

1 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-NNS]:
.NET NegotiateStream Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

07/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

09/28/2007 0.1.1 Editorial Revised and edited the technical content.

10/23/2007 0.1.2 Editorial Revised and edited the technical content.

11/30/2007 0.1.3 Editorial Revised and edited the technical content.

01/25/2008 1.0 Major Updated and revised the technical content.

03/14/2008 1.0.1 Editorial Revised and edited the technical content.

06/20/2008 1.1 Minor Updated the technical content.

07/25/2008 2.0 Major Updated and revised the technical content.

08/29/2008 2.0.1 Editorial Revised and edited the technical content.

10/24/2008 3.0 Major Updated and revised the technical content.

12/05/2008 3.0.1 Editorial Revised and edited the technical content.

01/16/2009 3.0.2 Editorial Revised and edited the technical content.

02/27/2009 3.0.3 Editorial Revised and edited the technical content.

04/10/2009 3.0.4 Editorial Revised and edited the technical content.

05/22/2009 3.0.5 Editorial Revised and edited the technical content.

07/02/2009 3.0.6 Editorial Revised and edited the technical content.

08/14/2009 3.0.7 Editorial Revised and edited the technical content.

09/25/2009 3.1 Minor Updated the technical content.

11/06/2009 3.1.1 Editorial Revised and edited the technical content.

12/18/2009 3.1.2 Editorial Revised and edited the technical content.

01/29/2010 3.1.3 Editorial Revised and edited the technical content.

03/12/2010 3.1.4 Editorial Revised and edited the technical content.

04/23/2010 3.1.5 Editorial Revised and edited the technical content.

06/04/2010 3.1.6 Editorial Revised and edited the technical content.

07/16/2010 4.0 Major Significantly changed the technical content.

08/27/2010 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Date

Revision

History

Revision

Class Comments

10/08/2010 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 4.1 Minor Clarified the meaning of the technical content.

09/23/2011 4.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 5.0 Major Significantly changed the technical content.

03/30/2012 5.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 5.1 Minor Clarified the meaning of the technical content.

10/25/2012 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

11/14/2013 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments .. 9

2 Messages.. 10
2.1 Transport .. 10
2.2 Message Syntax .. 10

2.2.1 Handshake Message ... 10
2.2.2 Data Message .. 11

3 Protocol Details .. 13
3.1 Client Details ... 13

3.1.1 Abstract Data Model ... 14
3.1.1.1 Underlying TCP Connection .. 14
3.1.1.2 Stream State ... 14
3.1.1.3 Required Protection Level .. 14
3.1.1.4 Negotiated Protection Level.. 14
3.1.1.5 Allowed Impersonation Level .. 14
3.1.1.6 Negotiated Impersonation Level ... 15
3.1.1.7 Client Credentials ... 15
3.1.1.8 Security Provider Context .. 15
3.1.1.9 Framing Buffer ... 15
3.1.1.10 Channel Binding Token .. 15
3.1.1.11 Target Name .. 15

3.1.2 Timers .. 15
3.1.3 Initialization .. 15
3.1.4 Higher-Layer Triggered Events ... 15

3.1.4.1 Application Invocation of the .NET NegotiateStream Protocol.......................... 15
3.1.4.2 Application Request to Send Data ... 16
3.1.4.3 Application Request to Close Stream ... 16

3.1.5 Message Processing Events and Sequencing Rules .. 16
3.1.5.1 GSS_Init_sec_context Returns While in the CreatingSecurityToken State 16
3.1.5.2 Receiving Data in the WaitingForHandshakeMessage State 17
3.1.5.3 GSS_Init_sec_context Returns While in the ProcessingFinalToken State 18
3.1.5.4 Receiving Data in the WaitingForHandshakeDone State 18
3.1.5.5 Receiving Data in the Authenticated State ... 18

3.1.6 Timer Events ... 19
3.1.7 Other Local Events ... 19

3.2 Server Details ... 19
3.2.1 Abstract Data Model ... 20

3.2.1.1 Underlying TCP Connection .. 20

5 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.1.2 Stream State ... 20
3.2.1.3 Required Protection Level .. 20
3.2.1.4 Negotiated Protection Level.. 20
3.2.1.5 Required Impersonation Level .. 20
3.2.1.6 Negotiated Impersonation Level ... 21
3.2.1.7 Server Credentials .. 21
3.2.1.8 Security Provider Context .. 21
3.2.1.9 Framing Buffer ... 21
3.2.1.10 Expected Channel Binding .. 21

3.2.2 Timers .. 21
3.2.3 Initialization .. 21
3.2.4 Higher-Layer Triggered Events ... 21

3.2.4.1 Application Invocation of the .NET NegotiateStream Protocol.......................... 21
3.2.4.2 Application Request to Send Data ... 22
3.2.4.3 Application Request to Close Stream ... 22

3.2.5 Message Processing Events and Sequencing Rules .. 22
3.2.5.1 Receiving Data in the WaitingForHandshakeMessage State 22
3.2.5.2 GSS_Accept_sec_context Returns While in the CreatingSecurityToken State 23
3.2.5.3 GSS_Accept_sec_context Returns While in the ProcessingFinalToken State 23
3.2.5.4 Receiving Data in the Authenticated State ... 24

3.2.6 Timer Events ... 24
3.2.7 Other Local Events ... 24

4 Protocol Examples .. 25

5 Security .. 30
5.1 Security Considerations for Implementers ... 30
5.2 Index of Security Parameters .. 30

6 Appendix A: Product Behavior .. 31

7 Change Tracking... 32

8 Index ... 33

6 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

The .NET NegotiateStream Protocol provides mutually authenticated and confidential communication
over a TCP connection. It defines a framing mechanism used to transfer Generic Security Service
Application Program Interface (GSS-API) security tokens between a client and server. It also defines
a framing mechanism used to transfer signed and/or encrypted application data once the GSS-API
security context initialization has completed. It uses the Simple and Protected Generic Security
Service Application Program Interface (GSS-API) Negotiation (SPNEGO) mechanism for security
services (authentication, key derivation, and data encryption and decryption).

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Kerberos
little-endian
.NET Framework
Security Support Provider Interface (SSPI)
security token

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because

links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-ERREF%5d.pdf
%5bMS-NLMP%5d.pdf

7 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1",
RFC 2743, January 2000, http://www.ietf.org/rfc/rfc2743.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178,
October 2005, http://www.ietf.org/rfc/rfc4178.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network
Authentication Service (V5)", RFC 4120, July 2005, http://www.ietf.org/rfc/rfc4120.txt

[RFC5246] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.2",
RFC 5246, August 2008, http://www.ietf.org/rfc/rfc5246.txt

1.3 Overview

The .NET NegotiateStream Protocol was introduced to address the need for a simple and lightweight
authentication and security mechanism between a client and a server when the client or server
needs direct access to the TCP stream. A key benefit is that authentication is accomplished without
the use of digital certificates, as is required by the Transport Layer Security (TLS) protocol
[RFC5246]. The .NET NegotiateStream Protocol provides a means for framing GSS-API Negotiation

(as specified in [RFC4178]) over a TCP stream. This is used to negotiate the security context for
communication between a client and a server. The client and server can then exchange data

protected by the negotiated security context.

The .NET NegotiateStream Protocol uses the SPNEGO mechanism to determine which underlying
security protocol to use. The .NET NegotiateStream Protocol can also forego negotiation with
SPNEGO and use NTLM authentication directly.

This protocol enables:

Client and/or server authentication

Data confidentiality and integrity

The .NET NegotiateStream Protocol performs these functions in two phases: a security context
negotiation phase and a data transfer phase.

The security context negotiation allows for the selection of mechanisms to protect the authenticity

and confidentiality of data that will be subsequently exchanged. SPNEGO is used to select the

underlying security protocol, and the security context is negotiated between the client and server in
a set of opaque security tokens generated by the SPNEGO GSS-API mechanism, which are
transferred between client and server over a TCP connection by use of a message framing protocol
defined in this document. This context negotiation is initiated by the client, and several messages
may be exchanged before the security context negotiation is complete. When the negotiation is
completed, the client and server have agreed upon the necessary authentication, data integrity, and

%5bMS-SPNG%5d.pdf
%5bMS-SPNG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90461
%5bMS-GLOS%5d.pdf
%5bMS-KILE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=129803
http://go.microsoft.com/fwlink/?LinkId=129803
http://go.microsoft.com/fwlink/?LinkId=90461

8 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

confidentiality mechanisms. These mechanisms will be used to secure subsequent data exchanges
between the client and the server.

After the security context has been successfully negotiated, the client and server exchange data that
is protected using the agreed-upon authentication, integrity, and confidentiality mechanisms. The

server may initiate a data transfer to the client, or the client may initiate a data transfer to the
server. A data transfer can happen at any time after the security context negotiation is complete.

An error in the negotiation process or the data transfer process invalidates the stream, and a new
security context must be renegotiated. The reason for the failure to negotiate a security context is
communicated to the other application taking part in the negotiation. An error in the data transfer
process can include transfer of data with an authentication, integrity, or confidentiality mechanism
different from what was negotiated.

1.4 Relationship to Other Protocols

The .NET NegotiateStream Protocol relies on TCP for transport, and it relies on the SPNEGO security
protocol and the NTLM security protocol for authentication and message security. If the client

application requests data integrity protection or confidentiality, the .NET NegotiateStream Protocol
performs authentication and negotiates a security protocol to be used to provide these features

through the exchange of opaque security tokens generated by the SPNEGO GSS-API mechanism. If
the client application protocol does not request either of these features, the .NET NegotiateStream
Protocol performs authentication through the exchange of opaque security tokens generated by the
NTLM GSS-API mechanism.

The .NET NegotiateStream Protocol provides an alternative to other security protocols, such as TLS
[RFC5246], which provide for authentication, integrity protection, and encryption of data exchanged
by a higher-level protocol. Whereas TLS requires the client and server to maintain valid digital

certificates with private keys to authenticate each other and establish key material for signing and
encrypting application data, the .NET NegotiateStream Protocol allows authentication and key
exchange to be performed securely without the need for digital certificates through the use of
SPNEGO and NTLM.

1.5 Prerequisites/Preconditions

This protocol assumes that a TCP connection has been established between client and server.

1.6 Applicability Statement

The .NET NegotiateStream Protocol is designed to secure information transmitted between a client
and a server. The protocol provides security services without using digital certificates, and is thus
useful to secure network traffic when the use of certificates is not an option. The .NET
NegotiateStream Protocol uses SPNEGO (which selects between Kerberos and NTLM) to determine
the underlying security protocol to use. Therefore, this protocol is best suited for environments in

which a Kerberos infrastructure is deployed (see [MS-KILE] and [RFC4120]). Using SPNEGO, the
.NET NegotiateStream Protocol enables:

Client and/or server authentication

Data integrity and confidentiality

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

http://go.microsoft.com/fwlink/?LinkId=129803
%5bMS-GLOS%5d.pdf
%5bMS-KILE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458

9 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Protocol Versions: The .NET NegotiateStream Protocol supports versioning and is currently at
version 1.0. The versioning capability is outlined in section 2.2.1. Version 1.0 is the only

defined version of the .NET NegotiateStream Protocol. Therefore, no version negotiation
semantics are described in this specification.

Security and Authentication Methods: The .NET NegotiateStream Protocol supports the use of
the SPNEGO and NTLM security protocols. The use of these security protocols is discussed in
sections 2.2, 3.1.4, and 3.2.5.

Capability Negotiation: This protocol performs explicit negotiation of a security method for
providing authentication, data integrity, and data confidentiality as specified in sections 2.2,
3.1.4, and 3.2.5.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values, provided they set the C bit (0x20000000) for each vendor-defined value,
indicating the value is a customer code.

1.9 Standards Assignments

None.

%5bMS-ERREF%5d.pdf

10 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Messages

2.1 Transport

The .NET NegotiateStream Protocol transports messages using a TCP stream. This protocol specifies
a framing for messages over a TCP stream (see section 2.2 for message syntax). The protocol does
not define a mechanism to establish the TCP connection; rather, an established TCP connection is a
precondition for this protocol.

2.2 Message Syntax

There are two types of messages defined by the .NET NegotiateStream Protocol: Handshake
messages and Data messages. Handshake messages are used to carry GSS-API security tokens
used to establish a security context. Once the security context has been established, Data messages
are used to carry application data that has been signed and/or encrypted by the negotiated security
mechanism.

All multi-byte integer fields are transmitted using little-endian representation.

2.2.1 Handshake Message

The Handshake message structure is defined as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MessageId MajorVersion MinorVersion HighByteOfPayloadSize

LowByteOfPayloadSize AuthPayload (variable)

...

MessageId (1 byte): The type of Handshake message. The value of this field MUST be a value
from the following table.

Value Meaning

HandshakeDone

0x14

The handshake has completed successfully.

HandshakeError

0x15

An error occurred during the handshake. The AuthPayload field contains

an HRESULT. See the description of the AuthPayload field for further

information.

HandshakeInProgress

0x16

The message is part of the handshake phase and is not the final message

from the host. The final Handshake message from a host is always

transferred in a HandshakeDone message.

MajorVersion (1 byte): An unsigned integer that, along with the MinorVersion field, specifies
the version of the .NET NegotiateStream Protocol being used. This field MUST be set to 0x01.

MinorVersion (1 byte): An unsigned integer that, along with the MajorVersion field, defines

the version of the .NET NegotiateStream Protocol being used. This field MUST be set to 0x00.

11 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

HighByteOfPayloadSize (1 byte): An unsigned integer that, along with the
LowByteOfPayloadSize field, defines the size, in bytes, of the AuthPayload field. This field

represents the high-order byte of the payload size.

LowByteOfPayloadSize (1 byte): An unsigned integer that, along with the

HighByteOfPayloadSize field, defines the size, in bytes, of the AuthPayload field. This field
represents the low-order byte of the payload size.

AuthPayload (variable): When the Handshake message has a MessageId of HandshakeDone
or HandshakeInProgress, this field contains the authentication tokens generated by the
Security Support Provider Interface (SSPI) security packages (SPNEGO and NTLM) used
by the .NET NegotiateStream Protocol. The formats for these tokens are defined in [MS-SPNG]
section 2.2 and [MS-NLMP] section 2.2 respectively. When the Handshake message has a

MessageId of HandshakeInProgress, this field MUST have a non-zero length. When the
Handshake message has a MessageId of HandshakeDone, this field MUST be of zero length if
the remote side’s security package did not return a security token when indicating successful
initialization of the security context. When the Handshake message has a MessageId of
HandshakeError, the AuthPayload field MUST have a length of 8 bytes, and contain either an

HRESULT error code describing an error encountered by the security package or the Win32

error code ERROR_TRUST_FAILURE (0x000006FE) indicating that the security package was
able to successfully authenticate, but the negotiated security parameters were unacceptable
to the remote side.

The following structure MUST be used to format this error code within the AuthPayload field:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Reserved

ErrorCode

Reserved (4 bytes): This field is reserved and MUST be set to zero. The recipient MUST
ignore the value.

ErrorCode (4 bytes): An HRESULT describing an error encountered by the remote side's

security package, or the value 0x000006FE.

2.2.2 Data Message

This section defines the structure of the data exchange messages. These messages are used to
transfer application-specific data after the handshake phase is complete. The .NET NegotiateStream
Protocol only frames application data using the format noted in the following table if the negotiation
of security services during the handshake phase resulted in both the client and server agreeing to

sign or encrypt and sign the data to be transferred. Thus, if the negotiated security context in the
handshake phase results in a context that does not support message confidentiality or integrity,
then the data transferred is not framed, and does not follow the format specified in this section (that

is, application-supplied data is written directly to the underlying TCP stream).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PayloadSize

%5bMS-GLOS%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-NLMP%5d.pdf

12 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Payload (variable)

...

PayloadSize (4 bytes): The unsigned size, in bytes, of the Payload field. The maximum value
for this field is 0x0000FC00 (that is, 63K, or 64,512).

Payload (variable): The application-specific data to transfer between the client and server that

has been secured by the selected security mechanism.

13 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Protocol Details

3.1 Client Details

The following figure represents the client state machine for the .NET NegotiateStream Protocol. The
remainder of this section will discuss the state machine in depth.

Figure 1: Client details

14 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. This specification does not mandate that implementations

adhere to this model, as long as their external behavior is consistent with that specified in this
specification.

3.1.1.1 Underlying TCP Connection

The .NET NegotiateStream Protocol uses the Underlying TCP Connection to exchange data with
the server.

3.1.1.2 Stream State

The .NET NegotiateStream Protocol uses the Stream State to keep track of the state of the stream.
The possible values for the state of the stream are:

Uninitialized

CreatingSecurityToken

WaitingForHandshakeMessage

ProcessingFinalToken

WaitingForHandshakeDone

Authenticated

Closed

3.1.1.3 Required Protection Level

The .NET NegotiateStream Protocol uses the Required Protection Level to keep track of the

protection level required by the client application. The possible values for the Required Protection
Level and Negotiated Protection Level are:

None

Sign

EncryptAndSign

3.1.1.4 Negotiated Protection Level

The .NET NegotiateStream Protocol uses the Negotiated Protection Level to keep track of the
protection level agreed upon during the security context negotiation with the server. The possible

values are the same as those for the Required Protection Level.

3.1.1.5 Allowed Impersonation Level

The .NET NegotiateStream Protocol uses the Allowed Impersonation Level to keep track of the
way in which the client application has specified that its credentials may be used by the server
application. The possible values for the Allowed Impersonation Level and Negotiated
Impersonation Level are:

15 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Identification

Impersonation

Delegation

3.1.1.6 Negotiated Impersonation Level

The .NET NegotiateStream Protocol uses the Negotiated Impersonation Level to keep track of
the impersonation level agreed upon during the security context negotiation with the server. The
possible values are the same as those for the Allowed Impersonation Level.

3.1.1.7 Client Credentials

The .NET NegotiateStream Protocol uses the Client Credentials to store a GSS-API handle to the
credentials specified by the client application for authenticating to the server.

3.1.1.8 Security Provider Context

The .NET NegotiateStream Protocol tracks the context of the current security provider chosen during
the handshake phase.

3.1.1.9 Framing Buffer

The .NET NegotiateStream Protocol employs a buffer mechanism to handle the receiving and
processing of full frames while in the handshake phase, and when the data payloads are signed,
and/or encrypted.

3.1.1.10 Channel Binding Token

The .NET NegotiateStream Protocol uses the Channel Binding Token to store the channel binding
token provided by the application.

3.1.1.11 Target Name

The .NET NegotiateStream Protocol uses the Target Name to store the target name of the server
provided by the application.

3.1.2 Timers

The .NET NegotiateStream Protocol does not use timers. Protocols above and below this protocol
layer are responsible for implementing any timers for time-out events.

3.1.3 Initialization

The .NET NegotiateStream Protocol initialization for the client role is triggered by an application
event. See section 3.1.4.1 for more details.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Application Invocation of the .NET NegotiateStream Protocol

The .NET NegotiateStream Protocol is triggered by an invocation from the application while in the
Uninitialized state. If an application invocation is received when the Stream State is not equal to

16 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Uninitialized, an error MUST be returned to the application. The application specifies an underlying
TCP connection to the server, the desired name to be used for client authentication, a channel

binding token, the target name of the server, a required protection level, and an allowed
impersonation level. The Underlying TCP Connection, Required Protection Level, Allowed

Impersonation Level, Channel Binding Token, and Target Name MUST be set based on these
inputs. The application-specified desired_name MUST be passed to the GSS_Acquire_cred function
([RFC2743] section 2.1.1). If the Required Protection Level is None, the implementation MUST
pass a desired_mechs parameter indicating the NTLM mechanism. Otherwise, the implementation
MUST pass a desired_mechs parameter indicating the SPNEGO mechanism. The cred_usage
parameter MUST be set to INITIATE-ONLY and the lifetime_req parameter MUST be set to 0.

If the function returns any major_status other than GSS_S_COMPLETE, the implementation MUST

notify the application of the failure without sending anything over the Underlying TCP Connection.
Otherwise, the implementation MUST store the returned credential handle as the Client
Credentials, and MUST set the Stream State to CreatingSecurityToken. The implementation MUST
pass the Client Credentials to the GSS_Init_sec_context function ([RFC2743] section 2.2.1).
The input_context_handle parameter MUST be GSS_C_NO_CONTEXT. The targ_name parameter

MUST be the Target Name. The mech_type parameter MUST be the same as that passed to

GSS_Acquire_cred. The deleg_req_flag MUST be true if and only if Allowed Impersonation
Level is Delegation. The conf_req_flag MUST be true if and only if the Required Protection Level
is EncryptAndSign. The integ_req_flag MUST be true if and only if the Required Protection Level
is Sign or EncryptAndSign. The mutual_req_flag, replay_det_req_flag, and sequence_req_flag MUST
be true. The anon_req_flag MUST be false. The chan_bindings parameter MUST be the Channel
Binding Token. The input_token MUST be NULL, and the lifetime_req MUST be 0.

3.1.4.2 Application Request to Send Data

When the Stream State is set to Authenticated, the application can at any time request that the
protocol transfer an application-specific data message to the server. If the application requests that
data be transferred while not in the Authenticated state, an error MUST be returned. If the
Negotiated Protection Level is None, the application data MUST be transferred directly over the
Underlying TCP Connection. Otherwise, the application data MUST be passed as the
input_message parameter to the GSS_Wrap function ([RFC2743] section 2.3.3), along with the

Securty Provider Context in the context_handle parameter. The conf_req_flag MUST be set if and
only if the Negotiated Protection Level is EncryptAndSign, and the qop_req parameter MUST be
set to 0. If the function returns a major_status of GSS_COMPLETE, the output_message MUST be
wrapped in a Data Message (as specified in section 2.2.2) and transmitted to the server via the
Underlying TCP Connection. If any other major_status is returned, the client application MUST be
notified of the failure without writing anything to the Underlying TCP Connection.

3.1.4.3 Application Request to Close Stream

The application can at any time request that the stream be closed. When this trigger is received, the
Security Provider Context MUST be deleted, the Underlying TCP Connection MUST be closed,
and the Stream State MUST be set to Closed.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 GSS_Init_sec_context Returns While in the CreatingSecurityToken State

If GSS_Init_sec_context returns a major_status of GSS_S_COMPLETE, the Negotiated
Protection Level and Negotiated Impersonation Level MUST be set based on the returned state
flags. The Security Provider Context MUST be set to the output_context_handle. If the
Negotiated Impersonation Level is not equal to the Allowed Impersonation Level or the

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378

17 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Negotiated Protection Level is lower than the Required Protection Level, the value
0x000006FE MUST be wrapped in the AuthPayload field of a Handshake message with the

HandshakeId set to HandshakeError (as specified in section 2.2) and transmitted to the server.
The Security Provider Context MUST be deleted and the Stream State MUST be set to

Uninitialized. Otherwise, the output_token MUST be wrapped in the AuthPayload field of a
Handshake message with the HandshakeId set to HandshakeDone (as specified in section 2.2)
and transmitted to the server. In this case, the Stream State MUST be set to
WaitingForHandshakeDone.

If GSS_Init_sec_context returns a major status of GSS_S_CONTINUE_NEEDED, the Security
Provider Context MUST be set to the output_context_handle and the output_token MUST be
wrapped in the AuthPayload field of a Handshake message with the HandshakeId set to

HandshakeInProgress (as specified in section 2.2) and sent to the server. The Stream State MUST
be set to WaitingForHandshakeMessage.

If any other major_status is returned, an HRESULT error code describing the error MUST be
wrapped in the AuthPayload of a Handshake message with the HandshakeId set to
HandshakeError (as specified in section 2.2) and sent to the server. The Stream State MUST be set

to Uninitialized.

3.1.5.2 Receiving Data in the WaitingForHandshakeMessage State

The first five bytes received MUST be interpreted as the header of a Handshake message (as
specified in section 2.2). The payload size MUST be reassembled from the HighByteOfPayloadSize
and LowByteOfPayloadSize fields. The MajorVersion and MinorVersion MUST be ignored. The
implementation MUST continue to receive data from the Underlying TCP Connection (storing it in
the Framing Buffer) until the entire payload has been received. When a full frame has been

received, the client MUST check the HandshakeId field of the message to see if it matches one of
the three known message IDs for .NET NegotiateStream Handshake messages. If the message ID
received matches the message ID for:

A HandshakeInProgress message: Upon receipt of a message of this type, the Stream State

MUST be set to CreatingSecurityToken. The client MUST take the token from the AuthPayload

field of the message and pass it to the GSS_Init_sec_context function ([RFC2743] section

2.2.1), along with the Security Provider Context, Client Credentials, Target Name,
Channel Binding Token, and the same other parameters as the first call to
GSS_Init_sec_context (see section 3.1.4.1).

A HandshakeDone message:Upon receipt of a message of this type, the Stream State MUST be

set to ProcessingFinalToken. The client MUST take the token from the AuthPayload field of the
message and pass it to the GSS_Init_sec_context function ([RFC2743] section 2.2.1) along

with the Security Provider Context, Client Credentials, Target Name, Channel Binding
Token, and the same other parameters as the first call to GSS_Init_sec_context (see section
3.1.4.1).

A HandshakeError message: Upon receipt of a message of this type, the Security Provider

Context MUST be deleted, the Underlying TCP Connection MUST be closed, and the Stream
State MUST be set to Closed. The application MUST be notified of the HRESULT contained in the
AuthPayload field. (If the application wishes to retry the authentication, it can do so by invoking

a new instance of the protocol with a new Underlying TCP Connection.)

None of the preceding handshake message types: The message type is invalid. The Security

Provider Context MUST be deleted, the Underlying TCP Connection MUST be closed, and the
Stream State MUST be set to Closed. The application MUST be notified of the failure. (If the
application wishes to retry the authentication, it can do so by invoking a new instance of the
protocol with a new Underlying TCP Connection.)

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378

18 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.5.3 GSS_Init_sec_context Returns While in the ProcessingFinalToken State

If GSS_Init_sec_context returns a major_status of GSS_S_COMPLETE, the Negotiated
Protection Level and Negotiated Impersonation Level MUST be set based on the returned state

flags. If the Negotiated Impersonation Level is not equal to the Allowed Impersonation Level
or the Negotiated Protection Level is less than the Required Protection Level, the value
0x000006FE MUST be wrapped in the AuthPayload field of a Handshake message with the
HandshakeId set to HandshakeError (as specified in section 2.2) and transmitted to the server.
The Security Provider Context MUST be deleted, and the Stream State MUST be set to
Uninitialized. Otherwise, the Stream State MUST be set to Authenticated and the client application
MUST be notified of the successful authentication.

If the function returns any other major_status, an HRESULT describing the error MUST be wrapped
in a Handshake message with the HandshakeId set to HandshakeError (as specified in section 2.2)
and transmitted to the server. The Security Provider Context MUST be deleted and the Stream
State MUST be set to Uninitialized. The application MUST be notified of the authentication failure.

3.1.5.4 Receiving Data in the WaitingForHandshakeDone State

The first five bytes received MUST be interpreted as the header of a Handshake message (as
specified in section 2.2). The payload size MUST be reassembled from the HighByteOfPayloadSize
and LowByteOfPayloadSize fields. The MajorVersion and MinorVersion MUST be ignored. The
implementation MUST continue to receive data from the Underlying TCP Connection (storing it in
the Framing Buffer) until the entire payload has been received. If the message has a
HandshakeId of HandshakeDone, the AuthPayload field MUST be ignored. The Stream State
MUST be set to Authenticated, and the client application MUST be notified of a successful

authentication.

If the message has a HandshakeId of HandshakeError, the Security Provider Context MUST be
deleted, the Underlying TCP Connection MUST be closed, and the Stream State MUST be set to
Closed. The application MUST be notified of the HRESULT contained in the AuthPayload field. (If
the application wishes to retry the authentication, it can do so by invoking a new instance of the
protocol with a new Underlying TCP Connection.)

If the message has any other HandshakeId (including HandshakeInProgress) the message type is

invalid. The Security Provider Context MUST be deleted, the Underlying TCP Connection MUST
be closed, and the Stream State MUST be set to Closed. The application MUST be notified of the
failure. (If the application wishes to retry the authentication, it can do so by invoking a new instance
of the protocol with a new Underlying TCP Connection.)

3.1.5.5 Receiving Data in the Authenticated State

When data arrives on the Underlying TCP Connection, the following actions MUST be taken:

If the Negotiated Protection Level is None, any bytes received MUST be delivered unmodified

to the application.

Otherwise, the first four bytes received MUST be interpreted as the PayloadSize field of a Data

message (as specified in section 2.2). The implementation MUST then continue to receive data

from the Underlying TCP Connection (storing it in the Framing Buffer) until PayloadSize

bytes have been received. When a full frame has been received, it MUST be passed to the
GSS_Unwrap function ([RFC2743] section 2.3.4) along with the Security Provider Context. If
the function returns a major_status of GSS_S_COMPLETE, the output_message MUST be
delivered to the application. If the function returns any other major_status, the application MUST
be notified of the failure and the buffered message MUST be discarded.

http://go.microsoft.com/fwlink/?LinkId=90378

19 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.6 Timer Events

None.

3.1.7 Other Local Events

If the server closes the Underlying TCP Connection, the Security Provider Context MUST be
deleted, the Underlying TCP Connection MUST be closed, and the Stream State MUST be set to
Closed. The application MUST be notified that the server has closed the connection.

3.2 Server Details

The following figure represents the server state machine for the .NET NegotiateStream Protocol. The

remainder of this section will discuss the state machine in depth.

Figure 2: Server details

20 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that specified in this
specification.

3.2.1.1 Underlying TCP Connection

The .NET NegotiateStream Protocol uses the Underlying TCP Connection to exchange data with
the client.

3.2.1.2 Stream State

The .NET NegotiateStream Protocol uses the Stream State to keep track of the state of the stream.
The possible values for the state of the stream are:

Uninitialized

CreatingSecurityToken

WaitingForHandshakeMessage

ProcessingFinalToken

Authenticated

Closed

3.2.1.3 Required Protection Level

The .NET NegotiateStream Protocol uses the Required Protection Level to keep track of the
protection level required by the server application. The possible values for Required Protection
Level and Negotiated Protection Level are:

None

Sign

EncryptAndSign

3.2.1.4 Negotiated Protection Level

The .NET NegotiateStream Protocol uses the Negotiated Protection Level to keep track of the
protection level agreed upon during the security context negotiation with the client. The possible
values are the same as those for the Required Protection Level.

3.2.1.5 Required Impersonation Level

The .NET NegotiateStream Protocol uses the Required Impersonation Level to keep track of the
way in which the server application intends to use the credentials specified by the client. The
possible values for the Required Impersonation Level and Negotiated Impersonation Level
are:

Identification

21 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Impersonation

Delegation

3.2.1.6 Negotiated Impersonation Level

The .NET NegotiateStream Protocol uses the Negotiated Impersonation Level to keep track of
the impersonation level agreed upon during the security context negotiation with the client. The
possible values are the same as those for the Required Impersonation Level.

3.2.1.7 Server Credentials

The .NET NegotiateStream Protocol uses the Server Credentials to store a GSS-API handle to the

credentials specified by the server application for authenticating itself to the client.

3.2.1.8 Security Provider Context

The .NET NegotiateStream Protocol tracks the context of the current security provider chosen during
the handshake phase.

3.2.1.9 Framing Buffer

The .NET NegotiateStream Protocol employs a buffer mechanism to handle the receiving and
processing of full frames while in the handshake phase, and when the data payloads are signed,
and/or encrypted.

3.2.1.10 Expected Channel Binding

The .NET NegotiateStream Protocol uses the Expected Channel Binding to store the channel
binding token, which the client is expected to provide along with its credentials.

3.2.2 Timers

The .NET NegotiateStream Protocol does not use timers. Protocols above and below this protocol
layer are responsible for implementing any timers for time-out events.

3.2.3 Initialization

The .NET NegotiateStream Protocol initialization for the server role is triggered by an application

event. See section 3.2.4.1 for more details.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Application Invocation of the .NET NegotiateStream Protocol

The .NET NegotiateStream Protocol is triggered by an invocation from the application while the
Stream State is set to Uninitialized. If an application invocation is received when the Stream State

is not equal to Uninitialized, an error MUST be returned to the application. The application specifies

an underlying TCP connection to the client, the desired name to be used for server authentication,
an expected channel binding, a required protection level, and a required impersonation level. The
Underlying TCP Connection, Expected Channel Binding, Required Protection Level, and
Required Impersonation Level MUST be set based on these inputs. The application-specified
desired_name MUST be passed to the GSS_Acquire_cred function ([RFC2743] section 2.1.1). The

implementation MUST pass a desired_mechs parameter indicating the SPNEGO mechanism. The

http://go.microsoft.com/fwlink/?LinkId=90378

22 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

cred_usage parameter MUST be set to ACCEPT-ONLY, and the lifetime_req parameter MUST be set
to 0.

If the function returns a major_status other than GSS_S_COMPLETE, the implementation MUST
notify the application of the failure without writing anything to the Underlying TCP Connection.

Otherwise, the implementation MUST store the returned credential handle as the Server
Credentials and set the Stream State to WaitingForHandshakeMessage.

3.2.4.2 Application Request to Send Data

When the Stream State is set to Authenticated, the application can at any time request that the
protocol transfer an application-specific data message to the client. If the application requests that
data be transferred while not in the Authenticated state, an error MUST be returned. If the

Negotiated Protection Level is None, the application data MUST be transferred directly over the
Underlying TCP Connection. Otherwise, the application data MUST be passed as the
input_message parameter to the GSS_Wrap function ([RFC2743] section 2.3.3) along with the
Security Provider Context as the context_handle parameter. The conf_req_flag MUST be set if

and only if the Negotiated Protection Level is EncryptAndSign, and the qop_req parameter MUST
be set to 0. If the function returns a major_status of GSS_S_COMPLETE, the output_message MUST

be wrapped in a Data message (as specified in section 2.2) and transmitted to the client via the
Underlying TCP Connection. If any other major_status is returned, the server application MUST
be notified of the failure without writing anything to the Underlying TCP Connection.

3.2.4.3 Application Request to Close Stream

The application can at any time request that the stream be closed. When this trigger is received, the
Security Provider Context MUST be deleted, the Underlying TCP Connection MUST be closed,

and the Stream State MUST be set to Closed.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Receiving Data in the WaitingForHandshakeMessage State

The first five bytes received MUST be interpreted as the header of a Handshake message (as
specified in section 2.2). The payload size MUST be reassembled from the HighByteOfPayloadSize

and LowByteOfPayloadSize fields. The MajorVersion and MinorVersion MUST be ignored. The
implementation MUST continue to receive data from the Underlying TCP Connection (storing it in
the Framing Buffer) until the entire payload has been received. When a full frame has been
received, the server MUST check the HandshakeId field of the message to see whether it matches
one of the three known message IDs for .NET NegotiateStream Handshake messages. If the
message ID received matches the message ID for:

A HandshakeInProgress message: Upon receipt of a message of this type, the Stream State

MUST be set to CreatingSecurityToken. The server MUST take the token from the AuthPayload
field of the message and pass it to the GSS_Accept_sec_context function ([RFC2743] section
2.2.2) along with the Server Credentials and Expected Channel Binding. If no Security
Provider Context has been saved from a previous call to GSS_Accept_sec_context, the
input_context_handle MUST be set to GSS_C_NO_CONTEXT. Otherwise, the saved Security

Provider Context MUST be passed.

A HandshakeDone message: Upon receipt of a message of this type, the Stream State MUST be

set to ProcessingLastToken. The server MUST take the token from the AuthPayload field of the
message and pass it to the GSS_Accept_sec_context function ([RFC2743] section 2.2.2) along
with the Security Provider Context, Server Credentials, and Expected Channel Binding.

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378

23 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

A HandshakeError message: Upon receipt of a message of this type, the Security Provider

Context MUST be deleted, the Underlying TCP Connection MUST be closed, and the Stream

State MUST be set to Closed. The application MUST be notified of the HRESULT contained in the

AuthPayload field. (If the application wishes to retry the authentication, it can do so by invoking
a new instance of the protocol with a new Underlying TCP Connection.)

None of the preceding handshake message types: The message type is invalid. The Security

Provider Context MUST be deleted, the Underlying TCP Connection MUST be closed, and the
Stream State MUST be set to Closed. The application MUST be notified of the failure. (If the
application wishes to retry the authentication, it can do so by invoking a new instance of the
protocol with a new Underlying TCP Connection.)

3.2.5.2 GSS_Accept_sec_context Returns While in the CreatingSecurityToken

State

If GSS_Accept_sec_context returns a major_status of GSS_S_COMPLETE, the Negotiated
Protection Level and Negotiated Impersonation Level MUST be set based on the returned state

flags. The Security Provider Context MUST be set to the output_context_handle. If the
Negotiated Impersonation Level is less than the Required Impersonation Level or the
Negotiated Protection Level is less than the Required Protection Level, the value 0x000006FE
MUST be wrapped in the AuthPayload field of a Handshake message with the HandshakeId set to
HandshakeError (as specified in section 2.2) and transmitted to the client. The Security Provider
Context MUST be deleted, and the Stream State MUST be set to Uninitialized. Otherwise, the
output_token MUST be wrapped in the AuthPayload field of a Handshake message with the

HandshakeId set to HandshakeDone (as specified in section 2.2) and transmitted to the client. The
Stream State MUST be set to Authenticated, and the server application MUST be notified of a
successful authentication.

If the function returns a major_status of GSS_S_CONTINUE_NEEDED, the output_token MUST be
wrapped in the AuthPayload field of a Handshake message with the HandshakeId set to
HandshakeInProgress (as specified in section 2.2) and transmitted to the client. If the Security
Provider Context has not yet been set, it MUST be set to the output_context_handle. The Stream

State MUST be set to WaitingForHandshakeMessage.

If the function returns any other major_status, an HRESULT describing the error MUST be wrapped
in the AuthPayload field of a Handshake message with the HandshakeId set to HandshakeError
(as specified in section 2.2) and transmitted to the client. The Security Provider Context MUST be
deleted, and the Stream State MUST be set to Uninitialized.

3.2.5.3 GSS_Accept_sec_context Returns While in the ProcessingFinalToken State

If GSS_Accept_sec_context returns a major_status of GSS_S_COMPLETE, the Negotiated
Protection Level and Negotiated Impersonation Level MUST be set based on the returned state
flags. The Security Provider Context MUST be set to the output_context_handle. If the
Negotiated Impersonation Level is less than the Required Impersonation Level, or the
Negotiated Protection Level is less than the Required Protection Level, the value 0x000006FE
MUST be wrapped in the AuthPayload field of a Handshake message with the HandshakeId set to

HandshakeError (as specified in section 2.2) and transmitted to the client. The Security Provider

Context MUST be deleted, and the Stream State MUST be set to Uninitialized. Otherwise, a
Handshake message with the HandshakeId set to HandshakeDone MUST be constructed with a
zero-length AuthPayload and transmitted to the client. The Stream State MUST be set to
Authenticated and the server application MUST be notified of the successful authentication.

If the function returns any other major_status, an HRESULT describing the error MUST be wrapped
in the AuthPayload field of a Handshake message with the HandshakeId set to HandshakeError

24 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

(as specified in section 2.2) and transmitted to the client. The Security Provider Context MUST be
deleted and the Stream State MUST be set to Uninitialized. The application MUST be notified of the

authentication failure.

3.2.5.4 Receiving Data in the Authenticated State

After sending a HandshakeDone message to the client, the server may receive Data messages from
the client at any time. When data arrives on the Underlying TCP Connection, the following actions
MUST be taken:

If the Negotiated Protection Level is None, any bytes received MUST be delivered unmodified

to the application.

Otherwise, the first four bytes received MUST be interpreted as the PayloadSize field of a Data

message (as defined in section 2.2). The implementation MUST then continue to receive data
from the Underlying TCP Connection (storing it in the Framing Buffer) until PayloadSize
bytes have been received. When a full frame has been received, it MUST be passed to the
GSS_Unwrap function ([RFC2743] section 2.3.4) along with the Security Provider Context. If

the function returns a major_status of GSS_S_COMPLETE, the output_message MUST be

delivered to the application. If the function returns any other major_status, the application MUST
be notified of the failure and the buffered message MUST be discarded.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

If the client closes the Underlying TCP Connection, the Security Provider Context MUST be
deleted, the Underlying TCP Connection MUST be closed, and the Stream State MUST be set to
Closed. The application MUST be notified that the client has closed the connection.

http://go.microsoft.com/fwlink/?LinkId=90378

25 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Protocol Examples

Figure 3: Protocol sequence example

Figure 3 gives a simple example of handshake, data transfer, and closing of the connection when
the client and server negotiate a security mechanism that authenticates both the client and server
and provides data integrity and confidentiality protections.

1. To initiate the connection, the client first calls the GSS_Init_sec_context function to obtain a

security token. This security token is placed in the AuthPayload field of a HandshakeInProgress

message and sent to the server.

2. Upon receipt of this HandshakeInProgress message, the server passes the AuthPayload to the
GSS_Accept_sec_context function. In this example, this function returns an output token and
indicates that the security context negotiation is not yet complete.

26 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server takes the token returned from GSS_Accept_sec_context, places this in the
AuthPayload field of a HandShakeInProgress message, and sends this message to the client.

3. The client receives the HandshakeInProgress message, and passes the token in the
AuthPayload to GSS_Init_sec_context. The number of HandshakeInProgress messages

exchanged between the client and server is dependent on the authentication level selected by the
client and the authentication protocol that was negotiated between the client and server. In this
example, the return code of GSS_Init_sec_context indicates that the handshake is not
complete. The client takes the token returned from GSS_Init_sec_context, and places it in the
AuthPayload field of a HandshakeInProgress message.

The client sends the HandshakeInProgress message to the server.

4. After the server receives the HandshakeInProgress message from the client, the server passes

the AuthPayload to the GSS_Accept_sec_context function. In this example, this function
returns an output token and indicates that the security context negotiation is complete. The
server takes the token returned from GSS_Accept_sec_context, places this in the
AuthPayload field of a HandShakeDone message, and sends this message to the client. The

server now enters the data transfer phase.

5. When the client receives the HandshakeDone message from the server, it also transitions to the

data transfer phase. In this example, the client chooses to send a single message to the server.
The client creates this message as specified in section 2.2.2, using the negotiated security
context from the handshake phase. The client then sends this message to the server.

6. The server receives the message, and in this example chooses to end the connection at this time.
The server closes the underlying TCP connection to the client.

7. The client application is notified that the server has closed the connection.

27 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 4: Protocol sequence example

Figure 4 gives another simple example of handshake, data transfer, and closing of the connection
when the client and server negotiate a security mechanism that authenticates only the client and
does not provide data integrity or confidentiality protections.

1. To initiate the connection, the client first calls the GSS_Init_sec_context function to obtain a
security token. This security token is placed in the AuthPayload field of a HandshakeInProgress
message, which is sent to the server.

2. Upon receipt of this HandshakeInProgress message, the server passes the AuthPayload to the
GSS_Accept_sec_context function. In this example, this function returns an output token and
indicates that the security context negotiation is not yet complete.

28 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server takes the token returned from GSS_Accept_sec_context, places this in the
AuthPayload field of a HandShakeInProgress message, and sends this message to the client.

3. The client receives the HandshakeInProgress message, and passes the token in the
AuthPayload to GSS_Init_sec_context. In this example, the return code of

GSS_Init_sec_context indicates that the handshake is complete. The client takes the token
returned from GSS_Init_sec_context, and places it in the AuthPayload field of a
HandshakeDone message.

The client sends the HandshakeDone message to the server.

4. After the server receives the HandshakeDone message from the client, the server passes the
AuthPayload to the GSS_Accept_sec_context function. In this example, this function
indicates that the security context negotiation is complete as well. No token is returned, so the

server sends a HandshakeDone message with no AuthPayload to the client. The server now
enters the data transfer phase.

5. In this example, the server chooses to send a single message to the client. No data integrity or

confidentiality protections have been negotiated, so the data is sent directly over the underlying
TCP connection.

6. The client receives the message and in this example chooses to end the connection at this time.

The client closes the underlying TCP connection to the server.

7. The server application is notified that the client has closed the connection.

Figure 5: Protocol sequence example

29 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 5 gives a final simple example of handshake in which the server rejects the client's
credentials.

1. To initiate the connection, the client first calls the GSS_Init_sec_context function to obtain a
security token. This security token is placed in the AuthPayload field of a HandshakeInProgress

message, which is sent to the server.

2. Upon receipt of this HandshakeInProgress message, the server passes the AuthPayload to the
GSS_Accept_sec_context function. In this example, this function returns an error indicating
that the client’s credentials have been rejected.

The server constructs a HandshakeError message containing the HRESULT
SEC_E_LOGON_DENIED (0x8009030C) and sends it to the client to indicate the failure.

3. The client receives the HandshakeError message, notifies the application that the provided

credentials have been rejected, and closes the underlying TCP connection.

4. The server application is notified that the client has closed the connection.

30 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Security

5.1 Security Considerations for Implementers

The .NET NegotiateStream Protocol is dependent on the security services of the SPNEGO and NTLM
security packages. Before using the .NET NegotiateStream Protocol, implementers should carefully
review the characteristics of the NTLM security package and all security providers used by SPNEGO
on the platforms where the implementation will be used.

5.2 Index of Security Parameters

Security Parameter Section

Client Role: Credentials, Required Protection Level, Allowed Impersonation Level, Channel

Binding Token, Target Name

3.1.4.1

Server Role: Credentials, Required Protection Level, Required Impersonation Level, Expected

Channel Binding

3.2.4.1

31 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Appendix A: Product Behavior

This document specifies version-specific details in the Microsoft .NET Framework. For information
about the .NET Framework versions that are available in each released Windows product or as
supplemental software, see .NET Framework.

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft .NET Framework 2.0

Microsoft .NET Framework 3.0

Microsoft .NET Framework 3.5

Microsoft .NET Framework 3.5 Service Pack 1 (SP1)

Microsoft .NET Framework 4.0

Microsoft .NET Framework 4.5

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

%5bMS-GLOS%5d.pdf

32 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

33 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

8 Index

A

Abstract data model
client

channel binding token 15
client credentials 15
framing buffer 15
impersonation level

allowed 14
negotiated 15

overview 14
protection level

negotiated 14
required 14

security provider context 15
Stream state 14
target name 15
TCP connection - underlying 14

server
channel binding - expected 21
framing buffer 21
impersonation level

negotiated 21
required 20

overview 20
protection level

negotiated 20
required 20

security provider context 21
server credentials 21
Stream state 20
TCP connection - underlying 20

Applicability 8

C

Capability negotiation 8
Change tracking 32
Client

abstract data model
channel binding token 15
client credentials 15
framing buffer 15
impersonation level

allowed 14
negotiated 15

overview 14
protection level

negotiated 14
required 14

security provider context 15
Stream state 14
target name 15
TCP connection - underlying 14

higher-layer triggered events
application

invocation of the .NET NegotiateStream
Protocol 15

request

close stream 16
send data 16

initialization 15
local events 19
message processing

GSS_Init_sec_context returns
CreatingSecurityToken state 16
ProcessingFinalToken state 18

receiving data
Authenticated state 18
WaitingForHandshakeDone state 18
WaitingForHandshakeMessage state 17

overview 13
sequencing rules

GSS_Init_sec_context returns
CreatingSecurityToken state 16
ProcessingFinalToken state 18

receiving data
Authenticated state 18
WaitingForHandshakeDone state 18
WaitingForHandshakeMessage state 17

timer events 19
timers 15

D

Data model - abstract
client

channel binding token 15
client credentials 15
framing buffer 15
impersonation level

allowed 14
negotiated 15

overview 14
protection level

negotiated 14
required 14

security provider context 15
Stream state 14

target name 15
TCP connection - underlying 14

server
channel binding - expected 21
framing buffer 21
impersonation level

negotiated 21
required 20

overview 20
protection level

negotiated 20
required 20

security provider context 21
server credentials 21
Stream state 20
TCP connection - underlying 20

dataMessage packet 11

E

34 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Examples - overview 25

F

Fields - vendor-extensible 9

G

Glossary 6

H

handshake packet 10
Higher-layer triggered events

client
application

invocation of the .NET NegotiateStream
Protocol 15

request
close stream 16
send data 16

server
application

invocation of the .NET NegotiateStream
protocol 21

request
close stream 22
send data 22

I

Implementer - security considerations 30
Index of security parameters 30
Informative references 7
Initialization

client 15
server 21

Introduction 6

L

Local events
client 19
server 24

M

Message processing
client

GSS_Init_sec_context returns
CreatingSecurityToken state 16
ProcessingFinalToken state 18

receiving data
Authenticated state 18
WaitingForHandshakeDone state 18
WaitingForHandshakeMessage state 17

server
GSS_Accept_sec_context returns

CreatingSecurityToken state 23
ProcessingFinalToken state 23

receiving data
Authenticated state 24

WaitingForHandshakeMessage state 22
Messages

syntax 10
transport 10

N

Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 30
Preconditions 8
Prerequisites 8
Product behavior 31

R

References
informative 7
normative 6

Relationship to other protocols 8

S

Security
implementer considerations 30
parameter index 30

Sequencing rules
client

GSS_Init_sec_context returns
CreatingSecurityToken state 16
ProcessingFinalToken state 18

receiving data
Authenticated state 18
WaitingForHandshakeDone state 18
WaitingForHandshakeMessage state 17

server
GSS_Accept_sec_context returns

CreatingSecurityToken state 23
ProcessingFinalToken state 23

receiving data
Authenticated state 24
WaitingForHandshakeMessage state 22

Server

abstract data model
channel binding - expected 21
framing buffer 21
impersonation level

negotiated 21
required 20

overview 20
protection level

negotiated 20
required 20

security provider context 21
server credentials 21
Stream state 20

35 / 35

[MS-NNS] — v20131025
 .NET NegotiateStream Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

TCP connection - underlying 20
higher-layer triggered events

application
invocation of the .NET NegotiateStream

protocol 21
request

close stream 22
send data 22

initialization 21
local events 24
message processing

GSS_Accept_sec_context returns
CreatingSecurityToken state 23
ProcessingFinalToken state 23

receiving data
Authenticated state 24
WaitingForHandshakeMessage state 22

overview 19
sequencing rules

GSS_Accept_sec_context returns
CreatingSecurityToken state 23
ProcessingFinalToken state 23

receiving data

Authenticated state 24
WaitingForHandshakeMessage state 22

timer events 24
timers 21

Standards assignments 9
Syntax 10

T

Timer events
client 19
server 24

Timers
client 15
server 21

Tracking changes 32
Transport 10
Triggered events - higher-layer

client
application

invocation of the .NET NegotiateStream
Protocol 15

request
close stream 16
send data 16

server
application

invocation of the .NET NegotiateStream
protocol 21

request
close stream 22
send data 22

V

Vendor-extensible fields 9
Versioning 8

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Handshake Message
	2.2.2 Data Message

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.1.1 Underlying TCP Connection
	3.1.1.2 Stream State
	3.1.1.3 Required Protection Level
	3.1.1.4 Negotiated Protection Level
	3.1.1.5 Allowed Impersonation Level
	3.1.1.6 Negotiated Impersonation Level
	3.1.1.7 Client Credentials
	3.1.1.8 Security Provider Context
	3.1.1.9 Framing Buffer
	3.1.1.10 Channel Binding Token
	3.1.1.11 Target Name

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Application Invocation of the .NET NegotiateStream Protocol
	3.1.4.2 Application Request to Send Data
	3.1.4.3 Application Request to Close Stream

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 GSS_Init_sec_context Returns While in the CreatingSecurityToken State
	3.1.5.2 Receiving Data in the WaitingForHandshakeMessage State
	3.1.5.3 GSS_Init_sec_context Returns While in the ProcessingFinalToken State
	3.1.5.4 Receiving Data in the WaitingForHandshakeDone State
	3.1.5.5 Receiving Data in the Authenticated State

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.1.1 Underlying TCP Connection
	3.2.1.2 Stream State
	3.2.1.3 Required Protection Level
	3.2.1.4 Negotiated Protection Level
	3.2.1.5 Required Impersonation Level
	3.2.1.6 Negotiated Impersonation Level
	3.2.1.7 Server Credentials
	3.2.1.8 Security Provider Context
	3.2.1.9 Framing Buffer
	3.2.1.10 Expected Channel Binding

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Application Invocation of the .NET NegotiateStream Protocol
	3.2.4.2 Application Request to Send Data
	3.2.4.3 Application Request to Close Stream

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving Data in the WaitingForHandshakeMessage State
	3.2.5.2 GSS_Accept_sec_context Returns While in the CreatingSecurityToken State
	3.2.5.3 GSS_Accept_sec_context Returns While in the ProcessingFinalToken State
	3.2.5.4 Receiving Data in the Authenticated State

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

