
 

1 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

[MS-NEGOEX-Diff]: 

SPEGNOSPNEGO Extended Negotiation (NEGOEX) Security 
Mechanism 

 

Intellectual Property Rights Notice for Open Specifications Documentation 

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this 
documentation”) for protocols, file formats, data portability, computer languages, and standards 
support. Additionally, overview documents cover inter-protocol relationships and interactions.  

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 

documentation, you can make copies of it in order to develop implementations of the technologies 
that are described in this documentation and can distribute portions of it in your implementations 
that use these technologies or in your documentation as necessary to properly document the 
implementation. You can also distribute in your implementation, with or without modification, any 
schemas, IDLs, or code samples that are included in the documentation. This permission also 
applies to any documents that are referenced in the Open Specifications documentation.  

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.  
▪ Patents. Microsoft has patents that might cover your implementations of the technologies 

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of 
this documentation grants any licenses under those patents or any other Microsoft patents. 
However, a given Open Specifications document might be covered by the Microsoft Open 

Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, 
or if the technologies described in this documentation are not covered by the Open Specifications 

Promise or Community Promise, as applicable, patent licenses are available by contacting 
iplg@microsoft.com.  

▪ License Programs. To see all of the protocols in scope under a specific license program and the 
associated patents, visit the Patent Map.  

▪ Trademarks. The names of companies and products contained in this documentation might be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 
licenses under those rights. For a list of Microsoft trademarks, visit 

www.microsoft.com/trademarks.  
▪ Fictitious Names. The example companies, organizations, products, domain names, email 

addresses, logos, people, places, and events that are depicted in this documentation are fictitious. 
No association with any real company, organization, product, domain name, email address, logo, 

person, place, or event is intended or should be inferred. 

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other 

than as specifically described above, whether by implication, estoppel, or otherwise.  

Tools. The Open Specifications documentation does not require the use of Microsoft programming 
tools or programming environments in order for you to develop an implementation. If you have access 
to Microsoft programming tools and environments, you are free to take advantage of them. Certain 
Open Specifications documents are intended for use in conjunction with publicly available standards 
specifications and network programming art and, as such, assume that the reader either is familiar 
with the aforementioned material or has immediate access to it. 

Support. For questions and support, please contact dochelp@microsoft.com.  

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com


 

2 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

Revision Summary 

Date 
Revision 
History 

Revision 
Class Comments 

7/9/2020 1.0 New Released new document. 

8/26/2020 1.1 Minor Clarified the meaning of the technical content. 

4/7/2021 2.0 Major Significantly changed the technical content. 

6/25/2021 3.0 Major Significantly changed the technical content. 

10/6/2021 3.0 None 
No changes to the meaning, language, or formatting of the 
technical content. 



 

3 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

Table of Contents 

1 Introduction ............................................................................................................ 5 
1.1 Glossary ........................................................................................................... 5 
1.2 References ........................................................................................................ 6 

1.2.1 Normative References ................................................................................... 6 
1.2.2 Informative References ................................................................................. 6 

1.3 Overview .......................................................................................................... 7 
1.3.1 NEGOEX Message Flow .................................................................................. 7 
1.3.2 NEGOEX Message Processing ......................................................................... 9 

1.4 Relationship to Other Protocols ............................................................................ 9 
1.5 Prerequisites/Preconditions ............................................................................... 10 
1.6 Applicability Statement ..................................................................................... 10 
1.7 Versioning and Capability Negotiation ................................................................. 10 
1.8 Vendor-Extensible Fields ................................................................................... 10 
1.9 Standards Assignments ..................................................................................... 10 

1.9.1 Use of Constants Assigned Elsewhere ............................................................ 10 

2 Messages ............................................................................................................... 11 
2.1 Transport ........................................................................................................ 11 
2.2 Message Syntax ............................................................................................... 11 

2.2.1 Numbers ................................................................................................... 11 
2.2.2 GUID typedefs ............................................................................................ 12 
2.2.3 Constants .................................................................................................. 12 
2.2.4 Random array ............................................................................................ 13 
2.2.5 Structures ................................................................................................. 13 

2.2.5.1 Constructed types ................................................................................. 13 
2.2.5.1.1 ALERT ............................................................................................ 13 
2.2.5.1.2 ALERT_PULSE ................................................................................. 13 
2.2.5.1.3 CHECKSUM ..................................................................................... 13 
2.2.5.1.4 EXTENSION .................................................................................... 14 

2.2.5.2 Vector types ......................................................................................... 14 
2.2.5.2.1 ALERT_VECTOR ............................................................................... 14 
2.2.5.2.2 AUTH_SCHEME_VECTOR .................................................................. 15 
2.2.5.2.3 BYTE_VECTOR ................................................................................ 15 
2.2.5.2.4 EXTENSION_VECTOR ....................................................................... 15 

2.2.6 Messages ................................................................................................... 16 
2.2.6.1 MESSAGE_TYPE .................................................................................... 16 
2.2.6.2 MESSAGE_HEADER ............................................................................... 17 
2.2.6.3 NEGO_MESSAGE ................................................................................... 17 
2.2.6.4 EXCHANGE_MESSAGE ........................................................................... 18 
2.2.6.5 VERIFY_MESSAGE ................................................................................. 18 
2.2.6.6 ALERT_MESSAGE .................................................................................. 19 

3 Protocol Details ..................................................................................................... 20 
3.1 Common Details .............................................................................................. 20 

3.1.1 Abstract Data Model .................................................................................... 20 
3.1.2 Timers ...................................................................................................... 20 
3.1.3 Initialization ............................................................................................... 20 
3.1.4 Higher-Layer Triggered Events ..................................................................... 20 
3.1.5 Message Processing Events and Sequencing Rules .......................................... 20 

3.1.5.1 NEGOEX Supported Security Mechanisms ................................................. 20 
3.1.5.2 ConversationID ..................................................................................... 21 
3.1.5.3 Cryptographic Computations .................................................................. 21 
3.1.5.4 Generation of the Initiator Initial Token ................................................... 21 
3.1.5.5 Receipt of the Initial Initiator Token and Generation of the Initial Acceptor 

Response ............................................................................................. 22 



 

4 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

3.1.5.6 Receipt of the Acceptor Initial Response and Completion of Authentication After 

the Negotiation Phrase .......................................................................... 22 
3.1.5.7 Finalizing Negotiation ............................................................................ 23 
3.1.5.8 Supporting GSS-API Extensions .............................................................. 24 

3.1.5.8.1 GSS_Query_meta_data .................................................................... 24 
3.1.5.8.2 GSS_Exchange_meta_data ............................................................... 24 
3.1.5.8.3 GSS_Query_mechanism_info ............................................................ 25 
3.1.5.8.4 GSS_Inquire_context ....................................................................... 26 

3.1.6 Timer Events .............................................................................................. 26 
3.1.7 Other Local Events ...................................................................................... 26 

4 Protocol Examples ................................................................................................. 27 

5 Security ................................................................................................................. 29 
5.1 Security Considerations for Implementers ........................................................... 29 
5.2 Index of Security Parameters ............................................................................ 29 

6 Appendix A: Full NEGOEX ...................................................................................... 30 

7 Appendix B: Product Behavior ............................................................................... 33 

8 Change Tracking .................................................................................................... 35 

9 Index ..................................................................................................................... 36 

 



 

5 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

1 Introduction 

The SPNEGO Extended Negotiation (NEGOEX) Security Mechanism enhances the capabilities of 
SPNEGO by providing a security mechanism that can be negotiated by the SPNEGO protocol. When the 
NEGOEX security mechanism is selected by SPNEGO, NEGOEX provides a method that allows the 
selection of a common authentication protocol based on metadata such as trust configurations. 

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in 

this specification are informative. 

1.1 Glossary 

This document uses the following terms: 

acceptor: A participant that receives a session or connection request. This role is also known as 
the "subordinate". 

application protocol: A network protocol that visibly accomplishes the task that the user or other 
agent wants to perform. This is distinguished from all manner of support protocols: from 
Ethernet or IP at the bottom to security and routing protocols. While necessary, these are not 
always visible to the user. Application protocols include, for instance, HTTP and Server Message 
Block (SMB). 

authentication: The act of proving an identity to a server while providing key material that binds 
the identity to subsequent communications. 

checksum: A value that is the summation of a byte stream. By comparing the checksums 

computed from a data item at two different times, one can quickly assess whether the data 
items are identical. 

datagram: A style of communication offered by a network transport protocol where each message 
is contained within a single network packet. In this style, there is no requirement for 

establishing a session prior to communication, as opposed to a connection-oriented style. 

Generic Security Services (GSS): An Internet standard, as described in [RFC2743], for providing 
security services to applications. It consists of an application programming interface (GSS-API) 
set, as well as standards that describe the structure of the security data. 

globally unique identifier (GUID): A term used interchangeably with universally unique 
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of 

these terms does not imply or require a specific algorithm or mechanism to generate the value. 

Specifically, the use of this term does not imply or require that the algorithms described in 
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique 
identifier (UUID). 

initiator: An actor who starts an action instance. 

object identifier (OID): In the context of an object server, a 64-bit number that uniquely 
identifies an object. 

security protocol: A protocol that performs authentication and possibly additional security 
services on a network. 

security token: An opaque message or data packet produced by a Generic Security Services 
(GSS)-style authentication package and carried by the application protocol. The application has 

no visibility into the contents of the token. 

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO): An authentication 
mechanism that allows Generic Security Services (GSS) peers to determine whether their 



 

6 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

credentials support a common set of GSS-API security mechanisms, to negotiate different 

options within a given security mechanism or different options from several security 
mechanisms, to select a service, and to establish a security context among themselves using 
that service. SPNEGO is specified in [RFC4178]. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined 
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT. 

1.2 References 

Links to a document in the Microsoft Open Specifications library point to the correct section in the 
most recently published version of the referenced document. However, because individual documents 
in the library are not updated at the same time, the section numbers in the documents may not 
match. You can confirm the correct section numbering by checking the Errata.   

1.2.1 Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If you 
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will 
assist you in finding the relevant information.  

[IETFDRAFT-NEGOEX-04] Short, M., Zhu, L., Damour, K, and McPherson, D, "SPNEGO Extended 
Negotiation (NEGOEX) Security Mechanism", draft-zhu-negoex-04, January 2011, 
https://tools.ietf.org/id/draft-zhu-negoex-04.txt 

[MS-DTYP] Microsoft Corporation, "Windows Data Types". 

[MS-ERREF] Microsoft Corporation, "Windows Error Codes". 

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) 
Extension". 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt 

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC 
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt 

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961, 
February 2005, http://www.ietf.org/rfc/rfc3961.txt 

1.2.2 Informative References 

[MSDOCS-CustomSSPs] Microsoft Corporation, "Creating Custom Security Packages", 
https://docs.microsoft.com/en-us/windows/win32/secauthn/creating-custom-security-packages 

[MSDOCS-NegoExSSP] McPherson, D., "The Windows Negotiation Extension and Writing NegoEx 

SSPs", March 2011, https://docs.microsoft.com/en-us/previous-versions/ff468736(v=msdn.10) 

[MSDOCS-NTSECPKG-H] Microsoft Corporation, "ntsecpkg.h header", NT Security Package header 
Calllback functions, Structures, and Enumerations, https://docs.microsoft.com/en-
us/windows/win32/api/ntsecpkg/ 

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic 

Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October 
2005, https://www.rfc-editor.org/rfc/rfc4178.txt 



 

7 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

1.3 Overview 

The SPNEGO Extended Negotiation Security Mechanism (NEGOEX) extends Simple and Protected GSS-
API Negotiation Mechanism (SPNEGO) described in [RFC4178]. SPNEGO provides a negotiation 

mechanism for Generic Security Services (GSS) API (GSS-API), as described in [RFC2743]. NEGOEX is 
based on the NEGOEX version 4 draft [IETFDRAFT-NEGOEX-04] that enhances the capabilities of 
SPNEGO and provides a security mechanism that can be negotiated by the SPNEGO protocol. NEGOEX 
defines a few new GSS-API extensions that a security mechanism MUST support to be negotiated by 
NEGOEX. This document defines these GSS-API extensions. Unlike SPNEGO, NEGOEX defines its own 
way for signing the protocol messages to protect the protocol negotiation. 

The NEGOEX protocol is designed to address the drawbacks of the SPNEGO negotiation model. When 

negotiated by SPNEGO, NEGOEX uses the concepts developed in the GSS-API specification. The 

negotiation data is encapsulated in context-level tokens. Therefore, callers of the GSS-API do not need 

to be aware of the existence of the negotiation tokens but only of the SPNEGO pseudo-security 

mechanism. When selected, NEGOEX provides a method that allows selection of a common 

authentication protocol. It preserves the optimistic token semantics of SPNEGO and applies that 

recursively. Accordingly, a context establishment mechanism token can be included in the initial 

NEGOEX message, such that NEGOEX does not require an extra round trip when the initiator’s or 

client’s optimistic token is accepted by the target (or server acceptor). 

Standard GSS has a strict interpretation of client (initiator) and server (acceptor). SPNEGO Extension 

(SPNG) has extended [RFC4178] to allow the server to initiate SPNG message flow. The message flow 
can begin from either the client or the server as the initiator, whereas the receiver is the acceptor. 
See [MS-SPNG] for client/server roles and variations. 

1.3.1 NEGOEX Message Flow 

NEGOEX message flow is composed of several messages in which the header contains the type of 
message that is sent. The message types are defined by the MESSAGE_TYPE enumeration, as 
defined in section 2.2.6.1. These message types are shown in the following exchange: 



 

8 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

 

Figure 1: The NEGOEX message flow 

1. The initiator sends a MESSAGE_TYPE_INITIATOR_NEGO type message to the acceptor, which can 
be followed by zero or more MESSAGE_TYPE_INITIATOR_META_DATA type messages containing 
meta-data tokens, followed by zero or one MESSAGE_TYPE_AP_REQUEST type messages 

containing an optimistic initial context token. 

2. The acceptor responds back to the initiator with MESSAGE_TYPE_ACCEPTOR_NEGO type message, 
followed by zero or more MESSAGE_TYPE_ACCEPTOR_META_DATA type messages containing 
meta-data tokens, followed by zero or more MESSAGE_TYPE_CHALLENGE type messages. 

3. The initiator or acceptor can send a MESSAGE_TYPE_ALERT type message to request the peer to 
resend the message. The alert message might not always be sent. 

4. The initiator and acceptor use the MESSAGE_TYPE_VERIFY type message in the output token, if 

there is a shared key that was established. The key is used to sign all the NEGOEX messages in 
the negotiation context.  



 

9 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

1.3.2 NEGOEX Message Processing 

The NEGOEX message flow between the initiator and the acceptor is processed as follows: 

1. The initiator proposes a list of security mechanisms in decreasing order of preference. NEGOEX 

optionally includes a mechanism-specific metadata token for each negotiated security mechanism.  

For a metadata token that is received from the initiator, NEGOEX acceptor queries the initiator 

message to get the metadata token to include in the acceptor's NEGOEX reply message. The GSS-

API extensions that are used for processing the exchange are described in section 3.1.5.8. The 

metadata exchange allows security mechanisms to exchange secondary information such as trust 

configurations. Thus, NEGOEX provides more flexibility than simply a security mechanism 

exchange of object identifiers (OIDs) in SPNEGO. 

2. The acceptor then forwards the metadata token from the initiator to the intended security 

mechanism. A metadata token that is not supported on the acceptor side is ignored. A security 

mechanism that reports a failure is removed from the set of mutually supported mechanisms. The 

acceptor then responds with the list of mutually supported mechanisms in decreasing order of 

preference. For each of these mechanisms, NEGOEX again optionally supplies a mechanism-

specific metadata token in the response, which the acceptor obtains from each remaining 

supported mechanism in the initiator's message via the new GSS-API extensions described in the 

step 1. 

3. The initiator again optionally applies a mechanism-specific metadata token in the response, which 

the initiator obtains from each remaining supported mechanism in the acceptor message using the 

GSS-API extensions. The initiator then removes the failed security mechanisms from the set of 

mutually supported mechanisms. If more than one security mechanism is available, the highest 

security mechanism in the acceptor’s preference order is selected, unless otherwise specified. 

Later, when the common security mechanism is identified, the security mechanism might also 

negotiate mechanism-specific options during its context establishments. This will be inside the 

mechanism tokens and will be invisible to the NEGOEX protocol during step 5. 

4. The selected security mechanism provides keying materials to NEGOEX via new GSS-API 

extensions, which are defined later in this document. NEGOEX signs and verifies the negotiation 
NEGOEX messages to protect the negotiation. 

5. Token exchanges between the initiator and the acceptor take place until the GSS-API context for 
the selected security mechanism is established. After this, the per-message tokens are generated 
and verified according to the selected security mechanism. 

To avoid an extra round trip, the initial security token of the preferred mechanism for the initiator can 

be embedded in the initial NEGOEX token. The optimistic mechanism token can be accompanied by 

the metadata tokens, and it MUST be the first mechanism in the list of the mechanisms proposed by 
the initiator. The NEGOEX MESSAGE_TYPE_INITIATOR_NEGO message type (section 2.2.6.1) that 
contains signatures for protecting the NEGOEX negotiation can also accompany the optimistic 
mechanism token. If the acceptor's preferred mechanism matches the initiator's preferred mechanism 
and the NEGOEX negotiation protection messages are included with the mechanism token, no 
additional round trips are incurred by using the NEGOEX protocol with SPNEGO. 

1.4 Relationship to Other Protocols 

NEGOEX cannot work outside of the SPNEGO protocol. Its relationship to other protocols is defined in 
[MS-SPNG] section 1.3.2, which pertains specifically to NEGOEX. 



 

10 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

1.5 Prerequisites/Preconditions 

When negotiated by SPNEGO, NEGOEX uses the concepts developed in the GSS-API specification 
[RFC2743]. Therefore, the prerequisites/preconditions defined in [MS-SPNG] section 1.5 are applicable 

to NEGOEX. 

Because NEGOEX relies on other security protocols that perform authentication, those protocols have 
to be available for it to operate. The set of available protocols is implementation specific and is set at 
the time of installation<1>. 

The message signing and verification in NEGOEX is based on [RFC3961], which is used as a generic 
framework. A security mechanism has to support [RFC3961] in order to be negotiated by NEGOEX. 

1.6 Applicability Statement 

Like SPNEGO, NEGOEX can be used in almost any situation where an application protocol uses GSS to 
perform authentication. The protocol has to be connection oriented, as it is not designed to tolerate 
packet loss; datagram-only protocols cannot support negotiation of this form. 

1.7 Versioning and Capability Negotiation 

Like SPNEGO, NEGOEX does not contain any versioning capacity. Any capability negotiation must be 
performed by the authentication protocols that SPNEGO is using. 

1.8 Vendor-Extensible Fields 

None. 

1.9 Standards Assignments 

None. 

1.9.1 Use of Constants Assigned Elsewhere 

The object identifier (OID) of NEGOEX within SPNEGO has the following value: 

iso.org.dod.internet.private.enterprise.microsoft.security.mechanisms.negoex 
(1.3.6.1.4.1.311.2.2.30) 



 

11 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

2 Messages 

2.1 Transport 

Because NEGOEX cannot work outside of SPNEGO, the transport concepts of SPNEGO are applicable to 

NEGOEX, as specified in [MS-SPNG] section 2.1. NEGOEX is transported only when encapsulated in an 
application protocol. 

2.2 Message Syntax 

The messages that NEGOEX uses are specified in [IETFDRAFT-NEGOEX-04].<2> NEGOEX uses the 
following message enumeration and message structures, which are documented in the specified 

sections: 

▪ MESSAGE_TYPE enumeration (section 2.2.6.1) 

▪ MESSAGE_HEADER (section 2.2.6.2) 

▪ NEGO_MESSAGE (section 2.2.6.3) 

▪ EXCHANGE_MESSAGE (section 2.2.6.4) 

▪ VERIFY_MESSAGE (section 2.2.6.5) 

▪ ALERT_MESSAGE (section 2.2.6.6) 

MESSAGE_TYPE: An enumeration that designates the type of message that is used. It is contained in 

the MESSAGE_HEADER. 

MESSAGE_HEADER: A structure that is used in each message that contains metadata about each 
message, such as message signature, message type, sequence number, header length, message 
length, and conversation ID.  

NEGO_MESSAGE: A structure that is used to begin and exchange negotiation of security 
mechanisms. The NEGO_MESSAGE message is sent from the initiator to the acceptor with the 
message type set to MESSAGE_TYPE_INITIATOR_NEGO to begin the negotiation. <3> The 
initiator uses this message to specify the set of supported security mechanisms. The acceptor then 
responds with the NEGO_MESSAGE message with the message type set to 
MESSAGE_TYPE_ACCEPTOR_NEGO and with its own list of supported security mechanisms.<4>  

EXCHANGE_MESSAGE: A structure that is used to exchange context tokens and metadata tokens by 
a request or challenge between the initiator and the acceptor. The MessageType field is set to 
MESSAGE_TYPE_AP_REQUEST for the initiator or MESSAGE_TYPE_CHALLENGE for the acceptor 
when context tokens are being exchanged. The MessageType field is set to 
MESSAGE_TYPE_INITIATOR_META_DATA for the initiator or 
MESSAGE_TYPE_ACCEPTOR_META_DATA for the acceptor when metadata tokens are being 
exchanged. 

VERIFY_MESSAGE: A structure that uses the checksum mechanism to verify messages between the 
initiator and the acceptor. The message type MUST be set to MESSAGE_TYPE_VERIFY. 

ALERT_MESSAGE: A structure that is used to indicate that a message needs to be resent. This 
message contains the security mechanism, error codes, and various alert types. This message 
might not always be sent. 

2.2.1 Numbers 

The numbers that follow are defined in hexadecimal format for use in NEGOEX structures. 



 

12 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

▪ UCHAR is the data type for a one-octet number, as specified in [MS-DTYP] section 2.2.45. 

▪ ULONG is the data type for a 4-octet number encoded in little-endian, as specified in [MS-DTYP] 
section 2.2.51. 

▪ USHORT is the data type for a 2-octet number encoded in little-endian, as specified in [MS-DTYP] 

section 2.2.58. 

▪ ULONG64 is the data type for an 8-octet number encoded in little-endian, as specified in [MS-
DTYP] section 2.2.54. 

▪ GUID is the data type for a 16-octet number encoded in little-endian, as specified in [MS-DTYP] 
section 2.3.4. 

2.2.2 GUID typedefs 

GUID typedefs are used to create more meaningful names for existing types. The following GUID type 
synonyms are defined.  

 typedef GUID AUTH_SCHEME; 
  
 typedef GUID CONVERSATION_ID; 

AUTH_SCHEME: A GUID that contains the security mechanism's ID.   

CONVERSATION_ID: A GUID that contains the conversation ID used by the initiator and acceptor as 
the context handle to identify the exchange conversation. The initiator generates a random 

cryptographic-strength 16-byte value, stores it in the ConversationId field of the 
MESSAGE_HEADER structure, as specified in section 2.2.6.2. See section 3.1.5.2.   

2.2.3 Constants 

Constants for various messages are defined as follows. 

In the MESSAGE_HEADER structure (section 2.2.6.2), the Signature field contains the 
MESSAGE_SIGNATURE. 

 #define MESSAGE_SIGNATURE  0x535458454f47454ei64  // "NEGOEXTS" 

In the CHECKSUM structure (section 2.2.5.1.3), the ChecksumScheme field describes how 
checksum is computed and verified. 

 #define CHECKSUM_SCHEME_RFC3961  1 

The ALERT_MESSAGE structure (section 2.2.6.6) uses the following alert type.  

 #define ALERT_TYPE_PULSE 1 

The following is the reason code for the heartbeat message. 

 #define ALERT_VERIFY_NO_KEY  1   



 

13 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

2.2.4 Random array 

The Random array is used in the NEGO_MESSAGE message (section 2.2.6.3) Random field and is 
defined as an array of 32 octets, as follows.  

 UCHAR Random[32]; 

Random: An array of UCHAR integers as specified in section 2.2.1. The initiator fills the array using a 
secure random number generator.  

2.2.5 Structures 

NEGOEX defines constructed-type and vector-type structures. These two structure types are defined in 

the following sections.  

2.2.5.1 Constructed types 

Constructed types are structure types that are constructed from primitive types for convenience. Each 
specification declares a new, unique type. The syntax for definition is much like the syntax in the C 
programming language. Structure definitions can be embedded. The following sections define 
constructed types. 

2.2.5.1.1 ALERT 

The ALERT structure is used in the ALERT_VECTOR structure, which is used in the Alerts field of the 

ALERT_MESSAGE structure message, as specified in section 2.2.6.6.   

 struct 
 { 
   ULONG AlertType; 
   BYTE_VECTOR AlertValue; 
 } ALERT;  

AlertType: A ULONG that indicates the type of the alert.  

AlertValue: A BYTE_VECTOR structure, as specified in section 2.2.5.2.3, that contains an array of 
alert values.   

2.2.5.1.2 ALERT_PULSE 

The ALERT_PULSE structure is used in the ALERT_MESSAGE structure message, as specified in 

section 2.2.6.6.   

 struct 
 { 
   ULONG cbHeaderLength; 
   ULONG Reason; 
} ALERT_PULSE;  

cbHeaderLength: A ULONG that contains the header length of this message.    

Reason: A ULONG that contains the reason code for the heartbeat message ALERT_VERIFY_NO_KEY, 

as specified in section 2.2.3.   

2.2.5.1.3 CHECKSUM 



 

14 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

The CHECKSUM structure is used in the VERIFY_MESSAGE structure (section 2.2.6.5) and is 

defined as follows.   

 struct 
 { 
   ULONG cbHeaderLength; 
   ULONG ChecksumScheme; 
   ULONG ChecksumType;  
   BYTE_VECTOR ChecksumValue; 
 } CHECKSUM;  

cbHeaderLength: A ULONG that contains the length of the structure definition in octets; this field 
has a value of 20.   

ChecksumScheme: A ULONG that describes how checksum is computed and verified. Only the 
CHECKSUM_SCHEME_RFC3961 is defined, as specified in section 2.2.3. When the value of the 

ChecksumScheme field is 1 (CHECKSUM_SCHEME_RFC3961), the ChecksumValue field 
contains a sequence of octets computed according to [RFC3961] and the ChecksumType field 
contains the checksum type value defined according to [RFC3961].    

ChecksumType: A ULONG that contains the checksum type of value defined according to [RFC3961].    

ChecksumValue: A BYTE_VECTOR structure that contains a sequence of octets computed according 
to [RFC3961].    

2.2.5.1.4 EXTENSION 

An EXTENSION structure is used in the EXTENSION_VECTOR structure (section 2.2.5.2.4) as the 

Extensions field in the NEGO_MESSAGE structure, as specified in section 2.2.6.3.   

 struct 
 { 
   ULONG ExtensionType; 
   BYTE_VECTOR ExtensionValue; 
 } EXTENSION;  

ExtensionType: A ULONG that indicates how the extension data should be interpreted. All negative 
extension types (the highest bit is set to 1) are critical. If the receiver does not understand a 
critical extension, the authentication attempt MUST be rejected.  

ExtensionValue: A BYTE_VECTOR structure that contains the extension data.  

2.2.5.2 Vector types 

Vector types are data structures that hold multiple variables of the same data type consecutively, and 
the number of elements is not fixed. A vector contains a fixed-length header followed by a variable-
length payload. The header of a vector structure contains the count of elements and the offset to the 
payload. In this protocol all the offset fields start from the beginning of the containing NEGOEX 
message. The size of each element is specified by the vector type definition. Vector type structures 

are defined in the following sections.  

2.2.5.2.1 ALERT_VECTOR 

The ALERT_VECTOR structure contains the alert types and the count of alerts used in the 
ALERT_MESSAGE structure, as specified in section 2.2.6.6.  

 struct 



 

15 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

 { 
   ULONG AlertArrayOffset;  
   USHORT AlertCount;  
} ALERT_VECTOR;  

AlertArrayOffset: A ULONG that contains array of ALERT structures, as specified in section 
2.2.5.1.1.  

AlertCount: A USHORT that contains the number of alerts in the AlertArrayOffset field.  

2.2.5.2.2 AUTH_SCHEME_VECTOR 

The AUTH_SCHEME_VECTOR structure encapsulates a variable-length array of AUTH_SCHEME 

GUIDs that are stored consecutively.   

 struct 
 { 
   ULONG AuthSchemeArrayOffset; 
   USHORT AuthSchemeCount; 
 } AUTH_SCHEME_VECTOR;  

AuthSchemeArrayOffset: A ULONG type array of ordered AUTH_SCHEME GUID values, specified in 
section 2.2.2, that represents the security mechanism's ID in decreasing order of preference.  

AuthSchemeCount: A USHORT that contains the count of AUTH_SCHEME values.   

2.2.5.2.3 BYTE_VECTOR 

The BYTE_VECTOR structure encapsulates a variable-length array of octets (or bytes) that are stored 
consecutively. The BYTE_VECTOR structure is used in the following structures:   

▪ CHECKSUM structure (section 2.2.5.1.3) 

▪ EXTENSION structure (section 2.2.5.1.4) 

▪ EXCHANGE_MESSAGE structure (section 2.2.6.4) 

 struct 
 { 
   ULONG ByteArrayOffset;  
   ULONG ByteArrayLength;  
 } BYTE_VECTOR;  

ByteArrayOffset: A ULONG type array. Each element contains 1 byte.  

ByteArrayLength: A ULONG type that contains the length of the ByteArrayOffset field.  

2.2.5.2.4 EXTENSION_VECTOR 

The EXTENSION_VECTOR structure encapsulates a variable-length array of EXTENSION structures 
(section 2.2.5.1.4) that are stored consecutively. The EXTENSION_VECTOR structure is used in the 

Extensions field in the NEGO_MESSAGE structure, as specified in section 2.2.6.3.   

 struct 
 { 
   ULONG ExtensionArrayOffset; 
   USHORT ExtensionCount; 



 

16 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

 } EXTENSION_VECTOR;  

ExtensionArrayOffset: A ULONG type array. Each element contains an EXTENSION structure, as 
specified in section 2.2.5.1.4.    

ExtensionCount: A USHORT that contains the count of elements in the ExtensionArrayOffset field.  

2.2.6 Messages 

Each NEGOEX message has a type that is indicated with a value from the MESSAGE_TYPE 
enumeration (section 2.2.6.1) that is in the MessageType field of the MESSAGE_HEADER structure 

(section 2.2.6.2). This header provides metadata for every NEGOEX message. The MESSAGE_TYPE 
enumeration, MESSAGE_HEADER structure, and NEGOEX messages are defined in the following 

sections.  

2.2.6.1 MESSAGE_TYPE 

The MESSAGE_TYPE enumeration defines the types of messages sent in the MESSAGE_HEADER 
structure MessageType field in every message, as specified in section 2.2.6.2. 
MESSAGE_TYPE_INITIATOR_NEGO type has the value 0, and MESSAGE_TYPE_ALERT type has the 
value 7. A value is a 4-octet number encoded in little-endian. 

 enum 
 { 
     MESSAGE_TYPE_INITIATOR_NEGO = 0, 
     MESSAGE_TYPE_ACCEPTOR_NEGO, 
     MESSAGE_TYPE_INITIATOR_META_DATA, 
     MESSAGE_TYPE_ACCEPTOR_META_DATA, 
     MESSAGE_TYPE_CHALLENGE, 
     MESSAGE_TYPE_AP_REQUEST, 
     MESSAGE_TYPE_VERIFY, 
     MESSAGE_TYPE_ALERT 
 } MESSAGE_TYPE;  

MESSAGE_TYPE_INITIATOR_NEGO: Used in NEGO_MESSAGE, as specified in section 2.2.6.3, to 
begin negotiation of security mechanisms.  

MESSAGE_TYPE_ACCEPTOR_NEGO: Used in NEGO_MESSAGE, as specified in section 2.2.6.3, for 
the acceptor's output token.  

MESSAGE_TYPE_INITIATOR_META_DATA: Used in EXCHANGE_MESSAGE, as specified in 
section 2.2.6.4, to return a metadata token to NEGOEX for a security mechanism by the initiator.   

MESSAGE_TYPE_ACCEPTOR_META_DATA: Used in EXCHANGE_MESSAGE, as specified in section 
2.2.6.4, to return a metadata token to NEGOEX for a security mechanism by the acceptor.  

MESSAGE_TYPE_CHALLENGE: Used in EXCHANGE_MESSAGE, as specified in section 2.2.6.4, to 
encapsulate context tokens of the negotiated security mechanism by the acceptor.   

MESSAGE_TYPE_AP_REQUEST: Used in EXCHANGE_MESSAGE, as specified in section 2.2.6.4, to 

encapsulate context tokens of the negotiated security mechanism by the initiator.  

MESSAGE_TYPE_VERIFY: Used in VERIFY_MESSAGE, as specified in section 2.2.6.5, when there 
is a shared key established that is used to sign all the NEGOEX messages in the negotiation 

context.  



 

17 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

MESSAGE_TYPE_ALERT: Used in ALERT_MESSAGE, as specified in section 2.2.6.6, to indicate that 

the message needs to be resent. Contains the security mechanism, error codes, and various alert 
types.  

2.2.6.2 MESSAGE_HEADER 

The MESSAGE_HEADER structure is a member of other message structures and is used to provide 
metadata about each message. The fields are common for all the NEGOEX messages in a conversation 
exchange except for the MESSAGE_TYPE field, which varies according to the message.   

 struct 
 { 
     ULONG64 Signature;  
     MESSAGE_TYPE MessageType;  
     ULONG SequenceNum; 
     ULONG cbHeaderLength; 
     ULONG cbMessageLength; 
     CONVERSATION_ID ConversationId; 
 } MESSAGE_HEADER;  

Signature: A ULONG64 type that contains the MESSAGE_SIGNATURE constant in hexadecimal format 
that indicates "NEGOEXTS", as specified in section 2.2.3. The message signature should remain 
the same throughout the negotiation process.   

MessageType: A value of the MESSAGE_TYPE enumeration, as specified in section 2.2.6.1, that 
contains the type of message.   

SequenceNum: A ULONG type that contains the message sequence number of the specific 
conversation, starting with 0 and incremented sequentially.   

cbHeaderLength: A ULONG type that contains the header length of the message, which includes the 
message-specific header and excludes the payload.   

cbMessageLength: A ULONG type that contains the length of the message.   

ConversationId: A CONVERSATION_ID GUID, as specified in section 2.2.2, that the initiator and 
the acceptor use as a context handle to identify an exchange conversation. The 
CONVERSATION_ID is referred to as ConversationID (section 3.1.5.2). The ConversationID 
MUST remain the same throughout the entire exchange.   

2.2.6.3 NEGO_MESSAGE 

The NEGO_MESSAGE structure message is used to begin and exchange negotiation of security 
mechanisms. This message is sent from the initiator to the acceptor with the message type set to 
MESSAGE_TYPE_INITIATOR_NEGO to begin the negotiation. The initiator uses this message to specify 
the set of supported security mechanisms. The acceptor then responds with a NEGO_MESSAGE 

message, with the message type set to MESSAGE_TYPE_ACCEPTOR_NEGO and with its own list of 
supported security mechanisms. This message contains signatures for protecting the NEGOEX 
negotiation and might also contain the optimistic mechanism token.   

The NEGO_MESSAGE structure has the following definition.  

 struct 
 { 
   MESSAGE_HEADER Header; 
   UCHAR Random[32]; 
   ULONG64 ProtocolVersion; 
   AUTH_SCHEME_VECTOR AuthSchemes; 
   EXTENSION_VECTOR Extensions; 



 

18 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

} NEGO_MESSAGE;  

Header: A MESSAGE_HEADER structure, as specified in section 2.2.6.2. Its MessageType field can 
carry from the MESSAGE_TYPE enumeration (section 2.2.6.1) either the value 
MESSAGE_TYPE_INITIATOR_NEGO for the initiator or the value 

MESSAGE_TYPE_ACCEPTOR_NEGO for the acceptor.   

Random: A UCHAR integer array. The Random field is filled using a secure random number 
generator, as specified in section 2.2.4.   

ProtocolVersion: A ULONG64 type that indicates the numbered version of this protocol. This field 
contains 0.   

AuthSchemes: An AUTH_SCHEME_VECTOR structure, as specified in section 2.2.5.2.2, that 

contains an ordered list of available, supported security mechanism IDs in decreasing order of 
preference.   

Extensions: All negative extension types are critical (the highest bit is set to 1). If the receiver does 
not understand a critical extension, the authentication attempt MUST be rejected.  

2.2.6.4 EXCHANGE_MESSAGE 

The EXCHANGE_MESSAGE structure message is used to encapsulate context tokens of the 
negotiated security mechanism for either the initiator or the acceptor.   

 struct 
 { 
   MESSAGE_HEADER Header; 
   AUTH_SCHEME AuthScheme; 
   BYTE_VECTOR Exchange; 
} EXCHANGE_MESSAGE;  

Header: A MESSAGE_HEADER structure, as specified in section 2.2.6.2. The Header’s 
MessageType field is set from the values of the MESSAGE_TYPE enumeration, as specified in 
section 2.2.6.1. The MessageType field MUST be set to MESSAGE_TYPE_AP_REQUEST type for 

the initiator or MESSAGE_TYPE_CHALLENGE type for the acceptor when context tokens are being 
exchanged. The MessageType field MUST be set to MESSAGE_TYPE_INITIATOR_META_DATA 
type for the initiator or MESSAGE_TYPE_ACCEPTOR_META_DATA type for the acceptor when 
metadata tokens are being exchanged.   

AuthScheme: An AUTH_SCHEME GUID that contains the security mechanism's ID, as specified in 
section 2.2.2.   

Exchange: A BYTE_VECTOR structure, specified in section 2.2.5.2.3, that contains the opaque 
handshake message for the client authentication scheme.   

2.2.6.5 VERIFY_MESSAGE 

A VERIFY_MESSAGE structure message is produced using the required checksum mechanism per 

[RFC3961] and is included in the output token.   

 struct 
 { 
   MESSAGE_HEADER Header; 
   AUTH_SCHEME AuthScheme; 
   CHECKSUM Checksum; 
 } VERIFY_MESSAGE;  



 

19 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

Header: A MESSAGE_HEADER structure, as specified in section 2.2.6.2. The header’s message type 

MUST be set to the MESSAGE_TYPE_VERIFY value from the MESSAGE_TYPE enumeration, as 
specified in section 2.2.6.1.   

AuthScheme: An AUTH_SCHEME GUID, as specified in section 2.2.2, that identifies the security 

mechanism ID from which the protocol key was obtained.   

Checksum: A CHECKSUM structure, specified in section 2.2.5.1.3, that contains the checksum of all 
the previously exchanged messages in the order they were sent in the conversation. The 
checksum is calculated based on [RFC3961].   

2.2.6.6 ALERT_MESSAGE 

The ALERT_MESSAGE structure message is sent by the initiator or the acceptor requesting that the 

peer resend the message. The ALERT_MESSAGE might not always be sent.   

 struct 
 { 
   MESSAGE_HEADER Header; 
   AUTH_SCHEME AuthScheme; 
   ULONG ErrorCode; 
   ALERT_VECTOR Alerts; 
 } ALERT_MESSAGE;  

Header: A MESSAGE_HEADER structure, as specified in section 2.2.6.2. The header’s message type 
MUST be set to the MESSAGE_TYPE_ALERT value from the MESSAGE_TYPE enumeration, as 
specified in section 2.2.6.1.   

AuthScheme: An AUTH_SCHEME GUID, as specified in section 2.2.2, that indicates the security 
mechanism ID to which the alert message is targeted.   

ErrorCode: A ULONG type indicating an NTSTATUS code, as specified in [MS-ERREF] section 2.3.   

Alerts: An ALERT_VECTOR structure, as specified in section 2.2.5.2.1, that contains ALERT 
structures, as specified in section 2.2.5.1.1.   



 

20 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

3 Protocol Details 

3.1 Common Details 

The following sections specify common variations for both client and server processing in the NEGOEX 

extension, as specified in [IETFDRAFT-NEGOEX-04]. 

3.1.1 Abstract Data Model 

This section describes a conceptual model of possible data organization that an implementation 

maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does not mandate that implementations 

adhere to this model as long as their external behavior is consistent with that described in this 
document.  

The MESSAGE_TYPE enumerator specified in section 2.2.6.1 lists all NEGOEX message types. A GSS-

API context token for NEGOEX consists of one or more NEGOEX messages. If there is more than one 

NEGOEX message, these messages are concatenated together. The smallest data unit for NEGOEX to 

compute the checksum for negotiation protection is a NEGOEX message. Note that NEGOEX is not a 

GSS-API mechanism itself and that the initial NEGOEX context establishment token does not follow the 

mechanism-independent token format specified in [RFC2743] section 3.1.  

The object identifier of the NEGOEX within SPNEGO is specified in section 1.9.1.  

3.1.2 Timers 

None.  

3.1.3 Initialization 

None.  

3.1.4 Higher-Layer Triggered Events 

None.  

3.1.5 Message Processing Events and Sequencing Rules 

The following sections specify how the initiator and the acceptor process and return messages.  

3.1.5.1 NEGOEX Supported Security Mechanisms 

NEGOEX maintains an ordered list of supported security mechanism names to determine the priority 
of the security mechanisms. A security mechanism negotiable by NEGOEX is identified by an identifier 
of the AUTH_SCHEME data type, as specified in section 2.2.2, and is referenced by the corresponding 
authentication scheme ID. The authentication scheme ID of a security mechanism is returned to 

NEGOEX by calling GSS_Query_mechanism_info() with the name of the security mechanism, as 
specified in section 3.1.5.8.3.  

The selected security mechanism provides keying materials to NEGOEX via new GSS-API extensions 

that are specified in the following sections. NEGOEX signs and verifies the NEGOEX messages to 
protect the negotiation. 



 

21 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

3.1.5.2 ConversationID 

ConversationID hereafter refers to CONVERSATION_ID, as specified in section 2.2.2, as a GUID that 
MUST be used by both the initiator and the acceptor to maintain protocol state. The 

CONVERSATION_ID is a random, cryptographic-strength 16-byte value generated by the initiator and 
is used to set the MESSAGE_HEADER structure ConversationId field to that value, as specified in 
section 2.2.6.2. The ConversationID in subsequent NEGOEX messages MUST remain the same for the 
duration of the exchange.  

3.1.5.3 Cryptographic Computations 

The message signing and verification in NEGOEX is based on [RFC3961], which is used as a generic 
framework. This application is not Kerberos specific. A security mechanism MUST support [RFC3961] 
to be negotiated by NEGOEX.  

The initiator generates a random, cryptographic-strength 16-byte CONVERSATION_ID value (section 
2.2.2) and stores it in the NEGO_MESSAGE message (section 2.2.6.3) MESSAGE_HEADER structure 

(section 2.2.6.2) ConversationId field. The acceptor extracts the ConversationId from the 
NEGO_MESSAGE message and stores it for the context handle to be used in successive message 
headers.  

3.1.5.4 Generation of the Initiator Initial Token 

The GSS_API initiator makes the first call to GSS_Init_sec_context() (specified in [RFC2743] 
section 2.2.1) without any input token. The output token will be a NEGO_MESSAGE message with 
the MESSAGE_TYPE_INITIATOR_NEGO message type (section 2.2.6.3), followed by zero or more 
EXCHANGE_MESSAGE messages (section 2.2.6.4) containing metadata tokens. The 

EXCHANGE_MESSAGE messages can be followed by zero or more type 
MESSAGE_TYPE_AP_REQUEST messages (section 2.2.6.1) containing an optimistic initial context 
token.  

▪ The initiator generates a random, cryptographic-strength 16-byte value, stores it as the 
ConversationID, and then sets the MESSAGE_HEADER header ConversationId field to that 
value. The ConversationID in subsequent NEGOEX messages MUST remain the same.  

▪ The initiator fills the Random field using a secure random number generator, as specified in 
section 2.2.4.  

▪ The initiator fills the AuthSchemes field with the available, supported security mechanism in 

decreasing order of preference. 

▪ The Extensions field contains NEGOEX extensions for future extensibility. All negative extension 
types (the highest bit is set to 1) are critical. If the receiver does not understand a critical 
extension, then the authentication attempt MUST be rejected.  

▪ The initiator can optionally include one metadata token for each available security mechanism.  

▪ A security mechanism’s metadata token is returned to NEGOEX using the 
GSS_Query_meta_data() extension, as specified in section 3.1.5.8.1. If a non-empty metadata 

token is returned, then the metadata token is encapsulated in an EXCHANGE_MESSAGE 
message with the message type set to MESSAGE_TYPE_INITIATOR_META_DATA. Upon the failure 
of a GSS_Query_meta_data() call, NEGOEX SHOULD remove that specific security mechanism 
from the set of authentication mechanisms to be negotiated. 

▪ The AuthScheme field identifies the security mechanism that the EXCHANGE_MESSAGE 
message targets. If a security mechanism fails to produce the metadata token, it SHOULD be 
removed from the list of supported security mechanisms for that negotiation context.  



 

22 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

▪ The EXCHANGE_MESSAGE messages are in an unordered set. The NEGO_MESSAGE message 

might be followed by a set of MESSAGE_TYPE_INITIATOR_META_DATA type messages. In that 
case, all the NEGOEX messages are concatenated and returned as a single output token.  

▪ The first security mechanism in the list proposed by the initiator can optionally include its initial 

context token in a MESSAGE_TYPE_AP_REQUEST type message.  

▪ The MESSAGE_TYPE_INITIATOR_META_DATA and MESSAGE_TYPE_AP_REQUEST message types 
are instances of the EXCHANGE_MESSAGE structure with various message type values.  

3.1.5.5 Receipt of the Initial Initiator Token and Generation of the Initial Acceptor 

Response 

The acceptor verifies the NEGO_MESSAGE message received from the initiator to ensure that it is 

well formed. The acceptor extracts the ConversationID from the NEGO_MESSAGE and stores it for 
the context handle to be used in successive message headers. The acceptor then computes the list of 
authentication schemes that are mutually supported by examining the set of security mechanisms 

proposed by the initiator and the metadata tokens sent from the initiator.  

▪ The metadata tokens are passed to the security mechanism through the 
GSS_Exchange_meta_data() call, as specified in section 3.1.5.8.2. Upon the failure of 
GSS_Exchange_meta_data() call, NEGOEX SHOULD remove the specific security mechanism 
from the set of authentication mechanisms to be negotiated.  

▪ The acceptor MUST examine the NEGOEX extensions in the NEGO_MESSAGE message. If there is 
an unknown critical extension, the authentication MUST be rejected.  

▪ The acceptor’s output token is a NEGO_MESSAGE message with the MESSAGE_HEADER header 

set to the MESSAGE_TYPE_ACCEPTOR_NEGO message type, followed by zero or more 
EXCHANGE_MESSAGE messages containing metadata tokens.  

▪ The AuthSchemes field contains the list of mutually supported security mechanisms in the 
decreasing order of preference set by the acceptor. The acceptor does not need to honor the 
preference order proposed by the initiator when computing its preference list.  

▪ Like the initiator, the acceptor can optionally include one metadata token for each available 

security mechanism.  

▪ The GSS_Query_meta_data() extension specified in section 3.1.5.8.1 is used by NEGOEX to 
obtain a metadata token for a security mechanism. If a non-empty metadata token is returned, 
then the metadata token is encapsulated in an EXCHANGE_MESSAGE message set to the 

MESSAGE_TYPE_ACCEPTOR_META_DATA message type.  

▪ For a security mechanism, if a metadata token is received from the initiator, 

GSS_Query_meta_data() MUST be invoked on the acceptor side for that specific security 
mechanism; and if the output metadata token is present, GSS_Query_meta_data() MUST be 
included in the NEGOEX reply.  

▪ Upon a GSS_Query_meta_data() call’s failure, NEGOEX SHOULD remove the security 
mechanism from the set of authentication schemes to be negotiated.  

3.1.5.6 Receipt of the Acceptor Initial Response and Completion of Authentication 

After the Negotiation Phrase 

After the receipt of the initial response token from the acceptor, the application calls 
GSS_Init_sec_context() with the response token.  



 

23 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

▪ The initiator verifies the received NEGO_MESSAGE message to ensure that it is well formed. The 

initiator makes sure that the context handle is correct by verifying that the ConversationID of the 
context handle matches the conversation ID in the NEGOEX message that was received.  

▪ The initiator then computes the list of mutually supported authentication schemes by examining 

the set of security mechanisms and metadata tokens received from the acceptor.  

▪ The metadata tokens are passed to the security mechanism through 
GSS_Exchange_meta_data(), as specified in section 3.1.5.8.2. Upon the 
GSS_Exchange_meta_data() call failure, NEGOEX SHOULD remove the security mechanism 
from the set of authentication schemes to be negotiated.  

▪ The initiator MUST examine the NEGOEX extensions in the NEGO_MESSAGE message. If there is 
an unknown critical extension, the authentication MUST be rejected.  

▪ After the initial exchange of NEGO_MESSAGE messages, the initiator MUST choose the 
negotiated security mechanism. Once it has been selected, the negotiated security mechanism 
cannot be changed.  

▪ The initiator and the acceptor can then proceed to exchange handshake messages by returning a 
GSS_S_CONTINUE_NEEDED status code (specified in [RFC2743] section 1.2.1.1) to the calling 
application, as determined by the negotiated security mechanism, until the authentication context 

is established.  

▪ The negotiated security mechanism’s context tokens are encapsulated in an 
EXCHANGE_MESSAGE message. If a context token is from the initiator, the 
EXCHANGE_MESSAGE message has the MESSAGE_TYPE_AP_REQUEST message type; 
otherwise, it has the MESSAGE_TYPE_CHALLENGE message type.  

3.1.5.7 Finalizing Negotiation 

After the security mechanism has been selected, the initiator and the acceptor can use 
GSS_Inquire_context() to obtain the Negoex_Verify_key, as defined in section 3.1.5.8.4, to 
determine whether there is a shared key for the VERIFY_MESSAGE message specified in section 
2.2.6.5.  

▪ If there is an established shared key and that key is returned by GSS_Inquire_context(), as 
defined in section 3.1.5.8.4, a VERIFY_MESSAGE message is produced using the checksum 
mechanism, as specified in [RFC3961], and that message is included in the output token.  

▪ The returned protocol key is used as the base key in [RFC3961] section 5.1, to sign all the 

NEGOEX messages in the negotiation context. 

▪ A VERIFY_MESSAGE message structure is specified in section 2.2.6.5.  

▪ The AuthScheme field denotes the security mechanism from which the protocol key was 

obtained.  

▪ The checksum is calculated based on the key usage number, [RFC3961]. The key usage 
number is 23 for the message signed by the initiator. The key usage number is 25 for the 
acceptor. The checksum is performed on all previous NEGOEX messages in the context 
negotiation. . 

▪ The VERIFY_MESSAGE message can be included before the security context for the negotiated 
security mechanism is fully established.  



 

24 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

3.1.5.8 Supporting GSS-API Extensions 

This section defines the GSS-API function extensions required by NEGOEX, which MUST be supported 
by security mechanisms to be usable with NEGOEX.<5> 

3.1.5.8.1 GSS_Query_meta_data 

The GSS_Query_meta_data function is used to retrieve a security mechanism’s metadata. The 
major_status codes are specified in [RFC2743].<6>  

GSS_Query_meta_data  

Inputs:  

▪ input_context_handle CONTEXT HANDLE,  

▪ targ_name INTERNAL NAME, optional 

▪ deleg_req_flag BOOLEAN,  

▪ mutual_req_flag BOOLEAN,  

▪ replay_det_req_flag BOOLEAN,  

▪ sequence_req_flag BOOLEAN,  

▪ conf_req_flag BOOLEAN,  

▪ integ_req_flag BOOLEAN  

Outputs:  

▪ metadata OCTET STRING,  

▪ output_context_handle CONTEXT HANDLE  

Return major_status codes:  

▪ GSS_S_COMPLETE indicates that the context referenced by the input_context_handle argument is 
valid, and that the output metadata value represents the security mechanism's provided 

metadata. A security mechanism can return empty metadata.  

▪ GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle 

that was provided. Return values other than major_status and minor_status are undefined.  

▪ GSS_S_NO_CRED indicates that no metadata could be returned about the referenced credentials 
either because the input cred_handle was invalid or the caller lacks authorization to access the 
referenced credentials.  

▪ GSS_S_UNAVAILABLE indicates that the authentication security service does not support this 

operation.  

▪ GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-
API level. Return values other than major_status and minor_status are undefined.  

3.1.5.8.2 GSS_Exchange_meta_data 

The GSS_Exchange_meta_data function is used to provide the metadata to each security 
mechanism. The major_status codes are specified in [RFC2743].<7>  

GSS_Exchange_meta_data  



 

25 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

Inputs:  

▪ input_context_handle CONTEXT HANDLE  

▪ cred_handle CREDENTIAL HANDLE, optional  

▪ targ_name INTERNAL NAME, optional  

▪ deleg_req_flag BOOLEAN,  

▪ mutual_req_flag BOOLEAN,  

▪ replay_det_req_flag BOOLEAN,  

▪ sequence_req_flag BOOLEAN,  

▪ conf_req_flag BOOLEAN,  

▪ integ_req_flag BOOLEAN,  

▪ metadata OCTET STRING  

Outputs:  

output_context_handle CONTEXT HANDLE  

Return major_status codes:  

▪ GSS_S_COMPLETE indicates that the metadata was provided to the security mechanism.  

▪ GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle 
that was provided. Return values other than major_status and minor_status are undefined.  

▪ GSS_S_NO_CRED indicates that the metadata passed requested credentials that are not available 
via this credential handle.  

▪ GSS_S_UNAVAILABLE indicates that the security mechanism does not support this operation.  

▪ GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-
API level. Return values other than major_status and minor_status are undefined.  

3.1.5.8.3 GSS_Query_mechanism_info 

The GSS_Query_mechanism_info function returns a security mechanism's authentication scheme 

value. The major_status codes are specified in [RFC2743].<8>  

GSS_Query_mechanism_info  

Input: 

▪ SecMechName STRING, 

Output: 

▪ AuthScheme AUTH_SCHEME 

Return major_status codes: 

▪ GSS_S_COMPLETE indicates that the authentication scheme value represents the security 

mechanism's AUTH_SCHEME. 

▪ GSS_S_FAILURE indicates that the security mechanism does not support NEGOEX. Return values 

other than major_status and minor_status are undefined.  



 

26 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

3.1.5.8.4 GSS_Inquire_context 

The GSS_Inquire_context function is used to get the information about the context, as specified in 
[RFC2743] section 2.2.6.<9> The following output is added to GSS_Inquire_context.  

GSS_Inquire_context  

Outputs: 

▪ Negoex_Verify_key OCTET STRING 

This output is the key that NEGOEX uses for the VERIFY_MESSAGE message (section 2.2.6.5).  

3.1.6 Timer Events 

None.  

3.1.7 Other Local Events 

None.  



 

27 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

4 Protocol Examples 

The following figure shows the network trace of the NEGOEX protocol having the INITIATOR_NEGO 
(short for MESSAGE_TYPE_INITIATOR_NEGO) message type that is sent via the NEGO_MESSAGE 
message (section 2.2.6.3).  

 

Figure 2: Network trace example for the NEGOEX protocol 

The following is the annotated HEX dump for the INITIATOR_NEGO message. 

 0000   4e 45 47 4f 45 58 54 53 00 00 00 00 00 00 00 00   NEGOEXTS........ 
 0010   60 00 00 00 70 00 00 00 36 91 b8 12 16 8c ba d4   `...p...6....... 
 0020   f6 7c 3b 24 f0 69 35 c7 f1 1e 9e 45 67 89 22 83   .|;$.i5....Eg.". 
 0030   8a e1 f2 23 2f db db 12 dc be 22 9f 8c 3f 58 69   ...#/....."..?Xi 
 0040   4d e6 0a 4f 5a 82 8e f4 00 00 00 00 00 00 00 00   M..OZ........... 
 0050   60 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00   `............... 
 0060   5c 33 53 0d ea f9 0d 4d b2 ec 4a e3 78 6e c3 08   \3S....M..J.xn.. 

The Header is the MESSAGE_HEADER structure (as defined in section 2.2.6.2), which is the first 

part of the NEGOEX INITIATOR_NEGO message. The header consists of the following lines. 

 0000   4e 45 47 4f 45 58 54 53 00 00 00 00 00 00 00 00   NEGOEXTS........ 
 0010   60 00 00 00 70 00 00 00 36 91 b8 12 16 8c ba d4   `...p...6....... 
 0020   f6 7c 3b 24 f0 69 35 c7                           .|;$.i5. 

▪ Signature: The message signature that contains the MESSAGE_SIGNATURE (as defined in section 
2.2.3) with the value NEGOEXTS. 

▪ MessageType: A MESSAGE_TYPE value (0x00000000) that is set to INITIATOR_NEGO and that 
refers to MESSAGE_TYPE_INITIATOR_NEGO (as defined in section 2.2.6.1). 

▪ SequencNum: The sequence number is the SequenceNum field with value 0. 

▪ cbHeaderLength: The length of the header with value 96. 

▪ cbMessageLength: The length of the message with value 112. 



 

28 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

▪ ConversationID: The ID GUID of the conversation stored in the ConversationId field (as 

defined in section 3.1.5.2), which remains the same between the initiator and the acceptor 
throughout the negotiation process. 

The header is followed by the Random field, a 16-byte number that begins at the second half of 0020 

at f1. The ProtocolVersion 8-byte field follows with value 0, as shown in the following example. 

 0020   f6 7c 3b 24 f0 69 35 c7 f1 1e 9e 45 67 89 22 83   .|;$.i5....Eg.". 
 0030   8a e1 f2 23 2f db db 12 dc be 22 9f 8c 3f 58 69   ...#/....."..?Xi 
 0040   4d e6 0a 4f 5a 82 8e f4 00 00 00 00 00 00 00 00   M..OZ........... 

AuthSchemes contains the list of supported security mechanism IDs, in decreasing order of 

preference, that is sent by the initiator to the acceptor. In this negotiation, as shown in the following 

figure, the initiator supports only one security mechanism (1 of 96), count 1, with its unique ID in the 
AuthScheme field. 

 

Figure 3: AuthSchemes contents 

The AuthSchemes 8-byte field is followed by the Extension 8-byte field, which is shown in the HEX 
dump example at address 0050. The AuthScheme security mechanism unique ID is shown at address 

0060. 

 0050   60 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00   `............... 
 0060   5c 33 53 0d ea f9 0d 4d b2 ec 4a e3 78 6e c3 08   \3S....M..J.xn.. 



 

29 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

5 Security 

5.1 Security Considerations for Implementers 

The security mechanism SHOULD support providing Negoex_Verify_Key for the VERIFY_MESSAGE 

message, as specified in section 3.1.5.7. This ensures that VERIFY_MESSAGE messages, as specified 
in section 2.2.6.5, are generated to make NEGOEX safe from downgrade attacks. 

5.2 Index of Security Parameters 

 

Security field Section 

Negoex_Verify_key GSS_Inquire_context (section 3.1.5.8.4) 

 



 

30 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

6 Appendix A: Full NEGOEX 

For ease of implementation, the following is the full NEGOEX version 4 syntax for this protocol, as 
defined in [IETFDRAFT-NEGOEX-04]. 

 #define MESSAGE_SIGNATURE   0x535458454f47454ei64  // "NEGOEXTS" 
  
 struct 
 { 
    ULONG ByteArrayOffset; // each element contains a byte 
    ULONG ByteArrayLength; 
 } BYTE_VECTOR; 
  
 struct 
 { 
   ULONG AuthSchemeArrayOffset;  // each element contains an AUTH_SCHEME 
   USHORT AuthSchemeCount; 
 } AUTH_SCHEME_VECTOR; 
  
 struct 
 { 
   ULONG ExtensionArrayOffset;  // each element contains an EXTENSION 
   USHORT ExtensionCount; 
 } EXTENSION_VECTOR; 
  
 struct 
 { 
   ULONG ExtensionType; // negative extensions are critical 
   BYTE_VECTOR ExtensionValue; 
 } EXTENSION; 
  
 // 
 // schemes defined for the checksum in the VERIFY message 
 // 
  
 #define CHECKSUM_SCHEME_RFC3961  1 

 struct 
 { 
   ULONG cbHeaderLength; 
   ULONG ChecksumScheme; 
   ULONG ChecksumType; // in the case of RFC3961 scheme, this is the RFC3961 checksum type 
   BYTE_VECTOR ChecksumValue; 
} CHECKSUM; 

 

 typedef GUID AUTH_SCHEME; 
typedef GUID CONVERSATION_ID; 

 

 enum 
 { 
   MESSAGE_TYPE_INITIATOR_NEGO = 0, 
   MESSAGE_TYPE_ACCEPTOR_NEGO, 
   MESSAGE_TYPE_INITIATOR_META_DATA, 
   MESSAGE_TYPE_ACCEPTOR_META_DATA, 
   MESSAGE_TYPE_CHALLENGE,   // an exchange message from the acceptor 
   MESSAGE_TYPE_AP_REQUEST,  // an exchange message from the initiator 
   MESSAGE_TYPE_VERIFY, 
   MESSAGE_TYPE_ALERT, 
} MESSAGE_TYPE; 

  
 struct 
 { 
   ULONG64 Signature; // contains MESSAGE_SIGNATURE 
   MESSAGE_TYPE MessageType; 
   ULONG SequenceNum;  
     // the message sequence number of this, conversation, 
     // starting with 0 and sequentially incremented 



 

31 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

   ULONG cbHeaderLength;  
     // the header length of this message, including 
     // the message specific header, excluding the payload 
   ULONG cbMessageLength; // the length of this message 
   CONVERSATION_ID ConversationId; 
} MESSAGE_HEADER; 

  
 struct 
 { 
   MESSAGE_HEADER Header;   
     // MESSAGE_TYPE_INITIATOR_NEGO for the initiator, 
     // MESSAGE_TYPE_ACCEPTOR_NEGO for the acceptor 
   UCHAR Random[32]; 
   ULONG64 ProtocolVersion;  // version of the protocol, this contains 0 
   AUTH_SCHEME_VECTOR AuthSchemes; 
   EXTENSION_VECTOR Extensions; 
} NEGO_MESSAGE; 

 

 struct 
 { 
   MESSAGE_HEADER Header; 
     // MESSAGE_TYPE_CHALLENGE for the acceptor, or 
     // MESSAGE_TYPE_AP_REQUEST for the initiator 
     // MESSAGE_TYPE_INITIATOR_META_DATA for the initiator metadata 
     // MESSAGE_TYPE_ACCEPTOR_META_DATA for the acceptor metadata 
   AUTH_SCHEME AuthScheme; 
   BYTE_VECTOR Exchange;  
     // contains the opaque handshake message for the authentication scheme 
} EXCHANGE_MESSAGE; 

 

 struct 
 { 
   MESSAGE_HEADER Header; // MESSAGE_TYPE_VERIFY 
   AUTH_SCHEME AuthScheme; 
   CHECKSUM Checksum; 
     // contains the checksum of all the previously 
     // exchanged messages in the order they were sent. 
} VERIFY_MESSAGE; 

 

 struct 
 { 
   ULONG AlertType; 
   BYTE_VECTOR AlertValue; 
 } ALERT; 
  
 // 
 // alert types 
 // 
  
 #define ALERT_TYPE_PULSE  1 
  
 // 
 // reason codes for the heartbeat message 
 // 
  
 #define ALERT_VERIFY_NO_KEY  1 
  
 struct 
 { 
   ULONG cbHeaderLength; 
   ULONG Reason; 
} ALERT_PULSE; 

 

 struct 
 { 
   ULONG AlertArrayOffset; // the element is an ALERT 
   USHORT AlertCount; // contains the number of alerts 
} ALERT_VECTOR; 

 

 struct 



 

32 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

 { 
   MESSAGE_HEADER Header; 
   AUTH_SCHEME AuthScheme; 
   ULONG ErrorCode; // an NTSTATUS code 
   ALERT_VECTOR Alerts; 
} ALERT_MESSAGE; 



 

33 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

7 Appendix B: Product Behavior 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include updates to those products. 

▪ Windows 7 operating system  

▪ Windows Server 2008 R2 operating system  

▪ Windows 8 operating system  

▪ Windows Server 2012 operating system  

▪ Windows 8.1 operating system  

▪ Windows Server 2012 R2 operating system  

▪ Windows 10 operating system  

▪ Windows Server 2016 operating system  

▪ Windows Server operating system  

▪ Windows Server 2019 operating system  

▪ Windows Server 2022 operating system  

▪ Windows 11 operating system 

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base 
(KB) number appears with a product name, the behavior changed in that update. The new behavior 
also applies to subsequent updates unless otherwise specified. If a product edition appears with the 
product version, behavior is different in that product edition. 

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed 
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the 
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the 
product does not follow the prescription. 

<1> Section 1.5: By default, the Kerberos protocol and NTLM are available in Windows. The interface 
for authentication protocols in Windows is open and extensible; other protocols might be installed by 
third parties. 

<2> Section 2.2: Parallel to GSS API, Microsoft developed the Windows Negotiation Extension. For 
information on writing NegoEx Security Support Packages (SSPs), see [MSDOCS-NegoExSSP]. For 
information on Creating Microsoft Win32 Custom Security Support Packages, see [MSDOCS-
CustomSSPs]. For information on the GSS matching Win32 API functions, which are found in the NT 
Security Package header ntsecpkg.h, see [MSDOCS-NTSECPKG-H]. 

<3> Section 2.2: The GSS function is GSS_init_sec_context. The Win32 API SSP function is 

SpInitLsaModeContextFn. For more information, see [MSDOCS-NTSECPKG-H]. 

<4> Section 2.2: The GSS function is GSS_accept_sec_context. The Win32 API SSP function is 
SpAcceptLsaModeContextFn. For more information, see [MSDOCS-NTSECPKG-H]. 

<5> Section 3.1.5.8: Parallel to GSS API, Microsoft developed the Windows Negotiation Extension. For 

information on writing NegoEx SSPs, see [MSDOCS-NegoExSSP]. For information on creating Win32 
Custom Security Packages, see [MSDOCS-CustomSSPs]. For information on the GSS matching Win32 
API functions, which are found in the NT Security Package header ntsecpkg.h, see [MSDOCS-

NTSECPKG-H].  



 

34 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

<6> Section 3.1.5.8.1: The Win32 API SSP function is either SpQueryMetaData or 

SpQueryMetaDataFn in the NT Security Package header ntsecpkg.h. For more information, see 
[MSDOCS-NTSECPKG-H].  

<7> Section 3.1.5.8.2: The Win32 API SSP function is either SpExchangeMetaData or 

SpExchangeMetaDataFn in the NT Security Package header ntsecpkg.h. For more information, see 
[MSDOCS-NTSECPKG-H]. 

<8> Section 3.1.5.8.3: The Win32 API SSP functions are SpGetInfoFn and 
SpGetExtendedInformationFn in the NT Security Package header ntsecpkg.h. For more 
information, see [MSDOCS-NTSECPKG-H]. 

<9> Section 3.1.5.8.4: The Win32 API SSP functions are either SpQueryContextAttributes or 
SpQueryContextAttributesFn in the NT Security Package header ntsecpkg.h. For more information, 

see [MSDOCS-NTSECPKG-H]. 



 

35 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

8 Change Tracking 

No table of changes is available. The document is either new or has had no changes since its last 
release. 



 

36 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

9 Index
A 
 
Abstract data model 
   client 20 
Applicability 10 
 

C 
 
Capability negotiation 10 
Change tracking 35 
Client – abstract data model 20 
Client - overview 20 
Constants message 12 
 

D 
 
Data model – abstract 
   client 20 
 

E 
 
Examples 
   overview 27 
 

F 
 
Fields - vendor-extensible 10 
Full NEGOEX 30 
 

G 
 
Glossary 5 
GUID typedefs message 12 
 

H 
 
Higher-layer triggered events 20 
 

I 
 
Implementer - security considerations 29 
Index of security parameters 29 
Informative references 6 
Initialization 20 
Introduction 5 
 

M 
 
Message processing events and sequencing rules 20 
Messages 
   Constants 12 
   GUID typedefs 12 
   Messages 16 
   Numbers 11 
   Random array 13 
   Structures 13 
   syntax 11 
   transport 11 
Messages message 16 
 

N 



 

37 / 37 

[MS-NEGOEX-Diff] - v20211006 
SPNEGO Extended Negotiation (NEGOEX) Security Mechanism 
Copyright © 2021 Microsoft Corporation 
Release: October 06, 2021 

 
NEGOEX message flow 7 
NEGOEX message processing 9 
Normative references 6 
Numbers message 11 
 

O 
 
Other local events 26 
Overview (synopsis) 7 
 

P 
 
Parameters - security index 29 
Preconditions 10 
Prerequisites 10 
Product behavior 33 
 

R 
 
Random array message 13 
References 6 
   informative 6 
   normative 6 
Relationship to other protocols 9 
 

S 
 
Security 
   implementer considerations 29 
   parameter index 29 
Server - overview 20 
Standards assignments 10 
Structures message 13 
Syntax 11 
 

T 
 
Timer events 26 

Timers 20 
Tracking changes 35 
Transport 11 
 

U 
 
Use of constants assigned elsewhere 10 
 

V 
 
Vendor-extensible fields 10 
Versioning 10 

 


	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 NEGOEX Message Flow
	1.3.2 NEGOEX Message Processing

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments
	1.9.1 Use of Constants Assigned Elsewhere


	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Numbers
	2.2.2 GUID typedefs
	2.2.3 Constants
	2.2.4 Random array
	2.2.5 Structures
	2.2.5.1 Constructed types
	2.2.5.1.1 ALERT
	2.2.5.1.2 ALERT_PULSE
	2.2.5.1.3 CHECKSUM
	2.2.5.1.4 EXTENSION

	2.2.5.2 Vector types
	2.2.5.2.1 ALERT_VECTOR
	2.2.5.2.2 AUTH_SCHEME_VECTOR
	2.2.5.2.3 BYTE_VECTOR
	2.2.5.2.4 EXTENSION_VECTOR


	2.2.6 Messages
	2.2.6.1 MESSAGE_TYPE
	2.2.6.2 MESSAGE_HEADER
	2.2.6.3 NEGO_MESSAGE
	2.2.6.4 EXCHANGE_MESSAGE
	2.2.6.5 VERIFY_MESSAGE
	2.2.6.6 ALERT_MESSAGE



	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 NEGOEX Supported Security Mechanisms
	3.1.5.2 ConversationID
	3.1.5.3 Cryptographic Computations
	3.1.5.4 Generation of the Initiator Initial Token
	3.1.5.5 Receipt of the Initial Initiator Token and Generation of the Initial Acceptor Response
	3.1.5.6 Receipt of the Acceptor Initial Response and Completion of Authentication After the Negotiation Phrase
	3.1.5.7 Finalizing Negotiation
	3.1.5.8 Supporting GSS-API Extensions
	3.1.5.8.1 GSS_Query_meta_data
	3.1.5.8.2 GSS_Exchange_meta_data
	3.1.5.8.3 GSS_Query_mechanism_info
	3.1.5.8.4 GSS_Inquire_context


	3.1.6 Timer Events
	3.1.7 Other Local Events


	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full NEGOEX
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

