD refPtrFlags,

 [out] BSTR * pBstrName,

 [out] BSTR * pBstrDocString,

 [out] DWORD * pdwHelpContext,

 [out] BSTR * pBstrHelpFile

);

 HRESULT GetDllEntry(

 [in] MEMBERID memid,

 [in] INVOKEKIND invKind,

 [in] DWORD refPtrFlags,

 [out] BSTR * pBstrDllName,

 [out] BSTR * pBstrName,

 [out] WORD * pwOrdinal

);

 HRESULT GetRefTypeInfo(

 [in] HREFTYPE hRefType,

 [out] ITypeInfo ** ppTInfo

);

 HRESULT Opnum15NotUsedOnWire(

183 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 void

);

 HRESULT CreateInstance(

 [in] REFIID riid,

 [out, iid_is(riid)] IUnknown ** ppvObj

);

 HRESULT GetMops(

 [in] MEMBERID memid,

 [out] BSTR * pBstrMops

);

 HRESULT GetContainingTypeLib(

 [out] ITypeLib ** ppTLib,

 [out] UINT * pIndex

);

 HRESULT Opnum19NotUsedOnWire(

 void

);

 HRESULT Opnum20NotUsedOnWire(

 void

);

 HRESULT Opnum21NotUsedOnWire(

 void

);

}

[

 object,

 uuid(00020412-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface ITypeInfo2 : ITypeInfo

{

 HRESULT GetTypeKind(

 [out] TYPEKIND * pTypeKind

);

 HRESULT GetTypeFlags(

 [out] ULONG * pTypeFlags

);

 HRESULT GetFuncIndexOfMemId(

 [in] MEMBERID memid,

 [in] INVOKEKIND invKind,

 [out] UINT * pFuncIndex

);

 HRESULT GetVarIndexOfMemId(

 [in] MEMBERID memid,

 [out] UINT * pVarIndex

);

 HRESULT GetCustData(

 [in] REFGUID guid,

184 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [out] VARIANT * pVarVal

);

 HRESULT GetFuncCustData(

 [in] UINT index,

 [in] REFGUID guid,

 [out] VARIANT * pVarVal

);

 HRESULT GetParamCustData(

 [in] UINT indexFunc,

 [in] UINT indexParam,

 [in] REFGUID guid,

 [out] VARIANT * pVarVal

);

 HRESULT GetVarCustData(

 [in] UINT index,

 [in] REFGUID guid,

 [out] VARIANT * pVarVal

);

 HRESULT GetImplTypeCustData(

 [in] UINT index,

 [in] REFGUID guid,

 [out] VARIANT * pVarVal

);

 HRESULT GetDocumentation2(

 [in] MEMBERID memid,

 [in] LCID lcid,

 [in] DWORD refPtrFlags,

 [out] BSTR *pbstrHelpString,

 [out] DWORD *pdwHelpStringContext,

 [out] BSTR *pbstrHelpStringDll

);

 HRESULT GetAllCustData(

 [out] CUSTDATA * pCustData

);

 HRESULT GetAllFuncCustData(

 [in] UINT index,

 [out] CUSTDATA * pCustData

);

 HRESULT GetAllParamCustData(

 [in] UINT indexFunc,

 [in] UINT indexParam,

 [out] CUSTDATA * pCustData

);

 HRESULT GetAllVarCustData(

 [in] UINT index,

 [out] CUSTDATA * pCustData

);

 HRESULT GetAllImplTypeCustData(

 [in] UINT index,

185 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [out] CUSTDATA * pCustData

);

}

[

 object,

 uuid(00020402-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface ITypeLib : IUnknown

{

 HRESULT GetTypeInfoCount(

 [out] UINT * pcTInfo

);

 HRESULT GetTypeInfo(

 [in] UINT index,

 [out] ITypeInfo ** ppTInfo

);

 HRESULT GetTypeInfoType(

 [in] UINT index,

 [out] TYPEKIND * pTKind

);

 HRESULT GetTypeInfoOfGuid(

 [in] REFGUID guid,

 [out] ITypeInfo ** ppTInfo

);

 HRESULT GetLibAttr(

 [out] LPTLIBATTR * ppTLibAttr,

 [out] DWORD * pReserved

);

 HRESULT GetTypeComp(

 [out] ITypeComp ** ppTComp

);

 HRESULT GetDocumentation(

 [in] INT index,

 [in] DWORD refPtrFlags,

 [out] BSTR * pBstrName,

 [out] BSTR * pBstrDocString,

 [out] DWORD * pdwHelpContext,

 [out] BSTR * pBstrHelpFile

);

 HRESULT IsName(

 [in] LPOLESTR szNameBuf,

 [in] ULONG lHashVal,

 [out] BOOL * pfName,

 [out] BSTR * pBstrNameInLibrary

);

 HRESULT FindName(

 [in] LPOLESTR szNameBuf,

 [in] ULONG lHashVal,

 [out,size_is(*pcFound),length_is(*pcFound)] ITypeInfo **ppTInfo,

186 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [out,size_is(*pcFound),length_is(*pcFound)] MEMBERID * rgMemId,

 [in, out] USHORT * pcFound,

 [out] BSTR * pBstrNameInLibrary

);

 HRESULT Opnum12NotUsedOnWire(

 void

);

}

[

 object,

 uuid(00020411-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface ITypeLib2 : ITypeLib

{

 HRESULT GetCustData(

 [in] REFGUID guid,

 [out] VARIANT * pVarVal

);

 HRESULT GetLibStatistics(

 [out] ULONG * pcUniqueNames,

 [out] ULONG * pcchUniqueNames

);

 HRESULT GetDocumentation2(

 [in] INT index,

 [in] LCID lcid,

 [in] DWORD refPtrFlags,

 [out] BSTR *pbstrHelpString,

 [out] DWORD *pdwHelpStringContext,

 [out] BSTR *pbstrHelpStringDll

);

 HRESULT GetAllCustData(

 [out] CUSTDATA * pCustData

);

}

187 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT operating system

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.8: Windows uses only Windows Errors Codes, as specified in [MS-ERREF].

<2> Section 2.2.15: For type libraries that are generated by means of the Microsoft Interface
Definition Language (MIDL), a parameter that has the [custom] attribute does not specify
PARAMFLAG_FHASCUSTDATA. For type libraries that are generated by means of MkTypLib, a
parameter that has the [custom] attribute always specifies PARAMFLAG_FHASCUSTDATA.

<3> Section 2.2.16: The TYPEFLAG_FDISPATCHABLE flag value is computed based on the presence
of IDispatch. It is never set directly.

<4> Section 2.2.20: Type libraries generated by means of Microsoft Interface Definition Language

(MIDL) always specify LIBFLAG_FHASDISKIMAGE.

<5> Section 2.2.28.2.1: Windows uses IID_IRecordInfo as the IID of a local-only interface.

<6> Section 2.2.29.1: wReserved1 is not set to 0 by Windows automation clients.

<7> Section 2.2.29.1: wReserved2 is not set to 0 by Windows automation clients.

%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

188 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<8> Section 2.2.29.1: wReserved3 is not set to 0 by Windows automation clients.

<9> Section 2.2.29.2: Windows uses these data type names when defining the local Windows
VARIANT data types, and another set of data types whose names are prefixed by "_wire", such as
_wireVARIANT, to define the wire formats for these data types. Because the local Windows data

types are not used on the network, the protocol specification uses the original data type names such
as "VARIANT" when specifying wire format data type definitions for VARIANT data types".

<10> Section 2.2.30.10: Windows uses these data type names when defining the local Windows
SAFEARRAY data types, and another set of data types whose names are prefixed by "_wire", such
as _wireSAFEARRAY, to define the wire formats for these data types. Because the local Windows
data types are not used on the network, the protocol specification uses the original data type names
such as "SAFEARRAY" when specifying wire format data type definitions for SAFEARRAY data types.

<11> Section 2.2.30.10: The low word of cLocks represents the number of times the SAFEARRAY
was "locked" using the SafeArrayAccessData API. For more information, see [MSDN-
SafeArrayAccessData].

<12> Section 2.2.30.10: The consistency checks are enforced in Windows XP SP2, Windows
Server 2003 with SP1, Windows Vista, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2. If any of the consistency checks fails, the protocol

implementation raises an RPC_X_BAD_STUB_DATA exception.

<13> Section 2.2.31: On Windows platforms, the type library that defines the UDT must be
registered on both the client and the server.

<14> Section 2.2.34: The wCode field is always set to 0.

<15> Section 2.2.34: The bstrSource field is set to a textual, human-readable name of the source
of the exception, typically the application name of the server.

<16> Section 2.2.34: The Windows implementation of the protocol uses any value passed to it by

higher-layer software.

<17> Section 2.2.34: bstrHelpFile may be set to the fully qualified path name of a Help file with
more information about the error.

<18> Section 2.2.34: dwHelpContext may be set to a help context ID. For more information, see
[MSDN-WinHelp].

<19> Section 2.2.34: pfnDeferredFillIn may be non-NULL when the automation server
implementing IDispatch sets it to a non-NULL value. This function is meant to defer the need to fill

in the rest of the structure until the client actually requests it. This value is bound to the server
process address space. When the client and the server are not hosted in the same process, this
value must be ignored.

<20> Section 2.2.39: The value, in bytes, of cBytes is the in-memory size of the PARAMDESCEX
structure.

<21> Section 2.2.42: If a MIDL-generated type library has an [lcid] parameter following the

[optional] parameters, cParamsOpt is set to 0. To count the optional parameters specified by the
method, iterate through the members of the lprgelemdescParam array and evaluate the
paramdesc.wParamFlags bit flags of each element. Each optional parameter must have the
PARAMFLAG_FOPT bit flag set.

http://go.microsoft.com/fwlink/?LinkId=90119
http://go.microsoft.com/fwlink/?LinkId=90119
http://go.microsoft.com/fwlink/?LinkId=90163

189 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<22> Section 2.2.43: For a per-instance field, _vdUnion specifies the offset of the field in memory
relative to the starting address of the structure, or 0 if the VARDESC describes a member of a

union.

<23> Section 2.2.44: The sizes of data-only types in Windows are specified in [MSDN]. The size of

a structure is specified in [MSDN].

<24> Section 2.2.44: The sizes of data-only types in Windows are specified in [MSDN]. The size of
a structure is specified in [MSDN].

<25> Section 2.2.44: The sizes of data-only types in Windows are specified in [MSDN]. The size of
a structure is specified in [MSDN].

<26> Section 2.2.44: The sizes of data-only types in Windows are specified in [MSDN]. The size of
a structure is specified in [MSDN].

<27> Section 2.2.44: Windows does not use the value of the cbAlignment field. Windows sets this
value to the required byte alignment for an instance of the type, as in the following table.

Value Meaning

0 Specifies alignment with a 64-KB boundary.

1 Specifies byte alignment.

2 Specifies word alignment.

4 Specifies dword alignment.

<28> Section 2.2.49: There are two Windows compilers that process IDL specifications that contain

automation definitions: mktyplib.exe and midl.exe. Mktyplib.exe has been deprecated and should
not be used. Mktyplib accepts only a subset of the following specified syntax and keywords, while
midl.exe accepts all of them. The OLE Automation Protocol supports the entire range.

<29> Section 2.2.49.1.2: Connectable servers implement the following interfaces:
IConnectionPointContainer, IConnectionPoint, IEnumConnectionPoints, and IEnumConnections
described in [MSDN-COM].

<30> Section 2.2.49.1.3: Clients implement IPropertyNotifySink::OnChanged to handle calls from

bindable server properties that are compiled with the [bindable] attribute and
IPropertyNotifySink::OnRequestEdit to handle calls from properties that are declared with the
[requestedit] attribute. Both methods identify each property by its DISPID. The proposed
replacement value is not available to IPropertyNotifySink::OnRequestEdit; so its use is limited to
determining whether the existing value can be changed. The value cannot be used for data
validation.

<31> Section 2.2.49.2: The value of the [helpcontext] attribute specifies a 32-bit context
identifier that is used to associate the library, type, or type member with a topic in the Help file.

<32> Section 2.2.49.2: The value of the [helpfile] attribute specifies the fully qualified name of

the Help file that is used by all types in the type library.

<33> Section 2.2.49.2: The value of the [helpstring] attribute provides a description of the
element to which it is applied.

http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=124362
http://go.microsoft.com/fwlink/?LinkId=89977

190 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<34> Section 2.2.49.2: The value of the [helpstringcontext] attribute specifies a 32-bit identifier
that is used to associate the library, type, or type member with a string resource in the DLL

specified by the [helpstringdll] attribute.

<35> Section 2.2.49.2: The value of the [helpstringdll] attribute specifies the fully qualified name

of a dynamic link library that contains localized Help resources.

<36> Section 2.2.49.2: Windows uses the [restricted] attribute to indicate that an interface or
dispinterface should not be available to macro languages. For libraries and modules, it is a visibility
attribute with the same meaning as the [hidden] attribute: do not display to users.

<37> Section 2.2.49.3: There are two Windows compilers that process IDL specifications that
contain automation definitions: mktyplib.exe and midl.exe. Mktyplib.exe has been deprecated and
should not be used anymore. Mktyplib accepts only a subset of the types specified earlier in this

section, while midl.exe accepts all of them. The OLE Automation Protocol supports the entire range.

<38> Section 2.2.49.3: Windows uses the [restricted] attribute to indicate that an interface or
dispinterface should not be available to macro languages. For libraries and modules, it is a visibility

attribute with the same meaning as the [hidden] attribute: do not display to users.

<39> Section 2.2.49.4: Windows uses the [proxy] attribute to specify that the code for marshaling
the interface data is external to the type library.

<40> Section 2.2.49.5.1: Windows uses the [defaultcollelem] attribute to enable Visual Basic–
specific optimizations, some of which treat the property as the default collection of the coclass that
contains it. In cases where the application of the attribute is inconsistent (such as coclasses with
multiple [defaultcollelem] assignments or an assignment to a property that returns objects that
are not enumerable), some or all of the optimizations are not performed, and the attribute is
ignored.

<41> Section 2.2.49.5.1: MIDL does not enforce a restriction on the number of properties with the

[defaultcollelem] attribute, but some Visual Basic–specific optimizations are not applied if a type
has more than one property.

<42> Section 2.2.49.5.1: Windows type libraries do not use the replaceable attribute.

<43> Section 2.2.49.5.2: Windows uses the [immediatebind] attribute to distinguish between
controls such as check boxes (in which the bound data source is updated every time the control
state changes), and list boxes (in which the bound data source is updated only when the control is
saved or loses focus).

<44> Section 2.2.49.8: Windows type browsers distinguish between COM components that explicitly
support a windowed user interface and components that do not. Non-visual type browsers do not
display components with the control attribute to users.

<45> Section 2.2.49.8: By default, Windows type browsers do not display elements with the
hidden attribute to users.

<46> Section 2.2.49.8: Coclasses defined with the [licensed] attribute can be instantiated using

only the IClassFactory2 interface.

<47> Section 2.2.49.8: Coclasses defined with the [noncreatable] attribute cannot be instantiated
using IClassFactory::CreateInstance, CoCreateInstance, or OleCreate.

<48> Section 2.2.49.9: The FUNCFLAG_FUSESGETLASTERROR bit flag indicates that the method
was declared with the [usesgetlasterror] attribute and supports the GetLastError method (see

191 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MSDN-ErrorHandling]). The GetLastError method is local-only and this flag has no effect on the
wire.

<49> Section 2.2.49.9: The cdecl, stdcall, and pascal calling conventions are specified in [MSDN-
CALLCONV].

<50> Section 2.2.49.10: The string specified in an importlib statement specifies the fully qualified
name of a compiled type library (*.tlb) file.

<51> Section 2.2.51: Windows uses the hash value to quickly reject names that do not correspond
to any entities defined in the automation type library.

<52> Section 2.2.51: If the hash value is zero, Windows computes a new hash value before
evaluating the name.

<53> Section 3.1.1: Windows automation servers can generate the mappings on the fly according

to the requirements of the application.

<54> Section 3.1.4.3: The range restriction is not present for Windows NT, Windows 2000,
Windows XP, or Windows Server 2003.

<55> Section 3.1.4.3: The default implementation of Automation performs this mapping; however,
any automation server can override this behavior by providing its own implementation for
IDispatch::GetIDsOfNames.

<56> Section 3.1.4.4.3: Windows automation clients use the value specified in the defaultvalue
parameter.

<57> Section 3.1.4.4.4: The default Automation implementation does attempt to convert the actual
arguments to the formal parameters' type, as declared in the IDL of the method or property. If no
such conversion exists, the default Automation implementation returns DISP_E_TYPEMISMATCH.
However, any automation server can choose to implement IDispatch::Invoke and exhibit different
behavior

<58> Section 3.7.1.1: The implementation-specific documentation values correspond to the values
declared with the [helpstring], [helpcontext], and [helpfile] attributes. If the server also implements
ITypeInfo2, the documentation values include the values declared with the [helpstringcontext] and
[helpstringdll] attributes.

<59> Section 3.7.4.8: If the library, type, or type member was declared without the [helpstring]
attribute and the Type information server implements ITypeInfo2, the GetDocumentation method
attempts to return the localized value specified by the pBstrHelpString parameter of

ITypeInfo2::GetDocumentation2, using an LCID of 0.

<60> Section 3.9.4.10: pbstrHelpString is set to the value of the string resource that is contained in
the DLL specified by pBstrHelpStringDll and that is associated with the resource handle specified by
pdwHelpStringContext and LocaleID specified by lcid, or is set to NULL if no such resource exists.

<61> Section 3.11.4.7: If the library or type was declared without the [helpstring] attribute and the
Type library server implements ITypeLib2, the GetDocumentation method attempts to return the

localized value specified by the pBstrHelpString parameter of ITypeLib2::GetDocumentation2,
using an LCID of 0.

<62> Section 3.11.4.9: Matching members of the binding member table of a reference dispinterface
that are defined outside the automation scope are included in the ppTInfo and rgMemId arrays if the
automation scope includes at least two named non-parameter elements whose names match
szNameBuf.

http://go.microsoft.com/fwlink/?LinkId=94931
http://go.microsoft.com/fwlink/?LinkId=94981
http://go.microsoft.com/fwlink/?LinkId=94981

192 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<63> Section 3.13.4.3: pBstrHelpString is set to the value of the string resource contained in the
DLL specified by pBstrHelpStringDll and associated with the resource handle specified by

pdwHelpStringContext and LocaleID specified by lcid, or NULL if no such resource exists.

193 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8 Appendix C: Full ABNF

start-rule =

 *(interface / import / export / oa-scope / oa-dispinterface)

; Automation scope

oa-scope = oa-library-header LWSP "{" oa-library-body "}" LWSP [";"]

oa-library-header =

 "[" LWSP library-attributes LWSP "]" LWSP kw-library LWSP

 Identifier

oa-library-body = *oa-library-declarator

library-attributes =

 library-attribute *("," LWSP library-attribute LWSP)

library-attribute = uuid-attr /

 version-attr /

 lcid-attr /

 help-attr /

 custom-attr /

 kw-control /

 kw-hidden /

 kw-restricted

uuid-attr = kw-uuid LWSP "(" LWSP uuid-rep LWSP ")"

version-attr =

 kw-version LWSP "(" LWSP 1*DIGIT *("." 1*DIGIT) LWSP ")"

lcid-attr = kw-lcid LWSP "(" LWSP integer-const-exp LWSP ")"

help-attr = helpcontext-attr /

 helpfile-attr /

 helpstring-attr /

 helpstringcontext-attr /

 helpstringdll-attr

helpcontext-attr =

 kw-helpcontext LWSP "(" LWSP integer-const-exp LWSP ")"

helpfile-attr = kw-helpfile LWSP "(" LWSP string LWSP ")"

helpstring-attr = kw-helpstring LWSP "(" LWSP string LWSP ")"

helpstringcontext-attr =

 kw-helpstringcontext LWSP "(" LWSP integer-const-exp LWSP ")"

helpstringdll-attr = kw-helpstringdll LWSP "(" LWSP string LWSP ")"

custom-attr =

 kw-custom LWSP "(" uuid-rep LWSP "," LWSP const-exp LWSP ")"

oa-library-declarator = interface /

 import /

 export /

 oa-importlib /

 oa-module /

 oa-dispinterface /

 oa-coclass

type-attribute = rpcidl-defined /

 uuid-attr /

 help-attr /

 custom-attr /

194 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 kw-public /

 kw-restricted

; Automation Compatible Types

oa-type-spec = oa-base-type-spec /

 oa-safearray-type-spec /

 oa-ptr-type-spec /

 Identifier

oa-base-type-spec = oa-base-nondecimal-type-spec / kw-Decimal

oa-base-nondecimal-type-spec = kw-boolean /

 [kw-unsigned] LWSP kw-char /

 [kw-unsigned] LWSP kw-short /

 [kw-unsigned] LWSP kw-int /

 [kw-unsigned] LWSP kw-long /

 kw-double /

 kw-float /

 kw-BSTR /

 kw-CURRENCY /

 kw-DATE /

 kw-SCODE

oa-safearray-type-spec =

 kw-SAFEARRAY "(" oa-base-nondecimal-type-spec ")" /

 kw-SAFEARRAY "(" oa-ptr-type-spec ")" /

 kw-SAFEARRAY "(" Identifier ")"

oa-ptr-type-spec = oa-base-nondecimal-type-spec "*" /

 oa-safearray-type-spec "*" /

 Identifier "*"

; Automation Interfaces

interface-attribute = rpcidl-defined /

 attr-oleautomation /

 attr-dual /

 kw-nonextensible /

 kw-proxy /

 custom-attr

attr-oleautomation = kw-oleautomation

attr-dual = kw-dual

oa-dispinterface =

 oa-dispitf-header LWSP "{" LWSP oa-dispitf-body LWSP "}"

oa-dispitf-header = "[" interface-attributes "]"

 LWSP kw-dispinterface LWSP Identifier

oa-dispitf-body = oa-itf-ref / oa-odl-body

oa-itf-ref = kw-interface LWSP Identifier LWSP ";"

; Automation Members

operation-attribute = rpcidl-defined /

 kw-id LWSP "(" LWSP integer-const-exp LWSP ")" /

 kw-propget /

 kw-propput /

 kw-propputref /

 kw-vararg /

 kw-defaultcollelem /

 kw-nonbrowsable /

195 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 kw-replaceable /

 kw-restricted /

 kw-uidefault /

 kw-hidden /

 oa-bindable-attr /

 readonly-attr /

 help-attr /

 custom-attr

oa-bindable-attr = kw-bindable /

 kw-immediatebind /

 kw-defaultbind /

 kw-displaybind /

 kw-requestedit

oa-odl-body =

 kw-properties LWSP ":" LWSP *oa-odl-prop LWSP

 kw-methods LWSP ":" LWSP *oa-odl-method

oa-odl-prop =

 *(operation-attributes) LWSP oa-type-spec LWSP

 Identifier LWSP ";"

oa-odl-method = op-declarator

readonly-attr = kw-readonly

; Automation Parameters

param-attribute = rpcidl-defined /

 kw-defaultvalue LWSP "(" LWSP const-exp LWSP ")" /

 kw-optional /

 kw-lcid /

 kw-retval /

 custom-attr

oa-coclass = "[" LWSP oa-coclass-attrs LWSP "]" LWSP

 kw-coclass LWSP Identifier

 LWSP "{" LWSP oa-coclass-body LWSP "}"

oa-coclass-attrs = oa-coclass-attr *(LWSP "," LWSP

 oa-coclass-attr)

oa-coclass-attr = uuid-attr /

 help-attr /

 version-attr /

 custom-attr /

 kw-aggregatable /

 kw-appobject /

 kw-control /

 kw-hidden /

 kw-licensed /

 kw-noncreatable /

 kw-predeclid

oa-coclass-body = *(oa-coclass-itf-decl)

oa-coclass-itf-decl = ["[" LWSP oa-cid-attrs LWSP "]" LWSP]

 (kw-interface / kw-dispinterface) LWSP Identifier LWSP ";"

oa-cid-attrs = oa-cid-attr *(LWSP "," LWSP oa-cid-attr)

oa-cid-attr = kw-source /

 kw-default /

 kw-defaultvtable /

 kw-restricted

196 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

oa-module = ["[" LWSP oa-module-attrs LWSP "]" LWSP]

 kw-module LWSP Identifier LWSP

 "{" oa-module-body "}"

oa-module-attrs = oa-module-attr *(LWSP "," LWSP oa-module-attr)

oa-module-attr = uuid-attr /

 version-attr /

 help-attr /

 kw-dllname LWSP "(" LWSP string LWSP ")" /

 kw-hidden

oa-module-body = *(oa-const-stmt / oa-mmethod-stmt)

oa-const-stmt = ["[" LWSP *(help-attr) LWSP "]" LWSP]

 (kw-const / kw-static) LWSP

 oa-base-type-spec LWSP Identifier LWSP

 "=" LWSP const-exp LWSP ";"

oa-mmethod-stmt = ["[" LWSP oa-mmethod-attrs LWSP "]" LWSP]

 oa-type-spec LWSP [oa-mmethod-cc LWSP]

 Identifier LWSP param-declarators LWSP ";"

oa-mmethod-attrs = oa-mmethod-attr *(LWSP "," LWSP oa-mmethod-attr)

oa-mmethod-attr =

 kw-entry LWSP "(" LWSP oa-entry-id LWSP ")" /

 kw-propget /

 kw-propput /

 kw-propputref /

 kw-usesgetlasterror /

 kw-vararg /

 help-attr

oa-entry-id = string / integer-const-exp

oa-mmethod-cc = kw-cdecl /

 kw-stdcall /

 kw-pascal

oa-importlib = kw-importlib LWSP "(" LWSP string LWSP ")" LWSP ";"

; Automation keywords: case sensitive

kw-aggregatable = %d97.103.103.114.101.103.97.116.97.98.108.101

kw-appobject = %d97.112.112.111.98.106.101.99.116

kw-bindable = %d98.105.110.100.97.98.108.101

kw-boolean = %d98.111.111.108.101.97.110

kw-BSTR = %d66.83.84.82

kw-cdecl = %d99.100.101.99.108

kw-char = %d99.104.97.114

kw-coclass = %d99.111.99.108.97.115.115

kw-const = %d99.111.110.115.116

kw-control = %d99.111.110.116.114.111.108

kw-CURRENCY = %d67.85.82.82.69.78.67.89

kw-custom = %d99.117.115.116.111.109

kw-DATE = %d68.65.84.69

kw-Decimal = %d68.101.99.105.109.97.108

kw-default = %d100.101.102.97.117.108.116

kw-defaultbind = %d100.101.102.97.117.108.116.98.105.110.100

kw-defaultcollelem =

 %d100.101.102.97.117.108.116.99.111.108.108.101.108.101.109

kw-defaultvalue =

 %d100.101.102.97.117.108.116.118.97.108.117.101

kw-defaultvtable =

197 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 %d100.101.102.97.117.108.116.118.116.97.98.108.101

kw-dispinterface =

 %d100.105.115.112.105.110.116.101.114.102.97.99.101

kw-displaybind =

 %d100.105.115.112.108.97.121.98.105.110.100

kw-dllname = %d100.108.108.110.97.109.101

kw-double = %d100.111.117.98.108.101

kw-dual = %d100.117.97.108

kw-entry = %d101.110.116.114.121

kw-float = %d102.108.111.97.116

kw-helpcontext = %d104.101.108.112.99.111.110.116.101.120.116

kw-helpfile = %d104.101.108.112.102.105.108.101

kw-helpstring = %d104.101.108.112.115.116.114.105.110.103

kw-helpstringcontext =

 %d104.101.108.112.115.116.114.105.110.103.99.111.110.116.101.120.116

kw-helpstringdll =

 %d104.101.108.112.115.116.114.105.110.103.100.108.108

kw-hidden = %d104.105.100.100.101.110

kw-id = %d105.100

kw-immediatebind =

 %d105.109.109.101.100.105.97.116.101.98.105.110.100

kw-importlib = %d105.109.112.111.114.116.108.105.98

kw-int = %d105.110.116

kw-interface = %d105.110.116.101.114.102.97.99.101

kw-lcid = %d108.99.105.100

kw-library = %d108.105.98.114.97.114.121

kw-licensed = %d108.105.99.101.110.115.101.100

kw-long = %d108.111.110.103

kw-methods = %d109.101.116.104.111.100.115

kw-module = %d109.111.100.117.108.101

kw-nonbrowsable = %d110.111.110.98.114.111.119.115.97.98.108.101

kw-noncreatable = %d110.111.110.99.114.101.97.116.97.98.108.101

kw-nonextensible =

 %d110.111.110.101.120.116.101.110.115.105.98.108.101

kw-oleautomation =

 %d111.108.101.97.117.116.111.109.97.116.105.111.110

kw-optional = %d111.112.116.105.111.110.97.108

kw-pascal = %d112.97.115.99.97.108

kw-predeclid = %d112.114.101.100.101.99.108.105.100

kw-properties = %d112.114.111.112.101.114.116.105.101.115

kw-propget = %d112.114.111.112.103.101.116

kw-propput = %d112.114.111.112.112.117.116

kw-propputref = %d112.114.111.112.112.117.116.114.101.102

kw-proxy = %d112.114.111.120.121

kw-public = %d112.117.98.108.105.99

kw-readonly = %d114.101.97.100.111.110.108.121

kw-replaceable = %d114.101.112.108.97.99.101.97.98.108.101

kw-requestedit = %d114.101.113.117.101.115.116.101.100.105.116

kw-restricted = %d114.101.115.116.114.105.99.116.101.100

kw-retval = %d114.101.116.118.97.108

kw-SAFEARRAY = %d83.65.70.69.65.82.82.65.89

kw-SCODE = %d83.67.79.68.69

kw-short = %d115.104.111.114.116

kw-source = %d115.111.117.114.99.101

kw-static = %d115.116.97.116.105.99

kw-stdcall = %d115.116.100.99.97.108.108

kw-uidefault = %d117.105.100.101.102.97.117.108.116

kw-unsigned = %d117.110.115.105.103.110.101.100

kw-uuid = %d117.117.105.100

198 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

kw-usesgetlasterror =

 %d117.115.101.115.103.101.116.108.97.115.116.101.114.114.111.114

kw-vararg = %d118.97.114.97.114.103

kw-version = %d118.101.114.115.105.111.110

; Rules defined in the [C706] IDL specification

uuid-rep = rpcidl-defined

string = rpcidl-defined

const-exp = rpcidl-defined

integer-const-exp = rpcidl-defined

operation-attributes = rpcidl-defined

op-declarator = rpcidl-defined

interface-attributes = rpcidl-defined

interface = rpcidl-defined

import = rpcidl-defined

export = rpcidl-defined

param-declarators = rpcidl-defined

Identifier = rpcidl-defined

rpcidl-defined = "already defined"

;Tokens

; The ABNF Core rules

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

BIT = "0" / "1"

CHAR = %x01-7F

 ; any 7-bit US-ASCII character,

 ; excluding NUL

CR = %x0D

 ; carriage return

CRLF = CR LF

 ; Internet standard newline

CTL = %x00-1F / %x7F

 ; controls

DIGIT = %x30-39

 ; 0-9

DQUOTE = %x22

 ; " (Double Quote)

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

HTAB = %x09

 ; horizontal tab

LF = %x0A

 ; linefeed

LWSP = *(WSP / CRLF WSP)

 ; linear white space (past newline)

OCTET = %x00-FF

 ; 8 bits of data

SP = %x20

VCHAR = %x21-7E

 ; visible (printing) characters

WSP = SP / HTAB

 ; white space

199 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

9 Change Tracking

This section identifies changes that were made to the [MS-OAUT] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are
updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was

changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision
summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

200 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

New protocol syntax added due to protocol revision.

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please
contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

7

Appendix B:

Product Behavior

Modified this section to include references to Windows 8.1

operating system and Windows Server 2012 R2 operating

system.

Y Content

updated.

mailto:protocol@microsoft.com

201 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

10 Index

A

ABNF 193
Abstract data model

automation client 102
automation server 95
IEnumVARIANT client 107
IEnumVARIANT server 103
ITypeComp client 113
ITypeComp server 107
ITypeInfo client 127
ITypeInfo server

common Automation type description elements
113

overview 113
TYPEKIND-dependent Automation type

description elements 115
ITypeInfo2 client 140
ITypeInfo2 server 128
ITypeLib client 149
ITypeLib server 141
ITypeLib2 client 154
ITypeLib2 server 150

ADVFEATUREFLAGS enumeration 29
Aggregatable servers 67
AIDL interfaces 78
AIDL-ODL equivalence examples

method 155
property 155

Applicability 18
Argument coercion - IDispatch::Invoke 102
Argument-parameter mapping - IDispatch::Invoke

101
ARRAYDESC structure 56
Automation

hash values 82
interfaces 73
members 74
parameters 77

scope 68
Automation client

abstract data model 102
initialization 103
local events 103
message processing 103
sequencing rules 103
timer events 103
timers 102

Automation server
abstract data model 95
initialization 95
local events 102
message processing 96
overview 95
sequencing rules 96
timer events 102
timers 95

Automation type description binding context 110

Automation type description elements
common 113
TYPEKIND-dependent 115

Automation type library binding context 110
Automation-compatible

interfaces 73
types 70

B

Bind method 108
Bindable properties 75
Bindable servers 68
Binding context - ITypeComp::Bind

Automation type description 110
Automation type library 110
overview 110

BindType method 112
BNF 193
Bound elements - types returned with -

ITypeComp::Bind
ITypeInfo members 111
ITypeLib members 111
overview 111

BRECORD 42
BSTR 38
Byref 158
BYTE_SIZEDARR structure 48

C

CALLCONV enumeration 29
Calling method example 158
Capability negotiation 18
Change tracking 199
Client - automation

abstract data model 102

initialization 103
local events 103
message processing 103
sequencing rules 103
timer events 103
timers 102

Client - IEnumVARIANT
abstract data model 107
initialization 107
local events 107
message processing 107
overview 107
sequencing rules 107
timer events 107
timers 107

Client - ITypeComp
abstract data model 113
initialization 113
local events 113
message processing 113
sequencing rules 113

202 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

timer events 113
timers 113

Client - ITypeInfo
abstract data model 127
initialization 127
local events 128
message processing 127
sequencing rules 127
timer events 128
timers 127

Client - ITypeInfo2
abstract data model 140
initialization 140
local events 140
message processing 140
sequencing rules 140
timer events 140
timers 140

Client - ITypeLib
abstract data model 149
initialization 150
local events 150
message processing 150

sequencing rules 150
timer events 150
timers 150

Client - ITypeLib2
abstract data model 154
initialization 154
local events 154
message processing 154
sequencing rules 154
timer events 154
timers 154

Clone method 106
CLSID_RecordInfo 18
Coclass specifications 78
COM server categories 67
ComputeHash method 82
ComputeHashDBCS method 84
Connectable servers 67
Consistency checks - IDispatch::Invoke 101
CreateInstance method 126
CURRENCY structure 40
CUSTDATA structure 63
CUSTDATAITEM structure 63

D

Data model - abstract
automation client 102
automation server 95
IEnumVARIANT client 107
IEnumVARIANT server 103
ITypeComp client 113
ITypeComp server 107
ITypeInfo client 127
ITypeInfo server

common Automation type description elements
113

overview 113

TYPEKIND-dependent Automation type
description elements 115

ITypeInfo2 client 140
ITypeInfo2 server 128
ITypeLib client 149
ITypeLib server 141
ITypeLib2 client 154
ITypeLib2 server 150

Data types
overview 20
user-defined 42

DBCS substitution tables 92
DECIMAL structure 40
Default value - IDispatch::Invoke 101
DESCKIND enumeration 38
DISPID 53
DISPID_NEWENUM 53
DISPID_PROPERTYPUT 53
DISPID_UNKNOWN 53
DISPID_VALUE 53
Dispinterface interfaces 74
Dispinterfaces automation members 76
DISPPARAMS structure 53

Dual interfaces 74
DWORD_SIZEDARR structure 49

E

ELEMDESC structure 57
Equivalence

method 78
property 78

Examples
AIDL-ODL method equivalence 155
AIDL-ODL property equivalence 155
calling method - Byref 158
calling method - optional arguments 158
getting property value 156
IEnumVARIANT Clone() 162
IEnumVARIANT Next() 160
IEnumVARIANT overview 159
IEnumVARIANT Reset() 162
IEnumVARIANT Skip() 161
invoke argument parameter mapping 155
overview 155
setting property value 157

EXCEPINFO structure 54

F

Fields - vendor-extensible 18
FindName method 148
FLAGGED_WORD_BLOB structure 39
Full ABNF 193
Full BNF 193
Full IDL 170
FUNCDESC structure 58
FUNCFLAGS enumeration 30
FUNCKIND enumeration 31

G

203 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

GetAllCustData method (section 3.9.4.11 137,
section 3.13.4.4 153)

GetAllFuncCustData method 137
GetAllImplTypeCustData method 139
GetAllParamCustData method 138
GetAllVarCustData method 139
GetContainingTypeLib method 127
GetCustData method (section 3.9.4.5 132, section

3.13.4.1 151)
GetDllEntry method 124
GetDocumentation method (section 3.7.4.8 123,

section 3.11.4.7 146)
GetDocumentation2 method (section 3.9.4.10 136,

section 3.13.4.3 152)
GetFuncCustData method 133
GetFuncDesc method 119
GetFuncIndexOfMemId method 131
GetIDsOfNames method 97
GetImplTypeCustData method 135
GetImplTypeFlags method 122
GetLibAttr method 146
GetLibStatistics method 152
GetMops method 126

GetNames method 120
GetParamCustData method 134
GetRefTypeInfo method 125
GetRefTypeOfImplType method 121
GetTypeAttr method 118
GetTypeComp method (section 3.7.4.2 118, section

3.11.4.6 146)
GetTypeFlags method 131
GetTypeInfo method (section 3.1.4.2 97, section

3.11.4.2 144)
GetTypeInfoCount method (section 3.1.4.1 96,

section 3.11.4.1 143)
GetTypeInfoOfGuid method 145
GetTypeInfoType method 144
GetTypeKind method 130
GetVarCustData method 134
GetVarDesc method 119
GetVarIndexOfMemId method 132
Globalization 82
Glossary 12

H

HYPER_SIZEDARR structure 49

I

IDL 170
IDL Automation scope 68
IDL syntax extensions 64
IEnumVARIANT client

abstract data model 107
initialization 107
local events 107
message processing 107
overview 107
sequencing rules 107
timer events 107

timers 107

IEnumVARIANT example - overview 159
IEnumVARIANT server

abstract data model 103
initialization 104
local events 107
message processing 104
overview 103
sequencing rules 104
timer events 106
timers 104

IID_IDispatch 18
IID_IEnumVARIANT 18
IID_IRecordInfo 18
IID_ITypeComp 18
IID_ITypeInfo 18
IID_ITypeInfo2 18
IID_ITypeLib 18
IID_ITypeLib2 18
IID_IUnknown 18
IID_NULL 18
Implementer - security considerations 169
IMPLTYPEFLAGS enumeration 31
Index of security parameters 169

Informative references 15
Initialization

automation client 103
automation server 95
IEnumVARIANT client 107
IEnumVARIANT server 104
ITypeComp client 113
ITypeComp server 108
ITypeInfo client 127
ITypeInfo server 116
ITypeInfo2 client 140
ITypeInfo2 server 129
ITypeLib client 150
ITypeLib server 142
ITypeLib2 client 154
ITypeLib2 server 151

interfaces automation members 74
Introduction 12
Invoke argument parameter mapping example 155
Invoke method 98
INVOKEKIND enumeration 32
IsName method 148
ITypeComp client

abstract data model 113
initialization 113
local events 113
message processing 113
sequencing rules 113
timer events 113
timers 113

ITypeComp server
abstract data model 107
initialization 108
local events 113
message processing 108
overview 107
sequencing rules 108
timer events 112

204 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

timers 108
ITypeInfo client

abstract data model 127
initialization 127
local events 128
message processing 127
sequencing rules 127
timer events 128
timers 127

ITypeInfo members - types returned with 111
ITypeInfo server

abstract data model
common Automation type description elements

113
overview 113
TYPEKIND-dependent Automation type

description elements 115
initialization 116
local events 127
message processing 116
overview 113
sequencing rules 116
timer events 127

timers 116
ITypeInfo2 client

abstract data model 140
initialization 140
local events 140
message processing 140
sequencing rules 140
timer events 140
timers 140

ITypeInfo2 server
abstract data model 128
initialization 129
local events 140
message processing 129
overview 128
sequencing rules 129
timer events 140
timers 129

ITypeLib client
abstract data model 149
initialization 150
local events 150
message processing 150
sequencing rules 150
timer events 150
timers 150

ITypeLib members - types returned with 111
ITypeLib server

abstract data model 141
initialization 142
local events 149
message processing 142
overview 141
sequencing rules 142
timer events 149
timers 142

ITypeLib2 client
abstract data model 154

initialization 154
local events 154
message processing 154
sequencing rules 154
timer events 154
timers 154

ITypeLib2 server
abstract data model 150
initialization 151
local events 153
message processing 151
sequencing rules 151
timer events 153
timers 150

L

LIBFLAGS enumeration 37
Local events

automation client 103
automation server 102
IEnumVARIANT client 107
IEnumVARIANT server 107
ITypeComp client 113
ITypeComp server 113
ITypeInfo client 128
ITypeInfo server 127
ITypeInfo2 client 140
ITypeInfo2 server 140
ITypeLib client 150
ITypeLib server 149
ITypeLib2 client 154
ITypeLib2 server 153

Locale names 87
LPFUNCDESC 58
LPSAFEARRAYBOUND 46
LPTLIBATTR 62
LPTYPEATTR 60
LPVARDESC 59

M

MapDBChar method 87
MEMBERID_DEFAULTINST 55
MEMBERID_NIL 55
Message processing

automation client 103
automation server 96
IEnumVARIANT client 107
IEnumVARIANT server 104
ITypeComp client 113
ITypeComp server 108
ITypeInfo client 127
ITypeInfo server 116
ITypeInfo2 client 140
ITypeInfo2 server 129
ITypeLib client 150
ITypeLib server 142
ITypeLib2 client 154
ITypeLib2 server 151

Messages

data types

205 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

common 20
user-defined 42

overview 20
transport 20

Method calling example 158
Method equivalence 78
Module specifications 80

N

Next method 104
Normative references 14

O

ODL dispinterfaces 78

Optional arguments - IDispatch::Invoke 101
Overview 15

P

PARAMDESC structure 57
PARAMDESCEX structure 57
Parameters - security index 169
PARAMFLAGS enumeration 33
Preconditions 18
Prerequisites 18
Primary lookup tables 87
Product behavior 187
Property equivalence 78
Property value example

getting 156
setting 157

Protocol details 95

R

Reading type information examples
binding to a member of a default nonsource

interface of an appobject coclass 167
binding to a member of a partner interface 168
enumerating all methods in an interface 165
enumerating all nonsource interfaces in a coclass

164
enumerating on all enumerations in a typelibrary

164
enumerating on all types in a typelibrary 164
getting ITypeLib implementations from

automation server 163
overview 163
retrieving type information 166

RecordInfo structure 52
References

informative 15
normative 14

Referencing external types 81
Relationship to other protocols 18
Reset method 106

S

SAFEARR_BRECORD structure 47

SAFEARR_BSTR structure 46
SAFEARR_DISPATCH structure 47
SAFEARR_HAVEIID structure 48
SAFEARR_UNKNOWN structure 46
SAFEARR_VARIANT structure 47
SAFEARRAY 46
SAFEARRAY structure 50
SAFEARRAYBOUND structure 46
Scalar-sized arrays 48
Security

implementer considerations 169
overview 169
parameter index 169

Sequencing rules
automation client 103
automation server 96
IEnumVARIANT client 107
IEnumVARIANT server 104
ITypeComp client 113
ITypeComp server 108
ITypeInfo client 127
ITypeInfo server 116
ITypeInfo2 client 140

ITypeInfo2 server 129
ITypeLib client 150
ITypeLib server 142
ITypeLib2 client 154
ITypeLib2 server 151

Server - automation
abstract data model 95
initialization 95
local events 102
message processing 96
overview 95
sequencing rules 96
timer events 102
timers 95

Server - IEnumVARIANT
abstract data model 103
initialization 104
local events 107
message processing 104
overview 103
sequencing rules 104
timer events 106
timers 104

Server - ITypeComp
abstract data model 107
initialization 108
local events 113
message processing 108
overview 107
sequencing rules 108
timer events 112
timers 108

Server - ITypeInfo
abstract data model

common Automation type description elements
113

overview 113

206 / 206

[MS-OAUT] — v20130722
 OLE Automation Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TYPEKIND-dependent Automation type
description elements 115

initialization 116
local events 127
message processing 116
overview 113
sequencing rules 116
timer events 127
timers 116

Server - ITypeInfo2
abstract data model 128
initialization 129
local events 140
message processing 129
overview 128
sequencing rules 129
timer events 140
timers 129

Server - ITypeLib
abstract data model 141
initialization 142
local events 149
message processing 142

overview 141
sequencing rules 142
timer events 149
timers 142

Server - ITypeLib2
abstract data model 150
initialization 151
local events 153
message processing 151
sequencing rules 151
timer events 153
timers 150

SF_TYPE enumeration 27
Skip method 105
Standards assignments 18
String equivalence 82
String handling 81
SYSKIND enumeration 38

T

Timer events
automation client 103
automation server 102
IEnumVARIANT client 107
IEnumVARIANT server 106
ITypeComp client 113
ITypeComp server 112
ITypeInfo client 128
ITypeInfo server 127
ITypeInfo2 client 140
ITypeInfo2 server 140
ITypeLib client 150
ITypeLib server 149
ITypeLib2 client 154
ITypeLib2 server 153

Timers
automation client 102
automation server 95

IEnumVARIANT client 107
IEnumVARIANT server 104
ITypeComp client 113
ITypeComp server 108
ITypeInfo client 127
ITypeInfo server 116
ITypeInfo2 client 140
ITypeInfo2 server 129
ITypeLib client 150
ITypeLib server 142
ITypeLib2 client 154
ITypeLib2 server 150

TLIBATTR structure 62
Tracking changes 199
Transport - message 20
TYPEATTR structure 60
TYPEDESC structure 56
TYPEFLAGS enumeration 33
TYPEKIND enumeration 35
Types returned with bound elements -

ITypeComp::Bind
ITypeInfo members 111
ITypeLib members 111

overview 111

U

User-defined data types 42

V

VARDESC structure 59
VARENUM enumeration 21
VARFLAGS enumeration 35
VARIANT 43
VARKIND enumeration 37
Vendor-extensible fields 18
Versioning 18

W

wireBRECORDStr structure 42
wireVARIANTStr structure 43
WORD_SIZEDARR structure 49

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 BYTE
	2.2.2 IID
	2.2.3 LPOLESTR
	2.2.4 REFIID
	2.2.5 REFGUID
	2.2.6 PSAFEARRAY, LPSAFEARRAY
	2.2.7 VARIANT Type Constants
	2.2.8 SAFEARRAY Feature Constants
	2.2.9 ADVFEATUREFLAGS Advanced Feature Flags
	2.2.10 CALLCONV Calling Convention Constants
	2.2.11 FUNCFLAGS Function Feature Constants
	2.2.12 FUNCKIND Function Access Constants
	2.2.13 IMPLTYPEFLAGS Feature Constants
	2.2.14 INVOKEKIND Function Invocation Constants
	2.2.15 PARAMFLAGS Parameter Feature Constants
	2.2.16 TYPEFLAGS Type Feature Constants
	2.2.17 TYPEKIND Type Kind Constants
	2.2.18 VARFLAGS Variable Feature Constants
	2.2.19 VARKIND Variable Kind Constants
	2.2.20 LIBFLAGS Type Library Feature Constants
	2.2.21 SYSKIND System Pointer Size Constants
	2.2.22 DESCKIND Name Description Constants
	2.2.23 BSTR
	2.2.23.1 FLAGGED_WORD_BLOB
	2.2.23.2 BSTR Type Definition
	2.2.23.3 Mapping Between Presented and Transmitted BSTRs

	2.2.24 CURRENCY
	2.2.25 DATE
	2.2.26 DECIMAL
	2.2.27 VARIANT_BOOL
	2.2.28 User-Defined Data Types and BRECORD
	2.2.28.1 User-Defined Data Types
	2.2.28.2 BRECORD
	2.2.28.2.1 _wireBRECORD
	2.2.28.2.2 BRECORD

	2.2.29 VARIANT
	2.2.29.1 _wireVARIANT
	2.2.29.2 VARIANT

	2.2.30 SAFEARRAY
	2.2.30.1 SAFEARRAYBOUND
	2.2.30.2 SAFEARR_BSTR
	2.2.30.3 SAFEARR_UNKNOWN
	2.2.30.4 SAFEARR_DISPATCH
	2.2.30.5 SAFEARR_VARIANT
	2.2.30.6 SAFEARR_BRECORD
	2.2.30.7 SAFEARR_HAVEIID
	2.2.30.8 Scalar-Sized Arrays
	2.2.30.8.1 BYTE_SIZEDARR
	2.2.30.8.2 WORD_SIZEDARR
	2.2.30.8.3 DWORD_SIZEDARR
	2.2.30.8.4 HYPER_SIZEDARR

	2.2.30.9 SAFEARRAYUNION
	2.2.30.10 SAFEARRAY

	2.2.31 RecordInfoData
	2.2.32 DISPID
	2.2.32.1 Reserved DISPIDs

	2.2.33 DISPPARAMS
	2.2.34 EXCEPINFO
	2.2.35 MEMBERID
	2.2.35.1 Reserved MEMBERIDs

	2.2.36 HREFTYPE
	2.2.37 TYPEDESC
	2.2.38 ARRAYDESC
	2.2.39 PARAMDESCEX
	2.2.40 PARAMDESC
	2.2.41 ELEMDESC
	2.2.42 FUNCDESC
	2.2.43 VARDESC
	2.2.44 TYPEATTR
	2.2.45 TLIBATTR
	2.2.46 CUSTDATAITEM
	2.2.47 CUSTDATA
	2.2.48 SCODE
	2.2.49 IDL Syntax Extensions
	2.2.49.1 COM Server Categories
	2.2.49.1.1 Aggregatable Servers
	2.2.49.1.2 Connectable Servers
	2.2.49.1.3 Bindable Servers

	2.2.49.2 IDL Automation Scope
	2.2.49.3 Automation-Compatible Types
	2.2.49.4 Automation Interfaces
	2.2.49.4.1 Automation-Compatible Interfaces
	2.2.49.4.2 Dual Interfaces
	2.2.49.4.3 Dispinterface Interfaces

	2.2.49.5 Automation Members
	2.2.49.5.1 Interfaces Automation Members
	2.2.49.5.2 Bindable Properties
	2.2.49.5.3 Dispinterfaces Automation Members

	2.2.49.6 Automation Parameters
	2.2.49.7 AIDL Interfaces and ODL Dispinterfaces
	2.2.49.7.1 Property Equivalence
	2.2.49.7.2 Method Equivalence

	2.2.49.8 Coclass Specifications
	2.2.49.9 Module Specifications
	2.2.49.10 Referencing External Types

	2.2.50 String Handling
	2.2.50.1 String Equivalence
	2.2.50.2 Globalization

	2.2.51 Automation Hash Values
	2.2.51.1 ComputeHash Method
	2.2.51.2 ComputeHashDBCS Method
	2.2.51.3 MapDBChar Method
	2.2.51.4 Locale Names
	2.2.51.5 Primary Lookup Tables
	2.2.51.6 DBCS Substitution Tables

	3 Protocol Details
	3.1 Automation Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 IDispatch::GetTypeInfoCount (Opnum 3)
	3.1.4.2 IDispatch::GetTypeInfo (Opnum 4)
	3.1.4.3 IDispatch::GetIDsOfNames (Opnum 5)
	3.1.4.4 IDispatch::Invoke (Opnum 6)
	3.1.4.4.1 Invoke Consistency Checks
	3.1.4.4.2 Invoke Argument-Parameter Mapping
	3.1.4.4.3 Handling Default Value and Optional Arguments
	3.1.4.4.4 Argument Coercion

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Automation Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 IEnumVARIANT Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing and Sequencing Rules
	3.3.4.1 IEnumVARIANT::Next (Opnum 3)
	3.3.4.2 IEnumVARIANT::Skip (Opnum 4)
	3.3.4.3 IEnumVARIANT::Reset (Opnum 5)
	3.3.4.4 IEnumVARIANT::Clone (Opnum 6)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 IEnumVARIANT Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	3.5 ITypeComp Server Details
	3.5.1 Abstract Data Model
	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Message Processing Events and Sequencing Rules
	3.5.4.1 ITypeComp::Bind (Opnum 3)
	3.5.4.1.1 Binding Context
	3.5.4.1.1.1 Automation Type Library Binding Context
	3.5.4.1.1.2 Automation Type Description Binding Context

	3.5.4.1.2 Types Returned with Bound Elements
	3.5.4.1.2.1 Types Returned with ITypeLib Members
	3.5.4.1.2.2 Types Returned with ITypeInfo Members

	3.5.4.2 ITypeComp::BindType (Opnum 4)

	3.5.5 Timer Events
	3.5.6 Other Local Events

	3.6 ITypeComp Client Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.3 Initialization
	3.6.4 Message Processing Events and Sequencing Rules
	3.6.5 Timer Events
	3.6.6 Other Local Events

	3.7 ITypeInfo Server Details
	3.7.1 Abstract Data Model
	3.7.1.1 Common Automation Type Description Elements
	3.7.1.2 TYPEKIND Dependent Automation Type Description Elements

	3.7.2 Timers
	3.7.3 Initialization
	3.7.4 Message Processing Events and Sequencing Rules
	3.7.4.1 ITypeInfo::GetTypeAttr (Opnum 3)
	3.7.4.2 ITypeInfo::GetTypeComp (Opnum 4)
	3.7.4.3 ITypeInfo::GetFuncDesc (Opnum 5)
	3.7.4.4 ITypeInfo::GetVarDesc (Opnum 6)
	3.7.4.5 ITypeInfo::GetNames (Opnum 7)
	3.7.4.6 ITypeInfo::GetRefTypeOfImplType (Opnum 8)
	3.7.4.7 ITypeInfo::GetImplTypeFlags (Opnum 9)
	3.7.4.8 ITypeInfo::GetDocumentation (Opnum 12)
	3.7.4.9 ITypeInfo::GetDllEntry (Opnum 13)
	3.7.4.10 ITypeInfo::GetRefTypeInfo (Opnum 14)
	3.7.4.11 ITypeInfo::CreateInstance (Opnum 16)
	3.7.4.12 ITypeInfo::GetMops (Opnum 17)
	3.7.4.13 ITypeInfo::GetContainingTypeLib (Opnum 18)

	3.7.5 Timer Events
	3.7.6 Other Local Events

	3.8 ITypeInfo Client Details
	3.8.1 Abstract Data Model
	3.8.2 Timers
	3.8.3 Initialization
	3.8.4 Message Processing Events and Sequencing Rules
	3.8.5 Timer Events
	3.8.6 Other Local Events

	3.9 ITypeInfo2 Server Details
	3.9.1 Abstract Data Model
	3.9.2 Timers
	3.9.3 Initialization
	3.9.4 Message Processing Events and Sequencing Rules
	3.9.4.1 ITypeInfo2::GetTypeKind (Opnum 22)
	3.9.4.2 ITypeInfo2::GetTypeFlags (Opnum 23)
	3.9.4.3 ITypeInfo2::GetFuncIndexOfMemId (Opnum 24)
	3.9.4.4 ITypeInfo2::GetVarIndexOfMemId (Opnum 25)
	3.9.4.5 ITypeInfo2::GetCustData (Opnum 26)
	3.9.4.6 ITypeInfo2::GetFuncCustData (Opnum 27)
	3.9.4.7 ITypeInfo2::GetParamCustData (Opnum 28)
	3.9.4.8 ITypeInfo2::GetVarCustData (Opnum 29)
	3.9.4.9 ITypeInfo2::GetImplTypeCustData (Opnum 30)
	3.9.4.10 ITypeInfo2::GetDocumentation2 (Opnum 31)
	3.9.4.11 ITypeInfo2::GetAllCustData (Opnum 32)
	3.9.4.12 ITypeInfo2::GetAllFuncCustData (Opnum 33)
	3.9.4.13 ITypeInfo2::GetAllParamCustData (Opnum 34)
	3.9.4.14 ITypeInfo2::GetAllVarCustData (Opnum 35)
	3.9.4.15 ITypeInfo2::GetAllImplTypeCustData (Opnum 36)

	3.9.5 Timer Events
	3.9.6 Other Local Events

	3.10 ITypeInfo2 Client Details
	3.10.1 Abstract Data Model
	3.10.2 Timers
	3.10.3 Initialization
	3.10.4 Message Processing Events and Sequencing Rules
	3.10.5 Timer Events
	3.10.6 Other Local Events

	3.11 ITypeLib Server Details
	3.11.1 Abstract Data Model
	3.11.2 Timers
	3.11.3 Initialization
	3.11.4 Message Processing Events and Sequencing Rules
	3.11.4.1 ITypeLib::GetTypeInfoCount (Opnum 3)
	3.11.4.2 ITypeLib::GetTypeInfo (Opnum 4)
	3.11.4.3 ITypeLib::GetTypeInfoType (Opnum 5)
	3.11.4.4 ITypeLib::GetTypeInfoOfGuid (Opnum 6)
	3.11.4.5 ITypeLib::GetLibAttr (Opnum 7)
	3.11.4.6 ITypeLib::GetTypeComp (Opnum 8)
	3.11.4.7 ITypeLib::GetDocumentation (Opnum 9)
	3.11.4.8 ITypeLib::IsName (Opnum 10)
	3.11.4.9 ITypeLib::FindName (Opnum 11)

	3.11.5 Timer Events
	3.11.6 Other Local Events

	3.12 ITypeLib Client Details
	3.12.1 Abstract Data Model
	3.12.2 Timers
	3.12.3 Initialization
	3.12.4 Message Processing Events and Sequencing Rules
	3.12.5 Timer Events
	3.12.6 Other Local Events

	3.13 ITypeLib2 Server Details
	3.13.1 Abstract Data Model
	3.13.2 Timers
	3.13.3 Initialization
	3.13.4 Message Processing Events and Sequencing Rules
	3.13.4.1 ITypeLib2::GetCustData (Opnum 13)
	3.13.4.2 ITypeLib2::GetLibStatistics (Opnum 14)
	3.13.4.3 ITypeLib2::GetDocumentation2 (Opnum 15)
	3.13.4.4 ITypeLib2::GetAllCustData (Opnum 16)

	3.13.5 Timer Events
	3.13.6 Other Local Events

	3.14 ITypeLib2 Client Details
	3.14.1 Abstract Data Model
	3.14.2 Timers
	3.14.3 Initialization
	3.14.4 Message Processing Events and Sequencing Rules
	3.14.5 Timer Events
	3.14.6 Other Local Events

	4 Protocol Examples
	4.1 AIDL-ODL Property Equivalence
	4.2 AIDL-ODL Method Equivalence
	4.3 Invoke Argument Parameter Mapping
	4.4 Getting the Value of a Property
	4.5 Setting the Value of a Property
	4.6 Calling a Method with Byref and Optional Arguments
	4.7 IEnumVARIANT Example
	4.7.1 IEnumVARIANT Next() Example
	4.7.2 IEnumVARIANT Skip() Example
	4.7.3 IEnumVARIANT Reset() Example
	4.7.4 IEnumVARIANT Clone() Example

	4.8 Reading Type Information
	4.8.1 Getting ITypeLib Implementations from Automation Server
	4.8.2 Enumerating on All Types in a Type Library
	4.8.3 Enumerating on All Enumerations in a Type Library
	4.8.4 Enumerating All Nonsource Interfaces in a Coclass
	4.8.5 Enumerating All Methods in an Interface
	4.8.6 Retrieving Type Information
	4.8.7 Binding to a Member of a Default Nonsource Interface of an Appobject Coclass
	4.8.8 Binding to a Member of a Partner Interface

	5 Security
	5.1 Security Considerations for Implementer
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Appendix C: Full ABNF
	9 Change Tracking
	10 Index

