
1 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-NRLS]:

.NET Remoting: Lifetime Services Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 1.0 Major Updated and revised the technical content.

10/23/2007 1.0.1 Editorial Changed language and formatting in the technical content.

11/30/2007 1.0.2 Editorial Changed language and formatting in the technical content.

1/25/2008 1.1 Minor Clarified the meaning of the technical content.

3/14/2008 1.1.1 Editorial Changed language and formatting in the technical content.

5/16/2008 1.1.2 Editorial Changed language and formatting in the technical content.

6/20/2008 2.0 Major Updated and revised the technical content.

7/25/2008 3.0 Major Updated and revised the technical content.

8/29/2008 3.1 Minor Clarified the meaning of the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/5/2008 4.1 Minor Clarified the meaning of the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 6.0 Major Updated and revised the technical content.

4/10/2009 6.1 Minor Clarified the meaning of the technical content.

5/22/2009 6.1.1 Editorial Changed language and formatting in the technical content.

7/2/2009 6.1.2 Editorial Changed language and formatting in the technical content.

8/14/2009 6.1.3 Editorial Changed language and formatting in the technical content.

9/25/2009 6.2 Minor Clarified the meaning of the technical content.

11/6/2009 6.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.2.2 Editorial Changed language and formatting in the technical content.

1/29/2010 6.3 Minor Clarified the meaning of the technical content.

3/12/2010 6.3.1 Editorial Changed language and formatting in the technical content.

4/23/2010 6.3.2 Editorial Changed language and formatting in the technical content.

6/4/2010 7.0 Major Updated and revised the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

1/7/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 8.1 Minor Clarified the meaning of the technical content.

9/23/2011 8.1 None
No changes to the meaning, language, or formatting of the

technical content.

12/16/2011 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 9.0 Major Significantly changed the technical content.

10/16/2015 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 Client Activation ... 8
1.3.2 Lifetime Management .. 9
1.3.3 Sponsor ... 10
1.3.4 Notational Conventions .. 12

1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 13
1.6 Applicability Statement ... 13
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments ... 13

2 Messages ... 14
2.1 Transport .. 14
2.2 Common Data Types .. 14

2.2.1 ArrayList.. 14
2.2.2 ConstructionCall ... 14
2.2.3 ContextLevelActivator ... 15
2.2.4 ConstructionLevelActivator ... 16
2.2.5 ConstructionResponse ... 16
2.2.6 LeaseState ... 16
2.2.7 ArgumentException ... 17
2.2.8 ArgumentNullException ... 17

3 Protocol Details ... 18
3.1 IActivator .. 18

3.1.1 Abstract Data Model .. 18
3.1.2 Timers .. 19
3.1.3 Initialization ... 19
3.1.4 Message Processing Events and Sequencing Rules .. 19

3.1.4.1 Activate ... 19
3.1.5 Timer Events .. 20
3.1.6 Other Local Events .. 20

3.1.6.1 Register Activatable Server Type... 20
3.2 MarshalByRefObject ... 20

3.2.1 Abstract Data Model .. 20
3.2.2 Timers .. 21
3.2.3 Initialization ... 21
3.2.4 Message Processing Events and Sequencing Rules .. 21

3.2.4.1 GetLifetimeService .. 21
3.2.5 Timer Events .. 21
3.2.6 Other Local Events .. 21

3.3 ILease .. 21
3.3.1 Abstract Data Model .. 22
3.3.2 Timers .. 22
3.3.3 Initialization ... 22
3.3.4 Message Processing Events and Sequencing Rules .. 22

3.3.4.1 Renew ... 23
3.3.4.2 Register ... 24
3.3.4.3 Register(Overload) .. 24

5 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.4.4 Unregister .. 25
3.3.4.5 get_InitialLeaseTime ... 25
3.3.4.6 set_InitialLeaseTime .. 26
3.3.4.7 get_RenewOnCallTime ... 26
3.3.4.8 set_RenewOnCallTime ... 26
3.3.4.9 get_SponsorshipTimeout .. 26
3.3.4.10 set_SponsorshipTimeout .. 27
3.3.4.11 get_CurrentLeaseTime ... 27
3.3.4.12 get_CurrentState .. 27

3.3.5 Timer Events .. 28
3.3.5.1 Lease TTL Timer ... 28
3.3.5.2 Sponsorship Timer .. 28

3.3.6 Other Local Events .. 29
3.3.6.1 Binding to Server Object .. 29
3.3.6.2 Marshal Server Object ... 29
3.3.6.3 Unmarshal Server Object ... 29

3.4 ISponsor ... 29
3.4.1 Abstract Data Model .. 29
3.4.2 Timers .. 29
3.4.3 Initialization ... 29
3.4.4 Message Processing Events and Sequencing Rules .. 29

3.4.4.1 Renewal ... 29
3.4.5 Timer Events .. 30
3.4.6 Other Local Events .. 30

3.5 Object .. 30
3.5.1 Abstract Data Model .. 30
3.5.2 Timers .. 30
3.5.3 Initialization ... 30
3.5.4 Message Processing Events and Sequencing Rules .. 30

3.5.4.1 FieldGetter ... 31
3.5.4.2 FieldSetter ... 31

3.5.5 Timer Events .. 31
3.5.6 Other Local Events .. 32

4 Protocol Examples ... 33
4.1 CAO Activation Request/Response Message. .. 33

4.1.1 Activation Request Message ... 33
4.1.2 Activation Response Message ... 37

4.2 Registering a Sponsor for a CAO Object .. 41
4.3 Incrementing TTL of a Server Object .. 42

5 Security ... 43
5.1 Security Considerations for Implementers ... 43
5.2 Index of Security Parameters .. 43

6 Appendix A: Full Definitions .. 44

7 Appendix B: Product Behavior ... 46

8 Change Tracking .. 48

9 Index ... 49

6 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document specifies the .NET Remoting: Lifetime Services Extension protocol. This protocol adds
lifetime and remote activation capabilities to the .NET Remoting Protocol (specified in [MS-NRTP]).
This protocol builds on the [MS-NRTP] specification, and readers have to be familiar with its terms and
concepts.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

activation: The process of creating a server object.

array: A Remoting Type that is an ordered collection of values. The values are identified by their

position and position is determined by a set of integer indices. The number of indices required to
represent the position is called the Rank of the Array. An Array is part of the Remoting Data
Model and also specifies the Remoting Type of its items. For more information, [MS-NRTP]
section 3.1.1.

Assignable: A reference to the ability of a Data Value to be assigned to a Remoting Type. This

ability is determined by a set of rules described in the Abstract Data Model (section 3.1.1) under
Data Values.

class: A Remoting Type that encapsulates a set of named values and a set of methods that
operate on those values. The named values are called Members of the Class. A Class is part of
the Remoting Data Model. For more information, see [MS-NRTP] section 3.1.1.

client: Synonym for client computer (4).

Client-Activated Object (CAO): A Marshaled Server Object (MSO) that requires an explicit

activation message to create the Server Object.

data value: An instance of a Remoting Type, which may be a Class, Array, Enum, or Primitive.
A Data Value is part of the Remoting Data Model. For more information, see [MS-NRTP] section
3.1.1.

Exception: A Class that indicates an error in the execution of a Remote Method. It is sent as
part of the return message from a server to a client. An Exception contains a human-readable

message that indicates what the error is, and can also have additional data to identify the error.
An Exception is part of the Remoting Data Model. For more information, see [MS-NRTP] section
3.1.1.

lease object: A type of MSO that contains methods that control the lifetime of a server object.
Although a lease object is also a server object, it does not have a lease object of its own; its
lifetime is bound by the lifetime of the associated server object.

Library: Part of the Remoting Data Model. A Library is a named unit that contains a collection of

Remoting Types. For more information, see Library in [MS-NRTP] section 3.1.1.

marshaled server object (MSO): A Marshaled Server Object is a Server Object that is
created by a higher layer, and not in response to an incoming request. For more information on
server objects, (see Server-Activated Object (SAO) for more information on the latter).. The
.NET Remoting Lifetime Services Protocol [MS-NRLS] provides a mechanism for controlling the
lifetimes of marshaled server objects.

member: See Class.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRLS%5d.pdf#Section_dffdda1f2c454978927c4280469ce355

7 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Null Object: Part of the Remoting Data Model. Null Object is a special value that can be used in
place of an instance of a Class, Array, or String. It indicates that no instance is being specified.

For more information, see [MS-NRTP] section 3.1.1.

Primitive Type: Part of the Remoting Data Model. Primitive Types are predefined Remoting

Types such as Byte, Int16, Int32, Int64, and so on. For more information, see [MS-NRTP]
section 3.1.1

proxy: Part of the Remoting Data Model. A Proxy forwards the invocations of Remote Methods
from the client to the Server Object for execution. The Proxy contains the Request URI of the
Server Object. For more information, see [MS-NRTP] section 3.1.1.

Remote Field: Part of the Remoting Data Model. A Remote Field is a remotely accessible field.
For more information, see [MS-NRTP] section 3.1.1.

Remote Method: Part of the Remoting Data Model. A Remote Method is a remotely callable
operation. A Remote Method can either be One-Way or Two-Way. In the case of a One-Way
Method, there is no reply from the implementation. For more information, see [MS-NRTP]

section 3.1.1

Remoting Type: Part of the Remoting Data Model. Class, Array, Enum, and Primitive are
different kinds of Remoting Types. All Remoting Types are identified by a name that is case

sensitive. For more information, see [MS-NRTP] section 3.1.1

Return Value: A Data Value that is returned as part of the results of a Remote Method
invocation. For more information, see Remote Method in Abstract Data Model (section 3.1.1).

Server Interface: Part of the Remoting Data Model. A Server Interface is a Remoting Type
that encapsulates a set of method declarations. The methods have no implementation. For more
information, see Server Interface in Abstract Data Model (section 3.1.1).

server object: Part of the Remoting Data Model. A server object is an instance of a Server

Type. A server object is either an SAO or an MSO.

Server Object Reference: A representation of an SAO or MSO that can be passed between a

client and a server. It contains sufficient information to construct a proxy to invoke Remote
Methods on the SAO or MSO.

Server Object Table: A table that contains the list of available Server Objects in the server.

Server Object URI: A relative URI that identifies a Server Object in a given server. It is the path
part of Request URI, excluding the leading forward slash (/).

Server Type: Part of the Remoting Data Model. A Server Type contains Remote Methods.

server-activated object (SAO): A server object that is created on demand in response to a client
request. See also marshaled server object.

Singleton SAO: An SAO that is created the first time a method on its server type is called;
subsequent calls to the remote methods on the server type reuse the existing SAO unless it
expires. For shorter-lived SAOs, see single-call SAO.

Sponsor: An MSO that is implemented by clients to participate in the renewal process of a Server
Object's lifetime.

Time-To-Live (TTL): The time duration for which a Server Object is available.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

http://go.microsoft.com/fwlink/?LinkId=90317

8 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-NRTP] Microsoft Corporation, ".NET Remoting: Core Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-NRBF] Microsoft Corporation, ".NET Remoting: Binary Format Data Structure".

[MSDN-RemotingLifetime] Microsoft Corporation, "Managing the Lifetime of Remote .NET Objects with
Leasing and Sponsorship",
http://msdn.microsoft.com/msdnmag/issues/03/12/LeaseManager/default.aspx

1.3 Overview

The .NET Remoting Protocol (specified in [MS-NRTP]) defines mechanisms for the creation of Server
Objects and the invocation of Remote Methods on those Server Objects.

This protocol extends the .NET Remoting Protocol to add a mechanism allowing clients to explicitly

create Server Objects and adds another mechanism allowing clients and servers to control the lifetime
of Server Objects. Additionally, this protocol is a .NET Remoting-based protocol, using the .NET

Remoting Protocol as a transport.

Additional overview information for the .NET Remoting: Lifetime Services Extension is available in the
following sections:

 Section 1.3.1 — Activating a server from a client

 Section 1.3.2 — Managing the connection lifetime between a client and a server

 Section 1.3.3 — Managing the sponsors (clients) associated with a server

Much of the basic information and terminology used in this document is also common to the .NET
Remoting Protocol. For more information, see [MS-NRTP] section 2.2.5.

1.3.1 Client Activation

This protocol introduces a new type of Server Object called a Client-Activated Object (CAO). A CAO

can be remotely activated by a client by invoking the Activate Remote Method on a well-known
Server-Activated Object (SAO), passing the Server Type. The implementation of the SAO creates
a new instance of the Server Type, registers it in the Server Object Table, and sends back to the
client a Server Object Reference to the instance. The client receives the Server Object Reference
and can use it to create a Proxy to invoke methods on the CAO.

http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=94435
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

9 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

An example of a client activating an instance and invoking a Remote Method, increment(), is shown in
the following figure.

Figure 1: Client activating a server object

1.3.2 Lifetime Management

This protocol specifies a lease-based model for lifetime management of Marshaled Server Objects
(MSO) and the Singleton SAO.

A Lease Object is associated with each Server Object. Each Lease Object has an initial Time-To-Live

(TTL) for the Server Object. For every Remote Method invocation on the Server Object, the TTL is
extended. If no calls are made to the Server Object for the duration of the TTL, the Server Object is
considered for removal from the Server Object Table.

A client can explicitly control the Server Object's lifetime through Remote Method invocations on the
Server Object's Lease Object. The client gets a Server Object Reference to the Lease Object for a
Server Object by calling the Server Object's GetLifetimeService Remote Method. The client can then
invoke the Renew Remote Method on the Lease Object to extend the TTL by a desired amount.

10 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.3.3 Sponsor

A Lease Object for a given Server Object maintains a list of Sponsors that are called when the TTL of
the Server Object expires. Each Sponsor can specify whether the Server Object's TTL has to be

extended, and can specify the duration of the extension. If there are no associated Sponsors or if none
of the associated Sponsors extend the lifetime of the Server Object, then the Server Object is
removed from the Server Object Table, making it unavailable to clients.

An example of a client managing the lifetime of a Server Object is shown in the following examples.

The client invokes a Remote Method on the Server Object, as follows.

Figure 2: Invoking a Remote Method on the Server Object

The client uses the Lease Object to extend the lease time, as follows.

Figure 3: Extending lease time

11 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The client registers a Sponsor that is invoked when the Lease Object's TTL expires, as follows.

Figure 4: Registering a Sponsor

For more information about how leases and Sponsors are exposed in Windows, see [MSDN-
RemotingLifetime].

If the client times out and there are no sponsors left in the SponsorList, the Lease expires. The Server
Lease Object and the Server Object MUST be unmarshaled as per section (section 3.3.5.1) Lease TTL
Timer.

http://go.microsoft.com/fwlink/?LinkId=94435
http://go.microsoft.com/fwlink/?LinkId=94435

12 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 5: Client timed out or unresponsive

1.3.4 Notational Conventions

All Remoting Type and Remoting Interface definitions in this specification use the .NET Remoting
Description Notation defined in [MS-NRTP] section 2.2.5. This notation is specific to .NET Remoting-
based protocols and is provided to facilitate explanation of the protocol. This document does not

mandate that implementations adhere to a particular Application Programming Interface or
programming language as long as their external behavior is consistent with that described in this
document.

1.4 Relationship to Other Protocols

This protocol is a .NET Remoting-based protocol, using the .NET Remoting Protocol, as specified in
[MS-NRTP] as a transport. Additionally, this protocol extends the .NET Remoting Protocol, adding new
methods for activation and lifetime management.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

13 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The protocol layering of the related protocols is as follows.

Figure 6: NRLS protocol stack

1.5 Prerequisites/Preconditions

This protocol layers on top of the .NET Remoting Protocol and, as a result, has the prerequisites
specified in [MS-NRTP]. In addition, for a CAO, the client application must be configured with enough
information about the Server Type to construct the activation message.

1.6 Applicability Statement

The protocol described in this specification is applicable to users of the .NET Remoting Protocol, as
specified in [MS-NRTP] in environments that require distributed activation and lifetime management of

Server Objects.

CAOs require a server to maintain references to each client object created, which might not scale to
large numbers of clients.

The Sponsor mechanism requires that references be maintained from each server to all registered
Sponsors. In addition, the server has to individually contact each client with a Sponsor, which does
not scale for large numbers of clients holding Sponsors.

1.7 Versioning and Capability Negotiation

This protocol has no versioning or capability negotiation.

1.8 Vendor-Extensible Fields

This protocol has no vendor-extensible fields.

1.9 Standards Assignments

There are no standards assignments made by this protocol.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

14 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

The following sections specify message relationships to the .NET Remoting Protocol [MS-NRTP], as
well as common .NET Remoting: Lifetime Services Extension Remoting Types.

2.1 Transport

This protocol can be bound to any transport supported by the .NET Remoting Protocol, as specified in
[MS-NRTP] section 2.1.

2.2 Common Data Types

2.2.1 ArrayList

ArrayList is a class. The Library name of the class is "mscorlib". It represents a collection of Data
Values. The capacity of the collection is increased dynamically as required.

 namespace System.Collections
 {
 class ArrayList
 {
 System.Object[] _items;
 Int32 _size;
 Int32 _version;
 }
 }

_items: An Array that holds Data Values. The size of the Array MUST be greater than or equal to
the value of the _size field.

_size: An Int32 value that indicates the number of items present in the ArrayList.

_version: An Int32 value that is unused by this protocol. It MAY contain any value and the value
MUST be ignored.<1>

Note The Array is resized as new items are added to the collection. To accommodate adding items in
a performant way, the size of the Array MAY be more than the number of items in the collection. If an
element of the _items Array has an index greater than or equal to the value of the _size field, it is not
considered part of the ArrayList. The element MAY contain any value and the value MUST be
ignored.<2>

2.2.2 ConstructionCall

ConstructionCall is a class. The Library name of the class is "mscorlib". It is used to activate a Server
Object.

 namespace System.Runtime.Remoting.Messaging
 {
 class ConstructionCall
 {
 String __Uri;
 String __MethodName;
 System.Type[] __MethodSignature;
 String __TypeName;
 System.Object[] __Args;
 System.Object __CallContext;
 System.Type __ActivationType;

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

15 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 System.Object __Activator;
 String __ActivationTypeName;
 System.Collections.ArrayList __ContextProperties;
 System.Object[] __CallSiteActivationAttributes;
 }
 }

__Uri: A string value that is unused by this protocol. It MAY contain any value and the value MUST
be ignored.<3>

__MethodName: A string value that specifies the name of the Remote Method. Its value MUST be
".ctor".

__MethodSignature: An Array of type System.Type. Each item in the Array contains information
about the Remoting Type of the arguments that are needed to create an instance of the Server

Object. System.Type is defined in [MS-NRTP] section 2.2.2.11.

__TypeName: A string value that contains the name of the Server Type to activate.

__Args: An Array of objects that contains the parameters required to create an instance of the
Server Object.

__CallContext: A Null Object. This field is reserved in this protocol. The value of this field MUST
be NullObject.

__ActivationType: A Null Object, or an instance Assignable to System.Type that contains

information about the Server Type that is being activated. Its value SHOULD be a Null Object.

__Activator: An object field that is unused in the protocol. This field MAY contain any value and
the value MUST be ignored.<4>

__ActivationTypeName: A String value that contains the name of the Server Type. This field
MUST have the same value as the field __TypeName.

__ContextProperties: An ArrayList that contains additional values required for the activation of
the Server Type. The interpretation of the values is higher-layer–defined. If there are no

properties, this value MUST be an empty ArrayList (that is, an ArrayList with a value of 0 for the
_size field).<5>

__CallSiteActivationAttributes: A Null Object, or an Array of any Data Values. The interpretation
of the values is higher-layer–defined. If there are no values, then this value MUST be a Null
Object.<6>

2.2.3 ContextLevelActivator

ContextLevelActivator is a class. The Library name of the class is "mscorlib". It is used in the
__Activator field of a ConstructionCall instance.

 namespace System.Runtime.Remoting.Activation
 {
 class ContextLevelActivator
 {
 System.Runtime.Remoting.Activation.ConstructionLevelActivator
 m_NextActivator;
 }
 }

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

16 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

m_NextActivator: An instance of ConstructionLevelActivator.

2.2.4 ConstructionLevelActivator

ConstructionLevelActivator is a class. The Library name of the class is "mscorlib". It is used in the
m_NextActivator field of a ContextLevelActivator instance.

 namespace System.Runtime.Remoting.Activation
 {
 class ConstructionLevelActivator
 {
 }
 }

This class has no Members.

2.2.5 ConstructionResponse

ConstructionResponse is a class. The Library name of the Class is "mscorlib". It is used to contain the

activated Server Object.

 namespace System.Runtime.Remoting.Messaging
 {
 class ConstructionResponse
 {
 String __Uri;
 String __MethodName;
 String __TypeName;
 System.Object __Return;
 System.Object[] __OutArgs;
 System.Object __CallContext;
 }
 }

__Uri: The field MAY contain any value and the value MUST be ignored.<7>

__MethodName: A string value that specifies the name of the Remote Method. Its value MUST be
".ctor".

__TypeName: A string value that contains the name of the Server Type that was activated.

__Return: This field contains the activated Server Object.

__OutArgs: The value of this field MUST be an Array of System.Object. The length of the Array
MUST be 0.

__CallContext: The value of this field MUST be NullObject.

2.2.6 LeaseState

The LeaseState enumeration provides state information about a Lease Object. The size of this
enumeration is an Int32.

 namespace System.Runtime.Remoting.Lifetime
 {
 enum LeaseState : Int32
 {

17 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Null = 0,
 Initial = 1,
 Active = 2,
 Renewing = 3,
 Expired = 4
 }
 }

Null: The Lease Object is in an error state.

Initial: This is the initial state when the Lease Object is created.

Active: The Lease Object is actively maintaining the lifetime of Server Object.

Renewing: The TTL has expired and is in the process of renewing.

Expired: The Lease Object has expired.

2.2.7 ArgumentException

ArgumentException is a Derived Class of SystemException. The Library name of the Class is
"mscorlib". When thrown from a Remote Method, it indicates that one of the arguments to the Remote
Method was invalid. Other than the Members inherited from the System.SystemException Class, it
contains information about the name of an invalid argument. This Class has an additional constraint:
the HResult member MUST be hex value 0x80070057.

 namespace System
 {
 class ArgumentException : System.SystemException
 {
 String ParamName;
 }
 }

ParamName: A string value that contains the name of an invalid argument.

2.2.8 ArgumentNullException

ArgumentNullException is a Derived Class of ArgumentException. The Library name of the Class is
"mscorlib". When thrown from a Remote Method, it indicates that a required argument of the Remote

Method was a Null Object. There are no Members other than the Members inherited from the
System.ArgumentException Class. This Class has an additional constraint: the HResult member MUST
be hex value 0x80004003.

 namespace System
 {
 class ArgumentNullException : System.ArgumentException
 {
 }
 }

18 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

This protocol extends the server and client roles defined in the .NET Remoting Protocol [MS-NRTP] by
defining Remoting Interfaces to be implemented by each role. For each Remoting Interface, the client
side is simply a pass-through. That is, no additional timers or other state information are required on
the client side. Calls made by the higher-layer protocol or application are passed directly to the
transport, and the results returned by the transport are passed directly back to the higher-layer

protocol or application.

This protocol extends the server role defined in the .NET Remoting Protocol Server Details ([MS-NRTP]
section 3.2) in the following ways:

 The server implementation MUST register a Server-Activated Object (SAO) that implements the
IActivator (section 3.1) interface. The Server Object URI of the SAO MUST be
"RemoteActivationService.rem".

 Each Server Object that participates in the lifetime management MUST implement
MarshalByRefObject (section 3.2).

 Each Server Object that defines one or more Remote Fields MUST implement
Object (section 3.5).

 The ILease Abstract Data Model (section 3.3.1) extends the .NET Remoting Protocol Server
Abstract Data Model ([MS-NRTP]section 3.2.1) in the following ways:

 Associates a Lease Object with each Server Object in the Server Object Table.

 Updates the TTL of the Lease Object on each invocation of an application-defined Remote
Method.

This protocol extends the client role defined in [MS-NRTP]section 3.3 in the following way:

 The client MAY implement the ISponsor (section 3.4) interface to participate in the lifetime
management of the Server Object.<8> By implementing the ISponsor interface, the client is also

acting in the server role defined in [MS-NRTP]section3.2.

3.1 IActivator

The RemotingTypeName of the interface is "System.Runtime.Remoting.Activation.IActivator".

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Activatable Types Table

This table contains the set of Server Types that can be activated by a client using the
IActivator (section 3.1) interface. The table associates a Server Type by name with the following
information:

 A list of Constructor Method Signatures that a client can target in the Activate (section 3.1.4.1)
request.

 Any other implementation-specific information required to service the Activate request.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

19 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.2 Timers

There are no timers associated with this interface.

3.1.3 Initialization

A Singleton SAO MUST be registered as specified in [MS-NRTP] section 3.2.4.1. The Server Object
MUST implement the IActivator (section 3.1) interface. The Server Object URI MUST be
"RemoteActivationService.rem".

The Activatable Types Table MUST be populated with the initial set of activatable Server Types and

their Constructor Method Signatures specified by the higher layer in an implementation-specific way.

3.1.4 Message Processing Events and Sequencing Rules

This interface includes the following method.

Method Description

Activate Activates the specified Server Object

3.1.4.1 Activate

The Activate method activates a Server Object. The parameter specifies the Server Type of the Server
Object.

 System.Runtime.Remoting.Messaging.ConstructionResponse
 Activate(
 System.Runtime.Remoting.Messaging.ConstructionCall callMessage);

callMessage: An instance of ConstructionCall that contains information that is required to activate
the Server Object.

Return Values: An instance of ConstructionResponse that contains the activated Server Object.

Exceptions: If the Server Object cannot be activated, a RemotingException (as specified in [MS-
NRTP] section 2.2.2.9) MUST be thrown. If the callMessage parameter does not fulfill the
constraints (as specified in ConstructionCall, section 2.2.2), then a RemotingException MUST be
constructed (as specified in [MS-NRTP] section 3.2.5.1.7.2). The Exception MUST be sent back

to the client.

The implementation MUST look up the target Server Type in the Activatable Types Table. The
implementation SHOULD use the __TypeName field of the callMessage parameter as a key, but MAY
use other information instead or in addition. If no matching entry is found in the table, a

RemotingException MUST be constructed (as specified in [MS-NRTP] section 3.2.5.1.7.2) and sent
back to the client.<9>

Once the Server Type information is obtained, the implementation MUST select the Constructor
Method Signature for the activation as follows:

 If there is exactly one Constructor Method Signature associated with the Server Type in the
Activatable Types Table, then that is the Constructor Method Signature for the activation.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

20 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If there is more than one Constructor Method Signature associated with the Server Type, then the
Constructor Method Signature that matches exactly the __MethodSignature field of the

callMessage parameter is selected. Two arrays match exactly if they have the same number of
elements and each member of the one array has the same value as the corresponding member of

the other array.

If the implementation is unable to select a Constructor Method Signature to match the incoming
Activate request, a RemotingException MUST be constructed (as specified in [MS-NRTP] section
3.2.5.1.7.2) and sent back to the client.

Once the Constructor Method Signature is selected, the implementation SHOULD validate that the
incoming argument data in the __Args field of the callMessage argument is assignable to the
arguments specified in the Constructor Method Signature using the rules specified in [MS-NRTP]

section 3.1.1 in the definition of Remote Method.

If the incoming argument data fails validation, the implementation SHOULD construct a
RemotingException (as specified in [MS-NRTP] section 3.2.5.1.7.2) and send it back to the client.

The implementation then MUST create an instance of the Server Type in an implementation-
specific manner.

The implementation MUST construct a ConstructionResponse as specified in section 2.2.5, with the

following additional constraints:

 The __Return field of the ConstructionResponse MUST be set to the newly created Server Object.

 The __MethodName MUST match the __MethodName field of the incoming ConstructionCall
instance.

 The __TypeName MUST match the __TypeName field of the incoming ConstructionCall
instance.

The ConstructionResponse instance MUST be sent back as the return value of the method.

3.1.5 Timer Events

There are no timer events associated with this interface.

3.1.6 Other Local Events

3.1.6.1 Register Activatable Server Type

The implementation SHOULD provide an implementation-specific way for the higher layer to register a
Server Type for activation after initialization has completed. When a Server Type is registered for
activation, the implementation MUST add the Server Type and its Constructor Method Signatures to
the Activatable Types Table. This protocol does not provide a mechanism for unregistering a Server
Type once it has been registered for activation.

3.2 MarshalByRefObject

The RemotingTypeName of the interface is "System.MarshalByRefObject".

3.2.1 Abstract Data Model

This protocol extends the .NET Remoting: Core Protocol Specification Abstract Data Model (as
specified in [MS-NRTP]sections 3.1.1 and 3.2.1) to associate a Lease Object with every active Server

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

21 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Object. The Lease Object MUST be a valid Server Object (as specified in [MS-NRTP] 3.1.1) that
implements the ILease (section 3.3) interface.

3.2.2 Timers

There are no timers associated with this interface.

3.2.3 Initialization

A Lease Object and Lease Object Data MUST be created and associated with a Singleton SAO or MSO
during initialization.

3.2.4 Message Processing Events and Sequencing Rules

This interface includes the following method.

Method Description

GetLifetimeService Returns the Lease Object associated with the target Server Object.

3.2.4.1 GetLifetimeService

GetLifetimeService retrieves a reference to the Lease Object associated with the target Server Object.

 System.Runtime.Remoting.Lifetime.ILease GetLifetimeService();

Return Values: The Lease Object associated with the target Server Object.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

On the first call to GetLifetimeService, the implementation MUST do the following:

 Set the CurrentState of the Lease Object associated with the target Server Object to Active.

 Set the CurrentState of the associated Lease Data to Active.

The Server Object Reference MUST be returned as the Return Value for the method.

3.2.5 Timer Events

There are no timer events associated with this interface.

3.2.6 Other Local Events

There are no other local events.

3.3 ILease

The RemotingTypeName of the interface is "System.Runtime.Remoting.Lifetime.ILease".

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

22 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Sponsor Info

Sponsor Info contains the following information about a Sponsor:

 Proxy: A Proxy to a Sponsor that was registered by a client.

 RenewalTime: The TimeSpan value that was passed when the Sponsor was registered.

Lease Data

Lease data extends the Server Object Table defined in [MS-NRTP] section 3.2.1. Lease Data is

associated with the Lease Object of a Server Object. Lease Data contains the following values:

 InitialLeaseTime: The initial TTL of a Server Object when it is marshaled.

 RenewOnCallTime: The duration by which to extend the TTL when a method is called in the
associated Server Object.

 SponsorshipTimeout: The duration to wait for a Sponsor to respond.

 CurrentState: A LeaseState value that indicates the current state of the Lease Object.

 SponsorList: A list of Sponsor Info. The list is sorted in decreasing order of the Sponsor Info's
RenewalTime field values.

3.3.2 Timers

Lease TTL Timer: Tracks the TTL of a Server Object. Each Lease Object is associated with a
Lease TTL Timer that fires when its TTL expires.

Sponsorship Timer: Tracks the duration of each Renewal call to a Sponsor.

3.3.3 Initialization

An implementation MUST set the initial values of InitialLeaseTime, RenewOnCallTime and
SponsorshipTimeout to a nonzero positive value. The initial value of the CurrentState MUST be
Initial.<10>

3.3.4 Message Processing Events and Sequencing Rules

This interface includes the following methods.

 Method Description

Renew Increases the TTL by the specified amount.

Register

Register(Overload)

Registers the specified Sponsor in a Lease Object's SponsorList. Two forms of this
method exist.

Unregister Unregisters a Sponsor from the Lease Object's SponsorTable.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

23 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Method Description

get_InitialLeaseTime Returns the Lease Object's InitialLeaseTime.

set_InitialLeaseTime Updates the Lease Object's InitialLeaseTime with the specified amount.

get_RenewOnCallTime Returns the Lease Object's RenewOnCallTime.

set_RenewOnCallTime Updates the Lease Object's RenewOnCallTime.

get_SponsorshipTimeout Returns the Lease Object's SponsorshipTimeout.

set_SponsorshipTimeout Updates the Lease Object's SponsorshipTimeout.

get_CurrentLeaseTime Returns the time when the Lease Object expires.

get_CurrentState Returns the Lease Object's current state.

Lease Data's CurrentState determines whether a method can be called. Calling the preceding

operations takes the Lease Object through various LeaseStates. The state machine that captures the
LeaseState transitions is specified in the following diagram.

Figure 7: Lease state machine

3.3.4.1 Renew

Renew extends the TTL of a Server Object.

24 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TimeSpan Renew(
 TimeSpan renewalTime
);

renewalTime: A TimeSpan value that specifies the required TTL for the Server Object.

Return Value: A TimeSpan value that specifies the new TTL for the Server Object.

Exceptions: In addition to the Exceptions common to all Remote Methods in .NET Remoting (as

specified in [MS-NRTP] section 3.2.5.1.7.2), if the CurrentState value of the associated Lease
Data is "Expired", a RemotingException (as specified in [MS-NRTP] section 3.2.5.1.7.2) MUST be
sent back.

If the CurrentState value of the associated Lease Data is "Expired", then the implementation MUST
NOT modify the TTL; instead, the implementation MUST construct a RemotingException ([MS-NRTP]
section 2.2.2.9) as specified in [MS-NRTP] section 3.2.5.1.7.2, Constructing a Remoting Exception.

The Exception MUST be sent back to the client.

Otherwise, if the CurrentState is valid, the new TTL for the Server Object is the renewalTime or the
current value of the Lease TTL Timer, whichever is greater. The implementation MUST reset the Lease
TTL Timer to the new TTL value and return it as the return value of the Renew method.

3.3.4.2 Register

Register registers a Sponsor with the Lease Object associated with the Server Object.

 void Register(
 System.Runtime.Remoting.Lifetime.ISponsor sponsor
);

sponsor: A Proxy to a Server Object that implements the ISponsor interface.

Return Values: There are no return values for this method.

Exceptions: In addition to the Exceptions common to all Remote Methods in .NET Remoting (as
specified in [MS-NRTP] section 3.2.5.1.7.2), if the Sponsor specified in the sponsor argument is
a Null Object, an ArgumentNullException (as specified in section 2.2.8) MUST be sent back.

The implementation of the method MUST create a new Sponsor Info by using a Sponsor instance
referenced by the argument sponsor, and a TimeSpan value of 0. The Sponsor Info MUST be added to
the end of the SponsorList of the associated Lease Data.

3.3.4.3 Register(Overload)

Register(Overload) registers a Sponsor with the Lease Object associated with the Server Object. This

implementation of the method includes a second parameter, renewalTime.

 void Register (
 System.Runtime.Remoting.Lifetime.ISponsor sponsor,
 TimeSpan renewalTime
);

sponsor: A Proxy to a Server Object that implements the ISponsor interface.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

25 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

renewalTime: A TimeSpan value that specifies the required TTL for the Server Object.

Return Values: There are no return values for this method.

Exceptions: In addition to the Exceptions common to all Remote Methods in .NET Remoting (as
specified in [MS-NRTP] section 3.2.5.1.7.2), if the Sponsor specified in the sponsor argument is

a Null Object, an ArgumentNullException (as specified in section 2.2.8) MUST be sent back.

The implementation of the method MUST add the Sponsor to the end of the SponsorList of the
associated Lease Data.

The implementation of the method MUST:

 Create a new Sponsor Info by using the Sponsor instance referenced by the argument sponsor,
and the TimeSpan value of the renewalTime argument. The Sponsor Info MUST be inserted in the
SponsorList of the associated Lease Data such that the items in the list continue to be sorted in

decreasing order of the Sponsor Info's renewalTime.

 Extend the CurrentLeaseTime of the associated Lease Data with the renewal TimeSpan as

specified in the Renew method.

3.3.4.4 Unregister

Unregister removes the specified Sponsor from the Sponsor List.

 void Unregister(
 System.Runtime.Remoting.Lifetime.ISponsor sponsor
);

sponsor: A registered Sponsor that needs to be unregistered.

Return Values: There are no return values for this method.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

Two Sponsor Proxies are considered identical if their Server Object URIs match. The Server Object URI
can be looked up for a given Proxy in the Proxy Table, as specified in [MS-NRTP] section 3.3.1.

If the SponsorList of the associated Lease Data contains a Sponsor Info with Sponsor Proxy identical
to the one referenced by the sponsor argument, the implementation MUST remove the Sponsor Info
from the SponsorList.

3.3.4.5 get_InitialLeaseTime

get_InitialLeaseTime returns the Lease Object's InitialLeaseTime.

 TimeSpan get_InitialLeaseTime();

Return Values: A TimeSpan value that is the InitialLeaseTime in the associated Lease Data.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

The method has no arguments. The implementation of the method MUST return the InitialLeaseTime
of the associated Lease Data.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

26 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.4.6 set_InitialLeaseTime

set_InitialLeaseTime updates the Lease Object's InitialLeaseTime with a specified value.

 void set_InitialLeaseTime(TimeSpan value);

value: A TimeSpan value that has to be set as the InitialLeaseTime in the associated Lease Data.

Return Values: There are no return values for this method.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

If the associated Lease Data's CurrentState is not "Initial", then a RemotingException MUST be
constructed (as specified in [MS-NRTP] section 3.2.5.1.7.2), and the Exception MUST be sent back to
the client; otherwise, the InitialLeaseTime MUST be set to the value of the argument value.

If the new TimeSpan value is negative, the CurrentState MUST be set to Null state.

3.3.4.7 get_RenewOnCallTime

get_RenewOnCallTime returns the Lease Object's RenewOnCallTime.

 TimeSpan get_RenewOnCallTime();

Return Values: A TimeSpan value that is the RenewOnCallTime in the associated Lease Data.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

The method has no arguments. The implementation of the method MUST return the RenewOnCallTime

of the associated Lease Data.

3.3.4.8 set_RenewOnCallTime

set_RenewOnCallTime updates the Lease Object's RenewOnCallTime.

 void set_RenewOnCallTime(TimeSpan value);

value: A TimeSpan value that has to be set as the RenewOnCallTime in the associated Lease

Data.

Return Values: There are no return values for this method.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7).

If the associated Lease Data's CurrentState is not "Initial", then a RemotingException MUST be
constructed (as specified in [MS-NRTP] section 3.2.5.1.7.2), and the exception MUST be sent back to

the client; otherwise, the argument value MUST be set as the new value of RenewOnCallTime.

3.3.4.9 get_SponsorshipTimeout

get_SponsorshipTimeout returns the Lease Object's SponsorshipTimeout.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

27 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TimeSpan get_SponsorshipTimeout();

Return Values: A TimeSpan value that is the SponsorshipTimeout in the associated Lease Data.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

The method has no arguments. The implementation of the method MUST return the
SponsorshipTimeout of the associated Lease Data.

3.3.4.10 set_SponsorshipTimeout

set_SponsorshipTimeout updates the Lease Object's SponsorshipTimeout.

 void set_SponsorshipTimeout(System.TimeSpan value);

value: A TimeSpan value that has to be set as the SponsorshipTimeout in the associated Lease
Data.

Return Values: There are no return values for this method.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7).

If the associated Lease Data's CurrentState is not "Initial", then a RemotingException MUST be
constructed (as specified in [MS-NRTP] section 3.2.5.1.7.2), and the Exception MUST be sent back to

the client; otherwise, the argument value MUST be set as the new value of SponsorshipTimeout.

3.3.4.11 get_CurrentLeaseTime

get_CurrentLeaseTime returns the expiration time of the Lease Object.

 TimeSpan get_CurrentLeaseTime();

Return Values: A TimeSpan value that is the TTL of the associated Server Object.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

The method has no arguments. The implementation of the method MUST return the current value of

the Lease TTL Timer.

3.3.4.12 get_CurrentState

get_CurrentState returns the current LeaseState value of the Lease Object.

 System.Runtime.Remoting.Lifetime.LeaseState get_CurrentState();

Return Values: A LeaseState value that is the CurrentState of the associated Lease Data.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

28 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The method has no arguments. The implementation of the method MUST return the CurrentState of
the associated Lease Data.

3.3.5 Timer Events

3.3.5.1 Lease TTL Timer

When the Lease TTL Timer is fired, an implementation of the protocol MUST evaluate lease renewal as
specified below.

If there are no Sponsor Info instances in the Lease Data's SponsorList, the implementation MUST set
the CurrentState of the associated Lease Data to "Expired", and MUST unmarshal the Server Object,
as specified in [MS-NRTP] section 3.2.4.3.

If there are Sponsor Info instances in the Lease Data's SponsorList, then the Renewal method of the
first Sponsor Info's Proxy MUST be called. The Sponsorship Timer MUST be set to fire after the

duration indicated by SponsorshipTimeout. If the method returns successfully and the Return Value is

a time duration greater than 0, the implementation MUST do the following:

 Extend the TTL of the Server Object by that TimeSpan.

 Reset the timer to fire after the new TTL.

 Set the Sponsor Info's RenewalTime field to the time duration that was returned.

 Reposition the Sponsor Info with the new RenewalTime in the SponsorList, such that the list is
sorted in decreasing order of RenewalTime.

If any of the following conditions occur, the renewal call is considered unsuccessful, and the
implementation MUST remove the Sponsor Info from the SponsorList.

 The SponsorshipTimer fired before the Renewal method completed.

 The Renewal method did not return within the duration specified in SponsorshipTimeout.

 The Renewal method threw an Exception.

 The Renewal method returned a TimeSpan of 0.

If the renewal call was unsuccessful, the implementation MUST repeat the renewal process with the
next Sponsor Info in the SponsorList.

If there are no Sponsor Info instances left in the SponsorList, the implementation MUST do the
following:

 Set the CurrentState of the Lease Data to "Expired".

 Unmarshal the associated Server Object as specified in [MS-NRTP]section 3.2.4.3.

 Unmarshal the Lease Object as specified in [MS-NRTP] section 3.2.4.3.

3.3.5.2 Sponsorship Timer

If the Sponsorship Timer fires before the pending Renewal method has completed, the implementation
MUST remove the Sponsor Info from the SponsorList and move to the next Sponsor Info in the
SponsorList, as specified in section 3.3.5.1.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

29 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.6 Other Local Events

3.3.6.1 Binding to Server Object

This protocol augments [MS-NRTP] section 3.2.5.1.2 to specify additional processing for lifetime
management. When a request is bound to a Server Object, the Lease Object associated with that
Server Object MUST be renewed as specified in the ILease Renew method using the current value of
the Lease Data RenewOnCallTime as the value for the renewalTime argument.

3.3.6.2 Marshal Server Object

This protocol augments [MS-NRTP] section 3.5.4.1 to specify additional processing for lifetime
management. When a Server Object is marshaled, the Lease Object associated with that Server
Object MUST be renewed as specified in the ILease Renew method using the current value of the

Lease Data RenewOnCallTime as the value for the renewalTime argument.

3.3.6.3 Unmarshal Server Object

This protocol augments [MS-NRTP] section 3.5.4.1 to specify additional processing for lifetime
management. When a Server Object is unmarshaled, the implementation MAY expire the Lease Object

associated with that Server Object as specified in Lease TTL Timer (section 3.3.5.1). <11>

3.4 ISponsor

The RemotingTypeName of the interface is "System.Runtime.Remoting.Lifetime.ISponsor".

3.4.1 Abstract Data Model

There is no data model for this interface.

3.4.2 Timers

There are no timers beyond those provided by the underlying transport layers.

3.4.3 Initialization

There is no initialization required by the implementation of this interface.

3.4.4 Message Processing Events and Sequencing Rules

This interface includes the following method.

Method Description

Renewal Extends the TTL of the associated Server Object

3.4.4.1 Renewal

Renewal extends the TTL of the associated Server Object.

 TimeSpan Renewal(ILease lease);

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

30 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

lease: The expiring ILease object.

Return Value: A TimeSpan value that indicates the new TTL for the Server Object.

Exceptions: No Exceptions are specified for this method other than the Exceptions common to all
Remote Methods in .NET Remoting (as specified in [MS-NRTP] section 3.2.5.1.7.2).

An implementation of this method MUST return a TimeSpan that is the new TTL. The implementation
MUST return a valid TimeSpan value greater than or equal to 0. The meaning of the return value is
specified in the following table.

Value Meaning

0 Lease need not be renewed, and this Sponsor can be dropped from the Lease SponsorList.

>0 Lease needs to be renewed, and this Sponsor needs to be kept in the Lease SponsorList.

The implementation SHOULD NOT call methods on the lease argument but instead rely on the return

value to indicate renewal.

3.4.5 Timer Events

There are no timer events.

3.4.6 Other Local Events

There are no other events.

3.5 Object

The RemotingTypeName of the interface is "System.Object".

3.5.1 Abstract Data Model

This protocol extends the .NET Remoting: Core Protocol Specification Abstract Data Model (as

specified in [MS-NRTP] sections 3.1.1 and 3.2.1) to associate zero or more Remote Fields with every
active Server Object. For more information about Remote Fields, see [MS-NRTP] sections 3.1.5.1.3
and 3.1.5.2.3.

3.5.2 Timers

There are no timers associated with this interface.

3.5.3 Initialization

Each Remote Field defined for the Server Object MUST be initialized as required by the application or

higher-layer in an implementation-specific way.

3.5.4 Message Processing Events and Sequencing Rules

This interface includes the following methods.

Method Description

FieldGetter Returns the value of the specified field.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

31 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Method Description

FieldSetter Sets the value of the specified field to the specified value.

3.5.4.1 FieldGetter

FieldGetter returns the value of the specified Remote Field. For more information about how this
method is used for Remote Fields, see [MS-NRTP] sections 3.1.5.1.3 and 3.1.5.2.3.

 void FieldGetter(String typeName, String fieldName, ref
 System.Object val);

typeName: A string value that specifies the name of the Server Interface containing the Remote

Field. The Server Interface MUST be the Server Type of the Server Object.

fieldName: A string value that specifies the name of the Remote Field whose value is to be retrieved.
The Remote Field MUST be defined in the Server Interface specified by the typeName field.

val: The value of the Remote Field. This is a ref argument. Its value on input MUST be ignored. An
implementation MUST set the argument to the value of the Remote Field.

Exceptions: In addition to the Exceptions common to all Remote Methods in .NET Remoting (as

specified in [MS-NRTP] section 3.2.5.1.7), if the Remote Field specified in the fieldName argument is
not defined in the Server Interface specified by the typeName argument, a RemotingException (as
specified in [MS-NRTP] section 2.2.2.8) MUST be sent back.

3.5.4.2 FieldSetter

FieldSetter sets the value of the specified Remote Field to the specified value. For more information

about how this method is used for Remote Fields, see [MS-NRTP] sections 3.1.5.1.4 and 3.1.5.2.4.

 void FieldSetter(String typeName, String fieldName,
 System.Object val);

typeName: A string value that specifies the name of the Type containing the Remote Field. The Type

MUST be the Type or base Type of the Server Object.

fieldName: A string value that specifies the name of the Remote Field whose value is to be set. The
Remote Field MUST be defined in the Type specified by the typeName field.

val: The value of the field. An implementation MUST set the value of the Remote Field to the value of
this argument.

Exceptions: In addition to the Exceptions common to all Remote Methods in .NET Remoting (as

specified in [MS-NRTP] section 3.2.5.1.7.2), if the Remote Field specified in the fieldName argument
is not defined in the Type specified by the typeName argument, a RemotingException (as specified in
[MS-NRTP] section 2.2.2.8) MUST be sent back.

3.5.5 Timer Events

There are no timer events associated with this interface.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

32 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.6 Other Local Events

There are no other local events.

33 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

The following sections provide common scenarios to illustrate the function of the .NET Remoting:
Lifetime Services Extension.

4.1 CAO Activation Request/Response Message.

This sample shows the messages involved when the client sends an activation request for a CAO
where the transport is TCP and the format is binary.

The client is requesting the server to activate an instance of ServerType
"DOJRemotingMetadata.MyServer". The Server Type is defined in the Library "DOJRemotingMetadata".
This is done by calling the Activate method in

System.Runtime.Remoting.Activation.IActivatorServer Type. The Server Object URI is

"RemoteServiceActivation.rem". The server is hosted on machine "maheshdev2".

The server is configured to support TCP on port 8080 and the messages are expected to be encoded in

the .NET Remoting Binary Format, as specified in [MS-NRBF].

The sequence diagram for an activation process is shown in the following figure.

Figure 8: Activation process

4.1.1 Activation Request Message

The client passes a ConstructionCall (section 2.2.2) instance as an argument to the Activate method of
the IActivator interface.

The sample message structure of the activation request is as follows.

 ProtocolIdentifier: 0x54454E2E
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 Operation: Request (0x00)
 Content Length
 Content Distribution: Content Length (0x00)
 Content Length: 1013 (0x03F5)
 Header 1:
 RequestUriHeader

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

34 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 HeaderToken: RequestUri (0x04)
 DataType: CountedString (0x01)
 StringEncoding: UTF8 (0x01)
 UriValue: tcp://maheshdev2:8080/RemoteActivationService.rem
 Header 2:
 ContentTypeHeader:
 HeaderToken: ContentType (0x06)
 DataType: CountedString (0x01)
 ContentTypeValue: application/octet-stream
 Header 3:
 EndHeader:
 HeaderToken: EndOfHeaders(0x00)

 Binary Serialization Format
 SerializationHeaderRecord:
 BinaryHeaderEnum: SerializedStreamHeader (0x00)
 TopId: 1 (0x1)
 HeaderId: -1 (0xFFFFFFFF)
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 BinaryMethodCall:
 BinaryHeaderEnum: BinaryMethodCall (0x15)
 MessageEnum: 00000012
 NoArgs: (...............................0)
 ArgsInline: (..............................0.)
 ArgsIsArray: (.............................1..)
 ArgsInArray: (............................0...)
 NoContext: (...........................1....)
 ContextInline: (..........................0.....)
 ContextInArray: (.........................0......)
 MethodSignatureInArray: (........................0.......)
 PropertyInArray: (.......................0........)
 NoReturnValue: (......................0.........)
 ReturnValueVoid: (.....................0..........)
 ReturnValueInline: (....................0...........)
 ReturnValueInArray: (...................0............)
 ExceptionInArray: (..................0.............)
 Reserved: (000000000000000000..............)
 MethodName:
 PrimitiveTypeEnum: String (0x12)
 Data: Activate
 TypeName:
 PrimitiveTypeEnum: String (0x12)
 Data: System.Runtime.Remoting.Activation.IActivator,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089
 ArgsCount: 0 (0x0)

 CallArray:
 ArraySingleObject:
 ObjectId: 1 (0x1)
 Length: 1 (0x1)
 MemberReference:
 IdRef: 2
 SystemClassWithMembersAndTypes:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 2
 Name: System.Runtime.Remoting.Messaging.ConstructionCall
 NumMembers: 11 (0x0B)
 MemberNames:
 Data: __Uri
 MemberNames:
 Data: __MethodName
 MemberNames:
 Data: __MethodSignature
 MemberNames:
 Data: __TypeName
 MemberNames:
 Data: __Args

35 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 MemberNames:
 Data: __CallContext
 MemberNames:
 Data: __CallSiteActivationAttributes
 MemberNames:
 Data: __ActivationType
 MemberNames:
 Data: __ContextProperties
 MemberNames:
 Data: __Activator
 MemberNames:
 Data __ActivationTypeName
 BinaryTypeEnumA:
 Object (0x02)
 String (0x01)
 SystemClass (0x03)
 String (0x01)
 ObjectArray (0x05)
 Object (0x02)
 Object (0x02)
 Object (0x02)
 SystemClass (0x03)
 SystemClass (0x03)
 String (0x01)
 AdditionalTypeInformationArray:
 SystemClass:
 Length: 13 (0x0D)
 Data: System.Type[]
 SystemClass:
 Length: 28 (0x1C)
 Data: System.Collections.ArrayList
 SystemClass:
 Length: 56 (0x38)
 Data: System.Runtime.Remoting.Activation.
 ContextLevelActivator
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 3 (0x03)
 Length: 5 (0x05)
 Value: .ctor
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 4 (0x04)
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 5 (0x05)
 Length: 111 (0x06F)
 Value: DOJRemotingMetadata.MyServer, DOJRemotingMetadata,
 Version=1.0.2616.21414, Culture=neutral,
 PublicKeyToken=null
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 6 (0x06)
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 7 (0x07)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 8 (0x08)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)

36 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 IdRef: 5 (0x05)
 BinaryArray:
 BinaryHeaderEnum: BinaryArray (0x07)
 ObjectId: 4 (0x04)
 BinaryArrayTypeEnum: 0 (0x0)
 Rank: 1 (0x1)
 LengthA: 0 (0x0)
 BinaryTypeEnumA:
 ObjectUrt (0x03)
 Length: 11 (0x0B)
 Value: System.Type
 SystemClassWithMembersAndTypes:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 7 (0x07)
 Name: System.Collections.ArrayList
 NumMembers: 3 (0x03)
 MemberNames:
 Data: _items
 MemberNames:
 Data: _size
 MemberNames:
 Data: _version
 BinaryTypeEnumA:
 ObjectArray (0x05)
 Primitive (0x00)
 Primitive (0x00)
 Additional Type Information:
 Primitive Type: Int32 (0x08)
 Primitive Type: Int32 (0x08)
 Object Information Array:
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 10 (0x0A)
 MemberPrimitiveUnTyped:
 Value: 0 (0x00)
 MemberPrimitiveUnTyped:
 Value: 0 (0x00)
 SystemClassWithMembersAndTypes:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 8
 Name: System.Runtime.Remoting.Activation.ContextLevelActivator
 NumMembers: 1 (0x01)
 MemberNames:
 Data: m_NextActivator
 BinaryTypeEnumA:
 ObjectUrt (0x03)
 Additional Type Information:
 ObjectUrt:
 Length: 61 (0x3D)
 Data: System.Runtime.Remoting.Activation.
 ConstructionLevelActivator
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 11 (0x0B)
 ArraySingleObject:
 BinaryHeaderEnum: ArraySingleObject (0x10)
 ObjectId: 10 (0x0A)
 Length: 0 (0x00)
 BinaryObjectWithMapTyped:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 11
 Name: System.Runtime.Remoting.Activation.
 ConstructionLevelActivator
 NumMembers: 0 (0x00)
 MessageEnd:
 BinaryHeaderEnum: MessageEnd (0x0B)

37 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.1.2 Activation Response Message

The server sends back the ObjRef (as specified in [MS-NRTP] section 2.2.2.1) of the activated object
as part of the ConstructionResponse instance that is the Return Value. The ObjRef that is passed

contains the following information.

Data type Description

URI /8dabf534_bf0d_4429_a333_d2216f111d90/iLImNXo5ioIkQjrVqx+SkAtj_1.rem

TypeInfo Type information for the object

ChannelInfo Contains information about two channels:

 CrossAppDomainData

 ChannelDataStore [tcp://172.30.184.185:8080]

The ObjRef in this sample indicates that the Server Object activated is hosted on the relative address

of "8dabf534_bf0d_4429_a333_d2216f111d90/iLImNXo5ioIkQjrVqx+SkAtj_1.rem".
CrossAppDomainData is an intraprocess channel and can be ignored. The ObjRef can be accessed via
a TCP connection to port 8080 on IP address "172.30.184.185".

 ProtocolIdentifier: 0x54454E2E
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 Operation: Response (0x02)
 Content Length
 Content Distribution : Content Length (0x00)
 Content Length: 1269 (0x04F5)
 Header 1:
 EndHeader:
 HeaderToken: EndOfHeaders(0x00)
 Binary Serialization Format
 SerializationHeaderRecord:
 BinaryHeaderEnum: SerializedStreamHeader (0x00)
 TopId: 1 (0x1)
 HeaderId: -1 (0xFFFFFFFF)
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 BinaryMethodReturn:
 BinaryHeaderEnum: BinaryMethodReturn (0x16)
 MessageEnum: 00001011
 NoArgs: (...............................1)
 ArgsInline: (..............................0.)
 ArgsIsArray: (.............................0..)
 ArgsInArray: (............................0...)
 NoContext: (...........................1....)
 ContextInline: (..........................0.....)
 ContextInArray: (.........................0......)
 MethodSignatureInArray: (........................0.......)
 PropertyInArray: (.......................0........)
 NoReturnValue: (......................0.........)
 ReturnValueVoid: (.....................0..........)
 ReturnValueInline: (....................0...........)
 ReturnValueInArray: (...................1............)
 ExceptionInArray: (..................0.............)
 Reserved: (000000000000000000..............)
 CallArray:
 ArraySingleObject:
 BinaryHeaderEnum: ArraySingleObject (0x10)
 ObjectId: 1 (0x1)
 Length: 1 (0x1)
 MemberReference:

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

38 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 IdRef: 2
 SystemClassWithMembersAndTypes:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 2
 Name: System.Runtime.Remoting.Messaging.ConstructionResponse
 NumMembers: 6 (0x06)
 MemberNames:
 Data: __Uri
 MemberNames:
 Data: __MethodName
 MemberNames:
 Data: __TypeName
 MemberNames:
 Data: __Return
 MemberNames:
 Data: __OutArgs
 MemberNames:
 Data: __CallContext
 BinaryTypeEnumA:
 Object (0x02)
 String (0x01)
 String (0x01)
 SystemClass (0x03)
 ObjectArray (0x05)
 Object (0x02)
 AdditionalTypeInformationArray:
 SystemClass:
 Length: 30 (0x1E)
 Data: System.Runtime.Remoting.ObjRef
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 3 (0x03)
 Length: 5 (0x05)
 Value: .ctor
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 4 (0x03)
 Length: 111 (0x6F)
 Value: DOJRemotingMetadata.MyServer, DOJRemotingMetadata,
 Version=1.0.2616.21414, Culture=neutral,
 PublicKeyToken=null
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 5 (0x05)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 6 (0x06)
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 SystemClassWithMembersAndTypes:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 5
 Name: System.Runtime.Remoting.ObjRef
 NumMembers: 6 (0x06)
 MemberNames:
 Data: uri
 MemberNames:
 Data: objrefFlags
 MemberNames:
 Data: typeInfo
 MemberNames:
 Data: envoyInfo
 MemberNames:
 Data: channelInfo
 MemberNames:
 Data: fIsMarshalled
 BinaryTypeEnumA:

39 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 String (0x01)
 PrimitiveTypeEnum (0x00)
 SystemClass (0x03)
 SystemClass (0x03)
 SystemClass (0x03)
 PrimitiveTypeEnum (0x00)
 AdditionalTypeInformationArray:
 SystemClass:
 Length: 32 (0x20)
 Data: System.Runtime.Remoting.TypeInfo
 SystemClass:
 Length: 34 (0x22)
 Data: System.Runtime.Remoting.IEnvoyInfo
 SystemClass:
 Length: 34 (0x22)
 Data: System.Runtime.Remoting.ChannelInfo
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 7 (0x07)
 Length: 68 (0x44)
 Value: /8dabf534_bf0d_4429_a333_d2216f111d90/
 iLImNXo5ioIkQjrVqx+SkAtj_1.rem
 MemberPrimitiveUnTyped:
 BinaryTypeEnum: Primitive (0x00)
 Int32Value: 0 (0x00)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 8 (0x08)
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 9 (0x09)
 MemberPrimitiveUnTyped:
 Int32Value: 0 (0x00)
 ArraySingleObject:
 BinaryHeaderEnum: ArraySingleObject (0x10)
 ObjectId: 6 (0x06)
 Length: 0 (0x0)
 SystemClassWithMembersAndTypes:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 8 (0x08)
 Name: System.Runtime.Remoting.TypeInfo
 NumMembers: 3 (0x03)
 MemberNames:
 Data: serverType
 MemberNames:
 Data: serverHierarchy
 MemberNames:
 Data: interfacesImplemented
 BinaryTypeEnumA:
 String (0x01)
 StringArray (0x06)
 StringArray (0x06)
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 10 (0x0A)
 Length: 111 (0x6F)
 Value: DOJRemotingMetadata.MyServer, DOJRemotingMetadata,
 Version=1.0.2616.21414, Culture=neutral,
 PublicKeyToken=null
 BinaryObjectWithMapTyped:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 9 (0x09)
 Name: System.Runtime.Remoting.ChannelInfo
 NumMembers: 1 (0x01)
 MemberNames:
 Data: channelData
 BinaryTypeEnumA:

40 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ObjectArray (0x05)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 11 (0x0B)
 ArraySingleObject:
 BinaryHeaderEnum: ArraySingleObject (0x10)
 ObjectId: 11 (0x0B)
 Length: 2 (0x2)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 12 (0x0C)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 13 (0x0D)
 BinaryObjectWithMapTyped:
 BinaryHeaderEnum: SystemClassWithMembersAndTypes (0x04)
 ObjectId: 12 (0x0C)
 Name: System.Runtime.Remoting.Channels.CrossAppDomainData
 NumMembers: 3 (0x03)
 MemberNames:
 Data: _ContextID
 MemberNames:
 Data: _DomainID
 MemberNames:
 Data: _processGuid
 BinaryTypeEnumA:
 PrimitiveTypeEnum (0x00)
 PrimitiveTypeEnum (0x00)
 String (0x01)
 AdditionalTypeInformationArray:
 PrimitiveTypeEnum: Int32 (0x08)
 PrimitiveTypeEnum: Int32 (0x08)
 MemberPrimitiveUnTyped:
 BinaryTypeEnum: Primitive (0x00)
 Int32Value: 1363808 (0x14CF60)
 MemberPrimitiveUnTyped:
 BinaryTypeEnum: Primitive (0x00)
 Int32Value: 1 (0x01)
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 14 (0x0E)
 Length: 111 (0x6F)
 Value: ac118c52_2f96_4034_9af2_e924215f659b
 SystemClassWithMembersAndTypes:
 BinaryHeaderEnum: BinaryObjectWithMapTyped (0x04)
 ObjectId: 13 (0x0D)
 Name: System.Runtime.Remoting.Channels.ChannelDataStore
 NumMembers: 2 (0x02)
 MemberNames:
 Data: _channelURIs
 MemberNames:
 Data: _extraData
 BinaryTypeEnumA:
 StringArray (0x06)
 ObjectUrt (0x03)
 AdditionalTypeInformationArray:
 ObjectUrt:
 Length: 36 (0x24)
 Data: System.Collections.DictionaryEntry[]
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 15 (0x0F)
 ObjectNull:
 BinaryHeaderEnum: ObjectNull (0x0A)
 ArraySingleObject:
 BinaryHeaderEnum: ArraySingleObject (0x10)
 ObjectId: 15 (0x0F)
 Length: 1 (0x1)
 BinaryObjectString:

41 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 16 (0x10)
 Length: 25 (0x19)
 Value: tcp://172.30.184.185:8080
 MessageEnd:
 BinaryHeaderEnum: MessageEnd (0x0B)

4.2 Registering a Sponsor for a CAO Object

This sample shows the sequence of steps involved when the client registers a Sponsor to manage the
lifetime of the remote CAO Server Object.

1. The client creates a CAO by sending an activation request to the RemoteActivationService, and
receives the Proxy to the Server Object in the activation response.

2. After the client has the Proxy, it retrieves the Proxy to the CAO's Lease Object by calling the

GetLifetimeService method.

3. It then registers a Sponsor object by calling the Register method.

4. When the TTL of the Server Object expires, the Renewal method is called.

The sequence diagram for the above sample is shown in the following figure.

Figure 9: Registering a Sponsor

42 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.3 Incrementing TTL of a Server Object

The client does not need to register a Sponsor to manage the lifetime of the remote Server Object.

Instead, the client can extend the TTL of the associated Server Object by using the Renew method of

the Lease Object.

The following diagram illustrates the process of extending a lease by using the Renew method.

Figure 10: Extending a lease TTL

43 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

 The following sections specify security considerations for implementers of the .NET Remoting:
Lifetime Services Extension.

5.1 Security Considerations for Implementers

This protocol allows a client to request that the server activate a local object by name. This could

potentially result in the client being able to run arbitrary code on the server.

Implementers can safeguard against this threat by restricting the set of Remoting Types a client can
request to those that are known to be safe—for example, by maintaining a list of allowable Remoting
Types for the application to configure.

5.2 Index of Security Parameters

This protocol has no security parameters.

44 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full Definitions

For ease of implementation, the complete definitions of Remoting Types and Server Interfaces are
provided below.

The following Primitive Types are defined in [MS-NRTP] section 2.2.5:

 Int32

 String

 TimeSpan

The remainder of this appendix lists the definitions of the elements that constitute the .NET Remoting:
Lifetime Services Extension.

 namespace System.Collections
 {
 class ArrayList
 {
 System.Object[] _items;
 Int32 _size;
 Int32 _version;
 }
 }

 namespace System.Runtime.Remoting.Lifetime
 {
 interface ILease
 {
 TimeSpan Renew(TimeSpan renewalTime);
 void Register(System.Runtime.Remoting.ISponsor sponsor);
 void Register(System.Runtime.Remoting.ISponsor sponsor,
 TimeSpan renewalTime);
 void Unregister(System.Runtime.Remoting.ISponsor sponsor);
 TimeSpan get_InitialLeaseTime();
 void set_InitialLeaseTime(TimeSpan value);
 TimeSpan get_RenewOnCallTime();
 void set_RenewOnCallTime(TimeSpan value);
 TimeSpan get_SponsorshipTimeout();
 void set_SponsorshipTimeout(System.Timespan value);
 TimeSpan get_CurrentLeaseTime();
 System.Runtime.Remoting.LeaseState get_CurrentState();
 }

 interface ISponsor
 {
 TimeSpan Renewal();
 }

 enum LeaseState : Int32
 {
 Null = 0,
 Initial = 1,
 Active = 2,
 Renewing = 3,
 Expired = 4
 }
 }

 namespace System.Runtime.Remoting.Messaging
 {
 class ConstructionCall
 {
 String __Uri;
 String __MethodName;

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

45 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 System.Type[] __MethodSignature;
 String __TypeName;
 System.Object[] __Args;
 System.Object __CallContext;
 System.Type __ActivationType;
 System.Object __Activator;
 String __ActivationTypeName;
 System.Collections.ArrayList __ContextProperties;
 System.Object[] __CallSiteActivationAttributes;
 }

 class ConstructionResponse
 {
 String __Uri;
 String __MethodName;
 String __TypeName;
 System.Object __Return;
 System.Object[] __OutArgs;
 System.Object __CallContext;
 }
 }

 namespace System.Runtime.Remoting.Activation
 {
 interface IActivator
 {
 System.Runtime.Remoting.Messaging.ConstructionResponse
 Activate(
 System.Runtime.Remoting.Messaging.ConstructionCall callMessage);
 }
 }

 namespace System
 {
 interface MarshalByRefObject
 {
 System.Runtime.Remoting.ILease GetLifetimeService();
 }

 interface Object
 {
 void FieldGetter(String typeName, String fieldName, ref System.Object val);
 void FieldSetter(String typeName, String fieldName, System.Object val);
 }
 }

46 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see [MS-NETOD] section 4.

 Microsoft .NET Framework 1.0

 Microsoft .NET Framework 2.0

 Microsoft .NET Framework 3.0

 Microsoft .NET Framework 3.5

 Microsoft .NET Framework 4.0

 Microsoft .NET Framework 4.5

 Microsoft .NET Framework 4.6

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.2.1: Windows uses this value locally to contain a count of modifications to _items.

<2> Section 2.2.1: Windows writes a Null Object for any elements of the _items Array with an index
greater than or equal to the value of the _size field.

<3> Section 2.2.2: Windows sets the value of this field to Null Object.

<4> Section 2.2.2: Windows uses this field locally to hold implementation-specific objects. Windows

provides an extension mechanism for the higher layer to provide the value of this field. The default
value of this field is an instance of the ContextLevelActivator (section 2.2.3) class.

<5> Section 2.2.2: Windows provides an extension mechanism for the higher layer to associate a
collection of values with a Server Type that is activated by the client.

<6> Section 2.2.2: Windows provides an extension mechanism for the higher layer to associate a
collection of values with a Server Type that is activated by the client.

<7> Section 2.2.5: Windows sets the value of this field to Null Object.

<8> Section 3: In Windows, the higher-layer protocol can provide an implementation of ISponsor to
participate in the lifetime management of the Server Object.

<9> Section 3.1.4.1: Windows determines the Server Type in the following ways:

 If the __ActivationType field is not a Null Object, the value of the __ActivationType field is the
Server Type.

http://go.microsoft.com/fwlink/?LinkId=627609

47 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the __ActivationType field is a Null Object, the __ActivationTypeName field is used to
identify the Server Type.

Windows uses the constructor specified by the __MethodName and __MethodSignature fields to
construct a Server Object from the Server Type. Windows throws a RemotingException (specified in

[MS-NRTP] section 2.2.2.9) in the following cases:

 The specified Server Type is not available.

 The specified constructor is not available.

 The values in the __Args field cannot be used to call the specified constructor.

<10> Section 3.3.3: Windows allows InitialLeaseTime, RenewOnCallTime and SponsorshipTimeout
values to be overridden by the higher layer. The default values are as follows:

Property Value

 InitialLeaseTime 5 minutes

 RenewOnCallTime 2 minutes

 SponsorshipTimeout 2 minutes

In the case of a Marshaled Server Object, Windows sets the MSO's TTL to double the InitialLeaseTime
configured by the higher layer. So, if the InitialLeaseTime was configured as 5 minutes (the default),
the MSO's initial TTL would be 10 minutes.

<11> Section 3.3.6.3: Windows does not modify the Lease when a Server Object is unmarshaled. The
Lease will continue its lifetime as specified in Lease TTL Timer (section 3.3.5.1), expiring when the
Lease TTL Timer fires and all registered Sponsor objects fail to respond or return 0.

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

48 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

49 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Index

A

Abstract data model
 IActivator 18
 ILease 22
 ISponsor 29
 MarshalByRefObject 20
Activate - IActivator 19
Activation Request message 33
Activation Response message 37
Applicability 13
ArrayList 14

C

CAO Activation Request/Response message example

33
Cao activation request/response message. example

33
CAO object - registering a sponsor for 41
Capability negotiation 13
Change tracking 48
Client activation 8
Common data types 14
ConstructionCall 14
ConstructionLevelActivator 16
ConstructionResponse 16
ContextLevelActivator 15
Conventions 12

D

Data model - abstract
 IActivator 18
 ILease 22
 ISponsor 29
 MarshalByRefObject 20
Data types 14

E

Examples
 CAO Activation Request/Response message

example 33
 cao activation request/response message. 33
 incrementing ttl of a server object 42
 overview 33
 registering a sponsor for a cao object 41

F

FieldGetter 31
Fields - vendor-extensible 13
FieldSetter 31
Full definitions 44

G

get_CurrentLeaseTime 27
get_CurrentState 27
get_InitialLeaseTime 25
get_RenewOnCallTime 26

get_SponsorshipTimeout 26
GetLifetimeService 21
Glossary 6

I

IActivator
 abstract data model 18
 Activate 19
 initialization 19
 local events 20
 message processing 19
 overview 18
 sequencing rules 19
 timer events 20
 timers 19
ILease
 abstract data model 22
 initialization 22
 local events 29
 message processing 22
 overview 21
 sequencing rules 22

 timer events 28
 timers 22
Implementer - security considerations 43
Incrementing ttl of a server object example 42
Index of security parameters 43
Informative references 8
Initialization
 IActivator 19
 ILease 22
 ISponsor 29
 MarshalByRefObject 21
Introduction 6
ISponsor
 abstract data model 29
 initialization 29
 local events 30
 message processing 29
 overview 29
 sequencing rules 29
 timer events 30
 timers 29

L

Lease TTL timer 28
LeaseState 16
Lifetime management 9
Local events
 IActivator 20
 ILease 29
 ISponsor 30
 MarshalByRefObject 21

M

MarshalByRefObject
 abstract data model 20
 initialization 21
 local events 21

50 / 50

[MS-NRLS] - v20160714
.NET Remoting: Lifetime Services Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 message processing 21
 overview 20
 sequencing rules 21
 timer events 21
 timers 21
Message processing
 IActivator 19
 ILease 22
 ISponsor 29
 MarshalByRefObject 21
Messages
 data types 14
 overview 14
 transport 14

N

Normative references 8
Notational conventions 12

O

Overview (synopsis) 8

P

Parameters - security index 43
Preconditions 13
Prerequisites 13
Product behavior 46
Protocol Details
 overview 18

R

References 8
 informative 8
 normative 8
Register 24
Register(Overload) 24
Registering a sponsor for a cao object example 41
Relationship to other protocols 12
Renew 23
Renewal 29

S

Security
 implementer considerations 43
 overview 43
 parameter index 43
Sequencing rules
 IActivator 19
 ILease 22
 ISponsor 29
 MarshalByRefObject 21
Server
 binding to objects 29
 incrementing TTL of 42
set_InitialLeaseTime 26
set_RenewOnCallTime 26
set_SponsorshipTimeout 27
Sponsor 10
Standards assignments 13

T

Timer events
 IActivator 20
 ILease 28
 ISponsor 30
 MarshalByRefObject 21
Timers
 IActivator 19
 ILease 22
 ISponsor 29
 MarshalByRefObject 21
Tracking changes 48
Transport 14
TTL - incrementing 42

U

Unregister 25

V

Vendor-extensible fields 13
Versioning 13

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Client Activation
	1.3.2 Lifetime Management
	1.3.3 Sponsor
	1.3.4 Notational Conventions

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 ArrayList
	2.2.2 ConstructionCall
	2.2.3 ContextLevelActivator
	2.2.4 ConstructionLevelActivator
	2.2.5 ConstructionResponse
	2.2.6 LeaseState
	2.2.7 ArgumentException
	2.2.8 ArgumentNullException

	3 Protocol Details
	3.1 IActivator
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Activate

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 Register Activatable Server Type

	3.2 MarshalByRefObject
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 GetLifetimeService

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 ILease
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Renew
	3.3.4.2 Register
	3.3.4.3 Register(Overload)
	3.3.4.4 Unregister
	3.3.4.5 get_InitialLeaseTime
	3.3.4.6 set_InitialLeaseTime
	3.3.4.7 get_RenewOnCallTime
	3.3.4.8 set_RenewOnCallTime
	3.3.4.9 get_SponsorshipTimeout
	3.3.4.10 set_SponsorshipTimeout
	3.3.4.11 get_CurrentLeaseTime
	3.3.4.12 get_CurrentState

	3.3.5 Timer Events
	3.3.5.1 Lease TTL Timer
	3.3.5.2 Sponsorship Timer

	3.3.6 Other Local Events
	3.3.6.1 Binding to Server Object
	3.3.6.2 Marshal Server Object
	3.3.6.3 Unmarshal Server Object

	3.4 ISponsor
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.4.1 Renewal

	3.4.5 Timer Events
	3.4.6 Other Local Events

	3.5 Object
	3.5.1 Abstract Data Model
	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Message Processing Events and Sequencing Rules
	3.5.4.1 FieldGetter
	3.5.4.2 FieldSetter

	3.5.5 Timer Events
	3.5.6 Other Local Events

	4 Protocol Examples
	4.1 CAO Activation Request/Response Message.
	4.1.1 Activation Request Message
	4.1.2 Activation Response Message

	4.2 Registering a Sponsor for a CAO Object
	4.3 Incrementing TTL of a Server Object

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full Definitions
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

