

1 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-NETTR]:
.NET Tracing Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

04/08/2008 0.1 Initial availability.

05/16/2008 0.1.1 Editorial Revised and edited the technical content.

06/20/2008 0.1.2 Editorial Revised and edited the technical content.

07/25/2008 0.1.3 Editorial Revised and edited the technical content.

08/29/2008 0.1.4 Editorial Revised and edited the technical content.

10/24/2008 0.1.5 Editorial Revised and edited the technical content.

12/05/2008 0.2 Minor Updated the technical content.

01/16/2009 0.2.1 Editorial Revised and edited the technical content.

02/27/2009 0.2.2 Editorial Revised and edited the technical content.

04/10/2009 0.2.3 Editorial Revised and edited the technical content.

05/22/2009 0.2.4 Editorial Revised and edited the technical content.

07/02/2009 0.2.5 Editorial Revised and edited the technical content.

08/14/2009 0.2.6 Editorial Revised and edited the technical content.

09/25/2009 0.2.7 Editorial Revised and edited the technical content.

11/06/2009 0.2.8 Editorial Revised and edited the technical content.

12/18/2009 0.2.9 Editorial Revised and edited the technical content.

01/29/2010 0.2.10 Editorial Revised and edited the technical content.

03/12/2010 1.0 Major Updated and revised the technical content.

04/23/2010 1.0.1 Editorial Revised and edited the technical content.

06/04/2010 1.0.2 Editorial Revised and edited the technical content.

07/16/2010 2.0 Major Significantly changed the technical content.

08/27/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 2.0 No change No changes to the meaning, language, or formatting of

3 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Date

Revision

History

Revision

Class Comments

the technical content.

02/11/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 2.1 Minor Clarified the meaning of the technical content.

09/23/2011 2.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 3.0 Major Significantly changed the technical content.

03/30/2012 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 3.1 Minor Clarified the meaning of the technical content.

10/25/2012 3.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 3.2 Minor Clarified the meaning of the technical content.

08/08/2013 3.2 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments .. 9

2 Messages.. 10
2.1 Transport .. 10
2.2 Message Syntax .. 10

2.2.1 Namespaces .. 10
2.2.2 Common Data Types .. 11
2.2.3 SOAP ActivityId Header Block Syntax .. 11

3 Protocol Details .. 12
3.1 Server Details ... 12

3.1.1 Abstract Data Model ... 12
3.1.2 Timers .. 12
3.1.3 Initialization .. 12
3.1.4 Higher-Layer Triggered Events ... 12
3.1.5 Processing Events and Sequencing Rules ... 12
3.1.6 Timer Events ... 15
3.1.7 Other Local Events ... 15

3.2 Client Details ... 16
3.2.1 Abstract Data Model ... 16
3.2.2 Timers .. 16
3.2.3 Initialization .. 16
3.2.4 Higher-Layer Triggered Events ... 16
3.2.5 Message Processing Events and Sequencing Rules .. 16
3.2.6 Timer Events ... 17
3.2.7 Other Local Events ... 17

4 Protocol Examples .. 18
4.1 Sample SOAP Messages .. 18
4.2 Sample Activity Traces ... 19

4.2.1 Activity Trace Emitted for Request Sent at the Client .. 19
4.2.2 Activity Trace Emitted for Request Received at the Server 20
4.2.3 Activity Trace Emitted for Reply Sent at the Server .. 21
4.2.4 Activity Trace Emitted for Reply Received at the Client .. 22

5 Security .. 24
5.1 Security Considerations for Implementers ... 24
5.2 Index of Security Parameters .. 24

6 Appendix A: Product Behavior .. 25

5 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Change Tracking... 26

8 Index ... 27

6 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

This document specifies the .NET Tracing Protocol, which defines a SOAP message header for
correlating sets of messages together.

Diagnosing errors in distributed applications is a complex task that usually involves multiple
messages. By correlating messages between distributed application endpoints, users can map
message exchanges and infer causality relationships between messages. This information helps
isolate the set of messages that led up to an error and the set of messages that resulted from it. In
a distributed application, this information can also be used to trace the flow of activities through the

system. The .NET Tracing Protocol provides simple message correlation functionality to distributed
applications.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

endpoint
globally unique identifier (GUID)
.NET Framework

universally unique identifier (UUID)

The following terms are specific to this document:

distributed application: An application composed of one or more distinct components that
communicate with each other via a protocol, either locally or over the wire.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation

details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624

7 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN

Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

[SOAP1.2-1/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition) ", W3C Recommendation 27, April 2007,
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)",
W3C Recommendation, December 2009, http://www.w3.org/TR/2009/REC-xml-names-20091208/

[XMLSCHEMA1] Thompson, H.S., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema

Part 1: Structures", W3C Recommendation, May 2001, http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/

[XMLSCHEMA2] Biron, P.V., and Malhotra, A., Eds., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

1.3 Overview

As distributed applications become increasingly complex, so does the problem of diagnosing errors
within them. To diagnose an error in a distributed application, a user must isolate the problem to a
particular component. Each component often produces a trace log that records incoming messages,
outgoing messages, and information about its internal state. By analyzing trace logs for each

component, a user can reconstruct the sequence of messages that led to the error. The .NET Tracing
Protocol facilitates this process by helping to correlate message flows together.

The .NET Tracing Protocol provides two main functions. First, it enables users to map outgoing
messages to incoming messages between components in a distributed application. It does this by
assigning each message a unique identifier, named the CorrelationId. This identifier is stored in the
client component's trace log before it sends a message and in the server component's trace log after
it receives a message. The identifier is then used as an index into the client and server trace logs to

map the message exchange together. Using a unique identifier to map message flows also has the
advantage of avoiding problems with clock skew between components in the distributed application.

The second function of the .NET Tracing Protocol is to provide a way to group related messages
together. It does this by generating a second message identifier named the ActivityId. Unlike the
CorrelationId, the ActivityId is not unique for each message. Instead, the same ActivityId is
propagated between related messages. For example, a client sends a request to a server with

"ActivityId A" in the message. The .NET Tracing Protocol states that the server must echo "ActivityId
A" in its message response. Future related requests by the client should continue to use the same

"ActivityId A". Because all of the related messages have included the same ActivityId, users can
infer causality relationships between messages. This information can also be used to determine the
set of messages that led up to an error and the set of messages that resulted from the error. This
process is specified in section 3.1.5.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=191840
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
%5bMS-GLOS%5d.pdf

8 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.4 Relationship to Other Protocols

The .NET Tracing Protocol supports only SOAP-formatted messages. The communication protocol
between the client and the server needs to use a SOAP-supported transport protocol, such as TCP/IP

or HTTP/S. The following figure shows the dependency diagram for the .NET Tracing Protocol.

Figure 1: Dependency stack for the .NET Tracing Protocol

1.5 Prerequisites/Preconditions

The .NET Tracing Protocol assumes the following:

The .NET Tracing Protocol is not dependent on any specific transport protocol.

The communication protocol between the client and the server must use a SOAP-supported

transport protocol.

1.6 Applicability Statement

The .NET Tracing Protocol can be used to help with tracing or debugging a distributed application.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

Supported Transports: This protocol requires the use of SOAP messaging version 1.1 or SOAP

messaging 1.2. SOAP is specified in [SOAP1.2-1/2007].

Protocol Versions: The .NET Tracing Protocol applies to SOAP messages that include the

additional XML element <ActivityId /> with a namespace of
"http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics".

Capability Negotiation: The .NET Tracing Protocol does not support negotiation of the version

to use. Instead, an implementation must be configured to process only messages with the

specific XML element and namespace that are described in this document.

The .NET Tracing Protocol applies to SOAP messages that are formatted based on the released
SOAP versions 1.1, 1.2, or later versions.

http://go.microsoft.com/fwlink/?LinkId=94664

9 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Moreover, this document references valid, well-formed, and complete SOAP messages that carry
the special XML element <ActivityId /> with the specific namespace

"http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics".

An implementation is not compliant with this specification if it fails to satisfy one or more of the

MUST requirements defined herein. A SOAP node cannot use the
"http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics" XML Namespace identifier
within SOAP Envelopes unless it is compliant with this specification.

1.8 Vendor-Extensible Fields

The .NET Tracing Protocol does not specify any extensions or extensible fields by default. However,
vendors and implementers can choose to extend the protocol by including additional attributes. An

extension or implementation MUST provide the basic and default behavior specified in this protocol
document when the service does not understand a specific extension to maintain compatibility with
implementations that do not understand a specific extension.

1.9 Standards Assignments

None.

10 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Messages

2.1 Transport

The .NET Tracing Protocol enables correlated activity tracing between client and server endpoints,
even across different application domains for a single unit of processing, such as request or reply.
For example, the .NET Tracing Protocol enables correlation of traces generated at the client end for
the send operation and at the server end for the receive operation for a request message exchange.
Additionally, for a request-reply message exchange pattern, the .NET Tracing Protocol enables

correlation of traces generated for both the request and the reply.

In order for a client and a server to generate correlated activity tracing using the .NET Tracing
Protocol, both the client and the server MUST use a SOAP-supported transport protocol for message
exchange. There are no restrictions on the use of any specific SOAP transport protocol.

To participate in the generation of correlated activity traces using the .NET Tracing Protocol, both
the client and the server MUST insert the special SOAP header block <ActivityId/> (namespace

"http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics"), which is also called the SOAP

ActivityId Header Block, into the SOAP header when sending a message. This SOAP ActivityId
Header Block MUST follow all the rules of the SOAP header specified in [SOAP1.2-1/2007] Section
3 SOAP Extensibility Model and [SOAP1.2-1/2007] Section 5.2 SOAP Header. The sender MUST
associate the GUID string specified as the ActivityId with the activity traces generated at its end.
When a message is received by a recipient, and the SOAP header includes the SOAP ActivityId
Header Block, the recipient MUST process the SOAP ActivityId Header Block. The received

ActivityId MUST be associated with the activity traces generated by the recipient. If the request-
response message exchange pattern (as specified by SOAP) is used, then the server MUST echo the
ActivityId received in the request in the SOAP ActivityId Header Block, included in the reply
message header. The CorrelationId attribute MUST be different than the one received in the request.
If the request does not include the SOAP ActivityId Header Block, then the server MUST behave
as if it is an initiator and MUST insert the SOAP ActivityId Header Block in the message header
for the reply. Figure 1 describes the message exchange sequence for a request-response message

exchange pattern between a client and a server.

The SOAP ActivityId Header Block is an optional SOAP header that MAY<1> be included. The
message recipient MAY ignore the SOAP ActivityId Header Block if it is included in the received
request. In case of a request-response pattern, the message sender MUST NOT declare a failure
condition if the SOAP ActivityId Header Block is not included in the response, even if the request
is included in the header.

This specification does not specify how to process any custom third-party extensions or attributes to

this protocol when they are processed by a client or a server.

2.2 Message Syntax

2.2.1 Namespaces

This specification defines and references various XML namespaces using the mechanisms specified in
[XMLNS]. Although this specification associates a specific XML namespace prefix for each XML

namespace that is used, the choice of any particular XML namespace prefix is implementation-
specific and not significant for interoperability.

Prefix Namespace URI Reference

(none) http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics

http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=191840

11 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Prefix Namespace URI Reference

xsd http://www.w3.org/2001/XMLSchema [XMLSCHEMA1],

[XMLSCHEMA2]

2.2.2 Common Data Types

GUID strings: This protocol makes use of the string representation of a GUID specified in [MS-
DTYP] section 2.3.4.3. This string representation is in the form of a universally unique
identifier (UUID) as specified in [RFC4122] section 3.

2.2.3 SOAP ActivityId Header Block Syntax

To enable activity tracing, a special XML element called the SOAP ActivityId Header Block MUST
be placed within the SOAP header of each message exchanged. The schema for this XML element is
as follows.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">

 <xsd:element name="ActivityId">

 <xsd:complexType>

 <xsd:attribute name="CorrelationId" type="xsd:string" />

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

There is no specific location for this XML element within the SOAP header.

ActivityId: Contains the name of the SOAP ActivityId Header Block. The value of this
element is a GUID string. This value is used to correlate activity traces within the same unit of
processing (for example, all activity traces generated for a request or a response, or for both

request and response if a request-response message exchange pattern is used).

http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics: The qualifying

namespace for the SOAP ActivityId Header Block.

CorrelationId: Attribute of type GUID string associated with the SOAP ActivityId Header
Block. This attribute is used to relate the send and receive activity traces associated with one
single message. For example, for a request message, the activity traces for send at the client
and the corresponding receive at the server are correlated based on the CorrelationId. The
send and receive messages associated with the response are associated with a different
CorrelationId.

http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460

12 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Details

3.1 Server Details

3.1.1 Abstract Data Model

ActivityId: When a request is received by a server and it contains a SOAP ActivityId Header
Block, the server has to process the header block and store the ActivityId contained in the
header. The received ActivityId can be used as the CorrelationId to generate activity traces.

Correlation Mode: A BOOLEAN value. When set to TRUE, Correlation Mode is enabled. The
server is configured to participate in correlated tracing. It includes the client's ActivityId as an
XML element in the SOAP header. If set to FALSE, Correlation Mode is disabled and the
ActivityId is not inserted.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Processing Events and Sequencing Rules

When the server receives a request that contains a SOAP ActivityId Header Block, the server
MUST process the header block and save the ActivityId contained in the header. The server MUST
echo the ActivityId sent by the client in its response message. Future related requests from the

client typically continue to use the same ActivityId (as specified in section 3.2.5). This allows
implementers to infer causality relationships between messages, and to determine the set of
messages that led up to (and result from) an error.

The following figure shows a typical message exchange sequence with corresponding data.

13 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 2: Sequence of a request-reply message exchange

Every server participating in correlated tracing using the .NET Tracing Protocol MUST implement
processing to receive and send the SOAP ActivityId Header Block. Participation can be externally
configured. The following state diagram shows the receiving end of a server participating in
correlated activity tracing. A state diagram showing the sending portion of server participation

follows later in this section.

14 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 3: State of a server receiving a request when Correlation Mode is enabled

The request-response messaging consists of a request message from client to server and a

corresponding response message from server to client. When the server is sending a response for
the request that included the SOAP ActivityId Header Block and Correlation Mode is enabled,
it MUST insert an ActivityId XML element into the SOAP header of the response. It MUST use the
ActivityId, which is always set to the ActivityId received in the request. The CorrelationId
attribute of the ActivityId element MUST be a newly generated unique GUID string.

When the server is sending a response for the request that did not include the SOAP ActivityId

Header Block and the server is configured to participate in correlated tracing, it MUST insert a

SOAP ActivityId Header Block into the SOAP header of the response with the value of ActivityId
being a newly generated unique GUID string. The CorrelationId attribute of the ActivityId element
MUST be a newly generated unique GUID string.

The following state diagram shows the sending end of a server participating in correlated activity
tracing.

15 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 4: State of a server sending a response when participating in correlated activity
tracing

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

16 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.2 Client Details

3.2.1 Abstract Data Model

ActivityId: When a request is sent by a client and Correlation Mode is enabled, the client
inserts a SOAP ActivityId Header Block that includes an ActivityId. This value is stored and
used in messages that are part of a correlated set.

Correlation Mode: A Boolean value. When set to TRUE, Correlation Mode is enabled; the
client is configured to participate in correlated tracing. It sends the appropriate ActivityId for
the correlated set the current message is a part of. If set to FALSE, Correlation Mode is
disabled and the ActivityId is not inserted.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

Every client participating in generating correlated tracing using the .NET Tracing Protocol MUST
implement processing to send and receive the SOAP ActivityId Header Block. Participation may
be externally configured. The following state diagram shows a client participating in correlated

activity tracing.

17 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 5: State of a client sending a request when participating in correlated activity
tracing

When a request is sent by a client and the client is configured to participate in correlated tracing, it
MUST insert a SOAP ActivityId Header Block into the SOAP header of the request. The inserted

SOAP ActivityId Header Block MUST include an ActivityId. This ActivityId can be a GUID string
already being used to perform correlated activity tracing at the client. Related requests sent by the
client SHOULD continue to use the same ActivityId. The CorrelationId attribute of the ActivityId
element MUST be a newly generated unique GUID string for that message.

When the client receives a response to the request it had sent (which had included the SOAP
ActivityId Header Block in the SOAP header), and the client is configured to participate in
correlated tracing, it SHOULD process the SOAP ActivityId Header Block present in the SOAP

header of the response.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

18 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Protocol Examples

By inserting the SOAP ActivityId Header Block into the SOAP header, activity traces may be
correlated across client and server. Correlated activity traces provide the user with direct correlation
of error traces for the same unit of processing across application endpoints, such as a request.
Errors emitted at different endpoints for the same unit of processing are grouped in the same
activity, even across process or machine boundaries.

4.1 Sample SOAP Messages

The following examples depict two SOAP messages that contain the SOAP ActivityId Header
Block in the SOAP header. The SOAP messages are request and response messages associated with
a request-response message exchange pattern. The examples show a complete SOAP envelope, but
the discussion focuses only on the SOAP ActivityId Header Block.

The following is a sample request message that includes the SOAP ActivityId Header Block. The
sample shows a standard SOAP envelope with a body and a header. The header element contains an

<ActivityId> element. The value of ActivityId is "43ffa660-a0c6-4249-bb36-648b73a06213" and the

CorrelationId attribute is "7224e2a9-8f9c-4acb-a924-17cb6af67b23".

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

 <s:Header>

 <Action s:mustUnderstand="1"

 xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">

 http://tempuri.org/IService/MyOperation

 </Action>

 <ActivityId CorrelationId="7224e2a9-8f9c-4acb-a924-17cb6af67b23"

xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">

 43ffa660-a0c6-4249-bb36-648b73a06213</ActivityId>

 </s:Header>

 <s:Body>

 <MyOperation xmlns="http://tempuri.org">

 <MyValue>Some Value</MyValue>

 </MyOperation>

 </s:Body>

</s:Envelope>

The following is a sample response to the request discussed earlier. The header element for the

message includes the <ActivityId> element. As per section 3.1.1, the ActivityId value is the same as
received in the request ("43ffa660-a0c6-4249-bb36-648b73a06213"). The protocol also specifies

that the CorrelationId attribute must be different from the CorrelationId received in the request. In
the example, the CorrelationId associated with the response is a new GUID string value
("b898336e-d4e2-4eb7-a2c7-1e23f4630646").

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

 <s:Header>

 <Action s:mustUnderstand="1"

 xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">

 http://tempuri.org/IService/MyOperation

 </Action>

 <ActivityId CorrelationId="b898336e-d4e2-4eb7-a2c7-1e23f4630646"

xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">

 43ffa660-a0c6-4249-bb36-648b73a06213</ActivityId>

 </s:Header>

19 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <s:Body>

 <MyOperationResponse xmlns="http://tempuri.org">

 <MyOperationResult>

 <MyValue>Some Value</MyValue>

 </MyOperationResult>

 </MyOperationResponse>

 </s:Body>

</s:Envelope>

The activity trace generated at the client and server ends for the request and response is expected

to maintain a correlation with the value of ActivityId ("43ffa660-a0c6-4249-bb36-648b73a06213").
Section 4.2 provides examples of traces with such a correlation.

4.2 Sample Activity Traces

The following examples discuss a sample use of the .NET Tracing Protocol to generate a correlated
activity trace. The .NET Tracing Protocol does not prescribe the usage of ActivityId, CorrelationId,

and the format of the traces emitted. Individual protocol implementation is free to use the ActivityId
and CorrelationId in any form suitable to generate activity traces. The following examples are used
for illustrative purposes only and are not part of the protocol specification.

Sample traces generated at the client and server ends for a request-response message exchange
pattern are described later. In these samples, the ActivityId attribute associated with XML element
<Correlation> is used to associate the generated activity traces with the ActivityId received in the
SOAP header. The SOAP headers associated with the request message are also included in the

generated trace (see element
E2ETraceEvent\ApplicationData\TraceData\DataItem\TraceRecord\ExtendedData\MessageHeaders\A
ctivityId). For illustration purposes, the sample traces discussed later are defined as if they were
generated for the request-response messages discussed in section 4.1.

4.2.1 Activity Trace Emitted for Request Sent at the Client

The following is a sample trace generated at the client end when sending a request message. The

ActivityId attribute associated with the XML element <Correlation> is the same as specified in the
message samples discussed earlier ("43ffa660-a0c6-4249-bb36-648b73a06213"). The SOAP
ActivityId Header Block associated with the request message is also part of the trace. Other parts
of the sample trace will not be discussed and are not relevant to this example.

<E2ETraceEvent xmlns="http://schemas.microsoft.com/2004/06/E2ETraceEvent">

 <System xmlns="http://schemas.microsoft.com/2004/06/windows/eventlog/system">

 <EventID>262164</EventID>

 <Type>3</Type>

 <SubType Name="Information">0</SubType>

 <Level>8</Level>

 <TimeCreated SystemTime="2008-02-08T17:23:54.0057336Z" />

 <Source Name="System.ServiceModel" />

 <Correlation ActivityID="{43ffa660-a0c6-4249-bb36-648b73a06213}" />

 <Execution ProcessName="Client" ProcessID="7604" ThreadID="1" />

 <Channel/>

 <Computer>MACHINE1</Computer>

 </System>

 <ApplicationData>

 <TraceData>

 <DataItem>

20 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <TraceRecord xmlns="http://schemas.microsoft.com/2004/10/E2ETraceEvent/TraceRecord"

Severity="Information">

 <TraceIdentifier>http://msdn.microsoft.com/en-

US/library/System.ServiceModel.Channels.MessageSent.aspx</TraceIdentifier>

 <Description>Sent a message over a channel.</Description>

 <AppDomain>Client.exe</AppDomain>

<Source>System.ServiceModel.Channels.HttpOutput+WebRequestHttpOutput/34948909</Source>

 <ExtendedData

xmlns="http://schemas.microsoft.com/2006/08/ServiceModel/MessageTraceRecord">

 <MessageProperties>

 <Encoder>text/xml; charset=utf-8</Encoder>

 <AllowOutputBatching>False</AllowOutputBatching>

 <Via>http://localhost/MySample/service.svc/basic</Via>

 </MessageProperties>

 <MessageHeaders>

 <ActivityId CorrelationId="7224e2a9-8f9c-4acb-a924-17cb6af67b23"

xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">43ffa660-a0c6-4249-

bb36-648b73a06213</ActivityId>

 </MessageHeaders>

 </ExtendedData>

 </TraceRecord>

 </DataItem>

 </TraceData>

 </ApplicationData>

</E2ETraceEvent>

4.2.2 Activity Trace Emitted for Request Received at the Server

The following is a sample trace generated at the server end when the request message is received.
The ActivityId attribute associated with the XML element <Correlation> is the same as specified in
the message samples discussed earlier ("43ffa660-a0c6-4249-bb36-648b73a06213"). The SOAP

ActivityId Header Block associated with the request message is also part of the trace. Other parts
of the sample trace will not be discussed and are not relevant to this example.

<E2ETraceEvent xmlns="http://schemas.microsoft.com/2004/06/E2ETraceEvent">

 <System xmlns="http://schemas.microsoft.com/2004/06/windows/eventlog/system">

 <EventID>262163</EventID>

 <Type>3</Type>

 <SubType Name="Information">0</SubType>

 <Level>8</Level>

 <TimeCreated SystemTime="2008-02-08T17:23:57.2087971Z" />

 <Source Name="System.ServiceModel" />

 <Correlation ActivityID="{43ffa660-a0c6-4249-bb36-648b73a06213}" />

 <Execution ProcessName="w3wp" ProcessID="6720" ThreadID="5" />

 <Channel/>

 <Computer>MACHINE1</Computer>

 </System>

 <ApplicationData>

 <TraceData>

 <DataItem>

 <TraceRecord xmlns="http://schemas.microsoft.com/2004/10/E2ETraceEvent/TraceRecord"

Severity="Information">

 <TraceIdentifier>http://msdn.microsoft.com/en-

US/library/System.ServiceModel.Channels.MessageReceived.aspx</TraceIdentifier>

 <Description>Received a message over a channel.</Description>

 <AppDomain>/LM/W3SVC/1/Root/MySample-1-128469650342401041</AppDomain>

21 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<Source>System.ServiceModel.Activation.HostedHttpContext+HostedHttpInput/17228638</Source>

 <ExtendedData

xmlns="http://schemas.microsoft.com/2006/08/ServiceModel/MessageTransmitTraceRecord">

 <MessageProperties>

 <Encoder>text/xml; charset=utf-8</Encoder>

 <AllowOutputBatching>False</AllowOutputBatching>

 <Via>http://tempuri.org/MySample/service.svc/basic</Via>

 </MessageProperties>

 <MessageHeaders>

 <ActivityId CorrelationId="7224e2a9-8f9c-4acb-a924-17cb6af67b23"

xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">43ffa660-a0c6-4249-

bb36-648b73a06213</ActivityId>

 <To d4p1:mustUnderstand="1"

xmlns:d4p1="http://schemas.xmlsoap.org/soap/envelope/"

xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">http://tempuri.org/MySample/s

ervice.svc/basic</To>

 <Action d4p1:mustUnderstand="1"

xmlns:d4p1="http://schemas.xmlsoap.org/soap/envelope/"

xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">http://tempuri.org/IServer/My

Operation</Action>

 </MessageHeaders>

 </ExtendedData>

 </TraceRecord>

 </DataItem>

 </TraceData>

 </ApplicationData>

</E2ETraceEvent>

4.2.3 Activity Trace Emitted for Reply Sent at the Server

The following is a sample trace generated at the server end when sending a response message. The
ActivityId attribute associated with the XML element <Correlation> is the same as specified in the
message samples discussed earlier ("43ffa660-a0c6-4249-bb36-648b73a06213"). The SOAP

ActivityId Header Block associated with the response message is also part of the trace. Other
parts of the sample trace will not be discussed and are not relevant to this example.

<E2ETraceEvent xmlns="http://schemas.microsoft.com/2004/06/E2ETraceEvent">

 <System xmlns="http://schemas.microsoft.com/2004/06/windows/eventlog/system">

 <EventID>262164</EventID>

 <Type>3</Type>

 <SubType Name="Information">0</SubType>

 <Level>8</Level>

 <TimeCreated SystemTime="2008-02-08T17:23:57.6775381Z" />

 <Source Name="System.ServiceModel" />

 <Correlation ActivityID="{43ffa660-a0c6-4249-bb36-648b73a06213}" />

 <Execution ProcessName="w3wp" ProcessID="6720" ThreadID="5" />

 <Channel/>

 <Computer>MACHINE1</Computer>

 </System>

 <ApplicationData>

 <TraceData>

 <DataItem>

 <TraceRecord xmlns="http://schemas.microsoft.com/2004/10/E2ETraceEvent/TraceRecord"

Severity="Information">

 <TraceIdentifier>http://msdn.microsoft.com/en-

US/library/System.ServiceModel.Channels.MessageSent.aspx</TraceIdentifier>

 <Description>Sent a message over a channel.</Description>

22 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <AppDomain>/LM/W3SVC/1/Root/MySample-1-128469650342401041</AppDomain>

<Source>System.ServiceModel.Channels.HttpOutput+HostedRequestHttpOutput/59884855</Source>

 <ExtendedData

xmlns="http://schemas.microsoft.com/2006/08/ServiceModel/MessageTraceRecord">

 <MessageProperties>

 <Encoder>text/xml; charset=utf-8</Encoder>

 <AllowOutputBatching>False</AllowOutputBatching>

 </MessageProperties>

 <MessageHeaders>

 <ActivityId CorrelationId="b898336e-d4e2-4eb7-a2c7-1e23f4630646"

xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">43ffa660-a0c6-4249-

bb36-648b73a06213</ActivityId>

 </MessageHeaders>

 </ExtendedData>

 </TraceRecord>

 </DataItem>

 </TraceData>

 </ApplicationData>

</E2ETraceEvent>

4.2.4 Activity Trace Emitted for Reply Received at the Client

The following is a sample trace generated at the client end when the response message is received.
The ActivityId attribute associated with the XML element <Correlation> is the same as specified in
the message samples discussed earlier ("43ffa660-a0c6-4249-bb36-648b73a06213"). The SOAP
ActivityId Header Block associated with the request message is also part of the trace. Other parts
of the sample trace will not be discussed and are not relevant to this example.

<E2ETraceEvent xmlns="http://schemas.microsoft.com/2004/06/E2ETraceEvent">

 <System xmlns="http://schemas.microsoft.com/2004/06/windows/eventlog/system">

 <EventID>262165</EventID>

 <Type>3</Type>

 <SubType Name="Information">0</SubType>

 <Level>8</Level>

 <TimeCreated SystemTime="2008-02-08T17:23:57.8494098Z" />

 <Source Name="System.ServiceModel" />

 <Correlation ActivityID="{43ffa660-a0c6-4249-bb36-648b73a06213}" />

 <Execution ProcessName="Client" ProcessID="7604" ThreadID="1" />

 <Channel/>

 <Computer>MACHINE1</Computer>

 </System>

 <ApplicationData>

 <TraceData>

 <DataItem>

 <TraceRecord xmlns="http://schemas.microsoft.com/2004/10/E2ETraceEvent/TraceRecord"

Severity="Information">

 <TraceIdentifier>http://msdn.microsoft.com/en-

US/library/System.ServiceModel.Channels.RequestChannelReplyReceived.aspx</TraceIdentifier>

 <Description>Received reply over request channel</Description>

 <AppDomain>Client.exe</AppDomain>

 <Source>System.ServiceModel.Channels.BufferedMessage/43495525</Source>

 <ExtendedData

xmlns="http://schemas.microsoft.com/2006/08/ServiceModel/MessageTraceRecord">

 <MessageProperties>

 <Encoder>text/xml; charset=utf-8</Encoder>

 <AllowOutputBatching>False</AllowOutputBatching>

23 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </MessageProperties>

 <MessageHeaders>

 <ActivityId CorrelationId="b898336e-d4e2-4eb7-a2c7-1e23f4630646"

xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">43ffa660-a0c6-4249-

bb36-648b73a06213</ActivityId>

 </MessageHeaders>

 </ExtendedData>

 </TraceRecord>

 </DataItem>

 </TraceData>

 </ApplicationData>

</E2ETraceEvent>

The preceding four sample traces are correlated to each other because of the common ActivityId
attribute value specified in the <Correlation> element ("{43ffa660-a0c6-4249-bb36-

648b73a06213}"). The send and receive of the request message are correlated because of the
common value ("7224e2a9-8f9c-4acb-a924-17cb6af67b23") of the CorrelationId attribute

associated with SOAP ActivityId Header Block. The send and receive of the response message
are correlated because of the common value ("b898336e-d4e2-4eb7-a2c7-1e23f4630646") of the
CorrelationId attribute associated with SOAP ActivityId Header Block.

24 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Security

5.1 Security Considerations for Implementers

The .NET Tracing Protocol does not carry any security considerations. A vendor can extend the
protocol to provide additional security considerations as long as the default and basic correlated
tracing scenarios, as specified by this document, function as expected. In addition, vendors and
implementers of this protocol must account for the fallback scenario when one participant (client or
server) in the correlated tracing does not support the additional security extensions.

A vendor can extend the protocol to provide additional security considerations provided that the
default and basic correlated tracing scenarios contained in this specification function as expected.

5.2 Index of Security Parameters

None.

25 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Appendix A: Product Behavior

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see .NET Framework.

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft .NET Framework 3.0

Microsoft .NET Framework 3.5

Microsoft .NET Framework 4.0

Microsoft .NET Framework 4.5

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.1: Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, and

Windows 7 ignore the SOAP ActivityId Header Block if the client/server is configured to not
participate in correlated tracing. The client/server can be configured to not participate in correlated
tracing by not specifying "activityTracing" for the switchValue attribute associated with trace sources
in the Application Configuration (App.Config) file. Additionally, the server also requires that the
"propagateActivity" attribute needs to be set to false for the trace source.

%5bMS-GLOS%5d.pdf

26 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

27 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8 Index

A

Abstract data model
client 16
server 12

Activity trace emitted for
reply

received at the client example 22
sent at the server example 21

request
received at the server example 20
sent at the client example 19

Applicability 8

C

Capability negotiation 8
Change tracking 26
Client

abstract data model 16
higher-layer triggered events 16
initialization 16
local events 17
message processing 16
sequencing rules 16
timer events 17
timers 16

Common data types 11

D

Data model - abstract

client 16
server 12

Data types - common 11

E

Examples
activity trace emitted for

reply
received at the client 22
sent at the server 21

request
received at the server 20
sent at the client 19

overview 18
sample

activity traces - overview 19
SOAP messages 18

F

Fields - vendor-extensible 9

G

Glossary 6

H

Header block syntax - SOAP ActivityId 11
Higher-layer triggered events

client 16
server 12

I

Implementer - security considerations 24
Index of security parameters 24
Informative references 7
Initialization

client 16
server 12

Introduction 6

L

Local events
client 17
server 15

M

Message processing
client 16
server 12

Messages
common data types 11
namespaces 10
SOAP ActivityId header block syntax 11
transport 10

N

Namespaces 10
Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 24
Preconditions 8
Prerequisites 8
Product behavior 25

R

References
informative 7
normative 6

Relationship to other protocols 8

S

28 / 28

[MS-NETTR] — v20130722
 .NET Tracing Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Sample SOAP messages example 18
Security

implementer considerations 24
parameter index 24

Sequencing rules
client 16
server 12

Server
abstract data model 12
higher-layer triggered events 12
initialization 12
local events 15
message processing 12
sequencing rules 12
timer events 15
timers 12

SOAP ActivityId header block syntax 11
Standards assignments 9

T

Timer events
client 17
server 15

Timers
client 16
server 12

Tracking changes 26
Transport 10
Triggered events - higher-layer

client 16
server 12

V

Vendor-extensible fields 9
Versioning 8

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Namespaces
	2.2.2 Common Data Types
	2.2.3 SOAP ActivityId Header Block Syntax

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Sample SOAP Messages
	4.2 Sample Activity Traces
	4.2.1 Activity Trace Emitted for Request Sent at the Client
	4.2.2 Activity Trace Emitted for Request Received at the Server
	4.2.3 Activity Trace Emitted for Reply Sent at the Server
	4.2.4 Activity Trace Emitted for Reply Received at the Client

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

