

1 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

[MS-NRBF-Diff]:

.NET Remoting: Binary Format Data Structure

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

▪ Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 1.0 Major Updated and revised the technical content.

10/23/2007 1.1 Minor Clarified the meaning of the technical content.

11/30/2007 1.1.1 Editorial Changed language and formatting in the technical content.

1/25/2008 1.1.2 Editorial Changed language and formatting in the technical content.

3/14/2008 1.1.3 Editorial Changed language and formatting in the technical content.

5/16/2008 1.1.4 Editorial Changed language and formatting in the technical content.

6/20/2008 2.0 Major Updated and revised the technical content.

7/25/2008 3.0 Major Updated and revised the technical content.

8/29/2008 3.0.1 Editorial Changed language and formatting in the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/5/2008 4.1 Minor Clarified the meaning of the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 5.1 Minor Clarified the meaning of the technical content.

4/10/2009 5.1.1 Editorial Changed language and formatting in the technical content.

5/22/2009 5.1.2 Editorial Changed language and formatting in the technical content.

7/2/2009 5.1.3 Editorial Changed language and formatting in the technical content.

8/14/2009 5.2 Minor Clarified the meaning of the technical content.

9/25/2009 5.3 Minor Clarified the meaning of the technical content.

11/6/2009 5.3.1 Editorial Changed language and formatting in the technical content.

12/18/2009 5.4 Minor Clarified the meaning of the technical content.

1/29/2010 5.5 Minor Clarified the meaning of the technical content.

3/12/2010 6.0 Major Updated and revised the technical content.

4/23/2010 7.0 Major Updated and revised the technical content.

6/4/2010 7.0.1 Editorial Changed language and formatting in the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 8.0 None No changes to the meaning, language, or formatting of the

3 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Date
Revision
History

Revision
Class Comments

technical content.

1/7/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 8.1 Minor Clarified the meaning of the technical content.

9/23/2011 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 9.0 Major Updated and revised the technical content.

3/30/2012 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 9.1 Minor Clarified the meaning of the technical content.

10/25/2012 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 10.0 Major Significantly changed the technical content.

10/16/2015 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2017 11.0 Major Significantly changed the technical content.

4 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.4 Relationship to Protocols and Other Structures .. 10
1.5 Applicability Statement ... 10
1.6 Versioning and Localization ... 10
1.7 Vendor-Extensible Fields ... 11

2 Structures ... 12
2.1 Common Definitions ... 12

2.1.1 Common Data Types ... 12
2.1.1.1 Char .. 12
2.1.1.2 Double ... 12
2.1.1.3 Single .. 13
2.1.1.4 TimeSpan .. 13
2.1.1.5 DateTime ... 13
2.1.1.6 LengthPrefixedString ... 14
2.1.1.7 Decimal ... 16
2.1.1.8 ClassTypeInfo ... 16

2.1.2 Enumerations ... 17
2.1.2.1 RecordTypeEnumeration .. 17
2.1.2.2 BinaryTypeEnumeration ... 18
2.1.2.3 PrimitiveTypeEnumeration.. 19

2.2 Method Invocation Records ... 20
2.2.1 Enumerations ... 20

2.2.1.1 MessageFlags ... 20
2.2.2 Common Structures .. 22

2.2.2.1 ValueWithCode ... 22
2.2.2.2 StringValueWithCode ... 22
2.2.2.3 ArrayOfValueWithCode .. 22

2.2.3 Record Definitions ... 23
2.2.3.1 BinaryMethodCall .. 23
2.2.3.2 MethodCallArray ... 24
2.2.3.3 BinaryMethodReturn .. 25
2.2.3.4 MethodReturnCallArray .. 25

2.3 Class Records .. 26
2.3.1 Common Structures .. 26

2.3.1.1 ClassInfo ... 26
2.3.1.2 MemberTypeInfo ... 27

2.3.2 Record Definitions ... 28
2.3.2.1 ClassWithMembersAndTypes .. 28
2.3.2.2 ClassWithMembers .. 29
2.3.2.3 SystemClassWithMembersAndTypes .. 29
2.3.2.4 SystemClassWithMembers.. 29
2.3.2.5 ClassWithId .. 30

2.4 Array Records .. 30
2.4.1 Enumerations ... 31

2.4.1.1 BinaryArrayTypeEnumeration ... 31
2.4.2 Common Definitions .. 31

2.4.2.1 ArrayInfo ... 31
2.4.3 Record Definitions ... 32

2.4.3.1 BinaryArray .. 32

5 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.4.3.2 ArraySingleObject ... 33
2.4.3.3 ArraySinglePrimitive .. 33
2.4.3.4 ArraySingleString .. 34

2.5 Member Reference Records ... 34
2.5.1 MemberPrimitiveTyped .. 34
2.5.2 MemberPrimitiveUnTyped .. 35
2.5.3 MemberReference ... 35
2.5.4 ObjectNull.. 36
2.5.5 ObjectNullMultiple ... 36
2.5.6 ObjectNullMultiple256 ... 36
2.5.7 BinaryObjectString .. 37

2.6 Other Records ... 37
2.6.1 SerializationHeaderRecord ... 37
2.6.2 BinaryLibrary ... 38
2.6.3 MessageEnd ... 39

2.7 Binary Record Grammar .. 39

3 Structure Examples ... 40

4 Security Considerations ... 44

5 Appendix A: Product Behavior ... 45

6 Change Tracking .. 47

7 Index ... 48

6 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

1 Introduction

The .NET Remoting: Binary Format Data Structure defines a set of structures that represent object
graph or method invocation information as an octet stream. One possible application of the structure
is as the serialization format for the data model as specified in [MS-NRTP] section 3.1.1.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

argument: A named Data Value that is passed as part of a Remote Method invocation or returned

as part of the results of a Remote Method invocation. For more information about Remote
Method invocation, see [MS-NRTP] section 3.1.1.

array: A Remoting Type that is an ordered collection of values. The values are identified by their
position and position is determined by a set of integer indices. The number of indices required to
represent the position is called the Rank of the Array. An Array is part of the Remoting Data
Model and also specifies the Remoting Type of its items. For more information, [MS-NRTP]
section 3.1.1.

Call Context: A mechanism to pass data that is not part of the method Arguments between client
and server. It is a collection of name-value pairs that is carried with the execution of a Remote
Method. This collection is sent along with other method Arguments from client to server, and is
transmitted back, along with the Return Values and output Arguments, from the server to the
client. For more information, see [MS-NRTP] section 1.3.

class: (1) A Remoting Type that encapsulates a set of named values and a set of methods that
operate on those values. The named values are called Members of the Class. A Class is part of

the Remoting Data Model. For more information, see [MS-NRTP] section 3.1.1.

(2) See object class.

Class Metadata: Information about a Class that includes the Class name, its Library name, and
the names and Remoting Types of its Members.

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones

around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

data value: An instance of a Remoting Type, which may be a Class, Array, Enum, or Primitive. A
Data Value is part of the Remoting Data Model. For more information, see [MS-NRTP] section
3.1.1.

deserialize: See unmarshal (1).

Enum: A Primitive type whose members are constrained to a set of values. The Primitive type is
considered to be an underlying Remoting Type of the Enum. Each value has a name associated
with it. An Enum is part of the Remoting Data Model, and an abbreviation for "enumeration." For
more information, see [MS-NRTP] section 3.1.1.

Exception: A Class that indicates an error in the execution of a Remote Method. It is sent as part
of the return message from a server to a client. An Exception contains a human-readable
message that indicates what the error is, and can also have additional data to identify the error.

7 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

An Exception is part of the Remoting Data Model. For more information, see [MS-NRTP] section
3.1.1.

Generic Argument: A formal argument used in a Generic Type or a Generic Remote Method to
represent a parameterized Remoting Type. Generic Arguments can be referenced in the Class or

the method as opaque Remoting Types. They are replaced by the actual types when the Class or
the method is used. For more information, see Generic Type and Methods in [ECMA-335].

Generic Remote Method: A Remote Method that is parameterized by one or more Remoting
Types. The method caller must provide the actual Remoting Types (in addition to the Input
Arguments). For more information, see [MS-NRTP] section 3.1.1.

Generic Type: A Class, Server Type, or Server Interface that is parameterized by one or more
Remoting Types. A Generic Type contains GenericArguments as a placeholder for the

parameterized Remoting Types. A Generic Type cannot have any instances. For more
information, see Generic Types and Methods in [ECMA-335].

Input Argument: A named Data Value that is passed as part of a Remote Method invocation from

the client to the server. For more information, see Remote Method in the Abstract Data Model
(section 3.1.1).

Library: Part of the Remoting Data Model. A Library is a named unit that contains a collection of

Remoting Types. For more information, see Library in [MS-NRTP] section 3.1.1.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

local time zone: The time zone in which the computer running the implementation is configured.

logical call ID: An optional string value that identifies the logical thread of execution. This value
is passed as part of the Call Context and can be used in implementation-specific local threading
models on the server.

member: See Class.

message content: The serialized body of a message.

Message Properties: A collection of implementation-specific, name-value pairs that are
transmitted as part of a Remote Method invocation. Message Properties are used to exchange
implementation-specific data between clients and servers.

method signature: A list of the remoting types of the arguments of a remote method.

Null Object: Part of the Remoting Data Model. Null Object is a special value that can be used in

place of an instance of a Class, Array, or String. It indicates that no instance is being specified.
For more information, see [MS-NRTP] section 3.1.1.

Output Argument: A named Data Value that is returned as part of the results of a Remote
Method invocation. For more information, see Remote Method in Abstract Data Model (section
3.1.1).

Primitive Type: Part of the Remoting Data Model. Primitive Types are predefined Remoting Types

such as Byte, Int16, Int32, Int64, and so on. For more information, see [MS-NRTP] section
3.1.1

Primitive Value: Part of the Remoting Data Model. A Primitive Value is an instance of a Primitive
Type.

record: A variable-length sequence of bytes with a predefined structure.

8 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Remote Method: Part of the Remoting Data Model. A Remote Method is a remotely callable
operation. A Remote Method can either be One-Way or Two-Way. In the case of a One-Way

Method, there is no reply from the implementation. For more information, see [MS-NRTP]
section 3.1.1

Remoting Data Model: A model that is used to represent higher-layer–defined data structures
and values, and to represent a Remote Method invocation and the Return Value or error
information from that invocation. A protocol, such as [MS-NRLS], that is built on top of this
protocol can be defined by using the Remoting Data Model, and can be agnostic to the
serialization format. For more information, see Abstract Data Model (section 3.1.1).

Remoting Type: Part of the Remoting Data Model. Class, Array, Enum, and Primitive are different
kinds of Remoting Types. All Remoting Types are identified by a name that is case sensitive. For

more information, see [MS-NRTP] section 3.1.1

Return Value: A Data Value that is returned as part of the results of a Remote Method invocation.
For more information, see Remote Method in Abstract Data Model (section 3.1.1).

serialization: A mechanism by which an application converts an object into an XML
representation.

Serialization Format: The structure of the serialized message content, which can be either binary

or SOAP. Binary serialization format is specified in [MS-NRBF]. SOAP serialization format is
specified in [MS-NRTP].

Serialization Stream: An octet stream that contains a sequence of records defined in this
document.

serialize: The process of taking an in-memory data structure, flat or otherwise, and turning it into
a flat stream of bytes. See also marshal.

Server Type: Part of the Remoting Data Model. A Server Type contains Remote Methods.

System Library: A specially designated library that can be used to reduce the wire size for
commonly used data types. The name of the library is agreed to by both the server and the

client.

System.Object: Part of the Remoting Data Model. System.Object is a Class that has no Members.
A Class that does not extend another Class is considered to extend System.Object.

Ultimate Array Item Type: The Item Type of the innermost Array in a recursive construction of
Array of Arrays. For instance, an "Array of TypeA" has an Ultimate Array Item Type of TypeA. An

"Array of Array of TypeA" also has an Ultimate Array Item Type of TypeA, as does an "Array of
Array of Array of TypeA".

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.

Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODE5.0.0/2007] section 3.9.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

9 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-NRTP] Microsoft Corporation, ".NET Remoting: Core Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc-editor.org/rfc/rfc4234.txt

1.2.2 Informative References

[MSDN-.NETFrameWrk] Microsoft Corporation, ".NET Framework", http://msdn.microsoft.com/en-
us/netframework/default.aspx

1.3 Overview

The .NET Remoting: Binary Format Data Structure defines a set of structures that represent object
graph or method invocation information as an octet stream. One possible application of the structure
is as the serialization format for the data model as specified in [MS-NRTP] section 3.1.1.

This specification defines the records used by this format, and the grammar for writing the records to

the serialization stream.

The format provides structures for mapping instances of data that conform to the Remoting Data
Model into octets. The Remoting Data Model is specified in [MS-NRTP] section 3.1.1.

The format consists of a sequence of variable-length records. The records are used to hold the
serialized instances of Classes (2), Arrays, Primitive Types, and method invocations. There are
multiple record types to represent each of these instances. The various record types optimize the wire
size of the serialized instance. This section specifies the structure of each record in detail. For clarity,

the records are grouped as follows:

▪ Class (2) records contain Class (2) instances. The format allows serialization of Class Metadata, in
addition to the actual data. Richness of metadata directly contributes to the wire size. The amount
of metadata can be reduced by conveying implicit information through special record types and by
sharing metadata across records.

▪ Array records contain Array instances. There is a general record type for Array that can represent

multiple dimensions and nonzero lower bound. There are more compact Array records for
frequently used Array types such as single-dimensional Array of String, Object, and Primitive
Values.

10 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

▪ Members reference records contain Data Values of Class (2) Members or Array items. There are
different record types for Null Object, string values, Primitive Type values, and instances of

Classes (2) and Arrays.

▪ Method invocation records contain information about Remote Method, Server Type, Arguments,

Return Value, Exception, Message Properties, and Call Context.

▪ Other records include records that are used to mark the beginning and end of the format.

1.4 Relationship to Protocols and Other Structures

This format is part of the .NET Remoting protocols. The .NET Remoting Protocol (as specified in [MS-
NRTP]) uses this format to encode message content before transmission, as specified in [MS-NRTP]
section 3.

The serialized content is transmitted over either HTTP or TCP, by using headers and framing as
specified in [MS-NRTP] section 3. The following block diagram illustrates the relationship.

Figure 1: The .NET Remoting protocols

1.5 Applicability Statement

The .NET Remoting: Binary Format Data Structure can be used as part of a Remote Method invocation
protocol or to persist an object graph. It has a compact octet stream representation that makes it
applicable to wire protocols. Because the format is binary, it is not suitable for cases where the output
has to be human readable. The format does not include additional information to aid in error detection
or to prevent corruption.

1.6 Versioning and Localization

This document covers versioning issues in the following areas:

▪ Protocol Versions: The Serialization Header record has fields called MajorVersion and
MinorVersion that denote the version of the .NET Remoting: Binary Format Data Structure in

use. Because only one version of the .NET Remoting: Binary Format Data Structure has been
defined to date, the value of MajorVersion is always set to 1 and MinorVersion to 0. Future

11 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

revisions of the format would increment this value. The Serialization Header record is specified in
section 2.6.1.

▪ Message Versions: MessageFlags (section 2.2.1.1) defines a flag named "Generic Method". The
flag indicates that the method being invoked is a Generic Remote Method. The flag is valid only in

Microsoft .NET Framework 2.0, Microsoft .NET Framework 3.0, Microsoft .NET Framework 3.5, and
Microsoft .NET Framework 4.0. For more information, see [MSDN-.NETFrameWrk].

There are no localization-dependent structures described in this document.

1.7 Vendor-Extensible Fields

This format allows implementation-specific name-value pairs called Message Properties to be added to
the MethodCallArray (section 2.2.3.2) and MethodReturnCallArray (section 2.2.3.4) records.

12 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2 Structures

2.1 Common Definitions

The following sections specify the common structures and enumerations that are used by all records.

2.1.1 Common Data Types

This section specifies the structures of the common Remoting Types that are supported by this format.
The format supports the following Primitive Types as specified in [MS-DTYP].

▪ BOOLEAN

▪ BYTE

▪ INT8

▪ INT16

▪ INT32

▪ INT64

▪ UINT16

▪ UINT32

▪ UINT64

The byte-ordering of the multibyte data types is little-endian. The signed data types use two's
complement to represent the negative numbers.

In addition, this format defines the following common types.

2.1.1.1 Char

The Char represents a Unicode character value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value (variable)

...

Value (variable): UTF-8-encoded bytes.

2.1.1.2 Double

The Double represents a 64-bit double-precision floating-point value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value

13 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

...

Value (8 bytes): A 64-bit double-precision floating-point value, as specified in [IEEE754].

2.1.1.3 Single

The Single represents a 32-bit single-precision floating-point value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value

Value (4 bytes): A 32-bit single-precision floating-point value, as specified in [IEEE754].

2.1.1.4 TimeSpan

The TimeSpan represents time duration.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value

...

Value (8 bytes): A 64-bit signed-integer value that specifies duration as the number of 100
nanoseconds. The values range from -10675199 days, 2 hours, 48 minutes, and 05.4775808

seconds to 10675199 days, 2 hours, 48 minutes, and 05.4775807 seconds inclusive.

2.1.1.5 DateTime

The DateTime represents an instant of time.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Ticks

... Kind

Ticks (62 bits): A 62-bit signed-integer value that specifies the number of 100 nanoseconds that
have elapsed since 12:00:00, January 1, 0001. The value can represent time instants in a
granularity of 100 nanoseconds until 23:59:59.9999999, December 31, 9999.

Kind (2 bits): Provides the time-zone information as follows. The value can range from 0 to 2,
inclusive<1>. The following table maps values with the meaning of the Ticks field.

Value Meaning

0 Time-zone information is not specified.

1 The time specified is in the Coordinated Universal Time (UTC) time zone.

14 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Value Meaning

2 The time specified is in the local time zone.

2.1.1.6 LengthPrefixedString

The LengthPrefixedString represents a string value. The string is prefixed by the length of the UTF-8
encoded string in bytes. The length is encoded in a variable-length field with a minimum of 1 byte and
a maximum of 5 bytes. To minimize the wire size, length is encoded as a variable-length field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length (variable)

...

String (variable)

...

Length (variable): A numerical value that can range from 0 to 2147483647 (2^31) inclusive.

To minimize the wire size, the encoding of the length MUST be encoded as follows:

▪ The Length field MUST be at least 1 byte and MUST NOT be more than 5 bytes.

▪ Each byte MUST hold the Length value in its lower 7 bits.

▪ The high bit MUST be used to indicate that the length continues in the next byte.

▪ In the case that all 5 bytes are used, the high 5 bits in the fifth byte MUST be 0.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length_0-6 A

Length_0-6 (7 bits): Length values range from 0 to 127 (7 bits).

A - Reserved_7 (1 bit): The value MUST be 0.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length_0-6 A Length_8-14 B

Length_0-6 (7 bits): Length values range from 128 to 16383 (14 bits).

A - Reserved_7 (1 bit): The value MUST be 1.

Length_8-14 (7 bits): Length values range from 128 to 16383 (14 bits).

B - Reserved_15 (1 bit): The value MUST be 0.

15 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length_0-6 A Length_8-14 B Length_16-22 C

Length_0-6 (7 bits): Length values range from 16384 to 2097151 (21 bits).

A - Reserved_7 (1 bit): The value MUST be 1.

Length_8-14 (7 bits): Length values range from 16384 to 2097151 (21 bits).

B - Reserved_15 (1 bit): The value MUST be 1.

Length_16-22 (7 bits): Length values range from 16384 to 2097151 (21 bits).

C - Reserved_23 (1 bit): The value MUST be 0.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length_0-6 A Length_8-14 B Length_16-22 C Length_24-30 D

Length_0-6 (7 bits): Length values range from 2097152 to 268435445 (28 bits).

A - Reserved_7 (1 bit): The value MUST be 1.

Length_8-14 (7 bits): Length values range from 2097152 to 268435445 (28 bits).

B - Reserved_15 (1 bit): The value MUST be 1.

Length_16-22 (7 bits): Length values range from 2097152 to 268435445 (28 bits).

C - Reserved_23 (1 bit): The value MUST be 1.

Length_24-30 (7 bits): Length values range from 2097152 to 268435445 (28 bits).

D - Reserved_31 (1 bit): The value MUST be 0.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length_0-6 A Length_8-14 B Length_16-22 C Length_24-30 D

Length_32-38 E

Length_0-6 (7 bits): Length values range from 268435456 to 2147483647 (31 bits).

A - Reserved_7 (1 bit): The value MUST be 1.

Length_8-14 (7 bits): Length values range from 268435456 to 2147483647 (31 bits).

B - Reserved_15 (1 bit): The value MUST be 1.

Length_16-22 (7 bits): Length values range from 268435456 to 2147483647 (31 bits).

C - Reserved_23 (1 bit): The value MUST be 1.

Length_24-30 (7 bits): Length values range from 268435456 to 2147483647 (31 bits).

16 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

D - Reserved_31 (1 bit): The value MUST be 1.

Length_32-38 (7 bits): Length values range from 268435456 to 2147483647 (31 bits).

E - Reserved_39 (1 bit): The value MUST be 0.

String (variable): A UTF-8 encoded string value. The number of bytes of the encoded string MUST

be equal to the value specified in the Length field.

2.1.1.7 Decimal

The Decimal represents a decimal value. It has the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value (variable)

...

Value (variable): A LengthPrefixedString value that is the string representation of the decimal value.
The string MUST be of the following format.

 Formats for decimal value

 Value = 0*1(MINUS)IntegralPart 0*1(FractionalPart)

 IntegralPart = 1*(DIGIT)

 FractionalPart = DECIMALPOINT 1*(DIGIT)

 MINUS = '-'

 DECIMALPOINT = '.'

The decimal value ranges from positive 79,228,162,514,264,337,593,543,950,335 to negative
79,228,162,514,264,337,593,543,950,335 inclusive.

When reading this value, if all of the following are true:

▪ The string has more than 29 digits, including both the IntegralPart and the FractionalPart.

▪ The net value is within the decimal value range.

▪ The number of digits in the Integral part is less than or equal to 29.

then the decimal value MUST be rounded to the nearest value such that the total number of digits is
29.

2.1.1.8 ClassTypeInfo

The ClassTypeInfo identifies a Class (2) by its name and reference to BinaryLibrary record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TypeName (variable)

17 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

...

LibraryId

TypeName (variable): A LengthPrefixedString value that contains the name of the Class (2). The
format of the string is specified in [MS-NRTP] section 2.2.1.2.

LibraryId (4 bytes): An INT32 (as specified in [MS-DTYP] section 2.2.22) value that represents the

ID that identifies the Library name. The record that contains this field in a serialization stream
MUST be preceded by a BinaryLibrary record that defines the Library name for the ID.

2.1.2 Enumerations

2.1.2.1 RecordTypeEnumeration

This enumeration identifies the type of the record. Each record (except for MemberPrimitiveUnTyped)
starts with a record type enumeration. The size of the enumeration is one BYTE.

Constant/value Description

SerializedStreamHeader

0

Identifies the SerializationHeaderRecord.

ClassWithId

1

Identifies a ClassWithId record.

SystemClassWithMembers

2

Identifies a SystemClassWithMembers record.

ClassWithMembers

3

Identifies a ClassWithMembers record.

SystemClassWithMembersAndTypes

4

Identifies a SystemClassWithMembersAndTypes record.

ClassWithMembersAndTypes

5

Identifies a ClassWithMembersAndTypes record.

BinaryObjectString

6

Identifies a BinaryObjectString record.

BinaryArray

7

Identifies a BinaryArray record.

MemberPrimitiveTyped

8

Identifies a MemberPrimitiveTyped record.

MemberReference

9

Identifies a MemberReference record.

ObjectNull

10

Identifies an ObjectNull record.

MessageEnd

11

Identifies a MessageEnd record.

18 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Constant/value Description

BinaryLibrary

12

Identifies a BinaryLibrary record.

ObjectNullMultiple256

13

Identifies an ObjectNullMultiple256 record.

ObjectNullMultiple

14

Identifies an ObjectNullMultiple record

ArraySinglePrimitive

15

Identifies an ArraySinglePrimitive.

ArraySingleObject

16

Identifies an ArraySingleObject record.

ArraySingleString

17

Identifies an ArraySingleString record.

MethodCall

21

Identifies a BinaryMethodCall record.

MethodReturn

22

Identifies a BinaryMethodReturn record.

2.1.2.2 BinaryTypeEnumeration

The BinaryTypeEnumeration identifies the Remoting Type of a Class (2) Member or an Array item. The
size of the enumeration is a BYTE.

Constant/value Description

Primitive

0

The Remoting Type is defined in PrimitiveTypeEnumeration and the Remoting Type is not a
string.

String

1

The Remoting Type is a LengthPrefixedString.

Object

2

The Remoting Type is System.Object.

SystemClass

3

The Remoting Type is one of the following:

▪ A Class (2) in the System Library

▪ An Array whose Ultimate Array Item Type is a Class (2) in the System Library

▪ An Array whose Ultimate Array Item Type is System.Object, string, or a Primitive Type
but does not meet the definition of ObjectArray, StringArray, or PrimitiveArray.

Class

4

The Remoting Type is a Class (2) or an Array whose Ultimate Array Item Type is a Class (2)
that is not in the System Library.

ObjectArray

5

The Remoting Type is a single-dimensional Array of System.Object with a lower bound of 0.

19 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Constant/value Description

StringArray

6

The Remoting Type is a single-dimensional Array of string with a lower bound of 0.

PrimitiveArray

7

The Remoting Type is a single-dimensional Array of a Primitive Type with a lower bound of 0.

2.1.2.3 PrimitiveTypeEnumeration

The PrimitiveTypeEnumeration identifies a Primitive Type value. The size of the enumeration is a
BYTE.

Constant/value Description

Boolean

1

Identifies a BOOLEAN as specified in [MS-DTYP] section 2.2.4.

Byte

2

Identifies a BYTE as specified in [MS-DTYP] section 2.2.6.

Char

3

Identifies a Char (section 2.1.1.1) type.

4

 The value is not used in the protocol.

Decimal

5

Identifies a Decimal (section 2.1.1.7).

Double

6

Identifies a Double (section 2.1.1.2).

Int16

7

Identifies an INT16 as specified in [MS-DTYP] section 2.2.21.

Int32

8

Identifies an INT32 as specified in [MS-DTYP] section 2.2.22.

Int64

9

Identifies an INT64 as specified in [MS-DTYP] section 2.2.23.

SByte

10

Identifies an INT8 as specified in [MS-DTYP] section 2.2.20.

Single

11

Identifies a Single (section 2.1.1.3).

TimeSpan

12

Identifies a TimeSpan (section 2.1.1.4).

DateTime

13

Identifies a DateTime (section 2.1.1.5).

UInt16

14

Identifies a UINT16 as specified in [MS-DTYP] section 2.2.48.

20 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Constant/value Description

UInt32

15

Identifies a UINT32 as specified in [MS-DTYP] section 2.2.49.

UInt64

16

Identifies a UINT64 as specified in [MS-DTYP] section 2.2.50.

Null

17

Identifies a Null Object.

String

18

Identifies a LengthPrefixedString (section 2.1.1.6) value.

2.2 Method Invocation Records

This section specifies records that define the format for information required for a Remote Method
invocation. [MS-NRTP] sections 3.1.5.1.1 and 3.1.5.1.2 describe the mechanism to map a method
invocation to the records defined in this section.

2.2.1 Enumerations

2.2.1.1 MessageFlags

The MessageFlags enumeration is used by the BinaryMethodCall (section 2.2.3.1) or

BinaryMethodReturn (section 2.2.3.3) records to provide information about the structure of the record.
The type of the enumeration is INT32, as specified in [MS-DTYP] section 2.2.22.

The following table is common for both the BinaryMethodCall and BinaryMethodReturn records. The
term "Method record" is used in the description when it is applicable to both the records. The term

"Call Array record" is used in the description when it is applicable to both
MethodCallArray (section 2.2.3.2) and MethodReturnCallArray (section 2.2.3.4).

Constant/value Description

NoArgs

0x00000001

The record contains no arguments. It is in the Arg category.

ArgsInline

0x00000002

The Arguments Array is in the Args field of the Method record. It is in the Arg

category.

ArgsIsArray

0x00000004

Each argument is an item in a separate Call Array record. It is in the Arg category.

ArgsInArray

0x00000008

The Arguments Array is an item in a separate Call Array record. It is in the Arg
category.

NoContext

0x00000010

The record does not contain a Call Context value. It is in the Context category.

ContextInline

0x00000020

Call Context contains only a Logical Call ID value and is in the CallContext field of the
Method record. It is in the Context category.

ContextInArray CallContext values are contained in an array that is contained in the Call Array record.
It is in the Context category.

21 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Constant/value Description

0x00000040

MethodSignatureInArray

0x00000080

The Method Signature is contained in the Call Array record. It is in the Signature
category.

PropertiesInArray

0x00000100

Message Properties is contained in the Call Array record. It is in the Property category.

NoReturnValue

0x00000200

The Return Value is a Null object. It is in the Return category.

ReturnValueVoid

0x00000400

The method has no Return Value. It is in the Return category.

ReturnValueInline

0x00000800

The Return Value is in the ReturnValue field of the MethodReturnCallArray record. It
is in the Return category.

ReturnValueInArray

0x00001000

The Return Value is contained in the MethodReturnCallArray record. It is in the Return
category.

ExceptionInArray

0x00002000

An Exception is contained in the MethodReturnCallArray record. It is in the Exception
category.

GenericMethod

0x00008000

The Remote Method is generic and the actual Remoting Types for the Generic
Arguments are contained in the Call Array. It is in the Generic category.<2>

The preceding table lists the possible values of the enumeration. The category designation for each
value provides the grouping of these values. It is a flags enumeration. However, not all combinations
are valid.

To be valid, a MessageFlags value is required to conform to the following:

▪ For each flags category given in the preceding table (Arg, Context, Signature, Return, Exception,

Property, and Generic), the value MUST NOT have more than one flag from the Category set.

▪ The Args and Exception flag categories are exclusive: if a flag from the Args category is set, the
value MUST NOT have any flag from the Exception category set, and vice versa.

▪ The Return and Exception flag categories are exclusive: if a flag from the Return category is set,
the value MUST NOT have any flag from the Exception category set, and vice versa.

▪ The Return and Signature categories are exclusive: if a flag from the Return category is set, the

value MUST NOT have any flag from the Signature category set, and vice versa.

▪ The Exception and Signature categories are exclusive: if a flag from the Signature category is set,
the value MUST NOT have any flag from the Exception category set, and vice versa.

The following table summarizes the preceding rules.

 Arg Context Signature Return Exception Property Generic

 Arg Invalid Valid Valid Valid Invalid Valid Valid

 Context Valid Invalid Valid Valid Valid Valid Valid

 Signature Valid Valid N/A Invalid Invalid Valid Valid

 Return Valid Valid Invalid Invalid Invalid Valid Valid

22 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

 Arg Context Signature Return Exception Property Generic

 Exception Invalid Valid Invalid Invalid N/A Valid Valid

 Property Valid Valid Valid Valid Valid N/A Valid

 Generic Valid Valid Valid Valid Valid Valid N/A

The combination of Signature and Signature, Property and Property, Generic and Generic, or Exception
and Exception is not applicable because there is only one bit in the Enum for each of these categories.

2.2.2 Common Structures

2.2.2.1 ValueWithCode

The ValueWithCode structure is used to associate a Primitive Value with an Enum that identifies the
Primitive Type of the Primitive Value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PrimitiveTypeEnum Value (variable)

...

PrimitiveTypeEnum (1 byte): A PrimitiveTypeEnumeration value that specifies the type of the data.

Value (variable): A Primitive Value whose Primitive Type is identified by the PrimitiveTypeEnum
field. For example, if the value of the PrimitiveTypeEnum field is the PrimitiveTypeEnumeration
value INT32, the Value field MUST contain a valid INT32 (as specified in [MS-DTYP] section
2.2.22) instance. The length of the field is determined by the Primitive Type of the Value. This

field MUST NOT be present if the value of PrimitiveTypeEnum is Null (17).

2.2.2.2 StringValueWithCode

The StringValueWithCode structure is a ValueWithCode where PrimitiveTypeEnumeration is String
(18).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PrimitiveTypeEnum StringValue (variable)

...

PrimitiveTypeEnum (1 byte): A PrimitiveTypeEnumeration value that specifies the Primitive Type of
the data. The value MUST be 18 (String).

StringValue (variable): A LengthPrefixedString that contains the string value.

2.2.2.3 ArrayOfValueWithCode

The ArrayOfValueWithCode structure contains a list of ValueWithCode records. The list is prefixed with
the length of the Array.

23 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ListOfValueWithCode (variable)

...

Length (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that indicates the
number of items in the Array. The value can range from 0 to 2147483647 (2^31) inclusive.

ListOfValueWithCode (variable): A sequence of ValueWithCode records. The number of items in

the sequence MUST be equal to the value specified in the Length field.

2.2.3 Record Definitions

2.2.3.1 BinaryMethodCall

The BinaryMethodCall record contains information that is required to perform a Remote Method
invocation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum MessageEnum

... MethodName (variable)

...

TypeName (variable)

...

CallContext (variable)

...

Args (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The

value MUST be 21.

MessageEnum (4 bytes): A MessageFlags value that indicates whether the arguments and Call
Context, Message Properties, Generic Arguments, and Method Signature are present. It also
specifies whether the arguments and Call Context are present in this record or in the following
MethodCallArray record. For this record type, the field MUST NOT contain the values from the
Return and the Exception categories.

24 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

MethodName (variable): A StringValueWithCode that represents the Remote Method name. The
format of the string is as specified in [MS-NRTP] section 2.2.1.1.

TypeName (variable): A StringValueWithCode that represents the Server Type name. The format of
the string is specified as QualifiedTypeName, as specified in [MS-NRTP] section 2.2.1.2.

CallContext (variable): A StringValueWithCode that represents the Logical Call ID. This field is
conditional. If the MessageEnum field has the ContextInline bit set, the field MUST be present;
otherwise, the field MUST NOT be present. The presence of this field indicates that the Call
Context contains a single entry with the Name as "__RemotingData" and the value is an instance
of the Remoting Type CallContextRemotingData, as specified in [MS-NRTP] section 2.2.2.16. The
value of this field MUST be interpreted as the value of the logicalCallID field in the
CallContextRemotingData Class (2).

Args (variable): An ArrayOfValueWithCode where each item of the Array corresponds to an input
argument of the method. The items of the Array MUST be in the same order as the input
arguments. This field is conditional. If the MessageEnum field has the ArgsInline bit set, the field
MUST be present; otherwise, the field MUST NOT be present.

2.2.3.2 MethodCallArray

The MethodCallArray is a special use of the ArraySingleObject record. The record represents a
serialized Array that can contain instances of any Remoting Type. The items of the Array include Input
Arguments, Generic Type Arguments, Method Signature, Call Context, and Message Properties. Each
item is conditional. The conditions for presence of the item are given with the definition of each item.
The items, if present, MUST be in the following order:

1. Input Arguments: An Array that contains the Input Arguments for the method. This item is
conditional. If the MessageEnum field of the preceding BinaryMethodCall record has the
ArgsInArray bit set, the item MUST be present; otherwise, the item MUST NOT be present.

2. Generic Type Arguments: An Array of UnitySerializationHolder classes (1), as specified in [MS-
NRTP] section 2.2.2.12. The presence of this field indicates that the method represented by the

BinaryMethodCall record is a Generic Method. Each item of the array contains a Remoting Type

that MUST be used as Generic Argument for the Generic Method. This field is conditional. If the
MessageEnum field of the preceding BinaryMethodCall record has the GenericMethod bit set, the
field MUST be present; otherwise, the field MUST NOT be present.<3>

3. Method Signature: An Array of UnitySerializationHolder classes (1) as specified in [MS-NRTP]
section 2.2.2.12. Each item of the Array contains the Remoting Type of an argument of the
Remote Method. If the MessageEnum field of the preceding BinaryMethodCall record has the
MethodSignatureInArray bit set, the field MUST be present; otherwise, the field MUST NOT be

present. If present, the number of items in the Array MUST match the number of items in the
Input Argument item.

4. Call Context: An instance of the Class (2)
"System.Runtime.Remoting.Messaging.LogicalCallContext". The Library name of the Class (2) is
"mscorlib". Each name-value pair of the Call Context MUST be mapped to a Member name and
Member value of the Class (2). If the MessageEnum field of the preceding BinaryMethodCall

record has the ContextInArray bit set, the field MUST be present; otherwise, the field MUST NOT

be present.

5. Message Properties: An Array that can contain instances of any Remoting Type. Each instance is
a DictionaryEntry, as specified in [MS-NRTP] section 2.2.2.6. If the MessageEnum field of the
preceding BinaryMethodCall record has the PropertiesInArray bit set, the field MUST be present;
otherwise, the field MUST NOT be present.

25 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.2.3.3 BinaryMethodReturn

The BinaryMethodReturn record contains the information returned by a Remote Method.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum MessageEnum

... ReturnValue (variable)

...

CallContext (variable)

...

Args (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 22.

MessageEnum (4 bytes): A MessageFlags value that indicates whether the Return Value,
Arguments, Message Properties, and Call Context are present. The value also specifies whether
the Return Value, Arguments, and Call Context are present in this record or the following
MethodReturnCallArray record. For this record, the field MUST NOT have the
MethodSignatureInArray or GenericMethod bits set.

ReturnValue (variable): A ValueWithCode that contains the Return Value of a Remote Method. If

the MessageEnum field has the ReturnValueInline bit set, this field MUST be present; otherwise,
this field MUST NOT be present.

CallContext (variable): A StringValueWithCode that represents the Logical Call ID. This field is
conditional. If the MessageEnum field has the ContextInline bit set, the field MUST be present;
otherwise, the field MUST NOT be present.

Args (variable): An ArrayOfValueWithCode that contains the Output Arguments of the method. This
field is conditional. If the MessageEnum field has the ArgsInline bit set, the field MUST be
present; otherwise, the field MUST NOT be present.

2.2.3.4 MethodReturnCallArray

The MethodReturnCallArray is a special use of the ArraySingleObject record. The record represents a
serialized Array that can contain instances of any Remoting Type. The items of the Array include

Return Value, Output Arguments, Exception, Call Context, and Message Properties. Each item is
conditional. The conditions for presence of the item are given with the definition of the item in the
following list. The items, if present, MUST be in the following order:

1. Return Value: The Return Value of the method. This item is conditional. If the MessageEnum
field of the preceding BinaryMethodReturn record has the ReturnValueInArray bit set, the item

MUST be present; otherwise, the item MUST NOT be present.

26 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2. Output Arguments: An Array that contains the Output Arguments for the method. This item is
conditional. If the MessageEnum field of the preceding BinaryMethodReturn record has the

ArgsInArray bit set, the item MUST be present; otherwise, the item MUST NOT be present.

3. Exception: A Data Value assignable to System.Exception Class (2) as specified in [MS-NRTP]

section 2.2.2.7. This item is conditional. If the MessageEnum field of the preceding
BinaryMethodReturn record has the ExceptionInArray bit set, the item MUST be present;
otherwise, the item MUST NOT be present.

4. Call Context: An instance of the Class (2) called
"System.Runtime.Remoting.Messaging.LogicalCallContext". The Library name of the Class (2) is
"mscorlib". Each name-value pair of the Call Context MUST be mapped to a Member name and a
Member value of the Class (2). If the MessageEnum field of the preceding BinaryMethodReturn

record has the ContextInArray bit set, the field MUST be present; otherwise, the field MUST NOT
be present.

5. Message Properties: An Array that can contain instances of any Remoting Type. Each instance is
a DictionaryEntry, as specified in [MS-NRTP] section 2.2.2.6. If the MessageEnum field of the

preceding BinaryMethodReturn record has the PropertiesInArray bit set, the field MUST be
present; otherwise, the field MUST NOT be present.

2.3 Class Records

This section defines Class (1) records. A Class (1) record represents an instance of a Class (1). [MS-
NRTP] section 3.1.5.1.6 describes the mechanism to map a Class (1) instance to a record defined in
this section. [MS-NRTP] section 3.1.5.1.9 describes the mechanism to map an Enum value to a record

defined in this section.

The values of the Members of the Class (1) MUST be serialized as records that follow this record, as
specified in section 2.7. The order of the records MUST match the order of MemberNames as specified
in the ClassInfo (section 2.3.1.1) structure.

2.3.1 Common Structures

2.3.1.1 ClassInfo

ClassInfo is a common structure used by all the Class (2) records. It has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ObjectId

Name (variable)

...

MemberCount

MemberNames (variable)

...

ObjectId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that uniquely
identifies the object in the serialization stream. An implementation MAY use any algorithm to

27 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

generate the unique IDs. If the ObjectId is referenced by a MemberReference record elsewhere in
the serialization stream, the ObjectId MUST be positive. If the ObjectId is not referenced by any

MemberReference in the serialization stream, then the ObjectId SHOULD be positive, but MAY be
negative.<4>

Name (variable): A LengthPrefixedString value that contains the name of the Class (1). The format
of the string MUST be as specified in the RemotingTypeName, as specified in [MS-NRTP] section
2.2.1.2.

MemberCount (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that contains
the number of Members in the Class (2). The value MUST be 0 or a positive integer.

MemberNames (variable): A sequence of LengthPrefixedString values that represents the names of
the Members in the class (2). The number of items in the sequence MUST be equal to the value

specified in the MemberCount field.

The MemberNames MAY be in any order.<5>

2.3.1.2 MemberTypeInfo

The MemberTypeInfo is a common structure that contains type information for Class (2) Members. It
has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BinaryTypeEnums (variable)

...

AdditionalInfos (variable)

...

BinaryTypeEnums (variable): A sequence of BinaryTypeEnumeration values that represents the
Member Types that are being transferred. The Array MUST:

▪ Have the same number of items as the MemberNames field of the ClassInfo structure.

▪ Be ordered such that the BinaryTypeEnumeration corresponds to the Member name in the

MemberNames field of the ClassInfo structure.

AdditionalInfos (variable): A sequence of additional information about a Remoting Type. For every
value of the BinaryTypeEnum in the BinaryTypeEnums field that is a Primitive, SystemClass,
Class (2), or PrimitiveArray, the AdditionalInfos field contains additional information about the
Remoting Type. For the BinaryTypeEnum value of Primitive and PrimitiveArray, this field specifies
the actual Primitive Type that uses the PrimitiveTypeEnum. For the BinaryTypeEnum value of

SystemClass, this field specifies the name of the class (2). For the BinaryTypeEnum value of Class

(2), this field specifies the name of the Class (2) and the Library ID. The following table
enumerates additional information required for each BinaryType enumeration.

 BinaryTypeEnum AdditionalInfos

Primitive PrimitiveTypeEnumeration

String None

28 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

 BinaryTypeEnum AdditionalInfos

Object None

SystemClass String (Class (1) name as specified in [MS-NRTP] section 2.2.1.2)

Class ClassTypeInfo

ObjectArray None

StringArray None

PrimitiveArray PrimitiveTypeEnumeration

▪ The AdditionalInfos sequence MUST NOT contain any item for the BinaryTypeEnum values of
String, Object, ObjectArray, or StringArray.

▪ The AdditionalInfos items MUST be in the same order as the corresponding BinaryTypeEnum
items in the BinaryTypeEnums field.

▪ When the BinaryTypeEnum value is Primitive, the PrimitiveTypeEnumeration value in
AdditionalInfo MUST NOT be Null (17) or String (18).

2.3.2 Record Definitions

2.3.2.1 ClassWithMembersAndTypes

The ClassWithMembersAndTypes record is the most verbose of the Class records. It contains metadata
about Members, including the names and Remoting Types of the Members. It also contains a Library
ID that references the Library Name of the Class.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ClassInfo (variable)

...

MemberTypeInfo (variable)

...

LibraryId

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. Its

value MUST be 5.

ClassInfo (variable): A ClassInfo structure that provides information about the name and Members
of the Class.

MemberTypeInfo (variable): A MemberTypeInfo structure that provides information about the
Remoting Types of the Members.

LibraryId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that references a
BinaryLibrary record by its Library ID. A BinaryLibrary record with the LibraryId MUST appear

earlier in the serialization stream.

29 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.3.2.2 ClassWithMembers

The ClassWithMembers record is less verbose than ClassWithMembersAndTypes. It does not contain
information about the Remoting Type information of the Members. This record can be used when the

information is deemed unnecessary because it is known out of band or can be inferred from context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ClassInfo (variable)

...

LibraryId

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. Its
value MUST be 3.

ClassInfo (variable): A ClassInfo structure that provides information about the name and Members
of the Class.

LibraryId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that references a

BinaryLibrary record by its Library ID. The ID MUST be a positive integer. A BinaryLibrary record
with the LibraryId MUST appear earlier in the serialization stream.

2.3.2.3 SystemClassWithMembersAndTypes

The SystemClassWithMembersAndTypes record is less verbose than ClassWithMembersAndTypes. It
does not contain a LibraryId. This record implicitly specifies that the Class is in the System Library.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ClassInfo (variable)

...

MemberTypeInfo (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. Its
value MUST be 4.

ClassInfo (variable): A ClassInfo structure that provides information about the name and Members
of the Class.

MemberTypeInfo (variable): A MemberTypeInfo structure that provides information about the
Remoting Type of the Members.

2.3.2.4 SystemClassWithMembers

The SystemClassWithMembers record is less verbose than ClassWithMembersAndTypes. It does not
contain a LibraryId or the information about the Remoting Types of the Members. This record implicitly

30 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

specifies that the Class is in the System Library. This record can be used when the information is
deemed unnecessary because it is known out of band or can be inferred from context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ClassInfo (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. Its

value MUST be 2.

ClassInfo (variable): A ClassInfo structure that provides information about the name and Members
of the Class.

2.3.2.5 ClassWithId

The ClassWithId record is the most compact. It has no metadata. It refers to metadata defined in
SystemClassWithMembers, SystemClassWithMembersAndTypes, ClassWithMembers, or
ClassWithMembersAndTypes record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ObjectId

... MetadataId

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 1.

ObjectId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that uniquely
identifies the object in the serialization stream.

MetadataId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that references
one of the other Class records by its ObjectId. A SystemClassWithMembers,
SystemClassWithMembersAndTypes, ClassWithMembers, or ClassWithMembersAndTypes record
with the value of this field in its ObjectId field MUST appear earlier in the serialization stream.

2.4 Array Records

This section defines Array records that represent Array instances. [MS-NRTP] section 3.1.5.1.7,
describes the mechanism to map an Array instance to a record defined in this section.

Items of an Array MUST be serialized as records following the Array record, as specified in section 2.7.

The number of records that contain the Array items depends on the type of Array record. For the
ArraySingleObject, ArraySinglePrimitive, and ArraySingleString records, the number of records
containing Array items MUST be equal to the value of the Length field of the ArrayInfo field. For
BinaryArray records, the number of records containing Array items MUST be equal to the product of
the values contained in the Lengths field of the BinaryArray record. In the cases where an item of an
Array can contain a Null Object, multiple ObjectNull records in sequence MAY be represented by a
single ObjectNullMultiple (section 2.5.5) or ObjectNullMultiple256 (section 2.5.6) record. Each of these

records contains a NullCount field that states how many ObjectNull records that the record

31 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

represents. For the purpose of calculating the number of records, a single ObjectNullMultiple or
ObjectNullMultiple256 record is counted as many times as the value specified in the NullCount

field.<6>

2.4.1 Enumerations

2.4.1.1 BinaryArrayTypeEnumeration

The BinaryArrayTypeEnumeration is used to denote the type of an Array. The size of the enumeration
is 1 byte. It is used by the Array records.

Constant/value Description

Single

0

A single-dimensional Array.

Jagged

1

An Array whose elements are Arrays. The elements of a jagged Array can be of different
dimensions and sizes.

Rectangular

2

A multi-dimensional rectangular Array.

SingleOffset

3

A single-dimensional offset.

JaggedOffset

4

A jagged Array where the lower bound index is greater than 0.

RectangularOffset

5

Multi-dimensional Arrays where the lower bound index of at least one of the dimensions is
greater than 0.

2.4.2 Common Definitions

2.4.2.1 ArrayInfo

The ArrayInfo is a common structure that is used by Array records.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ObjectId

Length

ObjectId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that uniquely

identifies the Array instance in the serialization stream. The ID MUST be a positive integer. An
implementation MAY use any algorithm to generate the unique IDs.<7>

Length (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that specifies the
number of items in the Array. The value MUST be 0 or a positive integer.

32 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.4.3 Record Definitions

2.4.3.1 BinaryArray

BinaryArray is the most general form of Array records. The record is more verbose than the other
Array records.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ObjectId

... BinaryArrayTypeEnum Rank

... Lengths (variable)

...

LowerBounds (variable)

...

TypeEnum AdditionalTypeInfo (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. Its

value MUST be 7.

ObjectId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that uniquely

identifies the Array in the serialization stream. The value MUST be a positive integer. An
implementation MAY use any algorithm to generate the unique IDs.<8>

BinaryArrayTypeEnum (1 byte): A BinaryArrayTypeEnumeration value that identifies the type of
the Array.

Rank (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that specifies the rank

(number of dimensions) of the Array. The value MUST be 0 or a positive integer.

Lengths (variable): A sequence of INT32 values (as specified in [MS-DTYP] section 2.2.22) that
specifies the length of each of the dimensions of the Array. The number of values MUST be equal
to the value specified in the Rank field. Each value of the sequence MUST be 0 or a positive
integer.

LowerBounds (variable): A sequence of INT32 values (as specified in [MS-DTYP] section 2.2.22)
that specifies the lower bound (first index) of each of the dimensions of the Array. The number of

values MUST be equal to the value specified in the Rank field. If the value of the
BinaryArrayTypeEnum field is SingleOffset, JaggedOffset, or RectangularOffset, this field MUST
be present in the serialization stream; otherwise, this field MUST NOT be present in the
serialization stream.

TypeEnum (1 byte): A BinaryTypeEnum value that identifies the Remoting Type of the Array item.

AdditionalTypeInfo (variable): Information about the Remoting Type of the Array item in addition
to the information provided in the TypeEnum field. For the BinaryTypeEnum values of Primitive,

SystemClass, Class, or PrimitiveArray, this field contains additional information about the

33 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Remoting Type. For the BinaryTypeEnum value of Primitive and PrimitiveArray, this field specifies
the actual Primitive Type that uses the PrimitiveTypeEnum. For the BinaryTypeEnum value of

SystemClass, this field specifies the name of the Class. For the BinaryTypeEnum value of Class,
this field specifies the name of the Class and the Library ID. The following table enumerates

additional information that is required for each BinaryType enumeration.

 BinaryTypeEnum AdditionalTypeInfo

Primitive PrimitiveTypeEnum

Object None

String None

SystemClass String (Class name as specified in [MS-NRTP] section 2.2.1.2)

Class ClassTypeInfo

ObjectArray None

StringArray None

PrimitiveArray PrimitiveTypeEnum

If the BinaryTypeEnum value of the TypeEnum field is Object, String, ObjectArray, or
StringArray, this field MUST NOT be present in the serialization stream.

If the BinaryTypeEnum value is Primitive, the PrimitiveTypeEnumeration value in

AdditionalTypeInfo MUST NOT be Null (17) or String (18).

2.4.3.2 ArraySingleObject

The ArraySingleObject record contains a single-dimensional Array in which each Member record MAY
contain any Data Value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ArrayInfo

...

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 16.

ArrayInfo (8 bytes): An ArrayInfo structure that specifies the ID and the length of the Array
instance.

2.4.3.3 ArraySinglePrimitive

The ArraySinglePrimitive record contains a single-dimensional Array in which all Members are Primitive
Value.

34 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ArrayInfo

...

... PrimitiveTypeEnum

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 15.

ArrayInfo (8 bytes): An ArrayInfo structure that specifies the ID and the length of the Array

instance.

PrimitiveTypeEnum (1 byte): A PrimitiveTypeEnumeration value that identifies the Primitive Type
of the items of the Array. The value MUST NOT be 17 (Null) or 18 (String).

This record MUST be followed by a sequence of MemberPrimitiveUnTyped records that contain values
whose Primitive Type is specified by the PrimitiveTypeEnum field. The number of records in the
sequence MUST match the value specified in the Length field of ArrayInfo.

2.4.3.4 ArraySingleString

The ArraySingleString record contains a single-dimensional Array whose items are String values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ArrayInfo

...

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The

value MUST be 17.

ArrayInfo (8 bytes): An ArrayInfo structure that specifies the ID and the length of the Array
instance.

2.5 Member Reference Records

Arrays and classes are containers of Member values; that is, graph nodes that represent instances of
Arrays and Classes that have outbound edges. The Member values are the graph nodes that are
destinations for the outbound edges. In the serialization stream, the Member values follow the Array

and the Class records. The Member values are serialized by using the Member Reference records.

2.5.1 MemberPrimitiveTyped

The MemberPrimitiveTyped record contains a Primitive Type value other than String. The mechanism
to serialize a Primitive Value is described in [MS-NRTP] section 3.1.5.1.8.

35 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum PrimitiveTypeEnum Value (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 8.

PrimitiveTypeEnum (1 byte): A PrimitiveTypeEnumeration value that specifies the Primitive Type of

data that is being transmitted. This field MUST NOT contain a value of 17 (Null) or 18 (String).

Value (variable): The value whose type is inferred from the PrimitiveTypeEnum field as specified
in the table in section 2.1.2.3.

2.5.2 MemberPrimitiveUnTyped

The MemberPrimitiveUnTyped record is the most compact record to represent a Primitive Type value.
This type of record does not have a RecordTypeEnum to indicate the record type. The record MUST be
used when a Class Member or Array item is a Primitive Type. Because the containing Class or Array
record specifies the Primitive Type of each Member, the Primitive Type is not respecified along with
the value. Also, the Primitive Values cannot be referenced by any other record; therefore it does not
require an ObjectId. This record has no field besides the value. The mechanism to serialize a Primitive

Value is described in [MS-NRTP] section 3.1.5.1.8.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value (variable)

...

Value (variable): A Primitive Type value other than String.

2.5.3 MemberReference

The MemberReference record contains a reference to another record that contains the actual value.
The record is used to serialize values of a Class Member and Array items. The mechanism to serialize
a Class instance is described in [MS-NRTP] section 3.1.5.1.6. The mechanism to serialize an Array
instance is described in [MS-NRTP] section 3.1.5.1.7.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum IdRef

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The

value MUST be 9.

IdRef (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that is an ID of an object
defined in another record.

36 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

▪ The value MUST be a positive integer.

▪ A Class, Array, or BinaryObjectString record MUST exist in the serialization stream with the

value as its ObjectId. Unlike other ID references, there is no restriction on where the record
that defines the ID appears in the serialization stream; that is, it MAY appear after the

referencing record.<9>

2.5.4 ObjectNull

The ObjectNull record contains a Null Object. The mechanism to serialize a Null Object is described in

[MS-NRTP] section 3.1.5.1.12.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 10.

2.5.5 ObjectNullMultiple

The ObjectNullMultiple record provides a more compact form for multiple consecutive Null records
than using individual ObjectNull records. The mechanism to serialize a Null Object is described in [MS-
NRTP] section 3.1.5.1.12.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum NullCount

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The

value MUST be 14.

NullCount (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that is the count of
the number of consecutive Null Objects. The value MUST be a positive integer.

2.5.6 ObjectNullMultiple256

The ObjectNullMultiple256 record provides the most compact form for multiple, consecutive Null
records when the count of Null records is less than 256. The mechanism to serialize a Null Object is
described in [MS-NRTP] section 3.1.5.1.12.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum NullCount

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 13.

NullCount (1 byte): A BYTE value (as specified in [MS-DTYP] section 2.2.6) that is the count of the

number of consecutive Null objects. The value MUST be in the range of 0 to 255, inclusive.

37 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.5.7 BinaryObjectString

The BinaryObjectString record identifies an object as a String object, and contains information about
it. The mechanism to serialize a string is described in [MS-NRTP] section 3.1.5.1.11.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum ObjectId

... Value (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 6.

ObjectId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that uniquely
identifies the string instance in the serialization stream. The value MUST be a positive integer. An
implementation MAY use any algorithm to generate the unique IDs.<10>

Value (variable): A LengthPrefixedString value.

2.6 Other Records

The following sections define the records that are not part of any of the previous categories.

2.6.1 SerializationHeaderRecord

The SerializationHeaderRecord record MUST be the first record in a binary serialization. This record
has the major and minor version of the format and the IDs of the top object and the headers.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum RootId

... HeaderId

... MajorVersion

... MinorVersion

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The

value MUST be 0.

RootId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that identifies the root
of the graph of nodes. The value of the field is set as follows:

▪ If a BinaryMethodCall record is present in the serialization stream and if there is no
MethodCallArray record following it, the value of this field MUST be 0; if a MethodCallArray
record follows the BinaryMethodCall record, the value of this field MUST contain the ObjectId

of the MethodCallArray.

38 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

▪ If a BinaryMethodReturn record is present in the serialization stream and if there is no
MethodReturnCallArray record following it, the value of this field MUST be 0; if a

MethodReturnCallArray record follows the BinaryMethodReturn record, the value of this field
MUST contain the ObjectId of the MethodReturnCallArray.

▪ If neither the BinaryMethodCall nor BinaryMethodReturn record is present in the serialization
stream, the value of this field MUST contain the ObjectId of a Class, Array, or
BinaryObjectString record contained in the serialization stream.

HeaderId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that identifies the
Array that contains the header objects. The value of the field is set as follows:

▪ If a BinaryMethodCall record is present in the serialization stream and if there is no
MethodCallArray record following it, the value of this field MUST be 0; if a MethodCallArray

record follows the BinaryMethodCall record, the value of this field MUST be -1.

▪ If a BinaryMethodReturn record is present in the serialization stream and if there is no
MethodReturnCallArray record following it, the value of this field MUST be 0; if a

MethodReturnCallArray record follows the BinaryMethodReturn record, the value of this field
MUST be -1.

▪ If neither the BinaryMethodCall nor BinaryMethodReturn record is present in the serialization

stream, the value of this field MUST contain the ObjectId of a Class, Array , or
BinaryObjectString record that is contained in the serialization stream.

The field MUST be ignored on read.

MajorVersion (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that identifies
the major version of the format. The value of this field MUST be 1.

MinorVersion (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that identifies
the minor version of the protocol. The value of this field MUST be 0.

2.6.2 BinaryLibrary

The BinaryLibrary record associates an INT32 ID (as specified in [MS-DTYP] section 2.2.22) with a
Library name. This allows other records to reference the Library name by using the ID. This approach

reduces the wire size when there are multiple records that reference the same Library name.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum LibraryId

... LibraryName (variable)

...

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 12.

LibraryId (4 bytes): An INT32 value (as specified in [MS-DTYP] section 2.2.22) that uniquely
identifies the Library name in the serialization stream. The value MUST be a positive integer. An
implementation MAY use any algorithm to generate the unique IDs.<11>

LibraryName (variable): A LengthPrefixedString value that represents the Library name. The format
of the string is specified in [MS-NRTP] section 2.2.1.3.

39 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.6.3 MessageEnd

The MessageEnd record marks the end of the serialization stream.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordTypeEnum

RecordTypeEnum (1 byte): A RecordTypeEnumeration value that identifies the record type. The
value MUST be 11.

2.7 Binary Record Grammar

This section specifies the grammar using the Augmented Backus-Naur Form (ABNF) syntax specified in
[RFC4234] that defines how the records can appear in the serialization stream.

ABNF productions Meaning

ABNF productions
remotingMessage

= SerializationHeader

*(referenceable)

(methodCall/methodReturn)

*(referenceable)

 MessageEnd

methodCall = 0*1(BinaryLibrary)

 BinaryMethodCall

 0*1(callArray)

methodReturn = 0*1(BinaryLibrary)

 BinaryMethodReturn

 0*1(callArray)

callArray = 0*1(BinaryLibrary)

 ArraySingleObject

*(memberReference)

memberReference = 0*1(BinaryLibrary)

(MemberPrimitiveUnTyped / MemberPrimitiveTyped / MemberReference /
BinaryObjectString / nullObject /Classes)

nullObject = ObjectNull / ObjectNullMultiple / ObjectNullMultiple256

referenceable = Classes/Arrays/BinaryObjectString

Classes = 0*1(BinaryLibrary)

(ClassWithId / ClassWithMembers/ ClassWithMembersAndTypes /
SystemClassWithMembers / SystemClassWithMembersAndTypes)
*(memberReference)

Arrays = 0*1(BinaryLibrary)

((ArraySingleObject *(memberReference)) / (ArraySinglePrimitive
*(MemberPrimitiveUnTyped)) /

 (ArraySingleString *(BinaryObjectString/MemberReference/nullObject)) /

 (BinaryArray*(memberReference)))

40 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

3 Structure Examples

This sample illustrates the message exchanged when a Remote Method is invoked as specified in [MS-
NRTP] section 3.3.4.2. The data model is used to describe the information to perform the Remote
Method invocation and the results of the invocation, as specified in [MS-NRTP] section 3.1.1.

The client invokes a method "SendAddress" on a remote Server Type
"DOJRemotingMetadata.MyServer" and passes the following Address object (Street = "One Microsoft

Way", City = "Redmond", State = "WA" and Zip = "98054") as an argument. The remote Server Type
is accessible at a relative URI "MyServer.Rem" hosted on a server named "maheshdev2" and listening
on port 8080. The server receives the request message, reads the argument passed in the message,
and then invokes the method with the de-serialized argument. The server then embeds the Return
Value of "Address received" in the response message to the client.

The following is a sequence diagram for the preceding message exchange pattern.

Figure 2: Sequence diagram of the message exchanged when a Remote Method is invoked

The MessageContent data sent on the network is as follows.

 0000 00 01 00 00 00 FF FF FF FF 01 00 00 00 00 00 00ÿÿÿÿ.......
 0010 00 15 14 00 00 00 12 0B 53 65 6E 64 41 64 64 72SendAddr
 0020 65 73 73 12 6F 44 4F 4A 52 65 6D 6F 74 69 6E 67 ess.oDOJRemoting
 0030 4D 65 74 61 64 61 74 61 2E 4D 79 53 65 72 76 65 Metadata.MyServe
 0040 72 2C 20 44 4F 4A 52 65 6D 6F 74 69 6E 67 4D 65 r, DOJRemotingMe
 0050 74 61 64 61 74 61 2C 20 56 65 72 73 69 6F 6E 3D tadata, Version=
 0060 31 2E 30 2E 32 36 32 32 2E 33 31 33 32 36 2C 20 1.0.2622.31326,
 0070 43 75 6C 74 75 72 65 3D 6E 65 75 74 72 61 6C 2C Culture=neutral,
 0080 20 50 75 62 6C 69 63 4B 65 79 54 6F 6B 65 6E 3D PublicKeyToken=
 0090 6E 75 6C 6C 10 01 00 00 00 01 00 00 00 09 02 00 null............
 00A0 00 00 0C 03 00 00 00 51 44 4F 4A 52 65 6D 6F 74QDOJRemot
 00B0 69 6E 67 4D 65 74 61 64 61 74 61 2C 20 56 65 72 ingMetadata, Ver
 00C0 73 69 6F 6E 3D 31 2E 30 2E 32 36 32 32 2E 33 31 sion=1.0.2622.31
 00D0 33 32 36 2C 20 43 75 6C 74 75 72 65 3D 6E 65 75 326, Culture=neu
 00E0 74 72 61 6C 2C 20 50 75 62 6C 69 63 4B 65 79 54 tral, PublicKeyT
 00F0 6F 6B 65 6E 3D 6E 75 6C 6C 05 02 00 00 00 1B 44 oken=null......D
 0100 4F 4A 52 65 6D 6F 74 69 6E 67 4D 65 74 61 64 61 OJRemotingMetada
 0110 74 61 2E 41 64 64 72 65 73 73 04 00 00 00 06 53 ta.Address.....S
 0120 74 72 65 65 74 04 43 69 74 79 05 53 74 61 74 65 treet.City.State
 0130 03 5A 69 70 01 01 01 01 03 00 00 00 06 04 00 00 .Zip............
 0140 00 11 4F 6E 65 20 4D 69 63 72 6F 73 6F 66 74 20 ..One Microsoft
 0150 57 61 79 06 05 00 00 00 07 52 65 64 6D 6F 6E 64 Way......Redmond
 0160 06 06 00 00 00 02 57 41 06 07 00 00 00 05 39 38WA......98
 0170 30 35 34 0B 054.

41 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Referencing section 2 for various message structures, the bytes listed in the preceding sample can be
mapped to the logical Request message structure that is used by .NET Remoting to service the
request. The logical Request message for Microsoft .NET Framework 1.1 is as follows.

 Binary Serialization Format
 SerializationHeaderRecord:
 RecordTypeEnum: SerializedStreamHeader (0x00)
 TopId: 1 (0x1)
 HeaderId: -1 (0xFFFFFFFF)
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 BinaryMethodCall:
 RecordTypeEnum: BinaryMethodCall (0x21)
 MessageEnum: 00000014
 NoArgs: (...............................0)
 ArgsInline: (..............................0.)
 ArgsIsArray: (.............................1..)
 ArgsInArray: (............................0...)
 NoContext: (...........................1....)
 ContextInline: (..........................0.....)
 ContextInArray: (.........................0......)
 MethodSignatureInArray: (........................0.......)
 PropertyInArray: (.......................0........)
 NoReturnValue: (......................0.........)
 ReturnValueVoid: (.....................0..........)
 ReturnValueInline: (....................0...........)
 ReturnValueInArray: (...................0............)
 ExceptionInArray: (..................0.............)
 Reserved: (000000000000000000..............)
 MethodName:
 PrimitiveTypeEnum: String (0x12)
 Data: SendAddress
 TypeName:
 PrimitiveTypeEnum: String (0x12)

 Data: DOJRemotingMetadata.MyServer, DOJRemotingMetadata,
 Version=1.0.2616.21414, Culture=neutral,
 PublicKeyToken=null
 CallArray:
 ArraySingleObject:
 RecordTypeEnum: ArraySingleObject (0x10)
 ObjectId: 1 (0x01)
 Length: 1 (0x1)
 MemberReference:
 RecordTypeEnum: MemberReference (0x09)
 IdRef: 2 (0x02)
 BinaryLibrary:
 RecordTypeEnum: BinaryLibrary (0x0C)
 LibraryId: 3 (0x03)
 LibraryString: LibrayString:DOJRemotingMetadata,
 Version=1.0.2621.26113, Culture=neutral,
 PublicKeyToken=null
 ClassWithMembersAndTypes:
 RecordTypeEnum: ClassWithMembersAndTypes (0x05)
 ObjectId: 2 (0x02)
 Name: DOJRemotingMetadata.MyData
 NumMembers: 4 (0x04)
 MemberNames:
 Data: Street
 MemberNames:
 Data: City
 MemberNames:
 Data: State
 MemberNames:

42 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

 Data: Zip
 BinaryTypeEnumA:
 String (0x01)
 String (0x01)
 String (0x01)
 String (0x01)
 LibraryId: 3 (0x03)
 BinaryObjectString:
 RecordTypeEnum: BinaryObjectString (0x06)
 ObjectId: 04 (0x04)
 Length: 17 (0x11)
 Value: One Microsoft Way
 BinaryObjectString:
 RecordTypeEnum: BinaryObjectString (0x06)
 ObjectId: 05 (0x04)
 Length: 7 (0x07)
 Value: Redmond
 BinaryObjectString:
 RecordTypeEnum: BinaryObjectString (0x06)
 ObjectId: 06 (0x04)
 Length: 2 (0x02)
 Value: WA
 BinaryObjectString:
 RecordTypeEnum: BinaryObjectString (0x06)
 ObjectId: 07 (0x04)
 Length: 5 (0x05)
 Value: 98054
 MessageEnd:
 RecordTypeEnum: MessageEnd (0x11)

The Server Type name, method name, and arguments are passed in a BinaryMethodCall structure.
The MessageEnum record in BinaryMethodCall is used by the server to determine how to read the

needed values. The ArgsInArray flag in this record is set to 1 because the argument passed to the
method is not a Primitive Type. Because the client is not passing any extra data in the CallContext of
the request, the NoContext flag in the MessageEnum record is also set to 1. This information, coupled
with the fact that the operation is of type Request, is used by the server to infer that the

MethodName, Server Type, and Argument are embedded in the BinaryMethodCall record itself.
Because the argument Address is passed in the callArray, CallArray contains an ArraySingleObject as
the root element, and the first entry in the Array is a MemberReference to the

ClassWithMembersAndTypes record that contains the input argument passed. The Library, to which
the ClassWithMembersAndTypes refers, appears next, and then the ClassWithMembersAndTypes
record follows. All Members of Address are strings; therefore, the ClassWithMembersAndTypes record
is followed by BinaryObjectString records for all of its Members.

After it invokes the method and is ready to return the result of that invocation, the server crafts a
Response message and sends the Return Value ("Address received") in that message. The network

capture of the response message is as follows.

 0000 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00
 0010 00 16 11 08 00 00 12 10 41 64 64 72 65 73 73 20Address
 0020 72 65 63 65 69 76 65 64 0B received.

 Binary Serialization Format
 SerializationHeaderRecord:
 RecordTypeEnum: SerializedStreamHeader (0x00)
 TopId: 0 (0x0)
 HeaderId: 0 (0x0)
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 BinaryMethodReturn:
 RecordTypeEnum: BinaryMethodReturn (0x16)
 MessageEnum: 00000811

43 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

 NoArgs: (...............................1)
 ArgsInline: (..............................0.)
 ArgsIsArray: (.............................0..)
 ArgsInArray: (............................0...)
 NoContext: (...........................1....)
 ContextInline: (..........................0.....)
 ContextInArray: (.........................0......)
 MethodSignatureInArray: (........................0.......)
 PropertyInArray: (.......................0........)
 NoReturnValue: (......................0.........)
 ReturnValueVoid: (.....................0..........)
 ReturnValueInline: (....................1...........)
 ReturnValueInArray: (...................0............)
 ExceptionInArray: (..................0.............)
 Reserved: (000000000000000000..............)
 ReturnValue:
 PrimitiveTypeEnum: String (0x12)
 Data: Address received
 MessageEnd:
 RecordTypeEnum: MessageEnd (0x11)

Because it is a response, the server sends back a message with the operation flag set to "Response".
The return argument is enclosed in a "BinaryMethodResponse" enclosure. The following flags in the
MessageEnum record of BinaryMethodResponse field are set to 1.

NoArgs: There are no output arguments.

NoContext: Similar to the client, the server is not sending any additional data in CallContext.

ReturnValueInline: Because the Return Value is a Primitive Type, it is contained in the

BinaryMethodReturn record.

44 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

4 Security Considerations

Some of the structures contain fields that specify size information of the data in the serialization
stream. The type of the size that specifies fields is INT32 (as specified in [MS-DTYP] section 2.2.22).
The maximum value of these values can be as high as 0x7FFFFFFF. An implementation that consumes
the stream either does not allocate memory based on the size information specified in the serialization
stream, or ensures that the data in the serialization stream can be trusted.

The following table lists the structures with fields that specify size information.

 Type Field Description

LengthPrefixedString Length Size of the string

ArrayOfValueWithCode Length Size of the Array

ClassInfo MemberCount Number of Members

ArrayInfo Length Size of the Array

BinaryArray Rank Size of the Lengths and LowerBounds Arrays

BinaryArray Lengths Size of each dimension that would affect the net size of the Array

ObjectNullMultiple NullCount Number of Null Objects

De-serialization of the serialization stream results in creating instances of Remoting Types whose
information is provided in the serialization stream. It might be unsafe to create an instance of
Remoting Types. An implementation protects against attacks where the serialization stream includes
the unsafe Remoting Types. Such attacks can be mitigated by allowing the higher layer to configure a
list of Remoting Types in an implementation-specific way and disallow de-serialization of any Remoting

Type that is not in the list.

45 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see [MS-NETOD] section 4.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

▪ Microsoft .NET Framework 1.0

▪ Microsoft .NET Framework 2.0

▪ Microsoft .NET Framework 3.0

▪ Microsoft .NET Framework 3.5

▪ Microsoft .NET Framework 4.0

▪ Microsoft .NET Framework 4.5

▪ Microsoft .NET Framework 4.6

▪ Microsoft .NET Framework 4.7

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1.1.5: In .NET Framework 1.0 and .NET Framework 1.1, the value of Kind is always

set to 0 when writing. On reading, the value is ignored and assumed to be 0.

<2> Section 2.2.1.1: The bit value GenericMethod is valid only with .NET Framework 2.0, .NET
Framework 3.0, .NET Framework 3.5, .NET Framework 4.0, .NET Framework 4.5, and .NET Framework
4.6 and later versions.

<3> Section 2.2.3.2: This is present only in .NET Framework 2.0, .NET Framework 3.0, .NET
Framework 3.5, .NET Framework 4.0, .NET Framework 4.5, and .NET Framework 4.6later versions.

<4> Section 2.3.1.1: Windows uses a single counter that counts from 1 to generate the ObjectId in

the ClassInfo, ArrayInfo, BinaryObjectString, and BinaryArray records, and the LibraryId in the
BinaryLibrary record. The maximum value is 2,147,483,647. If the object is of a Remoting Type that
cannot be referenced in Windows, the negative of the counter value is used.

<5> Section 2.3.1.1: In Windows, the order of the Members can vary for each occurrence of the
record for a given class.

<6> Section 2.4: Windows uses ObjectNullMultiple256 if the number of sequential Null Objects is 255

or fewer. Windows uses ObjectNullMultiple if the number of sequential Null Objects is greater than
255.

46 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

<7> Section 2.4.2.1: Windows uses a single counter that counts from 1 to generate the ObjectId in
the ClassInfo, ArrayInfo, BinaryObjectString, and BinaryArray records, and the LibraryId in the

BinaryLibrary record. The maximum value is 2,147,483,647.

<8> Section 2.4.3.1: Windows uses a single counter that counts from 1 to generate the ObjectId in

the ClassInfo, ArrayInfo, BinaryObjectString, and BinaryArray records, and the LibraryId in the
BinaryLibrary record. The maximum value is 2,147,483,647.

<9> Section 2.5.3: Windows places the record that defines the ID before or after the referencing
record.

<10> Section 2.5.7: Windows uses a single counter that counts from 1 to generate the ObjectId in
the ClassInfo, ArrayInfo, BinaryObjectString, and BinaryArray records, and the LibraryId in the
BinaryLibrary record. The maximum value is 2,147,483,647.

<11> Section 2.6.2: Windows uses a single counter that counts from 1 to generate the ObjectId in
the ClassInfo, ArrayInfo, BinaryObjectString, and BinaryArray records, and the LibraryId in the
BinaryLibrary record. The maximum value is 2,147,483,647.

47 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

6 Change Tracking

No table of This section identifies changes is available. The that were made to this document is either
new or has had no changes since itsthe last release. Changes are classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

5 Appendix A: Product
Behavior

7184 : Added .NET Framework 4.7 to applicability list in
Appendix A: Product Behavior

Major

48 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

7 Index

A

Applicability 10
ArgsInArray 20
ArgsInline 20
ArgsIsArray 20
Array records
 common definitions 31
 data types 12
 enumerations (section 2.1.2 17, section 2.4.1 31)
 overview 30
 record definitions 32
ArrayInfo packet 31
ArrayOfValueWithCode packet 22
ArraySingleObject 17
ArraySingleObject packet 33
ArraySinglePrimitive 17
ArraySinglePrimitive packet 33
ArraySingleString 17
ArraySingleString packet 34

B

Binary records grammar 39
BinaryArray 17
BinaryArray packet 32
BinaryLibrary 17
BinaryLibrary packet 38
BinaryMethodCall packet 23
BinaryMethodReturn packet 25
BinaryObjectString 17
BinaryObjectString packet 37
Boolean 19
Byte 19

C

Change tracking 47
Char 19
Char packet 12
Class 18
Class records
 data types 12
 enumerations 17
 overview 26
 record definitions 28
 structures 26
ClassInfo packet 26
ClassTypeInfo packet 16
ClassWithId 17
ClassWithId packet 30
ClassWithMembers 17
ClassWithMembers packet 29
ClassWithMembersAndTypes 17
ClassWithMembersAndTypes packet 28
Common data types 12
Common definitions 12

Common enumerations 17
ContextInArray 20
ContextInline 20

49 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

D

DateTime 19
DateTime packet 13
Decimal 19
Decimal packet 16
Double 19
Double packet 12

E

Examples 40

Examples - structure 40
ExceptionInArray 20

F

Fields - vendor-extensible 11

G

GenericMethod 20
Glossary 6
Grammar - binary records 39

I

Implementer - security considerations 44
Informative references 9
Int16 19
Int32 19
Int64 19
Introduction 6

J

Jagged 31
JaggedOffset 31

L

LengthPrefixedString packet 14
Localization 10

M

Member reference records 34
 data types 12
 enumerations 17
MemberPrimitiveTyped 17
MemberPrimitiveTyped packet 34
MemberPrimitiveUnTyped packet 35
MemberReference 17
MemberReference packet 35
MemberTypeInfo packet 27
MessageEnd 17
MessageEnd packet 39
Method invocation records
 data types 12
 enumerations (section 2.1.2 17, section 2.2.1 20)
 overview 20
 record definitions 23
 structures 22
MethodCall 17

50 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

MethodReturn 17
MethodSignatureInArray 20

N

NoArgs 20
NoContext 20
NoReturnValue 20
Normative references 9
Null 19

O

Object 18
ObjectArray 18
ObjectNull 17
ObjectNull packet 36
ObjectNullMultiple 17
ObjectNullMultiple packet 36
ObjectNullMultiple256 17
ObjectNullMultiple256 packet 36
Other records (section 2.1.1 12, section 2.6 37)
Overview (synopsis) 9

P

Primitive 18
PrimitiveArray 18
Product behavior 45
PropertiesInArray 20

R

Rectangular 31
RectangularOffset 31
References 9
 informative 9
 normative 9
Relationship to other protocols 10
Relationship to protocols and other structures 10
ReturnValueInArray 20
ReturnValueInline 20
ReturnValueVoid 20

S

SByte 19
Security 44
Security - implementer considerations 44
SerializationHeaderRecord packet 37
SerializedStreamHeader 17
Single (section 2.1.2.3 19, section 2.4.1.1 31)
Single packet 13
SingleOffset 31
String (section 2.1.2.2 18, section 2.1.2.3 19)
StringArray 18
StringValueWithCode packet 22
Structure examples 40
Structures 12
SystemClass 18
SystemClassWithMembers 17
SystemClassWithMembers packet 29
SystemClassWithMembersAndTypes 17
SystemClassWithMembersAndTypes packet 29

51 / 51

[MS-NRBF-Diff] - v20170316
.NET Remoting: Binary Format Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

T

TimeSpan 19
TimeSpan packet 13
Tracking changes 47

U

UInt16 19
UInt32 19
UInt64 19

V

ValueWithCode packet 22
Vendor-extensible fields 11
Versioning 10

