

1 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-NETOD]:
Microsoft .NET Framework Protocols Overview

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This document provides an overview of the Microsoft .NET Framework Protocols Overview Protocol
Family. It is intended for use in conjunction with the Microsoft Protocol Technical Documents,
publicly available standard specifications, network programming art, and Microsoft Windows
distributed systems concepts. It assumes that the reader is either familiar with the aforementioned

material or has immediate access to it.

A Protocol System Document does not require the use of Microsoft programming tools or
programming environments in order to implement the Protocols in the System. Developers who
have access to Microsoft programming tools and environments are free to take advantage of them.

Abstract

This document provides an overview of the interrelationships and protocol layering of the
communication protocols implemented in the .NET Remoting and Windows Communication

Foundation (WCF) components of the .NET Framework. It also provides an overview of other
protocols implemented in the .NET Framework that are not related to each other but which provide

important functionality to the .NET Framework. These protocols are specified in [MC-CSDL], [MC-
EDMX], [MC-NBFS], [MC-NBFSE], [MC-NBFX], [MC-NETCEX], [MC-NMF], [MC-NPR], [MC-PRCH],
[MC-PRCR], [MS-ASP], [MS-ASPSS], [MS-DSML], [MS-IOI], [MS-NETTR], [MS-NMFTB], [MS-NRBF],
[MS-NRLS], [MS-NNS], [MS-NRTP], [MS-ODATA], [MS-WFIM], [MS-WSPOL], [MS-WSRVCAT], [MS-

WSRVCRM], [MS-WSRVCRR], [MS-WSSEC], and [MS-WSTC]. The .NET Framework is a development
platform for building .NET applications that can interoperate with applications developed on other
platforms. The protocols provided by the .NET Framework are built on Microsoft Windows® native
protocols and other industry-standard protocols.

This document describes the intended functionality of the .NET Framework protocols and how these
protocols interact with each other. It provides examples of some common use cases. It does not
restate the processing rules and other details that are specific for each protocol. Those details are

described in the protocol specifications for each of the protocols and data structures that belong to
this protocols group.

Revision Summary

Date

Revision

History

Revision

Class Comments

05/06/2011 1.0 New Released new document.

06/17/2011 2.0 Major Significantly changed the technical content.

09/23/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/30/2012 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkID=207249
http://go.microsoft.com/fwlink/?LinkID=207249
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207251
http://go.microsoft.com/fwlink/?LinkId=207252
http://go.microsoft.com/fwlink/?LinkId=207253
http://go.microsoft.com/fwlink/?LinkId=131390
http://go.microsoft.com/fwlink/?LinkId=207254
http://go.microsoft.com/fwlink/?LinkId=207255
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=191383
http://go.microsoft.com/fwlink/?LinkId=207192
http://go.microsoft.com/fwlink/?LinkId=216463
http://go.microsoft.com/fwlink/?LinkId=207258
http://go.microsoft.com/fwlink/?LinkId=207260
http://go.microsoft.com/fwlink/?LinkId=214682
http://go.microsoft.com/fwlink/?LinkId=207262
http://go.microsoft.com/fwlink/?LinkId=191402
http://go.microsoft.com/fwlink/?LinkId=216464
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=214944
http://go.microsoft.com/fwlink/?LinkId=207313
http://go.microsoft.com/fwlink/?LinkId=207264
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207194
http://go.microsoft.com/fwlink/?LinkId=207195
http://go.microsoft.com/fwlink/?LinkId=207265

3 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Date

Revision

History

Revision

Class Comments

01/31/2013 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 3.0 Major Significantly changed the technical content.

4 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 6
1.1 Background Information ... 6
1.2 Glossary ... 8
1.3 References .. 12

2 Functional Architecture .. 16
2.1 Overview .. 16

2.1.1 Windows Workflow Foundation (WF) ... 16
2.1.2 Windows Communication Foundation (WCF) .. 17
2.1.3 Identity and Directory Services .. 25
2.1.4 Data Access ... 27
2.1.5 ASP .NET ... 28
2.1.6 .NET Remoting ... 29

2.2 Protocol Summary ... 32
2.3 Environment ... 35

2.3.1 Dependencies on This System .. 35
2.3.2 Dependencies on Other Systems/Components ... 35

2.4 Assumptions and Preconditions .. 36
2.5 Use Cases ... 36

2.5.1 Stakeholders ... 36
2.5.2 Actors ... 36
2.5.3 WCF Use Cases .. 38

2.5.3.1 Use Case Diagrams ... 38
2.5.3.2 Use Case Descriptions ... 38

2.5.3.2.1 Dynamically Discover a Web Service .. 38
2.5.3.2.2 Consume a Web Service ... 39
2.5.3.2.3 Use a Web Service with Reliable Messaging .. 40
2.5.3.2.4 Use a Web Service with Reliable Messaging and Flow Control 42
2.5.3.2.5 Use a Web Service with Reliable Messaging in the Request Reply 43

2.5.4 .NET Remoting Use Cases ... 44
2.5.4.1 Use Case Diagrams ... 44
2.5.4.2 Use Case Descriptions ... 44

2.5.4.2.1 Invoke a Method on a Server-Activated Object 44
2.5.4.2.2 Activate a Client-Activated Object and Invoke a Method 45
2.5.4.2.3 Manage Server-Object Lifetime by Using the Renew Method 46
2.5.4.2.4 Manage Server Object Lifetime by Using a Sponsor Object 46

2.5.5 Data Access Use Cases ... 47
2.5.5.1 Use Case Diagrams ... 47
2.5.5.2 Use Case Descriptions ... 48

2.5.5.2.1 Accessing Data from a Data Service .. 48
2.6 Versioning, Capability Negotiation, and Extensibility ... 48
2.7 Error Handling ... 48
2.8 Coherency Requirements .. 48
2.9 Security .. 48
2.10 Additional Considerations .. 49

3 Examples .. 50
3.1 Example 1 (.NET Remoting): Two-Way Method Invocation Using SOAP Over HTTP 50

3.1.1 Initial System State .. 50
3.1.2 Sequence of Events .. 50

5 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.3 Final System State ... 50
3.2 Example 2 (WCF): Hello World .. 50

3.2.1 Initial System State .. 51
3.2.2 Sequence of Events .. 51
3.2.3 Final System State ... 52

3.3 Example 3 (WCF): Reliable Messaging with TCP as Transport 52
3.3.1 Initial System State .. 53
3.3.2 Sequence of Events .. 54
3.3.3 Final System State ... 56

3.4 Example 4 (WCF): Reliable Messaging with flow control .. 56
3.4.1 Initial System State .. 57
3.4.2 Sequence of Events .. 57
3.4.3 Final System State ... 62

3.5 Example 5 (Data Access): Retrieve a Single Entity Using the JSON Format 62
3.5.1 Initial System State .. 62
3.5.2 Sequence of Events .. 62
3.5.3 Final System State ... 62

4 Microsoft Implementations .. 63
4.1 Product Behavior ... 64

5 Change Tracking... 65

6 Index ... 67

6 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

This document provides an overview of the communication protocols implemented in the .NET
Framework.

1.1 Background Information

The .NET Framework is an application development platform. It includes a software component for
running and loading applications called the common language runtime (CLR) and a set of class

libraries of prewritten functionality that developers can use in their applications to present graphical
user interfaces, access databases and files, and communicate over networks including the Internet.

The .NET Framework provides developers with a foundation on which to build applications that can
communicate based on industry standards so that code based on the .NET Framework can
interoperate with applications developed on other platforms. The following diagram depicts its high-

level architecture.

Figure 1: High-level architecture of the .NET Framework

.NET Framework Technologies

Windows Workflow Foundation (WF) provides a programming model, in-process workflow
engine and workflow designer to implement long-running processes as workflows within .NET

applications. Windows Workflow Foundation is not itself an executable application or program;
instead it enables developers to create workflow applications. Windows Workflow Foundation is
flexible and extensible. Developers can write workflows directly in code, in markup, or in a
combination of both. They can implement custom workflow patterns through custom activities that
can be reused across workflows. Windows Workflow Foundation provides protocol support to
administer the execution of developer-defined workflow applications on Windows systems, but does

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

7 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

not prescribe the use of specific communications methods or protocols by workflow applications
developed using WF.

Windows Communication Foundation (WCF) provides a programming model for building
connected, service-oriented applications. WCF is designed in accordance with service oriented

architecture principles to support distributed computing using a variety of protocols including HTTP
and Web services (WS-*) protocols.

Windows Presentation Foundation (WPF) is a framework for developing standalone and
browser-hosted applications with graphical user interfaces. WPF offers additional programming
enhancements for Windows client application development, including the ability to develop an
application using both markup and code-behind programming models. Extensible Application
Markup Language (XAML) markup is generally used to configure the appearance of an application

while using managed programming languages (code-behind) to implement its behavior. Because
WPF is a user interface framework that does not provide network communication services or
protocols to developers, WPF is not addressed in this protocol overview.

Identity and Directory services provide support for directory services and management of

diverse digital identities.

CardSpace is a specialized metaidentity system that helps in managing multiple identities. The

identity metasystem in CardSpace provides a consistent way to work with multiple digital identities,
regardless of the kinds of security tokens they use. Windows CardSpace provides:

Support for any digital identity system.

Consistent user control of digital identity.

Replacement of password-based web login.

Data Access features in the .NET Framework provide interfaces for accessing local and remote data
sources from within .NET applications.

WCF Data services (formerly known as ADO.NET Data Services) supports the creation of services

that use the Open Data Protocol (OData, see [MS-ODATA]) to expose and consume data over the
web or intranet by using the semantics of representational state transfer (REST). OData exposes
data as resources that are addressable by URIs. WCF Data Services uses the OData protocol for
addressing and updating resources. WCF Data Services can expose data that originates from various

sources as OData feeds. WCF Data Services integrates with the ADO.NET Entity Framework which
enables application developers to create data services that expose relational data.

Windows Forms is a set of managed libraries for developing graphical applications. In Windows
Forms, a form is a visual surface on which an application displays information to the user and can
gather input from the user. Because Windows Forms is a user interface framework that does not
provide network communication services or protocols to developers, it is not addressed in this
protocol overview.

ASP.NET is a web application framework that allows programmers to build dynamic websites, web
applications, and Web services based on standard web protocols.

ASP.NET features include:

An extensible hosting environment that controls the life cycle of an application from the time a

user first accesses a resource in the application (such as a page) to the point at which the
application is shut down.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=214944
%5bMS-GLOS%5d.pdf

8 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ASP.NET Model View Controller (MVC) helps web developers build standards-based web

applications that are easy to maintain, because it decreases the dependency among application

layers by using the MVC pattern.

ASP.NET Dynamic Data is a framework that creates data-driven ASP.NET web applications easily.

It does this by automatically discovering data model metadata at run time and deriving UI
behavior from it.

ASP.NET health monitoring enables reporting of key events that provide information about the

health of an application and about error conditions.

Base Class Libraries

The Base Class Libraries (BCLs) provide pre-built code needed for common low-level programming
tasks. The BCLs provide a comprehensive, object-oriented collection of reusable types that
developers can use to develop various applications such as console applications, GUI applications
(using Windows Forms and/or the Windows Presentation Foundation), Windows services and XML
Web services.

The BCLs include support for XML, input/output (IO) and networking features. Networking features
in the BCLs include support for .NET remoting, which is a technology used for interprocess

communication. .NET remoting can be used to communicate with application domains in the same
process or in a different process. .NET remoting includes a set of protocols to provide
communication between two application domains as described later in this document.

Common Language Runtime

The common language runtime (CLR), based on the international standard for Common Language
Infrastructures [ISO/IEC-23271], is the foundation of the .NET Framework, and provides an

abstraction layer over the operating system. The common language runtime acts as an agent that
manages code at execution time, providing core services such as memory management, thread
management, and remoting, while also enforcing strict type safety and other forms of code accuracy
that promote security and robustness. The concept of code management is a fundamental principle
of the CLR. Code that targets the runtime is known as managed code, while code that does not

target the runtime is known as unmanaged code.

When a developer writes an application for the .NET Framework in a language such as C# (which is

based on the C# standard defined in [ISO/IEC-23270]) or Visual Basic .NET, the source code is not
compiled directly into machine code. Instead, the C# or Visual Basic compiler converts the code into
a special language named Microsoft Intermediate Language (MSIL). MSIL, which is based on the
Common Intermediate Language standard specified in [ISO/IEC-23271] looks like an object-
oriented assembly language; however, unlike a typical assembly language, it is not CPU-specific.
MSIL is a low-level and platform-independent language.

When a .NET application is executed, the MSIL code is just-in-time compiled into machine code by

the JIT (the Just-In-Time compiler). The entire application may not be compiled from MSIL into
machine code at initial execution of the application. Instead, only the methods actually called during
execution are compiled. The CLR manages this process.

For more information about the .NET Framework, see [MSDN-.NET-FRAMEWORK].

1.2 Glossary

The following terms are defined in [MS-GLOS]:

AD
application domain

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207201
http://go.microsoft.com/fwlink/?LinkId=207200
http://go.microsoft.com/fwlink/?LinkId=207201
http://go.microsoft.com/fwlink/?LinkID=195551
%5bMS-GLOS%5d.pdf

9 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

binding
client

directory service (DS)
Domain Name System (DNS)

encoding
Hypertext Transfer Protocol (HTTP)
named pipe
.NET Framework
node
proxy
resource

security token
server
SOAP
Transmission Control Protocol (TCP)
User Datagram Protocol (UDP)
URI

Web server
Web services

The following terms are specific to this document:

Client-Activated Object (CAO): A Marshaled Server Object (MSO) that requires an explicit
activation message to create the Server Object.

Application Destination: Defined in [WSRM1-1] as the Endpoint to which a message is
delivered.

Application Source: Defined in [WSRM1-1] as the Endpoint that sends a message.

callback context: The context that is needed for a server to make callbacks to a client. A
callback context consists of an endpoint reference for a client endpoint with an optional
context identifier.

CardSpace: A specialized meta-identity system that helps in managing multiple digital identities,
regardless of the kinds of security tokens they use.

common language runtime (CLR): A runtime library that acts as an agent to manages code at

execution time, providing core services such as memory management, thread management,
and remoting, while also enforcing strict type safety and other forms of code accuracy that
promote security and robustness.

connection: A time-bounded association between two endpoints that allows the two endpoints
to exchange messages.

context: An abstract concept that represents an association between a resource and a set of

messages that are exchanged between a client and a server. A context is uniquely identified
by a context identifier.

context identifier: A set of name-value pairs, where each name in the set is unique.

data service: A server-side application that implements the protocol specified in this document
for the purpose of enabling clients to publish and edit resources. The resources exposed by
data services are described using the Entity Data Model (EDM), as specified in [MC-CSDL].

discovery: The process used to discover other nodes in the mesh of interest.

http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=117286
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207248

10 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

discovery service: The service used to discover other nodes. Peer Channel can use PNRP
[MS-PNRP] or any other service implementing the Peer Channel Custom Resolver Protocol

[MC-PRCR] to discover other nodes.

Endpoint: Defined in [WSRM1-1] and [WSAddressing] as a Web service Endpoint that is a

referenceable entity, processor, or resource to which Web service messages can be addressed.
Endpoint references (EPRs) convey the information required to address a Web service
Endpoint.

endpoint reference: Conveys the information that is needed to address an endpoint.

Entity Data Model (EDM): The Entity Data Model (EDM) as described in section 1.0.

Extensible Application Markup Language (XAML): An XML schema for defining the
appearance and some aspects of the behavior of an application's user interface.

Lease Object: A Lease Object is a type of MSO. Every singleton SAO and MSO has an
associated Lease Object that contains methods that control the lifetime of the Server Object.

It must be noted that although a Lease Object is an MSO, it does not have a Lease Object of
its own. The lifetime of the Lease Object is bound by the lifetime of the associated Server
Object.

managed code: Code that targets the common language runtime (CLR).

Marshaled Server Object (MSO): A Marshaled Server Object is a Server Object that is
created by a higher layer, and not in response to an incoming request (see Server-Activated
Object (SAO) for more information on the latter).

The .NET Remoting Lifetime Services Protocol [MS-NRLS] provides a mechanism for
controlling the lifetimes of Marshaled Server Objects.

mesh: A network of nodes that are all identified with the same mesh name.

mesh name: Identifies a set of nodes that establish connections to each other to form a mesh.

.NET remoting: A framework that enables objects executing within the logical subdivisions of
application domains and contexts to interact with one another across .NET remoting
boundaries.

Peer Channel: The protocol detailed in this specification, used for broadcasting messages over a
virtual network of cooperating nodes.

PeerNodeAddress: A structure that contains the URI of a node and a set of IP addresses on
which the client is listening ([MC-PRCR] section 2.2.2.1).

reliable messaging destination (RMD): The endpoint that receives the message. For fuller
information, see [WSRM1-0], [WSRM1-1], and [WSRM1-2].

reliable messaging source (RMS): The endpoint that sends the message. For fuller
information, see [WSRM1-0], [WSRM1-1], and [WSRM1-2].

RemoteActivationService: A registered Server-Activated Object (SAO) that implements the
IActivator interface ([MS-NRLS] section 3.1). The Server Object URI of the SAO is

"RemoteActivationService.rem".

Remoting Type: Part of the Remoting Data Model. All Remoting Types are identified by a
name that is case sensitive. For more information, see [MS-NRTP] section 3.1.1.

%5bMS-PNRP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=90575
http://go.microsoft.com/fwlink/?LinkId=191402
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=117285
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440
http://go.microsoft.com/fwlink/?LinkId=117285
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440
http://go.microsoft.com/fwlink/?LinkId=191402
http://go.microsoft.com/fwlink/?LinkId=191403

11 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

RM Destination: Defined in [WSRM1-1] as the Endpoint that receives messages Transmitted
reliably from an RM Source.

RMD: See reliable messaging destination (RMD).

RM Source: Defined in [WSRM1-1] as the Endpoint that Transmits messages reliably to an RM

Destination.

RMS: See reliable messaging source (RMS).

Security Token Service (STS): A Web service that issues security tokens. That is, it makes
assertions based on evidence that it trusts for consumption by whoever trusts it.

Server-Activated Object (SAO): A Server Object that is created on demand in response to a
client request. See also Marshaled Server Object.

Server Object: Part of the Remoting Data Model. A Server Object is either an SAO or an MSO.

For more information, see [MS-NRTP] section 3.1.1.

Server Object Reference: A representation of an SAO or MSO that can be passed between a
client and a server. It contains sufficient information to construct a proxy to invoke remote
methods on the SAO or MSO. The Server Object Reference is represented concretely by
the ObjRef structure defined in [MS-NRTP] section 2.2.2.1.

Server Object URI: A relative URI that identifies a Server Object in a given server. It is the

path part of request URI, excluding the leading '/'.

Sponsor: An MSO that is implemented by clients to participate in the renewal process of a
Server Object's lifetime.

Time-To-Live (TTL): The time duration for which a Server Object is available.

Transmit: Defined in [WSRM1-1] as the act of writing a message to a network connection.

unmanaged code: Code that does not target the common language runtime (CLR).

Windows Presentation Foundation (WPF): A framework for developing standalone and

browser-hosted applications.

Windows Communication Foundation (WCF): A framework for building connected, service-
oriented applications.

Windows Workflow Foundation (WF): A framework that provides a programming model, in-
process workflow engine and workflow designer to implement long-running processes as
workflows within .NET applications.

The following protocol abbreviations are used in this document:

CSDL: Conceptual Schema Definition Language ([MC-CSDL])

EDMX: Entity Data Model for Data Services Packaging Format ([MC-EDMX])

NBFS: .NET Binary Format: SOAP Data Structure ([MC-NBFS])

NBFSE: .NET Binary Format: SOAP Extension ([MC-NBFSE])

NBFX: .NET Binary Format: XML Data Structure ([MC-NBFX])

http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191403
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207251
http://go.microsoft.com/fwlink/?LinkId=207252

12 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

NETCEX: .NET Context Exchange Protocol ([MC-NETCEX])

NPR: .NET Packet Routing Protocol ([MC-NPR])

PRCH: Peer Channel Protocol ([MC-PRCH])

PRCR: Peer Channel Custom Resolver Protocol ([MC-PRCR])

NETTR: .NET Tracing Protocol ([MS-NETTR])

NMFMB: .NET Message Framing MSMQ Binding Protocol ([MS-NMFMB])

NMFTB: .NET Message Framing TCP Binding Protocol ([MS-NMFTB])

NNS: .NET NegotiateStream Protocol ([MS-NNS])

NRBF: .NET Remoting: Binary Format Data Structure ([MS-NRBF])

NRLS: .NET Remoting: Lifetime Services Extension ([MS-NRLS])

NRTP: .NET Remoting: Core Protocol ([MS-NRTP])

PNRP: Peer Name Resolution Protocol Version 4.0 ([MS-PNRP])

WSTC: WS-Discovery: Termination Criteria Protocol Extensions ([MS-WSTC])

1.3 References

References to Microsoft Open Specification documents do not include a publishing year because links
are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

[IMI] OASIS Standard, "Identity Metasystem Interoperability V1.0", July 2009, http://docs.oasis-
open.org/imi/identity/v1.0/identity.html

[ISO/IEC-23270] ISO/IEC, "Information technology - Programming languages - C#", ISO/IEC
23270:2006,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=42926

[ISO/IEC-23271] ISO/IEC, "Information technology — Common Language Infrastructure (CLI)

Partitions I to VI", ISO/IEC 23271:2006, http://standards.iso.org/ittf/licence.html

[MC-CSDL] Microsoft Corporation, "Conceptual Schema Definition File Format".

[MC-EDMX] Microsoft Corporation, "Entity Data Model for Data Services Packaging Format".

[MC-NBFS] Microsoft Corporation, ".NET Binary Format: SOAP Data Structure".

[MC-NBFSE] Microsoft Corporation, ".NET Binary Format: SOAP Extension".

[MC-NBFX] Microsoft Corporation, .NET Binary Format: XML Data Structure".

[MC-NETCEX] Microsoft Corporation, ".NET Context Exchange Protocol".

[MC-NPR] Microsoft Corporation, ".NET Packet Routing Protocol".

[MC-PRCH] Microsoft Corporation, "Peer Channel Protocol".

[MC-PRCR] Microsoft Corporation, "Peer Channel Custom Resolver Protocol".

http://go.microsoft.com/fwlink/?LinkId=207253
http://go.microsoft.com/fwlink/?LinkId=207254
http://go.microsoft.com/fwlink/?LinkId=207255
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=207260
http://go.microsoft.com/fwlink/?LinkId=214682
http://go.microsoft.com/fwlink/?LinkId=207261
%5bMS-NNS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207262
http://go.microsoft.com/fwlink/?LinkId=191402
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=207265
http://go.microsoft.com/fwlink/?LinkId=160196
http://go.microsoft.com/fwlink/?LinkId=160196
http://go.microsoft.com/fwlink/?LinkId=207200
http://go.microsoft.com/fwlink/?LinkId=207201
%5bMC-CSDL%5d.pdf
%5bMC-EDMX%5d.pdf
%5bMC-NBFS%5d.pdf
%5bMC-NBFSE%5d.pdf
%5bMC-NBFX%5d.pdf
%5bMC-NETCEX%5d.pdf
%5bMC-NPR%5d.pdf
%5bMC-PRCH%5d.pdf
%5bMC-PRCR%5d.pdf

13 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-ASP] Microsoft Corporation, "ASP.NET State Server Protocol".

[MS-ASPSS] Microsoft Corporation, "ASP.NET State Service Database Repository Communications
Protocol". (Archived)

[MS-DSML] Microsoft Corporation, "Directory Services Markup Language (DSML) 2.0 Protocol

Extensions".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-IOI] Microsoft Corporation, "IManagedObject Interface Protocol".

[MS-MQSO] Microsoft Corporation, "Message Queuing System Overview". (Archived)

[MS-NETTR] Microsoft Corporation, ".NET Tracing Protocol".

[MS-NMFMB] Microsoft Corporation, ".NET Message Framing MSMQ Binding Protocol".

[MS-NMFTB] Microsoft Corporation, ".NET Message Framing TCP Binding Protocol".

[MS-NNS] Microsoft Corporation, ".NET NegotiateStream Protocol".

[MS-NRBF] Microsoft Corporation, ".NET Remoting: Binary Format Data Structure".

[MS-NRLS] Microsoft Corporation, ".NET Remoting: Lifetime Services Extension".

[MS-NRTP] Microsoft Corporation, ".NET Remoting: Core Protocol".

[MS-NTHT] Microsoft Corporation, "NTLM Over HTTP Protocol".

[MS-ODATA] Microsoft Corporation, "Open Data Protocol (OData)".

[MS-PNRP] Microsoft Corporation, "Peer Name Resolution Protocol (PNRP) Version 4.0".

[MS-TPSO] Microsoft Corporation, "Transaction Processing Services System Overview". (Archived)

[MS-WFIM] Microsoft Corporation, "Workflow Instance Management Protocol".

[MS-WSPOL] Microsoft Corporation, "Web Services: Policy Assertions and WSDL Extensions".

[MS-WSRVCAT] Microsoft Corporation, "WS-AtomicTransaction (WS-AT) Version 1.0 Protocol
Extensions".

[MS-WSRVCRM] Microsoft Corporation, "WS-ReliableMessaging Protocol: Advanced Flow Control

Extension".

[MS-WSRVCRR] Microsoft Corporation, "WS-ReliableMessaging Protocol: Reliable Request-Reply
Extension".

[MS-WSSEC] Microsoft Corporation, "Web Services: Security Policy Assertions Format".

[MS-WSTC] Microsoft Corporation, "WS-Discovery: Termination Criteria Protocol Extensions".

[MSDN-EDMSpecs] Microsoft Corporation, "EDM Specifications", http://msdn.microsoft.com/en-
us/library/bb399281.aspx

[MSDN-.NET-FRAMEWORK] Microsoft Corporation, ".NET Framework Conceptual Overview",
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx

%5bMS-ASP%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-DSML%5d.pdf
%5bMS-DSML%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-IOI%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-NETTR%5d.pdf
%5bMS-NMFMB%5d.pdf
%5bMS-NMFTB%5d.pdf
%5bMS-NNS%5d.pdf
%5bMS-NRBF%5d.pdf
%5bMS-NRLS%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-NTHT%5d.pdf
%5bMS-ODATA%5d.pdf
%5bMS-PNRP%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-WFIM%5d.pdf
%5bMS-WSPOL%5d.pdf
%5bMS-WSRVCAT%5d.pdf
%5bMS-WSRVCAT%5d.pdf
%5bMS-WSRVCRM%5d.pdf
%5bMS-WSRVCRM%5d.pdf
%5bMS-WSRVCRR%5d.pdf
%5bMS-WSRVCRR%5d.pdf
%5bMS-WSSEC%5d.pdf
%5bMS-WSTC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=214575
http://go.microsoft.com/fwlink/?LinkId=214575
http://go.microsoft.com/fwlink/?LinkId=195551

14 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[RFC5023] Gregorio, J. Ed., and de hOra, B., Ed., "The Atom Publishing Protocol", RFC 5023,
October 2007, http://www.ietf.org/rfc/rfc5023.txt

[SOAP-MTOM] Gudgin, M., Medelsohn, N., Nottingham, M., and Ruellan, H., "SOAP Message
Transmission Optimization Mechanism", W3C Recommendation, 25 January 2005,

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP)
1.1", May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[SOAP1.2-1/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition) ", W3C Recommendation 27, April 2007,
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[SOAP1.2-2/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 2:

Adjuncts (Second Edition)", W3C Recommendation, April 2007, http://www.w3.org/TR/2007/REC-
soap12-part2-20070427

[WSA] Gudgin, M., Hadley, M., and Rogers, T., "Web Services Addressing 1.0 - Core", W3C
Recommendation, May 2006, http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

[WSASB] Gudgin, M., Hadley, M., and Rogers, T., "Web Services Addressing 1.0 - SOAP Binding",
W3C Recommendation, May 2006, http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

[WSMETA] Ballinger, K., Bissett, B., Box, D., et al., "Web Services Metadata Exchange (WS-
MetadataExchange)", Version 1.1, August 2006, http://specs.xmlsoap.org/ws/2004/09/mex/WS-
MetadataExchange.pdf

[WSRM1-0] Bilorusets, R., "Web Services Reliable Messaging Protocol (WS-ReliableMessaging)",
February 2005, http://specs.xmlsoap.org/ws/2005/02/rm/

[WSRM1-1] Fremantle, P., Patil, S., Davis, D., et al., "Web Services Reliable Messaging (WS-
ReliableMessaging) Version 1.1", January 2008, http://docs.oasis-open.org/ws-

rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.html

[WSRM1-2] Fremantle, P., Patil, S., Davis, D., et al., "Web Services Reliable Messaging (WS-
ReliableMessaging) Version 1.2", February 2009, http://docs.oasis-open.org/ws-
rx/wsrm/200702/wsrm-1.2-spec-os.html

[WS-Discovery1.1] Modi, V., and Kemp, D., "Web Services Dynamic Discovery (WS-Discovery)
Version 1.1", OASIS Status: Public Review, January 2009, http://docs.oasis-open.org/ws-
dd/discovery/1.1/pr-01/wsdd-discovery-1.1-spec-pr-01.pdf

If you have any trouble finding [WS-Discovery1.1], please check here.

[WS-Discovery] Beatty, J., Kakivaya, G., Kemp D., et al., "Web Services Dynamic Discovery (WS-
Discovery)", April 2005, http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf

If you have any trouble finding [WS-Discovery], please check here.

[WS-Policy] Siddharth, B., Box, D., Chappell, D., et al., "Web Services Policy 1.2 - Framework (WS-
Policy)", April 2006, http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

[WSPolicyAtt] BEA Systems, IBM, Microsoft Corporation, SAP, Sonic Software, VeriSign, "Web
Services Policy 1.2 - Attachment (WS-PolicyAttachment)", April 2006,
http://www.w3.org/Submission/WS-PolicyAttachment/

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=95126
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=119124
http://go.microsoft.com/fwlink/?LinkId=119124
http://go.microsoft.com/fwlink/?LinkId=120448
http://go.microsoft.com/fwlink/?LinkId=120449
http://go.microsoft.com/fwlink/?LinkId=127095
http://go.microsoft.com/fwlink/?LinkId=127095
http://go.microsoft.com/fwlink/?LinkId=117285
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440
http://go.microsoft.com/fwlink/?LinkId=192440
http://go.microsoft.com/fwlink/?LinkId=148805
http://go.microsoft.com/fwlink/?LinkId=148805
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90576
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=92757
http://go.microsoft.com/fwlink/?LinkId=90583

15 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[WSS] OASIS, "Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)", February
2006, http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf

[WSS1] Nadalin, A., Kaler, C., Hallam-Baker, P., et al., "Web Services Security: SOAP Message

Security 1.0 (WS-Security 2004)", March 2004, http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf

[WSSC] OpenNetwork, Layer7, Netegrity, Microsoft, Reactivity, IBM, VeriSign, BEA Systems, Oblix,
RSA Security, Ping Identity, Westbridge, Computer Associates, "Web Services Secure Conversation
Language (WS-SecureConversation)", February 2005, http://schemas.xmlsoap.org/ws/2005/02/sc

[WSSC1.3] Lawrence, K., Kaler, C., Nadalin, A., et al., "WS-SecureConversation 1.3", March 2007,
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-

os.html

[WSSC1.4] OASIS Standard, "WS-SecureConversation 1.4", February 2009, http://docs.oasis-
open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc

[WSSP] Della-Libera, G., Gudgin, M., Hallam-Baker, P., et al., "Web Services Security Policy
Language (WS-SecurityPolicy)", July 2005,
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-secpol/ws-secpol.pdf

[WSSP1.2/10.1] OASIS Standard, "WS-SecurityPolicy 1.2 - 10.1 Trust13 Assertion", July 2007,
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-
os.html#_Toc161826576

[WSSP1.3] OASIS Standard, "WS-SecurityPolicy 1.3", February 2009, http://docs.oasis-
open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.doc

http://go.microsoft.com/fwlink/?LinkId=130727
http://go.microsoft.com/fwlink/?LinkId=130727
http://go.microsoft.com/fwlink/?LinkId=131547
http://go.microsoft.com/fwlink/?LinkId=131547
http://go.microsoft.com/fwlink/?LinkId=113070
http://go.microsoft.com/fwlink/?LinkId=131545
http://go.microsoft.com/fwlink/?LinkId=131545
http://go.microsoft.com/fwlink/?LinkId=160791
http://go.microsoft.com/fwlink/?LinkId=160791
http://go.microsoft.com/fwlink/?LinkId=130729
http://go.microsoft.com/fwlink/?LinkId=130730
http://go.microsoft.com/fwlink/?LinkId=130730
http://go.microsoft.com/fwlink/?LinkId=160806
http://go.microsoft.com/fwlink/?LinkId=160806

16 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Functional Architecture

This section describes the basic structure of the system and the interrelationships among its parts,
consumers, and dependencies.

Section 2.1 provides an architectural overview of the protocols implemented by the various modules
and how these protocols relate to each other. The protocols described are grouped by module and,
where applicable, by the overall functionality that the protocol provides (security, messaging, and so
on).

Section 2.2 provides a summary description of all the protocols mentioned in this document.

Section 2.3 identifies the context in which the system exists. This includes the systems that use the
interfaces provided by this system of protocols, other systems that depend on this system, and, as
appropriate, how components of the system communicate.

Section 2.4 describes assumptions and preconditions.

Section 2.5 provides a set of use cases illustrating a variety of scenarios for how the protocols may
be used.

2.1 Overview

Not all protocols included in this overview document are interrelated. The protocols provided by the
.NET Framework are built on Windows native protocols and other industry-standard protocols. This
document focuses on the protocols that map to the .NET Framework distributed technologies to
enable network communications. These protocols can be grouped into the following categories.

Windows Workflow Foundation (WF)

Windows Communication Foundation (WCF)

Identity and directory services

Data access

ASP.NET

.NET remoting

2.1.1 Windows Workflow Foundation (WF)

The following diagram shows the protocol stack of the Workflow Instance Management Protocol [MS-
WFIM].

http://go.microsoft.com/fwlink/?LinkID=207313
http://go.microsoft.com/fwlink/?LinkID=207313

17 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 2: Workflow protocol relationships

The Workflow Instance Management Protocol [MS-WFIM] defines a set of SOAP messages for the
management of durable program instances, such as suspending, resuming, or canceling an instance
of an application-defined workflow.

2.1.2 Windows Communication Foundation (WCF)

Windows Communication Foundation (WCF) is the .NET Framework technology used for creating
independently versionable, secure and reliable service-oriented applications. Applications that use
WCF can communicate using message schemas and choreographies defined in the WS-*
specifications. WCF complies with many WS-* specifications.

Following is a brief overview describing the most relevant WCF features and how they relate to the

various protocols mentioned in this document:

Security

WCF supports many different security models, and makes it easy to implement widely accepted
security measures. Because WCF has an extensible architecture, it is also relatively easy to extend
WCF security to meet the requirements of a particular application. The default security options range
from the traditional transport-centric security to more modern message-based security, as specified

in WS-Security [WSS] and related specifications.

Reliable messaging

Distributed applications may require reliable messaging. For this purpose, WCF implements WS-
ReliableMessaging and extensions to WS standards including the Advanced Flow Control Extension
([MS-WSRVCRM]) and Reliable Request-Reply Extension ([MS-WSRVCRR]).

Transactional Support

WCF allows transactional scopes to flow across multiple applications. WCF implements WS-

AtomicTransaction and its extension ([MS-WSRVCAT]), enabling software entities that use the WS-

AtomicTransaction protocol to participate in transactions coordinated by OleTx transaction
managers, as specified in [MS-DTCO]. The entire set of transaction-related protocols supported in
Windows, including [MS-WSRVCAT], are described in [MS-TPSO].

Interoperability

Applications built on WCF can communicate with other applications that can use WS-*, Basic Profile
(BP), and XML messages over TCP, HTTP, named pipes, and MSMQ.

Configurability

Bindings: Specifies all bindings that can be used by any endpoint defined in any service. The

binding elements contained in the bindings element can be either one of the system-provided
bindings or a custom binding. A binding defines the type of transport, security and encoding
used, and whether reliable sessions, transactions, or streaming is supported or enabled.

Services: Contains the specifications for all services the application hosts. Each service

specification contains an endpoint element which provides the following information:

Address: Specifies the service's Uniform Resource Identifier (URI), which can be an absolute

address or one that is given relative to the base address of the service.

Binding: Specifies a system-provided or user-defined binding.

http://go.microsoft.com/fwlink/?LinkID=207313
http://go.microsoft.com/fwlink/?LinkId=130727
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207194
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=207263
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

18 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contract: Specifies the interface that defines the contract.

Behaviors: Contains a collection of settings for the behavior of a service like discoverability of

service endpoints, settings that authorize access to service operations, the timeout for a service,

throttling mechanism of a WCF service, and so on.

The protocol stack in WCF can be configured by the developer in code, or by the developer or end
user simply changing configuration entries in the application's XML configuration file. Although an
understanding of the WCF application configuration schema is not necessary to interoperate with
WCF-based applications at the protocol level, certain elements of that schema are discussed in this
overview document in order to provide an understanding of how those configuration elements can
influence the network communications of a WCF-based application. The recommended order of stack

elements is the following:

Transactions (optional)

Reliable Messaging (optional)

Security (optional)

Transport

Encoder (optional)

The following diagram represents the protocol stack of WCF:

19 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 3: The protocol stack of Windows Communication Foundation

The various components in the preceding diagram are described in the following paragraphs.

Transport

A transport is a means of communicating with a source on the service side. The transport channel is
the bottom-most channel of the WCF stack. The protocols typically used in this channel are HTTP,
TCP, MSMQ, and named pipes, but WCF allows application developers to use other transports as
well, such as SMTP or FTP.

20 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

SOAP Encoding

The SOAP encoding defines a set of rules for mapping programmatic types to XML. XML allows very
flexible encoding of data, whereas SOAP defines a narrower set of rules for encoding the graphs in
the SOAP Data Model specified in [SOAP1.1] section 2.

[MC-NBFX], [MC-NBFS] and [MC-NBFSE]

[MC-NBFX] defines the .NET Binary Format: XML Data Structure, which is a binary format that can
represent many XML documents. [MC-NBFS] extends [MC-NBFX] for the SOAP data structure and
specifies a way to efficiently encode strings that are common to many SOAP messages. [MC-NBFSE]
extends [MC-NBFS], and defines a mechanism by which strings may be transmitted once and
referred to by subsequent XML documents.

.NET Message Framing ([MC-NMF])

Figure 4: [MC-NMF] and related protocols

http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=207252
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207252
http://go.microsoft.com/fwlink/?LinkId=207251
http://go.microsoft.com/fwlink/?LinkId=207250

21 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Message framing is the breaking up of a stream of data into demarcated units called messages.
Some protocols such as HTTP natively include a notion of message framing. Other protocols such as

TCP do not natively include a notion of message framing and therefore must rely on a protocol that
does provide message framing. WCF includes a message framing protocol called .NET Message

Framing for use with transports that do not natively support messaging. This framing protocol is
used with the TCP transport to create NetTcp and with the MSMQ transport to create NetMsmq.

[MC-NMF] can use any of the following encoding specifications: UTF-8, UTF-16, Unicode Little
Endian, and MTOM as specified in [SOAP-MTOM], [MC-NBFS], and [MC-NBFSE].

The .NET Message Framing TCP Binding Protocol [MS-NMFTB] and the .NET Message Framing MSMQ
Binding Protocol [MS-NMFMB] specify how the mechanism described in [MC-NMF] for framing
messages over any transport protocol can be applied over TCP and Message Queue (MSMQ)

respectively.

Reliable Messaging and Flow Control

WCF implements WS-ReliableMessaging to allow messages to be delivered reliably between

distributed applications in the presence of software component, system, or network failures. It
implements [MS-WSRVCRM], which extends WS-ReliableMessaging and provides an advanced
message flow control. [MS-WSRVCRM] attempts to minimize the number of dropped messages by

synchronizing the rate at which the reliable messaging source (RMS) sends messages with the
rate at which the reliable messaging destination (RMD) can receive them.

Reliable Request Reply

The WS-ReliableMessaging Protocol: Reliable Request-Reply Extension ([MS-WSRVCRR]) extends
WS-ReliableMessaging by enabling applications to communicate reliably over transfer protocols that
only support the SOAP Request-Response protocol.

Message Security

Windows implements WS-* protocols designed for secure communication. These protocols includes
WS-Security, WS-SecurityPolicy, WS-Trust, and WS-SecureConversation.

Web Services: The Security Policy Assertions Format ([MS-WSSEC]) defines additional policy
assertions that can be used together with policy assertions defined in WS-Security Policy ([WSSP])
to express constraints and requirements that cannot be expressed with the policy assertions defined
in [WSSP] alone.

http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkId=95126
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207251
http://go.microsoft.com/fwlink/?LinkId=207261
http://go.microsoft.com/fwlink/?LinkId=214682
http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207194
http://go.microsoft.com/fwlink/?LinkId=207195
http://go.microsoft.com/fwlink/?LinkId=130729
http://go.microsoft.com/fwlink/?LinkId=130729

22 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 5: Security and Policy extensions

Policy

WS-Policy defines a framework for allowing Web services to express their constraints and
requirements. Such constraints and requirements are expressed as policy assertions. WS-Policy

provides a flexible and extensible grammar for expressing the capabilities, requirements, and
general characteristics of entities in an XML Web services-based system. WS-Policy defines a
framework and a model for the expression of these properties as policies.

WS-PolicyAttachment ([WSPolicyAtt]) defines a mechanism for associating policy with various
entities and resources.

Web Services: Policy Assertions and WSDL Extensions ([MS-WSPOL]) specifies a collection of Web
service policy assertions and Web Services Description Language (WSDL) extensions that define
domain-specific behavior for the interaction between two Web service entities.

Packet Routing

The .NET Packet Routing Protocol [MC-NPR] defines a SOAP header for indicating that a SOAP

message can safely be treated as a packet or datagram. The .NET Packet Routing Protocol does not
prescribe any specific algorithm or communications infrastructure for forwarding a packet after it

has been received by the router. The .NET Packet Routing Protocol enables a SOAP message
originator to indicate that a message does not have a behavioral dependency on the path taken to
deliver the message from the source to the destination. A .NET Packet Routing Protocol router may
make use of this indication when selecting among different routing algorithms to apply to the
message. The indication provided by the .NET Packet Routing Protocol conveys routing information

that may enable the router to select a more efficient routing algorithm.

http://go.microsoft.com/fwlink/?LinkId=90583
http://go.microsoft.com/fwlink/?LinkId=207264
http://go.microsoft.com/fwlink/?LinkId=207254

23 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Tracing

The .NET Tracing Protocol [MS-NETTR] defines a SOAP message header for correlating sets of
messages. Diagnosing errors in distributed applications is a complex task that usually involves
multiple messages. By correlating messages between distributed application endpoints, users can

map message exchanges and infer causality relationships between messages. This information helps
isolate the set of messages that led up to an error and the set of messages that resulted from it.

The .NET Tracing Protocol provides two main functions:

It enables users to map outgoing messages to incoming messages between components in a

distributed application. It does this by assigning each message a unique identifier, named the
CorrelationId.

It provides a way to group related messages together.

Context Exchange

The .NET Context Exchange Protocol [MC-NETCEX] specifies a message syntax for identifying
context that is shared between a client and a server independent of connection usage, and a
protocol for establishing that context. This protocol specifies two roles for context exchange: a client
role and a server role. The server role is responsible for creating context identifiers in response to

client requests and associating context identifiers with resources. The protocol also specifies two
roles for callback context exchange: a client role and a server role.

Message Broadcasting

Figure 6: Relationship of [MC-PRCH] to other protocols

The Peer Channel Protocol ([MC-PRCH]) is used for broadcasting messages over a virtual network of
cooperating nodes, and to send and receive messages between nodes in a named mesh. The nodes

http://go.microsoft.com/fwlink/?LinkId=207260
http://go.microsoft.com/fwlink/?LinkId=207253
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207255
%5bMS-GLOS%5d.pdf

24 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

form the network by establishing connections to each other by using a discovery service in which
every node registers itself into a named mesh and discovers other nodes that are using the name of

the mesh.

PRCH ([MC-PRCH]) depends on NMF ([MC-NMF]), NBFS ([MC-NBFS]), and NBFSE ([MC-NBFSE]).

PRCH optionally uses PRCR ([MC-PRCR]) to register and resolve peers' addresses during connection
and maintenance operations.

Discovery and Addressing

Figure 7: Discovery and Addressing Stack

The various components of the preceding diagram are described in the following paragraphs.

Discovery Options

WCF implements WS-Discovery and an extension, WSTC ([MS-WSTC]), which allows discovery of
services in ad hoc networks with a minimum of networking services (for example, where there are

no DNS or directory services). WSTC ([MS-WSTC]) is an extension of the WS-Discovery Protocol
([WS-Discovery] for sending and receiving termination criteria as part of the WS-Discovery Probe
and Resolve messages. WS-Discovery can be used without its extension [MS-WSTC].

PRCR, the Peer Channel Custom Resolver Protocol ([MC-PRCR]) is a client/server protocol that is
used to register and retrieve client endpoint information at a well-known resolver service. The
information that is registered and retrieved is the PeerNodeAddress of clients associated with a
named mesh. This information can then be used to establish direct connections among these clients.

This protocol is transport-agnostic, and therefore may be used together with a variety of transport
protocols such as TCP and HTTP. It is intended for use by PRCH, the Peer Channel Protocol ([MC-
PRCH]) for neighbor discovery when PNPR, the Peer Name Resolution Protocol ([MS-PNRP]) is

unavailable.

Either PRCR ([MC-PRCR]) or WS-Discovery with or without WSTC ([MS-WSTC]) can be used to get
the web service address.

Addressing

http://go.microsoft.com/fwlink/?LinkId=207255
http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207251
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=207265
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207265
http://go.microsoft.com/fwlink/?LinkId=90576
http://go.microsoft.com/fwlink/?LinkId=207265
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=207255
http://go.microsoft.com/fwlink/?LinkId=207255
%5bMS-PNRP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=207265

25 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

WCF implements WS-Addressing which is one of the WS-* specifications that provides a framework
for one of the most fundamental tasks of any service-oriented application, namely indicating the

target of a message.

2.1.3 Identity and Directory Services

A security token is a set of bytes that expresses information about a digital identity. When
transmitted on the network, every digital identity is represented by a security token. The identity
metasystem in CardSpace provides a consistent way to work with multiple digital identities,
regardless of the kinds of security tokens they use. Windows CardSpace uses the following three
distinct roles:

Relying Party

Identity Provider

User

Relying Party: The Relying Party is an application that in some way relies on a digital identity. A
Relying Party frequently uses an identity to authenticate a user, and then makes an
authorization decision, such as allowing that user to access information. A Relying Party

accepts security tokens, defines policy by using WS-SecurityPolicy, and then allows the policy
to be accessed by using WS-MetadataExchange.

Identity Provider: An Identity Provider provides a digital identity for a user. Digital identities
created by different identity providers can carry different information and provide different
levels of assurance that the user really is who he or she claims to be. An Identity Provider
creates information cards, provides a way to get these cards to users, and implements a
security token service (STS), as defined by the WS-Trust specification.

User: The User is the entity that is associated with a digital identity. Users are often people, but
organizations, applications, machines and other things can also have digital identities.

The following figure illustrates the interactions among Users, Relying Parties and Identity Providers.

26 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 8: Interactions among Users, Relying Parties and Identity Providers

The following steps are involved in CardSpace communication:

1. The process begins when a client accesses a protected resource on a Relying Party.

2. The Relying Party sends its security token requirements to the client. This information is
contained in the Relying Party's policy, and it includes things such as what security token formats
the Relying Party will accept, and exactly what claims those tokens must contain.

3. After getting the details about the security token that the Relying Party requires, the client

passes this information to CardSpace and the system displays the card selection screen. Once the

27 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

User clicks on a particular card, CardSpace issues a request to the Identity Provider associated
with that card.

4. The Identity Provider then returns a security token to CardSpace.

5. CardSpace gives the security token to the client, which in turn passes it to the Relying Party.

CardSpace can be used from browsers as well as from WCF applications.

Information cards and the Identity Metasystem are documented in Identity Metasystem
Interoperability V1.0 [IMI].

The .NET Framework provides support for applications that require access to network directory
services through the Microsoft extensions to the directory services markup language.

[MS-DSML] is known as the SOAP session extension (SSE) of Microsoft extensions to the Directory
Services Markup Language (DSML) 2.0 Protocol. It provides for the creation of a session, association

with a particular session, and a way to terminate the session.

2.1.4 Data Access

The Conceptual Schema Definition File Format ([MC-CSDL]) describes the structure and semantics
of the Conceptual Schema Definition Language (CSDL) for the Entity Data Model (EDM).

The Open Data Protocol (OData) Specification ([MS-ODATA]) depends on HTTP [RFC2616] for

transfer of all protocol messages and user data, and follows or extends the messaging semantics
defined in AtomPub [RFC5023]. ODATA ([MS-ODATA]) uses the structure defined in [MC-CSDL].

The Entity Data Model for Data Services Packaging Format ([MC-EDMX]) is an XML-based file format
that serves as the packaging format for the service metadata of a data service (as specified in [MS-
ODATA]).

The following diagram describes the relationship of Data Access protocols:

http://go.microsoft.com/fwlink/?LinkId=160196
http://go.microsoft.com/fwlink/?LinkId=160196
%5bMS-DSML%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=214944
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=214944
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=214944
http://go.microsoft.com/fwlink/?LinkId=214944

28 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 9: Data access protocol relationships

2.1.5 ASP .NET

ASP.NET primarily relies on existing industry standard web protocols for data communication.
Microsoft has implemented two protocols that are specific to ASP.NET for administrative

communications with servers hosting ASP.NET web applications.

The ASP.NET State Server Protocol ([MS-ASP]) specifies an out-of-process state server responsible
for storing session state used by client applications that require persistent session state storage.
[MS-ASP] uses HTTP as its transport.

The ASP.NET State Service Database Repository Communications Protocol ([MS-ASPSS]) specifies
an interface for clients to store and retrieve serialized session data.

http://go.microsoft.com/fwlink/?LinkId=191383
http://go.microsoft.com/fwlink/?LinkId=191383
http://go.microsoft.com/fwlink/?LinkId=207192

29 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.6 .NET Remoting

The following diagram shows the typical architecture of a distributed application built by using the
.NET Remoting Framework:

Figure 10: Typical architecture of a distributed application that uses the .NET Remoting
Framework

Using .NET remoting, objects executing within the logical subdivisions of application domains and
contexts can interact with one another across .NET remoting boundaries.

With .NET remoting, client applications can be built that use objects in other processes on the same
computer or on any other computer that is reachable over its network. The .NET remoting
framework can also be used to communicate with other application domains in the same process.

The .NET remoting framework provides an approach to interprocess communication that abstracts
the remotable object from a specific client or server application domain and from a specific
mechanism of communication.

To use .NET remoting to build an application in which two components communicate directly across
an application domain boundary, the following components are required:

A remotable object (referred to as ServerObject in the typical architecture of a distributed

application diagram).

A host application domain to listen for requests for that object (Application Domain 2 in the

typical architecture of a distributed application diagram).

A client application domain that makes requests for that object (Application Domain 1 in the

typical architecture of a distributed application diagram).

On the client side, the remoting infrastructure creates a proxy that stands in as a pseudo-

instantiation of the remotable object and returns to the client object a reference to the proxy. It
does not implement the functionality of the remotable object, but rather presents a similar interface.
When a client calls a method, the remoting infrastructure handles the call, checks the type
information, and sends the call over the channel to the server process. On the server side, the
listening channel picks up the request and makes the call to the remotable object on behalf of the
client. The results are serialized and transferred by way of the sink to the client, where the proxy

reads them and hands them over to the calling application.

The .NET remoting infrastructure manages transferring the required information over the wire. The
following diagram shows the protocol stack of the remoting infrastructure.

%5bMS-GLOS%5d.pdf

30 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 11: Protocol stack of the .NET remoting infrastructure

The .NET remoting framework supports two transport protocols, namely TCP and HTTP, but a user
can add any transport to the .NET remoting stack.

The .NET remoting core protocol ([MS-NRTP]) specifies a mechanism whereby a calling program can
invoke a method in a different address space over the network.

The .NET Remote Lifetime Services Extension ([MS-NRLS]) extends [MS-NRTP] to add a mechanism
allowing clients to explicitly create Server Objects, and adds another mechanism allowing clients

and servers to control the lifetime of Server Objects. The .NET Remote Lifetime Services Extension
adds new methods and semantics for activation and lifetime management.

Encoding

A .NET remoting application can use either a binary encoding for .NET remoting as specified in .NET
Remoting Binary Format ([MS-NRBF]), or SOAP encoding as specified in [SOAP1.1], with the .NET
remoting-specific portions of the mapping specified in SOAP Serialization Format (section 2.2.4 of

[MS-NRTP]).

Binding

The .NET remoting framework can be bound to either TCP ([RFC793]) or HTTP ([RFC2616]). The
TCP binding for binary encoding is specified in TCP Transport ([MS-NRTP] section 2.1.1), and the
HTTP binding is specified in HTTP Transport ([MS-NRTP] section 2.1.2). The TCP binding to SOAP is
specified in SOAP on TCP ([MS-NRTP] section 2.1.3.2), and the HTTP binding can be found in

[SOAP1.1] section 6, with .NET remoting-specific portions of the mapping specified in SOAP on HTTP

([MS-NRTP] section 2.1.3.1).

Security

Over a TCP connection, optional security may be provided by .NET NegotiateStream Protocol ([MS-
NNS]). This protocol enables:

http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191402
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=207262
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=191403
%5bMS-NNS%5d.pdf
%5bMS-NNS%5d.pdf

31 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Client and/or server authentication

Data confidentiality and integrity

The .NET NegotiateStream Protocol provides mutually authenticated and confidential communication

as specified in [MS-NNS].

A key benefit is that authentication in [MS-NNS] is accomplished without the use of digital
certificates. Other protocols, such as Transport Layer Security (TLS, [RFC5246]), require the use of
digital certificates.

Over an HTTP connection, NTLM Authentication ([MS-NLMP]) or HTTP authentication ([RFC2617])
can be used. [MS-NTHT] specifies how NTLM authentication is used over an HTTP connection.

Interoperability Between CLR and COM

The IManagedObject Interface Protocol ([MS-IOI]) provides interoperability for CLR. It defines the
IManagedObject, IRemoteDispatch, and IServicedComponentInfo interfaces.

The IManagedObject interface is useful as part of the infrastructure for allowing the CLR to

interoperate with COM.

The IRemoteDispatch interface is used for method-call dispatch and deactivation.

The IServicedComponentInfo interface is used for determining Server Object instance identity.

The following diagram illustrates the relationship among .NET remoting protocols:

http://go.microsoft.com/fwlink/?LinkId=129803
%5bMS-NLMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90373
%5bMS-NTHT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207258

32 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 12: .NET remoting protocol relationships

2.2 Protocol Summary

The following tables provide a comprehensive list of the member protocols of the .NET Framework.

The Member Protocols are grouped according to their primary purpose.

Protocols in this table are used for Windows Workflow Foundation:

Protocol name Description

Short

name

Workflow Instance

Management Protocol

Specification

Defines a set of SOAP messages for the management of

durable program instances, such as suspending, resuming,

or canceling an instance.

[MS-

WFIM]

Protocols in this table enable communication for .NET remoting:

Protocol name Description

Short

name

.NET Remoting: Core

Protocol Specification

Specifies a mechanism by which a calling program can invoke

a method in a different address space over the network.

[MS-

NRTP]

NET Remoting: Binary

Format Data Structure

Defines a set of structures that represent object graph or

method invocation information as an octet stream.

[MS-

NRBF]

.NET Remoting: Lifetime

Services Extension

Adds lifetime and remote activation capabilities to the .NET

Remoting Protocol (specified in [MS-NRTP]).

[MS-

NRLS]

.NET NegotiateStream

Protocol Specification

Provides mutually authenticated and confidential

communication over a TCP connection.

[MS-

NNS]

Protocols in this table enable communication for WCF:

Protocol name Description

Short

name

NET Packet Routing

Protocol Specification

Defines a SOAP header for indicating that a SOAP message

can safely be treated as a packet or datagram.

[MC-NPR]

.NET Binary Format: XML

Data Structure

Defines the .NET Binary Format: XML Data Structure, which

is a binary format that can represent many XML documents,

as specified in [XML1.0].

[MC-NBFX]

.NET Binary Format: SOAP

Data Structure

Defines the .NET Binary Format: SOAP Data Structure, which

is a new format built by extending the format described in

the .NET Binary Format: XML Data Structure, as specified in

[MC-NBFX].

[MC-NBFS]

.NET Binary Format: SOAP

Extension

Defines the .NET Binary Format: SOAP Extension, which is a

new format built by extending the format specified in [MC-

NBFS].

[MC-

NBFSE]

Peer Channel Protocol

Specification

Used for broadcasting messages over a virtual network of

cooperating nodes. This protocol is used to send and receive

messages among nodes in a named mesh.

[MC-PRCH]

http://go.microsoft.com/fwlink/?LinkID=207313
http://go.microsoft.com/fwlink/?LinkID=207313
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=207262
http://go.microsoft.com/fwlink/?LinkId=207262
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191402
http://go.microsoft.com/fwlink/?LinkId=191402
%5bMS-NNS%5d.pdf
%5bMS-NNS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207254
http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=207252
http://go.microsoft.com/fwlink/?LinkId=207252
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207250
http://go.microsoft.com/fwlink/?LinkId=207251
http://go.microsoft.com/fwlink/?LinkId=207251
http://go.microsoft.com/fwlink/?LinkId=207255

33 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol name Description

Short

name

Peer Channel Custom

Resolver Protocol

Specification

Used for storage and retrieval of endpoint information of

clients that have access to a known service.

[MC-PRCR]

WS-ReliableMessaging

Protocol: Advanced Flow

Control Extension

Specifies an advanced message flow control extension to the

Web Services Reliable Messaging Protocol [WSRM1-0],

[WSRM1-1], and [WSRM1-2].

[MS-

WSRVCRM]

WS-ReliableMessaging

Protocol: Reliable

Request-Reply Extension

Enables applications to communicate reliably over transfer

protocols that support only SOAP Request-Response.

[MS-

WSRVCRR]

.NET Context Exchange

Protocol Specification

Specifies a message syntax for identifying context that is

shared between a client and a server, and a protocol for

establishing that context.

[MC-

NETCEX]

.NET Tracing Protocol

Specification

Defines a SOAP message header for correlating sets of

messages together.

[MS-

NETTR]

WS-Discovery:

Termination Criteria

Protocol Extensions

An extension to the WS-Discovery Protocol for sending and

receiving a termination criterion as part of WS-Discovery

Probe and Resolve messages.

[MS-WSTC]

Web Services: Security

Policy Assertions Format

Defines additional policy assertions that can be used

together with policy assertions defined in [WSSP] to express

constraints and requirements that cannot be expressed with

just the policy assertions defined in [WSSP].

[MS-

WSSEC]

Web Services: Policy

Assertions and WSDL

Extensions

Specifies a collection of Web service policy assertions and

Web Services Description Language (WSDL) extensions,

which define domain-specific behavior for the interaction

between two Web service entities.

[MS-

WSPOL]

.NET Message Framing

Protocol Specification

Defines a mechanism for framing messages. [MC-NMF]

.NET Message Framing

TCP Binding Protocol

Specification

Specifies how the .NET Message Framing Protocol [MC-NMF]

is used for framing SOAP messages over TCP [RFC793]

[MS-

NMFTB]

.NET Message Framing

MSMQ Binding Protocol

Specification

A collection of Web service policy assertions that define

behavior for the interaction with a Web service entity. This

set of policy assertions pertains to an endpoint that is using

the .NET Message Framing MSMQ Binding Protocol as the

transport.

[MS-

NMFMB]

WS-AtomicTransaction

(WS-AT) Version 1.0

Protocol Extensions

Extends the WS-AtomicTransaction Protocol specified in

[WSAT10] and [WSAT11], by enabling software entities that

use the WS-AtomicTransaction Protocol to participate in

transactions coordinated by OleTx transaction managers, as

specified in [MS-DTCO].

[MS-

WSRVCAT]

Protocols in this table are used for Identity and Directory Services:

http://go.microsoft.com/fwlink/?LinkId=207256
http://go.microsoft.com/fwlink/?LinkId=117285
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207194
http://go.microsoft.com/fwlink/?LinkId=207194
http://go.microsoft.com/fwlink/?LinkId=207253
http://go.microsoft.com/fwlink/?LinkId=207253
http://go.microsoft.com/fwlink/?LinkId=207260
http://go.microsoft.com/fwlink/?LinkId=207260
http://go.microsoft.com/fwlink/?LinkId=207265
http://go.microsoft.com/fwlink/?LinkId=130729
http://go.microsoft.com/fwlink/?LinkId=130729
http://go.microsoft.com/fwlink/?LinkId=207195
http://go.microsoft.com/fwlink/?LinkId=207195
http://go.microsoft.com/fwlink/?LinkId=207264
http://go.microsoft.com/fwlink/?LinkId=207264
http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=207261
http://go.microsoft.com/fwlink/?LinkId=207261
http://go.microsoft.com/fwlink/?LinkId=214682
http://go.microsoft.com/fwlink/?LinkId=214682
http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=214691

34 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol name Description

Short

name

Directory Services Markup Language

(DSML) 2.0 Protocol Extensions

Microsoft extensions to the Directory Services

Markup Language (DSML) 2.0 Protocol.

[MS-

DSML]

Protocols in this table are used for Data Access:

Protocol name Description

Short

name

Open Data Protocol

(OData)

Specification

Used for creating Representational State Transfer (REST)-based [REST]

data services, which enable resources, identified by using Uniform

Resource Identifiers (URIs) and defined in an abstract data model, to

be published and edited by web clients within corporate networks and

across the Internet by using simple HTTP messages.

[MS-

ODATA]

Conceptual Schema

Definition File

Format

Describes the structure and semantics of the Conceptual Schema

Definition Language (CSDL) for the Entity Data Model (EDM).

[MC-

CSDL]

Entity Data Model

for Data Services

Packaging Format

Specifies the Entity Data Model for Data Services Packaging Format

(EDMX), an XML-based file format that serves as the packaging format

for the service metadata of a data service.

[MC-

EDMX]

Protocols in this table are used in ASP.NET:

Protocol name Description

Short

name

ASP.NET State Server Protocol

Specification

Used for interaction between a client application that

requires persistent session state storage, and an out-of-

process state server responsible for storing session state.

[MS-

ASP]

ASP.NET State Service

Database Repository

Communications Protocol

This protocol specifies an interface for clients to store and

retrieve serialized session data.

[MS-

ASPSS]

Protocols in this table enable communication for .NET remoting:

Protocol name Description

Short

name

.NET Remoting: Core Protocol

Specification

Specifies a mechanism by which a calling program can

invoke a method in a different address space over the

network.

[MS-

NRTP]

NET Remoting: Binary Format

Data Structure

Defines a set of structures that represent object graph or

method invocation information as an octet stream.

[MS-

NRBF]

.NET Remoting: Lifetime

Services Extension

Adds lifetime and remote activation capabilities to the .NET

Remoting Protocol (specified in [MS-NRTP]).

[MS-

NRLS]

.NET NegotiateStream

Protocol Specification

Provides mutually authenticated and confidential

communication over a TCP connection.

[MS-

NNS]

IManagedObject Interface Provides interoperability support for the common language [MS-IOI]

%5bMS-DSML%5d.pdf
%5bMS-DSML%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140866
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=207248
http://go.microsoft.com/fwlink/?LinkId=191383
http://go.microsoft.com/fwlink/?LinkId=191383
http://go.microsoft.com/fwlink/?LinkId=207192
http://go.microsoft.com/fwlink/?LinkId=207192
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=207262
http://go.microsoft.com/fwlink/?LinkId=207262
http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191402
http://go.microsoft.com/fwlink/?LinkId=191402
http://go.microsoft.com/fwlink/?LinkId=207258

35 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol name Description

Short

name

Protocol Specification runtime (CLR).

2.3 Environment

The following sections identify the context in which the system exists. This includes the systems that
use the interfaces provided by this system of protocols, other systems that depend on this system,
and, as appropriate, how components of the system communicate.

2.3.1 Dependencies on This System

None.

2.3.2 Dependencies on Other Systems/Components

The Microsoft .NET Framework relies on the following Windows and standard protocols:

Message Queuing protocols defined in [MS-MQSO]

TCP

Named pipes as described in [MS-CIFS]/[MS-SMB2]

HTTP/HTTPS

Web Services standard protocols (WS* protocols)

WS-Addressing

WS-ReliableMessaging

WS-AtomicTransaction

WS-Coordination

SecureConversation

WS-Discovery

WS-Policy

WS-Security

WS-SecurityPolicy

WS-Trust

WS-PolicyAttachment

WS-Enumeration

WS-Transfer

SOAP (Simple Object Access Protocol)

[MS-DTCO]

http://go.microsoft.com/fwlink/?LinkId=207259
%5bMS-CIFS%5d.pdf
%5bMS-SMB2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392

36 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-CMP]

[MS-CMPO]

[MS-RPCE]

2.4 Assumptions and Preconditions

None.

2.5 Use Cases

2.5.1 Stakeholders

The stakeholders and their associated interests for the .NET Framework protocols are as follows:

Application Developers

An individual who implements distributed applications that use .NET Framework protocols. The
primary interest of the application developer is to develop the client and/or server application using
the .NET Framework or another programming framework.

System Developer

An individual who implements the client or server side of the protocols. The primary interest of the
system developer is to implement the .NET protocols on platforms other than Windows so that the
distributed applications developed on the other platforms can interoperate with the applications built
on .NET Framework.

End User

An individual who uses .NET Framework applications either directly or through a web client that
accesses a web application or Web services. The end user's interest is to accomplish a task that he

is authorized to do by using the Web service; the task could be to perform a financial transaction. to

obtain data, or to change existing data. The end user is not necessarily aware that a separate web
server or Web service is performing the task, only of the Web service interface.

Web Service Provider

The entity (individual or corporate) that owns and operates the Web service. The service provider
has an interest (financial or otherwise) in the Web service operating reliably and correctly.

2.5.2 Actors

Web Client

A web client is an application programming construct that consumes the Web service. It
communicates with the Web service to obtain information or to perform an operation on the server.
The operation which a web client can perform is limited to the interface published by the Web

service. A developer can use the infrastructure provided by the .NET Framework to develop a web

client, and web clients can use the protocols provided by the .NET Framework to communicate with
a Web service, but a web client is not necessarily built using the .NET Framework. A Web service is
external to the .NET Framework.

Web Service

http://go.microsoft.com/fwlink/?LinkId=191385
http://go.microsoft.com/fwlink/?LinkId=191386
%5bMS-RPCE%5d.pdf

37 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

A Web service is a means by which two computing devices can perform specifically requested tasks
over a network. The W3C defines a Web service as "a software system designed to support

interoperable machine-to-machine interaction over a network". A web client can access Web
services by using various protocols, the most common of which are REST, SOAP, and RPC. A remote

system called the web server executes the request and sends the requested data to the web client.
A developer can use the .NET Framework to develop a Web service; however, a Web service is a
generic application programming construct not necessarily built with the .NET Framework.

Data Service

A data service is an application that resides on a web server and enables clients to publish and edit
resources. The resources exposed by data services are described using the Entity Data Model (EDM),
which is described in more detail in [MSDN-EDMSpecs].

RM Source

The reliable messaging source (RM Source) is the endpoint that transmits the message
between client and server over the network. RM Source adds reliability headers into messages and

resends messages if necessary. It requests creation and termination of the reliability contract. The
web client acts as an application source that sends the message to the RM Destination for
reliable delivery. RM Source is described in detail in the Web Services Reliable Messaging Protocol

specifications (see [WSRM1-1] and [WSRM1-2]).

RM Destination

The reliable messaging destination (RM Destination) is the endpoint that receives the message. The
RM Destination responds to requests to create and terminate a reliability contract. It accepts and
acknowledges messages and optionally holds back out-of-order messages until missing messages
arrive. The RM Destination transfers the received messages to the Web Service, which acts as the
application destination. The RM Destination is described in detail in the Web Services Reliable

Messaging Protocol specifications (see [WSRM1-1] and [WSRM1-2]).

Client Application

A client application is a .NET remoting client that invokes a method on a Server Object or manages
the lifetime of the Server Object.

Remoting Server

A remoting server contains the Server Object that responds to the remote queries of the client
application in .NET remoting.

Sponsor Object

A sponsor object specifies whether the Server Object's Time-To-Live (TTL) must be extended; it
also specifies the duration of the extension.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=214575
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440

38 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.5.3 WCF Use Cases

2.5.3.1 Use Case Diagrams

Figure 13: WCF use cases

2.5.3.2 Use Case Descriptions

2.5.3.2.1 Dynamically Discover a Web Service

See the diagram named "WCF use cases" in section 2.5.3.1.

Goal: The web client obtains the URI of the Web service.

39 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Context of Use: A web client requires the use of a Web service, but the identifying address (URI)
of the Web service is unknown. The web client must dynamically seek a suitable Web service (the

target service); this process is called service discovery.

Primary Actor: The primary actor is the web client, an application that resides on the end user's

computer and makes requests to a server over a network connection.

Supporting Actor: The supporting actor is a Web service. This provides a remote computing or
data access function that a web client can dynamically discover and consume.

Preconditions: The following enables a WCF Web service to become discoverable over UDP on a
network by using WS-Discovery ([WS-Discovery]).

The Web service is connected to the network.

The Web service application developer enables discovery of the service. In WCF, the developer

adds a discovery endpoint to enable service discovery.

Trigger: Web service discovery can be initiated in two ways: A developer can perform Web service
discovery manually and statically bind the Web service's URI to the web client application.
Alternatively, when the web client does not already know the location of a service appropriate to a
particular task, the web client can initiate discovery of a Web service by performing the steps listed

under Main Success Scenario in this section.

Main Success Scenario:

1. The web client searches for a Web service with a multicast Probe message specifying the contract
type (the methods exposed by the service).

2. The Web service responds with a unicast Probe Match message.

3. The web client sends a multicast Resolve message requesting the Web service's URI.

4. The Web service responds with a unicast Resolve Match message containing its address (URI).

The web client uses a multicast discovery protocol called WS-Discovery ([WS-Discovery]) to locate
the Web service on a network. The detailed steps involved in discovering the service are described
in section 3 of [WS-Discovery]. The client can add constraints to the probe and response messages
as described in [MS-WSTC].

Minimal Guarantees: If the service is unavailable, the web server does not respond to the client.
No data on the web client or the web server is changed.

Success Guarantees: The system guarantees the following.

The web server responds to requests from the web client.

The discovery service obtains the URI of the Web service.

The web client receives the URI of the Web service.

2.5.3.2.2 Consume a Web Service

See the diagram named WCF use cases in section 2.5.3.1.

Goal: The web client consumes the Web service according to the service contract. "Consume"
means that the Web service successfully fulfills the web client's request.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90576
http://go.microsoft.com/fwlink/?LinkId=90576
http://go.microsoft.com/fwlink/?LinkId=90576
http://go.microsoft.com/fwlink/?LinkId=207265

40 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Context of Use: An end user performs a task on a web client that requires consumption of a Web
service.

Primary Actor: The primary actor is a web client, an application that resides on the end user's
computer and connects to a server over a network.

Supporting Actor: The supporting actor is a Web service, which provides the remote application
that the web client consumes.

Preconditions: The Web service is connected to the network.

Trigger: When an end user visits a website, uses a web application, or performs a transaction on
the web, that site or application might access a Web service. The end user is not necessarily aware
that a Web service is involved in the task at hand. The web client makes a request on a Web service
endpoint. For example, an end user uses a web browser to visit a weather reporting website. When

the website's home page loads, it accesses one or more Web services to retrieve weather-related
data.

Main Success Scenario:

1. The web client discovers the Web service (obtains its URI).

2. The web client sends a request message to the Web service's URI.

3. The Web service validates the service contract, which describes the service's functionality and

communication format.

4. If the contract is valid, the Web service sends a response message to the web client.

Extension:

5. If the web client does not already have the URI of the service, it can obtain it dynamically by
using WS-Discovery as described in the use case in section 2.5.3.2.1.

Minimal Guarantees: If the service is unavailable, it will not respond to the client. No data on the

web client or the web server is changed.

Success Guarantee: The web client consumes the Web service according to the service contract.

2.5.3.2.3 Use a Web Service with Reliable Messaging

See the diagram titled WCF use cases in section 2.5.3.1.

Goal: A web client is guaranteed to consume data in the same order in which it requested the data.

Context of Use: A web client requires that the order in which it consumes data be the same as the
order in which it requested the data.

Primary Actor: The primary actor is a web client.

Supporting Actors: The supporting actors are as follows:

Web Service: Provides the remote application that the web client consumes.

RM Source: Helps the sender by assuring that the message is sent reliably to the client.

RM Destination: Makes sure that all the messages are received and notifies the RM Source

about the missing message.

41 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Preconditions: Preconditions are defined in section 2.2 of [WSRM1-1].

Minimal Guarantees: The Web service receives the messages from the web client in the requested
order.

Success Guarantee: The web client consumes all messages from the Web service in the requested

order. The Web service receives all messages from the web client in the same order that they were
sent.

Trigger: A web client is required to send messages reliably.

Main Success Scenario:

1. The web client submits a sequence of messages to the RM Source for reliable delivery.

2. The RM Source requests the creation of an outbound Sequence by sending a <CreateSequence>
element in the body of a message to the RM Destination.

3. The RM Destination responds with a <CreateSequenceResponse> element in the body of a
message to the RM Destination by returning a globally unique identifier (GUID).

4. The RM Source forwards messages sent by the web client with a <Sequence> element header
block which contains the sequence number of the message.

5. The RM Destination informs the RM Source of successful message receipt by using a
<SequenceAcknowledgement> element header block. The RM Destination delivers the message

to the Web service.

6. The RM Source sends the last message by adding a <LastMessage> element in the Sequence
header to indicate the RM Destination that this is the last message in sequence. The RM
Destination responds with the acknowledgment of the last message.

7. After receiving the acknowledgment of the last message, the RM source sends a
<TerminateSequence> element in the body of a message to the RM Destination to indicate that

the Sequence is complete.

Variant:

Because the infrastructure might be unreliable, the following scenario shows how lost messages are
retransmitted. The RM Source requests creation of a new Sequence.

1. The RM Destination creates a Sequence by returning a globally unique identifier.

2. The RM Source begins sending messages beginning with message number 1.

3. The RM Source includes a <LastMessage> element token to the last message in the sequence.

4. The message number n is lost in transit.

5. The RM Destination acknowledges receipt of message numbers 1 to n-1 and the messages after
nth message.

6. The RM Source retransmits the nth message. This is a new message on the underlying transport,
but it has the same sequence identifier and message number so that the RM Destination can
recognize it as equivalent to the earlier message, in case both are received.

7. The RM Destination receives the second transmission of the message with MessageNumber n and

acknowledges receipt of message numbers 1 to last.

http://go.microsoft.com/fwlink/?LinkId=117286

42 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8. The RM Source receives this acknowledgment and sends a <TerminateSequence> element
message to the RM Destination indicating that the sequence is completed and reclaims any

resources associated with the Sequence.

9. The RM Destination receives the <TerminateSequence> element message indicating that the RM

Source will not be sending any more messages, and reclaims any resources associated with the
Sequence.

2.5.3.2.4 Use a Web Service with Reliable Messaging and Flow Control

See the diagram named WCF use cases in section 2.5.3.1.

Goal: A web client requires that the order of consumption should be same as the order of request
and resending of messages are minimized by applying the flow control.

Context of Use: The web client requires consuming the Web service in a given order with minimum
resend.

Primary Actor: The primary actor is a web client.

Supporting Actors: The supporting actors for this use case are as follows.

Web Service: Provides the service that can be consumed by the client.

RM Source: Helps the sender by assuring that the message is sent reliably to the client and

implements flow control.

RM Destination: Makes sure that all the messages are received and notifies the RM Source

about the missing message. It implements flow control.

Preconditions: The preconditions defined in section 1.5 of [MS-WSRVCRM].

Trigger: The web client makes a request on a service that is configured for Web Services Reliable
Messaging (see [WSRM1-1] and [WSRM1-2]).

Main Success Scenario:

1. The web client submits a sequence of messages to the RM source for reliable delivery.

2. The RM Source sends the first message with a <Sequence> element header block that contains
the sequence number of the message.

3. After receiving a message, the RM Destination informs the RM Source of successful message
receipt using a <SequenceAcknowledgement> element header block with the <BufferRemaining>

element which contains the number of further messages that the RM Destination can accept. The
RM Destination delivers the message to the Web service.

4. After receiving the <SequenceAcknowledgement> element header block, the RM source
processes it by checking the <BufferRemaining> element. It polls for the acknowledgment from
RM Destination and does not send any further messages unless the <BufferRemaining> element

indicates that RM Destination can receive further messages.

5. The RM Source sends the last message by adding a <LastMessage> element in the Sequence

header to indicate to the RM Destination that this is the last message in the sequence. The RM
Destination responds with the acknowledgment of the last message.

http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440

43 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6. After receiving the acknowledgment of the last message, the RM source sends a
<TerminateSequence> element in the body of a message to the RM Destination to indicate that

the Sequence is complete.

Minimal Guarantees: The web client consumes the Web service with the messages in the

requested order.

Success Guarantee: The web client consumes the Web service in the specified order with the
minimum number of dropped messages.

2.5.3.2.5 Use a Web Service with Reliable Messaging in the Request Reply

See the diagram named WCF use cases in section 2.5.3.1.

Goal: The web client requires that the order of consumption should be same as the order of request

over transfer protocols that only support the SOAP Request-Response protocol.

Context of Use: The web client is required to send its messages to the web server in an orderly

manner.

Primary Actor: The primary actor is a web client.

Supporting Actors: The supporting actors for this use case are as follows:

Web Service: Provides the service that can be consumed by the client.

RM Source: Helps the sender by assuring that the message is sent reliably to the RM Destination

over transfer protocols that support only the SOAP Request-Response protocol.

RM Destination: Makes sure that all the messages are received and notifies the RM Source

about the missing message.

Preconditions: The preconditions are defined in section 1.5 of [MS-WSRVCRR].

Trigger: The web client makes a request on a service that is configured for Web Services Reliable

Messaging (see [WSRM1-1] and [WSRM1-2]).

Main Success Scenario:

1. The web client submits a sequence of messages to the RM Source for reliable delivery on a
transfer protocol that supports only the SOAP Request-Response protocol.

2. The RM Source sends a CreateSequence message for establishing a pair of sequences.

3. RM Destination in turn responds with a CreateSequenceResponse message for establishing a pair

of sequences

4. The RM Source sends request messages.

5. The RM Destination informs the RM Source of successful message receipts by sending response
messages.

6. RM source continues resending the request messages for which a response is not received to
provide the RM Destination a way to send the acknowledgment.

7. After the RM Source receives acknowledgment of all the messages sent, it sends a

CloseSequence message.

http://go.microsoft.com/fwlink/?LinkId=207194
http://go.microsoft.com/fwlink/?LinkId=117286
http://go.microsoft.com/fwlink/?LinkId=192440

44 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8. The RM Destination responds with a CloseSequenceResponse message.

9. The RM source sends a TerminateSequence message and the RM Destination responds with a
TerminateSequenceResponse message.

Minimal Guarantees: The web client and web server should be able to communicate reliably over

transfer protocols that support only the SOAP Request-Response protocol.

Success Guarantee: All the messages sent by the web client should reach the Web service in an
orderly manner.

2.5.4 .NET Remoting Use Cases

2.5.4.1 Use Case Diagrams

Figure 14: NET remoting use cases

2.5.4.2 Use Case Descriptions

2.5.4.2.1 Invoke a Method on a Server-Activated Object

Goal: A client application performs an operation on a Server-Activated Object (SAO) on a
remoting server.

Context of Use: A client application invokes a method on a Server-Activated Object (SAO) on a
remoting server.

Primary Actor: The primary actor is the client application.

Supporting Actor: The supporting actor for this use case is the remoting server (the server
application on which the Server-Activated Object resides).

Preconditions:

45 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The client application and remoting server have negotiated the encoding to be used.

The client application recognizes the Server Object URI.

Trigger: The client application invokes a method on the Server-Activated Object on the remoting

server.

Main Success Scenario:

1. The client application connects to the remoting server by using the Server Object URI.

2. The client application invokes a method on the remoting server.

3. The remoting server executes the method.

Variations:

If the method invocation is two-way, the client application waits for response from the remoting

server.

The remoting server sends back a response that may contain a return value and output

arguments.

Minimal Guarantees: The method invocation fails.

Success Guarantee: The client application successfully invokes the remote object method on the

remoting server.

2.5.4.2.2 Activate a Client-Activated Object and Invoke a Method

Goal: A client application activates a Client-Activated Object (CAO) and invokes a method on the
activated object.

Context of Use: The client application activates a Client-Activated Object on a remoting server and
invokes a method on that object.

Primary Actor: The primary actor is the client application.

Supporting Actor: The supporting actor is the remoting server (the server application on which the
remote object resides). The remoting server also hosts RemoteActivationService service, which
activates the Client-Activated Objects.

Preconditions:

The client system and remote system have negotiated the encoding to be used.

The client application recognizes the Server Object URI of the RemoteActivationService and is

configured with enough information about the Server Type to construct the activation message.

Main Success Scenario:

1. The client application calls the Activate method of the RemoteActivationService to activate a
Client-Activated Object of a particular Server Type. The Activate method returns the Server
Object Reference of the activated object.

2. The client application invokes a method on the returned Server Object.

3. The remoting server executes the method.

46 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Extensions

If the client application is required to access a method or methods of the activated Server Object,

it can prevent the object from being unmarshaled by using lifetime management after step 3, as

described in the use cases in sections 2.5.4.2.3 and 2.5.4.2.4.

Minimal Guarantees: The client application is not able to activate the Client-Activated Object.

Success Guarantee: The client application activates a Client-Activated Object and invokes a
method on the activated object.

2.5.4.2.3 Manage Server-Object Lifetime by Using the Renew Method

Goal: A client application extends the lifetime of a Server Object using the Lease Object's Renew

method.

Context of Use: A client application extends the lifetime of a Client-Activated Object (CAO) to
avoid the unmarshalling of the object so as to be able to invoke a method of the Server Object

efficiently at later point.

Primary Actor: The primary actor is the client application.

Supporting Actor: The supporting actor is the remoting server (the server application on which the
remote object resides). The remoting server also hosts the RemoteActivationService service, which

activates Client-Activated Objects. It also manages the Lease Object associated with each Client-
Activated Object.

Preconditions:

The client system and remote system have negotiated the encoding to be used.

The client application has obtained the Server Object Reference of the Client-Activated Object.

Main Success Scenario:

1. The client application calls the Client-Activated Object's GetLifetimeService remote method.

2. The remoting server returns a Server Object Reference to the Lease Object for the Server Object.

3. The client application invokes the Renew remote method on the Lease Object to extend the
Time-To-Live (TTL) by a specified amount.

Minimal Guarantees: The Client-Activated Object's Time-To-Live (TTL) is not extended.

Success Guarantee: The Time-To-Live (TTL) value of the Client-Activated Object is increased.

2.5.4.2.4 Manage Server Object Lifetime by Using a Sponsor Object

Goal: A client application extends the lifetime of a Server Object by using a Sponsor object.

Context of Use: A client application extends the lifetime of a Client-Activated Object (CAO) to

avoid the unmarshalling of the object so as to be able to invoke a method of the Server Object
efficiently at a later point.

Primary Actor: The primary actor is the client application.

Supporting Actors: The supporting actors are as follows.

47 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Remoting Server: The server application where the remote object resides. The remoting server

hosts the RemoteActivationService service, which is used to activate Client-Activated Objects. It

also manages the Lease Object which is associated with every Client-Activated Object.

Sponsor Object: A Sponsor object can specify whether the Server Object's Time-To-Live (TTL)

must be extended, and can specify the duration of the extension.

Preconditions:

The client system and remote system have negotiated the encoding to be used.

The client application has obtained the Server Object Reference of the Client-Activated Object.

Main Success Scenario:

1. The client application calls the Client-Activated Object's GetLifetimeService remote method.

2. The remoting server returns a Server Object Reference to the Lease Object for the Server Object.

3. The client application registers a Sponsor object using the Register method of the returned
Lease Object.

4. The client application makes no call to the Client-Activated Object, and the lease of Client-
Activated Object expires.

5. When the Client-Activated Object's TTL is over, the Lease Object sends a Renewal request to the
Sponsor object.

6. The Sponsor object returns a Renewal response to the Lease Object, and the lease is extended.

Minimal Guarantees: The Client-Activated Object's Time-To-Live (TTL) is not extended.

Success Guarantee: The TTL value of the Client-Activated Object is increased.

2.5.5 Data Access Use Cases

2.5.5.1 Use Case Diagrams

Figure 15: Accessing data from data service use case

48 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.5.5.2 Use Case Descriptions

2.5.5.2.1 Accessing Data from a Data Service

Goal: A web client is retrieves or updates data from a data service.

Context of Use: A web client accesses data on a data service.

Primary Actor: The primary actor is a web client.

Supporting actor: The supporting actor is a data service that provides the data store which the
web client retrieves or updates.

Preconditions:

The web service is connected to the network.

The prerequisites and preconditions defined in [MS-ODATA] section 1.5.

Trigger: The client makes a request to access data from the data service.

Main Success Scenario:

1. Client sends the request to the data service by using an HTTP header.

2. The server processes the request and sends a response to the client.

3. The web client processes the response.

Minimal Guarantees: The web client cannot access data from the Web service. No data in the data
store changes.

Success Guarantee: The web client retrieves data from the data service and updates it.

2.6 Versioning, Capability Negotiation, and Extensibility

None.

2.7 Error Handling

The system does not define any errors beyond those described in the specifications of the member
protocols, as listed in section 2.2.

2.8 Coherency Requirements

This system has no special coherency requirements.

2.9 Security

Implementation of secure communication is up to the developer. The developer needs to select

security features based on the business value of the data. Because the security of WCF-based
communications is application-dependent, application developers should be aware of security
exploits and risks associated with existing security features such as authentication, encryption,
signing and hashing methods, and should choose appropriate security methods to mitigate such

known security risks in accord with the business requirements.

49 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.10 Additional Considerations

The .NET Framework is not a system but rather a platform for application developers to write
distributed .NET applications. Use of the underlying protocols is entirely at the developer's

discretion.

50 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Examples

3.1 Example 1 (.NET Remoting): Two-Way Method Invocation Using SOAP Over

HTTP

The .NET Remoting Framework is one of the main categories of .NET protocols. This example
illustrates the two-way method invocation that is mapped to the "Invoke a Method" use case. In this
example, the client invokes a method on the server and the server responds with the result, which

is an object of the address class. The detailed example can be found in [MS-NRTP] section 4.2.

3.1.1 Initial System State

General requirements as set forth in [MS-NRTP] section 1.5.

The server must be configured to respond with the address.

3.1.2 Sequence of Events

Figure 16: Sequence diagram for two-way method invocation

1. The client requests an address from the server.

2. The server responds with the address.

3.1.3 Final System State

The client receives the requested address. Client and server can communicate further using the
same or a different contract.

3.2 Example 2 (WCF): Hello World

This example illustrates a simple request and response that is mapped to the Consume Web service

use case. The service defines the following service contract:

[ServiceContract]

public interface IHelloWorldService

{

 [OperationContract]

 string SayHello(string name);

}

The server implementation returns the string "Hello World!!" when the client sends the sayHello

message with "World!!" as its input argument.

http://go.microsoft.com/fwlink/?LinkId=191403
http://go.microsoft.com/fwlink/?LinkId=191403

51 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

public class HelloWorldService : IHelloWorldService

{

 public string SayHello(string name)

 {

 return string.Format("Hello, {0}", name);

 }

}

This example uses basicHttpbinding, which uses SOAP over HTTP.

<endpoint address="http: //localhost: 80/QuickReturns/Exchange"

 bindingsSectionName="BasicHttpBinding"

 contract="IHelloWorldService" />

3.2.1 Initial System State

1. The client requires the Request URI of the server, and both the client and server should have the
Service Contract.

2. The client should have the address and binding of the service.

3.2.2 Sequence of Events

Figure 17: Sequence diagram for hello world

1. Client sends SayHello request.

The HTTP headers of the request message are as follows:

POST /Hello HTTP/1.1..

Content-Type: text/xml;

charset=utf-8..

SOAPAction: "http://tempuri.org/IHelloWorldService/SayHello"..

Host: 10.185.189.63..Content-Length: 163..

Expect: 100-continue..

Accept-Encoding: gzip, deflate..

Connection: Keep-Alive....

The body of the message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

52 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <s:Body>

 <SayHello xmlns="http://tempuri.org/">

 <name>world!!</name>

 </SayHello>

 </s:Body>

</s:Envelope>

The SOAP Body contains the method name to be called and the input arguments.

2. The server responds with the "Hello World!!" string.

The HTTP headers of the response message are shown as follows.

HTTP/1.1 200 OK.

.Content-Length: 206.

.Content-Type: text/xml;

charset=utf-8..

Server: Microsoft-HTTPAPI/2.0..

Date: Tue, 21 Sep 2010 22:02:33 GMT....

The SOAP response message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

 <s:Body>

 <SayHelloResponse xmlns="http://tempuri.org/">

 <SayHelloResult>Hello, world!!</SayHelloResult>

 </SayHelloResponse>

 </s:Body>

</s:Envelope>

The SOAP response contains an entry for SayHelloResponse which contains the response string,

which is "Hello World!!"

3.2.3 Final System State

There is no change in state.

3.3 Example 3 (WCF): Reliable Messaging with TCP as Transport

This example illustrates how the reliable messaging can be used in WCF. This example describes the
use case noted in the Use Web service with Reliable Messaging main scenario.

The following interface can be used to establish the service contract:

[ServiceContract]

public interface IMessage

{

 [OperationContract]

 void Message1();

 [OperationContract]

 void Message2();

}

53 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The user is required to add the following configuration entries in order to enable reliable messaging

over TCP.

<system.serviceModel>

 <services>

 <service name="<ServiceName>" >

 <host>

 <baseAddresses>

 <add baseAddress="net.tcp://<ServerName>:<Port>/service"/>

 </baseAddresses>

 </host>

 <endpoint address=""

 binding="customBinding"

 bindingConfiguration="TcpBinding"

 bindingName="<TcpBinding_Name>"

 contract="IMessage" />

 </service>

 </services>

 <bindings>

 <customBinding>

 <!-- Configure a CustomBinding that supports tcp transport

 and text encoding -->

 <binding name="TcpBinding">

 <!-- This will enable the WS Reliable messaging -->

 <reliableSession flowControlEnabled ="false"/>

 <textMessageEncoding messageVersion="Soap12WSAddressing10"/>

 <tcpTransport/>

 </binding>

 </customBinding>

 </bindings>

</system.serviceModel>

The user sends two messages and finally a third message with the <LastMessage> element tag.

The .NET Message Framing Protocol [MC-NMF] is used to frame the SOAP messages over TCP. This
example focuses on SOAP messages which are sent by using [MC-NMF] messages to frame them, as
follows:

The Initiator and Receiver exchange a set of Preamble messages as described in [MC-NMF] section
3.2.4.2 and 3.3.4.2. Once a session is established using Preamble messages, the Initiator and
Receiver send and receive SOAP messages as described in [MC-NMF] sections 3.2.4.3, 3.2.4.4,

3.3.4.3 and 3.3.4.4. Once the message exchange is complete, the Initiator and Receiver close the
session by sending an End Record message as described in [MC-NMF] section 3.2.4.5 and 3.3.4.5.

3.3.1 Initial System State

An implementation of WSRM must be available.

http://go.microsoft.com/fwlink/?LinkID=131390
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkID=131390
http://go.microsoft.com/fwlink/?LinkID=131390

54 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.2 Sequence of Events

Figure 18: Reliable messaging with TCP as transport

1. The RM Source (RMS) sends a CreateSequence message as specified in [WSRM1-1] section 3.4
to the RM Destination (RMD).

2. The RMD sends a CreateSequenceResponse message as specified in [WSRM1-1] section 3.4 to

the RMS.

3. The RMS sends the first message to the RMD with MessageNumber = 1 and an <AckRequested>
element header block in the header to signal to the RMD that the RMS is requesting a
<SequenceAcknowledgement> element to be returned as specified in [WSRM1-1] section 3.3.

<r:AckRequested>

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

</r:AckRequested>

<r:Sequence s:mustUnderstand="1">

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

 <r:MessageNumber>1</r:MessageNumber>

</r:Sequence>

4. The RMD Responds with acknowledgement range = 1,1 in a <SequenceAcknowledgement>

element header block as specified in [WSRM1-1] section 3.2.

<r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="1"/>

</r:SequenceAcknowledgement>

http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286

55 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5. The RMS sends a second message to the RMD with MessageNumber = 2 and an <AckRequested>

element header block in the header to signal to the RMD that the RMS is requesting that a
<SequenceAcknowledgement> element be returned as specified in [WSRM1-1] section 3.3.

<r:AckRequested>

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

</r:AckRequested>

<r:Sequence s:mustUnderstand="1">

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

 <r:MessageNumber>2</r:MessageNumber>

</r:Sequence>

6. The RMD Responds with acknowledgement range = 1,3 in <SequenceAcknowledgement>
element header block which is specified in [WSRM1-1] section 3.2.

<r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="2"/>

</r:SequenceAcknowledgement>

7. The RMS sends the last message to RMD with MessageNumber = 3 and an <AckRequested>

element header block in the header to signal to the RMD that the RMS is requesting that a
<SequenceAcknowledgement> element be returned as specified in 3.3 of [WSRM1-1]. It adds a
<LastMessage> element in the sequence block to indicate to the RMD that this is the last
message in the sequence:

<s:Envelope>

 <s:Header>

 <!-- ... -->

 <r:Sequence s:mustUnderstand="1">

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

 <r:MessageNumber>3</r:MessageNumber>

 <r:LastMessage />

 </r:Sequence>

 <a:Action s:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2005/02/rm/LastMessage

 </a:Action>

 <a:To s:mustUnderstand="1">

 net.tcp://10.185.189.61:9000/servicemodelsamples/service

 </a:To>

 </s:Header>

 <s:Body />

</s:Envelope>

http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286

56 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8. The RMD responds with an acknowledgement range = 1,3 in the <SequenceAcknowledgement>

element header block as specified in [WSRM1-1] section 3.2.

<r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="3"/>

</r:SequenceAcknowledgement>

9. After receiving acknowledgement of the last message, RMS sends a <TerminateSequence>

element as specified in [WSRM1-1] section 3.5.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <a:Action s:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2005/02/rm/TerminateSequence

 </a:Action>

 <a:To s:mustUnderstand="1">

 net.tcp://10.185.189.61:9000/servicemodelsamples/service

 </a:To>

 </s:Header>

 <s:Body>

 <TerminateSequence xmlns="http://schemas.xmlsoap.org/ws/2005/02/rm">

 <Identifier>urn:uuid:cd8ea5a2-4867-45ed-bb39-46c4cab2213f</Identifier>

 </TerminateSequence>

 </s:Body>

</s:Envelope>

3.3.3 Final System State

There is no change in the server state except the operations performed by the server.

3.4 Example 4 (WCF): Reliable Messaging with flow control

This example is mapped to the Web service with Reliable Messaging and flow control use case.

This example illustrates the use of flow control in reliable messaging. The extension described in

[MS-WSRVCRM] extends WS-ReliableMessaging to provide advanced flow-control (AFCE). This
example assumes that the RM Destination (RMD) is capable of storing only one message. After
storing a message, the RMD passes it to the Application Destination (AD) for processing. This
example assumes that the processing rate of the consumer application (RMD) is slower than the
processing rate of the producer application (RMS). The message exchange pattern between sender
and receiver is simplex. The RMS sends three messages to the RMD and a third (and last) message
with an empty body and an Action URI of:

"http://schemas.xmlsoap.org/ws/2005/02/rm/LastMessage".

In WCF, the flow control can be enabled by adding a flowControlEnabled attribute set to "true" to
the <reliableSession> element. The maximum number of messages which an RMD can accept at a
time can be specified using the maxTransferWindowSize attribute. For this example, the value is 1.

<system:serviceModel>

http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkId=207193

57 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<!-- ... -->

 <bindings>

 <customBinding>

 <!-- Configure a CustomBinding that supports

 Http transport and text encoding -->

 <binding name="httpBinding">

 <!-- This will enable the WS Reliable messaging with flow control -->

 <reliableSession flowControlEnabled="true"

 maxTransferWindowSize="1" />

 <textMessageEncoding messageVersion="Soap12WSAddressing10" />

 < httpsTransport />

 </binding>

 </customBinding>

 </bindings>

</system.serviceModel>

3.4.1 Initial System State

The general requirements, as specified in [MS-WSRVCRM] section 1.5.

3.4.2 Sequence of Events

http://go.microsoft.com/fwlink/?LinkId=207193

58 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 19: Reliable messaging with flow control

The following are the actual messages, as shown in the preceding diagram, sent between the RM
Source (RMS) and the RM Destination (RMD). The body of each message is not shown, as it is not
relevant to the advanced flow-control extension (AFCE) to the web services reliable messaging

protocol (WSRM). The purpose of each message is not included in this example. See the WSRM
specifications [WSRM1-0], [WSRM1-1], and [WSRM1-2] for details on each message type.

1. CreateSequence

The RMS sends a CreateSequence message as specified in [WSRM1-1] section 3.4 to the RMD.

2. CreateSequenceResponse

The RMD sends a CreateSequenceResponse message as specified in [WSRM1-1] section 3.4 to
the RMS.

3. Sequence (MessageNumber = 1)

The RMS sends the first message to the RMD with a <MessageNumber> value of 1 and an
<AckRequested> header block in the header to signal to the RMD that the RMS is requesting a
<SequenceAcknowledgement> to be returned as specified in [WSRM1-1] section 3.3.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r=http://schemas.xmlsoap.org/ws/2005/02/rm

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:AckRequested>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 </r:AckRequested>

 <r:Sequence s:mustUnderstand="1">

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:MessageNumber>1</r:MessageNumber>

 </r:Sequence>

 <a:Action s:mustUnderstand="1"> http://Server/AFCEExample </a:Action>

 </s:Header>

 <s:Body> </s:Body>

</s:Envelope>

4. SequenceAcknowledgement (BufferRemaining = 0)

This message contains the <SequenceAcknowledgement> header block (as specified in [MS-
WSRVCRM] section 2.2.1) sent by the RMD in response to message 1.

The RMD responds with <AcknowledgementRange> values of 1, 1 to acknowledge receipt of the
first message, but indicates with a BufferRemaining value of zero that it cannot receive more
messages until the AD finishes processing the first message.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r="http://schemas.xmlsoap.org/ws/2005/02/rm"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="1"/>

http://go.microsoft.com/fwlink/?LinkID=117285
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkId=192440
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207193
%5bMS-GLOS%5d.pdf

59 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 <netrm:BufferRemaining

xmlns:netrm="http://schemas.microsoft.com/ws/2006/05/rm">0</netrm:BufferRemaining>

 </r:SequenceAcknowledgement>

 <a:Action

s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement<

/a:Action>

 </s:Header>

 <s:Body/>

</s:Envelope>

5. SequenceAcknowledgement (BufferRemaining = 1)

The RMD responds with <AcknowledgementRange> values of 1, 1 to acknowledge receipt of the

first message, and with a <BufferRemaining> value of 1 in the header block to indicate that the
RMD is capable of receiving another message.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r="http://schemas.xmlsoap.org/ws/2005/02/rm"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="1"/>

 <netrm:BufferRemaining

xmlns:netrm="http://schemas.microsoft.com/ws/2006/05/rm">1</netrm:BufferRemaining>

 </r:SequenceAcknowledgement>

 <a:Action

s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement<

/a:Action>

 </s:Header>

 <s:Body/>

</s:Envelope>

6. Sequence (MessageNumber = 2)

The RMS sends a second message to the RMD with a <MessageNumber> value of 2 and an
<AckRequested> element header block in the header to signal to the RMD that the RMS is
requesting a <SequenceAcknowledgement> to be returned as specified in [WSRM1-1] section

3.3.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r="http://schemas.xmlsoap.org/ws/2005/02/rm"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:AckRequested>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 </r:AckRequested>

 <r:Sequence s:mustUnderstand="1">

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:MessageNumber>2</r:MessageNumber>

 </r:Sequence>

 <a:Action s:mustUnderstand="1"> http://Server/AFCEExample</a:Action>

 </s:Header>

 <s:Body> </s:Body>

http://go.microsoft.com/fwlink/?LinkID=117286

60 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

</s:Envelope>

7. SequenceAcknowledgement (BufferRemaining = 0)

This message contains the <SequenceAcknowledgement> element header block (as specified in
[MS-WSRVCRM] section 2.2.1) sent by the RMD in response to message 2.

The RMD responds to the RMS with <AcknowledgementRange> values of 1, 2 to acknowledge
receipt of the first and second messages, but indicates with a <BufferRemaining> value of zero
that it cannot receive more messages until AD finishes processing the second message.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r="http://schemas.xmlsoap.org/ws/2005/02/rm"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="2"/>

 <netrm:BufferRemaining

xmlns:netrm="http://schemas.microsoft.com/ws/2006/05/rm">0</netrm:BufferRemaining>

 </r:SequenceAcknowledgement>

 <a:Action

s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement<

/a:Action>

 </s:Header>

 <s:Body/>

</s:Envelope>

8. SequenceAcknowledgement (BufferRemaining = 1)

Once the AD finishes processing the first message and starts processing the second message, the

RMD sends a <SequenceAcknowledgement> header block (as specified in [MS-WSRVCRM]
section 2.2.1) with a <BufferRemaining> value of 1 to inform the RMS that it can receive another
message.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r="http://schemas.xmlsoap.org/ws/2005/02/rm"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="2"/>

 <netrm:BufferRemaining

xmlns:netrm="http://schemas.microsoft.com/ws/2006/05/rm">1</netrm:BufferRemaining>

 </r:SequenceAcknowledgement>

 <a:Action

s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement<

/a:Action>

 </s:Header>

 <s:Body/>

</s:Envelope>

9. Sequence (MessageNumber = 3)

http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207193

61 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The RMS sends a third message to the RMD with a <MessageNumber> value of 3 and an
<AckRequested> header block in the header to signal to the RM Destination that the RM Source

is requesting a <SequenceAcknowledgement> to be returned as specified in [WSRM1-1] section
3.3. It adds a <LastMessage> element in the sequence block to indicate to the RMD that this is

the last message in the sequence. This message contains no Application message, and its action
URI is "http://schemas.xmlsoap.org/ws/2005/02/rm/LastMessage".

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r="http://schemas.xmlsoap.org/ws/2005/02/rm"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:AckRequested>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 </r:AckRequested>

 <r:Sequence s:mustUnderstand="1">

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:MessageNumber>3</r:MessageNumber>

 </r:Sequence>

 <a:Action s:mustUnderstand="1"> http://Server/AFCEExample</a:Action>

 </s:Header>

 <s:Body> </s:Body>

</s:Envelope>

10.SequenceAcknowledgement (LastMessage)

This message contains the <SequenceAcknowledgement> header block (as specified in [MS-

WSRVCRM] section 2.2.1) sent by the RMD in response to message 3.

The RMD informs the RMS that it has received messages 1 through 3 in the sequence (3 being
the last).

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:r="http://schemas.xmlsoap.org/ws/2005/02/rm"

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="4"/>

 <netrm:BufferRemaining

xmlns:netrm="http://schemas.microsoft.com/ws/2006/05/rm">0</netrm:BufferRemaining>

 </r:SequenceAcknowledgement>

 <a:Action

s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement<

/a:Action>

 </s:Header>

 <s:Body/>

</s:Envelope>

11.TerminateSequence()

After receiving acknowledgement of the last message, the RMS sends a <TerminateSequence>
element as specified in [WSRM1-1] section 3.5.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

http://go.microsoft.com/fwlink/?LinkID=117286
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkId=207193
http://go.microsoft.com/fwlink/?LinkID=117286

62 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <a:Action

s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/TerminateSequence</a:Act

ion>

 </s:Header>

 <s:Body>

 <TerminateSequence xmlns="http://schemas.xmlsoap.org/ws/2005/02/rm">

 <Identifier>urn:uuid:ed0fc900-3bef-43a6-a5a0-83ed5935e2de</Identifier>

 </TerminateSequence>

 </s:Body>

</s:Envelope>

3.4.3 Final System State

There is no change in state.

3.5 Example 5 (Data Access): Retrieve a Single Entity Using the JSON Format

This example is mapped to the Accessing data from Data Service use case.

This example illustrates the retrieval of an entity from a data service. The EntityKey value "ALKFI" is
used in the send request with the format as JavaScript Object Notation (JSON).

3.5.1 Initial System State

The sample data model and instance data used for this example is taken from Appendix A: Sample
Entity Data Model and CSDL Document in [MS-ODATA] section 6.

3.5.2 Sequence of Events

Figure 20: Retrieve a single entity using the JSON format

The request and response messages are described in [MS-ODATA] section 4.2.3.

3.5.3 Final System State

There is no change in state.

http://go.microsoft.com/fwlink/?LinkId=214944

63 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Microsoft Implementations

The information in this document is applicable to the following versions of the Microsoft .NET
Framework:

Microsoft .NET Framework 1.0

Microsoft .NET Framework 1.1

Microsoft .NET Framework 2.0

Microsoft .NET Framework 3.0

Microsoft .NET Framework 3.5

Microsoft .NET Framework 4.0

Microsoft .NET Framework 4.5

The following table provides a mapping of the .NET Framework versions to the versions of Windows

on which they are supported:

.NET

Framework

version Windows version

.NET

Framework

1.0

Microsoft Windows 98 operating system, Windows Millennium Edition operating system,

Windows NT 4.0 operating system, Windows 2000 operating system, Windows XP

operating system, and Windows Server 2003 operating system

.NET

Framework

1.1

Windows 98, Windows Millennium Edition, Windows 2000, Windows XP, Windows Vista

operating system, Windows Server 2003*, Windows Server 2003 R2 operating system,

and Windows Server 2008 operating system

.NET

Framework

2.0

Windows 98, Windows Millennium Edition, Windows 2000, Windows XP, Windows Vista*,

Windows 7 operating system*, Windows 8 operating system*, Windows 8.1 operating

system*, Windows Server 2003, Windows Server 2003 R2*, Windows Server 2008*,

Windows Server 2008 R2 operating system*, Windows Server 2012 operating system*,

and Windows Server 2012 R2 operating system*

.NET

Framework

3.0

Windows XP, Windows Vista*, Windows 7*, Windows 8*, Windows 8.1*, Windows

Server 2003, Windows Server 2003 R2, Windows Server 2008*, Windows

Server 2008 R2*, Windows Server 2012*, and Windows Server 2012 R2*

.NET

Framework

3.5

Windows XP, Windows Vista, Windows 7*, Windows 8*, Windows 8.1*, Windows

Server 2003, Windows Server 2003 R2, Windows Server 2008, Windows

Server 2008 R2*, Windows Server 2012*, and Windows Server 2012 R2*

.NET

Framework

4.0

Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows

Server 2003, Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, and Windows Server 2012 R2

.NET

Framework

4.5

Windows Vista, Windows 7, Windows 8*, Windows 8.1*, Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012*, and Windows Server 2012 R2*

* Denotes the versions of the Windows Operating Systems on which a version of the .NET
Framework is installed as part of the initial operating system installation.

64 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Exceptions, if any, are noted in the following section.

4.1 Product Behavior

There are no exceptions.

65 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Change Tracking

This section identifies changes that were made to the [MS-NETOD] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

66 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

4

Microsoft

Implementations

Modified this section to include references to Microsoft

.NET Framework 4.5, Windows 8 operating system,

Windows Server 2012 operating system, Windows 8.1

operating system, and Windows Server 2012 R2 operating

system.

Y Content

updated.

mailto:protocol@microsoft.com

67 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Index

A

Actors - overview 36
Additional considerations 49
Applicable protocols 32
Architecture 16
Assumptions 36

B

Background information 6

C

Capability negotiation 48
Change tracking 65
Coherency requirements 48
Communications

overview 35
with other systems 35
within the system 35

Component dependencies 35
Concepts 16
Considerations

additional 49
security 48

D

Data access use cases - diagrams - overview 47
Dependencies

with other systems 35
within the system 35

Design intent
actors 36
data access use cases - diagrams 47
NET Remoting use cases - diagrams 44
stakeholders 36
WCF use cases - diagrams 38

E

Environment 35
Error handling 48
Examples

hello world
overview 50
sequence of events 51
system state

final 52
initial 51

reliable messaging with
flow control

overview 56
sequence of events 57
system state

final 62
initial 57

TCP as transport
overview 52
sequence of events 54
system state

final 56
initial 53

retrieve a single entity using the JSON format
overview 62
sequence of events 62
system state

final 62
initial 62

two-way method invocation using SOAP over
HTTP
overview 50
sequence of events 50
system state

final 50
initial 50

Extensibility
Microsoft implementations 63
overview 48

External dependencies 35

F

Functional
architecture 16
requirements

ASP .NET 28
data access 27
identity and directory services 25
NET remoting 29
overview 16
Windows

Communication Foundation (WCF) 17
Workflow Foundation (WF) 16

G

Glossary 8

H

Handling requirements 48
Hello world

details 50
sequence of events 51
system state

final 52
initial 51

I

Implementations - Microsoft 63
Implementer - security considerations 48
Informative references 12
Initial state 36

68 / 68

[MS-NETOD] — v20130722
 Microsoft .NET Framework Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Introduction 6

M

Microsoft implementations 63

N

NET Remoting use cases - diagrams - overview 44

O

Overview
ASP .NET 28
data access 27
identity and directory services 25
NET remoting 29
summary of protocols 32
synopsis 16
Windows

Communication Foundation (WCF) 17
Workflow Foundation (WF) 16

P

Preconditions 36
Product behavior 64

R

References 12
Reliable messaging with

flow control
details 56
sequence of events 57
system state

final 62
initial 57

TCP as transport
details 52
sequence of events 54
system state

final 56
initial 53

Required information - overview 6
Requirements

ASP .NET 28
coherency 48
data access 27

error handling 48
identity and directory services 25
NET remoting 29
overview 16
preconditions 36
Windows

Communication Foundation (WCF) 17
Workflow Foundation (WF) 16

Retrieve a single entity using the JSON format
details 62
sequence of events 62
system state

final 62

initial 62

S

Security considerations 48
Stakeholders - overview 36
System

architecture 16
dependencies

overview 35
with other systems 35
within the system 35

errors 48
overview

background information 6
introduction 6

protocols 32
requirements

ASP .NET 28

data access 27
identity and directory services 25
NET remoting 29
overview 16
Windows

Communication Foundation (WCF) 17
Workflow Foundation (WF) 16

use cases
actors 36
data access use cases - diagrams 47
NET Remoting use cases - diagrams 44
stakeholders 36
WCF use cases - diagrams 38

T

Table of protocols 32
Tracking changes 65
Two-way method invocation using SOAP over HTTP

details 50
sequence of events 50
system state

final 50
initial 50

U

Use cases
actors 36
data access use cases - diagrams 47
NET Remoting use cases - diagrams 44
stakeholders 36
WCF use cases - diagrams 38

V

Versioning
Microsoft implementations 63
overview 48

W

WCF use cases - diagrams - overview 38

	Contents
	1 Introduction
	1.1 Background Information
	1.2 Glossary
	1.3 References

	2 Functional Architecture
	2.1 Overview
	2.1.1 Windows Workflow Foundation (WF)
	2.1.2 Windows Communication Foundation (WCF)
	2.1.3 Identity and Directory Services
	2.1.4 Data Access
	2.1.5 ASP .NET
	2.1.6 .NET Remoting

	2.2 Protocol Summary
	2.3 Environment
	2.3.1 Dependencies on This System
	2.3.2 Dependencies on Other Systems/Components

	2.4 Assumptions and Preconditions
	2.5 Use Cases
	2.5.1 Stakeholders
	2.5.2 Actors
	2.5.3 WCF Use Cases
	2.5.3.1 Use Case Diagrams
	2.5.3.2 Use Case Descriptions
	2.5.3.2.1 Dynamically Discover a Web Service
	2.5.3.2.2 Consume a Web Service
	2.5.3.2.3 Use a Web Service with Reliable Messaging
	2.5.3.2.4 Use a Web Service with Reliable Messaging and Flow Control
	2.5.3.2.5 Use a Web Service with Reliable Messaging in the Request Reply

	2.5.4 .NET Remoting Use Cases
	2.5.4.1 Use Case Diagrams
	2.5.4.2 Use Case Descriptions
	2.5.4.2.1 Invoke a Method on a Server-Activated Object
	2.5.4.2.2 Activate a Client-Activated Object and Invoke a Method
	2.5.4.2.3 Manage Server-Object Lifetime by Using the Renew Method
	2.5.4.2.4 Manage Server Object Lifetime by Using a Sponsor Object

	2.5.5 Data Access Use Cases
	2.5.5.1 Use Case Diagrams
	2.5.5.2 Use Case Descriptions
	2.5.5.2.1 Accessing Data from a Data Service

	2.6 Versioning, Capability Negotiation, and Extensibility
	2.7 Error Handling
	2.8 Coherency Requirements
	2.9 Security
	2.10 Additional Considerations

	3 Examples
	3.1 Example 1 (.NET Remoting): Two-Way Method Invocation Using SOAP Over HTTP
	3.1.1 Initial System State
	3.1.2 Sequence of Events
	3.1.3 Final System State

	3.2 Example 2 (WCF): Hello World
	3.2.1 Initial System State
	3.2.2 Sequence of Events
	3.2.3 Final System State

	3.3 Example 3 (WCF): Reliable Messaging with TCP as Transport
	3.3.1 Initial System State
	3.3.2 Sequence of Events
	3.3.3 Final System State

	3.4 Example 4 (WCF): Reliable Messaging with flow control
	3.4.1 Initial System State
	3.4.2 Sequence of Events
	3.4.3 Final System State

	3.5 Example 5 (Data Access): Retrieve a Single Entity Using the JSON Format
	3.5.1 Initial System State
	3.5.2 Sequence of Events
	3.5.3 Final System State

	4 Microsoft Implementations
	4.1 Product Behavior

	5 Change Tracking
	6 Index

